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Abstract

This thesis studies some aspects of the physics of topological semimetals, a set of
novel three-dimensional matter systems whose low-energy electronic excitations are
described by Dirac quasiparticles. The unconventional features of these materials,
ranging from basic physics to technological applications, have generated a substan-
tial research activity during the last years. The interest in crystalline structures
hosting Dirac quasiparticles lies partially on the relativistic nature of their electronic
degrees of freedom, making them an ideal laboratory to test and study fundamen-
tal physics phenomena. This thesis addresses two topics of major interest in the
physics of these systems: the interplay between lattice deformations and electronic
properties, and the influence of anomalies on the thermoelectric response.

In the first part of this thesis, the thermoelectric response of Dirac and Weyl
semimetals is studied in the presence of strong magnetic fields. The anomalous
thermoelectric behaviour is addressed at the charge neutrality point, where a finite
contribution to the thermoelectric coefficient is obtained in the conformal limit.

The thermoelectric coefficients fulfill robust phenomenological relations based
on the Landau-Fermi liquid paradigm of coherent quasiparticles. These relations
may be challenged when the system has strong interactions or when it presents a
poor metallic behaviour. The validity of the Mott relation, a phenomenological law
that relates the thermopower and the electrical conductivity coefficients, is discussed
in the regime of zero doping and zero temperature. In particular, the off-diagonal
components of the electric and thermoelectric tensors are analyzed in the presence
of a magnetic field.

The influence of external deformations on the lattice configuration of topological
semimetals is essential to understand their electronic properties. In these systems,
elastic deformations couple to the low-energy electronic excitations in the form
of elastic gauge fields. The possibility of controlling the dynamics of carriers by
appropriate strain geometries has given rise to a prolific industry associated with
straintronics. In the second part of this thesis, the coupling of lattice deformations to
Dirac quasiparticles in three-dimensional materials is studied by using a symmetry
approach. An interesting aspect is that, in contrast with the two-dimensional case,
the antisymmetric part of the deformation tensor couple to the electronic excitations
in three-dimensional Dirac materials.

Finally, the interplay between electromagnetic fields and elastic deformations is
also discussed, in which the collapse of Landau levels is showed in the presence of
strain. The similarities of this mechanism with the case of real magnetic and electric
fields are emphasized, discussing possible strain configurations giving rise to this
effect.
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Resumen

Esta tesis estudia aspectos de la fisica de los semimetales topolégicos, un conjunto
de materiales tridimensionales cuyas excitaciones electrénicas de baja energia son
descritas por las cuasiparticulas de Dirac. Las caracteristicas poco convencionales
de estos sistemas, que abarcan desde la fisica fundamental hasta las aplicaciones
tecnolégicas, han generado una importante actividad investigadora durante los tl-
timos afios. El interés en sistemas de cuasiparticulas de Dirac radica en parte en
la naturaleza relativista de sus grados de libertad electrénicos, convirtiendo estos
materiales en sistemas ideales para examinar y estudiar fenémenos de fisica funda-
mental. Esta tesis aborda dos temas de gran interés en la fisica de estos sistemas:
la interaccién entre las deformaciones de la red y las propiedades electrénicas, y la
influencia de las anomalias en la respuesta termoeléctrica.

En este trabajo, se ha estudiado la respuesta termoeléctrica de los semimetales
de Dirac y Weyl en presencia de un campo magnético intenso. El comportamiento
termoeléctrico anémalo ha sido analizado en el punto de neutralidad de carga,
donde se ha obtenido una contribucién finita al coeficiente termoeléctrico en el
limite conforme.

Los coeficientes termoeléctricos satisfacen relaciones fenomenolégicas basadas
en el paradigma de cuasiparticulas del liquido de Fermi. Estas relaciones pueden ser
cuestionadas cuando el sistema tiene interacciones fuertes o cuando presenta un mal
comportamiento metélico. Se ha discutido la validez de la relacién de Mott, una ley
fenomenolégica que relaciona la potencia térmica y el coeficiente de conductividad
eléctrica en el limite de dopaje y temperatura cero. En particular, se han analizado las
componentes no diagonales de los tensores eléctrico y termoeléctrico en presencia
de un campo magnético.

La influencia de las deformaciones de la red de los semimetales topoldgicos re-
sulta esencial para entender sus propiedades electrénicas. En estos sistemas, las
deformaciones elasticas se acoplan a las excitaciones electrénicas de baja energia en
forma de campos gauge eldsticos. La posibilidad de controlar la dindmica de los
portadores con las configuraciones de deformacién apropiadas ha dado lugar a toda
una industria dedicada a “straintronics”. Se ha estudiado el acoplo de las deforma-
ciones eldsticas a las cuasiparticulas de Dirac en materiales tridimensionales usando
una accién efectiva basada en la simetria del sistema. Un aspecto interesante es que,
al contrario de lo que ocurre en materiales bidimensionales, la parte antisimétrica
del tensor de deformacién se acopla a las excitaciones electrénicas en los materiales
tridimensionales de Dirac.

Finalmente, se ha discutido la inter-relacién entre los campos electromagnéti-
cos y las deformaciones elasticas, mostrando el colapso de los niveles (pseudo) de
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Landau en presencia de deformaciones. Se ha enfatizado la similitud de este meca-
nismo con el caso de campos magnéticos y eléctricos reales, discutiendo las posibles
configuraciones de deformacién que dan lugar a este efecto.



Chapter

Introduction

”

“A physical law must possess mathematical beauty
- Paul A. Dirac

A complete quantum theory consistent with the postulates of special relativity
was given in 1928 by Dirac [1]. He introduced an equation that describes the
dynamics of the electron as a relativistic quantum particle and led to a natural
insight into the concept of spin. Written in a covariant language, the Dirac equation
reads:

(ihcy#d, — mc?) P(x) = 0, (1.1)

where 1) is a 4-component wave-function describing the electron and y =0,1,2,3.
The matrices y#, known as Dirac matrices, satisfy the particular anticommutation
relation {y*,y"} = 2n*", with n** = diag(1, -1, -1, -1).

Condensed matter physics focuses on understanding and studying the physical
properties of large collections of atoms arranged in a periodic array. Since the typical
energy scales in these systems are much smaller than the mass of the electron, a rela-
tivistic description of the electronic degrees of freedom was considered unnecessary.
Nevertheless, the two branches of physics meet through the exchange of conceptual
ideas and techniques. A typical example is the concept of renormalization group;
first developed to control the divergences arising in quantum electrodynamics, it has
been applied to solve problems in condensed matter physics, such as the Landau-
Fermi liquid or the Kondo problem [2, 3]. During the last decade, the synthesis
of a novel class of materials has opened a new bridge between condensed matter
and high energy physics: the Dirac matter, whose electronic degrees of freedom are
effectively described by the massless Dirac equation.
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Although materials modeled with the Dirac equation were already known in
condensed matter [4, 5], it was after the experimental realization of graphene in
2005 [6, 7] when the physical consequences of such equation were fully explored
by the community [8]. The synthesis of graphene was followed by other important
material realizations of the massless Dirac equation; the edge states of the topological
insulators [9-12]. More recently, Dirac and Weyl semimetals are three-dimensional
(3D) topological materials hosting massless Dirac spinors in the vicinity of linear
band-crossings points [13-18].

This thesis centers on the interplay between high-energy processes and con-
densed matter phenomena in Weyl and Dirac semimetals. In particular, it studies
the response of Dirac quasiparticles to magnetic fields (real or fictitious) and spatial
deformations. Throughout this thesis, we will see that both topics are precisely
interconnected when studying the thermoelectric response of Dirac materials and
the coupling between the lattice deformations and electronic degrees of freedom.

We begin this introductory chapter by discussing the relevant characteristics of
Weyl semimetals, whose linearly dispersing valence and conduction bands meet
at isolated points at the Fermi level. In the first section, we discuss the conditions
under which degeneracies arise in electronic band structures and its connection with
the relativistic Dirac equation. In the second section we review the basic concepts
to understand the topological character of such degeneracy points. In the third
section, we describe the emergence of new terms that can be added to the Dirac
equation when Lorentz invariance is broken and their physical consequences in
material systems. The discussion of this chapter is partially based on the description
of topological semimetals provided in the collection of review articles [19-25].

1.1 Weyl fermions

The Dirac equation characterizes the motion of relativistic spin-1/2 fermions with
mass 11, and is the first theory that successfully reconciles the principles of quantum
mechanics (equations of motion must depend only on the first time derivative) and
special relativity (time and spatial coordinates should be treated symmetrically). By
taking the limit m — 0 in Equation (1.1), Weyl noticed that the equation could be
split into two decoupled equations [26]:

ihdo+(x) = He (),
3

H. =% Z calp;, (1.2)
j=1
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where o/ are the Pauli matrices, pj = —ihd; is the momentum of the particle and
Y4 is a two component bi-spinor. The resulting dispersion relation takes the form
E = +hck, with k being the modulus of the corresponding wave-vector. In order to
obtain Equation (1.2), the Weyl representation ° = 6* ® I, y' = io¥ ® ¢' is used.
We will adopt this convention throughout this thesis.

In any odd spatial dimension d, we can define a chirality operator constructed
with the matrix ° = i¥y%y! ... 4 [27] that commutes with the Weyl Hamiltonian.
This commutation relation is guaranteed for odd spatial dimensions, provided that
5 anticommutes with the velocity matrices y'. The Weyl spinors are eigenstates
of definite chirality and have a well defined helicity (projection of the spin on the
momentum).

Weyl fermions do not exist as fundamental particles. Neutrinos were conjectured
as a promising candidate, but the discovery of neutrino oscillations implied that they
have a finite mass [28, 29], eliminating them as an option. Manifestations of Weyl
physics can be observed in the quark-gluon plasma [30, 31], and now in condensed
matter systems. In the forthcoming sections, we will see how pairs of Weyl fermions
separated in energy or momentum space arise in the vicinity of degeneracy points
in electronic band structures.

1.1.1 Electronic band theory and quasiparticles in crystalline struc-
tures

At the microscopic level, ions of macroscopic crystalline structures are arranged in
a periodic lattice. The interactions among atoms are strong enough to maintain
the solid structure of the material. Hence, electrons in a crystalline structure are
described as particles subjected to a periodic potential with the symmetry of the
underlying lattice. This observation led the physicist Bloch to study the Schrodinger
equation in an effective periodic potential. He showed that the eigenstates of the
one-electron Hamiltonian have the form ¢, (r) = e™y,1(r), where k is the crystal
momentum of the electron and the function u,i(r) = (r|u,(k)) has the periodicity
of the Bravais lattice; u,k(r + R) = u,x(r), with R being the lattice vector [32, 33].
The index n labels the different solutions of the Scrédinger equation in the periodic
momentum space. These discretely spaced eigenvalues form an infinite family of
functions that depend continuously on the crystal momentum k. Unlike the free
electron case where any energy value is permitted, the electrons of a crystalline
lattice are only allowed to occupy states within a certain energy window or band.
The band structure provides essential information to understand the character-
istics and properties of crystalline structures. In particular, the transport properties
of any material are ultimately determined by the amount of available electrons and
its band structure, classifying them into metals and insulators. In the presence of a
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finite Fermi surface, energy bands near the Fermi level in metals have a quadratic dis-
persion. Electronic excitations in such bands are described in the continuum limit
by the Scrodinger equation, and its dispersion relation is Ej = 12k? [2meg, where
the effective mass meqg accounts for deviations from the mass of the electron [34].
The definition of m.g is associated with the concept of quasiparticle; in the presence
of interaction processes —disorder, scattering effects or Couloumb interactions— the
electronic excitations are “dressed particles” with effective mass m.¢ and finite life-
time. The concept of quasiparticle was introduced by the Russian physicist Landau,
who, in his work The Theory of a Fermi Liquid [35], explained how a system of strongly
interacting particles (with a well-defined Fermi surface) can still be described as
a free-motion system. Later, the theory was understood with the mathematical
formalism of renormalization group [2, 36].

Defining conceptual, simple models to understand the nature of more compli-
cated systems is the main goal of theoretical physics. Over the years, a plethora of
effective particles have been introduced in order to explain the collective behaviour
of different systems. Notable examples are phonons, which are used to describe
the quantized vibrational modes of the lattice. Quasiparticle excitations have also
provided excellent results in explaining more exotic phenomena. Various exam-
ples are composite fermions [37-39], Bogoliubov quasiparticles [40, 41] or magnetic
skyrmions [42, 43]. The concept of quasiparticle will appear again when studying
the effective dispersion relation around degeneracy points.

1.1.2 Degeneracy points and linear dispersion relations. Emer-
gence of low-energy Dirac electrons in condensed matter

Field theory models arise in condensed matter as low-energy effective descriptions
that are obtained by expanding the dispersion relation around the Fermi surface.
Although most metallic compounds are effectively described by the Schrodinger
equation, a relativistic dispersion relation may emerge under some conditions in
crystalline structures. In the early days of quantum mechanics [44, 4], it was noted
that in the vicinity of two-fold degeneracies or band touching points, the dispersion
relation is linear and coincides with the dispersion of a massless Weyl spinor. An
interesting question is then to ascertain what conditions are required to get band-
crossing points near the Fermi energy in a material.

Considering a pair of non-degenerate energy bands, the most general 2x2 Hamil-
tonian can be cast in the form!

H = fo(k) + 0* fi(k) + 0¥ fa(k) + 0 fa(k), (1.3)

1In writing Equation (1.3), we have exploited the fact that the three Pauli matrices and the identity
matrix form a basis for all two-by-two matrices.
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whose eigenvalues are given by

Eic = folk) £ [ F20) + 20 + £20K). (14)

In the absence of any symmetry, Equation (1.4) shows that the emergence of a
degeneracy point k. requires tuning the three parameters f;(k) to nullify the terms
inside the square root. In three dimensional solids, where the Hamiltonian depends
on the three components of the wave-vector, this condition is naturally satisfied,
allowing the presence of stable band-crossing points atisolated points in the Brillouin
zone. It is clear that additional conditions are required in two spacial dimensions to
guarantee band crossings.

By expanding the generic Hamiltonian described in Equation (1.3) in a power
series near the degeneracy point k = k. in the linear regime, the resulting expression
is:

H = hojjo'(k - k.Y, (1.5)

with v;; = 9, filk=x,. Equation (1.5) coincides with the Weyl equation defined in
Equation (1.2) after a shift k — k — k. and neglecting constant terms, with the re-
placement ¢ — v;;. As discussed at the opening of the section, electronic excitations
of two-fold degeneracies at the Fermi level are described by massless quasiparticles
where the sign of the determinant

i

- (1.6)
Ok =i,

X = sign det(v;;) = sign det

determines the chirality x of the gapless mode. These band-crossings are referred
as Weyl nodes [18] (see Figure 1.1). The symmetry conditions under which the
conduction and valence band coincide at the Fermi level were examined in the
early work by Abrikosov and Beneslavskii [5]. A non-degenerate electronic band
structure is found in materials where either inversion symmetry (#) or time-reversal
symmetry (7°) are broken? [20]. Hence, non-centrosymmetric or magnetic systems
are promising candidates to host unremovable Weyl nodes. The interest in materials
hosting these degeneracies has grown significantly during the last years due to the
improvement in the experimental synthesis of crystals. The theoretical excitement is
partly motivated by the fact that high energy physical properties of Weyl fermions,
such as the chiral anomaly [45, 46], remain present in this non-relativistic context.

2The energy levels of fermionic systems that present $ or 7~ symmetry have a band structure at least
doubly degenerate. Symmetry implications on the band spectrum will be studied in detail in section 1.3.3.
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Ficure 1.1: (Left): Schematic representation of the dispersion rela-
tion corresponding to two Weyl nodes of opposite chiral-
ity. (Right): Angle-resolved photoemission spectroscopy
(ARPES) experiments of the crystal NbP. Adapted from
Ref. [47].

1.2 Topological features of Weyl fermions

In order to have materials described by the Weyl equation, the band crossings must
occur near the Fermi energy, which is fixed by the chemical composition of the crystal.
Materials having these kind of degeneracies are known as Weyl semimetals (WSMs).
As we will see, their band-crossing points are topologically protected. Contrary to
two-dimensional crystals, degeneracy points are stable to small perturbations of the
parameters regardless of the symmetry, as all Pauli matrices have been exhausted.
Adding a mass term in the Hamiltonian proportional to one of the matrices only
shifts the position of the solution, i.e., moves the Weyl node in crystal momentum
space. In this section, we will show that the stability of the nodes is ultimately related
to the non-trivial topology of the band structure. The details of the calculation are
presented in appendix A.

1.2.1 Topology in condensed matter physics

Prior to the discovery of the quantum Hall effect, quantum phases of matter were
classified according to the Ginzburg-Landau theory [48]. Within this framework,
states of matter are characterized in terms of local order parameters, independently
of the microscopic details of the system. Specifically, the order parameters acquire a
finite value when the system undergoes a phase transition to a lower symmetry state.
This paradigm allowed to understand the underlying mechanism behind (almost)
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all physical transitions discovered during the last century, such as superconductiv-
ity [48], ferromagnetic order [49, 50] or Bose-Einstein condensation [51-53]. With
the emergence of novel phases of matter during the last decades, it became clear that
the symmetry-breaking paradigm is insufficient to capture some effects, as occurred
in quantum Hall systems [54]. A full description of these phases demanded a new
criteria whose foundations laid on the mathematical notion of topology [11, 12, 55].

Topological aspects of many-particle systems began to be explored by the con-
densed matter community with the advent of the quantum Hall effect and the
awareness of the role played by the Berry curvature [56, 54]. Afterwards, the predic-
tion and experimental realization of topological insulators [57, 11, 58] has given rise
to a prolific activity, both theoretically and experimentally, in this field. Equivalent
topological phases are characterized by the same topological index, whose character
depends on the general properties of the spectrum under their discrete symmetries
and dimensionality [10, 11, 59-61].

1.2.2 Topological aspects of band-crossing points. Berry phase of
crystal Hamiltonians

Although initially circumscribed to gapped systems, a manifest interest in the study
of the topological properties in gapless states has begun to arise during the last years.
The topological nature of a crystalline lattice is rooted in the Bloch wave-functions
|u,(k)), where n labels the band index. The Berry phase y,, [62] is computed from
the closed line integral of the Berry connection (see appendix A.1 for a detailed
derivation):

An(k) = =i(un ()| Vicun (k)), (1.7)

or the surface integral of the Berry curvature over the Brillouin zone:
Fn (k) = =iVie X (1 (K)[Victtn (k). (1.8)

The stability of Weyl points is linked to an integer topological index, which is the
reason why Weyl semimetals are considered topological materials. Their non-trivial
topological structure is linked to the Berry curvature associated with a band-crossing
point of definite chirality, which takes the form (see appendix A.2):

k
ﬁz,}((k) =nX5 3

et (1.9)

In the vicinity of a Weyl node, the Berry curvature has the form of a magnetic
monopole (see Figure 1.2). The sign of the charge is determined by the chirality
x of the point. Weyl nodes are sources and sinks of Berry curvature [63, 64],
which prevents them to be eliminated: Weyl points move around in reciprocal
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Fermi Arc D

Surface BZ

Ficure 1.2: Schematic illustration of two single Weyl nodes with op-
posite chirality. Weyl nodes act as sources and sinks of
Berry curvature. At the surface, the projections of the
two Weyl nodes are connected by a Fermi arc.

space upon changing the parameters of the Hamiltonian, and eventually oppositely
charged monopoles may annihilate when placed on top of each other. As shown
by Nielsen and Ninomiya, the total monopole charge in the Brillouin zone has to
be zero [65], which implies that the band-crossing points always come in pairs of
opposite chirality.

1.3 Physical consequences of topology

Systems with gapless degrees of freedom have robust topological properties with
defining topological invariants. Bulk degeneracies act as sources and sinks of Berry
curvature, with a quantized Berry flux. In this section, we will explore the conse-
quences of having solid-state systems with a non-trivial electronic band structure

topology.

1.3.1 Topological surface states: Fermi arcs

In band insulators, non-trivial topology induces conducting states exponentially
localized at the surface [66, 57]. Distinctive bound-states are also originated at the
surfaces of gapless bulk materials as a consequence of their non-zero Berry curvature.
Surprisingly, these states do not form a conventional closed Fermi surface, but form
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Ficure 1.3: High-resolution ARPES Fermi surface maps in
TaP (left) and TaAs (right) crystals, showing the pres-
ence of Fermi arc surface states. Adapted from Refs. [68,
69].

open “arcs” at the Fermi level (see Figure 1.2), which end at the projection of the
degeneracy points onto the surface Brillouin zone [18, 19, 23, 67].

The existence of Fermi arcs carrying a non-trivial Chern number is used as
an experimental signature of Weyl nodes in the bulk. Direct measurements of
these surface states are made through angle-resolved photoemission spectroscopy
(ARPES) studies (see Figure 1.3). Additionally, Fermi arcs are predicted to exhibit
unusual quantum oscillations in magnetotransport measurements and quantum
interference effects in scanning tunneling microscopy (STM) experiments, providing
a variety of experimental probes of the surface states [70-72].

1.3.2 Chiral anomaly in Weyl semimetals

As mentioned at the beginning of section 1.1, the Dirac equation is split into two
independent equations for the chiral components ¢, in the massless case. Since the
two components do not mix, it follows that the charges associated to each chirality
are separately conserved, and using Noether’s theorem [73, 27] one can express
individually classical conservation laws for the currents of left (-) and right (+)
moving Weyl fermions. In particular, the axial vector current

B =TT =gty tysy, (1.10)
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that corresponds to the difference between fermions with opposite chiralities, satis-
fies the continuity equation
d
Ixk

Equation (1.11) arises as a result of the axial gauge symmetry,

J& =o0. (1.11)

Uy — Py = ey, (1.12)
Yo - =e 0y, (1.13)

The axial conservation law is no longer valid when quantizing the theory in the
presence of external electric E and magnetic B fields. The gauge symmetry breaks at
the quantum level, and the expectation value of the chiral currents becomes [74, 22]:

x e

]y = i -B), (1.14)
where x is the chirality of the Weyl fermion. A classical symmetry that does not
persist when the dynamics is quantized is referred as anomalous. Quantization
processes normally involve divergent terms that are caused when the classical cur-
rents are substituted by local operators, leading to quantum anomalies when the
regularization mechanism does not respect the classical symmetry [75]. The non-
conservation of the chiral charge, referred as chiral anomaly, was essential to explain
the decay process of the neutral pion into two photons [46, 45]. From the point of
view of condensed matter field, Weyl systems show the chiral anomaly, which is
associated with an enhancement of the magneto-conductivity in transport experi-
ments [76-80].

A physical intuition of this effect can be given by considering a simple Weyl
semimetal with two nodes of opposite chiralities. In the presence of an external,
uniform magnetic field, the conical dispersion relation is split into a set of Landau
levels. Each level is a one-dimensional dispersing mode along the direction parallel
to the orientation of the magnetic field. What is particular of the Dirac systems is the
presence of a zeroth level, which has a chiral dispersion relation independent of the
magnitude of the magnetic field; Eo,, = —xsign(B)vghk, where k is the momentum
along the direction of the magnetic field (a detailed derivation of the relativistic
Landau level spectrum will be reviewed in chapter 2). In the case considered,
there are two counter-propagating chiral modes with opposite velocities (the band
structure is sketched in Figure 1.4). If an electric field E is switched on along the
same direction as the magnetic field, this field will accelerate the electronic charge
hk = —eE according to kinetic theory [81, 82]. In this way, the electric field is
generating an inter-valley charge pumping at a rate described by Equation (1.14),
giving rise to an electronic imbalance ys = uy — p_ between nodes of opposite
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Ficure 1.4: Representation of the energy spectrum of the left- and
right-handed Weyl quasiparticles in the presence of a
magnetic field. Filled (empty) states are represented
by black (grey) dots. If an external electric field is ap-
plied parallel to the magnetic field, the electrons are dis-
placed from their equilibrium positions in momentum
space, pumping charge from one Weyl point to the other.
Adapted from Ref. [21].

chirality. The total charge is conserved, while the difference between chiral charges
is given by the following expression:

At = ié(ﬁ -B) (1.15)
B5 T um2 g2 ‘ ’

Signatures of the chiral anomaly are detected in transport experiments. This
mechanism leads to a notable enhancement of the longitudinal conductivity as a
function of the magnetic field, experimentally confirmed in Dirac and Weyl semimet-
als [78-80, 83, 84]. The chemical potential imbalance at two nodes of opposite chi-
rality also gives rise to a dissipationless current along the direction of the magnetic
field, the chiral magnetic effect [85-87], which was predicted in the quark-gluon plasma
and observed in magneto-transport experiments in ZrTes [88].

Recent experiments have shown evidences of other quantum anomalies as mixed
axial-gravitational anomalies and scale anomaly [89-93]. These effects involve ther-
moelectric measurements in magnetic fields, which will be studied in detail in chap-
ters 2 and 3.
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1.3.3 Discrete symmetries and topological phases. Dirac semimet-
als

Crystal structures often have inversion and time-reversal symmetries. Discrete lattice
symmetries have profound consequences on the band structure and topological
properties of the material. In the case of lattices with an inversion center, the band
structure satisfies the relation E, ;(k) = E, -(—k), where ¢ denotes the spin of the
energy band. On the other hand, non-magnetic materials (materials that possess
time-reversal symmetry), the condition E, 1(k) = E, |(~k) holds. When both of
them are present, the combination 7 is also a symmetry that leaves unchanged
the momentum. Since 7 is an antiunitary operation, the energy bands of P7 -
symmetric materials have a Kramers degeneracy at every point in the reciprocal
space [94]. This is not compatible with the condition for finding Weyl nodes at
isolated points of the momentum space, which require non-degenerate bands in
order to occur. The reason for such avoided crossing can be found on the topological
character of the system: the Berry curvature satisfies the relation

Fu(k) = =Fu(-k) (1.16)
if the system has time-reversal symmetry, and
Fu(k) = Fu(-k) (1.17)

if it has spatial inversion symmetry [95]. Equations (1.16) and (1.17) imply that, if
both symmetries are present, the Berry curvature vanishes identically at each point
of the Brillouin zone: either time-reversal symmetry or inversion symmetry should
be broken in order to get non-trivial topological bands.

Nevertheless, linear crossings are still possible in 7 -symmetric materials. Due
to the presence of extra symmetry constraints, the degeneracy point becomes a
four-fold degeneracy of the bands. Considering a crystal lattice whose Hamiltonian
satisfies both time-reversal and inversion symmetries, a band crossing can only
occur if two Weyl nodes with opposite chiralities are stabilized at the same crystal
momentum, scenario described by the massless Dirac Hamiltonian®:

_ ﬁ‘UFijj 0

H 0 —ﬁUFijj !

(1.18)

3The most general 7 -invariant four-band Hamiltonian is given in terms of five 4 x 4 traceless gamma
matrices p1,..., 75 that satisfy the anticommutation relation {)7i, )7j } =260; H = Z? ?i gi(k). In 3+1-
dimensional materials, this Hamiltonian is not robust against perturbations, and additional symmetries
are required in order to get a four-fold degeneracy, as the number of parameters is not enough to make
the functions g;(k) vanish [96].
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which contains four linearly dispersing energy bands not topologically protected. A
pair of Weyl nodes carrying opposite charges may annihilate each other when they
are brought together, opening a gap in the electronic band structure. This gap can be
avoided if the band crossing is protected by space-group symmetries of the lattice,
in which case the Dirac node remains unaltered as a symmetry-protected degener-
acy. The electronic excitations in the vicinity of this four-fold point are described by
Equation (1.18), which yields a solid-state realization of the 3+1-dimensional mass-
less Dirac equation. Materials supporting these kind of degeneracies at the Fermi
level are called Dirac semimetals.

Dirac semimetals are expected to emerge at the phase transition between an or-
dinary and topological insulator when both time-reversal and inversion symmetries
are present. The transition takes place when the Dirac fermion mass is equal to zero,
constraint that is achieved either by fine tuning or with additional symmetries to
force the gapless states at time reversal invariant momenta [97-100]. Along with this
proposal, other possibilities has been uncovered. Specifically, Dirac nodes can be re-
alized in materials with rotational symmetry, where two pairs of Weyl nodes merge
at two k points lying along the rotation axis. Thus, each of the two points related
by time-reversal symmetry hold two Weyl nodes of opposite chirality, defining two
stable Dirac points. This type of Dirac semimetals have been realized experimentally
in NazBi and CdyAs3 compounds [13, 14, 101-104].

From Dirac to Weyl semimetals

After viewing Dirac semimetals as the stable merger of two Weyl points with opposite
chirality, we can assert that two Weyl fermions with opposite charge emerge from
breaking either time-reversal or inversion invariance in a four-fold degeneracy point.
Using a covariant formalism, this is achieved by introducing the chiral vector y°b,
to the massless Dirac Lagrangian in the form [17, 64, 105, 106]:

L =hegp(x) (iy"du + y*y°by) P(x), (1.19)

where ¢ = ¢')? and 9° is matrix defining the chirality operator described earlier
(see Figure 1.5). Here b, couples to the chiral current as ]g b, as a gauge field. The
time-component y°by is odd under parity, while the spatial-components y°b; break
time-reversal symmetry. The low-energy Hamiltonian for a node of chirality y is:

H, = xveho!(kj + xb;) + xvehbol. (1.20)

As aresult, in materials where time-reversal symmetry has been broken (for instance,
by doping the material with magnetic impurities), the axial gauge xb; shifts the
location of the energy cones with different chirality to different momenta, leading to
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Ficure 1.5: Pictorial representation of the different topological
states. A four-fold degeneracy point (a) gives rise to
a Weyl semimetallic phase by breaking either inver-
sion (b) or time-reversal (c) symmetry.

a Weyl semimetal where the nodes are separated a distance Ay = 2b in momentum
space along the direction of b; whereas in non-centrosymmetric semimetals the
Xbo term separates the Weyl cones a distance Ag = 2vpfibg in energy space. The
continuum model defined in Equation (1.20) will be broadly used throughout this
thesis to characterize the behaviour of electronic excitations near the Weyl points.

Finally, we can see that the discrete symmetries of the microscopic model deter-
mine the minimum number of Weyl nodes present in any Weyl semimetals. Inver-
sion symmetry requires that a Weyl node placed at momentum k must have a chiral
partner with opposite topological charge at the point —k at the same energy [17,
18]. When time reversal symmetry is broken, this realizes the simplest scenario that
allows for the minimum number of Weyl nodes. Conversely, when time-reversal
symmetry is present, the time-reversal operation changes both the momentum and
spin. The helicity (and thereby, the chirality) of the two time-reversed partners
is the same and carry the same topological charge. This requires the presence of
two additional Weyl partners in order to compensate their non-vanishing topology
charge within the Brillouin zone [107]. Therefore, the total number of Weyl nodes is
a multiple of four. Inversion-symmetry breaking materials are more experimentally
accessible, as magnetic materials are less abundant. Time-preserving Weyl semimet-
als are expected to appear at the transition point from topological to trivial insulator,
the four-fold degeneracy being lifted if inversion symmetry is lost.

