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1 Introduction

The extremely rich interplay between light scalar fields beyond the Standard Model (BSM)
and compact stellar objects has recently generated increasing interest due to advances on
both theoretical and experimental fronts. On the theory side, light scalars are a common
prediction of BSM theories that address some of the standing problems of the SM. Some
well-known examples are the QCD axion as a solution to the strong CP problem [1–4],
landscape scalars from cosmological solutions to the electroweak hierarchy problem as in [5–8],
and scalar-tensor theories classified as modifications of gravity in the infrared [9–21], see
also [22–25] for recent reviews.

Especially when the scalars are coupled weakly to matter, compact objects in general
and neutron stars (NSs) in particular provide a great environment to study their dynamics,
owing to the large number (density) of SM particles. This has been widely recognized in
the past, with many instances of interesting physical processes that take place as a result:
new sources of energy loss that affect cooling rates, supernovae dynamics, electromagnetic
emissivity and overall evolution [26–37], superradiance in stars [38–43], (un-)screening or
emergence of fifth-forces via spontaneous scalarization [14–16, 18, 25, 44–48], modifications of
the merger of NSs and their electromagnetic and gravitational-wave (GWs) signatures [49–55],
alteration of pulsar dynamics [42, 46, 56–61] and even induced vacuum decay [48, 62–64].

Another exciting yet relatively unexplored aspect, which is the focus of this paper,
concerns the structure and composition of stellar remnants when a scalar field develops a

– 1 –



J
H
E
P
0
2
(
2
0
2
5
)
1
4
1

non-trivial profile in medium. Such a scalarization takes place for dense and large enough
objects. This translates into an upper bound on the scale Mϕ which, in analogy to MP,
controls the strength of the scalar interaction with matter, along with an upper bound on
its mass mϕ. These conditions in turn imply that the scalar is not significantly sourced,
or not sourced at all, by dilute and small systems, nor arbitrarily long-ranged, such that
conventional constraints from fifth-force searches and e.g. pulsar timing measurements can
be bypassed, even for Mϕ ≪MP. Particularly in the context of modified theories of gravity,
it has been recognized that scalarized NSs exhibit macroscopic properties, like mass, radius,
moment of inertia, etc., different from those predicted in GR with a given equation of state
(EOS), see e.g. [25] for a review. However, it has not been fully appreciated until now that,
under generic conditions, large deviations in the configuration of compact stars are due to the
appearance of a new ground state (NGS) of nuclear matter.1 In this work, we explain how
such a scalarized ground state of matter can be reached when the higher-order interactions
of the scalar allow it to approach ϕ/Mϕ = O(1) inside the star.

To make the physics as transparent as possible, we carry out our analysis in terms
of the EOS of a free Fermi gas of nucleons. In the standard picture, Fermi degeneracy
pressure stabilizes the star against gravitational collapse. The existence of a scalar coupled
(non-derivatively) to nucleons, which can be encoded as a scalar-dependent nucleon mass,
m∗(ϕ)ψ̄ψ, brings up two competing effects when the conditions for scalarization are met. On
the one hand, the effective mass of the nucleon inside the scalar bubble gets reduced [67],
while on the other, the scalar potential V (ϕ) acts as additional vacuum energy contributing to
the total energy density and pressure, see e.g. [68, 69]. The parameter space is then generically
split into two regions determined by the behaviour of the energy per particle, which receives
contributions from both the scalar-dependent nucleon mass and the scalar potential (these
behaviours are clearly illustrated in figure 2): if the potential dominates, the energy per
particle always increases with density and thus finds its minimum for well-separated neutrons,
as in standard matter. In this case, a phase transition occurs at some finite density where
sourcing of the scalar becomes energetically favorable, leading to a softening of the EOS.
Stable configurations in this regime are in the form of hybrid stars, which exhibit smaller
maximal masses compared to the phase where the scalar field is not sourced. In the rest of
the parameter space, the reduction of the nucleon mass dominates, resulting in a new ground
state of matter where the energy per particle is minimized at a non-vanishing density. Stable
configurations in this regime are in the form of homogeneously scalarized stars, which can
achieve significantly larger masses. NSs in this case can be heavier than the maximal mass
predicted by standard causal bounds [70–73], which assume a certain low-density behavior
consistent with the properties of dilute matter, an invalid assumption when the NGS is
present. Small or dilute systems like nuclei or regular stars are in this case meta-stable and
long-lived. Other distinctive features of NSs in the NGS are their compactness, which can be
larger than in typical NSs yet below that required for a photon sphere, and their minimal

1This is with the exception of ref. [65], which however considered a scalar linearly coupled to matter without
screening, thus generically ruled out. Besides, the implications of the NGS on the configuration of white
dwarfs were studied by the authors in ref. [66], showing how current measurements of their radii can be used
to exclude the parameter space of lighter deformations of the QCD axion.
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rotation period. In addition, since the NGS leads to a branch of NSs disconnected from
the standard one predicted in GR, we find instability gaps in radii and self-bound objects
as small as the Compton wavelength of the scalar.

On the experimental side, the observables mentioned above are particularly exciting in the
advent of recent and future multi-messenger astronomy. The most prominent instance of this
fact is the binary NS merger GW170817 detected in GWs by LIGO and Virgo [74] along with
an electromagnetic counterpart (GRB 170817A) detected by Fermi gamma-ray telescope [75]
which, among many other physics results, led to constraints on NS radii, maximal mass, and
EOS, see e.g. [76–79]. This is promising in light of the many more NS-NS as well as NS-BH
(black hole) mergers that the current network of GW detectors is expected to detect [80]. The
current stellar remnant catalog [81–83] will also be significantly expanded by third-generation
GW observatories [84, 85]. Another interesting result is the merger event GW190814 [86],
which measured one of the progenitors to be a stellar remnant with a mass of approximately
2.6M⊙. This could be the heaviest NS or the lightest BH discovered to date. While a
distinction between NSs and BHs from GW data alone is non-trivial, see e.g. [87, 88], this
event poses a challenge to the expected lower mass gap between NSs and BHs [89–96]. While
theoretical uncertainties regarding both the maximal mass of NSs as well as the minimal mass
of BHs are large, the possibility of heavy scalarized NSs provides a potential avenue to fill
the gap, in particular given their violation of standard maximal-mass bounds. Furthermore,
electromagnetic measurements are essential to the study of NSs. Observations of radio pulsar
timing give information on the maximal mass of NSs [97, 98] and, in the future, potentially
on their moment of inertia [99], leading to important constraints on NS matter. NICER
measurements in X-rays from binary pulsars have already improved the radius determination
of NSs [100, 101], and significant progress in this type of observational techniques as well as
in theoretical modelling is expected in the near future, see e.g. [102, 103].

The paper is organized as follows. In section 2, we start by presenting our simple free
Fermi gas description and the equations governing the full coupled system of gravity plus the
scalar. All of our results are described in this section in a model-independent fashion. In
section 2.1, we discuss the limit where the scalar field gradient can be neglected, in which
case it is sensible to define an EOS. After presenting the two qualitatively different types of
EOS, we discuss the effects of a finite gradient energy in section 2.2. A more quantitative case
study in presented in section 3 for three types of scalar-matter couplings, namely axion-like
(section 3.1), linear (section 3.2.1), and quadratic (section 3.2.2), while in section 3.3 we
explicitly work out the equivalence with scalar-tensor theories of gravity. Our conclusions
are presented in section 4. A detailed discussion regarding the limit of negligible gradient
energy, which is used extensively throughout this work, is presented in appendix A. Some
useful analytical approximations for constant density objects are given in appendix B. Finally,
in appendix C we present the details on a simple scalar model that realizes a large in-density
reduction of the nucleon mass via a coupling to gluons.

1.1 Decoding scalarization

Before moving on to the bulk of our work, let us briefly discuss the main features of the
different classes of scenarios in which a scalarized ground state of matter can be reached.
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Beyond the scale Mϕ that sets the strength of the leading coupling to matter and the mass
mϕ, the scalar theories under consideration can be characterized in general by two other
scales, Fϕ and fϕ, which control, respectively, the higher-order interactions of the scalar
with matter and its self-interactions,

m∗(ϕ)/m = 1 −
(
ϕ

Mϕ

)n [
1 +O

(
ϕ

Fϕ

)]
, V (ϕ) = 1

2m
2
ϕϕ

2
[
1 +O

(
ϕ

fϕ

)]
. (1.1)

where m∗(ϕ)ψ̄ψ is the scalar-dependent matter mass. We focus only on linearly (n = 1) or
quadratically (n = 2) coupled scalars, as these two are the most generic cases without or with
a parity symmetry ϕ→ −ϕ in the interaction with matter, respectively. The simplest scenario
is when higher-order terms in ϕ can be neglected, namely when Fϕ, fϕ ≫Mϕ. In that case
scalarization takes place with ϕ ∼Mϕ and m∗(Mϕ)/m≪ 1 is approached within the star, a
limit in which the scalar field effectively reaches a constant in-medium value. This case, which
we denote as unbounded m∗, is typical of scalar-tensor theories of the Damour-Esposito-Farèse
type [14], where the scalar couples to the trace of the energy-momentum tensor, equal to mψ̄ψ
in the free Fermi gas limit. Factoring in higher ϕ terms, even when fϕ < Mϕ, one can still find
unbounded m∗ systems where ϕ ∼Mϕ in medium, specially at high-enough densities where
the scalar dynamics is mainly controlled by m∗(ϕ) (with Fϕ ≫Mϕ). In this class of scenarios,
the main effect of a finite fϕ is to set the value of the scalar potential V (Mϕ). Finally,
there exists a bounded m∗ class of theories, in which non-linearities are such that ϕ ∼ Fϕ or
ϕ ∼ fϕ inside the star. The typical example is chameleon screening [16] (see also [48]), where
non-linear terms in the potential prevent the scalar from reaching in-medium values much
beyond ϕ ∼ fϕ ≪Mϕ. In this paper, we pay more attention to scenarios where non-linearities
in the scalar-matter interactions force ϕ ∼ Fϕ ≪Mϕ inside NSs. This is the case (for n = 2)
of the QCD axion, if sourced by dense matter [104], and by its generalizations where the axion
coupling to gluons is decorrelated from its mass [46, 105, 106]. We will not discuss (n = 1)
scalar-tensor theories of the Damour-Polyakov type [15] since in that case m∗(Fϕ) = m.

Finally, let us note that we are leaving aside theories in which scalarization takes place not
because of the interactions with matter but due to the coupling of the scalar to the curvature
(i.e. to R2

µνρσ at leading order in a derivative expansion) [107–109]. See however [110, 111]
for recent theoretical constraints on this type of scenarios.

2 Scalarized free Fermi gas

Neutron stars are well-described at leading order by a degenerate free Fermi gas coupled to
gravity. To study the effects of a scalar field coupled to nucleons, we consider the following
Lagrangian, containing a single massive fermion ψ and a single real scalar ϕ, coupled to
the gravitational field gµν ,

Lψϕ =
√
−g

[
ψ̄ (ieµaγaDµ −m∗(ϕ))ψ + 1

2g
µν(∂µϕ)(∂νϕ) − V (ϕ)

]
, (2.1)

where Dµ = ∂µ − iωµ is the covariant derivative of a fermion field in curved space. ψ and ϕ

are coupled via the term m∗(ϕ)ψ̄ψ, while the self-interactions of ϕ are encoded in the function
V (ϕ), see eq. (1.1). Such a coupling to nucleons naturally arises in models where the scalar
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field couples in the UV to the (light) quarks, or to the gluon field strength, or simply to the
trace of the energy-momentum tensor (see section 3.3). For convenience, we shall henceforth
work with the dimensionless field θ ≡ ϕ/f , where we introduce the scale f as the typical scale
of the scalar field. This can be conveniently identified with either Mϕ, Fϕ, or fϕ introduced
in eq. (1.1), depending on the particular realization. We further assume that at zero density
(i.e. in the absence of the Fermi gas), the potential V (θ) is minimized at θ0 such that

∂V

∂θ

∣∣∣∣
θ=θ0

= 0 , V (θ0) = 0 , and m(θ0) ≡ m (at zero density) . (2.2)

Let us derive the static coupled equations of motion (EOMs) for the fermion, scalar and grav-
itational fields. Assuming radial symmetry, we use the Schwarzschild metric parametrization,

g00 = e2ν(r) , grr = −
[
1 − 2M(r)

M2
Pr

]−1
gΘΘ = −r2 , gφφ = −r2 sin2 Θ , (2.3)

where MP = G−1/2 and we choose the metric convention ηµν = Diag[1,−1,−r2,−r2 sin2 Θ].
The gravitational field is sourced by an energy-momentum tensor that is the sum of two terms,

Tµν = (Tideal)µ ν + (Tgrad)µ ν . (2.4)

Tideal contains the contributions of the Fermi gas and the scalar potential V (θ), and has the
form of an ideal fluid, i.e. (Tideal)µ ν = Diag[ε,−p,−p,−p] with

ε = εψ(m∗(θ), ρ) + V (θ) and p = pψ(m∗(θ), ρ) − V (θ) . (2.5)

The total pressure of the system p as defined above can become negative in regions where
the contribution from the potential V (θ) dominates over the strictly positive pressure of
the Fermi gas. Note also that εψ, pψ and ε, p separately satisfy the thermodynamic relation
d(ϵ/ρ) = −pd(1/ρ) in the constant θ limit. (Tgrad)µ ν is proportional to f2,

(Tgrad)µ ν = f2(∂rθ)2
[1

2δ
µ
ν − δµr δ

r
ν

](
1 − 2M

rM2
P

)
. (2.6)

The term in the square brackets describes the gradient energy of the field and has the form
of a perfect fluid. The second term deviates from the perfect fluid behavior in the form of
additional (anisotropic) pressure. Both terms are proportional to f2, therefore we expect
them to become negligible when f is much smaller than other scales appearing in the EOM,
see appendix A for a detailed discussion. We derive three independent EOMs by minimizing
the action defined by the Lagrangian L = (M2

P/16π)
√
−gR + Lψϕ to find

θ′′
(

1 − 2M
rM2

P

)
+ 2
r
θ′
(

1 − M

rM2
P
− 2πr2

M2
P

(ε− p)
)

= 1
f2

(
∂V

∂θ
+ ρs

∂m∗(θ)
∂θ

)
, (2.7a)

p′ = − Mε

M2
Pr

2

[
1 + p

ε

] [
1 − 2M

rM2
P

]−1
[
1 + 4πr3

M

(
p+ 1

2f
2θ′

2
{

1 − 2M
rM2

P

})]

− θ′
(
∂V

∂θ
+ ρs

∂m∗
∂θ

)
,

(2.7b)

M ′ = 4πr2
(
ε+ 1

2f
2θ′

2
[
1 − 2M

rM2
P

])
, (2.7c)
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where we introduced the fermion scalar density ρs(m∗(θ), ρ) ≡ ⟨ψ̄ψ⟩. Eq. (2.7a) is the
generalized form of the scalar EOM. It contains the coupling to gravity, which deforms
the derivatives on the l.h.s. . The scalar self-interactions are encoded in the first term in
parenthesis on the r.h.s. . The scalar interaction with the nucleons is given by the second term
in parenthesis on the r.h.s. . The last two equations are the generalized Tolman-Oppenheimer-
Volkoff (TOV) equations [112, 113]. Eq. (2.7b) dictates how the total pressure is balanced
by the gravitational force and an additional new scalar force. Eq. (2.7c) is associated with
the enclosed mass M(r), found by integrating over the energy density associated with the
Fermi gas, the scalar potential, as well as a contribution from the scalar gradient. There
are in principle two additional EOMs which we do not present. The EOM for the fermion
field is implicitly used in the expression for the energy and pressure of the Fermi gas.2 The
equation of motion for the temporal component of the metric ν(r) can be solved separately
since ν(r) and its derivatives do not appear in any of the other equations. The combination
of all EOMs imply by construction energy-momentum conservation, i.e. ∂;µT

µν = 0, which is
equivalent to the so-called hydrostatic equilibrium condition [114].

