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ABSTRACT

This thesis reports the results of an experiment to measure the differential
cross section for the production of massive muon pairs in 225 GeV/c 7 -nucleus
collisions. Furthermore, we have interpreted this cross section in terms of the
Drell-Yan quark-antiquark annihilation model in the mass continua between the
¥ and T family of vector meson resonances (defined as 4.5 GeV/c2<M<8.5
GeV/c?) and above the T (defined as M>11 GeV/c?).

We have measured the structure function of the pion and the K-factor in the

¥ to T mass continuum. Our results are consistent with previous experiments.

We have compared our measurement of the high mass differential cross sec-
tion with the predictions of the Drell-Yan model using structure functions meas-
ured in the 9 to T continuum. We find that the high mass cross section is con-
sistent with the Drell-Yan model provided that QCD leading log M %evolution is

included in the structure functions.

Finally, we have measured the transverse momentum dependence of the
differential cross section and have reported mean values of pr and p% in several

mass ranges.
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CHAPTER1

INTRODUCTION

Each of the hundreds of elementary particles that are currently known can
be placed into one of the following categories: hadrons, leptons and gauge
bosons. Of these, the hadrons are by far the most numerous and the least well
understood. The complexity of the spectrum and interactions of hadrons is attri-
buted to the fact that hadrons are composite, whereas leptons and gauge bosons
are elementary at the current limits of resolution. Our understanding of the
hadronic bound state, though incomplete, is nevertheless considerable. The basis

of this understanding is the quark /parton model of hadrons.

The Quark Model

In 1964 Gell-Mann and Zweig proposed the quark model of hadrons as a

1" The quark model asserts that

means of explaining the hadron spectrum.
hadrons are composed of particles which Gell-Mann called quarks. Quarks are
spin 1/2 fermions. They carry a charge of either +2/3 or -1/3 and a baryon
number of 1/3. Baryons are composed of three quarks. Mesons are composed of
a quark-antiquark pair. Just three kinds (flavors) of quarks were needed to
account for all of the hadrons known in 1964. Today, five flavors of quarks are
known, a sixth is likely and more are possible. The names and quantum numbers
of the quarks are listed in Table I.

In addition to flavor and charge quantum numbers, quarks carry an addi-
tional quantum number called color. The color degree of freedom is necessary to
prevent the quarks in certain baryons from violating the Pauli exclusion princi-
ple. For example, were it not for color, the wave function of the A**, which is
composed of three up quarks, would be totally symmetric, in violation of Dirac

statistics. Quarks come in three colors (e.g. red, green and blue by analogy with




the primary colors). In all known hadrons, the colors of the constituent quarks

add up to zero (i.e. white).

The quark model was reasonably successful in explaining the spectrum and
static properties of hadrons, but it is not a dynamical theory. The quark model
says little about the interactions of hadrons or about what holds quarks together.
The biggest problem with the quark model, however, is the fact that no quark

has ever been directly observed.

The Parton Model

Another view of hadron structure comes from the parton model of Bjorken
and Feynman.? The parton model was developed to explain the results of deep
inelastic electron-nucleon scattering experiments at SLAC in the late 1960’s. The
cross section for electron-nucleon scattering can be written in the following gen-

eral form in the single photon exchange approximation.

dc _ 4ma® E'
drdQ? Qt E

2Wi(v,Q3) sinzg + Wo(r,Q?) coszg (L.1)

The variables in this equation are as follows: @ = 1/137 is the fine structure con-
stant; E is the laboratory energy of the incident electron; E' is the laboratory
energy of the scattered electron; @ is the laboratory scattering angle of the elec-
tron; Q% = 4EE"' sin?0/2 is the absolute value of the four momentum transfer
squared; v = E-E' is the energy loss of the electron in the laboratory; W; and
W, are called structure functions. A complete theory of hadron structure and
interactions would predict the dependence of W; and W, on v and @2. No such

theory exists.

The SLAC experiments® found the surprising result that at large v and Q2
vW, depended only on the ratio @2/v. This phenomenon was predicted by
Bjorken and is known as Bjorken scaling.* Bjorken scaling can be explained by
assuming that the incident electrons scatter elastically off of pointlike, on-shell,
spin 1/2 nucleon constituents called partons. Specifically, the parton model
predicts that

vWolv,Q%) = 3] € f; () (I.2)



and
2emWy(v,Q%) = vWy(1,Q?) (1.3)
where
_ @ L4
= 2my (L.4)

and m is the mass of the target nucleon. The variable z can be interpreted as the
fraction of the nucleon momentum carried by the struck quark. Equation 1.3 is
called the Callan-Gross relation and is characteristic of spin 1/2 partons.® It has
been verified by experiment.® The functions f; () are called parton density func-
tions or structure functions for the flavor ¢. (Thus the term structure function
describes both f; (z) and W,(1,Q?) and Wy(r,Q?).) J;(z)/z is the probability of

finding a parton of flavor § with momentum fraction z.

The Quark/Parton Model

It is natural and logical to identify partons with quarks. Since the early
SLAC experiments, many elementary particle reactions have been studied within
the framework of the quark/parton model.” Chief among these are reactions
involving leptons and hadrons, including muon and neutrino deep inelastic
scattering, electron-positron annihilation into hadrons and the Drell-Yan process
(see below). The experimental results from each of these reactions supports the

quark/parton model.

In neutrino deep inelastic scattering, the signatures for the various neutrino-
quark and antineutrino-quark subprocesses differ to the extent that it is possible
to disentangle the contributions of the various elementary subprocesses to the
total reaction. Neutrino deep inelastic scattering provides the most detailed

information about nucleon constituents currently available.

The total cross section for electron-positron annihilation is sensitive to the
number and charges of quarks. The fact that there are three colors of quarks is
reflected in the total cross section. Hadron jets, which were first observed in
electron-positron annihilation, provide qualitative evidence for the existence of

quarks in the final state.



The Drell-Yan Model

Soon after the initial success of the parton model, Drell and Yan realized
that parton model ideas could be applied to the reaction that is now called the

Drell-Yan process,?

namely the production of large invariant mass lepton pairs
via the electromagnetic annihilation of a quark-antiquark pair in hadronic colli-

sions.
h, + hy — I*t + anything
The lowest order Feynman diagram for this reaction is shown in Figure 1.

In deep inelastic scattering the final state lepton is characterized by two
non-trivial variables (e.g. v and Q2). In dilepton production five non-trivial vari-
ables are required to specify the final state leptons. In both cases there is also a
trivial overall azimuthal angle. This means that one can obtain information from

the Drell-Yan process that can not be obtained from deep inelastic scattering.

The invariant mass and longitudinal momentum of the lepton pair contain
information about the longitudinal momenta of the annihilating quark and anti-
quark. The longitudinal momentum of the lepton pair is conventionally meas-
ured using a dimensionless variable called Feynman z.

291
Ty = 7

where p] refers to the longitudinal momentum of the pair in the hadron center of

(L5)

mass and s is the center of mass energy squared. There is also a dimensionless

variable defined for the invariant mass, M, of the lepton pair:

M2
8

T= (I.8)

There is a second pair of dimensionless variables, z, and z,, which are related to 7

and zp as follows:
NI, =7 (1.7)

T - Ty =Ip (18)



or

7 = -;-(zp + \/F + 47) (1.9)
2y = .;_(_IF + /2 + 47) (1.10)

The variables 7, and z, can be interpreted as the fraction of the nucleon's longi-
tudinal momentum carried by the annihilating quarks from the beam and target

hadrons respectively.

Two angular variables, cosf and ¢, specify the direction of the negative lep-
ton in the dilepton center of mass frame. These angles are measured relative to a
set of coordinate axes which depend only on the hadron momenta. Various
definitions of coordinate axes have been proposed in the literature.® They all
have two things in common. The z axis is chosen to approximate the direction of
the annihilating quarks and the hadrons lie in the zz plane. Note that the zz
plane and therefore ¢ is undefined if the transverse momentum of the lepton pair

is zero.

The magnitude and azimuth of the transverse momentum of the pair,

prand @5, complete the set of kinematic variables.

A straightforward application of parton model ideas yields the following

cross section for hadronic dilepton production.®

d’c 8ra’ . .
dMdzp — 9M3(z; + ) XP e?[]} (@) £ () + £* () S} (-""2)] (L.11)

The sum is over quark flavors. The superscripts on the quark densities refer to
the hadron from which the quark comes. The factor in front of the sum inéludes
the cross section for the annihilation of two pointlike, spin 1/2, unit charge fer-
mions into muons (i.e. oy=4ma?/3M?). The sum over structure functions is the
probability for finding two quarks with momentum fractions z, and z,. Equation

I.11 also includes a factor of 1/3 for color.

The angular dependence of the cross section is predicted to be

do

W o« (1 + cos®h) (1.12)

This angular distribution corresponds to a transversely polarized spin 1




intermediate state.

If the parton densities are known, the Drell-Yan formula predicts the cross
section without any free parameters and therefore provides an unambiguous test
of the parton model. Alternatively, the Drell-Yan formula provides a way of
measuring parton densities in unstable hadrons, such as pions and kaons, which

can not be measured in deep inelastic scattering.
At this point it is useful to consider in detail the specific reaction which is
the subject of this document,
 + N— ptp~ + anything
Here N stands for a nucleon in a heavy nuclear target (the experiment used
tungsten).

It is conventional to separate quark densities into ‘‘valence’” and ‘‘sea’ dis-
tributions. Valence quarks determine the quantum numbers of a hadron. Sea
quarks are virtual quark-antiquark pairs. In our experiment, we are not able to
separate valence and sea distributions since we used only one type of beam parti-
cle. We must therefore make a number of assumptions to enable us to extract
quark densities. We assume that the valence and sea quark densities of the pion
and nucleon are isospin and charge invariant. In the absence of information to
the contrary we assume that the strange sea of the pion is equal to the up and
down sea. The contribution of charm and heavier flavors to the pion and nucleon

sea is assumed to be negligible. We make the following definitions:

Pion valence structure function:

V7(a) = f7(2) - S](2) = [I(2) - [3(2) (1.13)
Pion sea structure function:

S™(2) = 7(@) = f3(z) = f(2) = [ }(3) ' (1.19)
Nucleon valence structure functions:

Ua) = 18(2) - f22) = [1(2) - [}(2) (1.15)

Dz) = f{(2) - f(z) = [22) - [2(2) (1.16)



Nucleon up and down sea structure function:

Mz) = [H(2) = J(5) = [3(3) = [{(2) (L17)
Nucleon strange sea structure function:

M) = [H(2) = [H(z) = SN = [7(2) (L.18)
The valence quark densities are subject to the following sum rules.

1 r

[ g =1 (L.19)
0 Z

1

) A2) gy — 2 (1.20)
0 2

1

f 2D 4= (L.21)
o Z

The Drell-Yan formula can now be written as follows.

d% 8ma’®
= V(z) Glag) + S™(= 1.22)
dMdzp 9]”3(1‘1 n -72)[ (7)) Gl(z5) (m) H(’"?)] (
where

Gla) = -;-[ 1.6 U(z) + 2.4 D(z) + 5 SN2 | (L23)
H(z) = %.[ 2.2 Ulz) + 2.8 D(z) + 10 SN(z) + 2 \(2) | (1.24)

We have assumed Z/A=.4 where Z and A are respectively the atomic

number and atomic weight of the target.

The Drell-Yan formula is successful in explaining a number of features
of the data.!® The rapid fall-off of the cross section with increasing mass
which is characteristic of the photon propagator is observed. Nucleon par-
ton densities extracted from muon pair data agree with those measured in
deep inelastic scattering. The angular distribution of equation 1.12 is
observed. The electromagnetic charge asymmetry predicted by equation 1.11
is observed. The valence ¥ antiquark of the #~ has twice the charge of the

valence d antiquark of the #*. Therefore, at high mass where the



annihilation of valence quarks and antiquarks dominates, the ratio of =~ to

at induced Drell-Yan production approaches the value four.

There are, however, two outstanding features of the data which are not
accounted for by equation I.11. The first discrepancy is the fact that lepton
pairs are observed to be produced with substantial transverse momentum.
The original (‘‘naive’’) Drell-Yan model has no mechanism by which the final
state leptons may acquire transverse momentum over and above the intrinsic
transverse momentum of the annihilating quarks. The intrinsic transverse
momentum of the quarks is expected to be in the neighborhood of 300
MeV/c independent of hadron momentum. What is observed is that lepton
pairs are produced with a mean transverse momentum substantially larger
than V2 X 300 MeV/c and that the mean transverse momentum increases
with increasing hadron energy. Mean transverse momenta of about 1 GeV/c
are typical at Fermilab and CERN energies. The second major discrepancy
is the overall normalization of the cross section. The ratio of the measured
cross section to the cross section predicted by the Drell-Yan model is called
the K-factor. The K-factor is measured to be approximately 2 (with large

systematic errors) almost independent of the kinematic variables.

Quantum Chromodynamics

It is likely that the failures of the Drell-Yan model are due to its failure
to include strong interaction corrections. The only reasonable candidate
theory of the strong interactions is Quantum Chromodynamics (QCD).
QCD is the non-Abelian gauge theory based on the symmetry group SU(3) of
color. QCD treats the color quantum number of quarks as a dynamical
charge. The color force is transmitted by eight massless vector gauge bosons
called gluons, which are analogous to the photon in QED. The gluons differ
from the photon in that they themselves are colored, whereas the photon is
electrically neutral. Figure 2 shows Feynman diagrams for several QCD sub-

processes that contribute to the Drell-Yan process.

In order to make predictions from QCD using perturbation theory, it is

necessary that the strong coupling constant, a, be small. It is possible to



meet this condition because the strong coupling constant is not really a con-
stant at all. Its value depends on the distance/momentum scale at which it
is measured. QCD is said to possess a running coupling constant. Leading
order perturbation theory predicts the following dependence of a; on the

momentum scale, QZ, at which it is measured, for large Q2.

127
2y — (1.25)
a
49°) (33-2n)) In(Q */A%)
where n; is the number of excited quark flavors and A is the QCD scale
parameter. One sees from equation 1.25 that as Q? goes to infinity, o,(Q?)

tends to zero. This fact is known as asymptotic freedom.

Asymptotic freedom accounts for the success of the parton model. The
smallness of o,(Q?) at large @2 explains why quarks behave as if they are
nearly free in large momentum transfer reactions involving leptons. On the
other hand, the fact that a,(Q?) grows at large distances (low @2) may
explain why no quark has ever been liberated from a hadron. There is a
hypothesis called color confinement which states that infinite energy is
required to remove a quark from a hadron. Color confinement has not been
proved. In fact, little is known about the long distance/low energy limit of
QCD (including the structure of hadronic bound states) due to the extreme
mathematical difficulty of the theory when a, is large. In the short
distance/high energy limit, however, there is hope that perturbation theory

can be used to make reliable predictions.

There is no really clean test of QCD because experiments are not able
to observe quarks and gluons directly. The current strategy for testing QCD
is to ‘‘factorize’” cross sections into ‘‘hard” and ‘“soft” pieces. The hard
piece consists of perturbatively calculable scattering subprocesses involving
quarks and gluons. The soft piece consists of phenomenological quark and
gluon densities that describe the distribution of partons in initial state
hadrons and fragmentation functions that describe how final state partons

evolve into hadron jets.

Despite an appealing physical motivation and despite the success of the

parton model, it is not intuitively obvious that factorization is valid in QCD.
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For a while, factorization was the subject of a theoretical controversy.
Bodwin, Brodsky and Lepage pointed out that initial state interactions over
long distance and time scales could induce correlations between the wave
functions of the incoming hadrons and spoil factorization in the Drell-Yan
process.!! Recently, however, Collins, Soper and Sterman have proved the
validity of factorization in the Drell-Yan process to all orders in perturbation

theory.!2

If factorization is valid, then the Drell-Yan cross section can be calcu-
lated as a perturbation series in a,(M2). (M? plays the role of the momen-

tum scale in the Drell-Yan process.)
0= Ay + a,(MHA, + a}(MHA, + - - (1.26)

Furthermore, at each order in perturbation theory, the coefficient of a™(M?)

can be expanded in a series of logarithms of the large number M2/A2,
A, = B, In"MZ%/AY) + B, . 0"} (M2/A%) + - -- (1.27)

These large logarithms physically correspond to multiple hard collinear gluon
radiation. It can be seen from equation 1.25 that the large logarithm,
In(M2/A?) is proportional to 1/a,(M?). Thus, to take into account all terms
which are proportional to any given power of a,(M?) requires summing over
an infinite number of terms of the perturbation series. In the so-called lead-
ing log approximation (LLA) one retains only the largest power of In(M 2/A%)
at each order in perturbation theory (i.e. those terms that contain zero
powers of a{M?)). The leading log approximation leads to the remarkable
result that the naive Drell-Yan cross section is unmodified except that the
quark densities acquire a calculable M 2-dependence that violates scaling.!?