1.4 Condensed matter realizations of Weyl semimetals

So far in this chapter we have discussed the different topological properties of band-
crossing points and the necessary conditions to find such degeneracies in the bulk
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FiGure 1.6: (4,b): Fermi surface map of YbMnBi;. Degenerate Dirac
points are split due to the lack of time-reversal symme-
try. (c): Energy spectrum showing the presence of Fermi
arcs. Adapted from Ref. [114].

spectrum of three-dimensional materials. Yet in order to observe Dirac physics in
actual materials, the band touching points must be located at or very close to the
Fermi energy, without any other state intervening at such level, which may screen
the exotic effects stemming from the degeneracy points [21].

The first Weyl semimetals were described theoretically and postulated to occur in
the pyrochlore iridates A,Ir,O7 (where A is yttrium or a lanthanide) [17, 18]. Never-
theless, Weyl semimetals were first realized in the transition-metal monophophides
TaAs, TaP, NbAs and NbP, with the subsequent observation of Fermi arcs with
ARPES experiments [15, 16, 108-111, 69, 112, 113]. The complex structure of these
materials give rise to a minimum of twelve pairs of Weyl nodes located at points
with no particular symmetry in the Brillouin zone.

The pursuit of a time-reversal breaking Weyl materials with the minimum num-
ber of cones neatly separated in momentum space is a major research topic these
days. Different works have reported the observation of such topological phase in
non-collinear antiferromagnet Mn3B (where B is Sn, Ir, Ge), a correlated metal that
exhibits a large anomalous Hall and Nernst effect at room temperatures [115-119];
magnetic Heusler compounds [120-128]; and metallic YbMnBi, crystals, which de-
velop a non-trivial magnetic response below 50K, giving rise to two pairs of Weyl
nodes near the Fermi surface [114]. The Weyl points and Fermi arcs measured with
ARPES technique are represented in Figure 1.6. The electronic structure shows that
the Weyl points emerge at the boundary between electron and hole pockets, contrary
to the standard point-like Fermi surface. This new type of Weyl semimetal is known
as Type-1I Weyl semimetals [129], which will be discussed in the next section.
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Ficure 1.7: Schematic representation of Type-I (1) and Type-II (b)
Weyl semimetals.

1.4.1 Electronic excitations in Weyl fermions. Beyond high-energy
physics

The effective description of a model may not respect fundamental symmetries of na-
ture that, in principle, must be preserved by any physical law. This freedom to formu-
late new “unrestricted” theories is justified as long as the model provides a faithful
description of the system [130]. In particular, microscopic models in condensed
matter are not restricted by the Lorentz symmetry, and provide a potential field for
the discovery of exotic behaviours that do not have elementary analogues [131, 132].

One Lorentz invariance is not a requirement, we can generalize the expansion in
Equation (1.5) with the term:

H = hvjjo' (k - k) + hw;I(k - k.)/, (1.21)

where the vector w; = d; folk=x., known as tilt velocity, breaks time-reversal and ro-
tational invariance, and introduces an overall tilt in the cone-like dispersion relation.
Weyl cones typically exhibit a tilted dispersion characterized by Equation (1.21). A
sufficiently large w can induce an overlap in energy of the conduction and valence
bands that cross at the Weyl point, giving rise to electron and holes pockets. When
|w| > |vg|, the Weyl cone is tipped over, leading to open Fermi surfaces and a metallic
density of states. This novel phase is referred as Type-II Weyl semimetals [129], in
contrast to Type-I Weyl semimetals with point-like Fermi surfaces (see Figure 1.7).
Examples of a Type-II Weyl semimetals are WTe; and MoTe; crystals [133, 134].
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1.4.2 Thermoelectric responses and topological materials

Thermoelectric materials have been an important field of activity during the last cen-
tury, mostly due to their technological interest in heat-to-electricity conversion [135-
137]. One important obstacle is their low efficiency, and current efforts are focused
on get over these limitations. The strength of the thermoelectric effect is character-
ized by the Seebeck effect, a phenomenon where an applied thermal bias generates
a parallel voltage between the hot and cold sides of the sample. The Seebeck coef-
ficient S is defined as the ratio between the voltage difference and the temperature
bias, while the absolute value of S is the thermopower [138]. The effectiveness of a
thermoelectric material is quantified by its thermoelectric figure of merit [139] :

ZT = 6S%T/x (1.22)

where ¢ is the electrical conductivity, T is the temperature of the system and « is
the thermal conductivity. The condensation of electrons and holes on the cold side
in a conductive solid is the primary issue to achieve a large thermopower, as their
opposite charges counterbalance each other reducing the net contribution to the
induced voltage. For that reason, the most efficient thermoelectric materials up to
date are doped semiconductors [135].

In the presence of an external magnetic field orthogonal to the temperature
gradient, electronic carriers flowing from the hot to the cold side are deflected due
to the Lorentz force, generating a transverse electric field perpendicular to both
the magnetic field and thermal bias. This thermoelectric phenomenon known as
Nernst effect was first discovered by Ettingshausen and Nernst when exploring the
properties of the compensated semimetal Bismuth. Unlike the zero field case, the
magnetic field bends the trajectories of electrons and holes in opposite directions,
inducing a net contribution from both type of carriers (see Figure 1.8). Compensated
semimetals, characterized by a small Fermi surface and large mean-free path, exhibit
a large Nernst signal, as demonstrated in Bismuth and graphite [140, 141].

Historically, Seebeck-based thermoelectric devices have attracted more attention
than their Nernst-based partners, motivated principally by the necessity to include
an external magnetic field in order to get the emergent potential. Additionally,
localization effects are enhanced by the magnetic field, making these materials less
attractive. Recent interest in the thermoelectric properties of materials with a non-
trivial topology has arisen based on their unconventional band structure, which can
circumvent the inherent limitations of conventional materials [142-144]. In addition,
the thermoelectric response coefficients shed light on the electronic structure of the
materials, providing a new mechanism to study the nature of Dirac quasiparticles
and a unique signature for the presence of Dirac bands [123, 144]. Topological
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Ficure 1.8: Illustration of Seebeck (left) and Nernst (right) effects.
The mutual cancellation between oppositely charged
particles may be circumvented in the presence of a per-
pendicular magnetic field, which deflects electrons and
holes in opposite directions.

Weyl and Dirac semimetals display large anomalous Nernst thermopower values*
which are ascribable to the non-vanishing Berry curvature associated with the Weyl
points near the Fermi energy [148, 149]. The reported numbers are beyond any
experimental value obtained in conventional ferromagnets [123, 124, 150-152].

Based on this, topological semimetals are promising candidates to obtain high-
performance thermoelectric materials. The chiral zeroth Landau level with an
energy-independent density of sates provides a mechanism to create huge elec-
tronic entropy, while the topological protection of the nodes avoids localization
effects. The theoretical prediction that Weyl and Dirac semimetals would exhibit
a large, non-saturating thermopower in quantizing magnetic fields [153, 154] was
confirmed experimentally in Refs. [155, 156]. In chapters 2 and 3 we will explore
the consequences of quantum anomalies on the thermoelectric properties and phe-
nomenological relations of Dirac and Weyl semimetals.

1.4.3 Strain-induced pseudo-electromagnetic fields

The study of the influence of lattice deformations on the electronic properties of
crystals is a central topic in condensed matter physics. A distinguished example is
that of superconductivity, where the lattice vibrations of the system couple with the
electrons to mediate in their attractive interaction [157]. In the case of Weyl systems,
a special kind of electron-phonon coupling arises in the form of a pseudo-gauge field

“Temperature gradients applied to time-reversal breaking materials, a voltage bias perpendicular to
the heat flow and the magnetization vector is generated in the sample at zero applied magnetic field. This
is the anomalous Nernst effect [145, 146], in analogy with the anomalous Hall effect. It has been proven
that the anomalous Nernst and Hall effects are intimately related to the net Berry curvature in topological
matter [95, 147].
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which, in combination with the chiral anomaly, gives rise to unexpected physical
responses [158-162].

Emergent elastic pseudo-magnetic fields were first observed on graphene [158,
159, 163], where the mechanical strain acts as a vector potential that couples with
opposite sign to the two valleys K and K’. Strain-induced electromagnetic fields
sensitive to the chirality of the node were also extracted in the low-energy regime
of Weyl quasiparticles in [161]. In this way, Dirac matter establishes, once more,
an unexpected connection between two unrelated fields: elastic deformations of the
lattice’s parameters and axial gauge theories, giving rise to a unified description of
different physical phenomena.

The origin of gauge fields can be traced back to the separation, either in momen-
tum or energy, of the Weyl nodes. Considering a simple model of two Weyl nodes of
opposite chirality and separated a distance 2b in momentum and 2vrhby in energy,
their low-energy Hamiltonian is given by Equation (1.20), Hy = xopho!(kj + xb;) +
Xvrhbg. The vector b enters in the Hamiltonian in the same way as an axial vector
potential A,. The effect of strain is to induce local variations in the vector b, which
allows to define an emergent, elastic-magnetic field:

Bs= -V xb. (1.23)

The component by, which separates the cones in opposite directions in energy, acts as
a scalar potential in the Hamiltonian, leading to the definition of the pseudo-electric
field:

Es = g (—Z)FVbo - atb) . (1.24)

The four-vector b, is an intrinsic parameter of the topological semimetal that enters
in some response functions as the anomalous Hall effect [147]

In a tight binding approximation, elastic deformations modify the atomic posi-
tion on the lattice, varying the overlap integral (the distance and the relative orien-
tation) between atomic orbitals that, due to their topological stability, only induces a
displacement of the location of the Weyl nodes [161, 162, 164] that results in the emer-
gence of pseudo-electromagnetic fields [161]. As an example, the effect of applying
torsion to a crystal wire has been explored in Ref. [165]. This geometry leads to the
formation of a uniform pseudo-magnetic field Bs in the bulk, which breaks the en-
ergy spectrum of the Weyl semimetal into Landau levels. The same effect is expected
when bending thin films (or nanowires) of Weyl semimetal, resulting in quantum
oscillations driven by elastic deformations [166]. The recognition of strain-driven
gauge fields described in Ref. [161] was followed by a number of works discussing
their physical consequences [167-172]. What these results highlight is the intrinsic
interplay between real and strain-induced magnetic fields, as both B (real) and Bs
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(elastic) ignite the same physical phenomena; the quantization of the band structure
into Landau levels. The case of axial gauge-fields has important consequences on
the chiral anomaly and chiral magnetic effect.

In the presence of an external electromagnetic field and axial pseudo-electromagnetic
field generated from strain, the chiral anomaly reads [22, 173]:

1
]t = ﬁ(E.B+E5-B5). (1.25)

The consequences of having emergent electromagnetic fields in transport experi-
ments are associated to the enhancement in the longitudinal conductivity as a func-
tion of the pseudo-magnetic field, as observed in the original chiral anomaly [165].

Related to the chiral magnetic effect, the lowest Landau levels of opposite chiral-
ities are co-propagating modes in the presence of axial-magnetic fields. This results
in a finite, strain-induced chiral magnetic effect proportional to B5 [173-175]. Alter-
natively, spatial variations of by are suggested to create a chiral chemical potential
imbalance between the two nodes and ignite the anomaly in the presence of real
magnetic fields [162].

Strain also affects other parameters of the Hamiltonian, such as the Fermi or tilt
velocities. The implications of these kind of effects will be analyzed in chapters 4
and 5.
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Chapter

Thermoelectric transport in Dirac
and Weyl semimetals

2.1 Introduction

Studying the response of a system to an external (maybe time-dependent) pertur-
bation is a classical tool widely used to characterize condensed matter systems. For
perturbations that are small in comparison to some characteristic length of the sys-
tem, the response can be expanded in a power series of the perturbation, and the
linear order is proportional to the field itself. Linear response theory is devoted to
compute and understand the physical properties of the proportionality coefficient
between the perturbation and the physical response [49, 176, 177]. One example is
the electronic response of a metal to an applied electric field, where, in the linear
regime, the emergent current is proportional to the external field.

In addition, when a temperature difference is induced in a metal (or any material
with free charged particles), the flow of charged carriers from the hot to the cold side
gives rise to an electric current. Linear response in thermoelectric transport theory
allows to write electric and thermal currents generated by potential and thermal
gradients as [138, 32]:

i s Ly,
J'=LLE;+LLV,T
Jo = LigEx + L{ VT (2.1)

The proportionality coefficient LgT, connecting the gradient of temperature with the
electric current, is the thermoelectric coefficient. For further details about kinetic
theory, we refer the Refs. [34, 138, 178].
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A very active area of research in the context of the novel 3D topological semimet-
als is centered on the emergence of anomaly induced transport phenomena [86,
179, 76]. A quantum anomaly arises when a continuum symmetry of the classical
action [73, 27] cannot survive the quantization process and the corresponding con-
servation law is not longer valid. The physical consequences of having quantum
anomalies were first explored in the construction of quantum field theory to de-
scribe elementary particles [74] and played an important role in grand unification
and string theory. Nowadays, the interest on anomalies and anomaly-related trans-
port has shifted to emergent condensed matter systems which support low-energy
descriptions akin to their quantum field theory partners [86, 179]. After an intense
and successful analysis of the consequences of the chiral anomaly on magnetoelec-
tric transport [76, 78, 79], the interest has shifted to gravitational effects, especially
those of the mixed axial-gravitational anomaly [89, 90]. These phenomena involve
thermoelectric measurements in magnetic fields.

Thermoelectric transport has been a research topic of major activity and excite-
ment both in physics and technology, as well as a tool to study and characterize the
electronic properties of the materials. As mentioned in chapter 1, from the early
research it was known that semiconductors and semimetals are the best candidates
to generate large figures of merit in thermopower, with bismuth, an almost com-
pensated semimetal, holding the record for metallic compounds [180]. Dirac and
Weyl semimetals belong naturally to the family of good thermoelectric materials and
their thermoelectric properties are now at the center of interest in experimental and
theoretical research [123, 142, 143, 148, 181, 182]. Giant values of the anomalous
Nernst effect associated with the non-trivial Berry phase of the materials are been
systematically reported in the newly discovered magnetic Weyl semimetals [150,
151, 124]. Additionally, large thermopower values have been experimentally mea-
sured in these materials which are not restricted by the limitations held by ordinary
metals [155, 156], opening potential new horizons in the field.

In a recent publication [93], it has been shown the emergence of a new anoma-
lous electric current originated by a less-known quantum anomaly, the conformal
anomaly, related to metric deformations [91]. It gives rise to a special contribution to
the Nernst signal which remains finite at zero temperature and chemical potential.

The way in which gravity appears in condensed matter physics can be traced back
to the problem of defining thermodynamic equilibrium in curved backgrounds [183],
and is surprisingly connected to the thermoelectric phenomena. As will be argued
below, the relation between these two seemingly unrelated fields was made possible
by the Luttinger theory of thermal linear transport [184].

In this chapter, we will analyze with a Kubo calculation the thermoelectric coeffi-
cient of the massless Dirac systems in a magnetic field at zero chemical potential and
zero temperature. The regime of zero temperature and chemical potential, where
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the unusual prediction in Ref. [93] lies, prevents the use of a Boltzmann approach
and the comparison with existing results. The chapter is organized as follows. First,
we present an introductory overview of thermoelectric transport and linear response
theory, highlighting the role of temperature gradients and magnetization currents.
Next, we describe the effective continuum model for the Dirac and Weyl semimetals
and discuss the specific expressions for the current and energy-momentum tensor.
The chapter ends with the computation of the thermoelectric tensor and a summary
of the main results. The analysis is extended to include finite temperature and
chemical potential effects’.

2.2 Linear response theory. Thermoelectric tensor

In linear response theory [176], when the action of a system is perturbed by a local
source F(t) which couples to an observable as Hpert(t) = F(t)B, the change in the
expectation value of any operator A is assumed to be linear in the perturbing source:
O(A(t)) = fdt’ X(t, t")E(t'). Mathematically, the response function y is expressed as
the correlation function between the response and the external perturbation [49]:

[ee]

€0 = =1 [are - ) {[AW), (), 2

—00

where A is the observable operator arising from the external perturbation Hpert, and
the brackets (- - - )¢ indicate the equilibrium expectation value with respect the un-
perturbed Hamiltonian Hy. The main hypothesis supporting the above expression
is the adiabatic evolution of the system: the initial states are distributed according
to the usual Boltzmann distribution, which implies that the n-th eigenstate [1,,) of
the unperturbed Hamiltonian is occupied with a probability P, = exp [-BE.]/Z,
where Z = Y, e PEr is the canonical partition function. After the external pertur-
bation is switched on, the system starts to evolve according to the total Hamiltonian
Hiot(t) = Ho + Hpert. A key assumption is that the occupation probabilities P, re-
main constant (the states are described by the same occupation probabilities), and
the transitions between orthogonal states are forbidden. The time-evolution of the
system is governed by the Schrodinger equation:

in 2 1(0) = ol (1), @3

1This chapter is based on “Vicente Arjona, Maxim N. Chernodub and Maria A.H. Vozmediano,
Fingerprints of the conformal anomaly in the thermoelectric transport in Dirac and Weyl semimetals, Physical
Review B 99, 235123 (2019)”.
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with P, being an indenpendent function of time.

Correlation functions are extensively used for tackling problems where the per-
turbation can be described as a local perturbation in the Hamiltonian (mechanical
formulation). The standard example is the computation of the electrical conduc-
tivity, where the electromagnetic potential couples directly as a source term to the
electronic current in the Hamiltonian. In this case, the conductivity tensor is propor-
tional to the current-current correlation function. The problem of using a statistical
variable (such as the temperature) as a (local) source coupled to an energy current
was solved by Luttinger [184]. Based on previous analyses by Tolman and Ehren-
fest trying to define thermal equilibrium in a curved space [183], the underlying
idea behind this formulation is that the thermal gradient moving the system out of
equilibrium is compensated by a (perhaps fictitious) gravitational potential. This is
reminiscent of Einstein’s relationship between the diffusion (statistical) and the con-
ductivity (mechanical) coefficients. In this case, the gravitational potential, coupled
to the energy density, is the local source of the energy currents.

In the following section, we will illustrate how the gravitational potential is
related to thermal gradients when the system is at thermodynamic equilibrium.

2.21 Luttinger’s relationship for thermal gradients

Following the Refs. [184, 185], we review the key steps to obtain the relationship
between the gravitational potential and the temperature gradient. Consider the
response function to an external electrostatic and gravitational potentials ¢ and 1,
respectively. These external fields couple to the particle and energy densities in the
form:

H= [dr [ho(r) + ¢(r)n(r) + t,b(r)hg(r)] , (2.4)

where h( describes the unperturbed system. Considering that the scale of the varia-
tion is large in comparison with the length of the system, one can split the system into
small, independent sub-blocks that are close to local thermodynamic equilibrium.
Each of those subsystems can be described by local conserved densities (energy and
particle densities) and thermodynamic parameters (local temperature T'(r), chemical
potential u(r) and entropy density s(r)), which are functions of the conserved quan-
tities. The extensive thermodynamic values are the result of integrating the local
densities over the sample. The total energy, entropy and particle number are [185]:

E= /dr [e(r) + ¢()n(r) + 1p(r)e(r)] , (2.5)
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S = /dr s[e(r), n(r)], (2.6)
N = [dr n(r). (2.7)

Thermodynamic equilibrium is reached when the entropy (or the sum of the en-
tropies of each sub-block) is maximized [186]. This condition is written mathemati-
cally as [94]:

5{S - B(E - EN)} =0, (2.8)

where & = ¢ + u is the electrochemical potential and g = T~! is the temperature
of the system (both being space independent functions of the unperturbed system).
The functional variation given in Equation (2.8) defines the density matrix p for
the equilibrium state. Varying Equation (2.8) with respect the energy and particle
density, one gets the relations:

T7(r) = B{1 + Y ()}, (2.9)
p@/T(r) = p{& = ()}, (2.10)

where the partial derivatives have been replaced by the (local) definitions of the
intensive parameters:

ds ds
-1_ 95 __T 9
T =5 ¥ Tane' (2.11)
The thermodynamic equilibrium conditions are defined by
1\ Vv
\Y (T) - =0, (2.12)
vy Vo _
V(T)+ - =0, 2.13)

which provide a relationship between the linear response coefficients of statistical
and mechanical variables; since electric currents are not allowed to flow in a system
at thermal equilibrium, external fields must be introduced as suggested by Equa-
tions (2.12) and (2.13). Equation (2.12) states that a gradient of temperature moving
the system out of equilibrium is compensated by a gravitational potential (see Fig-
ure 2.1). The expressions given in Equations (2.12) and (2.13) were derived in the
“slow case” regime [184], where the external fields are slowly applied so the system
is able to achieve an equilibrium state.

The correlation functions of the statistical variables are determined in the “rapid
case", where the system remains homogeneous since it is unable to adjust to the
rapid oscillatory behaviour of the external fields. Despite the system cannot reach
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Ficure 2.1: A gradient of temperature is compensated by a gravita-
tional potential when the system is at thermal equilib-
rium.

a equilibrium state, the variations of the external perturbations are slow enough
to consider the charge and energy densities as conserved quantities. Accordingly,
the chemical potential and the temperature are space independent variables, the
external potentials ¢ and ¢ being the only perturbative fields. The emergent charge
and energy currents are computed with the general Kubo formula:

]' NI N/9jp+ N” Lo (2.14)
” 1di¢ + N” Loy (2.15)

where the transport coefficients N :x]ﬁ are the standard correlation functions described
in Equation (2.2).

Proceeding with the general case, we consider arbitrary fields and local variables.
As mentioned above, the perturbative fields should enter in the combination defined
by Equations (2.12) and (2.13). The transport equations for statistical variables read:

J'=Ny 91(?”(%’(%) + Ny [9f¢+a]%] (2.16)
; ot
i =Ny 9,0+ ) (&) | + ) [aj¢+’T] (217)

Once the linear response coefficients for the statistical variables are formulated, the
auxiliary mechanical fields can be set to zero.
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2.2.2 Correlation function for thermal perturbations

If one considers a weak gravitational field, the gravitational potential is written in
terms of the metric tensor:
goo =1+21 (2.18)

The latter naturally couples to the energy-momentum tensor T#", which is defined
as the response to variations of the metric. The corresponding perturbative Hamil-
tonian is:

Hpert(t) = T*(t)goo(t) (2.19)

The electric current generated as a response to this perturbation is given by the
expression:

(JY(xt)= / dr'dt {%i@(t —t") (J'(x, 1).T(Y, t’))} goo(r', ') (2.20)

The function given in Equation (2.20) is still not yet equivalent to the current
generated by thermal perturbations (proportional to Vi). To get the spatial derivative
of the metric tensor, we use the conservation law of the energy-momentum tensor
to express the energy component as a function of the momentum densities:

t

T, t) = - / dt'opd; T%(x, ') (2.21)
where we have introduced the Fermi velocity to adapt the calculation to the case
of Dirac materials. The adiabatic hypothesis allows us to assume that the system

is unperturbed at t = —oo. Introducing Equation (2.21) in Equation (2.20) and
integrating by parts, the expectation value of the vector current is:

oo t
(') (e, t) = /dr’dt’ / dt"{%vr“@(t—t') (Ji(x, £). T (¥, t”))}a]-goo(r', ) (2.22)

The last expression represents the emergent current induced as a response to a
thermal gradient computed via the Kubo formula. Using the translational invariance
of the system, the electric current reads:

(J') (q, @) = x7(q, @)(iq})go0(q, @) (2.23)
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.

p

FiGure 2.2: The setup of the thermoelectric effect. A transverse cur-
rent J*(r) is generated perpendicular to both the mag-
netic field B* and the gradient of temperature.

where x/ is the usual Fourier transform to momentum space of the response func-
tion:

o0 t
(g @) = 2m)° / d e~ / dt"{%@(t—t')<[1"(q,t),TOf(—q,t")D} (2.24)

2.3 Thermoelectricresponse function of Dirac and Weyl
semimetals

As mentioned in chapter 1, the low-energy excitations around a non-trivial band
crossing of a Dirac semimetal are described by the massless Dirac equation in three
space dimensions. Using the Weyl basis, the Hamiltonian splits into two Weyl nodes
of definite chirality. In Dirac semimetals, the two chiralities are superimposed in
momentum space and a mass term can arise mixing the two chiralities unless the
band-crossing point is protected by crystal symmetries. In Weyl semimetals, the two
chiralities are separated either in momentum or energy, which breaks either 7 or
P, respectively, and the Berry curvature makes the Weyl points very robust against
perturbations.

The conformal invariance of the classical system implies that no dimension-full
parameter can enter into the description of the system. Our model will generically be
that of a massless Dirac semimetal, as used in Ref. [93]. We perform the calculations
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for each Weyl fermion and ensure that no cancellation occurs due to the contribution
of opposite chiralities. Once this is confirmed, the result will equally apply to
Weyl semimetals which, eventually, can receive additional contributions from the
separation of the Weyl points.

To analyze the anomaly-induced Nernst current, we consider a Dirac semimetal
in an external magnetic field perpendicular to a gradient of temperature. A trans-
verse current will be generated orthogonal to both the applied magnetic field and
temperature gradient. Without loss of generality, we take the z-axis along the mag-
netic field, and the direction of the thermal perturbation as the y-axis, as illustrated
in Figure 2.2.

2.3.1 Effective low-theory for Dirac and Weyl particles in a mag-
netic field

The low-energy model that characterizes the quasiparticle excitations around one
Weyl cone in a magnetic field is:

H, = svpai(pi +eAj) (2.25)

where s = +1 describes the chirality of the node, p; is the momentum operator and
e = |q| is the charge of the electron. Fermions are coupled to the vector potential A;
via the minimal coupling prescription. Choosing the Landau gauge A, = —By (the
final result is independent of this election), Equation (2.25) reads:

p- px—eBy —ipy <p1(r)) _ (fm(r))
g —eBy+ip,  -p. )((pz(r) Elpam (2.26)

This equation resembles the Hamiltonian of a quantum harmonic oscillator. Defining
the usual ladder operators

1 1
—(py—eBy +1i and a' = —(p, —eBy —ip,), 2.27
\/z(P y+ipy) \/E(P y—ipy) (2.27)

the spectrum of the Hamiltonian is quantized into Landau levels:

a =

E.ms = sign(m)vg [ZehB|m| + l‘zzkg]l/2

EkZOs = —SUFth. (2.28)
The band index m runs over all integer numbers, except the zero level. The chiral

mode has a linear dispersion relation with opposite sign for each node, while the rest,
with a quadratic dispersion relation, are doubly degenerated. The eigenfunctions of
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the system are:

Az ms y_kxl%g]
) ) (222 | ———=2 __Hnq | 2
B ezk,(xelkzz e (y—kxlg)* /215 (M)l M-1 [ T3 599
Prems (¥) = X Yk, L2 ’ (2.29)
VL<L: a2 41 Hy :
kzms \V2MMIm1 21 Is
with

_ —V2eBh|m| 230
Fhsms = Ekzms/SUF — hk, ' (2.30)
Ig = [i/eB]Y/? is the magnetic length, capital letters refer to the absolute value of band

index, H,,(x) are the Hermite polynomials of order n, and the factor (ai ms T 1)1/2

is the wave-function normalization (setting k, = 0, one notices that the standard V2
factor of graphene is recovered, since ay ;s = £1). The number of states having the
same energy is given by the different values of k, that are allowed in that level. This
quantity can be estimatedconsidering our particles confined inside a rectangular box
with finite dimensions Ly, Ly, L;. The centre of motion of the electron is restricted
to the size of the box, 0 < y. < L,, where y. = kxlé. The latter relation imposes an
upper bound for k:

LyeB

R

ikeL

0<ke<

(2.31)

Assuming periodic boundary conditions (e
level is given by the expression:

* = 1), the degeneracy of each Landau

eBL.L
N = % (2.32)

2.3.2 Current and energy-momentum operators

The current operator is defined as the functional derivative of the Hamiltonian with
respect to the gauge vector A”:

SH=e / drJsA. (2.33)

The current operator (in second quantization) for the Hamiltonian in Equation (2.25)
reads:
J¥(x, t) = esvpWi(r, H)o"W(r, t). (2.34)

2The electric current can also be derived using the Noether’s theorem. Systems invariant under a U(1)
phase rotation have associated a time independent charge Q and a charge current vector J# satisfying the
continuity equation d, J# = 0 [27].
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According to Noether’s theorem [73], a continuum symmetry of a classical action
gives rise to conserved currents and charges. Systems that are invariant under
spacetime translations have associated four conserved currents [27]:

2L
()

Equation (2.35) represents the canonical energy-momentum tensor, which has as-
sociated two conserved quantities; the energy (associated to time translations) and
the momentum (associated to spatial translations). The energy-momentum tensor
is defined in general relativity as T#" ~ 05/0g,y, quantity that is manifestly sym-
metric [50], while the definition given in Equation (2.35) is certainly not. In the rest

T, = ——9,¢p - 6, L (2.35)

of the calculation we will use the symmetrized version of the tensor®:

1 JL 1 JL
o = H
v = 2&(8H¢)8V¢ 230.0) ) dup =06, L (2.36)
which for the action associated to the Hamiltonian in Equation (2.36) is:
T%(r, t) = 2h oW (r, t)JIa W(r, t) — sWi(r, t)oyao\y(r 1, (2.37)

where the symmetric convention for the derivatives acting on the electron fields is
understood:

0109 = 3(0'90 - 919"9). 2:38)

Notice that the last term in Equation (2.37) is proportional to the chirality of the
node.