The derivation so far has been independent of the properties of the Fermi gas. For
concreteness, from this point on we consider the simple case of a free Fermi gas (see e.g. [115])

εψ(m∗(θ), ρ) = 2
∫ kF (ρ) d3k

(2π)3

√
k2 +m2

∗(θ) , (2.8a)

pψ(m∗(θ), ρ) = 2
3

∫ kF (ρ) d3k

(2π)3
k2√

k2 +m2
∗(θ)

, (2.8b)

ρs(m∗(θ), ρ) = (εψ − 3pψ)/m∗(θ) . (2.8c)

The Fermi momentum kF and the number density ρ are related as usual by kF (ρ) = (3π2ρ)1/3.
The scalar interactions are implied by the θ-dependent fermion mass. The θ field itself would
eventually be an r-dependent background field, reminiscent of a mean-field approximation.3

In later stages, changing variables to the chemical potential µ would prove helpful since
it must be a continuous parameter in any static solution where chemical equilibrium is
assumed. This change of variables is done by identifying the Fermi energy with the chemical
potential, namely kF (µ) =

√
µ2 −m2

∗(θ)Θ(µ − m∗(θ)). From this definition it should be
understood that, for a given θ, for values of µ below the mass threshold m∗(θ) the total
energy and pressure of the system are µ-independent and originate only from the scalar
field, i.e. ε → V (θ) and p → −V (θ).

The fermion field ψ describes nuclear matter in its simplest form: pure non-interacting
neutrons, believed to be the main component in NSs and provide the dominant source

2Note that one should solve the fermion EOM in flat space, such that the microscopic properties of the
fermion gas are independent of the gravitational field; one can always choose a reference frame which is flat at
the characteristic scales of the Fermi gas.

3By using the mean-field approach we are treating the scalar very much like the gravitational field. In
particular, we neglect interactions associated with e.g. single scalar exchanges, even if these are possible for
background values of θ for which ∂m∗(θ)/∂θ ̸= 0. However, we expect this force (which may be effectively
long range for light scalar masses) to be suppressed by the small effective coupling ∼ m/Mϕ ≪ 1 and therefore
irrelevant for the thermodynamic properties of the system of fermions. It is also implicitly understood that
the scalar is light enough to coherently couple to the Fermi gas, i.e. mϕ ≲ ρ1/3.
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of energy density in the non-relativistic limit. Such a description leaves out important
ingredients such as additional particles (protons, electrons, muons) and interactions, namely
the electroweak and nuclear forces. The latter plays a critical role, as nuclear interactions
become increasingly important at high densities. All of these generate O(1) corrections to
the main predictions (e.g. maximal mass of the bound object), which rely on the balance
of all relevant forces. Nevertheless, the pure neutron gas model is useful when extracting
order-of-magnitude effects due to physics beyond the SM, and thanks to its simplicity it allows
a clear identification of the physical processes behind those effects. In addition, the formalism
outlined above can be extended to different models of interacting and non-interacting Fermi
gases, or adapted to the phase of matter in white dwarfs [66].4

The coupled system eq. (2.7) can in principle be numerically solved by specifying the
initial conditions p(0) and θ(0), with the remaining initial conditions θ′(0) = M ′(0) = 0
dictated by radial symmetry. In practice, however, finding valid static solutions for eq. (2.7a)
is challenging. This can be understood by the classic intuition provided by Coleman [117].
Static solutions of the scalar EOM are analogous to classical one-dimensional trajectories in
an inverted potential, where the radial direction plays the role of time. In this picture, a valid
static solution is one which connects one maximum of the potential to another, with the tail
of the scalar profile staying exponentially close to θ0 for arbitrarily large values of r. These
type of trajectories are inherently chaotic, given that small variations to the initial condition
would cause either an over- or an under-shoot.5 Thus, viable static solutions of eq. (2.7a)
typically require to tune the initial condition θ(0). This issue can be avoided in case eq. (2.7a)
is solved in isolation by adding a fictitious friction term [46]. However, this requires neglecting
the back-reaction of the scalar field on the density profile, which is precisely the effect we are
after. Therefore, our numerical solutions of eq. (2.7) are based on an automatized shooting
method, which tunes the value θ(0) for a fixed p(0) until a viable static solution is found.

2.1 Equation of state: the negligible gradient limit

Finding a solution to the coupled system eq. (2.7) is significantly simpler if there is a separation
between the typical length scale of the scalar field λϕ and the NS radius R,

λϕ ≡ f/Λ2
eff ≪ R . (2.9)

We refer to this particularly simple limit as the negligible gradient limit, in which all θ′(r)
and θ′′(r) terms in eq. (2.7) can be neglected. The detailed derivation of this limit from a
dimensional analysis of eq. (2.7a) is presented in appendix A. Λ2

eff is a scale typically associated
with either the potential term

√
∂V (θ)/∂θ or the Fermi gas term

√
ρs|∂m∗(θ)/∂θ|. For a

NS this limit roughly translates into f/MP ≪ Λ2
eff/m

2.
4In this regard, we note that the nuclear force, mediated at leading order by pion exchange, could change

in a scalarized system, via a θ-dependent pion mass and interactions. We leave the detailed discussion of the
impact of a sourced scalar on nuclear physics for a future publication, see for instance [116].

5One important difference w.r.t. [117] is that in our scenario the explicit radial dependence of the effective
scalar potential, through the pressure dependence of ρs(θ(r), p(r)), translates into a time-dependent potential
in the classical trajectory analogy. This leads to a violation of energy conservation that could complicate
the over-/under-shooting argument. However, since pressure is always continuous, this dependence can be
neglected in small regions where p can be treated as constant.
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In this limit, solutions to the system can be found in terms of standard thermodynamic
quantities. The value of the scalar field at a given number density ρ or chemical potential
µ is then determined either by minimizing the total energy ε(θ, ρ) or the grand canonical
potential Ω(θ, µ) ≡ ε − µρ = −p(θ, µ) w.r.t. θ

∂ε(θ, ρ)
∂θ

∣∣∣∣
ρ

= ∂Ω(θ, µ)
∂θ

∣∣∣∣
µ

= ∂V

∂θ
+ ρs

∂m∗(θ)
∂θ

= 0 . (2.10)

Here ρs = ∂εψ/∂m∗|ρ = −∂pψ/∂m∗|µ depends on the chosen free variable, namely either ρ
or µ. Eq. (2.10) defines the microscopic EOS, along with ∂ε/∂ρ|θ = µ and ∂Ω/∂µ|θ = ρ.
Unsurprisingly, eq. (2.10) is the scalar EOM in the limit where the scalar derivatives are
negligible, i.e. eq. (2.7a) with its l.h.s. set to zero. For eq. (2.10) to have non-trivial solutions,
i.e. for scalarization to take place, there must be a region where the two terms appearing in
it are comparable. The condition ρs∂m∗/∂θ ∼ ∂V /∂θ implies that the compact object must
be dense enough for non-trivial solutions to exist. This condition, along with the largeness
condition of eq. (2.9), are essentially the same conditions discussed in the context of scalar
sourcing at finite density in refs. [62, 63].

Solutions of eq. (2.10) are of the form θ(µ) (or θ(ρ)). This allows us to express the total
energy density and pressure of the system in terms of a single independent variable, e.g. the
chemical potential, such that ε(µ) = ε(θ(µ), µ) and p(µ) = p(θ(µ), µ). By constructing the
EOS using µ as the free parameter, the preferred phase (with maximal pressure) is always
selected and the procedure outlined above produces the thermodynamically stable EOS. This
ensures the continuity of µ and p across a phase transition boundary, which is required for
chemical and mechanical stability.6 At this point one can readily construct the effective EOS,
i.e. ε(p), and numerically solve the usual TOV equations

p′ = −(p+ ε)
M2

Pr
2

(
1 − 2M

rM2
P

)−1 (
4πr3p+M

)
, (2.11a)

M ′ = 4πr2ε , (2.11b)

given the initial condition M(0) = 0 and some internal pressure p(0).
Let us get a qualitative understanding on how the effective mass of the fermion m∗(θ)

would change at increased densities in light of eq. (2.10). As we infinitesimally increase ρs (i.e.
increasing ρ ≃ ρs in the non-relativistic limit), eq. (2.10) can only be satisfied if ∂m∗/∂θ < 0,
namely if the mass of the fermion decreases. In other words, the increase in V (θ) due to
the deviation from θ0 would be compensated by the decrease in the energy of the Fermi
gas.7 Indeed, for a fixed number density ρ, a Fermi gas has less energy when the mass of
the fermion is decreased. Thus, we find that solutions of eq. (2.10) always satisfy the upper
bound m∗(θ) ≤ m∗(θ0) ≡ m at all densities. It is also useful to consider the opposite regime
of very high densities, where we identify two types of solutions for eq. (2.10). The first type
is relevant if there exists a θ∞ for which m∗(θ∞) = 0. Then, eq. (2.10) is solved at arbitrary

6As we discuss extensively below, there can exist a meta-stable, potentially long-lived, branch of the EOS.
In this case, it is necessary to use ρ as the free parameter.

7For concreteness, we use ε(θ, ρ) as the relevant quantity for this particular discussion, but similar arguments
can be made using Ω(θ, µ).
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high densities along a curve in the {θ, ρ} plane defined by

ρs(θ, ρ≫ ρs,∞) ≃ ρs,∞ , where ρs,∞ ≡
∣∣∣∣ ∂V /∂θ

∂m∗(θ)/∂θ

∣∣∣∣
θ=θ∞

= const. (2.12)

In the ultra-relativistic approximation ρs(θ, ρ) ∼ ρ2/3m∗(θ), therefore the condition above is
satisfied by m∗(θ) ∼ ρs,∞/ρ

2/3, which is achieved by taking θ close enough to θ∞ for ρ≫ ρs,∞.
Therefore, in this type of unbounded solution, m∗(θ) remains positive and approaches 0 from
above as the density is increased. This implies that the effective mass of the fermion can be
much smaller than its zero density value m at high enough densities.

If m∗(θ) is bounded from below and does not cross 0, we find the second type of solution:
the asymptotic value of θ at high densities would then be θ∞ for which the first derivative
vanishes, namely (∂m∗(θ)/∂θ)|θ=θ∞ = 0. This can be easily understood as the solution of
eq. (2.10) in the limit where the contribution from ∂V (θ)/∂θ is negligible and ρs ̸= 0. In
this type of solution, m∗(θ) remains positive and approaches m∗(θ∞) from above as the
density is increased. Depending on the function m∗(θ), both m∗(θ∞) ≲ m and m∗(θ∞) ≪ m

are possible. The scalar density ρs increases as ρ increases while the mass is fixed, which
implies that θ(ρ) → θ∞ at high densities, making this solution self-consistent. In both
cases discussed above, we find that any solution of eq. (2.10) satisfies also the lower bound
m∗(θ) > 0 at all densities.

What kind of EOS can we expect? To answer this question, let us first discuss the
qualitative effects of the scalar field. The first effect we can consider is the reduction of the
mass of ψ. This has the generic effect of stiffening the EOS, which can be seen easily e.g.
in the non-relativistic approximation (neglecting V (θ), p ≃ pψ),

pNR
ψ ∝ εNR

ψ

(
εNR
ψ

m4
∗(θ)

)2/3

→
∂pNR

ψ

∂m∗(θ)
< 0 . (2.13)

A reduction of the mass, therefore, leads to a larger pressure for a fixed energy density, i.e. to
a stiffer EOS that can support a larger total mass for a given radius. On the other hand,
the additional contribution of V (θ) would generically lead to a softening of the EOS state.
Again e.g. in the non-relativistic approximation,

pNR ≃ cm
−8/3
∗

(
εNR − V (θ)

)5/3 − V (θ) → ∂pNR

∂V (θ) < 0 , (2.14)

where c is a numerical constant. An increase in V (θ) leads to smaller pressure for a fixed
energy density, therefore to a softer EOS.

These two competing effects split the parameter space of any model into two qualitatively
different regions. First, a coexistence (CE) region, in which a phase of matter, with θ = θCE ̸=
θ0, is accessible above a certain critical pressure. In this case, for internal pressures above the
critical pressure, the bound object can be described as a hybrid star, with a core in one phase
(θ ≃ θCE) and a crust in another (θ ≃ θ0). Below that critical pressure, only the low-density
phase is present. Such phase transitions typically soften the EOS, and the resulting hybrid
stars are less massive in comparison to stars made of matter in their low-density phase.

We dub the rest of the parameter space the new ground state (NGS) region. As the
name suggests, at high enough densities matter can transition to a new, stable ground state
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Figure 1. Pressure as a function of chemical potential. The thick, green curve describes a free
Fermi gas. The blue curve describes a first-order phase transition from θ0 to some θCE, typical in
the CE region of parameter space. The phase transition occurs at a critical chemical potential µCE

c

where the pressure of both phases are equal, denoted here by pCE
c . The red curve describes the NGS,

with θ = θNGS starting at the p = 0 point at non-zero µNGS < m. This plot demonstrates how the
intersection point between the θ ̸= θ0 curves and the θ = θ0 thick green curve, which is controlled by
the properties of m∗(θ) and V (θ), determine whether a certain parameter point belongs to the CE or
the NGS region.

with θ = θNGS. Stars could be totally stable only in this new phase, while dilute stars
(with θ ≃ θ0) can be long-lived until a fluctuation causes them to transition to the stable
phase. Importantly, the EOS for the new ground state could be stiffer in comparison to the
low-density (meta-stable) phase and therefore may support bound objects with larger masses.
The NGS region shares some similarities with strange stars [118–120].

To better define the CE and NGS regions, let us denote our parameter space as α⃗ = {αi},
namely the space of parameters (couplings and scales) that fix the m∗(θ) and V (θ) functions,
see eq. (1.1). The two regions can be easily identified in terms of preferred phases. In this
case, it is useful to pick µ as the independent variable, where the preferred phase is the
one with maximal pressure.

Coexistence region. This region in parameter space is defined by p(θ, µ; α⃗) < 0 for all
values of θ ̸= θ0 and for 0 < µ < m. This means that the θ0 phase is preferred around the
µ ≳ m threshold (since by definition p(θ0, µ) = 0 in the region 0 < µ < m). A phase transition
may then occur at some critical µCE

c (α⃗) > m, see the blue curve in figure 1. Although this
transition is always continuous in (p, µ), it could either be smooth or first-order in (ε, ρ). In
the latter case, there is a discontinuity (i.e. “jump”), like the one shown in figure 2. Phase
transitions typically lead to a softening of the equation of state, see figure 3. We also note
that one can classify three types of possible phase transitions, depending on whether the
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Figure 2. The binding energy ε/ρ as a function of number density ρ. The thick, green curve
describes a free Fermi gas. The blue curve describes a first-order phase transition typical in the CE
region of parameter space. The transition is accompanied by a discontinuity in ε and ρ, in the region
plotted here as the dashed blue line. The phases at the edges of the dashed blue line have the same
pressure. Both the thick green and the blue curves share the same ground state at ρ→ 0, where the
binding energy is simply the rest mass m. The red curve describes the binding energy of the NGS.
An absolutely stable branch is defined for ρ ≥ ρNGS, with the NGS at ρNGS. A meta-stable branch
equivalent to a free Fermi gas in found at ρ < ρc. The region ρc < ρ < ρNGS is completely unstable.

low- and high-density phases are non-relativistic (NR) or ultra-relativistic (UR). A noticeable
effect arises only when at least one of the phases is NR, such that the nucleon mass plays a
role, therefore only in NR → NR and NR → UR transitions. The third possible transition,
UR → UR, occurs when the mass is irrelevant, and therefore changing its value does not
affect the EOS. Note that the UR → NR transition is not possible; as argued above, the
mass of the fermion in the high-density phase is never larger.