Furthermore, the M2-dependence of the Drell-Yan quark densities is the

same as the QZ2-dependence of the quark densities in deep inelastic scatter-

ing.
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do _ _ 8m?
dezF LLA 9M3(31+32)
x Y e[fie, MO MY + [, MOz M) (L28)

The actual form of the M?-dependence of the structure functions is given to

first order by the Alterelli-Parisi equations.!*

The next to leading log (O(a,)) terms are large. Their main effect at
experimentally accessible values of 7 and zp is to change the overall normali-
zation of the Drell-Yan cross section by a factor (the theoretical K-factor) of
1.6.'* It has been argued that the largest contributions to the K-factor are
the first term in an exponential power series.!® If this is true, then QCD

predicts a K-factor of about 1.9, in rough agreement with experiment.

QCD accounts reasonably well for the py integrated Drell-Yan cross sec-
tion. QCD retains the successes of the naive Drell-Yan model and provides
an explanation for the K-factor. QCD has also been used to try to account
for the measured py spectrum in Drell-Yan production. Unlike the naive
Drell-Yan model, QCD allows Drell-Yan pairs to acquire transverse momen-

tum by recoiling against gluons.

First order QCD calculations predict effects that are qualitatively simi-
lar to those observed in the data.!” In particular, first order QCD predicts
the existence of a high-p tail in the cross section and the growth of mean py
with energy. However, first order QCD does not satisfactorily account for
the data quantitatively.’® The QCD prediction for the cross section diverges
at pr==0, but it can be regularized by convoluting it with an intrinsic quark
pr-distribution. One problem is that unreasonably large values of mean
intrinsic py (<pr?>~1(GeV/c)?) are required to fit the pion data. Another
problem is that even after regularization, the theory underestimates the nor-
malization of the pion data at high pr by a factor of about 2. With respect
to the latter problem, it appears that second order QCD renormalizes the
first order prediction by a factor (called K' ) of about 2.!* This is analo-

gous to the way first order QCD renormalizes the pr-integrated prediction
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by the K-factor.

There is a fundamental difficulty in applying QCD to the problem of
the Drell-Yan prspectrum. Perturbation theory is only applicable at very
large pr (pr~M). When two large momentum scales are present (e.g. when
A< pp<< M), large logarithms of the form In(M?2/p;?) appear. These large
logarithms generate large contributions at all orders in perturbation theory.
Physically this corresponds to multiple soft gluon radiation. Much theoreti-
cal work has been in trying to sum the leading In(M2/p;?) contributions to
all orders in perturbation theory.?® Soft gluon predictions for the Drell-Yan
prspectrum appear to reproduce the data reasonably well with moderate
values of mean intrinsic pg,2' although the problem is not yet completely

solved.

The Experiment

This document reports a portion of the results of Fermilab experiment
326. The experiment has measured the production of muon pairs by 225
GeV/c negative pions incident on a tungsten target. The subject of this
document is a measurement of the differential cross section for the above
reaction in the high mass continuum region where the Drell-Yan process is
the dominant production mechanism. We define the high mass continuum

by the following cuts.
45 < M < 85 GeV/c?
M > 11 GeV/c?

These cuts are designed to eliminate the contribution of J/¥ and T vector

meson production to the dimuon signal.

Chapter II describes the apparatus. Chapter IIl describes the primary
analysis (i.e. the extraction of the dimuon signal). Chapter IV describes how
the dimuon signal was converted into a differential cross section. Chapter V
describes the interpretation of the differential cross section and presents the

final results.



CHAPTER I

THE EXPERIMENT

The experiment was performed in the proton west high intensity area at Fer-
milab. An intense beam of negative pions with an energy of 225 GeV was
focussed onto the experimental tungsten target. Muons produced in the target
were detected by a solid steel magnetic spectrometer located downstream of the
target. A diagram of the apparatus is shown in Figure 3.

The detector consisted of a steel collimator followed by seven solid steel
toroidal magnets. There was a 20 mrad conical vacuum pipe down the middle of
the apparatus. To be detected, muons were required to penetrate the collimator
and at least four magnets. Other detectable secondaries were absorbed in the
steel, or. together with the non-interacted beam, they went down the 20 mrad
hole.

Following each of the seven magnets, there was a gap which was instru-
mented with a scintillation counter hodoscope (for triggering) and a set of drift
chambers (for tracking). The muons’ momentum was inferred from the magnetic
bend as the muons traversed the magnets.

Viewed from the front (beam’s eye view), the spectrometer had an eight-fold
azimuthal symmetry. The eight octants were instrumented independently. To
be detected, the muons from a muon pair were required to go into separate

octants.

The Beam

The secondary beam consisted of negative hadrons (mainly pions) produced
by the interaction of the 400 GeV/c primary proton beam with a one interaction
length berylium production target. The secondary beamline collected and

momentum analyzed forward produced hadrons and transported them 740 feet to

13 |
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the experimental target (see Fig. 4). A more complete description of the secon-

dary beamline can be found in Ref. 22.

The nominal momentum of the beam was 225 GeV/c. A Monte Carlo calcu-
lation yielded a mean momentum of 221 GeV/c with a FWHM of 20
GeV/c.2 The spot size at the experimental target was typically .3” horizontal by
.5” vertical (FWHM). In addition to negative pions, the beam contained approxi-

mately 5% negative kaons and less than 1% anti-protons.?4

The beam was accompanied by a ‘‘halo” of muons, of both signs, arising
from the decay of beam hadrons and from the decay of hadrons in the vicinity of
the production target. A system of spoiler magnets reduced the flux of halo
muons to about 1% of the beam flux. Special care had to be taken both in the

trigger and in the analysis to minimize the effect of the halo muons.

The accelerator delivered beam in one second long spills about twelve
seconds apart. Because of the RF used to accelerate the primary protons, the
beam arrived in “RF buckets’ less than two nanoseconds long and about 18 nsec
apart. Typical intensities were 2X 102 primary protons per spill at the produc-

tion target and 5% 10% pions at the experimental target.

Beam Monitors

A number of devices were used to monitor the primary and secondary
beams. Segmented wire ionization chambers (SWIC’s) measured the profiles of
the primary and secondary beams at several points in the beamlines, including
immediately upstream of the targets. The intensity of the primary proton beam
was measured by a secondary emission monitor (SE700) located immediately
upstream of the production target. The intensity of the secondary beam was
measured by two ionization chambers (IC710 and IC711/712/713) located in

front of the experimental target.

The electrodes of both ionization chambers were 4” diameter circles. The
anode of IC711/712/713 was divided into a set of concentric rings which meas-
ured separately the pion flux within a radius of .25”, from .25” to .5” and from
.5” to 2.0”. This enabled us to determine the fraction of the beam which hit the
.5” radius target. Typically 80% of the beam hit the target. The absolute
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normalization of the pion flux was obtained from IC710. The scale factor of this
device was measured in a previous experiment. A detailed report of the measure-
ment of the scale factor can be found in Ref. 22. Briefly, the scale factor was
measured using four independent methods: counting of beam particles at low
intensity, foil calibration using protons, foil calibration using pions and theoreti-
cal calculation. The four methods gave consistent results. The quoted error of
the s«i-ale factor is +10%.

I'inally, the pion beam which interacted in the experimental target was mon-
itored by a scintillation counter telescope (called ME for monitor east) which
viewed the experimental target at 90°. The output of ME, alone and in coin-
cidence with the experimental livetime gate, was scaled. This information

enabled us to correct the integrated pion flux for deadtime.

The Target

The data which are reported in this thesis were taken with a single tungsten
target. The shape of the target was a cylinder 1.04” in diameter and 8.04” long.
The target was composed of an alloy of 97% tungsten sintered in a copper-nickel
matrix. The absorption length of this alloy is 4.63” and the radiation length is
157,

Collimator and Magnets

Immediately downstream of the target there was a 48” steel collimator. The
front face of the collimator was 13.5” downstream of the center of the target.

There was a 1.5” diameter cylindrical hole down the center of the collimator.

Behind the collimator were seven toroidal steel magnets. See Table 2 for the
dimensions of these magnets. There was a 30 mrad conical hole down the center
of the magnets inside of which was the 20 mrad conical vacuum pipe. The apex
of the cones was located 77 downstream of the center of the target. The space
between the magnets and the vacuum pipe was packed with lead shielding. The
outer surfaces of the first two magnets were cylindrical. The outer surfaces of
the last five magnets were octagonal. The octagonal magnets were originally part

of the Brookhaven Cosmotron. All of the magnets were approximately 56” long
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with about 12” between the magnets. The magnetic field in the magnets was
approximately that of saturated iron (i.e. about 18 kG), producing a transverse
momentum kick of about .75 GeV /c per magnet. The detailed shape of the mag-
netic field was calculated numerically from Maxwell's equations using the meas-
ured permeability of the steel. The total magnetic flux through the steel of each
magnet was measured by integrating the voltage induced on a large induction
loop as the magnet current was changed from forward to reverse. The agreement

between the calculation and the measurements was better than 2%.

Trigger Scintillators

The apparatus was instrumented with 272 trigger scintillation counters (34
per octant). These counters were arranged in hodoscopes placed in the gap
behind each of the seven magnets. Each hodoscope was segmented azimuthally
into octants and radially within each octant. Each octant and gap position con-
tained from 4 to 7 counters. Figure 5 shows the gap 3 trigger hodoscope. Table
3 gives the dimensions of the counters in each gap. The counters were con-
structed out of .25” thick NE 110 plastic scintillator. Light was collected by
lucite light guides optically coupled to the scintillator and an Amperex 2232B or
56AVP photomultiplier tube. The high voltage to each tube was adjusted to pro-

duce a signal of 75 mV from a Co® source.

Trigger

The task of the trigger was to indicate when target produced muons had
penetrated through at least four magnets in each of two octants. This task was
made difficult by the presence of halo muons. Target muons and halo muons
populated different regions of phase space. Halo muons were nearly always
almost parallel to the beam axis and need not have gone close to the target while
target muons could only be accepted if they were produced at angles in excess of
about 30 mrad. The trigger was designed to be efficient only in regions of phase

space populated by target muons.

A functional block diagram of the trigger is shown in Figure 8. The trigger

logic was organized into two levels. Each level decided whether there was a
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target muon in at least two octants. The two levels differed in speed and level of

sophistication. A detailed description of the trigger can be found in Ref. 25.

Signals coming from each of the photomultipliers were discriminated against
a 30 mV threshold and reshaped into a 10 nsec wide logic pulse. The resulting
signals were fanned out three ways. One signal was sent to a set of multiplexed
scalers. The second signal was stored in a 100 nsec delay line to await the deci-

sion of the first level trigger logic. The third signal went to the first level trigger.

The first level trigger logic consisted of three fast coincidence matrices called
M)y, My3 and M, in each octant followed by the so-called post matrix logic
(PML). Figures 7 and 8 are diagrams of the matrices and PML respectively. The
purpose of the coincidence matrices was to identify target muons in each octant.
M,, formed coincidences between counters in gap 1 and gap 2. Each matrix
point could arbitrarily be turned on or off, but ordinarily only those points popu-
lated by target muons were turned on. Likewise M,3; formed coincidences
between counters in gap 2 and gap 3. M, formed coincidences between counters
in gap 4 and a logical “true” with all coincidence points allowed. Signals from
each of the 24 matrices went to the PML. In the PML, the M;,, My3 and M, sig-
nals were placed in coincidence to create a single matrix signal for each octant.
This “matrix AND" represented the first levg] trigger’'s estimate of whether there
was a target muon in a given octant. The eight matrix signals were combined to
form an eight bit address for a programmable 256 by 1 bit lookup table. Logical
1's were normally loaded into addresses which corresponded to two or more
octants with muons. For 38% of the data, all octant pairs were allowed by the
PML. For the rest of the data, the three hottest adjacent octant pairs were
excluded. This allowed us to significantly reduce our trigger rate without
affecting our high mass acceptance. A true output from the PML constituted a
first level trigger. The first level trigger was pipelined so that it could make a

decision whether to trigger or not for every RF bucket without any deadtime.

Three things happened when a first level trigger occurred. First, the counter
signals which had been stored in the 100 nsec delay lines were latched. This
latch information was used by the second level trigger and was read out with

each event. Second, the first level trigger was sent to the drift chamber encoder
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system via delay line. This caused the drift chamber information to be frozen
while the second level trigger was engaged. Third, the first level trigger caused

the second level trigger to be invoked.

The second level trigger consisted of the trigger processor and ﬁnalAdecision
logic (FDL). A diagram of the second level trigger is shown in Figure 9. The
trigger processor compared the actual pattern of struck counters in each octant
with a Monte Carlo generated list of 310 patterns that were consistent with the
propagation of a target produced muon. Extra counters were allowed. In addi-
tion to deciding whether there was a muon in each octant, the trigger processor
also determined the most probable sign of the muon. Trigger processor informa-
tion from each octant was sent to the FDL which required matches in at least
two octants. Most of the time, the FDL was programmed to reject muon pairs
with the same charge. The second level trigger took 15 psec to reach a decision,
during which time the detector was dead. The second level trigger was typically
invoked 10,000 times per spill, producing a 15% deadtime. If the FDL was
satisfied, it interrupted the on-line computer and the event was read out. Other-
wise, the FDL sent a fast reset to the rest of the detector electronics and data-

taking was resumed.

Drift chambers

The detector was instrumented with 120 drift chambers containing 3616
sense wires for the precise measurement of muon trajectories. The drift chambers
were of two different designs. 112 of the chambers were part of the original
detector design. Two of these were upstream of the trigger counters in each
octant and gap position. In gaps 2-7, the wires in the upstream chamber were
perpendicular to the octant bisector. These chambers were known as X
chambers. The downstream chambers in each octant were called U chambers and
had their wires inclined at an angle of 100 mrad to the X wires. Information
from the X and U chambers allowed us to reconstruct the muon’s azimuthal coor-
dinate. In gap 1 the order of the X and U chambers was reversed. In addition
gap 1 had eight smaller X chambers which were added to improve the ability of
the detector to take high rates. The 112 old chambers differed in their dimen-

sions and number of sense wires (see Table 4) but used the same basic cell. The
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basic cell was a 2” by .75” rectangular tube with a .001” diameter gold-plated
tungsten sense wire running down its center. Each chamber contained two planes
of cells offset by half of a cell to resolve left-right ambiguity (see Fig. 10). The
long sides of each cell were aluminum planes which were held at ground. The
short sides of each cell were aluminum I-beams which acted as cathodes for the
cell. The I-beams were insulated from the ground planes by G10 strips and were
held at a potential of -1200 volts. The sense wires were held at a potential of
2300 volts. The gas used was an equal mixture by volume of argon and ethane.

The maximum drift time in a cell was .5 usec.

The basic cell of the newer gap 1 chambers was a .25” stainless steel drift
tube with the same kind of sense wire as the old chambers at its center. The
drift tubes were stacked in two half-offset planes (see Fig. 11). The tubes were
held at ground and the sense wires were held at 2400 volts. The gas was the
same as in the old chambers. Unlike the old chambers, which met squarely and
had a dead region at the octant boundary, the new chambers overlapped at the
octant boundary. The new chambers were located upstream of the old chambers

and covered only the inner 8” of gap 1.

Drift Chamber Readout

The drift chamber readout is described more completely elsewhere.?® Here I

will only give a summary.

Signals originating on the drift chamber sense wires were capacitively cou-
pled inside the chambers to twisted pair transmission lines which carried the sig-
nals to the outside of the chamber. Amplifier/discriminator cards for the old
chambers were mounted directly on the chamber frame. The amplifiers for the
new chambers communicated with the chambers via 10 foot long coaxial cables.
The amplifiers converted raw signals from the sense wires into 75 nsec long
differential ECL logic pulses. These pulses were transmitted to the drift chamber
encoder system via twisted pair ribbon cables.

The encoder system was basically a set of digital delay lines which kept a
.625 psce history of the hits for each wire in the system. These delay lines stored

the presence or absence of a wire hit in time bins of half of an RF bucket (9
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nsec). After each hit there was an encoder deadtime of between 75 and 150 nsec

for that wire, which is similar to the amplifier deadtime.

The encoder system was frozen after every first level trigger (after a delay to
allow for the maximum drift time). If the second level trigger subsequently
rejected the event, the FDL generated a fast reset which would cause the drift
chamber encoder system to resume the logging of drift chamber hits. If the
second level trigger was satisfied with the event, the hits stored in the encoder

system were read out and eventually written onto magnetic tape.

