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Abstract

This thesis studies some aspects of the physics of topological semimetals, a set of

novel three-dimensional matter systemswhose low-energy electronic excitations are

described by Dirac quasiparticles. The unconventional features of these materials,

ranging from basic physics to technological applications, have generated a substan-

tial research activity during the last years. The interest in crystalline structures

hosting Dirac quasiparticles lies partially on the relativistic nature of their electronic

degrees of freedom, making them an ideal laboratory to test and study fundamen-

tal physics phenomena. This thesis addresses two topics of major interest in the

physics of these systems: the interplay between lattice deformations and electronic

properties, and the influence of anomalies on the thermoelectric response.

In the first part of this thesis, the thermoelectric response of Dirac and Weyl

semimetals is studied in the presence of strong magnetic fields. The anomalous

thermoelectric behaviour is addressed at the charge neutrality point, where a finite

contribution to the thermoelectric coefficient is obtained in the conformal limit.

The thermoelectric coefficients fulfill robust phenomenological relations based

on the Landau-Fermi liquid paradigm of coherent quasiparticles. These relations

may be challenged when the system has strong interactions or when it presents a

poor metallic behaviour. The validity of the Mott relation, a phenomenological law

that relates the thermopower and the electrical conductivity coefficients, is discussed

in the regime of zero doping and zero temperature. In particular, the off-diagonal

components of the electric and thermoelectric tensors are analyzed in the presence

of a magnetic field.

The influence of external deformations on the lattice configuration of topological

semimetals is essential to understand their electronic properties. In these systems,

elastic deformations couple to the low-energy electronic excitations in the form

of elastic gauge fields. The possibility of controlling the dynamics of carriers by

appropriate strain geometries has given rise to a prolific industry associated with

straintronics. In the second part of this thesis, the coupling of lattice deformations to

Dirac quasiparticles in three-dimensional materials is studied by using a symmetry

approach. An interesting aspect is that, in contrast with the two-dimensional case,

the antisymmetric part of the deformation tensor couple to the electronic excitations

in three-dimensional Dirac materials.

Finally, the interplay between electromagnetic fields and elastic deformations is

also discussed, in which the collapse of Landau levels is showed in the presence of

strain. The similarities of this mechanism with the case of real magnetic and electric

fields are emphasized, discussing possible strain configurations giving rise to this

effect.
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Resumen

Esta tesis estudia aspectos de la física de los semimetales topológicos, un conjunto

de materiales tridimensionales cuyas excitaciones electrónicas de baja energía son

descritas por las cuasipartículas de Dirac. Las características poco convencionales

de estos sistemas, que abarcan desde la física fundamental hasta las aplicaciones

tecnológicas, han generado una importante actividad investigadora durante los úl-

timos años. El interés en sistemas de cuasipartículas de Dirac radica en parte en

la naturaleza relativista de sus grados de libertad electrónicos, convirtiendo estos

materiales en sistemas ideales para examinar y estudiar fenómenos de física funda-

mental. Esta tesis aborda dos temas de gran interés en la física de estos sistemas:

la interacción entre las deformaciones de la red y las propiedades electrónicas, y la

influencia de las anomalías en la respuesta termoeléctrica.

En este trabajo, se ha estudiado la respuesta termoeléctrica de los semimetales

de Dirac y Weyl en presencia de un campo magnético intenso. El comportamiento

termoeléctrico anómalo ha sido analizado en el punto de neutralidad de carga,

donde se ha obtenido una contribución finita al coeficiente termoeléctrico en el

límite conforme.

Los coeficientes termoeléctricos satisfacen relaciones fenomenológicas basadas

en el paradigma de cuasipartículas del líquido de Fermi. Estas relaciones pueden ser

cuestionadas cuando el sistema tiene interacciones fuertes o cuando presenta unmal

comportamiento metálico. Se ha discutido la validez de la relación de Mott, una ley

fenomenológica que relaciona la potencia térmica y el coeficiente de conductividad

eléctrica en el límite de dopaje y temperatura cero. En particular, se han analizado las

componentes no diagonales de los tensores eléctrico y termoeléctrico en presencia

de un campo magnético.

La influencia de las deformaciones de la red de los semimetales topológicos re-

sulta esencial para entender sus propiedades electrónicas. En estos sistemas, las

deformaciones elásticas se acoplan a las excitaciones electrónicas de baja energía en

forma de campos gauge elásticos. La posibilidad de controlar la dinámica de los

portadores con las configuraciones de deformación apropiadas ha dado lugar a toda

una industria dedicada a “straintronics”. Se ha estudiado el acoplo de las deforma-

ciones elásticas a las cuasipartículas de Dirac en materiales tridimensionales usando

una acción efectiva basada en la simetría del sistema. Un aspecto interesante es que,

al contrario de lo que ocurre en materiales bidimensionales, la parte antisimétrica

del tensor de deformación se acopla a las excitaciones electrónicas en los materiales

tridimensionales de Dirac.

Finalmente, se ha discutido la inter-relación entre los campos electromagnéti-

cos y las deformaciones elásticas, mostrando el colapso de los niveles (pseudo) de
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Landau en presencia de deformaciones. Se ha enfatizado la similitud de este meca-

nismo con el caso de campos magnéticos y eléctricos reales, discutiendo las posibles

configuraciones de deformación que dan lugar a este efecto.
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Chapter 1
Introduction

“A physical law must possess mathematical beauty”
- Paul A. Dirac

A complete quantum theory consistent with the postulates of special relativity

was given in 1928 by Dirac [1]. He introduced an equation that describes the

dynamics of the electron as a relativistic quantum particle and led to a natural

insight into the concept of spin. Written in a covariant language, the Dirac equation

reads: (
i~cγµ∂µ − mc2

)
ψ(x) � 0, (1.1)

where ψ is a 4-component wave-function describing the electron and µ � 0, 1, 2, 3.
The matrices γµ, known as Dirac matrices, satisfy the particular anticommutation

relation {γµ , γν} � 2ηµν , with ηµν � diag(1,−1,−1,−1).
Condensed matter physics focuses on understanding and studying the physical

properties of large collections of atoms arranged in a periodic array. Since the typical

energy scales in these systems are much smaller than themass of the electron, a rela-

tivistic description of the electronic degrees of freedomwas considered unnecessary.

Nevertheless, the two branches of physics meet through the exchange of conceptual

ideas and techniques. A typical example is the concept of renormalization group;

first developed to control the divergences arising in quantum electrodynamics, it has

been applied to solve problems in condensed matter physics, such as the Landau-

Fermi liquid or the Kondo problem [2, 3]. During the last decade, the synthesis

of a novel class of materials has opened a new bridge between condensed matter

and high energy physics: the Dirac matter, whose electronic degrees of freedom are

effectively described by the massless Dirac equation.
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Although materials modeled with the Dirac equation were already known in

condensed matter [4, 5], it was after the experimental realization of graphene in

2005 [6, 7] when the physical consequences of such equation were fully explored

by the community [8]. The synthesis of graphene was followed by other important

material realizations of themasslessDirac equation; the edge states of the topological

insulators [9–12]. More recently, Dirac and Weyl semimetals are three-dimensional

(3D) topological materials hosting massless Dirac spinors in the vicinity of linear

band-crossings points [13–18].

This thesis centers on the interplay between high-energy processes and con-

densed matter phenomena in Weyl and Dirac semimetals. In particular, it studies

the response of Dirac quasiparticles to magnetic fields (real or fictitious) and spatial

deformations. Throughout this thesis, we will see that both topics are precisely

interconnected when studying the thermoelectric response of Dirac materials and

the coupling between the lattice deformations and electronic degrees of freedom.

We begin this introductory chapter by discussing the relevant characteristics of

Weyl semimetals, whose linearly dispersing valence and conduction bands meet

at isolated points at the Fermi level. In the first section, we discuss the conditions

underwhich degeneracies arise in electronic band structures and its connectionwith

the relativistic Dirac equation. In the second section we review the basic concepts

to understand the topological character of such degeneracy points. In the third

section, we describe the emergence of new terms that can be added to the Dirac

equation when Lorentz invariance is broken and their physical consequences in

material systems. The discussion of this chapter is partially based on the description

of topological semimetals provided in the collection of review articles [19–25].

1.1 Weyl fermions
The Dirac equation characterizes the motion of relativistic spin-1/2 fermions with

mass m, and is the first theory that successfully reconciles the principles of quantum

mechanics (equations of motion must depend only on the first time derivative) and

special relativity (time and spatial coordinates should be treated symmetrically). By

taking the limit m → 0 in Equation (1.1), Weyl noticed that the equation could be

split into two decoupled equations [26]:

i~∂0ψ±(x) � H±ψ±(x),

H± � ±
3∑

j�1

cσ j p j , (1.2)
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where σ j
are the Pauli matrices, p j � −i~∂j is the momentum of the particle and

ψ± is a two component bi-spinor. The resulting dispersion relation takes the form

E � ±~ck, with k being the modulus of the corresponding wave-vector. In order to

obtain Equation (1.2), the Weyl representation γ0 � σx ⊗ I2, γi � iσy ⊗ σi
is used.

We will adopt this convention throughout this thesis.

In any odd spatial dimension d, we can define a chirality operator constructed

with the matrix γ5 � ikγ0γ1 . . . γd
[27] that commutes with the Weyl Hamiltonian.

This commutation relation is guaranteed for odd spatial dimensions, provided that

γ5
anticommutes with the velocity matrices γi

. The Weyl spinors are eigenstates

of definite chirality and have a well defined helicity (projection of the spin on the

momentum).

Weyl fermions do not exist as fundamental particles. Neutrinoswere conjectured

as a promising candidate, but the discovery of neutrino oscillations implied that they

have a finite mass [28, 29], eliminating them as an option. Manifestations of Weyl

physics can be observed in the quark-gluon plasma [30, 31], and now in condensed

matter systems. In the forthcoming sections, we will see how pairs of Weyl fermions

separated in energy or momentum space arise in the vicinity of degeneracy points

in electronic band structures.

1.1.1 Electronic band theory andquasiparticles in crystalline struc-
tures

At the microscopic level, ions of macroscopic crystalline structures are arranged in

a periodic lattice. The interactions among atoms are strong enough to maintain

the solid structure of the material. Hence, electrons in a crystalline structure are

described as particles subjected to a periodic potential with the symmetry of the

underlying lattice. This observation led the physicist Bloch to study the Schrödinger

equation in an effective periodic potential. He showed that the eigenstates of the

one-electron Hamiltonian have the form ψnk(r) � e ikrunk(r), where k is the crystal

momentum of the electron and the function unk(r) � 〈r |un(k)〉 has the periodicity

of the Bravais lattice; unk(r + R) � unk(r), with R being the lattice vector [32, 33].

The index n labels the different solutions of the Scrödinger equation in the periodic

momentum space. These discretely spaced eigenvalues form an infinite family of

functions that depend continuously on the crystal momentum k. Unlike the free

electron case where any energy value is permitted, the electrons of a crystalline

lattice are only allowed to occupy states within a certain energy window or band.
The band structure provides essential information to understand the character-

istics and properties of crystalline structures. In particular, the transport properties

of any material are ultimately determined by the amount of available electrons and

its band structure, classifying them into metals and insulators. In the presence of a
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finite Fermi surface, energy bands near the Fermi level inmetals have a quadratic dis-

persion. Electronic excitations in such bands are described in the continuum limit

by the Scrödinger equation, and its dispersion relation is Ek � ~2k2/2meff, where

the effective mass meff accounts for deviations from the mass of the electron [34].

The definition of meff is associated with the concept of quasiparticle; in the presence

of interaction processes –disorder, scattering effects or Couloumb interactions– the

electronic excitations are “dressed particles” with effective mass meff and finite life-

time. The concept of quasiparticle was introduced by the Russian physicist Landau,

who, in his work The Theory of a Fermi Liquid [35], explained how a system of strongly

interacting particles (with a well-defined Fermi surface) can still be described as

a free-motion system. Later, the theory was understood with the mathematical

formalism of renormalization group [2, 36].

Defining conceptual, simple models to understand the nature of more compli-

cated systems is the main goal of theoretical physics. Over the years, a plethora of

effective particles have been introduced in order to explain the collective behaviour

of different systems. Notable examples are phonons, which are used to describe

the quantized vibrational modes of the lattice. Quasiparticle excitations have also

provided excellent results in explaining more exotic phenomena. Various exam-

ples are composite fermions [37–39], Bogoliubov quasiparticles [40, 41] or magnetic

skyrmions [42, 43]. The concept of quasiparticle will appear again when studying

the effective dispersion relation around degeneracy points.

1.1.2 Degeneracy points and linear dispersion relations. Emer-
gence of low-energy Dirac electrons in condensed matter

Field theory models arise in condensed matter as low-energy effective descriptions

that are obtained by expanding the dispersion relation around the Fermi surface.

Although most metallic compounds are effectively described by the Schrödinger

equation, a relativistic dispersion relation may emerge under some conditions in

crystalline structures. In the early days of quantum mechanics [44, 4], it was noted

that in the vicinity of two-fold degeneracies or band touching points, the dispersion

relation is linear and coincides with the dispersion of a massless Weyl spinor. An

interesting question is then to ascertain what conditions are required to get band-

crossing points near the Fermi energy in a material.

Considering a pair of non-degenerate energy bands, themost general 2×2Hamil-

tonian can be cast in the form1

H � f0(k) + σx f1(k) + σy f2(k) + σz f3(k), (1.3)

1In writing Equation (1.3), we have exploited the fact that the three Pauli matrices and the identity

matrix form a basis for all two-by-two matrices.
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whose eigenvalues are given by

Ek � f0(k) ±
√

f 2

1
(k) + f 2

2
(k) + f 2

3
(k). (1.4)

In the absence of any symmetry, Equation (1.4) shows that the emergence of a

degeneracy point k∗ requires tuning the three parameters fi(k) to nullify the terms

inside the square root. In three dimensional solids, where the Hamiltonian depends

on the three components of the wave-vector, this condition is naturally satisfied,

allowing thepresence of stable band-crossingpoints at isolatedpoints in theBrillouin

zone. It is clear that additional conditions are required in two spacial dimensions to

guarantee band crossings.

By expanding the generic Hamiltonian described in Equation (1.3) in a power

series near the degeneracy point k � k∗ in the linear regime, the resulting expression

is:

H � ~vi jσ
i(k − k∗) j , (1.5)

with vi j � ∂j fi |k�k∗ . Equation (1.5) coincides with the Weyl equation defined in

Equation (1.2) after a shift k → k − k∗ and neglecting constant terms, with the re-

placement c → vi j . As discussed at the opening of the section, electronic excitations

of two-fold degeneracies at the Fermi level are described by massless quasiparticles

where the sign of the determinant

χ � sign det(vi j) � sign det

∂ fi

∂k j

����
k�k∗

(1.6)

determines the chirality χ of the gapless mode. These band-crossings are referred

as Weyl nodes [18] (see Figure 1.1). The symmetry conditions under which the

conduction and valence band coincide at the Fermi level were examined in the

early work by Abrikosov and Beneslavskiĭ [5]. A non-degenerate electronic band

structure is found inmaterials where either inversion symmetry (P) or time-reversal

symmetry (T ) are broken2 [20]. Hence, non-centrosymmetric or magnetic systems

are promising candidates to host unremovableWeyl nodes. The interest in materials

hosting these degeneracies has grown significantly during the last years due to the

improvement in the experimental synthesis of crystals. The theoretical excitement is

partly motivated by the fact that high energy physical properties of Weyl fermions,

such as the chiral anomaly [45, 46], remain present in this non-relativistic context.

2The energy levels of fermionic systems that present P or T symmetry have a band structure at least

doubly degenerate. Symmetry implications on the band spectrumwill be studied in detail in section 1.3.3.
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Figure 1.1: (Left): Schematic representation of the dispersion rela-

tion corresponding to twoWeyl nodes of opposite chiral-

ity. (Right): Angle-resolved photoemission spectroscopy

(ARPES) experiments of the crystal NbP. Adapted from

Ref. [47].

1.2 Topological features of Weyl fermions
In order to have materials described by the Weyl equation, the band crossings must

occurnear theFermi energy,which is fixedby the chemical compositionof the crystal.

Materials having these kind of degeneracies are known as Weyl semimetals (WSMs).

As we will see, their band-crossing points are topologically protected. Contrary to

two-dimensional crystals, degeneracy points are stable to small perturbations of the

parameters regardless of the symmetry, as all Pauli matrices have been exhausted.

Adding a mass term in the Hamiltonian proportional to one of the matrices only

shifts the position of the solution, i.e., moves the Weyl node in crystal momentum

space. In this section, wewill show that the stability of the nodes is ultimately related

to the non-trivial topology of the band structure. The details of the calculation are

presented in appendix A.

1.2.1 Topology in condensed matter physics
Prior to the discovery of the quantum Hall effect, quantum phases of matter were

classified according to the Ginzburg-Landau theory [48]. Within this framework,

states of matter are characterized in terms of local order parameters, independently

of the microscopic details of the system. Specifically, the order parameters acquire a

finite valuewhen the systemundergoes a phase transition to a lower symmetry state.

This paradigm allowed to understand the underlying mechanism behind (almost)
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all physical transitions discovered during the last century, such as superconductiv-

ity [48], ferromagnetic order [49, 50] or Bose-Einstein condensation [51–53]. With

the emergence of novel phases of matter during the last decades, it became clear that

the symmetry-breaking paradigm is insufficient to capture some effects, as occurred

in quantum Hall systems [54]. A full description of these phases demanded a new

criteria whose foundations laid on the mathematical notion of topology [11, 12, 55].

Topological aspects of many-particle systems began to be explored by the con-

densed matter community with the advent of the quantum Hall effect and the

awareness of the role played by the Berry curvature [56, 54]. Afterwards, the predic-

tion and experimental realization of topological insulators [57, 11, 58] has given rise

to a prolific activity, both theoretically and experimentally, in this field. Equivalent

topological phases are characterized by the same topological index, whose character

depends on the general properties of the spectrum under their discrete symmetries

and dimensionality [10, 11, 59–61].

1.2.2 Topological aspects of band-crossing points. Berry phase of
crystal Hamiltonians

Although initially circumscribed to gapped systems, a manifest interest in the study

of the topological properties in gapless states has begun to arise during the last years.

The topological nature of a crystalline lattice is rooted in the Bloch wave-functions

|un(k)〉, where n labels the band index. The Berry phase γn [62] is computed from

the closed line integral of the Berry connection (see appendix A.1 for a detailed

derivation):

An(k) � −i〈un(k)|∇kun(k)〉, (1.7)

or the surface integral of the Berry curvature over the Brillouin zone:

Fn(k) � −i∇k × 〈un(k)|∇kun(k)〉. (1.8)

The stability of Weyl points is linked to an integer topological index, which is the

reason whyWeyl semimetals are considered topological materials. Their non-trivial

topological structure is linked to the Berry curvature associatedwith a band-crossing

point of definite chirality, which takes the form (see appendix A.2):

Fn ,χ(k) � nχ
k

2k3

. (1.9)

In the vicinity of a Weyl node, the Berry curvature has the form of a magnetic

monopole (see Figure 1.2). The sign of the charge is determined by the chirality

χ of the point. Weyl nodes are sources and sinks of Berry curvature [63, 64],

which prevents them to be eliminated: Weyl points move around in reciprocal
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Figure 1.2: Schematic illustration of two single Weyl nodes with op-

posite chirality. Weyl nodes act as sources and sinks of

Berry curvature. At the surface, the projections of the

two Weyl nodes are connected by a Fermi arc.

space upon changing the parameters of the Hamiltonian, and eventually oppositely

charged monopoles may annihilate when placed on top of each other. As shown

by Nielsen and Ninomiya, the total monopole charge in the Brillouin zone has to

be zero [65], which implies that the band-crossing points always come in pairs of

opposite chirality.

1.3 Physical consequences of topology
Systems with gapless degrees of freedom have robust topological properties with

defining topological invariants. Bulk degeneracies act as sources and sinks of Berry

curvature, with a quantized Berry flux. In this section, we will explore the conse-

quences of having solid-state systems with a non-trivial electronic band structure

topology.

1.3.1 Topological surface states: Fermi arcs
In band insulators, non-trivial topology induces conducting states exponentially

localized at the surface [66, 57]. Distinctive bound-states are also originated at the

surfaces of gapless bulkmaterials as a consequence of their non-zeroBerry curvature.

Surprisingly, these states do not form a conventional closed Fermi surface, but form
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Figure 1.3: High-resolution ARPES Fermi surface maps in

TaP (left) and TaAs (right) crystals, showing the pres-

ence of Fermi arc surface states. Adapted from Refs. [68,

69].

open “arcs” at the Fermi level (see Figure 1.2), which end at the projection of the

degeneracy points onto the surface Brillouin zone [18, 19, 23, 67].

The existence of Fermi arcs carrying a non-trivial Chern number is used as

an experimental signature of Weyl nodes in the bulk. Direct measurements of

these surface states are made through angle-resolved photoemission spectroscopy

(ARPES) studies (see Figure 1.3). Additionally, Fermi arcs are predicted to exhibit

unusual quantum oscillations in magnetotransport measurements and quantum

interference effects in scanning tunnelingmicroscopy (STM) experiments, providing

a variety of experimental probes of the surface states [70–72].

1.3.2 Chiral anomaly in Weyl semimetals
As mentioned at the beginning of section 1.1, the Dirac equation is split into two

independent equations for the chiral components ψ± in the massless case. Since the

two components do not mix, it follows that the charges associated to each chirality

are separately conserved, and using Noether’s theorem [73, 27] one can express

individually classical conservation laws for the currents of left (−) and right (+)

moving Weyl fermions. In particular, the axial vector current

Jµ
5
� Jµ+ − Jµ− � ψ†γ0γµγ5ψ, (1.10)
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that corresponds to the difference between fermions with opposite chiralities, satis-

fies the continuity equation

∂
∂xµ

Jµ
5
� 0. (1.11)

Equation (1.11) arises as a result of the axial gauge symmetry,

ψ+ → ˜ψ+ � e+iθψ+ , (1.12)

ψ− → ˜ψ− � e−iθψ−. (1.13)

The axial conservation law is no longer valid when quantizing the theory in the

presence of external electric E andmagnetic B fields. The gauge symmetry breaks at

the quantum level, and the expectation value of the chiral currents becomes [74, 22]:

∂µ Jµχ �
χ

8π2

e2

~2

(E · B), (1.14)

where χ is the chirality of the Weyl fermion. A classical symmetry that does not

persist when the dynamics is quantized is referred as anomalous. Quantization

processes normally involve divergent terms that are caused when the classical cur-

rents are substituted by local operators, leading to quantum anomalies when the

regularization mechanism does not respect the classical symmetry [75]. The non-

conservation of the chiral charge, referred as chiral anomaly, was essential to explain

the decay process of the neutral pion into two photons [46, 45]. From the point of

view of condensed matter field, Weyl systems show the chiral anomaly, which is

associated with an enhancement of the magneto-conductivity in transport experi-

ments [76–80].