New ground state region. The NGS region of parameter space is defined by demanding
that there exists a solution of p(θNGS, µ; α⃗) = 0 at a chemical potential µNGS(α⃗) satisfying
m∗(θNGS) < µNGS < m, with θNGS(µ, α⃗) the solution of eq. (2.10). This is shown by the red
curve in figure 1. In order to see that there is indeed a new ground state of the system, it
is useful to switch and use the number density ρ as a free parameter. The condition above
implies, according to the first law of thermodynamics,

p(µNGS) = (ρNGS)2∂(ε/ρ)
∂ρ

∣∣∣∣
ρ=ρNGS

= µNGSρNGS − εNGS = 0 , (2.15)

where εNGS = ε(θNGS, ρNGS) and ρNGS = k3
F (µNGS)/3π2, with k2

F (µNGS) = (µNGS)2 −m2
∗(θNGS)

and θNGS(α⃗) evaluated at µNGS. From this condition we learn two things,

1. There is a minimum of the function ε/ρ at ρ = ρNGS.

2. The value of the function at that minimum is εNGS

ρNGS = µNGS < m.
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Figure 3. Pressure as a function of energy density for the various regions discussed in the text. The
thick, green curve describes a free Fermi gas. The blue curve describes a first-order phase transition,
typical in the CE region of parameter space. While the pressure is continuous across the phase
transition, which takes place at pCE

c , the energy density is discontinuous, shown as the dashed blue line.
Such a jump leads to a softer EOS, at least in some finite region. The red curve describes the NGS,
characterized by vanishing pressure at some finite energy density εNGS. This EOS can be stiffer than
the θ0 phase at high densities. There is typically also a meta-stable branch at low energy densities,
equivalent to the free Fermi gas, shown here as the dashed red curve.

This new and deeper minimum is shown in figure 2. We find that the function describing
the energy per particle, namely ε/ρ, has a global minimum at ρNGS, which is lower than the
minimum at ρ = 0, since limρ→0 ε(θ0, ρ)/ρ = m. This implies the existence of a new ground
state for matter with θNGS = θ(ρNGS). This is analogous to the effect of the nuclear force in
nuclear matter. The short-distance repulsion and long-distance attraction are balanced at
nuclear saturation density ρ0 ≈ 0.15 fm−3, i.e. the density of nuclei, which are the ground
states of nuclear matter. In the presence of the NGS, the EOS has a stable branch that
reaches p = 0 at some non-vanishing number density ρNGS or energy density εNGS, see figure 3.
Importantly for our discussion, the EOS of this new phase could be stiffer than the θ0
phase, and therefore can potentially support bound objects of larger mass. Since the NGS
is not continuously connected to the θ0 phase, matter below some critical density ρ < ρc is
meta-stable, see figure 2. Given a system at sub-critical density, any density fluctuation large
enough to overcome the potential barrier can cause a phase transition, as long as its spatial
extent is large compared to λϕ, even if small compared to the size of the system (due to the
negligible gradient limit formulated, see eq. (2.9)). The region ρc < ρ < ρNGS corresponds
to negative total pressure and is therefore completely unstable.8

8We should note that for m∗(θ) linear in θ (n = 1 in eq. (1.1)) there exists another (hydrodynamical)
instability due to an imaginary speed of sound c2

s = ∂p/∂ε < 0 [65]. This is absent for m∗(θ) quadratic in θ

(n = 2 in eq. (1.1)) since θ0 is not continuously connected to θCE (nor to θNGS) as one varies ρ.
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Let us now focus on the NGS, and take the contribution coming from V (θ) to be negligible.
Furthermore, let us assume that the effective fermion mass remains approximately constant
in the NGS; this would be the case in models where m∗(θ) is positive and bounded from
below at some θ = θ∞ (see discussion below eq. (2.12)). Thus, if the total effect of the
scalar interactions can be described as simply reducing the mass of the fermion to some
density-independent value m∗(θ∞) < m, the maximal mass and corresponding radius of a
star composed of matter in this new phase can be numerically calculated using the standard
TOV equations, to find

Mmax ≈ (0.7 M⊙)
(

mN

m∗(θ∞)

)2
, R(Mmax) ≈ (9.3 km)

(
mN

m∗(θ∞)

)2
, (2.16)

where we have set m = mN , with mN ≈ 939 MeV the neutron mass. Clearly, a reduced
fermion mass has a strong effect on the NS maximal mass, as well as on the corresponding
radius. This effect is potentially much larger than the usual O(1) effect one gets by using
different EOSs, which model dense matter using different approaches (see e.g. [73, 90]).

On the other hand, the inclusion of the scalar self-interactions encoded in V (θ) would
generically have the opposite effect and drive the maximal mass to lower values compared
to the simple case above. Indeed, in the regime where the reduction in the fermion mass
is so large that the Fermi gas becomes ultra-relativistic, m∗(θ∞) ceases to play a relevant
role in the EOS in comparison with (a fixed) V (θ∞). The EOS then takes a particularly
simple form ε ≃ 3p + 4V (θ∞), and we again find numerically that

Mmax ≈ (1.1M⊙)
(

(0.2 GeV)4

V (θ∞)

)1/2

, R(Mmax) ≈ (5.8 km)
(

(0.2 GeV)4

V (θ∞)

)1/2

. (2.17)

While the maximal mass is of particular interest given its constraining power from single
NS observations, other macroscopic parameters such as compactness, C ≡ GM/R, are of
special relevance for what regards the sensitivity of GW observatories such as LIGO, see
e.g. [121]. When the main effect of the scalar field is just the reduction of the neutron
mass, the compactness is approximately the same as for the free Fermi gas, i.e. C ≃ 0.11,
see eq. (2.16). The compactness is larger if the scalar potential also plays a role, and it is
maximal in the ultra-relativistic limit, where it takes the value C ≃ 0.27, see eq. (2.17). We
have explicitly checked that these two values delimit, to good approximation, the range of
compactness of the heaviest NSs in the NGS, i.e.

0.11 ≲ C ≲ 0.27 , (2.18)

and that such a range is fully covered independently of the NS maximum mass, see figure 4.
Therefore, while the maximal compactness is below that required for the existence of a
photon sphere, C < 1/3, it is larger than that of standard NSs with realistic EOSs, whose
compactness does not typically exceed C ≲ 0.23, see e.g. [73, 92].

An important consequence of the above discussion regards the causal bounds on the
maximal NS mass and compactness. Bounds on the maximal mass of NSs, independent of
their radius, were originally derived by Nauenberg and Chapline [70] as well as by Rhoades
and Ruffini [71], based on the causality requirement that the speed of sound be smaller
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than the speed of light, cs < 1. These bounds can be understood taking the maximally-
compact EOS, namely p = ε − εc for ε > εc, and p = 0 otherwise, from which one finds
the bound M ≲ 4.1M⊙

√
ε0/εc with ε0 = mNρ0 ≈ 150 MeV fm−3 the nuclear saturation

energy density [73, 122]. Given our understanding of matter around nuclear density ρ0,
for εc ≃ 2ε0 this approximately reproduces the original bounds on the maximal NS mass,
Mmax ≃ 3M⊙. This seems to be in contradiction, for example, with our simple estimate in
eq. (2.16). However, this causal bound is clearly based on our assumed understanding of
matter at ρ ≲ ρ0. In the presence of light scalars coupled to nucleons, nuclear matter as we
know it in nuclei may be only metastable (see section 2.2.1), and the NGS energy density
may in fact be lower than ε0, allowing for a larger maximal NS mass.

Bounds on the maximal compactness of NSs are instead not violated by stars in the
NGS. These include the εc-independent causal upper bound from the maximally-compact
EOS just discussed, C ≲ 0.35 [73, 123, 124], as well as Buchdahl’s limit C ⩽ 4/9, which
ensures the finiteness of the pressure inside the NS [114, 125].

Another observable to consider in the context of NSs in the NGS is the rotation frequency
of pulsars, which is very slowly varying in time and precisely measured, see e.g. [126]. Due to
their resemblance at the macroscopic level, it is worth commenting on the rotation periods of
strange stars. In ref. [127] it was shown that the maximal rotation frequency of strange stars
can be mildly larger than standard NSs for the same masses and radii, by a factor ≲ 10%. The
fact that strange stars have the potential to rotate faster also impacts the causal bounds on the
rotation periods, which are typically slightly weaker compared to standard NSs [115, 122, 124].

Besides rotation periods, it would be interesting to further explore other related observ-
ables such as the moment of inertia and the spin-induced quadrupole moment [128, 129], see
also e.g. [115]. These observables have been studied mostly in the context of scalar-tensor
modifications of gravity [130–133]. Their importance goes beyond the characterization of
the macroscopic properties of NSs in that the moment of inertia and quadrupole in GR are
found to be related in a way that weakly depends on the EOS [134, 135]. These universal
relations, also known as I-Love-Q relations, also involve tidal Love numbers such as the tidal
deformability [136], which parametrizes the quadrupole response of a star to the gravitational
field of a companion object. Strange stars have been found to exhibit much larger tidal
deformabilities than normal NSs [137], yet the universal relations have been shown to hold
regardless, see e.g. [138]. Perhaps the stronger indication that this set of observables is likely
different for NSs in the NGS than for standard NSs is that departures from the I-Love-Q
relations are typically significant in scalar-tensor theories, as reviewed in [25].

2.2 Finite gradient effects

2.2.1 Meta-stability

The negligible gradient limit (f/MP ≪ Λ2
eff/m

2) is useful and applicable when considering
bound objects that are much larger than the effective wavelength of the scalar field, see
eq. (2.9). For objects whose size R satisfies the opposite condition

R≪ λϕ , (2.19)
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the cost in gradient energy outweighs the in-medium gain in potential energy, such that the
energetically favorable configuration remains θ = θ0. This limit has an important implication:
the new stable phase of matter is not accessible in small systems, even if these are dense
enough. For instance, considering a low value of the scalar decay constant, e.g. f = 103 GeV,
and taking a conservative estimate Λ2

eff ∼ (1 GeV)2 (which is relevant for nuclei and NSs),
we find that the effective wavelength is λϕ ∼ 200 fm, two orders of magnitude larger than
nuclear radii ∼ 1 fm ×A1/3, with mass number A. Since most nuclei with A ∼ O(200) are
already short-lived, it is extremely unlikely that a nucleus with A ∼ 106 is spontaneously
formed in small systems. In practice, experimental tests typically bound f to be much higher
than considered above, making λϕ much larger and the new phase even less accessible in
small systems (the discussion on these model-dependent experimental tests is postponed
to section 3). Therefore, the stability of standard nuclei in light of the absolutely stable
scalarized ground state is ensured due to the gradient energy required to displace the scalar
field, and it is consistent with the fact that some nuclei are very long-lived, and in fact
stable on cosmological scales.

In addition, note that only matter fluctuations whose spatial extent is of the order of
λϕ can lead to a transition from the meta-stable phase to the NGS phase. This type of
large and dense regions are expected to appear first in violent events such as stellar collapse
(e.g. supernova) and stellar collisions (e.g. binary mergers), which therefore should be the
main production mechanisms of matter in its true ground state, see also e.g. the discussion
in [25]. Depending on the critical density, the existence of a NGS can affect the formation
of main sequence stars as well as stellar remnants such as white dwarfs and NSs. We leave
the study of these effects for future investigation and limit ourselves here to the study of
time-independent systems.

Finally, we note that in our simple working assumption of a free Fermi gas (of neutrons),
every time a clump or nugget of matter in the NGS comes into contact with matter in
the meta-stable low-density phase, it would convert it to the NGS. In the case of strange
quark matter [118–120], this is avoided by adding electrons according to charge neutrality.
These form a cloud of size (αme)−1 around the strange nugget, which itself has a crust of
order Λ−1

QCD (which is also the smallest nugget size). The Coulomb barrier then prevents
these objects from converting other nuclei to strange matter. In our case, such a separation
of scales is not necessarily present (since λϕ ≫ Λ−1

QCD) and therefore this argument is not
applicable. Nevertheless, we expect the abundance of NGS nuggets to be significantly
smaller than their strange counterparts due to a suppressed production rate in extreme
astrophysical environments by ∼ (ΛQCDλϕ)−2. Still, we believe a more careful examination
of this question is warranted.

2.2.2 Self-bound and constant density objects

For all configurations on the stable branch, the total core pressure balances two inward
pressure contributions, the gravitational pressure and the pressure from the change in mass
due to the scalar field, which we refer to as the gradient pressure. We define self-bound
objects (SBOs) as those for which the gravitational contribution is subdominant. They are
composed of matter in the NGS, held together by the gradient pressure of the scalar field
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at the boundary (or crust) of the object, which is typically of size λϕ and where the scalar
transitions from θ∞ → θ0. The opposite limit represents the conventional gravitationally-
bound objects, also known as stars. As discussed below, in the NGS branch, both types of
objects can have approximately constant energy density profiles. In appendix B we provide
a detailed analytic treatment of these objects.

SBOs are typically not compact, GM/R ≪ 1, consistent with the fact that they are
well-described by the MP → ∞ limit of the coupled TOV equations,

p′ = −θ′
(
∂V

∂θ
+ ρs

∂m∗
∂θ

)
, (2.20a)

θ′′ + 2
r
θ′ = 1

f2

(
∂V

∂θ
+ ρs

∂m∗(θ)
∂θ

)
. (2.20b)

Note that the pressure profile is non-trivial only in regions where θ′ ̸= 0 and the condition
in eq. (2.10), which defined our microscopic EOS, is not satisfied. The smallest possible
SBOs, also known as nuggets, are of size

Rmin
SBO ∼ λϕ . (2.21)

These are the densest of all the SBOs, since for higher densities eq. (2.20) no longer admits
stable solutions. In the R ≫ λϕ limit, the interior of SBOs is well-described by constant
internal pressure and energy density, as well as a constant scalar field value. They are held
together by the gradient pressure exerted in a small region of size λϕ ≪ R, at the edge
of the object. For even lower densities, the SBOs become large, reaching the point where
gravity can no longer be neglected. Depending on the region of parameter space, SBOs can
range many order of magnitude in size Rmax

SBO ≫ Rmin
SBO. In particular, they can be as large as

NSs and with similar masses. On the other hand, for large values of f , SBOs may not be
viable configurations at all. Indeed, the existence of SBOs requires that Rmax

SBO > Rmin
SBO ∼ λϕ,

which reduces to an upper bound on f

f ≲
δm∗

1 − δm∗
MP , (2.22)

where δm∗ = 1 −m∗(θ∞)/m. For objects of size R ≳ RSBO
max , the gradient pressure and the

gravitational pressure are equally important and the full coupled set of equations of eq. (2.7)
must be solved, as discussed just above section 2.1.