Data Acquisition

The experiment was controlled by a PDP-8 computer which communicated
with the detector electronics using CAMAC. This computer was responsible for
programming the trigger, reading in data from the detector and writing data onto
magnetic tape. Each second level trigger generated a priority interrupt to the
IPDP-9. During the interrupt, the PDP-9 read out the fixed data for the event.
The fixed data primarily consisted of the counter latch information and trigger
processor information. The PDP-9 also instructed nine 8X300 microprocessors to
begin a sparse data scan of the drift chamber hits stored in the drift chamber
encoder system. Each microprocessor had access to the memory locations associ-
ated with up to 512 drift chamber wires. The microprocessors wrote hit informa-
tion into a large buffer memory located next to the encoder electronics in the
experimental hall. During idle time during and after a spill, the PDP-9 read hit
information from the buffer memory and wrote it to magnetic tape. Computer
deadtime was approximately 4 msec per event. A typical trigger rate of 50 per
spill produced a deadtime of 20% (in addition to the typical trigger processor
deadtime of 15%). At the end of each spill the PDP-9 also wrote spill informa-
tion onto magnetic tape, including scalers and beam information obtained from

the Fermilab control system (e.g. magnet currents and beam monitors).
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Detector Inefficiencies

During the course of the analysis we found evidence that several pieces of

the detector were inefficient. These inefficiencies are described in this section.

We measured the efficiency of our drift chambers using single muon data
taken periodically throughout the run. To measure the efficiency of the drift
chambers in a particular gap, we searched for tracks while ignoring the drift
chamber data from that gap. If a track was found that went through the fiducial
volume of the drift chamber in the gap under test, we asked if there was a hit
within the resolution of the track fit. The raw efficiency was defined as the prob-
ability that there was a hit. The raw efficiency was corrected for the effect of

random hits to give the ‘‘true efficiency’.

We found significant drift chamber inefficiencies in the first three gaps. In
the second and third gaps these inefficiencies were confined to wires that were
close to the beam pipe. In the first gap, the original drift chambers (with the 1”
drift. cell) were found to be inefficient over their entire volume. The new
chambers (with the .25” drift cell) were not found to have significant inefficiency,
but they only covered gap 1 out to a distance of 12.625” from the beam axis.
Figures 12-14 show the measured efficiency of the (original) chambers in gaps 1-3

respectively as a function of distance from the beam axis.

We believe that the drift chamber inefficiencies were caused by the buildup
of space charge due to excessive rate. This is logical since the inefficiencies
occurred in those regions of the chambers where the singles rates were high.
Radiation damage may also have been a factor, as the inefficiencies seemed to get

worse with each run.

We do not regard our drift chamber efficiency measurements as 100% reli-
able. For example, we know that there must have been short term variations in
the drift chamber inefficiencies due to pion beam intensity changes. There may
also have been a long term efficiency decline. We did not attempt to measure
such effects, nor would it have been feasible to do so. We therefore attempted to
analyze the data in such a way as to minimize the systematic error from our
imperfect knowledge of the drift chamber inefficiencies. The specific steps we

took to accomplish this are described later, however, I will note here that the
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most important of these was a set of drift chamber fiducial cuts that removed
most of the inefficient regions of the drift chambers. It was for the purpose of
determining these cuts that the drift chamber efficiency measurements were most

important.

The other inefficiency we found was a trigger inefliciency. Evidence for this
came from the octant distribution of events. Because of the eightfold symmetry
of the apparatus we expected (almost) equal numbers of muons in each of the
cight octants. Instead, we found a significant departure from eightfold sym-
metry. Figure 15 shows our observed octant distribution of muons, together with
the octant distribution predicted by our Monte Carlo program (the Monte Carlo
is described in chapter 4). Known sources of asymmetry in the apparatus were

unable to account for the octant asymmetry in the data.

Actually, we were never able to definitively pin down the source of this
asymmetry, although we eliminated many possible sources. One of the first
things we checked was the octant dependence of the drift chamber efficiencies.
Although we found differences between the octants, they were not enough to

explain the octant asymmetry.

During the analysis, we undertook a large program of trigger efficiency stu-
dies. During the run we had taken data with several special triggers to enable us
to measure the efficiency of various pieces of the trigger. Included in the special
runs were ‘‘external trigger’” runs which used a trigger almost wholly independent
of our normal trigger. The external trigger was based on three large scintillation
counters in coincidence that were not normally part of the detector. During the
trigger efficiency studies, we measured the efficiencies of the individual trigger

scintillator counters and the coincidence matrices: M5, Moz and M,.

The result of the trigger efficiency studies was that we found that a handful
of our 272 trigger counters were inefficient. The worst counter had an efficiency
of about 50%. We removed this counter by a software fiducial cut. Of the
remaining counters, four had efficiencies less than 90% (the worst was 80%) and
most of the rest were in the high 90%’s. None of the coincidence matrices were
found to have a significant inefficiency. These slight inefficiencies were

insufficient to explain our octant asymmetry.



23

Because of these negative results, we attributed the octant asymmetry to
some other inefficiency in the trigger. The most likely candidate is the octant
coincidence circuit within the PML, whose efficiency we have no way of measur-
ing. In any case we invented several ad hoc schemes to describe this inefficiency,
whatever its source. Each of these schemes assigned overall efficiencies to partic-

ular octants and octant pairs.

The simplest scheme was to assign an overall efficiency to each octant. This
scheme was not totally satisfactory because it did not result in a (+,-) octant
correlation matrix that was azimuthally symmetric. In comparing the measured
octant correlation matrix to the one predicted by the Monte Carlo, we noticed
that most of the discrepancy (after putting in octant efficiencies) came from the
following five octant pairs: (+,-) = (6,1), (7,2), (8,3), (1,4) and (2,5). We there-
fore invented two other schemes that treated these five octant pairs specially.
The first of these was to remove these five octant pairs by a fiducial cut. The
second scheme was to assign an additional inefficiency to these five octant pairs.
This was the scheme that we used to obtain our final results. Table 5 summar-
izes the various octant efficiency schemes we used to describe the octant asym-
metry. We used the differences between the various schemes and the absence of

a correction as a measure of our systematic error.



CHAPTER I

PRIMARY ANALYSIS

The analysis of the data for this experiment divided naturally into two steps:
the extraction of the dimuon signal and the interpretation of the dimuon signal.
We call the former task the primary analysis. It is the subject of this chapter.
The interpretation of the dimuon signal is described in the next two chapters.
The dimuon signal is defined as the number of correlated, target produced, oppo-
site sign muon pairs per unit of phase space. Measuring the dimuon signal
involved three separate steps. These were event selection, event reconstruction

and background subtraction.

The Reconstruction Program

The spring 1982 run, on which this thesis is based, produced approximately
400 800BPI magnetic taps of raw data containing about 4,000,000 events. Fewer
than .5% of these events were good dimuons. A computer program (the recon-
struction program) was written to perform the first pass analysis of these data.
The purpose of this program was to find target muon tracks and perform a prel-

iminary event selection to reduce the volume of data.

The heart of the reconstruction program was the track-finder. The purpose
of the track-finder was to search drift chamber hits for muon tracks. The track-
finder was capable of finding at most one muon track per octant. (The probabil-
ity of a second distinct findable track was negligible.) The track-finder could be
called in two modes: constrained and unconstrained. These modes differed in the
mathematical model that they used to describe muon tracks. Constrained mode
used a three parameter track model which required the muon to pass through the
center of the experimental target. Unconstrained mode used a four parameter

track model which did not require the muon to pass through the target, but
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required it to be coplanar with the beam axis. The two modes gave complemen-
tary information about an event. The constrained mode gave maximum resolu-
tion for target tracks, but was insensitive to halo muons. The unconstrained
mode could find both target and halo muons, but with poorer resolution. The
reason for having the unconstrained mode was to help distinguish target and halo

muons (which was not always easy).

The reconstruction program used constrained mode tracks to decide whether
to retain each event. Any event with at least one positive and one negative con-
strained track was retained. Information about each retained event was written
to an output file called a DST (data summary tape). Information written to the
DST included all of the raw data for each event plus any constrained and uncon-
strained tracks which were found by the track-finder. Spill information (e.g.
scalers and control system information) was also written to the DST. Of the

4,000,000 raw data events, about 22,000 made it to the DST'"s.

Track-Finding

Each octant contained 15 drift chambers located in seven gaps following the
seven toroid magnets. Each gap had at least one X and one U drift chamber.
The 15th drift chamber was a small X chamber in gap 1. The first task per-
formed by the reconstruction program was the conversion of drift chamber raw
data (i.e. the time history of hits on each sense wire) to X and U coordinates.
Normally a muon passing through a drift chamber produced hits on both of that
chamber’s sense wire planes. The times of these hits had a characteristic sum
which was independent of the track position. The reconstruction program
searched the drift chamber raw data for all such sum of times pairs and calcu-
lated an X or U coordinate from each one. The reconstruction program con-
verted any leftover hits which were not part of a sum of times pair into two X or
U coordinates (because of the unresolved left-right ambiguity). To reduce the
number of out of time hits, all reconstructed hits were required to be within 1.5”
of a struck scintillation counter (except at the inner edge of gap 1 where a scintil-
lation counter was not required by the trigger). Reconstructed drift chamber hits
were catalogued by octant and drift chamber plane number. For the purpose of

this catalogue, the two X drift chambers in gap 1 were considered to belong to a
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single plane.

Catalogued X and U hits were used as input to the track-finder proper. The
job of the track-finder was to decide which hits (if any) were part of a muon
track and to determine its track parameters. Both jobs were performed with the

help of the track-fitter.

The track-fitter fit a given set of track coordinates to a mathematical model
of an ideal muon track. The track-fitter performed a x? minimization using a
non-diagonal definition of x2. The non-diagonal x2 took into account gap to gap
correlations in deviations from the ideal track due to multiple scattering and
energy loss. A more complete description of the track-fitter can be found in
appendix A. The output of the track-fitter consisted of a complete set of track
parameters and x2. The track-finder used the value of x2 to decide whether a
given set of track coordinates was consistent with the hypothesis of a muon

track.

The drift chamber data in a particular octant usually contained more hits
than were caused by, or could have been caused by, a single muon track. The
track-finder called the track-fitter to evaluate possible combinations of track
coordinates. If several sets of coordinates were consistent with the hypothesis of
a muon track, the track-finder remembered the longest track, or among tracks of

equal length, the track with the smallest x2.

The challenge in solving the pattern recognition problem was not just to get
the right answer, but to get the right answer fast enough. It would have taken
far too long to call the track-fitter for every possible combination of track coordi-
nates. We developed a number of techniques to reduce the number of fitter calls

that were required.

First of all, the hit combinations were arranged in a tree structure. Each
node of the tree corresponded to a single combination of hits. Different levels of
the tree corresponded to hit combinations with different numbers of gaps. The
root of the tree was the null combination (i.e. no hits). Successively lower levels
of the tree each added a single gap until by the bottom of the tree all seven gaps
had been added. The track-finder checked the nodes of the tree, starting at the

root, by moving downward until it came to a bad node (or the bottom of the
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tree) and then backing up until it could find a new node by moving downward
again. It continued in this way until it had searched the entire tree or the
number of fitter calls exceeded 200. It was frequently possible, by eliminating a
node fairly high up in the tree, to eliminate whole branches of the tree, thus sav-
ing many fitter calls.

Another way we saved time was by developing a set of criteria for the accep-
tability of hit combinations not based on the track-fitter. These new criteria
saved time because they were much faster than the track-fitter and because they
needed less information and therefore could be applied higher up in the tree.

(The track-fitter required at least three gaps of hits.)

The simpler of these was a drift chamber fiducial volume cut. That is, the X
and U coordinates in the most recently added gap were required to correspond to
a point in the fiducial volume of the drift chamber. This cut was applied at each

node where the most recently added gap had both an X and a U coordinate.

The other criterion was more sophisticated. It was a smoothness criterion
that was applied to nodes that had at least two gaps. The basic idea was to find
linear combinations of X and U coordinates that did not depend strongly on the
track parameters and place cuts on these. A more complete description of these

linear precuts can be found in appendix B.

It was frequently possible by the use of these non-fitter cuts to eliminate gar-

bage events without even a single track-fitter call.

Another problem faced by the track-finder was inefficient drift chambers. As
explained in chapter 2, some regions of the first three gaps were inefficient. Obvi-
ously, one effect of these inefficient drift chambers was to cause us to lose events.
An even more serious problem than loss of statistics was the systematic error
caused by the uncertainty in track-finding efficiency. We attempted to measure
these inefficiencies, of course, but a complete and unbiased measurement was not
possible. The track-finder was designed to make optimum use of information
from the efficient regions of the drift chambers to find as many tracks as possible
and to limit the systematic error. In gap 1, where the inefficiency was greatest,
tracks were only required to have an X or U hit alone. (In the other six gaps,

both an X and a U hit were required.) Also, the track-finder specifically looked
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for tracks which went through the inefficient regions of gap 1 or gap 2, but did
not have hits in these gaps. The minimum length for these skipped gap tracks

was increased from four to five gaps.

Evenﬁ: Selection

The signal to noise ratio of events on the DST was much improved over the
raw data, but there was still considerable background. We estimate that about
40% of the events on the DST were background. Much, though not all, of this
background was removed by a set of cuts, which are described in this section.
The remaining background was removed by a statistical subtraction. The back-
ground subtraction required an accurate estimate of the background, which is
described in the next section. We used the background estimate not only for per-
forming the background subtraction, but also for optimizing the cuts. In describ-

ing the cuts, I have shown their effect on both signal and background.

The cuts were designed with specific failure modes of the track-finder in
mind. It had been observed from hand scanning events that bad events on the
DST were usually associated with halo muons or lots of extra drift chamber hits
or both. For example, a positive halo muon close to the beam axis could look
like a positive target track. A halo muon at a large radius, together with a ran-
dom drift chamber hit at small radius in gap 1 could be mistaken for a negative
target track. Sometimes there were so many extra drift chamber hits that some

random collection of them could pass for a track.

The cuts were applied independently in each octant where there was a con-
strained track. The use of correlating cuts (i.e. cuts on quantities derived from
both tracks) was avoided. This was reasonable, since the target was small com-

pared to our target resolution.

The first cut on the DST tracks was a cut on the number of reconstructed
drift chamber hits in the first four gaps that were associated with struck scintilla-
tion counters. Figures 16 and 17 show the distribution of the number of hits for
DST events, together with the background, for positive and negative tracks
respectively. For positive tracks the data and background distributions have

almost the same shape and therefore a cut on this distribution would have been
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ineffective. For negative tracks, on the other hand, the background saturates the

data at large numbers of hits. We cut this distribution at 35 hits, as shown.

The remaining cuts made use of the information from the unconstrained
track fit. The philosophy of these cuts was to use the unconstrained track fit to
veto events in which a constrained track was associated with a halo muon. This
was accomplished by requiring the parameters of the constrained and uncon-
strained track to be consistent, within resolution. Two quantities were defined
which measured the difference between the constrained and unconstrained track
in a given octant. These were P,-(6,-6,) (P-A# for short) and (PC—P“)/P,,‘(AP/P
for short). P refers to the momentum and 8 to the polar angle of the track. The
subscripts ¢ and u refer to constrained and unconstrained. Figures 18 and 19
show the distribution of P-A# for positive and negative tracks and the cuts. The
cuts were -1.5 and 1.2 for positives and -1.2 and 1.5 for negatives. Figures 20
and 21 show AP/P. The cuts were +.3 for both positive and negative. These
cuts were not applied if an unconstrained track was absent or had fewer planes
than the constrained track. In that case the constrained track was accepted

regardless.

We did not apply a x2 cut over and above that applied by the track-finder.
The track-finder had already applied a fairly tight x2 cut to make it as fast as
possible. The x® cut applied by the track-finder was 3/d.o.f. for four gap tracks
and 3.75/d.o0.f for longer tracks. Various distributions of x%/d.o.f. are shown in
Figures 22-25. Figure 22 shows the x2 distribution for four gap positive tracks.
Figure 23 shows the x? distribution for positive tracks that were longer than four
gaps. Figures 24 and 25 show the x? distributions for short and long negative

tracks.

We also applied a set of dfift chamber fiducial volume cuts with the idea of
reducing the systematic uncertainty in the track-finding efficiency due to drift
chamber inefficiencies. The idea of these cuts was to eliminate tracks which went
through the inefficient region of at least one gap. For the purpose of this cut, the
inefficient regions of the drift chambers were defined as 12.625” < z; < 207,
7y < 13”7 and z3 < 13”. The variable z, refers to the octant x coordinate in gap

n. In gaps 1 and 2,bth%e cuts were applied only to four gap tracks, since tracks
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with five or more gaps did not require hits in the inefficient regions of gaps 1 and
2. The gap 38 cut was applied to all tracks regardless of length. The effect of
these cuts was that each accepted track was reconstructed with an efficiency that

did not depend strongly on the drift chamber efliciency measurements.

