
Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

11th International Conference on Physics and Its Applications (ICOPIA 2022)
Journal of Physics: Conference Series 2498 (2023) 012026

IOP Publishing
doi:10.1088/1742-6596/2498/1/012026

1

 
 
 
 
 
 

Thermodynamics of Kerr-Newman Black Hole 

Gutivan A. Syahputra and Bintoro Anang Subagyo 

Deparment of Physics, Institut Teknologi Sepuluh Nopember, Indonesia 

Email: gutivanaliefs@gmail.com, b_anang@physics.its.ac.id 

Abstract. This paper reviews the solution of Einstein’s field equations for rotating black holes 

coupled with Maxwell's electromagnetics. We derive the thermodynamic quantities of black 

hole, such as temperature, entropy, and energy with respect to mass, charge, and angular 

momentum, to derive the first law of thermodynamics. Also, we show that the black hole’s 

entropy of the black hole will be directly proportional to the irreducible mass of the black hole. 

We present a comparison between black hole’s possible maximal mass that can be extracted with 

it total mass. 

1. Introduction 

In 1969, Penrose [1] showed that it was possible to extract some energy from black holes for observers 

outside the black hole. It's just that Christodolou [2] shows that not all the energy of the black hole can 

be extracted, but there are certain restrictions. Bekenstein [3] showed the relationship between the 

entropy changes of black holes to changes in their surface area due to certain processes, and Hawking 

[4] separately obtained the same results as Bekenstein and showed the linkage of the formulation of 

changes in the energy magnitude of black holes to the first law and second law of thermodynamics. 

In 2021, Stuchlik et al[5] introduced several variants regarding energy extraction from black holes 

via the Penrose process and related modifications of Kerr black holes with their naked singularities. The 

method he uses is to use an astrophysical variant of the Penrose process that deals with high energy. 

While Liu [6] tried to formulate energy extraction through the Penrose process for non-Kerr rotating 

black holes. 

In this paper, we discuss rotating and charged black holes and the relationship between physical 

magnitudes and the magnitudes of thermodynamics. We also explain how mass, angular momentum, 

and charge affect the value of the maximum efficiency of energy a black hole can extract. This paper 

shows analogs between classical thermodynamics with black hole mechanics via the Penrose process. 

Apart from this approach, one can construct a solution to black holes thermodynamics via a semi-

classical method. 

2. Kerr-Newman Metric 

The Kerr-Newman spacetime metric can be obtained from the Newman-Janis algorithm [7]. In general, 

the algorithm begins using the Reissner-Nordstrom metric in Eddington-Finklestein coordinates 

𝑑𝑠𝑅𝑁
2 = (1 −

2𝑀

𝑟
+
𝑄2

𝑟2
)𝑑𝑢2 + 2𝑑𝑢𝑑𝑟 − 𝑟2𝑑𝛺2,                                           (1) 

with 𝑀 and 𝑄 are the mass and charge of the black hole. Metric tensors can be expressed in null tetrad 

relating to the selected metric in the form {𝑙, 𝑛,𝑚,  𝑚̅} 
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𝑔𝜇𝜈 = 𝑙𝜇𝑛𝜈 + 𝑛𝜇𝑙𝜈 −𝑚𝜇𝑚̅𝜈  − 𝑚𝜈𝑚̅𝜇 ,                                                            (2) 

with tetrads 

𝑙𝜇 = (0,1,0,0)                                                                                                                   

𝑛𝜇 = (1,−
1

2
(1 −

2𝑀

𝑟
+
𝑄2

𝑟2
) , 0,0)                                                                   (3)  

𝑚𝜇 =
1

√2
(0,0,

1

𝑟
 ,

1

𝑟 𝑠𝑖𝑛 𝜃
).                                                                                              

Subsequently carried out complex transformations 𝑟 → 𝑟 − 𝑖𝑎 𝑐𝑜𝑠 𝜃 and 𝑢 → 𝑢 + 𝑖𝑎 𝑐𝑜𝑠 𝜃, with 𝑎 is 
angular momentum of black hole per it mass [8]. This transformation will obtain the Kerr-Newman 

metric from the Reissner-Nordstrom metric. Null tetrad on Eq. (3) after transformation  will have the 

form 

𝑙𝜇 = (0,1,0,0)                                                                                                                                   (4)  

𝑛𝜇 = (1,
1

2
(1 −

2𝑀𝑟

𝜌2
−
𝑄2

𝜌2
) , 0,0)                                                                                                      