As the objects in the NGS become more compact (larger and more massive, since ε is
approximately constant) gravity can no longer be neglected and eventually dominates. We
identify then two distinct limits, depending on the model parameters α⃗, here encoded in
δm∗ and m∗ (evaluated at θ∞), f , and εNGS(α⃗). In the limit δm1/2

∗ (m4
∗/ε

NGS)(f/MP) ≪ 1, in
which SBOs have energy densities close to that of the ground state, εNGS (where the EOS
is p ≃ 0), the smallest gravitationally-bound objects can still be approximated as constant
energy density systems. However, their pressure drops away from the core (as opposed to
the constant pressure SBOs), at sufficiently low pressures the EOS is probed only in regions
where ε ≃ εNGS ≃ const. At large enough core pressures, the approximation of constant
energy density breaks down, and any further increase in core pressure leads to a decrease in
radius, which is the typical behavior of stars described by a Fermi gas.
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On the other hand, for δm1/2
∗ (m4

∗/ε
NGS)(f/MP) ≫ 1, the most massive and largest SBOs

have ε ≫ εNGS and already probe, by definition, the part of the EOS in which any further
increase in pressure leads to stars that are no longer constant density objects. Therefore,
when the gravitational pressure becomes relevant, these objects have both decreasing pressure
and energy density away from their core.

Following appendix B, we find that the maximal radius for constant energy density
objects in the δm∗ ≪ 1 limit is approximately given by

Rmax
const ∼


MP

m
8/6
∗ (εNGS)1/6

δm
1/2
∗
(
m4

∗
εNGS

) (
f
MP

)
≪ 1

M
7/6
P

δm
1/12
∗ m2

∗f1/6
δm

1/2
∗
(
m4

∗
εNGS

) (
f
MP

)
≫ 1

. (2.23)

To conclude, let us note that a simple prediction regarding the mass-radius relation
can be given for objects in the NGS with densities of order ρNGS; this is the region in the
EOS where the energy density becomes almost constant as p→ 0, approaching the critical
value ε → εNGS. The mass of these constant-density objects is then given simply by the
product of the energy density times the volume

M/R3 ≃ 4π
3 εNGS . (2.24)

Their compactness, scaling as C ∝ R2, is much smaller than for stars in the NGS, since their
radius is much smaller. As we have explained above, as the radius grows the gravitational
pressure becomes important and the energy density acquires a non-trivial profile, and one
returns to the predictions given in eq. (2.18).

3 Case studies

3.1 Bounded m∗(θ) solutions

We begin the analysis with models in which m∗(θ) is bounded from below and does not cross
zero, such that the high-density value of the scalar is θ∞ defined by (∂m∗/∂θ)|θ=θ∞ = 0. We
analyze these models in the negligible gradient limit, with the additional assumption that θ
jumps from the trivial phase θ = θ0 to the θ = θ∞ phase. This is a good approximation if
(∂m∗/∂θ)|θ=θ0 , as well as (∂V/∂θ)|θ=θ∞ , are sufficiently small. The first of these conditions
has to be fulfilled if the model is not to be excluded by fifth force experiments, and effectively
corresponds to taking n = 2 in eq. (1.1). The second condition is only necessary for our
model-independent treatment and can easily be violated in explicit models. Then, under
these assumptions, the parameter space is reduced to simply {m∗(θ∞), V (θ∞)}. As described
in section 2, the two phases could either coexist, leading to hybrid star configurations or
describe a meta-stable phase and a new absolutely stable phase of matter. The boundary
line between the CE region and the NGS region in the {m∗(θ∞), V (θ∞)} plane is given by

p(θ∞, µ = m) = p(θ0, µ = m) = 0 . (3.1)

In the CE region, the two phases meet at some critical chemical potential µCE
c at equal

pressures. In contrast, in the NGS region, it is more convenient to find the meta-stable and
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stable branches using ρ as a free parameter. The critical number density ρc, which determines
the edge of the homogeneous (meta-stable) branch in the CE (NGS) region,9 is defined by
the scalar density in which the second derivative of the effective scalar potential flips sign,

ρs(θ0, ρc) = −
(
∂2V/∂θ2

∂2m∗/∂θ2

)∣∣∣∣
θ=θ0

, (3.2)

where we have expressed the scalar density in terms of the number density.
The total mass M and radius R of the stars are found by solving eq. (2.11) numerically

and scanning over the parameter space. In Figure 4, we show the contours of constant
mass and radius for the most massive stars in the NGS region. The increase in mass and
radius of the NGS stars are solely due to a decreased fermion mass. We recover the same
scaling as in eq. (2.16). On the other hand, near the gray region in (the upper-left part of)
figure 4, the NGS becomes ultra-relativistic, thus the EOS is nearly m∗(θ∞)-independent,
and we recover the scaling of eq. (2.17). As expected, larger values of V (θ∞) make the
EOS softer, resulting in lighter stars.

Let us comment on the gray region in figure 4. It indicates where we expect the θ = θ∞
approximation to break down. This happens when the scalar density in the θ = θ∞ phase,
ρs(θ∞, µ), drops below a value given by

ρ∞s = −
(
∂V/∂θ

∂m∗/∂θ

)∣∣∣∣
θ=θ∞

. (3.3)

The exact position of the boundary of the gray region is in general model-dependent. That
plotted in figure 4 corresponds to models with m−m∗(θ) ∝ V (θ) (e.g. the QCD axion and
its lighter variations, see sections 3.1.1 and 3.1.2), in which ρ∞s = V (θ∞)/(m−m∗(θ∞)). In
general, this region in which θ does not jump all the way to the point where ∂m∗/∂θ = 0
depends strongly on the shape of V (θ) and m∗(θ) and it has to be determined numerically.

Let us also discuss the validity of the negligible gradient limit, which we have assumed
to hold in the discussion above. Finite gradient effects become important as soon as λϕ ∼ R,
where recall λϕ ≡ f/Λ2

eff, see eq. (2.9). At high densities, we have Λ4
eff = −ρs(∂m∗/∂θ) (see

eq. (A.7) and the associated discussion), which we can approximate as ρNGS[m−m∗(θ∞)]. As
a result, most of the parameter space in figure 4 is valid for f ≪ (1017 − 1018) GeV, except
for the lower-right corner, as indicated by the green lines. As we show below, finite gradient
effects typically suppress the deviations from the ideal Fermi gas, thus the results of figure 4
represent the maximal effect one can expect from a sourced scalar.

Before moving to the discussion of specifics models with bounded m∗(θ), it is worth to
illustrate already here the effects of a sourced scalar field on the configuration of stars in the
NGS. In figure 5 we show in red the energy density and pressure profiles of a representative
point in the BM2 axion benchmark (see figure 4), and compare it with the free Fermi gas
solution, in black, of either similar radius (top panel) or similar mass (bottom panel). The
emergence of the NGS can be deduced from the behavior of the energy density at the edge

9In general, the homogeneous branch in the CE region also includes a meta-stable part which probes the
θ = θ0 EOS above the critical pressure determined by the Maxwell construction, pCE

c , but below the critical
number density.
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Figure 4. The {m∗(θ∞), V (θ∞)} parameter space. The black line is the CE-NGS boundary, eq. (3.1).
Curves of constant stellar mass and radius for the most massive configuration allowed by the EOS
are shown in dashed and solid gray, respectively. In the gray region, the θ = θ∞ approximation
breaks down. In the brown region, neutron stars are not dense enough to source the scalar. We also
show where different models that conform to our simplified treatment lie in this plane: the QCD
axion (red dot), see section 3.1.1; light QCD axions (purple line), section 3.1.2; and two generic axion
benchmark points (blue dots), section 3.1.3, with m∗(θ∞) = mN/2 and V (θ∞) = 2 × (0.075 GeV)4

(BM1) and m∗(θ∞) = mN/3 and V (θ∞) = 2 × (0.075 GeV)4 (BM2). The thick-blue line describes a
UV completion from a f(ϕ)GG interaction that allows for large nucleon couplings. As indicated by the
arrows, this model can populate most of the parameter space although with decreasing calculability
towards small m∗(θ∞), which we indicate with a decreasing opacity. See appendix C for more details.
Below the green contours, finite gradient effects become important for the corresponding value of f
shown.

of the star, where it does not vanish even though the pressure does. We do not show the
scalar profile since for this benchmark λϕ ≪ R and therefore the transition from θ∞ to θ0
is very narrowly localized at the edge of the star.

3.1.1 The QCD axion

The QCD axion is an elegant solution to the strong CP problem where the QCD θ̄-angle is
promoted to a dynamical field. The relevant part of the QCD-axion Lagrangian at energies
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Figure 5. Top panel: energy density (left) and pressure (right) profiles of solutions to the TOV
equations. In red a configuration in the BM2 axion model with R = 17 km and M = 1.6M⊙, and in
black the free Fermi gas solution of equal radius and M = 0.4M⊙. Bottom panel: profiles for stars
of equal mass, M = 0.25M⊙, and R = 9.8 km and R = 23 km for the BM2 benchmark and the free
Fermi gas, respectively.

above the QCD scale is

Lϕ ⊃ 1
2(∂ϕ)2 + g2

s

32π2
ϕ

fa
GµνG̃

µν . (3.4)

Here gs is the strong coupling constant and Gµν the gluon field strength. At energies below the
QCD confinement scale, a potential for the QCD axion is generated by non-perturbative effects,

V (ϕ) = −m2
πf

2
π

(√
1 − zud sin2

(
ϕ

2fa

)
− 1

)
, (3.5)

where zud = 4mumd/(mu +md)2. In vacuum, this potential is minimized at ⟨ϕ⟩ = 0, such
that CP is conserved, thus solving the strong CP problem.

A non-derivative coupling of the QCD axion to nucleons (neutrons and protons) is also
generated at low energies, giving rise to a scalar-dependent fermion mass, see e.g. [104, 116]

m∗(ϕ) = mN + σπN

(√
1 − zud sin2

(
ϕ

2fa

)
− 1

)
, (3.6)
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where σπN ≈ 50 MeV is the so-called nucleon sigma term, and we neglected isospin-violating
contributions.

Following our definitions in eq. (1.1), the QCD axion belongs to the case with n = 2,
i.e. a quadratically coupled scalar, and we can identify

M2
ϕ = 2mN

zudσπN
f2
a , m2

ϕ = zud
4
m2
πf

2
π

f2
a

, Fϕ = fϕ = fa . (3.7)

Given that Mϕ ≫ Fϕ, fϕ, higher-order terms in ϕ are generically relevant. In addition, it is
natural to identify the characteristic scale of the scalar with the axion decay constant fa,
therefore f ≡ fa and θ ≡ ϕ/fa. The in-vacuum value of the scalar is then θ0 = 0.

At finite baryon density, one can identify an effective in-medium QCD axion potential,
which at leading order in chiral perturbation theory reads [46, 104]

Veff(ϕ, ρs) = V (ϕ) + ρs [m∗(ϕ) −mN ] =
(

1 − σπNρs
m2
πf

2
π

)
V (ϕ) . (3.8)

This potential is only valid at low densities, below around nuclear saturation, ρs ≃ ρ ≲ ρ0,
while the exact form of the potential at high densities is unknown. This means that, for
the QCD axion, keeping only the low-density potential is not realistic. Indeed, the critical
density for scalarization eq. (3.2), where θ = θ0 becomes unstable, would be given by

ρs(0, ρc) = m2
πf

2
π

σπN
, (3.9)

which implies ρc ≫ ρ0 and therefore beyond perturbative control. In addition, at leading
chiral order the pions become massless at such densities, clearly invalidating our treatment of
the axion. Nevertheless, it has been hypothesized in [104] that the sourcing of the QCD axion
could be triggered by Kaon condensation. The latter is a possibility widely considered in
the literature, particularly concerning the so-called hyperon puzzle, see e.g. [91]. For the rest
of this section we assume that our simple treatment based on an axion-dependent nucleon
mass given by eq. (3.6), and the corresponding effective potential in eq. (3.8), hold at all
relevant densities, keeping in mind that the high-density dynamics of QCD has a critical
impact on the possibility that the axion actually leads to scalarized NSs. What we learn
is still useful, since for a lighter version of the QCD axion, discussed in section 3.1.2, the
relevant densities are much lower and therefore under perturbative control.

In the negligible gradient limit, the system is minimized at θ∞ = π for densities ρ > ρc,
which implies

m∗(θ∞) = mN − σπN
(
1 −

√
1 − zud

)
, V (θ∞) = m2

πf
2
π

(
1 −

√
1 − zud

)
. (3.10)

Recall that in this case, the high-density value of the scalar corresponds to ∂m∗/∂θ = 0,
which sets ⟨ϕ⟩ = πf ≪Mϕ. This constitutes therefore an example of screened scalarization,
where the screening is due to higher-order terms in the interaction of the scalar with matter.
NSs with a sourced QCD axion belong to the CE region only, see figure 4. This is because
the chemical potential corresponding to the critical density is much larger than mN , see
the discussion in section 2.1. Since the QCD axion with λϕ ≪ R is compatible with all the
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Figure 6. Left panel: M -R curves in the negligible gradient limit for several benchmark cases as
indicated in the legend, with ϵ = 10−4 for the light QCD axion. Also shown two representative
constraints at the 68% confidence level on NS masses and radii, obtained from low-mass X-ray binaries
during quiescence (NGC 6304) and thermonuclear bursts (KS 1731-260), taken from [102]. In orange
we plot the mass measurement of the millisecond pulsar J0740+6620, taken from [97]. The gray
regions are the theoretically excluded regions with C = GM/R ⩽ 1/2 (Black hole), Buchdahl’s limit
C ⩽ 4/9 (p <∞), and C ≲ 0.35 (Causality; see the discussion below eq. (2.18)). Right panel: M -R
curves for the QCD axion. The free Fermi gas without the axion (solid black), the negligible gradient
limit (dashed black), and including finite gradient effects for f = {5 × 1016, 1016, 1015}GeV in (solid)
red, purple, and blue respectively. The light-colored curves are unstable configurations.

assumptions discussed at the beginning of section 3.1, its M -R curve can be calculated given
the values of {m∗(θ∞), V (θ∞)}, see the left panel of figure 6 (red curve).

Moving beyond the negligible gradient limit, we show the resulting M -R curves, found
by solving the full coupled system of eq. (2.7), in the right panel of figure 6, for different
values of f . As expected, the phase transition from θ0 = 0 to θ∞ = π leads to a softening
of the EOS, and therefore to less massive stars. The larger stars follow the free Fermi gas
line, as their densities are sub-critical, i.e. ρ(r = 0) < ρc. Smaller and denser configurations
are hybrid stars, composed of a core in the θ∞ phase and an exterior region in the θ0 phase.
The effect of the gradient can be recognized by two particular features. First, the inner
core of the homogeneous stars (on the right branch) can have a region that is above the
critical density, as long as this region is smaller than the effective in-medium wavelength of
the scalar field λϕ ∝ f . Higher values of f trace the Fermi gas line (solid black) until smaller
radii and larger masses, at which point a large enough central region is created and it is
energetically favorable for the high-density phase to form. Second, for high values of f the
start of the hybrid branch consists of configurations where the axion is not fully sourced,
i.e. the value of the field does not reach θ∞ at the core, thus forming a thick-wall bubble.
In such configurations, the transition region of the scalar inside the hybrid star occupies a
significant fraction of the whole object, which modifies its equilibrium configuration. This
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explains the visible deviations of the finite f hybrid branches (solid colored lines) compared
to the negligible gradient limit (dashed line). However at higher internal pressures, once the
QCD axion is fully sourced, indicating a thin-wall bubble, all the curves in the M -R plane
converge, particularly to a similar maximal mass configuration. This is not a surprise, since
the existence of a thin wall is tantamount to a negligible gradient, λϕ ≪ R.

3.1.2 Lighter QCD axions

The QCD axion solution to the strong CP problem has been recently extended by relaxing
the relation between the potential of the axion and its coupling to the SM [46, 105, 106].
These QCD axions are lighter than usual, a fact that gives rise to novel astrophysical
signatures [46, 54, 66, 139].