We will use the Lehmann representation to compute the response function of the
system. Using the Landau wave-functions as the basis of our problem,

WHr ) = > ot @ak, () (2.39)
km

3This form of the energy-momentum tensor for the Dirac Lagrangian is non-trivial, since its definition
arises as the result of demanding local Lorentz invariance to the effective action [187].
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(the summation runs over the different Landau bands and the allowed values of k,,
k), the current and energy-momentum operators are:

Fat) = D ki@ ek, (Dans (), (2.40)
km, In

T%(x, t) = Z tw @t (Dans(t), (2.41)
Ku,Av

with the matrix elements:

jﬁm 1 (1) = SvFeqof(ms(r) 0" Pins (), (242)
"H Av(r) 4(P1<ys (r) ZJF]Ipy +so (EKZ,LLS +Epvs = 20) | @avs(x), (2.43)
where akms (axms) creates (annihilates) an electron with momentum k at the band m

of the Weyl cone s. For future purposes, we have added a finite chemical potential
to the last term of the energy-momentum tensor. When a magnetic field is present,
the definition of the energy-momentum tensor includes a covariant derivative D, =
dy—ieA,. Thetime-derivative Dy is proportional to a scalar potential, which accounts
for the chemical potential. We will compute the thermoelectric coefficient defined
in Equation (2.24) for each chirality. The chiral sign s remains fixed during the
calculation of the response function and no summation is included when expanding
the operators into the Landau basis. After working out the various integration terms
(details of the calculation are given in appendix B), the thermoelectric function takes
the form:

Y(q, w)= lim Z (27‘[)3 ivph S]km k+qy,(CI)tk+qn km(q) [”kms - nk+qns]
q9, % (Ek ms Ekz+qzns + lhn)(Ekzms Ekz+qzns + ho + lhn)

(2.44)

where nymus = [exp (B(Ek,ms — 1)) + 1]7! is the Fermi-Dirac distribution and the
matrix elements are computed in the reciprocal space. At zero temperature, the
distribution function becomes a step function ny,s = (¢ — Eg.ms), which restricts
the possible transitions between energy levels. In order to capture the conformal
limit, the chemical potential is placed at the neutrality point (u = 0), where the main
contribution comes from the chiral Landau level.
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2.4 Results

2.4.1 Thermoelectric response at zero temperature

As mentioned in section 2.3.2, the linear response of the system has been obtained
using the exact eigenstate representation, where the operators are written in the basis
that diagonalizes the system. Assuming that the wave-length of the background
fields is large in comparison with the characteristics length of the material, we can
concentrate on the local limit approximation q — 0.

We will trade the summation over the allowed k-vectors to an integral [34] over
the whole space. Since neither the eigenvalues nor the matrix elements depend
on ky, the corresponding integration accounts for the degeneracy factor eBL,/h of
each Landau level. For the remaining component, we rewrite the different variables
as a function of a dimensionless parameter x, = fik;/V2eBh. The thermoelectric
function becomes (see appendix B):

’

. 1 vrpe?sB
Xxy(o, CU) = ,}L%l+4(2n)2 Z h /dKZ E(m/ n/S/ a))QZKZmSX

mn

[S(EKZWIS + Eins — 2[-1) — Qs VM =1 - m/akzms] ’ (2.45)

where the summation is restricted to N = M — 1 and the dimensionless function
&(m,n,s,w) is defined as:

2 171 2 -1
2 [y, ms — Nicns ] [aszs + 1] [aKzns + 1]

(Eszs - EKzns + 177) (Exzms - Exzns + Cl)/C‘)C + 17]) .

E(m,n, s, w) = (2.46)

w, = vpy/2eB/h is the cyclotron frequency, which gives the separation between en-
ergy bands. The integrand appearing in Equation (2.45) is a dimensionless function
that results in a numerical value when the integral is performed. The restriction
over the possible transitions ensures that the energies appearing in the denominator
are different. At zero temperature and chemical potential only interband transitions
“across the Fermi sea” are allowed. Considering this limit, the zeroth order result
for the thermoelectric coefficient is given by:

1 ovpe?sB
2272 h

Xt = lim X0, w) = (2.47)
w—

This is a remarkable result. Weyl nodes present a finite, constant thermoelectric

coefficient at zero temperature, with VT /T being kept finite. This value depends

only on universal constants and the Fermi velocity as the only material-dependent
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Ficure 2.3: Landau level structure of a single chirality in the Dirac
semimetal. The inset shows the thermoelectric coeffi-
cient as a function of the chemical potential at T = 0.
The function has a constant value (x*Y/xo = 2, where
Xo = vpe?B/(4m)%h) when p lies in the interval between
the first Landau levels.

parameter. This result is valid at the Dirac point, at zero chemical potential, where it
captures the vacuum contribution from the quantum anomaly. The thermoelectric
coefficient stemming from the opposite node has the same value (we have been
particularly careful to follow the chirality dependence of the terms throughout the
calculation to ensure that no cancellations occur), and both Weyl partners contribute
to the response function with the same sign.

2.4.2 Thermoelectric response at finite temperature and chemical
potential

The Fermi energy in real materials is close but not exactly at the Dirac point, although
the experimental expertise can tune it by chemical doping to great accuracy. To
bring the theoretical result closer to the experimental situation, we have extended
the calculation to include thermal effects and a non-zero chemical potential.

The expression given in Equation (2.45) is valid for finite u and T, which enter in
the response term through the definition of the Fermi distribution. At zero temper-
ature, the thermoelectric coefficient exhibits a plateau when the chemical potential
lies between the first Landau levels |u| < hw. (see Figure 2.3). This behaviour is
expected, as the zeroth Landau level has a constant density of states. The zeroth
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Ficure 2.4: Zeroth order thermoelectric coefficient at finite tempera-
ture and chemical potential. (Left): Behaviour of the ther-
moelectric coefficient as a function of the temperature for
different values of . (Right): Behaviour of the thermo-
electric coefficient as a function of the chemical potential
for different values of the temperature. Thermally ex-
cited carriers enhance the response function.

order coefficient gets correction arising from higher-energy transitions. The contri-
bution to the numerical value coming from these transitions decreases rapidly with
the Landau level index. Nevertheless, the addition of these contributions does not
modify the general behaviour of the system, and the thermoelectric function still
presents a plateau when the higher-energy corrections are included.

The generalization to finite temperature is represented in Figure 2.4. By increas-
ing the temperature, thermally activated carriers contribute to higher values of the
transport coefficient, which resembles the general thermoelectric behaviour of other
materials [138, 154]. As Figure 2.4 shows, the size of the plateau is reduced according
to the structure of the Fermi functions.

2.5 Conclusions and discussion

In this chapter, we have studied the thermoelectric coefficient of a Dirac and Weyl
semimetal in a magnetic field. Motivated by the recent discovery of an anomaly-
related current [91, 93], we have performed a Kubo calculation of the electric current
generated by a thermal gradient, focusing on the conformal limit u = 0. As predicted
by the anomaly result, we obtained a non-vanishing thermoelectric coefficient at
zero temperature. The quantity x*Y/vgB has a quantized value determined by
universal constants. This value remains fixed at zero temperature and when the
chemical potential lies in the interval |u| < hw,.In this regime, other possible sources
for the thermoelectric current are strongly suppressed, and the result can be seen
as an evidence for the scale anomaly described in Ref. [91]. The calculation has
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been extended to include finite chemical potential and temperature effects. The
resulting thermoelectric coefficient presents, as a function of the chemical potential,
a distinctive experimental signature in the form of a plateau when only the lowest
Landau level is populated.

The analysis has been done considering the low-energy model of a Dirac semimetal,
concentrating on a single chirality. The contribution from the other node has the
same sign, both chiralities adding up to the total response function. When the Weyl
nodes are separated in momentum space, additional contributions proportional to
the separation will contribute to the electric response. Dirac semimetals, where the
two chiralities are superimposed in momentum space, are better “testing samples”
to investigate this anomaly-related current, since additional effects arising from the
Berry curvature or the separation between nodes are minimized.

The results shown in this chapter are based on the zeroth order result for the
thermoelectric coefficient. Higher-order transitions will contribute to the numerical
value of the response function, but the general behaviour will remain unaltered.
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Chapter

Thermoelectric relations in the
conformal limit

3.1 Introduction

In addition to the industrial impact and novel applications in the technological field,
understanding the physical properties of transport coefficients is a topic of major
interest as they provide a tool to characterize and distinguish the electronic and
thermal attributes of materials [180]. As was manifested in chapter 2, the unusual
thermoelectric result presented in section 2.4 proves that Dirac and Weyl semimet-
als do not behave as ordinary semiconductors. Different transport coefficients are
related by phenomenological relations. These connections are used as instruments
to study the properties of the materials, as their violation signals departure from the
standard behaviour.

As will be illustrated in section 3.2, examples of such relations are the Wiedermann-
Franz law and the Mott relation. The former establishes that the ratio between the
thermal and the electrical conductivity is proportional to the temperature of the
system, which the proportionality factor having a universal value £ called Lorenz
number. The Mott relation, on the other hand, connects the thermopower with
the derivative of the electrical conductivity with respect to the chemical potential
(evaluated at the Fermi level).

The first attempt to understand the underlying physics behind the Wiedemann-
Franz relation can be traced down to the studies by Paul Drude in the early days of
electrical conduction theory in metals. His model was able to give a crude estimate
of the proportionality factor, the numerical value being in a good agreement with
the experimental result [34]. More precise models were developed later in order to
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explain the flow of electric and thermal currents and the transport coefficients. In
particular, the kinetic theory [138, 34, 32] has proved very successful in analyzing the
transport properties of standard metals. The key element behind this theory is the
Boltzmann function fi, which characterizes the movement and evolution of a particle
distribution (either classically or semi-classically if quantum corrections are taken into
account). Once this function has been evaluated, any physical observable is given
by the expectation value of the corresponding operator. In particular, the analytical
expression for the transport coefficients and the phenomenological relations can be
obtained by expanding the distribution function in a power series in temperature.
More rigorous approaches were adopted in order to derive the mentioned relations
in Refs. [188, 189]. In these works, the exact expressions for the transport coefficients
were computed using the Kubo and Green’s function formalism, leading to the
Wiedemann-Franz and Mott relations after a Sommerfeld expansion.

The validity of these relations was questioned with the emergence of quantizing
magnetic fields. It was shown that the expressions for the thermal transport coeffi-
cients in terms of correlation functions are invalid under strong magnetic fields [190,
191]. The numerous attempts suggested to prove the validity of the relations in that
regime culminated with the work of Smrcka and Stfeda [192]. Based on the Luttinger
theory of thermal transport [184], they generalized the Kubo formulas and included
magnetization currents to determine the limits of validity of the relations’, laying
the foundations of our current understanding of the phenomena [185].

The above thermoelectric relations are based on the Landau-Fermi liquid para-
digm [193, 2, 36], where the electronic interactions can be neglected and the pre-
dominant events are due to scattering of electrons with phonons. In this theory, the
electrons are described as a free-motion system, which is completely characterized
by the kinetic theory. The Fermi liquid framework fails when trying to describe
strongly interacting systems, or when the electron-electron interactions become the
fastest time scale in the problem. The dynamics in such scenario can be character-
ized in terms of a hydrodynamic description of the quasiparticles [194, 195]. Such
situation normally arises in ultra-clean samples [196] or in systems with a vanishing
Fermi surface such as graphene [197], where long-range interactions are enhanced
due to ineffective Coulomb screening. The transport coefficients are severely modi-
fied by hydrodynamic effects. Deviations from these relations can also be observed
at high temperatures, originated by inelastic phonon scattering [182, 197, 198].

The emergence of topological and novel Dirac materials has raised a renewed
attention in the field. These materials display anomalous Hall conductivities orig-
inated by non-vanishing Berry curvatures, similarly to the case of ferromagnetic
materials (see Refs. [56, 199-202, 95] and references therein for a overview of the

1As shown in their paper, Stfeda and Smrcka verified that these relations remain valid as long as the
scattering events are elastic and the limit Ziw > kpT is satisfied.
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topic). The validity of Mott relation and Wiedemann-Franz law is still an open
question in these materials, and the thermoelectric properties of Dirac and Weyl
semimetals is a very active field of current research [148, 123, 150, 153]; while topo-
logical effects have been successfully included in the semiclassic framework [203]
and experimental observations in ferromagnetic films revealed the validity of the
Mott relation [146, 204, 205], the theoretical and experimental situation in topological
materials is less clear [146, 206-209].

The interesting result depicted in section 2.4 raises more questions to this situa-
tion. It shows that Dirac materials exhibit a finite thermoelectric response even at the
zero temperature limit incompatible with the Mott relation. In this chapter we will
analyze the thermoelectric relations and the role played by the finite thermoelectric
coefficient obtained in chapter 2. First, we will review how the phenomenological
Wiedemann-Franz law and Mott relation arise from the thermoelectric coefficients
by using the kinetic description. This will include a revision of the different mech-
anism that would lead to a breakdown of the Fermi liquid description of coherent
quasiparticles. Next, we will compute the quantities involved in the Mott relation,
the electrical conductivity and the thermoelectric tensor, using a Kubo formula.
We finally discuss the results obtained and their relation with the standard Mott
relation?.

3.2 Phenomenological transport relations

As mentioned in chapter 2, external electromagnetic and thermal perturbations in-
duce charge and heat currents, and the transport coefficients are defined in linear
response after a power expansion in terms of the interactions. Kinetic theory yields
an analytic expression for these coefficients as a function of the Boltzmann distri-
bution function fi(r) and the collision integral. This mechanical approach studies
the number of carriers entering and leaving a particular region in the space with a
certain velocity v. Kinetic theory was originally derived for a classical gas of hard
spheres, and it is well suited to describe classical systems and wave-packets, where
every particle has a well-defined position and momentum and the total state of the
system can be defined by the number of particles in each one of these individual
states [210, 138].

2This chapter is based on “Vicente Arjona, Juan Borge and Maria A.H. Vozmediano, Thermoelectric
relations in the conformal limit in Dirac and Weyl semimetals, arXiv preprint, arXiv:1903.00019 (2019)”.
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Once the distribution function fy is known, the electric and heat flows are deter-
mined by:

J= [dk qkak (3.1)

Jo= /dk (Ex — p)Vi fi- (3.2)

The Boltzmann distribution includes all possible mechanisms (diffusion, external
forces, scattering, etc.) that contribute to the displacement of the particles. Using
the solution of the Boltzmann equation in the presence of electric fields and thermal
gradients, it can be shown generically that the transport coefficients LZﬁ ° are written
as a function of a general integral term [138, 32, 34]:

Lee =%o
Lgr = _%LTE = _qlT(Kl
Lyt = _thT(KZ' (3.3)
where the integral function is defined as:
K = —4* | dkol o] 1(1)(Ex - W' o k. (3.4)

In the above equation, 7(k) is the scattering relaxation time and fl(() is the Fermi
distribution function at equilibrium. The function defined in Equation (3.4) depends
linearly on the derivative of the equilibrium Fermi distribution, which selects the
energy region at the Fermi surface and its vicinity. After applying a Sommerfeld
expansion, Equation (3.4) is reduced to:

9%
n 272
= |(Ex — w)"Lge + —k T°— 8E2 , (3.5)

Ex=u
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where the function K, is evaluated at the Fermi level. This allows to establish
thermoelectric relations between the various coefficients. Starting with the thermal
component Lrr, the first non-vanishing contribution is given by the second order

3In order to simplify the notation, we have omitted the tensor indices in those situations where the
dependence is clearly understood.
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term: )
n2 kyT
= ——Lrr. .
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Equation (3.6) is the Wiedemann-Franz law, where the proportionality constant is
the Lorenz number 2127
"B

L= ?? ’ (3.7)
which is independent of temperature, material details or scattering processes. This
relation is based on the fact that heat and charge currents are carried by the same
type of carriers; when the dominant relaxation processes are lattice imperfections, the
relaxation times of thermal and charge currents are very similar, which indicates that
both currents are affected in the same way by the scattering mechanism. Proceeding
in an analogous way with the thermoelectric tensor Lgr, the highest contribution in
the power series is proportional to the derivative of the electric coefficient, giving
rise to the Mott relation:

2 k2T
TtB [aLEE] . (3.8)
Ek=y

ber == | ok
Unlike the previous Wiedemann-Franz relation, the expression depends on the
charge sign of the carriers. The derivative is computed at the chemical potential
and, consequently, it is affected by the fluctuations of the conductivity at the Fermi
surface. Considering a normal metal, these changes are mainly produced by varia-
tions of the electronic mean free path and the scattering probability.

The transport coefficients defined in Equation (3.3) cannot be directly measured
in real systems, and the Mott relation and the Wiedemann-Franz law are regularly
related to the conductivities observed experimentally; the electrical conductivity o,
the thermal conductivity x and the thermopower Q*. One can expand the con-
ductivities in a power series in temperature [138], as was previously done for the
transport coefficients. As a result, the phenomenological relations remain unaltered,
but now they are written as a function of the new terms:

2 B dlno
2 4:[ o ]H (310

4As discussed in chapter 1, the thermopower is also known as Seebeck coefficient, the strength of the
induced voltage in response to the temperature gradient. Seebeck coefficient is a key ingredient in the
classification of the thermoelectric materials according to their effectiveness, which is evaluated by its
figure of merit. The inverse process defines the Peltier coefficient, the magnitude of the thermal current
generated by the charge flow.
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The Wiedemann-Franz and the Mott relations were derived without any partic-
ular assumption or approximation, and remain valid in a wide variety of scenarios.
They are employed to determine electrical and thermal conductivities that might
otherwise be challenging to measure [144, 211, 212]. Physical systems will obey
Equations (3.9) and (3.10) as long as the electron scattering is elastic, a condition
normally fulfilled in scattering processes originated by lattice imperfections (this
condition can be broken at high temperatures due to inelastic phonon scattering). It
is the role played by the interactions inside the material which determines the range
of effectiveness of Wiedemann-Franz law and Mott relation.

The Landau-Fermi liquid model fails when describing strongly interacting sys-
tems or anomalous Fermi surfaces. When the Coulomb interactions are the dominant
relaxation process, the free-electron model is not valid, and the system may become
dominated by hydrodynamic effects [195, 213]. In this regime, the system is charac-
terized by conserved variables and their respective continuity equations, in a state
that is close to the thermodynamic equilibrium. The electronic motion is described
as a collective behaviour and restricted to channels [214], which is used as a signature
of the hydrodynamic nature of transport. The hydrodynamic framework has been
successfully used to describe numerous interacting systems [215-218]. Under strong
electron-electron interactions, the relaxation times follow different mechanisms, af-
fecting the conductivities in opposite ways [219, 220]. Evidences on the breakdown
of these relations (all being connected to non-Fermi liquid phenomena) have been
observed in different works [221-223].

The emergence of Dirac matter in condensed matter has entailed a new milestone
in thermoelectricity; the non-trivial topological features of these materials open new
avenues to bypass the limitations of conventional thermoelectrics and generate large
figures of merit [155, 156], specially when quantizing magnetic fields are present:
Dirac materials do not present localizing effects due to their topological protection,
and their low carrier density and very high mobility made them ideal platforms to
test the electronic behaviour in the extreme quantum regime. A vivid debate has
raised in the literature around the validity of the thermoelectric relations [197, 150,
206, 207, 209, 211, 182]. Having a linear dispersion relation, the discussion can be
divided into two well-defined cases: when the chemical potential is at the charge
neutrality point, where the Fermi surface is a point, and when the system is doped. In
the undoped case, hydrodynamic effects are fostered due to the ineffective Coulomb
screening [224] and the vanishing density of states at the Fermi level. Away from
the degeneracy point, Dirac systems have a robust Fermi surface and are described
by the ordinary Fermi liquid theory.

Different studies have reported evidences of hydrodynamic effects in the elec-
tronic motion of graphene [225-228] and the emergence of a Dirac fluid (formation
of strongly-interacting quasirelativistic plasma) at the neutrality point [197]. In this
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regime, both Wiedemann-Franz and Mott relations are strongly violated. The ex-
perimental situation of Dirac and Weyl semimetals is still in an early stage, but the
path is very reminiscent of the graphene case. There are already different theoretical
works exposing the failure of the transport relations and addressing the properties
of the materials within the hydrodynamic approach [182, 229-231], the breakdown
of the Wiedemann-Franz relation and the emergence of the hydrodynamic regime
have been recently observed experimentally in the Weyl semimental WP, [207].
Non-trivial topological features add a new layer to this field, with the development
of anomalous responses [123, 148, 232, 212]. Numerous efforts have been devoted
to the characterization of thermal topological responses, especially concerning the
Nernst currents originated from non-trivial Berry curvatures, which has been shown
to exceed conventional thermopower of traditional materials [123, 152].

3.3 Electrical conductivity of Dirac matter

The finite thermoelectric coefficient at zero temperature and chemical potential de-
scribed in Equation (2.47) generates a puzzling question concerning the thermoelec-
tric relations. In this section we will analyze the Mott relation for the case of Dirac
and Weyl semimetals. The zeroth order result for the off-diagonal thermoelectric

coefficient was:
1 e%vgB
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The coefficient described in Equation (3.11) was computed in the presence of perpen-
dicular magnetic field and temperature gradient. The numerical value was obtained
by considering the energy transitions between the lowest Landau levels. As high-
lighted in chapter 2, the coefficient x*¥ has a finite contribution in the conformal

x*Y (3.11)

limit (zero temperature and zero chemical potential). This unusual behaviour auto-
matically implies the violation of the Mott relation in Equations (3.8) and (3.10). In
order to analyze the validity of the thermoelectric relation in the conformal limit of
Dirac electrons, we calculate the Hall conductivity with a Kubo formula as the one
done in section 2.3. Before proceeding with the calculation, we will review the basic
concepts of the electrical conductivity and its derivation.

3.3.1 Electrical conductivity. Theoretical background

In linear response theory, the conductivity tensor ¢’/ is the proportionality function
that relates the induced electric density with the applied electric field. Mathe-
matically, o is defined after coupling the Hamiltonian to an electromagnetic field,
introduced by the minimal substitution of the momentum operator p to p + eA.
As mentioned in chapter 2, the particle current operator is defined by considering
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infinitesimal variations of the Hamiltonian with respect the vector field A:
OH = [drJSA. (3.12)

For non-relativistic Hamiltonians, which are proportional to the square of the mo-
mentum operator, the current vector is given by the sum of two terms; the diamag-
netic contribution, proportional to A, and the paramangetic term, independent of the
gauge vector. These terms arise after expanding the electromagnetic Hamiltonian
in powers of A and calculate the functional derivative of the series with respect the
vector field. Hence, the linearly dependent contribution leads to the paramagnetic
term while the O[A?] order contribution gives rise to the diagmagnetic term [49].

For generic quantum systems with a parabolic dispersion relation (a non-
relativistic free-electron gas, for instance), the diamagnetic contribution is the prod-
uct of the equilibrium particle density (p(r)) and the gauge field A. The paramagnetic
term is proportional to the current-current correlation function [233, 49]:

(o]

Ui (r, t:0, ') = —% / drdt’ ([Ji(e, 1), (¢, ¢)]) . (3.13)
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Selecting a suitable gauge where A(r, w) = E(r, w)/iw, the current operator is written
as a function of the external field, and the expectation value of the current operator
reads:

(7@ @)) = (Tiam) * {Joseam)

e

= | Zrwiicq w) + “P) g Ei(q, @) (3.14)
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where the time and space translational invariance of the system are used to write the
expression in momentum space. The conductivity tensor is defined as the function

inside the brackets:

2
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Equation (3.15) represents a powerful result that includes all possible (linear)
electromagnetic phenomena. The diagonal terms describe the longitudinal con-
ductivity, and the off-diagonal components contain the Hall conductivity. In the
particular case of Dirac materials, whose low-energy excitations have a linear dis-
persion relation, the diamagnetic contribution to the conductivity tensor vanishes,
as this term is derived from the second derivative of the Hamiltonian. The response
to an external electric field reduces to the computation of the correlation function
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Il(q, w). We review the Mott relation for the electronic excitations around a sin-
gle Weyl node, without considering the possible effects arising from the separation
between nodes (see Refs. [234, 147] for good reviews about the topic).

3.3.2 Hall conductivity for Dirac matter

As was already mentioned, the diamagnetic contribution is removed from the ex-
pression of the conductivity in the case of Dirac materials, and one is left with the
term:

[s]

o'(q, w) = (2n)® / dt e'(= ” ([I (q,1), ]/ (-q,t)]). (3.16)
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The unperturbed low-energy Hamiltonian describing the electronic excitations
around a single Weyl cone takes the form:

H; = svpa’ (pi = 4 A)) (3.17)

where s = +1 defines the chirality of the node and g = —e¢ is the electronic charge. As
was done in chapter 2, we choose the Landau gauge A, = —By and the y-axis along
the direction of the external perturbation. The set of eigenvectors and eigenvalues
are given in Equations (2.28) and (2.29), respectively. Since we are working with non-
interacting electrons, the response function can be written in terms of single-particle
operators [176]; following the arguments explained in appendix B, we can write
the conductivity function using the exact eigenstates representation. The resulting
expression takes the characteristic form:

i l(2ﬂ)3 (Mm — nk+qn)
Y(q, —, 3.18
0'’(q,w) = Vo kzm:n km k+qn]k+qn kmp, - — Exiqn + ho + ihn ( )
where the matrix element ji' qn reads
o _ 1 d —iqr t a 3.19
Jiem jerqn = on )3 re” ' Tsopp, . (1)0” Priqn(r), (3.19)

and the wave-functions @y, (r) are given in Equation (2.29). The matrix elements of
Equation (3.18) are computed between single particle states, and the denominator
involves the difference between single particle energies.
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3.3.3 Hall conductivity. Local and zero frequency limit

The conductivity tensor is a function of both w and q. Assuming that the wave-
length of the external field is large in comparison to the characteristic length of
the sample, we can focus on the local limit approximation and set ¢ — 0. In the
local approximation, non-vanishing results are obtained when the optical transitions
between energy levels satisfy the condition M = N +1. After computing the different
matrix elements, the Hall conductivity for a Weyl semimetal at the local and zero
frequency limit is given by the expression:

/ 2
\/E e? _zakzms Ny,ms — Ni,ns

Xy —
o im Kz ;
0t £ Anlp h (@2 s + D)% s +1) (€oms — €xcons + ihN)?

(3.20)

where  is the Planck’s constant and the factor [ai ms T 1]'/2 comes from the wave-
function normalization of the Landau eigenvectors, defined as:

) ~V2¢eBIM

=\ 3.21
P Ekzms/SUF — hk; ( )

In deriving Equation (3.20), we have introduced the dimensionless variables k, =
Ky \/Elgl and Eg ;s = hwc€x,ms. The Hall conductivity is written in terms of the
constant

B 4l B ﬁ’
which is characterized by universal constants and the magnetic length /g. Through-
out this chapter, we will use 0p as the natural units for the results relative to the Hall

oo (3.22)

conductivity. The conductivity tensor includes an infinite sum over energy levels
restricted to the condition N = M — 1 where, as will be shown, the higher energetic
transitions do not contribute to the response function. Figure 3.1(a) displays the Hall
conductivity 0*¥ as a function of the chemical potential at T = 0. We concentrate
at the quantum limit, where the zeroth Landau level is the only filled band. The
completely filled lowest Landau level produces a finite, linearly dependent conduc-
tivity [234] when the chemical potential is placed at the interval p < |hw,|. Higher
interband transitions across the chemical potential adds up exactly to zero [235], the
lowest Landau level being the only contribution to the conductivity, as depicted in
Figure 3.1(b) . This exact cancellation among optical transitions for energies larger
than hw, remains valid as long as the temperature of the system is zero. As illus-
trated in Figure 3.1(a), the effect of the temperature is to increase the slope of the
function, since thermally activated carriers participate in the response function with
a finite contribution, leading to a larger value of the conductivity. It is noteworthy
that the conductivity function increases considerably when the chemical potential
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Ficure 3.1: (a): Hall conductivity ¢*¥ as a function of the chemical
potential in the range —hw, < p < hw, for various values
of temperature. (b): Schematic representation of the Lan-
dau levels and the energy transitions. The contribution
of the interband transitions across the Fermi level cancel.
Only transitions between the lowest Landau level and
excited levels contribute to the conductivity.

approaches the next Landau levels, as the energy threshold becomes significantly
smaller.

3.3.4 Energy derivative of the conductivity

The derivative of the conductivity d,, 0™V is easily computed from Equation (3.18): the
electrical conductivity depends only on the temperature and the chemical potential
through the Fermi distribution ni,s, giving as a result:

d

s

du

’ 1 2 —2a2
= lim Z 5 6—2 /dKz 5 sz2$
n—0* vE8T? I (akzms + 1)(axzns + 1)
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(3.23)

where we have defined the dimensionless temperature T = kgT/hw, and the sum-
mation over energy levels is subjected to the restriction M = N —1. Similarly to what
happened in the previous case, as the temperature increases more thermally acti-
vated carriers contribute to the response of the system (more inter-band transitions
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Ficure 3.2: Temperature dependence of d,0*Y as a function of the
chemical potential. As the temperature increases, more
thermally activated carriers contribute to the function.

through the Fermi level are involved). In the low-temperature limit, only the lowest
Landau level contributes to the derivative.

The behaviour of 9,0*¥ at the Fermi surface y = 0 as a function of T is depicted
in Figure 3.2. Two distinct regimes can be appreciated. At low temperatures, the
derivative of the conductivity presents an almost constant value due to the low
number of carriers participating in the process. A dramatic enhancement of the
function is observed at higher temperatures, especially when the chemical potential
approaches the next quantized energy levels.

3.4 Mott relation in Dirac semimetals at the conformal
limit

The standard Mott relation between the thermoelectric coefficient Lt and the deriva-
tive of the electrical conductivity reads®:

Xy -1
Y (ag ) - RT2 (3.24)
Au H:EF

where R is the proportionality function that has the value £ when the system be-
haves as a Fermi-liquid. The ratio between these two coefficients for the case of a
Dirac semimetals is shown in Figure 3.3. The resulting expression has been derived

5The extra T factor appearing in Equation (3.24) originates from the definition of the thermoelectric

coefficient Lgt in terms of the Kubo response function x*¥; L;g. = xYY/T.
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Ficure 3.3: Temperature dependence of the Mott ration between the
thermoelectric response function y*¥ and the derivative
of the electric conductivity d,0*Y at p = 0. Red dots
represent the numerical calculation while the blue line
is the fit to the function f(T) =1+ 8.96T2.

considering only the zeroth order values for the electric and thermoelectric coeffi-
cients. The dominant contribution to the numerical value of the response functions
comes from the energy transitions between the lowest Landau levels. Higher-energy
transitions due to temperature effects represent second order corrections to the result
displayed in Figure 3.3.

