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Abstract of the Dissertation

QCD factorization for heavy quarkonium
production and fragmentation functions

by

Hong Zhang

Doctor of Philosophy

in

Physics

Stony Brook University

2014

From the Tevatron and the LHC data, it is clear that current mod-
els for the heavy quarkonium production are not able to explain
the polarization of produced heavy quarkonia at large transverse
momentum pT . A new approach to evaluate the heavy quarkonium
production, by expanding the cross section in powers of 1/pT be-
fore the expansion in powers of αs, was proposed recently. In terms
of the QCD factorization, it is proved that both the leading and
next-to-leading power terms in 1/pT for the cross sections can be
systematically factorized to all orders in powers of αs. The pre-
dictive power of this new QCD factorization formalism depends on
several unknown but universal fragmentation functions (FFs) at
an input scale of the order of heavy quarkonium mass mQ. These
FFs should be extracted from the data in principle. However, fit-
ting so many unknown multi-variable functions from the data is
formidable practically. The lack of knowledge of the input FFs
impedes the application of the QCD factorization.

In this dissertation, inspired by the fact that these input FFs de-
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pend on mQ � ΛQCD, we apply the NRQCD factorization formal-
ism to further separate the perturbative and non-perturbative in-
teractions. With our calculations, all the input unpolarized FFs are
expressed as complicated functions with a few unknown NRQCD
long-distance matrix elements (LDMEs). In addition, by gen-
eral symmetry arguments, we successfully generalize the polarized
NRQCD four-fermion operators to d dimensions and calculate the
polarized FFs with conventional dimensional regularization.

In the first application of the QCD factorization to unpolarized J/ψ
production, we find those NRQCD channels, which are expected to
be important in the J/ψ polarization, are actually dominated by
the next-to-leading-power term in the pT expansion at current col-
lider energies. Therefore the QCD factorization is very promising
to solve the long standing heavy quarkonium polarization puzzle.
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Chapter 1

Introduction

The most incomprehensible thing about
the universe is that it is comprehensible.

Albert Einstein, 1936

As an important part of the Standard Model, Quantum Chromodynamics
(QCD) is an SU(3)c gauge theory for strong interaction. One of the main
successes in our understanding of QCD is the running of strong coupling and
asymptotic freedom. Asymptotic freedom implies the validity of perturbation
method when the transferred energy is larger than a few GeV. With factoriza-
tion theorems, perturbative QCD (pQCD) has been widely tested in different
processes and is successful in describing almost all experimental data on high-
energy, large-momentum-transfer cross sections. On the other hand, the quark
and gluon degrees of freedom at short distance cannot be observed at long dis-
tance due to QCD color confinement. In this low-energy region, QCD on the
lattice has achieved many successes in calculating non-perturbative quantities,
such as the hadron spectra. The tremendous successes of pQCD and lattice
QCD convince us that QCD is the correct theory for strong interaction over
all energy ranges.

However, there are still many problems we do not have many clues for, in
particular, the transition from asymptotic freedom at short-distance (< 1/10
fm) to the color confinement at longer distance (& 1 fm), or the hadronization
process. There are many questions to be answered, such as how the quarks
and gluons bind themselves together to form hadrons, is the hadronization
process a total chaos or are there some patterns of the ordering, just to list
a few. A natural idea for addressing these questions is to start with the
production of the simplest strongly-interacting bound state, just as physicists
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study the formation of the hydrogen atom to test their understanding of atomic
structure.

Heavy quarkonium is one of the simplest systems. Inside heavy quarkonia,
the large heavy quark mass mQ � ΛQCD implies that they are localized heavy
color charges. It is then natural to conjecture that the binding of heavy quarko-
nium is dominated by two-body interactions. Based on this picture, people
introduce potential to describe the interaction between the heavy quark pair.
This model, known as the potential model, achieves remarkable successes in
explaining both the heavy quarkonium spectrum and transition rate between
different states [26].

Nevertheless, as a low energy theory, the potential model itself is not able
to explain the hadronization of heavy quarkonium, which involves both low-
energy and high-energy dynamics. Indeed, the formation of heavy quarkonium
is still a mystery 40 years after the discovery of the first quarkonium J/ψ. Be-
cause the heavy quark mass mQ is much larger than ΛQCD, the production
of the heavy quark pair could be calculated perturbatively [27]. The trans-
formation or hadronization of the pair to a heavy quarkonium is intrinsically
non-perturbative. It is thus natural to conjecture the factorization between a
short-distance part describing the production of a heavy quark pair in hard
scattering and a factor describing the non-perturbative hadronization of the
pair. Different treatments of the hadronization process lead to various factor-
ization models for heavy quarkonium production.

The color singlet model (CSM) [28–35] assumes the produced heavy quark
pair in the hard scattering hadronizes without emitting gluons. Under this
assumption, the heavy quark pair must take the same quantum numbers
(spin, color, etc.) as the observed heavy quarkonium. Moreover, the non-
perturbative factors in CSM are related to the heavy quarkonium wave func-
tion (or its derivatives), which can be extracted from heavy quarkonium decay
data or calculated from the potential model. The CSM was quite successful
explaining the S-wave heavy quarkonium production in low energy experi-
ments until around 1995, when Tevatron data showed that the production
rate is larger than LO CSM prediction by more than an order of magnitude.
Even after taking into account the large high-order corrections, the CSM still
under-predicts the Tevatron data by a large amount (see Fig. 3.6). On the
other hand, the calculation of P -wave heavy quarkonium production based on
the CSM suffers from uncanceled logarithmic infrared (IR) divergence. All
these flaws show that some important piece of physics is missing from the
CSM.

The non-relativistic QCD (NRQCD) model [36], which includes CSM as its
special case, is basically an effective field theory approach relying on the sep-
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aration of momentum scales in heavy quarkonium production. The NRQCD
model assumes that a heavy quark pair produced in the hard scattering has a
non-zero probability to evolve into any heavy quarkonium. The net transition
rate depends on the heavy quark pair’s relative velocity v, its spin and color
states, and is given by universal NRQCD long-distance elements (LDMEs),
which are non-perturbative and whose magnitude follows the NRQCD power-
counting rule. Summing over all possible spin and color states of the pair gives
the total inclusive cross section. With the perturbative hard parts calculated
to next-to-leading order (NLO) in αs and carefully fitted LDMEs, NRQCD is
very successful in interpreting the data on the production rate of χcJ , J/ψ and
Υ from the Tevatron and the LHC [11, 17, 37–39].

However, with additional large scales other than the heavy quark mass, po-
tentially, the perturbative expansion of the hard parts of NRQCD factorization
approach could be unstable. For example, for heavy quarkonium produced at
large transverse momentum pT , large ln(p2

T/m
2
Q)-type logarithms need to be

systematically resummed. Moreover, high-order corrections may receive huge
power enhancements in terms of p2

T/m
2
Q, which could overwhelm the suppres-

sion of αs at large pT [24, 40].
Several inconsistencies between NLO NRQCD calculations and experimen-

tal data have been realized recently. The combination of color-octet LDMEs
for J/ψ production, M

J/ψ
0,3.9 = 7.4× 10−2 GeV3 [11], obtained by fitting hadron

collider data based on NLO NRQCD calculation, contradicts the upper limit,
2.0 × 10−2 GeV3, derived from e+e− data [41]. The first attempt of global
fitting on J/ψ production in Ref. [38] effectively confirmed this inconsistency,
where the minimum χ2 per degree of freedom of the fitting is larger than 4.
In addition, the full NLO NRQCD calculation has difficulties explaining the
polarization of the exited state, ψ′, measured at the Tevatron and the LHC
(Fig. 3.14) [5], as well as the polarization of heavier quarkonium, such as Υ(3S)
measured by CMS at the LHC [17, 42], although it is capable of explaining
the data on the J/ψ polarization [12, 18]. Because of the large logarithms and
possible huge power enhancement at higher orders, it is difficult to determine
whether such inconsistencies are from large high order corrections or from the
failure of NRQCD factorization conjecture.

Recently, a new QCD factorization approach to high pT heavy quarkonium
production at collider energies was proposed [23, 24, 40, 43]. A similar fac-
torization approach based on soft-collinear effective theory (SCET) was also
proposed [44]. In the QCD factorization approach, the cross section is first ex-
panded by powers of 1/p2

T . As argued in Refs. [24, 40], both the leading-power
(LP) term and next-to-leading-power (NLP) term of the expansion could be
factorized systematically into infrared-safe short-distance partonic hard parts
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convoluted with universal fragmentation functions (FFs), plus parton distri-
bution functions (PDFs) in the case of hadronic collisions. Unlike the NRQCD
factorization approach, the short-distance hard parts calculated by using the
QCD factorization formalism are free of large logarithms and the power en-
hancements. All powers of ln(p2

T/m
2
Q)-type logarithms are resummed by solv-

ing a closed set of evolution equations of FFs [40]. Because of its better control
on high order corrections, the QCD factorization approach is a powerful tool
to study the mechanism of heavy quarkonium production.

Similar to the inclusive production of a light hadron at high pT , the pre-
dictive power of QCD factorization approach to heavy quarkonium production
requires our knowledge of the FFs, in addition to the systematically calculated
short-distance partonic hard parts. With the perturbatively calculated evo-
lution kernels, we only need the FFs at an input scale µ0 & 2mQ, while the
evolution equations could generate the FFs to any other scales. However, be-
cause of the inclusion of NLP contribution to the cross section, it requires
many more unknown input FFs. For the LP term, we need a minimum of
two single parton (light quark + gluon) FFs to each heavy quarkonium state,
if we assume that all light quark/antiquark flavors share the same FF, plus
one or two more input FFs if we include fragmentation contribution from a
heavy quark, whose mass mQ � pT . For the NLP term, we need at least six
multi-variable heavy quark-pair FFs due to the pair’s two color and four spin
states (vector, axial vector, and tensor states), if we do not distinguish the two
tensor states. Combining the LP and NLP contributions, we need a minimum
of eight to ten unknown multi-variable input FFs to describe the production
of each heavy quarkonium state. Although contributions from some fragmen-
tation channels, such as the tensor channels, could be less important, it still
requires a lot of information/data to extract these FFs, which makes it difficult
to test this factorization formalism precisely.

Like all QCD factorization approaches to high pT hadron production, it
is the FFs at the input scale that are most sensitive to the properties of the
heavy quarkonium produced, since the perturbatively calculated partonic hard
parts and evolution kernels are insensitive to any long-distance characteristics,
such as the spin and polarization, of the produced quarkonium. That is, the
knowledge of heavy quarkonium FFs at the input scale is extremely important
for understanding the production and formation of different heavy quarkonia
at collider energies.

Unlike the light hadron FFs, heavy quarkonium FFs have an intrinsic hard
scale - the heavy quark mass mQ, which could be large enough to be considered
as a perturbative scale. With the input scale µ0 & 2mQ � ΛQCD, NRQCD
could be a good effective theory to be used to factorize these unknown input
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FFs into LDMEs and perturbatively calculated coefficient functions, which
cover the phase space between NRQCD factorization scale µΛ ∼ mQ and µ0,
and do not have large logarithmic terms or the huge power enhancement found
in the NLO NRQCD calculation at high pT . Although there is no formal proof
that NRQCD factorization works for evaluating these universal input FFs
perturbatively to all orders in αs and all powers in expansion of heavy quark
velocity, v, applying NRQCD factorization to evaluate heavy quarkonium FFs
should at least give a reasonable model calculation of these FFs, and provide
some ideas on the relative strength and functional form of these FFs to various
states of quarkonia. In addition, this approach could reduce the large number
of unknown FFs into a few universal NRQCD LDMEs with perturbatively
calculated coefficients.

Therefore, it is very important to calculate these FFs with the NRQCD
factorization to bridge the gap between the QCD factorization formalism and
its phenomenological application. The objective of this dissertation is to derive
all these universal FFs in terms of the NRQCD factorization, and demonstrate
their importance in phenomenological applications of heavy quarkonium pro-
duction.

With NRQCD factorization, we have derived the FFs from a perturba-
tively produced single parton or a heavy quark pair for all unpolarized par-
tonic channels at O(α0

s) and O(αs) [45, 46]. By generalizing the definitions of
NRQCD LDMEs to d dimensions, we have also derived the polarized FFs for
all partonic channels to the first non-trivial order. All heavy quarkonium FFs
from our calculation have an explicit and definite dependence on momentum
fractions z and the input factorization scale µ0, which should be a parame-
ter to be determined by fitting experimental data, along with a few unknown
NRQCD LDMEs for each physical heavy quarkonium state. From the exist-
ing phenomenological success of NRQCD factorization approach to inclusive
production of heavy quarkonia, and the clear separation of momentum scales,
we expect that our results should provide a reasonable description of these
non-perturbative FFs at the input scale. With our calculated input FFs, the
evolution kernels of FFs in Ref. [40], and the short-distance perturbative hard
parts from Ref. [24], QCD factorization approach is now ready to be applied
to both the unpolarized and polarized heavy quarkonium production process.

The power of QCD factorization starts to show its strength in our first nu-
merical work on unpolarized J/ψ production [47]. By considering both LP and
NLP at leading order in αs, QCD factorization naturally reproduces all results
from the formidable NLO NRQCD factorization calculation at pT & 10 GeV.
The systematic treatment of NLP contribution is very crucial. Some channels
(1S

[8]
0 and 3S

[1]
1 ) are dominated by NLP contribution at current collider energies.
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Moreover, recent studies [11, 18, 48] show the sum of LP contributions from
3S

[8]
1 and 3P

[8]
J is relatively small. If this is indeed the case, the J/ψ production

at current collider energies is dominated by 1S
[8]
0 channel, which answers the

long standing question why the produced J/ψ is almost unpolarized.
The rest of the dissertation is organized as follows. In chapter 2, we give

a brief review of QCD, including the Lagrangian, renormalization, asymptotic
freedom, and factorization theorems. In chapter 3, we review some histori-
cal models for heavy quarkonium production. Our focus will be on NRQCD,
because of its importance in our calculation of FFs. At the end of this chap-
ter, we also explain the large high-order corrections in CSM and NRQCD.
In chapter 4, we will introduce the recently proposed QCD factorization ap-
proach: factorization formula, FFs and evolution equations. From chapter 5,
we show in detail our calculation of input FFs with NRQCD factorization. In
chapter 5, we first discuss the matching of FFs to NRQCD, then introduce the
projection method we use in the calculation. By inspection of the symmetries
of the FFs, we gain a lot of information about their structure, which is also
discussed in chapter 5. Then in chapter 6 and 7, we explain the details of
our calculation for unpolarized S-wave and P -wave heavy quarkonium FFs,
respectively. In chapter 8, we explain our method of generalizing the polar-
ized NRQCD LDMEs to d dimensions, which is compatible with conventional
dimensional regularization. We do not show the details of the calculation but
give our results, since the calculation is very similar to the unpolarized case.
In chapter 9, we show how the LO results of QCD factorization with both
LP and NLP reproduce the formidable NLO NRQCD calculation. Finally the
summary and outlook is given in chapter 10.
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Chapter 2

Quantum chromodynamics:
Overview

This chapter is a brief survey of the QCD theory. In Sec. 2.1 is a short review
of history toward QCD. Then in Sec. 2.2 we review the QCD Lagrangian and
the running coupling. Finally in Sec. 2.3 we review the perturbative QCD and
collinear factorization theorems.

2.1 History toward QCD

In 1911, Ernest Rutherford bombarded gold foil with alpha rays and realized
the existence of a small positively-charged nucleus in an atom. Later in 1932,
James Chadwick discovered the neutron. At that time, it was generally ac-
cepted that all matter in the universe is made of atoms. Each atom has a heavy
nucleus surrounded by the electron cloud. The nucleus is further composed of
protons and neutrons, collectively called nucleons.

From late 1920s to the year 1964, with the development of accelerators and
detectors, many strongly-interacting particles previously observed only in cos-
mic rays, were confirmed in scattering experiments. Many new particles were
also detected and their decay rates and decay products were well measured.
Varied by their masses and spins, these new particles fall into two categories.
The fermions, all with masses close or above 1 GeV, are called baryons. The
bosons, usually with smaller masses, are named mesons. It turned out that
protons and neutrons are just the lightest particles in the baryon spectrum.

It is very unlikely that these new particles are independent. In 1961, Mur-
ray Gell-mann generalized the SU(2)-isospin symmetry to SU(3) symmetry
and named it “Eightfold way” [49]. The same theory was independently pro-
posed by Yuval Ne’eman in the same year [50]. In this Eightfold way, mesons
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are organized into singlet and octet, while spin-1/2 and spin-3/2 baryons are
organized into octet and decuplet, respectively. Back then, one of the parti-
cles in the decuplet was not observed. Gell-mann called this particle Ω− and
predicted in 1962 that it would have strangeness −3, electric charge −1 and a
mass near 1680 MeV. In 1964, a team led by Nicholas Samios discovered the
Ω− in the Alternating Gradient Synchrotron (AGS) at Brookhaven National
Laboratory (BNL).

The “Eightfold way” has many problems. For example, it cannot explain
why meson φ(1020) is much more sTable than ω(782). In 1964, Gell-mann [51]
and George Zweig [52] proposed that the “Eightfold way” can be naturally
explained by assuming hadrons are made of three-flavor quarks: up (u), down
(d) and strange(s) (Zweig called them aces: A1, A2 and A3) and their anti-
particles. This is the first version of the quark model. In this model, baryons
are made of three quarks, while mesons are made of a quark-antiquark pair.
The ”Eightfold way” is a result of the approximate symmetry SU(3)flavor. In
this quark model, the long life of φ(1020) can be explained by what is now
known as OZI rule [52–54]. In 1969, Gell-mann was awarded the Nobel Prize
in physics “for his contributions and discoveries concerning the classification
of elementary particles and their interactions”1.

However, it was soon realized that the quark model explicitly violates the
Pauli exclusion principle. To fit the data, the quark model requires that the
configuration of quarks in the observed baryons must be symmetric under
permutations. A commonly-used example is ∆++, which is made of three
spin-up u quarks and has a S-wave orbital wave-function. At the end of year
1964, Han and Numbu [55] proposed that this contradiction could be resolved
by introducing a hidden three-value charge, which is now known as color: red,
green or blue. To avoid proliferating the number of states, it is further assumed
that all hadron states observed in nature must be “colorless”. In other words,
all hadrons and mesons are color-singlet.

In brief, the quark model says that all hadrons are made of three-flavor
quarks and antiquarks. Each quark takes a hidden color degree of freedom.
There is an approximate SU(3)flavor symmetry and an exact SU(3)color sym-
metry. All hadron states must be color-singlet. The quark model successfully
describes most of the basic properties and the qualitative features of the ob-
served low-lying hadronic states. However, it doesn’t say anything of the
interactions between quarks and the formation of bound states.

It is then natural to try to detect the quarks and explore the dynamics
of their interaction experimentally. In late 1967, the first attempt to directly
observe the substructure of the proton was carried out at Stanford Linear Ac-

1From http://www.nobelprize.org/.
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celerator Center (SLAC)2, in a Rutherford-type experiment with an energetic
electron beam scattered off a proton target, known as the inclusive lepton-
hadron deep inelastic scattering (DIS). By measuring the momentum and an-
gular distribution of outgoing electrons, information of the proton structure
can be extracted. It turned out that the DIS data agreed with predictions
based on the conjecture that the proton are made of freely-moving spin-1/2
point-like fermions3. Among these predictions, the most important ones are
the Callan-Gross relation [56] and Bjorken scaling rule [57].

Inspired by the discovery of DIS experiment, Richard Feynman proposed
his parton model [58, 59] in 1969. In the parton model, the hadrons are com-
posed of point-like spin-1/2 partons (similar to quarks in the quark model),
interacting weakly at high energy by exchanging spin-1 partons (gluons). The
probability of finding a parton with flavor i and longitudinal momentum frac-
tion x in the parent proton is described by a function fi(x), which is known
as the Parton Distribution Function (PDF). Compared to the quark model
which treats hadrons as a bag of three quarks or a quark-antiquark pair, Feyn-
man’s parton model indicates that more quarks with different flavors can be
pair-produced by interaction inside a hadron. For example, there is a nonzero
probability to find a s quark in a proton (uud in the quark model) because ss̄
can be pair-produced from gluon annihilation. Conventionally, for a specific
hadron, the quarks giving flavor quantum number to the hadron are called
valence quarks, while other quarks are called sea quarks.

Until 1973, the only quarks had been discovered were u, d and s quarks,
collectively called light quarks. In 1974, a new flavor of quark, called charm or
c, was discovered independently by two teams at BNL [60] and SLAC [61, 62],
which started the well-known “November Revolution”4. In 1977, the fifth
flavor, bottom or b, was discovered at Fermi National Accelerator Laboratory
(Fermilab) [63]. In 1979, three-jets events were observed in the Deutsches
Elektronen-Synchrotron (DESY) in e+e− annihilation [64], which is considered
a direct evidence for the existence of the gluon. Finally in 1995, the top quark,
or t, was discovered at Fermilab [65, 66]. The c, b and t quarks, because their
heavy masses, are called heavy quarks. The six quarks and the gluon are all
the participants of strong interaction we have discovered so far.

At the same time, it was gradually realized that the gluon plays a very
important role inside hadrons. As early as the 1970s, by adding up the mo-

2The first run starting in 1966 at lower energy didn’t see any hard core inside the proton
3Because the indispensable contribution of this DIS experiment to our understanding

of hadron structure and strong interactions, the leaders of the SLAC experiment Jerome
Friedman, Henry Kendall and Richard Taylor were awarded the Nobel Prize in 1990.

4In 1976, the leaders of the two teams, Samuel Ting and Burton Richter, respectively,
were awarded the Nobel Prize for the discovery of charm quark.
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mentum fraction of all quark flavors measured in the SLAC DIS experiment,
people found that quarks take only 50% of the momentum of the proton, which
implies that gluons must take the remaining 50%. Later in 1988, a measure-
ment by European Muon Collaboration showed that the spins of quarks and
antiquarks contribute only a small fraction to the proton spin [67], which is
now generally accepted as 30%.

Theoretically, Feynman’s parton model has an acute problem: if the par-
tons are shown to be loosely bound in DIS experiments, why has no isolated
parton ever been observed experimentally? To answer this question, the parton
model needed to be developed into a theory with the dynamics of the strong
interaction. Following the pioneering work on non-Abelian gauge theory by
Chen Ning Yang and Robert Mills [68], Fritzsch et al. introduced Quantum
Chronodynamics (QCD) to describe the strong interaction in 1973 [69]. QCD
is a non-Abelian gauge theory of quarks, gluons and their interaction, which
preserves local SU(3)color gauge symmetry. It was soon realized that QCD has
a “counter-intuitive” feature that the interaction between partons is very weak
at short distance (. 1/10 fm), which is called asymptotic freedom [70, 71]5,
and gets stronger when distance increases, until very strong at the size of a
typical hadron (∼ 1 fm), which implies color confinement. This feature ex-
plains why the partons behave like free particles in DIS and other high-energy
processes, but no isolated parton has ever been observed.

The feature of asymptotic freedom allows us to apply perturbation method
to calculate the physical observables at large energy scale in powers of the small
coupling αs. However, any physical observable involving identified hadrons is
sensitive to the binding energies of these hadrons, which are too strong for
perturbative QCD. This problem is solved by factorization theorems, which
factorized physical observables into convolutions of process-dependent short-
distance coefficients, which can be calculated perturbatively, and some non-
perturbative but universal distribution functions. With these distribution
functions fitted from some experiments (or through a global fitting procedure),
and the perturbatively-calculated short-distance coefficients for each process,
the factorization theorems can be used to make predictions. Factorization the-
orems have been very successful and have provided us lots of insight of strong
interaction and QCD.

5Gross, Wilczek and Politzer (authors of Ref. [70, 71]) shared the Nobel Prize in 2004
for the discovery of the asymptotic freedom.
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2.2 QCD Lagrangian, running coupling and

factorization

2.2.1 QCD Lagrangian density

QCD is a quantum gauge field theory of six quark flavors and the gluon which
take SU(3) color charges. The kinetics of classical quarks and gluon as well
as their interaction are described by the classical Yang-Mills Lagrangian:

Linvariant =
∑
f

ψ̄f,i(iγ
µDµ,ij −mfδij)ψf,j −

1

4
(Ga

µν)
2, (2.1)

where Dµ ≡ ∂µ + igsA
a
µt
a, gs is the gauge coupling, ψf,i is the quark field with

flavor f = u, d, c, s, t, b and color i = 1, 2, 3, Aaµ is the gluon field with color
a = 1, 2, . . . , 8, Ga

µν is the gluon field-strength tensor with color a which is
defined as

Ga
µν = ∂µA

a
ν − ∂νAaµ − gsfabcAbµAcν , (2.2)

with fabc the structure constant of SU(3) group.
The QCD Lagrangian is manifestly Lorentz invariant, as well as time-

reversal, parity and charge-conjugation invariant. Most importantly, it also
exhibits SU(3) local gauge symmetry, which distinguishes QCD Lagrangian
from other gauge theories. The local SU(3)color gauge symmetry is defined as
the invariance of Lagrangian under the following transformation:

ψ′f,i(x) = Uij(x)ψf,j(x), (2.3a)

A′µ(x) = U(x)Aµ(x)U−1(x) +
i

gs
[∂µU(x)]U−1(x), (2.3b)

where Aµ(x) = Aaµ(x)T a with T a being the Gell-Mann matrices, U(x) is the
gauge transformation matrix defined as

U(x) = eiθ
a(x)Ta , (2.4)

with θ(x) being any analytic function of x.
The gauge invariance of Linvariant makes it difficult to be quantized. This

problem is solved by introducing a gauge-fixing term, given by

Lgauge = −λ
2

(ηµAaµ)2, (2.5)

which restricts the gluon field by η ·Aa = 0. Common choices of η include the
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gradient ∂ (covariant gauge) or a fixed vector n (axial gauge). The axial gauge
with n2 = 0 is also called light-cone gauge. Because of the non-Abelian nature
of QCD, the gauge fixing term in Eq. (2.5) cannot remove the unphysical gluon
polarization completely in covariant gauge. In this gauge, the Faddeev-Popov
gauge field Lghost is also needed [72],

Lghost = ηµc̄a(∂µδ
ad − gsfabdAbµ)cd, (2.6)

where ca is the ghost field. So the general quantized QCD Lagrangian can be
written as

LQCD(ψf , Aµ, . . . ) = Linvariant + Lgauge + Lghost, (2.7)

where . . . represents ghost field c, gauge coupling gs and possible masses.

2.2.2 Renormalization and running coupling

Given the QCD Lagrangian in Eq. (2.7), it is straightforward to derive the
Feynman rules for perturbation theory. However, the application of these
Feynman rules in calculating cross sections and other physical observables
suffers from UV divergence, which is associated with infinitely large loop mo-
menta. With the idea of renormalization, the perturbative UV divergence
can be effectively canceled by redefining the fields and parameters in the La-
grangian. Physical predictions of the theory come only after completion of the
renormalization.

Renormalization in QCD can be summarized as follows. Starting with the
QCD Lagrangian in Eq. (2.7), we define the renormalized Lagrangian as

Lrenormalized(ψR, AR, . . . , Z
′s) ≡ Lclassical(ψR, AR, . . . )

+ Lcounter-term(ψR, AR, . . . , Z
′s)

= Lbare(ψ0, A0, . . . ), (2.8)

where . . . represents renormalized or bare ghost field c, gauge coupling gs and
possible masses. Lclassical(ψR, AR, . . . ) and Lbare(ψ0, A0, . . . ) have the same
functional form of their variables as LQCD in Eq. (2.7). Z ′s are renormaliza-
tion constants, which define the relation between the renormalized and bare
variables,

ψf,0 = Z
1/2
ψ (µr)ψf,R(µr), (2.9a)

Aaµ,0 = Z
1/2
A (µr)A

a
µ,R(µr), (2.9b)

ca0 = Z1/2
c (µr) c

a
R(µr), (2.9c)

gs,0 = Zg(µr) gs,R(µr), (2.9d)
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mf,0 = Zm(µr)mf,R(µr), (2.9e)

where µr is the renormalization scale.
Since µr is an arbitrary scale in renormalized QCD, a physical observable

(e.g. cross section σ) should not depend on µr,

µ2
r

d

dµ2
r

σ

(
Q2
ij

µ2
r

, αs(µr), µr

)
= 0, (2.10)

whereQ2
ij are Lorentz invariants constructed from external Lorentz vectors (i.e.

momenta and spins), and αs = g2
s/(4π). We can then obtain a renormalization

group equation as(
µ2
r

∂

∂µ2
r

+ β(αs)
∂

∂αs
+ ω

)
σ

(
Q2
ij

µ2
r

, αs(µr), µr

)
= 0. (2.11)

Here β(αs) is defined as

β(αs) = µ2
r

∂αs
∂µ2

r

. (2.12)

Consequently, the coupling αs is not a constant, instead it is a function of
µr with the dependence as in Eq. (2.12). This is where the name “running
coupling” comes from. The β-function can be expanded in powers of αs as

β(αs) = − β0

4π
α2
s −

β1

8π2
α3
s −

β2

128π3
α4
s − · · · , (2.13)

where

β0 = 11− 2

3
nf , (2.14a)

β1 = 51− 19

3
nf , (2.14b)

β2 = 2857− 5033

9
nf +

325

27
n2
f , (2.14c)

where nf is the number of quark flavors with masses smaller than µr. From
Eqs. (2.12) and (2.13), we can solve αs approximately

αs(µr)

π
=

12/(33− 2nf )

ln(µ2
r/Λ

2
QCD)

+
72(153− 19nf )

(33− 2nf )3

ln ln(µ2
r/Λ

2
QCD)

ln2(µ2
r/Λ

2
QCD)

+O(
ln2[ln(µ2

r/Λ
2
QCD)]

ln3(µ2
r/Λ

2
QCD)

), (2.15)

13



Figure 2.1: The QCD coupling constant as a function of scale. Figure taken
from [1].

where ΛQCD ∼ 200 MeV is a scale which needs to be determined from experi-
ments. From Eq. (2.15), with µr � ΛQCD and increasing, αs(µr) decreases. In
other words, QCD coupling constant is smaller at higher energy. The running
of αs has been verified by many experiments (see Fig. 2.1). This feature of
QCD is the asymptotic freedom of the strong interaction. It serves as the basis
for applying the perturbative method in high-energy processes.

2.3 Factorization and probability distributions

With renormalization and asymptotic freedom, one could in principle apply
QCD perturbation theory to calculate physical observables in high-energy pro-
cesses, where the gauge coupling αs is small. However, most of the physical
processes involve identified hadrons, and typically, have two or more energy
scales:

• the transferred energy Q in the hard scattering, usually larger than a
few GeV,
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• the scale of hadron binding energies, typically at the order of ΛQCD ∼
200 MeV.

Therefore a typical physical observable (e.g. cross section) is also sensitive to
the dynamics in soft scales, which disqualify the application of QCD pertur-
bation theory.

A solution is provided by the factorization theorems (refer to Ref. [73] for
a good review). According to these theorems, for many processes, physical
observables can be factorized into convolutions of short-distance hard parts,
which are perturbatively calculable, with non-perturbative but universal long-
distance distribution functions (or matrix elements). The interference between
the hard part and the soft interaction with scale qsoft is suppressed by powers
of qsoft/Q, typically qsoft ∼ ΛQCD.

A simple application of factorization is in the cross section of inclusive Deep
Inelastic Scattering (DIS), where an electron collides and smashes a hadron,
usually a proton, as shown in Fig. 2.2(a). By measuring the momentum and the
angular distribution of the outgoing electron, the distributions of quarks inside
the proton are directly probed. There are two well-separated energy scales in
DIS process: the binding energy of proton ∼ ΛQCD and the transferred energy
between the incoming electron and proton Q2 = −q2 � Λ2

QCD.
For simplicity, we consider both the incoming electron and proton as un-

polarized. With one photon exchange, the inclusive DIS cross section can be
written as,

E ′
dσ

d3k′
=

1

2s

(
1

Q2

)2

Lµν(k, k′)Wµν(q, p), (2.16)

where Lµν is the QED process of a lepton emitting a hard photon. From known
symmetries of strong interaction, the hadronic tensor Wµν can be expressed as

Wµν(q, P ) =
1

4π

∫
d4z eiq·z〈p|J†µ(0)Jν(z)|p〉

=−
(
gµν −

qµqν
q2

)
F1(xB, Q

2)

+
1

p · q

(
pµ − qµ

p · q
q2

)(
pν − qν

p · q
q2

)
F2(xB, Q

2), (2.17)

where F1 and F2 are dimensionless structure functions including the informa-
tion of partons inside the proton, xB = Q2/(2p · q) is the Bjorken variable.
The dependences of F1 and F2 on xB and Q2 in Eq. (2.17) can be extracted
from experimental data, It is the task of QCD to explain these dependencies.

In the hard collision, the region probed by the virtual photon is of size 1/Q2,
which is much smaller than the size of the proton (R ∼ 1/ΛQCD). As a result,
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Figure 2.2: Sketch for inclusive DIS process.

the probability of finding two or more physical partons at the probed region
is suppressed by powers of (1/Q)/R. The interaction between the spectators
of incoming hadron and the produced final-state parton is also suppressed
after summing over all outgoing hadrons. Moreover, since the virtuality of
the scattered parton is of order ΛQCD, at the leading power of 1/Q, the effect
of this non-zero virtuality can be neglected. Therefore, at the leading power
of 1/Q, we have a clean picture of this DIS process as shown in Fig. 2.2(b)
and 2.3, where an on-shell parton interacts with a hard virtual photon at
energy scale Q. The hadron acts as a “source” of partons with some unknown
momentum distributions, which can be fitted from experimental data.
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Figure 2.3: Graphical representation of leading power in collinear factorization
for inclusive DIS.

If we further assume the transverse components of the scattered parton’s
momentum are so small compared to the longitudinal component that they
can be effectively neglected, we obtain the collinear factorization formalism.
As an example, the structure function F2 in Eq. (2.17) can be factorized in
this collinear factorization approach as [74–76],

F h
2 (xB, Q

2) =
∑
f

∫ 1

xB

dy

y
Cf

2

(
xB
y
,
Q2

µ2
, αs

)
φf/h(y, µ

2)
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≡
∑
f

C2f ⊗ φf/h, (2.18)

where the summation runs over all parton flavors, Cf
2 is the short-distance co-

efficient function which can be calculated perturbatively, µ is the factorization
scale, and φf/h(x) is the probability of finding parton f with longitudinal mo-
mentum fraction x inside hadron h, known as the parton distribution function
(PDF).

The PDFs are defined explicitly in collinear factorization formalism. For
example, for the unpolarized quark PDF, we have

φq/h(x, µ
2) =

∫
dξ−

2π
eixp

+ξ−〈h(p)|ψ̄q(0)
γ+

2
W (0, ξ−)ψq(ξ

−)|h(p)〉, (2.19)

where W (0, ξ−) is the gauge link,

W (0, ξ−) = P exp

[
ig

∫ ∞
0

dη−A+(η−)

]
P exp

[
ig

∫ ξ−

∞
dη−A+(η−)

]
, (2.20)

which sums up the leading power (LP) contribution from the collinear longi-
tudinally polarized gluons to the cross section, and makes the definition gauge
invariant. The PDFs include dynamics at energy scale ΛQCD, thus cannot be
calculated perturbatively. However, their evolutions with scale µ2 are deter-
mined by DGLAP evolution equations, with perturbatively calculable kernels.
Consequently, to apply collinear factorization, a set of PDFs at some input
scale µ0 is required, which can be fitted from a set of experiments or through
a global fitting procedure. The predictive power of collinear factorization for-
malism relies on our ability to calculate the short-distance coefficients and the
universality of the long-distance PDFs.

Other important non-perturbative distribution functions include fragmen-
tation functions (FFs), which are interpreted as the probability of finding a
specific hadron in the fragments of a energetic parton (or partons). Different
from PDFs, which describe strongly-interacting systems in their equilibrium
states, FFs provide information about dynamical hadronization processes. The
factorization scale dependencies of FFs are also determined by DGLAP evolu-
tion equations, thus a set of FFs at an input scale are required to be extracted
from experimental data.