A physical intuition of this effect can be given by considering a simple Weyl

semimetal with two nodes of opposite chiralities. In the presence of an external,

uniform magnetic field, the conical dispersion relation is split into a set of Landau

levels. Each level is a one-dimensional dispersing mode along the direction parallel

to the orientation of the magnetic field. What is particular of the Dirac systems is the

presence of a zeroth level, which has a chiral dispersion relation independent of the

magnitude of the magnetic field; E0,χ � −χsign(B)vF~k, where k is the momentum

along the direction of the magnetic field (a detailed derivation of the relativistic

Landau level spectrum will be reviewed in chapter 2). In the case considered,

there are two counter-propagating chiral modes with opposite velocities (the band

structure is sketched in Figure 1.4). If an electric field E is switched on along the

same direction as the magnetic field, this field will accelerate the electronic charge

~ Ûk � −eE according to kinetic theory [81, 82]. In this way, the electric field is

generating an inter-valley charge pumping at a rate described by Equation (1.14),

giving rise to an electronic imbalance µ5 � µ+ − µ− between nodes of opposite
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Figure 1.4: Representation of the energy spectrum of the left- and

right-handed Weyl quasiparticles in the presence of a

magnetic field. Filled (empty) states are represented

by black (grey) dots. If an external electric field is ap-

plied parallel to the magnetic field, the electrons are dis-

placed from their equilibrium positions in momentum

space, pumping charge from oneWeyl point to the other.

Adapted from Ref. [21].

chirality. The total charge is conserved, while the difference between chiral charges

is given by the following expression:

∂µ Jµ
5
�

1

4π2

e2

~2

(E · B). (1.15)

Signatures of the chiral anomaly are detected in transport experiments. This

mechanism leads to a notable enhancement of the longitudinal conductivity as a

function of themagnetic field, experimentally confirmed inDirac andWeyl semimet-

als [78–80, 83, 84]. The chemical potential imbalance at two nodes of opposite chi-

rality also gives rise to a dissipationless current along the direction of the magnetic

field, the chiral magnetic effect [85–87], whichwas predicted in the quark-gluonplasma

and observed in magneto-transport experiments in ZrTe5 [88].

Recent experiments have shown evidences of other quantum anomalies as mixed

axial-gravitational anomalies and scale anomaly [89–93]. These effects involve ther-

moelectric measurements in magnetic fields, which will be studied in detail in chap-

ters 2 and 3.
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1.3.3 Discrete symmetries and topological phases. Dirac semimet-
als

Crystal structures oftenhave inversionand time-reversal symmetries. Discrete lattice

symmetries have profound consequences on the band structure and topological

properties of the material. In the case of lattices with an inversion center, the band

structure satisfies the relation En ,σ(k) � En ,σ(−k), where σ denotes the spin of the

energy band. On the other hand, non-magnetic materials (materials that possess

time-reversal symmetry), the condition En ,↑(k) � En ,↓(−k) holds. When both of

them are present, the combination PT is also a symmetry that leaves unchanged

the momentum. Since PT is an antiunitary operation, the energy bands of PT -
symmetric materials have a Kramers degeneracy at every point in the reciprocal

space [94]. This is not compatible with the condition for finding Weyl nodes at

isolated points of the momentum space, which require non-degenerate bands in

order to occur. The reason for such avoided crossing can be found on the topological

character of the system: the Berry curvature satisfies the relation

Fn(k) � −Fn(−k) (1.16)

if the system has time-reversal symmetry, and

Fn(k) � Fn(−k) (1.17)

if it has spatial inversion symmetry [95]. Equations (1.16) and (1.17) imply that, if

both symmetries are present, the Berry curvature vanishes identically at each point

of the Brillouin zone: either time-reversal symmetry or inversion symmetry should

be broken in order to get non-trivial topological bands.

Nevertheless, linear crossings are still possible in PT -symmetric materials. Due

to the presence of extra symmetry constraints, the degeneracy point becomes a

four-fold degeneracy of the bands. Considering a crystal lattice whose Hamiltonian

satisfies both time-reversal and inversion symmetries, a band crossing can only

occur if two Weyl nodes with opposite chiralities are stabilized at the same crystal

momentum, scenario described by the massless Dirac Hamiltonian3:

H �

(
~vFσ j k j 0

0 −~vFσ j k j

)
, (1.18)

3The most general PT -invariant four-bandHamiltonian is given in terms of five 4×4 traceless gamma

matrices γ̂1 , . . . , γ̂5
that satisfy the anticommutation relation {γ̂i , γ̂ j} � 2δi j

; H �
∑

5

i γ̂
i gi(k). In 3+1-

dimensional materials, this Hamiltonian is not robust against perturbations, and additional symmetries

are required in order to get a four-fold degeneracy, as the number of parameters is not enough to make

the functions gi(k) vanish [96].
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which contains four linearly dispersing energy bands not topologically protected. A

pair of Weyl nodes carrying opposite charges may annihilate each other when they

are brought together, opening a gap in the electronic band structure. This gap can be

avoided if the band crossing is protected by space-group symmetries of the lattice,

in which case the Dirac node remains unaltered as a symmetry-protected degener-

acy. The electronic excitations in the vicinity of this four-fold point are described by

Equation (1.18), which yields a solid-state realization of the 3+1-dimensional mass-

less Dirac equation. Materials supporting these kind of degeneracies at the Fermi

level are called Dirac semimetals.
Dirac semimetals are expected to emerge at the phase transition between an or-

dinary and topological insulator when both time-reversal and inversion symmetries

are present. The transition takes place when the Dirac fermionmass is equal to zero,

constraint that is achieved either by fine tuning or with additional symmetries to

force the gapless states at time reversal invariant momenta [97–100]. Alongwith this

proposal, other possibilities has been uncovered. Specifically, Dirac nodes can be re-

alized in materials with rotational symmetry, where two pairs of Weyl nodes merge

at two k points lying along the rotation axis. Thus, each of the two points related

by time-reversal symmetry hold two Weyl nodes of opposite chirality, defining two

stable Dirac points. This type of Dirac semimetals have been realized experimentally

in Na3Bi and Cd2As3 compounds [13, 14, 101–104].

From Dirac to Weyl semimetals

After viewingDirac semimetals as the stablemerger of twoWeylpointswithopposite

chirality, we can assert that two Weyl fermions with opposite charge emerge from

breaking either time-reversal or inversion invariance in a four-fold degeneracy point.

Using a covariant formalism, this is achieved by introducing the chiral vector γ5bµ
to the massless Dirac Lagrangian in the form [17, 64, 105, 106]:

L � ~c ¯ψ(x)
(
iγµ∂µ + γµγ5bµ

)
ψ(x), (1.19)

where
¯ψ � ψ†γ0

and γ5
is matrix defining the chirality operator described earlier

(see Figure 1.5). Here bµ couples to the chiral current as jµ
5

bµ as a gauge field. The

time-component γ5b0 is odd under parity, while the spatial-components γ5b j break

time-reversal symmetry. The low-energy Hamiltonian for a node of chirality χ is:

Hχ � χvF~σ j(k j + χb j) + χvF~b0I. (1.20)

As a result, inmaterialswhere time-reversal symmetry has been broken (for instance,

by doping the material with magnetic impurities), the axial gauge χb j shifts the

location of the energy cones with different chirality to different momenta, leading to
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Figure 1.5: Pictorial representation of the different topological

states. A four-fold degeneracy point (a) gives rise to

a Weyl semimetallic phase by breaking either inver-

sion (b) or time-reversal (c) symmetry.

a Weyl semimetal where the nodes are separated a distance ∆k � 2b in momentum

space along the direction of b; whereas in non-centrosymmetric semimetals the

χb0 term separates the Weyl cones a distance ∆E � 2vF~b0 in energy space. The

continuum model defined in Equation (1.20) will be broadly used throughout this

thesis to characterize the behaviour of electronic excitations near the Weyl points.

Finally, we can see that the discrete symmetries of the microscopic model deter-

mine the minimum number of Weyl nodes present in any Weyl semimetals. Inver-

sion symmetry requires that a Weyl node placed at momentum k must have a chiral

partner with opposite topological charge at the point −k at the same energy [17,

18]. When time reversal symmetry is broken, this realizes the simplest scenario that

allows for the minimum number of Weyl nodes. Conversely, when time-reversal

symmetry is present, the time-reversal operation changes both the momentum and

spin. The helicity (and thereby, the chirality) of the two time-reversed partners

is the same and carry the same topological charge. This requires the presence of

two additional Weyl partners in order to compensate their non-vanishing topology

charge within the Brillouin zone [107]. Therefore, the total number of Weyl nodes is

a multiple of four. Inversion-symmetry breaking materials are more experimentally

accessible, asmagneticmaterials are less abundant. Time-preservingWeyl semimet-

als are expected to appear at the transition point from topological to trivial insulator,

the four-fold degeneracy being lifted if inversion symmetry is lost.

1.4 Condensed matter realizations of Weyl semimetals
So far in this chapter we have discussed the different topological properties of band-

crossing points and the necessary conditions to find such degeneracies in the bulk
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Figure 1.6: (a,b): Fermi surface map of YbMnBi
2
. Degenerate Dirac

points are split due to the lack of time-reversal symme-

try. (c): Energy spectrum showing the presence of Fermi

arcs. Adapted from Ref. [114].

spectrum of three-dimensional materials. Yet in order to observe Dirac physics in

actual materials, the band touching points must be located at or very close to the

Fermi energy, without any other state intervening at such level, which may screen

the exotic effects stemming from the degeneracy points [21].

The firstWeyl semimetals were described theoretically and postulated to occur in

the pyrochlore iridates A2Ir2O7 (where A is yttrium or a lanthanide) [17, 18]. Never-

theless, Weyl semimetals were first realized in the transition-metal monophophides

TaAs, TaP, NbAs and NbP, with the subsequent observation of Fermi arcs with

ARPES experiments [15, 16, 108–111, 69, 112, 113]. The complex structure of these

materials give rise to a minimum of twelve pairs of Weyl nodes located at points

with no particular symmetry in the Brillouin zone.

The pursuit of a time-reversal breaking Weyl materials with the minimum num-

ber of cones neatly separated in momentum space is a major research topic these

days. Different works have reported the observation of such topological phase in

non-collinear antiferromagnet Mn3B (where B is Sn, Ir, Ge), a correlated metal that

exhibits a large anomalous Hall and Nernst effect at room temperatures [115–119];

magnetic Heusler compounds [120–128]; and metallic YbMnBi2 crystals, which de-

velop a non-trivial magnetic response below 50K, giving rise to two pairs of Weyl

nodes near the Fermi surface [114]. The Weyl points and Fermi arcs measured with

ARPES technique are represented in Figure 1.6. The electronic structure shows that

theWeyl points emerge at the boundary between electron and hole pockets, contrary

to the standard point-like Fermi surface. This new type of Weyl semimetal is known

as Type-II Weyl semimetals [129], which will be discussed in the next section.
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Figure 1.7: Schematic representation of Type-I (a) and Type-II (b)
Weyl semimetals.

1.4.1 Electronic excitations inWeyl fermions. Beyond high-energy
physics

The effective description of a model may not respect fundamental symmetries of na-

ture that, in principle,must bepreservedby anyphysical law. This freedom to formu-

late new “unrestricted” theories is justified as long as the model provides a faithful

description of the system [130]. In particular, microscopic models in condensed

matter are not restricted by the Lorentz symmetry, and provide a potential field for

the discovery of exotic behaviours that do not have elementary analogues [131, 132].

One Lorentz invariance is not a requirement, we can generalize the expansion in

Equation (1.5) with the term:

H � ~vi jσ
i(k − k∗) j + ~w jI(k − k∗) j , (1.21)

where the vector w j � ∂j f0 |k�k∗ , known as tilt velocity, breaks time-reversal and ro-

tational invariance, and introduces an overall tilt in the cone-like dispersion relation.

Weyl cones typically exhibit a tilted dispersion characterized by Equation (1.21). A

sufficiently large w can induce an overlap in energy of the conduction and valence

bands that cross at the Weyl point, giving rise to electron and holes pockets. When

|w| > |vF |, theWeyl cone is tipped over, leading to open Fermi surfaces and ametallic

density of states. This novel phase is referred as Type-II Weyl semimetals [129], in

contrast to Type-I Weyl semimetals with point-like Fermi surfaces (see Figure 1.7).

Examples of a Type-II Weyl semimetals are WTe2 and MoTe2 crystals [133, 134].
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1.4.2 Thermoelectric responses and topological materials
Thermoelectric materials have been an important field of activity during the last cen-

tury, mostly due to their technological interest in heat-to-electricity conversion [135–

137]. One important obstacle is their low efficiency, and current efforts are focused

on get over these limitations. The strength of the thermoelectric effect is character-

ized by the Seebeck effect, a phenomenon where an applied thermal bias generates

a parallel voltage between the hot and cold sides of the sample. The Seebeck coef-

ficient S is defined as the ratio between the voltage difference and the temperature

bias, while the absolute value of S is the thermopower [138]. The effectiveness of a

thermoelectric material is quantified by its thermoelectric figure of merit [139] :

ZT � σS2T/κ (1.22)

where σ is the electrical conductivity, T is the temperature of the system and κ is

the thermal conductivity. The condensation of electrons and holes on the cold side

in a conductive solid is the primary issue to achieve a large thermopower, as their

opposite charges counterbalance each other reducing the net contribution to the

induced voltage. For that reason, the most efficient thermoelectric materials up to

date are doped semiconductors [135].

In the presence of an external magnetic field orthogonal to the temperature

gradient, electronic carriers flowing from the hot to the cold side are deflected due

to the Lorentz force, generating a transverse electric field perpendicular to both

the magnetic field and thermal bias. This thermoelectric phenomenon known as

Nernst effect was first discovered by Ettingshausen and Nernst when exploring the

properties of the compensated semimetal Bismuth. Unlike the zero field case, the

magnetic field bends the trajectories of electrons and holes in opposite directions,

inducing a net contribution from both type of carriers (see Figure 1.8). Compensated

semimetals, characterized by a small Fermi surface and largemean-free path, exhibit

a large Nernst signal, as demonstrated in Bismuth and graphite [140, 141].

Historically, Seebeck-based thermoelectric devices have attracted more attention

than their Nernst-based partners, motivated principally by the necessity to include

an external magnetic field in order to get the emergent potential. Additionally,

localization effects are enhanced by the magnetic field, making these materials less

attractive. Recent interest in the thermoelectric properties of materials with a non-

trivial topology has arisen based on their unconventional band structure, which can

circumvent the inherent limitations of conventional materials [142–144]. In addition,

the thermoelectric response coefficients shed light on the electronic structure of the

materials, providing a new mechanism to study the nature of Dirac quasiparticles

and a unique signature for the presence of Dirac bands [123, 144]. Topological
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Figure 1.8: Illustration of Seebeck (left) and Nernst (right) effects.

The mutual cancellation between oppositely charged

particles may be circumvented in the presence of a per-

pendicular magnetic field, which deflects electrons and

holes in opposite directions.

Weyl and Dirac semimetals display large anomalous Nernst thermopower values4

which are ascribable to the non-vanishing Berry curvature associated with the Weyl

points near the Fermi energy [148, 149]. The reported numbers are beyond any

experimental value obtained in conventional ferromagnets [123, 124, 150–152].

Based on this, topological semimetals are promising candidates to obtain high-

performance thermoelectric materials. The chiral zeroth Landau level with an

energy-independent density of sates provides a mechanism to create huge elec-

tronic entropy, while the topological protection of the nodes avoids localization

effects. The theoretical prediction that Weyl and Dirac semimetals would exhibit

a large, non-saturating thermopower in quantizing magnetic fields [153, 154] was

confirmed experimentally in Refs. [155, 156]. In chapters 2 and 3 we will explore

the consequences of quantum anomalies on the thermoelectric properties and phe-

nomenological relations of Dirac and Weyl semimetals.

1.4.3 Strain-induced pseudo-electromagnetic fields
The study of the influence of lattice deformations on the electronic properties of

crystals is a central topic in condensed matter physics. A distinguished example is

that of superconductivity, where the lattice vibrations of the system couple with the

electrons to mediate in their attractive interaction [157]. In the case of Weyl systems,

a special kind of electron-phonon coupling arises in the form of a pseudo-gauge field

4Temperature gradients applied to time-reversal breaking materials, a voltage bias perpendicular to

the heat flow and themagnetization vector is generated in the sample at zero appliedmagnetic field. This

is the anomalous Nernst effect [145, 146], in analogy with the anomalous Hall effect. It has been proven

that the anomalous Nernst andHall effects are intimately related to the net Berry curvature in topological

matter [95, 147].
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which, in combination with the chiral anomaly, gives rise to unexpected physical

responses [158–162].

Emergent elastic pseudo-magnetic fields were first observed on graphene [158,

159, 163], where the mechanical strain acts as a vector potential that couples with

opposite sign to the two valleys K and K′. Strain-induced electromagnetic fields

sensitive to the chirality of the node were also extracted in the low-energy regime

of Weyl quasiparticles in [161]. In this way, Dirac matter establishes, once more,

an unexpected connection between two unrelated fields: elastic deformations of the

lattice’s parameters and axial gauge theories, giving rise to a unified description of

different physical phenomena.

The origin of gauge fields can be traced back to the separation, either in momen-

tum or energy, of theWeyl nodes. Considering a simple model of twoWeyl nodes of

opposite chirality and separated a distance 2b in momentum and 2vF~b0 in energy,

their low-energy Hamiltonian is given by Equation (1.20), Hχ � χvF~σ j(k j + χb j) +
χvF~b0. The vector b enters in the Hamiltonian in the same way as an axial vector

potential Aχ. The effect of strain is to induce local variations in the vector b, which

allows to define an emergent, elastic-magnetic field:

B5 �
~
e
∇ × b. (1.23)

The component b0, which separates the cones in opposite directions in energy, acts as

a scalar potential in the Hamiltonian, leading to the definition of the pseudo-electric

field:

E5 �
~
e
(−vF∇b0 − ∂tb) . (1.24)

The four-vector bµ is an intrinsic parameter of the topological semimetal that enters

in some response functions as the anomalous Hall effect [147]

In a tight binding approximation, elastic deformations modify the atomic posi-

tion on the lattice, varying the overlap integral (the distance and the relative orien-

tation) between atomic orbitals that, due to their topological stability, only induces a

displacement of the location of theWeyl nodes [161, 162, 164] that results in the emer-

gence of pseudo-electromagnetic fields [161]. As an example, the effect of applying

torsion to a crystal wire has been explored in Ref. [165]. This geometry leads to the

formation of a uniform pseudo-magnetic field B5 in the bulk, which breaks the en-

ergy spectrum of theWeyl semimetal into Landau levels. The same effect is expected

when bending thin films (or nanowires) of Weyl semimetal, resulting in quantum

oscillations driven by elastic deformations [166]. The recognition of strain-driven

gauge fields described in Ref. [161] was followed by a number of works discussing

their physical consequences [167–172]. What these results highlight is the intrinsic

interplay between real and strain-induced magnetic fields, as both B (real) and B5
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(elastic) ignite the same physical phenomena; the quantization of the band structure

into Landau levels. The case of axial gauge-fields has important consequences on

the chiral anomaly and chiral magnetic effect.

In thepresenceof anexternal electromagneticfieldandaxial pseudo-electromagnetic

field generated from strain, the chiral anomaly reads [22, 173]:

∂µ Jµ
5
�

1

2π2

(E · B + E5 · B5) . (1.25)

The consequences of having emergent electromagnetic fields in transport experi-

ments are associated to the enhancement in the longitudinal conductivity as a func-

tion of the pseudo-magnetic field, as observed in the original chiral anomaly [165].

Related to the chiral magnetic effect, the lowest Landau levels of opposite chiral-

ities are co-propagating modes in the presence of axial-magnetic fields. This results

in a finite, strain-induced chiral magnetic effect proportional to B5 [173–175]. Alter-

natively, spatial variations of b0 are suggested to create a chiral chemical potential

imbalance between the two nodes and ignite the anomaly in the presence of real

magnetic fields [162].

Strain also affects other parameters of the Hamiltonian, such as the Fermi or tilt

velocities. The implications of these kind of effects will be analyzed in chapters 4

and 5.
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Chapter 2
Thermoelectric transport in Dirac

and Weyl semimetals

2.1 Introduction
Studying the response of a system to an external (maybe time-dependent) pertur-

bation is a classical tool widely used to characterize condensed matter systems. For

perturbations that are small in comparison to some characteristic length of the sys-

tem, the response can be expanded in a power series of the perturbation, and the

linear order is proportional to the field itself. Linear response theory is devoted to

compute and understand the physical properties of the proportionality coefficient

between the perturbation and the physical response [49, 176, 177]. One example is

the electronic response of a metal to an applied electric field, where, in the linear

regime, the emergent current is proportional to the external field.

In addition, when a temperature difference is induced in a metal (or anymaterial

with free charged particles), the flow of charged carriers from the hot to the cold side

gives rise to an electric current. Linear response in thermoelectric transport theory

allows to write electric and thermal currents generated by potential and thermal

gradients as [138, 32]:

J i
� Li j

EEE j + Li j
ET∇ jT

J i
Q
� Li j

TEEk + Li j
TT∇ jT (2.1)

The proportionality coefficient LET , connecting the gradient of temperature with the

electric current, is the thermoelectric coefficient. For further details about kinetic

theory, we refer the Refs. [34, 138, 178].
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A very active area of research in the context of the novel 3D topological semimet-

als is centered on the emergence of anomaly induced transport phenomena [86,

179, 76]. A quantum anomaly arises when a continuum symmetry of the classical

action [73, 27] cannot survive the quantization process and the corresponding con-

servation law is not longer valid. The physical consequences of having quantum

anomalies were first explored in the construction of quantum field theory to de-

scribe elementary particles [74] and played an important role in grand unification

and string theory. Nowadays, the interest on anomalies and anomaly-related trans-

port has shifted to emergent condensed matter systems which support low-energy

descriptions akin to their quantum field theory partners [86, 179]. After an intense

and successful analysis of the consequences of the chiral anomaly on magnetoelec-

tric transport [76, 78, 79], the interest has shifted to gravitational effects, especially

those of the mixed axial-gravitational anomaly [89, 90]. These phenomena involve

thermoelectric measurements in magnetic fields.

