
Available online at www.sciencedirect.com
ScienceDirect

Nuclear Physics B 965 (2021) 115353
www.elsevier.com/locate/nuclphysb

A conjectured upper bound on the Choptuik critical 

exponents

Shahar Hod a,b,∗

a The Ruppin Academic Center, Emeq Hefer 40250, Israel
b The Hadassah Academic College, Jerusalem 91010, Israel

Received 14 January 2021; accepted 16 February 2021
Available online 23 February 2021

Editor: Stephan Stieberger

Abstract

Near-critical type II gravitational collapse is characterized by the formation of arbitrarily small black 
holes whose horizon radii are described by the simple scaling law rBH ∝ (p −p∗)γ , where γ is the matter-
dependent Choptuik critical exponent and �p ≡ p − p∗ is the phase space distance from the exact self-
similar critical evolution. We point out that all matter models studied thus far in the physics literature 
are characterized by the upper bound γ ≤ 1. We conjecture that this is a generic feature of non-linear 
gravitational collapse scenarios.
© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Almost three decades ago, Choptuik [1] studied numerically the non-linear gravitational 
collapse of a real self-gravitating massless scalar field and revealed an intriguing critical phe-
nomenon in general relativity at the threshold of black-hole formation. Characterizing the 
strength of the initial field configuration by a parameter p [2], Choptuik [1] has demonstrated 
numerically that there is a critical field parameter p = p∗ for which the collapse is characterized 
by a self-similar behavior which leads to the formation of a central naked singularity.
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Table 1
Critical phenomena in gravitational collapse. Remarkably, one finds that all self-gravitating matter models reported in 
the physics literature over the past three decades [1,3–30] are characterized by the simple relation γ ≤ 1.

Matter model References Critical exponent γ

Massless real scalar field [1] 0.37
D-dimensional massless real scalar field [4] 0.372 ≤ γ ≤ 0.44 for 4 ≤ D ≤ 11
Charged scalar field [5–7] 0.37
Massless Dirac field [8] 0.26
SU(2) Yang-Mills [9] 0.196
(magnetic ansatz)
General Yang-Mills [10] 0.20
SU(2) Skyrme model [11] 0.20
SO(3) Mexican hat [12] 0.119
Yang-Mills-Higgs [13] first critical solution 0.118

[13] second critical solution 0.19,0.26
Axisymmetric massless scalar field [14] 0.28 ≤ γ ≤ 0.41
Complex scalar field with angular momentum [15] 0.11
Scalar field with angular momentum in spherical symmetry [16] 0.0013 ≤ γ ≤ 0.376 for 0 ≤ l ≤ 6
Axisymmetric vacuum [17] 0.37
Vacuum gravitational collapse in 4 + 1 dimensions [18] 0.164
Vacuum gravitational collapse in 8 + 1 dimensions [19] 0.273
Axisymmetric electromagnetic waves [20] 0.145
Einstein-Maxwell-dilaton [21] 0.25 < γ ≤ 0.5 for 0 ≤ κ < 1
Perfect fluid P = kρ [22,23] 0.15 � γ ≤ 1 for 0.05 ≤ k ≤ 1
Massless real scalar field in (2 + 1) dimensions [24] 8/23
2-d sigma model - complex scalar field (κ = 0) [25] 0.387
2-d sigma model - axion-dilaton (κ = 1) - elliptic [26] 0.264
2-d sigma model - scalar-Brans-Dicke (κ > 0) [27] 0.205 ≤ γ ≤ 0.375 for 0.000125 ≤ κ ≤ 2.5
SU(2) sigma model [28] 0.38 ≤ γ ≤ 0.5 for 0 ≤ α ≤ 0.42
2-d sigma model - general κ [29] 0.14 ≤ γ ≤ 0.5 for −0.6 ≤ κ < 13
Axion-dilaton - hyperbolic [30] 0.436
5-d Axion-dilaton - elliptic [30,31] 0.372,0.601,0.843

Furthermore, it has been observed in [1] that field configurations in the super-critical regime 
p > p∗ (with �p ≡ p − p∗ � 1) are characterized by the formation of arbitrarily small black 
holes whose horizon radii are well fitted by the remarkably simple scaling law

rBH ∝ (p − p∗)γ . (1)

Interestingly, it has been demonstrated in [1] that the critical exponent γ in the Choptuik scaling 
relation (1) is universal in the sense that its value does not depend on the shape of the near-critical 
initial field configuration.

The intriguing critical phenomenon discovered in [1] has motivated many physicists and math-
ematicians to explore the onset of black-hole formation in self-gravitating collapse scenarios of 
various matter models, see [1,3–30] and references therein. These later studies have revealed that 
the critical scaling exponent γ in (1) should be regarded as a semi-universal physical parameter.

In particular, it has been demonstrated explicitly in [1,3–30] that the exact value of the critical 
exponent γ in the black-hole scaling relation (1) depends on a number of physical factors, such 
as: (1) the type of collapsed matter, (2) the symmetry of the initial matter configuration, and (3) 
the spacetime dimension.
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2. The conjectured upper bound on the Choptuik critical exponents

Despite the fact that the critical scaling exponent γ in (1) is model-dependent [1,3–30], in 
the present compact paper we would like to raise the following physically intriguing question: 
Is there some underlying physical principle that bounds the possible numerical values of the 
Choptuik critical exponents?

In order to provide evidence that the answer to the above stated physically interesting question 
may be ‘yes’, we summarize in a compact form in Table 1 the main body of work [1,3–30] that 
has been mounting in the physics literature on the Choptuik critical phenomena for various self-
gravitating matter models. What we find most intriguing is the fact that, for all matter models 
studied in the physics literature over the past three decades [1,3–30], the critical exponents are 
all bounded from above by the simple relation

γ ≤ 1 . (2)

The observation (2) [see the numerical data presented in Table 1] may indicate that there is 
some yet unknown universal mechanism which, regardless of the physical characteristics of the 
various collapse models (the assumed matter content, symmetry, and the spacetime dimension), 
bounds the possible values of the Choptuik critical exponents in dynamical gravitational collapse 
scenarios. We hope that the present compact paper would encourage physicists and mathemati-
cians to further explore the (in)validity of the conjectured universal relation (2) for the Choptuik 
critical exponents.
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