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The aim of this work is to extend the analysis of [1] to the (A)dSy background to show
in particular that, for non-zero background curvature A2, the equations for spin s > 2
frame-like fields arc algebraic constraints A2e+ 0w = 0 allowing e to be expressed in terms
of derivatives of the Lorentz connection-type fields w. Plugging the resulting expression
back into the original HS action one obtains equivalent description of the HS dynamics
in terms of w. The main comment of these notes is that the flat limit description of [1]
results from our description within the stationary phase expansion with respect to small
22,

As shown in [2], 4d gravity with the negative cosmological constant can be formulated
in terms of gauge fields of the AdS; algebra o(3,2). It was shown in [2] that, up to
a topological term, Einstein-Hilbert action with the cosmological constant admits an
equivalent form

=]
M __ ab cd
S ——m/emd’R AR, (1)
with
R® = dQ™ + Q° A QP — N’ E° A B, (2)

where E® is the frame 1-form and §2 is the Lorentz connection 1-form.
The straightforward d-dimensional generalization of the 4d MacDowell-Mansouri pure

gravity action is (3]
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The perturbative expansion near the AdS background which is the most symmetric solu-

tion of (3) reads .
Q=wy+w, E=h+e,

where e and w are dynamical (fluctuational) parts of the gauge fields whereas h and wy
define AdS background. Then the linear part of R is

R® = Dw® — X2(h® Ae® — K A %), (4)
with
Dw® = dw® + wp®, A w® + w?e A we.

Hence, d-dimensional free action of a massless spin-2 field is
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From (4) and (5) one obtains

X2 ;
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Let us introduce the field Yopc
Yablc = Welap + Thlcwdlbd - nbcwd]ad-

Up to a total derivative, the action (6) can be rewritten as

1
SA[Y,e] = /du (YayeY %l — d—:—21’;b|"Y"°'c — 2D, Y e,

—2%(d — 2)(e e’ — es’e?)]. (7)
Variation of the action (7) with respect to e,° gives
1 1
et = =3 [DCY“'a + d_—ld,'chY“”d] , (8)

Using (8) one can get rid of the frame field in (7) to obtain the second-order action
(2) ac| 1 byrac| A2 ab| ec|
SO = [ dp |YayeY *y — ——Vay 'Yl — - DY ™l Dey™,
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The generating functional Z for the action (9) is
Z=N / DY flv] W, (10)

where N is a normalization factor,
f[Y] = eifd” (Yublcywlb-ai—gynblbY‘mlc)
and
o /\—2 ab| ec| ;| ab| cdl
Bir)= 2 / du (~DaY™¥. DYy + =Dy, Dy,

To evaluate this integral in the flat limit A — 0 one can apply the stationary phase
method. Stationary points of S[Y] satisfy the equation

DyD, Y™, — 62D,D, Y, — (b3 ¢) = 0. (11)

It is readily seen that, up to the terms proportional to A* which vanish in the flat limit,
(11) admits a solution of the form

Yabld — Deyeabldy (12)
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where Yeapjq = Yieat)ie and [...] mean antisymmetrization.

The key point is that the solutions (12) are dominating because DY = A2¥, be and
therefore S[)] ~ A%, Contribution from other stationary solutions is suppressed when
A — 0 since S[17] ~ A2 (because of the boundary terms).

Thus, the flat space action is equivalent to

1
d—2

SplY] = / A BgY %agedeY Yy — = BaY Y ) (13)

which is just the action obtained in [1].
We see that in our approach the dual flat space action results from some sort of
quasi-classical approximation with A being a counterpart of Planck constant in quantum

mechanics.
The case of higher spin fields is analysed in the same way using technique elaborated

in [4].
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