Thermoelectric transport has been a research topic of major activity and excite-

ment both in physics and technology, as well as a tool to study and characterize the

electronic properties of the materials. As mentioned in chapter 1, from the early

research it was known that semiconductors and semimetals are the best candidates

to generate large figures of merit in thermopower, with bismuth, an almost com-

pensated semimetal, holding the record for metallic compounds [180]. Dirac and

Weyl semimetals belong naturally to the family of good thermoelectric materials and

their thermoelectric properties are now at the center of interest in experimental and

theoretical research [123, 142, 143, 148, 181, 182]. Giant values of the anomalous

Nernst effect associated with the non-trivial Berry phase of the materials are been

systematically reported in the newly discovered magnetic Weyl semimetals [150,

151, 124]. Additionally, large thermopower values have been experimentally mea-

sured in these materials which are not restricted by the limitations held by ordinary

metals [155, 156], opening potential new horizons in the field.

In a recent publication [93], it has been shown the emergence of a new anoma-

lous electric current originated by a less-known quantum anomaly, the conformal

anomaly, related to metric deformations [91]. It gives rise to a special contribution to

the Nernst signal which remains finite at zero temperature and chemical potential.

Theway inwhich gravity appears in condensedmatter physics can be traced back

to theproblemof defining thermodynamic equilibrium in curvedbackgrounds [183],

and is surprisingly connected to the thermoelectric phenomena. As will be argued

below, the relation between these two seemingly unrelated fields was made possible

by the Luttinger theory of thermal linear transport [184].

In this chapter, we will analyze with a Kubo calculation the thermoelectric coeffi-

cient of the massless Dirac systems in amagnetic field at zero chemical potential and

zero temperature. The regime of zero temperature and chemical potential, where
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the unusual prediction in Ref. [93] lies, prevents the use of a Boltzmann approach

and the comparison with existing results. The chapter is organized as follows. First,

we present an introductory overview of thermoelectric transport and linear response

theory, highlighting the role of temperature gradients and magnetization currents.

Next, we describe the effective continuummodel for the Dirac andWeyl semimetals

and discuss the specific expressions for the current and energy-momentum tensor.

The chapter ends with the computation of the thermoelectric tensor and a summary

of the main results. The analysis is extended to include finite temperature and

chemical potential effects1.

2.2 Linear response theory. Thermoelectric tensor
In linear response theory [176], when the action of a system is perturbed by a local

source F(t) which couples to an observable as Hpert(t) � F(t)B, the change in the

expectation value of any operator A is assumed to be linear in the perturbing source:

δ〈A(t)〉 �
∫
dt′χ(t , t′)F(t′). Mathematically, the response function χ is expressed as

the correlation function between the response and the external perturbation [49]:

χ(t) � − i
~

∞∫
−∞

dt′Θ(t − t′)
〈
[A(t),Hpert(t′)]

〉
0
, (2.2)

where A is the observable operator arising from the external perturbation Hpert, and

the brackets 〈· · · 〉0 indicate the equilibrium expectation value with respect the un-

perturbed Hamiltonian H0. The main hypothesis supporting the above expression

is the adiabatic evolution of the system: the initial states are distributed according

to the usual Boltzmann distribution, which implies that the n-th eigenstate |ψn〉 of
the unperturbed Hamiltonian is occupied with a probability Pn � exp [−βEn]/Z,

where Z �
∑

n e−βEn
is the canonical partition function. After the external pertur-

bation is switched on, the system starts to evolve according to the total Hamiltonian

Htot(t) � H0 + Hpert. A key assumption is that the occupation probabilities Pn re-

main constant (the states are described by the same occupation probabilities), and

the transitions between orthogonal states are forbidden. The time-evolution of the

system is governed by the Schrödinger equation:

i~
∂
∂t
|ψn(t)〉 � Htot(t)|ψn(t)〉, (2.3)

1This chapter is based on “Vicente Arjona, Maxim N. Chernodub and María A.H. Vozmediano,

Fingerprints of the conformal anomaly in the thermoelectric transport in Dirac and Weyl semimetals, Physical
Review B 99, 235123 (2019)”.
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with Pn being an indenpendent function of time.

Correlation functions are extensively used for tackling problems where the per-

turbation can be described as a local perturbation in the Hamiltonian (mechanical

formulation). The standard example is the computation of the electrical conduc-

tivity, where the electromagnetic potential couples directly as a source term to the

electronic current in the Hamiltonian. In this case, the conductivity tensor is propor-

tional to the current-current correlation function. The problem of using a statistical

variable (such as the temperature) as a (local) source coupled to an energy current

was solved by Luttinger [184]. Based on previous analyses by Tolman and Ehren-

fest trying to define thermal equilibrium in a curved space [183], the underlying

idea behind this formulation is that the thermal gradient moving the system out of

equilibrium is compensated by a (perhaps fictitious) gravitational potential. This is

reminiscent of Einstein’s relationship between the diffusion (statistical) and the con-

ductivity (mechanical) coefficients. In this case, the gravitational potential, coupled

to the energy density, is the local source of the energy currents.

In the following section, we will illustrate how the gravitational potential is

related to thermal gradients when the system is at thermodynamic equilibrium.

2.2.1 Luttinger’s relationship for thermal gradients
Following the Refs. [184, 185], we review the key steps to obtain the relationship

between the gravitational potential and the temperature gradient. Consider the

response function to an external electrostatic and gravitational potentials φ and ψ,
respectively. These external fields couple to the particle and energy densities in the

form:

H �

∫
dr

[
h0(r) + φ(r)n(r) + ψ(r)h0(r)

]
, (2.4)

where h0 describes the unperturbed system. Considering that the scale of the varia-

tion is large in comparisonwith the length of the system, one can split the system into

small, independent sub-blocks that are close to local thermodynamic equilibrium.

Each of those subsystems can be described by local conserved densities (energy and

particle densities) and thermodynamic parameters (local temperature T(r), chemical

potential µ(r) and entropy density s(r)), which are functions of the conserved quan-

tities. The extensive thermodynamic values are the result of integrating the local

densities over the sample. The total energy, entropy and particle number are [185]:

E �

∫
dr

[
ε(r) + φ(r)n(r) + ψ(r)ε(r)

]
, (2.5)
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S �

∫
dr s[ε(r), n(r)], (2.6)

N �

∫
dr n(r). (2.7)

Thermodynamic equilibrium is reached when the entropy (or the sum of the en-

tropies of each sub-block) is maximized [186]. This condition is written mathemati-

cally as [94]:

δ{S − β(E − ξN)} � 0, (2.8)

where ξ � φ + µ is the electrochemical potential and β � T−1
is the temperature

of the system (both being space independent functions of the unperturbed system).

The functional variation given in Equation (2.8) defines the density matrix ρ for

the equilibrium state. Varying Equation (2.8) with respect the energy and particle

density, one gets the relations:

T−1(r) � β{1 + ψ(r)}, (2.9)

µ(r)/T(r) � β{ξ − φ(r)}, (2.10)

where the partial derivatives have been replaced by the (local) definitions of the

intensive parameters:

T−1

�
∂s
∂ε

����
n
, µ � −T

∂s
∂n

����
ε

. (2.11)

The thermodynamic equilibrium conditions are defined by

∇

(
1

T

)
−

∇ψ

T
� 0, (2.12)

∇

(µ
T

)
+

∇φ

T
� 0, (2.13)

which provide a relationship between the linear response coefficients of statistical

and mechanical variables; since electric currents are not allowed to flow in a system

at thermal equilibrium, external fields must be introduced as suggested by Equa-

tions (2.12) and (2.13). Equation (2.12) states that a gradient of temperature moving

the system out of equilibrium is compensated by a gravitational potential (see Fig-

ure 2.1). The expressions given in Equations (2.12) and (2.13) were derived in the

“slow case” regime [184], where the external fields are slowly applied so the system

is able to achieve an equilibrium state.

The correlation functions of the statistical variables are determined in the “rapid

case", where the system remains homogeneous since it is unable to adjust to the

rapid oscillatory behaviour of the external fields. Despite the system cannot reach
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Figure 2.1: A gradient of temperature is compensated by a gravita-

tional potential when the system is at thermal equilib-

rium.

a equilibrium state, the variations of the external perturbations are slow enough

to consider the charge and energy densities as conserved quantities. Accordingly,

the chemical potential and the temperature are space independent variables, the

external potentials φ and ψ being the only perturbative fields. The emergent charge

and energy currents are computed with the general Kubo formula:

J i
� N i j

11
∂jφ + N i j

12
∂jψ (2.14)

J i
E � N i j

21
∂jφ + N i j

22
∂jψ (2.15)

where the transport coefficients N i j
αβ are the standard correlation functions described

in Equation (2.2).

Proceedingwith the general case, we consider arbitrary fields and local variables.

Asmentioned above, the perturbative fields should enter in the combination defined

by Equations (2.12) and (2.13). The transport equations for statistical variables read:

J i
� N i j

11

[
∂jφ + T∂j

(µ
T

) ]
+ N i j

12

[
∂jψ +

∂jT
T

]
(2.16)

J i
E � N i j

21

[
∂jφ + T∂j

(µ
T

) ]
+ N i j

22

[
∂jψ +

∂jT
T

]
(2.17)

Once the linear response coefficients for the statistical variables are formulated, the

auxiliary mechanical fields can be set to zero.



2.2. Linear response theory. Thermoelectric tensor 27

2.2.2 Correlation function for thermal perturbations
If one considers a weak gravitational field, the gravitational potential is written in

terms of the metric tensor:

g00 � 1 + 2ψ (2.18)

The latter naturally couples to the energy-momentum tensor Tµν , which is defined

as the response to variations of the metric. The corresponding perturbative Hamil-

tonian is:

Hpert(t) � T00(t)g00(t) (2.19)

The electric current generated as a response to this perturbation is given by the

expression:

〈
J i〉 (r, t) � ∞∫

−∞

dr′dt′
{
−i
~
Θ(t − t′)

〈
J i(r, t).T00(r′, t′)

〉}
g00(r′, t′) (2.20)

The function given in Equation (2.20) is still not yet equivalent to the current

generated by thermal perturbations (proportional to ∇ψ). To get the spatial derivative
of the metric tensor, we use the conservation law of the energy-momentum tensor

to express the energy component as a function of the momentum densities:

T00(r, t) � −
t∫

−∞

dt′vF∂iT0i(r, t′) (2.21)

where we have introduced the Fermi velocity to adapt the calculation to the case

of Dirac materials. The adiabatic hypothesis allows us to assume that the system

is unperturbed at t � −∞. Introducing Equation (2.21) in Equation (2.20) and

integrating by parts, the expectation value of the vector current is:

〈
J i〉 (r, t) � ∞∫

−∞

dr′dt′
t′∫

−∞

dt′′
{
−ivF

~
Θ(t − t′)

〈
J i(r, t).T0 j(r′, t′′)

〉}
∂j g00(r′, t′) (2.22)

The last expression represents the emergent current induced as a response to a

thermal gradient computed via theKubo formula. Using the translational invariance

of the system, the electric current reads:〈
J i〉 (q, ω) � χi j(q, ω)(iq j)g00(q, ω) (2.23)
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Figure 2.2: The setup of the thermoelectric effect. A transverse cur-

rent Jx(r) is generated perpendicular to both the mag-

netic field Bz
and the gradient of temperature.

where χi j
is the usual Fourier transform to momentum space of the response func-

tion:

χi j(q, ω) � (2π)3
∞∫

−∞

dt e iω(t−t′)
t′∫

−∞

dt′′
{
−ivF

V~
Θ(t − t′)〈

[
J i(q, t), T0 j(−q, t′′)

]
〉
}

(2.24)

2.3 Thermoelectric response functionofDirac andWeyl
semimetals

As mentioned in chapter 1, the low-energy excitations around a non-trivial band

crossing of a Dirac semimetal are described by the massless Dirac equation in three

space dimensions. Using theWeyl basis, the Hamiltonian splits into twoWeyl nodes

of definite chirality. In Dirac semimetals, the two chiralities are superimposed in

momentum space and a mass term can arise mixing the two chiralities unless the

band-crossing point is protected by crystal symmetries. InWeyl semimetals, the two

chiralities are separated either in momentum or energy, which breaks either T or

P, respectively, and the Berry curvature makes the Weyl points very robust against

perturbations.

The conformal invariance of the classical system implies that no dimension-full

parameter can enter into the description of the system. Ourmodelwill generically be

that of a massless Dirac semimetal, as used in Ref. [93]. We perform the calculations
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for eachWeyl fermion and ensure that no cancellation occurs due to the contribution

of opposite chiralities. Once this is confirmed, the result will equally apply to

Weyl semimetals which, eventually, can receive additional contributions from the

separation of the Weyl points.

To analyze the anomaly-induced Nernst current, we consider a Dirac semimetal

in an external magnetic field perpendicular to a gradient of temperature. A trans-

verse current will be generated orthogonal to both the applied magnetic field and

temperature gradient. Without loss of generality, we take the z-axis along the mag-

netic field, and the direction of the thermal perturbation as the y-axis, as illustrated
in Figure 2.2.

2.3.1 Effective low-theory for Dirac and Weyl particles in a mag-
netic field

The low-energy model that characterizes the quasiparticle excitations around one

Weyl cone in a magnetic field is:

Hs � svFσ
i(pi + eAi) (2.25)

where s � ±1 describes the chirality of the node, pi is the momentum operator and

e � |q | is the charge of the electron. Fermions are coupled to the vector potential Ai

via the minimal coupling prescription. Choosing the Landau gauge Ax � −By (the

final result is independent of this election), Equation (2.25) reads:

svF

(
pz px − eBy − ipy

px − eBy + ipy −pz

) (
ϕ1(r)
ϕ2(r)

)
� E

(
ϕ1(r)
ϕ2(r)

)
(2.26)

This equation resembles theHamiltonianof a quantumharmonic oscillator. Defining

the usual ladder operators

a �
1√
2

(px − eBy + ipy) and a† �
1√
2

(px − eBy − ipy), (2.27)

the spectrum of the Hamiltonian is quantized into Landau levels:

Ekz ms � sign(m)vF

[
2e~B |m | + ~2k2

z
]

1/2

Ekz0s � −svF~kz . (2.28)

The band index m runs over all integer numbers, except the zero level. The chiral

mode has a linear dispersion relationwith opposite sign for each node, while the rest,

with a quadratic dispersion relation, are doubly degenerated. The eigenfunctions of
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the system are:

ϕkms(r) �
e ikx x e ikz z
√

LxLz

e−(y−kx l2

B)
2/2l2

B√
α2

kz ms + 1

©­­«
αkz ms√

2
M−1(M−1)!π1/2 lB

HM−1

[
y−kx l2

B
lB

]
1√

2
M M!π1/2 lB

HM

[
y−kx l2

B
lB

] ª®®¬ , (2.29)

with

αkz ms �
−
√

2eB~|m |
Ekz ms/svF − ~kz

. (2.30)

lB � [~/eB]1/2 is themagnetic length, capital letters refer to the absolute value of band

index, Hm(x) are the Hermite polynomials of order n, and the factor (α2

kz ms + 1)1/2

is the wave-function normalization (setting kz � 0, one notices that the standard

√
2

factor of graphene is recovered, since αkz ms � ±1). The number of states having the

same energy is given by the different values of kx that are allowed in that level. This

quantity can be estimatedconsidering our particles confined inside a rectangular box

with finite dimensions Lx , Ly , Lz . The centre of motion of the electron is restricted

to the size of the box, 0 ≤ yc ≤ Ly , where yc � kx l2

B . The latter relation imposes an

upper bound for kx :

0 ≤ kx ≤
Ly eB
~

(2.31)

Assuming periodic boundary conditions (e ikx Lx � 1), the degeneracy of each Landau

level is given by the expression:

N �
eBLxLy

h
. (2.32)

2.3.2 Current and energy-momentum operators
The current operator is defined as the functional derivative of the Hamiltonian with

respect to the gauge vector A2:

δH � e
∫
dr JδA. (2.33)

The current operator (in second quantization) for the Hamiltonian in Equation (2.25)

reads:

Jx(r, t) � esvFΨ
†(r, t)σxΨ(r, t). (2.34)

2The electric current can also be derived using the Noether’s theorem. Systems invariant under a U(1)
phase rotation have associated a time independent charge Q and a charge current vector Jµ satisfying the

continuity equation ∂µ Jµ � 0 [27].
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According to Noether’s theorem [73], a continuum symmetry of a classical action

gives rise to conserved currents and charges. Systems that are invariant under

spacetime translations have associated four conserved currents [27]:

Tµν �
∂L

∂(∂µφ)
∂νφ − δµνL. (2.35)

Equation (2.35) represents the canonical energy-momentum tensor, which has as-

sociated two conserved quantities; the energy (associated to time translations) and

the momentum (associated to spatial translations). The energy-momentum tensor

is defined in general relativity as Tµν ∼ δS/δgµν , quantity that is manifestly sym-

metric [50], while the definition given in Equation (2.35) is certainly not. In the rest

of the calculation we will use the symmetrized version of the tensor3:

Tµν �
1

2

∂L
∂(∂µφ)

∂νφ +
1

2

∂L
∂(∂νφ)

∂µφ − δµνL , (2.36)

which for the action associated to the Hamiltonian in Equation (2.36) is:

T0y(r, t) � −i~
2

[
vFΨ

†(r, t) I
↔
∂yΨ(r, t) − sΨ†(r, t) σy

↔
∂0Ψ(r, t)

]
, (2.37)

where the symmetric convention for the derivatives acting on the electron fields is

understood:

φ†
↔
∂iφ �

1

2

(φ†∂iφ − ∂iφ
†φ). (2.38)

Notice that the last term in Equation (2.37) is proportional to the chirality of the

node.

We will use the Lehmann representation to compute the response function of the

system. Using the Landau wave-functions as the basis of our problem,

Ψ†(r, t) �
∑
km

ϕ†kms(r)a
†
kms(t) (2.39)

3This form of the energy-momentum tensor for the Dirac Lagrangian is non-trivial, since its definition

arises as the result of demanding local Lorentz invariance to the effective action [187].
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(the summation runs over the different Landau bands and the allowed values of kx ,

kz), the current and energy-momentum operators are:

Jx(r, t) �
∑

km ,ln
jx
km ,ln(r) a

†
kms(t)alns(t), (2.40)

T0y(r, t) �
∑
κµ,λν

t0y
κµ,λν(r) a

†
κµs(t)aλνs(t), (2.41)

with the matrix elements:

jx
km ,ln(r) � svFeϕ†kms(r) σ

x ϕlns(r), (2.42)

t0y
κµ,λν(r) �

1

4

ϕ†κµs(r)
[
vFI
↔
py + sσy(Eκzµs + Eλzνs − 2µ)

]
ϕλνs(r), (2.43)

where a†kms (akms) creates (annihilates) an electron with momentum k at the band m
of the Weyl cone s. For future purposes, we have added a finite chemical potential

to the last term of the energy-momentum tensor. When a magnetic field is present,

the definition of the energy-momentum tensor includes a covariant derivative Dµ �

∂µ−ieAµ. The time-derivativeD0 is proportional to a scalar potential, which accounts

for the chemical potential. We will compute the thermoelectric coefficient defined

in Equation (2.24) for each chirality. The chiral sign s remains fixed during the

calculation of the response function and no summation is includedwhen expanding

the operators into the Landau basis. After working out the various integration terms

(details of the calculation are given in appendix B), the thermoelectric function takes

the form:

χx y(q, ω)� lim

η→0
+

∑
k,mn

(2π)3
V

ivF~ s jx
km ,k+qn(q)t

0y
k+qn ,km(q)

[
nkms − nk+qns

]
(Ekz ms − Ekz+qz ns + i~η)(Ekz ms − Ekz+qz ns + ~ω + i~η)

(2.44)

where nkms � [exp (β(Ekz ms − µ)) + 1]−1
is the Fermi-Dirac distribution and the

matrix elements are computed in the reciprocal space. At zero temperature, the

distribution function becomes a step function nkms � Θ(µ − Ekz ms), which restricts

the possible transitions between energy levels. In order to capture the conformal

limit, the chemical potential is placed at the neutrality point (µ � 0), where the main

contribution comes from the chiral Landau level.
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2.4 Results

2.4.1 Thermoelectric response at zero temperature
As mentioned in section 2.3.2, the linear response of the system has been obtained

using the exact eigenstate representation, where the operators arewritten in the basis

that diagonalizes the system. Assuming that the wave-length of the background

fields is large in comparison with the characteristics length of the material, we can

concentrate on the local limit approximation q→ 0.

We will trade the summation over the allowed k-vectors to an integral [34] over

the whole space. Since neither the eigenvalues nor the matrix elements depend

on kx , the corresponding integration accounts for the degeneracy factor eBLy/~ of

each Landau level. For the remaining component, we rewrite the different variables

as a function of a dimensionless parameter κz � ~kz/
√

2eB~. The thermoelectric

function becomes (see appendix B):

χx y(0, ω) � lim

η→0
+

1

4(2π)2
′∑

m ,n

vFe2sB
~

∫
dκz ξ(m , n , s , ω)α2

κz ms×[
s(Eκz ms + Eκz ns − 2µ) − ακz ns

√
M − 1 −

√
M/ακz ms

]
, (2.45)

where the summation is restricted to N � M − 1 and the dimensionless function

ξ(m , n , s , ω) is defined as:

ξ(m , n , s , ω) �
2 [nκz ms − nκz ns]

[
α2

κz ms + 1

]−1
[
α2

κz ns + 1

]−1(
Eκz ms − Eκz ns + iη

) (
Eκz ms − Eκz ns + ω/ωc + iη

) . (2.46)

ωc � vF

√
2eB/~ is the cyclotron frequency, which gives the separation between en-

ergy bands. The integrand appearing in Equation (2.45) is a dimensionless function

that results in a numerical value when the integral is performed. The restriction

over the possible transitions ensures that the energies appearing in the denominator

are different. At zero temperature and chemical potential only interband transitions

“across the Fermi sea” are allowed. Considering this limit, the zeroth order result

for the thermoelectric coefficient is given by:

χx y
� lim

ω→0

χx y(0, ω) � 1

2(2π)2
vFe2sB

~
(2.47)

This is a remarkable result. Weyl nodes present a finite, constant thermoelectric

coefficient at zero temperature, with ∇T/T being kept finite. This value depends

only on universal constants and the Fermi velocity as the only material-dependent
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Figure 2.3: Landau level structure of a single chirality in the Dirac

semimetal. The inset shows the thermoelectric coeffi-

cient as a function of the chemical potential at T � 0.