𝑚𝜇 =
1

√2
(
𝑖𝑎 𝑠𝑖𝑛 𝜃

𝑟 − 𝑖𝑎 𝑐𝑜𝑠 𝜃
,−

𝑖𝑎 𝑠𝑖𝑛 𝜃

𝑟 − 𝑖𝑎 𝑐𝑜𝑠 𝜃
,

1

𝑟 − 𝑖𝑎 𝑐𝑜𝑠 𝜃
,−

𝑖

𝑟 𝑠𝑖𝑛 𝜃 − 𝑖𝑎 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃
)                    

and can be substituted to Eq.  (2) and obtained as a new metric tensor 

𝑔𝜇𝜈 =

(

 
 
 
 
 
 
 
−
𝑎2 𝑠𝑖𝑛2 𝜃

𝜌2
1 +

𝑎2 𝑠𝑖𝑛2 𝜃

𝜌2
0 −

𝑎

𝜌2

⋅⋅⋅ −(1 −
2𝑀

𝑟
+
𝑄2

𝑟2
) 0

𝑎

𝜌2

⋅⋅⋅ ⋅⋅⋅ −
1

𝜌2
0

⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ −
1

𝜌2 𝑠𝑖𝑛2 𝜃
 
)

 
 
 
 
 
 
 

                      (5) 

where  𝜌2 = 𝑟2 + 𝑎2 𝑐𝑜𝑠2 𝜃. Furthermore, applying Eq. (5) to the transformed line element yield 

𝑑𝑠2 = (1 −
2𝑀 − 𝑄2

𝜌2
) (𝑑𝑢 − 𝑖𝑎 𝑠𝑖𝑛 𝜃  𝑑𝜃)2 + 2 (𝑑𝑢 − 𝑖𝑎 𝑠𝑖𝑛 𝜃 𝑑𝜃)(𝑑𝑟 + 𝑖𝑎 𝑠𝑖𝑛 𝜃)             (6)  

+
2𝑎 𝑠𝑖𝑛 𝜃 (2𝑀𝑟 − 𝑄2)

𝜌2
(𝑑𝑢 − 𝑖𝑎 𝑠𝑖𝑛 𝜃 𝑑𝜃)𝑑𝜙 − 2𝑎 𝑠𝑖𝑛2 𝜃 (𝑑𝑟 + 𝑖𝑎 𝑠𝑖𝑛 𝜃 𝑑𝜃)𝑑𝜙            

−𝜌2𝑑𝜃2 − 𝑠𝑖𝑛2 𝜃 [(𝑟2 + 𝑎2) + 𝑎2 𝑠𝑖𝑛2 𝜃 (
2𝑀 − 𝑄2

𝜌2
)] 𝑑𝜙2.                                                   

Applying Giampieri transformation,𝑖𝑑𝜃 = 𝑠𝑖𝑛 𝜃 𝑑𝜙, we obtain 

𝑑𝑠𝐾𝑁
2 = (1 −

2𝑀𝑟 − 𝑄2

𝜌2
)𝑑𝑢2 + 2 𝑑𝑢 𝑑𝑟 +

2𝑎 𝑠𝑖𝑛2 𝜃

𝜌2
(2𝑀𝑟 − 𝑄2)𝑑𝑢 𝑑𝜙                  (7) 
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−2𝑠𝑖𝑛2 𝜃 𝑑𝑟𝑑𝜙 − 𝜌2𝑑𝜃2 −
𝑠𝑖𝑛2 𝜃

𝜌2
((𝑟2 + 𝑎2)2 − 𝛥𝑎 𝑠𝑖𝑛2 𝜃)𝑑𝜙2.                  

The metric Eq. (7) is the Kerr-Newman metric in Eddington-Finklestein coordinates. Metrics in Boyer-

Lindquist coordinates are obtained by transformations 𝑑𝑢 → 𝑑𝑡 −
𝑟2+𝑎2

𝛥
𝑑𝑟 and  𝑑𝜙 → 𝑑𝜙 −

𝑎

𝛥
𝑑𝑟 [9] 

𝑑𝑠𝐾𝑁𝐵𝐿
2 =

𝛥

𝜌2
(𝑑𝑡 − 𝑎 𝑠𝑖𝑛2 𝜃 𝑑𝜙)2 −

𝑠𝑖𝑛2 𝜃

𝜌2
[(𝑟2 + 𝑎2)𝑑𝜙 − 𝑎𝑑𝑡] − 𝜌2 (

𝑑𝑟2

𝛥
+ 𝑑𝜃2) .   (8) 