Background

There were two sources of background associated with the dimuon signal
from the experiment. These were dimuons produced outside the experimental

target (i.e. in the collimator) and accidental coincidences of uncorrelated tracks.

The background from collimator induced dimuons was relatively unimpor-
tant. We measured the rate of collimator induced dimuons by taking data with
the target removed. These target-out data runs were interspersed with our nor-
mal data runs and amounted to 6% of our total exposure. After all cuts, we were
left with only 10 target out events which were themselves contaminated by an
estimated accidental background of 4.542.0 events. This represents an event
rate that is 1.240.8% of our target-in rate. Measurements with our split ion
chamber showed that the number of pions hitting the collimator was about 10-
15% of the number hitting the target. Because of differing nuclear absorption,
pions hitting the steel of the collimator were only about three-quarters as
effective in producing Drell-Yan pairs as pions hitting our tungsten target.
Nevertheless, it is clear that collimator-induced dimuons were detected with a
much lower efficiency than target-induced dimuons. Because of the limited
statistics of the target-out sample, it is difficult to compare shapes of the target-
and collimator-induced spectra, however there is some indication that the
collimator-induced dimuons were concentrated at lower mass. Of the 10 target
out dimuons, only 3 had a mass greater than 4.5 GeV/c? and none had a mass
greater than 7 GeV/c2. For masses greater than 4.5 GeV/c?, the ratio of the rate
of collimator to target dimuons is 0.6+0.6%. We did not make any correction

for collimator- induced dimuons.

The accidental background was much more important. Understanding the
accidental background was important both for tuning the event selection cuts (as

in the previous section) and for statistically subtracting the background from the
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final sample. We developed a method that we believe correctly measured both

the shape and normalization of this background.

The starting point of the method was the observation that the production
rate of accidental dimuons was basically the product of the production rates of
positive and negative single muons. Some possible sources of single target muons
were decays of secondary pions and kaons in the space between the target and
the collimator, prompt single muon production via heavy flavor or vector meson
decay, and misidentified halo. The most direct way of obtaining the accidental
background would have been from the positive and negative single muon spectra.
Although we took single muon data for just this purpose, we eventually settled
on a less direct method that was compatible with our normal dimuon trigger.
There were two advantages that came from using the same trigger to measure
our data and background. The first was that our background measurement was
automatically normalized. The second, less obvious, advantage was that the
resulting single muon spectra were influenced by (almost) the same trigger biases

as the real background.

The basic idea of the method was to derive the accidental coincidence rate of
opposite sign target muons ([T % T7]) from three accidental coincidence rates
involving target and balo muons ([T+-H], [H*-T"), and [H*-H"]). The basic

formula is given below.
(T T7] [Hit-H| PAuAgAs; = [T5-Hy] [HtT7] PiAgAgAy;  (IL1)

The subscripts (4,5,k,{) refer to octant number. The factors Py, Ay etc. have

been inserted to insure octant compatibility. The factor Pj; refers to the
hardware octant trigger requirement. Py is 1 if octants i and j can trigger and 0
otherwise. A,;is 1 if octants i and j are non-adjacent and 0 otherwise. Theoreti-
cally, A;; could be replaced by P, The more restrictive non-adjacency require-
ment was used to reduce the probability of the halo coincidence rates being con-
taminated by correlated sources. Equation II.1 can be solved for the total
number of background dimuons, B.

B=3Y Py[T}*Tj] = Zuw.yu [Ti*-Hy] [Ht- 171 (I.2)
) )
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where

PiAnAuAy;
EAmnAinAmj [Hv:Hn_]
mns

Wikl = (I.3)

This formula gave only the total number of dimuons. In practice, the back-
ground was calculated on a run by run basis by making a list of single target
muons from T-H events, and then forming all possible pairs of positive and nega-
tive target muons. Each pseudo-event was given a weight w . This yielded the
correct total background and also permitted us to calculate background distribu-
tions. Errors were calculated by assigning a different variance weight to each
pseudo-event such that the variance weights added up to the correct total vari-
ance, based on propagation of errors. This procedure for calculating the error of
the background was not strictly correct, since it ignored correlations between bins
of phase space, but in most bins the error of the background was small compared

to the error of the signal.

We tested the validity of the background calculation method using same
sign dimuon data. About one third of our data were taken with a trigger that
allowed same sign dimuons. These data contained 1268 same sign positive dimu-
ons and 3 same sign negative dimuons. We believe that the same sign dimuons
were almost entirely accidental, there being no plausible physics mechanism capa-
ble of producing same sign dimuons at the observed rates. We used a slightly
modified version of the background formula to calculate the same sign positive
background. The result was an estimated background of 1296459.2, in agree-
ment with the data. Figures 26-29 compare the distributions of the same sign
positive data and background for five dimuon variables. The shapes of these dis-

tributions also agree.



CHAPTER IV

EXTRACTION OF CROSS SECTIONS

This chapter describes how we converted our raw counting rates into

differential cross sections.

The Monte Carlo

The result of the primary analysis was the raw distribution of events
accepted by the apparatus. To compare this experiment with theory or other
experiments it is necessary to express the result in a form that is independent of
the details of the apparatus (e.g. as a differential cross section). That is, it is
necessary to correct the raw event distribution for acceptance and resolution

smearing. This was accomplished with the help of a Monte Carlo program.

The Monte Carlo randomly generated events in the target using a particular
differential cross section. This cross section was chosen to be self-consistent with
our data. Self-consistency was achieved by iterating the analysis until the result
agreed with the input to the Monte Carlo. For the pion valence structure func-
tion, we used our own result. For the pion sea structure function, we used the
measurement of the NA3 collaboration.?’” For the nucleon structure function we
used the M2-dependent parameterizations of Eichten, Hinchliffe, Lane and Quigg
(EHLQ).?® The p; spectrum was assumed to be independent of any other vari-
able. It was set to our result in the mass range 4.5 < M < 8.5 GeV/c:. The
angular dependence of the differential cross section was assumed to be 14cos?d in

the Collins-Soper frame.

The Monte Carlo also took into account the energy spread of the pion beam
and its degradation by absorption and secondary production, and nuclear Fermi
motion. The momentum spectrum of the pion beam was calculated by Monte

Carlo simulation.?® Nuclear absorption was based on the absorption cross section
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measurements of Carroll et al.?® From these measurements we calculated an
exponential absorption length, \,,, of 11.75 cm for our composite target. This
implied a luminosity per incident pion (assuming a linear A-dependence) of
L= Nop)\a,,,(l—e"/ )‘"') = 1.10X10%8cm2. N, is  Avagadro's  number;
p = 18.8g/em? is the measured density of our target; | = 20.4 cm is the length of
our target. The absorption cross sections measured by Carroll et al. are total ine-
lastic cross sections (i.e. they have been corrected for elastic and quasi-elastic
scattering). In order to estimate the importance of pions produced in inelastic
collisions, we included a model of this effect in the Monte Carlo. The details of
this model are described elsewhere.3® The model calculated the flux of inelasti-
cally produced pions as a function of pion momentum and position within the
target for pions with momenta greater than 140 GeV/c. The inclusion of these
secondary pions resulted in an 8% increase in the luminosity per incident pion.
Of course, the number of Drell-Yan pairs induced by secondary pions was less
than 8% of the total since the cross section is smaller at lower energy. According
to the Monte Carlo, pions in the momentum range 140-200 GeV /¢ accounted for
about 3% of the total dimuon production. Furthermore, this fraction was nearly

flat over the acceptance of the apparatus.

Nuclear Fermi motion was assumed to be a T=0 Fermi gas with a Fermi
momentum of 265 MeV/c.3! That is, nucleon momenta were uniformly distri-
buted in a sphere in momentum space with a radius equal to the Fermi momen-
tum. Recent results concerned with the EMC effect have cast doubt on the idea
of extracting nucleon cross sections from data taken with heavy nuclear
targets.32 We therefore decided to use the simplest model for nuclear Fermi

motion to minimize the size of this correction.

The generation of a Monte Carlo event consisted of randomly choosing
values for 13 variables. These were the longitudinal momentum of the interact-
ing pion (the transverse components of the pion momentum were assumed to be
zero), the vector momentum of the nucleon, the spatial coordinates of the
interaction vertex, and six dimuon variables: mass, Feynman-x, the transverse

momentum vector, and the decay angles.
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Next, the development of the event in the apparatus was modeled. The final
state muons were propagated out of the target and through the apparatus. The
bropagation included random multiple scattering and fluctuating energy loss®
and took into account the detailed geometry of the apparatus. The passage of
the muons through the apparatus was used to generate simulated drift chamber
and counter hits, including the effects of known inefficiencies. If the muon tracks
hit enough counters to satisfy the trigger requirement, then the event was
analyzed as if it had been a real data event. The simulated drift chamber hits
were reconstructed by the reconstruction program and the same event selection
cuts as were used in the data were applied to the reconstructed Monte Carlo
event. The distribution of the surviving Monte Carlo events was called the out-

put spectrum.

In addition to the output spectrum, which represented the distribution of
events after detection, we defined an input spectrum which represented the distri-
bution of events before detection. The input spectrum was generated the same
way as the output spectrum, except that the effect of the detector (except for the

target) was not modeled and all of the events were accepted.

Figures 30-43 compare various distributions derived from the data and the
Monte Carlo output spectrum. Figures 30-33 show the distribution octant x-
coordinates for positive tracks in the first four gaps. Figures 34-37 do the same
for negative tracks. Figures 38 and 39 show the constrained x? distributions for
positive and negative tracks respectively. Figures 40 and 41 show unconstrained
x? distributions for positive and negative tracks. Figures 42 and 43 show the dis-
tribution of octant x-coordinates for unconstrained tracks at z-coordinate of the
target. Figures 30-37 show good agreement between the data and the Monte
Carlo output spectrum. Figures 38-41 show that x? distributions are slightly
fatter in the data than in the Monte Carlo. Figures 42 and 43 show worse target
resolution in the data than the Monte Carlo. We believe that the worse resoli-
tion in the data results from extra drift chamber hits (i.e. the track-finder chooses
the wrong hit sometimes). Monte Carlo studies have confirmed this. They have
also shown that constrained track-finding is less susceptible to disruption by

extra hits than unconstrained track-finding.
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Data Corrections

The Monte Carlo was used to correct the data for resolution smearing and

acceptance. I will consider smearing first.

Our data are affected by two kinds of resolution smearing, namely the uncer-
tainty in the momenta of the initial and final state particles. Final state smear-
ing was caused by the error in event reconstruction, which was dominated by the
multiple scattering and energy loss of muons in iron. Initial state smearing was
caused by the momentum spread of the pion beam and nuclear Fermi motion.
The correction factor for final state smearing was calculated by taking the ratio
of the output spectra binned according to reconstructed (smeared) and true
(unsmeared) variables. The correction factor for initial state smearing was calcu-
lated by taking the ratio of input spectra generated with and without Fermi
motion and a pion beam momentum spread. That is, the unsmeared input spec-
trum was generated assuming each interacting pion had a momentum of exactly
225 GeV/c and that the interacting nucleon was at rest. The size of the

unsmearing corrections for mass, py and zp are shown in Figures 44-46.

Acceptance is the probability that an event generated in a given bin of phase
space will be detected. It was calculated from the ratio of the (unsmeared) out-
put spectrum to the (smeared) input spectrum. That is, both spectra contain ini-
tial state but not final state smearing. The total correction factor for both

smearing and acceptance is the product:
[initial statj X 1 X [ final state
unsmearin acceptance unsmearin

— | unsmeared input smeared input unsmeared output
smeared input unsmeared output smeared output

__ unsmeared input
smeared output

In practice, resolution smearing and acceptance were corrected simultaneously
using the last ratio. In the remainder of the thesis, unless otherwise noted, the

term acceptance refers to the ratio of the smeared output spectrum to the

unsmeared input spectrum.

|
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The average differential cross section in a given phase space bin was derived
by dividing the number of events by the product of the (smearing corrected)
acceptance, the total luminosity and the size of the phase space bin. It is true
that this involved circular reasoning, since the differential cross was required as
input to the Monte Carlo. In order to have confidence in the answer, it was
necessary that the calculated acceptance depend only weakly on the input model,

and that the derived answer be consistent with the input model.

A final correction converted the average differential cross section to the cross
section at the bin center. The bin center correction was based on a parameteriza-
tion of the differential cross section. The correction factor was the ratio of the
parameterization at the bin center to its average over the bin. The x2 function
that was minimized in calculating the parameterization was defined in terms of
the difference between the (uncorrected) differential cross section and the average
of the parameterization for each phase space bin so that it was not necessary to
iterate the fit.

Systematic Errors

There are uncertainties in the model of our apparatus which cause uncer-
tainties in our calculated acceptance. We have estimated these by making what
we estimate to be ‘“‘one sigma’” changes in some parameters of the apparatus
model and rerunning the Monte Carlo. We took the difference in the acceptance
calculated by the original and changed Monte Carlo as an estimate of the sys-
tematic error due to the uncertainty in the changed parameter. The following

list summarizes the systematic errors we have studied this way.
1.  Magnetic field

We assigned a +1% systematic error to the normalization of the magnetic

field based on the reproducibility of total magnetic flux measurements
2. Mean energy loss

We assigned a +5% systematic error to the mean energy loss of muons in

iron based on differences among various calculations of energy loss.34
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3. Geometry

We observed a 1.5 inch systematic shift between the average target z-
position as reconstructed in the data and the Monte Carlo (see Fig. 47).
Because of this we assigned a +1.5 inch systematic error to the target z-
position. We do not actually believe that there is such a large error in the
measurement of the target z-position relative to the detector. Rather, we
use this shift as a metaphor for other, unknown, systematic errors connected

with the geometry of the apparatus.
4. Drift chamber inefficiencies

Our normal Monte Carlo was reconstructed using our measured drift
chamber inefficiencies. We also reconstructed the Monte Carlo without any
drift chamber inefficiency. The systematic error from the uncertainty in the
measurement was estimated as one third of the difference between these two
reconstructions. Because of the way the data was cut, this turned out to be

the smallest of the systematic errors we considered.
5. Trigger inefliciency |

The systematic error from the trigger inefficiency was estimated by compar-
ing different correction schemes with themselves and with the absence of any

correction.
6. Beam energy

The beam energy was never measured. Our only knowledge of it comes from
a Monte Carlo calculation based on the geometry of the beamline elements.
A different experiment in the same beamline (E-615) has estimated the beam
energy by measuring the spectrum of halo muons.3® Their result (at a
slightly higher momentum setting) was that the beam energy was 7% higher
than it should have been. Based on this, we have assigned a 7% systematic

error to the beam ehergy.

Normalization

Our raw counting rate and the differential cross section are related by the

following equation.
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dN = LAdo

where L is the integrated luminosity and A is the acceptance. Both L and A
have their own normalization systematic errors. Several sources of acceptance
systematic error were discussed in the previous section. In this section I am con-
cerned with a different class of systematic errors, namely, those having to do with

overall detection efficiency.

The integrated luminosity is the product of the luminosity per incident pion
and the number of pions (live and on target). The devices we used to monitor
the beam are described in chapter II. Chief among these was a calibrated ion
chamber. The overall error in the number of incident pions is determined by the
error in the scale factor of this device, which has been quoted at 10%.22 We cal-

culate that the total number of live pions on target was 2.05X 1013,

In a thick target experiment like ours, the luminosity per incident pion
depends strongly on the degradation and absorption of the pion beam in the tar-
get. Experimental uncertainties in the absorption cross section for pions are in
the 3-4% range.?® These contribute directly to an uncertainty in the luminosity
per pion. Also there are practical ambiguities involved in trying to separately
account for the effects of elastic, quasi-elastic and inelastic pion-nucleus interac-
tions. We have assigned a 5% systematic error to our luminosity per unit pion.
We calculate a luminosity per incident pion of 1.21X10%® events/pion-cm? for an

integrated luminosity of 2.47 X 103 events/cm?.