As expected, the thermodynamic relation is violated at the critical point y = 0:
whereas the electric conductivity is a well-behaved function at the conformal point,
the anomalous thermoelectric response presents a finite value stemming from the
quantum anomaly. Away from the singular point T = 0, the relation follows a
quadratic dependence in agreement with Equation (3.24): the description of the
electronic excitations as coherent quasiparticles returns to be valid. A fit of the
numerical values (continuum blue line in Figure 3.3) gives the expression

f(T) =1+8.96T°. (3.25)

Restoring the units and ignoring the anomalous contribution from T = 0, we get the

coefficient
R =2.24(kpT)*/e, (3.26)

which coincides with the standard Lorenz value L to a great accuracy. Therefore,
the Mott relation is recovered for temperatures away from the conformal limit.
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3.5 Conclusions and discussion

In this chapter we have addressed and analyzed the phenomenological Mott relation
in topological Dirac semimetals. We have characterized the electric conductivity in
the quantum Hall regime. The resulting term matches the analytical behaviour given
in Ref. [234] in the limit of small u. In the light of the result given in the previous
chapter, we have found that the Mott relation breaks down at the conformal limit
due to the non-vanishing thermoelectric value obtained at p = T = 0. This result
confirms that the charge neutrality point of clean Dirac samples, similar to the case of
two-dimensional graphene, is a singular point that cannot be reached as a continuous
limit from a finite chemical potential system. The breakdown of the Mott relation
clearly signals, in agreement with previous results [144, 148, 150, 153, 197, 236, 2071,
the departure of these systems from the Landau-Fermi liquid paradigm of coherent
quasiparticles, description that becomes insufficient at this regime. This is a natural
result given the vanishing Fermi surface and the poor screening of interactions
around neutrality.

Away from the singular point, the system recovers the conventional Fermi liquid
phenomenology. The anomalous contribution originated at the charge neutrality
point only leads to a solid shift from the expected behavior of a quasiparticle. Addi-
tionally, the result exposed in this chapter is not limited to Dirac semimetals, but it
is also applicable to Weyl semimetals where, besides this result, extra contributions
will arise from the separation between the chiral nodes.

To conclude, there are interesting open problems regarding the phenomeno-
logical transport relations and how these are affected by anomalies, which acquire
especial relevance in thermoelectric transport measurements performed on Dirac
crystals. After different works reported the violation of the Wiedemann-Franz law
(either theoretically or experimentally) on Dirac and Weyl semimetals [206, 143, 197,
237, 207, 209], it results particularly relevant to unveil the role of the conformal
anomaly on the thermoelectric transport at the critical point of these materials.
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Chapter

Rotational strain in Weyl
semimetals

4.1 Introduction

Experimental realizations of condensed matter systems are neither ideal nor im-
mune to defects, and they present what is generally referred as disorder: crystalline
samples usually exhibit irregularities in the lattice, structural defects, magnetic im-
purities, dislocations, etc. Disorder has profound implications in the mechanical
properties of the materials, and its understanding is also crucial to explain the elec-
tronic structure and transport features of the sample.

A closely related problem to disorder in condensed matter systems is the pres-
ence of strain. The spectral and transport properties of different systems may be
affected by external influences such as mechanical deformations, as is illustrated
in Figure 4.1. When regarded as small, these perturbations induce smooth oscilla-
tions around the equilibrium position of the atoms': elastic deformations modify
the distance and relative orientation between the atomic orbitals, leading to local
changes in the hopping strength. In the case of Dirac materials, understanding the
consequences of elastic perturbations becomes crucial from the electronic point of
view, since the transport properties and the electronic structure may be modified
under variations of the lattice configuration. Historically, the influence of lattice de-
formations on the electronic transport properties of Dirac materials has been studied
using tight-binding models within the framework of elasticity theory, giving rise to
axial vector fields coupled to the electronic degrees of freedom [158, 240, 241]. An

1The parameters characterizing the strength of the deformations contribute to the electron-phonon
coupling.
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Ficure 4.1: Elastic deformations in Dirac matter. (a): STM experi-
mental images of graphene samples grown on thin films
of platinum. The image reveals the formation of highly
strained nanobubbles. Adapted from Ref. [163]. (b): Lo-
calized uniaxial strain in wrinkled MoS; nanolayers.
Adapted from Ref. [238]. (c): STM image on the sur-
face of the doped Type-II Weyl semimetal Re-MoTe;.
Internal deformations are induced under modulations
on the chemical potential, leading to the formation of
topographic ripples. Adapted from Ref. [239].

alternative method to study the possible electron-phonon couplings arising in these
materials is based purely on symmetry considerations. The possibility of construct-
ing effective interactions using symmetry arguments has been extensively adopted
in both quantum field theory and condensed matter systems, where the underly-
ing crystal symmetries constrain the possible actions describing the dynamics of
phonons and electrons (for instance, this approach was employed in Ref. [242] for
generating all possible interacting terms in graphene layers).

The current chapter is devoted to study the effective low-energy electron-phonon
interaction terms stemming from the symmetries of our system. In particular, we
will analyze the new terms induced by antisymmetric components of the deforma-
tion tensor (related to changes in the orientation of the orbitals) in Dirac and Weyl
semimetals.

The effective couplings and their physical interpretation will be discussed in sec-
tion 4.2. An interesting aspect of the 3D case as compared with its 2D analogue is
the role played by the antisymmetric part of the deformation tensor. This coupling
will be analyzed in section 4.2.2. The chapter ends with the description of a particu-
larly interesting physical realization of an elastic deformation, a discussion about its
physical implications and a summary of the main conclusions of the chapter?.

2This chapter is based on “Vicente Arjona and Maria A.H. Vozmediano, Rotational strain in Weyl
semimetals: A continuum approach, Physical Review B 97, 201404 (R) (2018)”.
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4.1.1 Elasticity theory. Fundamental equations

The mechanics of solids, regarded as continuum media, is the subject of elasticity
theory [243]. When external forces are applied, the system undergoes deformations
in shape and volume. Deformations are mathematically described by the displace-
ment u of a point at position x relative to the original position x:

ut=x - xé, 4.1)

with latin indices denoting the different components of the vector. Considering two
points infinitesimally close, the deformation tensor ii;; is defined by the leading term
in a Taylor expansion of the radius vector:

dx' =dxf + auidxj 4.2)

S0 gx Y '
where dxp and dx are the vectors joining the two points before and after the defor-
mation, respectively, and ii;; = dju;. The symmetric part of il;; defines the strain

tensor u;;, which is related to the distance d 12 = dx? between the points:
di? = dI2 + 2ujdx’dx®, (4.3)

where the tensor u;; is given as follows:

_ 1 (91/11' 8uk 3111 3111
Hik = Z 2 (axk T out T oxi guk | @4

In elasticity theory, deformations acting on a system are regarded as small pertur-
bations, and generally one can treat the components of u;; as small terms. Being the
last term in Equation (4.4) of second order, it can be neglected [243].

The symmetric tensor u;; plays the main role in elasticity theory as well as in a
geometric formulation, where it is identified as a metric. This follows directly from
Equation (4.3), which can be read as:

8ij = (3,‘]‘ + Zui]', (4.5)

where 0;; is the identity matrix [243, 244]. In three dimensions, the antisymmetric
part of the gradient deformation tensor,

1 (8ui 8uk)

dxk  Jul (4.6)

(Uik=2

is related to torsional deformations where the points are infinitesimally rotated
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through some angle relative to those below them. This deformation plays an im-
portant role in the mechanics of solids and is represented by the pseudo-vector field
(invariant under inversion transformations) €, which is related to the displacement
vector u by:

Q=Vxu. 4.7)

The nature of this vector is better understood in fluid mechanics, where u represents
the fluid velocity and ii;; measures the rate of change of the flow velocity in the
neighborhood of a point. The vorticity vector Q is a pseudo-vector that characterizes
the tendency of a fluid to generate whirlpools. Q is defined as the rotational of the
fluid velocity [245], Q = V X u, and is related to the antisymmetric tensor w;; by:

Q' = —e*aw. (4.8)

In 2D the antisymmetric part of the deformation gradient tensor is dual to a pseudo-
scalar field, and does not play a major role in the dynamics (-2w;; = €;;Q).

4.1.2 Elastic deformations in Dirac crystals

Effects of the lattice deformations on the electronic properties of graphitic structures
were described in the literature before the synthesis of graphene®. Lattice defor-
mations couple to the electronic density of Weyl materials in the form of elastic
gauge fields, constructed with the deformation tensor. This particular coupling was
first derived in the context of carbon nanotubes [158, 240], and it was soon gen-
eralized to graphene flakes [248-250, 241] (see also Ref. [160]). The extraordinary
mechanical attributes and flexibility of the material, and the potential of tuning their
electronic properties by appropriate strain geometries, opened the pathway for a
prolific industry associated with straintronics [251, 246]. An important highlight in
the development of the field was the recognition of a reorganization of the energy
spectrum into quantized Landau levels due to the emergence of an effective magnetic
field in strained graphene [163, 159, 252] (see Figure 4.1).

The emergence of elastic gauge fields in 3D Weyl semimetals (deduced in Ref. [161])
has been followed by multiple studies analyzing their physical consequences [165,
167,166, 175]. An experimental realization of strain-induced pseudo-magnetic fields
(on the order of 3 Tesla) was recently observed in strained crystals of Re-doped Mole;
(see Figure 4.1), where Landau levels at zero applied magnetic field were detected
in areas associated to rippled regions [239].

3The basics of the elastic deformations will be described in section 4.1.2, which is far from being an
exhaustive review about elastic deformations. We refer the reviews [160, 8, 246, 247, 25] and references
therein for further details.
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Recent works shows that the influence of external deformations on the electronic
properties of Dirac matter gives rise to different phenomena not captured by the
elastic gauge fields. For a complete review about the different effects arising from
strain in 2D Dirac materials, we refer the Ref. [247].

4.2 Electron-phonon couplings

The effective low-energy interactions between lattice deformations and electronic
excitations under non-uniform strain can be organized using a systematic expansion
in derivatives of the strain tensor and the electron field. Considering elastic defor-
mations, each derivative of 7;; is suppressed by a factor of order O(a/A), where A is
the wavelength of the deformation and 4 is the lattice constant.

Any electron-phonon coupling respecting the symmetries of the system is al-
lowed. The minimal low-energy model describing a Weyl semimetal with only two
nodes of opposite chirality separated in energy-momentum space by a vector (by, b;)
is given by the Hamiltonian:

H, = svpoi(ki +sb;) + sbyl, (4.9)

where s = +1 denotes the chirality of each node. As mentioned in chapter 1, the vec-
tor b, and the Fermi velocity are the only intrinsic parameters of the material. The
term involving the spatial components b breaks time-reversal symmetry, while the
time component by shifts the nodes to different energies and breaks inversion sym-
metry. In the case of a Weyl semimetal, Weyl nodes are often located at points in the
Brillouin zone without any particular symmetry. We restrict the construction to this
case and perform a derivation based on the continuum model given in Equation (4.9),
where the only symmetries are rotations in the plane perpendicular to the vector
b. This approach does not provide the numerical value of the coupling constants,
which remains arbitrary. Generalized tight-binding approximations [161, 164, 165],
ab-initio calculations or experimental data should be used in order to estimate their
values.

As our main interest lies in the description of quasiparticle excitations around the
Weyl nodes, where the electrons disperse linearly, we restrict ourselves to interaction
terms that are, at most, linear in the electron-momentum k. Within the domain of
elasticity theory, where deformations are regarded as small, only terms linear in the
deformation tensor are considered. In this way, the effective interactions will be a
function of the deformation tensor #;;, the vorticity vector Q, the electron fields
and their derivatives.
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H; Electron-phonon coupling Physical interpretation K>
H; Tr(uij) Deformation potential +
H3, %Ay, Ag = u bo Pseudo-scalar gauge potential -

H;i olA;, Aj = uijbf Pseudo-vector gauge field -

H; uijo'k/ Space-dependent Fermi velocity — +
Hj Uu; j;uikf Space-dependent tilt velocity +
H: k'A; Dirac cone tilt -

H; eijkaié?jbk, eijkai8jAk Pseudo-Zeeman field -

TabLE 4.1: Lowest-order effective low-energy Hamiltonians for the
electron-phonon interactions associated with the stan-
dard strain tensor. The different terms presented here
describe the interactions around one Weyl node. The
relative sign of its corresponding partner (separated in
momentum space) is given in column K.

4.2.1 The strain tensor. Effective electron-phonon interactions

For the case of three-dimensional materials, the couplings of the electronic density to
the symmetric strain tensor defined in Equation (4.4) are very similar to these already
known in the graphene system [242]. Some couplings, especially those related to
elastic gauge fields, have been already discussed in the literature.

The complete list of terms is summarized in Table 4.1. The column K; indicates
the relative sign of the coupling sitting on the corresponding chiral partner, separated
in reciprocal space by the vector b. In what follows we will describe the physical
consequences of the different terms.

Deformation potential

The simplest deformation that one can consider is due to changes in the volume
of the unit cell, originated by either contraction or dilation of the sample [158, 8].
Volume differences give rise to local fluctuations in the electron density, shifting the
energy bands of the material (an effect similar to that of a chemical potential). It
is mathematically represented by the trace of the deformation tensor. Deformation
potentials were thought of as a general perturbation whose only effect was related to
energy displacements of the Dirac cones. Nevertheless, they play a significant role
when (pseudo) magnetic fields are present, as will be discussed in the next chapter.
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Pseudo-gauge fields

Elastic deformations modify the local bond length between hoppings, leading to
effective gauge potentials that couple with opposite sign to each chiral node*. The
spatial separation between nodes (introduced in Equation (4.9)) is affected by the
local displacements,

b; — I;i =b; + Lli]'bj, (4.10)

giving rise to elastic vector potentials A; = u;;b/. Suitable non-uniform configura-
tions can induce time-reversal breaking vectors (hence, elastic gauge fields) which
are position-dependent. As a result, we can define fictitious pseudo-magnetic fields
which couple with different sign to each of the chiralities. The elastic vector potential
was first derived in Ref. [161], which was followed by a number of works discussing
their physical consequences and paving the way for Weyl semimetals straintron-
ics [165, 166, 175, 253, 168-172, 25]. The coupling written in H} ; is only valid for
time-reversal symmetry broken Weyl semimetals; other forms of stram—mduced po-
tentials have been found for materials where the Weyl nodes are protected by lattice
symmetries [171].

The Weyl nodes are separated not only in space, but they can be shifted in energy.
Elastic deformations also contribute to this energy distance, as demonstrated in H;
The time component by couples to the elements of the strain tensor 1| that are paralfel
to the vector b. The resulting coupling is a pseudo-scalar (inversion symmetry
breaking term) that changes (in opposite directions) the position of the Weyl nodes,
resulting in a strain-induced contribution to the chiral magnetic effect [162].

Strain-dependent Fermi velocity

The Fermi velocity is one of the intrinsic parameters of the model, and all measurable
quantities depend on it. Space-dependent Fermi velocity originates from inhomo-
geneous elastic disorder, which is endonced by the coupling Hj. The strain-induced
velocity has associated two contributions:

Vjj — 27,']‘ = v(Tr(u)(Sl-]- + uij) (4.11)

where the first (second) term is the isotropic (anisotropic) Fermi velocity. Anisotropic
position-dependent Fermi velocities have been discussed in the context of cubic Weyl
semimetals and may be interpreted as emergent gravitational field [167].

4These axial gauge fields are absent in high energy physics, where they would play an important role
related to the chiral anomaly.
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Strain-dependent tilt velocity

As mentioned in chapter 1, a generic feature in Weyl and Dirac semimetals is that
the cone of the linear dispersion relation may be tilted [254-258, 133, 134]. These
tilted Dirac cones are described by the term Hy = w'k;I, where w! denotes the tilt
velocity, another intrinsic parameter of the material. In the same way as the Fermi
velocity, the tilt parameter can be modified under lattice deformations, making it
inhomogeneous through the sample for non-uniform strain (Hj term):

w — @' =w + uijwf. (4.12)
Nevertheless, strain deformations contribute with an additional term to w. The
pseudo-vector A is able to tilt the dispersion relation of an originally untilted Weyl
semimetal in opposite directions, interaction that is described by the term H:. Being
proportional to the separation between the nodes, this coupling only arises in Weyl
semimetals. The combination of these two terms opens the possibility of a strain-
induced Lifshitz transition [129, 259, 258, 260, 134, 261], i.e., going from Type-I to
Type-II Weyl semimetal by applying strain (or vice versa). Since the Fermi velocity
is also affected by elastic deformations, the condition for the transition becomes
[|t]] > 1, where the vector t is given by the expression:

ti = (w; + ujjw; + Al)(ﬁ_l)li (4.13)

and 9;; = vj; + uy; is the space-dependent Fermi velocity. This type of tunability
has been discussed in Ref. [262], where the orthorhombic Weyl semimetal TazS,°,
regarded as one of the most robust Weyl semimetals, exhibits a transition from
Type-II to Type-I Weyl semimetal as one increases the lattice constant b. By further
increasing this parameter, the system develops a topological phase transition into a
topological insulator state, as the two chiral nodes have annihilated with each other
and the spectrum becomes fully gapped.

Pseudo-Zeeman term

A Zeeman term can be constructed with the derivative acting on the vector b.
Although b is constant inside the sample, it will always go to zero at the boundary
of finite samples, giving rise to an effective pseudo-magnetic field confined to the
boundary as discussed in Ref. [265] (see also Ref. [25]). For the sake of clarity, let
us consider as an example a cylinder of height L and radius a with the simplest
configuration b = b,0(a — |r|)Z. This separation will produce a pseudo-magnetic

5Ta3S; is a semimetallic compound with the space group Abm2. The lattice constants are a = 5.6051 A,
b =7.4783 A, c = 17.222 A [262-264].
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FiGurke 4.2: (Left): Schematic illustration of a cubic lattice. Consider-
ing a pair of s and p orbitals, the structural configuration
depicted in the image does not allow any interaction
between the atomic orbitals. (Right): The relative orien-
tation between the atoms is modified by applying a ro-
tational perturbation. The new alignment gives rise to
new hoppings not allowed previously by the symmetry
of the system [266].

field pointing in the azimuthal direction and proportional to Bg o« b;0(a — |r|).
Associated to this magnetic field there will be a corresponding Zeeman term H =
0®Be. The elastic magnetic field defined through H; . will lead to a pseudo-Zeeman

term H = aieifkajAk.

4.2.2 Antisymmetric deformation tensor. Effective electron-phonon
interactions

The strain gradient tensor u;; can be defined from the change in the bond length due
to deviations of the atomic orbitals from the equilibrium values. Additional contri-
butions to the overlap hopping matrix arise from the relative orientation seen from
the adjacent sites (see Figure 4.2). As a result, new effective couplings, prohibited
by symmetry arguments in the unstrained case, become permitted as a consequence
of the relative rotation of the relevant orbitals when strain is applied [266, 164, 161].
The antisymmetric tensor w;; characterizes this kind of elastic deformations, the
relative rotation between atoms being described by the vorticity vector Q. Contrary
to the general elastic gauge field, Q is independent of the separation between the
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H; Electron-phonon coupling Physical interpretation K>
HY Q;b Deformation potential +

Hj o'wibl, 0'Q; Pseudo-vector gauge field -

Hj wijw'k!, Qjk’ Dirac cone tilt -

Hj €% oikjVy “Antisymmetric” Fermi velocity

TabLE 4.2: Lowest-order effective low-energy Hamiltonians for the
electron-phonon interactions associated with the anti-
symmetry tensor w;;. New couplings not present in the
symmetric case originate from the vorticity vector.

Weyl nodes and its couplings will be present in Dirac semimetals. As was done
in section 4.2.1, the complete list of effective couplings related to the antisymmetric
strain tensor to first order in derivatives is summarized in Table 4.2. The different in-
teracting terms are organized in a derivative expansion, where each term is referred
to one of the Weyl nodes and K, gives the relative sign of the chiral partner.

Scalar potential

An interesting observation concerns the coupling between the node separation b
and the vorticity vector. Being both pseudo-vectors (they do not break inversion
symmetry), their pairing will produce a rotational contribution to the deformation
potential. Being independent of the strain tensor, it implies that a scalar potential
can be generated from volume preserving deformations, as in the case of local
rotations. This result implies a promising new pathway for achieving specific,
space-dependent electron densities from elastic perturbations without altering the
volume of the sample.

Pseudo-gauge fields

Rotational deformations give rise to two novel axial gauge fields. The first vector
potential H = o'w;jb/ involves the Weyl node separation and is the antisymmetric
analog to the term derived in H ; of Table 4.1. Interestingly, the second coupling H =
0'Q; does not depend on b, which implies that rotational deformations can induce
a transition from Dirac to Weyl semimetals similar to that discussed in Ref. [267]. In
fact, we can generate pseudo-magnetic fields from space-dependent vorticity vectors,
following a similar approach as proposed in Ref. [165].
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Strain-dependent tilt velocity

Both strain-induced vectors Q and w;jw/ will induce opposite tilts in the two nodes.
Asin the previous case, being independent of the Weyl node separation, the coupling
Q;k? will tilt the cones in any Dirac material. These two contributions will be added
to Equation (4.13) to promote the Lifshitz transition between Type-I and Type-II Weyl
semimetals [262].

Antisymmetric Fermi velocity

The term described in Hy deserves an appropriate treatment as it brings interesting
consequences to the electron-phonon derivation. This term can be regarded as an
antisymmetric contribution to the Fermi velocity since it concerns a tensor whose
components are antisymmetric, €;jx vk = Vij. As it was shown in Ref. [242], the
antisymmetric contribution to the Fermi velocity vanishes in the case of 2D Dirac
materials (a detailed derivation is found in appendix C), where a spinor rotation
completely cancels the antisymmetric term. The 3D case is more involved, as the
relations between the Pauli matrices include an extra 0-term not present in 2D
systems, where o7 is a privileged matrix.

Consider the generic Hamiltonian described in Hy, where Vj is an arbitrary field.
Due to the commutation relation of the Pauli matrices,

0,0p = ieabCGC +5ah, (4.14)
and using the symmetric convention for the derivatives acting on the electron fields,
i 49 i
Py = =390y = -5 (PO - 9yTy), (4.15)
a spinor rotation
Yoy = el My (4.16)

cancels the antisymmetric term, leaving behind a term proportional to the diver-
gence of the vector V (all the technical details about this calculation are included in
appendix C). Depending on the nature of V, this effective coupling will contribute
to the low-energy Hamiltonian as a scalar potential (V is a vector) or to the energy
separation by (V is a pseudo-vector). In the case of a strained Weyl semimetal, we
have at our disposal three vectors (separation between nodes b, elastic gauge fields
A, vorticity vector Q) that couple to the electronic degrees of freedom in the form
suggested by Hj.

The first term to be considered is the vorticity vector, H = €'/*o;k;jQ. Using
the definition of Q, this term follows from the Fermi velocity originated by the
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antisymmetric tensor; w;jo’'k/. The resulting Hamiltonian after the spinor rotation
is H = V- Q. Being the divergence of a curl, this term is zero. The antisymmetric
part of the Fermi velocity vanishes for Dirac and Weyl materials.

An interesting coupling that emerges from the previous example is a strain-
independent term proportional to the node separation. The Hamiltonian H =
€'’k gikiby can be rotated to H = V - b, term that will induce a pseudo-scalar po-
tential similar to by confined at the boundaries of the sample, where the separation
between the nodes goes to zero. This interaction is a pseudo-scalar (breaks inver-
sion symmetry) and will induce an energy separation between the nodes. When
non-uniform strain is applied, b will be inhomogeneous through the sample, giving
rise to two space-dependent axial gauge fields H ; and Hé’(Z). After performing the
spinor rotation explained above, the resulting inversion-breaking term H = V - A
will contribute to the energy separation bp. Being proportional to 7;;, this term is of
higher order in derivatives of the strain that the one described in Hj ;. Both terms
will contribute to the chiral magnetic effect in a similar fashion to the mechanism
discussed in Ref. [162], where the intrinsic parameter by is modified under elastic
deformations in order to change the locations of the Weyl cones.

4.3 Physical example. Realistic strain configuration

In this section we present a feasible realization of Dirac matter under strain. This
configuration was originally proposed in Ref. [165] to generate a constant pseudo-
magnetic field and study the emergence of pseudo-Landau levels. We will show that
new extra terms will be generated from the given configuration, which may alter
previous results.

In order to probe strain-induced phenomena in Dirac matter is recommendable
to concentrate on films or wire-shaped materials: the mechanical flexibility of such
geometries allows the sample to support a considerable strain without breaking,
much better than bulk crystals. We will analyze the effect of elastic deformations on
nanowires of Dirac semimetal Cd3As;, a material that has exhibited an impressive
mechanical flexibility and suitable bending attributes. The Dirac semimetal Cd3As;
presents a complicated crystal structure that can be regarded as tetragonally distorted
array with Cd-site vacancies [102]. The low-energy model captures the semimetallic
nature of the crystal with a symmetry protected band crossing point along the I' - Z
direction. The effective Hamiltonian is made of two decoupled sub-blocks, where
each individual block characterizes a time-reversal breaking Weyl semimetal with
the pair of Weyl nodes sitting at different K. points in the reciprocal space. Time-
reversal symmetry is restored when the two copies are considered, each “Weyl sub-
block” being the chiral partner of the other [102, 165]. Therefore, the tight-binding
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FiGUrE 4.3: Schematic representation of the wire-shaped nanowire
considered for this section. The sample is twisted a to-
tal angle 6, which introduces a misalignment between
adjacent layers. Adapted from Ref. [165].

model provides a material with two Weyl nodes separated along the z-direction by
a vector b = bz. Assuming a wire-shaped crystal of length L with an axis along
the z-direction, the displacement vector u that derives from twisting the sample an
angle 0 is given by:

“r; 2k (4.17)

u' = 9%6’7
where r denotes the position relative to the origin located on the axis of the wire and
Z is the unit vector along the z-direction, as illustrated in Figure 4.3. The strain tensor
associated with the deformation written in Equation (4.17) is traceless, meaning that
the deformation potential generated from the symmetric deformation will be zero.
Equation (4.17) has an associated elastic gauge field:

Ai=uibl > A= g—f(y, —x,0), (4.18)

and the Cor responding uniform magnetic field:
Bi = - ijka‘A —Bg=——=b2 4.19
el ° € ik el B . ( . )

As explained before, we will analyze the novel contributions arising from the anti-
symmetric part of the gradient deformation tensor, described in the previous section.

®When defining the fictitious fields induced by the elastic deformations in Equations (4.19) and (4.22),
we have introduced the required constants in order to resemble the physical units of their electromagnetic
analogues.
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Following Equation (4.8), the vorticity vector associated to this deformation is
0
Q= Z(x, y,—2z), (4.20)

which leads to a deformation potential proportional to the antisymmetric part of the

deformation tensor: 0

E=Qibt = —Zzbz. (4.21)
Even though the applied deformation is traceless i.e., it preserves the volume of the
wire, it is still able to produce a scalar field through the vorticity vector. Without
considering time-dependent deformations, the strain-induced scalar potential will
create an elastic electric field parallel to the field Bg:

Ee = —vpii% — Eq = 20%%; z. (4.22)
Unlike the axial-electric field that one could get from the trace of the deformation
tensor (described in HY), the resulting term stemming from the antisymmetric part
is a regular vector and couples with the same sign to the two chiralities. The product
of these two synthetic vectors will not ignite the chiral anomaly since the vector Eg
cancels the contribution generated by the two cones (such scenario does not promote
a charge pumping between the Weyl points).

Following the anomaly equations when both ordinary and chiral electromagnetic
fields are present [173, 179, 265, 22], a pumping of charge will flow between the two
chiral partners when a real magnetic field B along the z-direction is present:

e2

dips+V js = —o
S A Y

(E-B+Es - Bs), (4.23)
where ps = pr — pr is the chiral density and Es, Bs denotes chiral electromagnetic
fields’. As suggested in Ref. [165], the proposed strain configuration will give rise
to an electric current characterized by the chiral anomaly equation:

2

. e
8,;p+V-]:m(E~B5+E5-B). (424)

Equation (4.24) only occurs when both chiral and real electromagnetic fields are
present. Being the electric current strictly conserved in real solids, Equation (4.24)

7As discussed before, whereas the pseudo-magnetic field generated with strain couples with opposite
sign to the two chiralities, i.e. Bg = Bs, the electric field Eg described in Equation (4.22) behaves in
the same way as a real electric field, Eg) = E. For the proposed geometry, chiral electric fields Es can be
originated from time-dependent elastic deformations, E 15 = —atAél.
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is understood as a charge-density current flowing from the bulk to the edges of the
system that only arises in strained Dirac crystals [165].

The deformation characterized in Equation (4.17) will develop a tilted dispersion
relation (opposite at each node) due to the contributions described in Tables 4.1
and 4.2:

Wi = g1uijb! + grwiih! + g3Q, (4.25)

where g; are the different coupling constants. As discussed in Section 4.2.1, H{ is
a new term describing the coupling between the spin components and the pseudo-
magnetic field Bj. This term is interpreted as a strain tunable pseudo-Zeeman term,
which breaks the spin degeneracy and comes with opposite signs in the two Dirac
points.

4.4 Conclusions and discussion

In this chapter, we have used a symmetry approach to construct effective electron-
phonon couplings affecting the low-energy quasiparticle excitations of Dirac and
Weyl semimetals. We have defined our derivation within the framework of elasticity
theory, setting up a systematic expansion in derivatives of the deformation tensor.
Higher order corrections are strongly suppressed in many experimental situations
(each derivative of the deformation tensor is suppressed by a factor of order O[a/A]),
and they do not contribute with new significant physical phenomena.

Contrary to the 2D case, antisymmetric contributions to electron-phonon cou-
plings stem in Weyl and Dirac semimetals, and lead to new effective terms that
enrich the scenario of elastic deformations-induced effects. The orbital character of
the tight-binding models in Weyl semimetals makes rotational strain particularly
relevant, inducing new orbital couplings that were forbidden by symmetry in the
unperturbed case. This provides a richer scenario than that present in graphene and
similar 2D Dirac systems, where the relevant orbitals characterizing the model are p,
orbitals perpendicular to the plane, leaving the distance between neighboring atoms
as the only parameter susceptible of being modified under elastic deformations.
The vorticity vector Q, which represents the relative rotation between the atomic
positions, plays the main role in the antisymmetric contribution to the low-energy
description of the effective actions, generating new couplings not present in 2D sys-
tems, where the dual to the antisymmetric part of the gradient deformation tensor
is a scalar field. Of special interest is the volume-preserving deformation potential,
a scalar term that does not involve the trace of the strain tensor, or the tilt parameter.
Being independent of the momentum (or energy) separation between the nodes, Q
will couple to both Weyl or Dirac semimetals.
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For the sake of completeness, we have included the terms associated with the
symmetric strain tensor, which are analogous to these extracted in Ref. [242]. This
brings to light the close relation between antisymmetric deformations and 3D Dirac
materials and highlights the vorticity-induced terms as a distinctive property of
Dirac and Weyl semimetals.

Part of the interest in emerging axial vector fields associated with elastic defor-
mations lies on the possibility of generating elastic or mixed electromagnetic-elastic
responses like the ones discussed in early works [268]. We have seen an example of
this phenomena in the considered example, where a nanowire of Dirac semimetal
CdzAs; is subjected to torsional strain. The applied strain induces an elastic magnetic
and electric fields able to ignite the chiral anomaly and an electric current between
the bulk and the boundaries of the sample [165].