Only for a few processes, factorization formalisms are proved to all orders
of αs [74]. In many other processes, factorization is used as an ansatz, based on
argument of large space and time separation of different parts in each specific
process. One can test this ansatz by calculating the short-distance coefficients
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to high orders and check whether all IR divergences are canceled. Another
test is the universality of the distribution functions in different processes.

Generally speaking, the LP factorization formalism works very well and
serves as a powerful tool for us to understand strong interaction and QCD in
both perturbative and non-perturbative aspects, either directly or indirectly.
However, for some observables, the LP contribution is found not to be dom-
inant. In some extreme cases, such as single transverse spin asymmetry, LP
contribution is zero in collinear factorization formalism. For these observables,
considering only the LP is problematic, thus a systematic method to expand
the observables to next-to-leading power or even higher powers is necessary
[77, 78]. The inclusive heavy quarkonium production, as explained in the
rest of this dissertation, is an observable for which the LP contribution is not
enough, and power corrections are important.
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Chapter 3

Heavy quarkonium and its
production

This chapter is organized as follows. In Sec. 3.1, we first review some basic
properties of the heavy quarkonium and the measurement of the momentum
and polarization in experiments. From Sec. 3.2 to 3.4, we review three his-
torical models: the color singlet model (CSM), the color evaporation model
(CEM) and the non-relativistic QCD (NRQCD) factorization approach. Our
focus is on the NRQCD factorization since we will use it in our calculation
of the fragmentation functions. Finally in Sec. 3.5, we explain the reason
for the large high-order correction in the CSM and the NRQCD factorization
approach.

3.1 Heavy quarkonium

Heavy quarkonia are mesons made of a valence heavy quark pair QQ̄, where
Q is the charm or bottom (the top quark decays before forming bound states).
Depending on the flavor of Q, heavy quarkonium are also called charmonium
or bottomium. The term heavy quarkonium indicates its similarity to positro-
nium in the e+e− system, by exhibiting a series of excited states with different
principal and angular-momentum quantum numbers, shown for bottomium in
Fig. 3.1. In Table 3.1, we list some properties of the most important heavy
quarkonia. Notice that S and L are not exact good quantum numbers. Mix-
ings, such as the S-D mixing, are allowed.

In experiments, heavy quarkonia are observed by measuring their decay
products. Take charmonia as an example. Table 3.2 lists the important decay
channels used to reconstruct each charmonium state in various experiments.
By measuring the momenta of the decay products, the momentum of the
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Figure 3.1: The bottomium bound states and their observed transitions. Fig-
ure taken from [2].

parent charmonium can be calculated. Information about the polarization of
the parent charmonium can be extracted by measuring the angular distribution
of the decay products in the parent charmonium rest frame. For example, in
the case of J/ψ, the distribution of the di-lepton is parametrized as

dN

d cos θ
∝ 1 + λθ cos2 θ, (3.1)

where angle θ is the direction of l+ relative to a chosen spin-quantization
axis. The parameter λθ is directly related to the fraction of the cross section
that is transverse or longitudinal: λθ = 1 corresponds to 100% transverse
polarization; λθ = −1 corresponds to 100% longitudinal polarization. The
value of λθ depends on the choice of the spin-quantization axis. A review of
the most commonly-used choices and their relations can be found in Ref. [2].

In general, not all charmonium are produced directly in the hard scattering.
Other main contributions are the feeddown of the charmonium at higher energy
levels, and the B meson decay. The addition of the direct production and the

20



Table 3.1: Properties of the most important heavy quarkonia. m(ηb) is esti-
mated from Ref. [19–21]. m(hb) is estimated from Ref. [22]. Other masses are
from Particle Data Group [1], with error in the least significant digit. The three
masses following m(χcJ) are for J = 0, 1, 2 respectively, similarly for m(χbJ).
For comparison, mc(µ = mc) = 1.27 GeV and mb(µ = mb) = 4.19 GeV, in MS
scheme.

Quarkonium JPC n 2S+1LJ Mass(MeV)

ηc, ηb 0−+ 1 1S0

m(ηc) = 2980

m(ηb) ≈ 9390

J/ψ, Υ 1−− 1 3S1

m(J/ψ) = 3096.92

m(Υ) = 9460.3

hc, hb 1+− 1 1P1

m(hc) = 3525.4

m(hb) ≈ 9900

χcJ , χbJ J++ 1 3PJ
m(χcJ) = 3414.8, 3510.66, 3556.20

m(χbJ) = 9859.4, 9892.8, 9912.2

ψ′, Υ(2S) 1−− 2 3S1

m(ψ′) = 3686.09

m(Υ(2S)) = 10023.3

Table 3.2: Important decay channels used to reconstruct the charmonium in
experiments. Decay width are estimated from Particle Data Group [1].

Charmonium Decay channels Decay width

ηc ηc → γγ 1.68 keV

J/ψ J/ψ → l+l− 5.46 keV

hc hc → ηcγ 357 keV

χcJ χcJ → J/ψγ χc0 : 40, χc1 : 1207, χc2 : 693 MeV

ψ′
ψ′ → J/ψπ+π−

ψ′ → l+l−
102 keV

2.34 keV

feeddown contribution is usually referred to as “prompt production”, while the
production of the charmonium from the B meson decay is called “non-prompt
production”. In modern high-energy experiments, “prompt production” can
be separated from “non-prompt production”.
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Because the heavy quark’s mass is much larger than the binding energy, the
motion of the heavy quark pair inside the heavy quarkonium H is effectively
non-relativistic in the rest frame of H (e.g. v2 ≈ 0.3 for the J/ψ and v2 ≈ 0.1
for the Υ). Consequently, there are at least three separated momentum scales
in a heavy quarkonium: the heavy-quark mass mQ; the momentum of the
heavy quark or antiquark in heavy quarkonium rest frame mv, and the binding
energy mv2. If a heavy quarkonium is produced in a hard-scattering process,
an additional scale p is involved. p is usually set by the typical large momentum
scale in the hard scattering, such as pT in hadron-hadron collision.

Among these scales, the scales p and mQ are much larger than ΛQCD, thus
are perturbative, while other scales are non-perturbative. As a result, the
heavy quark pair is produced perturbatively in the hard-scattering process.
Its later evolution into a heavy quarkonium is non-perturbative. Different
factorization approaches have different treatments of the non-perturbative in-
teractions. In the rest of this section, we review the most important historical
models for heavy quarkonium production.

3.2 The color-singlet model

The color-singlet model (CSM) was first proposed shortly after the discovery
of J/ψ in 1974, and was developed in subsequent years [28–35]. It has the
following assumptions:

1. The heavy quarkonium production process can be factorized into two
stages. In the first stage, an on-shell heavy quark pair is produced
with relative 3-momentum q. In the second stage, the heavy quark
pair evolves into the observed heavy quarkonium H.

2. Because the energy scales p and mQ in the first stage are much larger
than ΛQCD, the expansion in powers of αs for the production of the heavy
quark pair converges quickly.

3. The probability for the heavy quark pair with relative momentum q to
form a heavy quarkonium decreases rapidly when q increases. Therefore
the production of the pair in the first stage can be expanded at q = 0.

4 During the second stage, the heavy quark pair hadronizes into a heavy
quarkonium without emitting gluons.

Because of the fourth assumption, the heavy quark pair produced in the first
stage must have the same quantum numbers with the observed heavy quarko-
nium H. Particularly, it must be in a color singlet. This is why the model is
called the color-singlet model.
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Under these assumptions, the amplitude to produce a S-wave heavy quarko-
nium is

AH =

∫
d3qA[QQ̄](q)Φ̃H(q)

≈ A[QQ̄](0)×
∫

d3qΦ̃H(q)

= A[QQ̄](0)× ΦH(0),

(3.2)

where A[QQ̄] is the amplitude of producing a QQ̄ pair with the same quantum

numbers as H in the hard scattering, Φ̃H(q) is the wave-function of H in its
rest frame. In the second step we have used assumption #3. For P -wave
heavy quarkonium, ΦH(0) is zero. Then we need to keep the second term
when expanding A[QQ̄], which results in the derivative of wave-function at the
origin.

Figure 3.2: Comparison of the CSM prediction on the prompt J/ψ production
with the prompt production data measured by the CDF collaboration. The
errors of the two bands are from the uncertainties of mc, as well as various
scales (µr, µf and µfrag). Figure taken from Ref. [3].

The predictive power of the CSM for inclusive production of heavy quarko-
nium H relies on our ability to calculate A[QQ̄] perturbatively, and our knowl-
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edge of the wave-function (or its derivative) of H at the origin. The latter can
be extracted from the decay process of H, or be calculated from the potential
model or lattice QCD. Therefore, the CSM has no free parameter for heavy
quarkonium production.

The experiments before 1993 were operated at low energies and were not
able to separate the prompt and non-prompt production of J/ψ. At that time,
the LO CSM prediction generally agreed with the data. Since 1993, the CDF
collaboration managed to separate J/ψ and ψ′ prompt production with the
silicon vertex detector. It turned out (Fig. 3.2) that the LO CSM prediction
underestimates the data by more than an order of magnitude. The difference
was once interpreted as the large feeddown contribution from χcJ . At the same
time, the LO CSM prediction for ψ′ is smaller than the data by two orders of
magnitude (Fig. 3.3). Since there is no known charmonium state which decays
to ψ′, the large deficiency cannot be explained by the feeddown contribution.

Figure 3.3: Same as Fig. 3.2, but for ψ′. Figure taken from Ref. [3].

To narrow the large gap between the LO CSM prediction and the data,
and to correct the wrong pT -behavior of the LO CSM prediction at large
pT , Eric Braaten and Tzu Chiang Yuan [79] proposed that the single parton
fragmentation contribution should be dominant when pT is large. After a series
of work fitting the single parton fragmentation functions [80, 81], it was found
that χcJ production are greatly enhanced by the single parton fragmenting
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Figure 3.4: Contributions from different channels to the cross section of inclu-
sive prompt J/ψ production at the Tevatron: the fragmentation contribution
(solid curves) and the LO CSM contribution (dashed curves). Figure taken
from Ref. [3].

(Fig. 3.4). Addition of the corrected feedown contribution from χcJ , the single
parton fragmentation to J/ψ and the LO CSM prediction of J/ψ production
is in agreement with the CDF prompt J/ψ production data (see Fig. 3.2).
However, even with the single parton fragmentation contribution added, the
prediction for prompt ψ′ production is still one or two orders of magnitude
smaller than the data (see Fig. 3.3), so called “ψ′ anomaly”.

In 1997, the CDF collaboration updated their measurement of J/ψ pro-
duction by removing the feeddown contribution from χc [82]. The new data
were compared with the LO CSM prediction of direct J/ψ production and
were found to be larger than the addition of the fragmentation contribution
and the LO CSM prediction by a factor of 30 (see Fig. 3.5). Therefore the LO
CSM cannot explain the data for both J/ψ and ψ′ production.

Recently, NLO correction for J/ψ and Υ direct production in the CSM
were accomplished. Surprisingly, it increases the LO prediction by a factor of
100 for J/ψ and a factor of 10 for Υ at pT ∼ 25 GeV (see Fig. 3.6). Inclusion
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Figure 3.5: Direct J/ψ production with predictions of the LO CSM and the
LO NRQCD factorization. Figure taken from Ref. [4].

of the NLO correction also flips the polarization of J/ψ and Υ from almost
all transverse to mainly longitudinal (see Fig. 3.7). However, the NLO CSM
prediction is still an order of magnitude smaller than the CDF data. Later, the
authors of Ref. [83, 84] proposed the NNLO* method. In this method, only
tree diagrams of the NNLO CSM correction are considered, and an infrared
cutoff (sminij ) is introduced to control the IR divergence. The NNLO* estimate
narrows the big gap between the NLO CSM prediction and the CDF data (see
Fig. 3.6). However it is still much less than the CDF data for J/ψ. Moreover,
the authors of Ref. [48] pointed out that the NNLO* method overestimates
the contribution of the NNLO CSM.

It is clear now that the CSM mechanism is not enough to explain the
production of S-wave heavy quarkonium, such as J/ψ, ψ′ and Υ. For P -wave
heavy quarkonium production, the CSM is deficient theoretically by exhibiting
uncanceled IR divergence. Therefore, the CSM cannot be the full story of
heavy quarkonium production.
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Figure 3.7: Direct J/ψ polarization prediction with the LO and the NLO
CSM. The NLO+ denotes NLO CSM prediction including the contribution
from gg → J/ψ c c̄. Figure taken from Ref. [9].

3.3 The color-evaporation model

The color-evaporation model (CEM) was first proposed in 1977 [85–88]. Com-
pared to the CSM, it has the same assumptions #1 and #2, but different
assumptions on the non-perturbative interaction in heavy quarkonium pro-
duction. Specifically, it assumes

3 The heavy quark pairs with different invariant masses have the same
probability to evolve into a specific heavy quarkonium, as long as its in-
variant masses are below the open-charm/bottom threshold. The heavy
quark pair with the invariant mass above the open-charm/bottom thresh-
old do not form heavy quarkonium.

4 The gluon emission in the hadronization process completely randomizes
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all the quantum numbers, S, L, J and color.

In the CEM, the production of a heavy quarkonium (take J/ψ as an ex-
ample) can be expressed as

σJ/ψ =
1

9
ρJ/ψ

∫ 2mD

2mc

dmcc̄
dσcc̄
dmcc̄

, (3.3)

where 2mD is the open charm threshold, the number ρJ/ψ represents the prob-
ability of the heavy quark pair to form J/ψ, 1/9 is the probability of the heavy
quark pair to be in color singlet. Notice the CEM has one free parameter ρ in
Eq. (3.3) for each heavy quarkonium state.

Figure 3.8: The comparison of the LO CEM calculation with the CDF data.
Figure taken from Ref. [10].

The CEM is successful in explaining why the energy dependence of the open
charm and charmonium production cross section was essentially the same, for
both photoproduction and hadroproduction [10]. It also successfully describes
the general features of the pT behaviors for different charmonium states (see
Fig. 3.8).

The CEM predicts that the ratio of production rate of any two different
heavy quarkonium states is a process-independent constant. However, this
prediction contradicts the data from many experiments, for example, the ratio
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of the pT -distribution of J/ψ and χcJ is very different in the photo-production
and in the hadron-production.

3.4 The non-relativistic QCD factorization

In this section, we briefly review the non-relativistic QCD (NRQCD) factor-
ization model. Our focus is on heavy quarkonium production processes. For
application of the NRQCD factorization to heavy quarkonium decay processes,
either hadronic or electromagnetic, one can refer to Ref. [36]. In Sec. 3.4.1, we
first introduce NRQCD effective theory, with the power-counting rule and a
brief discussion of symmetries. In section 3.4.2, the NRQCD factorization ap-
proach for heavy quarkonium production is reviewed. Some useful relations of
NRQCD long-distance matrix elements (LDMEs) are discussed in Sec. 3.4.3.
Finally we review the phenomenological application and the unsolved problems
of the NRQCD factorization approach in Sec. 3.4.4.

3.4.1 NRQCD effective theory

In the rest frame of the heavy quarkonium, the relative velocity v of the heavy
quark pair is much less than one. Consequently, the heavy quark pair pro-
duction and annihilation scale mQ, the relative momentum of the heavy quark
pair in the heavy quarkonium rest frame mQv, the binding energy mQv

2 are
well separated. This separation enables us to integrate over the high energy
scales and write down an effective field theory, focusing on the low energy
interaction.

NRQCD effective theory is such a theory which integrates over the energy
scales of mQ or higher. Its effective Lagrangian has the form

LNRQCD = Llight + Lheavy + δL. (3.4)

The motion of the gluon and the light quarks, and their interaction is described
by relativistic Lagrangian, which is the same as full QCD in Eq. (2.1)

Llight = −1

4
Ga
µνG

µν,a +
∑

light flavor

q̄ i /D q. (3.5)

The motion of the heavy quark and heavy antiquark with mass mQ is described
by the Schrödinger Lagrangian

Lheavy = ψ†(iDt +
D2

2m
Q

)ψ + χ†(iDt −
D2

2m
Q

)χ, (3.6)
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where ψ (χ) is the Pauli spinor which annihilates a heavy quark (creates a
heavy antiquark), Dt and D are the time and space components of the co-
variant derivative Dµ, respectively. The relativistic correction of heavy quark
motion is included in δL. In principle, to recover full QCD, δL should include
an infinite number of terms. These terms, however, are not equally weighted
and can be ordered by powers of v. The power-counting of different fields and
coupling was worked out in Ref. [89] and is repeated in Table 3.3. According to
the power-counting rule, the most important relativistic corrections are added
by the bilinear terms

δLbilinear

=
c1

8m3
Q

[ψ†(D2)2ψ − χ†(D2)2χ]

+
c2

8m2
Q

[ψ†(D · gE− E · gD)ψ + χ†(D · gE− E · gD)χ]

+
c3

8m2
Q

[ψ†(iD× gE− gE× iD) · σψ + χ†(iD× gE− gE× iD) · σχ]

+
c4

2m
Q

[ψ†(gB · σ)ψ − χ†(gB · σ)χ],

(3.7)

where Ei = G0i and Bi = 1
2
εijkGjk are the electric and magnetic components

of the gluon field-strength tensor Gµν . Notice that NRQCD effective theory
respects the heavy quark spin symmetry approximately, since the first terms
violating this symmetry appear in the last row of Eq. (3.7) and are suppressed
by v2.

The production of a heavy quark pair involves interactions with energy of
order or larger than mQ, thus cannot be fully described by NRQCD. However,
the production rate, which is the square of the amplitude summed over final
states except the heavy quarkonium, can be mimicked in NRQCD by adding
four-fermion operators,

δL4-fermion =
∑
n

fn(µΛ)

mdn−4
Q

OHn (µΛ), (3.8)

where n is the state of the heavy quark pair, which will be clear shortly;
µΛ ∼ mQ is the factorization scale, OHn (µΛ) are four-fermion operators with
dimension dn, fn(µΛ) are short-distance coefficients (SDCs). BothOHn (µΛ) and
fn(µΛ) depend on µΛ in a way that their dependencies cancel. The power of
mQ in the denominator ensures that fn(µΛ) is dimensionless. The summation
over n has infinite terms, but for a specific heavy quarkonium state H, they
can be ordered in powers of v. The most important terms are dimension-6 and
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dimension-8 four-fermion terms. Notice that in NRQCD effective theory, the
dimension of an operator does not indicate the relative importance because
of the mismatching between the dimension and the power-counting of v (see
Table. 3.3). The power-counting of each operator also depends on the heavy
quarkonium state H, which is explained in Sec. 3.4.2.

There are 4 four-fermion operators with dimension six,

(δL4-fermion)d=6 =
f(1S

[1]
0 )

m2
Q

OH(1S
[1]
0 ) +

f(1S
[8]
0 )

m2
Q

OH(1S
[8]
0 ) +

f(3S
[1]
1 )

m2
Q

OH(3S
[1]
1 )

+
f(3S

[8]
1 )

m2
Q

OH(3S
[8]
1 ),

(3.9)

where these operators are defined as

OH(1S
[1]
0 ) =

1

2Nc

χ†ψ(a†HaH)ψ†χ, (3.10a)

OH(1S
[8]
0 ) =χ†T aψ(a†HaH)ψ†T aχ, (3.10b)

OH(3S
[1]
1 ) =

1

2Nc

χ†σiψ(a†HaH)ψ†σiχ, (3.10c)

OH(3S
[8]
1 ) =χ†σiT aψ(a†HaH)ψ†σiT aχ. (3.10d)

Here we use the spectroscopic notation 2S+1LJ to label the heavy quarkonium

Table 3.3: The power counting of field and coupling constant

Operator Estimate Description

αs v effective quark-gluon coupling constant

ψ (mQv)3/2 heavy-quark (annihilation) field

χ (mQv)3/2 heavy-antiquark (creation) field

Dt mQv
2 gauge-covariant time derivative

D mQv gauge-covariant spatial derivative

gE m2
Qv

3 chromoelectric field

gB m2
Qv

4 chromomagnetic field

gφ (in Coulomb gauge) mQv
2 scalar potential

gA (in Coulomb gauge) mQv
3 vector potential
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state. The subscript 1 or 8 indicates the color state of the heavy quarkonium,
singlet or octet respectively. Repeated indices, i.e. i = 1, 2, 3 and a = 1 . . . 8,
are summed.

Some of the dimension-8 four-fermion operators are

(δL4−fermion)d=8 =
f(1P

[1]
1 )

m4
Q

OH(1P
[1]
1 ) +

f(1P
[8]
1 )

m4
Q

OH(1P
[8]
1 )

+
∑

J=0,1,2

f(3P
[1]
J )

m4
Q

OH(3P
[1]
J ) +

∑
J=0,1,2

f(3P
[8]
J )

m4
Q

OH(3P
[8]
J ) + · · · ,

(3.11)

where the color octet operators are defined as

OH(1P
[8]
1 ) =χ†T a(− i

2

←→
D )jψ(a†HaH)ψ†T a(− i

2

←→
D )jχ, (3.12a)

OH(3P
[8]
0 ) =

1

3
χ†T a(

−i
2

←→
D · σ)ψ(a†HaH)ψ†T a(

−i
2

←→
D · σ)χ, (3.12b)

OH(3P
[8]
1 ) =

1

2
χ†T a(

−i
2

←→
D × σ)jψ(a†HaH)ψ†T a(

−i
2

←→
D × σ)jχ, (3.12c)

OH(3P
[8]
2 ) =

1

2
χ†T a(

−i
2

←→
D (iσj))ψ(a†HaH)ψ†T a(

−i
2

←→
D (iσj))χ. (3.12d)

Here
←→
D is the difference of the covariant derivative acting on the spinor

to its right and on the spinor to its left, i.e. χ†
←→
Dψ = χ†(Dψ) − (Dχ)†ψ.

The bracket in the superscript defines a symmetric traceless component of a
tensor, T (ij) = (T ij + T ji)/2 − T kkδij/3. By removing T a’s and multiplying
1/(2Nc) to Eq. (3.12), we obtain the definitions of the corresponding color
singlet dimension-8 four-fermion operators.

Eq. (3.12) are not all dimension-8 four-fermion operators we can write
down. Operators like

PH(1S
[8]
0 ) =

1

2

[
χ†T aψ(a†HaH)ψ†(− i

2

←→
D )2T aχ+ H.c

]
, (3.13a)

PH(3S
[8]
1 ) =

1

2

[
χ†σiT aψ(a†HaH)ψ†σi(− i

2

←→
D )2T aχ+ H.c

]
, (3.13b)

are also allowed. These operators contribute to the relativistic correction of
operators OH(1S

[8]
0 ) and OH(3S

[8]
1 ) defined in Eq. (3.10).
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3.4.2 NRQCD factorization formula for heavy
quarkonium production

In 1994, Bodwin, Braaten and Lepage [36] proposed the NRQCD factorization
approach for heavy quarkonium production. Compared with the four assump-
tions of the CSM in Sec. 3.2, the NRQCD factorization approach agrees with
the first three, but has a different assumption of the soft interaction:

4 The gluon emission in the hadronization process are described by NRQCD
effective theory.

In the NRQCD factorization approach, the cross section of heavy quarkonium
production is conjectured to be factorized as

σ(H) =
∑
n

Fn(µΛ)

mdn−4
Q

〈0|OHn (µΛ)|0〉, (3.14)

where Fn(µΛ) is the short-distance coefficient which describes the production
of a heavy quark-antiquark pair in the state n in the hard scattering, other
notations are the same as in Eq. (3.8). Since µΛ ∼ mQ � ΛQCD, Fn(µΛ) can
be calculated perturbatively. The non-perturbative interaction which evolves
the heavy quark pair from state n to heavy quarkonium H is encoded in the
NRQCD LDMEs 〈0|OHn (µΛ)|0〉, some of which are defined in Eqs. (3.10) and
(3.12). The summation includes an infinite number of terms, nevertheless,
they can be ordered in powers of v. Therefore Eq. (3.14) is a double expansion
of αs and v. For practical use, we can truncate the summation and keep only
a finite number of terms.

We can estimate the relative size of αs and v by employing the Virial
theorem. At the limit mQ → ∞, the potential of the heavy quark pair is
effectively αs(1/r)/r, with r ∼ (mQv)−1. From the Virial theorem, we have
mQv

2 ∼ αs(mQv)×mQv, or

αs(mQv) ∼ v. (3.15)

This estimate has a very important implication. Since αs(µ) decreases with
increasing energy, v is larger than αs(mQ) with mQ sufficiently large. There-
fore the relativistic corrections are expected to be more important than the
corrections from high orders of αs expansion.

The power counting of the NRQCD LDME 〈0|OHn (µΛ)|0〉 depends on both
n and H. To obtain the power counting of these LDMEs, we need to expand
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the meson state H = 2S+1LJ by NRQCD Fock states

|H(2S+1LJ)〉 =O(1)|QQ̄(2S+1L
[1]
J )〉+O(v)|QQ̄(2S+1(L± 1)

[8]
J ′ )g〉

+O(v2)|QQ̄(2S′+1(L)
[8]
J ′ )g〉+O(v2)|QQ̄(2S+1(L′)

[1,8]
J ′ )gg〉+ · · · ,

(3.16)

where the relative powers of the coefficients are obtained by the non-relativistic
perturbation method and the heavy quark-gluon interaction in Eqs. (3.6) and
(3.7) [36]. Therefore in the NRQCD factorization approach, the heavy quark

pair in any state n = 2S+1L
[c]
J can evolve into a heavy quarkonium with the

quantum number H = 2S′+1L′J ′ , but the process is suppressed by the probabil-
ity of finding Fock state n in H as well as the power counting of the operator
generating state n.

For the production of S-wave heavy quarkonium, if keeping only the opera-
tors at the lowest order of v in Eq. (3.14), the NRQCD factorization approach
is the same as CSM. However, the NRQCD factorization provides a systematic
approach to add the relativistic corrections and to estimate the uncertainties.
For P -wave heavy quarkonium production, the advantage of the NRQCD fac-
torization over the CSM is more striking. At the end of Sec. 3.2 we know
that the calculation of P -wave heavy quarkonium production in the CSM suf-
fers from uncanceled IR divergence. In the NRQCD factorization, besides the
color-singlet channel in the CSM, there is a second channel with n being a
color-octet S-wave heavy quark pair in Eq. (3.14). The leftover IR divergence
of the color-singlet channel in the CSM is canceled by the additional color-
octet channel. For example, the production of χcJ has two equally-weighted
channels: n = 3P

[1]
J and n = 3S

[8]
1 in the NRQCD factorization. In contrast,

only the first channel is considered in the CSM.

3.4.3 NRQCD LDMEs

In Eq. (3.14), for a specific heavy quarkonium state H, there is a finite number
of NRQCD LDMEs at a certain order of v. These LDMEs are non-perturbative
and serve as free parameters in the NRQCD factorization. With some approx-
imation, we can find relations of these parameters and enhance the predictive
power of the NRQCD factorization.

• Heavy-quark spin symmetry: from NRQCD Lagrangian in Eq. (3.6)
and (3.7), the interaction flipping the heavy quark spin is suppressed
by at least v2. Consequently the difference between spin-singlet and
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spin-triplet NRQCD LDMEs is in order of v2,

〈0|OJ/ψ(3S
[1,8]
1 )|0〉 =〈0|Oηc(1S

[1,8]
0 )|0〉[1 +O(v2)], (3.17a)

〈0|OχcJ (3P
[1,8]
J )|0〉 =〈0|Ohc(1P

[1,8]
1 )|0〉[1 +O(v2)]. (3.17b)

• Vacuum-saturation approximation: for the color-singlet heavy quark
pair, we can find the following relation between the NRQCD LDMEs in
production and decay process

〈0|OHn (µΛ)|0〉 ≈ 〈0|χ†Knψ(
∑
mJ

|H〉〈H|)ψ†K′nχ|0〉

=(2J + 1)〈H|ψ†K′nχ|0〉〈0|χ†Knψ|H〉
≈(2J + 1)〈H|Odecay

n |H〉,

(3.18)

where Kn and K′n are products of a color matrix, a spin matrix, and a
polynomial in D; 〈H|Odecay

n |H〉 = 〈H|ψ†K′nχ · χ†Knψ|H〉 is the decay
four-fermion operator [36]. In the second row of Eq. (3.18), we assume
that the heavy quarkonium H is unpolarized. In the last row, because
the heavy quark pair is color singlet, the Fock states we neglected start
from |gg〉〈gg|, which is suppressed by v4. Therefore the error of this
relation is at the order of v4. With this relation, we can use the NRQCD
LDMEs extracted from the decay processes to make predictions for heavy
quarkonium production. This relation cannot be applied to the color-
octet LDMEs, since the leading Fock state in this case does not have the
same color quantum number as the vacuum.

• Relation to wave-functions: for the color-singlet heavy quark pair,
the NRQCD LDMEs can be expressed in terms of wave-functions, or
their derivatives, evaluated at the origin. First we use vacuum-saturation
approximation

〈0|OHn (µΛ)|0〉 ≈ 〈0|χ†Knψ(
∑
mJ

|H〉〈 H|)ψ†K′nχ|0〉

=(2J + 1)〈 H|ψ†K′nχ|0〉〈0|χ†Knψ|H〉.
(3.19)

Then we can use the non-relativistic wave-functions

|ηc〉 ∝
∫

drΨ(r)χ(−r/2)ψ†(r/2)|0〉, (3.20a)

|ψ(ε)〉 ∝
∫

drΨ(r)χ(−r/2)σψ†(r/2)|0〉, (3.20b)
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to calculate the matrix element in the second row of Eq. (3.19). In this
way, we obtain

〈O ηc

[cc̄(1S
[1]
0 )]
〉 =

1

4π
|Rηc(0)|2, (3.21a)

〈O J/ψ

[cc̄(3S
[1]
1 )]
〉 =

3

4π
|RJ/ψ(0)|2, (3.21b)

〈O hc

[cc̄(1P
[1]
1 )]
〉 =

9

4π
|R′hc(0)|2, (3.21c)

〈O χcJ

[cc̄(3P
[1]
J )]
〉 =

3(2J + 1)

4π
|R′χcJ (0)|2, (3.21d)

where R(r) =
√

4πΨ(r).

• Factorization scale dependence: the NRQCD LDMEs with different
factorization scales µΛ are related by an evolution equation similar to
the renormalization group equation,

µΛ
d

dµΛ

〈0|OHn (µΛ)|0〉 =
∑
k

γnk(µΛ)

mdk−dn
Q

〈0|OHk (µΛ)|0〉, (3.22)

where the anomalous-dimension coefficients γnk(µΛ) are computable in
powers of αs(µΛ). Therefore as long as we know the values of these
NRQCD LDMEs in an input scale µinputΛ , we can solve the evolution
equation to obtain the values of the NRQCD LDMEs in other scales.

3.4.4 Application to heavy quarkonium hadron produc-
tion

Besides its theoretical advantage over the CSM, phenomenologically, the NRQCD
factorization approach has also achieved many successes in predicting exper-
imental data from the e+e−, ep and pp colliders. Similar to the CSM, the
NRQCD factorization suffers from large high-order corrections. After tak-
ing into account the QCD radiative correction and/or relativistic correction,
NRQCD predictions are in great agreement with many experiments. Never-
theless, there are still many data which NRQCD factorization has difficulties
to explain. Next we focus on heavy quarkonium production in hadron col-
liders. An extensive review of the phenomenological successes and failures of
NRQCD factorization in other experiments can be found in Ref. [26].

In hadron colliders, most data are for J/ψ, ψ′ and Υ(nS) because of their
clean and easy-to-measure decay products (see Table 3.2). Both the QCD

37



Table 3.4: Essential channels for various heavy quarkonium production, with
the relative power-counting of each operator labelled explicitly.

Quarkonium Essential channels

J/ψ, ψ′, Υ(nS) OH(3S
[1]
1 )[v0], OH(1S

[8]
0 )[v4], OH(3S

[8]
1 )[v4], OH(3P

[8]
J )[v4]

ηc, ηb OH(1S
[1]
0 )[v0]

hc, hb OH(1P
[1]
1 )[v0], OH(1S

[8]
0 )[v0]

χcJ , χbJ OH(3P
[1]
J )[v0], OH(3S

[8]
1 )[v0]

radiative correction and the relativistic corrections are important for achieving
good agreement between the NRQCD factorization prediction and the data
from different experiments, such as the Tevatron and the LHC. In Table 3.4,
we list the currently-considered essential channels and their power-countings
for J/ψ, ψ′ and Υ(nS), as well other heavy quarkonium states.

To have a good agreement with the data of J/ψ, ψ′ and Υ(nS) production,
the state of the art is the extraction of the three color-octet NRQCD LDMEs
listed in Table 3.4. Different fitting procedures result in some differences in
the prediction [90]. In Ref. [11, 48], after calculating the short-distance coef-
ficients at NLO, the authors noticed that for the production of J/ψ and ψ′,

the short-distance coefficient of 3P
[8]
J channel can be decomposed into a linear

combination of the other two color-octet channels within an error of a few
percents

dσ̂[3P
[8]
J ] = r0dσ̂[1S

[8]
0 ] + r1dσ̂[3S

[8]
1 ], (3.23)

where r0 = 3.9, r1 = −0.56 for the Tevatron, and r0 = 4.1, r1 = −0.56 for the
LHC. Therefore they argued that only two linearly combined NRQCD LDMEs
can be reasonably fitted from the data,

MH
0,r0

= 〈OH(1S
[8]
0 )〉+

r0

m2
c

〈OH(3P
[8]
0 )〉, (3.24a)

MH
0,r1

= 〈OH(3S
[8]
1 )〉+

r1

m2
c

〈OH(3P
[8]
0 )〉, (3.24b)

where H is J/ψ or ψ′, the difference of the LDMEs for 3P
[8]
J with different

J-values are at higher powers of v.
After fitting M

J/ψ
0,r0

and M
J/ψ
0,r1

from the Tevatron data with pT > 7 GeV,
the authors give the prediction for prompt J/ψ and direct ψ′ production(see
Fig. 3.9). In this figure, we can clearly see that M0 and M1 have different
pT -behaviors; M0 dominates at the low-pT region and M1 dominates at the
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high-pT region, while the color-singlet channel, which is at leading power of
v (see Table 3.4) contributes less than 1% at pT > 20 GeV. To compare the
contributions from different orders of αs, Fig. 3.10 shows the K factors, which
is defined as the ratio of NLO to LO short-distance coefficients, for all four
channels. For the 3S

[1]
1 and 3P

[8]
J channels, the NLO correction dominates from

pT as low as 10 GeV; for the 1S
[8]
0 channel, the NLO correction becomes more

important than the LO at pT & 30 GeV; for the 3S
[8]
1 channel, the LO is

dominant for the whole pT range plotted.

5 10 15 20 25 30
10
-4

10
-3

10
-2

10
-1

1

10

10
2

pT HGeVL

d
Σ
�d

p
T
´

B
rH

J�
Ψ
®
Μ
+
Μ
-
L
Hn

b
�G

eV
L

CMS Data

CDF Data

Total LHC

Total Tevatron

feed-down

M0

M1

3S1
@1D

5 10 15 20 25 30
10
-5

10
-4

10
-3

10
-2

10
-1

1

10

pT HGeVL

d
Σ
�d

p
T
´

B
rH
Ψ
¢ ®
Μ
+
Μ
-
L
Hn

b
�G

eV
L

CDF Data

Total LHC

Total Tevatron

M0 Tevatron

M1 Tevatron

3S1
@1D

Tevatron

Figure 3.9: The pT distributions of prompt J/ψ and direct ψ′ production at
the Tevatron and the LHC. Figures taken from Ref. [11].