The function has a constant value (χx y/χ
0
� 2, where

χ
0
� v

F
e2B/(4π)2~) when µ lies in the interval between

the first Landau levels.

parameter. This result is valid at the Dirac point, at zero chemical potential, where it

captures the vacuum contribution from the quantum anomaly. The thermoelectric

coefficient stemming from the opposite node has the same value (we have been

particularly careful to follow the chirality dependence of the terms throughout the

calculation to ensure that no cancellations occur), and bothWeyl partners contribute

to the response function with the same sign.

2.4.2 Thermoelectric response at finite temperature and chemical
potential

The Fermi energy in realmaterials is close but not exactly at theDirac point, although

the experimental expertise can tune it by chemical doping to great accuracy. To

bring the theoretical result closer to the experimental situation, we have extended

the calculation to include thermal effects and a non-zero chemical potential.

The expression given in Equation (2.45) is valid for finite µ and T, which enter in

the response term through the definition of the Fermi distribution. At zero temper-

ature, the thermoelectric coefficient exhibits a plateau when the chemical potential

lies between the first Landau levels |µ| < ~ωc (see Figure 2.3). This behaviour is

expected, as the zeroth Landau level has a constant density of states. The zeroth
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Figure 2.4: Zeroth order thermoelectric coefficient at finite tempera-

ture and chemical potential. (Left): Behaviour of the ther-
moelectric coefficient as a function of the temperature for

different values of µ. (Right): Behaviour of the thermo-

electric coefficient as a function of the chemical potential

for different values of the temperature. Thermally ex-

cited carriers enhance the response function.

order coefficient gets correction arising from higher-energy transitions. The contri-

bution to the numerical value coming from these transitions decreases rapidly with

the Landau level index. Nevertheless, the addition of these contributions does not

modify the general behaviour of the system, and the thermoelectric function still

presents a plateau when the higher-energy corrections are included.

The generalization to finite temperature is represented in Figure 2.4. By increas-

ing the temperature, thermally activated carriers contribute to higher values of the

transport coefficient, which resembles the general thermoelectric behaviour of other

materials [138, 154]. As Figure 2.4 shows, the size of the plateau is reduced according

to the structure of the Fermi functions.

2.5 Conclusions and discussion
In this chapter, we have studied the thermoelectric coefficient of a Dirac and Weyl

semimetal in a magnetic field. Motivated by the recent discovery of an anomaly-

related current [91, 93], we have performed a Kubo calculation of the electric current

generated by a thermal gradient, focusing on the conformal limit µ � 0. As predicted

by the anomaly result, we obtained a non-vanishing thermoelectric coefficient at

zero temperature. The quantity χx y/vFB has a quantized value determined by

universal constants. This value remains fixed at zero temperature and when the

chemical potential lies in the interval |µ| < ~ωc .In this regime, other possible sources

for the thermoelectric current are strongly suppressed, and the result can be seen

as an evidence for the scale anomaly described in Ref. [91]. The calculation has
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been extended to include finite chemical potential and temperature effects. The

resulting thermoelectric coefficient presents, as a function of the chemical potential,

a distinctive experimental signature in the form of a plateau when only the lowest

Landau level is populated.

Theanalysis hasbeendone considering the low-energymodel of aDirac semimetal,

concentrating on a single chirality. The contribution from the other node has the

same sign, both chiralities adding up to the total response function. When the Weyl

nodes are separated in momentum space, additional contributions proportional to

the separation will contribute to the electric response. Dirac semimetals, where the

two chiralities are superimposed in momentum space, are better “testing samples”

to investigate this anomaly-related current, since additional effects arising from the

Berry curvature or the separation between nodes are minimized.

The results shown in this chapter are based on the zeroth order result for the

thermoelectric coefficient. Higher-order transitions will contribute to the numerical

value of the response function, but the general behaviour will remain unaltered.
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Chapter 3
Thermoelectric relations in the

conformal limit

3.1 Introduction
In addition to the industrial impact and novel applications in the technological field,

understanding the physical properties of transport coefficients is a topic of major

interest as they provide a tool to characterize and distinguish the electronic and

thermal attributes of materials [180]. As was manifested in chapter 2, the unusual

thermoelectric result presented in section 2.4 proves that Dirac and Weyl semimet-

als do not behave as ordinary semiconductors. Different transport coefficients are

related by phenomenological relations. These connections are used as instruments

to study the properties of the materials, as their violation signals departure from the

standard behaviour.

Aswill be illustrated in section 3.2, examples of such relations are theWiedemann-
Franz law and the Mott relation. The former establishes that the ratio between the

thermal and the electrical conductivity is proportional to the temperature of the

system, which the proportionality factor having a universal value L called Lorenz

number. The Mott relation, on the other hand, connects the thermopower with

the derivative of the electrical conductivity with respect to the chemical potential

(evaluated at the Fermi level).

The first attempt to understand the underlying physics behind the Wiedemann-

Franz relation can be traced down to the studies by Paul Drude in the early days of

electrical conduction theory in metals. His model was able to give a crude estimate

of the proportionality factor, the numerical value being in a good agreement with

the experimental result [34]. More precise models were developed later in order to
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explain the flow of electric and thermal currents and the transport coefficients. In

particular, the kinetic theory [138, 34, 32] has proved very successful in analyzing the

transport properties of standard metals. The key element behind this theory is the

Boltzmann function fk, which characterizes themovement and evolution of a particle

distribution (either classically or semi-classically if quantumcorrections are taken into

account). Once this function has been evaluated, any physical observable is given

by the expectation value of the corresponding operator. In particular, the analytical

expression for the transport coefficients and the phenomenological relations can be

obtained by expanding the distribution function in a power series in temperature.

More rigorous approaches were adopted in order to derive the mentioned relations

in Refs. [188, 189]. In these works, the exact expressions for the transport coefficients

were computed using the Kubo and Green’s function formalism, leading to the

Wiedemann-Franz and Mott relations after a Sommerfeld expansion.

The validity of these relations was questioned with the emergence of quantizing

magnetic fields. It was shown that the expressions for the thermal transport coeffi-

cients in terms of correlation functions are invalid under strongmagnetic fields [190,

191]. The numerous attempts suggested to prove the validity of the relations in that

regime culminatedwith thework of Smrčka and Středa [192]. Based on the Luttinger

theory of thermal transport [184], they generalized the Kubo formulas and included

magnetization currents to determine the limits of validity of the relations1, laying

the foundations of our current understanding of the phenomena [185].

The above thermoelectric relations are based on the Landau-Fermi liquid para-

digm [193, 2, 36], where the electronic interactions can be neglected and the pre-

dominant events are due to scattering of electrons with phonons. In this theory, the

electrons are described as a free-motion system, which is completely characterized

by the kinetic theory. The Fermi liquid framework fails when trying to describe

strongly interacting systems, or when the electron-electron interactions become the

fastest time scale in the problem. The dynamics in such scenario can be character-

ized in terms of a hydrodynamic description of the quasiparticles [194, 195]. Such

situation normally arises in ultra-clean samples [196] or in systems with a vanishing

Fermi surface such as graphene [197], where long-range interactions are enhanced

due to ineffective Coulomb screening. The transport coefficients are severely modi-

fied by hydrodynamic effects. Deviations from these relations can also be observed

at high temperatures, originated by inelastic phonon scattering [182, 197, 198].

The emergence of topological and novel Dirac materials has raised a renewed

attention in the field. These materials display anomalous Hall conductivities orig-

inated by non-vanishing Berry curvatures, similarly to the case of ferromagnetic

materials (see Refs. [56, 199–202, 95] and references therein for a overview of the

1As shown in their paper, Středa and Smrčka verified that these relations remain valid as long as the

scattering events are elastic and the limit ~ω � kBT is satisfied.
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topic). The validity of Mott relation and Wiedemann-Franz law is still an open

question in these materials, and the thermoelectric properties of Dirac and Weyl

semimetals is a very active field of current research [148, 123, 150, 153]; while topo-

logical effects have been successfully included in the semiclassic framework [203]

and experimental observations in ferromagnetic films revealed the validity of the

Mott relation [146, 204, 205], the theoretical and experimental situation in topological

materials is less clear [146, 206–209].

The interesting result depicted in section 2.4 raises more questions to this situa-

tion. It shows that Diracmaterials exhibit a finite thermoelectric response even at the

zero temperature limit incompatible with the Mott relation. In this chapter we will

analyze the thermoelectric relations and the role played by the finite thermoelectric

coefficient obtained in chapter 2. First, we will review how the phenomenological

Wiedemann-Franz law and Mott relation arise from the thermoelectric coefficients

by using the kinetic description. This will include a revision of the different mech-

anism that would lead to a breakdown of the Fermi liquid description of coherent

quasiparticles. Next, we will compute the quantities involved in the Mott relation,

the electrical conductivity and the thermoelectric tensor, using a Kubo formula.

We finally discuss the results obtained and their relation with the standard Mott

relation2.

3.2 Phenomenological transport relations
As mentioned in chapter 2, external electromagnetic and thermal perturbations in-

duce charge and heat currents, and the transport coefficients are defined in linear

response after a power expansion in terms of the interactions. Kinetic theory yields

an analytic expression for these coefficients as a function of the Boltzmann distri-

bution function fk(r) and the collision integral. This mechanical approach studies

the number of carriers entering and leaving a particular region in the space with a

certain velocity v. Kinetic theory was originally derived for a classical gas of hard

spheres, and it is well suited to describe classical systems and wave-packets, where

every particle has a well-defined position and momentum and the total state of the

system can be defined by the number of particles in each one of these individual

states [210, 138].

2This chapter is based on “Vicente Arjona, Juan Borge and María A.H. Vozmediano, Thermoelectric
relations in the conformal limit in Dirac and Weyl semimetals, arXiv preprint, arXiv:1903.00019 (2019)”.
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Once the distribution function fk is known, the electric and heat flows are deter-

mined by:

J �
∫
dk qvk fk (3.1)

JQ �

∫
dk (Ek − µ)vk fk. (3.2)

The Boltzmann distribution includes all possible mechanisms (diffusion, external

forces, scattering, etc.) that contribute to the displacement of the particles. Using

the solution of the Boltzmann equation in the presence of electric fields and thermal

gradients, it can be shown generically that the transport coefficients Li j
αβ 3 are written

as a function of a general integral term [138, 32, 34]:

LEE � K0

LET � − 1

T
LTE � − 1

qT
K1

LTT � − 1

q2T
K2 , (3.3)

where the integral function is defined as:

K i j
n � −q2

∫
dk v i

kv j
kτ(k)(Ek − µ)n

∂ f 0

k
∂Ek

. (3.4)

In the above equation, τ(k) is the scattering relaxation time and f 0

k is the Fermi

distribution function at equilibrium. The function defined in Equation (3.4) depends

linearly on the derivative of the equilibrium Fermi distribution, which selects the

energy region at the Fermi surface and its vicinity. After applying a Sommerfeld

expansion, Equation (3.4) is reduced to:

Kn �

[
(Ek − µ)nLEE +

π2

6

k2

BT2
∂2

∂E2

k

(
(Ek − µ)nLEE

)
+ · · ·

]
Ek�µ

, (3.5)

where the function Kn is evaluated at the Fermi level. This allows to establish

thermoelectric relations between the various coefficients. Starting with the thermal

component LTT , the first non-vanishing contribution is given by the second order

3In order to simplify the notation, we have omitted the tensor indices in those situations where the

dependence is clearly understood.
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term:

LTT �
π2

3

k2

BT

q2

LEE . (3.6)

Equation (3.6) is the Wiedemann-Franz law, where the proportionality constant is

the Lorenz number

L �
π2

3

k2

BT

q2

, (3.7)

which is independent of temperature, material details or scattering processes. This

relation is based on the fact that heat and charge currents are carried by the same

typeof carriers; when thedominant relaxationprocesses are lattice imperfections, the

relaxation times of thermal and charge currents are very similar, which indicates that

both currents are affected in the same way by the scattering mechanism. Proceeding

in an analogous way with the thermoelectric tensor LET , the highest contribution in

the power series is proportional to the derivative of the electric coefficient, giving

rise to the Mott relation:

LET � −π
2

3

k2

BT
q

[
∂LEE

∂Ek

]
Ek�µ

. (3.8)

Unlike the previous Wiedemann-Franz relation, the expression depends on the

charge sign of the carriers. The derivative is computed at the chemical potential

and, consequently, it is affected by the fluctuations of the conductivity at the Fermi

surface. Considering a normal metal, these changes are mainly produced by varia-

tions of the electronic mean free path and the scattering probability.

The transport coefficients defined in Equation (3.3) cannot be directly measured

in real systems, and the Mott relation and the Wiedemann-Franz law are regularly

related to the conductivities observed experimentally; the electrical conductivity σ,
the thermal conductivity κ and the thermopower Q 4. One can expand the con-

ductivities in a power series in temperature [138], as was previously done for the

transport coefficients. As a result, the phenomenological relations remain unaltered,

but now they are written as a function of the new terms:

κ
Tσ

� L (3.9)

Q
qT

� L
[
∂ ln σ
∂Ek

]
Ek�µ

. (3.10)

4As discussed in chapter 1, the thermopower is also known as Seebeck coefficient, the strength of the

induced voltage in response to the temperature gradient. Seebeck coefficient is a key ingredient in the

classification of the thermoelectric materials according to their effectiveness, which is evaluated by its

figure of merit. The inverse process defines the Peltier coefficient, the magnitude of the thermal current

generated by the charge flow.



42 Chapter 3. Thermoelectric relations in the conformal limit

The Wiedemann-Franz and the Mott relations were derived without any partic-

ular assumption or approximation, and remain valid in a wide variety of scenarios.

They are employed to determine electrical and thermal conductivities that might

otherwise be challenging to measure [144, 211, 212]. Physical systems will obey

Equations (3.9) and (3.10) as long as the electron scattering is elastic, a condition

normally fulfilled in scattering processes originated by lattice imperfections (this

condition can be broken at high temperatures due to inelastic phonon scattering). It

is the role played by the interactions inside the material which determines the range

of effectiveness of Wiedemann-Franz law and Mott relation.

The Landau-Fermi liquid model fails when describing strongly interacting sys-

temsor anomalous Fermi surfaces. When theCoulomb interactions are thedominant

relaxation process, the free-electron model is not valid, and the system may become

dominated by hydrodynamic effects [195, 213]. In this regime, the system is charac-

terized by conserved variables and their respective continuity equations, in a state

that is close to the thermodynamic equilibrium. The electronic motion is described

as a collective behaviour and restricted to channels [214], which is used as a signature

of the hydrodynamic nature of transport. The hydrodynamic framework has been

successfully used to describe numerous interacting systems [215–218]. Under strong

electron-electron interactions, the relaxation times follow different mechanisms, af-

fecting the conductivities in opposite ways [219, 220]. Evidences on the breakdown

of these relations (all being connected to non-Fermi liquid phenomena) have been

observed in different works [221–223].

The emergence of Diracmatter in condensedmatter has entailed a newmilestone

in thermoelectricity; the non-trivial topological features of these materials open new

avenues to bypass the limitations of conventional thermoelectrics and generate large

figures of merit [155, 156], specially when quantizing magnetic fields are present:

Dirac materials do not present localizing effects due to their topological protection,

and their low carrier density and very high mobility made them ideal platforms to

test the electronic behaviour in the extreme quantum regime. A vivid debate has

raised in the literature around the validity of the thermoelectric relations [197, 150,

206, 207, 209, 211, 182]. Having a linear dispersion relation, the discussion can be

divided into two well-defined cases: when the chemical potential is at the charge

neutrality point, where the Fermi surface is a point, andwhen the system is doped. In

the undoped case, hydrodynamic effects are fostered due to the ineffective Coulomb

screening [224] and the vanishing density of states at the Fermi level. Away from

the degeneracy point, Dirac systems have a robust Fermi surface and are described

by the ordinary Fermi liquid theory.

Different studies have reported evidences of hydrodynamic effects in the elec-

tronic motion of graphene [225–228] and the emergence of a Dirac fluid (formation

of strongly-interacting quasirelativistic plasma) at the neutrality point [197]. In this
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regime, both Wiedemann-Franz and Mott relations are strongly violated. The ex-

perimental situation of Dirac and Weyl semimetals is still in an early stage, but the

path is very reminiscent of the graphene case. There are already different theoretical

works exposing the failure of the transport relations and addressing the properties

of the materials within the hydrodynamic approach [182, 229–231], the breakdown

of the Wiedemann-Franz relation and the emergence of the hydrodynamic regime

have been recently observed experimentally in the Weyl semimental WP2 [207].

Non-trivial topological features add a new layer to this field, with the development

of anomalous responses [123, 148, 232, 212]. Numerous efforts have been devoted

to the characterization of thermal topological responses, especially concerning the

Nernst currents originated fromnon-trivial Berry curvatures, which has been shown

to exceed conventional thermopower of traditional materials [123, 152].

3.3 Electrical conductivity of Dirac matter
The finite thermoelectric coefficient at zero temperature and chemical potential de-

scribed in Equation (2.47) generates a puzzling question concerning the thermoelec-

tric relations. In this section we will analyze the Mott relation for the case of Dirac

and Weyl semimetals. The zeroth order result for the off-diagonal thermoelectric

coefficient was:

χx y
�

1

2(2π)2
e2vFB
~

. (3.11)

The coefficient described in Equation (3.11) was computed in the presence of perpen-

dicular magnetic field and temperature gradient. The numerical value was obtained

by considering the energy transitions between the lowest Landau levels. As high-

lighted in chapter 2, the coefficient χx y
has a finite contribution in the conformal

limit (zero temperature and zero chemical potential). This unusual behaviour auto-

matically implies the violation of the Mott relation in Equations (3.8) and (3.10). In

order to analyze the validity of the thermoelectric relation in the conformal limit of

Dirac electrons, we calculate the Hall conductivity with a Kubo formula as the one

done in section 2.3. Before proceeding with the calculation, we will review the basic

concepts of the electrical conductivity and its derivation.

3.3.1 Electrical conductivity. Theoretical background
In linear response theory, the conductivity tensor σi j

is the proportionality function

that relates the induced electric density with the applied electric field. Mathe-

matically, σ is defined after coupling the Hamiltonian to an electromagnetic field,

introduced by the minimal substitution of the momentum operator p to p + eA.

As mentioned in chapter 2, the particle current operator is defined by considering
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infinitesimal variations of the Hamiltonian with respect the vector field A:

δH �

∫
dr JδA. (3.12)

For non-relativistic Hamiltonians, which are proportional to the square of the mo-

mentum operator, the current vector is given by the sum of two terms; the diamag-

netic contribution, proportional toA, and the paramangetic term, independent of the

gauge vector. These terms arise after expanding the electromagnetic Hamiltonian

in powers of A and calculate the functional derivative of the series with respect the

vector field. Hence, the linearly dependent contribution leads to the paramagnetic

term while the O[A2] order contribution gives rise to the diagmagnetic term [49].

For generic quantum systems with a parabolic dispersion relation (a non-

relativistic free-electron gas, for instance), the diamagnetic contribution is the prod-

uct of the equilibriumparticle density 〈ρ(r)〉 and thegaugefieldA. Theparamagnetic

term is proportional to the current-current correlation function [233, 49]:

Πi j(r, t; r′, t′) � − i
~

∞∫
−∞

dr′dt′
〈
[J i(r, t), J j(r′, t′)]

〉
. (3.13)

Selecting a suitable gaugewhereA(r, ω) � E(r, ω)/iω, the current operator is written

as a function of the external field, and the expectation value of the current operator

reads: 〈
J i(q, ω)

〉
�

〈
J i
diam

〉
+

〈
J i
param

〉
�

[
−i
ω
Πi j(q, ω) +

e2〈ρ〉
imω

δi j
]

E j(q, ω), (3.14)

where the time and space translational invariance of the system are used to write the

expression in momentum space. The conductivity tensor is defined as the function

inside the brackets:

σi j(q, ω) � −i
ω
Πi j(q, ω) +

e2〈ρ〉
imω

δi j
(3.15)

Equation (3.15) represents a powerful result that includes all possible (linear)

electromagnetic phenomena. The diagonal terms describe the longitudinal con-

ductivity, and the off-diagonal components contain the Hall conductivity. In the

particular case of Dirac materials, whose low-energy excitations have a linear dis-

persion relation, the diamagnetic contribution to the conductivity tensor vanishes,

as this term is derived from the second derivative of the Hamiltonian. The response

to an external electric field reduces to the computation of the correlation function
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Π(q, ω). We review the Mott relation for the electronic excitations around a sin-

gle Weyl node, without considering the possible effects arising from the separation

between nodes (see Refs. [234, 147] for good reviews about the topic).