The influence of antisymmetric deformations on the thermo-electric properties
of 3D Dirac materials has been investigated in a recent publication [269]. The results
indicate that the thermoelectric transport coefficients in Weyl semimetals can be
tailored by appropriate tuning of the magnetic field strength, the torsional deforma-
tion and the thermal gradient, giving rise to large figure of merit and proving the
potential of straintronics in Dirac materials.
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Chapter

Collapse of Landau levels in
Weyl semimetals

5.1 Introduction

In the previous chapter, we detailed the different effective electron-phonon cou-
plings arising from lattice deformations induced by strain. These interactions were
constructed based only the underlying symmetry of the system.

Arguably, the coupling of electronic degrees of freedom to lattice deformations
in the form of vector fields similar to the electromagnetic potential is one of the
most interesting features in the field of strained Dirac materials [158, 160, 161]. This
observation paved the way to investigate different strain configurations that would
induce a constant magnetic field able to quantize the spectrum into pseudo-Landau
levels [159, 165, 166, 175]. The subsequent experimental observation with scanning
tunneling spectroscopy [163, 239] is considered as a milestone in the physics of
Dirac systems (see Figure 5.1). The concept of elastic gauge field and the potential
to manipulate the electronic excitations by means of elastic deformations opened a
new research field called straintronics [251, 25, 166, 169, 172].

The relativistic nature of the massless quasiparticles has important consequences
on the properties of these materials. One of the best explored in the literature is,
precisely, the behaviour of the electronic excitations in magnetic fields. On the
one hand, the Landau level spectrum differs from that of the standard electron
systems: the dispersion relation is proportional to VB and v/, in contrast to the
linear dependence of the classical case’. On the other hand, the characteristic zeroth

1This characteristic dependence was the compelling evidence of having Dirac electrons in graphene [6,
71.
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Ficure 5.1: (a): STM topograph of the Weyl semimetal Re — MoTe;
surface. Strain-induced ripples can be observed in the
image. (b): Periodic height variation due to topographic
modulations along the cuts (red and blue lines) shown
in Figure 5.1(a). (c): Tunneling spectra measured at dif-
ferent points in the strained region. The image reveals
strain-induced Landau levels oscillations. Adapted from
Ref. [239].

Landau level plays an important role in the discussion of the chiral anomaly in Weyl
semimetals [270], and its negative contribution to the magnetoresistance has become
the standard test of the anomaly [271, 272, 78-80].

In the presence of a perpendicular electric field E, the Landau level spectrum
develops a non-trivial dependence with the electric field that renormalizes the cy-
clotron frequency [273, 274]. Whereas the level spacing is independent of E in
the non-relativistic case, the Landau spectrum for the case of Dirac systems is af-
fected by the E-dependent frequency. Noticeable, the whole quantized spectrum
collapses when the electric field is beyond a critical value [274, 275]. The under-
lying mechanism behind this phenomenon is the combination of special relativity
(the recognition that different inertial observers will measure different electric and
magnetic fields) and electrodynamics. This fact was first explored in two spatial
dimensions for the case of graphene in Refs. [274, 275], and it has been also recog-
nized in a different context when analyzing the magnetoresponse of Type-II Weyl
semimetals? [259, 258].

In light of this result, it is natural to ask if pseudo-magnetic fields could also be
affected by this kind of phenomena. In this chapter we will explain how specific
strain patterns will induce the collapse of the pseudo-Landau levels via the same

2Tilted Dirac materials in the presence of a magnetic field were previously studied in 2D organic
compounds [254, 255, 257]. These materials also displayed the characteristic transition from Landau level
quantization to continuous spectra, depending on the orientation between the tilt and the magnetic field.
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mechanism to that previously discussed for the case of real electromagnetic fields.
This phenomenon has already been considered for graphene systems in Ref. [276].
The chapter is organized as follows. First, for completeness, we will review some
basic concepts about Lorentz symmetry and how the electromagnetic field tensor
transforms under the elements of the Lorentz group. Then, Lorentz transformations
will be adopted as a tool to solve the spectrum of Dirac and Weyl semimetals in the
presence of perpendicular electric and magnetic fields. After a brief description of
the classical case (it will be helpful in emphasizing the differences with its relativistic
counterpart), we will show how a perpendicular electric field introduces a non-
trivial dependence on the cyclotron frequency of Dirac materials able to destabilize
the quantized spectrum. We will extend this situation to strained Dirac materials by
considering the different terms induced by strain analyzed in chapter 4. Finally, we
will discuss the physical implications of particular deformations on Dirac materials®.

5.1.1 Lorentz transformations

An intrinsic principle in physics is the invariance of the physical laws in all inertial
reference frames [277, 278]. This symmetry is the first postulate of the special theory
of relativity introduced by Einstein [279], which imposes that any physical theory
must be invariant under Lorentz transformations relating two inertial coordinate
systems*.

At the end of the 19th century, it was already known that Maxwell’s theory of
electromagnetism was inconsistent with the principle of Galilean relativity. Lorentz
transformations were introduced in 1904 by Lorentz, who sought symmetry trans-
formations that kept the Maxwell’s equations covariant [281, 278]. It was due to
Einstein and his theory of special relativity who generalized the covariance of the
physical laws beyond electromagnetic theory.

Mathematically, the Lorentz group is defined as the group of linear coordinate
transformations

xt — 't = A xY (5.1)

that leave invariant the space-time interval ds?> = g,,dx#dx”. This condition is
formally expressed as:

Spo = SN A . (5.2)

3This chapter is based on “Vicente Arjona, Eduardo V. Castro and Maria A.H. Vozmediano, Collapse of
Landau levels in Weyl semimetals, Physical Review B 96, 081110 (R) (2017)".

4General relativity broadens this statement to all reference frames [280]. Within this framework, the
global condition of Lorentz invariance becomes a local symmetry in the presence of matter, the latter
being directly related to the curvature of space time.
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In three spacial dimensions, the Lorentz group is isomorphic to O(1,3) with in-
finitesimal generators [#” and the associated commutation relation:

va’]pa] =1 (gvplya _ gpplvcf _ gvo]yp + gyo]vp) . (53)
From Equation (5.2) if follows that
(A% > 1 detA = +1. (5.4)

The subset of Lorentz transformations having positive determinant and component
AOO > 1 forms a subgroup, called the Proper Lorentz group. Their elements are
connected with the identity by successive infinitesimal transformations. They can
be decomposed into 3D spatial rotations and boosts relating the coordinate systems
of two inertial observers. Discrete operations (parity and time-reversal) should be
added to the set of transformations of the Lorentz group.

Any Lorentz transformation A can be written as a product of rotations R (param-
etrized by three angles 6 = (01, 02, 03) € [0,2n] around the three elementary axes)
and boosts transformations L, which are characterized by the three components of
the rapidity parameter 1 = (11, 12, 13) € (—c0, +00). These elements can be obtained
by exponentiating the generators J#":

Ay = (exp[=iau ] [2])", 55)

where w,, are the parameters of the transformation®. A set of matrices (or linear
operators) satisfying the commutation relations in Equation (5.3) yields, through
exponentiation, a representation of the Lorentz group. In the 4-vector representation,
it is straightforward to see that the 4 X 4 matrix

(T = i(gh67s — "% (5.6)

satisfies the algebra described in Equation (5.3). Upon explicitly expanding Equa-
tion (5.5) in a power series, one can write an explicit representation of the Proper
Lorentz group:

10 0 O 1 0 0 O 1 0 0 O
1 —
Rx _ 0 0 0 ) Ry _ 0 Co 0 S0 ) Rz _ 0 Co S0 0 )
0 0 ¢ 0 —So 0 0 1 0 0 So Co 0
0 0 s 0 Co 0 -s 0 0 Co 0 0 0 1
*The tensor w,y is related to the usual rotation 6 and rapidity n parameters by w;j = —wji = €;jk ok

and wo; = —wio = 1.
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and
y -y 00 y 0 -y 0 y 00 -yB
Lx:—y[;’ y oolLy: 0 1 0 o,LZ: 0 1 0 O,
0 0 10 —yB 0 y 0 0 01 0
0 0 0 1 0 0 0 1 -y 0 0 ¥
(5.7)

with cg = cos 0, s¢g = sin 0 and y = 1/4/1 — p2. In deriving the boost transformations
L;, we have replaced the rapidity term 7 by the Lorentz factor y and the velocity
parameter 8§ = v/c, which are related to n by:

el=y+vyB. (5.8)

The covariant formulation of any theory makes it explicitly Lorentz invariant;
the equations of motion derived from a Lagrangian that is a Lorentz scalar will
be systematically invariant under Lorentz transformations [27]. This result stems
from the principle of least action: if Lorentz transformations leave the Lagrangian
unchanged, the transformed extremum of the action will remain an extremum.

5.1.2 Electromagnetic field tensor and special relativity

Before the formulation of special relativity, Lorentz invariance was already discussed
in the context of classical electromagnetism: Maxwell’s theory of electromagnetism
was incompatible with Galilean invariance. The laws describing classical electro-
magnetism can be written in a manifestly covariant language by means of a gauge
and Lorentz invariant Lagrangian (in the absence of charge sources):

1
LEM = _MFFVF,LWI (59)

where the electromagnetic field tensor is defined as F,, = d,A, — d, Ay in terms of
the electromagnetic gauge field A,. The explicit form of F#" as a function of the
electric E and magnetic field B is:

0 -Ei/c -Ey/c E:/c
Ex/e 0  -B, B,
E,/c B, 0  -By
E./Jc -B, By, 0

FHY = (5.10)

One can easily recover the traditional Maxwell’s equations by applying the Euler-
Lagrange equations to Equation (5.9) with respect A ;.
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Even though the Lagrangian formulated in Equation (5.9) is a Lorentz scalar (the
physical laws will be the same for all inertial frames), the physical observables of the
theory will depend on the reference frame where they are measured. The electric
and magnetic fields will have different magnitudes for two inertial observers. Using
the expressions obtained in Equation (5.7), the electric and magnetic fields measured
in different inertial frames moving at relative velocity v are related by the equations:

E, =
E, =y(EL+VvXB), (5.11)
B, =B
B, =y (BL-1/c*vxE). (5.12)

As anticipated before, the electric and magnetic fields, like the majority of physical
quantities, are relative to the reference frame: an electric field measured by one
observer appears to be a magnetic field to another, and vice versa. Electromagnetic
vectors E and B do not exist as independent entities, but their decomposition into
electric and magnetic components depends on the relative movement of the observer.

5.2 Collapse of the Landau levels

In what follows, we will present the derivation of the Landau levels collapse in
perpendicular electric and magnetic fields to fix the notation and to pave the way
for the discussion of strain in the next section. The case of perpendicular, uniform
E and B has been already discussed in tilted Weyl semimetals when analyzing their
optical conductivities and magnetic properties in Refs. [258, 259]. We will begin the
discussion by reviewing the behaviour of non-relativistic matter in perpendicular
magnetic and electric field.

5.2.1 Hall regime in non-relativistic electrons

The Hamiltonian for nearly free, non-relativistic electrons in the presence of an
external, uniform electromagnetic field is:

1 2
H=5—(p—qA)° +q¢, (513

where m is the effective mass, A is the vector potential and ¢ the scalar potential.
Without loss of generality, we can choose the y-axis (z-axis) along the direction of
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the electric (magnetic) field. Therefore, the scalar potential can be cast as:

¢(y) = -Ey. (5.14)

By choosing the gauge A = —B(y, 0, 0) and considering particles with charge g = —e,
Equation (5.13) becomes:

1 1

H=oo [;;5 + h2k§] + 3mOy — kel + eEy, (5.15)
with I = 4/i/eB the magnetic length and @, = eB/m the cyclotron frequency of the
non-relativistic system. Equation (5.15) can be rewritten as:

H=-1 21 m22] + mde(y = o )? + ek 2E - o2 (5.16)

- 2m py z 2 We y (ka X'B 2 d :

where we have introduced ¢y, = kxl%3 — v4/@. and the drift velocity v; = E/B. The
resulting expression is the Hamiltonian of a quantum harmonic oscillator centered

around the coordinate @ , where the spectrum has been shifted by the effect of the
electric field. The energy levels are given by:

Zkg

2m

1
enzhd)c(n+—)+

m. s
5 +epi E+ >V = 0,1,2,... (5.17)

Apart from a rigid shift of the bands, the electric field gives rise to a linear dependent
term on k,, as shown in Figure 5.2. The spectrum is organized in evenly spaced
bands that disperse linearly in momentum k,. The eigenfunctions are still given by
the harmonic oscillator solution
() = eikxx pikzz 1 e_(y_%)z/léHn [w] ) (5.18)
VLiL; \/2"1’[!711/213 i

but now the equilibrium position is centered at kxl%3 —04/@c.

5.2.2 Hall regime in Dirac and Weyl semimetals

As mentioned in chapter 1, the Dirac equation splits into two equations (choosing the
Weyl representation for the matrices) in the massless case, with the wave-functions
representing Weyl fermions of opposite chirality. Around a single Weyl node, the
Weyl semimetal is a Lorentz invariant system with the velocity of light being replaced
by the Fermi velocity vg. The minimal low-energy model characterizing a Dirac
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Ficure 5.2: Schematic representation of the energy dispersion of
Landau levels in the presence of an electric field E (solid
lines) and without the electric field (dotted lines) for
k; = 0. The former levels are not flat but disperse linearly
as a function of the conserved momentum k.

material in the presence of uniform electric and magnetic fields is:
L= iyt (9, +i14,) v, (5.19)

where x° = t/vp, x' =1, Ag = ¢/vp, A = A, g = —e and p* are the Dirac matrices in
the Weyl representation. The covariant structure of Equation (5.19) permits to solve
the problem exactly; as we see in section 5.1.1, a boost in the direction perpendicular
to E and B with the appropriate velocity leads to a reference frame where the electric
field E’ vanishes. Therefore, the spectrum of a Weyl semimetal in perpendicular
E and B fields can be obtained by solving the problem in the primed frame (with
magnetic field B’) and boosting back to the original coordinate system.

We choose the Landau gauge A = —B(y, 0, 0) and the scalar potential ¢p = —Ey to
represent a uniform magnetic and electric field pointing in the z- and y-directions,
respectively. Since k, is a good quantum number, the system can be treated as a
collection of 2D Dirac layers in perpendicular E and B fields.

If the system satisfies the condition vgB > E, we can always move to a reference
frame where the electric field vanishes. Under a boost in the x-direction with velocity
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v, the vector fields E and B transform as:

E;, = y(Ey - vB:) (5.20)
B, = y(B. - v/v3E,), (5.21)

as it was described in Equations (5.11) and (5.12). When the parameter v coincides
with the drift velocity vy = E/B, the second observer experiences only a reduced
magnetic field of magnitude B, = [1 — ?]'/?B,, where f = v;/vr. The energy
spectrum of the primed system in the presence of a magnetic field has already been
discussed in Equation (2.28) and is given by:

€l = sign(n)\/hzwgzml +ovih?k:  neZm#0
€, = —svghk;, (5.22)

where w, = V2vpeB/h is the cyclotron frequency for Dirac systems. To recover the
spectrum in the original frame, we have to apply the inverse boost transformation
to the energy-momentum quadrivector P#, whose zeroth component represents the
energy of the system:

E/Z)F
p# = . 5.23
) o

Applying the inverse transformation P# = (A™1)"

coordinate system reads:
€ = /1 — B%€’ + vphpPky. (5.24)

Substituting the primed energies into Equation (5.24), the final expression is:

,P", the spectrum in the original

en = sign(n)\/fﬂwg(l — B2 + 02R2k2(1 — f2) + ophpk
€0 = —SZ)Fﬁkz 1- ﬁz + Z)Fﬁﬁkx. (525)

In contrast to non-relativistic electrons, where the only effect of the electric field was a
rigid displacement of the dispersing levels, Dirac materials (including graphene [274,
275]) present a non-trivial dependence of the cyclotron frequency with the electric
field. The Landau level spacing scales with the electric field as (1 — $2)3/2, whereas
the spectrum is quantized in equally spaced levels in the non-relativistic case. The
evolution of the cyclotron frequency with the applied electric field is shown in
Figure 5.3. From Equation (5.25) one concludes that when the electric field reaches
the critical value E = vgB (which amounts to = 1), all the Landau levels collapse
to a single, linearly dependent band:
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(e—&)/€

0.0 0.2 0.4 0.6 0.8 1.0

E/o/B

Ficure 5.3: Evolution of the Landau level spectrum with the applied
electric field for k; = 0. As can be see, all Landau levels
collapse to a single band €, = €9 = v hky for the critical
value E = vgB. €, is the cyclotron frequency ficwc.

;1311,1} €, = vghky (5.26)
The collapse described in this section is different from the overlap of Landau
levels occurring in a non-relativistic electron gas [282] due to a broadening of the
level spacing on increasing the electric field, filling the gaps between adjacent states.
It is a characteristic of the Dirac matter that will take place not only in Weyl but also
in Dirac semimetals. Although indications of collapse of Landau levels have been
reported experimentally in graphene structures [283, 284], at the time of writing, we
do not know of similar attempts in 3D samples.

5.2.3 Magnetic and electric regimes

A comment on the applicability of the boost transformation is in order. The disper-
sion relation described in Equation (5.25) has been calculated by moving to a frame
of reference where the electric field vanishes. One can always perform such trans-
formation provided that vgB > E, which amounts to the condition = v4/vr < 1,
where the Fermi velocity replaces the speed of light c. The interpretation of this
requirement is simple: the relative velocity of an inertial frame cannot exceed the
speed of light.

One may naturally wonder what occurs when the magnitude of the electric field
is beyond this limit. In this regime we cannot apply the aforementioned transfor-
mation (we would get f = v;/vr > 1), but one can find a Lorentz transformation to



5.3. Collapse of strain-induced Landau levels 77

a coordinate system where the magnetic field vanishes [278], as illustrated in Equa-
tion (5.12). This limit is known as electric regime, where the electronic orbits are open
trajectories (hyperbola) and the spectrum ceases to be quantized. Below the critical
value we are in the magnetic regime, characterized by closed orbits where the trans-
formation applied in section 5.2.2 remains valid. As we increase the electric field,
the area of these closed trajectories increases, squeezing the level spacing between
bands. At the critical value the area becomes infinite, collapsing the Landau levels.

5.3 Collapse of strain-induced Landau levels

In this section, we will review the relation between lattice deformations and elec-
tromagnetic fields and explore the collapse of the strain-induced Landau levels in
particular strain configurations due to the deformation potentials.

As explained in chapter 4, elastic deformations that change slowly on the lattice
scale are parametrized by the tensor #1;; = dju;, a function of the displacement vector
u. With the help of symmetry arguments, we were able to characterize the smooth
variations of the distance between Weyl nodes as gauge fields, A; = 11;;b/.

In addition to the vector A, another important electron-phonon coupling in elas-
ticity theory is the deformation potential ® = Tr[u;;]. Given an infinitesimal volume
element dV, the elements of length dx; along the principal axes of the symmetric
strain tensor u;; = il[; ;| become, after the deformation, dx; = (1 + u;;)dx; [243].
Ignoring higher-order terms, the resulting volume is proportional to the trace of the
strain tensor:

dv’ = (1 + U1 + uxp + ugg)dv. (5.27)

The deformation potential is a scalar field that couples to the electron density in the
effective Hamiltonian. As discussed in chapter 4, it is of the same order as the elastic
gauge field in a derivative expansion. Volume changes in the unit-cell volume have
significant consequences on the local electronic densities, leading to variations in the
chemical potential and shifts in the energy bands [8].

Considering the simplest platform of two Weyl nodes separated in momentum
space, the low-energy description around one of the Weyl cones coupled to the lattice
deformations is:

Hg = svpo'(p; +scA;) + gI, (5.28)

where @ is the strain-induced scalar potential and g and ¢ are material-dependent
coupling constants. The dimensionless Griineisen parameter c is typically of order
1 in most materials [285, 286]. In what follows, we set ¢ = 1 and remove it from the
discussion. The deformation potential couples as a scalar field that can generate,
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under non-uniform deformations, a strain-induced electric vector E¢; = —g/e VO(r).
Likewise, elastic gauge fields give rise to pseudo-magnetic fields Be; = /e V X A(r).

As an illustrative example, we assume a Weyl semimetal with two Weyl nodes
separated a distance 2b in the x-direction. A space dependent uniaxial configuration
such that

e B
Uex = —%% (5.29)
Uyy = Yzz =0, (5.30)
will give rise to an elastic vector potential A = —e//A B(y,0,0). This term describes

a uniform pseudo-magnetic field of magnitude B in the z-direction that quantizes
the spectrum into Landau levels. Simultaneously, a scalar potential originates from
the strain configuration © = —%%, inducing an electric field E = %% along the
y-direction. This scenario mimics the situation discussed in section 5.2.2; the elec-
tric field introduces a non-trivial dependence on w. and the spectrum is given by
Equation (5.25). The condition for the collapse E > vgB translates into a constraint

on the values of the coupling constant associated with the deformation potential:
g > hopb. (5.31)

Interestingly, the constraint on the coupling ¢ is independent of the strength of
the deformation, being solely a function of the intrinsic parameters of the mate-
rial. Although there are not yet measurements of the electron-phonon couplings
in Weyl semimetals, using reasonable values we see that the condition will be eas-
ily attainable in different samples®. For instance, the separation between nodes
is estimated to be b ~ 0.08 A~! in Weyl semimetal TaAs, with the Fermi velocity
vF ~ 1.3 X 10° m/s [287]. These values give a lower bound for the elastic coupling
constant of g > 0.07 eV, meaning that the samples will be typically affected by the ef-
fect described above’. The estimated value in graphene structures (taking screening
into account) is of the order of 4 eV. Thin films of Weyl semimetals, more suitable
for straintronics, are not expected to be as deformable as their 2D counterpart, but
the required value is much smaller.

¢The numerical values used for this calculation have been obtained from Refs. [287, 288]. Applying
these parameters, one notices that the resulting condition for the collapse of the Landau levels returns
feasible values for the coupling constant.

7At the time of writing, Weyl semimetal RhSi displays the largest momentum separation of chiral
fermions, b = 2.33 A~1 [288]. Assuming a Fermi velocity similar to the one of TaAs, the lower bound for
the coupling constant of this material reads g > 2.42 eV.
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FiGure 5.4: Schematic representation of the proposed setup. Films
of Weyl semimetal organized in a rectangular geometry.
The external deformation bends the original system into
a circular arc in the x — y plane. This configuration
is able to induce both pseudo-magnetic and pseudo-
electric fields, the pseudo-Landau level spectrum col-
lapsing when the critical value is reached. Adapted from
Ref. [166].

5.3.1 Particular strain proposals. Discussion on possible experi-
mental setups

Other strain configurations will also be affected by this phenomenon, which is par-
ticularly relevant for a correct interpretation of the experiments [239]. The best
experimentally accessible devices will be obtained by bending thin films of Weyl
semimetals, a generalization of the strain configuration first suggested in Ref. [252]
for graphene sheets. The physical consequences of pseudo-magnetic fields with
realistic strain configurations on Dirac and Weyl semimetals were considered in
Refs. [165, 166]. In what follows, we will study the effect of the deformatnion
potential on the physics analyzed in these works.

As mentioned in chapter 4, films and wires realizations of Dirac matter are
excellent devices to test strain-induced phenomena. We consider a cubic lattice
model (the system can be thought as a collection of rectangular staggered layers)
where the coordinates are fixed with respect to the parameter b in such a way that
the Weyl nodes are separated a distance 2b in the x-direction. Normal forces are
applied at the boundaries of the crystal along the x-axis as sketched in Figure 5.4,



80 Chapter 5. Collapse of Landau levels in Weyl semimetals

leading to a stretching geometry characterized by the deformation:

u* = up(2xy + Cx)
u¥ = uy [-x* = Dy(y + C)]
u* =0, (5.32)

where 1 and D are constants that depend on the intrinsic properties of the material;
1y defines the maximum stress and D is a relation between the Lamé coefficients.
C parametrizes a family of deformations giving rise to the same pseudo-magnetic
field. The strain configuration described in Equation (5.32) induces a non-uniform
elastic gauge field

Ay =l b* = upRy + C)b

Ay =il b* = =2upxb

A, =0, (5.33)
that mimics a uniform magnetic field B = —//e 4u,b Z able to create energy gaps in

the spectrum. In addition to the pseudo-magnetic field, this bending configuration
also contains a dilatation that produces a deformation potential

®(1) = up(1 — D)2y + C) (5.34)

equivalent to a constant electric field E = —g/e2ug(1 — D)y perpendicular to the
magnetic field. As in the above example, the collapse of the pseudo-Landau levels
is translated into a restriction for the values of the coupling constant g:

ZJFb

> . .
§ 2 2h— (5.35)

For thin films of Cd3As; such as the one suggested in Ref. [165], a coupling constant
g > 0.32 eV would be enough to collapse the predicted oscillations.

5.3.2 Antisymmetric contributions to the deformation potential

Being proportional to the trace of the strain tensor, deformations conserving the
volume of the sample will not generate a deformation potential stemming from the
strain tensor u;;. This is the case, for example, of the torsional strain discussed in
Ref. [165] or the tetra-axial strain in the diamond lattice of Ref. [289]. Nevertheless,
these configurations are still able to generate elastic electric fields by virtue of the
vorticity vector Q = Vxu. As mentioned in chapter 4, the antisymmetric components
of the deformation tensor (related to changes in the relative orientation of the orbitals)
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Neutral line

FiGure 5.5: Schematic description of the geometry used to character-
ize the ripples. Ripples (black dotted line) with length 4
protrudes over the neutral surface. The curvature gives
rise to a displacement vector u = xy/(R — d) along the
y-direction, where x and y are the displacements in the
corresponding axes. Adapted from Ref. [239].

give rise to a scalar term ¢ in the Hamiltonian unrelated to volume changes. This
term, proportional to the product of the vorticity vector and the intrinsic separation
between nodes, £ = Q - b, provides a rotational contribution to the electric vector
Ea = —A/eVE&(r), where A is the coupling constant parameter associated to the
rotational deformation. For the configurations discussed so far in this chapter,
either the product Q - b is zero (such is the case of the bending strain discussed in
Ref. [252] and the tetra-axial strain [289]) or the induced fields are parallel (torsional
deformation [165]).

In a recent experimental work, the emergence of a pseudo-magnetic field and
the quantization of the spectrum into Landau levels on the doped Weyl semimetal
Re — MoTe; was shown [239]. Landau levels were observed in the strained domains
where the lattice deformations induce the formation of topographic modulations
(ripples) on the surface of the sample (see Figure 5.1).

Following the arguments of section 5.3, it is possible to reproduce the condi-
tions that induce the collapse of the Landau spectra with an electric field generated
from the antisymmetric strain. The modulations on the surface introduce a dis-
placement vector u = xy/(R — d)y, where d is the length of the ripple from the
neutral surface and R is the radius (see the schematic representation of the setup
in Figure 5.5). The location of the Weyl points in this system is given by the vector
b = 2m/a,(0,0.18,0.17). Following the low-energy description, this deformation
generates the elastic gauge fields
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Ax=0
_ x
Ay = liyyb? = (R_d)by
A, =0, (5.36)
that give rise to an effective magnetic field
hoby
B = ER_dZ. (537)

Additionally, the corrugations induce a perpendicular electric field

Ak
ceR—dV

= (5.38)
originated from the vorticity vector Q = y/(R — d)z. The critical value E = vgB is
again translated into a constraint on the elastic coupling constants:

by
A > vph —. (5.39)
b:
The condition expressed in Equation (5.39) does not depend on the separation dis-
tance of the nodes (b, ~ b;), but it is given solely by the Fermi velocity. The trace of
the strain tensor gives an additional electric field pointing in the x-direction:
g 1

=-S—x (5.40)

Applying a similar boost in the y-direction, we arrive to the usual condition

g = vphby. (5.41)

5.4 Conclusions and discussions

In this chapter we have analyzed the spectrum of Weyl semimetals in the presence
of a perpendicular electric and magnetic field. Motivated by the recognition that, in
Dirac materials, the presence of a critical electric field (perpendicular to the magnetic
vector) induces a collapse of the Landau levels to a single band, we have extended
this analysis to the case of strained Weyl semimetals. Strain geometries leading to
uniform pseudo-magnetic fields generate, simultaneously, uniform strain-induced
electric fields that fulfill the condition for the Landau levels collapse.

Although there are further proposals leading to uniform magnetic fields, the
results shown in this chapter suggest that the condition for the collapse of the
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pseudo-Landau levels will be translated into a constraint on the coupling constants
determined solely by the intrinsic parameters of the material (the Fermi velocity
and the separation between the chiral points), independently of the geometry and
strength of the deformation.

The results shown in this chapter will also affect the estimation of the pseudo-
magnetic fields induced by strain. The level spacing, which is used to measure the
magnitude of the induced magnetic field, changes with the value of the deformation
potential, as illustrated in Figure 5.3. This can lead to a spread of values when the
magnetic field is evaluated for different points and samples [163, 276]. Thus, this
phenomena should be considered for a correct understanding of STM images of
strained Dirac materials and similar 3D topological insulators [290].

This work can be extended to situations involving more general materials. In
particular, most of the actual Weyl semimetals are inversion broken, meaning that
the chiral Weyl points are separated in energy by the zeroth component of the
vector b¥. In a recent publication [162] was shown that this zeroth component
will be affected by elastic deformations, developing a time component of the elastic
gauge field. This gives rise to a pseudo-electric field that, in contrast to the one
associated with the scalar potential discussed in this chapter, will be axial, coupling
with opposite sign to the two chiralities. The addition of the two terms can lead to
interesting situations where the chiral imbalance is maximized by making the total
scalar potential zero in one of the nodes. Dirac semimetals have been a subject of
intense experimental research in this topic, magnetoresistance measures being used
as experimental evidence of the chiral magnetic effect. Even though these materials
have the nodes located at high symmetry points of the lattice, strain will still induce
a deformation potential that will affect the spectrum of the system in real (and elastic
as suggested in Ref. [171]) magnetic fields.