The  Kerr-Newman black hole has two event horizons when 𝛥 = 0 [10].   These two event horizons can 

be expressed in equation 𝛥 = (𝑟 − 𝑟𝐻−)(𝑟 − 𝑟𝐻+) where 

𝑟𝐻+ = 𝑀 +√𝑀
2 − 𝑎2 − 𝑄2 ,                                                                            (9) 

𝑟𝐻− = 𝑀 −√𝑀
2 − 𝑎2 − 𝑄2 .                                                                                   

The black hole’s surface area of its outer horizon given by 

𝐴𝐻+ = 8𝜋 [𝑀
2 +√𝑀4 −𝑀2𝑎2 −𝑀2𝑄2 − 𝑄2],                                      (10) 

and the angular velocity is 

𝛺𝐻+ =
𝑎

2𝑀2 +√4𝑀4 − 4𝑀2𝑎2 − 4𝑀2𝑄2 − 𝑄2
.                                      (11) 

The surface gravity of the outer horizon is defined by 

𝜅𝜉𝜇 = 𝜉𝜈𝛻𝜈𝜉
𝜇 |{𝑟=𝑟𝐻+),                                                                              (12) 

with 𝜉𝜇 is the Killing vector of the metric at Eddington-Finklestein coordinates. In this case, the Killing 

vector has the form  𝜉𝜇 = (1,0,0, 𝛺𝐻+),  and by substituting the Killing vector into the equation, the 

surface gravity will be obtained on the outer horizon as 

𝜅 =
√𝑀2 − 𝑎2 − 𝑄2

𝑟𝐻+
2 + 𝑎2

 .                                                                               (13) 

3. Penrose Process 

Penrose process is extracting energy from rotating or charged or both black holes. Energy extraction is 

possible because the rotational and electric potential energy of a black hole are not located inside the 

event horizon but in the ergosphere. In this process, matter enters the black hole's ergosphere and is 

divided into two parts after entering. The momentum can be established in such a way that one piece of 

matter comes out of the black hole while the other goes into the event horizon of the black hole. By 

proper means, matter out of the ergosphere has greater mass-energy than originated. The piece entering 

the event horizon possible to possess negative mass energy. Therefore, this process results in more 

energy from the black hole itself. This process slightly reduces the black hole's charge and angular 

momentum, turning it into the extracted energy. 

Changes in energy of the black holes will affect mass, angular momentum, charge, and surface area 

given by 
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𝛿𝑀 =
𝜅

8𝜋
𝛿𝐴 + Ω𝐻+𝛿𝐽 + Φ𝐻+𝛿𝑄.                                                          (14) 

However, not all the black hole masses can be extracted. There is a limit to the mass that can be extracted. 

After reaching these limits,  the energy extraction process will stop. This remaining non-extractable 

mass is referred to as the irreducible mass [1]. The irreducible mass for the Kerr-Newman black hole is 

𝑀𝑖𝑟𝑟 =
1

2
√[𝑀 + √𝑀2 − 𝑄2 − 𝑎2]

2
+ 𝑎2                                            (15) 

and  the extracted total mass is 

𝑀𝑒𝑥𝑡 = 𝑀 −𝑀𝑖𝑟𝑟 = 𝑀 −
1

2
√[𝑀 + √𝑀2 − 𝑄2 − 𝑎2]

2
+ 𝑎2.                        (16) 

The efficiency of the Penrose process is the ratio between the extractable mass to its total mass 

𝜂 =
𝑀𝑒𝑥𝑡
𝑀

= 1 −
1

2𝑀
√[𝑀 + √𝑀2 − 𝑄2 − 𝑎2]

2
+ 𝑎2                        (17) 

 

 

 

 

 

 

 

 

 

In figure 1, there are certain restrictions for black holes to extract energy. The black hole can not be 

extracted fully. The maximum efficiency of Penrose is 0.5. The reason is that maximum efficiency is 

achieved when all three parameters of a black hole are exactly almost extreme. In contrast, according to 

the third law of thermodynamics of a black hole, it is unlikely that a black hole can be extreme. In the 

Schwarzschild black hole, 𝑎 = 𝑄 = 0 , the efficiency is zero, which indicates that the entire mass from 

the black hole cannot be extracted. Meanwhile, the energy can still be extracted even though the 

Reissner-Nordstrom black hole does not have an ergosphere. This process occurs in the generalized 

ergosphere [9]. 