Besides the acceptance systematic errors that were considered previously
there is a potential normalization error resulting from event reconstruction
inefficiency. The event reconstruction efficiency is hard to measure. The Monte
Carlo predicts a high reconstruction efficiency (~98%), however, there may be
losses that were not modeled properly. One effect that we did not put in the
Monte Carlo was extra hits. Small scale Monte Carlo studies suggested a 6-7%
loss of events flat over phase space from this effect. Another possible source of
inefficiency was the constrained x2 cut. Figures 38 and 39 show that the data x?2
distributions are fatter than the Monte Carlo x? distributions. The reason for
this is not known, but it could be due to any of a variety of imperfections in the

model of the apparatus. Because of this, we could be losing some good events in
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the tails of the x? distributions. On the other hand, it is not obvious that we
want to retain the events in the tails of the x? distributions (they could be colli-
mator induced dimuons, for example). The best x? distributions to use for judg-
ing the efficiency of the x2 cut are the four gap x? distributions. This is because
the track-finder looks for short tracks first, and then tries to extend them. If a
long track fails the x2? cut, the track-finder still knows about any shorter version
of the track it has found. Figures 22 and 24 show that the four gap x? distribu-
tions substantially cut off before the cut, although there is still some tail. As far
as cuts based on the unconstrained fit are concerned, Figures 16-21 show no
significant loss. In cases where the unconstrained fit may have been lost alto-

gether, the track is retained.

We have not assumed any event reconstruction inefficiency, but we have
assigned a 10% one-sided systematic error to the overall normalization for recon-
struction efliciency. This gives a total normalization systematic uncertainty
(added in quadrature) of +15% and -11%.



CHAPTER V

RESULTS AND CONCLUSIONS

This chapter contains our results on the differential cross section for Drell-

Yan production, our interpretation of these results and our conclusions.

General Features of the Data, Background and Acceptance

Figure 48 shows the raw mass spectrum and calculated background from our
entire data sample, together with the acceptance. Several features of this plot
are notable. The background is large at low mass, but falls much more rapidly
than the data. The background falls from about 30% of the data just above the
¥ to less than 1% of the data for masses greater than 7 GeV/c?2. The mass
acceptance, which is very small for low masses, is first a steeply rising and then a

more slowly rising function of mass with a knee around 7-8 GeV/c2.

The capabilities and limitations of this experiment are related to the mass
dependence of the background and acceptance curves. At low mass, the rapidly
varying acceptance and large background make the interpretation of the data
more difficult and amplify systematic errors. This thesis is concerned with the
two mass continua that are accessible to the experiment. These are the ¢ to T
continnum (defined as the mass range 4.5< M<8.5) and the high mass continuum
(defined as M>11). Most of the ) to T continuum lies below the knee of the
acceptance curve and also has substantial background. the high mass continuum
has a relatively flat acceptance and negligible background, but also much less

data.

Figure 49 shows the raw pg spectrum and its background in the ¢ to T mass
range. The background falls less rapidly than the data at high py. The back-
ground saturates the data for p; greater than 4 GeV/ec.
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Figure 50 shows the raw zp spectrum and its background in the ¢ to T mass
range. The background is greatest at low zp and saturates the data just above

the low zp edge of the data. This plot shows that the data are confined to the
range of central zp values.

The small acceptance at low mass affects different areas of phase space
unequally. Figures 51 and 52 show the pr and zp acceptances in several mass
ranges. At low mass, the py acceptance is small for low pr, but rises steeply as a
function of py. At higher mass, the pr acceptance becomes flatter as well as
larger. The zp acceptance also becomes flatter and covers a greater zp range as
the mass is increased. The upturn at high pr and z in the highest mass bin is

caused by a large unsmearing correction.

Structure Function of the Pion

The pion valence structure function was extracted by fitting the M and zp
dependence of the differential cross section in the ¢ to T mass range to the

Drell-Yan model.

Data were histogramed in a rectangular grid of M vs. zp. The size of each
bin was .5 GeV/c? in mass and .05 in zy. The boundaries of the fit region at low
and high mass were 4.5 and 8.5 GeV/c? respectively. Data with zp < —.2 were
cut because of large background and rapidly varying acceptance. Data with
z, < .25 were cut to minimize the dependence of the fit on the pion sea structure
function. To keep things simple, as the z; cut did not correspond to bin boun-
daries, this cut was applied to bins as a whole. Finally, the high z; boundary of
the fit region was determined by the acceptance edge. This cut, also applied only
to whole bins, varied from zz=.2 to 2;=.4. The resulting grid had 69 bins. The
number of events contained within this grid is 3327 with an estimated back-

ground of 87+10. The grid is shown in Figure 53 superimposed over a scatter
plot of the data in M and zp.

The differential cross section in each bin, do/dMdzr, was extracted by the

method described in chapter IV. The results are summarized in Table 8.
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The differential cross section was fit to the following form.

do — K 87a’
dMdzy OM3(z,42,)

[ V(=) G(z) + S7(2,) Hz,) ] (V.1)

For the definitions of the structure functions appearing on the right side of this
equation, refer to chapter I, Eqgs. 1.13, 1.14, 1.23 and 1.24. We fit the data using
three different nucleon structure functions. The first of these was the EHLQ
parameterization.?® It is the result from this fit that we take as our main result.
(It was this fit that was used to perform the bin center correction and as input to
the Monte Carlo.) We also fit the data using the two nucleon structure functions
used by the NA10 experiment®® in analyzing their dimuon data. These three
structure functions are described in detail in appendix C. In addition, we intro-
duced a free parameter into the nucleon structure function G' by multiplying the
EHLQ parameterization by the factor (1—1:2)3" . The various nucleon structure
functions were used to test the sensitivity of our result to variations in the
nucleon structure functions and, in the case of the last two, to compare our result
with NA10. EHLQ and the first NA10 parameterization are based on CDHS neu-
trino data.3’ The second NA10 parameterization is based on CCFRR neutrino
data.’8

The pion valence structure function was parameterized as follows:
V(z) = 5*(1-2,)7/Ble",8"+1) (V.2)

where B is Euler’s beta function. As our data were insufficient to determine o™
and A" independently, we fixed the parameter a™ at a particular value (usually
.5).

In QCD in the leading log approximation the pion structure function
acquires a logarithmic M %dependence. We parameterized this M 2-dependence
using the method of Buras and Gaemers.?® That is, we allowed the exponents a”

and 8" to vary with M2 according to the following equations:
a™ = aj + saf
g = 8+ 1]
where 5= log[log(M2/A%)/log(MZ/A%)]. We set Mg to 44 GeV/c? (the mean M2
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of our data in the ¥ to T mass range). A is the QCD mass scale parameter. The
values of the exponent slope parameters, a] and ff, were obtained by solving the
Alterelli-Parisi equations'® for the MZ-evolution of the pion valence (i.e. non-
singlet) structure function. We have fit the pion valence structure function
without and with QCD leading log M 2.evolution (using A=.2).

For the pion sea, we used the measurement of the NA3 experiment?’ which

was parameterized as follows:
$™(z) = Bl-z)" (V.3)

The normalization constant B is set by the momentum sum rule:

1
[12V™(z) + 657(2)) | dzy = 1-<g"> (V.4)
0

where <g"> is the fraction of the pion momentum carried by gluons. NA3
reported A"=8.442.5 and <¢g">=.47+.15 with error correlation coeflicient
p=-.16. We ignored the M Z-evolution of the pion sea, even when the valence
was allowed to evolve (except for the M2-dependence of the normalization con-

stant implicit in the sum rule).

Our fit results are shown in Table 7. The results of the first fit in the table
(i.e. our standard fit) are shown in Figures 54 and 55. These figures compare the
data and the fit values of do/dz, and do/dz,. Several conclusions can be drawn
from these results. First, the presence or absence of QCD leading log scaling vio-
lations in either the pion or nucleon structure functions makes little difference in
the fit results over our range of mass and zp at our level of statistical precision.
Second, the various choices of nucleon structure functions have a modest effect on
K, but almost no effect on S". In the case where we fit for G our result is con-
sistent with EHLQ (i.e. AN=-.164.19 is consistent with zero). Also, the small
value of the error correlation coefficient between ™ and BV (p=.065) is further
evidence that the shape of the pion structure function doesn’t depend strongly on
the nucleon structure function. Finally, changing o™ has a strong effect on the
other fit parameters. It is precisely this strong correlation between a™ and A%,
which is due to the lack of data at small z,, that prevents us from extracting

them independently with a reasonable error.
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Our results are subject to various systematic errors, which can be broadly

classified as apparatus (acceptance) and physics model systematic errors.

Various apparatus systematic errors that contribute to errors in the accep-
tance were described in chapter IV. We have calculated the effect of these sys-
tematic errors on the fit parameters K and §". The results are shown in Table 8.
The total error ,obtained by adding the individual errors in quadrature, is +.46
and -.37 in K and £.18 in ™.

We have also measured the sensitivity of our acceptance calculation to
changes in the physics model used as input to the Monte Carlo. Our conclusion
is that the acceptance is quite insensitive to the physics model. Reasonable
changes in the pion and nucleon structure functions resulted in negligible changes
in the final fit results. Changes in orthogonal variables also had little effect. For
example, stiffening the p spectrum so that the mean p; was increased by 10%
resulted in a change in the fit results of A K=-.03 and Af"=-.03. Changing the
angular distribution from 14-cos?6 to isotropic resulted in the changes A K—-.38
and Af™=+.03. (i.e. the assumed angular distribution mainly affects the normal-
ization.)

We have also estimated the systematic errors resulting from uncertainties in
physics models used in the fit. One of these uncertainties is the nucleon structure
functions. This systematic error is hard to quantify. We have used several
nucleon structure functions in an attempt gain some insight into the sensitivity of
our results to changes in the nucleon structure functions. As noted previously,
the different choices of nucleon structure function affect K, but do not
significantly affect 5". Because of this, we are confident that the uncertainty in
the nucleon structure functions do not contribute a significant systematic error to
B". As for K, we take the difference between the two NA10 parameterizations,3®
namely .36, as as indication of the systematic error due to nucleon structure func-
tions.

The systematic error from the pion sea structure function is easier to quan-
tify. We have calculated the systematic error in K and 8" by simply propagating
the error matrix reported by NA3% for the parameters 4™ and <g">. A one
sigma change in the parameter A" changed K and A® by .104 and .068
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respectively. A one sigma change in the parameter < ¢g*> changed K and ™ by

160 and .135 respectively. When these errors are combined, including the corre-

lation between them, the systematic errors for K and " are .177 and .142.

Finally, there is a systematic error that comes from the uncertainty in the
parameter a”. Our choice of a™=.5 is based on historical and theoretical
prejudice.® NA3 and NA1O both measure values of a” closer to .4. To test the
sensitivity of our results to the assumed value of a™ we have fit our data with the
assumption a™=.4, which is close to the values obtained by NA3 and NA10. As
noted previously, this strongly affected the fitted values of K and f". When a”
and f" are changed together as required by the fit, the shape of the structure
function does not change significantly in the region of phase space covered by
this experiment. It is in the extrapolation of the valence structure function out-
side the range of z; covered by the experiment that differences appear. Even
NA3 and NA10, who quote measured values of a™ with quite small errors have a
systematic error from extrapolating the pion valence structure function to low z,
because the pion sea is poorly measured and their data (like ours) does not
extend to low z;. This is important for the measurement of the K-factor because
the pion valence structure function can only be normalized with knowledge of the
structure function over the whole range of z;. We have assigned a systematic
error of 20% to the K-factor from the normalization of the pion valence structure
function. We have not assigned a systematic error per se to ™ from the uncer-
tainty in a™, but it must be kept in mind that the value of " that we measure

corresponds to a specific value of a™.
In conclusion, we measure the following values for K and g".
K= 2;70 +.82
BT = 1.21 &+ .26

The error for the K-factor includes statistical error (negligible), an apparatus sys-
tematic error of +.46 and -.37 an error of .18 from the pion sea, an error of .54
from the extrapolation over the full range of z; and an error of .36 from the
nucleon structure functions. The error on A" includes a statistical error of .13, an

acceptance systematic error of .18 and a pion sea systematic error of .14. Both
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errors are systematic dominated.

Many experiments have measured the pion structure function.! Table 9
contains a summary of their results for the shape of the pion structure function.
Our results are consistent with these existing measurements. The experiments
listed in Ref. 41 (except for the CIP experiment) have reported K-factors in the
range 2.2-2.8 with typical systematic errors of 20% or larger, which is also con-

sistent with our result.

High Mass Differential Cross Section

In the previous section, it was shown that this experiment is consistent with
existing data in the mass continuum between the ¥ and the T. The purpose of
this section is to present our results for the mass continuum above the T and to

compare them with the Drell-Yan model.

We have extracted the differential cross section do/dM for masses greater
than 4.5 GeV/c%. The results are shown in Table 10. We parameterized the con-
tinuum as follows using data in the ranges 4.5 GeV/c® < M < 8.5 GeV/c? and
11.5 GeV/c?2 < M < 15.5 GeV/c2.

& = 41 (VP (V.5)

The results were A=0441 + .0282 nb/(GeV/c?®), ~=-0.96 + .18 and
=7.07 £ .59 with x?/d.o.f. = 12.6/13. This parameterization represents the
data well both above and below the T (see Fig. 56).

We have also compared our high mass data with the predictions of the
Drell-Yan model extrapolated to high mass. For the nucleon structure functions
we have used the EHLQ parameterizations. For the pion structure function we
have used our own result and a “world average’ based on NA3 and NAI1O results.
The latter pion structure function is characterized by the parameters
a"=.41+.02 and f"=.99+.03 at M2=25GeV/c?. In each case the K-factor has
been allowed to float to reproduce the overall normalization of our data in the ¢
to T mass range.

Figures 57-59 compare our data for do/dM with the Drell-Yan model. Fig-

ure 57 used our pion structure function without QCD M %-evolution in either the
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pion or nucleon structure functions. Figure 58 used our result with QCD leading
log M 2-evolution (using A=.2). Figure 59 used the world average pion structure
function with MZ-evolution. In each case there is good agreement between the
Drell-Yan model and our data in the ¢ to T mass range, as expected. Figure 57
shows that the naive Drell-Yan model overestimates the data above the T. On
the other hand, in Figures 58 and 59 the presence of QCD M2-evolution in the
structure functions reduces the prediction of the Drell-Yan model to the extent
that there is reasonable agreement between the Drell-Yan model and our data

even at high mass.

The above observations can be made more quantitative. In our data we
have 83 events with masses greater that 11.5 GeV/c?. The predictions of the
Drell-Yan model with the assumptions of Figures 57-59 are 136, 101 and 106
events respectively. The statistical error associated with our number is 11%.
Our detector systematic errors (beam energy and target position in particular)
contribute about a 20% systematic uncertainty to the relative normalization
between the high mass and ¢ to T data. There is also a 5-10% error in the pred-
iction of the Drell-Yan model due to uncertainties in the input structure funec-

tions and the value of A.

With these uncertainties, the number of observed high mass events is con-
sistent with the prediction of the Drell-Yan model with M2%-evolution. We have
also examined the zp dependence of the high mass data. Table 11 contains our
measurement of the cross section dos/dzp for M>11 GeV/c?. Figure 60 compares
our data for do/dzp with the prediction of the Drell-Yan model (using the world
average structure function with MZ-evolution) for M>11 GeV/c%. For com-
parison Figure 61 shows the data of the NA10 experiment for v7>.54.3% (The
value vV7=.54 corresponds to M=11.1 GeV/c? at our beam energy of 225 GeV
and M=10.3 GeV/c? at NA10’s beam energy of 194 GeV.) The NAI1O data are
in clear disagreement with the prediction of the Drell-Yan model. NAI10 has
called this disagreement an ‘‘anomalous scaling violation”. Our data do not show

an anomalous scaling violation.
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Transverse Momentum Differential Cross Section

The purpose of this section is to present the transverse momentum depen-
dence of the differential cross section. Table 12 summarizes our results for the
differential cross section, (1/p)(do/ dpy), in several mass ranges. These are the Y

to T continuum, four subranges within the ¥ to T continuum and the continuum

above the T.
We have parameterized the cross section in the 4 to YT mass continuum as
follows:
do
= A sech™(a \%
pripr lapz) (v6)

We chose to parameterize the pp spectrum using a hyperbolic secant because that
function behaves like a Gaussian for values of its argument near 0 and falls off
exponentially for large values of its argument. The two shape parameters, a and
n, allow you to independently tune the Gaussian width (¢ = 1/av'n) and the
exponential fall-off length (A = 1/an). The results of the fit were A=.226+.007
nb/(GeV/c)?, a=.491+.036 (GeV/c)™! and n=6.04+.73, with x2/d.o.f. = 6.07/5.
The results of the fit are shown in Figure 62. Figure 63 shows the differential

cross sections in several mass ranges.

We have also calculated the mean values of py and p;? in each of the above
mentioned mass ranges. The results are shown in Table 13 and plotted in Figure
64. The statistical and systematic errors are shown separately in Table 13 and
are combined in Figure 64. Our results in the ¢ to T mass range are
<pr> = 1.1474.023 and <p{#> = 1.7124+.069. For the purpose of this calcu-
lation, the transverse momentum spectra were cut off above 4 GeV/ec.