3.3.2 Hall conductivity for Dirac matter
As was already mentioned, the diamagnetic contribution is removed from the ex-

pression of the conductivity in the case of Dirac materials, and one is left with the

term:

σi j(q, ω) � (2π)3
∞∫

−∞

dt e iω(t−t′) −1

V~ω
〈
[J i(q, t), J j(−q, t′)]

〉
. (3.16)

The unperturbed low-energy Hamiltonian describing the electronic excitations

around a single Weyl cone takes the form:

Hs � svFσ
i(pi − qAi) (3.17)

where s � ±1 defines the chirality of the node and q � −e is the electronic charge. As

was done in chapter 2, we choose the Landau gauge Ax � −By and the y-axis along
the direction of the external perturbation. The set of eigenvectors and eigenvalues

are given in Equations (2.28) and (2.29), respectively. Sincewe areworkingwith non-

interacting electrons, the response function can be written in terms of single-particle

operators [176]; following the arguments explained in appendix B, we can write

the conductivity function using the exact eigenstates representation. The resulting

expression takes the characteristic form:

σi j(q, ω) � −i(2π)3
Vω

∑
k,mn

j i
km ,k+qn j j

k+qn ,km

(nkm − nk+qn)
Ekm − Ek+qn + ~ω + i~η

, (3.18)

where the matrix element jαkm ,k+qn reads

jαkm ,k+qn �
1

(2π)3

∞∫
−∞

dr e−iqrsvFϕ
†
km(r)σ

αϕk+qn(r), (3.19)

and the wave-functions ϕkm(r) are given in Equation (2.29). The matrix elements of

Equation (3.18) are computed between single particle states, and the denominator

involves the difference between single particle energies.
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3.3.3 Hall conductivity. Local and zero frequency limit
The conductivity tensor is a function of both ω and q. Assuming that the wave-

length of the external field is large in comparison to the characteristic length of

the sample, we can focus on the local limit approximation and set q → 0. In the

local approximation, non-vanishing results are obtainedwhen the optical transitions

between energy levels satisfy the condition M � N±1. After computing the different

matrix elements, the Hall conductivity for a Weyl semimetal at the local and zero

frequency limit is given by the expression:

σx y
� lim

η→0
+

′∑
m ,n

√
2

4πlB

e2

h

∫
dκz

−2α2

κz ms

(α2

κz ms + 1)(α2

κz ns + 1)
nκz ms − nκz ns

(εκz ms − εκz ns + i~η)2 , (3.20)

where h is the Planck’s constant and the factor [α2

kz ms + 1]1/2 comes from the wave-

function normalization of the Landau eigenvectors, defined as:

α2

kz ms �
−
√

2eB~M
Ekz ms/svF − ~kz

. (3.21)

In deriving Equation (3.20), we have introduced the dimensionless variables kz �

κz
√

2l−1

B and Ekz ms � ~ωcεκz ms . The Hall conductivity is written in terms of the

constant

σ0 �

√
2

4πlB

e2

h
, (3.22)

which is characterized by universal constants and the magnetic length lB . Through-

out this chapter, we will use σ0 as the natural units for the results relative to the Hall

conductivity. The conductivity tensor includes an infinite sum over energy levels

restricted to the condition N � M − 1 where, as will be shown, the higher energetic

transitions do not contribute to the response function. Figure 3.1(a) displays theHall

conductivity σx y
as a function of the chemical potential at T � 0. We concentrate

at the quantum limit, where the zeroth Landau level is the only filled band. The

completely filled lowest Landau level produces a finite, linearly dependent conduc-

tivity [234] when the chemical potential is placed at the interval µ ≤ |~ωc |. Higher

interband transitions across the chemical potential adds up exactly to zero [235], the

lowest Landau level being the only contribution to the conductivity, as depicted in

Figure 3.1(b) . This exact cancellation among optical transitions for energies larger

than ~ωc remains valid as long as the temperature of the system is zero. As illus-

trated in Figure 3.1(a), the effect of the temperature is to increase the slope of the

function, since thermally activated carriers participate in the response function with

a finite contribution, leading to a larger value of the conductivity. It is noteworthy

that the conductivity function increases considerably when the chemical potential
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Figure 3.1: (a): Hall conductivity σx y
as a function of the chemical

potential in the range−~ωc ≤ µ ≤ ~ωc for various values
of temperature. (b): Schematic representation of the Lan-

dau levels and the energy transitions. The contribution

of the interband transitions across the Fermi level cancel.

Only transitions between the lowest Landau level and

excited levels contribute to the conductivity.

approaches the next Landau levels, as the energy threshold becomes significantly

smaller.

3.3.4 Energy derivative of the conductivity
Thederivative of the conductivity ∂µσx y

is easily computed fromEquation (3.18): the

electrical conductivity depends only on the temperature and the chemical potential

through the Fermi distribution nkms , giving as a result:

∂
∂µ
σx y

����
µ�EF

� lim

η→0
+

′∑
m ,n

1

vF8π2

e2

~2

∫
dκz

−2α2

κz ms

(α2

κz ms + 1)(α2

κz ns + 1)

× nκz ms(1 − nκz ms) − nκz ns(1 − nκz ns)
˜T(εκz ms − εκz ns + i~η)2

����
µ�EF

,

(3.23)

where we have defined the dimensionless temperature
˜T � kBT/~ωc and the sum-

mation over energy levels is subjected to the restriction M � N −1. Similarly to what

happened in the previous case, as the temperature increases more thermally acti-

vated carriers contribute to the response of the system (more inter-band transitions



48 Chapter 3. Thermoelectric relations in the conformal limit

Figure 3.2: Temperature dependence of ∂µσx y
as a function of the

chemical potential. As the temperature increases, more

thermally activated carriers contribute to the function.

through the Fermi level are involved). In the low-temperature limit, only the lowest

Landau level contributes to the derivative.

The behaviour of ∂µσx y
at the Fermi surface µ � 0 as a function of

˜T is depicted

in Figure 3.2. Two distinct regimes can be appreciated. At low temperatures, the

derivative of the conductivity presents an almost constant value due to the low

number of carriers participating in the process. A dramatic enhancement of the

function is observed at higher temperatures, especially when the chemical potential

approaches the next quantized energy levels.

3.4 Mott relation in Dirac semimetals at the conformal
limit

The standardMott relationbetween the thermoelectric coefficient LET and thederiva-

tive of the electrical conductivity reads5:

χx y
(
∂σx y

∂µ

)−1

µ�EF

� R T2. (3.24)

where R is the proportionality function that has the value L when the system be-

haves as a Fermi-liquid. The ratio between these two coefficients for the case of a

Dirac semimetals is shown in Figure 3.3. The resulting expression has been derived

5The extra T factor appearing in Equation (3.24) originates from the definition of the thermoelectric

coefficient LET in terms of the Kubo response function χx y
; Lx y

ET � χx y/T.
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Figure 3.3: Temperature dependence of the Mott ration between the

thermoelectric response function χx y
and the derivative

of the electric conductivity ∂µσx y
at µ � 0. Red dots

represent the numerical calculation while the blue line

is the fit to the function f ( ˜T) � 1 + 8.96
˜T2
.

considering only the zeroth order values for the electric and thermoelectric coeffi-

cients. The dominant contribution to the numerical value of the response functions

comes from the energy transitions between the lowest Landau levels. Higher-energy

transitions due to temperature effects represent second order corrections to the result

displayed in Figure 3.3.

As expected, the thermodynamic relation is violated at the critical point µ � 0:

whereas the electric conductivity is a well-behaved function at the conformal point,

the anomalous thermoelectric response presents a finite value stemming from the

quantum anomaly. Away from the singular point T � 0, the relation follows a

quadratic dependence in agreement with Equation (3.24): the description of the

electronic excitations as coherent quasiparticles returns to be valid. A fit of the

numerical values (continuum blue line in Figure 3.3) gives the expression

f ( ˜T) � 1 + 8.96
˜T2. (3.25)

Restoring the units and ignoring the anomalous contribution from T � 0, we get the

coefficient

R � 2.24(kBT)2/e , (3.26)

which coincides with the standard Lorenz value L to a great accuracy. Therefore,

the Mott relation is recovered for temperatures away from the conformal limit.



50 Chapter 3. Thermoelectric relations in the conformal limit

3.5 Conclusions and discussion
In this chapter we have addressed and analyzed the phenomenologicalMott relation

in topological Dirac semimetals. We have characterized the electric conductivity in

the quantumHall regime. The resulting termmatches the analytical behaviour given

in Ref. [234] in the limit of small µ. In the light of the result given in the previous

chapter, we have found that the Mott relation breaks down at the conformal limit

due to the non-vanishing thermoelectric value obtained at µ � T � 0. This result

confirms that the charge neutrality point of cleanDirac samples, similar to the case of

two-dimensional graphene, is a singular point that cannot be reached as a continuous

limit from a finite chemical potential system. The breakdown of the Mott relation

clearly signals, in agreement with previous results [144, 148, 150, 153, 197, 236, 207],

the departure of these systems from the Landau-Fermi liquid paradigm of coherent

quasiparticles, description that becomes insufficient at this regime. This is a natural

result given the vanishing Fermi surface and the poor screening of interactions

around neutrality.

Away from the singular point, the system recovers the conventional Fermi liquid

phenomenology. The anomalous contribution originated at the charge neutrality

point only leads to a solid shift from the expected behavior of a quasiparticle. Addi-

tionally, the result exposed in this chapter is not limited to Dirac semimetals, but it

is also applicable to Weyl semimetals where, besides this result, extra contributions

will arise from the separation between the chiral nodes.

To conclude, there are interesting open problems regarding the phenomeno-

logical transport relations and how these are affected by anomalies, which acquire

especial relevance in thermoelectric transport measurements performed on Dirac

crystals. After different works reported the violation of the Wiedemann-Franz law

(either theoretically or experimentally) on Dirac andWeyl semimetals [206, 143, 197,

237, 207, 209], it results particularly relevant to unveil the role of the conformal

anomaly on the thermoelectric transport at the critical point of these materials.
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Chapter 4
Rotational strain in Weyl

semimetals

4.1 Introduction
Experimental realizations of condensed matter systems are neither ideal nor im-

mune to defects, and they present what is generally referred as disorder: crystalline

samples usually exhibit irregularities in the lattice, structural defects, magnetic im-

purities, dislocations, etc. Disorder has profound implications in the mechanical

properties of the materials, and its understanding is also crucial to explain the elec-

tronic structure and transport features of the sample.

A closely related problem to disorder in condensed matter systems is the pres-

ence of strain. The spectral and transport properties of different systems may be

affected by external influences such as mechanical deformations, as is illustrated

in Figure 4.1. When regarded as small, these perturbations induce smooth oscilla-

tions around the equilibrium position of the atoms1: elastic deformations modify

the distance and relative orientation between the atomic orbitals, leading to local

changes in the hopping strength. In the case of Dirac materials, understanding the

consequences of elastic perturbations becomes crucial from the electronic point of

view, since the transport properties and the electronic structure may be modified

under variations of the lattice configuration. Historically, the influence of lattice de-

formations on the electronic transport properties of Diracmaterials has been studied

using tight-binding models within the framework of elasticity theory, giving rise to

axial vector fields coupled to the electronic degrees of freedom [158, 240, 241]. An

1The parameters characterizing the strength of the deformations contribute to the electron-phonon

coupling.
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Figure 4.1: Elastic deformations in Dirac matter. (a): STM experi-

mental images of graphene samples grown on thin films

of platinum. The image reveals the formation of highly

strained nanobubbles. Adapted from Ref. [163]. (b): Lo-
calized uniaxial strain in wrinkled MoS

2
nanolayers.

Adapted from Ref. [238]. (c): STM image on the sur-

face of the doped Type-II Weyl semimetal Re-MoTe
2
.

Internal deformations are induced under modulations

on the chemical potential, leading to the formation of

topographic ripples. Adapted from Ref. [239].

alternative method to study the possible electron-phonon couplings arising in these

materials is based purely on symmetry considerations. The possibility of construct-

ing effective interactions using symmetry arguments has been extensively adopted

in both quantum field theory and condensed matter systems, where the underly-

ing crystal symmetries constrain the possible actions describing the dynamics of

phonons and electrons (for instance, this approach was employed in Ref. [242] for

generating all possible interacting terms in graphene layers).

The current chapter is devoted to study the effective low-energy electron-phonon

interaction terms stemming from the symmetries of our system. In particular, we

will analyze the new terms induced by antisymmetric components of the deforma-

tion tensor (related to changes in the orientation of the orbitals) in Dirac and Weyl

semimetals.

The effective couplings and their physical interpretation will be discussed in sec-

tion 4.2. An interesting aspect of the 3D case as compared with its 2D analogue is

the role played by the antisymmetric part of the deformation tensor. This coupling

will be analyzed in section 4.2.2. The chapter ends with the description of a particu-

larly interesting physical realization of an elastic deformation, a discussion about its

physical implications and a summary of the main conclusions of the chapter2.

2This chapter is based on “Vicente Arjona and María A.H. Vozmediano, Rotational strain in Weyl
semimetals: A continuum approach, Physical Review B 97, 201404 (R) (2018)”.
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4.1.1 Elasticity theory. Fundamental equations
The mechanics of solids, regarded as continuum media, is the subject of elasticity

theory [243]. When external forces are applied, the system undergoes deformations

in shape and volume. Deformations are mathematically described by the displace-

ment u of a point at position x relative to the original position x0:

u i
� x i − x i

0
, (4.1)

with latin indices denoting the different components of the vector. Considering two

points infinitesimally close, the deformation tensor ûi j is defined by the leading term

in a Taylor expansion of the radius vector:

dx i
� dx i

0
+
∂u i

∂x j dx j
0
, (4.2)

where dx0 and dx are the vectors joining the two points before and after the defor-

mation, respectively, and ûi j � ∂j ui . The symmetric part of ûi j defines the strain

tensor ui j , which is related to the distance dl2 � dx2
between the points:

dl2

� dl2

0
+ 2uikdx i

dxk , (4.3)

where the tensor ui j is given as follows:

uik �

∑
l

1

2

(
∂ui

∂xk
+
∂uk

∂u i +
∂ul

∂x i
∂ul

∂uk

)
. (4.4)

In elasticity theory, deformations acting on a system are regarded as small pertur-

bations, and generally one can treat the components of ui j as small terms. Being the

last term in Equation (4.4) of second order, it can be neglected [243].

The symmetric tensor ui j plays the main role in elasticity theory as well as in a

geometric formulation, where it is identified as a metric. This follows directly from

Equation (4.3), which can be read as:

gi j � δi j + 2ui j , (4.5)

where δi j is the identity matrix [243, 244]. In three dimensions, the antisymmetric

part of the gradient deformation tensor,

ωik �
1

2

(
∂ui

∂xk
− ∂uk

∂u i

)
, (4.6)

is related to torsional deformations where the points are infinitesimally rotated
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through some angle relative to those below them. This deformation plays an im-

portant role in the mechanics of solids and is represented by the pseudo-vector field

(invariant under inversion transformations) Ω, which is related to the displacement

vector u by:

Ω � ∇ × u. (4.7)

The nature of this vector is better understood in fluidmechanics, where u represents

the fluid velocity and ûi j measures the rate of change of the flow velocity in the

neighborhood of a point. The vorticity vectorΩ is a pseudo-vector that characterizes

the tendency of a fluid to generate whirlpools. Ω is defined as the rotational of the

fluid velocity [245], Ω � ∇ × u, and is related to the antisymmetric tensor ωi j by:

Ωi
� −εi jkω jk . (4.8)

In 2D the antisymmetric part of the deformation gradient tensor is dual to a pseudo-

scalar field, and does not play a major role in the dynamics (−2ωi j � εi jΩ).

4.1.2 Elastic deformations in Dirac crystals
Effects of the lattice deformations on the electronic properties of graphitic structures

were described in the literature before the synthesis of graphene3. Lattice defor-

mations couple to the electronic density of Weyl materials in the form of elastic

gauge fields, constructed with the deformation tensor. This particular coupling was

first derived in the context of carbon nanotubes [158, 240], and it was soon gen-

eralized to graphene flakes [248–250, 241] (see also Ref. [160]). The extraordinary

mechanical attributes and flexibility of the material, and the potential of tuning their

electronic properties by appropriate strain geometries, opened the pathway for a

prolific industry associated with straintronics [251, 246]. An important highlight in

the development of the field was the recognition of a reorganization of the energy

spectrum into quantized Landau levels due to the emergence of an effectivemagnetic

field in strained graphene [163, 159, 252] (see Figure 4.1).

The emergenceof elastic gaugefields in 3DWeyl semimetals (deduced inRef. [161])

has been followed by multiple studies analyzing their physical consequences [165,

167, 166, 175]. An experimental realization of strain-induced pseudo-magnetic fields

(on the order of 3 Tesla)was recently observed in strained crystals of Re-dopedMoTe2

(see Figure 4.1), where Landau levels at zero applied magnetic field were detected

in areas associated to rippled regions [239].

3The basics of the elastic deformations will be described in section 4.1.2, which is far from being an

exhaustive review about elastic deformations. We refer the reviews [160, 8, 246, 247, 25] and references

therein for further details.
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Recent works shows that the influence of external deformations on the electronic

properties of Dirac matter gives rise to different phenomena not captured by the

elastic gauge fields. For a complete review about the different effects arising from

strain in 2D Dirac materials, we refer the Ref. [247].

4.2 Electron-phonon couplings
The effective low-energy interactions between lattice deformations and electronic

excitations under non-uniform strain can be organized using a systematic expansion

in derivatives of the strain tensor and the electron field. Considering elastic defor-

mations, each derivative of ûi j is suppressed by a factor of order O(a/λ), where λ is

the wavelength of the deformation and a is the lattice constant.

Any electron-phonon coupling respecting the symmetries of the system is al-

lowed. The minimal low-energy model describing a Weyl semimetal with only two

nodes of opposite chirality separated in energy-momentum space by a vector (b0 , bi)

is given by the Hamiltonian:

Hs � svFσ
i(ki + sbi) + sb0I, (4.9)

where s � ±1 denotes the chirality of each node. As mentioned in chapter 1, the vec-

tor bµ and the Fermi velocity are the only intrinsic parameters of the material. The

term involving the spatial components b breaks time-reversal symmetry, while the

time component b0 shifts the nodes to different energies and breaks inversion sym-

metry. In the case of a Weyl semimetal, Weyl nodes are often located at points in the

Brillouin zone without any particular symmetry. We restrict the construction to this

case andperformaderivation based on the continuummodel given in Equation (4.9),

where the only symmetries are rotations in the plane perpendicular to the vector

b. This approach does not provide the numerical value of the coupling constants,

which remains arbitrary. Generalized tight-binding approximations [161, 164, 165],

ab-initio calculations or experimental data should be used in order to estimate their

values.

As ourmain interest lies in the description of quasiparticle excitations around the

Weyl nodes, where the electrons disperse linearly, we restrict ourselves to interaction

terms that are, at most, linear in the electron-momentum k. Within the domain of

elasticity theory, where deformations are regarded as small, only terms linear in the

deformation tensor are considered. In this way, the effective interactions will be a

function of the deformation tensor ûi j , the vorticity vector Ω, the electron fields ψ
and their derivatives.
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Hi Electron-phonon coupling Physical interpretation K2

Hs
1

Tr(ui j) Deformation potential +

Hs
2,0 σ0A0, A0 � u | |b0 Pseudo-scalar gauge potential -

Hs
2,i σiAi , Ai � ui j b j

Pseudo-vector gauge field -

Hs
3

ui jσi k j
Space-dependent Fermi velocity +

Hs
4

ui j w i k j
Space-dependent tilt velocity +

Hs
5

k iAi Dirac cone tilt -

Hs
6

εi jkσi∂j bk , εi jkσi∂jAk Pseudo-Zeeman field -

Table 4.1: Lowest-order effective low-energy Hamiltonians for the

electron-phonon interactions associated with the stan-

dard strain tensor. The different terms presented here

describe the interactions around one Weyl node. The

relative sign of its corresponding partner (separated in

momentum space) is given in column K
2
.

4.2.1 The strain tensor. Effective electron-phonon interactions
For the case of three-dimensionalmaterials, the couplings of the electronic density to

the symmetric strain tensor defined in Equation (4.4) are very similar to these already

known in the graphene system [242]. Some couplings, especially those related to

elastic gauge fields, have been already discussed in the literature.

The complete list of terms is summarized in Table 4.1. The column K2 indicates

the relative sign of the coupling sitting on the corresponding chiral partner, separated

in reciprocal space by the vector b. In what follows we will describe the physical

consequences of the different terms.

Deformation potential

The simplest deformation that one can consider is due to changes in the volume

of the unit cell, originated by either contraction or dilation of the sample [158, 8].

Volume differences give rise to local fluctuations in the electron density, shifting the

energy bands of the material (an effect similar to that of a chemical potential). It

is mathematically represented by the trace of the deformation tensor. Deformation

potentials were thought of as a general perturbation whose only effect was related to

energy displacements of the Dirac cones. Nevertheless, they play a significant role

when (pseudo) magnetic fields are present, as will be discussed in the next chapter.
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Pseudo-gauge fields

Elastic deformations modify the local bond length between hoppings, leading to

effective gauge potentials that couple with opposite sign to each chiral node4. The

spatial separation between nodes (introduced in Equation (4.9)) is affected by the

local displacements,

bi → ˜bi � bi + ui j b j , (4.10)

giving rise to elastic vector potentials Ai � ui j b j
. Suitable non-uniform configura-

tions can induce time-reversal breaking vectors (hence, elastic gauge fields) which

are position-dependent. As a result, we can define fictitious pseudo-magnetic fields

which couplewith different sign to each of the chiralities. The elastic vector potential

was first derived in Ref. [161], which was followed by a number of works discussing

their physical consequences and paving the way for Weyl semimetals straintron-

ics [165, 166, 175, 253, 168–172, 25]. The coupling written in Hs
2,i is only valid for

time-reversal symmetry broken Weyl semimetals; other forms of strain-induced po-

tentials have been found for materials where the Weyl nodes are protected by lattice

symmetries [171].

TheWeyl nodes are separated not only in space, but they can be shifted in energy.

Elastic deformations also contribute to this energy distance, as demonstrated in Hs
2,0.

The time component b0 couples to the elements of the strain tensor u | | that are parallel
to the vector b. The resulting coupling is a pseudo-scalar (inversion symmetry

breaking term) that changes (in opposite directions) the position of the Weyl nodes,

resulting in a strain-induced contribution to the chiral magnetic effect [162].

Strain-dependent Fermi velocity

The Fermi velocity is one of the intrinsic parameters of themodel, and allmeasurable

quantities depend on it. Space-dependent Fermi velocity originates from inhomo-

geneous elastic disorder, which is endonced by the coupling Hs
3
. The strain-induced

velocity has associated two contributions:

vi j → ṽi j � v(Tr(u)δi j + ui j) (4.11)

where the first (second) term is the isotropic (anisotropic) Fermi velocity. Anisotropic

position-dependent Fermi velocities have been discussed in the context of cubicWeyl

semimetals and may be interpreted as emergent gravitational field [167].

4These axial gauge fields are absent in high energy physics, where they would play an important role

related to the chiral anomaly.