For our purposes, the only yet key difference w.r.t. the standard QCD axion is a suppressed
(in-vacuum) axion potential, which can be parametrized as

V (ϕ) = −ϵm2
πf

2
π

(√
1 − zud sin2

(
ϕ

2fa

)
− 1

)
, (3.11)

with ϵ < 1. Conversely, the axion-dependent nucleon mass remains the same, see eq. (3.6).
Therefore, this model can be characterized by the same scales as the QCD axion, eq. (3.7),
except for the scalar mass, which now reads

m2
ϕ = ϵ

zud
4
m2
πf

2
π

f2
a

. (3.12)

As a consequence, the effective potential at finite density is given by

Veff(ϕ, ρs) =
(

1 − σπNρs
ϵm2

πf
2
π

)
V (ϕ) . (3.13)

Due to the relative enhancement of the finite density corrections, the critical density where
θ0 is no longer a minimum is ϵ-suppressed compared to that of the QCD axion,

ρs(0, ρc) = ϵ
m2
πf

2
π

σπN
. (3.14)

This is crucial since, as opposed to the QCD axion, for small enough ϵ the transition to the
θ∞ phase may occur at such low densities that chiral perturbation theory is valid and the
pions are heavy (ρc < ρ0), making our treatment in terms of a scalar-dependent nucleon
mass and eq. (3.13) a viable approximation. In that case, we can reliably infer that in the
“high-density” regime, ρ > ρc, ∂m∗/∂θ = 0 sets θ∞ = π in the negligible gradient limit. While
this leads to the same m∗(θ∞) as for the QCD axion, V (θ∞) is ϵ-suppressed,

m∗(θ∞) = mN − σπN
(
1 −

√
1 − zud

)
, V (θ∞) = ϵm2

πf
2
π

(
1 −

√
1 − zud

)
. (3.15)

Because of the smaller potential in the scalarized phase, the NGS is now accessible if ϵ is
small enough. Since all the parameters in eq. (3.15) except for ϵ are fixed experimentally
(zud ≈ 0.88, mπ ≈ 135 MeV, fπ ≈ 92 MeV), one can phrase the condition for the existence
of a NGS, see eq. (3.1), as the following upper bound

ϵ ≲
4
√

2
15π2

m4
N

m2
πf

2
π

(
σπN
mN

)5/2 (
1 −

√
1 − zud

)3/2
≈ 0.07 . (3.16)
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at leading order in σπN/mN (in the non-relativistic limit). The number density of the axionic
(absolutely stable) ground state is given, under the same approximations, by

ρNGS ∼ [m∗(θ∞)V (θ∞)]3/5 ∼
(
ϵmNm

2
πf

2
π

)3/5
. (3.17)

Since the light QCD axion with λϕ ≪ R is compatible with all the assumptions discussed at the
beginning of section 3.1, its M -R curve can be calculated given the values of {m∗(θ∞), V (θ∞)},
see the left panel of figure 6 (purple curve). As expected, since the EOS of the NGS is
slightly stiffer, it leads to slightly more massive stars than the free Fermi gas, enhancing
the maximal mass of NSs by (mN/m∗(θ∞))2 − 1 ≈ 10%.

Moving beyond the negligible gradient limit, we show the resulting M -R curves, found
by solving the full coupled system of eq. (2.7), in the left panel of figure 7, for different
values of f . Let us note that comparing the analytic estimate in A.7 with the end of the
meta-stable branch, one finds O(1) deviations from finite gradient effects. While expected,
this has implications for the robustness of bounds on lighter QCD axions derived from GW
observations from the NS merger GW170817 [54], where finite gradient effects were simply
estimated. A more careful treatment, assuming similar deviations away from the λϕ ≪ R

limit for the NSs in the binary as the ones obtained here, we find a weakening of the bound
at large f , precisely where they are relevant, by a factor of a few — the corrected bound
has been presented in ref. [66]. Interestingly, we find that the axion halo responsible for
the long-range force, which extends much further than the radius of the star (defined by
pψ(R) = 0) contributes negligibly to the mass of the system.

While lighter QCD axions lead to a moderate enhancement of the maximal NS mass, they
also lead to other striking signatures. The instability of the EOS at intermediate densities,
namely between the critical density and NGS density, leads to a gap in the M -R curve between
the meta-stable branch and the stable branch, clearly visible in figure 7. As explained in
ref. [66], the gap moves to smaller radii for higher values of f . Ideally, once the M -R plane is
sufficiently populated with accurately measured masses and radii of NSs, the observation of
such a gap would be a smoking-gun signal for this type of BSM physics, since standard QCD
EOSs do not predict such gaps. On the other hand, the non-observation of a gap would lead
to tight constraints on the parameter space of such models. This rationale has been recently
followed in ref. [66], where the M -R distribution of white dwarfs was used, leading to the
experimental bound ϵ ≲ 10−8, stronger than the bounds from the Earth and the Sun [46].
We stress that the bounds arising from the existence of a NGS accessible in white dwarfs, and
the corresponding gap in radii, are qualitatively very different than the strategy proposed in
ref. [46], which relies on the change of the properties of nuclei, and the corresponding change
in X-ray emission, when a (lighter) QCD axion is displaced to θ = π [116]. Let us also recall
that there are other (weaker) astrophysical and cosmological bounds on fa, see [30] as well
as [140, 141], which rely on the derivative couplings of axions to the nucleon axial current
and the nucleon EDM, which also arise at low energies from eq. (3.4).

Another interesting prediction associated with lighter QCD axions is the existence of SBOs
(see section 2.2.2), with a range of radii that can potentially span many orders of magnitude,
from microscopic to a few km, depending on the value of f . At zero temperature, these
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Figure 7. Left panel: M -R curves for a light QCD axions with ϵ = 6 × 10−9. The free fermi gas
without axion (solid black), the negligible gradient limit (dashed black), and including finite gradient
effects for f = {5×1016, 1016, 1015}GeV in (solid) red, purple, and blue respectively. The light-colored
curves are unstable configurations. Note that the metastable branch for the lowest f is not within
the range of the plot. Right panel: M -R curves for the ALP benchmark BM1. The free Fermi gas
without axion (solid black), the negligible gradient limit (dashed black), and including finite gradient
effects for f = {5 × 1016, 1016}GeV in (solid) red and purple, respectively.

objects are absolutely stable and cannot decay. We leave the study of the phenomenology
of these objects for future work.

3.1.3 Axion-like particles

Motivated by the interesting phenomenological signatures associated with the existence of a
new ground state of matter in lighter versions of the QCD axion, in this section, we wish to
explore the possibility that a light scalar has a larger (non-derivative) coupling to nucleons
while keeping its potential tunable. A possible UV completion of such a scenario, based on a
f(ϕ)GG interaction above the QCD scale, is presented in appendix C.

For concreteness, we choose the bounded function f(ϕ) = (1 − cos(ϕ/f))/2, such that
the scalar-dependent nucleon mass and the scalar potential are

m∗(θ) = mN

[
1 + g

2 (cos θ − 1)
]
, V (θ) = −Λ4(cos θ − 1) , (3.18)

where θ ≡ ϕ/f , the dimensionless factor g parametrizes the reduction of the fermion mass
when θ ̸= θ0 = 0, and the scale Λ sets the overall scale of the potential.

Following eq. (1.1), we further identify n = 2 and

M2
ϕ = 4f2

g
, m2

ϕ = Λ4

f2 , Fϕ = fϕ = f , (3.19)

with Mϕ ≫ Fϕ, fϕ when g ≪ 1.
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As in the previous sections, it is illuminating to first consider the negligible gradient
limit. At densities above the critical density, implicitly given by

ρs(0, ρc) = 2Λ4

gmN
, (3.20)

the system is minimized at θ∞ = π for 0 < g < 1. The (unbounded) case g ≥ 1 will be
discussed in section 3.2. For negative g, the scalar field will always stay at θ0 = 0 since any
deviation from the in-vacuum value would result in an increase of the nucleon mass. As for the
(light) QCD axion, scalarization is screened if g ≪ 1 due to higher-order scalar terms in m∗.

We use eq. (3.18) as a simple parametrization of any bounded-m∗ model that can be
mapped to any point in figure 4 according to

m∗(θ∞) = mN (1 − g) , V (θ∞) = 2Λ4 . (3.21)

For the sake of exposition, let us derive the condition for the existence of the NGS in two
different simple limits. For a non-relativistic Fermi gas, the NGS arises when

Λ4 ≲
2
√

2
15π2m

4
Ng

5/2 +O(g7/2) , (NR) (3.22)

where we expanded in g ≪ 1. The corresponding ground state number density is given by

ρNGS ∼
(
mNΛ4

)3/5
+O(g) . (NR) (3.23)

Instead, in the ultra-relativistic limit and expanding around g = 1, there exists a NGS for

Λ4 ≲
m4
N

24π2 +O((1 − g)2) , (UR) (3.24)

with the ground state starting at a density

ρNGS ∼ 2Λ3 , (UR) (3.25)

with no (1 − g) corrections at leading UR order. Note that although we have chosen g ≪ 1
for a NR system and 1 − g ≪ 1 for an UR one, there certainly exist UR configurations
with g ≃ 0 and NR ones with g ≃ 1.

While the simple ALP model defined by eq. (3.18), in the negligible gradient limit, is a
proxy for any model that populates the parameter space {m∗(θ∞), V (θ∞)}, with the resulting
maximal mass and corresponding radii shown in figure 4, finite gradient effects, on the other
hand, are model-dependent; they are sensitive to the particular shape of the scalar potential
and the scalar-dependent fermion mass.

To illustrate these finite gradient effects, we consider a benchmark point marked in
figure 4 as BM1. This benchmark is defined by

BM1: g = 0.5 , Λ = 0.075 GeV , (3.26)

where we expect to find meta-stable configurations with densities that are at most of the
order of the critical density, in this case

ρc ≈ 0.017 fm−3 ≈ 0.1ρ0 . (3.27)
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The absolutely stable configurations are composed purely of the NGS phase, characterized
by number and energy densities similar to those of nuclei

ρNGS ≈ 0.17 fm−3 ≈ ρ0 , εNGS ≃ mNρ
NGS ≈ ε0 = 2.5 × 1014 g/cm3. (3.28)

Taking gradient effects into account, we find SBOs with their (numerically computed)
minimal and maximal radii given by

RSBO
min ≃ (25 m)

(
f

1015 GeV

)
, RSBO

max ≃ (2.3 km)
(

f

1015 GeV

)1/3
. (3.29)

These values are consistent with the analytical estimates given in appendix B. For objects
with radii larger than RSBO

max , gravity becomes relevant and eventually dominant over the scalar
force. However, as long as the energy density of the object is approximately constant, the
mass and radius are related by eq. (2.24), in this case

M ≃ (5 × 10−4M⊙)
(

R

1 km

)3
, (3.30)

which is independent of f .
In the right panel of figure 7 we show the M -R curves, found by solving the full coupled

system of eq. (2.7), for f = {5× 1016, 1016}GeV and in the negligible gradient approximation
(f/MP → 0). At large radii, we find the low-density meta-stable branch corresponding to
the free Fermi gas with no scalarization, while at small radii we find the absolutely stable
branch, with a large gap (compared to the typical radius) between them. Note as well that
the maximal NS mass with a sourced ALP is much larger than without scalarization. As
shown in the left panel of figure 6, for values of f such that scalar gradients are negligible,
the enhancement of the maximal mass is even more pronounced for the benchmark denoted
by BM2 (dark blue curve), defined by a larger g = 2/3 compared to BM1, with the same Λ.
Indeed, in the case of large g, i.e. small m∗(θ∞), this ALP model leads to a large enhancement
of the maximal mass of NSs, following eq. (2.16). This is in contrast to the expected reduction
in mass due to the softening of the EOS as a result of additional SM degrees of freedom,
e.g. hyperons or more exotic possibilities such as meson condensation and first-order phase
transitions, see e.g. [73, 90, 142].

3.2 Unbounded m∗(θ) solutions

We now turn to the analysis of models in which m∗(θ) is unbounded and vanishes asymp-
totically, i.e. m∗(θ = θ∞) = 0, which defines the high-density value of the scalar θ∞. As
discussed in section 2.1, θ approaches θ∞ at asymptotically large densities, following the curve
in eq. (2.12). At such high densities and whenever scalar gradients can be neglected, the
maximal mass and corresponding radius only depend on V (θ∞) and are given by eq. (2.17),
which recall follows from the ultra-relativistic limit of the EOS. In the following, we consider
two concrete realizations of such a scenario: linearly- and quadratically-coupled scalar fields,
n = 1 and 2 in our classification of section 1.1.
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3.2.1 Linear coupling to matter

Let us consider a scalar that couples linearly to nucleons and has a simple quartic potential,

m∗(ϕ) = mN

(
1 − ϕ

Mϕ

)
, V (ϕ) = 1

2m
2
ϕϕ

2 + λ

4ϕ
4. (3.31)

Following eq. (1.1), we can easily identify the scales that characterize this model, besides
its mass mϕ and interaction strength with matter 1/Mϕ,

Fϕ → ∞ , fϕ =

√
2m2

ϕ

λ
. (3.32)

In addition, since the high-density limiting value of the scalar field corresponds to a vanishing
m∗, it is natural to identify the typical scale of the field as f ≡ Mϕ, thus θ ≡ ϕ/Mϕ.

Let us start by considering the limit fϕ ≫Mϕ, in which we can neglect the quartic term
in the potential for all field excursions, i.e. higher-order terms in ϕ are irrelevant. The stellar
structure of this model was recently investigated in ref. [65]. In the following, we re-derive
some of the results and pay special attention to the impact of fifth-force bounds.

A linearly-coupled scalar is always sourced at finite density, leading to a fifth force
even between dilute and small objects. Despite this fact, as discussed in section 2.1 for
the unbounded-m∗ case, only when densities are of order ρs,∞ in eq. (2.12) we can expect
appreciable effects due to the scalar field being significantly displaced from its in-vacuum
value, i.e. θ ∼ θ∞ = 1. This corresponds to number densities (implicitly) given by

ρs(θ ∼ θ∞, ρ) ∼ ρs,∞ =
m2
ϕM

2
ϕ

mN
, (3.33)

and assumes finite gradient effects are negligible, i.e.

R≫ λϕ ∼ Mϕ√
ρs,∞|∂m∗(θ)/∂θ|

= m−1
ϕ , (3.34)

following eq. (A.7) (taking ρ̄s ∼ ρs,∞ and ∆θ ∼ 1). The parameter space of this model
is effectively one-dimensional, since

m∗ ∼ mN , V ∼ m2
ϕM

2
ϕ , (3.35)

where recall m∗(θ∞) = 0, and therefore the dimensionless ratio

c ≡ 1
2
m2
ϕM

2
ϕ

m4
N

. (3.36)

suffices to describe the phase of the system. As expected, only for small values of the scalar
potential, i.e. of c, there is a NGS (see the discussion around eq. (2.15)),

c ≲ 0.015 ≡ cNGS . (3.37)

This transition value between the existence of NGS and the CE region has been found
numerically, using the solution of the scalar EOM in the negligible gradient limit, eq. (2.10).
We find agreement with the results of ref. [65].
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Figure 8. Parameter space of the linearly-coupled scalar model. The black line delimits the transition
between the NGS (above) and the CE region (below). The arrow indicates that this transition happens
at smaller values of Mϕ for non-negligible λ. These lines become dashed when neglecting gradient
effects in NSs ceases to be a good approximation and ends at the gray-shaded region, which indicates
a strong gradient where the scalar field has no effect. In light-blue shaded, we plot fifth-force bounds
taken from [143], leading to the conclusion that all the interesting parameter space is excluded.