On the other hand, there are still open questions regarding the tilt parameter
and the optical properties of Type-1I Weyl semimetals. The former has been shown
to play an equivalent role of an electric field in Dirac materials, giving rise to a
collapse of the spectrum for Type-II Weyl nodes as a function of the angle between
the magnetic field and the tilt parameter, regardless of the strength of the magnetic
field [259, 258]. Since the tilt parameter is affected by the lattice distortions, it would
be interesting to study the effect of strain on the transitions between the electric and
magnetic regimes. From a theoretical point of view, it could be possible to generate
this type of phase transitions by tailoring the magnitude of the tilt parameter and
its orientation with the magnetic field, making it feasible to induce a collapse of the
Landau levels in a Type-1 Weyl semimetal [258].
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Chapter

Conclusions

Dirac matter has become an essential element in modern condensed matter theory.
The realization of Dirac particles in solid-state materials has not only brought novel
fundamental phenomena, but also has contributed to the exchange of concepts and
methods between different fields of physics. The findings in this thesis contribute to
the understanding and development of two interesting topics in Dirac matter physics;
anomaly-induced transport phenomena and the interplay of lattice deformations and
the electronic properties of the system.

In the first part of this thesis we have focused on the unconventional thermal
properties of Dirac materials. Both the finite thermoelectric coefficient at zero tem-
perature and the resulting violation of the Mott relation at the conformal limit are
anomaly-related transport phenomena characteristic of these physical systems. Vio-
lation of the phenomenological relations has been known to occur for a long time in
materials where long-range Coulomb interactions are the fastest time scale. How-
ever, our results are independent of interaction mechanisms, lying on the low-energy
effective structure of Dirac electrons.

The second general topic discussed in this thesis involves the interplay between
mechanical and electronic properties in Dirac and Weyl semimetals. The electronic
properties of the low-energy excitations are intimately related to the lattice structure
of Dirac materials. We have used a symmetry approach to construct the general
effective action describing the various electron-phonon couplings. An interesting
contribution to this field has been the recognition that deformations affecting the
relative orientation between atomic positions lead to effective interactions absent in
two-dimensional materials. These new results enrich the possibilities of tailoring
the electronic excitations by means of lattice distortions. Remarkably, the vorticity
vector induces a deformation potential in volume preserving deformations.
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We have also considered the collapse of the Landau level spectrum under the
influence of perpendicular electric and magnetic fields (both fictitious and real). We
have strained the analogy between real and elastic fields and showed that certain
strain geometries generating uniform magnetic fields will induce, simultaneously,
an electric field able to destroy the quantized structure of the system due to the
same process occurring with real fields. The condition for collapse is translated
into a constraint of the coupling parameters, independently of the strength of the
deformation.

We conclude this thesis by discussing the promising expectations of current
findings in the research field of topological Dirac and Weyl semimetals. Dirac
materials not only provide a fruitful basis for the discovery of novel, unconventional
physical phenomena, but they also possess non-trivial topological properties that
open exciting new pathways to circumvent the current limitations of conventional
materials. We firmly believe that topological systems will continue being one of the
most inspiring research lines, and will also profoundly influence and complement
our future technologies.

We would like to finally make a remark on the relevant role played by these
materials in giving new insights into our academic approach. In the current times,
where the different physical fields are increasingly specialized, the gap among the
different disciplines has become wider, and the subject has begun to loose its unity.
Examples as those exposed throughout this thesis have special relevance nowadays.
The models presented belong to an unified framework where the Dirac equation
lies at the center of the theory, allowing to describe different phenomena with the
same language. This establishes robust connections with seemingly unrelated areas
of physics, from condensed matter and the study of crystalline structures to the
fundamental level of high energy physics and topological spaces. Dirac materials
have provided an accessible door to test high energy processes in crystalline struc-
tures, proving that the laws of physics are not intrinsically related to the scale of the
system, but they should rather be considered in a more universal perspective. It is
necessary to reformulate our approach and start a new scientific culture with new
and proper questions, encouraging an interdisciplinary research activity to reach a
robust development in science.



87

Chapter
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Los materiales de Dirac se han convertido en una pieza fundamental en la teoria
moderna de la materia condensada. La realizacién de particulas de Dirac en sistemas
de materia condensada no sélo ha traido nuevos fendmenos fundamentales, sino
que también ha contribuido al intercambio de conceptos y métodos entre diferentes
campos de la fisica. Los resultados de esta tesis contribuyen a la comprensién y
desarrollo de dos temas interesantes en la fisica de la materia de Dirac; fenémenos
de transporte inducidos por anomalias y la interaccién entre las deformaciones de
la red y las propiedades electrénicas del sistema.

En la primera parte de esta tesis nos hemos centrado en las propiedades térmicas
no convencionales de los materiales de Dirac. Tanto el coeficiente termoeléctrico
finito a temperatura cero como la violacién de la relacién de Mott en el limite
conforme son fendmenos de transporte relacionados con las anomalias caracteristicos
de estos sistemas. Es ampliamente conocido que las relaciones fenomenolégicas no
se satisfacen en materiales donde las interacciones de Coulomb de largo alcance son
la escala de tiempo mas rdpida. No obstante, nuestros resultados son independientes
de estos mecanismos de interaccién, ya que se basan en la estructura de baja energia
de los electrones de Dirac.

El segundo problema general del que trata la tesis esta relacionado con la inte-
raccién entre las propiedades mecénicas y electrénicas de los semimetales de Dirac
y Weyl. Las propiedades electrénicas de las excitaciones de baja energfa estdn
intimamente relacionadas con la estructura de la red de los materiales de Dirac.
Hemos utilizado un enfoque simétrico para construir una accién efectiva general
que describe los diversos acoplos electrén-fonén. Una contribucién interesante a
este campo ha sido el observar que las deformaciones que afectan la orientacién
relativa entre las posiciones atémicas dan lugar a interacciones efectivas ausentes en



88 Chapter 7. Conclusiones

materiales bidimensionales. Estos nuevos resultados enriquecen las posibilidades
de modificar las excitaciones electronicas a través de las deformaciones de la red. No-
tablemente, el vector de vorticidad genera un potencial de deformacién en aquellas
configuraciones que preservan el volumen del sistema.

Finalmente, hemos considerado el colapso de los niveles de Landau bajo la in-
fluencia de campos eléctricos y magnéticos perpendiculares (tanto ficticios como
reales). Usando la analogia entre los campos reales y eldsticos, hemos demostrado
que ciertas configuraciones de deformacién que dan lugar a campos magnéticos
uniformes producen, simultdineamente, campos eléctricos capaces de eliminar la
estructura cuantizada del sistema mediante el mismo mecanismo visto en campos
reales. La condicién del colapso se traduce en una restriccién de los parametros de
acoplo, independientemente de la fuerza de la deformacién.

Los materiales de Dirac no sélo ofrecen una base fructifera para el descubrimiento
de nuevos fenémenos fisicos, sino que también poseen propiedades topoldgicas no
triviales que abren nuevas vias para sortear las limitaciones actuales de los materiales
convencionales. Creemos firmemente que los sistemas topoldgicos continuaran
siendo una de las lineas de investigacién mas estimulantes e influiran profundamente
en nuestros sistemas tecnoldgicos futuros.

Finalmente, nos gustaria destacar el papel relevante que juegan estos materiales
a la hora de proporcionar nuevos puntos de vista a nuestro enfoque académico. Ac-
tualmente, los diferentes campos de la fisica estdn cada vez més especializados. La
brecha entre las diferentes disciplinas es cada vez mayor, y el 4rea ha comenzado a
perder su unidad. Los ejemplos expuestos a lo largo de la tesis resultan actualmente
de gran importancia. Todos los modelos presentados pertenecen a un gran marco
unificado cuyo nexo es la ecuacién de Dirac, lo que permite describir fenémenos
totalmente diferentes con el mismo lenguaje. Esta unién establece conexiones ro-
bustas entre areas de la fisica aparentemente no relacionadas, desde el campo de la
materia condensada y el estudio de redes cristalinas, hasta el nivel fundamental de
la fisica de altas energias y espacios topolégicos. En este sentido, los materiales de
Dirac han proporcionado una via accesible para experimentar fenémenos de altas
energias en estructuras cristalinas, demostrando que las leyes de la fisica no estan
intrinsecamente relacionadas con la escala del sistema, sino que deben considerarse
desde una perspectiva mas universal. Es necesario reformular nuestro enfoque y
comenzar una nueva cultura cientifica con nuevas y apropiadas preguntas, fomen-
tando una carrera investigadora interdisciplinar para alcanzar un robusto desarrollo
de la ciencia.
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Topological aspects of crystalline
lattices. Berry phase

In this appendix we review some basic concepts related to the topological character
of solid-state materials. The specific case of a Weyl node will be studied in detail.

A.1 Berry phase on crystalline solids

The topological nature of a crystalline lattice is captured by the Bloch state vectors
|1, (k)), where n labels the index band, and the Berry phase 7. In crystalline solids,
the Berry phase is computed from the k-dependent Hamiltonian H(k), which is
obtained after performing a unitary operation H (k) = exp (—ikr) H(p) exp (ikr), and
their wave-functions |u,(k)). A quantum state |u,(k)) is defined up to an arbitrary
complex phase, and cannot be distinguished from A|u,(k)), with A = ei®. The latter
corresponds to the equivalence class

[lun (k)] = {Alun(k)) | A € UD)}, (A1)

where the vectors from the ray are normalized. Therefore, at each point of the
Brillouin zone there is a complex vector space or fiber V, x whose vectors |u,(k)) €
Vi, x satisfy the relation H(k)|u,(k)) = E, (k)|u,(k)). We can study the variation of
the fiber V}, x in the reciprocal space by selecting an arbitrary element |u,(k)) at a
given point and parallel transport it along a continuous path k(s), as indicated in
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FiGure A.1: (Left): Schematic representation of the variation of the
fiber V,, x along the continuous path k(s) in the recipro-
cal space. If the topological space has a non-trivial cur-
vature, the state will acquire a phase y; proportional
to the connection Ajy (k). (Right): Degeneracy points
must be excluded when defining the topological space.
Closed path surrounding those singularities cannot be
continuously deformed.

Figure A.1. The parallel transport condition is formally written as [50]:

<un(k). Lun(k)> =0. (A.2)

dk(s)
Equation (A.2) defines a connection A, (k) in the bundle structure [96, 50, 291]. This
connection is explicitly given by the vector:

An(k) = =i (k)| Vicun (k). (A.3)

If the variation is performed along a closed path C, the vector |u,(k)) acquires a
geometrical phase

Vo = ji dk A, (k). (A4)

Berry introduced his now eponymous Berry phase in 1983 after asking which phase
factor would acquire an eigenstate that has been adiabatically transported around
a closed path in the parameter space [62]. Later, Simon provided in his work [291]
a topological significance to this phase and manifested its relation with the integer
values of the quantum Hall effect introduced by Thouless et al. [54].
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The connection A, (k) defined on the complex bundle is similar to an abelian
gauge field. The field strength of the Berry connection,

Fu (k) = =iVie X (u (k)| Vicun (K)), (A.5)

known as Berry curvature, is manifestly gauge-invariant under a gauge transforma-
tion Ay, (k) = Ay,(k) + Vip(k) (with ¢(k) an arbitrary function) and plays the same
role as a magnetic field in the reciprocal space. Stoke’s theorem allows us to recast
the Berry phase in the form:

Vi = /S ds F,(k), (A.6)

where S is any surface enclosed by the curved C. The previous result manifests
the analogy with electrodynamics, as y;, is the phase acquired by the wave-function
as it moves along a closed path in a region with a magnetic field % (k), similarly
to the Aharanov-Bohm [292]. The Berry phase is independent of the chosen path,
it being an intrinsic property of the geometry of the band structure. This fact is
illustrated when computing the Berry curvature associated to the eigenstates of a
degeneracy point. If the closed loop surrounds a band-crossing point, the Berry
connection has a non-vanishing curvature. Degeneracy points have a non-trivial
topology, as they represent singular points that must be excluded when defining the
topological smooth manifold. A path enclosing one of these singularities cannot be
continuously deformed into a different one, as they belong to different equivalence
classes of homeomorphisms (see Figure A.1). We will see in what follows that the
Berry curvature of a Weyl node is singular at the crossing point and has the form of
a magnetic monopole in reciprocal space with a quantized value of the Berry flux.

A.2 Berry phase of band-crossing points. Monopoles
of Berry curvature

The Berry curvature of a Weyl node can be derived from the general Hamiltonian:
Hy = xo'k;, (A7)

where vg = 1 has been assumed for simplicity, and yx is the chirality of the node.
Away from the degeneracy points k., the Hamiltonian described in Equation (A.7)
has two energy values E. (k) with their corresponding eigenvectors |u.(k)). For the
conduction and valence band, the eigenfunctions read:

in 8 o)
|u_<9,¢)>x=+1=( 2 ) Iu—(G,qb))X:-l:( o052 ) (A8)

—cos Zei® +sin Zei®
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and

0 in 0
|u+<6,qb>>X:+1=( €082 ,-@) |u+<6,qb>>xz_1=( S 2 m) (A9)

in < — Zelq
+Sll’12€/ C082€

where the components of the momentum vectors are expressed in terms of the angles
0, ¢ of the spherical coordinates. Hence, the Berry curvature is:

nx .

@ek. (AlO)

Fux (k) =
The Berry curvature has the form of a magnetic monopole. The sign of the monopole
is determined by the chirality of the node. Therefore, Weyl points are sources and
sinks of Berry curvature [63]. The monopole charge N is defined as the Berry flux
threading a sphere surrounding the Weyl node:

Ny = 1 /dS Fn,x(k) =nx. (A.11)
2n S

Equation (A.11) proves the strong connection between the stability of the nodes and

their topological character: a Weyl node cannot be eliminated unless it merges with

an oppositely chiral charge, situation that is realized in the so called Dirac semimetal.

The Nielsen-Ninomiya theorem states that the sum of winding numbers at the
points k, where the degeneracies are located is always zero [65, 81]. The monopole
charge N is the winding number associated with the continuous mapping k — n(k),
where n(k) = k/k is the unit vector, from the Brillouin zone to a unit 2-sphere [50].
The winding number w(S,) can be expressed as the Berry flux over the sphere S,
surrounding the point k, where the mapping is ill-defined, definition that results
identical to the integral formula of the monopole charge defined earlier in Equa-
tion (A.11). In this way, the winding number at each linear band-crossing points
is equal to the chirality of the node, w(S,) = x. The Nielsen-Ninomiya theorem
implies that the sum over chiral charges must vanish, meaning that the number of
positive and negative chiral gapless modes in the parameter space must be equal.
Therefore, band-crossing points always come in pairs of opposite chirality.

The topological objects defined over this appendix have been studied for the
particular case of crystalline lattices. Nevertheless, their geometrical significance is
beyond this particular case, and they can be immediately extended to other topo-
logical manifolds by simply replacing the crystal momentum by the corresponding
parameter.
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Thermoelectric coefficient.
Result from a Kubo formula

In this appendix we provide details about the calculation of the different linear
response coefficients that appeared throughout chapters 2 and 3. First, we will
review the derivation of the exact eigenstates representation, commonly referred as
Lehmann representation, for the case of non-interacting electrons. Secondly, we analyze
the particular case of thermoelectric tensor and sketch the key steps in order to obtain
Equation (2.45), result that will also prove useful for chapter 3.

B.1 Exacteigenstates representation for non-interacting
particles

A deeper insight into the structure of the response function described in Equa-
tion (2.2) is obtained by expanding the operators in a complete set of eigenstates of
the unperturbed Hamiltonian Hy'. In the case of non-interacting electrons, a simpler
expression may be achieved if the operators are written in terms of single-particle
states. For concreteness, consider two operators in the form:

At) = ) Aagal(Bag(h),
ap

B(t) = ) Bagal(t)ag(t), (B.1)
ap

The discussion will be partially based on the descriptions found in Refs. [176, 49].
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where af, (ap) is the creation (annihilation) operator of single-particle states that
diagonalizes the unperturbed Hamiltonian:

Hy = Z Eqata,, (B.2)
o

and Aug, Bap are the matrix elements of the single-particle operators A and B,
respectively. Our goal is to calculate the expectation value of A in the presence of
an external perturbation F(t) that couples linearly to B, i.e., Hpert(t) = F(t)B. In
this context, the interaction picture emerges as a natural framework to describe such
perturbation. Working with this formalism, the time-dependence of the operators
a, reads [49]:

ag(t) = eiHot/f g p=iHot/h — o=iEat/hy

al (1) = eiHot/h gt o=itot/l — o+iEat/hy (B.3)

Using the identities discussed above, the response function described in Equa-
tion (2.2) takes the form:

NOEELDY / At ©(t — ') AqgBys e BB e BB I ([atay, afas|) . (B4
aByo’y

The commutator appearing in Equation (B.4) is solved by making use of the anti-
commutation relation of the single-particle operators a,:

[alaﬁ,a;ﬂaé] = 6ﬁya;a§ - 6a5a;r,a/;. (B.5)
After performing its average in the equilibrium ensemble, Equation (B.5) becomes:
<[a;a5,a;ﬂa5]>o = (10 — 1) 04508y, (B.6)
where 1, = [exp [B(Eq — p)] + 1]7! is the Fermi distribution function. Substituting

Equation (B.6) into Equation (B.4), the linear response function for non-interacting
electrons reads:

x(t) = —% Z / dt’ ©(t — t')AagBpae e EDNM [, — ng] . (B.7)

ap "

Making use of the time invariance, we take the Fourier transform of the above
expression. It should be noted that the function presents an oscillatory behaviour at
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infinite times. To guarantee the convergence of the time-integrals, it is customary to
add a relaxation mechanism in the form of e~!=*). This mechanism is analogous to
consider that the perturbation was adiabatically switched-on at t = —co. Finally, the
linear response function is given by the following expression:

AaﬁBﬁa
= li - . B.
@ 0 ;ﬁ: E, —Eg + hw + ihn [0 = ] (B38)

It is important to stress that Equation (B.8) contains matrix elements computed
between single-particle operators and the difference between single-particle ener-
gies [176].

B.2 Thermoelectric coefficient. Current and energy-
momentum operators

In this section, we detail the calculation of Equation (B.8) for the particular case of
the thermoelectric coefficient. As discussed in the main text, when the system is
exposed to a magnetic field perpendicular to an applied temperature gradient, it
generates a transverse electric current perpendicular to both fields. Considering the
model discussed in section 2.3.1 (the z-axis is chosen along the orientation of the
magnetic field while the direction of the thermal gradient is taken as the y-axis), the
linear response thermoelectric coefficient x*¥ is given by:

4

et = T [t [ar- oot - )@ n, ™ a M), ®9)

where the current and energy-momentum operators are written as:
J¥(xr,t) = esvpWi(r, t) 0¥ W(r, t), (B.10)
—ih « “
T%(x, t) = % [vﬂ/*(r, HI9y W(r, t) —sWi(r, t) 0¥ W(x, t)| . (B.11)

As mentioned in the previous section, within the exact eigenstates represen-
tation the matrix elements are computed between the single-particle states ¢ that
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diagonalize the unperturbed Hamiltonian?:

@D = ) (@ (B ana(®) (B.12)
km, In
and
” 0 ” ”
T%(-q,t") = > L7 (@ ak, () an(t”). (B.13)
K, Av

The matrix elements read:

. 1 i
]lfm,ln(q) = W /dre 1q SUge (P;m(r) (jx(P]n(r)/ (B14)
(@ =2 [dretiungt () |-inopdy | pae)
i, dv (V= 2 (2m)3/2 re " Pxplr) | THhUpldy | @avlr
11

+ ZW /dr e”qr(pfw(r) [s0¥ (Ex,u + Exv —2u) | @av(x),  (B.15)

with @i, given by Equation (2.29):

Xk, ms
pikex pikez p=(y—kel2 7212
V2M-1(M-1)im /21

T.L 2 1 y—kxlﬁ]
VEsL. \/akzms +1 \2M M 21 Hu [ s

By integrating Equations (B.14) and (B.15) over the x-z plane, one obtains a
relation between the internal wave-vectors: 1 = k+ q and A = k¥ — q. Introducing
this inside the Equations (B.14) and (B.15) and following analogous steps to the ones
presented in the previous section, one can recast the response function as:

y_kxl%; ]

Hp-1 [ I

P (1) = (B.16)

. . 0
)(xy( a)) - lim (27‘()3 lth]lim,kﬂln (q) tk]-/l—qn,km(q) [nkms - nk+qns]
@ n—0* Ko YV (Ekms — Ekz+qzns + ihn)(Ex,ms — Ekz+qzns + haw + ihn)

(B.17)
In the above expression, the denominator is composed by the product of two single-

particle energy differences. It stems from the double integration over time that
appears in the thermoelectric coefficient:

00 t
X o /dtefw<t—t'> / At Ot — 1) !/ MErams~Eresgens i) (B.18)

2To simplify the notation, we have omitted the chirality dependence on the tensor indices. Current
and energy-momentum operators are computed at the same Weyl node.
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The ambiguity at infinite times is fixed by adding the relaxation term e 1¢=*") in-
side the integrand. Solving the time-integrals, one obtains the result depicted in
Equation (B.17).

B.3 Matrix elements: product of Hermite polynomials

The matrix elements described in Equations (B.14) and (B.15) are written in terms of
Hermite polynomials that satisfy the formula [293]:

o0

/ dy e’ H,(y + a)Hy (x + b) = 25110 2p> " L5 (~2ab)  fors > r, (B.19)

—00

where L} (x) is the generalized Laguerre polynomial. Depending on the energy levels
(m and 1) that we are considering, the position of each Hermite polynomial inside
the integral should be arranged so that the condition described in Equation (B.19)
(s = r)is satisfied. For the sake of clarity, consider as an example the electric current
Jkm k+qn(q). After some algebra, this matrix element reduces to:

. Q) SUERe / 212/4 212/4 —i/2q,(2ky+qx)13 e—yz/lé
Jkm k+qu\q) =

(2m)3/2 ) 2y 12

[akzms + 1] [akz+qzns + 1]
% Ak, ms 1 ]/ th Hy Yy l]z]
V2MI(M = 1)1 215 2N N1r1 21 i ™ Is 2
a . -
1 k+qzns HM[l ﬂ] Ha. l B ﬂ} '
\/ZMM'nl/ZlB V2NI(N = 1)1nl /21 lp 2 "1 2
(B.20)

where q1 = Ig (9x —iqy) and q2 = Ip (qx + igy). In deriving Equation (B.20), the
spatial variable y is rewritten as y = § + I3(2ky + qx)/2 — il3q,/2. The ordering of
the Hermite polynomials during the integration process w1ll depend on the values
taken by the indices M and N. Using Equation (B.19), the resulting expression takes
the form:

—@FaIE/4 L —igyl3(ke+y/2)
SUEe e y"'B e "1y — _
(271)3/2 1/2 1/2 {E(Cl/ T}’l,?’l) + »’12((1/ m,n)},
[a2 + 1] [a2

kyms kz+q.ns

jkm,k+qn (q) =
+ 1]
(B.21)
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where the functions Z are defined as:

- 2N(M—1), —{q2 N-M+1 N-=M+1 q2l123
al(q/Tﬂ,Tl)Zakzms\/W (T) LM_1+ — (N=2M-1),

(B.22)
_ f QM-INL g \M-N-L qZ%
E1(q, m, n) = apms m (T) Ly > (M=N+1),
(B.23)
and
_ IN-T M1 —(p \N-M-1 N-M-1 qzlé
Ea(q,m, n) = &k, +q.ns m (T) Ly — (N=M+1),
(B.24)
o [2Y(N = D) (+q0\MN L (€
dZ(q/ m, 7’1) = Olkz+qzns 2N_—1M (T) L%I_lN_H T (M >N - 1),
(B.25)

with g% = g% +¢7. The different terms in E are chosen depending on the regime that
we are studying. This scenario is considerably simplified when the local limitq — 0
is taken. In order to get non-vanishing results, the indices must satisfy the relation
N = M =1 to nullify the exponent, which restricts the possible transitions between
Landau levels (selection rules). The combination of this relation and the local limit
makes the generalized Laguerre polynomials equal to 1.

Energy-momentum tensor

The energy-momentum tensor deserves a more detailed analysis. It should be
stressed that only the second line in Equation (B.15) is proportional to the chirality
s of the node. The spatial derivative, when acting on the eigenfunctions of the
unperturbed Hamiltonian, gives rise to two results. The first contribution stems
from the exponential factors exp [(y — k:/%)?/I%]. Being the resulting expression
proportional to q, this term vanishes in the local limit. The other contribution
originates from the derivative acting on the Hermite polynomials, that satisfy the
identity:

Hj(x) =2n Hy—1(x). (B.26)

Once all the different elements are obtained, the calculation of the energy-momentum

tensor tﬁzqn,km follows analogously to the current case.
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B.4 Thermoelectric response function

Finally, one gets the thermoelectric response coefficient after computing the product
between the current and energy-momentum tensor at the different regimes. In the
local limit, this coefficient is given by the expression:

’

. 1 svpe?B
X0, w) = n11_>r51+4(2n)2 Z . /dkch(m, n, w)aizms

m,n

x [s (Exms + Excuns = 241) — Qs VM — 1 — \/M/aszs] . (B27)

where the summation is restricted to the condition N = M —1 and the dimensionless
function &(m, n, w) is defined as:

2 171 2 -1
2 [y, ms — Nicns] [aszs + 1] [aKzns + 1]

E(m,n, w) = . ,
(Exzms —Exnus + 177) (Exzms —Ei,ns + w/we+ ”7)

(B.28)

(we = vpy2eB/h is the cyclotron frequency). Some comments are in order at this
point. In deriving Equation (B.27), the summation over the allowed values of k is
written as an integral following the general expression:

Z = / dk,dk, 2Lz (B.29)
472

ke k2

The integration over k, is easily computed. Being the integrand independent of k,,
it accounts for the degeneracy factor eBL, /h of each Landau level. The coefficient
is further simplified by defining the dimensionless variable x, = fik,/V2eBh. The
eigenvalues are rewritten in the form Ey_ ;s = hwcEy,ms, with Ey_ ;s a dimensionless
Landau level. Gathering these considerations, the summation over the allowed

values of k reads: & B
eBw,
=——— [dx,. B.30
Zk: (Zﬂ)zvrfb/ ‘ (B.30)

The coefficient in front of the dimensionless integral is multiplied by the correspond-
ing coefficients of the matrix elements, leading to the result shown in Equation (B.27).
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Appendix

Antisymmetric deformation
tensor: two-dimensional versus
three-dimensional Dirac crystals

In this appendix we give some details on the coupling of the antisymmetric part of
the deformation tensor to the electronic excitations in Dirac matter. As discussed in
chapter 4, the underlying symmetries of the crystalline structure constrain the possi-
ble interacting terms arising in the low-energy Hamiltonian. The different effective
couplings are constructed using a symmetry approach and organized following a
systematic expansion in derivatives of the strain tensor and the electron field. To
maintain the continuum low-energy description of the electronic excitations as mass-
less Dirac fermions, the expansion is restricted to be linear in the crystal momentum
k. It is known that the antisymmetric derivative of the displacement vector u can be
eliminated from the effective Hamiltonian of 2D Dirac materials by a local rotation
of the wave-function [294, 242]. The discussion becomes richer in three-dimensional
Dirac systems, where the antisymmetric tensor is related to the vorticity vector. We
will examine the term " wjjo;kjy describing the coupling of the antisymmetric
part of the gradient deformation tensor w;; = 1/2(dju; — dju;) to the low-energy
excitations in 2D and 3D Dirac materials.
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Two-dimensional Dirac crystals

To first order in the derivative expansion, the effective 2D Hamiltonian induced by
elastic deformations includes the term [294, 242]:

H= —ihvp¢*oj§;¢ —ihopy" (ujk + wjk) ojaHkq; (C.1)

where we use the symmetric convention for the derivatives acting on the electron
fields and u j is the strain tensor. In two-dimensional systems, any antisymmetric
tensor is equivalent to a pseudo-scalar field wj; = €jx@, where € is the Levi-Civita
symbol. The dependence on wjx in Equation (C.1) is canceled by performing a local
rotation of the spinor [294]:

P — ¢ = eliPoosy, (C2)
where we have used the relation:
i(jj(fg = ijGk. (C3)

Indeed, introducing Equations (C.2) and (C.3) in Equation (C.1) and expanding to
linear order in the antisymmetric tensor wj, we get:

H = —ihvg gb+0j§])'l/) — ihvup l/1+ (u]'k + a)]'k) O]'(a_])(lli
h . g
+ %QN {O]',U3} (aja)) lP + 1hvE yD+ (e]-ka)) Ojakgb
= —ihZJF l)l)-ro]'a]'lp - ith 1P+ (u]‘k) GjakI][J (C4)

(the contribution from d;@ vanishes as well after using the anticommutation relation
of the Pauli matrices). Thus, the effective Hamiltonian of 2D Dirac systems does not
depend on wj.

Three-dimensional Dirac crystals

Similarly to the previous case, it is possible to cancel the contribution proportional
to w i by a rotation of the spinors. However, this transformation leaves a term pro-
portional to the divergence of the rotated vector not present in the two-dimensional
system. Consider as before the general Hamiltonian

H = —ihvp ' 0;0;¢ — ihvr ¢ Voo, (C.5)
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where Vi = €jV) is an antisymmetric tensor (for the particular case of elastic
deformations, Vjx = wjx = €12, with Q) being the rotational vector). As before, a
local rotation

Y — 1[, = e(i/2)V161¢ (C.6)

eliminates the contribution proportional to the antisymmetric tensor Vj,. Unlike the
previous case, where the axis perpendicular to the plane was a privileged direction,
we must consider an arbitrary rotation (without any particular orientation) in three-
dimensional systems. The resulting expression after applying the transformation
described in Equation (C.6) and expanding to linear order in Vjx reads:

H = —ihog zp*a/EIp — ihvg Ip*fv]-kojg,lgb
h , o

%W {oj, 0k} (9Vi) ¢ + ive Y (ejuiVi) 0jdkp
. < ho

= ~ihvp Y7 0;0;, 9 + =79 {o), 0} (9Vi) ¥, (C.7)

+

where we used the relation between the Pauli matrices:

{04, 00} =204 (C.8)
0,0y = 2i€5pc0c + 2041 (C.9)

The coupling of Vji to the electronic degrees of freedom is removed by the local
rotation, but a contribution proportional to the divergence of the vector V emerges.
The antisymmetric tensor is dual to a pseudo-vector in 3D systems that gives rise to
new terms in the effective model.






105

Bibliography

10.

Dirac, P. A. M. & Fowler, R. H. The quantum theory of the electron. Proceedings
of the Royal Society of London. Series A, Containing Papers of a Mathematical and
Physical Character 117, 610624 (1928) (cited on page 1).

Shankar, R. Renormalization-group approach to interacting fermions. Rev.
Mod. Phys. 66, 129-192 (1 1994) (cited on pages 1, 4, 38).

Wilson, K. G. The renormalization group: Critical phenomena and the Kondo
problem. Rev. Mod. Phys. 47, 773-840 (4 1975) (cited on page 1).

Herring, C. Accidental Degeneracy in the Energy Bands of Crystals. Phys. Rev.
52, 365-373 (4 1937) (cited on pages 2, 4).