58 Chapter 4. Rotational strain in Weyl semimetals

Strain-dependent tilt velocity

As mentioned in chapter 1, a generic feature in Weyl and Dirac semimetals is that

the cone of the linear dispersion relation may be tilted [254–258, 133, 134]. These

tilted Dirac cones are described by the term Htilt � w i kiI, where w i
denotes the tilt

velocity, another intrinsic parameter of the material. In the same way as the Fermi

velocity, the tilt parameter can be modified under lattice deformations, making it

inhomogeneous through the sample for non-uniform strain (Hs
4
term):

w i → w̃ i
� w i

+ ui j w j . (4.12)

Nevertheless, strain deformations contribute with an additional term to w. The

pseudo-vector A is able to tilt the dispersion relation of an originally untilted Weyl

semimetal in opposite directions, interaction that is described by the term Hs
5
. Being

proportional to the separation between the nodes, this coupling only arises in Weyl

semimetals. The combination of these two terms opens the possibility of a strain-

induced Lifshitz transition [129, 259, 258, 260, 134, 261], i.e., going from Type-I to

Type-II Weyl semimetal by applying strain (or vice versa). Since the Fermi velocity

is also affected by elastic deformations, the condition for the transition becomes

| |t| | > 1, where the vector t is given by the expression:

ti � (wl + ul j w j + Al)(ṽ−1)li (4.13)

and ṽli � vli + uli is the space-dependent Fermi velocity. This type of tunability

has been discussed in Ref. [262], where the orthorhombic Weyl semimetal Ta3S2 5,

regarded as one of the most robust Weyl semimetals, exhibits a transition from

Type-II to Type-I Weyl semimetal as one increases the lattice constant b. By further

increasing this parameter, the system develops a topological phase transition into a

topological insulator state, as the two chiral nodes have annihilated with each other

and the spectrum becomes fully gapped.

Pseudo-Zeeman term

A Zeeman term can be constructed with the derivative acting on the vector b.
Although b is constant inside the sample, it will always go to zero at the boundary

of finite samples, giving rise to an effective pseudo-magnetic field confined to the

boundary as discussed in Ref. [265] (see also Ref. [25]). For the sake of clarity, let

us consider as an example a cylinder of height L and radius a with the simplest

configuration b � bzΘ(a − |r|)ẑ. This separation will produce a pseudo-magnetic

5Ta3S2 is a semimetallic compoundwith the space groupAbm2. The lattice constants are a � 5.6051 Å,

b � 7.4783 Å, c � 17.222 Å [262–264].
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Figure 4.2: (Left): Schematic illustration of a cubic lattice. Consider-

ing a pair of s and p orbitals, the structural configuration

depicted in the image does not allow any interaction

between the atomic orbitals. (Right): The relative orien-

tation between the atoms is modified by applying a ro-

tational perturbation. The new alignment gives rise to

new hoppings not allowed previously by the symmetry

of the system [266].

field pointing in the azimuthal direction and proportional to BΘ ∝ bzδ(a − |r|).
Associated to this magnetic field there will be a corresponding Zeeman term H �

σΘBΘ. The elastic magnetic field defined through Hs
2,i will lead to a pseudo-Zeeman

term H � σiεi jk∂jAk .

4.2.2 Antisymmetricdeformation tensor. Effective electron-phonon
interactions

The strain gradient tensor ui j can be defined from the change in the bond length due

to deviations of the atomic orbitals from the equilibrium values. Additional contri-

butions to the overlap hopping matrix arise from the relative orientation seen from

the adjacent sites (see Figure 4.2). As a result, new effective couplings, prohibited

by symmetry arguments in the unstrained case, become permitted as a consequence

of the relative rotation of the relevant orbitals when strain is applied [266, 164, 161].

The antisymmetric tensor ωi j characterizes this kind of elastic deformations, the

relative rotation between atoms being described by the vorticity vector Ω. Contrary

to the general elastic gauge field, Ω is independent of the separation between the
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Hi Electron-phonon coupling Physical interpretation K2

Ha
1

Ωi b i
Deformation potential +

Ha
2

σiωi j b j
, σiΩi Pseudo-vector gauge field -

Ha
3

ωi j w i k j
, Ωi k i

Dirac cone tilt -

Ha
4

εi jkσi k jVk “Antisymmetric” Fermi velocity

Table 4.2: Lowest-order effective low-energy Hamiltonians for the

electron-phonon interactions associated with the anti-

symmetry tensor ωi j . New couplings not present in the

symmetric case originate from the vorticity vector.

Weyl nodes and its couplings will be present in Dirac semimetals. As was done

in section 4.2.1, the complete list of effective couplings related to the antisymmetric

strain tensor to first order in derivatives is summarized in Table 4.2. The different in-

teracting terms are organized in a derivative expansion, where each term is referred

to one of the Weyl nodes and K2 gives the relative sign of the chiral partner.

Scalar potential

An interesting observation concerns the coupling between the node separation b
and the vorticity vector. Being both pseudo-vectors (they do not break inversion

symmetry), their pairing will produce a rotational contribution to the deformation

potential. Being independent of the strain tensor, it implies that a scalar potential

can be generated from volume preserving deformations, as in the case of local

rotations. This result implies a promising new pathway for achieving specific,

space-dependent electron densities from elastic perturbations without altering the

volume of the sample.

Pseudo-gauge fields

Rotational deformations give rise to two novel axial gauge fields. The first vector

potential H � σiωi j b j
involves the Weyl node separation and is the antisymmetric

analog to the termderived in Hs
2,i of Table 4.1. Interestingly, the second coupling H �

σiΩi does not depend on b, which implies that rotational deformations can induce

a transition from Dirac to Weyl semimetals similar to that discussed in Ref. [267]. In

fact, we cangenerate pseudo-magnetic fields fromspace-dependent vorticity vectors,

following a similar approach as proposed in Ref. [165].
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Strain-dependent tilt velocity

Both strain-induced vectorsΩ and ωi j w j
will induce opposite tilts in the two nodes.

As in the previous case, being independent of theWeyl node separation, the coupling

Ωi k i
will tilt the cones in any Dirac material. These two contributions will be added

to Equation (4.13) to promote the Lifshitz transition between Type-I and Type-IIWeyl

semimetals [262].

Antisymmetric Fermi velocity

The term described in H4 deserves an appropriate treatment as it brings interesting

consequences to the electron-phonon derivation. This term can be regarded as an

antisymmetric contribution to the Fermi velocity since it concerns a tensor whose

components are antisymmetric, εi jkV k ≡ Vi j . As it was shown in Ref. [242], the

antisymmetric contribution to the Fermi velocity vanishes in the case of 2D Dirac

materials (a detailed derivation is found in appendix C), where a spinor rotation

completely cancels the antisymmetric term. The 3D case is more involved, as the

relations between the Pauli matrices include an extra δ-term not present in 2D

systems, where σz
is a privileged matrix.

Consider the generic Hamiltonian described in Ha
4
, where Vk is an arbitrary field.

Due to the commutation relation of the Pauli matrices,

σaσb � iεabcσ
c
+ δab , (4.14)

and using the symmetric convention for the derivatives acting on the electron fields,

ψ†k jψ→ −
i
2

ψ†
↔
∂jψ ≡ −

i
2

(
ψ†∂jψ − ∂jψ

†ψ
)
, (4.15)

a spinor rotation

ψ→ ψ′ � e i/2 σk Vkψ (4.16)

cancels the antisymmetric term, leaving behind a term proportional to the diver-

gence of the vector V (all the technical details about this calculation are included in

appendix C). Depending on the nature of V, this effective coupling will contribute

to the low-energy Hamiltonian as a scalar potential (V is a vector) or to the energy

separation b0 (V is a pseudo-vector). In the case of a strained Weyl semimetal, we

have at our disposal three vectors (separation between nodes b, elastic gauge fields
A, vorticity vector Ω) that couple to the electronic degrees of freedom in the form

suggested by Ha
4
.

The first term to be considered is the vorticity vector, H � εi jkσi k jΩk . Using

the definition of Ω, this term follows from the Fermi velocity originated by the
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antisymmetric tensor; ωi jσi k j
. The resulting Hamiltonian after the spinor rotation

is H � ∇ · Ω. Being the divergence of a curl, this term is zero. The antisymmetric

part of the Fermi velocity vanishes for Dirac and Weyl materials.

An interesting coupling that emerges from the previous example is a strain-

independent term proportional to the node separation. The Hamiltonian H �

εi jkσi k j bk can be rotated to H � ∇ · b, term that will induce a pseudo-scalar po-

tential similar to b0 confined at the boundaries of the sample, where the separation

between the nodes goes to zero. This interaction is a pseudo-scalar (breaks inver-

sion symmetry) and will induce an energy separation between the nodes. When

non-uniform strain is applied, b will be inhomogeneous through the sample, giving

rise to two space-dependent axial gauge fields Hs
2,i and Ha

2(2). After performing the

spinor rotation explained above, the resulting inversion-breaking term H � ∇ · A
will contribute to the energy separation b0. Being proportional to ûi j , this term is of

higher order in derivatives of the strain that the one described in Hs
2,0. Both terms

will contribute to the chiral magnetic effect in a similar fashion to the mechanism

discussed in Ref. [162], where the intrinsic parameter b0 is modified under elastic

deformations in order to change the locations of the Weyl cones.

4.3 Physical example. Realistic strain configuration
In this section we present a feasible realization of Dirac matter under strain. This

configuration was originally proposed in Ref. [165] to generate a constant pseudo-

magnetic field and study the emergence of pseudo-Landau levels. Wewill show that

new extra terms will be generated from the given configuration, which may alter

previous results.

In order to probe strain-induced phenomena in Dirac matter is recommendable

to concentrate on films or wire-shaped materials: the mechanical flexibility of such

geometries allows the sample to support a considerable strain without breaking,

much better than bulk crystals. We will analyze the effect of elastic deformations on

nanowires of Dirac semimetal Cd3As2, a material that has exhibited an impressive

mechanical flexibility and suitable bending attributes. The Dirac semimetal Cd3As2

presents a complicated crystal structure that canbe regardedas tetragonallydistorted

array with Cd-site vacancies [102]. The low-energy model captures the semimetallic

nature of the crystal with a symmetry protected band crossing point along the Γ−Z
direction. The effective Hamiltonian is made of two decoupled sub-blocks, where

each individual block characterizes a time-reversal breaking Weyl semimetal with

the pair of Weyl nodes sitting at different K± points in the reciprocal space. Time-

reversal symmetry is restored when the two copies are considered, each “Weyl sub-

block” being the chiral partner of the other [102, 165]. Therefore, the tight-binding
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Figure 4.3: Schematic representation of the wire-shaped nanowire

considered for this section. The sample is twisted a to-

tal angle θ, which introduces a misalignment between

adjacent layers. Adapted from Ref. [165].

model provides a material with two Weyl nodes separated along the z-direction by

a vector b � b ẑ. Assuming a wire-shaped crystal of length L with an axis along

the z-direction, the displacement vector u that derives from twisting the sample an

angle θ is given by:

u i
� θ

z
L
εi jk r j ẑk (4.17)

where r denotes the position relative to the origin located on the axis of the wire and

ẑ is the unit vector along the z-direction, as illustrated in Figure 4.3. The strain tensor

associated with the deformation written in Equation (4.17) is traceless, meaning that

the deformation potential generated from the symmetric deformation will be zero.

Equation (4.17) has an associated elastic gauge field6:

Ai � ui j b j → A �
θb
2L
(y ,−x , 0), (4.18)

and the corresponding uniform magnetic field:

B i
el
�

~
e
εi jk∂jAk → Bel � −

~
e
θ
L

b ẑ. (4.19)

As explained before, we will analyze the novel contributions arising from the anti-

symmetric part of the gradient deformation tensor, described in the previous section.

6When defining the fictitious fields induced by the elastic deformations in Equations (4.19) and (4.22),

we have introduced the required constants in order to resemble the physical units of their electromagnetic

analogues.
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Following Equation (4.8), the vorticity vector associated to this deformation is

Ω �
θ
L
(x , y ,−2z), (4.20)

which leads to a deformation potential proportional to the antisymmetric part of the

deformation tensor:

ξ � Ωi b i
� −2

θ
L

bz. (4.21)

Even though the applied deformation is traceless i.e., it preserves the volume of the

wire, it is still able to produce a scalar field through the vorticity vector. Without

considering time-dependent deformations, the strain-induced scalar potential will

create an elastic electric field parallel to the field Bel:

Eel

i � −vF

~
e
∂ξ

∂x i → Eel � 2vF

~
e
θ
L

b ẑ. (4.22)

Unlike the axial-electric field that one could get from the trace of the deformation

tensor (described in Hs
1
), the resulting term stemming from the antisymmetric part

is a regular vector and couples with the same sign to the two chiralities. The product

of these two synthetic vectors will not ignite the chiral anomaly since the vector Eel

cancels the contribution generated by the two cones (such scenario does not promote

a charge pumping between the Weyl points).

Following the anomaly equationswhen both ordinary and chiral electromagnetic

fields are present [173, 179, 265, 22], a pumping of charge will flow between the two

chiral partners when a real magnetic field B along the z-direction is present:

∂tρ5 + ∇ · j5 �
e2

2π2~2

(E · B + E5 · B5), (4.23)

where ρ5 � ρR − ρL is the chiral density and E5, B5 denotes chiral electromagnetic

fields7. As suggested in Ref. [165], the proposed strain configuration will give rise

to an electric current characterized by the chiral anomaly equation:

∂tρ + ∇ · j � e2

2π2~2c
(E · B5 + E5 · B). (4.24)

Equation (4.24) only occurs when both chiral and real electromagnetic fields are

present. Being the electric current strictly conserved in real solids, Equation (4.24)

7As discussed before, whereas the pseudo-magnetic field generated with strain couples with opposite

sign to the two chiralities, i.e. B
el

� B5, the electric field E
el

described in Equation (4.22) behaves in

the same way as a real electric field, E
el
� E. For the proposed geometry, chiral electric fields E5 can be

originated from time-dependent elastic deformations, Ei
5
� −∂t Ai

el
.
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is understood as a charge-density current flowing from the bulk to the edges of the

system that only arises in strained Dirac crystals [165].

The deformation characterized in Equation (4.17) will develop a tilted dispersion

relation (opposite at each node) due to the contributions described in Tables 4.1

and 4.2:

w̃i � g1ui j b j
+ g2ωi j b j

+ g3Ωi , (4.25)

where gi are the different coupling constants. As discussed in Section 4.2.1, Hs
6
is

a new term describing the coupling between the spin components and the pseudo-

magnetic field Bel. This term is interpreted as a strain tunable pseudo-Zeeman term,

which breaks the spin degeneracy and comes with opposite signs in the two Dirac

points.

4.4 Conclusions and discussion
In this chapter, we have used a symmetry approach to construct effective electron-

phonon couplings affecting the low-energy quasiparticle excitations of Dirac and

Weyl semimetals. We have defined our derivation within the framework of elasticity

theory, setting up a systematic expansion in derivatives of the deformation tensor.

Higher order corrections are strongly suppressed in many experimental situations

(each derivative of the deformation tensor is suppressed by a factor of orderO[a/λ]),
and they do not contribute with new significant physical phenomena.

Contrary to the 2D case, antisymmetric contributions to electron-phonon cou-

plings stem in Weyl and Dirac semimetals, and lead to new effective terms that

enrich the scenario of elastic deformations-induced effects. The orbital character of

the tight-binding models in Weyl semimetals makes rotational strain particularly

relevant, inducing new orbital couplings that were forbidden by symmetry in the

unperturbed case. This provides a richer scenario than that present in graphene and

similar 2DDirac systems, where the relevant orbitals characterizing themodel are pz

orbitals perpendicular to the plane, leaving the distance between neighboring atoms

as the only parameter susceptible of being modified under elastic deformations.

The vorticity vector Ω, which represents the relative rotation between the atomic

positions, plays the main role in the antisymmetric contribution to the low-energy

description of the effective actions, generating new couplings not present in 2D sys-

tems, where the dual to the antisymmetric part of the gradient deformation tensor

is a scalar field. Of special interest is the volume-preserving deformation potential,

a scalar term that does not involve the trace of the strain tensor, or the tilt parameter.

Being independent of the momentum (or energy) separation between the nodes, Ω

will couple to both Weyl or Dirac semimetals.
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For the sake of completeness, we have included the terms associated with the

symmetric strain tensor, which are analogous to these extracted in Ref. [242]. This

brings to light the close relation between antisymmetric deformations and 3D Dirac

materials and highlights the vorticity-induced terms as a distinctive property of

Dirac and Weyl semimetals.

Part of the interest in emerging axial vector fields associated with elastic defor-

mations lies on the possibility of generating elastic or mixed electromagnetic-elastic

responses like the ones discussed in early works [268]. We have seen an example of

this phenomena in the considered example, where a nanowire of Dirac semimetal

Cd3As2 is subjected to torsional strain. The applied strain induces an elasticmagnetic

and electric fields able to ignite the chiral anomaly and an electric current between

the bulk and the boundaries of the sample [165].

The influence of antisymmetric deformations on the thermo-electric properties

of 3D Dirac materials has been investigated in a recent publication [269]. The results

indicate that the thermoelectric transport coefficients in Weyl semimetals can be

tailored by appropriate tuning of the magnetic field strength, the torsional deforma-

tion and the thermal gradient, giving rise to large figure of merit and proving the

potential of straintronics in Dirac materials.
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Chapter 5
Collapse of Landau levels in

Weyl semimetals

5.1 Introduction
In the previous chapter, we detailed the different effective electron-phonon cou-

plings arising from lattice deformations induced by strain. These interactions were

constructed based only the underlying symmetry of the system.

Arguably, the coupling of electronic degrees of freedom to lattice deformations

in the form of vector fields similar to the electromagnetic potential is one of the

most interesting features in the field of strained Dirac materials [158, 160, 161]. This

observation paved the way to investigate different strain configurations that would

induce a constant magnetic field able to quantize the spectrum into pseudo-Landau

levels [159, 165, 166, 175]. The subsequent experimental observation with scanning

tunneling spectroscopy [163, 239] is considered as a milestone in the physics of

Dirac systems (see Figure 5.1). The concept of elastic gauge field and the potential

to manipulate the electronic excitations by means of elastic deformations opened a

new research field called straintronics [251, 25, 166, 169, 172].

The relativistic nature of themassless quasiparticles has important consequences

on the properties of these materials. One of the best explored in the literature is,

precisely, the behaviour of the electronic excitations in magnetic fields. On the

one hand, the Landau level spectrum differs from that of the standard electron

systems: the dispersion relation is proportional to

√
B and

√
n, in contrast to the

linear dependence of the classical case1. On the other hand, the characteristic zeroth

1This characteristic dependence was the compelling evidence of having Dirac electrons in graphene [6,

7].
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Figure 5.1: (a): STM topograph of the Weyl semimetal Re −MoTe
2

surface. Strain-induced ripples can be observed in the

image. (b): Periodic height variation due to topographic

modulations along the cuts (red and blue lines) shown

in Figure 5.1(a). (c): Tunneling spectra measured at dif-

ferent points in the strained region. The image reveals

strain-induced Landau levels oscillations. Adapted from

Ref. [239].

Landau level plays an important role in the discussion of the chiral anomaly inWeyl

semimetals [270], and its negative contribution to themagnetoresistance has become

the standard test of the anomaly [271, 272, 78–80].

In the presence of a perpendicular electric field E, the Landau level spectrum

develops a non-trivial dependence with the electric field that renormalizes the cy-

clotron frequency [273, 274]. Whereas the level spacing is independent of E in

the non-relativistic case, the Landau spectrum for the case of Dirac systems is af-

fected by the E-dependent frequency. Noticeable, the whole quantized spectrum

collapses when the electric field is beyond a critical value [274, 275]. The under-

lying mechanism behind this phenomenon is the combination of special relativity

(the recognition that different inertial observers will measure different electric and

magnetic fields) and electrodynamics. This fact was first explored in two spatial

dimensions for the case of graphene in Refs. [274, 275], and it has been also recog-

nized in a different context when analyzing the magnetoresponse of Type-II Weyl

semimetals2 [259, 258].

In light of this result, it is natural to ask if pseudo-magnetic fields could also be

affected by this kind of phenomena. In this chapter we will explain how specific

strain patterns will induce the collapse of the pseudo-Landau levels via the same

2Tilted Dirac materials in the presence of a magnetic field were previously studied in 2D organic

compounds [254, 255, 257]. These materials also displayed the characteristic transition from Landau level

quantization to continuous spectra, depending on the orientation between the tilt and the magnetic field.
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mechanism to that previously discussed for the case of real electromagnetic fields.

This phenomenon has already been considered for graphene systems in Ref. [276].

The chapter is organized as follows. First, for completeness, we will review some

basic concepts about Lorentz symmetry and how the electromagnetic field tensor

transforms under the elements of the Lorentz group. Then, Lorentz transformations

will be adopted as a tool to solve the spectrum of Dirac and Weyl semimetals in the

presence of perpendicular electric and magnetic fields. After a brief description of

the classical case (it will be helpful in emphasizing the differences with its relativistic

counterpart), we will show how a perpendicular electric field introduces a non-

trivial dependence on the cyclotron frequency of Dirac materials able to destabilize

the quantized spectrum. We will extend this situation to strained Dirac materials by

considering the different terms induced by strain analyzed in chapter 4. Finally, we

will discuss the physical implications of particular deformations onDiracmaterials3.

5.1.1 Lorentz transformations
An intrinsic principle in physics is the invariance of the physical laws in all inertial

reference frames [277, 278]. This symmetry is the first postulate of the special theory

of relativity introduced by Einstein [279], which imposes that any physical theory

must be invariant under Lorentz transformations relating two inertial coordinate

systems4.

At the end of the 19th century, it was already known that Maxwell’s theory of

electromagnetism was inconsistent with the principle of Galilean relativity. Lorentz

transformations were introduced in 1904 by Lorentz, who sought symmetry trans-

formations that kept the Maxwell’s equations covariant [281, 278]. It was due to

Einstein and his theory of special relativity who generalized the covariance of the

physical laws beyond electromagnetic theory.

Mathematically, the Lorentz group is defined as the group of linear coordinate

transformations

xµ → x′µ � Λ
µ
νxν (5.1)

that leave invariant the space-time interval ds2 � gµνdxµdxν . This condition is

formally expressed as:

gρσ � gµνΛ
µ
ρΛ

ν
σ . (5.2)

3This chapter is based on “Vicente Arjona, Eduardo V. Castro andMaría A.H. Vozmediano, Collapse of
Landau levels in Weyl semimetals, Physical Review B 96, 081110 (R) (2017)”.