Fig. 3.11 shows the comparison of the NLO NRQCD prediction for direct
J/ψ production with the data from the Tevatron on prompt J/ψ polarization
(feeddown contribution is small, see the left plot of Fig. 3.9) from the same
group [12]. The data from CDF Run I and Run II are in different shapes, but
recent data from the LHC confirms the CDF Run II. The almost unpolarized
J/ψ is due to the cancellation of the 3S

[8]
1 and 3P

[8]
J channels, which is also

implied from the small value of M1,r1 in Eq. (3.24): M
J/ψ
1,r1

/M
J/ψ
0,r0
≈ 0.007

[11, 48].
Several inconsistencies between the NLO NRQCD calculations and the ex-

perimental data have been realized recently. The value of M
J/ψ
0,r0=3.9 is fitted

to be 7.4 × 10−2GeV3 from the J/ψ hadron production [11, 48], which con-
tradicts its upper limit 2.0 × 10−2 from the e+e− data [41]. In 2011, a first
attempt of a global fitting all three color-octet NRQCD LDMEs for the J/ψ
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production was completed with all available high-quality data from KEKB,
LEP II, RHIC, HERA, the Tevatron, and the LHC [13, 38] (see Fig. 3.12 and
3.13). Although the NLO NRQCD predictions agree with the data generally,
the minimum χ2 per degree of freedom of the fitting is as large as 4.42. The
NLO NRQCD calculations also have trouble in explaining the prompt heavy
quarkonium polarization. By considering the feeddown contribution, the NLO
NRQCD calculations are able to explain the polarizations of low energy heavy
quarkonium states. However, the same calculation cannot explain the polar-
ization of prompt ψ′ and Υ(3S), which do not have feeddown contributions
(see Figs. 3.14 and 3.15).
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Figure 3.10: The dependence of K factors on pT for different channels in
J/ψ(ψ′) direct production at the Tevatron. The negative value of 3P

[8]
J channel

is because of the MS scheme and do not affect the physical result. Figure taken
from Ref. [11].
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Figure 3.11: NLO NRQCD prediction for the polarization observable λθ (de-
fined in Eq. (3.1)) of J/ψ production at the Tevatron. Figure taken from
Ref. [12].

3.5 Why are high-order corrections so large?

In this section, we explain the reason for the “counter-intuitive” high-order
correction in both the CSM and the NRQCD calculation for heavy quarkonium
production at large pT . In Fig. 3.6, the NLO CSM correction is more than
100 times larger than the LO result, and the NNLO* correction raises the
prediction by another factor of 10. Moreover, the LO, NLO and NNLO*
results have different pT behaviors. Similarly for the NRQCD calculation, see
Fig. 3.10, the NLO corrections for the 3S

[1]
1 and 3P

[8]
J channels dominate at

pT & 10 GeV; the NLO corrections for the 1S
[8]
0 channel dominates at pT & 50

GeV. Only for the 3S
[8]
1 channel the LO is always dominant. Again, the K

factors for the 3S
[1]
1 , 3P

[8]
J and 1S

[8]
0 channels increase with pT , showing that the

NLO corrections for these three channels have stronger pT behaviors than the
corresponding LO results.

The reason for this behavior is that the high-order corrections for some
channels are enhanced by powers of p2

T/m
2
Q. When pT � mQ, this power

enhancement is more important than the suppression of αs in the high-order
corrections. Next we explain this power enhancement in the CSM calculation
in detail, following the argument in Ref. [40]. Since it is the same reason for
the NRQCD factorization calculation, we only mention the situation in the
NRQCD factorization briefly at the end of this section.

In the CSM, the heavy quark pair produced in the hard scattering must
have the same quantum numbers as the observed heavy quarkonium. Espe-
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Figure 3.12: NLO NRQCD fit compared to RHIC, Tevatron, LHC, and HERA
data for J/ψ production. Figure taken from [13].
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Figure 3.13: NLO NRQCD fit compared to LEP II and HERA I data for J/ψ
production. Figure taken from [13].
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Figure 3.14: Comparison of the CSM calculation and three different NLO
NRQCD calculations and the data from LHCb for ψ′ polarization. The λθ is
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color-octet NRQCD LDMEs. Figure taken from Ref [16].
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Figure 3.15: Comparison of NLO NRQCD calculation and the data from the
CDF, and CMS for prompt Υ(nS) polarization. Figure taken from Ref. [17]

cially, to produce a J/ψ, the heavy quark pair must be in the 3S
[1]
1 , color-singlet

state. The LO Feynman diagram is showed in Fig. 3.16. Because the final-
state gluon has to balance the large pT of the J/ψ, both the heavy quark
propagators are off-shell by the order of pT . Moreover, the numerator does
not give an invariant growing with p2

T . Therefore, the LO calculation in the
CSM behaves as 1/p8

T .

Figure 3.16: A sample Feynman diagram giving the LO contribution to J/ψ
production in the CSM.

At NLO, in the real diagrams with another gluon emitted, some of which
are shown in Fig. 3.17(a)-(c), the heavy quark pair can emit the additional
gluon at a scale softer than pT . In this case, the heavy quark pair produced
at distance O(1/pT ) is in a relativistic spin state with color octet. When
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(a) (b) (c) (d)

Figure 3.17: Sample Feynman diagrams giving the NLO contribution to J/ψ
production in the CSM.

pT � mQ, there is a large phase space for the pair to emit the gluon to

become the non-relativistic 3S
[1]
1 state at the scale O(1/mQ). Similar to the

LO case, the two off-shell propagators needed to produce a heavy quark pair at
large pT result in a factor 1/p8

T . However, at NLO, the numerator can produce
a p2

T enhancement. Consequently, the NLO contribution is power enhanced by
a factor of p2

T/m
2
Q compared to the LO. There is another contribution at this

order, shown in Fig. 3.17(d). This associated production is power enhanced
by two powers of p2

T/m
2
Q. However, this associated production contribution is

very small [91]. Therefore, the NLO CSM behaves as 1/p6
T at current collider

energy.

(a) (b)

Figure 3.18: Sample Feynman diagrams giving the NNLO contribution to J/ψ
production in the CSM.

The process with the gluon fragmentation is open at NNLO, showed in
Fig. 3.18(a). This process behaves as 1/p4

T . As a result, the NNLO correction
is enhanced by two powers of p2

T/m
2
Q compared with the LO result. There are

other diagrams at NNLO, such as the one in Fig. 3.18(b), which is in the same
power as the NLO correction. Because the strongest pT behavior is 1/p4

T , we
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don’t expect further power enhancement beyond NNLO.
However, even if we manage to calculate the full NNLO correction in the

CSM and have a good control of the power enhancement, there still exist log-
arithms in forms of ln(p2

T/m
2
Q). These logarithms increase with pT and finally

disqualify the truncation of the perturbative series. A systematic resummation
procedure is necessary to sum these large logarithms to all orders in αs.

For the J/ψ production in the NRQCD factorization, we need to consider
the power behaviors of all four channels (see Table 3.4). The situation is the

same as the CSM for the 3S
[1]
1 channel. In principle we should calculate it

to NNLO, where the strongest pT behavior arises. Nonetheless, it has been
shown that the NNLO correction of this channel is negligible compared to the
data at current collider energies [3, 48]. For the 3S

[8]
1 , 3P

[8]
J and 1S

[8]
0 channels,

the strongest pT behavior appears at NLO. Therefore, the NRQCD calculation
with O(αsv

4) correction should include all important power behavior for pT
distribution of J/ψ. However, a systematic resummation procedure is still
needed to sum the large logarithms to all orders in αs.

To summarize, the CSM and the NRQCD factorization approach suffer
from large high-order corrections because the power enhancement p2

T/m
2
Q is

much larger than the suppression of αs at large pT . In the NRQCD factor-
ization approach, the NLO calculations of all four channels are expected to
have good control of the leading pT behavior. However, these calculations are
very difficult and only numerical results are available so far. Besides, large
logarithms ln(p2

T/m
2
Q) disqualifies the truncation of the perturbative series at

sufficiently large pT . As a result, although we find inconsistencies between the
data and the NLO NRQCD calculation, it is very difficult to determine whether
they are from large high-order corrections or from the failure of NRQCD fac-
torization conjecture.

In the next chapter we introduce the QCD factorization formalism. In this
formalism, the cross section is first expanded by powers of 1/p2

T . The large
logarithms ln(p2

T/m
2
Q) are resummed to all orders of αs by solving a closed set

of evolution equations. Therefore, QCD factorization has very good control of
the pT behavior at large pT , and is expected to provide more insight of heavy
quarkonium production mechanism.
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Chapter 4

QCD Factorization for heavy
quarkonium production:
Overview

This chapter is organized as follows. In Sec. 4.1, we first argue that the next-
to-leading-power (NLP) contribution is important (if not dominant) in heavy
quarkonium production processes at current collider energies. In Sec. 4.2, we
introduce the QCD factorization formalism for inclusive heavy quarkonium
production. Then in Sec. 4.3, we give the definition of the fragmentation func-
tions for both the leading-power (LP) and NLP contributions. In Sec. 4.4,
we introduce the evolution equations of these fragmentation functions. Fi-
nally, in the last section, we derive a relation between the color-singlet QQ̄
fragmentation functions and the light-cone distribution amplitudes.

4.1 NLP contribution is important

A general inclusive heavy quarkonium production process is

A(p1) +B(p2)→ H(Q) +X, (4.1)

where A(p1) and B(p2) are the colliding hadrons with momenta p1 and p2,
H(Q) denotes the observed heavy quarkonium, and X represents other unob-
served particles produced in the collision. The scale Q of the hard-scattering
process is usually chosen as pT , the transverse momentum of the heavy quarko-
nium H. In modern high-energy experiments, pT can be as large as 105 GeV
[92].

According to the LP collinear factorization theorem, the cross section for
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this process can be written as

σAB→HX(p1, p2, pT ) =
∑
a,b,c

∫
dx1 dx2 dz fa/A(x1;µF )fb/B(x2;µF )

× σ̂ab→c(x1, x2, z, pT ;µF )DH/c(z;µF )

+O(qsoft/pT ), (4.2)

where µF is the factorization scale; the indices a, b = q, q̄, g denote parton
flavors; σ̂ab→c is the short-distance coefficient function (partonic cross sec-
tion) for the process a + b→c, which has only the large scale pT and can be
calculated in QCD perturbation theory; fa/A(x1), fb/B(x2) and DH/c(z) are
non-perturbative, long-distance distribution functions. See Fig. 4.1 for a dia-
grammatic illustration of this factorization. fa/A(x1) denotes the probability
density to find a parton of flavor a inside the hadron A with longitudinal mo-
mentum fraction x1, similarly for fb/B(x2). DH/c(z) denotes the probability
density to find the observed heavy quarkonium in the outgoing energetic par-
ton c, with the heavy quarkoinium taking a longitudinal momentum fraction z.

a

b

c

H

A

B

fa / A

b/B

D

f

^

Figure 4.1: Collinear QCD factorization at LP corresponding to Eq. (4.2)

However, the experimental data imply that the LP contribution may not
be dominant at current collider energies. Take inclusive J/ψ production as an
example. In the LP collinear factorization formula, J/ψ with large pT are pro-
duced mainly from gluon fragmentation. Consequently, if the LP contribution
is dominant, the produced J/ψ should be almost all transversely polarized.
However, the experimental data show no sign for this transverse polarization
(see Figs. 3.11). Moreover, although the LP contribution is dominant for the
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3S
[8]
1 and 3P

[8]
J channels (see Fig. 3.10), recent studies show that their LP con-

tributions almost cancel [11, 18, 48]. Furthermore, Fig. 3.10 also indicates that

the LP contribution of the 1S
[8]
0 channel is dominant only for pT as large as 50

GeV. Finally, it has been shown that the LP of the 3S
[1]
1 channel is negligible

compared with the experimental data [3, 48]. All of these imply that the LP
contribution might not dominate the production rate at current collider ener-
gies. A recent study which combines the NLO NRQCD calculation and the
LP contribution confirms this conclusion [18].

The QCD factorization approach, which includes the NLP contribution sys-
tematically, was first proposed in Ref. [23]. For unpolarized incoming hadrons,
the NLP contributions come from three terms

σ(pT , qsoft)− σLP(pT , qsoft) =

(
ΛQCD

pT

)2

f
(4)
A ⊗ f

(2)
B ⊗ σ1 ⊗D(2)

+

(
ΛQCD

pT

)2

f
(2)
A ⊗ f

(4)
B ⊗ σ2 ⊗D(2)

+

(
mQ

pT

)2

f
(2)
A ⊗ f

(2)
B ⊗ σ3 ⊗D(4)

+O
(
q4

soft/p
4
T

)
, (4.3)

where ⊗ is a shorthand notation of convolution, distributions with superscript
(2) denote twist-2 functions, which is the same as those in Eq. (4.2) without the
superscripts, superscript (4) denotes twist-4 distributions. The diagrammatic
illustrations of the three terms on the right-hand side of Eq. (4.3) are shown
in Fig. 4.2. For the first two NLP terms qsoft ∼ ΛQCD, while for the third
NLP term qsoft is at the same order as mQ, the heavy quark mass. Since
mQ � ΛQCD, the third NLP term is more important than the first two NLP
terms.

Moreover, D(4) includes the contribution that the fragmenting parton pair
are exactly the same heavy quark pair inside the observed heavy quarkonium.
This contribution may not be small even compared with the LP contribu-
tion at current collider energies. Intuitively, it is more likely to find a heavy
quarkonium from the corresponding heavy quark pair than from a single par-
ton, say a gluon in the LP contribution. Therefore, the NLP contribution with
fragmenting heavy quark pair receives non-perturbative enhancement and is
probably a large correction to the LP term.

LP and NLP contributions together are very promising to cover the full
story of heavy quarkonium production. In a physical process, the heavy quark
pair, which eventually forms the observed heavy quarkonium, can be produced
(1) at a very late time O(1/mQ), or (2) in the hard scattering at time O(1/pT ),
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Figure 4.2: Diagrammatic illustration of NLP contributions corresponding to
the three terms on the right-hand-side of Eq. (4.3), respectively.

or (3) somewhere between these two scales. The LP contribution with frag-
mentation functions calculated with the NRQCD factorization only considers
the first situation [18]. By taking care of the NLP contribution systematically,
the second situation is described as the heavy quark pair fragmenting, while
the third situation is included by solving a closed set of evolution equations,
which also sums over large logarithms ln(p2

T/m
2
Q) to all orders of αs.

4.2 The QCD factorization formula

In the QCD factorization approach, the production cross section of a heavy
quarkonium H with momentum p at a large transverse momentum pT in the
lab frame is expanded in a power series of 1/pT [23, 40]

Ep
dσA+B→H+X

d3p
(p) ≈

∑
f

∫
dz

z2
Df→H(z;mQ)Ec

dσ̂A+B→f(pc)+X

d3pc

(
pc =

1

z
p̂
)

+
∑

[QQ̄(κ)]

∫
dz

z2

dζ1 dζ2

4
D[QQ̄(κ)]→H(z, ζ1, ζ2;mQ)

× Ec
dσ̂A+B→[QQ̄(κ)](pc)+X

d3pc
(PQ, PQ̄;P ′Q, P

′
Q̄),

(4.4)

where the factorization scale µF dependence is suppressed, and the summation
over unobserved particles X is understood. In Eq. (4.4), the heavy quarkonium
momentum pµ is defined in the lab frame as pµ = (mT cosh y, pT , mT sinh y)
with rapidity y, mT =

√
m2
H + p2

T and pT =
√

p2
T . For our calculation of

50



input FFs, it is more convenient to define the momentum pµ in a frame in
which it has no transverse component as pµ = (p+, p− , 0⊥) with

p+ =

(
mT cosh y +

√
p2
T +m2

T sinh2 y

)
/
√

2 ,

p− =

(
mT cosh y −

√
p2
T +m2

T sinh2 y

)
/
√

2 , (4.5)

in terms of the rapidity and transverse momentum in the lab frame. The
components in the light-cone coordinate in Eq. (4.5) are defined as p± =
(p0 ± p3)/

√
2. With the two light-like vectors ˆ̄nµ = (1+, 0−, 0⊥) and n̂µ =

(0+, 1−, 0⊥), which satisfy ˆ̄n2 = n̂2 = 0 and ˆ̄n·n̂ = 1, the light-cone components
of momentum pµ can be expressed as p+ = p·n̂ and p− = p· ˆ̄n. In this frame, we
have the momenta of perturbatively produced partons in Eq. (4.4) as pc = p̂/z
with p̂µ = (p+, 0−, 0⊥) = pµ(mH = 0) (or z = p̂+/p+

c ), and

PQ =
1 + ζ1

2
pc, PQ̄ =

1− ζ1

2
pc, P

′
Q =

1 + ζ2

2
pc, P

′
Q̄ =

1− ζ2

2
pc , (4.6)

where ζ1 and ζ2 are relative light-cone momentum fractions between the heavy
quark and antiquark in the amplitude and its complex conjugate, respectively.
Note that in Eq. (4.4), we used variables ζ1 and ζ2 instead of the u and v used
in Ref. [40], which are one to one corresponded as ζ1 = 2u − 1, ζ2 = 2v − 1,
and dζ1dζ2/4 = du dv.

The factorization formula in Eq. (4.4) has been argued to be valid in QCD
perturbation theory to all orders in αs [40]. The first term on the right-
hand side is the LP contribution to the production cross section in its 1/pT
expansion, while the second term is the NLP contribution, or the first power
correction. The Feynman diagrams in the cut diagram notation for these
two terms are shown in Fig. 4.3. Physically, the first term represents the
production of a single parton of flavor f at short distance, followed by its
fragmentation into the observed heavy quarkonium H. The

∑
f runs over all

parton flavors f = q, q̄, g including heavy quarks with its mass mQ � pT . For
collider energies at the LHC, the sum could include charm quark c as well as
bottom quark b. The second term describes the production of a heavy QQ̄
pair at the hard collision, and the pair then fragments into an observed heavy
quarkonium H. The

∑
[QQ̄(κ)] runs over all possible spin and color states of

the QQ̄-pair, which could be the vector (v[1,8]), axial-vector (a[1,8]) or tensor
(t[1,8]) state, with the superscripts labeling the color state of the pair: singlet
([1]) or octet ([8]). Projection operators are used to select a specific QQ̄ state,
which is the topic of Sec. 5.2. Note that in the diagram on the right in Fig.
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4.3, the QQ̄ pair on the left of the cut could have different relative momentum
from the QQ̄ pair on the right, which means that ζ1 is not necessarily equal
to ζ2 in Eq. (4.4).

p p

P1

P2

P1

P2

p̂/z

pg pg

p̂/z

p p

P1

P2

P1

P2

a b c d

i j k l

PQ

PQ

P ′
Q

P ′
Q

Figure 4.3: QCD factorization diagrams of heavy quarkonium production.
Left: single parton (here taking gluon as an example) fragmentation. Right:
heavy quark pair fragmentation.

The same factorization formula can be derived from Soft-Collinear Effective
Theory (SCET) [44]. In the large pT limit of heavy quarkonium production,
the IR physics is controlled by scale mQ and the scaling parameter is thus
λ = mQ/pT . By assuming the cancellation of Glauber contributions, the
authors of Ref. [44] show the soft, collinear and hard region can be factorized.

4.3 Fragmentation Functions

The soft interaction, which is responsible for the formation of heavy quarko-
nium bound states, is factorized into several fragmentation functions in Eq. (4.4).
In this section, we give the definitions of these functions.

The single parton fragmentation functions to heavy quark pair are defined
similarly as to light hadrons [93]. The quark fragmentation can be written as

Dq→H(z;mQ, µ0) =
z

4Nc

∑
X

∫
dx−

2π
e−ik

+x−

× Tr
[
/̂n 〈0|ψ(0)[Φ

(F )
n̂ (0)]|p,X〉〈p,X|[Φ(F )

n̂ (x−)]†ψ̄(x−)|0〉
]
, (4.7)

where n̂ is defined below Eq. (4.5), z = p+/k+, with k+ (p+) the light-cone
momentum of the outgoing quark (observed hadron), the trace is for both
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spinor and color. The gauge link in the matrix element is given by

Φ
(j)
n̂ (y−) = P exp

[
−i g

∫ ∞
y−

dλ n̂ · A(j)(λn̂)

]
, (4.8)

where j = F,A represents fundamental or adjoint representation of color
SU(3), respectively. By switching ψ and ψ̄, we get the definition for the an-
tiquark fragmentation. Similarly, the gluon fragmentation function is defined
as

Dg→H(z;mQ, µ0) =
z

2k+(N2
c − 1)

∑
X

∫
dx−

2π
e−ik

+x−

× (−gλλ′)Trc〈0|G+λ(0)[Φ
(A)
n̂ (0)]|p,X〉〈p,X|[Φ(A)

n̂ (x−)]†G+λ′(x−)|0〉,
(4.9)

where Trc is the trace for color.
The fragmentation function for a QQ̄ pair in a particular spinor and color

state κ to a physical heavy quarkonium H with momentum p is defined as [40]

D[QQ̄(κ)]→H(z, ζ1, ζ2;mQ, µ0)

=

∫
p+dy−

2π

p+/z dy−1
2π

p+/z dy−2
2π

e−i(p
+/z)y−ei(p

+/z)[(1−ζ2)/2] y−1 e−i(p
+/z)[(1−ζ1)/2] y−2

× P(s)
ij,kl(pc) C

[I]
ab,cd 〈0|ψ̄c′,k(y−1 )[Φ

(F )
n̂ (y−1 )]†c′c[Φ

(F )
n̂ (0)]dd′ ψd′,l(0)|H(p)X〉

× 〈H(p)X|ψ̄a′,i(y−)[Φ
(F )
n̂ (y−)]†a′a[Φ

(F )
n̂ (y− + y−2 )]bb′ψb′,j(y

− + y−2 )|0〉,
(4.10)

where the subscripts i, j, k, l are the spinor indices of heavy quark and heavy
antiquark fields, a, a′, b, b′ . . . are color indices of SU(3) color in the fundamental

representation, and the summation over repeated indices are understood. Φ
(F )
n̂

is the gauge link defined in Eq. (4.8). Operators P(s)
ij,kl(pc) and C[I]

ab,cd project

the fragmenting QQ̄ pair to a particular spin and color state κ, which could be
a vector (v[1,8]), axial-vector (a[1,8]), or tensor (t[1,8]) state, with the superscript
denoting the color. They are defined as [40]

P(v)(p)ij,lk =
1

4p · n̂(γ · n̂)ij
1

4p · n̂(γ · n̂)lk, (4.11a)

P(a)(p)ij,lk =
1

4p · n̂(γ · n̂γ5)ij
1

4p · n̂(γ · n̂γ5)lk, (4.11b)

P(t)(p)ij,lk =
1

4p · n̂(γ · n̂γβ⊥)ij
1

4p · n̂(γ · n̂γβ⊥)lk, (4.11c)
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and

C[1]
ab,cd =

[
δab√
Nc

] [
δcd√
Nc

]
, (4.12a)

C[8]
ab,cd =

1

N2
c − 1

∑
B

[√
2
(
tB
)
ab

] [√
2
(
tB
)
cd

]
. (4.12b)

Notice that in Eq. (4.10), the relative momenta of the QQ̄ pairs in the ampli-
tude and its complex conjugate are not necessarily the same, thus ζ1 and ζ2

could be different.

4.4 Evolution Equations

In Eq. (4.4), the short-distance partonic hard parts dσ̂ could be systematically
calculated in powers of αs (needs to convolute with PDFs if A and/or B is a
hadron). The fragmentation functions Df→H(z;mQ, µF ) and D[QQ̄(κ)]→H(z, ζ1,
ζ2;mQ, µF ) are unknown, but process independent, universal functions. Their
dependence on factorization scale µF is determined by a closed set of evolution
equations [40],

∂

∂ lnµ2
F

Df→H(z;mQ, µF ) =
∑
f ′

∫ 1

z

dz′

z′
Df ′→H(z′;mQ, µF ) γf→f ′(z/z

′, αs)

+
1

µ2
F

∑
[QQ̄(κ′)]

∫ 1

z

dz′

z′

∫ 1

−1

dζ ′1
2

∫ 1

−1

dζ ′2
2
D[QQ̄(κ′)]→H(z′, ζ ′1, ζ

′
2;mQ, µF )

× γf→[QQ̄(κ′)](
z

z′
, u′ =

1 + ζ ′1
2

, v′ =
1 + ζ ′2

2
),

(4.13)

∂

∂lnµ2
F

D[QQ̄(κ)]→H(z, ζ1, ζ2;mQ, µF )

=
∑

[QQ̄(κ′)]

∫ 1

z

dz′

z′

∫ 1

−1

dζ ′1
2

∫ 1

−1

dζ ′2
2
D[QQ̄(κ′)]→H(z′, ζ ′1, ζ

′
2;mQ, µF )

× Γ[QQ̄(κ)]→[QQ̄(κ′)](
z

z′
, u =

1 + ζ1

2
, v =

1 + ζ2

2
;u′ =

1 + ζ ′1
2

, v′ =
1 + ζ ′2

2
),

(4.14)

where we explicitly convert the variables u and v to ζ1 and ζ2 in the argu-
ment of evolution kernels γf→[QQ̄(κ′)] and Γ[QQ̄(κ)]→[QQ̄(κ′)] to avoid confusion.
The evolution kernels γ′s and Γ′s are process independent and perturbatively
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calculable. The well-known DGLAP evolution kernels γf→f ′ are available
to next-to-next-to-leading order in αs. The power-mixing evolution kernels
γf→[QQ̄(κ′)] were calculated in Ref. [40], and the heavy quark pair evolution
kernels Γ[QQ̄(κ)]→[QQ̄(κ′)] have been recently calculated by two groups indepen-
dently [40, 94]. If both κ and κ′ are color singlet, the kernel Γ[QQ̄(κ)]→[QQ̄(κ′)] re-
duces to the well-known Efremov-Radyushkin-Brodsky-Lepage evolution ker-
nel for exclusive processes [95, 96].

Similar to the FFs for pion or kaon production, a set of single parton
and QQ̄ pair fragmentation functions at an input factorization scale µ0 is
required as the boundary conditions (BCs) for solving the evolution equations
in Eqs. (4.13) and (4.14). For production of each heavy quarkonium state at
high pT � mQ, we need four single parton input FFs and six QQ̄ pair input
FFs as the required BCs. Since these BCs are non-perturbative, in principle,
they should be extracted from the data. However, extracting ten or more
unknown functions for each physical heavy quarkonium is difficult in practice.
The extraction is practically feasible if we have some knowledge of these BCs,
such as their functional forms.

When the factorization scale µF → µ0 & 2mQ, the ln(µ2
0/m

2
Q)-type log-

arithms as well as powers of µ2
0/m

2
Q in NRQCD calculations are no longer

large. With a clear separation of momentum scales, µ0 ∼ O(mQ) � mQv,
NRQCD might be the right effective theory for calculating these input FFs
by factorizing the dynamics at µ0 from non-perturbative soft physics at the
scale of mQv and below. From the next chapter, as a conjecture [23, 24, 43],
we apply NRQCD factorization to these input FFs at µ0, and calculate the
corresponding short-distance coefficient functions to the first nontrivial order
in αs for the fragmentation via all S-wave and P -wave NRQCD QQ̄ states.

4.5 Relation with light-cone distribution am-

plitude

For the hard exclusive processes, the amplitudes can be factorized as a convolu-
tions of the perturbatively calculable hard-kernels and some non-perturbative
but universal light-cone distribution amplitudes (LCDA) [97, 98]. Recently,
people have applied the NRQCD factorization model to calculate these LCDAs
[99–106]. In this section, we show the relation between the twist-2 LCDAs
and the color singlet heavy quark pair fragmentation functions defined in
Eq. (4.10).

We take the process [QQ̄(a[1])] → η(c,b) as an example. The LCDA is
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defined as [106]

〈η(c,b)|ψ̄(
ω−

2
)/̂nγ5ψ(−ω

−

2
)|0〉 = −ifη p+

∫ 1

0

dx eiω
−p+(x−1/2)φ̂η(x), (4.15)

where fη, p
+ and φ̂η are the decay constant, light-cone momentum, and the

twist-2 LCDA of the outgoing η(c,b), respectively. After proper Poincaré trans-
lation and Fourier transformation, Eq. (4.15) converts to∫

dω−e−i
1−ζ
2
p+ω−〈η(c,b)|ψ̄(

ω−

2
)/̂nγ5ψ(−ω

−

2
)|0〉 = −ifη φ̂η(

1 + ζ

2
). (4.16)

On the other hand, for the exclusive process [QQ̄(a[1])]→ η(c,b), the heavy
quark fragmentation defined in Eq. (4.10) can be written as

D
[QQ̄(1S

[1]
0 )]→η(c,b)

(z, ζ1, ζ2;mQ, µ0)

=

∫
p+dy−

2π

p+ dy−1
2π

p+ dy−2
2π

e−i p
+y−ei p

+[(1−ζ2)/2] y−1 e−i p
+[(1−ζ1)/2] y−2

× 1

16Nc(p+)2
〈0|ψ̄(y−1 )/̂nγ5ψ(0)|η(c,b)(p)〉〈η(c,b)(p)|ψ̄(y−)/̂nγ5ψ(y− + y−2 )|0〉,

(4.17)

where we have suppressed the spinor and color indices, as well as the gauge
links, and the X in the outgoing states is removed since it is an exclusive
process. After proper Poincaré translation and y−-integral, we have

D
[QQ̄(1S

[1]
0 )]→η(c,b)

(z, ζ1, ζ2;mQ, µ0)

=
1

16Nc

δ(1− z)

∫
dy−1
2π

dy−2
2π

ei p
+[(1−ζ2)/2] y−1 e−i p

+[(1−ζ1)/2] y−2

× 〈0|ψ̄(y−1 )/̂nγ5ψ(0)|η(c,b)(p)〉〈η(c,b)(p)|ψ̄(0)/̂nγ5ψ(y−2 )|0〉.

(4.18)

With this equation and Eq. (4.16), the relation between the heavy quark pair
fragmentation functions and the twist-2 LCDAs for process [QQ̄(a[1])]→ η(c,b)

is straightforward,

D
[QQ̄(1S

[1]
0 )]→η(c,b)

(z, ζ1, ζ2;mQ, µ0)

=
1

(8π)2Nc

δ(1− z)f 2
η φ̂η(

1 + ζ1

2
) φ̂η

∗
(
1 + ζ2

2
).

(4.19)

We can use this relation to cross-check our calculations of color singlet heavy
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quark pair fragmentation functions.
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Chapter 5

Calculation of Heavy Quark
Pair Fragmentation in NRQCD
factorization model:
General Analysis

As analyzed at the end of Sec. 4.4, the predictive power of QCD factorization
theorem depends on our knowledge of the fragmentation functions (FFs) at an
input scale µ0. If choosing µ0 & 2mQ, we can use the NRQCD factorization
approach to further factorize the perturbative part with energy scale ∼ mQ

with the non-perturbative part with energy scale much smaller than mQ. After
this calculation, we can express dozens of multi-variable FFs in terms of a few
NRQCD long-distance matrix elements (LDMEs), therefore greatly increasing
the predictive power of the QCD factorization theorem.

In this chapter, we explain in detail the techniques used in our calculation
of these FFs in the NRQCD factorization approach. In Sec. 5.1, we first
show how to match the FFs to the NRQCD factorization approach. After the
matching, we can calculate these FFs order by order in αs. We will use the
projection method to do this calculation, which is the topic of Sec. 5.2. The
result, however, is usually IR divergent. If the NRQCD factorization approach
is valid to NLO, the IR divergence should be canceled by the NRQCD LDMEs.
In Sec. 5.3, we expand the NRQCD LDMEs to NLO in perturbative NRQCD.
In Sec. 5.4, we constrain the structures of the short-distance coefficients with
the discrete symmetries. Finally in Sec. 5.5, we prove a very important trick
to simplify our calculations.
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5.1 Matching to NRQCD factorization

In this section, we overview the method of matching the fragmentation func-
tions onto NRQCD. We first briefly discuss the single parton fragmentation
process for completeness. Then we focus on heavy quark pair fragmentation
and work out a formula to calculate the short distance coefficients.

5.1.1 Calculation of single-parton FFs

By matching the fragmentation functions defined in Sec. 4.3 onto NRQCD,
We can write the NRQCD factorization formalism for heavy quarkonium FFs
from a single parton as [23, 24, 43]

Df→H(z;mQ, µ0) =
∑

[QQ̄(n)]

d̂f→[QQ̄(n)](z;mQ, µ0, µΛ)〈OH[QQ̄(n)](µΛ)〉, (5.1)

where H represents a particular physical heavy quarkonium state, µ0 & 2mQ

represents the input QCD factorization scale at which the ln(µ0/mQ)-type
logarithmic contributions to the production cross section are comparable with
the mQ/µ0-type power suppressed contribution, and µΛ ∼ mQ is the NRQCD
factorization scale and does not have to be equal to µ0. The summation
runs over all intermediate non-relativistic QQ̄ states, which are labeled as
n = 2S+1L

[1,8]
J , with the superscript [1] (or [8]) denoting the color singlet (or

octet) state. Short-distance coefficients d̂f→[QQ̄(n)](z;mQ, µ0, µΛ) describe the
dynamics at an energy scale larger than µΛ � ΛQCD; thus they could be
calculated perturbatively. The LDMEs 〈OH

[QQ̄(n)]
(µΛ)〉 include all interaction

below scale µΛ and are intrinsically non-perturbative. These universal LDMEs
are scaled in powers of the QQ̄ pair’s relative velocity v � 1 in the rest frame
of H, which we have discussed in Sec. 3.4.2. Hence, in practice, the summation
could be approximately truncated, with only a few terms left to be considered
(see Table 3.4). In Eq. (5.1), the factorization scales µ0 and µΛ, along with
the LDMEs, should be determined by fitting the experimental data.

Since the short-distance coefficients d̂f→[QQ̄(n)](z;mQ, µ0, µΛ) are not sensi-
tive to long-distance details of the heavy quarkonium state, the same factor-
ization formula in Eq. (5.1) could be applied to an asymptotic partonic state,
such as an asymptotic QQ̄ pair state. By replacing the heavy quarkonium
state H with an asymptotic QQ̄ pair state, [QQ̄(n′)], we can write

Df→[QQ̄(n′)](z;mQ, µ0) =
∑

[QQ̄(n)]

d̂f→[QQ̄(n)](z;mQ, µ0, µΛ)〈O[QQ̄(n′)]

[QQ̄(n)]
(µΛ)〉. (5.2)
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With this form, one could calculate the Df→[QQ̄(n′)](z;mQ, µ0) on the left

with perturbative QCD and the 〈O[QQ̄(n′)]

[QQ̄(n)]
(µΛ)〉 on the right with perturbative

NRQCD. If the NRQCD factorization is valid for these input FFs, the LDMEs
on the right should reproduce all infrared (IR) and Coulomb divergences in
Df→[QQ̄(n′)](z;mQ, µ0), with short-distance coefficients d̂f→[QQ̄(n)](z;mQ, µ0, µΛ)
IR safe to all orders.

However, there is a major difference between applying the NRQCD fac-
torization to heavy quarkonium production cross sections and to the heavy
quarkonium FFs [24]. For the production cross section, all perturbative UV
divergences are completely taken care of by the renormalization of QCD. For
the input FFs, on the other hand, there are additional perturbative UV di-
vergences associated with the composite operators that define the FFs. Since
the NRQCD factorization on the right-hand side (RHS) of Eq. (5.1), so as
Eq. (5.2), is a factorization of the soft region corresponding to heavy quark
binding, it does not deal with the UV divergence of the composite operators
defining the FFs on the left-hand side (LHS) of the same equation. That is,
the matching in Eq. (5.1), so as in Eq. (5.2), and similarly, that in Eq. (5.3)
below, makes sense only if all perturbative UV divergences associated with
the composite operators defining the FFs on the LHS are renormalized and
any ambiguity in connection with this renormalization is simply a part of the
factorization scheme dependence of the FFs [24].