A. Abrikosov, A. & D. Beneslavskii, S. Possible Existence of Substances Inter-
mediate Between Metals and Dielectrics. Journal of Experimental and Theoretical
Physics 32 (1971) (cited on pages 2, 5).

Novoselov, K. S. et al. Two-dimensional gas of massless Dirac fermions in
graphene. Nature 438,197 (2005) (cited on pages 2, 67).

Zhang, Y., Tan, Y.-W., Stormer, H. L. & Kim, P. Experimental observation of
the quantum Hall effect and Berry’s phase in graphene. Nature 438,201 (2005)
(cited on pages 2, 67).

Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S. & Geim, A. K.
The electronic properties of graphene. Rev. Mod. Phys. 81, 109-162 (1 2009)
(cited on pages 2, 54, 56, 77).

Fu, L., Kane, C. L. & Mele, E. ]. Topological Insulators in Three Dimensions.
Phys. Rev. Lett. 98, 106803 (10 2007) (cited on page 2).

Hasan, M. Z. & Kane, C. L. Colloquium: Topological insulators. Rev. Mod.
Phys. 82, 3045-3067 (4 2010) (cited on pages 2, 7).



106 Bibliography

11. Qi, X.-L. & Zhang, S.-C. Topological insulators and superconductors. Rev.
Mod. Phys. 83,1057-1110 (4 2011) (cited on pages 2, 7).

12. Bernevig, B. & Hughes, T. Topological Insulators and Topological Superconductors
(Princeton University Press, 2013) (cited on pages 2, 7).

13. Liu, Z.K. et al. Discovery of a Three-Dimensional Topological Dirac Semimetal,
Na3Bi. Science 343, 864-867 (2014) (cited on pages 2, 13).

14. Neupane, M. et al. Observation of a three-dimensional topological Dirac
semimetal phase in high-mobility Cd3As2. Nature Communications 5, 3786
(2014) (cited on pages 2, 13).

15. Ly, B. Q. et al. Experimental Discovery of Weyl Semimetal TaAs. Phys. Rev. X
5,031013 (3 2015) (cited on pages 2, 15).

16. Xu, S.-Y. et al. Discovery of a Weyl fermion semimetal and topological Fermi
arcs. Science 349, 613617 (2015) (cited on pages 2, 15).

17. Burkov, A. A. & Balents, L. Weyl Semimetal in a Topological Insulator Multi-
layer. Phys. Rev. Lett. 107, 127205 (12 2011) (cited on pages 2, 13-15).

18.  Wan, X,, Turner, A. M., Vishwanath, A. & Savrasov, S. Y. Topological semimetal
and Fermi-arc surface states in the electronic structure of pyrochlore iridates.
Phys. Rev. B 83,205101 (20 2011) (cited on pages 2, 5, 9, 14, 15).

19. Armitage, N. P.,, Mele, E. J. & Vishwanath, A. Weyl and Dirac semimetals in
three-dimensional solids. Rev. Mod. Phys. 90,015001 (1 2018) (cited on pages 2,
9).

20. Burkov, A. A. Topological semimetals. Nature Materials 15, 1145 (2016) (cited
on pages 2, 5).

21. Burkov, A. Weyl Metals. Annual Review of Condensed Matter Physics 9, 359-378
(2018) (cited on pages 2, 11, 15).

22. Landsteiner, K. Notes on Anomaly Induced Transport. Acta Physica Polonica B
47,2617 (2016) (cited on pages 2, 10, 20, 64).

23. Turner, A.M. & Vishwanath, A. Beyond band insulators: topology of semimet-
als and interacting phases. Topological Insulators 6, 293-324 (2013) (cited on
pages 2, 9).

24. Lu, H.-Z. & Shen, S.-Q. Quantum transport in topological semimetals under
magnetic fields. Frontiers of Physics 12, 127201 (2017) (cited on page 2).

25. Ilan, R., Grushin, A. G. & Pikulin, D. I. Pseudo-electromagnetic fields in topo-
logical semimetals. arXiv preprint arXiv:1903.11088 (2019) (cited on pages 2,
54,57, 58, 67).

26. Weyl, H. Gravitation and the Electron. Proceedings of the National Academy of

Sciences of the United States of America 15, 323-334 (1929) (cited on page 2).



Bibliography 107

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

Peskin, M. E. & Schroeder, D. V. An introduction to quantum field theory Includes
exercises (Westview, Boulder, CO, 1995) (cited on pages 3, 9, 22, 30, 31, 71).

Kajita, T. Nobel Lecture: Discovery of atmospheric neutrino oscillations. Rev.
Mod. Phys. 88, 030501 (3 2016) (cited on page 3).

McDonald, A. B. Nobel Lecture: The Sudbury Neutrino Observatory: Obser-
vation of flavor change for solar neutrinos. Rev. Mod. Phys. 88, 030502 (3 2016)
(cited on page 3).

Satz, H. The Quark-Gluon Plasma — A Short Introduction. Nuclear Physics A
862-863. The Sixth International Conference on Physics and Astrophysics of
Quark Gluon Plasma (ICPAQGP-2010), 4-12 (2011) (cited on page 3).

Kharzeev, D., Liao, J., Voloshin, S. & Wang, G. Chiral magnetic and vortical
effects in high-energy nuclear collisions—A status report. Progress in Particle
and Nuclear Physics 88, 1-28 (2016) (cited on page 3).

Ashcroft, N. & Mermin, N. Solid State Physics (Holt, Rinehart and Winston,
1976) (cited on pages 3, 21, 38, 40).

Simon, S. H. The Oxford solid state basics (Oxford Univ. Press, Oxford, UK, 2013)
(cited on page 3).

Marder, M. Condensed Matter Physics (Wiley, 2010) (cited on pages 4, 21, 33,
37, 38, 40).

Landau, L. D. The Theory of a Fermi Liquid. . Exptl. Theoret. Phys. 3, 1058—
1064 (6 1957) (cited on page 4).

Polchinski, ]J. Effective field theory and the Fermi surface. arXiv preprint
hep-th/9210046 (1992) (cited on pages 4, 38).

Jain, J. K. Composite-fermion approach for the fractional quantum Hall effect.
Phys. Rev. Lett. 63, 199202 (2 1989) (cited on page 4).

Jain, J. K. Composite Fermion Theory of Exotic Fractional Quantum Hall Effect.
Annual Review of Condensed Matter Physics 6, 39-62 (2015) (cited on page 4).

Halperin, B. I, Lee, P. A. & Read, N. Theory of the half-filled Landau level.
Phys. Rev. B 47, 7312-7343 (12 1993) (cited on page 4).

Ronen, Y. ef al. Charge of a quasiparticle in a superconductor. Proceedings of
the National Academy of Sciences 113, 17431748 (2016) (cited on page 4).

Kivelson, S. A. & Rokhsar, D. S. Bogoliubov quasiparticles, spinons, and spin-
charge decoupling in superconductors. Phys. Rev. B 41, 11693-11696 (16 1990)
(cited on page 4).

Skyrme, T. A unified field theory of mesons and baryons. Nuclear Physics 31,
556-569 (1962) (cited on page 4).



108 Bibliography

43. Romming, N. et al. Writing and Deleting Single Magnetic Skyrmions. Science
341, 636-639 (2013) (cited on page 4).

44. Von Neumann, J. & Wigner, E. Uber merkwiirdige diskrete Eigenwerte. Uber
das Verhalten von Eigenwerten bei adiabatischen Prozessen. Z Phys 30, 467—
470 (1929) (cited on page 4).

45. Adler, S. L. Axial-Vector Vertex in Spinor Electrodynamics. Phys. Rev. 177,
2426-2438 (5 1969) (cited on pages 5, 10).

46. Bell, J. S. & Jackiw, R. A PCAC puzzle: 1’y y in the o-model. II Nuovo
Cimento A 51, 47-61 (1969) (cited on pages 5, 10).

47. Grabecki, G. et al. Interface transmission of (Nb, Pb, In) /NbP — superconduc-
tor/Weyl semimetal junctions (2019) (cited on page 6).

48. Ginzburg, V. L. & Landau, L. D. On the Theory of superconductivity. J. Exp.
Theor. Phys. USSR 20, 1064 (1950) (cited on pages 6, 7).

49. Bruus, H. & Flensberg, K. Many-body quantum theory in condensed matter physics:
an introduction (Oxford Graduate Texts, 2004) (cited on pages 7, 21, 23, 44, 93,
94).

50. Nakahara, M. Geometry, topology and physics (Hilger, Bristol, 1990) (cited on
pages 7, 31, 90, 92).

51. Anderson, M. H., Ensher, J. R., Matthews, M. R., Wieman, C. E. & Cornell,
E. A. Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor.
Science 269, 198-201 (1995) (cited on page 7).

52. Davis, K. B. et al. Bose-Einstein Condensation in a Gas of Sodium Atoms. Phys.
Rev. Lett. 75, 3969-3973 (22 1995) (cited on page 7).

53. Bradley, C. C., Sackett, C. A, Tollett, J. J. & Hulet, R. G. Evidence of Bose-
Einstein Condensation in an Atomic Gas with Attractive Interactions. Phys.
Rev. Lett. 75, 1687-1690 (9 1995) (cited on page 7).

54. Thouless, D. ]., Kohmoto, M., Nightingale, M. P. & den Nijs, M. Quantized
Hall Conductance in a Two-Dimensional Periodic Potential. Phys. Rev. Lett. 49,
405-408 (6 1982) (cited on pages 7, 90).

55. Shen, S. Topological Insulators: Dirac Equation in Condensed Matter (Springer
Singapore, 2017) (cited on page 7).

56. Karplus, R. & Luttinger, J. M. Hall Effect in Ferromagnetics. Phys. Rev. 95,
1154-1160 (5 1954) (cited on pages 7, 38).

57. Kane, C. L. & Mele, E. J. Z, Topological Order and the Quantum Spin Hall

Effect. Phys. Rev. Lett. 95, 146802 (14 2005) (cited on pages 7, 8).



Bibliography 109

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

Schnyder, A. P, Ryu, S., Furusaki, A. & Ludwig, A. W. W. Classification of
topological insulators and superconductors in three spatial dimensions. Phys.
Rev. B 78, 195125 (19 2008) (cited on page 7).

Chiu, C.-K., Teo, J. C. Y., Schnyder, A. P. & Ryu, S. Classification of topological
quantum matter with symmetries. Rev. Mod. Phys. 88, 035005 (3 2016) (cited
on page 7).

Altland, A. & Zirnbauer, M. R. Nonstandard symmetry classes in mesoscopic
normal-superconducting hybrid structures. Phys. Rev. B 55,1142-1161 (2 1997)
(cited on page 7).

Ryu, S., Schnyder, A. P.,, Furusaki, A. & Ludwig, A. W. W. Topological insulators
and superconductors: tenfold way and dimensional hierarchy. New Journal of
Physics 12, 065010 (2010) (cited on page 7).

Berry, M. V. Quantal phase factors accompanying adiabatic changes. Proceed-
ings of the Royal Society of London. A. Mathematical and Physical Sciences 392,
45-57 (1984) (cited on pages 7, 90).

Berry, M. V. in Chaotic Behavior in Quantum Systems: Theory and Applications
(ed Casati, G.) 123-140 (Springer US, Boston, MA, 1985) (cited on pages 7, 92).

Volovik, G. & Press, O. U. The Universe in a Helium Droplet (Clarendon Press,
2003) (cited on pages 7, 13).

Nielsen, H. & Ninomiya, M. A no-go theorem for regularizing chiral fermions.
Physics Letters B 105, 219-223 (1981) (cited on pages 8, 92).

Ludwig, A. W.W., Fisher, M. P. A, Shankar, R. & Grinstein, G. Integer quantum
Hall transition: An alternative approach and exact results. Phys. Rev. B 50,
75267552 (11 1994) (cited on page 8).

Balents, L. Weyl electrons kiss. Physics 4,36 (2011) (cited on page 9).

Xu, S.-Y. et al. Experimental discovery of a topological Weyl semimetal state
in TaP. Science Advances 1 (2015) (cited on page 9).

Liu, Z. K. et al. Evolution of the Fermi surface of Weyl semimetals in the
transition metal pnictide family. Nature Materials 15, 27 (2015) (cited on
pages 9, 15).

Hosur, P. Friedel oscillations due to Fermi arcs in Weyl semimetals. Phys. Rev.
B 86, 195102 (19 2012) (cited on page 9).

Ojanen, T. Helical Fermi arcs and surface states in time-reversal invariant Weyl
semimetals. Phys. Rev. B 87, 245112 (24 2013) (cited on page 9).

Potter, A. C., Kimchi, I. & Vishwanath, A. Quantum oscillations from surface
Fermi arcs in Weyl and Dirac semimetals. Nature Communications 5,5161 (2014)
(cited on page 9).



110 Bibliography

73. Noether, E. Invariant variation problems. Transport Theory and Statistical Physics
1, 186207 (1971) (cited on pages 9, 22, 31).

74. Bertlmann, R. A. Anomalies in quantum field theory (Clarendon Press, 1996)
(cited on pages 10, 22).

75. Holstein, B. R. Anomalies for pedestrians. American Journal of Physics 61, 142—
147 (1993) (cited on page 10).

76. Kim, H.-J. et al. Dirac versus Weyl Fermions in Topological Insulators: Adler-
Bell-Jackiw Anomaly in Transport Phenomena. Phys. Rev. Lett. 111, 246603 (24
2013) (cited on pages 10, 22).

77. Son, D. T. & Spivak, B. Z. Chiral anomaly and classical negative magnetore-
sistance of Weyl metals. Phys. Rev. B 88, 104412 (10 2013) (cited on page 10).

78. Xiong, J. et al. Evidence for the chiral anomaly in the Dirac semimetal Na3Bi.
Science 350, 413-416 (2015) (cited on pages 10, 11, 22, 68).

79. Li,C.Z. et al. Giant negative magnetoresistance induced by the chiral anomaly
in individual Cd3As2 nanowires. Nature Communications 6, 1-7 (2015) (cited
on pages 10, 11, 22, 68).

80. Zhang, C.-L. et al. Signatures of the Adler—Bell-Jackiw chiral anomaly in a
Weyl fermion semimetal. Nature communications 7, 10735 (2016) (cited on
pages 10, 11, 68).

81. Nielsen, H. & Ninomiya, M. Absence of neutrinos on a lattice: (I). Proof by
homotopy theory. Nuclear Physics B 185, 20-40 (1981) (cited on pages 10, 92).

82. Nielsen, H. & Ninomiya, M. Absence of neutrinos on a lattice: (II). Intuitive
topological proof. Nuclear Physics B 193, 173-194 (1981) (cited on page 10).

83. Li, H. et al. Negative magnetoresistance in Dirac semimetal Cd3As2. Nature
Communications 7, 10301 (2016) (cited on page 11).

84. Shekhar, C. ef al. Extremely large magnetoresistance and ultrahigh mobility in
the topological Weyl semimetal candidate NbP. Nature Physics 11, 645 (2015)
(cited on page 11).

85. Kharzeev, D. E., McLerran, L. D. & Warringa, H. J. The effects of topological
charge change in heavy ion collisions: “Event by event P and CP violation”.
Nuclear Physics A 803, 227-253 (2008) (cited on page 11).

86. Kharzeev, D. E. The Chiral Magnetic Effect and anomaly-induced transport.
Progress in Particle and Nuclear Physics 75, 133-151 (2014) (cited on pages 11,
22).

87. Basar, G., Kharzeev, D. E. & Yee, H.-U. Triangle anomaly in Weyl semimetals.

Phys. Rev. B 89, 035142 (3 2014) (cited on page 11).



Bibliography 111

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

100.

101.

102.

Li, Q. et al. Chiral magnetic effect in ZrTe5. Nature Physics 12, 550 (2016) (cited
on page 11).

Gooth, J. et al. Experimental signatures of the mixed axial-gravitational anom-
aly in the Weyl semimetal NbP. Nature 547, 324 (2017) (cited on pages 11,
22).

Schindler, C. et al. Observation of an anomalous heat current in a Weyl fermion
semimetal. arXiv preprint arXiv:1810.02300 (2018) (cited on pages 11, 22).

Chernodub, M. N. Anomalous Transport Due to the Conformal Anomaly.
Phys. Rev. Lett. 117, 141601 (14 2016) (cited on pages 11, 22, 35).

Chernodub, M. N. & Zubkov, M. A. Scale magnetic effect in quantum electro-
dynamics and the Wigner-Weyl formalism. Phys. Rev. D 96, 056006 (5 2017)
(cited on page 11).

Chernodub, M. N., Cortijo, A. & Vozmediano, M. A. H. Generation of a Nernst
Current from the Conformal Anomaly in Dirac and Weyl Semimetals. Phys.
Rev. Lett. 120, 206601 (20 2018) (cited on pages 11, 22, 23, 28, 35).

Sakurai, J. J. & Napolitano, J. Modern quantum mechanics (Pearson Harlow,
1994) (cited on pages 12, 25).

Xiao, D., Chang, M.-C. & Niu, Q. Berry phase effects on electronic properties.
Rev. Mod. Phys. 82, 1959-2007 (3 2010) (cited on pages 12, 18, 38).

Witten, E. Three lectures on topological phases of matter. Rivista del Nuovo
Cimento (2016) (cited on pages 12, 90).

Young, S. M. et al. Dirac Semimetal in Three Dimensions. Phys. Rev. Lett. 108,
140405 (14 2012) (cited on page 13).

Murakami, S. Phase transition between the quantum spin Hall and insulator
phases in 3D: Emergence of a topological gapless phase. New Journal of Physics
(2007) (cited on page 13).

Smith, J. C., Banerjee, S., Pardo, V. & Pickett, W. E. Dirac Point Degenerate
with Massive Bands at a Topological Quantum Critical Point. Phys. Rev. Lett.
106, 056401 (5 2011) (cited on page 13).

Wang, W. et al. Evidence for Layered Quantized Transport in Dirac Semimetal
ZrTeb. Scientific Reports 8, 5125 (2018) (cited on page 13).

Wang, Z. et al. Dirac semimetal and topological phase transitions in A3Bi
(A =Na, K, Rb). Phys. Rev. B 85,195320 (19 2012) (cited on page 13).

Wang, Z., Weng, H., Wu, Q., Dai, X. & Fang, Z. Three-dimensional Dirac
semimetal and quantum transport in CdzAs;. Phys. Rev. B 88, 125427 (12 2013)
(cited on pages 13, 62).



112

Bibliography

103.

104.

105.

106.

107.

108.

109.

110.

111.

112.

113.

114.

115.

116.

117.

Borisenko, S. et al. Experimental Realization of a Three-Dimensional Dirac
Semimetal. Phys. Rev. Lett. 113, 027603 (2 2014) (cited on page 13).

Liu, Z. K. et al. A stable three-dimensional topological Dirac semimetal
Cd3As2. Nature Materials 13, 677 (2014) (cited on page 13).

Zyuzin, A. A., Wu, S. & Burkov, A. A. Weyl semimetal with broken time
reversal and inversion symmetries. Phys. Rev. B 85, 165110 (16 2012) (cited on

page 13).

Grushin, A. G. Consequences of a condensed matter realization of Lorentz-
violating QED in Weyl semi-metals. Phys. Rev. D 86, 045001 (4 2012) (cited on
page 13).

Halédsz, G. B. & Balents, L. Time-reversal invariant realization of the Weyl
semimetal phase. Phys. Rev. B 85, 035103 (3 2012) (cited on page 14).

Huang, S.-M. et al. A Weyl Fermion semimetal with surface Fermi arcs in
the transition metal monopnictide TaAs class. Nature Communications 6, 7373
(2015) (cited on page 15).

Weng, H., Fang, C., Fang, Z., Bernevig, B. A. & Dai, X. Weyl Semimetal Phase
in Noncentrosymmetric Transition-Metal Monophosphides. Phys. Rev. X 5,
011029 (1 2015) (cited on page 15).

Yang, L. X. et al. Weyl semimetal phase in the non-centrosymmetric compound
TaAs. Nature Physics 11, 728 (2015) (cited on page 15).

Lv, B. Q. et al. Observation of Weyl nodes in TaAs. Nature Physics 11, 724 (2015)
(cited on page 15).
Xu, S. Y. et al. Discovery of a Weyl fermion state with Fermi arcs in niobium

arsenide. Nature Phys. 11, 748 (2015) (cited on page 15).

Xu, N. et al. Observation of Weyl nodes and Fermi arcs in tantalum phosphide.
Nature Communications 7, 11006 (2016) (cited on page 15).

Borisenko, S. et al. Time-reversal symmetry breaking type-II Weyl state in
YbMnBi2. Nature Communications 10, 3424 (2019) (cited on page 15).

Kuroda, K. et al. Evidence for magnetic Weyl fermions in a correlated metal.
Nature Materials 16, 1090 (2017) (cited on page 15).

Li, X. et al. Anomalous Nernst and Righi-Leduc Effects in MnzSn: Berry
Curvature and Entropy Flow. Phys. Rev. Lett. 119, 056601 (5 2017) (cited on
page 15).

Reichlova, H. et al. Imaging and writing magnetic domains in the non-collinear
antiferromagnet Mn3Sn (2019) (cited on page 15).



Bibliography 113

118.

119.

120.

121.

122.

123.

124.

125.

126.

127.

128.

129.

130.
131.

132.

133.

Taylor, J. M. et al. Magnetic and electrical transport signatures of uncom-
pensated moments in epitaxial thin films of the noncollinear antiferromagnet
Mn3Ir. Applied Physics Letters 115, 062403 (2019) (cited on page 15).

Wauttke, C. et al. Berry curvature unravelled by the anomalous Nernst effect in
Mn3Ge. Phys. Rev. B 100, 085111 (8 2019) (cited on page 15).

Wurmehl, S. et al. Geometric, electronic, and magnetic structure of CoFeSi:
Curie temperature and magnetic moment measurements and calculations.
Phys. Rev. B 72, 184434 (18 2005) (cited on page 15).

Kiibler, J. & Felser, C. Weyl points in the ferromagnetic Heusler compound
Co2MnAl. EPL (Europhysics Letters) 114, 47005 (2016) (cited on page 15).

Wang, Z. et al. Time-Reversal-Breaking Weyl Fermions in Magnetic Heusler
Alloys. Phys. Rev. Lett. 117, 236401 (23 2016) (cited on page 15).

Watzman, S. J. et al. Dirac dispersion generates unusually large Nernst effect
in Weyl semimetals. Phys. Rev. B 97, 161404 (16 2018) (cited on pages 15, 17,
18, 22, 39, 43).

Manna, K. et al. From Colossal to Zero: Controlling the Anomalous Hall Effect
in Magnetic Heusler Compounds via Berry Curvature Design. Phys. Rev. X 8,
041045 (4 2018) (cited on pages 15, 18, 22).

Li, X.-Z., Zhang, W.-Y., Valloppilly, S. & Sellmyer, D. J. New Heusler com-
pounds in Ni-Mn-In and Ni-Mn-5n alloys. Scientific Reports 9, 7762 (2019)
(cited on page 15).

Markou, A. et al. Thickness dependence of the anomalous Hall effect in thin
films of the topological semimetal Coo,MnGa. Phys. Rev. B 100, 054422 (5 2019)
(cited on page 15).

Li, G. et al. Surface states in bulk single crystal of topological semimetal
Co35n2S2 toward water oxidation. Science Advances 5 (2019) (cited on page 15).

Liu, D. F. et al. Magnetic Weyl semimetal phase in a Kagomé crystal. Science
365, 1282-1285 (2019) (cited on page 15).

Soluyanov, A. A. et al. Type-II Weyl semimetals. Nature 527, 495 (2015) (cited
on pages 15, 16, 58).

Grushin, A. G. in Topological Matter 149-175 (Springer, 2018) (cited on page 16).

Bradlyn, B. et al. Beyond Dirac and Weyl fermions: Unconventional quasipar-
ticles in conventional crystals. Science 353 (2016) (cited on page 16).

Beenakker, C. Bringing order to the expanding fermion zoo. Science 353, 539-
540 (2016) (cited on page 16).

Ali, M. N. et al. Large, non-saturating magnetoresistance in WTe2. Nature 514,
205-208 (2014) (cited on pages 16, 58).



114 Bibliography

134. Huang, L. et al. Spectroscopic evidence for a type II Weyl semimetallic state in
MoTe2. Nature Materials 15, 1155 (2016) (cited on pages 16, 58).

135. Snyder, G. J. & Toberer, E. S. Complex thermoelectric materials. Nature Mate-
rials 7, 105-114 (2008) (cited on page 17).

136. Fu, C. et al. Large Nernst power factor over a broad temperature range in
polycrystalline Weyl semimetal NbP. Energy Environ. Sci. 11, 2813-2820 (10
2018) (cited on page 17).

137. He, J. & Tritt, T. M. Advances in thermoelectric materials research: Looking
back and moving forward. Science 357 (2017) (cited on page 17).

138. Ziman, J. Electrons and Phonons: The Theory of Transport Phenomena in Solids
(OUP Oxford, 2001) (cited on pages 17, 21, 35, 36—41).

139. Rowe, D. CRC Handbook of Thermoelectrics (CRC Press, 1995) (cited on page 17).

140. Behnia, K., Méasson, M.-A. & Kopelevich, Y. Nernst Effect in Semimetals: The
Effective Mass and the Figure of Merit. Phys. Rev. Lett. 98, 076603 (7 2007)
(cited on page 17).

141. Behnia, K. & Aubin, H. Nernst effect in metals and superconductors: a review
of concepts and experiments. Reports on Progress in Physics 79, 046502 (2016)
(cited on page 17).

142. Lundgren, R., Laurell, P. & Fiete, G. A. Thermoelectric properties of Weyl and
Dirac semimetals. Phys. Rev. B 90, 165115 (16 2014) (cited on pages 17, 22).

143. Sharma, G., Goswami, P. & Tewari, S. Nernst and magnetothermal conductiv-
ity in a lattice model of Weyl fermions. Phys. Rev. B 93, 035116 (3 2016) (cited
on pages 17, 22, 50).

144. Sharma, G., Moore, C., Saha, S. & Tewari, S. Nernst effect in Dirac and
inversion-asymmetric Weyl semimetals. Phys. Rev. B 96, 195119 (19 2017)
(cited on pages 17, 42, 50).

145. Nagaosa, N., Sinova, J., Onoda, S., MacDonald, A. H. & Ong, N. P. Anomalous
Hall effect. Rev. Mod. Phys. 82, 1539-1592 (2 2010) (cited on page 18).

146. Pu,Y.,Chiba,D.,Matsukura, F., Ohno, H. & Shi, J. Mott Relation for Anomalous
Hall and Nernst Effects in Ga;—xMn,As Ferromagnetic Semiconductors. Phys.
Rev. Lett. 101, 117208 (11 2008) (cited on pages 18, 39).

147. Burkov, A. A. Anomalous Hall Effect in Weyl Metals. Phys. Rev. Lett. 113,
187202 (18 2014) (cited on pages 18, 19, 45).

148. Liang, T. et al. Anomalous Nernst Effect in the Dirac Semimetal CdzAs,. Phys.
Rev. Lett. 118, 136601 (13 2017) (cited on pages 18, 22, 39, 43, 50).

149. Jia, Z. et al. Thermoelectric signature of the chiral anomaly in Cd3As2. Nature

Communications 7, 13013 (2016) (cited on page 18).



Bibliography 115

150.

151.

152.

153.

154.

155.

156.

157.

158.

159.

160.

161.

162.

163.

Sakai, A. et al. Giant anomalous Nernst effect and quantum-critical scaling in
a ferromagnetic semimetal. Nature Physics 14, 1119 (2018) (cited on pages 18,
22,39, 42, 50).

Yang, H. et al. Giant anomalous Nernst effect in the magnetic Weyl semimetal
Co35n2S2. arXiv preprint arXiv:1811.03485 (2018) (cited on pages 18, 22).

Guin, S. N. et al. Anomalous Nernst effect beyond the magnetization scal-
ing relation in the ferromagnetic Heusler compound Co2MnGa. NPG Asia
Materials (2019) (cited on pages 18, 43).

Skinner, B. & Fu, L. Large, nonsaturating thermopower in a quantizing mag-
netic field. Science Advances 4 (2018) (cited on pages 18, 39, 50).

Kozii, V., Skinner, B. & Fu, L. Thermoelectric Hall conductivity and figure of
merit in Dirac/Weyl materials. Phys. Rev. B 99, 155123 (15 2019) (cited on
pages 18, 35).

Han, E. et al. Discovery of giant, non-saturating thermopower in topological
semimetal at quantum limit. arXiv preprint arXiv:1904.03179 (2019) (cited on
pages 18, 22, 42).

Zhang, W. et al. Quantized plateau in the thermoelectric Hall conductivity for
Dirac electrons in the extreme quantum limit. arXiv preprint arXiv:1904.02157
(2019) (cited on pages 18, 22, 42).

Bardeen, J., Cooper, L. N. & Schrieffer, J. R. Theory of Superconductivity. Phys.
Rev. 108, 1175-1204 (5 1957) (cited on page 18).

Suzuura, H. & Ando, T. Phonons and electron-phonon scattering in carbon
nanotubes. Phys. Rev. B 65, 235412 (23 2002) (cited on pages 19, 51, 54, 56, 67).

Guinea, F, Katsnelson, M. 1. & Geim, A. K. Energy gaps and a zero-field
quantum Hall effect in graphene by strain engineering. Nature Physics 6, 30-33
(2010) (cited on pages 19, 54, 67).

Vozmediano, M., Katsnelson, M. & Guinea, F. Gauge fields in graphene.
Physics Reports 496, 109-148 (2010) (cited on pages 19, 54, 67).

Cortijo, A., Ferreirés, Y., Landsteiner, K. & Vozmediano, M. A. H. Elastic Gauge
Fields in Weyl Semimetals. Phys. Rev. Lett. 115, 177202 (17 2015) (cited on
pages 19, 54, 55,57, 59, 67).

Cortijo, A., Kharzeev, D., Landsteiner, K. & Vozmediano, M. A. H. Strain-
induced chiral magnetic effect in Weyl semimetals. Phys. Rev. B 94, 241405 (24
2016) (cited on pages 19, 20, 57, 62, 83).

Levy, N. et al. Strain-Induced Pseudo-Magnetic Fields Greater Than 300 Tesla
in Graphene Nanobubbles. Science 329, 544-547 (2010) (cited on pages 19, 52,
54, 67, 83).



116

Bibliography

164.

165.

166.

167.

168.

169.

170.

171.

172.

173.

174.

175.

176.

Shapourian, H., Hughes, T. L. & Ryu, S. Viscoelastic response of topological
tight-binding models in two and three dimensions. Phys. Rev. B 92, 165131 (16
2015) (cited on pages 19, 55, 59).