4General relativity broadens this statement to all reference frames [280]. Within this framework, the

global condition of Lorentz invariance becomes a local symmetry in the presence of matter, the latter

being directly related to the curvature of space time.
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In three spacial dimensions, the Lorentz group is isomorphic to O(1, 3) with in-

finitesimal generators Jµν and the associated commutation relation:

[Jµν , Jρσ] � i
(
gνρ Jµσ − gµρ Jνσ − gνσ Jµρ + gµσ Jνρ

)
. (5.3)

From Equation (5.2) if follows that

(Λ0

0
)2 ≥ 1 detΛ � ±1. (5.4)

The subset of Lorentz transformations having positive determinant and component

Λ0

0
≥ 1 forms a subgroup, called the Proper Lorentz group. Their elements are

connected with the identity by successive infinitesimal transformations. They can

be decomposed into 3D spatial rotations and boosts relating the coordinate systems

of two inertial observers. Discrete operations (parity and time-reversal) should be

added to the set of transformations of the Lorentz group.

Any Lorentz transformationΛ can be written as a product of rotations R (param-

etrized by three angles θ � (θ1 , θ2 , θ3) ∈ [0, 2π] around the three elementary axes)

and boosts transformations L, which are characterized by the three components of

the rapidity parameter η � (η1 , η2 , η3) ∈ (−∞,+∞). These elements can be obtained

by exponentiating the generators Jµν :

Λαβ � (exp [−iωµν Jµν/2])αβ , (5.5)

where ωµν are the parameters of the transformation5. A set of matrices (or linear

operators) satisfying the commutation relations in Equation (5.3) yields, through

exponentiation, a representationof theLorentzgroup. In the 4-vector representation,

it is straightforward to see that the 4 × 4 matrix

(Jµν)αβ � i(gµαδνβ − gναδµβ) (5.6)

satisfies the algebra described in Equation (5.3). Upon explicitly expanding Equa-

tion (5.5) in a power series, one can write an explicit representation of the Proper

Lorentz group:

Rx �

©­­­«
1 0 0 0

0 1 0 0

0 0 cθ −sθ
0 0 sθ cθ

ª®®®¬ , Ry �

©­­­«
1 0 0 0

0 cθ 0 sθ
0 0 1 0

0 −sθ 0 cθ

ª®®®¬ , Rz �

©­­­«
1 0 0 0

0 cθ −sθ 0

0 sθ cθ 0

0 0 0 1

ª®®®¬ ,
5The tensor ωµν is related to the usual rotation θ and rapidity η parameters by ωi j � −ω ji � εi jkθ

k

and ω
0i � −ωi0 � ηi .
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and

Lx �

©­­­«
γ −γβ 0 0

−γβ γ 0 0

0 0 1 0

0 0 0 1

ª®®®¬ , Ly �

©­­­«
γ 0 −γβ 0

0 1 0 0

−γβ 0 γ 0

0 0 0 1

ª®®®¬ , Lz �

©­­­«
γ 0 0 −γβ
0 1 0 0

0 0 1 0

−γβ 0 0 γ

ª®®®¬ ,
(5.7)

with cθ � cos θ, sθ � sin θ and γ � 1/
√

1 − β2
. In deriving the boost transformations

Li , we have replaced the rapidity term η by the Lorentz factor γ and the velocity

parameter β � v/c, which are related to η by:

eη � γ + γβ. (5.8)

The covariant formulation of any theory makes it explicitly Lorentz invariant;

the equations of motion derived from a Lagrangian that is a Lorentz scalar will

be systematically invariant under Lorentz transformations [27]. This result stems

from the principle of least action: if Lorentz transformations leave the Lagrangian

unchanged, the transformed extremum of the action will remain an extremum.

5.1.2 Electromagnetic field tensor and special relativity
Before the formulation of special relativity, Lorentz invariancewas alreadydiscussed

in the context of classical electromagnetism: Maxwell’s theory of electromagnetism

was incompatible with Galilean invariance. The laws describing classical electro-

magnetism can be written in a manifestly covariant language by means of a gauge

and Lorentz invariant Lagrangian (in the absence of charge sources):

LEM � − 1

4µ0

FµνFµν , (5.9)

where the electromagnetic field tensor is defined as Fµν � ∂µAν − ∂νAµ in terms of

the electromagnetic gauge field Aµ. The explicit form of Fµν as a function of the

electric E and magnetic field B is:

Fµν �
©­­­«

0 −Ex/c −Ey/c Ez/c
Ex/c 0 −Bz By

Ey/c Bz 0 −Bx

Ez/c −By Bx 0

ª®®®¬ . (5.10)

One can easily recover the traditional Maxwell’s equations by applying the Euler-

Lagrange equations to Equation (5.9) with respect Aµ.
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Even though the Lagrangian formulated in Equation (5.9) is a Lorentz scalar (the

physical laws will be the same for all inertial frames), the physical observables of the

theory will depend on the reference frame where they are measured. The electric

and magnetic fields will have different magnitudes for two inertial observers. Using

the expressions obtained in Equation (5.7), the electric andmagnetic fieldsmeasured

in different inertial frames moving at relative velocity v are related by the equations:

E′‖ � E‖
E′⊥ � γ (E⊥ + v × B) , (5.11)

B′‖ � B‖
B′⊥ � γ

(
B⊥ − 1/c2 v × E

)
. (5.12)

As anticipated before, the electric and magnetic fields, like the majority of physical

quantities, are relative to the reference frame: an electric field measured by one

observer appears to be a magnetic field to another, and vice versa. Electromagnetic

vectors E and B do not exist as independent entities, but their decomposition into

electric andmagnetic components depends on the relativemovement of the observer.

5.2 Collapse of the Landau levels
In what follows, we will present the derivation of the Landau levels collapse in

perpendicular electric and magnetic fields to fix the notation and to pave the way

for the discussion of strain in the next section. The case of perpendicular, uniform

E and B has been already discussed in tilted Weyl semimetals when analyzing their

optical conductivities and magnetic properties in Refs. [258, 259]. We will begin the

discussion by reviewing the behaviour of non-relativistic matter in perpendicular

magnetic and electric field.

5.2.1 Hall regime in non-relativistic electrons
The Hamiltonian for nearly free, non-relativistic electrons in the presence of an

external, uniform electromagnetic field is:

H − 1

2m
(p − qA)2 + qφ, (5.13)

where m is the effective mass, A is the vector potential and φ the scalar potential.

Without loss of generality, we can choose the y-axis (z-axis) along the direction of
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the electric (magnetic) field. Therefore, the scalar potential can be cast as:

φ(y) � −Ey. (5.14)

By choosing the gauge A � −B(y , 0, 0) and considering particles with charge q � −e,
Equation (5.13) becomes:

H �
1

2m

[
p2

y + ~2k2

z

]
+

1

2

mω̃c(y − kx l2

B)2 + eEy , (5.15)

with lB �
√
~/eB the magnetic length and ω̃c � eB/m the cyclotron frequency of the

non-relativistic system. Equation (5.15) can be rewritten as:

H �
1

2m

[
p2

y + ~2k2

z

]
+

1

2

mω̃c(y − ϕkx )2 + ekx l2

BE − m
2

v2

d (5.16)

where we have introduced ϕkx � kx l2

B − vd/ω̃c and the drift velocity vd � E/B. The
resulting expression is the Hamiltonian of a quantum harmonic oscillator centered

around the coordinate ϕkx , where the spectrum has been shifted by the effect of the

electric field. The energy levels are given by:

εn � ~ω̃c

(
n +

1

2

)
+

~2k2

z

2m
+ eϕkx E +

m
2

v2

d n � 0, 1, 2, . . . (5.17)

Apart from a rigid shift of the bands, the electric field gives rise to a linear dependent

term on kx , as shown in Figure 5.2. The spectrum is organized in evenly spaced

bands that disperse linearly in momentum kx . The eigenfunctions are still given by

the harmonic oscillator solution

ψn(r) �
e ikx x e ikz z
√

LxLz

1√
2

n n!π1/2lB

e−(y−ϕkx )2/l2

B Hn

[
y − ϕkx

lB

]
, (5.18)

but now the equilibrium position is centered at kx l2

B − vd/ω̃c .

5.2.2 Hall regime in Dirac and Weyl semimetals
Asmentioned in chapter 1, theDirac equation splits into two equations (choosing the

Weyl representation for the matrices) in the massless case, with the wave-functions

representing Weyl fermions of opposite chirality. Around a single Weyl node, the

Weyl semimetal is a Lorentz invariant systemwith the velocity of light being replaced

by the Fermi velocity vF. The minimal low-energy model characterizing a Dirac
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Figure 5.2: Schematic representation of the energy dispersion of

Landau levels in the presence of an electric field E (solid

lines) and without the electric field (dotted lines) for

kz � 0. The former levels are not flat but disperse linearly

as a function of the conserved momentum kx .

material in the presence of uniform electric and magnetic fields is:

L � i~ ¯ψγµ
(
∂µ + i

q
~

Aµ

)
ψ, (5.19)

where x0 � t/vF, x i � r, A0 � φ/vF, Ai � A, q � −e and γµ are the Dirac matrices in

the Weyl representation. The covariant structure of Equation (5.19) permits to solve

the problem exactly; as we see in section 5.1.1, a boost in the direction perpendicular

to E and B with the appropriate velocity leads to a reference framewhere the electric

field E′ vanishes. Therefore, the spectrum of a Weyl semimetal in perpendicular

E and B fields can be obtained by solving the problem in the primed frame (with

magnetic field B′) and boosting back to the original coordinate system.

We choose the Landau gauge A � −B(y , 0, 0) and the scalar potential φ � −Ey to

represent a uniform magnetic and electric field pointing in the z- and y-directions,
respectively. Since kz is a good quantum number, the system can be treated as a

collection of 2D Dirac layers in perpendicular E and B fields.

If the system satisfies the condition vFB ≥ E, we can always move to a reference

framewhere the electric field vanishes. Under a boost in the x-directionwith velocity
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v, the vector fields E and B transform as:

E′y � γ(Ey − vBz) (5.20)

B′z � γ(Bz − v/v2

F
Ey), (5.21)

as it was described in Equations (5.11) and (5.12). When the parameter v coincides

with the drift velocity vd � E/B, the second observer experiences only a reduced

magnetic field of magnitude B′z � [1 − β2]1/2Bz , where β � vd/vF. The energy

spectrum of the primed system in the presence of a magnetic field has already been

discussed in Equation (2.28) and is given by:

ε′n � sign(n)
√
~2ω′2c |n | + v2

F
~2k2

z n ∈ Z,m , 0

ε′
0
� −svF~kz , (5.22)

where ωc �
√

2vFeB/~ is the cyclotron frequency for Dirac systems. To recover the

spectrum in the original frame, we have to apply the inverse boost transformation

to the energy-momentum quadrivector Pµ, whose zeroth component represents the

energy of the system:

Pµ �

(
E/vF

p

)
. (5.23)

Applying the inverse transformation Pµ � (Λ−1)µνP′ν , the spectrum in the original

coordinate system reads:

ε �
√

1 − β2ε′ + vF~βkx . (5.24)

Substituting the primed energies into Equation (5.24), the final expression is:

εn � sign(n)
√
~2ω2

c (1 − β2)3/2 |n | + v2

F
~2k2

z(1 − β2) + vF~βkx

ε0 � −svF~kz

√
1 − β2 + vF~βkx . (5.25)

In contrast to non-relativistic electrons, where the only effect of the electric fieldwas a

rigiddisplacement of the dispersing levels, Diracmaterials (including graphene [274,

275]) present a non-trivial dependence of the cyclotron frequency with the electric

field. The Landau level spacing scales with the electric field as (1 − β2)3/2, whereas

the spectrum is quantized in equally spaced levels in the non-relativistic case. The

evolution of the cyclotron frequency with the applied electric field is shown in

Figure 5.3. From Equation (5.25) one concludes that when the electric field reaches

the critical value E � vFB (which amounts to β � 1), all the Landau levels collapse

to a single, linearly dependent band:
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Figure 5.3: Evolution of the Landau level spectrumwith the applied

electric field for kz � 0. As can be see, all Landau levels

collapse to a single band εn � ε
0
� vd~kx for the critical

value E � v
F

B. εc is the cyclotron frequency ~ωc .

lim

β→1

εn � vd~kx (5.26)

The collapse described in this section is different from the overlap of Landau

levels occurring in a non-relativistic electron gas [282] due to a broadening of the

level spacing on increasing the electric field, filling the gaps between adjacent states.

It is a characteristic of the Dirac matter that will take place not only in Weyl but also

in Dirac semimetals. Although indications of collapse of Landau levels have been

reported experimentally in graphene structures [283, 284], at the time of writing, we

do not know of similar attempts in 3D samples.

5.2.3 Magnetic and electric regimes
A comment on the applicability of the boost transformation is in order. The disper-

sion relation described in Equation (5.25) has been calculated by moving to a frame

of reference where the electric field vanishes. One can always perform such trans-

formation provided that vFB ≥ E, which amounts to the condition β � vd/vF ≤ 1,

where the Fermi velocity replaces the speed of light c. The interpretation of this

requirement is simple: the relative velocity of an inertial frame cannot exceed the

speed of light.

One may naturally wonder what occurs when the magnitude of the electric field

is beyond this limit. In this regime we cannot apply the aforementioned transfor-

mation (we would get β � vd/vF > 1), but one can find a Lorentz transformation to
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a coordinate system where the magnetic field vanishes [278], as illustrated in Equa-

tion (5.12). This limit is known as electric regime, where the electronic orbits are open

trajectories (hyperbola) and the spectrum ceases to be quantized. Below the critical

value we are in the magnetic regime, characterized by closed orbits where the trans-

formation applied in section 5.2.2 remains valid. As we increase the electric field,

the area of these closed trajectories increases, squeezing the level spacing between

bands. At the critical value the area becomes infinite, collapsing the Landau levels.

5.3 Collapse of strain-induced Landau levels
In this section, we will review the relation between lattice deformations and elec-

tromagnetic fields and explore the collapse of the strain-induced Landau levels in

particular strain configurations due to the deformation potentials.

As explained in chapter 4, elastic deformations that change slowly on the lattice

scale are parametrized by the tensor ûi j � ∂j ui , a function of the displacement vector

u. With the help of symmetry arguments, we were able to characterize the smooth

variations of the distance between Weyl nodes as gauge fields, Ai � ûi j b j
.

In addition to the vector A, another important electron-phonon coupling in elas-

ticity theory is the deformation potentialΦ � Tr[ui j]. Given an infinitesimal volume

element dV , the elements of length dxi along the principal axes of the symmetric

strain tensor ui j � û[i , j] become, after the deformation, dx′i � (1 + uii)dxi [243].

Ignoring higher-order terms, the resulting volume is proportional to the trace of the

strain tensor:

dV′ � (1 + u11 + u22 + u33)dV. (5.27)

The deformation potential is a scalar field that couples to the electron density in the

effective Hamiltonian. As discussed in chapter 4, it is of the same order as the elastic

gauge field in a derivative expansion. Volume changes in the unit-cell volume have

significant consequences on the local electronic densities, leading to variations in the

chemical potential and shifts in the energy bands [8].

Considering the simplest platform of two Weyl nodes separated in momentum

space, the low-energy description around one of theWeyl cones coupled to the lattice

deformations is:

Hs � svFσ
i(pi + scAi) + gΦI, (5.28)

where Φ is the strain-induced scalar potential and g and c are material-dependent

coupling constants. The dimensionless Grüneisen parameter c is typically of order

1 in most materials [285, 286]. In what follows, we set c � 1 and remove it from the

discussion. The deformation potential couples as a scalar field that can generate,
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under non-uniform deformations, a strain-induced electric vector Eel � −g/e ∇Φ(r).
Likewise, elastic gauge fields give rise to pseudo-magnetic fields Bel � ~/e ∇ ×A(r).

As an illustrative example, we assume a Weyl semimetal with two Weyl nodes

separated a distance 2b in the x-direction. A space dependent uniaxial configuration

such that

uxx � − e
~

By
b

(5.29)

uy y � yzz � 0, (5.30)

will give rise to an elastic vector potential A � −e/~ B(y , 0, 0). This term describes

a uniform pseudo-magnetic field of magnitude B in the z-direction that quantizes

the spectrum into Landau levels. Simultaneously, a scalar potential originates from

the strain configuration Φ � − e
~

yB
b , inducing an electric field E �

g
~

B
b along the

y-direction. This scenario mimics the situation discussed in section 5.2.2; the elec-

tric field introduces a non-trivial dependence on ωc and the spectrum is given by

Equation (5.25). The condition for the collapse E ≥ vFB translates into a constraint

on the values of the coupling constant associated with the deformation potential:

g ≥ ~vF b. (5.31)

Interestingly, the constraint on the coupling g is independent of the strength of

the deformation, being solely a function of the intrinsic parameters of the mate-

rial. Although there are not yet measurements of the electron-phonon couplings

in Weyl semimetals, using reasonable values we see that the condition will be eas-

ily attainable in different samples6. For instance, the separation between nodes

is estimated to be b ≈ 0.08 Å
−1

in Weyl semimetal TaAs, with the Fermi velocity

vF ∼ 1.3 × 10
5
m/s [287]. These values give a lower bound for the elastic coupling

constant of g ≥ 0.07 eV, meaning that the samples will be typically affected by the ef-

fect described above7. The estimated value in graphene structures (taking screening

into account) is of the order of 4 eV. Thin films of Weyl semimetals, more suitable

for straintronics, are not expected to be as deformable as their 2D counterpart, but

the required value is much smaller.

6The numerical values used for this calculation have been obtained from Refs. [287, 288]. Applying

these parameters, one notices that the resulting condition for the collapse of the Landau levels returns

feasible values for the coupling constant.

7At the time of writing, Weyl semimetal RhSi displays the largest momentum separation of chiral

fermions, b � 2.33Å
−1

[288]. Assuming a Fermi velocity similar to the one of TaAs, the lower bound for

the coupling constant of this material reads g ≥ 2.42 eV.
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Figure 5.4: Schematic representation of the proposed setup. Films

of Weyl semimetal organized in a rectangular geometry.

The external deformation bends the original system into

a circular arc in the x − y plane. This configuration

is able to induce both pseudo-magnetic and pseudo-

electric fields, the pseudo-Landau level spectrum col-

lapsingwhen the critical value is reached. Adapted from

Ref. [166].

5.3.1 Particular strain proposals. Discussion on possible experi-
mental setups

Other strain configurations will also be affected by this phenomenon, which is par-

ticularly relevant for a correct interpretation of the experiments [239]. The best

experimentally accessible devices will be obtained by bending thin films of Weyl

semimetals, a generalization of the strain configuration first suggested in Ref. [252]

for graphene sheets. The physical consequences of pseudo-magnetic fields with

realistic strain configurations on Dirac and Weyl semimetals were considered in

Refs. [165, 166]. In what follows, we will study the effect of the deformatnion

potential on the physics analyzed in these works.

As mentioned in chapter 4, films and wires realizations of Dirac matter are

excellent devices to test strain-induced phenomena. We consider a cubic lattice

model (the system can be thought as a collection of rectangular staggered layers)

where the coordinates are fixed with respect to the parameter b in such a way that

the Weyl nodes are separated a distance 2b in the x-direction. Normal forces are

applied at the boundaries of the crystal along the x-axis as sketched in Figure 5.4,
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leading to a stretching geometry characterized by the deformation:

ux
� u0(2x y + Cx)

u y
� u0

[
−x2 − D y(y + C)

]
uz

� 0, (5.32)

where u0 and D are constants that depend on the intrinsic properties of thematerial;

u0 defines the maximum stress and D is a relation between the Lamé coefficients.

C parametrizes a family of deformations giving rise to the same pseudo-magnetic

field. The strain configuration described in Equation (5.32) induces a non-uniform

elastic gauge field

Ax � ûxx bx
� u0(2y + C)b

Ay � ûyx bx
� −2u0xb

Az � 0, (5.33)

that mimics a uniform magnetic field B � −~/e 4uo b ẑ able to create energy gaps in

the spectrum. In addition to the pseudo-magnetic field, this bending configuration

also contains a dilatation that produces a deformation potential

Φ(r) � u0(1 − D)(2y + C) (5.34)

equivalent to a constant electric field E � −g/e 2u0(1 − D) ŷ perpendicular to the

magnetic field. As in the above example, the collapse of the pseudo-Landau levels

is translated into a restriction for the values of the coupling constant g:

g ≥ 2~
vFb

1 − D
. (5.35)

For thin films of Cd3As2 such as the one suggested in Ref. [165], a coupling constant

g ≥ 0.32 eV would be enough to collapse the predicted oscillations.

5.3.2 Antisymmetric contributions to the deformation potential
Being proportional to the trace of the strain tensor, deformations conserving the

volume of the sample will not generate a deformation potential stemming from the

strain tensor ui j . This is the case, for example, of the torsional strain discussed in

Ref. [165] or the tetra-axial strain in the diamond lattice of Ref. [289]. Nevertheless,

these configurations are still able to generate elastic electric fields by virtue of the

vorticity vectorΩ � ∇×u. Asmentioned in chapter 4, the antisymmetric components

of thedeformation tensor (related to changes in the relative orientationof the orbitals)
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Figure 5.5: Schematic description of the geometry used to character-

ize the ripples. Ripples (black dotted line) with length d
protrudes over the neutral surface. The curvature gives

rise to a displacement vector u � x y/(R − d) along the

y-direction, where x and y are the displacements in the

corresponding axes. Adapted from Ref. [239].

give rise to a scalar term ξ in the Hamiltonian unrelated to volume changes. This

term, proportional to the product of the vorticity vector and the intrinsic separation

between nodes, ξ � Ω · b, provides a rotational contribution to the electric vector

Eel � −λ/e∇ξ(r), where λ is the coupling constant parameter associated to the

rotational deformation. For the configurations discussed so far in this chapter,

either the product Ω · b is zero (such is the case of the bending strain discussed in

Ref. [252] and the tetra-axial strain [289]) or the induced fields are parallel (torsional

deformation [165]).

In a recent experimental work, the emergence of a pseudo-magnetic field and

the quantization of the spectrum into Landau levels on the doped Weyl semimetal

Re −MoTe2 was shown [239]. Landau levels were observed in the strained domains

where the lattice deformations induce the formation of topographic modulations

(ripples) on the surface of the sample (see Figure 5.1).