Although a formal proof for the NRQCD factorization formula in Eq. (5.1)
is still lacking, the derivation of the coefficients d̂f→[QQ̄(n)](z;mQ, µ0, µΛ) by
calculating both sides of Eq. (5.2) perturbatively actually provides an explicit
verification of the factorization formalism, order by order in perturbation the-
ory. In the case of single parton FFs, we calculated all the short-distance
coefficients up to O(α2

s) and no inconsistency was found. Many of these sin-
gle parton FFs have been calculated before and are available in the literature
[79–81, 107–111]. We found that our results agree with almost all of them.
Since enough calculation details were presented in those early papers, here we
simply list our complete results for single parton FFs in Appendix A and point
out any differences from early publications.
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5.1.2 Calculation of QQ̄ pair FFs

Assuming that the NRQCD factorization works for the heavy quarkonium FFs,
we can factorize the heavy quarkonium FFs from a QQ̄ pair as [24]

D[QQ̄(κ)]→H(z, ζ1, ζ2;mQ, µ0)

=
∑

[QQ̄(n)]

d̂[QQ̄(κ)]→[QQ̄(n)](z, ζ1, ζ2;mQ, µ0, µΛ)〈OH[QQ̄(n)](µΛ)〉, (5.3)

where the symbols have the same meaning as those in Eq. (5.1). Similar to the
case of single parton fragmentation, if the factorization formalism in Eq. (5.3)
is valid, it should also be valid if we replace the heavy quarkonium state H by
any asymptotic partonic state. By replacing the heavy quarkonium state H
with an asymptotic QQ̄ pair state, [QQ̄(n′)], we can write

D[QQ̄(κ)]→[QQ̄(n′)](z, ζ1, ζ2;mQ, µ0)

=
∑

[QQ̄(n)]

d̂[QQ̄(κ)]→[QQ̄(n)](z, ζ1, ζ2;mQ, µ0, µΛ)〈O[QQ̄(n′)]

[QQ̄(n)]
(µΛ)〉 , (5.4)

and derive the short-distance coefficients, d̂[QQ̄(κ)]→[QQ̄(n)](z, ζ1, ζ2;mQ, µ0, µΛ)
above by calculating both sides of the equation, perturbatively. If the factor-
ization is valid, any IR sensitivity of the fragmentation function to an asymp-
totic state of a QQ̄ pair on the LHS of the equation should be systematically
absorbed into the NRQCD LDMEs on the RHS, in the same manner as in
Eq. (5.2). As explained in the last subsection, the matching in Eq. (5.3), so as
Eq. (5.4), is possible only if the UV renormalization of the composite operators
defining the FFs on the LHS of the equation is taken care of [24].

In this paper, we use dimensional regularization to regularize various di-
vergences involved in our NLO calculations. With the definition in Eq. (4.10),
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we have an explicit D-dimensional expression for the LHS of Eq. (5.4) as

D[QQ̄(s[b])]→[QQ̄(i[b
′])](z, ζ1, ζ2;mQ, µ0)

=
zD−2

NsNbNNR
i NNR

b′

∫
dDpc
(2π)D

(∏
X

∫
dD−1pX

(2π)D−12EX

)
δ(z − p+

p+
c

)

× M[QQ̄(s[b])]→[QQ̄(i[b
′])](p, z, ζ1, ζ2)(2π)DδD(pc − p−

∑
X

pX) + UVCT(µ0)

=
zD−2

NsNbNNR
i NNR

b′

(∏
X

∫
dD−1pX

(2π)D−12EX

)
δ(z − p+

p+
c

)

×M[QQ̄(s[b])]→[QQ̄(i[b
′])](p, z, ζ1, ζ2) + UVCT(µ0) ,

(5.5)

where p is the momentum of the produced heavy quark state [QQ̄(i[b
′])], and

“UVCT(µ0)” indicates the UV counter-term needed to remove the UV diver-
gence associated with the composite operators defining the FFs. In Eq. (5.5),
we have separated the spinor and color labels for both the initial and final
QQ̄ pair. s and b (i and b′) denote the spin and color state for the incoming
(outgoing) QQ̄ pair. s could be vector (v), axial-vector (a) or tensor (t). i is
labeled with the spectroscopic notation 2S+1LJ . Color state b and b′ can be
either “1” for color singlet or “8” for color octet. Ns and Nb (NNR

i and NNR
b′ )

are the spin and color normalization factors for the incoming (outgoing) QQ̄
pair. Their definitions are listed in Sec. 5.2. The phase space integration for
the unobserved particles X is given explicitly.

The function M in Eq. (5.5) is given by

M[QQ̄(s[b])]→[QQ̄(i[b
′])](p, z, ζ1, ζ2)

= Tr
[
Γs(pc)CbA[QQ̄(s[b])]→[QQ̄(i[b

′])](p, z, ζ1)
]

× Tr
[
Γ†s(pc)C

†
b A†[QQ̄(s[b])]→[QQ̄(i[b

′])]
(p, z, ζ2)

]
× Ps(pc)PNR

i (p) ,

(5.6)

where “Tr” is understood as the trace for both spinor and color. In deriving
Eq. (5.6), we explicitly write the spinor (color) projection operator P(s)(pc)
(and C[I]) in Eq. (4.10) as a product of the corresponding operator in the
scattering amplitude and that in its complex conjugate, such that P(s)(pc) ≡
Γs(pc)Γ

†
s(pc)Ps/Ns (and C[I] ≡ CbC

†
b/Nb). All of these projection operators

and corresponding normalization factors are listed in Sec. 5.2.
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The transition amplitude A in Eq. (5.6) is defined as

A[QQ̄(s[b])]→[QQ̄(i[b
′])](p, z, ζ1) = lim

qr→0

(
L∏
j=0

d

dq
αj
r

){∫
dDq1

(2π)D
× 2 δ(ζ1 −

2q+
1

p+
c

)

× Ā[QQ̄(s[b])]→[QQ̄(i[b
′])](q1, qr) ΓNR

i (p)CNR
b′

}
,

(5.7)

where Ā is the amputated amplitude, and the factor 2 in front of the delta
function comes from the integration of y−1 in Eq. (4.10). Spin projection op-
erators ΓNR

i and color projection operators CNR
b′ for outgoing Q and Q̄ are

defined in Sec. 5.2, which may have Lorentz indexes and color indices, re-
spectively. In Eq. (5.7), q1 (qr) is the momentum of the incoming (outgoing)
heavy quark relative to the incoming (outgoing) QQ̄ pair’s center of mass.
The derivative operation,

∏L
j=0 d/dq

αj
r , with αj the Lorentz index of momen-

tum qr, picks up the contribution to the Lth orbital angular momentum state,
with L = 1, 2, 3 . . . corresponding to the orbital angular momentum state
S, P, D . . . of the final QQ̄ pair, respectively. For the contribution to a S-
wave QQ̄ state,

∏L=0
j=0 d/dq

αj
r = 1, and there is no need for the derivative

operation on qr. For higher orbital momentum states, L > 0, we expand the
amplitude to the Lth-order in qr.

Note that in Eq. (5.7), limqr→0

(∏L
j=0 d/dq

αj
r

)
, the limit and derivative

operation, is outside of the q1 integration. In principle, we should keep qr
finite in the integration of q1, which is usually difficult and tedious. In Sec. 5.5,
we will show that we are qualified to do the derivative and limit before the
q1-integral. By doing this, the Coulomb region does not appear on the LHS
of Eq. (5.4). Since the short distance coefficients on the RHS of Eq. (5.4) is
the effect of the hard region only, the ignorance of the Coulomb region has no
effect to our results. More details are in Sec. 5.5.

5.2 QCD and NRQCD projection operators

To obtain the short distance coefficients in Eq. (5.2) and (5.4), we can expand
a general amplitude by NRQCD LDMEs and pick up the coefficient needed,
or we can project the outgoing heavy quark pair to a certain NRQCD state
with some projection operators. The former is named “Threshold Expansion”
method [109] and the later is usually called “Projection” method [112]. Be-
cause the heavy quark is represented by 4-component Dirac spinor in full QCD
and 2-component Pauli spinor in NRQCD, to do the matching, we need to
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convert one to the other in our calculation. The threshold Expansion method
converts the Dirac spinor to Pauli spinor, while the Projection method does
the opposite. The two methods can be shown equivalent. In this paper, we
will adopt the Projection method. In this section, we give the QCD projection
operator for the incoming heavy quark pair, as well as the NRQCD projec-
tion operators for all unpolarized S-wave and P-wave outgoing heavy quark
pair. Projection operators for polarized outgoing heavy quark pairs are given
in chapter 8.

5.2.1 Projection operators in QCD factorization

The heavy quark pair fragmentation function to a physical heavy quarkonium
is defined in Eq. (4.10), in which there are two operators P(s)

ij,kl(pc) and C[I]
ab,cd

projecting the fragmenting heavy quark pair to a particular spin and color
state. Subscripts i, j, k, l are the spinor indices and a, b, c, d label the color
of each field. All of the definitions are given in Eqs. (4.11) and (4.12). Here
we generalize them to D-dimension, which are convenient with dimensional
regularization.

The definitions of P(s)
ij,kl(pc) in D dimensions are

P(v)(pc)ij,kl =
1

4pc · n̂
(γ · n̂)ij

1

4pc · n̂
(γ · n̂)kl, (5.8a)

P(a)(pc)ij,kl =
1

4pc · n̂
[γ · n̂ , γ5]ij

2

1

4pc · n̂
[γ · n̂ , γ5]kl

2
, (5.8b)

P(t)(pc)ij,kl =
1

D − 2

∑
ρ=1,2,··· ,D−2

1

4pc · n̂
(γ · n̂ γρ⊥)ij

1

4pc · n̂
(γ · n̂ γρ⊥)kl, (5.8c)

where the superscripts (v), (a), or (t) represent that the heavy quark pair is in
a vector, axial-vector or tensor state, respectively, and n̂ is a light-like vector,
defined in Sec. 4.2. To keep the charge conjugation invariance of the axial-
vector heavy quark pair fragmentation function in dimensional regularization,
we use [γ · n̂ , γ5] /2 = (γ · n̂ γ5 − γ5 γ · n̂)/2 instead of γ · n̂ γ5.

The definitions of color projection operators C[I]
ab,cd are

C[1]
ab,cd =

1√
Nc

δa,b
1√
Nc

δc,d, (5.9a)

C[8]
ab,cd =

2

N2
c − 1

∑
f

(t
(F )
f )ab (t

(F )
f )cd. (5.9b)

In Eqs. (5.5), (5.6) and (5.7), we split P(s)(pc) and Cb into products of
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several operators and normalization factors as

P(s) =
Γs(pc)Γ

†
s(pc)

Ns

Ps, (5.10a)

Cb =
CbC

†
b

Nb

, (5.10b)

where the indices are suppressed, and all operators are understood to be in-
serted in the proper location as they are in Eqs. (5.5) and (5.6). In Eq. (5.10),
s could be vector (v), axial-vector (a), or tensor (t), and b could be “1” for
color singlet or “8” for color octet. The operators in Eq. (5.10a) are defined
in D dimension as

Γv(pc) =
γ · n̂

4pc · n̂
, Nv = 1, (5.11a)

Γa(pc) =
[γ · n̂ , γ5]

8pc · n̂
, Na = 1, (5.11b)

Γt(pc) =
γ · n̂ γρ
4pc · n̂

, Nt = D − 2, (5.11c)

and

Pv(pc) = Pa(pc) = 1, (5.12a)

Pt(pc) = −gρρ′ +
(pc)ρn̂ρ′ + (pc)ρ′n̂ρ

pc · n̂
− p2

c

(pc · n̂)2
n̂ρn̂ρ′ , (5.12b)

where Lorentz index ρ′ is the counterpart of ρ in Γ†t(pc).
The color operators in Eq. (5.10b) are defined as

C1 =
1√
Nc

, N1 = 1, (5.13a)

C8 =
√

2 t(F )
a , N8 = N2

c − 1, (5.13b)

where 1 is a 3×3 unit matrix, the superscript (F ) represents the fundamental
representation of SU(3), and subscript a is summed between C8 and C†8.
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5.2.2 Projection operators in NRQCD factorization

NRQCD projectors NNR
b′ in Eq. (5.5) and CNR

b′ in Eq. (5.7) are the same as the
color projection operators of QCD factorization in Eq. (5.13), that is

CNR
b′ = Cb′ , NNR

b′ = Nb′ . (5.14)

However, the meaning of N8 = N2
c − 1 and that of NNR

8 = N2
c − 1 are signif-

icantly different. The former indicates that the QQ̄ pair FFs are defined to
average over the color of the fragmenting pair. In contrast, the latter means
that we need to average over the color of the NRQCD states in the short-
distance coefficients, since the NRQCD LDMEs in Eqs. (3.10) and (3.12) are
defined to sum over all possible color states of the heavy quark pair.

The NRQCD spinor projection operators ΓNR
i in Eq. (5.7) are given by

ΓNR
i (p) =

1√
8m3

Q

(
/p

2
− /qr −mQ)γ5(

/p

2
+ /qr +mQ) if i is spin singlet,

(5.15a)

ΓNR
i (p) =

1√
8m3

Q

(
/p

2
− /qr −mQ)γβ(

/p

2
+ /qr +mQ) if i is spin triplet,

(5.15b)

where mQ is the heavy quark mass. The factor 1/(8m3
Q)1/2 is partly caused by

different normalizations between the individual heavy quark and the pair, and
we refer the interested readers to Ref. [113], for example, for a more detailed
discussion.

The normalization factors NNR
i in Eq. (5.5) are defined as the number of

states in D dimension (number of color states are not counted here),

NNR
1S0

= NNR
3P0

= 1, (5.16a)

NNR
3S1

= NNR
1P1

= D − 1, (5.16b)

NNR
3P1

=
1

2
(D − 1)(D − 2), (5.16c)

NNR
3P2

=
1

2
(D + 1)(D − 2), (5.16d)∑

J=0,1,2

NNR
3PJ

= (D − 1)2. (5.16e)
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The PNR
i in Eq. (5.6) are defined as,

PNR
1S0

= 1, (5.17a)

PNR
3S1

= Pββ′(p), (5.17b)

PNR
1P1

= Pαα′(p), (5.17c)

PNR
3P0

=
1

D − 1
Pαβ(p)Pα′β′(p), (5.17d)

PNR
3P1

=
1

2
(Pαα′(p)Pββ′(p)− Pαβ′(p)Pβα′(p)), (5.17e)

PNR
3P2

=
1

2
(Pαα′(p)Pββ′(p) + Pαβ′(p)Pβα′(p))− 1

D − 1
Pαβ(p)Pα′β′(p), (5.17f)

where Pµν(p) is given by

Pαα′(p) = −gαα′ + pαpα
′

p2
, (5.18)

and the Lorentz index α will be contracted with the Lorentz index from the
derivative in Eq. (5.7), and the primed Lorentz indices are for the complex
conjugate of the amplitude, which are the counterparts of the unprimed ones
in the amplitude.

5.3 Expand LDMEs to NLO with perturba-

tive NRQCD

The calculation of the LHS of Eq. (5.2) and (5.4) with the projection oper-
ators given in last section is usually IR-divergent. The IR divergence needs
to be absorbed in the NRQCD LDMEs on the RHS of these equations. After
replacing the final heavy quarkonium by an asymptotic heavy quark pair, we
can calculate the NRQCD LDMEs on the RHS of Eqs. (5.2) and (5.4) pertur-
batively in NRQCD effective theory. These LDMEs with both initial and final
state being a heavy quark pair does not depend on the hard process. Therefore
they can be calculated once and for all. Here we summarize the results for
unpolarized heavy quark pair in the literature [36, 112, 114–117]. The results
for polarized NRQCD LDMEs are given in chapter 8.

〈OQQ̄(1S
[1]
0 )〉 = 〈OQQ̄(1S

[1]
0 )〉LO − Cε

1

2Nc

〈OQQ̄(1P
[8]
1 )〉LO, (5.19a)

〈OQQ̄(1S
[8]
0 )〉 = 〈OQQ̄(1S

[8]
0 )〉LO
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− Cε
[
CF 〈OQQ̄(1P

[1]
1 )〉LO +BF 〈OQQ̄(1P

[8]
1 )〉LO

]
, (5.19b)

〈OQQ̄(1P
[1]
1 )〉 = 〈OQQ̄(1P

[1]
1 )〉LO − Cε

1

2Nc

〈OQQ̄(1D
[8]
2 )〉LO, (5.19c)

〈OQQ̄(1P
[8]
1 )〉 = 〈OQQ̄(1P

[8]
1 )〉LO

− Cε
[
CF 〈OQQ̄(1D

[1]
2 )〉LO +BF 〈OQQ̄(1D

[8]
2 )〉LO

]
, (5.19d)

〈OQQ̄(3S
[1]
1 )〉 = 〈OQQ̄(3S

[1]
1 )〉LO − Cε

1

2Nc

2∑
J=0

〈OQQ̄(3P
[8]
J )〉LO, (5.19e)

〈OQQ̄(3S
[8]
1 )〉 = 〈OQQ̄(3S

[8]
1 )〉LO

− Cε
2∑

J=0

[
CF 〈OQQ̄(3P

[1]
J )〉LO +BF 〈OQQ̄(3P

[8]
J )〉LO

]
, (5.19f)

〈OQQ̄(3P
[1]
J )〉 = 〈OQQ̄(3P

[1]
J )〉LO − Cε

1

2Nc

2∑
J ′=0

CJ,J ′〈OQQ̄(3D
[8]
J ′ )〉LO, (5.19g)

〈OQQ̄(3P
[8]
J )〉 = 〈OQQ̄(3P

[8]
J )〉LO

− Cε
2∑

J ′=0

CJ,J ′
[
CF 〈OQQ̄(3D

[1]
J ′ )〉LO +BF 〈OQQ̄(3D

[8]
J ′ )〉LO

]
,

(5.19h)

where

Cε = (
1

ε
+ ln 4π − γE)(

µr
µΛ

)2ε 4αs
3πm2

Q

, (5.20)

and CJ,J ′ is the generalized Clebsch-Gordan coefficient [116]. In D dimensions,

when J ′ = 1, 2, 3, we have C0,J ′ = (D−2)(D+1)
2(D−1)2

, 0, 0; C1,J ′ = D+1
4(D−1)

, 3
4
, 0; C2,J ′ =

(D−3)2

4(D−1)2
, 1

4
, 1. Notice Eq. (5.19) is calculated with dimensional regularization

and MS scheme. It is straightforward to derive the results in other schemes.
With Eq. (5.19) , the only task left is to calculate the LHS of Eqs. (5.2) and
(5.4) in perturbative QCD with dimensional regularization and MS scheme.

5.4 Symmetries

In this section, we show how fundamental symmetries constrain the structure
of the FFs calculated in the NRQCD factorization approach.
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5.4.1 Color charge conservation

Color charge conservation could be a serious constraint for partonic contri-
butions to QQ̄ pair FFs to a non-relativistic QQ̄ pair without radiating any
additional partons into the final-state. For these FFs, such as LO contribu-
tion, DLO

[QQ̄(s[b])]→[QQ̄(i[b
′])]

, and the NLO virtual contribution, DNLO-V
[QQ̄(s[b])]→[QQ̄(i[b

′])]
,

the color of the fragmenting QCD heavy quark pair [QQ̄(s[b])] should be
the same as that of final-state non-relativistic heavy quark pair [QQ̄(i[b

′])],
or b = b′. Because of the color normalizaiton NNR

8 for NRQCD matrix
elements, as defined in Eq. (5.14) , the color charge conservation requires
DLO

[QQ̄(s[8])]→[QQ̄(i[8])]
= (N2

c − 1)−1 ×DLO
[QQ̄(s[1])]→[QQ̄(i[1])]

.

5.4.2 Lorentz invariance

Even if the initial and the final QQ̄ pair are in the same color state, the
partonic contributions to D[QQ̄(s[b])]→[QQ̄(i[b])] without radiating any parton to
the final-state may still vanish, due to Lorentz invariance, or more precisely,
angular momentum conservation. For initial-state s = v, a, t and final-state
i = 1S0,

3S1,
1P1,

3P0,
3P1,

3P2, we can have a total of 18 (or 24) channels (if we
distinguish the two initial tensor states). By applying Lorentz invariance, 8
out of the 18 partonic fragmentation channels vanish. Once all loop integra-
tions are performed, contributions to all these fragmentation channels can only
depend on two momentum vectors, n̂ and p, and three polarization vectors:
εα for the L = 1 states, εβ for the S = 1 states, and ερ if the initial QQ̄ pair
is in the t state.

If there is one γ5 in the combined initial- and final-state spin projector:
ΓsΓ

NR
i , we need two of three possible polarization vectors (ε’s discussed above)

plus the two linear momenta n̂ and p to construct the Levi-Civita tensor.
Consequently, the partonic fragmentation channels: v → 1S0, t→ 1S0, a→ 3S1,
and v → 1P1 must vanish.

Since pα and pβ give zero when contracting with εα (for L = 1 states) and
εβ (for S = 1 states), respectively, the Lorentz structure of the amplitude of
the process v → 3PJ must be a linear combination of n̂αn̂β and gαβ, which is
symmetric under the exchange of α and β. For the amplitude of the process
a→ 3PJ , the Lorentz structure must be εαβµνnµpν , which is anti-symmetric un-
der the exchange of α and β. Therefore, the partonic fragmentation processes:
v → 3P1, a → 3P0 and a → 3P2 are not allowed, since the 3P0,2 are symmetric
between the spin and orbital angular momentum while 3P1 is antisymmetric
between spin and orbital angular momentum.

Finally, the partonic fragmentation channel: t→ 3P0 must vanish because
pρ and n̂ρ give zero when contracted with the tensor polarization vector ερ,
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and there is no other Lorentz structure to take the index ρ. Our explicit cal-
culations up to NLO in αs support our analysis and confirm these constraints.

5.4.3 Reality and symmetries

As both the cross section and the partonic hard part are real, the heavy quark
pair FFs defined in Eq. (4.10) is also real, D[QQ̄(κ)]→H(z, ζ1, ζ2;mQ, µ0)∗ =
D[QQ̄(κ)]→H(z, ζ1, ζ2;mQ, µ0). The reality requires that these FFs are symmetric
in ζ1 and ζ2.

QCD is invariant under the charge conjugation, parity, and time-reversal
transformation, but, it is not easy to apply these symmetry transformations to
the FFs directly. However, they could be used to study the symmetry proper-
ties of the matrix elements defining the FFs in Eq. (4.10). Since time-reversal
transformation is not unitary, its operation connects the matrix elements of
the states with and without time-reversal transformation [118, 119]

〈0| Ô(ψ,Aµ) |H(p)X〉 =
(
〈H(p)X|T −1

)
T Ô(ψ,Aµ)†T −1 (T |0〉) (5.21)

where Ô(ψ,Aµ) is an operator of the quark and gluon field, T is the time-
reversal operator and (〈H(p)X|T −1) and (T |0〉) are time-reversal transformed
states. Since the charge conjugation C and parity P transformation are unitary,
they can be directly inserted into the matrix element as

〈0| Ô(ψ,Aµ) |H(p)X〉 = 〈0| Ô(ψ,Aµ) C−1C |H(p)X〉
= 〈0| Ô(ψ,Aµ)P−1P |H(p)X〉 . (5.22)

For example, by applying the parity and time-reversal invariance to the matrix
elements of the FFs to an unpolarized final-state heavy quarkonium, defined
in Eq. (4.10), one can derive the same ζ1 ↔ ζ2 symmetry property of the FFs
obtained by applying the reality of the FFs.

Although the charge conjugation operation C cannot be applied to the FFs
directly, because the initial fragmenting QQ̄ pair is not an eigenstate of C
due to its relative momentum, we find that the FFs are actually invariant
under a modified charge conjugation C, if both the initial and the final heavy
quark pairs are color singlet. The modified charge conjugation operation C
is defined as the charge conjugation operation C followed by reversing the
direction of the relative light-cone momentum of the pair, i.e. ζ1 → −ζ1

for the amplitude. More specifically, for the fragmentation from a QCD QQ̄
pair to a non-relativistic QQ̄ pair, the C operation leads to (−1)δs,a+1 for the
initial QQ̄ pair with s = v, a, t, and (−1)L+S for a final non-relativistic QQ̄
pair (2S+1LJ). By applying C on the amplitude and keeping the complex
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conjugate of the amplitude untouched for a FF, one picks up an overall factor
(−1)L+S+δs,a+1. If there is a gluon radiated into the final state, we can still
apply the C operation as long as one of the initial and final QQ̄ pairs is in a
color singlet state. By applying the C operation on the amplitude of the FFs
and keeping the complex conjugate of the amplitude untouched, one picks up
an overall factor of (−1)L+S+δs,a .

More generally, if we apply the C operation to both the amplitude and its
complex conjugate for heavy quark pair FFs and combine the reality, we have

D
[QQ̄(s[b])]→[QQ̄(2S+1L

[b′]
J )]

(z,−ζ1,−ζ2) = D
[QQ̄(s[b])]→[QQ̄(2S+1L

[b′]
J )]

(z, ζ1, ζ2), (5.23)

where b, b′ = [1], [8]. Combining the symmetry property of the FFs when
ζ1 ↔ ζ2 and that in Eq. (5.23), the FFs also have the following crossing
symmetry,

D
[QQ̄(s[b])]→[QQ̄(2S+1L

[b′]
J )]

(z,−ζ1,−ζ2) = D
[QQ̄(s[b])]→[QQ̄(2S+1L

[b′]
J )]

(z, ζ2, ζ1). (5.24)

All these symmetry properties of the FFs are verified by our explicit calcula-
tions below.

p
2
+ qr

p
2
− qr

b′

b

b′′

PQ PQ

k

p
2
+ qr

p
2 − qr

b′

b
k

b′′

PQ PQ

(a) (b)

Figure 5.1: Real NLO corrections of the QQ̄ pair FFs in light-cone gauge with
the NRQCD factorization approach.

Charge conjugation can also be employed to constrain the delta function
structure of real gluon emission subprocess in our NLO calculation, for which
the Feynman diagrams in light-cone gauge are shown in Fig. 5.1. The analysis
is easier in light-cone gauge A+ = 0, although the conclusion is gauge indepen-
dent. Before performing the qr-derivative operations and the limit qr → 0 as in
Eq. (5.7), the amplitude of the Feynman diagram in Fig. 5.1(a) can be written
in a general form as F (z, qr)G(b, b′, b′′)δ(1−z−ζ1 +2q+

r /p
+), where G(b, b′, b′′)

represents the color structure with color indices b, b′, b′′ listed in the figure, and
F (z, qr) denotes the rest of the amplitude. Then the amplitude of the diagram
in Fig. 5.1(b) can be obtained from that in Fig. 5.1(a) by performing charge
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conjugation, as well as the replacements ζ1 → −ζ1 and qr → −qr, which give
(−1)S+δs,aF (z,−qr)G†(b, b′, b′′)δ(1− z+ ζ1− 2q+

r /p
+). Therefore, the addition

of these two diagrams is given by

Ia+b = F (z, qr)G(b, b′, b′′)δ

(
1− z − ζ1 +

2q+
r

p+

)
+ (−1)S+δs,a F (z,−qr)G†(b, b′, b′′)δ

(
1− z + ζ1 −

2q+
r

p+

)
. (5.25)

For producing a S-wave final-state QQ̄ pair, we can set the relative momentum
qr to zero and find

ISa+b = F (z, 0)
[
G(b, b′, b′′)δ(1− z − ζ1) + (−1)S+δs,aG†(b, b′, b′′)δ(1− z + ζ1)

]
,

(5.26)

which has two general structures depending on the color indices b and b′. If
only one of the two indices is color octet, we have G(b, b′, b′′) = G†(b, b′, b′′).
Multiplied with the complex conjugate of the amplitude, we obtain the first
type of δ-function structure:[

δ(1− z − ζ1) + (−1)S+δs,aδ(1− z + ζ1)
]

(5.27)

×
[
δ(1− z − ζ2) + (−1)S+δs,aδ(1− z + ζ2)

]
. (5.28)

If both b and b′ are color octet, we have G(b, b′, b′′) = Tr[t
(F )
b t

(F )
b′ t

(F )
b′′ ] with

t
(F )
b the generator of fundamental representation of SU(3) color. Multiplied

with the complex conjugate of the amplitude, we obtain the second type of
δ-function structure:

(N2
c − 2) [δ(1− z + ζ1)δ(1− z + ζ2) + δ(1− z − ζ1)δ(1− z − ζ2)]

− (−1)S+δs,a2 [δ(1− z + ζ1)δ(1− z − ζ2) + δ(1− z − ζ1)δ(1− z + ζ2)] .

(5.29)

The δ-function structures in Eqs. (5.27) and (5.29) exhaust all possible δ-
function structures of the NLO FFs to a S-wave QQ̄ pair. Our explicit calcu-
lations in the next chapter confirm the conclusion of the above analysis.

For producing a P -wave final state QQ̄ pair, we need to take the qr-
derivative before setting qr to zero. From Eq. (5.25), we find the amplitude is
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a linear combination of

F ′(z, 0)
[
G(b, b′, b′′)δ(1− z − ζ1) + (−1)L+S+δs,aG†(b, b′, b′′)δ(1− z + ζ1)

]
,

(5.30)

and

F (z, 0)
[
G(b, b′, b′′)δ′(1− z − ζ1) + (−1)L+S+δs,aG†(b, b′, b′′)δ′(1− z + ζ1)

]
,

(5.31)

where we have replaced −(−1)S+δs,a by (−1)L+S+δs,a since L = 1. Similar to
the S-wave case, multiplying the above amplitude with its complex conjugate,
we obtain three δ-function structures for each color combination.

Here we list all δ-function structures allowed by symmetries, as well as their
behaviors at threshold z → 1. The threshold behaviors are very important
when we cancel the IR divergence between real and virtual diagrams.

∆0 = 4 δ(ζ1)δ(ζ2), (5.32a)

∆′′0 = 4 z2 δ′(ζ1)δ′(ζ2), (5.32b)

∆
[1]
± = 4 [δ(1− z + ζ1)± δ(1− z − ζ1)] [δ(1− z + ζ2)± δ(1− z − ζ2)] ,

(5.32c)

∆
[1]
±
′
= −4 z

{
[δ′(1− z + ζ1)± δ′(1− z − ζ1)] [δ(1− z + ζ2)± δ(1− z − ζ2)]

+ [δ(1− z + ζ1)± δ(1− z − ζ1)] [δ′(1− z + ζ2)± δ′(1− z − ζ2)]
}
,

(5.32d)

∆
[1]
±
′′

= 4 z2 [δ′(1− z + ζ1)± δ′(1− z − ζ1)] [δ′(1− z + ζ2)± δ′(1− z − ζ2)] ,

(5.32e)

∆
[8]
± = 4

{
(N2

c − 2) [δ(1− z + ζ1)δ(1− z + ζ2) + δ(1− z − ζ1)δ(1− z − ζ2)]

∓ 2 [δ(1− z + ζ1)δ(1− z − ζ2) + δ(1− z − ζ1)δ(1− z + ζ2)]
}
,

(5.32f)

∆
[8]
±
′
= −4 z

{
(N2

c − 2)
[
δ′(1− z + ζ1)δ(1− z + ζ2) + δ(1− z + ζ1)δ′(1− z + ζ2)

+ δ′(1− z − ζ1)δ(1− z − ζ2) + δ(1− z − ζ1)δ′(1− z − ζ2)
]

∓ 2
[
δ′(1− z + ζ1)δ(1− z − ζ2) + δ(1− z + ζ1)δ′(1− z − ζ2)

+ δ′(1− z − ζ1)δ(1− z + ζ2) + δ(1− z − ζ1)δ′(1− z + ζ2)
]}
,

(5.32g)
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∆
[8]
±
′′

= 4 z2
{

(N2
c − 2) [δ′(1− z + ζ1)δ′(1− z + ζ2) + δ′(1− z − ζ1)δ′(1− z − ζ2)]

∓ 2 [δ′(1− z + ζ1)δ′(1− z − ζ2) + δ′(1− z − ζ1)δ′(1− z + ζ2)]
}
,

(5.32h)

All these ∆-functions are invariant under the transformation (ζ1 → −ζ1, ζ2 →
−ζ2) and the exchange ζ1 ↔ ζ2, including the crossing exchange (ζ1 → −ζ2,

ζ2 → −ζ1). In addition, ∆0, ∆
[1]
+ , ∆

[1]
+

′
and ∆

[1]
+

′′
are even in both ζ1 and ζ2,

while ∆′′0, ∆
[1]
− , ∆

[1]
−
′
and ∆

[1]
−
′′

are odd in both ζ1 and ζ2. Under the integration
of ζ1 and ζ2 with a well-behaved test function, the asymptotic behaviors of
these ∆-functions at z → 1 are

lim
z→1

∆
[1]
+ = O[1], lim

z→1
∆

[1]
− = O[(1− z)2],

lim
z→1

∆
[1]
+

′
= O[(1− z)], lim

z→1
∆

[1]
−
′
= O[(1− z)],

lim
z→1

∆
[1]
+

′′
= O[(1− z)2], lim

z→1
∆

[1]
−
′′

= O[1],

lim
z→1

∆
[8]
± = O[1], lim

z→1
∆

[8]
±
′
= O[(1− z)],

lim
z→1

∆
[8]
±
′′

= O[1],

Therefore,

∆
[1]
−

(1− z)
,

∆
[1]
±
′

(1− z)
,

∆
[1]
+

′′

(1− z)
, and

∆
[8]
±
′

(1− z)

do not exhibit any pole at z = 1.

5.5 Coulomb divergence and the expansion of

heavy quark relative momentum

In this section, we justify our procedure of calculating the S-wave and P -
wave contributions by expanding the relative momentum of the final-state
non-relativistic heavy quark pair, qr, before the integration over the relative
momentum of the initial-state perturbative heavy quark pair, q1.

As shown in Eq. (5.7), the general structure of the one-loop amplitude of
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the QQ̄ pair FFs is of the following form,

A1(ζ1) = lim
qr→0

(
L∏
j=0

d

dq
αj
r

){∫
dDq1

(2π)D
δ(ζ1 −

2q+
1

p+
c

) Ā(q1, qr)

}
, (5.33)

where the q1-integration should be performed before taking the derivatives
with respect to qr and the limit qr → 0. However, the calculation in this order
is often very complicated. On the other hand, a similar calculation,

A2(ζ1) =

∫
dDq1

(2π)D
δ(ζ1 −

2q+
1

p+
c

) lim
qr→0

(
L∏
j=0

d

dq
αj
r
Ā(q1, qr)

)
, (5.34)

could be carried out more easily due to the fact that the derivatives and the
limit of qr were taken before performing the q1-integration. In general, A1(ζ1)
and A2(ζ1) are not necessary to be equal, unless the integration region of
q1 . qr → 0 is not important, which means that the integrand Ā(q1, qr) has
no pole as q1 → 0 and qr → 0. Unfortunately, this condition is not satisfied
by the process that we are considering here.

However, we show in this section that the difference between A1(ζ1) and
A2(ζ1) can be exactly absorbed into the NLO expansion of NRQCD LDMEs,
and in our NLO calculations, we are justified to switch the order of q1-integration
from the derivatives and the limit of qr. To achieve this conclusion, we will
assume in the following that all distributions of ζ1 will be convoluted with
a function f(ζ1), which has a Taylor expansion for the region −1 < ζ1 < 1.
Since applying the derivative and the limit operations for qr is equivalent to
performing the Taylor expansion of qr, in the following, we just compare the
methods of either expanding qr before or after the q1-integration.

To be specific, we are working at the NLO in the Feynman gauge. Diagrams
(a), (b) and (f)-(i) in Fig. 6.2 do not cause any problem because they are
not connected diagrams and the additional energy-momentum conservation
δD(qr − q1) makes the integration over q1 trivial. It will be clear later that
there is no problem for the diagrams (c), (d), (j), (k) and (l), because these
two diagrams do not have Coulomb divergence. After all, we need only to
consider carefully the diagram (e), whose amplitude can be written as

Ā(q1, qr) =
B(q1, qr)[

(qr − q1)2 + iε
] [

(p/2 + q1)2 −m2
Q + iε

] [
(p/2− q1)2 −m2

Q + iε
] ,

(5.35)

where B(q1, qr) is a polynomial of q1 and qr. In the rest frame of the QQ̄

75



pair, p ∼ (2mQ,0), and qr ∼ (0,mQv). In the Coulomb region where q1 ∼
(mQv

2,mQv), the relevant scaling relations are: (qr − q1)2 ∼ (p/2 + q1)2 −
m2
Q ∼ (p/2− q1)2 −m2

Q ∼ m2
Qv

2 and dDq1 ∼ mD
Qv

D+1. Therefore, the leading
contribution in this region behaves as vD−5, which leads to a v−1 Coulomb
singularity in four dimensions as v → 0. This simple analysis indicates that
the integration region of q1 <≈ qr is, indeed, very important for the diagram
(e).