The efficiency of rotating and charged black holes (Kerr-Newman)  is larger than Kerr black holes, 

with an efficiency of 0.29 with the maximum energy gained is 0,2 from its mass[11], since the 

electrostatic charges will store electrical energy, and this electrical energy can be extracted from black 

holes through the Penrose process. 

 

 

Figure 1. Efficiency of kerr-Newman black hole energy extraction as 

a function of 𝑀 and 𝑎 with 𝑄 = 0 (orange), 𝑄 = 15 (blue) and 𝑄 =
30 (green) units of length. 
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4. Black Hole Thermodynamics 

When the massiveness of a black hole changes, it turns out that the relationship between the massive 

cities of the transformed black hole has a shape similar to the relation in thermodynamics. Deep energy 

in thermodynamics is analogous to the mass of a black hole, temperature in thermodynamics is analog 

with surface gravity of a black hole, while entropy in thermodynamics is analogous to surface area. 

4.1. Zeroth Law 

Analogous to the zeroth law of thermodynamics, the zeroth law of thermodynamics of a black hole states 

that the surface gravity of the black hole will be of constant value along its event horizon. This states 

that the event horizon of a black hole will always be spherical, since that the gravitational value of the 

surface will depend on the radial distance of the singularity. Regardless of the type and parameters of 

the black hole, the topology of the event horizon will take the form of a sphere. 

4.2. First Law 

The change in energy will be related to a change in the surface area of the event horizon, a change in its 

angular momentum and a change in electric charge. This first law of thermodynamics of black holes is 

described by equations (14). The Penrose process is one of the thermodynamic processes  that tries to 

expend energy in a  black hole which causes a decrease in the angular momentum  and charge of the 

black hole. The temperature 𝑇 of the black hole and the entropy 𝑆 of the black hole are successively 

expressed in the form of 

𝑇 =
𝜅

2𝜋
                                                                                              (18) 

𝑆 =
𝐴

4
.                                                                                                         

4.3. Second Law 

The second law of thermodynamics explains the nature of entropy. The entropy of the system can only 

be ascending or constant. The entropy of the system will not be able to decrease. In black hole 

mechanics, the entropy of a black hole is described by Bekenstein's entropy whose value is 

proportional to the surface area of the black hole horizon. The relation between the surface area of the 

horizon  and the irreducible mass is given by 

𝐴 = 16𝜋 𝑀𝑖𝑟𝑟
2  .                                                                                  (19) 

Reviewing the irreducible mass at (16) shows that its value is always fixed or increasing. This indicates 

that its surface area can also only remain or increase. This law is  Hawking's law for the extent of black 

holes. The second legal requirement becomes the maximum limit of the Penrose process for performing 

energy extraction from black holes. 

4.4. Third Law 

The third law is based on the cosmic censorship hypothesis, where a black hole can not be extremal. 

The extreme conditions are achieved when the zeros of Δ have imaginary value. It states that black holes 

have no real horizons. This condition also limits the increase in efficiency of the Penrose process to 

more than  50%. Since black holes do not have a real horizon, the magnitudes associated with the horizon 

disappear, such as surface gravity,  angular velocity, and surface area. Explicitly, this law states that it 

is impossible in the finite process to make a black hole reach extreme conditions. 

5. Conclusion 

Kerr-Newman black holes can be derived through the  Newman-Janis algorithm, which uses a Reissner-

Nordstrom metric as a metric seed in Eddington-Finklestein coordinates. The algorithmic process results 

in a Kerr-Newman metric in Eddington-Finklestein coordinates. However, a transformation can be 
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performed to get the metric in the Boyer-Lindquist coordinates. The Kerr-Newman black hole has three 

parameters: mass, angular momentum, and electric charge. With some modification, the Newman-Janis 

algorithm can generate another rotating metric: Kerr-(A)dS, Kerr-NUT, or rotating de Sitter using a 

specific seed metric. All three parameters of a black hole are subject to change, whose changes are 

governed by the four laws of thermodynamics of a black hole.  

When a black hole is extracted its energy through the  Penrose process,  it is seen that not all the 

energy from the black hole can be extracted. Certain limitations will transform the Kerr-Newman black 

hole into a Schwarzschild static black hole. The static approximation will lose the angular momentum 

and charge of the Kerr Newman black holes. However,  it has been proven that the efficiency of the 

Penrose process in the Kerr-Newman black hole is more significant than that in the  Kerr black hole.  
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