Figures 63 and 64 show that the pr spectrum is almost independent of mass
at fixed beam energy. There is perhaps a slight stiffening of the pr spectrum at
higher mass.

Several other experiments have reported measurements of the mean
transverse momenta of pion induced Drell-Yan pairs with pion energies close to
our energy of 225 GeV. The CIP experiment?? has reported <pr> = 1.214.073
and <p;?> = 1.938+.085 for pion induced muon pairs in the mass range
4.5 GeV/c?<M<8.5 GeV/c® with a pion energy of 225 GeV. The NA3
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experiment has measured <pr> = 1.123+.013% and <p#> = 1.74+.04% for
muon pairs in the mass range 4.1 GeV/cP<M<8.5 GeV/c? with a pion energy of
200 GeV. These results are generally consistent. The CIP result for < P>
disagrees with both our result and NA3's result by about 2.

Conclusions

This experiment has measured the differential cross section for the produc-
tion of high mass muon pairs by 225 GeV/c negative pions in a heavy nuclear
target. The cross section has been interpreted in terms of the the Drell-Yan
quark-antiquark annihilation model. We have measured the pion structure func-
tion using muon pairs with invariant masses between the ¢ and T masses. The
results are consistent with the Drell-Yan model and with other experiments. We
have used the Drell-Yan model to predict the differential cross section for muon
pairs with masses greater than the T mass. Here too, the results are consistent
with the Drell-Yan model when QCD leading log scaling violations are included
in the structure functions. Finally, we have measured the p;-dependence of the
differential cross section as a function of mass. Our results for the mean values

of prand PT2 are consistent with previous experiments.



APPENDIX A

TRACK-FITTING

The track-fitting problem can be stated as follows: given a set of track
measurements, what set of track parameters best reproduces these measurements,
and how well are the measurements reproduced? The first part of this appendix
deals with the mathematical formulation of the track-fitting problem. The

second part deals with the solution of the problem.

Coordinate Systems

A global Cartesian coordinate system was defined for the laboratory. The
origin of coordinates was located in the vicinity of the experimental target (actu-
ally the origin was seven inches downstream of the target). The z-axis coincided
with the beamline with positive z defined as downstream. The y-axis was defined
as vertical with positive y being up. The z-axis was defined to complete a right-

handed coordinate system.

The detector was divided azimuthally into eight identical octants. In addi-
tion to the laboratory coordinate system, a local coordinate system was defined
for each octant. The origin and z-axis were the same as for the laboratory sys-
tem. The local z-axis was defined as the centerline of the octant. The local
axis was chosen to complete a right-handed coordinate system. Thus, the octant
coordinate systems were related to the laboratory coordinate system by a rotation
about the zaxis. An octant wu-axis was defined 5.7° counter-clockwise (looking
downstream) from the octant z-axis. Octant u coordinates are related to z and y

coordinates by the equation u = .995z — .0995y.

One track measurement (as supplied by one plane of our drift chamber sys-
tem) consisted of either an z or u coordinate at a specific 2 One track could con-

tain up to 14 such measurements.
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Chisquare Definition

We make the following definitions:

a; = track parameter § (A1)
£, = Measured track coordinate (z or u) at plane r (A.2)
¢,(a) = Idealized track coordinate at plane r (A-3)

Lower case bold letters refer to vectors in parameter space. Upper case bold
letters refer to matrices in parameter space. The subscripts + and j refer to
parameter numbers. The subscripts r and o refer to drift chamber plane

numbers.

We use the following definition of x? as our goodness of fit criterion.

x? = Lo (E-ENEE) . (A-4)
rs
The weight matrix w,, is the matrix inverse of the covariance matrix defined as
follows.
w,, = (0%)5, (A.5)
where
o2, = <(£~E)EE)> (A.6)

Mathematically, the track-fitting problem consisted of finding the values of
the track parameters, a, that minimize x2. Before tackling this problem, it was

first necessary to determine how the £, and o, depended on a.

Track Model

This section describes how we determined the idealized motion of muons
through our apparatus. The differential equations (in Cartesian coordinates) for
the motion of an ultra-relativistic charged particle subject to uniform (but not

necessarily constant) energy loss are:
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r =3\1+7 by Yz ¢ B, - (142 2)By] (A7)
Vi+s 24y (149 9B, -7 y B)) (A.8)
E = -V1+z 24y 2 f(E) (A.9)

The variables in these equations are as follows: r=2(z) and y=y(z) define the

@
Il
e &

trajectory of the muon; E is the energy of the muon; ¢ is the charge of the muon;
B, and B, are components of the magnetic field (B,=0 is assumed); f(E) is the
mean energy loss for a muon of energy E. Primes denote differentiation. with

respect to z.

The solution of these equations is straightforward. An exact analytic solu-
tion is impossible because B, and B, have a complicated dependence on z and .
We therefore solved the equations numerically using the fourth-order Runge-
Kutta method with a step size equal to the length of one toroid. We checked the
accuracy of the solution by reducing the step size. The error was quite negligible
(typically less than .01” after seven toroids).

The five integration constants are the five track parameters. For the pur-
pose of track-fitting, we chose the track parameters to be the initial value data at
the z of the target (i.e. zg, :r:,, Yo, o and E,). During minimization the five track
parameters were not allowed to vary independently. In constrained fitting mode
the track was required to pass through the center of the target (i.e. zp=y,=0).
In unconstrained mode, the track did not have to pass through the target, but

was required to be coplanar with the beamline (i.e. z,y =10 ).

Covariance matrix
The covariance matrix was calculated by Monte Carlo simulation directly
from the definition (Eq. A.6). The dependence of the covariance matrix on the

track parameters was parameterized as follows.

Mf‘l
Ug' = m + T’.’ + )\25" (A.lO)

That is, o2, was assumed to depend only on the energy of the muon. The M,,

term is the contribution to the covariance matrix from the multiple scattering
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and energy loss fluctuations of muons in iron. The T,, term is the contribution
from the finite size of the target. The diagonal term represents an intrinsic drift

chamber resolution. AE and \ were empirically determined constants.

M,, was calculated from the Monte Carlo by comparing tracks propagated
with and without multiple scattering and energy loss fluctuations. Finite target

size and intrinsic resolution effects were ignored in this calculation.

T,, was calculated from first principles, making use of the Monte Carlo only
to estimate the distribution of events in the target volume. This term was
different in constrained and unconstrained mode, being much smaller in the latter

case. This term would be zero in a totally unconstrained five parameter fit.

The diagonal term was included not only to take account of intrinsic drift
chamber resolution but also to provide the x? with a certain amount of leeway,
so that small systematic errors in the drift chamber survey (say) would not cause
uncontrollably large perturbations in the value of x% determined for real tracks.
The parameter A was set at .07 inches. This value of X was conservative in the
sense that it was much larger than the intrinsic drift chamber resolution and

somewhat larger than the expected survey errors.

The parameter AE was adjusted so that the mean value of the x? was
nearly independent of muon energy for Monte Carlo tracks. The value of AE
was allowed to depend on the length of the track. The optimum value was 1.1
GeV/c? per toroid, or about half of the total energy loss over the length of the
track. That is, E~AF was the average energy of the muon while it was in the

spectrometer.

Minimization algorithm

The track-fitter used a hybrid of several gradient minimization methods.
The prototype of such methods is Newton's method. Newton's method (and
other gradient methods) start by assuming the validity of a second-order Taylor

expansion of the x% about some point a=aq in the neighborhood of a local

minimum.

X¥(8) = x*(8) + B(ag)-Aa + -AalH(ag)Aa (A.11)
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where Aa=a-a;. In the above equation g is the gradient vector and H is the

Hessian matrix calculated from x2.

— 9
gl - aai (A.12)
_
I{lj - aa'_aaj (A.l3)
Differentiating Eq. A.11 gives
g(a) = g(a;) + H(ag)Aa (A.14)

The condition that x2 be a minimum is that g=0. This leads to a simultaneous

system of linear equations that can be solved formally as follows.
Aa = -H(a,) 'g(a) (A.15)

Newton's method finds the minimum of a quadratic function in one step. In the
case of a general function it is necessary to iterate Eq. A.15. Under favorable
conditions, Newton’s method converges quadratically. This high rate of conver-
gence is hard to beat and it is a very desirable property for any minimization
method to have.

Newton’s method has two main drawbacks. The first drawback is that it is
fairly costly in terms of function evaluations and computer time to evaluate the
full Hessian matrix (assuming that analytic derivatives are not available, which is
the case here). The second drawback is that the first guess used for a must be
fairly close to the local minimum you are searching for. Newton's method

method can converge slowly or even diverge if a is too far from the minimum.

With regard to the second objection, a technique that can be used to stabil-
ize Newton's method and related methods is to perform a one-dimensional
minimization in the direction of the step calculated by Eq. A.15. The advantage
of this technique is that one is guaranteed to find a new minimum at each itera-
tion (until a local minimum is reached) so that divergence is impossible. Because
of this the requirement on the quality of the first guess is much reduced. The
disadvantage of this technique is that it makes more function evaluations than

necessary in the neighborhood of the minimum.
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Various alternatives to Newton's method are based on ways of avoiding the
use of second derivatives. The crudest of these are steepest descent methods.
Here you simply replace H! in Eq. A.15 by some arbitrary positive-definite
matrix (often the unit matrix). One-dimensional minimization of the step is
required since the length of the step is not otherwise controlled. The speed of
convergence depends on how fortuitous your choice of the matrix is, but in gen-
eral the convergence is only linear.

There is an approximation that is often used when you are minimizing a x>
function. Differentiating the definition of x2 twice gives the following exact for-

mula for the Hessian matrix

98, 9¢, 0%, .
b= - A.16
H; 2210,,[ da; da; t 6a6a-(€' &) (A-16)
re J L }
The approximation consists of neglecting the second term in the sum. That is:
A€, OE,
T -_— A17
Hu - 2§wn aai aaj ( )

This is a good approximation when the data are well represented by the model
(i.e. when the (E,—E,) are small). This approximation allows you to calculate the
Hessian matrix using only first derivatives. The approximation can break down

when the data are not well represented by the model.

A more sophisticated approach is used in the Davidon-Fletcher-Powell
method.*> This method combines many of the advantages of the methods
described so far. Specifically, it requires only first derivatives and it converges

quadratically. The basic idea is to iteratively refine both an estimate of the

minimum and the inverse of the Hessian matrix.

Suppose that you have an estimate of the minimum of the x2, a, and that

you know the gradient, g, at a. Instead of Newton's step (Eq. A.15) the DFP
method calculates the step

As = -Vg (A.18)

where V is an estimate of the inverse of the Hessian matrix. This step can be
used directly, if V is a good enough estimate of Hf', or you can do a one-

dimensional minimization along the direction of Aa. In any case you obtain an
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improved estimate of the minimum, a' —a+Aa and you calculate the gradient
! ! . . . ’
8 ;ata . If you are in a quadratic region of parameter space, it is easy to show

that Aa and Ag=g' —g are related by the equation.
Aa = H'Ag (A.19)

Thus Aa and Ag contain information about the Hessian matrix. This informa-
tion can be used to improve your estimate of H!. The DFP method updates V
as follows.

Aadal  vAgAgly

V =V+
Aa-Ag Agtvag

(A.20)

The improved estimate V' is closer to H™! than V in the sense that it satisfies
the equation Aa =V Ag. In general, it takes n iterations (where n is the
dimensionality of the parameter space) to zero out (to first order) the difference

between H! and V in all directions.

The minimization used by the track-fitter used ideas from each of the
methods described above. The basic algorithm was that of the DFP method.
The first guess for the track parameters was supplied by a simple fit based on a
quadratic polynomial, with empirically determined relations between the track
parameters and the coefficients of the polynomial. The first guess for the Hessian
matrix was calculated using Eq. A.17. One-dimensional minimization along the
calculated step was used to enforce convergence only when the new estimate for
the minimum resulted in a x? that was larger than the previous best minimum.
If the one-dimensional minimization failed to improve the x? significantly, a
second one-dimensional minimization was performed in a steepest descent direc-
tion (in case V was not positive definite). The track-fitter included code to force
the propagation of the initial and subsequent estimates for the minimum. Basi-
cally, the first priority of the minimization algorithm was efficiency. We believe

that the track-fitter was able to find the minimum value of x? essentially 100%

of the time.
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LINEAR PRECUTS

The large number of possible hit combinations and the relative slowness of
the track-fitter made it necessary to develop a fast method of identifying plausi-
ble tracks. The linear precuts described in this appendix met this need. The pre-
cuts were an adaptation of the method of H. Wind*® for removing the redundant

information contained in a set of track measurements.

Consider a sample of real or realistically simulated tracks where each track
has been measured at n points on its trajectory. The set of all possible measure-
ments makes up an n-dimensional hyperspace. Each point in the space is a possi-
ble track. All points do not correspond to plausible tracks, however. In fact, a
sample of plausible tracks will be approximately confined to an m-dimensional
hypersurface within this space, where m is the number of parameters needed to
characterize a track (it is assumed that n>m). The basic idea of the precuts is
to find linear combinations of the track coordinates that depend only weakly on
the track parameters but depend strongly on the distance of the point from the
m-dimensional hypersurface. This is accomplished by means of a rotation of the
axes of the n-dimensional track space such that m of the axes are approximately
parallel to and n-m axes are approximately perpendicular to the m-dimensional
surface populated by real tracks (assuming the hypersurface can be approximated
by a hyperplane). The latter n-m coordinates are only weakly correlated to the
track parameters and can be used to make cuts. The rotated coordinates are

called generalized coordinates.

Let &, represent a measured track coordinate at drift chamber plane r and
let n, represent the rth generalized coordinate. The linear transformation from £

togis

n= O((-<€>) - (B-1)
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where O is an nXn orthogonal matrix. The sample means of the track coordi-
nates have been subtracted off so that the sample means of the generalized coor-

dinates will be zero. The appropriate orthogonal matrix is determined by

diagonalizing the sample covariance matrix:

Cre = <E<EDD>EAEDD> = <EE,>-<E><E> (B.2)

Diagonalizing the covariance matrix extremizes the dispersion of the new coordi-

nates. We diagonalize C by the equation
A = ocot (B.3)
where A is a diagonal matrix. The dispersion of the generalize coordinate 1, is
<p?> =\, (B.4)

where A, is an eigenvalue of C. The m largest eigenvalues correspond to eigen-
vectors (i.e. generalized coordinates axes) that are approximately parallel to the
m-dimensional hypersurface populated by plausible tracks. the rest of the eigen-
values are typically quite small. These correspond to eigenvectors that are
approximately orthogonal to the m-dimensional hypersurface. We placed cuts on

the latter generalized coordinates.

In practice, the precuts were calculated from a sample of Monte Carlo
tracks. Covariance matrices (Eq. B.2) were calculated for various possible track
topologies (i.e. combinations of drift chamber planes) with values of n ranging
from 4 to 14. Positive and negative tracks were handled separately. In the case
of the constrained fit, tracks were characterized by three parameters, so that n-3
precuts were possible. In the track-finding process, precuts were applied to all hit

combinations having at least 4 drift chamber planes. The actual form of the cut
was

" < a(A,+ )Y (B.5)
For the constrained fit, a=25 and A=.07. The \? term corresponded nominally
to an intrinsic drift chamber resolution. The motivation for this term was the
same as for a similar term in the x? definition used in the track fit and is

described in appendix A. In the case of the unconstrained fit, the value of a was

increased from 25 to 100 and precuts were only applied to the subset of
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generalized coordinates that were almost invariant under translation toward or
away from the beam axis so that they would not bias unconstrained track-finding

against halo muons.

Since drift chamber planes were added to tracks one or (usually) two at a
time in the process of track-finding, many precuts were applied to each track.
Figures 65 and 66 are intended to show the efficiency of the precuts for positive
and negative tracks respectively. These figures are histograms of the largest cut
generalized coordinate encountered during track-finding for a sample of good
tracks using only hits from the final track. The entries to these histograms were
scaled so that the cut was applied at 1.0 (i.e. at the right edge of the histogram).

They are based on our entire sample of good tracks from our data.




APPENDIX C

NUCLEON STRUCTURE FUNCTIONS

This appendix describes nucleon structure function parameterizations used in
our analysis. We used three different nucleon structure functions. We used the
EHLQ parameterizations?® for our primary nucleon structure functions. For com-
parison we used the two parameterizations used by the NA10 dimuon
experiment.3® The EHLQ parameterizations and the first NA10 parameteriza-
tions were based on CDHS neutrino deep inelastic scattering data.3? The second
NA10 parameterizations used CCFRR neutrino data®® for the valence structure

functions only.

EHLQ expand structure functions as sums of Chebyshev polynomials.