First, let us consider a simpler case B(q1, qr) = 1. That is, we need to deal
with the following integration,

I1 ≡
∫

dDq1

(2π)D

δ(ζ1 − 2q+1
p+

)[
(qr − q1)2 + iε

] [
(p/2 + q1)2 −m2

Q + iε
] [

(p/2− q1)2 −m2
Q + iε

] .
(5.36)

After using the Feynman parametrization to combine the denominators, we
have

I1 =

∫ 1

0

dx1

∫ 1−x1

0

dy1

∫
dDq1

(2π)D

2 δ(ζ1 − 2q+1
p+

)[
(q1 − q′1)2 −∆

]3 , (5.37)

where

q′1 = x1qr + (1− x1 − 2y1) p/2,

∆ = (1− x1)2q2
r + (1− x1 − 2y1)2 p2/4− iε. (5.38)

In Eq. (5.37), with a single pole, the integration of q−1 vanishes unless q+
1 = q′+1 .

In general, the following relation,

∫
dDq1

(2π)D

δ(ζ1 − 2q+1
p+

)[
(q1 − q′1)2 −∆

]n = δ(ζ1 −
2q′+1
p+

)

∫
dDq1

(2π)D
1[

(q1 − q′1)2 −∆
]n ,
(5.39)

is valid when both sides are convoluted with any smooth function f(ζ1) that
can be Taylor expanded in the region −1 < ζ1 < 1. Applying the relation in
Eq. (5.39) to the integration in Eq. (5.37), and performing the q1-integration,
we obtain

I1 = − i

(4π)2−ε
Γ(1 + ε)

(p2/4)1+ε

∫ 1

0

dx1

∫ 1−x1

0

dy1
δ(ζ1 − 2q′+1 /p

+)

∆1+ε
, (5.40)

where ε = (4 − D)/2. By changing variable x1 = 1 − x and then letting
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y1 = x(1− y)/2, we can rewrite I1 as

I1 = − i

(4π)2−ε
Γ(1 + ε)

(p2/4)1+ε

1

2
Z(ζ1, qr), (5.41)

with

Z(ζ1, qr) =

∫ 1

−1

dy

(y2 − β2 − iε)1+ε

∫ 1

0

dx

x1+2ε
δ(ζ1 − β̃ + xy + xβ̃), (5.42)

where β̃ = 2q+
r /p

+ and β2 = −4q2
r/p

2, and both are small parameters. Since
Z(ζ1, qr) will eventually convolute with a non-singular function f(ζ1), we can
expand the δ-function as

δ(ζ1 − β̃ + xy + xβ̃)

=δ(ζ1) + δ′(ζ1)(−β̃ + xy + xβ̃) + · · ·
=
∑
i,j≥k,k

Ci,j,kβ̃
ixjyk

=
∑

i,j≥2k,k

Ci,j,2kβ̃
ixjy2k,

(5.43)

where i, j, and k are natural numbers, and the power of x cannot be less than
the power of y. The equation in Eq. (5.43) is a result of the fact that the
terms odd in y vanish under the integration of y from −1 to 1. Then, the
x-integration in Z(ζ1, qr) is trivial,∫ 1

0

dx

x1+2ε
xj =

1

j − 2ε
. (5.44)

To perform the y-integration, we introduce a parameter Λ � β, and rewrite
the y-integration as∫ 1

−1

y2kdy

(y2 − β2 − iε)1+ε =

(∫ −Λ

−1

+

∫ 1

Λ

)
y2kdy

(y2 − β2 − iε)1+ε

+

∫ Λ

−Λ

y2kdy

(y2 − β2 − iε)1+ε .

Since y2 ≥ Λ2 � β2 in the first term above, we can expand β2 before perform-
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ing the y-integration, and obtain

y2k

(y2 − β2 − iε)1+ε =
y2k

y2−2ε
+ (1 + ε)

y2k

y4+2ε
β2 + · · · ≡ Ek(y

2) , (5.45)

and∫ 1

−1

y2kdy

(y2 − β2 − iε)1+ε =

(∫ −Λ

−1

+

∫ 1

Λ

)
Ek(y

2)dy +

∫ Λ

−Λ

y2kdy

(y2 − β2 − iε)1+ε .

(5.46)

This identity can also be written as∫ 1

−1

y2kdy

(y2 − β2 − iε)1+ε −
∫ 1

−1

Ek(y
2)dy

=

∫ Λ

−Λ

y2kdy

(y2 − β2 − iε)1+ε −
∫ Λ

−Λ

Ek(y
2)dy .

On the LHS of the above identity, the first term corresponds to the performing
y-integration before expanding β2, while the second term corresponds to ex-
panding β2 before doing the y-integration. The RHS provides the corrections
to the original y-integration caused by expanding β2 first. Since the correc-
tions on the RHS do not depend on the choice of Λ as long as Λ� β, we can
choose Λ =∞ to simplify the identity as,∫ 1

−1

y2kdy

(y2 − β2 − iε)1+ε −
∫ 1

−1

Ek(y
2)dy =

∫ +∞

−∞

y2kdy

(y2 − β2 − iε)1+ε

=β2k−1−2ε

∫ +∞

−∞

y2kdy

(y2 − 1− iε)1+ε .

(5.47)

In deriving the above simplified identify, we used∫ +∞

−∞
Ek(y

2)dy =

∫ +∞

−∞

[
y2k

y2+2ε
+ (1 + ε)

y2k

y4+2ε
β2 + · · ·

]
dy = 0. (5.48)

Note that using dimensional regularization is crucial for deriving the above
results. Although the integration on the RHS of Eq. (6.36) can be further
carried out, its result is not really relevant for our discussion here. Instead,
we need to point out that it is an odd function of β.

In comparison with the situation discussed in Ref. [120], the second term
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on the LHS of Eq. (6.36) corresponds to contributions from the hard region,
while the term on the RHS of the equation corresponds to contributions from
the potential region, which can be exactly reproduced by the NLO calculation
of the NRQCD LDMEs. Note also that deriving Eq. (5.41) from Eq. (5.36) by
performing the Feynman parametrization and integrating out q1, we did not
miss anything. Therefore, we conclude that, if we are not interested in the
contributions from the potential region, then we can calculate Eq. (5.36) by
expanding the qr before doing the q1-integration.

When B(q1, qr) is a general polynomial of q1 and qr, we can carry out es-
sentially all steps in our arguments above for the situation when B(q1, qr) = 1.
We can still expand the δ-function, use the Feynman parametrization to reor-
ganize the q1-integral, and perform the integration of q1 before the integration
over the Feynman parameters. The key difference is that we get a slightly
different y-integral, ∫ 1

−1

y2kdy

(y2 + β2 − iε)d+1+ε
, (5.49)

where d is an integer. The trick of introducing a Λ� β is still valid for showing
that expanding the qr before doing the q1-integration is effectively neglecting
the Coulomb region. Since the Coulomb region is canceled exactly by the
NLO calculation of the NRQCD LDMEs, we conclude that we can get correct
short-distance coefficients at NLO if we expand qr before the integration of q1.
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Chapter 6

Calculation of Heavy Quark
Pair Fragmentation in NRQCD
factorization model:
S wave unpolarized

In the last chapter, we explained the techniques and tricks used in our cal-
culations of the fragmentation functions (FFs) in the NRQCD factorization
approach. In this and the next chapters, we show how to calculate the short-
distance coefficients (SDCs) with S-wave and P -wave final-state QQ̄ pair, by
explaining some examples in detail. Specifically, in this chapter we take pro-
cess [QQ̄(a[8])] → [QQ̄(1S

[8]
0 )] as an example to present the calculation of the

SDCs in Eq. (5.3)

6.1 LO matching coefficients

The heavy quark pair FFs to a heavy quarkonium are defined in terms of
heavy quark field operators in QCD, see Eq. (4.10) for example, while the
heavy quark states in NRQCD factorization are defined as non-relativistic.
Therefore, there are matching coefficients between a fragmenting QCD heavy
quark pair and a NRQCD heavy quark pair, defining the LDMEs. We derive
the LO matching coefficients for all heavy quark fragmentation channels in
this section.

A general cut-diagram representation forD[QQ̄(s[b])]→[QQ̄(i[b
′])](z, ζ1, ζ2;mQ, µ0)

at zeroth order in the power of αs is given in Fig. 6.1, where the momenta of
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PQ = 1+ζ1
2

p
2

PQ = 1−ζ1
2

p
2

P ′
Q = 1+ζ2

2
p
2

P ′
Q
= 1−ζ2

2
p
2

p
2 + qr

p
2
− qr

p
2 + q′r

p
2 − q′r

Figure 6.1: Cut-diagram representation of D[QQ̄(s[b])]→[QQ̄(i[b
′])](z, ζ1, ζ2;mQ, µ0)

at zeroth order.

the incoming heavy quark and heavy antiquark are defined as

PQ =
pc
2

+ q1, PQ̄ =
pc
2
− q1,

P ′Q =
pc
2

+ q2, P ′Q̄ =
pc
2
− q2.

(6.1)

At the zeroth order, the LDME in Eq. (5.4) is proportional to the delta function
δn,n′ . Thus, Eq. (5.4) is simplified to

DLO
[QQ̄(s[b])]→[QQ̄(i[b

′])]
(z, ζ1, ζ2;mQ, µ0) = d̂ LO

[QQ̄(s[b])]→[QQ̄(i[b
′])]

(z, ζ1, ζ2;mQ, µ0) .

(6.2)

Eqs. (5.5) and (5.7) are reduced, respectively, to

DLO
[QQ̄(s[b])]→[QQ̄(i[b

′])]
(z, ζ1, ζ2;mQ, µ0)

=
δ(1− z)

NsNbNNR
i NNR

b′
MLO

[QQ̄(s[b])]→[QQ̄(i[b
′])]

(p, z, ζ1, ζ2) , (6.3)

ALO
[QQ̄(s[b])]→[QQ̄(i[b

′])]
(p, z, ζ1) = lim

qr→0

{
2 δ(ζ1 −

2q+
r

p+
c

)

× ĀLO
[QQ̄(s[b])]→[QQ̄(i[b

′])]
(q1 = qr)Γ

NR
i (p)CNR

b′

}
.

(6.4)

In Eq. (7.2), the delta function is expected because all momenta flow from the
incoming QQ̄-pair into the final QQ̄-pair.

One can further simplify the calculation by noting that at LO, the ini-
tial and final heavy quark pair must have the same quantum numbers, i.e.,
(1) color label b and b′ must be the same; (2) spinor label s and i must
have the same parity. The parity of the outgoing QQ̄ state, i = 2S+1LJ with
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L = 0, is (−1)S, while the parity for the incoming QQ̄ state is −1 for s = v, t,
and +1 for s = a. Processes violating either of these two rules, such as
D[QQ̄(s[1])]→[QQ̄(i[8])](z, ζ1, ζ2;mQ, µ0) andD

[QQ̄(v[b])]→[QQ̄(1S
[b′]
0 )]

(z, ζ1, ζ2;mQ, µ0), must

vanish at this order.
For our example [QQ̄(a[8])] → [QQ̄(1S

[8]
0 )], there is no derivative of qr in

Eq. (7.3). From Eqs. (5.6) and (7.3), we have

Tr
[
Γa(pc)C8ALO

[QQ̄(a[8])]→[QQ̄(1S
[8]
0 )]

(p, z, ζ1)
]

=Trc

[√
2t(F )
cin

√
2t(F )
cout

]
Trγ

γ · n̂ γ5 − γ5 γ · n̂
8p · n̂

1√
8m3

Q

(
/p

2
−mQ)γ5(

/p

2
+mQ)


× 2 δ(ζ1)

=− 1√
2mQ

δci, cf δ(ζ1),

(6.5)

where “Trc” is the trace for color, “Trγ” is the trace of γ-matrices, and cin(cout)
is the color for the incoming (outgoing) QQ̄-pair. In Eq. (6.5), we used the
operator definitions given in Sec. 5.2 and the fact that pc = p for deriving the
right-hand-side (RHS) of the equation. For carrying out the trace of γ-matrices
in Eq. (6.5), we need to specify the definition of γ5 in d-dimension. Details
of our prescription of γ5 in d-dimension is the topic of the next section. The
delta function δ(ζ1) indicates that the momenta of the initial heavy quark and
heavy antiquark must be the same, since we have set the relative momentum
of the final-state heavy quark and antiquark to zero. Finally, combining the
result Eq. (6.5) with Eqs. (5.6), (7.1) and (7.2), we obtain

d̂ LO

[QQ̄(a[8])]→[QQ̄(1S
[8]
0 )]

(z, ζ1, ζ2;mQ, µ0) =
1

N2
c − 1

1

2mQ

δ(1− z) δ(ζ1) δ(ζ2). (6.6)

A complete list of finite LO matching coefficients is given in Appendix B.

6.2 Mathematical issues

Before calculating the NLO corrections, we deviate to explain some mathe-
matical issues which are important in NLO calculation.
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6.2.1 γ5 in dimensional regularization

The inconsistency between the following two properties of γ5 in d-dimension

Tr[γ5γµγνγργσ] = −4i εµνρσ, (6.7a)

[γ5, γα] = 0, (6.7b)

is well known [121]. Many γ5 schemes in d dimensions have been proposed,
such as the ’t Hooft-Veltman scheme [121, 122] and Kreimer scheme [123–125].
In principle, we can use any scheme as long as it is self-consistent. Although
the resulted short-distance coefficients can differ by using different schemes,
the difference is IR and UV finite at NLO calculation. Thus, one can perform a
finite renormalization to relate the results of different schemes. In our present
work, we use a Kreimer-like scheme. In the Kreimer scheme, one needs to
choose a “reading point”. As in our calculation all traces have zero, one or
two γ5’s, and we adopt the following choice.

For traces with only one γ5, we “read” or start the spinor trace in the
amplitude from the γ5, then use [126]

Tr[γ5γα1 · · · γαn ] =
2

n− 4

n∑
i=2

i−1∑
j=1

(−1)i+j+1gαiαjTr[γ5

n∏
k=1,
k 6=i,j

γαk ], (6.8)

recursively until the trace involves only four γα’s. For n = 4, we use

Tr[γ5γµγνγργσ]Tr[γ5γ
µγνγργσ] = 16D(D − 1)(D − 2)(D − 3). (6.9)

For traces with an even number of γ5’s, the reading point is, in fact, irrelevant
because we can always remove the γ5’s by using Eq. (6.7b) and

γ5 γ5 = 1. (6.10)

6.2.2 Generalized Plus/Minus-distributions

We define generalized plus and minus distributions to regularize the singular-
ities at ζ1 = 0 and ζ2 = 0. They are collectively defined as

(
g(ζ1)

)
m±
≡
∫ 1

−1

[θ(x)± θ(−x)] g(|x|)×
(
δ(x− ζ1)−

m−1∑
i=0

δ(i)(ζ1)

i !
(−x) i

)
dx ,

(6.11)
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where δ(i)(ζ1) represents the i-th derivative of the δ-function. More explic-
itly, the plus and minus distributions have the following relation under the
integration with a test function,∫ (

g(ζ1)
)
m±
f(ζ1) dζ1

≡
∫ 1

−1

[θ(ζ1)± θ(−ζ1)] g(|ζ1|)×
(
f(ζ1)−

m−1∑
i=0

f (i)(0)

i !
ζ i1

)
dζ1.

(6.12)

From the above definition, we find,(
g(−ζ1)

)
m±

=

∫ 1

−1

[θ(x)± θ(−x)] g(|x|)×
(
δ(x+ ζ1)−

m−1∑
i=0

δ(i)(−ζ1)

i !
(−x) i

)
dx

=

∫ 1

−1

[θ(−x)± θ(x)] g(|x|)×
(
δ(−x+ ζ1)−

m−1∑
i=0

δ(i)(−ζ1)

i !
(x) i

)
dx

=

∫ 1

−1

± [θ(x)± θ(−x)] g(|x|)×
(
δ(x− ζ1)−

m−1∑
i=0

δ(i)(ζ1)

i !
(−x) i

)
dx

= ±
(
g(ζ1)

)
m±
.

(6.13)

That is, plus function is an even function with respect to ζ1, and minus is an
odd function with respect to ζ1. For m ≥ 0, we have(
g(ζ1)

)
(2m+2)+

=

∫ 1

−1

[θ(x) + θ(−x)] g(|x|)×
(
δ(x− ζ1)−

2m+1∑
i=0

δ(i)(ζ1)

i !
(−x) i

)
dx

=
(
g(ζ1)

)
(2m+1)+

−
∫ 1

−1

[θ(x) + θ(−x)] g(|x|)× δ(2m+1)(ζ1)

(2m+ 1) !
(−x) 2m+1dx

=
(
g(ζ1)

)
(2m+1)+

,

(6.14)
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and(
g(ζ1)

)
(2m+1)−

=

∫ 1

−1

[θ(x)− θ(−x)] g(|x|)×
(
δ(x− ζ1)−

2m∑
i=0

δ(i)(ζ1)

i !
(−x) i

)
dx

=
(
g(ζ1)

)
(2m)−

−
∫ 1

−1

[θ(x)− θ(−x)] g(|x|)× δ(2m)(ζ1)

(2m) !
(−x) 2mdx

=
(
g(ζ1)

)
(2m)−

.

(6.15)

With the definition of the generalized plus/minus distributions, we can
extract the IR divergence from functions which are divergent at ζ1 = 0,

1

(ζ1)3+2ε
= 2(1− 2ε)δ′(ζ1) +

(
1

ζ3
1

)
3−
− ε
(

ln(ζ2
1 )

ζ3
1

)
3−
. (6.16a)

Sgn(ζ1)

(ζ1)2+2ε
=

1

εIR
δ′(ζ1) +

(
1

ζ2
1

)
2−
− ε
(

ln(ζ2
1 )

ζ2
1

)
2−
. (6.16b)

1

(ζ1)2+2ε
= −2(1− 2ε)δ(ζ1) +

(
1

ζ2
1

)
2+

− ε
(

ln(ζ2
1 )

ζ2
1

)
2+

. (6.16c)

Sgn(ζ1)

(ζ1)1+2ε
= − 1

εIR
δ(ζ1) +

(
1

ζ1

)
1+

− ε
(

ln(ζ2
1 )

ζ1

)
1+

, (6.16d)

1

(ζ1)1+2ε
=

(
1

ζ1

)
1−
− ε
(

ln(ζ2
1 )

ζ1

)
1−
. (6.16e)

In the same manner, we also write some non-singular functions in terms of
these distributions,

Sgn(ζ1) ζ−2ε
1 = (1)0− − ε ( ln(ζ2

1 ))0−, (6.17a)

ζ−2ε
1 = (1)0+ − ε ( ln(ζ2

1 ))0+, (6.17b)

Sgn(ζ1) ζ1−2ε
1 = (ζ1)0+ − ε (ζ1 ln(ζ2

1 ))0+, (6.17c)

ζ1−2ε
1 = (ζ1)0− − ε (ζ1 ln(ζ2

1 ))0−. (6.17d)

85



6.3 NLO matching coefficients

The NLO short-distance coefficients in Eq. (5.4) can be derived by expanding
both sides of the factorized formula to NLO as

DNLO
[QQ̄(κ)]→[QQ̄(n′)](z, ζ1, ζ2;mQ, µ0) = d̂ NLO

[QQ̄(κ)→[QQ̄(n′)](z, ζ1, ζ2;mQ, µ0, µΛ)

+
∑

[QQ̄(n)]

d̂ LO
[QQ̄(κ)]→[QQ̄(n)](z, ζ1, ζ2;mQ, µ0)〈O[QQ̄(n′)]

[QQ̄(n)]
(µΛ)〉NLO.

(6.18)

If NRQCD factorization is valid to this order, the second term on the RHS
should have the same IR divergence as that of the LHS, so that d̂ NLO

[QQ̄(κ)→[QQ̄(n′)]
(z,

ζ1, ζ2;mQ, µ0, µΛ) is IR finite.
DNLO

[QQ̄(κ)]→[QQ̄(n′)]
(z, ζ1, ζ2;mQ, µ0) could be calculated directly from Eqs. (5.5)-

(5.7) with a proper UV counter term to remove the UV divergence of the
composite operators defining the QQ̄-pair FFs. A general NLO correction in-
cludes both virtual and real corrections. In the Feynman gauge, these two
parts could be represented in terms of the Feynman diagrams in Figs. 6.2 and
6.3, respectively. Note that the diagrams (c), (d) and (e) in Fig. 6.2 are loop
diagrams, in the sense that they have also imaginary contribution, because of
the q1-integral in Eq. (5.7).

We use dimensional regularization to regularize all kinds of divergences in
this paper. These divergences include ultra-violet (UV) divergence, infrared
(IR) divergence, rapidity divergence, and Coulomb divergence. Because of
heavy quark mass, there is no collinear divergence. The UV divergence of
these diagrams will be canceled by the pQCD renormalization of the com-
posite operators defining the QQ̄-pair FFs, where evolution kernels derived in
Ref. [40] are needed. In general, the summation of all diagrams (real and vir-
tual) could still have leftover IR divergence, which should be the same as the IR
divergence of LDMEs at NLO. This must be the case if NRQCD factorization
is valid, at least up to this order in αs. Rapidity divergence is characterized
as k · n̂→ 0, with k the momentum of the gluon. Such divergence could over-
lap with UV divergence and produce a double pole. Eventually, we find the
rapidity divergences are canceled once we sum over all diagrams.

In the rest of this section, we illustrate the detailed NLO calculation with
an example: [QQ̄(a[8])] → [QQ̄(1S

[8]
0 )]. For this channel, the second term on

the RHS of Eq. (7.8) vanishes, because for any intermediate state QQ̄(n),
either the LO short-distance coefficient or the NLO LDME is equal to zero
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Figure 6.2: Feynman diagrams for virtual correction at NLO.

(after taking the trick proved in section 5.5). Therefore, we have

DNLO

[QQ̄(a[8])]→[QQ̄(1S
[8]
0 )]

(z, ζ1, ζ2;mQ, µ0) = d̂ NLO

[QQ̄(a[8])]→[QQ̄(1S
[8]
0 )]

(z, ζ1, ζ2;mQ, µ0).

(6.19)

To calculate the LHS of the above equation, we need to calculate both the real
and virtual contributions.

6.3.1 Real contribution

The Feynman diagrams for the real correction are shown in Fig. 6.3. We
calculate these diagrams in both Feynman gauge and light-cone gauge, and
the results are the same. After some algebra, we derive the real contribution
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Figure 6.3: Feynman diagrams for real correction at NLO.

as

DNLO,real

[QQ̄(a[8])]→[QQ̄(1S
[8]
0 )]

(z, ζ1, ζ2;mQ, µ0)

=
αs

4πmQNc(N2
c − 1)

(
4πµ2

(2mQ)2

)ε
Γ(1 + ε)

×
{
−N2

c δ(ζ1)δ(ζ2)δ(1− z)

(
1

εUVεIR
− 1

εIR

)
+

1

εUV

z

(1− z)+

∆
[8]
−

4

+
∆

[8]
−

4

[
− 1

(1− z)+

− 2

(
ln(1− z)

1− z

)
+

+ 2 ln(1− z) + 1

]}
,

(6.20)

where (2mQ)2 = p2 in the first line is the invariant mass squared of the pro-

duced heavy quark pair, ∆
[8]
− is defined in Eq. (5.32).

The origin of each pole is labelled by subscript “UV” or “IR”. Infrared
divergence at z → 1 is extracted with plus prescription

1

(1− z)1+2ε
= − 1

2 εIR
δ(1− z) +

1

(1− z)+

− 2 εIR

(
ln(1− z)

1− z

)
+

. (6.21)

The double pole is from the region k · n̂→ 0, k⊥ →∞. The function is even for
both ζ1 and ζ2, which is required by charge conjugation symmetry as analyzed
in Sec. 5.4.3.

In Eq. (6.20), the multiplicative factor, (4πµ2/p2)ε with p2 = (2mQ)2, is a
generic feature of the one loop calculation using the dimensional regulariza-
tion, where for the real contribution, p2 is the invariant mass squared of the
produced heavy quark pair. On the other hand, for the virtual contribution,
which will be derived in the next subsection, the corresponding multiplicative
factor will be (4πµ2/(p/2)2)ε = (4πµ2/m2

Q)ε with the invariant mass of pro-

88



duced heavy quark or antiquark (p/2)2 = m2
Q. To prepare for the sum with

the virtual correction from the next subsection, we rewrite the multiplicative
factor of the real contribution, (4πµ2/(2mQ)2)ε as (4πµ2/m2

Q)ε × 4−ε, so that
the real contribution in Eq.(6.20) can be expressed as

DNLO,real

[QQ̄(a[8])]→[QQ̄(1S
[8]
0 )]

(z, ζ1, ζ2;mQ, µ0)

=
αs

4 πmQNc(N2
c − 1)

(
4πµ2

m2
Q

)ε

Γ(1 + ε)

×
{
−N2

c δ(ζ1)δ(ζ2)δ(1− z)

(
1

εUVεIR
− 1

εIR

)
+

1

εUV

z

(1− z)+

∆
[8]
−

4

+ 2 (ln 2)N2
c δ(ζ1) δ(ζ2) δ(1− z)

1

εUV

− 2
[
(ln 2)2 + ln 2

]
N2
c δ(ζ1) δ(ζ2) δ(1− z)− (2 ln 2)

z

(1− z)+

∆
[8]
−

4

+
∆

[8]
−

4

[
− z

(1− z)+

− 2 z

(
ln(1− z)

1− z

)
+

]}
,

(6.22)

where terms with ln 2 dependence are due to the multiplication of the 4−ε with
the poles, and the terms vanishing at D = 4 are neglected. Note that since
the 4−ε originates from infra-red region, its O(ε) term should first cancel with
the 1/εIR pole before it cancels the 1/εUV pole. The mismatch between p2 of
the real contribution and the (p/2)2 of the virtual contribution is similar to
the phase space mismatch between the real and virtual contributions to the
evolution kernels of heavy quark fragmentation functions, which led to the
ln(uūvv̄) term in the kernels [40]. Actually, such mismatch originates from the
difference of the gluon’s maximum allowed light-cone momentum between the
real and the virtual diagrams [40].

6.3.2 Virtual contribution

In the Feynman gauge, the Feynman diagrams for virtual correction are shown
in Fig. 6.2. Note that diagrams (j), (k) and (l) in Fig. 6.2 have no contributions

for [QQ̄(a[8])]→ [QQ̄(1S
[8]
0 )] kernel. The full virtual contribution could be thus
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written as

DNLO,virtual

[QQ̄(a[8])]→[QQ̄(1S
[8]
0 )]

(z, ζ1, ζ2;mQ, µ0)

= 2δ(1− z)δ(ζ2) {Λ(ζ1) + Σ(ζ1) + Π(ζ1) +W (ζ1)}
+ 2δ(1− z)δ(ζ1)

{
Λ†(ζ2) + Σ†(ζ2) + Π†(ζ2) +W †(ζ2)

}
,

(6.23)

where the first (second) line is from the cut-notation diagrams with NLO dia-
grams in Fig. 6.2 on the left (right) and LO diagrams on the right (left). Each
line is further separated into four terms corresponding to different diagrams
in Fig. 6.2: Λ for diagrams (a) and (b), Σ for diagrams (c) and (d), Π for
diagram (e), and W for diagrams (f), (g), (h) and (i). ζ1 and ζ2 could be any
number between −1 and 1. From charge conjugation symmetry (Sec. 5.4.3),
we find that DNLO,virtual

[QQ̄(a[8])]→[QQ̄(1S
[8]
0 )]

(z, ζ1, ζ2;mQ, µ0) is an even function of ζ1 and

ζ2, and therefore, Λ(ζ1), Σ(ζ1), Π(ζ1) and W (ζ1) must be even functions of ζ1

for this process, which is manifested in our results below.
In the calculation of this virtual contribution, we encounter ζ−1−2ε

1 Sgn(ζ1)
and ζ−2−2ε

1 type terms, which are divergent as ζ1 → 0. We regularize these
singular terms with the generalized plus-distributions defined in Sec. 6.2.2.

After a considerable amount of algebra, we derive the four terms contribut-
ing to the virtual contribution in Eq. (6.23),

Λ(ζ1) =
αsCF

8πmQ(N2
c − 1)

δ(ζ1)

(
4πµ2

m2
Q

)ε

Γ(1 + ε)

(
1

εUVεIR
+

2

εUV

+ 4

)
,

(6.24a)

Σ(ζ1) =
αs

8πmQ

1

2Nc(N2
c − 1)

(
4πµ2

m2
Q

)ε

Γ(1 + ε)

{
1

εUVεIR
δ(ζ1)

+
1

εUV

[
(1)0+ −

(
1

ζ1

)
1+

]
+

(
ln(ζ2

1 )

ζ1

)
1+

−
(
ln(ζ2

1 )
)

0+

}
,

(6.24b)

Π(ζ1) =
αs

16πmQ

1

2Nc(N2
c − 1)

(
4πµ2

m2
Q

)ε

Γ(1 + ε)

{
1

εUV

[
(ζ1)0+ − (1)0+

]
− 2

εIR
δ(ζ1) + 4 δ(ζ1)−

(
ζ1 ln(ζ2

1 ) + ζ1

)
0+

+ 2

(
1

ζ1

)
1+

−2

(
1

ζ2
1

)
2+

+
(
ln(ζ2

1 ) + 1
)

0+

}
, (6.24c)
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W (ζ1) =− αsCF
16πmQ(N2

c − 1)
δ(ζ1)

(
4πµ2

m2
Q

)ε

Γ(1 + ε)

(
1

εUV

+
2

εIR
+ 4

)
,

(6.24d)

where CF = (N2
c −1)/(2Nc). It is straightforward to verify that every function

above is even for ζ1. Substituting these expressions into Eq. (6.23), we obtain
the NLO virtual correction

DNLO,virtual

[QQ̄(a[8])]→[QQ̄(1S
[8]
0 )]

(z, ζ1, ζ2;mQ, µ0)

=
αs

8πmQ

1

2Nc(N2
c − 1)

δ(1− z)δ(ζ2)

(
4πµ2

m2
Q

)ε

Γ(1 + ε)

×
{

2N2
c δ(ζ1)

[
1

εUVεIR
− 1

εIR
+ 2

]
+

1

εUV

[
3(N2

c − 1)δ(ζ1)− 2

(
1

ζ1

)
1+

+(ζ1 + 1)0+

]
+ 2

[(
1

ζ1

)
1+

−
(

1

ζ2
1

)
2+

+

(
ln(ζ2

1 )

ζ1

)
1+

]
−
(
(ζ1 + 1)ln(ζ2

1 )
)

0+
− (ζ1 − 1)0+

}
+ (ζ1 ←→ ζ2).

(6.25)

We also derive the same result by using the light-cone gauge. As noted in
the last subsection, there is a mismatch between the (4πµ2/(2mQ)2)

ε
of the

real correction in Eq. (6.20) and the
(
4πµ2/m2

Q

)ε
of the virtual correction in

Eq. (6.25), which led to the extra logarithms in Eq. (6.22).
Comparing Eq. (6.22) with Eq. (6.25), all infrared poles cancel between the

real and virtual contributions. However, the sum of Eq. (6.22) and Eq. (6.25)
still contains ultraviolet divergence, which should be taken care of by the
renormalization of the nonlocal operators defining the fragmentation functions
in Eq. (4.10).

6.3.3 Renormalization of composite operators defining
FFs

As defined in Eq. (5.5), the heavy quark-pair FF is defined with an UV counter-
term, which is a result of the UV renormalization of the composite operators
defining the FFs. The UV counter-term removes the perturbative UV diver-
gence of the FFs order by order in powers of αs. In general, UV divergence
of FFs calculated by using the NRQCD factorization should be different from
that defined by QCD factorization. The reason is as follows. The heavy quark
mass in QCD factorization is a small scale and is set to be zero at the be-
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ginning, while the heavy quark mass in NRQCD factorization is a large scale
and is always kept to be finite. Because of the finite quark mass, there are
helicity flip contribution in NRQCD calculation, which is forbidden in QCD
factorization. Therefore, extra UV divergence for the helicity flip contribution
may emerge in NRQCD calculation. An example of this kind of UV diver-
gence is the contribution of the diagram (j) in Fig. 6.2 in the NLO calculation
of D

[QQ̄(t[8])]→[QQ̄(3S
[8]
1 )]

. Thus, the correct way to renormalize the input FFs

calculated by using the NRQCD factorization is:

D[QQ̄(κ)]→[QQ̄(n)] = Γ[QQ̄(κ)]→[QQ̄(κ′)] ⊗Z[QQ̄(κ′)]→[QQ̄(κ′′)] ⊗Dbare[QQ̄(κ′′)]→[QQ̄(n)],

(6.26)

where Γ is the evolution kernel defined in QCD factorization, and Z is used to
take care of the extra UV divergence discussed above. Expanding Eq. (6.26)
to NLO, we find

DNLO
[QQ̄(κ)]→[QQ̄(n)] = DNLO,bare

[QQ̄(κ)]→[QQ̄(n)]
+DNLO,ren,1

[QQ̄(κ)]→[QQ̄(n)]
+DNLO,ren,2

[QQ̄(κ)]→[QQ̄(n)]
,

(6.27)

where

DNLO,ren,1

[QQ̄(κ)]→[QQ̄(n)]
(z, ζ1, ζ2;mQ) = ΓNLO

[QQ̄(κ)]→[QQ̄(κ′)] ⊗D LO,bare

[QQ̄(κ′)]→[QQ̄(n)]

= − A

εUV

∑
[QQ̄(κ′)]

∫ 1

z

dz′

z′

∫ 1

−1

dζ ′1 dζ
′
2

4

× Γ[QQ̄(κ)]→[QQ̄(κ′)](z
′, u =

1 + ζ1

2
, v =

1 + ζ2

2
;u′ =

1 + ζ ′1
2

, v′ =
1 + ζ ′2

2
)

×D LO,bare

[QQ̄(κ′)]→[QQ̄(n)]
(z/z′, ζ ′1, ζ

′
2,mQ) ,

(6.28)

the summation runs over all possible perturbative intermediate QQ̄-pair states
κ′, and Γ[QQ̄(κ)]→[QQ̄(κ′)] is the evolution kernel for a heavy quark pair to evolve
into another heavy quark pair perturbatively, which is process-independent
and has been derived in Refs. [40, 94]. In this paper, we will use the results ob-
tained in Ref. [40]. In Eq. (6.28), LO short-distance coefficientD LO,bare

[QQ̄(κ′)]→[QQ̄(n)]
=

D LO
[QQ̄(κ′)]→[QQ̄(n)]

could be similarly derived as the example in the last section,

but, it must be evaluated and kept in d-dimension in the dimensional regu-
larization. The proportional factor, A = 1 +O(ε) in Eq. (6.28), is a constant
whose choice determines the renormalization scheme.
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DNLO,ren,2

[QQ̄(κ)]→[QQ̄(n)]
in Eq. (6.27) is defined as

DNLO,ren,2

[QQ̄(κ)]→[QQ̄(n)]
= ZNLO

[QQ̄(κ)]→[QQ̄(κ′)] ⊗D LO,bare

[QQ̄(κ′)]→[QQ̄(n)]
, (6.29)

and can be similarly written in the integration form as Eq. (6.28). DNLO,ren,2

[QQ̄(κ)]→[QQ̄(n)]

is scheme dependent, and we will use the same scheme as that in Eq. (6.28).
Then, in our calculation, DNLO,ren,2

[QQ̄(κ′)]→[QQ̄(n)]
equals to zero for all processes except

[QQ̄(t[8])]→ [QQ̄(3S
[8]
1 )], where

DNLO,ren,2

[QQ̄(t[8])]→[QQ̄(3S
[8]
1 )]

=
αs δ(1− z)

48πmQ(N2
c − 1)

A

εUV

[
δ(ζ1)(1)0+ + δ(ζ2)(1)0+

]
. (6.30)

In the following, we use DNLO,ren

[QQ̄(κ)]→[QQ̄(n)]
to represent the addition of the two

counter-terms in Eq (6.27).