Pikulin, D. I., Chen, A. & Franz, M. Chiral Anomaly from Strain-Induced
Gauge Fields in Dirac and Weyl Semimetals. Phys. Rev. X 6, 041021 (4 2016)
(cited on pages 19, 20, 54, 55, 57, 60, 62-67, 79-81).

Liu, T., Pikulin, D. I. & Franz, M. Quantum oscillations without magnetic field.
Phys. Rev. B 95, 041201 (4 2017) (cited on pages 19, 54, 57, 67, 79).

Cortijo, A. & Zubkov, M. Emergent gravity in the cubic tight-binding model
of Weyl semimetal in the presence of elastic deformations. Annals of Physics
366, 45-56 (2016) (cited on pages 19, 54, 57).

Gorbar, E. V., Miransky, V. A., Shovkovy, I. A. & Sukhachov, P. O. Pseudomag-
netic lens as a valley and chirality splitter in Dirac and Weyl materials. Phys.
Rev. B 95,241114 (24 2017) (cited on pages 19, 57).

Gorbar, E. V., Miransky, V. A., Shovkovy, I. A. & Sukhachov, P. O. Pseudo-
magnetic helicons. Phys. Rev. B 95, 115422 (11 2017) (cited on pages 19, 57,
67).

Gorbar, E. V., Miransky, V. A,, Shovkovy, I. A. & Sukhachov, P. O. Chiral
response in lattice models of Weyl materials. Phys. Rev. B 96, 125123 (12 2017)
(cited on pages 19, 57).

Zabolotskiy, A. & Lozovik, Y. Strain-induced pseudomagnetic and scalar fields
in symmetry-enforced Dirac nodes. Journal of Magnetism and Magnetic Materials
459, 4345 (2018) (cited on pages 19, 57, 83).

Huang, Z.-M., Zhou, J. & Shen, S.-Q. Topological responses from chiral anom-
aly in multi-Weyl semimetals. Phys. Rev. B 96, 085201 (8 2017) (cited on
pages 19, 57, 67).

Liu, C.-X,, Ye, P. & Qi, X.-L. Chiral gauge field and axial anomaly in a Weyl
semimetal. Phys. Rev. B 87, 235306 (23 2013) (cited on pages 20, 64).

Huang, Z.-M., Zhou, J. & Shen, S.-Q. Topological responses from chiral anom-
aly in multi-Weyl semimetals. Phys. Rev. B 96, 085201 (8 2017) (cited on
page 20).

Grushin, A. G., Venderbos, ]. W. E,, Vishwanath, A. & Ilan, R. Inhomogeneous
Weyl and Dirac Semimetals: Transport in Axial Magnetic Fields and Fermi Arc
Surface States from Pseudo-Landau Levels. Phys. Rev. X 6, 041046 (4 2016)
(cited on pages 20, 54, 57, 67).

Giuliani, G. & Vignale, G. Quantum Theory of the Electron Liquid (Cambridge
University Press, 2005) (cited on pages 21, 23, 45, 93, 95).



Bibliography 117

177.

178.

179.

180.

181.

182.

183.

184.

185.

186.

187.

188.

189.

190.

191.

Coleman, P. Introduction to Many-Body Physics (Cambridge University Press,
2015) (cited on page 21).

Ming-Che, C. & Qian, N. Berry curvature, orbital moment, and effective quan-
tum theory of electrons in electromagnetic fields. Journal of Physics: Condensed
Matter (2008) (cited on page 21).

Landsteiner, K. Anomalous transport of Weyl fermions in Weyl semimetals.
Phys. Rev. B 89, 075124 (7 2014) (cited on pages 22, 64).

Behnia, K. & Aubin, H. Nernst effect in metals and superconductors: a review of
concepts and experiments 2016 (cited on pages 22, 37).

Ferreiros, Y., Zyuzin, A. A. & Bardarson, . H. Anomalous Nernst and thermal
Hall effects in tilted Weyl semimetals. Phys. Rev. B 96, 115202 (11 2017) (cited
on page 22).

Gorbar, E. V., Miransky, V. A., Shovkovy, I. A. & Sukhachov, P. O. Anomalous
thermoelectric phenomena in lattice models of multi-Weyl semimetals. Phys.
Rev. B 96, 155138 (15 2017) (cited on pages 22, 38, 42, 43).

Tolman, R. C. & Ehrenfest, P. Temperature Equilibrium in a Static Gravitational
Field. Phys. Rev. 36, 1791-1798 (12 1930) (cited on pages 22, 24).

Luttinger, ]. M. Theory of Thermal Transport Coefficients. Phys. Rev. 135,
A1505-A1514 (6A 1964) (cited on pages 22, 24, 25, 38).

Cooper, N. R, Halperin, B. I. & Ruzin, I. M. Thermoelectric response of an
interacting two-dimensional electron gas in a quantizing magnetic field. Phys.
Rev. B 55, 2344-2359 (4 1997) (cited on pages 24, 38).

Kondepudi, D. & Prigogine, 1. Modern Thermodynamics: From Heat Engines to
Dissipative Structures (Wiley, 2014) (cited on page 25).

Belinfante, F. ]. On the current and the density of the electric charge, the
energy, the linear momentum and the angular momentum of arbitrary fields.
Physica 7, 449-474 (1940) (cited on page 31).

Chester, G. V. & Thellung, A. The Law of Wiedemann and Franz. Proceedings
of the Physical Society (1961) (cited on page 38).

Jonson, M. & Mahan, G. D. Mott’s formula for the thermopower and the
Wiedemann-Franz law. Phys. Rev. B 21,4223-4229 (10 1980) (cited on page 38).

Jonson, M. & Girvin, S. M. Thermoelectric effect in a weakly disordered
inversion layer subject to a quantizing magnetic field. Phys. Rev. B 29, 1939-
1946 (4 1984) (cited on page 38).

Oji, H. & Streda, P. Theory of electronic thermal transport: Magnetoquantum
corrections to the thermal transport coefficients. Phys. Rev. B 31, 7291-7295 (11
1985) (cited on page 38).



118

Bibliography

192.

193.

194.

195.

196.

197.

198.

199.

200.

201.

202.

203.

204.

205.

Smrcka, L. & Stréda, P. Transport coefficients in strong magnetic fields. Journal
of Physics C: Solid State Physics 10, 2153-2161 (1977) (cited on page 38).

Abrikosov, A., Gorkov, L., Dzyaloshinski, I. & Silverman, R. Methods of Quan-
tum Field Theory in Statistical Physics (Dover Publications, 2012) (cited on

page 38).

Kadanoff, L. P. & Martin, P. C. Hydrodynamic equations and correlation
functions. Annals of Physics 24, 419-469 (1963) (cited on page 38).

Andreev, A. V., Kivelson, S. A. & Spivak, B. Hydrodynamic Description of
Transport in Strongly Correlated Electron Systems. Phys. Rev. Lett. 106, 256804
(252011) (cited on pages 38, 42).

Moll, P.J. W., Kushwaha, P.,, Nandi, N., Schmidt, B. & Mackenzie, A. P. Evidence
for hydrodynamic electron flow in PdCoO2. Science 351, 1061-1064 (2016)
(cited on page 38).

Crossno, J. et al. Observation of the Dirac fluid and the breakdown of the
Wiedemann-Franz law in graphene. Science 351, 1058-1061 (2016) (cited on
pages 38, 42, 50).

Jaoui, A. et al. Departure from the Wiedemann-Franz law in WP2 driven
by mismatch in T-square resistivity prefactors. npj Quantum Materials (2018)
(cited on page 38).

Luttinger, ]. M. Theory of the Hall Effect in Ferromagnetic Substances. Phys.
Rev. 112, 739-751 (3 1958) (cited on page 38).

Crépieux, A. & Bruno, P. Theory of the anomalous Hall effect from the Kubo
formula and the Dirac equation. Phys. Rev. B 64, 014416 (1 2001) (cited on
page 38).

Jungwirth, T., Niu, Q. & MacDonald, A. H. Anomalous Hall Effect in Fer-
romagnetic Semiconductors. Phys. Rev. Lett. 88, 207208 (20 2002) (cited on
page 38).

Nagaosa, N. Anomalous Hall Effect—A New Perspective-. Journal of the Physical
Society of Japan 75, 042001 (2006) (cited on page 38).

Xiao, D., Yao, Y., Fang, Z. & Niu, Q. Berry-Phase Effect in Anomalous Ther-
moelectric Transport. Phys. Rev. Lett. 97, 026603 (2 2006) (cited on page 39).

Lee, W.-L., Watauchi, S., Miller, V. L., Cava, R.]. & Ong, N. P. Anomalous Hall
Heat Current and Nernst Effect in the CuCrySesBry Ferromagnet. Phys. Rev.
Lett. 93, 226601 (22 2004) (cited on page 39).

Onose, Y., Shiomi, Y. & Tokura, Y. Lorenz Number Determination of the Dis-
sipationless Nature of the Anomalous Hall Effect in Itinerant Ferromagnets.
Phys. Rev. Lett. 100, 016601 (1 2008) (cited on page 39).



Bibliography 119

206. Kim, K.-S5. Role of axion electrodynamics in a Weyl metal: Violation of
Wiedemann-Franz law. Phys. Rev. B 90, 121108 (12 2014) (cited on pages 39,
42, 50).

207. Gooth, ]. et al. Thermal and electrical signatures of a hydrodynamic electron
fluid in tungsten diphosphide. Nature Communications 9, 4093 (2018) (cited on
pages 39, 42, 43, 50).

208. Liang, T. et al. Ultrahigh mobility and giant magnetoresistance in the Dirac
semimetal Cd3As2. Nature Materials 14, 280 (2014) (cited on page 39).

209. Xu, L.etal. Finite-temperature violation of the anomalous transverse Wiedemann-
Franz law in absence of inelastic scattering. arXiv preprint arXiv:1812.04339
(2018) (cited on pages 39, 42, 50).

210. Lewis, H. W. Wave Packets and Transport of Electrons in Metals. Solid State
Physics - Advances in Research and Applications (1958) (cited on page 39).

211. Behnia, K. The Nernst effect and the boundaries of the Fermi liquid picture.
Journal of Physics Condensed Matter (2009) (cited on page 42).

212. Das, K. & Agarwal, A. Berry curvature induced thermopower in type-I and
type-II Weyl Semimetals. arXiv preprint arXiv:1903.01205 (2019) (cited on
pages 42, 43).

213. Scaffidi, T., Nandi, N., Schmidt, B., Mackenzie, A. P. & Moore, . E. Hydrody-
namic Electron Flow and Hall Viscosity. Phys. Rev. Lett. 118, 226601 (22 2017)
(cited on page 42).

214. Alekseev, P.S. Negative Magnetoresistance in Viscous Flow of Two-Dimensional
Electrons. Phys. Rev. Lett. 117, 166601 (16 2016) (cited on page 42).

215. De Jong, M. ]. M. & Molenkamp, L. W. Hydrodynamic electron flow in high-
mobility wires. Phys. Rev. B 51, 1338913402 (19 1995) (cited on page 42).

216. Cao, C. et al. Universal Quantum Viscosity in a Unitary Fermi Gas. Science
331, 58-61 (2011) (cited on page 42).

217. Hartnoll, S. A. Theory of universal incoherent metallic transport. Nature
Physics 11, 54 (2014) (cited on page 42).

218. Levitov, L. & Falkovich, G. Electron viscosity, current vortices and negative
nonlocal resistance in graphene. Nature Physics 12, 672 (2016) (cited on
page 42).

219. Mahajan, R., Barkeshli, M. & Hartnoll, S. A. Non-Fermi liquids and the
Wiedemann-Franz law. Phys. Rev. B 88, 125107 (12 2013) (cited on page 42).

220. Principi, A. & Vignale, G. Violation of the Wiedemann-Franz Law in Hydro-
dynamic Electron Liquids. Phys. Rev. Lett. 115, 056603 (5 2015) (cited on
page 42).



120

Bibliography

221.

222.

223.

224.

225.

226.

227.

228.

229.

230.

231.

232.

233.

234.

Hill, R. W., Proust, C., Taillefer, L., Fournier, P. & Greene, R. L. Breakdown of
Fermi-liquid theory in a copper-oxide superconductor. Nature 414, 711-715
(2001) (cited on page 42).

Tanatar, M. A., Paglione, J., Petrovic, C. & Taillefer, L. Anisotropic Violation
of the Wiedemann-Franz Law at a Quantum Critical Point. Science 316, 1320-
1322 (2007) (cited on page 42).

Wakeham, N. et al. Gross violation of the Wiedemann-Franz law in a quasi-
one-dimensional conductor. Nature Communications 2, 396 (2011) (cited on
page 42).

Siegel, D. A., Regan, W., Fedorov, A. V., Zettl, A. & Lanzara, A. Charge-Carrier
Screening in Single-Layer Graphene. Phys. Rev. Lett. 110, 146802 (14 2013)
(cited on page 42).

Principi, A. & Vignale, G. Intrinsic charge and spin conductivities of doped
graphene in the Fermi-liquid regime. Phys. Rev. B 91, 205423 (20 2015) (cited
on page 42).

Bandurin, D. A. et al. Negative local resistance caused by viscous electron
backflow in graphene. Science 351, 1055-1058 (2016) (cited on page 42).

Krishna Kumar, R. et al. Superballistic flow of viscous electron fluid through
graphene constrictions. Nature Physics 13, 1182 (2017) (cited on page 42).

Berdyugin, A. I. et al. Measuring Hall viscosity of graphene’s electron fluid.
Science 364, 162-165 (2019) (cited on page 42).

Lucas, A., Davison, R. A. & Sachdev, S. Hydrodynamic theory of thermoelectric
transport and negative magnetoresistance in Weyl semimetals. Proceedings of
the National Academy of Sciences 113, 9463-9468 (2016) (cited on page 43).

Gorbar, E. V., Miransky, V. A., Shovkovy, I. A. & Sukhachov, P. O. Consistent
hydrodynamic theory of chiral electrons in Weyl semimetals. Phys. Rev. B 97,
121105 (12 2018) (cited on page 43).

Gorbar, E. V., Miransky, V. A., Shovkovy, I. A. & Sukhachov, P. O. Nonlocal
transport in Weyl semimetals in the hydrodynamic regime. Phys. Rev. B 98,
035121 (3 2018) (cited on page 43).

Noky, J., Gooth, J., Felser, C. & Sun, Y. Characterization of topological band
structures away from the Fermi level by the anomalous Nernst effect. Phys.
Rev. B 98, 241106 (24 2018) (cited on page 43).

Altland, A., Altland, P. & Simons, B. Condensed Matter Field Theory (Cambridge
University Press, 2006) (cited on page 44).

Miransky, V. A. & Shovkovy, I. A. Quantum field theory in a magnetic field:
From quantum chromodynamics to graphene and Dirac semimetals. Physics



Bibliography 121

235.

236.

237.

238.

239.

240.

241.

242.

243.

244.

245.

246.

247.

Reports 576. Quantum field theory in a magnetic field: From quantum chromo-
dynamics to graphene and Dirac semimetals, 1-209 (2015) (cited on pages 45,
46, 50).

Nguyen, D. X. & Gromov, A. Exact electromagnetic response of Landau level
electrons. Phys. Rev. B 95, 085151 (8 2017) (cited on page 46).

Wei, P, Bao, W., Pu, Y., Lau, C. N. & Shi, ]. Anomalous Thermoelectric Trans-
port of Dirac Particles in Graphene. Phys. Rev. Lett. 102, 166808 (16 2009) (cited
on page 50).

Tabert, C. J., Carbotte, J. P. & Nicol, E. J. Optical and transport properties in
three-dimensional Dirac and Weyl semimetals. Phys. Rev. B 93, 085426 (8 2016)
(cited on page 50).

Castellanos-Gomez, A. et al. Local Strain Engineering in Atomically Thin
MoS2. Nano Letters 13, 5361-5366 (2013) (cited on page 52).

Kamboj, S. et al. Generation of strain-induced pseudo-magnetic field in a
doped type-1I Weyl semimetal. Phys. Rev. B 100, 115105 (11 2019) (cited on
pages 52, 54, 67, 68, 79, 81).

Sasaki, K.-i., Kawazoe, Y. & Saito, R. Local Energy Gap in Deformed Carbon
Nanotubes. Progress of Theoretical Physics (2005) (cited on pages 51, 54).

Guinea, F., Horovitz, B. & Le Doussal, P. Gauge field induced by ripples in
graphene. Phys. Rev. B 77,205421 (20 2008) (cited on pages 51, 54).

Maiies, J. L., de Juan, F.,, Sturla, M. & Vozmediano, M. A. H. Generalized
effective Hamiltonian for graphene under nonuniform strain. Phys. Rev. B 88,
155405 (15 2013) (cited on pages 52, 56, 61, 66, 101, 102).

Landau, L. et al. Theory of Elasticity (Elsevier Science, 1986) (cited on pages 53,
77).

Kleinert, H. Gauge Fields in Condensed Matter (Worls Scientific, Singapore, 1989)
(cited on page 53).

Landau, L. & Lifshitz, E. Fluid Mechanics v. 6 (Elsevier Science, 2013) (cited
on page 54).

Guinea, F. Strain engineering in graphene. Solid State Communications 152.
Exploring Graphene, Recent Research Advances, 1437-1441 (2012) (cited on
page 54).

Amorim, B. et al. Novel effects of strains in graphene and other two dimensional

materials Novel effects of strains in graphene and other two dimensional
materials. 2016 (cited on pages 54, 55).



122 Bibliography

248. Morpurgo, A. F. & Guinea, F. Intervalley Scattering, Long-Range Disorder,
and Effective Time-Reversal Symmetry Breaking in Graphene. Phys. Rev. Lett.
97, 196804 (19 2006) (cited on page 54).

249. Morozov, S. V. et al. Strong Suppression of Weak Localization in Graphene.
Phys. Rev. Lett. 97, 016801 (1 2006) (cited on page 54).

250. Katsnelson, M. I. & Novoselov, K. S. Graphene: New bridge between con-
densed matter physics and quantum electrodynamics. Solid State Communica-
tions (2007) (cited on page 54).

251. Pereira, V. M. & Castro Neto, A. H. Strain Engineering of Graphene’s Electronic
Structure. Phys. Rev. Lett. 103, 046801 (4 2009) (cited on pages 54, 67).

252. Guinea, F., Geim, A. K., Katsnelson, M. I. & Novoselov, K. S. Generating
quantizing pseudomagnetic fields by bending graphene ribbons. Phys. Rev. B
81, 035408 (3 2010) (cited on pages 54, 79, 81).

253. Gorbar, E. V., Miransky, V. A., Shovkovy, I. A. & Sukhachov, P. O. Consistent
Chiral Kinetic Theory in Weyl Materials: Chiral Magnetic Plasmons. Phys. Rev.
Lett. 118, 127601 (12 2017) (cited on page 57).

254. Goerbig, M. O., Fuchs, ].-N., Montambaux, G. & Piéchon, F. Tilted anisotropic
Dirac cones in quinoid-type graphene and a — (BEDT TTF),I3. Phys. Rev. B78,
045415 (4 2008) (cited on pages 58, 68).

255.  Goerbig, M. O., Fuchs, J.-N., Montambaux, G. & Piéchon, F. Electric-field—induced
lifting of the valley degeneracy in @ — (BEDT TTF),I3 Dirac-like Landau levels.
EPL (Europhysics Letters) 85, 57005 (2009) (cited on pages 58, 68).

256. Jafari, S. A. Electric field assisted amplification of magnetic fields in tilted
Dirac cone systems. Phys. Rev. B 100, 045144 (4 2019) (cited on page 58).

257. Sari, J., Goerbig, M. O. & Té6ke, C. Magneto-optics of quasirelativistic electrons
in graphene with an inplane electric field and in tilted Dirac cones in a —
(BEDT TTF),I3. Phys. Rev. B 92, 035306 (3 2015) (cited on pages 58, 68).

258. Tchoumakov, S., Civelli, M. & Goerbig, M. O. Magnetic-Field-Induced Rela-
tivistic Properties in Type-I1 and Type-II Weyl Semimetals. Phys. Rev. Lett. 117,
086402 (8 2016) (cited on pages 58, 68, 72, 83).

259. Yu,Z.-M.,, Yao,Y. & Yang, S. A. Predicted Unusual Magnetoresponse in Type-II
Weyl Semimetals. Phys. Rev. Lett. 117, 077202 (7 2016) (cited on pages 58, 68,
72, 83).

260. Volovik, G. E. Black hole and hawking radiation by type-II Weyl fermions.
JETP Letters 104, 645-648 (2016) (cited on page 58).

261. Zhang, K. & Volovik, G. E. Lifshitz transitions via the type-II dirac and type-II
Weyl points. JETP Letters 105, 519-525 (2017) (cited on page 58).



Bibliography 123

262.

263.

264.

265.

266.

267.

268.

269.

270.

271.

272.

273.

274.

275.

Chang, G. et al. A strongly robust type II Weyl fermion semimetal state in
Ta3S2. Science Advances 2 (2016) (cited on pages 58, 61).

Kim, S. J., Nanjundaswamy, K. S. & Hughbanks, T. Single-crystal structure
of tantalum sulfide (Ta3S2). Structure and bonding in the Ta65n (n = 1,3,4,5?)
pentagonal-antiprismatic chain compounds. Inorganic Chemistry 30, 159-164
(1991) (cited on page 58).

Nozaki, H., Wada, H. & Takekawa, S. Galvanomagnetic Properties of Ta3S2,
Ta2S and Ta6S. Journal of the Physical Society of Japan 60, 3510-3515 (1991) (cited
on page 58).

Chernodub, M. N,, Cortijo, A., Grushin, A. G., Landsteiner, K. & Vozmediano,
M. A. H. Condensed matter realization of the axial magnetic effect. Phys. Rev.
B 89, 081407 (8 2014) (cited on pages 58, 64).

Slater, ]. C. & Koster, G. F. Simplified LCAO Method for the Periodic Potential
Problem. Phys. Rev. 94, 1498-1524 (6 1954) (cited on page 59).

Gorbar, E. V., Miransky, V. A. & Shovkovy, I. A. Engineering Weyl nodes in
Dirac semimetals by a magnetic field. Phys. Rev. B 88, 165105 (16 2013) (cited
on page 60).

Vaezi, A., Abedpour, N., Asgari, R., Cortijo, A. & Vozmediano, M. A. H. Topo-
logical electric current from time-dependent elastic deformations in graphene.
Phys. Rev. B 88, 125406 (12 2013) (cited on page 66).

Mufioz, E. & Soto-Garrido, R. Thermoelectric transport in torsional strained
Weyl semimetals. Journal of Applied Physics (2019) (cited on page 66).

Nielsen, H. B. & Ninomiya, M. The Adler-Bell-Jackiw anomaly and Weyl
fermions in a crystal. Physics Letters B (1983) (cited on page 68).

Burkov, A. A. Chiral anomaly and transport in Weyl metals. Journal of Physics
Condensed Matter (2015) (cited on page 68).

Jia, S., Xu, S.-Y. & Hasan, M. Z. Weyl semimetals, Fermi arcs and chiral
anomalies. Nature Materials 15, 1140 (2016) (cited on page 68).

MacDonald, A. H. Quantized Hall conductance in a relativistic two-dimensional
electron gas. Phys. Rev. B 28, 2235-2236 (4 1983) (cited on page 68).

Lukose, V., Shankar, R. & Baskaran, G. Novel Electric Field Effects on Landau
Levels in Graphene. Phys. Rev. Lett. 98, 116802 (11 2007) (cited on pages 68,
75).

Peres, N. M. & Castro, E. V. Algebraic solution of a graphene layer in transverse
electric and perpendicular magnetic fields. Journal of Physics Condensed Matter
(2007) (cited on pages 68, 75).



124

Bibliography

276.

277.

278.

279.

280.
281.

282.

283.

284.

285.

286.

287.

288.

289.

Castro, E. V., Cazalilla, M. A. & Vozmediano, M. A. H. Raise and collapse of
pseudo Landau levels in graphene. Phys. Rev. B 96, 241405 (24 2017) (cited on
pages 69, 83).

Lorentz, H., Einstein, A., Minkowski, H., Weyl, H. & Sommerfeld, A. The
Principle of Relativity: A Collection of Original Memoirs on the Special and General
Theory of Relativity (Dover, 1952) (cited on page 69).

Landau, L., Lifshitz, E. & Hamermesh, M. The Classical Theory of Fields (Elsevier
Science, 1975) (cited on pages 69, 77).

Einstein, A., Beck, A. & Havas, P. The Collected Papers of Albert Einstein, Volume
2: The Swiss Years (Princeton University Press, 1989) (cited on page 69).

Moller, C. The theory of relativity (Clarendon Press, 1972) (cited on page 69).

Lorentz, H. A. Simplified theory of electrical and optical phenomena in moving
systems. Koninklijke Nederlandse Akademie van Wetenschappen Proceedings Series
B Physical Sciences 1, 427-442 (1898) (cited on page 69).

Kramer, T., Bracher, C. & Kleber, M. Electron propagation in crossed magnetic
and electric fields. Journal of Optics B: Quantum and Semiclassical Optics (2004)
(cited on page 76).

Singh, V. & Deshmukh, M. M. Nonequilibrium breakdown of quantum Hall
state in graphene. Phys. Rev. B 80, 081404 (8 2009) (cited on page 76).

Gu, N,, Rudner, M., Young, A., Kim, P. & Levitov, L. Collapse of Landau Levels
in Gated Graphene Structures. Phys. Rev. Lett. 106, 066601 (6 2011) (cited on
page 76).

Hofmeister, A. M. & Mao, H.-k. Redefinition of the mode Gruneisen parameter
for polyatomic substances and thermodynamic implications. Proceedings of the
National Academy of Sciences (2002) (cited on page 77).

Ibach, H. & Liith, H. Solid-State Physics: An Introduction to Principles of Materials
Science (Springer Berlin Heidelberg, 2009) (cited on page 77).

Hasan, M. Z., Xu, S.-Y., Belopolski, I. & Huang, S.-M. Discovery of Weyl
Fermion Semimetals and Topological Fermi Arc States. Annual Review of Con-
densed Matter Physics 8, 289-309 (2017) (cited on page 78).

Chang, G. et al. Unconventional Chiral Fermions and Large Topological Fermi
Arcs in RhSi. Phys. Rev. Lett. 119, 206401 (20 2017) (cited on page 78).

Rachel, S., Gothel, 1., Arovas, D. P. & Vojta, M. Strain-Induced Landau Levels
in Arbitrary Dimensions with an Exact Spectrum. Phys. Rev. Lett. 117, 266801
(26 2016) (cited on pages 80, 81).



Bibliography 125

290.

291.

292.

293.

294.

Storz, O. et al. Mapping the effect of defect-induced strain disorder on the
Dirac states of topological insulators. Phys. Rev. B 94, 121301 (12 2016) (cited
on page 83).

Simon, B. Holonomy, the Quantum Adiabatic Theorem, and Berry’s Phase.
Phys. Rev. Lett. 51, 2167-2170 (24 1983) (cited on page 90).

Aharonov, Y. & Bohm, D. Significance of Electromagnetic Potentials in the
Quantum Theory. Phys. Rev. 115, 485-491 (3 1959) (cited on page 91).

Gradshteyn, 1. S. & Ryzhik, I. M. Table of Integrals, Series, and Products, 7th
Edition (Elsevier Academic Press, 2007) (cited on page 97).

De Juan, F., Maries, J. L. & Vozmediano, M. A. H. Gauge fields from strain in
graphene. Phys. Rev. B 87, 165131 (16 2013) (cited on pages 101, 102).



	Contents
	List of Figures
	Agradecimientos
	Publications
	Abstract
	Resumen
	Introduction
	Weyl fermions
	Electronic band theory and quasiparticles in crystalline structures
	Degeneracy points and linear dispersion relations. Emergence of low-energy Dirac electrons in condensed matter

	Topological features of Weyl fermions
	Topology in condensed matter physics
	Topological aspects of band-crossing points. Berry phase of crystal Hamiltonians 

	Physical consequences of topology 
	 Topological surface states: Fermi arcs 
	 Chiral anomaly in Weyl semimetals
	Discrete symmetries and topological phases. Dirac semimetals

	Condensed matter realizations of Weyl semimetals
	Electronic excitations in Weyl fermions. Beyond high-energy physics
	Thermoelectric responses and topological materials
	Strain-induced pseudo-electromagnetic fields


	Thermoelectric transport in Dirac and Weyl semimetals
	Introduction
	Linear response theory. Thermoelectric tensor
	Luttinger's relationship for thermal gradients
	Correlation function for thermal perturbations

	Thermoelectric response function of Dirac and Weyl semimetals
	Effective low-theory for Dirac and Weyl particles in a magnetic field
	Current and energy-momentum operators

	Results
	Thermoelectric response at zero temperature
	Thermoelectric response at finite temperature and chemical potential

	Conclusions and discussion

	Thermoelectric relations in the conformal limit
	Introduction
	Phenomenological transport relations
	Electrical conductivity of Dirac matter
	Electrical conductivity. Theoretical background
	Hall conductivity for Dirac matter
	Hall conductivity. Local and zero frequency limit
	Energy derivative of the conductivity

	Mott relation in Dirac semimetals at the conformal limit
	Conclusions and discussion

	Rotational strain in Weyl semimetals
	Introduction
	Elasticity theory. Fundamental equations
	Elastic deformations in Dirac crystals

	Electron-phonon couplings
	The strain tensor. Effective electron-phonon interactions
	Antisymmetric deformation tensor. Effective electron-phonon interactions

	Physical example. Realistic strain configuration
	Conclusions and discussion

	Collapse of Landau levels in Weyl semimetals
	Introduction
	Lorentz transformations
	Electromagnetic field tensor and special relativity

	Collapse of the Landau levels
	Hall regime in non-relativistic electrons
	Hall regime in Dirac and Weyl semimetals
	Magnetic and electric regimes

	Collapse of strain-induced Landau levels 
	Particular strain proposals. Discussion on possible experimental setups
	Antisymmetric contributions to the deformation potential

	Conclusions and discussions

	Conclusions
	Conclusiones
	Topological aspects of crystalline lattices. Berry phase
	Berry phase on crystalline solids
	Berry phase of band-crossing points. Monopoles of Berry curvature

	Thermoelectric coefficient. Result from a Kubo formula
	Exact eigenstates representation for non-interacting particles
	Thermoelectric coefficient. Current and energy-momentum operators
	Matrix elements: product of Hermite polynomials
	 Thermoelectric response function

	Antisymmetric deformation tensor: two-dimensional versus three-dimensional Dirac crystals 
	Bibliography