5 !
(1-z)* Y c;Ti(= )T}({) >.1
i,j=0
I(x)Qz) = 5 (Cl)
(1-2)* % d;T: (97T; (¢ ) 104<2<.1
$5=0
where
' 2z-1.1 C.2
z = (C.2)
. 2lnz + 5In10 (C.3)
3In10
tr — 2t - tmax - tmin (C.4)
’max - tmin
The variable t is given by
t = In(@*/A%) (C.5)
fnax = 10(@ar/AY) (C.6)
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tmin = 10(Qhin/A%) (C.7)
where Q2 = 108 (GeV/c)?, Qhin =5 (GeV/c)? and A = .2 GeV/e.
The values of the parameters @, c;; and d;; for various flavors of quarks are
given in Tables 14-16 respectively.

NA10 used the following general forms for their parameterizations.
Up valence:
v fz) = A g™ (-9 (1+72") (C.8)
Down valence:
dfa) = A" (-2 (1472 (C.9)

Up, down and strange sea:

#(z) = d2) = 23(z) = C{1-2)" (C.10)
The normalization constants A, and A, are determined by quark counting.
1
f "‘M (C.11)
o 2
1
dfz
] 1) =1 (C.12)
0o 2
Specifically,
A, = 2 (C.13)
Y Blayfy+l) + 1Blagtag,fytl) '
1
A;= C.14
‘= BayBr+2) + vBataghytd) (©14

B is Euler's beta function. The @Q%dependence of the structure functions was
parameterized by expanding the parameters in a power series in
7 = In[In(Q?/A%)/in( @3/A?%)] with @2 = 5 (GeV/c)? and A = .3 GeV/c. Table 17
gives the power series expansions of the parameters a;, a,, By, 7, C and j,
extracted from CDHS data. Table 18 gives the values of a;, a, By and 74
extracted from CCFRR data. Figures 67 and 68 show the three parameteriza-
tions for the composite structure functions G(z) and H{z) (see Eq. 1.15) respec-
tively at Q*—=44(GeV/c)2.
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TABLE 1
QUARK FLAVORS
Electric Baryon Approximate
Name Symbol
Charge Number Mass
down d 3 1 8 MeV/c?
3 3
up u +§-— —;— 4 MeV/c?
strange s —-;T -%— 150 MeV/c?
charm c +2 1 1.5 GeV/c?
3 3
bottom b 1 1 47 GeV/c?
3 3
to t +2 1 >22 GeV/c?
P 3 3




TABLE 2

TOROID MAGNETS
Mean inner Outer .
Magnet radius (inches) radius (inches) Length (inches)
™1 2.67 24 55.88
T™2 4.51 35 55.75
A 6.69 47* 56.25
B 8.75 47* 56.25
C 10.81 47* 56.25
D 12.84 47 56.25
E 14.91 47+ 56.25

* Minor radius of octagon
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TABLE 3
TRIGGER HODOSCOPES
G Inner radius* Outer radius* Number of Width of
a
P (inches) (inches) counters counters (inches)
1 5.125 23.625 5 4t
p) 7.25 34.5 7 4%
3 9.25 46.625 5 7.375
4 11.125 46.625 5 7
5 13.25 46.625 4 8.25
6 15.25 46.625 4 7.75
7 17.25 46.625 4 7.25

* Minor radius of octagon
t The width of the innermost counter was 2”

! The width of the innermost counter was 2.5
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TABLE 4

DRIFT CHAMBERS

Number of Radius of inner  Wire spacing*
Plane Gap Projection

sense wires  wire* (inches) (inches)
1 1 X 18 6 1
2 1 U 18 6 1
3 2 X 27 8 1
4 2 U 27 8 1
5 3 X 37 10 1
6 3 [§) 37 10 1
7 4 X 35 12 1
8 4 U 35 12 1
9 5 X 33 14 1
10 5 U 33 14 1
11 6 X 31 16 1
12 6 U 31 16 1
13 7 X 29 18 1
14 7 U 29 18 1
15 1 X 32 4.625 .25

* Along the direction of the octant bisector
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TABLE 5

OCTANT INEFFICIENCY SCHEMES

Octant efficiency Special
Scheme
2 3 4 ) 6 7 8 efficiency*
1 91 77 90 .93 1 .84 1 81 1
1 8 93 93 92 77 95 .81 cut!
3 1 8 93 .93 92 .77 .95 .81 72

* Special inefficiency is associated with five octant pairs: (+,-)= (6,1), (7,2),

(8,3), (1,4), (2,5)

t In this scheme the five special octant pairs are cut from the data
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TABLE 6

MASS AND zy DEPENDENCE OF CROSS SECTION
FOR 4.5 GeV/c2< M<8.5 GeV/c?

—_—

M . number of accidental acceptance 7;%;
(GeV/<h events background (%) (nb/nucleon-GeV /c?)
475 175 32 13.0 2 3.9 0.20 150 3 057
-125 45 198 3 4.9 0.28 .143 3 .049
-.075 30 183 + 4.8 0.33 .056 & .035
-.025 39 103 + 3.6 0.47 097 + .025
025 75 103 £ 3.7 0.71 .145 £ .023
075 76 11.9 & 4.1 0.72 .143 £ .023
125 51 108 + 3.6 0.66 .098 + .020
175 35 5224 0.34 .139 + .032
5.25 - 175 33 83133 0.52 077 + .022
-125 48 125 1 39 0.81 071 1+ .017
-.075 35 121 & 39 0.81 045 & .014
-.025 71 73130 1.18 087 + .013
025 95 6.5 2.9 1.39 .102 + .013
.075 106 51425 1.46 111 3 .013
125 83 4.7 % 24 1.12 112 4 015
175 43 30119 0.75 .086 1+ .016
225 18 20 + 1.8 0.40 .064 + .019
5.75 -.175 44 47+ 24 1.06 .060 + 012
-.125 44 5.8 4 2.6 1.65 .037 £ .007
-.075 71 7.4+ 34 1.82 .056 £+ .009
-.025 77 49 + 2.4 2.15 .054 + 007
025 91 26+ 18 2.27 .063 + .008
075 93 27 %17 2.15 .068 1+ .008
125 67 25+ 1.9 2.08 .050 + 007
175 66 1.0 + 1.1 1.51 069 + 010
225 34 0.8+ 10 0.85 .063 + .012
275 6 04407 0.23 038 + 018
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TABLE 8 (continued)

B e
_—

M number of accidental acceptance _do
P dMdzy
(GeV/c?) events background (%) {nb/nucleon-GeV/c?)
6.25 -.175 36 24+ 186 1.60 .034 £+ .007
-.125 63 26+ 18 2.68 .036 1 .005
-.075 61 26+ 18 3.27 .029 + .004
-.025 103 211 L7 3.84 042 + .005
.025 87 20+ L7 4.05 .034 + .004
075 7 1.3+ 1.2 3.711 .032 + .004
125 82 07 +£08 2.91 .045 £ .006
175 58 0.6 + 0.8 2.25 .041 + .006
.225 55 03+ 0.8 1.62 054 + .008
275 8 02+04 0.93 .014 £ .005
6.75 -.175 20 1.5+ 13 2.49 .0119 + .0031
-.125 54 1.7+ 1.4 3.57 .0236 + .0037
-.075 58 0.7 + 0.9 4.19 .0220 + .0033
-.025 72 L1+ 1.2 5.38 .0212 £ .0029
025 91 09110 5.25 0276 £ .0034
075 84 0407 4.99 .0270 £ .0034
125 81 04107 4.48 .0290 + .0037
175 56 0.3 + 0.6 3.32 0271 + .0041
225 44 0.6 + 08 2.33 .0300 £ .0051
275 19 0.06 + 0.3 1.68 0184 £+ .0045
325 8 0.10 + 0.4 0.66 .0194 + .0073
7.25 -175 15 0.6 + 0.8 3.41 .0068 + .0019
-.125 30 05+08 4.83 .0098 + .0020
-.075 52 02 +0.5 6.13 .0136 & .0021
-.025 61 07 +£09 6.40 .0152 + .0022
025 79 0509 1.92 .0164 £ 0022
075 51 0.2 £ 0.5 5.31 .0154 + .0024
125 59 0.3 £ 0.6 5.25 .0180 £ .0027
175 45 0.08 + 0.3 438 .0165 & .0027
225 33 0.08 + 0.3 3.23 .0164 + .0031
275 26 0.13 £ 04 2.5 .0161 + .0034
.325 16 0.05 + 0.2 1.31 .0197 + .0052
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TABLE 8 (continued)

= . ”
M . number of accidental acceptance m
(GeV/c? events background (%) (nb/nucleon-GeV/<c?)

7.75 -.175 28 031+ 05 4.28 .0104 + .0022

-125 19 0.19 + 0.4 5.45 .0056 + .0014

-.075 42 0.16 + 0.4 6.34 0106 + .0018

-.025 49 008 + 0.3 6.35 0124 + .0020

025 57 0.16 &+ 0.4 7.82 0117 1 .0018

075 45 0.11 + 03 6.78 .0107 + .0018

125 48 0.03 + 0.2 8.64 0112 + .0018

175 45 0.02 + 0.1 5.56 .0131 + .0022

225 40 0.02 1 0.1 4.13 .0156 + .0027

275 29 0.08 4 0.3 3.18 0147 &+ .0030

325 19 0.03 + 0.2 1.89 .0162 % .0040

375 8 0 0.83 .0138 + .0051

8.25 -.175 12 0.11 + 0.3 4.29 -0045 + .0014

-.125 23 0.23 + 0.6 5.06 .0072 + .0016

=075 41 0.124+ 04 7.31 .0090 + .0016

-.025 41 0.13 £ 04 1.77 .0085 + .0015

025 39 0.02 + 0.1 8.75 .0072 + .0013

075 85 0.04 + 0.2 9.21 0096 + .0015

125 38 0 .17 .0085 + .0015

175 39 0.11 & 0.4 6.89 .0081 + .0017

225 36 0.05 £ 0.2 5.26 0110 + .0021

276 23 0 3.60 .0103 1 .0023

.325 21 0 2.79 .0122 x .0029

35 | 8 0 2.20 .0044 + 0019




PION STRUCTURE FUNCTION, FIT RESULTS

TABLE 7

——

\4 v :
R P T S S I S A
EHLQ No Yes 73.1/67 270£08 5 0 121+.13 O 0 -
EHLQ Yes Yes 736/67 2.70+08 .5 -10 120+.12 .73 0 -
ENLQ " No No 72.1/67 272408 5 0 127413 0 0 -
CDHS* No Yes 746/67 294£09 5 0 121413 0 0 -
CCFRR* No Yes 746/67 258+08 5 0 119413 0 0 -
EILQ(1-2,)" No Yes 72.4/66 256+.18 5 0 120413 0 -16+.19  .065
EHLQ No Yes 724/67 3.08+.10 .4 0 099+.12 O 0 -

* As parameterized by NA10%®

SL
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TABLE 8

APPARATUS SYSTEMATIC ERRORS

Parameter (Error) AK AB
Magnetic Field (+1%) +.02 +.08
Mean Energy Loss of Muons in Iron (15%) 4.14 +.02
Detector Geometry (Target z +1.5"") +.03 4.05
Drift Chamber Inefficiency 4.09 +.01
Trigger Inefliciency 4.07 +.11
Beam Energy (+7%) +.11 +.10
Overall Normalization (1}%%) i 0
Total .48 +.18
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TABLE ¢

PION STRUCTURE FUNCTION, OTHER EXPERIMENTS*!

Experiment a” g
GOLIATH 5 1.57+.18
CIP .5 1.27+.06
OMEGA 44412 0.98+.15
NA3 41+.04 0.95+.05
NA10* 41+.03 1.021.04

* This result included QCD leading log scaling violations.
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TABLE 10

MASS DEPENDENCE OF CROSS SECTION

——

M Number of Accidental Acceptance j%
(GeV/c?) events background (%) (nb/nucleon-GeV/c?)
4.75 393 12 + 12 0.22 1.05 + .09 X 107!
5.25 544 72+ 10 0.47 8.08 + .46 X 1072
5.75 608 427 0.88 5.19 + .25 X 1072
6.25 648 204+5 1.47 343 %+ .15 x 1072
6.75 606 114 + 3.6 2.17 2.21 + .10 X 1072
7.25 490 57+ 29 2.80 1.39 + 07 X 102
775 437 24416 3.44 1.02 + .05 X 102
8.25 386 1.1+11 4.05 7.65 + 42 X 107
8.75 282 09+10 4.33 523 + 33 x 107
9.25 239 0.5+ 07 4.69 409 + .28 x 107
9.75 228 0.3+ 05 5.02 3.65 + .26 x 107
10.25 132 0.2+ 04 5.76 1.84 + .17 x 107
10.75 102 0.2+ 05 6.19 1.32 + .14 x 107
11.25 62 0.08 + 0.3 6.61 7.53 + .98 X 107
11.75 26 0.08 + 0.3 7.29 2.86 + .57 x 107
12.25 17 0.03 + 0.2 8.07 1.69 + .41 x 107
12.75 13 0.03 + 0.2 9.29 112 + .31 x 107
13.25 9 0.02 4+ 0.2 9.72 740 & 249 X 10°
13.75 7 0 11.65 481 + 183 x 10°
14.25 5 0 13.23 302+ 136 x 107
14.75 2 0 14.73 1.08 3 .77 X 10°%
15.25 2 0.03 + 0.2 17.64 8.90 + 6.44 X 107
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TABLE 11

zr DEPENDENCE OF CROSS SECTION FOR M>11 GeV/c?

Number of Accidental Acceptance Ao

zp drp
events background (%) (pb/nucleon)

-.25 3 02 1+ .15 9.81 0.12 £ .07
-.15 4 .06 + .30 9.83 0.16 + .08
-.05 21 0 10.48 0.81 + .18
.05 41 0 11.47 1.45 + .23
15 21 0 9.83 0.87 4+ .19
.25 19 0 8.83 0.88 + .20
.35 16 0 5.37 1.22 + 31
45 14 0 3.86 1.48 + .40
.99 3 0 2.59 0.47 + .27
.65 0 2.36 0.15 £+ .15
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TABLE 12

py DEPENDENCE OF CROSS SECTION IN SEVERAL MASS RANGES

Mass range Pr Number of Accidental Acceptance o
; pripr
{GeV/cY) (GeV/e) events background (%) (pb/nucleon-(GeV/c)?)
4.5-5.5 .25 21 0.6 + 0.8 .08 9.03 4+ 2.13 x 10
.15 133 38+ 24 .14 1.03 £ .10 X 107!
1.25 215 13.1 £ 4.1 .29 4.83 + .38 x 10
1.75 230 25.86 + 5.8 .56 1.68 &+ .14 X 107
2.25 157 31.3+6.2 .79 5.55 + .65 x 107°
2.75 97 31.1+£6.2 1.07 1.73 + .32 x 107
3.25 45 25.0 + 5.8 1.33 3.51 & 1.55 x 107
5.5-6.5 25 13 05+08 .69 5.56 + .55 x 102
a5 318 1.7+ 1.4 .83 424 1+ .26 X 1072
1.25 315 45+ 23 1.12 1.82 + .11 X 1072
L75 247 74+ 3.2 1.49 7.35 + .53 x 107°
2.25 134 83+ 32 1.87 2.35 + .24 X 10°
2.75 64 82+3.1 2.14 7.37 £ 1.19 X 107*
3.25 30 79432 2.77 1.90 £+ .56 X 107
3.75 19 7.3+ 3.1 2.92 8.22 & 3.85 x 10
6.5-7.5 .25 126 0.4+ 0.6 2.28 1.85 + .17 x 10°°
75 301 0.6+ 0.9 2.28 1.46 + .09 X 1072
1.25 312 1.0+ 1.1 2.35 8.70 + .54 X 107°
1.75 189 134+1.2 2.47 3.49 + .28 X 107
2,25 103 1.8+ 1.4 2.98 1.19 £ .13 x 107
2.75 30 21416 3.31 2.35 4 .50 X 10~
3.25 18 2.0+ 1.6 4.02 9.13 + 2.70 X 1078
3.15 11 25+ 2.1 3.95 4.17 1 2.00 X 10°
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TABLE 12 (continued)