In figure 8, we show where the transition between the NGS and the CE region lies in
the {mϕ,Mϕ} plane, and compare it with current fifth-force bounds [143], which exclude
the blue-shaded region. We have dashed the CE-NGS boundary line where gradient effects
become relevant, and we have cut it off altogether at the edge of the gray-shaded region,
where gradient effects are so strong that the field can no longer be significantly sourced. In
this region, the scalar has therefore little to no effect on the configuration of NSs.

In this regard, it is important to take into consideration the size of the scalarized NSs in
this scenario. Close to the CE-NGS boundary, we find as expected no strong deviations from
the standard radii of NSs. In contrast, deep inside the NGS (c ≪ cNGS), we find

Mmax ∼ (0.7M⊙)

√
cNGS

c
, R(Mmax) ∼ (9.3 km)

√
cNGS

c
, (3.38)

in agreement with eq. (2.17). Given that λϕ ∼ 1/mϕ, see eq. (3.34), and the parametric
estimate for the free Fermi gas radius R ∼MP/m

2
N , this implies that the negligible gradient

approximation is valid as long as Mϕ ≪
√
cNGSMP ≈ MP/10.

As can be seen in figure 8, the parameter space compatible with fifth-force bounds,
which extend to mϕ ∼ µm−1 for Mϕ ∼MP, is far from the NGS line. Assuming that these
bounds can be circumvented, the details of the EOS and stellar structure in this model
can be found in ref. [65]. However, we expect that a situation where any screening takes
place on Earth, such that fifth-force bounds are evaded, yet it does not take place on NSs,
is far from generic at the very least.
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We conclude this section by considering the effect of the quartic term in the scalar
potential. As indicated by the black arrow in figure 8, a non-negligible λ, i.e. fϕ ≲ Mϕ,
would cause the NGS-CE boundary line to shift up. Due to the larger contribution to the
energy density and pressure from the potential,

V (θ∞) = 1
2m

2
ϕM

2
ϕ

(
1 +

M2
ϕ

f2
ϕ

)
, (3.39)

a smaller value of Mϕ is needed to reduce the fermion mass and reach the NGS. Such a
conclusion is valid only as long as (scalar) densities are above the new density

ρ(λ)
s,∞ = ρs,∞

M2
ϕ

f2
ϕ

, (3.40)

where we have taken fϕ ≪ Mϕ and ρs,∞ is given in eq. (3.33). For intermediate densities
ρs,∞ < ρ < ρ

(λ)
s,∞, we effectively have a screened system in which ⟨ϕ⟩ ∼ fϕ ≪ Mϕ.

3.2.2 Quadratic coupling to matter

Let us consider next a scalar field that couples quadratically to nucleons,

m∗(ϕ) = mN

(
1 − ϕ2

M2
ϕ

)
, V (ϕ) = 1

2m
2
ϕϕ

2 + λ

4ϕ
4 . (3.41)

Besides the mass mϕ and the interaction strength with matter set by 1/Mϕ, we identify the
scales associated with higher-order ϕ terms as in the linear model, see eq. (3.32). Likewise,
the characteristic scale of the field can be conveniently chosen to be f ≡ Mϕ, therefore
we define θ ≡ ϕ/Mϕ.10

As in the linear model, we can differentiate between two opposing limits, the mass-
dominated regime in which higher-order terms in the scalar potential are irrelevant, f2

ϕ ≫M2
ϕ ,

and the quartic-dominated regime where instead these control the dynamics, f2
ϕ ≪ M2

ϕ.
In each of these regions, the parameter space that determines the phase of the system is
effectively one-dimensional,

c ≡ 1
2
m2
ϕM

2
ϕ

m4
N

, or cλ ≡ c
M2
ϕ

f2
ϕ

=
λM4

ϕ

4m4
N

, (3.42)

for the mass- or quartic-dominated regimes, respectively. They have a clear physical in-
terpretation as the contributions to the scalar potential in the high-density limit, V (θ∞),
in units of m4

N (recall m∗(θ∞) = 0),

V (θ∞) = 1
2m

2
ϕM

2
ϕ

(
1 +

M2
ϕ

f2
ϕ

)
= m4

N (c+ cλ) . (3.43)

10Note that in the g ≫ 1 limit of the ALP model of section 3.1.3, fields excursion are small (θ ≪ 1), thus
the ALP model can be mapped to this quadratic model with m2

ϕ = Λ4/f2, λ = −(Λ/f)4/6 and M2
ϕ = 4f2/g.
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Figure 9. Left panel: parameter space of the quadratic model, with CE above and the NGS below
the solid thick line. The dashed line denotes the same NGS-CE boundary but in the (Mϕ/fϕ)2 ≪ 1
or (Mϕ/fϕ)2 ≫ 1 limit. Thin-black: contours of maximal mass, for clarity only up to 10M⊙. Right
panel: maximal mass (solid) and corresponding radius (dashed) of NSs as a function of V (θ∞).

As in the linear case, the transition values that separate the CE and NGS regions are found
numerically (neglecting gradients). The NGS exists if the dimensionless coefficients satisfy
the upper bounds

c ≲ 0.0093 ≡ cNGS , and cλ ≲ 0.015 ≡ cNGS
λ , (3.44)

for f2
ϕ ≫ M2

ϕ and f2
ϕ ≪ M2

ϕ, respectively. This is shown as the dashed line in figure 9.
If both contributions to the potential are of similar size, i.e. f2

ϕ ∼ M2
ϕ, the parameter

space is two-dimensional. The boundary between the CE and NGS region is again found
numerically and shown as the solid thick line in figure 9.

The typical densities associated with the NGS can be estimated according to eq. (2.12).
For the mass- or quartic-dominated regions these are given, respectively, by

ρs,∞ =
m2
ϕM

2
ϕ

2mN
= m3

Nc , or ρ(λ)
s,∞ = 2ρs,∞

M2
ϕ

f2
ϕ

= 2m3
Ncλ . (3.45)

The scalar field approaches θ → θ∞ asymptotically for densities ρ ≫ ρs,∞ or ρ ≫ ρ
(λ)
s,∞,

under the assumption that the field gradient is negligible, i.e. R ≫ λϕ with λϕ ∼ 1/mϕ or
λϕ ∼ fϕ/(mϕMϕ) ≪ 1/mϕ for a negligible or dominant quartic term, respectively.

Let us also note that in this model, as in the bounded models discussed in section 3.1
where the scalars also couple quadratically to matter at leading order in ϕ, one can identify
a critical density where the in-vacuum value of the scalar, θ0 = 0, becomes unstable, see
eq. (3.2). We find, as expected, that this is given by ρs(0, ρc) = ρs,∞. In addition, in the
quartic-dominated regime, i.e. f2

ϕ ≪ M2
ϕ, we have ρs,∞ ≪ ρ

(λ)
s,∞. At intermediate densities,

ρs,∞ < ρ < ρ
(λ)
s,∞, the field is destabilized at the origin, ρ > ρc, thus triggering scalarization,
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yet θ ∼ θ∞ is never reached. In such a case, the scalar is screened, and we effectively have
⟨ϕ⟩ ∼ fϕ as a limiting value.

Deep inside the NGS region, θ ≃ θ∞, m∗ ≪ mN , and the maximal star mass and
corresponding radius are well approximated by eq. (2.17), with the only relevant dimensionful
parameter given by V (θ∞) in eq. (3.43). There are O(1) deviations from these approximations
near the NGS-CE boundary, while the deviations are reduced away from the boundary.
Numerically, we find e.g. that θNGS is ∼ 10% away from θ∞ for c ≃ 10cNGS, while it is
only ∼ 1% away for c ≃ 100cNGS, where cNGS are given in eq. (3.44) for the mass- and
quartic-dominated regimes. The numerically obtained Mmax and R(Mmax) are shown in the
right panel of figure 9.

As opposed to the linearly-coupled scalar, this model leads to large NSs masses (and
radii), SBOs, and a gap in the M -R curve, without being in tension with current fifth-force
bounds (see e.g. [144] for a recent analysis on the experimental tests of the forces mediated
by quadratically-coupled scalars). It is worth pointing out that these conclusions rely on the
validity of our effective description, eq. (3.41), at large field excursions, such that higher-order
ϕ terms in m∗(ϕ) do not play any role. This is a non-trivial requirement on the underlying
dynamics, especially since we assume our model to be valid towards small nucleon masses.

Finally, we discuss other potentially relevant bounds on this type of scalars bilinearly
coupled to nucleons. First, the astrophysical and cosmological bounds that apply to (light)
QCD axions (see end of section 3.1.2), which exhibit as well as quadratic couplings to nuclei,
do not generically apply here; these bounds are associated with IR couplings different than
those from m∗(ϕ)ψ̄ψ, which are predicted from our knowledge of the UV interactions of the
scalar above the QCD scale, eq. (3.4). Therefore, without specifying the interactions of the
scalar above ΛQCD, such type of bounds do not generically apply. An example of a possible
UV completion, based on a coupling to the gluon field strength, is provided in appendix C.
Still, robust, general bounds can potentially be derived given only eq. (3.41). For instance,
as show in ref. [66], a reduction of the nucleon mass has a strong impact on the configuration
of white dwarfs, whenever these are large and dense enough to trigger scalarization. It would
be interesting to recast such an analysis to constrain the parameter space of the quadratic
model. For other interesting directions, see e.g. [145], where a bound due to excessive energy
loss in supernovae from pair emission of scalars via NN → NNϕϕ was estimated to be
Mϕ ≳ 15 TeV. Let us note however that if the scalar is sourced during the supernova, a
linear coupling for the ϕ excitation is present and suppressed by ∼ 1/Mϕ. Accordingly, we
estimate the bound from single emission to be Mϕ ≳ 107 TeV.

3.3 Scalar-tensor theories

Scalar-tensor theories of the type first proposed by Damour and Esposito-Farèse [14] can
be equivalently described, as we have done in this paper, via scalar-dependent masses for
the (non-interacting) matter fields. In this section, we re-derive this well-known fact in the
context of a free Fermi gas. For a recent discussion, see [146].

The action for a conformally coupled scalar field, in the Einstein frame, is given by

S =
∫
d4x

√
−g

[
M2

P

16π2R+ 1
2g

µν∂µϕ∂νϕ− V (ϕ)
]

+ Sm[Ψ, g̃µν ] , (3.46)
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with the matter action

Sm =
∫
d4x

√
−g̃

[
Ψ̄iẽµaγaD̃µΨ −mΨ̄Ψ

]
, g̃µν = A2(ϕ)gµν , (3.47)

where D̃µ = ∂µ − iω̃µ is the covariant derivative of a fermion field Ψ in the scalar-dependent
metric g̃µν . The vielbein and spin connection associated with the matter metric g̃µν (a.k.a.
Jordan frame) are related to those of the metric gµν (Einstein frame) as

ẽµa = Aeµa , ω̃µ = ωµ + 1
4σab(e

νbeaµ − eνaebµ)∂ν logA . (3.48)

Noticing in addition that
√
−g̃ = A4√−g, one can perform a scalar-dependent field redefinition

of the fermion, ψ ≡ A3/2Ψ (known as conformal dressing), such that any dependence of the
matter action on A is eliminated except in the mass term, leading to eq. (2.1) with

m∗(ϕ) = A(ϕ)m. (3.49)

This shows the equivalence of the two pictures when matter is composed of a free massive
field. An equivalent derivation holds if there are more than one species.

At the level of the EOMs and the matter EOS, this equivalence can be seen by noting
that the matter source term in the scalar EOM eq. (2.7a) is just (working with ϕ = fθ)

ρs
∂m∗(ϕ)
∂ϕ

= Tψ
∂ logA(ϕ)

∂ϕ
, (3.50)

since Tψ = gµν(Tψ)µν = ϵψ − 3pψ = m∗ρs, which matches the source term of a conformally
coupled scalar from eq. (3.47). Furthermore, let us point out the fact that untilded (Einstein
frame) quantities being functions of m∗ and µ, e.g. pψ = pψ(m∗(ϕ), µ), is consistent with
the fact that the energy-momentum tensors in the Einstein and Jordan frames are related
by (Tψ)µν = A2(T̃Ψ)µν , thus pψ = A4p̃Ψ with p̃Ψ = p̃Ψ(m, µ̃) and µ̃ = µ/A (likewise
k̃F =

√
µ̃2 −m2 = kF /A).

When the matter fields are not free, i.e. departing from the free Fermi gas limit, encoding
all the interactions of a conformally coupled scalar as ϕ-dependent masses is certainly not
enough. For instance, returning to the case of interest in which the fermion ψ is a nucleon, the
introduction of pion-nucleon interactions in the presence of a conformally coupled scalar would
require not only scalar-dependent pion masses, m2

π∗(ϕ) = A2(ϕ)m2
π, but a scalar-dependent

pion decay constant as well, fπ∗(ϕ) = A(ϕ)fπ.
This can also be understood by considering the interactions of a conformally coupled

scalar above the QCD scale. While classically (neglecting quark masses for simplicity), the
QCD action with conformally-dressed fields is a priori independent of ϕ, the trace anomaly
gives rise to the interaction

LGϕ = − logA(ϕ)β(gs)
2gs

G2
µν , (3.51)

where Gµν is the gluon field strength, gs the QCD coupling constant and β its beta function,
β(gs) = ∂gs/∂ logµ. It is this interaction that leads to the ϕ-dependence of the low-energy
parameters after QCD confinement, see e.g. [147–149].
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This brings us to our final comment, which concerns the radiative stability of a light
conformally coupled scalar. The trace anomaly is a manifestation of the fact that scale
invariance is not a robust symmetry at the quantum level, with a non-vanishing beta function
understood as an explicit breaking of the dilation symmetry. Such a symmetry would naturally
ensure a hierarchically small mass for the scalar, if this were identified with a bona-fide
dilaton, fixing A(ϕ) = eϕ/Mϕ , see e.g. [150] for a neat discussion. However, since the symmetry
is explicitly broken, one should expect a contribution to the dilaton potential

∆V (ϕ) ∼ M4
UV

16π2
β

gs

ϕ

Mϕ

e4ϕ/Mϕ , (3.52)

on top of the quartic potential allowed by scale invariance, V ∼M2
UVM

2
ϕe

4ϕ/Mϕ , with MUV the
cutoff of the scalar effective field theory. If instead the function A(ϕ) corresponds to a generic
conformally coupled scalar, one would expect ∆V ∼ (M2

UV/4π)2(β/gs) logA(ϕ). In any case,
the lightness of the scalar, required to yield appreciable effects in stars, is endangered by
quantum effects, unless the cutoff is very low or tuning is invoked, see also appendix C.

We finish this section with a brief comment on the previous literature. To our knowledge,
most works on the configuration of NSs in scalar-tensor theories eq. (3.46) have focussed in
a regime where Mϕ ∼MP, see e.g. [45, 47, 132, 151, 152] and [25] for a review. As we have
discussed in sections 3.1 and 3.2, in this regime the effects of the scalar gradient cannot be
neglected. In addition, for the functions A(ϕ) and V (ϕ) chosen in these works, the NGS of
matter is either absent or it has not been identified. While it would be interesting to reasses
these models in light of our new (microscopic) perspective on the scalarized matter EOS,
we recall that the NGS is generically present in the so-called strongly scalarized scenario
where Mϕ ≪ MP, see figures 8 and 9.