For our example [QQ̄(a[8])]→ [QQ̄(1S
[8]
0 )], from Eq. (6.28), one could con-

clude that the LO short-distance coefficients vanish unless [QQ̄(κ)] is a[8].
Therefore, Eq. (6.28) could be reduced to

DNLO,ren

[QQ̄(a[8])]→[QQ̄(1S
[8]
0 )]

(z, ζ1, ζ2;mQ) =− A

εUV

1

8mQ(N2
c − 1)

× Γ[QQ̄(a[8])]→[QQ̄(a(8))](z, u =
1 + ζ1

2
, v =

1 + ζ2

2
;u′ =

1

2
, v′ =

1

2
),

(6.31)

where we have used the result of LO short-distance coefficient in Eq. (6.6) and
performed the integration with the δ-functions. The evolution kernel has been
calculated in Ref. [40] as

Γ[QQ̄(a[8])]→[QQ̄(a(8))](z, u =
1 + ζ1

2
, v =

1 + ζ2

2
;u′ =

1

2
, v′ =

1

2
)

=
(αs

2π

) 1

Nc

{ z

(1− z)+

∆
[8]
− + 8 (ln2)N2

c δ(ζ1) δ(ζ2)δ(1− z)

+ δ(1− z)[δ(ζ2)F (ζ1) + δ(ζ1)F (ζ2)]
}
,

(6.32)

where ∆
[8]
− is given by Eq. (5.32) and

F (ζ1) ≡ 3 (N2
c − 1) δ(ζ1)− 2

(
1

ζ1

)
1+

+ (ζ1 + 1)0+. (6.33)

By substituting Eq. (6.32) into Eq. (6.31), we obtain the contribution to the
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UV counter-term as

DNLO,ren

[QQ̄(a[8])]→[QQ̄(1S
[8]
0 )]

(z, ζ1, ζ2;mQ)

= −αs
π

(4πe−γE)ε
1

εUV

1

16mQNc(N2
c − 1)

×
{ z

(1− z)+

∆
[8]
−

+ 8(ln 2)N2
c δ(ζ1) δ(ζ2) δ(1− z) + δ(1− z)

[
δ(ζ2)F (ζ1) + δ(ζ1)F (ζ2)

]}
,

(6.34)

where the “A” in Eq. (6.31) was chosen to be (4πe−γE)ε for the MS scheme.
It is straightforward to verify the cancellation of the UV divergence by adding
up Eqs. (6.22), (6.25) and (6.34).

From Eq. (6.19), we obtain the NLO short-distance coefficient,

d̂ NLO

[QQ̄(a[8])]→[QQ̄(1S
[8]
0 )]

(z, ζ1, ζ2;mQ, µ0) =
αs

16πmQ(N2
c − 1)

×
{(2π

αs

)
Γ[QQ̄(a[8])]→[QQ̄(a[8])](z,

1 + ζ1

2
,
1 + ζ2

2
;
1

2
,
1

2
) ln
[ µ2

0

m2
Q

]
+R(z, ζ1, ζ2) + δ(1− z)[V (ζ1)δ(ζ2) + V (ζ2)δ(ζ1)]

}
,

(6.35)

where R and V are finite contributions from real and virtual diagrams, respec-
tively, which are defined as

V (ζ1) =
1

Nc

{
2

[
−
(

1

ζ2
1

)
2+

+

(
1

ζ1

)
1+

+

(
ln(ζ2

1 )

ζ1

)
1+

]
−
(
(ζ1 + 1)ln(ζ2

1 )
)

0+

− (ζ1 − 1)0+ + 4N2
c δ(ζ1)

}
, (6.36a)

R(z, ζ1, ζ2) =
1

Nc

{
∆

[8]
−

[
−2z

(
ln(2− 2z)

1− z

)
+

− z

(1− z)+

]
− 8

[
(ln 2)2 + ln 2

]
N2
c δ(ζ1) δ(ζ2) δ(1− z)

}
, (6.36b)

where ∆
(8)
− is defined in Eq. (5.32). Although this expression is not in the

same compact form as what is shown in Appendix B, it is trivial to verify the
equivalence.

We found that all NLO short-distance coefficients for heavy quarkonium
FFs from a perturbatively produced heavy quark pair, calculated in NRQCD
factorization formulism, are IR safe. A complete list of our results is given in
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Appendix B.
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Chapter 7

Calculation of Heavy Quark
Pair Fragmentation in NRQCD
factorization model:
P wave unpolarized

In this chapter, we show detailed calculation of some examples to illustrate the
IR divergence cancellation in NRQCD factorization for P -wave heavy quarko-
nium production. Such cancellation is considered to be a strong support of
NRQCD factorization approach.

7.1 LO coefficients

A general cut-diagram representation for DLO
[QQ̄(s[b])]→QQ̄(i[b

′])
is shown in Fig.

(6.1), with all momenta labeled explicitly. At this order, the LDME in Eq. (5.4)
is proportional to δn,n′ , which leads to

DLO
[QQ̄(s[b])]→[QQ̄(i[b

′])]
(z, ζ1, ζ2;mQ, µ0) = d̂ LO

[QQ̄(s[b])]→[QQ̄(i[b
′])]

(z, ζ1, ζ2;mQ, µ0).

(7.1)

For our purpose of producing a P -wave non-relativistic QQ̄-pair, Eqs. (5.5)
and (5.7) can be reduced to,

DLO
[QQ̄(s[b])]→[QQ̄(i[b

′])]
(z, ζ1, ζ2;mQ, µ0)

=
δ(1− z)

NsNbNNR
i NNR

b′
MLO

[QQ̄(s[b])]→[QQ̄(i[b
′])]

(p, z, ζ1, ζ2) , (7.2)
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and

ALO
[QQ̄(s[b])]→[QQ̄(i[b

′])]
(p, z, ζ1) = lim

qr→0

d

dqαr

{
2 δ(ζ1 −

2q+
r

p+
c

)

× ĀLO
[QQ̄(s[b])]→[QQ̄(i[b

′])]
(q1 = qr)Γ

NR
i (p)CNR

b′

}
,

(7.3)

respectively. The above three equations, plus Eq. (5.6), form the basis of our
calculation for d̂ LO

[QQ̄(s[b])]→[QQ̄(i[b
′])]

(z, ζ1, ζ2;mQ, µ0). Based on the discussion in

Sec. 5.4.1, we find that only independent FFs at LO are those with both the
initial and final QQ̄-pair being color singlet. In the following, we show the
detailed calculations of two examples, while presenting all nonzero results in
Appendix B.3.1.

First, we consider the LO contribution to fragmentation process: [QQ̄(v[1])]→
[QQ̄(3P

[1]
J )]. From Eqs. (5.6) and (7.3), we have

Tr
[
Γv(pc)C1ALO

[QQ̄(v[1])]→[QQ̄(3P
[1]
J )]

(p, z, ζ1)
]

= lim
qr→0

d

dqαr

∫
dDq1

(2π)D
δD(q1 − qr)

{
2 δ(ζ1 −

2q+
1

p+
) Trc

[
1√
Nc

1√
Nc

]

× Trγ

 γ · n̂
4p · n̂

1√
8m3

Q

(
/p

2
− /qr −mQ

)
γβ
(
/p

2
+ /qr +mQ

)}

=
δ′(ζ1)√

2m3
Q(p+)2

nα(4m2
Qn

β − p+pβ),

(7.4)

where “Trc” (“Trγ”) denotes the trace of color matrices (γ-matrices). In de-
riving Eq. (7.4), we used the projection operators defined in Sec. 5.2.2 as well
as the fact that pc = p. Substituting our result in Eq. (7.4) into Eq. (5.6), and
then Eq. (7.2), and using Eq. (7.1), we obtain

d̂ LO

[QQ̄(v[1])]→[QQ̄(3P
[1]
0 )]

(z, ζ1, ζ2;mQ, µ0) =
1

D − 1

1

2m3
Q

δ(1− z) δ′(ζ1) δ′(ζ2),

(7.5a)

d̂ LO

[QQ̄(v[1])]→[QQ̄(3P
[1]
1 )]

(z, ζ1, ζ2;mQ, µ0) = 0, (7.5b)
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d̂ LO

[QQ̄(v[1])]→[QQ̄(3P
[1]
2 )]

(z, ζ1, ζ2;mQ, µ0) =
1

(D − 1)(D + 1)

1

m3
Q

δ(1− z) δ′(ζ1) δ′(ζ2),

(7.5c)

where D = 4−2ε. The zero result in the second equation is expected from the
Lorentz invariance, as explained in Sec. 5.4.2. The fact that the right-hand
side (RHS) of the first and third equations in Eq. (7.5) are odd in both ζ1 and
ζ2 is consistent with our analysis above the Eq. (5.23).

For the second example, we consider the LO contribution to fragmentation
process: [QQ̄(a[1])] → [QQ̄(3P

[1]
1 )]. Similar to Eq. (7.4), the corresponding

trace is

Tr
[
Γa(pc)C1ALO

[QQ̄(a[1])]→[QQ̄(3P
[1]
1 )]

(p, z, ζ1)
]

= lim
qr→0

d

dqαr

{
2 δ(ζ1 −

2q+
r

p+
) Trc

[
1√
Nc

1√
Nc

]

× Tr

γ · n̂ γ5 − γ5 γ · n̂
8p · n̂

1√
8m3

Q

(
/p

2
− /qr −mQ

)
γβ
(
/p

2
+ /qr +mQ

)}

=
δ(ζ1)

4p+
√

2m3
Q

Tr
[
γ5 γ

α γβ /̂n /p
]
.

(7.6)

The Lorentz structure is exactly the same as our analysis in Sec. 5.4.2. Finally,
by substituting our result in Eq. (7.6) into Eq. (5.6), and then Eq. (7.2), and
using Eq. (7.1), we obtain

d̂ LO

[QQ̄(a[1])]→[QQ̄(3P
[1]
1 )]

(z, ζ1, ζ2;mQ) =
D − 3

m3
Q(D − 1)

δ(ζ1)δ(ζ2)δ(1− z). (7.7)

As expected from our discussion above the equation (5.23), this result is even
in both ζ1 and ζ2.
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7.2 NLO coefficients

In this section, we calculate the short-distance coefficients in Eq. (5.4) at NLO
in αs. We first expand both sides of Eq. (5.4) to NLO,

DNLO
[QQ̄(κ)]→[QQ̄(n′)](z, ζ1, ζ2;mQ, µ0) = d̂ NLO

[QQ̄(κ)]→[QQ̄(n′)](z, ζ1, ζ2;mQ, µ0, µΛ)

+
∑

[QQ̄(n)]

d̂ LO
[QQ̄(κ)]→[QQ̄(n)](z, ζ1, ζ2;mQ, µ0)〈OQQ̄[n′]

QQ̄[n]
(µΛ)〉NLO,

(7.8)

Generally, the LHS of Eq. (7.8) has both virtual and real contributions, which
are represented by Feynman diagrams in Figs. 6.2 and 6.3, respectively. For
any specific subprocess, we can use the symmetry constraints derived in Sec. 5.4.2
to simplify our calculations.

We use dimensional regularization to regularize all kinds of divergences,
including the ultra-violet (UV) divergence, infrared (IR) divergence, rapidity
divergence, and Coulomb divergence. We apply the technical trick discussed
below Eq. (5.7) to our calculations. Consequently, the Coulomb divergence
does not appear in our derivations. As shown in Sec. 5.5, the Coulomb diver-
gence in our calculations is effectively absorbed into the NRQCD LDMEs. The
rapidity divergence comes from the region k · n̂→ 0, with k the momentum of
the radiated gluon and n̂ the light-cone vector. This region overlaps with the
UV region and could lead to a double pole. By adding up all diagrams, the
rapidity divergence cancels.

After summing over all diagrams in Figs. 6.2 and 6.3, there are still left-
over UV and IR divergences in DNLO

[QQ̄(κ)]→[QQ̄(n′)]
(z, ζ1, ζ2;mQ) for producing a

P -wave NRQCD QQ̄-pair with the spin-color state [QQ̄(n′)]. The UV diver-
gence is canceled by pQCD renormalization of the operator defining the FFs
in the same manner as the calculation of FFs to produce S-wave QQ̄-pairs.
If NRQCD factorization is valid to NLO, the leftover IR divergence should
be exactly the same as the IR divergence in the NLO LDMEs on the RHS of
Eq. (7.8), leaving NLO short-distance coefficient IR safe.

In this paper, we calculated all short-distance coefficients of FFs through
a P -wave NRQCD QQ̄-pair up to NLO in αs. From our explicit calculations,
we find that the leftover IR divergence cancels for all fragmentation channels
at this order.

In the rest of this section, we present the calculation of the short-distance
coefficient for the fragmentation channel: [QQ̄(a[1])] → [QQ̄(1P

[8]
1 )] to demon-

strate the cancellation of infrared divergence in NRQCD factorization formal-
ism. From Eq. (7.8), the NLO short-distance coefficient for this channel is
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given by

d̂ NLO

[QQ̄(a[1])]→[QQ̄(1P
[8]
1 )]

(z, ζ1, ζ2;mQ, µ0, µΛ)

= DNLO

[QQ̄(a[1])]→[QQ̄(1P
[8]
1 )]

(z, ζ1, ζ2;mQ, µ0)

− d̂ LO

[QQ̄(a[1])]→[QQ̄(1S
[1]
0 )]

(z, ζ1, ζ2;mQ, µ0)
〈
O[QQ̄(1P

[8]
1 )]

[QQ̄(1S
[1]
0 )]

(µΛ)
〉NLO

,

(7.9)

For this channel, the calculation of DNLO

[QQ̄(a[1])]→[QQ̄(1P
[8]
1 )]

(z, ζ1, ζ2;mQ, µ0) in-

volves only real correction from Feynman diagrams shown in Fig. 6.3. The cal-
culation of these diagrams is complicated by both UV and IR divergences. We
remove the UV divergence by the UV counter-term in the MS scheme, which
is associated with pQCD renormalization of the operator defining [QQ̄(a[1])].
This is just like what we did in our calculation of QQ̄ FFs to S-wave QQ̄-
pairs. After this MS renormalization procedure, the calculated fragmentation
function DNLO

[QQ̄(a[1])]→[QQ̄(1P
[8]
1 )]

(z, ζ1, ζ2;mQ, µ0) has only IR divergence left,

DNLO

[QQ̄(a[1])]→[QQ̄(1P
[8]
1 )]

=
αsz CF

24πm3
Q(N2

c − 1)

{
(1− z)∆

[1]
+ + ∆

[1]
+

′
+

1

(1− z)
∆

[1]
+

′′
}(

ln
[ µ2

0

4m2
Q

]
− 2

3

)
+

αsCF
18πm3

Q(N2
c − 1)

(
πµ2

m2
Q

)ε

Γ(1 + ε)

{(
− 3

εIR
+ 1

)
∆0 δ(1− z)

− ∆
[1]
+

4

[
−6

(
1

1− z

)
+

+ 5z2 + 7z − 6(z − 1)z ln(1− z) + 6

]
+

∆
[1]
+

′

4

z

(1− z)
[z + 6(z − 1)ln(1− z)− 4] +

∆
[1]
+

′′

4

z

(1− z)
[−6 ln(1− z)− 1]

}
,

(7.10)

where µ is the renormalization scale, µ0 is the QCD factorization scale for
input FFs, and the 2/3 along with ln(µ2

0/4m
2
Q) came from the ε-dependence

of d̂ LO

[QQ̄(a[8])]→[QQ̄(1P
[8]
1 )]

, which is a part of the UV counter-term. As expected

from the general symmetry analysis in Sec. 5.4.3, and as shown in Eq. (7.10),
only possible structures of ζ1 and ζ2 dependence for DNLO

[QQ̄(a[1])]→[QQ̄(1P
[8]
1 )]

(z, ζ1,

ζ2;mQ, µ0) are given by those ∆-functions: ∆
[1]
+ , ∆

[1]
+

′
and ∆

[1]
+

′′
, defined in

Eq. (5.32).
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Note that since both ∆
[1]
+

′
and ∆

[1]
+

′′
vanish at z → 1, the denominator

(1− z) in Eq. (7.10), so as that in Eq. (7.14) below, does not exhibit a pole as
z → 1. However, the partonic fragmentation function in Eq. (7.10) still shows
IR divergence, as indicated by 1/εIR, which is expected to be canceled by the
second term on the RHS of Eq. (7.9).

For the second term on the RHS of the Eq. (7.9), the NLO LDME can be
read from Eq. (5.19)〈

O[QQ̄(1P
[1]
1 )]

[QQ̄(1S
[1]
0 )]

(µΛ)
〉NLO

=
2αs

3 πm2
QNc

(4πe−γE)ε
(
µ2

µ2
Λ

)ε
1

εIR
, (7.11)

where we have chosen the MS renormalization scheme, and µ (µΛ) is the renor-
malization (NRQCD factorization) scale. The LO short-distance coefficient in
Eq. (7.9) can be calculated similarly as in Sec. 6.1,

d̂ LO

[QQ̄(a[1])]→QQ̄[(1S
[1]
0 )]

(z, ζ1, ζ2;mQ) =
1

2mQ

δ(1− z)δ(ζ1)δ(ζ2). (7.12)

Therefore the second term of Eq. (7.9) is

d̂ LO

[QQ̄(a[1])]→[QQ̄(1S
[1]
0 )]

(z, ζ1, ζ2;mQ)
〈
O[QQ̄(1P

[1]
1 )]

[QQ̄(1S
[1]
0 )]

(µΛ)
〉NLO

=
αs

4πm3
QNc

(4πe−γE)ε
(
µ2

µ2
Λ

)ε
1

εIR
δ(1− z)δ(ζ1)δ(ζ2).

(7.13)

By substituting Eqs. (7.10) and (7.13) into Eq. (7.9), we find that the IR
divergence is canceled exactly between the first and second terms in Eq. (7.9),
and the finite remainder after the IR cancellation is effectively the NLO short-
distance coefficient,

d̂ NLO

[QQ̄(a[1])]→QQ̄[(1P
[8]
1 )]

(z, ζ1, ζ2;mQ, µ0, µΛ)

=
αsz

24πm3
QNc

{
2 ∆0 δ(1− z)(− ln

[ µ2
Λ

m2
Q

]
+ 2 ln 2 +

1

3
)

+
[ ∆

[1]
+

′′

(1− z)
+ ∆

[1]
+

′
+ ∆

[1]
+ (1− z)

]
(
1

2
ln
[ µ2

0

m2
Q

]
− 1

3
)

− ∆
[1]
+

′′

(1− z)
R1(z)− ∆

[1]
+

′

(1− z)
R2(z)−∆

[1]
+ R3(z)

}
,

(7.14)
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The R-functions in Eq. (7.14) are defined as

R1(z) = ln(2− 2z) +
1

6
, (7.15)

R2(z) = (1− z) ln(2− 2z)− 1

6
z +

2

3
, (7.16)

R3(z) = − 1

(1− z)+

+ (1− z) ln(2− 2z) +
5

6
z +

7

6
. (7.17)

A complete list of our results is given in Appendix B.3.

102



Chapter 8

Calculation of Heavy Quark
Pair Fragmentation in NRQCD
factorization approach:
Polarized

In this chapter, we explain the calculation of polarized heavy quarkonium frag-
mentation functions (FFs) in the NRQCD factorization approach. In Sec. 8.1,
we first analyze the operators needed for our calculation. Then in Sec. 8.2,
we generalize the definitions of polarized NRQCD long-distance matrix ele-
ments (LDMEs) to d dimensions. The factorized forms of the polarized FFs
in the NRQCD factorization are given in Sec. 8.3. In Sec. 8.4, we obtain the
projection operators from our definitions of the polarized NRQCD LDMEs.
Finally in Sec. 8.5, we expand the polarized LDMEs to the next-to-leading
order, which is important for the IR divergence cancellation. In this chapter,
we do not show the calculation since it is very similar to the calculations of
unpolarized FFs, which are explained in detail in the last two chapters. We
simply list the results for polarized FFs in Appendixes C and D.

8.1 Essential NRQCD four-fermion operators

The polarization of the heavy quarkonium is encoded in the angular distribu-
tion of its decay products (see Sec. 3.1). For the cases of J/ψ, ψ′ and their
counterparts in the bottom sector, the parameter λθ in Eq. (3.1) can be written
as [12]

λθ =
dσ11 − dσ00

dσ11 + dσ00

, (8.1)
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where dσij (i, j = 0,±1) represents the ij component in the spin density
matrix of the heavy quarkonium, with respect to a specified z-axis. For χcJ
and χbJ , the expression is more complicated [127]. Nonetheless, in all these
expressions, λθ is only related to the diagonal entries of the spin density matrix
of the heavy quarkonium.

z

J J ’J J ’z
z

J
H

J
H

JX
J

X
z

Figure 8.1: Interference term with QQ̄ pair in different polarization.

However, the spin density matrix of the produced heavy quark pair may
not be diagonalized. Recall that the NRQCD factorization separates the pro-
duction of a heavy quarkonium H in two stages: (1) the production of the
heavy quark pair QQ̄ at energy scale O(mQ) or higher; (2) the hadronization
process from QQ̄ to H. Because of the gluon emission, the polarization of
QQ̄ pair cannot be uniquely fixed by the polarization of H. Consequently,
interference terms also contribute. Fig. 8.1 shows a diagrammatic illustration,
where JX and JXz represent the total angular momentum and its z-component
of all particles except H, as well as possible orbital angular momentum due
to the relative motion between H and X. Consider this process as a forward
scattering amplitude from |J, Jz〉 to |J ′, J ′z〉. At the moment the JH and JHz
are measured, the wave function collapses to one of the eigenfunctions of JH

and JHz . Mathematically, the projection of the collapsed wave function onto
the final state |J ′, J ′z〉 is expressed as

〈J ′, J ′z|
∑
JX

(
|JH , JHz 〉 |JX , Jz − JHz 〉〈JX , Jz − JHz | 〈JH , JHz |

)
|J, Jz〉. (8.2)

Requiring Eq. (8.2) to be nonzero gives Jz = J ′z, but J and J ′ can be different.
Consequently, off-diagonal terms with the same Jz but different J ’s in the
amplitude and the complex conjugate contribute. To be strict, we still need to
consider the L-S coupling in hadron H because SH and LH are also measured,
besides JH and JHz . Nonetheless, it does not change the conclusion.

The above analysis is valid for any underlying theory which conserves an-
gular momentum. Specifically for NRQCD, for each final state H, we can use
the power counting rule in Sec. 3.4.2 to order the possible combinations of
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Table 8.1: Essential channels for various polarized heavy quarkonium produc-
tion, with relative power-counting of each operator explicitly. See text for
details.

Quarkonium Polarization Essential channels

J/ψ, ψ′,

Υ(nS)
λ

OH(3S
[1]
1,λ)[v

0],OH(1S
[8]
0 )[v4],OH(3S

[8]
1,λ)[v

4],

OH(3P
[8]
0 )[v4],OH(3P

[8]
1,T )[v4],OH(3P

[8]
1,L)[v4],

OH(3P
[8]
2,T2)[v4],OH(3P

[8]
2,T1)[v4],OH(3P

[8]
2,L)[v4]

OH(3P
[8]
2,L,

3P
[8]
0 )[v4],OH(3P

[8]
1,T ,

3P
[8]
2,T1)[v4]

or

OH(3S
[1]
1,λ)[v

0],OH(1S
[8]
0 )[v4],OH(3S

[8]
1,λ)[v

4],

OH(3P
[8]
J,λ)[v

4]

hc, hb λ OH(1P
[1]
1,λ)[v

0], OH(1S
[8]
0 )[v0]

χc2, χb2 λ′ OH(3P
[1]
2,λ′)[v

0], OH(3S
[8]
1,T )[v0], OH(3S

[8]
1,L)[v0]

χcJ , χbJ

(J = 0, 1)
λ OH(3P

[1]
J=0,1;λ)[v

0],OH(3S
[8]
1,T )[v0],OH(3S

[8]
1,L)[v0]

(J, J ′, Jz). From the operators for unpolarized heavy quarkonium shown in
Table 3.4, we can work out the important operators for the polarized case.
These operators are listed in Table 8.1, where the non-relativistic QQ̄ pair po-
larization λ = T, L (λ′ = T2, T1, L) corresponds to |Jz| = 1, 0 (|Jz| = 2, 1, 0),
respectively.

The contribution of the eight P-wave operators for the polarized heavy
quarkonium H = J/ψ, ψ′ or Υ(nS) can be effectively combined into one
operator, by noticing that the polarization of H is determined by the spin
of the non-relativistic QQ̄ pair at low orders of v, since the flipping of spin
is suppressed by v4. Performing the L-S coupling mixes the spin and orbital
angular momentum, thus conceals this relation. In fact, it is much easier
to leave the spin and orbital angular momentum separated. Since the latter
does not affect the polarization of H, it can be summed over. As a result,
contributions from the eight P -wave operators in the first row of Table 8.1
are described by only one operator OH(3P

[8]
J,λ), where λ = T, L represents the

polarization of the S-wave heavy quarkonium H, not the non-relativistic QQ̄
pair. Definitions of all these operators are given in the next section.
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8.2 Polarized NRQCD four-fermion operators

in d dimensions

In previous chapters, we calculated both the single and double parton frag-
mentation functions (FFs) for an unpolarized heavy quarkonium. We used
conventional dimensional regularization (CDR) to regularize all the UV and
IR divergences. By doing this, we implicitly generalized the NRQCD four-
fermion operators defined in Eqs. (3.10) and (3.12) to (d − 1) space dimen-
sions. This generalization is simple, in the sense that with Jz summed over,
there is no special direction in the heavy quarkonium rest frame. In this case,
(d− 4)-dimensional space is a simple copy of that in 3 dimensions.

The situation is more complicated with the polarization, where a specific
direction ẑ needs to be specified. In this chapter, we work in the helicity frame,
with ẑ chosen to be along the moving direction of the heavy quarkonium in
Laboratory frame. To separate contributions with the same J but different
|Jz|, we need to know the detailed structure of the (d− 4)-dimensional space.
The situation is more severe with angular momentum couplings, such as the
L-S coupling, which is exactly what we have in the NRQCD factorization.

First consider the coupling of the spin angular momenta of the QQ̄ pair.
For d 6= 4, the product of two sponsorial representations gives rise to other
representations, in addition to the scalar and vector representations in d = 4
case. In principle, we should deal with an infinite set of states. However,
the projectors defined in Eq. (5.15) are still correct for the scalar and vector
representations. The ignorance of the higher-spin states are allowed because
the mix of them with scalar and vector representations is forbidden by heavy
quark spin symmetry at low orders of v [112].

Next consider the L-S coupling for P -wave heavy quark pair. The contribu-
tions with the same J but different |Jz| have different symmetries in operations
such as rotation and parity transformation, which can be applied to separate
the contribution of different |Jz|. Specifically, we apply the following rules,

• Rule 1: for 3S1 and 1P1, the wave functions of the heavy quark pair with
|Jz| = 1 (or Jz = 0) in its rest frame are anti-symmetric (or symmetric)
when flipping the directions of all axes except ẑ.

• Rule 2: for 3PJ , the wave function with J = 0 has SO(d− 1) symmetry.
Wave functions with J = 2 (or J = 1) are symmetric (or anti-symmetric)
in its orbital and spin indices and are constructed to be traceless.

• Rule 3: for 3P2, the wave functions with |Jz| = 1 are separated from those
with |Jz| = 0, 2 by flipping the direction of all axes except ẑ, similarly
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as in Rule 1. The wave functions with Jz = 0 and |Jz| = 2 are further
separated by requiring the invariance of the wave function with Jz = 0
under the rotation about z-axis.

• Rule 4: for 3P1, in d dimensions, there exist wave functions with |Jz| =
0, 1, 2. Wave functions with different |Jz| can be separated similarly as
in Rule 3. Wave functions with |Jz| = 1 are transversely polarized at
d = 4. Wave functions with |Jz| = 2 vanish at d = 4 and they have
different parity with |Jz| = 1 wave functions, so it is natural to consider
|Jz| = 2 wave functions as longitudinal.

Notice that in d dimensions, there is no unique way to group states into
categories with different J and |Jz|. Different grouping methods are equally
good as long as they are consistent and give the correct decomposition at
d = 4. They serve as different schemes in dimensional regularization.

With the four rules above, we give our definition of NRQCD four-fermion
operators for polarized quarkonium production in arbitrary dimension d,

OH(3S
[8]
1,T ) = χ†σj⊥ T aψ(a†HaH)ψ†σj⊥ T aχ, (8.3a)

OH(3S
[8]
1,L) = χ†σz T aψ(a†HaH)ψ†σz T aχ, (8.3b)

OH(1P
[8]
1,T ) = χ†(− i

2

←→
D j⊥)T aψ(a†HaH)ψ†(− i

2

←→
D j⊥)T aχ, (8.3c)

OH(1P
[8]
1,L) = χ†(− i

2

←→
D z)T aψ(a†HaH)ψ†(− i

2

←→
D z)T aχ, (8.3d)

OH(3P
[8]
1,T ) =

1

2
χ†(− i

2

←→
D [ j⊥ σz])T aψ(a†HaH)ψ†(− i

2

←→
D [ j⊥ σz])T aχ, (8.3e)

OH(3P
[8]
1,L) =

1

4
χ†(− i

2

←→
D [ j⊥ σk⊥])T aψ(a†HaH)ψ†(− i

2

←→
D [ j⊥ σk⊥])T aχ, (8.3f)

OH(3P
[8]
2,T2) = χ†(− i

2
(
1

2

←→
D { j⊥ σk⊥} − δj⊥k⊥

d− 2

←→
D T · σT ))T aψ

(a†HaH)ψ†(− i
2

(
1

2

←→
D { j⊥ σk⊥} − δj⊥k⊥

d− 2

←→
D T · σT ))T aχ,

(8.3g)

OH(3P
[8]
2,T1) =

1

2
χ†(− i

2

←→
D { j⊥ σz})T aψ(a†HaH)ψ†(− i

2

←→
D { j⊥ σz})T aχ, (8.3h)

OH(3P
[8]
2,L) =

d− 2

d− 1
χ†(− i

2
(
←→
D z σz − 1

d− 2

←→
D T · σT ))T aψ

(a†HaH)ψ†(− i
2

(
←→
D z σz − 1

d− 2

←→
D T · σT ))T aχ,

(8.3i)

OH(3P
[8]
J,T ) = χ†(− i

2

←→
D jσk⊥)T aψ(a†HaH)ψ†(− i

2

←→
D jσk⊥)T aχ, (8.3j)
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OH(3P
[8]
J,L) = χ†(− i

2

←→
D jσz)T aψ(a†HaH)ψ†(− i

2

←→
D jσz)T aχ, (8.3k)

OH(3P
[8]
0 ) =

1

d− 1
χ†(− i

2

←→
D · σ)T aψ(a†HaH)ψ†(− i

2

←→
D · σ)T aχ, (8.3l)

OH(1S
[8]
0 ) = χ† T aψ(a†HaH)ψ† T aχ, (8.3m)

where the summations of j⊥ and k⊥ run over all directions perpendicular to
ẑ-axis, and

ψ†
←→
Dχ ≡ ψ†(Dχ)− (Dψ)†χ, (8.4a)

←→
D T · σT ≡

←→
D · σ −←→D zσz, (8.4b)

←→
D [ j⊥ σk⊥] ≡ ←→D j⊥ σk⊥ −←→D k⊥ σj⊥ , (8.4c)
←→
D { j⊥ σk⊥} ≡ ←→D j⊥ σk⊥ +

←→
D k⊥ σj⊥ . (8.4d)

For the states 3S1, 1P1 and 3P1, the subscript T (or L) represents the non-
relativistic QQ̄ pair with |Jz| = 1 (or Jz = 0). For the state 3P2, the subscripts
T2, T1, and L represent the non-relativistic QQ̄ pair with |Jz| = 2, |Jz| = 1

and Jz = 0, respectively. Notice that T and L in operators OH(3P
[8]
J,T ) and

OH(3P
[8]
J,L) are the polarization of the outgoing S-wave heavy quarkonium,

not the non-relativistic P -wave QQ̄ pair, as explained at the end of Sec. 8.1.
For completeness, we also list the operators for states 3P0 and 1S0, which are
unpolarized. By removing the two T a’s and multiplying the factor 1/(2Nc),
we obtain the definitions for the color singlet operators.

In addition to these diagonal operators above, we also need off-diagonal
ones

OH [3P
[8]
1,T ,

3P
[8]
2,T1] =

1

4

[
χ†(− i

2

←→
D [ j⊥ σz])T aψ(a†HaH)

ψ†(− i
2

←→
D { j⊥ σz})T aχ+ H.c.

]
,

(8.5a)

OH [3P
[8]
0 , 3P

[8]
2,L] =

1

2

[d− 2

d− 1
χ†(− i

2

←→
D · σ)T aψ(a†HaH)

ψ†(− i
2

(
←→
D z σz − 1

d− 2

←→
D T · σT ))T aχ+ H.c.

]
.

(8.5b)

With the definitions above, it is straightforward to check that by adding up
operators with the same J but different |Jz| and choose d = 4, the definitions
in Eqs. (3.10) and (3.12) can be retrieved.
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8.3 NRQCD Factorization for polarized FFs

In the NRQCD factorization approach, the fragmentation functions for polar-
ized heavy quarkonium H can be written into the form

Df→Hpol1 (z;mQ) =
∑

[QQ̄(n, pol2)]

παs

{
d̂

(0)

f→[QQ̄(n, pol2)]
(z;mQ)

+
(αs
π

)
d̂

(1)

f→[QQ̄(n, pol2)]
(z;mQ) +O(α2

s)
}〈OHpol1

[QQ̄(n, pol2)]
〉

m2L+3
Q

,

(8.6)

and

D[QQ̄(κ)]→Hpol1
(z, ζ1, ζ2;mQ) =

∑
[QQ̄(n, pol2)]

{
d̂

(0)

[QQ̄(κ)]→[QQ̄(n, pol2)]
(z, ζ1, ζ2;mQ)

+
(αs
π

)
d̂

(1)

[QQ̄(κ)]→[QQ̄(n, pol2)]
(z, ζ1, ζ2;mQ) +O(α2

s)
}〈OHpol1

[QQ̄(n, pol2)]
〉

m2L+1
Q

,

(8.7)

where the QCD factorization and NRQCD factorization scales are suppressed,
pol1 (pol2) labels the polarization of the heavy quarkonium H (non-relativistic
QQ̄-pair). For the states 3S1, 1P1 and 3P1, the labels pol1 and pol2 could be
transverse (T ) or longitudinal (L), while for the state 3P2, they could be T2,
T1, or L. In the calculation of λθ in helicity frame, ẑ can be expressed as a
linear combination of the heavy quarkonium momentum pµ and the light-cone
vector n̂, thus no additional 4-vector is introduced in the polarized FFs. As
a result, the argument that the mixed fragmentation function in Fig 8.2 is
absorbed into the heavy quark fragmentation term for the unpolarized FFs
[40] also applies to our calculation of polarized FFs.