Mass range Pr Number of Accidental Acceptance ;::7
(GeV/c?) (GeV/¢) events background (%) (pb/nucleon-(GeV/c)?)
7.5-8.5 .25 111 0.0 + 0.2 3.52 1.07 + .11 X 1072
75 246 0.0 + 0.1 3.37 8.14 + .55 x 103
1.25 215 0.2 £ 0.6 3.62 3.88 + .20 % 103
1.75 132 0.2£0.5 3.92 1.54 £+ .15 % 107
2.25 67 0.1+03 432 543 + .71 x 107
2.75 24 0.6 £ 0.9 5.00 1.33 + .30 x 10
3.25 16 0.2+ 05 6.47 5.82 + 1.59 x 10°
3.75 0.5 + 0.7 6.68 2.62 + 1.02 X 10
4.25 2 0.3 + 0.6 8.28 3.81 + 3.40 X 10
4585 .25 371 1.5+ 13 .63 1.98 &+ .11 x 107
a5 996 6.2+29 .69 1.60 + .05 X 107!
1.25 1057 188 + 4.9 87 1.78 £+ .27 x 107
1.75 798 346 + 6.6 1.18 3.01 +.12 x 107
2.25 461 415+£172 1.46 1.00 + .06 X 1072
2.75 215 4204172 1.76 277 + .27 X 107
3.25 109 352 + 6.7 2.20 7.93 + 1.36 X 10~
3.75 60 30.4 + 8.3 2.43 247 4 .84 X 1074
>11 .25 16 0 5.59 9.71 £2.45 %X 10~
a5 27 0 6.09 4.94 & .96 X 10~*
1.25 29 0 7.36 2.58 + .49 x 10*
1.75 35 0 9.49 1.69 + .20 x 1074
2.25 13 0 13.33 344 4+ .97 X 10°
2.75 11 0 21.62 145 £ .45 X 10°®
3.25 8 0 29.63 6.50 4 2.38 x 10
3.75 0 55.97 148 + .77 x 10°°
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MEAN p; AND p.? FOR SEVERAL MASS RANGES

Mass range <pr> <pT2>

(GeV/c?) (GeV/e) (GeV/c)?
4.5-5.5 1.142 4+ .029 + .049 1.659 + .073 + .125
9.5-6.5 1.120 + .019 + .027 1.663 + .054 + .083
6.5-7.5 1.197 3 .020 + .022 1.837 4 .060 + .064
7.5-8.5 1.156 + .022 4+ .026 1.769 + .067 + .092
4.5-8.5 1.147 4+ .011 + .020 1.712 4+ .031 + .062
>11 1.205 4+ .055 + .024 1.936 + .145 + .074

The first error is statistical and the second error is systematic.
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TABLE 14

EHLQ EXPONENTS, a

flavor a
up valence 3
down valence 4
up & down sea 7
strange sea 7
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TABLE 156

EHLQ COEFFICIENTS, c;

flavor ] 0 1 2 3 4 5

up valence 0| 4077211 -0.20889 -0.33113 -0.02638 -0.01652  -0.00024
1 | -0.52884 -0.26450 +40.32259 +0.12139  40.02579  +0.00893
2 | 4+0.21304 +0.18412 -0.08628 -0.06727 -0.01859  -0.00597
3 | -0.08861  -0.00573 ° +0.01580  +0.02644 +0.00951 +0.00308
4 | +0.03531 +0.04188 -0.00029 -0.00869 -0.00380 -0.00129
5 | -0.01502 -0.01943 -0.00245  +0.00264 +0.00146 +0.00054

down valence 0 | 4038389 -0.08068 -0.16369 -0.02245 -0.00886 -0.00067
1 [ -0.29280 -0.14268 +0.16783 +0.06758 +0.01553  +0.00480
2 | 4+0.12336 +0.10193 -0.04866 -0.03797 -0.01104 -0.00339
3 | -0.05324 -0.05447 +0.01019 +0.01565 +40.00578 +0.00183
4 | +0.02131  +0.02428 -0.00081 -0.00541 -0.00239  -0.00080
5 | -0.00821 -0.01148 -0.00111 +0.00177 +0.00096  +40.00035

up & down sea 0 | +0.07343 -0.06526 40.03509 -0.00291  +40.00584 +0.00011
1| -0.01744 -0.00187 +40.00716 -0.00913 +0.00138 -0.00178
2 | -0.00636 -0.00021 -0 00788 -0.00057 -0.00182  -0.00055
3 | +0.00761 +0.00432 +0.00432 +0.00221 +40.00134  +0.00071
4 | -0.00448 -0.00345 -0.00130 -0.00131 -0.00068 -0.00038
5 | +0.00262 +0.00239 40.00086 +0.00061 +0.00029 +0.00016

strange sea 0 | +0.05414 -0.03819 +0.02615 -0.00082 +0.00525 +0.00035
1 | -0.00571 -0.01484  +0.00725 -0.00748  +0.00103 -0.00157
2 | -0.01022 +40.00330 -0.00680 -0.00132 -0.00173 -0.00060
3 | 40.00897 +0.00328 40.00370 +0.00245 +0.00133 +0.00072
4 | -0.00493  -0.00314 -0.00163 -0.00139  -0.00068 -0.00038
5 | 4$0.0027¢  +0.00228 4+0.00074 +0.00063 +0.00030 +0.00016




85

TABLE 16

EHLQ COEFFICIENTS, d;;

flavor ] 0 1 2 3 4 5

up valence 0 | +0.24048 +0.20194 +0.09841 +0.02174 +0.00353  +0.00054
1 | +0.01848 -0.00472 -0.02624 -0.01883 -0.00783  -0.00263
2 | -0.00587 -0.00525 +0.00094 +0.00238 +0.00147 +0.00070
3 { 40.00175 +0.00199 +0.00033 —0.00031 -0.00028  -0.00016
4 | -0.00053 -0.00065 -0.00017 +0.00004 +0.00006 +0.00004
5 | 40.00017 +0.00023 +0.00008 +0.00001 -0.00001 -0.00001

down valence 0 | 4+0.12672 +0.13615 +0.03988 +0.00835 +0.00170  +0.00046
1 | +0.00444 -0.01088 -0.015904 _-0.00945 -0.00364 -0.00120
2 ] -0.00199 -0.00069 +0.00152 +0.00153 +0.00080 +0.00036
3 | +0.00065 +0.00051 -0.00013 -0.00028 -0.00017  -0.00009
4 | -0.00020 -0.00019  -0.00000 +0.00006 +0.00004 +0.00002
5 | 4+0.00007 +0.00008 +0.00002 -0.00001 -0.00001 -0.00001

up & down sea 0 | +1.03742 -1.12935 +0.34131 -0.07490 +0.00884 -0.00089
1| 4094925 -1.31366 +0.45441 -0.09849 +0.01413 -0.00114
2 | 40.04985 -0.12988 +0.08680 -0.02614 +0.00474 -0.00060
3 | -0.02798 40.05052 -0.01819 +0.00174 +40.00024 -0.00005
4 | +40.00729 -0.01145 +0.00165 +0.00069 -0.00021 -0.00000
5 | -0.00174 +0.00230 +0.00042 -0.00036 +0.00004 +0.00001

strange sea 0 | +0.94651 -1.10836  +0.35214 -0.07257 +0.00913 -0.00092
1 | +0.955694 -1.30198 +0.45809 -0.09837 +0.01375 -0.00133
2 | 4+0.04845 -0.13237  +0.08558 -0.02647 +0.00471  -0.00057
3 | -0.02763 +0.05118 -0.01783 +0.00187 +40.00027 -0.00005
4 | 4$0.00719 001163 +40.00154 +0.00064 -0.00022  -0.00000
5 | -0.00171 +0.00235 40.00045 -0.00035 40.00005 +40.00001




86

TABLE 17

NA10 PATAMETERIZATION OF CDHS STRUCTURE FUNCTIONS

ay = 0.3543 + 0.4122F

ap = 1.5760 + 2.0170F

By = 3.8330 + 2.8680F

v = 11.87

C = (0.50758 + 0.230067 + 0.0673472)/2.8

B, = 7.417 - 1.1387 + 13.2252 - 4.9665> — 1.865*
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TABLE 18

NA10 PARAMETERIZATION OF CCFRR STRUCTURE FUNCTIONS

o, = 0.6190 + 0.1678%
ay undefined

By = 2.8670 + 0.6687F
y=20




Figure 1.— The lowest order Feynman diagram for Drell-Yan production.
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Figure 2.— The basic subprocess and higher order QCD subprocesses contribut-
ing to the Drell-Yan process.
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Figure 3.— Plan view of the E-326 detector. An end view is shown in section
A-A'.



Collimator Magnetized lron Lead Vacuum
wall Toroids Shielding Pipe

Target \‘ \
4—A— X I | 1
: | o , ]
) : | | | {
- ﬂ: 1 ! | | . '
T - ‘ :qu——-x—ﬂg z - "0 T rer 2p B 433 WSS OGNY AR HINIDARE WP
Beam i ] - e = I —
1 : i | \ ‘
gy ‘ I : | |
]
| I : : L
SECTION A - A°
Drift Scale (feel)
Chombers o 5 10
N W VRN NG W VRN WY SN U VA |

Scintiliation
Couniters

Guides

€6



Figure 4.— Plan view of the P-West secondary beamline.
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Figure 5.— Gap 3 trigger hodoscope (see section A-A’ in Figure 3).






Figure 6.— Block diagram of the E-326 trigger.
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Figure 7.— Trigger coincidence matrices in one octant. The labels Gn Pm refer

to the mth trigger counter in the nth gap.
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Figure 8.— Schematic diagram of the post matrix logic (PML).
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Figure 9.— Schematic diagram of the second level trigger.
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Figure 10.— Side view of drift cells of original drift chambers.
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Figure 11.— Side view of drift cells of new drift chambers in gap 1.
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Figure 12.— The efficiency of the original drift chambers in gap 1 as a function of

distance from the beam.
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Figure 13.— The efficiency of the gap 2 drift chambers as a function of distance

from the beam.
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Figure 14.— The efficiency of the gap 3 drift chambers as a function of distance

from the beam.
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Figure 15.— A comparison of the octant distribution of tracks in the data and

the Monte Carlo (before applying any correction).
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Figure 16.— The distribution of the number of drift chamber of hits per octant

for positive tracks. Data and background.
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Figure 17.— The distribution of the number of drift chamber of hits per octant

for negative tracks. Data and background.
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Figure 18.— The distribution of P-A# for positive tracks. Data and background.
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Figure 19.— The distribution of P-A# for negative tracks. Data and background.
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Figure 20.— The distribution of AP/P for positive tracks. Data and background.
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Figure 21.— The distribution of AP/P for negative tracks. Data and back-

ground.
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Figure 22.— The x2 distribution for four gap positive tracks. Data and back-

ground.
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Figure 23.— The x? distribution for positive tracks longer than four gaps. Data

and background.
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Figure 24.— The x? distribution for four gap negative tracks. Data and back-

ground.
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Figure 25.— The x?2 distribution for negative tracks longer than four gaps. Data

and background.
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Figure 26.— A comparison of the data and background mass distributions for

same sign positive events.
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Figure 27.— A comparison of the data and background pg distributions for same

sign positive events.
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Figure 28.— A comparison of the data and background zp distributions for same

sign positive events.
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Figure 29.— A comparison of the data and background cos6* distributions for

same sign positive events.
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Figure 30.— A comparison of the data and Monte Carlo distributions of the gap

1 octant z coordinate for positive tracks.
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Figure 31.— A comparison of the data and Monte Carlo distributions of the gap

2 octant z coordinate for positive tracks.
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Figure 32.— A comparison of the data and Monte Carlo distributions of the gap

3 octant z coordinate for positive tracks.
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Figure 33.— A comparison of the data and Monte Carlo distributions of the gap

4 octant z coordinate for positive tracks.
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Figure 34.— A comparison of the data and Monte Carlo distributions of the gap

1 octant z coordinate for negative tracks.
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Figure 35.— A comparison of the data and Monte Carlo distributions of the gap

2 octant z coordinate for negative tracks.



Events/bin

157

o
o
o
T
, X —— Data - Background
+ X Monte Carlo
O
o
> ]
st
v
o)
o
ol
0
M
X
T
o
o
o X
S
N

0.00 10.00 20.00

x (in.)

20. 00 40. 00 S0. 00



Figure 36.— A comparison of the data and Monte Carlo distributions of the gap

3 octant z coordinate for negative tracks.
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Figure 37.— A comparison of the data and Monte Carlo distributions of the gap

4 octant z coordinate for negative tracks.
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Figure 38.— A comparison of the data and Monte Carlo constrained x2 distribu-

tions for positive tracks.
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Figure 39.— A comparison of the data and Monte Carlo constrained x?2 distribu-

tions for negative tracks.



Events/bin

165

Data - Background

X Monte Carlo




Figure 40.— A comparison of the data and Monte Carlo unconstrained x? distri-

butions for positive tracks.
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Figure 41.— A comparison of the data and Monte Carlo unconstrained x2 distri-

butions for negative tracks.
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Figure 42.— A comparison of the data and Monte Carlo target distributions for

positive tracks.
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Figure 43.— A comparison of the data and Monte Carlo target distributions for

negative tracks.
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Figure 44.— Unsmearing corrections as a function of mass.
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Figure 45.— Unsmearing corrections as a function of pp.
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Figure 46.— Unsmearing corrections as a function of zp.
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Figure 47.— A comparison of the data and Monte Carlo z vertex distributions.
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Figure 48.— Raw mass spectrum, background and acceptance.
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Figure 49.— Raw prspectrum and background.
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Figure 50.— Raw zp spectrum and background.
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Figure 51.— py acceptance as a function of pr and mass.
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Figure 52.— z acceptance as a function of z; and mass.



Acceptance

.05

.01

.005

.001

.0005

.0001

191

[0 4.5 GeV/c2 < M < 5.5 GeV/c2
A\ 5.5 GeV/c2 < M < 6.5 GeV/c?
X 6.5 GeV/c2 < M < 7.5 GeV/c?
O 7.5 GeV/c2 < M < 8.5 GeV/c2
<O M > 11 GeV/c?
I .
% ¢¢oo¢°:°°000
T $¢ °§x° o
+ :X X g ® ’00 %
T x
- Ox “6‘ xo ¢ ¢
T ox 4 r'y xo *?
A s ©°
F oo x
T X m
:E L m o m 4 é
R (]
]
T é + Y X
-L
: t }
N
T ¢ +
[ L
-1,00 . 60 i -.Z0 20 i .60

1.00




Figure 53.— A scatter plot of events in mass vs. zr. The binning used in the

structure function analysis is superimposed.
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Figure 54.— A plot of do/dz, comparing our data with the Drell-Yan model using

our pion structure function.
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Figure 55.— A plot of do/dz; comparing our data with the Drell-Yan model using

our pion structure function.
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Figure 56.— A plot of do/dM comparing our data with our fit.



do/dM (nb/(GeV/c2))

107!

-2

10

10

10°

199

Ll i 1 il

i tlass
LB L ILLLLE

bl d 2y
vvyrrm

1 dechrrdaddded el
Ve rrrm

T

i
L)

Ll bt 1 1rles

rryrymn

Y

L ]
Qn
o

8.50

3
Ls

8.50

10.50

Mass (GeV/c2?)

12.50

.50



Figure 57.— A plot of do/dM comparing our data with the prediction of the

naive Drell-Yan model using our pion structure function.
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Figure 58.— A plot of do/dM comparing our data with the prediction of the
Drell-Yan model incorporating QCD leading log scaling violations in

the structure functions and using our pion structure function.
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Figure 59.— A plot of do/dM comparing our data with the prediction of the
Drell-Yan model incorporating QCD leading log scaling violations in
the structure functions and using the world average pion structure

function.
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Figure 60.— A plot of do/dz; comparing our data with the prediction of the
Drell-Yan model for M>11 GeV/c2. The Drell-Yan model predic-
tion incorporates QCD leading log scaling violations and uses the

world average pion structure function.



207

.00

60

.20

T

+ [l . [

50

1
¥ v T
4 3 2

(qd) Fxp/op

~1.00

.05



Figure 61.— A plot of do/dzp comparing NA10’s data with the prediction of the
Drell-Yan model for M>11 GeV/c2. The Drell-Yan model predic-
tion incorporates QCD leading log scaling violations and uses the

world average pion structure function.
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Figure 62.— A plot of (1/p7)(do/dps) comparing our data with our fit in the
mass range 4.5 GeV/c2< M<8.5 GeV/c2.
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Figure 63.— A plot of our data for (1/p¢)(do/dp7) in several mass ranges.
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Figure 64.— <pr> (bottom row) and <p}> (top row) as a function of mass.
The horizontal error bars show the mass interval over which the
cross section has been integrated. The vertical error bars are located

at the mean mass in the interval.
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Figure 65.— The distribution of the square of the largest cut generalized coordi-

nate, 52, encountered during track-finding for positive tracks.
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Figure 66.— The distribution of the square of the largest cut generalized coordi-

nate, 5, encountered during track-finding for negative tracks.
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Figure 67.— A comparison of the three different parameterizations of the compo-

site nucleon structure function, G(z,).
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Figure 68.— A comparison of the three different parameterizations of the compo-

site nucleon structure function, H{z,).



223

.02 —— -

* As parameterized by NA]O36