4 Conclusions

In this work, we have presented a comprehensive and detailed study of the impact of
scalarization on the configuration of NSs. This is a non-trivial back-reaction effect: a dense
and large star can source the scalar field, which in turn alters the structure of the star. We
have shown that at leading order the relevant (non-derivative) couplings of the scalar to
matter can be encoded as a scalar-dependent nucleon mass. This allowed us to study in
a straightforward way how the EOS of matter, modeled as a free Fermi gas, is affected by
scalarization. In the infinite volume limit, we have shown that the total energy density and
pressure of the system receives, beyond the Fermi gas contribution, a contribution from
the scalar potential. It is the interplay between the change in the matter EOS due to a
reduction of the nucleon mass and the scalar potential that determines the energetically
preferred state of the system.

Our analysis has uncovered what can be considered one of the most salient effects of
scalarization: the emergence of a new ground state of (nuclear) matter at some finite number
density and zero pressure. The NGS emerges if the change in nucleon mass dominates over the
scalar potential, leading to a larger binding energy per nucleon compared to well-separated
nucleons. We have found that the NGS is quite generic and allowed by current constraints by

– 34 –



J
H
E
P
0
2
(
2
0
2
5
)
1
4
1

exploring several scenarios beyond the SM with a light scalar: the QCD axion and lighter
generalization thereof, generic pseudo-Nambu-Goldstone bosons (which we termed ALPs),
and a simple scalar quadratically coupled to nucleons and with a quartic potential.

The phenomenological implications of scalarization, and in particular of the emergence
of the NGS, are striking. Because a reduction of the nucleon mass leads to a stiffer EOS,
NS masses far beyond the maximal mass predicted by the standard causal bounds can be
reached. These stars are also much larger, such that their compactness is approximately the
same as that of a free Fermi gas. On the other hand, the contribution of the scalar potential
to the energy and pressure softens the EOS. When this effect dominates, we have found stars
in a hybrid configuration, where a scalarized core coexists with the rest of the star in the
standard phase. NSs with a phase transition within them are lighter yet unusually compact.
In addition, because the standard phase of matter is in fact meta-stable yet (very) long-lived
when the scalarized NGS exists, we have found that the M -R relation exhibits an instability
gap in radii, in which no stars should be found. In connection to this fact, we have discovered
that the new, absolutely stable branch extends down to small self-bound objects in the NGS,
held together by the scalar force instead of by gravity. These SBOs have properties, such as
mass and compactness, which greatly differ from those of standard stellar remnants.

We have provided analytic, semi-model-independent estimates of key quantities such
as critical densities for scalarization, maximal mass of NSs and corresponding radius, as
well as minimal and maximal sizes of SBOs. Whenever possible, we have also analytically
determined the boundary of the parameter space where the NGS exists, as well as the new
ground-state number density of matter, for the different scalar scenarios under consideration.
These estimates make the physics transparent, and we have checked all of them against
numerical simulations. In this regard, we paid special attention to finite gradient effects,
associated with the non-trivial profile of the scalar in finite volume systems, i.e. stars in our
case. These contributions to the energy density and (anisotropic) pressure are important
when the in-medium characteristic wavelength of the scalar field is of the order of the size
of the object, and they lead to important departures, especially when the typical scale of
the scalar f is close to MP.

We have also made explicit the connection between our analysis and the popular scalar-
tensor theories, in the hope that our fresh perspective will contribute to elucidating their
full dynamics and whole range of phenomenological implications.

Our results shed new light on the already clear importance of future electromagnetic and
gravitational wave observations of compact stellar objects in general and NSs in particular.
Indeed, observatories such as NICER and LIGO have the potential to discover signs, like very
heavy NSs and gaps in radii, that could ideally be considered as smoking-gun signals of the
scalarized NGS of matter. Certainly, many degeneracies are at play here, such as astrophysical
uncertainties in the expected NS-BH mass gap along with the experimental difficulties in
discerning between these two types of compact objects, large experimental errors in the
determination of NS radii, or theoretical uncertainties in the EOS of NS matter. However,
many of these constitute in principle a reducible background that could be greatly reduced
thanks to the vigorous current and future experimental program in astrophysics. Besides,
while a leap in our theoretical understanding of dense matter is not in foresight, for many
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of the scalar scenarios we considered, the relevant densities fall within perturbative control.
Indeed, bounds on lighter QCD axions have already been derived from the effects of the NGS
on the configuration of the much more dilute white dwarfs [66]. The uncertainty in the EOS
is, unfortunately, most pronounced for the case of the QCD axion, where the possibility of
scalarization itself is speculative. Furthermore, let us note that, with the exception of the
linearly-coupled scalar, for all the other models we considered there is wide parameter space
open to further experimental exploration. This in turn means these models can be tested with
other, complementary probes: pulsar timing, stellar energy loss, long-range forces in binary
mergers, or superradiance (see e.g. [153] for an overview of the status of (light) QCD axions).

We conclude with a summary of the directions that we believe deserve further investigation.
An important question that we did not explore concerns the formation of stellar objects in the
NGS, for which there are many non-trivial aspects to consider. Importantly, its answer is of no
consequence to our findings, which concern the long-time, non-dynamical structure of stellar
remnants. A related question concerns the cosmological evolution and phenomenological
implications of the SBOs, which can be as small as the Compton wavelength of the scalar.

It would be interesting to extend our analysis to more realistic EOSs. We have found,
using a free Fermi gas description, that pure neutron matter can be effectively self-bound at
high densities due to the scalar dynamics. We expect that, by considering a more realistic
EOS, this picture does not qualitatively change and asymmetric nuclear matter is self-bound
as well. From our ongoing work we already have indications that this is the case when
including nuclear interactions mediated by pion exchange, even incorporating the effects that
scalarization has on the interactions themselves (e.g. a change in the mass of the pions); we
have explicitly checked this for lighter QCD axions. Therefore, the emergence of a scalarized
ground state of matter seems to be robust in the regime where we retain perturbative control.
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A Dimensional analysis and negligible gradient limit

It is useful to rewrite the EOMs eq. (2.7) in terms of dimensionless quantities, which we
define as

p̂ ≡ p/m4, ε̂ ≡ ε/m4, r̂ = r/α, M̂ = M/(α3m4), (A.1)
V̂ ≡ V/Λ4, m̂∗(θ) ≡ m∗(θ)/m, ρ̂s ≡ (mρs)/Λ4,

where Λ4 ∼ m2
ϕf

2 is the typical scale associated with the scalar potential. The EOMs
are then given by

θ′′
(

1 − 2c1M̂

r̂

)
+ 2
r̂
θ′
(

1 − c1M̂

r̂
− 2πc1r̂

2 (ε̂− p̂)
)

= c3

(
∂V̂

∂θ
+ ρ̂s

∂m̂∗(θ)
∂θ

)
, (A.2a)

p̂′ = − c1M̂ ε̂

r̂2

[
1 + p̂

ε̂

] [
1 − 2c1M̂

r̂

]−1 [
1 + 4πr̂3

M̂

(
p̂+ 1

2c2θ
′2
{

1 − 2c1M̂

r̂

})]

− c2c3θ
′
(
∂V̂

∂θ
+ ρ̂s

∂m̂∗
∂θ

)
,

(A.2b)

M̂ ′ = 4πr̂2
(
ε̂+ 1

2c2θ
′2
[
1 − 2c1M̂

r̂

])
, (A.2c)

where we identify three relevant dimensionless coefficients

c1 ≡ α2m4

M2
P
, c2 ≡ f2

α2m4 , c3 ≡ α2Λ4

f2 . (A.3)

α is an arbitrary length scale, to be chosen at convenience. For instance, the typical size of
a gravitationally-bound star is determined by the condition c1(α = R) = 1, which implies
R = MP/m

2. On the other hand, the typical scale associated with the scalar field is given by
the condition c3Max{1, ρ̂s}(α = λϕ) ∼ 1, which strictly speaking is a locally defined property
since ρ̂s depends on r̂. This typical scale of the scalar field, which changes with density, is
what we refer to as the wavelength of the field.

The negligible gradient approximation and in-medium wavelength. To understand
the negligible gradient approximation, let us focus on eq. (A.2a),

θ′′ + 2
r̂
θ′ = c3

(
∂V̂

∂θ
+ ρ̂s

∂m̂∗
∂θ

)
, (A.4)

where we neglected the O(1) deformation of the scalar derivatives due to gravity, as they do
not play a significant role in the following discussion. Over a region of size r̂2 − r̂1 ≡ ∆r̂,
around the mean position 1

2(r̂2 + r̂1) ≡ r̂c where θ changes by ∆θ, the l.h.s. scales as ∼ ∆θ
(∆r̂)2 .

This is true both in the case where the transition occurs when r̂c ≫ ∆r̂, in which case the
θ′ term is O(∆r̂/r̂c) suppressed w.r.t to the θ′′ term, or when the transition happens for
r̂c ∼ ∆r̂, in which case the θ′ and θ′′ term scale the same.

Consider then the scalar profile θ(r) derived from the EOS eq. (2.10), where ρs = ρs(r)
as follows from the solution of eq. (2.11). By construction this ensures that the r.h.s. of
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eq. (A.4) vanishes. This is a good approximation to the full coupled system of EOMs if the
corrections due to the scalar field derivatives θ′(r) and θ′′(r) in eq. (A.2) can be considered
small, in which case the EOMs reduce indeed to eq. (2.10) and eq. (2.11). Let us assess the
validity of this approximation by separating the discussion into two qualitatively different
cases depending on the behavior of θ(r), (1) θ varies continuously in a finite region and (2) θ
is discontinuous, i.e. jumps from one value to another, forming a so-called bubble wall. In
both of these regions, we argue that while θ′ and θ′′ do not vanish, θ(r) can nonetheless be
considered a good approximate solution overall under certain conditions. We shall derive
an upper bound on f which ensures these conditions are satisfied, with the strongest bound
coming from the condition for the formation of the bubble wall.

We start with the case where θ(r) is continuous. This is typical in linearly coupled models
(n = 1 in eq. (1.1), see section 3.2.1), at least at small enough densities. While it is easier to
characterize the gradient corrections in this region, as we show below it typically provides a
weaker bound on f when both (1) and (2) behaviors of θ can happen within the same scalar
theory. Consider a region where θ(r) undergoes an O(1) change in its value from θ0 to θ∞
such that θ̄ ≡ (θ∞ + θ0)/2 ∼ ∆θ ≡ θ∞ − θ0 = O(1), within a region of size ∆r̂. The l.h.s. of
eq. (A.4) scales like ∆θ/∆r̂2, as previously explained. Since the r.h.s. vanishes at leading
order by construction, it is sensible to Taylor expand it and evaluate it at θ̄. By demanding
that the change in θ takes place within the confines of a star, i.e. ∆r̂ ≲ 1 in units α = R, and
that deviations from the assumed profile are at most of order ∆θ, we arrive at the condition

R2 ≫ 1
m2
ϕ(θ̄)

where m2
ϕ(θ̄)f2 ≡ ∂

∂θ

(
∂V (θ)
∂θ

+ ρs
∂m∗
∂θ

)∣∣∣∣
θ=θ̄

. (A.5)

This condition can also be interpreted as an energy requirement, identifying f2/R2 as the
gradient energy density associated with the smooth change of the scalar field, and m2

ϕ(θ̄)f2

at the gain in effective potential energy. Note that these types of continuous transitions also
occur in models where the θ∞ phase is ultra-relativistic, which is the common case in the
models in section 3.2, as well as in part of the parameter space of the models in section 3.1.

A different condition associated with the negligible gradient approximation, typically
leading to a stronger upper bound on f , corresponds to the case in which θ(r) exhibits a
discontinuity. This happens for instance in quadratically coupled models (n = 2 in eq. (1.1))
just above the critical density for scalarization. The gradient energy density associated with
such a jump in θ is naively infinite, since θ′ and θ′′ are singular. Clearly, this is not a sensible
result, and indeed the bubble wall is not infinitely thin but it has a finite size, determined by
the in-medium wavelength of the scalar field, λϕ. Since in the transition region (i.e. inside
the wall), θ(r) solving eq. (2.10) is not a good approximation, we return to eq. (A.4) and set
the units to α = λϕ. We then find that at low densities, the wavelength can be estimated as

λlow
ϕ ≡

√
∆θf√

(∂V/∂θ)|θ=θ̄

, (A.6)

where ∆θ ≡ θ∞ − θ0 is the jump in θ and θ̄ ≡ (θ∞ + θ0)/2, and as before we generically
consider ∆θ ∼ θ̄ = O(1). By using this definition, as opposed to the vacuum Compton
wavelength defined as m−1

ϕ ≡ f/
√

(∂2V/∂θ2)|θ=θ0 , we avoid potentially misidentifying the

– 38 –



J
H
E
P
0
2
(
2
0
2
5
)
1
4
1

relevant scaling of the r.h.s. of eq. (A.4), which can be dominated by higher order terms in
the potential once θ is sufficiently far away from θ0. This can occur for scalar potentials that
feature more than one scale, like in the quadratic coupling model discussed in section 3.2.2,
where the potential can be dominated by the quartic term. This effect, which admittedly
requires some fine-tuning in the potential, is nonetheless captured by the definition in eq. (A.6).
In natural potentials defined by a single scale, i.e. fϕ ∼ f , λlow

ϕ reduces to m−1
ϕ as expected,

like in the models discussed in section 3.1.
We emphasize however that λlow

ϕ does not actually play an important role in determining
the upper bound on f from the requirement of negligible gradient energy, but rather the
in-medium or high-density effective wavelength, identified as

λϕ ≡
√

∆θf√
ρ̄s|∂m∗/∂θ||θ=θ̄

, (A.7)

where ρ̄s is the typical scalar density at the internal edge of the transition region, i.e. roughly
the scalar density at the lowest pressure of the internal phase. The fact that λϕ, rather than
λlow
ϕ , is what determines the relevant size of the scalar bubble stems from the requirement

that, for the scalar field to be significantly sourced, a sufficiently large scalar density is
needed, in particular mρs ≳ m2

ϕf
2(Mϕ/f)n, following the discussion after eq. (2.10) and

using eq. (1.1). Still, λlow
ϕ is interesting in cases where λlow

ϕ ≳ R (while λϕ < λlow
ϕ ). In this

case, the scalar profile extends to the region outside the star, resulting in a scalar halo and
potentially interesting effects like long-range forces between stars [46].

Having determined λϕ, note that the gradient energy density associated with a bubble
wall is typically larger than that of a continuous scalar profile discussed above, given that the
former scales as f2/λ2

ϕ, thus enhanced w.r.t. the latter by (R/λϕ)2. Nevertheless, the condition

λϕ ≪ R , (A.8)

is the correct one to ensure first that the scalar can be sourced when θ(r) solving eq. (2.10) is
discontinuous, and second that its contribution to the TOV equations eq. (A.2b) and eq. (A.2c)
is subleading. For λϕ ≫ R, the formation of the bubble is not energetically favorable, leading
to the trivial θ = θ0 solution. This regime can be understood as a decoupling limit f/MP ≫ 1,
given the scaling with f of eq. (A.7) and that R ∼ MP/m

2. For λϕ ∼ R, the effects of the
gradient energy are no longer negligible and the full coupled system of eq. (A.2) must be
solved (also when 1/mϕ(θ̄) ∼ R in eq. (A.5)). Therefore, only when eq. (A.8) holds the bubble
can be formed, and its contribution to the total energy (mass) of the star be safely neglected,
given that it is localized to a thin region much smaller than the total size of the star.

B Analytic discussion of constant density objects

In this appendix, we derive the main results presented in section 2.2.2. In models that
allow a NGS, the total core pressure for all configurations on the stable branch balances
two distinct contributions,

p(0) ≡ p0 = ∆pgrav. + ∆pgrad. . (B.1)
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with

∆pgrad. = −
∫ R

0
dr θ′

(
∂V

∂θ
+ ρs

∂m∗
∂θ

)
, (B.2)

∆pgrav. ≃ −
∫ R

0
dr M(r)ε(r)

M2
Pr

2 , (B.3)

where we took for simplicity the Newtonian limit of the TOV equations, which, as discussed
below, suffices for the estimations in this section.