To a relative accuracy of the order v4, the polarized NRQCD LDMEs are
related to the unpolarized ones as

〈OHpol1
[QQ̄(n, pol2)]

(µΛ)〉 =
NNR
n, pol

NNR
n

δpol1,pol2〈OH[QQ̄(n)](µΛ)〉+O(v4), (8.8)

where NNR
n, pol and NNR

n are defined in Eqs. (8.17) and (5.16), respectively.
Replacing the hadron by a heavy quark pair in Eqs. (8.6) and (8.7) as in
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Figure 8.2: Interference term with QQ̄ pair and a single gluon state.

the unpolarized case, we have

Df→[QQ̄(n′,pol1)](z;mQ) =
∑

[QQ̄(n, pol2)]

παs

{
d̂

(0)

f→[QQ̄(n, pol2)]
(z;mQ)

+
(αs
π

)
d̂

(1)

f→[QQ̄(n, pol2)]
(z;mQ) +O(α2

s)
}〈O[QQ̄(n′,pol1]

[QQ̄(n, pol2)]
〉

m2L+3
Q

,

(8.9)

and

D[QQ̄(κ)]→[QQ̄(n′,pol1)](z, ζ1, ζ2;mQ) =
∑

[QQ̄(n, pol2)]

{
d̂

(0)

[QQ̄(κ)]→[QQ̄(n, pol2)]
(z, ζ1, ζ2;mQ)

+
(αs
π

)
d̂

(1)

[QQ̄(κ)]→[QQ̄(n, pol2)]
(z, ζ1, ζ2;mQ) +O(α2

s)
}〈O[QQ̄(n′,pol1]

[QQ̄(n, pol2)]
〉

m2L+1
Q

,

(8.10)

where the QCD factorization and the NRQCD factorization scales are sup-
pressed.

Summing over the polarizations, the FFs above should give the unpolar-
ized FFs calculated in previous chapters. With the definition of unpolarized
NRQCD matrix elements in Eqs. (3.10) and (3.12), as well as our definition of
polarized NRQCD matrix elements above in Eq. (8.3), we have the relation

NNR
n · d̂ (0 or 1)

f→[QQ̄(n)]
=
∑
pol

NNR
n, pol · d̂ (0 or 1)

f→[QQ̄(n, pol)]
+O(v4), (8.11a)

NNR
n · d̂ (0 or 1)

[QQ̄(κ)]→[QQ̄(n)]
=
∑
pol

NNR
n, pol · d̂ (0 or 1)

[QQ̄(κ)]→[QQ̄(n, pol)]
+O(v4), (8.11b)

to a relative accuracy of order v4, where d̂
(0 or 1)

f→[QQ̄(n)]
and d̂

(0 or 1)

[QQ̄(κ)]→[QQ̄(n)]
are the

short-distance coefficients for unpolarized heavy-quark pair. The summation
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runs over all polarization states of n. In Appendix C and D, we only list
the d̂

(0 or 1)

f→[QQ̄(n)]
and d̂

(0 or 1)

[QQ̄(κ)]→[QQ̄(n, pol)]
for one polarization state (two polariza-

tion states)for 3S1, 1P1, and 3P1 (3P2). The other one can be calculated with
Eq. (8.11) and the results in Appendixes. A and B.

8.4 Projection Operators

All four-fermion operators defined in Sec. 8.2 can be written into a product
of spin-sumed 4-fermion operator and a projection operator which picks the
polarization in consideration. For example,

OH(3S
[1]
1,T ) =

1

2Nc

χ†σj ψ(a†HaH)ψ†σk χ× (δj,k − δj,zδk,z). (8.12)

Compared to the unpolarized case, the only difference is the projection opera-
tor in the last bracket. If boosting the heavy quarkonium along ẑ-direction so
that it has d-momentum pµ = (p0,0⊥, p

z), the boosted projection operator is

PNR
3S1,T

(p) = (−gββ′ +
pβn̂β′ + pβ′n̂β

p · n̂ − p2

(p · n̂)2
n̂βn̂β′), (8.13)

where n̂µ = 1√
2
(1, 0, 0,−1) is a light-like vector.

In this way, we can write down the projection operators for all diagonal
NRQCD four-fermion operators defined in Eq. (8.3).

PNR
3S1,T

= PNR
1P1,T

= Pββ
′

⊥ (p), (8.14a)

PNR
3S1,L

= PNR
1P1,L

= Pββ
′

‖ (p), (8.14b)

PNR
3P1,T

=
1

2

(
Pαα′⊥ (p)Pββ

′

‖ (p) + Pββ
′

⊥ (p)Pαα′‖ (p)− Pαβ
′

⊥ (p)Pβα
′

‖ (p)

−Pβα′⊥ (p)Pαβ
′

‖ (p)
)
, (8.14c)

PNR
3P1,L

=
1

2

(
Pαα′⊥ (p)Pββ

′

⊥ (p)− Pαβ
′

⊥ (p)Pβα
′

⊥ (p)
)
, (8.14d)

PNR
3P2,T2 =

1

2

(
Pαα′⊥ (p)Pββ

′

⊥ (p) + Pαβ
′

⊥ (p)Pα
′β
⊥ (p)

)
− 1

d− 2
Pαβ⊥ (p)Pα

′β′

⊥ (p),

(8.14e)

PNR
3P2,T1 =

1

2

(
Pαα′⊥ (p)Pββ

′

‖ (p) + Pββ
′

⊥ (p)Pαα′‖ (p) + Pαβ
′

⊥ (p)Pβα
′

‖ (p)

+Pβα
′

⊥ (p)Pαβ
′

‖ (p)
)
, (8.14f)
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PNR
3P2,L

=
d− 2

d− 1
(Pαβ‖ (p)− 1

d− 2
Pαβ⊥ (p))(Pα

′β′

‖ (p)− 1

d− 2
Pα
′β′

⊥ (p)), (8.14g)

PNR
3P0

=
1

d− 1
Pαβ(p)Pα′β′(p), (8.14h)

PNR
1S0

= 1, (8.14i)

PNR
3PJ ,T

= Pαα′(p)Pββ
′

⊥ (p), (8.14j)

PNR
3PJ ,L

= Pαα′(p)Pββ
′

‖ (p), (8.14k)

where

Pαα′⊥ (p) = −gαα′ + pαn̂α
′
+ pα

′
n̂α

p · n̂ − p2

(p · n̂)2
n̂αn̂α

′
, (8.15a)

Pαα′‖ (p) =
pαpα

′

p2
− pαn̂α

′
+ pα

′
n̂α

p · n̂ +
p2

(p · n̂)2
n̂αn̂α

′
, (8.15b)

Pαα′(p) = Pαα′‖ (p) + Pαα′⊥ (p) = −gαα′ + pαpα
′

p2
. (8.15c)

α and β (α′ and β′) are the indices for the orbital angular momentum and spin
of the heavy quark pair in the amplitude (complex conjugate of the amplitude),
respectively.

Making use of the identity

Pαα′‖ Pββ
′

‖ = Pαβ
′

‖ Pβα
′

‖ (8.16)

and adding up the projection operators with different |Jz| but the same J , we
can get the same results in Eq. (5.17). Choosing d = 4 in the PNR

3P2
, we retrieve

the results in Ref. [128].
We normalize these projection operators by the number of states, since

the four-fermion operators in Eq. (8.3) are defined to sum over the number of
states with the specific polarization. The normalization factors are

NNR
3S1,T

= NNR
1P1,T

= NNR
3P1,T

= NNR
3P2,T1 = d− 2, (8.17a)

NNR
3S1,L

= NNR
1P1,L

= NNR
3P2,L

= 1, (8.17b)

NNR
3P1,L

=
1

2
(d− 2)(d− 3), (8.17c)

NNR
3P2,T2 =

1

2
(d− 1)(d− 2)− 1, (8.17d)

NNR
3PJ ,T

= (d− 1)(d− 2), (8.17e)

NNR
3PJ ,L

= (d− 1). (8.17f)
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To get these results, we have used

(−gαα′)Pαα
′

⊥ = d− 2, (8.18a)

(−gαα′)Pαα
′

‖ = 1, (8.18b)

(−gαα′)(−gββ′)Pαβ
′

⊥ Pβα
′

⊥ = d− 2, (8.18c)

(−gαα′)(−gββ′)Pαβ
′

‖ Pβα
′

‖ = 1, (8.18d)

(−gαα′)(−gββ′)Pαβ
′

‖ Pβα
′

⊥ = 0, (8.18e)

By adding the number of states with the same J but different Jz, we can re-
trieve the normalization factor for unpolarized heavy-quark-pair in Eq. (5.16).
By choosing d = 4, we obtain the familiar L-S coupling results.

8.5 Expand polarized LDMEs to NLO with

perturbative NRQCD

To cancel the IR divergence from the NLO full QCD calculation, we need to
expand the polarized NRQCD LDMEs to NLO, as for the unpolarized case
in Sec. 5.3. We can calculate the NLO NRQCD corrections for these four-
fermion operators using the same method as Ref. [117]. For our purpose, we
only calculate the NLO correction of S-wave 4-fermion operators,

〈OQQ̄(1S
[1]
0 )〉 = 〈OQQ̄(1S

[1]
0 )〉LO − Cε

1

2Nc

{
〈OQQ̄T (1P

[8]
1 )〉LO + 〈OQQ̄L (1P

[8]
1 )〉LO

}
,

(8.19a)

〈OQQ̄(1S
[8]
0 )〉 = 〈OQQ̄(1S

[8]
0 )〉LO − Cε

{
CF

(
〈OQQ̄T (1P

[1]
1 )〉LO + 〈OQQ̄L (1P

[1]
1 )〉LO

)
+BF

(
〈OQQ̄T (1P

[8]
1 )〉LO + 〈OQQ̄L (1P

[8]
1 )〉LO

)}
,

(8.19b)

〈OQQ̄T (3S
[1]
1 )〉 = 〈OQQ̄T (3S

[1]
1 )〉LO − Cε

1

2Nc

COT , (8.19c)

〈OQQ̄L (3S
[1]
1 )〉 = 〈OQQ̄L (3S

[1]
1 )〉LO − Cε

1

2Nc

COL, (8.19d)

〈OQQ̄T (3S
[8]
1 )〉 = 〈OQQ̄T (3S

[8]
1 )〉LO − Cε

{
CF · CST +BF · COT

}
, (8.19e)

〈OQQ̄L (3S
[8]
1 )〉 = 〈OQQ̄L (3S

[8]
1 )〉LO − Cε

{
CF · CSL +BF · COL

}
, (8.19f)
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where

CST =
d− 2

d− 1
〈OQQ̄(3P

[1]
0 )〉LO +

1

2
〈OQQ̄T (3P

[1]
1 )〉LO + 〈OQQ̄L (3P

[1]
1 )〉LO

+ 〈OQQ̄T2 (3P
[1]
2 )〉+

1

2
〈OQQ̄T1 (3P

[1]
2 )〉LO +

1

d− 1
〈OQQ̄L (3P

[1]
2 )〉LO

− 2

d− 1
〈O[(3P

[1]
0 ), (3P

[1]
2 )L]〉LO − 〈O[(3P

[1]
1 )T , (

3P
[1]
2 )T1]〉LO,

(8.20a)

CSL =
1

d− 1
〈OQQ̄(3P

[1]
0 )〉LO +

1

2
〈OQQ̄T (3P

[1]
1 )〉LO +

1

2
〈OQQ̄T1 (3P

[1]
2 )〉LO

+
d− 2

d− 1
〈OQQ̄L (3P

[1]
2 )〉LO +

2

d− 1
〈O[(3P

[1]
0 ), (3P

[1]
2 )L]〉LO

+ 〈O[(3P
[1]
2 )T1, (

3P
[1]
1 )T ]〉LO,

(8.20b)

Cε =
4αs

3πm2
Q

1

εIR
(4πe−γE)

(
µr
µΛ

)ε
, (8.20c)

BF =
N2
c − 4

4Nc

, (8.20d)

and COT (COL) is the same as CST (CSL) except that all matrix elements
are in color octet state.

8.6 Compare with NLO NRQCD calculation

The complicated, numerical NLO NRQCD calculation for J/ψ polarization can
be easily understood with the result of LO polarized fragmentation functions.
In the following, we only give a qualitative analysis, while leaving the numerical
study in the future work.

The NLO NRQCD result for direct J/ψ production is shown in Fig. 3.11. In
Fig. 8.3, we also show the pT dependence of λθ for all four important channels
of J/ψ production. Recall that in the NRQCD factorization, the LO results

for the 3S
[8]
1 , 3P

[8]
J , and 1S

[8]
0 are dominated by the next-to-leading-power (NLP)

contribution, while the NLO results are dominated by the leading-power (LP)

contribution, both at large pT . For the 3S
[1]
1 channel in the NRQCD factoriza-

tion, the LO result is dominated by the next-to-next-to-leading-power (NNLP)
contribution, while the NLO result is dominated by the NLP contribution,
both at large pT . (More details in Sec. 3.5)

The results of polarized fragmentation functions are listed in Appendixes C
and D. In Table 8.2, we show the LO contributions from different channels to
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the J/ψ polarization. The single-quark fragmentations are not important since
they are suppressed at large z. The contribution with a fragmenting QQ̄ pair
in a tensor state is suppressed by the hard part [24]. These suppressed channels

are not showed in Table 8.2. For completeness, we also list the 1S
[8]
0 channel,

which contributes to unpolarized J/ψ production.

Table 8.2: The contributions of LO FFs to the J/ψ polarization. The labels
“T”, “L”, and “Un” represent transversely polarized, longitudinally polarized,
and unpolarized, respectively.

3S
[1]
1

3S
[8]
1

3P
[8]
J

1S
[8]
0

g T

v[1] L

v[8] L L

a[1]

a[8] T Un

For the 3S
[1]
1 channel, the LO NRQCD result is dominated by the NNLP

contribution, which is not included in the QCD factorization approach in
Eq. (4.4). The NLO NRQCD result is dominated by NLP contribution. From
Table 8.2, the dominant NLP contribution is from a fragmenting QQ̄ pair in
v[1] state, which gives longitudinally polarized J/ψ. This conclusion agrees
with the NLO NRQCD calculation in Fig. 8.3.

For the 3S
[8]
1 channel, both the LO and NLO NRQCD calculation are dom-

inated by LP contribution, which produces transversely polarized J/ψ. The
NRQCD calculation in Fig. 8.3 also shows the transverse polarization.

For the 3P
[8]
J channel, the LO NRQCD calculation is dominated by the NLP

contribution. At NLP, the fragmenting QQ̄ pair can be in either v[8] or a[8]

states, and these two states give opposite J/ψ polarization. Since the hard
part of v[8] is larger than that of a[8] [24], the produced J/ψ is longitudinally
polarized.

The NLO NRQCD calculation for the 3P
[8]
J channel is dominated by LP

contribution. In the QCD factorization, this contribution comes from the
NLO FFs from a single gluon to the 3P

[8]
J QQ̄ pair. Eq. (C.21) shows that

the longitudinally polarized J/ψ produced from the LP 3P
[8]
J contribution is

suppressed at large z region. However, the unpolarized FF in Eq. (A.14)

shows that the contribution of LP 3P
[8]
J channel to the polarization-summed

J/ψ production is, surprisingly, negative. Consequently, the LP 3P
[8]
J channel
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Figure 8.3: The pT dependence of λθ for 3S
[1]
1 , 1S

[8]
0 , 3S

[8]
1 , and 3P

[8]
J channels.

For the NLO 3P
[8]
J channel, the dot-dashed curve means the value of (dσ̂11 −

dσ̂00)/|dσ̂11+dσ̂00|. For other curves, the definition of λθ is in Eq. (8.1). Figure
taken from Ref. [12]

has a negative contribution to the transversely polarized J/ψ. Therefore, at
large pT ,

dσ̂11 − dσ̂00

|dσ̂11 + dσ̂00|
≈ dσ̂11

|dσ̂11|
= −1. (8.21)

This is exactly the behavior of the 3P
[8]
J channel in the NLO NRQCD calcula-
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tion shown in Fig. 8.3.
Recall that ψ′ is produced as almost unpolarized at current collider ener-

gies, which is called the polarization puzzle (see Sec. 3.4.4). A possible ex-
planation comes from the observation that the LP terms and the NLP terms
contribute to opposite polarization of ψ′ (Table 8.2 also works for the ψ′ pro-
duction). At the pT region where LP terms and NLP terms are approximately
equal, the cancellation of LP and NLP contributions may lead to unpolarized
ψ′ production. At relatively large pT , it is necessary to evolve the polarized
FFs at an input scale µ0 & 2mQ to the scale pT by solving the evolution equa-
tions in Eqs. (4.13) and (4.14). Notice the mixed kernel in Eq. (4.13) may
“smear” the contribution of the LP terms to the transversely polarized ψ′.
If this smearing effect is strong enough, the produced ψ′ could be unpolar-
ized even at relatively large pT . Detailed numerical study is needed to check
this conjecture. However it is fair to say that the QCD factorization has the
potential to solve the polarization puzzle.

To summarize, as a qualitative analysis, the polarized FFs can explain
the pT dependence of λθ in the NLO NRQCD calculation, for all important
channels of J/ψ polarization. Depending on the effect of the mixed kernel in
the single-parton evolution equation, the QCD factorization has the potential
to solve the polarization puzzle.
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Chapter 9

Phenomenological study of
QCD factorization

The predictive power of QCD factorization approach relies on our ability
to calculate the short-distance coefficients perturbatively, to solve the evo-
lution equations in Eqs. (4.13) and (4.14), and our knowledge of a large set
of multi-variable input fragmentation functions (FFs). In previous chapters,
we have calculated these fragmentation functions to heavy quarkonium with
input scale µ0 & 2mQ in the NRQCD factorization and further factorized the
non-perturbative contribution into a few NRQCD long-distance matrix ele-
ments (LDMEs). In this chapter, with these input FFs at hand, we apply the
QCD factorization to unpolarized J/ψ production. We compare the QCD fac-
torization prediction, including the leading (LP) and the first next-to-leading
power (NLP) in pT , to the next-to-leading-order (NLO) NRQCD calculation.

Specifically, we compare leading-order (LO) result of QCD factorization
without resuming large logarithms, to NLO NRQCD calculation (some modi-
fications are required, which will be clear later). Recall that the NLO NRQCD
calculation is extremely difficult and are only accomplished numerically (see
Sec. 3.4). If our simple analytical LO calculation can reproduce NLO NRQCD,
it will be a direct evidence of the power of QCD factorization.

To be self-contained, we repeat the QCD factorization formula in Eq. (4.4)
below,

dσA+B→H+X(p)

≈
∑
f

∫ 1

0

dz

z2
Df→H(z) dσ̂A+B→f(pc)+X(p/z)

+
∑
κ

∫ 1

0

dz

z2

∫ 1

−1

dζ1dζ2

4
D[QQ̄(κ)]→H(z, ζ1, ζ2) (9.1)
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× dσ̂A+B→[QQ̄(κ)](pc)+X(p(1± ζ1)/2z, p(1± ζ2)/2z),

where Df→H (D[QQ̄(κ)]→H) are single (double) parton FFs, which give the LP
(NLP) contribution,

∑
f runs over all parton flavor f = q, q̄, g, and

∑
κ in-

cludes all spin and color states of fragmenting heavy quark-antiquark pairs:
v[1,8], a[1,8], or t[1,8], where v, a and t refer to the vector, axial-vector, and tensor
states of the pair’s spin. In Eq. (9.1), the dσ̂ are short-distance coefficients
(SDCs) to produce on-shell fragmenting parton(s), and contain all information
about the initial colliding state, including convolutions with parton distribu-
tion functions (PDFs) if A and B are hadrons. Longitudinal momentum frac-
tions are defined as z = p+/p+

c , ζ1 = 2q+
1 /p

+
c and ζ2 = 2q+

2 /p
+
c , where p+, p+

c ,
and q+

1 (q+
2 ) are the light-cone “+” components of, respectively, the momenta

of the quarkonium, the fragmenting single parton or heavy quark-antiquark
pair, and half the relative momentum of the heavy quark and antiquark in the
amplitude (complex conjugate amplitude).

For numerical predictions, we need to use the SDCs and evolution kernels of
FFs and PDFs at the same order in their perturbative expansion to provide a
fully consistent factorized cross section. For example, for the LO contribution
to the cross section, we should use LO PDFs and FFs (evaluated with LO
kernels) and LO SDCs. It is important to note, however, that the order of
the factorized cross section should be distinguished from the order at which
we calculate the input FFs in NRQCD. To have the best model predictions
for the FFs, we should always use the input FFs calculated in NRQCD at
the highest order available in αs evaluated at the NRQCD factorization scale,
regardless the order at which we evaluate the perturbative contribution to the
factorized cross section.

However, the factorized power expansion in Eq. (9.1) and NRQCD factor-
ization organize the order of perturbative contributions to heavy quarkonium
production differently. NRQCD factorization calculation for large pT J/ψ pro-
duction starts at the order α3

s (see Fig. 3.16). For those heavy quark pair with

even charge parity, such as 1S
[8]
0 and 3P

[8]
J , LP Feynman diagrams first appear

at NLO. In Fig. 9.1, we show one of these Feynman diagrams and its de-
composition in the QCD factorization. This diagram is NLO in the NRQCD
factorization and should convolute with the NLO parton distribution func-
tions (PDFs). However, it has the LO SDC in the QCD factorization and
should convolute with the LO PDFs in principle. To compare with the NLO
NRQCD calculation, we also use the NLO PDFs for such diagrams in the QCD
factorization calculation.

In particular, in the power expansion we must independently specify the
order of evolution for parton distributions and the order at which we compute
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Figure 9.1: A typical Feynman diagram in NRQCD factorization calculation
and its factorized form in QCD factorization.

FFs as well as SDCs. Our choices for this numerical comparison are listed in
Table 9.1. To compare our LO predictions with NLO NRQCD calculations, we
in general evaluate Eq. (9.1) for both the LP and NLP contributions with the
LO hard parts [24], LO PDFs (CTEQ6L1 [129]), and FFs from Refs. [45, 46]

without including the evolution. We use, however, NLO PDFs for the 1S
[8]
0

and 3P
[8]
J channels at LP for the reason explained above.

Table 9.1: The choices for our LO QCD factorization calculations in Eq. (9.1)
for comparison with NLO NRQCD calculations. Explicit formulas for the
SDCs in Ref. [23, 24] for NLP and Ref. [25] for LP.

Channel 3S
[1]
1

3S
[1]
1

3S
[8]
1

3S
[8]
1

1S
[8]
0

1S
[8]
0

3P
[8]
J

3P
[8]
J

Power LP NLP LP NLP LP NLP LP NLP

PDFs - LO LO LO NLO LO NLO LO

FFs - α1
s α1

s α0
s α2

s α0
s α2

s α0
s

SDCs - α3
s α2

s α3
s α2

s α3
s α2

s α3
s

In Fig. 9.2, we show the ratios of our analytic LO predictions with the PDFs
and parameter choices in Table 9.1 to the numerical results of NLO NRQCD
calculations in various leading NRQCD channels. Note that the values of the
NRQCD matrix elements cancel in these ratios. The tilde of dσ̃QCD

LO indicates
the slightly modified LO contribution, with the choices specified in Table 9.1,
to better match the NLO NRQCD calculations. We choose

√
S = 7 TeV and

|y| < 0.9 for a typical kinematic regime at the LHC. We take charm quark

mass mc = 1.5 GeV, Λ
(5)
QCD = 165 MeV (Λ

(5)
QCD = 226 MeV) for LO (NLO) αs

with quark active flavors nf = 5, and CTEQ6M when NLO PDFs are needed
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[129], and set the renormalization, factorization, and the NRQCD scales to
µr = µf = pT and µΛ = mc, respectively.
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Figure 9.2: Ratio of J/ψ production rate from LO QCD factorization over
that of NLO NRQCD calculation for four leading NRQCD channels. See the
text for details.

As shown in Fig. 9.2, our slightly modified LO QCD calculation can al-
most reproduce the NLO NRQCD calculation channel-by-channel for pT >
10 − 15 GeV, depending on the channel. The comparison in Fig. 9.2 demon-
strates that the very complicated results of NLO NRQCD calculations can
be reproduced by the simple and fully analytic LO calculation of the QCD
factorization approach for pT > 10 GeV, and clearly indicates that pertur-
bative organization of the factorized power expansion is well suited to heavy
quarkonium production at high pT . It also shows the importance of the NLP
contribution. For comparison, Fig 9.3 shows the weight of LP contribution
in the NLO NRQCD calculations [18]. In this figure, the ratio for the 3S

[1]
1

channel is strictly zero. With NLP contributions, not only can we reproduce
the NLO NRQCD results for the 3S

[1]
1 and 1S

[8]
0 channels, the 3S

[8]
1 and 3P

[8]
J

channels also converge faster to the NLO NRQCD results.
To further illustrate the importance of NLP contributions, we plot the ratio

of the NLP contribution to the total LO QCD contribution in Fig. 9.4 for each
channel. Figure 9.4 clearly shows that NLP contributions are negligible for
the 3S

[8]
1 channel over the full pT range, and are small for the 3P

[8]
J channel

when pT > 20 GeV, beyond which it below 10 percent. However, the NLP
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Figure 9.3: Weight of LP contributions in NLO NRQCD calculation for J/ψ

production for four leading NRQCD channels. The weight for 3S
[1]
1 channel is

strictly zero. Figure taken from [18].

10 1005020 3015 70
-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

pT HGeVL

d
Σ�

L
O

N
L

P
�d
Σ�

L
O

p
Q

C
D

3S1
@1D 3S1

@8D 1S0
@8D 3PJ

@8D

Figure 9.4: Ratio of NLP contributions to total contribution in LO QCD for
each channel. dσ̃ means we have a special choice for PDFs. See text for details.
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contributions are crucial for 1S
[8]
0 and 3S

[1]
1 channels even if pT approaches 100

GeV. Since the FFs for a single active parton to fragment into a 3S
[1]
1 heavy

quark pair, calculated in NRQCD, vanish for both LO and NLO, as indicated
in Table 9.1 the two-loop gluon FF derived in Refs. [79, 130] was used for the

LP contribution to the 3S
[1]
1 channel in Fig. 9.4.

In above comparision with NLO NRQCD calculations, we did not include
the evolution of FFs. A complete LO QCD calculation should include the
evolution of FFs using the LO evolution kernels given in Ref. [40] and input
FFs calculated in NRQCD factorization at NLO [45, 46], and a set of updated
NRQCD LDMEs by fitting the data. From its consistency with the existing
NLO NRQCD results, and the control through evolution of its higher order
corrections, we expect such a LO QCD factorized power expansion to clar-
ify existing data on heavy quarkonium production at collider energies. Also,
because the LP 3S

[8]
1 and 3P

[8]
J channels, which produce predominantly trans-

versely polarized heavy quarkonia, appear not to be dominant [12, 18, 131],
heavy quarkonium production at current collider energies is strongly influenced
by the 1S

[8]
0 channel, and is more likely to be unpolarized.

In summary, we have shown that the LO contribution to hadronic J/ψ pro-
duction, calculated in a factorized expansion at LP and NLP, naturally repro-
duces all NLO results calculated in the NRQCD factorization for pT & 10 GeV.
With the FFs calculated assuming the NRQCD factorization at an input scale
of the order of mQ, NLP contributions are important, and potentially domi-
nant in the production of heavy quarkonia at the current collider energies, at
least for the 3S

[1]
1 and 1S

[8]
0 channels. The NLP contribution to the 1S

[8]
0 chan-

nel may dominate the total production rate if, as indicated by recent studies
[11, 18, 48], the sum of LP contributions from 3S

[8]
1 and 3P

[8]
J is relatively small.

If this is indeed the case, the asymptotic transverse polarization of J/ψ [26]
will require even higher pT to set in, and the theory will naturally accommo-
date unpolarized or slightly longitudinally polarized cross sections over a wide
range of pT .

123



Chapter 10

Summary and outlook

The heavy quarkonium production has been serving as an important process to
test our understanding of the strong interaction and QCD, both in perturba-
tive and non-perturbative aspects. With the Non-relativistic QCD (NRQCD)
factorization approach, tremendous progress has been made in the last twenty
years. Nonetheless, there are still many problems unsolved, such as the po-
larization puzzle and the non-universality of NRQCD long-distance matrix
elements (LDMEs). The recently proposed QCD factorization approach pro-
vides us new insight of this process and is expected to eventually solve these
puzzles. However, the application of this new approach is impeded by the lack
of knowledge of a large set of multi-variable input fragmentation functions
(FFs).

In this dissertation, we calculated the heavy quarkonium FFs at the input
scale µ0 & 2mQ in terms of the NRQCD factorization formalism. We evaluated
all short-distance coefficients for a perturbatively produced relativistic heavy
quark pair to evolve into either S-wave or P -wave non-relativistic heavy quark
pair to the first non-trivial order in αs. With our calculation, we effectively
expressed all the non-perturbative heavy quarkonium FFs (at least ten un-
known multi-variable functions for each heavy quarkonium state produced) in
terms of a few of NRQCD LDMEs per quarkonium state with perturbatively
calculated coefficients for their dependence on momentum fractions, z, ζ1 and
ζ2.

Although there is no formal proof of the NRQCD factorization approach to
evaluate the heavy quarkonium FFs, we found that all infrared divergences of
the FFs at this first non-trivial order are exactly the same as the next-leading-
order (NLO) expansion of NRQCD LDMEs, which ensures that the calculated
short-distance coefficients are infrared safe. In addition, we found that due
to the underlying symmetries of QCD, in particular, the charge conjugation
symmetry, the structure (or the dependence on the momentum fractions) of
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all short-distance coefficients/contributions to the FFs are very compact, with
only a few distinctive structures. Just like any perturbative calculation of
short-distance coefficients in a factorization approach, there is factorization
scheme dependence for the calculated coefficients at NLO and beyond. In this
dissertation, we used the dimensional regularization and the MS factorization
scheme. It is straightforward to convert our results into any other regulariza-
tion and factorization schemes.

In this dissertation, we also calculated the polarized heavy quarkonium
FFs at the input scale µ0 & 2mQ in the NRQCD factorization formalism. In
the QCD factorization approach, these universal input FFs determine the po-
larization of the observed heavy quarkonium. Consequently, these polarized
heavy quarkonium FFs are essential for the eventual answer to the polariza-
tion puzzle. By general symmetry arguments of SO(d− 1) group, we general-
ized the definitions of polarized NRQCD LDMEs to d dimensions. We found
it is necessary to introduce off-diagonal LDMEs. From these d-dimensional
definitions, we worked out the projection operators to project the outgoing
non-relativistic heavy quark pair into a specific polarized state. We also calcu-
lated these d-dimensional LDMEs to NLO in NRQCD effective theory, which
are important for the IR divergence cancellation in the calculation of P -wave
short-distance coefficients. With conventional dimensional regularization and
the MS factorization scheme, we evaluated all short-distance coefficients for
a perturbatively produced relativistic heavy quark pair to evolve into either
S-wave or P -wave polarized non-relativistic heavy quark pair to the first non-
trivial order in αs. We found that all IR divergences are canceled and the
calculated short-distance coefficients are infrared safe for the polarized heavy
quarkonium FFs.

In the first application of the QCD factorization approach with the calcu-
lated LO FFs, we showed that the LO contribution to hadronic J/ψ produc-
tion, calculated in a factorized expansion at LP and NLP, naturally reproduces
all NLO results calculated in the NRQCD factorization for pT & 10 GeV. We

found that the large NLO contributions to the 3S
[1]
1 and 1S

[8]
0 channels in the

NRQCD factorization are due primarily to leading-order (LO) NLP correc-
tions in the factorized power expansion. Specifically, with the heavy quark
pair FFs we calculated in the NRQCD factorization formalism, the LO con-
tribution at NLP nicely reproduces NLO NRQCD results for both the 3S

[1]
1

and 1S
[8]
0 channels for a wide pT range. We also found that although the 3S

[8]
1

and 3P
[8]
J channels are dominated by LP contribution at pT > 25 GeV within

an error of 10%, combination of LP and NLP contributions converges to NLO
NRQCD result from pT & 20 GeV.

The QCD factorization approach requires the short-distance coefficients
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and evolution kernels of FFs and PDFs at the same order in their perturbative
expansion to provide a fully consistent factorized cross section. In this first
application of the QCD factorization approach, in order to compare to the
NLO NRQCD results, we didn’t use the LO parton distribution functions
(PDFs) for LP 1S

[8]
0 and 3P

[8]
J channels at leading order of αs.

By applying the QCD factorization approach in a consistent manner and
resuming the large logarithms to all orders with the NLO input FFs we cal-
culated, the results of all essential channels will undoubtedly be improved.
Based on the new calculations in the QCD factorization approach, a more
detailed global study and refitting of NRQCD LDMEs for J/ψ cross sections
and polarization is clearly necessary. At the same time, the exploding data
from the LHC and other colliders definitely help to constrain these LDMEs
in an unprecedented precision. Moreover, with more data accumulated, new
observables will be measured and studied. This theoretical and experimen-
tal progress will eventually lead us to the full picture for heavy quarkonium
production in the near future.

A good understanding of the conventional quarkonium production is also
necessary for the research on the exotic quarkonium [132]. Recently, many nar-
row exotic quarkonium resonances, some of which have electric charges, have
been observed in the e+e− and hadron-hadron colliders. The discovery of the
charged heavy quarkonium states is the first definitive evidence of the exotic
hadrons. Research on the production mechanism of these exotic quarkonium
states, and its comparison to the mechanism of conventional quarkonium pro-
duction will definitely provide us deeper insight of the strong interaction and
QCD.
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Appendix A

Single-Parton Fragmentation
Functions to Unpolarized Heavy
Quarkonium

In terms of the NRQCD factorization, the heavy quarkonium fragmentation
functions from a single-parton are factorized in the form

Df→H(z;mQ, µ0) =
∑

[QQ̄(n)]

παs

{
d̂

(1)

f→[QQ̄(n)]
(z;mQ, µ0, µΛ)

+
(αs
π

)
d̂

(2)

f→[QQ̄(n)]
(z;mQ, µ0, µΛ) +O(α2

s)
}
×
〈OH

[QQ̄(n)]
(µΛ)〉

m2L+3
Q

,

(A.1)

where µ0 (or µΛ) is pQCD (or NRQCD) factorization scale, f could be gluon
(g), light quark (q), charm quark (c), bottom quark (b), or their anti-particles,
[QQ̄(n)] is an intermediate NRQCD QQ̄ state with quantum number n =
(2S+1)L

[1,8]
J , H could be ηc, J/ψ, ψ′, hc, χcJ , or their bottomonia counterparts,

and LDME 〈OH
QQ̄[n]
〉 summarizes the nonperturbative physics for the [QQ̄(n)]-

pair to evolve into a heavy quarkonium H at the energy scale below µΛ. The
denominator m

−(2L+3)
Q is introduced so that d̂ (1) and d̂ (2) are dimensionless.

Color singlet NRQCD LDMEs could be related to the value of (or the
derivative of) heavy quarkonium wave functions at the origin. The relation is
showed in Eq. (3.21) and we repeat it here,

〈O ηc

[cc̄(1S
[1]
0 )]
〉 =

1

4π
|Rηc(0)|2, (A.2)
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〈O J/ψ

[cc̄(3S
[1]
1 )]
〉 =

3

4π
|RJ/ψ(0)|2, (A.3)

〈O hc

[cc̄(1P
[1]
1 )]
〉 =

9

4π
|R′hc(0)|2, (A.4)

〈O χcJ

[cc̄(3P
[1]
J )]
〉 =

3(2J + 1)

4π
|R′χcJ (0)|2. (A.5)

Similar relations are existed for LDMEs of producing bottomonia. Values of
these wave functions at the origin could be either calculated from potential
model, or fixed by data on heavy quakonium decay. In contrast, color octet
NRQCD LDMEs could only be extracted from data of heavy quakonium pro-
duction at present.

In the rest of this appendix we list short-distance coefficients for all single-
parton fragmentation functions to S-wave and P -wave QQ̄-pair up to order
O(α2

s). At O(αs), we have

d̂
(1)

g→3S
[8]
1

=
δ(1− z)

(3− 2ε)(N2
c − 1)

, (A.6)

while all other channels vanish. Results at O(α2
s) are given in the following.

A.1 Gluon Fragmentation Functions

d̂
(2)

g→1S
[1]
0

=
1

Nc

{
(1− z)ln[1− z]− z2 +

3

2
z
}
, (A.7)

d̂
(2)

g→3S
[1]
1

= 0, (A.8)

d̂
(2)

g→1P
[1]
1

= 0, (A.9)

d̂
(2)

g→3P
[1]
J

=
4

9Nc

{[ QJ

2J + 1
− 1

2
ln
( µ2

Λ

4m2
Q

)]
δ(1− z) +

z

(1− z)+

+
PJ(z)

2J + 1

}
,

(A.10)

d̂
(2)

g→3S
[8]
1

=
1

12CF

[
A(µ0)δ(1− z) +

1

Nc

Pgg(z)
(

ln(
µ2

0

4m2
Q

)− 1
)

+
2(1− z)

z
− 4(1− z + z2)2

z

(
ln(1− z)

1− z

)
+

]
,

(A.11)

d̂
(2)

g→1P
[8]
1

=
1

12CF
[(1− z)ln(1− z)− z2 +

3

2
z], (A.12)
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d̂
(2)

g→1S
[8]
0

=
BF

CF
× d̂ (2)

g→1S
[1]
0

, (A.13)

d̂
(2)

g→3P
[8]
J

=
BF

CF
× d̂ (2)

g→3P
[1]
J

, (A.14)

where

BF =
N2
c − 4

4Nc

, (A.15)

Q0 =
1

4
, Q1 =

3

8
, Q2 =

7

8
, (A.16)

P0(z) =
z(85− 26z)

8
+

9(5− 3z)

4
ln(1− z), (A.17)

P1(z) = −3z(1 + 4z)

4
, (A.18)

P2(z) =
5z(11− 4z)

4
+ 9(2− z)ln(1− z), (A.19)

A(µ) =
β0

Nc

[
ln
( µ2

4m2
Q

)
+

13

3

]
+

4

N2
c

− π2

3
+

16

3
ln2, (A.20)

Pgg(z) = 2Nc

[ z

(1− z)+

+
1− z
z

+ z(1− z) +
β0

2Nc

δ(1− z)
]
, (A.21)

β0 =
11Nc − 2nf

6
. (A.22)

A.2 Same Flavor Heavy (Anti-)Quark Frag-

mentation Functions

Heavy quark Q has the same flavor as the outgoing QQ̄-pair.

d̂
(2)

Q→1S
[1]
0

=
2

3

C2
F

Nc

(z − 1)2

(z − 2)6
z(3z4 − 8z3 + 8z2 + 48), (A.23)

d̂
(2)

Q→3S
[1]
1

=
2

3

C2
F

Nc

(z − 1)2

(z − 2)6
z(5z4 − 32z3 + 72z2 − 32z + 16), (A.24)

d̂
(2)

Q→1P
[1]
1

=
2

3

C2
F

Nc

(z − 1)2

(z − 2)8
z(9z6 − 56z5 + 140z4 − 160z3 + 176z2 − 128z + 64),

(A.25)

d̂
(2)

Q→3P
[1]
0

=
2

9

C2
F

Nc

(z − 1)2

(z − 2)8
z(59z6 − 376z5 + 1060z4 − 1376z3 + 528z2

+ 384z + 192),

(A.26)
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d̂
(2)

Q→3P
[1]
1

=
8

9

C2
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d̂
(2)

Q̄→n = d̂
(2)
Q→n, for any n = 2S+1L

[1,8]
J . (A.33)

A.3 Light (Anti-)Quark Fragmentation Func-

tions

Light quark q could be u, d or s.

d̂
(2)

q→3S
[8]
1

=
1

12Nc

1

z

{
(z2 − 2z + 2)ln

[ µ2
0

4m2
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}
, (A.34)

d̂ (2)
q→n = 0, for n 6= 3S

[8]
1 , (A.35)

d̂
(2)
q̄→n = d̂ (2)

q→n, for any n = 2S+1L
[1,8]
J . (A.36)

130



A.4 Different Flavor Heavy (Anti-)Quark Frag-

mentation Functions

Heavy quark Q′ has a different flavor with outgoing QQ̄-pair.

d̂
(2)

Q′→3S
[8]
1

=
1

12Nc

1

z

{
(z2 − 2z + 2)ln

[ µ2
0

4m2
Q(1− z + z2η

4
)

]
−2z2

(
1 +

1− z − z2

2

4− 4z + z2η
η
)}

,

(A.37)

d̂
(2)
Q′→n = 0, for n 6= 3S

[8]
1 , (A.38)

d̂
(2)

Q̄′→n = d̂
(2)
Q′→n, for any n = 2S+1L

[1,8]
J , (A.39)

where η = m2
Q′/m

2
Q, with mQ the mass of the heavy quark in the outgoing

QQ̄-pair.

A.5 Comparison with Previous Results

Many of the above results have been calculated and are available in the liter-
ature. We present here a brief comparison with previous results.

For gluon fragmentation into a heavy quark pair, Eq. (A.7) and Eq. (A.13)
confirm the results in Refs. [79] and [110], respectively. Eq. (A.10) verifies the
result of Ref. [109] using the dimensional regularization, which is consistent
with the earlier work in Ref. [81] evaluated in a cutoff regularization scheme.
Summing over all J , Eq. (A.10) is also consistent with the result in Ref. [130].
Eq. (A.11) seems to have a very minor difference from the previous calculation

of g → [QQ̄(3S
[8]
1 )] +X fragmentation [107]. The minor difference seems to be

caused by the derivation of IACD in Eq. (A.11) of Ref. [107]. Our result for
IACD can be obtained by replacing −6 ln2 2 in Eq. (A.11) of Ref. [107] with
−2 ln2 2.

For light-quark fragmentation into a QQ̄ pair, Eq. (A.34) confirms the
result in Ref. [108].

For heavy quark fragmentation into a QQ̄ pair, Eqs. (A.23) and (A.24)
confirm the results in Ref. [80]. Eqs. (A.25)-(A.28) and Eq. (A.30) are the
same as the results in Ref. [133]. But, our result in Eq. (A.29) is slightly
different from both the result in Ref. [133] and that in Ref. [108], while the
results from these two authors are slightly different from each other for this
Q→ [QQ̄(3S

[8]
1 )] +Q channel.
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Appendix B

Double-Parton Fragmentation
Functions to Unpolarized Heavy
Quarkonium

B.1 Definitions and Notations

Similar to Eq. (A.1), in terms of NRQCD factorization, the QQ̄ pair fragmen-
tation functions could be factorized as

D[QQ̄(κ)]→H(z, ζ1, ζ2, µ0;mQ) =
∑

[QQ̄(n)]

{
d̂

(0)

[QQ̄(κ)]→[QQ̄(n)]
(z, ζ1, ζ2, µ0;mQ, µΛ)

+
(αs
π

)
d̂

(1)

[QQ̄(κ)]→[QQ̄(n)]
(z, ζ1, ζ2, µ0;mQ, µΛ) +O(α2

s)
}
×
〈OH

[QQ̄(n)]
(µΛ)〉

m2L+1
Q

,

(B.1)

where [QQ̄(κ)] is a perturbatively produced fragmenting heavy quark pair in a
particular spin and color state κ, which could be vector (v), axial-vector (a) or

tensor (t), with either color singlet or octet. Again, the denominator m
−(2L+1)
Q

is used so that d̂ (0) and d̂ (1) are dimensionless.
In the rest of this appendix we list our results of the short-distance coeffi-

cients for all QQ̄-pair fragmentation functions into S-wave NRQCD QQ̄-pair
up to NLO. In the following, we omit the subscript QQ̄ to use the notation,
d̂

(j)
κ→n (j = 0, 1) instead of d̂

(j)

[QQ̄(κ)]→[QQ̄(n)]
(z, ζ1, ζ2, µ0;mQ, µΛ). Note that we

do not list any results that vanish except d̂
(1)

t[1]→1S
[8]
0

, which is equal to zero only

in our present γ5 scheme.
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B.2 Results of fragmentation functions to S-

wave heavy quark pair

B.2.1 LO results

d̂
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v[1]→3S
[1]
1

=
1
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2
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d̂
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1

=
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=
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d̂
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J

(ζ1, ζ2, z), (B.5)

where s could be v, a or t, and ε = (D − 4)/2.

B.2.2 NLO results
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(B.6)
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∆0 + Ṽva(ζ1, ζ2)

]
ln
[ µ2

0

m2
Q

]
+ V2(ζ1, ζ2)

}
, (B.11)

d̂
(1)

a[1]→1S
[8]
0

=
1

8

CF
(N2

c − 1)
∆

[1]
−

z

(1− z)

{
ln
[ µ2

0

m2
Q

]
− 2 ln(2− 2z)− 1

}
, (B.12)

d̂
(1)

a[1]→3S
[8]
1

=
1

24

CF
(N2

c − 1)
∆

[1]
+ z(1− z)

{
( ln
[ µ2

0

m2
Q

]
− 2

3
)− 2 ln(2− 2z)− 1

3

}
,

(B.13)

d̂
(1)

a[8]→1S
[8]
0

= −z
4

CF
(N2

c − 1)2

{
δ(1− z)

[ 3

4
∆0

(
c̃× ln

[ µ2
0

m2
Q

]
+ c0

)
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where the zero result in Eq. (B.17) depends on the γ5 scheme, the 2/3 in factor
(ln[µ2

0/m
2
Q]− 2/3) comes from the ε-dependence of LO results, s could be v, a

or t. Ṽ , V , R and c are defined as
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B.2.3 Comparison with Other Calculations

A similar calculation for the color singlet process [QQ̄(a[1])] → [QQ̄(1S
[1]
0 )],

in the terminology of distribution amplitude, was completed by two groups
previously [102, 103], but, their results disagree with each other. Our result
in Eq. (B.11) confirms the calculation of Ref. [103]. For process [QQ̄(v[1])]→
[QQ̄(3S

[1]
1 )], our result in Eq. (B.6) disagree with the result obtained in [102].

Finally, we note that, soon after our paper was submitted, an independent cal-
culation for [QQ̄(a[1])]→ [QQ̄(1S

[1]
0 )], [QQ̄(v[1])]→ [QQ̄(3S

[1]
1 )] and [QQ̄(t[1])]→

[QQ̄(3S
[1]
1 )] was also reported in Ref. [106] in the terminology of distribution

amplitude. Our results for these three channels agree with that calculated in
Ref. [106].
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B.3 Results of fragmentation functions to P -

wave heavy quark pair

In this Appendix, we summarize our results of short-distance coefficients for
NRQCD factorization expansion of heavy quark-pair FFs to a heavy quarko-
nium through all possible P -wave states of a non-relativistic heavy quark pair.

B.3.1 LO results

In this part we list all non-vanishing LO short-distance coefficents.
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where s in the last equation could be v, a or t, and the dimension is defined
as D = 4− 2ε.

B.3.2 P-wave NLO results with an initial vector QQ̄-
state

In this subsection, we list results of NLO short-distance coefficients to the
fragmentation functions for a vector pQCD QQ̄-state to fragment into a P -
wave NRQCD QQ̄-state. Fragmentation channels that are equal to zero at
this order are not listed.
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B.3.3 P -wave NLO results with an initial axial-vector
QQ̄-state

Here, we list results of NLO short-distance contributions to the FFs from an
axial-vector pQCD QQ̄-state.
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B.3.4 P-wave NLO results with an initial tensor QQ̄-
state

Here, we list results of NLO short-distance contributions to the FFs for a
tensor pQCD QQ̄-state to a non-relativistic P -wave QQ̄-state.
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+ 2 ln 2 +

7

20

)
+

1

4
∆′′0

(
c× ln

[ µ2
0

m2
Q

]
+ c1

)
+ Ṽ ′t (ζ1, ζ2)

(
ln
[ µ2

0

m2
Q

]
− 7

5

)
+ V ′t3(ζ1, ζ2)

]
+
[
∆

[8]
+

′′ (z2 − 2z + 2)

2(1− z)+

+
∆

[8]
+

′

2
(2− z) + ∆

[8]
+ (1− z)

](
ln
[ µ2

0

m2
Q

]
− 7

5

)
−∆

[8]
+

′′
Rt10(z)− ∆

[8]
+

′

(1− z)
Rt6(z)−∆

[8]
+ Rt7(z)

}
,

(B.101)

d̂
(1)

t[8]→2S+1L
[1]
J

= d̂
(1)

t[1]→2S+1L
[8]
J

, (B.102)

where the dependence on z, ζ1, ζ2, and µF in the last equation is suppressed.
Ṽ , V , R and c above are defined as

Ṽt(ζ1, ζ2) = δ(ζ2)
{( 1

ζ1

)
1+

− (1)0+

}
+ (ζ1 ↔ ζ2), (B.103)

Ṽ ′t (ζ1, ζ2) = δ′(ζ2)
{( 1

ζ2
1

)
2−
− (1)0−

}
+ (ζ1 ↔ ζ2), (B.104)

Vt1(ζ1, ζ2) = δ(ζ2)
{1

2

(
1

ζ2
1

)
2+

−
(

ln(ζ2
1 )

ζ1

)
1+

− 7

3

(
1

ζ1

)
1+

+
(

ln(ζ2
1 )
)

0+

+
11

6
(1)0+

}
+ (ζ1 ↔ ζ2),

(B.105)

V ′t2(ζ1, ζ2) = δ′(ζ2)
{( 1

ζ3
1

)
3−
−
(

ln(ζ2
1 )

ζ2
1

)
2−

+
8

3

(
1

ζ2
1

)
2−
− 2

(
1

ζ1

)
1−

+
(

ln(ζ2
1 )
)

0− −
5

3
(1)0−

}
+ (ζ1 ↔ ζ2),

(B.106)

V ′t3(ζ1, ζ2) = δ′(ζ2)
{( 1

ζ3
1

)
3−
−
(

ln(ζ2
1 )

ζ2
1

)
2−

+
12

5

(
1

ζ2
1

)
2−
− 4

(
1

ζ1

)
1−

+
(

ln(ζ2
1 )
)

0− +
3

5
(1)0−

}
+ (ζ1 ↔ ζ2),

(B.107)

Rt1(z) = (z2 − 2z + 2) ln(2− 2z) +
5

3
z2 − 23

6
z +

10

3
, (B.108)

Rt2(z) = (z2 − 2z + 2) ln(2− 2z) +
1

6
z2 − 1

3
z − 1

6
, (B.109)
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Rt3(z) = (z2 − 3z + 2) ln(2− 2z) +
5

12
z2 − 1

4
z +

1

3
, (B.110)

Rt4(z) = −2

3

1

(1− z)+

z2 +
7

6
z + 2(1− z) ln(2− 2z)− 1

6
, (B.111)

Rt5(z) = (z2 − 2z + 2) ln(2− 2z)− 11

30
z2 +

22

30
z − 17

30
, (B.112)

Rt6(z) = (z2 − 3z + 2) ln(2− 2z) +
11

20
z2 − 79

60
z +

76

60
(B.113)

Rt7(z) = −10

9

1

(1− z)+

+
31

90
z + 2(1− z) ln(2− 2z) +

49

90
, (B.114)

Rt8(z) =

(
ln(2− 2z)

1− z

)
+

+
7

6

1

(1− z)+

+ (1− z) ln(2− 2z)− 5

3
z +

13

6
,

(B.115)

Rt9(z) =

(
ln(2− 2z)

1− z

)
+

− 1

3

1

(1− z)+

+ (1− z) ln(2− 2z) +
1

6
(1− z) ,

(B.116)

Rt10(z) =

(
ln(2− 2z)

1− z

)
+

− 1

5

1

(1− z)+

+ (1− z) ln(2− 2z)− 11

30
(1− z) .

(B.117)

Note, finally, that all these short-distance contributions to the FFs, so as
the FFs, are invariant under the transformation (ζ1 → −ζ1, ζ2 → −ζ2) and
the exchange ζ1 ↔ ζ2, including the crossing exchange (ζ1 → −ζ2, ζ2 →
−ζ1), which are the features derived from the general symmetries of QCD in
section 5.4.

B.3.5 Comparison with Other Calculations

Almost at the same time, color singlet to color singlet processes, means Eqs.
(B.43, B.44, B.67, B.68, B.91, B.92, B.93), were also calculated indepen-
dently in Ref. [106] in the terminology of distribution amplitude. We find
that Eq. (B.43, B.44, B.67, B.93) are consistent with their results. Eq. (B.68)
cannot be compared with their result due to we use a different γ5 scheme
from theirs. By using their γ5 scheme, we can indeed reproduce their results.
The γ5 scheme used in our calculation is discussed in section 6.2.1. Eqs. (B.91,
B.92) cannot be compared directly with the corresponding results in Ref. [106]
because the two calculations use different projection operators. By adopting
the projection operators used in Ref. [106] for these two processes, we can
reproduce their results.
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Appendix C

Single-Parton Fragmentation
Functions to Polarized Heavy
Quarkonium

In this appendix we list the short-distance coefficients for all single-parton
fragmentation functions to S-wave and P -wave polarized QQ̄-pair up to order
O(α2

s). In terms of the NRQCD factorization, the heavy quarkonium fragmen-
tation functions from a single-parton are factorized in the form in Eq. (8.6).
The polarized FFs and unpolarized FFs are related by Eq. (8.11). There-
fore for outgoing QQ̄ with n + 1 polarizations, we only give n polarized FFs
below. The other one can then be calculated with Eq. (8.11) and unpolar-
ized FFs.Those channels with all polarized FFs vanishing are not listed. The
∆-functions below are defined in Eq. (5.32).

C.1 gluon FFs

Leading order

d̂
(1)

g→[QQ̄(3S
[8]
1 , L)]

= 0. (C.1)

Next-to-leading order

d̂
(2)

g→[QQ̄(3P
[1]
1 , L)]

=
1

3Nc

{
δ(1− z)

[
− ln

[ µ2
Λ

m2
Q

]
+ 2 ln 2 +

1

2

]
+ z(2z2 − z + 1)

1

(1− z)+

}
, (C.2)
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d̂
(2)

g→[QQ̄(3P
[1]
2 , L)]

=
1

9Ncz4

{
δ(1− z)

[
− ln

[ µ2
Λ

m2
Q

]
+ 2 ln 2 +

1

2

]
+ 2z4 1

(1− z)+

− 216(z − 2)(z − 1)2 ln(1− z)

− z(2z5 + 5z4 + 38z3 − 468z2 + 864z − 432)
}
,

(C.3)

d̂
(2)

g→[QQ̄(3P
[1]
2 , T1)]

=
1

6Ncz4

{
δ(1− z)

[
− ln

[ µ2
Λ

m2
Q

]
+ 2 ln 2

]
+ 2z4 1

(1− z)+

− 48(z4 − 5z3 + 10z2 − 10z + 4) ln(1− z)

− 2z(z5 + 4z4 − 55z3 + 152z2 − 192z + 96)
}
, (C.4)

d̂
(2)

g→[QQ̄(3S
[8]
1 , L)]

=
Nc

(N2
c − 1)

1− z
z

, (C.5)

d̂
(2)

g→[QQ̄(1P
[8]
1 , T )]

=
Nc

6(N2
c − 1)

1− z
z2

[
z3 + 3z2 − 12z + 3(3z − 4) ln(1− z)

]
,

(C.6)

d̂
(2)

g→[QQ̄(3P
[8]
1 , L)]

=
BF

CF
× d̂ (2)

g→[QQ̄(3P
[1]
1 , L)]

, (C.7)

d̂
(2)

g→[QQ̄(3P
[8]
2 , L or T1)]

=
BF

CF
× d̂ (2)

g→[QQ̄(3P
[1]
2 , L or T1)]

, (C.8)

(C.9)

C.2 different quark FFs

d̂
(2)

q→[QQ̄(3S
[8]
1 , L)]

=
2(1− z)2

3Ncz(η2z2 − 4z + 4)
, (C.10)

where η = m2
q/m

2
Q.

C.3 same quark FFs

d̂
(2)

Q→[QQ̄(3S
[1]
1 , L)]

=
(N2

c − 1)2

6N3
c

z(1− z)2

(z − 2)6
(3z4 − 24z3 + 64z2 − 32z + 16),

(C.11)

d̂
(2)

Q→[QQ̄(1P
[1]
1 , L)]

=
(N2

c − 1)2

30N3
c

z(1− z)2

(z − 2)8
(55z6 − 232z5 + 236z4 + 224z3
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+ 592z2 − 640z + 320), (C.12)

d̂
(2)

Q→[QQ̄(3P
[1]
1 , L)]

=
(N2

c − 1)2

15N3
c

z(1− z)2

(z − 2)8
(35z6 − 312z5 + 1136z4

− 2016z3 + 1872z2 − 960z + 320), (C.13)

d̂
(2)

Q→[QQ̄(3P
[1]
2 , T1)]

=
(N2

c − 1)2

30N3
c

z(1− z)2

(z − 2)8
(75z6 − 580z5 + 1628z4

− 1872z3 + 1328z2 − 512z + 128), (C.14)

d̂
(2)

Q→[QQ̄(3P
[1]
2 , T2)]

=
4(N2

c − 1)2

15N3
c

z(1− z)4

(z − 2)8
(5z4 − 32z3 + 68z2 − 32z + 16),

(C.15)

d̂
(2)

Q→[QQ̄(3S
[8]
1 , L)]

=
1

6N3
c

(1− z)2

z(z − 2)6

[
12N2

c (z − 2)4 − 12Ncz
2(z − 4)(z − 2)2

+ z2(3z4 − 24z3 + 64z2 − 32z + 16)
]
, (C.16)

d̂
(2)

Q→[QQ̄(1P
[8]
1 , L)]

=
1

(N2
c − 1)2

d̂
(2)

Q→[QQ̄(1P
[1]
1 , L)]

, (C.17)

d̂
(2)

Q→[QQ̄(3P
[8]
1 , L)]

=
1

(N2
c − 1)2

d̂
(2)

Q→[QQ̄(3P
[1]
1 , L)]

, (C.18)

d̂
(2)

Q→[QQ̄(3P
[8]
2 , T1 or T2)]

=
1

(N2
c − 1)2

d̂
(2)

Q→[QQ̄(3P
[1]
2 , T1 or T2)]

. (C.19)

C.4 3PJ operators with orbital angular momen-

tum summed

Notice the T or L for 3P
[1]
J and 3P

[8]
J are the polarization of final S-wave heavy

quarkonium, as explained at the end of Sec. 8.1.

d̂
(2)

g→[QQ̄(3P
[1]
J , L)]

= − 1

2Ncz2

[
2(z − 1)(z2 + 8z − 12) ln(1− z)

+ z(2z3 + z2 − 28z + 24)
]
, (C.20)

d̂
(2)

g→[QQ̄(3P
[8]
J , L)]

=
BF

CF
× d̂ (2)

g→[QQ̄(3P
[1]
J , L)]

(C.21)

d̂
(2)

Q→[QQ̄(3P
[1]
J , L)]

=
(N2

c − 1)2

6N3
c

z(1− z)2

(z − 2)8
(23z6 − 192z5 + 676z4 − 1120z3

+ 1104z2 − 512z + 192), (C.22)

d̂
(2)

Q→[QQ̄(3P
[8]
J , L)]

=
1

(N2
c − 1)2

d̂
(2)

Q→[QQ̄(3P
[1]
J , L)]

. (C.23)
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Appendix D

Double-Parton Fragmentation
Functions to Polarized Heavy
Quarkonium

In this appendix we list the short-distance coefficients for all QQ̄ pair fragmen-
tation functions to S-wave and P -wave polarized QQ̄-pair up to order O(αs).
In terms of the NRQCD factorization, the heavy quarkonium fragmentation
functions from a QQ̄ pair are factorized in the form in Eq. (8.7). The polarized
FFs and unpolarized FFs are related by Eq. (8.11). Therefore for outgoing QQ̄
with n + 1 polarizations, we only give n polarized FFs below. The other one
can then be calculated with Eq. (8.11) and unpolarized FFs.Those channels
with all polarized FFs vanishing are not listed. The ∆-functions below are
defined in Eq. (5.32).

D.1 Leading Order

Those channels in which the unpolarized d̂ vanish are not listed below.

d̂
(0)

[QQ̄(v[1])]→[QQ̄(3S
[1]
1 , T )]

= 0, (D.1)

d̂
(0)

[QQ̄(v[1])]→[QQ̄(3P
[1]
2 , T2)]

= 0, (D.2)

d̂
(0)

[QQ̄(v[1])]→[QQ̄(3P
[1]
2 , T1)]

= 0, (D.3)

d̂
(0)

[QQ̄(a[1])]→[QQ̄(1P
[1]
1 , T )]

= 0, (D.4)

d̂
(0)

[QQ̄(a[1])]→[QQ̄(3P
[1]
1 , T )]

= 0, (D.5)
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d̂
(0)

[QQ̄(t[1])]→[QQ̄(3S
[1]
1 , L)]

= 0, (D.6)

d̂
(0)

[QQ̄(t[1])]→[QQ̄(1P
[1]
1 , L)]

= 0, (D.7)

d̂
(0)

[QQ̄(t[1])]→[QQ̄(3P
[1]
1 , L)]

= 0, (D.8)

d̂
(0)

[QQ̄(t[1])]→[QQ̄(3P
[1]
2 , T2)]

= 0, (D.9)

d̂
(0)

[QQ̄(t[1])]→[QQ̄(3P
[1]
2 , L)]

= 0. (D.10)

The corresponding color octet channels also vanish.

D.2 NLO - Vector

d̂
(1)

[QQ̄(v[1])]→[QQ̄(3S
[1]
1 , T )]

= 0, (D.11)

d̂
(1)

[QQ̄(v[1])]→[QQ̄(3P
[1]
2 , T1)]

= 0, (D.12)

d̂
(1)

[QQ̄(v[1])]→[QQ̄(3P
[1]
2 , T2)]

= 0, (D.13)

d̂
(1)

[QQ̄(v[1])]→[QQ̄(3S
[8]
1 , T )]

=
1

16Nc

(1− z)z∆
[1]
− , (D.14)

d̂
(1)

[QQ̄(v[1])]→[QQ̄(1P
[8]
1 , T )]

=
1

24Nc

(1− z)z∆
[1]
− , (D.15)

d̂
(1)

[QQ̄(v[1])]→[QQ̄(3P
[8]
1 , T )]

=
1

192Nc

{
8∆0δ(1− z)

(
− ln

[ µ2
Λ

m2
Q

]
+ 2 ln 2 +

1

2

)
+ 6∆

[1]
+

′′
z (1− z)− 3∆

[1]
+

′
z (2z − 3)

+ 4 z∆
[1]
+

[ 1

(1− z)+

− 2z + 3
]}
, (D.16)

d̂
(1)

[QQ̄(v[1])]→[QQ̄(3P
[8]
2 , T1)]

=
1

192Nc

{
8∆0δ(1− z)

(
− ln

[ µ2
Λ

m2
Q

]
+ 2 ln 2 +

1

2

)
+ 6∆

[1]
+

′′
z (1− z)− 3∆

[1]
+

′
z (2z − 1)

+ 4 z∆
[1]
+

[ 1

(1− z)+

− 2z + 1
]}
, (D.17)

d̂
(1)

[QQ̄(v[1])]→[QQ̄(3P
[8]
2 , T2)]

=
1

48Nc

z(1− z)∆
[1]
+ , (D.18)

d̂
(1)

[QQ̄(v[8])]→[QQ̄(3S
[8]
1 , T )]

=
1

16Nc(N2
c − 1)

(1− z)z∆
[8]
− , (D.19)
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d̂
(1)

[QQ̄(v[8])]→[QQ̄(1P
[8]
1 , T )]

=
1

24Nc(N2
c − 1)

(1− z)z∆
[8]
− , (D.20)

d̂
(1)

[QQ̄(v[8])]→[QQ̄(3P
[8]
1 , T )]

=
1

192Nc(N2
c − 1)

{
4(N2

c − 4)∆0δ(1− z)
(
− ln

[ µ2
Λ

m2
Q

]
+ 2 ln 2 +

1

2

)
+ 6∆

[8]
+

′′
z (1− z)− 3∆

[8]
+

′
z (2z − 3)

+ 4 z∆
[8]
+

[ 1

(1− z)+

− 2z + 3
]}
, (D.21)

d̂
(1)

[QQ̄(v[8])]→[QQ̄(3P
[8]
2 , T1)]

=
1

192Nc(N2
c − 1)

{
4(N2

c − 4)∆0δ(1− z)
(
− ln

[ µ2
Λ

m2
Q

]
+ 2 ln 2 +

1

2

)
+ 6∆

[8]
+

′′
z (1− z)− 3∆

[8]
+

′
z (2z − 1)

+ 4 z∆
[8]
+

[ 1

(1− z)+

− 2z + 1
]}
, (D.22)

d̂
(1)

[QQ̄(v[8])]→[QQ̄(3P
[8]
2 , T2)]

=
1

48Nc(N2
c − 1)

z(1− z)∆
[8]
+ , (D.23)

d̂
(1)

[QQ̄(v[8])]→[QQ̄(2S+1L
[1]
J , pol)]

= d̂
(1)

[QQ̄(v[1])]→[QQ̄(2S+1L
[8]
J , pol)]

, (D.24)

where pol is the polarization of the outgoing heavy quark pair.

D.3 NLO - Axial-vector

d̂
(1)

[QQ̄(a[1])]→[QQ̄(1P
[1]
1 , T )]

= 0, (D.25)

d̂
(1)

[QQ̄(a[1])]→[QQ̄(3P
[1]
1 , T )]

= 0, (D.26)

d̂
(1)

[QQ̄(a[1])]→[QQ̄(3S
[8]
1 , T )]

=
1

16Nc

z(1− z)∆
[1]
+ , (D.27)

d̂
(1)

[QQ̄(a[1])]→[QQ̄(1P
[8]
1 , T )]

=
1

48Nc

{
4∆0δ(1− z)

(
− ln

[ µ2
Λ

m2
Q

]
+ 2 ln 2 +

1

2

)
+ 2 z∆

[1]
+

[ 1

(1− z)+

− 3

2
z
]}
, (D.28)

d̂
(1)

[QQ̄(a[1])]→[QQ̄(3P
[8]
1 , T )]

=
1

192Nc

z(1− z)
(
6∆

[1]
−
′′

+ 9∆
[1]
−
′
+ 16∆

[1]
− ), (D.29)

d̂
(1)

[QQ̄(a[1])]→[QQ̄(3P
[8]
2 , T1)]

=
1

192Nc

z(1− z)
(
6∆

[1]
−
′′

+ 3∆
[1]
−
′
+ 8∆

[1]
− ), (D.30)

d̂
(1)

[QQ̄(a[1])]→[QQ̄(3P
[8]
2 , T2)]

=
1

48Nc

z(1− z)∆
[1]
− , (D.31)
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d̂
(1)

[QQ̄(a[8])]→[QQ̄(3S
[8]
1 , T )]

=
1

16Nc(N2
c − 1)

z(1− z)∆
[8]
+ , (D.32)

d̂
(1)

[QQ̄(a[8])]→[QQ̄(1P
[8]
1 , T )]

=
1

48Nc(N2
c − 1)

{
2(N2

c − 4)∆0δ(1− z)
(
− ln

[ µ2
Λ

m2
Q

]
+ 2 ln 2 +

1

2

)
+ 2 z∆

[8]
+

[ 1

(1− z)+

− 3

2
z
]}
, (D.33)

d̂
(1)

[QQ̄(a[8])]→[QQ̄(3P
[8]
1 , T )]

=
1

192Nc(N2
c − 1)

z(1− z)
(
6∆

[8]
−
′′

+ 9∆
[8]
−
′
+ 16∆

[8]
− ),

(D.34)

d̂
(1)

[QQ̄(a[1])]→[QQ̄(3P
[8]
2 , T1)]

=
1

192Nc(N2
c − 1)

z(1− z)
(
6∆

[8]
−
′′

+ 3∆
[8]
−
′
+ 8∆

[8]
− ),

(D.35)

d̂
(1)

[QQ̄(a[1])]→[QQ̄(3P
[8]
2 , T2)]

=
1

48Nc(N2
c − 1)

z(1− z)∆
[8]
− , (D.36)

d̂
(1)

[QQ̄(a[8])]→[QQ̄(2S+1L
[1]
J , pol)]

= d̂
(1)

[QQ̄(a[1])]→[QQ̄(2S+1L
[8]
J , pol)]

, (D.37)

where pol is the polarization of the outgoing heavy quark pair.

D.4 NLO - Tensor

d̂
(1)

[QQ̄(t[1])]→[QQ̄(3S
[1]
1 , L)]

= 0, (D.38)

d̂
(1)

[QQ̄(t[1])]→[QQ̄(1P
[1]
1 , L)]

= 0, (D.39)

d̂
(1)

[QQ̄(t[1])]→[QQ̄(3P
[1]
1 , L)]

= 0, (D.40)

d̂
(1)

[QQ̄(t[1])]→[QQ̄(3P
[1]
2 , T2)]

= 0, (D.41)

d̂
(1)

[QQ̄(t[1])]→[QQ̄(3P
[1]
2 , L)]

= 0, (D.42)

d̂
(1)

[QQ̄(t[1])]→[QQ̄(3S
[8]
1 , L)]

=
1

16Nc

z(1− z)∆
[1]
− , (D.43)

d̂
(1)

[QQ̄(t[1])]→[QQ̄(1P
[8]
1 , L)]

=
1

48Nc

z(1− z)∆
[1]
− , (D.44)

d̂
(1)

[QQ̄(t[1])]→[QQ̄(3P
[8]
1 , L)]

=
1

48Nc

{
2∆0δ(1− z)

(
− ln

[ µ2
Λ

m2
Q

]
+ 2 ln 2 +

1

2

)
+ z∆

[1]
+

[ 1

(1− z)+

− 4z + 1
]}
, (D.45)
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d̂
(1)

[QQ̄(t[1])]→[QQ̄(3P
[8]
2 , T2)]

=
1

48Nc

{
2∆0δ(1− z)

(
− ln

[ µ2
Λ

m2
Q

]
+ 2 ln 2 +

1

2

)
+ z∆

[1]
+

[ 1

(1− z)+

− z + 1
]}
, (D.46)

d̂
(1)

[QQ̄(t[1])]→[QQ̄(3P
[8]
2 , L)]

=
1

288Nc

{
4∆0δ(1− z)

(
− ln

[ µ2
Λ

m2
Q

]
+ 2 ln 2 +

1

2

)
+ 12 z∆

[1]
+

′′
(1− z)− 3 z∆

[1]
+

′
(3z − 2)

+ 2 z∆
[1]
+

[ 1

(1− z)+

− 7z + 5
]}
, (D.47)

d̂
(1)

[QQ̄(t[8])]→[QQ̄(3S
[8]
1 , L)]

=
1

16Nc(N2
c − 1)

z(1− z)∆
[8]
− , (D.48)

d̂
(1)

[QQ̄(t[8])]→[QQ̄(1P
[8]
1 , L)]

=
1

48Nc(N2
c − 1)

z(1− z)∆
[8]
− , (D.49)

d̂
(1)

[QQ̄(t[8])]→[QQ̄(3P
[8]
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=
1

48Nc(N2
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, (D.50)

d̂
(1)

[QQ̄(t[8])]→[QQ̄(3P
[8]
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=
1

48Nc(N2
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d̂
(1)

[QQ̄(t[8])]→[QQ̄(3P
[8]
2 , L)]

=
1

288Nc(N2
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{
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, (D.52)

d̂
(1)

[QQ̄(t[8])]→[QQ̄(2S+1L
[1]
J , pol)]

= d̂
(1)

[QQ̄(t[1])]→[QQ̄(2S+1L
[8]
J , pol)]

, (D.53)

where pol is the polarization of the outgoing heavy quark pair.

D.5 3PJ operators with orbital angular momen-

tum summed

Notice the T or L for 3P
[1]
J and 3P

[8]
J are the polarization of final S-wave heavy

quarkonium, as explained at the end of Sec. 8.1.
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D.5.1 Leading Order

d̂
(0)

[QQ̄(v[1])]→[QQ̄(3P
[1]
J , T )]

= 0, (D.54)

d̂
(0)

[QQ̄(a[1])]→[QQ̄(1P
[1]
1 , L)]

= 0, (D.55)

d̂
(0)

[QQ̄(t[1])]→[QQ̄(3P
[1]
J , L)]

= 0. (D.56)

The corresponding color octet channels also vanish.

D.5.2 Next-to-leading order

d̂
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, (D.58)
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d̂
(1)

[QQ̄(a[1])]→[QQ̄(3P
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d̂
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