Self-bound objects (SBOs) are such that ∆pgrav. ≪ ∆pgrad., they are composed of matter
in the NGS and are held together by the gradient pressure of the scalar field. The opposite
limit, ∆pgrav. ≫ ∆pgrad., corresponds to stars. The smallest possible configurations on the
stable branch are of size R ∼ λϕ, and both gravitational and gradient pressures are spread
across the object, thus ∆pgrav. and ∆pgrad. must be calculated by summing up the contributions
from r = R until the core. For a given f , these smallest configurations can either be self-
or gravitationally-bound.

In order to analytically characterize, up to O(1) factors, these objects in different regimes,
we make the following simplifying assumptions. First, we consider large systems, R≫ λϕ, in
which p′grad. is localized at the boundary of the object where the transition occurs. Second,
we assume a simple linear energy density profile from the core ε(0) ≡ x0εNGS to the edge
of the object ε(R) ≡ xRεNGS,

ε(r)/εNGS = (x0 − xR)(1 − r/R) + xR . (B.4)

Next, we calculate the gravitational pressure using the Newtonian limit of the TOV equations,
neglecting O(1) general relativistic corrections as well as the contribution of the localized
gradient energy to the energy density. Lastly, for simplicity, we assume the NGS phase is non-
relativistic. This approximation is typically applicable when m∗(θ) is bounded, in which case
the NGS can be anything between non- and ultra-relativistic. For an ultra-relativistic NGS
phase, a similar derivation is straightforward. When m∗(θ) is unbounded, the NGS is typically
ultra-relativistic and has a fixed ρs. Also in this case, a similar derivation is straightforward.

Under these assumptions, we can approximate the internal pressure as

p0 ≃ R2ε2
NGSx

2
0

M2
P︸ ︷︷ ︸

∆pgrav.

+
f
√
εNGSxR
R

√
δm∗

1 − δm∗︸ ︷︷ ︸
∆pgrad.

≃ ε
5/3
NGS(x5/3

0 − 1)
m

8/3
∗

, (B.5)

where ∆pgrad. is calculated over a small transition region from R to R+ λϕ, approximating
the scalar profile as a linear transition, i.e. θ′ ∼ 1/λϕ = const., and taking the leading order
term in the λϕ/R ≪ 1 expansion. We also approximated ∂m∗

∂θ ∼ mδm∗. For simplicity,
we assume in the following that δm∗ ≪ 1. This assumption can be relaxed by rescaling
δm∗ → δm∗/(1− δm∗) in all the expressions below. Finally, the last equality in eq. (B.5) is a
self-consistency condition due to the assumed non-relativistic EOS at the core, i.e. p0 = p(ε(0)).

Self-bound objects: ∆pgrav. ≪ ∆pgrad.. An interesting prediction for finite f is the
existence of SBOs, for which gravity does not a play role, and therefore their pressure, energy
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density, and scalar field profiles can be computed by solving the MP → ∞ limit of the coupled
TOV equations, eq. (2.20). In the R≫ λϕ limit, they are well-described by constant profiles.
They are held together by the gradient pressure exerted at the edge of the object, where
the transition occurs in the form of a scalar bubble wall of size λϕ that “traps” the matter
inside and prevents it from expanding.

We apply the simple model of eq. (B.5) by taking x0 = xR ≡ xSBO ≳ 1, which describes
a constant energy density system. This allows us to write the SBO radius as a function of its
core energy density (or equivalently, in this approximation, its core number density)

RSBO(xSBO) ≃ m
8/3
∗ δm

1/2
∗ f

ε
7/6
NGS

x
1/2
SBO

x
5/3
SBO − 1

, (B.6)

where ∆pgrav. was neglected. From eq. (B.6), it is clear that SBOs become smaller (larger) as
the central density, i.e. xSBO, increases (decreases). Their total mass is given by

MSBO(xSBO) = 4π
3 xSBOεNGSR

3
SBO(xSBO) ≃ 4π

3
f3δm

3/2
∗ m8

∗

ε
5/2
NGS

x
5/2
SBO

(x5/3
SBO − 1)3

. (B.7)

For finite f , SBOs are bounded in size both from above and from below. The smallest
object possible would have Rmin

SBO ∼ λϕ, for which the approximation R ≫ λϕ breaks down.
This also implicitly defines the maximal possible density of the self-bound object. For very
low densities the object becomes large, reaching the point where ∆pgrav. can no longer be
neglected. We then define the maximal SBO radius at the equilibrium point ∆pgrav. ≃ ∆pgrad..
Using eq. (B.5), we can analytically estimate it in two limiting cases

Rmax
SBO ∼


(
fM2

Pδm
1/2
∗

ε
3/2
NGS

)1/3
δm

1/2
∗
(
m4

∗
εNGS

) (
f
MP

)
≪ 1(

M7
P

δm
1/2
∗ m12

∗ f

)1/6
δm

1/2
∗
(
m4

∗
εNGS

) (
f
MP

)
≫ 1

. (B.8)

The first case corresponds to xSBO ≃ 1, in which the equilibrium happens when the SBO is
close to its ground state density. The second case corresponds to xSBO ≫ 1, in which the
equilibrium happens when the SBO is much denser than its ground state density, and thus
the maximal radius is independent of the NGS properties.

Constant energy density gravitationally-bound objects: ∆pgrav. ≫ ∆pgrad.. As the
core pressure increases, gravity pressure becomes the dominant component. We return to
our simple model of eq. (B.5), and note that, in the absence of a sizeable gradient pressure,
vanishing Fermi pressure at r = R requires us to set xR ≃ 1, while we have x0 ≳ 1, finding

R(x0) ∼
(
M2

P(x5/3
0 − 1)

m
8/3
∗ ε

1/3
NGSx

2
0

)1/2

. (B.9)

Around x0 ≃ 1, the radius increases with increasing core energy density, in contrast to the
SBOs which exhibited the opposite behavior. Still, in the limit, δm1/2

∗ (m4
∗/εNGS)(f/MP) ≪ 1,

these smallest gravitationally-bound systems can also be approximated as of constant energy
density since although their pressure drops away from the core, it is sufficiently low that the
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Figure 10. The low-mass and small-radius region of the M -R curves of the benchmark BM1 in the
ALP model of section 3.1.3. The free Fermi gas without axion (solid black), the negligible gradient
limit (dashed black), and including finite gradient effects for f = {5 × 1016, 1016, 1015}GeV in red,
purple, and blue respectively.

EOS is always close to ε ≃ εNGS. At large enough core pressures, the constant energy density
approximation breaks down, and any further increase in core pressure leads to a decrease in
radius, which is the typical behavior for gravitationally-bound objects described by a Fermi
gas; indeed, the radius eq. (B.9) decreases with increasing core energy density for x0 ≫ 1.

Finally, recall that for δm1/2
∗ (m4

∗/εNGS)(f/MP) ≫ 1, the most massive and largest SBOs
have ε ≫ εNGS (i.e. xSBO ≫ 1). Therefore, any increase in pressure would lead to a swift
breakdown of the constant energy approximation as follows from the EOS, and a return to
the typical radius decrease with increasing core pressure. As a result, the maximal mass of
the gravitationally-bound stars in the NGB coincides with that of the SBOs in this limit.

To conclude, we can approximate the maximal star radius, up to O(1) factors, as

Rmax ∼


(

M2
P

m
8/3
∗ ε

1/3
NGS

)1/2
=
(
δm

1/2
∗ m4

∗f
εNGSMP

)−1/3
Rmax

SBO δm
1/2
∗
(
m4

∗
εNGS

) (
f
MP

)
≪ 1(

M7
P

δm
1/2
∗ m12

∗ f

)1/6
= Rmax

SBO δm
1/2
∗
(
m4

∗
εNGS

) (
f
MP

)
≫ 1

, (B.10)

which are the analytic estimates used in the main text in eq. (2.23).

Comparison with numerical results of BM1 ALP model. Let us check our analytical
estimates with the numerical results we presented for the BM1 benchmark in section 3.1.3.
For this purpose, it is useful to zoom in on the right panel of figure 7 at low masses and
small radii, see figure 10. Our numerical results agree with our estimates for RSBO

min given in
eq. (3.29) and are indeed well-described at low pressures by the curve defined by eq. (3.30)
independently of f . The visible deviations from the line at low radii is a finite gradient
effect explained by our modeling of the SBOs described in this appendix. The smallest SBOs
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Figure 11. Left panel: the NGS configurations in the {ρ(0), R} plane, where ρ(0) is the central
number density. ρ(0) is shown in units of the (f -independent) NGS number density given in eq. (3.28),
while the radius is given in units of the (f -dependent) minimal radius expected for the SBOs, given
in eq. (3.29) . The numerical results agree with the analytical estimates of the maximal density and
minimal size up to O(1) factors. Right panel: the NGS configurations in the {p(0), R} plane, where
p(0) is the central pressure. p(0) is plotted in units of the (f -independent) maximal pressure given in
eq. (B.11), while the radius is given in units of the (f -dependent) maximal radius expected for the
SBOs, given in eq. (3.29). The numerical results agree with the analytical estimates of the maximal
pressure and size up to O(1) factors.

can have a central number and energy densities which can be a few times larger than ρNGS

and εNGS, respectively. Therefore, the energy density can be larger than εNGS, leading to
configurations that lie above the curve defined by eq. (3.30). For the smallest objects, with
R ≃ RSBO

min , the size of the transition region becomes comparable to the size of the object,
and the assumptions of constant pressure and number density, on which our description
depends on, are no longer valid. Note that the dashed line describing the M -R curve in
the negligible gradient limit (f/MP → 0) describes gravitationally-bound constant-density
objects since gravity is the only force in this limit. However, as long as the object is dilute
enough, i.e. ρ ≃ ρNGS, it has constant energy density εNGS and eq. (3.30) is valid, regardless of
whether it is a self- or gravitationally-bound object. Note also that for the most massive NGS
stars, the effects of the gradient pressure at the edge of the star is increasingly negligible,
making the properties of the gravitationally-bound stars essentially f -independent, clearly
visible in the right panel of figure 7.

As shown in figure 11, the numerical solutions agree with our simple modelling of the SBOs
given above. The smallest SBOs are the densest and exhibit the highest internal pressure.
These properties are in fact f -independent, e.g. the maximal pressure is given in this case by

pSBO
max ≃ gmNρNGS ≈ ε0/2 . (B.11)

for the BM1 benchmark. The maximal density can be found by solving ∆pgrad. = pSBO
max
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numerically, which results in ρmax ≈ 10ρNGS. These results match, up to O(1) factors, the
numerical results shown in figure 11, confirming the f -independent behavior of the smallest
SBOs in number density (left panel) and pressure (right panel). Note that the smallest
SBOs are the least compatible with the underlying assumptions of our modeling of SBOs,
namely constant density and small transition region. Figure 11 also confirms our f -dependent
predictions, i.e. the minimal and maximal size of the SBOs. The qualitative behavior of the
curves follows the description given above; the smallest SBOs with R ≃ RSBO

min are the densest
and have the highest pressures. As the number density decreases and ρ approaches ρNGS,
the object becomes larger, more dilute and the internal pressure decreases. This continues
until R ≃ RSBO

max , where gravity becomes important and matter must be added inside in order
to counter the increasing gravitational pressure. From this point on, the mass and radius
increase as the central number density and pressure increase. For both f = 5 × 1016 GeV
and f = 1016 GeV, we find that the maximal size of the gravitationally-bound stars coincides
with RSBO

max , consistent with the analytic estimates in eq. (B.10).

C Large nucleon mass reduction in f(ϕ)G2
µν models

Prompted by eq. (3.51), we present here a simple model that can lead to a large reduction of
the nucleon mass, thus populating most of the parameter space of figure 4, albeit at the cost
of some tuning. Above the QCD scale, we consider the following Lagrangian

Lϕ = 1
2(∂µϕ)2 − gf(ϕ)β(gs)

2gs
GµνGµν − ϵ

β(gs)
gs

M4
UV

32π2 gf(ϕ) , (C.1)

where f(ϕ) is a dimensionless function of the scalar field ϕ such that f(0) = 0, and g is a
dimensionless coefficient (introduced in analogy to the ALP g factor in eq. (3.18)). The last
term in eq. (C.1) is the UV contribution to the potential, naturally expected from closing
a gluon loop at leading order in gf(ϕ), where MUV is the cutoff of the scalar theory and
we allowed for tuning in the UV by introducing the parameter ϵ < 1. Note that eq. (C.1)
could be generalized by adding interaction terms with the light quarks

∑
q=u,d,s fq(ϕ)mq q̄q.

As seen for the QCD axion in section 3.1.1, these interactions lead to a comparatively smaller
coupling to nucleons, and we disregard them, along with quark masses, in the following.

Below the QCD scale, we use the well-known fact that the divergence of the dilatation
current can be used to obtain the matrix element [147–149]

⟨N |β(gs)
2gs

GµνGµν |N⟩ = m0 , (C.2)

where m0 ≈ 869.5 MeV [154] is the nucleon mass in the chiral limit. This allows to match
the theory in eq. (C.1) to

LIR
ϕ ⊃ −mN N̄N

[
1 − g

g∗
f(ϕ)

]
−
(
ϵ
β

gs

M4
UV

32π2 + cΛ4
QCD

)
gf(ϕ) , (C.3)

at leading order in gf(ϕ) and neglecting the difference in β/gs between the scale at which
eq. (C.1) is defined and the QCD scale, ΛQCD. Note that g∗ = mN/m0 ≈ 1.08, yet since we are
neglecting quark masses we will consistently take g∗ = 1. We also added an IR contribution
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to the scalar potential in eq. (C.3), generated by the interaction of ϕ with the gluons and
proportional to QCD contribution to the cosmological constant, which we have estimated as

⟨0|β(gs)
2gs

GµνGµν |0⟩ = cΛ4
QCD , (C.4)

with c = O(1).
At this point, we can map the function f(ϕ) to either the ALP model of section 3.1.3, with

f(ϕ) = (1 − cosϕ/f)/2, or to the linearly and quadratically coupled models of sections 3.2.1
and 3.2.2, with gf(ϕ) = ϕ/Mϕ and gf(ϕ) = (ϕ/Mϕ)2, respectively. Let us note that in
deriving eq. (C.3) we kept only the leading order term in gf(ϕ), while a large (in-medium)
reduction of the nucleon mass requires gf(ϕ) ∼ 1. As a result, for small values of m∗(θ∞)
(recall θ∞ is the high-density limiting value of ϕ/f), control over such non-linear terms is
required. While in this case the specific form of f(ϕ) in eq. (C.3) will differ from the one
defined in eq. (C.1), that will not impact the qualitative features of the construction.

Finally, evaluating the scalar potential in eq. (C.3) at θ∞, we find

V (θ∞) =
(
ϵ
β

gs

M4
UV

32π2 + cΛ4
QCD

)(
1 − m∗(θ∞)

mN

)
≡ V0(θ∞)

(
1 − m∗(θ∞)

mN

)
. (C.5)

By canceling the UV and QCD contributions to the potential, a significant fraction of the
parameter space of figure 4 is populated. In particular, note that the larger the degree of
tuning, the smaller V (θ∞) can be, which is the regime where larger departures (e.g. in the
mass and radius of NSs) are found w.r.t. the standard GR prediction.11 In figure 4, the blue
curve correspond to eq. (C.5) with V0(θ∞) ∼ (0.17 GeV)4.
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