Following the arguments of section 5.3, it is possible to reproduce the condi-

tions that induce the collapse of the Landau spectra with an electric field generated

from the antisymmetric strain. The modulations on the surface introduce a dis-

placement vector u � x y/(R − d) ŷ, where d is the length of the ripple from the

neutral surface and R is the radius (see the schematic representation of the setup

in Figure 5.5). The location of the Weyl points in this system is given by the vector

b ≈ 2π/ax (0, 0.18, 0.17). Following the low-energy description, this deformation

generates the elastic gauge fields
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Ax � 0

Ay � ûy y b y
�

( x
R − d

)
by

Az � 0, (5.36)

that give rise to an effective magnetic field

B �
~
e

by

R − d
ẑ. (5.37)

Additionally, the corrugations induce a perpendicular electric field

E � −λ
e

bz

R − d
ŷ, (5.38)

originated from the vorticity vector Ω � y/(R − d) ẑ. The critical value E � vFB is

again translated into a constraint on the elastic coupling constants:

λ ≥ vF~
by

bz
. (5.39)

The condition expressed in Equation (5.39) does not depend on the separation dis-

tance of the nodes (by ∼ bz), but it is given solely by the Fermi velocity. The trace of

the strain tensor gives an additional electric field pointing in the x-direction:

E � −
g
e

1

R − d
x̂. (5.40)

Applying a similar boost in the y-direction, we arrive to the usual condition

g ≥ vF~ by . (5.41)

5.4 Conclusions and discussions
In this chapter we have analyzed the spectrum of Weyl semimetals in the presence

of a perpendicular electric and magnetic field. Motivated by the recognition that, in

Diracmaterials, the presence of a critical electric field (perpendicular to themagnetic

vector) induces a collapse of the Landau levels to a single band, we have extended

this analysis to the case of strained Weyl semimetals. Strain geometries leading to

uniform pseudo-magnetic fields generate, simultaneously, uniform strain-induced

electric fields that fulfill the condition for the Landau levels collapse.

Although there are further proposals leading to uniform magnetic fields, the

results shown in this chapter suggest that the condition for the collapse of the
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pseudo-Landau levels will be translated into a constraint on the coupling constants

determined solely by the intrinsic parameters of the material (the Fermi velocity

and the separation between the chiral points), independently of the geometry and

strength of the deformation.

The results shown in this chapter will also affect the estimation of the pseudo-

magnetic fields induced by strain. The level spacing, which is used to measure the

magnitude of the inducedmagnetic field, changes with the value of the deformation

potential, as illustrated in Figure 5.3. This can lead to a spread of values when the

magnetic field is evaluated for different points and samples [163, 276]. Thus, this

phenomena should be considered for a correct understanding of STM images of

strained Dirac materials and similar 3D topological insulators [290].

This work can be extended to situations involving more general materials. In

particular, most of the actual Weyl semimetals are inversion broken, meaning that

the chiral Weyl points are separated in energy by the zeroth component of the

vector bµ. In a recent publication [162] was shown that this zeroth component

will be affected by elastic deformations, developing a time component of the elastic

gauge field. This gives rise to a pseudo-electric field that, in contrast to the one

associated with the scalar potential discussed in this chapter, will be axial, coupling

with opposite sign to the two chiralities. The addition of the two terms can lead to

interesting situations where the chiral imbalance is maximized by making the total

scalar potential zero in one of the nodes. Dirac semimetals have been a subject of

intense experimental research in this topic, magnetoresistance measures being used

as experimental evidence of the chiral magnetic effect. Even though these materials

have the nodes located at high symmetry points of the lattice, strain will still induce

a deformation potential that will affect the spectrum of the system in real (and elastic

as suggested in Ref. [171]) magnetic fields.

On the other hand, there are still open questions regarding the tilt parameter

and the optical properties of Type-II Weyl semimetals. The former has been shown

to play an equivalent role of an electric field in Dirac materials, giving rise to a

collapse of the spectrum for Type-II Weyl nodes as a function of the angle between

the magnetic field and the tilt parameter, regardless of the strength of the magnetic

field [259, 258]. Since the tilt parameter is affected by the lattice distortions, it would

be interesting to study the effect of strain on the transitions between the electric and

magnetic regimes. From a theoretical point of view, it could be possible to generate

this type of phase transitions by tailoring the magnitude of the tilt parameter and

its orientation with the magnetic field, making it feasible to induce a collapse of the

Landau levels in a Type-I Weyl semimetal [258].
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Chapter 6
Conclusions

Dirac matter has become an essential element in modern condensed matter theory.

The realization of Dirac particles in solid-state materials has not only brought novel

fundamental phenomena, but also has contributed to the exchange of concepts and

methods between different fields of physics. The findings in this thesis contribute to

theunderstanding anddevelopment of two interesting topics inDiracmatter physics;

anomaly-induced transport phenomenaand the interplayof latticedeformations and

the electronic properties of the system.

In the first part of this thesis we have focused on the unconventional thermal

properties of Dirac materials. Both the finite thermoelectric coefficient at zero tem-

perature and the resulting violation of the Mott relation at the conformal limit are

anomaly-related transport phenomena characteristic of these physical systems. Vio-

lation of the phenomenological relations has been known to occur for a long time in

materials where long-range Coulomb interactions are the fastest time scale. How-

ever, our results are independent of interactionmechanisms, lying on the low-energy

effective structure of Dirac electrons.

The second general topic discussed in this thesis involves the interplay between

mechanical and electronic properties in Dirac and Weyl semimetals. The electronic

properties of the low-energy excitations are intimately related to the lattice structure

of Dirac materials. We have used a symmetry approach to construct the general

effective action describing the various electron-phonon couplings. An interesting

contribution to this field has been the recognition that deformations affecting the

relative orientation between atomic positions lead to effective interactions absent in

two-dimensional materials. These new results enrich the possibilities of tailoring

the electronic excitations by means of lattice distortions. Remarkably, the vorticity

vector induces a deformation potential in volume preserving deformations.
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We have also considered the collapse of the Landau level spectrum under the

influence of perpendicular electric and magnetic fields (both fictitious and real). We

have strained the analogy between real and elastic fields and showed that certain

strain geometries generating uniform magnetic fields will induce, simultaneously,

an electric field able to destroy the quantized structure of the system due to the

same process occurring with real fields. The condition for collapse is translated

into a constraint of the coupling parameters, independently of the strength of the

deformation.

We conclude this thesis by discussing the promising expectations of current

findings in the research field of topological Dirac and Weyl semimetals. Dirac

materials not only provide a fruitful basis for the discovery of novel, unconventional

physical phenomena, but they also possess non-trivial topological properties that

open exciting new pathways to circumvent the current limitations of conventional

materials. We firmly believe that topological systems will continue being one of the

most inspiring research lines, and will also profoundly influence and complement

our future technologies.

We would like to finally make a remark on the relevant role played by these

materials in giving new insights into our academic approach. In the current times,

where the different physical fields are increasingly specialized, the gap among the

different disciplines has become wider, and the subject has begun to loose its unity.

Examples as those exposed throughout this thesis have special relevance nowadays.

The models presented belong to an unified framework where the Dirac equation

lies at the center of the theory, allowing to describe different phenomena with the

same language. This establishes robust connections with seemingly unrelated areas

of physics, from condensed matter and the study of crystalline structures to the

fundamental level of high energy physics and topological spaces. Dirac materials

have provided an accessible door to test high energy processes in crystalline struc-

tures, proving that the laws of physics are not intrinsically related to the scale of the

system, but they should rather be considered in a more universal perspective. It is

necessary to reformulate our approach and start a new scientific culture with new

and proper questions, encouraging an interdisciplinary research activity to reach a

robust development in science.
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Conclusiones

Los materiales de Dirac se han convertido en una pieza fundamental en la teoría

moderna de lamateria condensada. La realización de partículas deDirac en sistemas

de materia condensada no sólo ha traído nuevos fenómenos fundamentales, sino

que también ha contribuido al intercambio de conceptos y métodos entre diferentes

campos de la física. Los resultados de esta tesis contribuyen a la comprensión y

desarrollo de dos temas interesantes en la física de la materia de Dirac; fenómenos

de transporte inducidos por anomalías y la interacción entre las deformaciones de

la red y las propiedades electrónicas del sistema.

En la primera parte de esta tesis nos hemos centrado en las propiedades térmicas

no convencionales de los materiales de Dirac. Tanto el coeficiente termoeléctrico

finito a temperatura cero como la violación de la relación de Mott en el límite

conforme son fenómenosde transporte relacionados con las anomalías característicos

de estos sistemas. Es ampliamente conocido que las relaciones fenomenológicas no

se satisfacen en materiales donde las interacciones de Coulomb de largo alcance son

la escala de tiempomás rápida. No obstante, nuestros resultados son independientes

de estos mecanismos de interacción, ya que se basan en la estructura de baja energía

de los electrones de Dirac.

El segundo problema general del que trata la tesis está relacionado con la inte-

racción entre las propiedades mecánicas y electrónicas de los semimetales de Dirac

y Weyl. Las propiedades electrónicas de las excitaciones de baja energía están

íntimamente relacionadas con la estructura de la red de los materiales de Dirac.

Hemos utilizado un enfoque simétrico para construir una acción efectiva general

que describe los diversos acoplos electrón-fonón. Una contribución interesante a

este campo ha sido el observar que las deformaciones que afectan la orientación

relativa entre las posiciones atómicas dan lugar a interacciones efectivas ausentes en
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materiales bidimensionales. Estos nuevos resultados enriquecen las posibilidades

demodificar las excitaciones electrónicas a través de las deformaciones de la red. No-

tablemente, el vector de vorticidad genera un potencial de deformación en aquellas

configuraciones que preservan el volumen del sistema.

Finalmente, hemos considerado el colapso de los niveles de Landau bajo la in-

fluencia de campos eléctricos y magnéticos perpendiculares (tanto ficticios como

reales). Usando la analogía entre los campos reales y elásticos, hemos demostrado

que ciertas configuraciones de deformación que dan lugar a campos magnéticos

uniformes producen, simultáneamente, campos eléctricos capaces de eliminar la

estructura cuantizada del sistema mediante el mismo mecanismo visto en campos

reales. La condición del colapso se traduce en una restricción de los parámetros de

acoplo, independientemente de la fuerza de la deformación.

Losmateriales deDirac no sólo ofrecenuna base fructífera para el descubrimiento

de nuevos fenómenos físicos, sino que también poseen propiedades topológicas no

triviales que abren nuevas vías para sortear las limitaciones actuales de losmateriales

convencionales. Creemos firmemente que los sistemas topológicos continuarán

siendounade las líneasde investigaciónmás estimulantes e influiránprofundamente

en nuestros sistemas tecnológicos futuros.

Finalmente, nos gustaría destacar el papel relevante que juegan estos materiales

a la hora de proporcionar nuevos puntos de vista a nuestro enfoque académico. Ac-

tualmente, los diferentes campos de la física están cada vez más especializados. La

brecha entre las diferentes disciplinas es cada vez mayor, y el área ha comenzado a

perder su unidad. Los ejemplos expuestos a lo largo de la tesis resultan actualmente

de gran importancia. Todos los modelos presentados pertenecen a un gran marco

unificado cuyo nexo es la ecuación de Dirac, lo que permite describir fenómenos

totalmente diferentes con el mismo lenguaje. Esta unión establece conexiones ro-

bustas entre áreas de la física aparentemente no relacionadas, desde el campo de la

materia condensada y el estudio de redes cristalinas, hasta el nivel fundamental de

la física de altas energías y espacios topológicos. En este sentido, los materiales de

Dirac han proporcionado una vía accesible para experimentar fenómenos de altas

energías en estructuras cristalinas, demostrando que las leyes de la física no están

intrínsecamente relacionadas con la escala del sistema, sino que deben considerarse

desde una perspectiva más universal. Es necesario reformular nuestro enfoque y

comenzar una nueva cultura científica con nuevas y apropiadas preguntas, fomen-

tando una carrera investigadora interdisciplinar para alcanzar un robusto desarrollo

de la ciencia.
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Appendix A
Topological aspects of crystalline

lattices. Berry phase

In this appendix we review some basic concepts related to the topological character

of solid-state materials. The specific case of a Weyl node will be studied in detail.

A.1 Berry phase on crystalline solids
The topological nature of a crystalline lattice is captured by the Bloch state vectors

|un(k)〉, where n labels the index band, and the Berry phase γn . In crystalline solids,

the Berry phase is computed from the k-dependent Hamiltonian H(k), which is

obtained after performing a unitary operation H(k) � exp (−ikr)H(p) exp (ikr), and
their wave-functions |un(k)〉. A quantum state |un(k)〉 is defined up to an arbitrary

complex phase, and cannot be distinguished from λ |un(k)〉, with λ � e iα
. The latter

corresponds to the equivalence class

[|un(k)〉] � {λ |un(k)〉 | λ ∈ U(1)}, (A.1)

where the vectors from the ray are normalized. Therefore, at each point of the

Brillouin zone there is a complex vector space or fiberVn ,k whose vectors |un(k)〉 ∈
Vn ,k satisfy the relation H(k)|un(k)〉 � En(k)|un(k)〉. We can study the variation of

the fiber Vn ,k in the reciprocal space by selecting an arbitrary element |un(k)〉 at a
given point and parallel transport it along a continuous path k(s), as indicated in
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Figure A.1: (Left): Schematic representation of the variation of the

fiberVn ,k along the continuous path k(s) in the recipro-

cal space. If the topological space has a non-trivial cur-

vature, the state will acquire a phase γn proportional

to the connection An(k). (Right): Degeneracy points

must be excluded when defining the topological space.

Closed path surrounding those singularities cannot be

continuously deformed.

Figure A.1. The parallel transport condition is formally written as [50]:〈
un(k)

���� ∂

∂k(s)un(k)
〉
� 0. (A.2)

Equation (A.2) defines a connectionAn(k) in the bundle structure [96, 50, 291]. This

connection is explicitly given by the vector:

An(k) � −i〈un(k)|∇kun(k)〉. (A.3)

If the variation is performed along a closed path C, the vector |un(k)〉 acquires a

geometrical phase

γn �

∮
C
dkAn(k). (A.4)

Berry introduced his now eponymous Berry phase in 1983 after asking which phase

factor would acquire an eigenstate that has been adiabatically transported around

a closed path in the parameter space [62]. Later, Simon provided in his work [291]

a topological significance to this phase and manifested its relation with the integer

values of the quantum Hall effect introduced by Thouless et al. [54].
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The connection An(k) defined on the complex bundle is similar to an abelian

gauge field. The field strength of the Berry connection,

Fn(k) � −i∇k × 〈un(k)|∇kun(k)〉, (A.5)

known as Berry curvature, is manifestly gauge-invariant under a gauge transforma-

tionAn(k) → An(k)+∇kφ(k) (with φ(k) an arbitrary function) and plays the same

role as a magnetic field in the reciprocal space. Stoke’s theorem allows us to recast

the Berry phase in the form:

γn �

∫
S
dSFn(k), (A.6)

where S is any surface enclosed by the curved C. The previous result manifests

the analogy with electrodynamics, as γn is the phase acquired by the wave-function

as it moves along a closed path in a region with a magnetic field Fn(k), similarly

to the Aharanov-Bohm [292]. The Berry phase is independent of the chosen path,

it being an intrinsic property of the geometry of the band structure. This fact is

illustrated when computing the Berry curvature associated to the eigenstates of a

degeneracy point. If the closed loop surrounds a band-crossing point, the Berry

connection has a non-vanishing curvature. Degeneracy points have a non-trivial

topology, as they represent singular points that must be excluded when defining the

topological smooth manifold. A path enclosing one of these singularities cannot be

continuously deformed into a different one, as they belong to different equivalence

classes of homeomorphisms (see Figure A.1). We will see in what follows that the

Berry curvature of a Weyl node is singular at the crossing point and has the form of

a magnetic monopole in reciprocal space with a quantized value of the Berry flux.

A.2 Berry phase of band-crossing points. Monopoles
of Berry curvature

The Berry curvature of a Weyl node can be derived from the general Hamiltonian:

Hχ � χσ j k j , (A.7)

where vF � 1 has been assumed for simplicity, and χ is the chirality of the node.

Away from the degeneracy points k∗, the Hamiltonian described in Equation (A.7)

has two energy values E±(k)with their corresponding eigenvectors |u±(k)〉. For the
conduction and valence band, the eigenfunctions read:

|u−(θ, φ)〉χ�+1 �

(
sin

θ
2

− cos
θ
2

e iφ

)
|u−(θ, φ)〉χ�−1 �

(
cos

θ
2

+ sin
θ
2

e iφ

)
(A.8)
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and

|u+(θ, φ)〉χ�+1 �

(
cos

θ
2

+ sin
θ
2

e iφ

)
|u+(θ, φ)〉χ�−1 �

(
sin

θ
2

− cos
θ
2

e iφ

)
(A.9)

where the components of themomentumvectors are expressed in terms of the angles

θ, φ of the spherical coordinates. Hence, the Berry curvature is:

Fn ,χ(k) �
nχ
2k2

êk . (A.10)

The Berry curvature has the form of amagneticmonopole. The sign of themonopole

is determined by the chirality of the node. Therefore, Weyl points are sources and

sinks of Berry curvature [63]. The monopole charge N is defined as the Berry flux

threading a sphere surrounding the Weyl node:

Nn ,χ �
1

2π

∫
S
dSFn ,χ(k) � nχ. (A.11)

Equation (A.11) proves the strong connection between the stability of the nodes and

their topological character: a Weyl node cannot be eliminated unless it merges with

an oppositely chiral charge, situation that is realized in the so calledDirac semimetal.

The Nielsen-Ninomiya theorem states that the sum of winding numbers at the

points kα where the degeneracies are located is always zero [65, 81]. The monopole

chargeN is the winding number associated with the continuous mapping k→ n(k),
where n(k) � k/k is the unit vector, from the Brillouin zone to a unit 2-sphere [50].

The winding number w(Sα) can be expressed as the Berry flux over the sphere Sα
surrounding the point kα where the mapping is ill-defined, definition that results

identical to the integral formula of the monopole charge defined earlier in Equa-

tion (A.11). In this way, the winding number at each linear band-crossing points

is equal to the chirality of the node, w(Sα) � χ. The Nielsen-Ninomiya theorem

implies that the sum over chiral charges must vanish, meaning that the number of

positive and negative chiral gapless modes in the parameter space must be equal.

Therefore, band-crossing points always come in pairs of opposite chirality.

The topological objects defined over this appendix have been studied for the

particular case of crystalline lattices. Nevertheless, their geometrical significance is

beyond this particular case, and they can be immediately extended to other topo-

logical manifolds by simply replacing the crystal momentum by the corresponding

parameter.
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Appendix B
Thermoelectric coefficient.

Result from a Kubo formula

In this appendix we provide details about the calculation of the different linear

response coefficients that appeared throughout chapters 2 and 3. First, we will

review the derivation of the exact eigenstates representation, commonly referred as

Lehmann representation, for the case of non-interacting electrons. Secondly,weanalyze

the particular case of thermoelectric tensor and sketch the key steps in order to obtain

Equation (2.45), result that will also prove useful for chapter 3.

B.1 Exact eigenstates representation fornon-interacting
particles

A deeper insight into the structure of the response function described in Equa-

tion (2.2) is obtained by expanding the operators in a complete set of eigenstates of

the unperturbedHamiltonian H0 1. In the case of non-interacting electrons, a simpler

expression may be achieved if the operators are written in terms of single-particle

states. For concreteness, consider two operators in the form:

A(t) �
∑
αβ

Aαβ a†α(t)aβ(t),

B(t) �
∑
αβ

Bαβ a†α(t)aβ(t), (B.1)

1The discussion will be partially based on the descriptions found in Refs. [176, 49].
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where a†α (aβ) is the creation (annihilation) operator of single-particle states that

diagonalizes the unperturbed Hamiltonian:

H0 �

∑
α

Eα a†αaα , (B.2)

and Aαβ, Bαβ are the matrix elements of the single-particle operators A and B,
respectively. Our goal is to calculate the expectation value of A in the presence of

an external perturbation F(t) that couples linearly to B, i.e., Hpert(t) � F(t)B. In

this context, the interaction picture emerges as a natural framework to describe such

perturbation. Working with this formalism, the time-dependence of the operators

aα reads [49]:

aα(t) � e iH0t/~ aα e−iH0t/~
� e−iEα t/~aα ,

a†α(t) � e iH0t/~ a†α e−iH0t/~
� e+iEα t/~aα . (B.3)

Using the identities discussed above, the response function described in Equa-

tion (2.2) takes the form:

χ(t) � − i
~

∑
αβγδ

∞∫
−∞

dt′Θ(t − t′)AαβBγδ e(Eα−Eβ)t/~e(Eγ−Eδ)t′/~
〈[

a†αaβ , a†γaδ
]〉

0

. (B.4)

The commutator appearing in Equation (B.4) is solved by making use of the anti-

commutation relation of the single-particle operators aα:[
a†αaβ , a†γaδ

]
� δβγa†αaδ − δαδa†γaβ . (B.5)

After performing its average in the equilibrium ensemble, Equation (B.5) becomes:〈[
a†αaβ , a†γaδ

]〉
0

�
(
nα − nβ

)
δαδδβγ , (B.6)

where nα � [exp [β(Eα − µ)] + 1]−1
is the Fermi distribution function. Substituting

Equation (B.6) into Equation (B.4), the linear response function for non-interacting

electrons reads:

χ(t) � − i
~

∑
αβ

∞∫
−∞

dt′Θ(t − t′)AαβBβαe(Eα−Eβ)(t−t′)/~ [
nα − nβ

]
. (B.7)

Making use of the time invariance, we take the Fourier transform of the above

expression. It should be noted that the function presents an oscillatory behaviour at
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infinite times. To guarantee the convergence of the time-integrals, it is customary to

add a relaxation mechanism in the form of e−η(t−t′)
. This mechanism is analogous to

consider that the perturbation was adiabatically switched-on at t � −∞. Finally, the

linear response function is given by the following expression:

χ(ω) � lim

η→0
+

∑
αβ

AαβBβα
Eα − Eβ + ~ω + i~η

[
nα − nβ

]
. (B.8)

It is important to stress that Equation (B.8) contains matrix elements computed

between single-particle operators and the difference between single-particle ener-

gies [176].

B.2 Thermoelectric coefficient. Current and energy-
momentum operators

In this section, we detail the calculation of Equation (B.8) for the particular case of

the thermoelectric coefficient. As discussed in the main text, when the system is

exposed to a magnetic field perpendicular to an applied temperature gradient, it

generates a transverse electric current perpendicular to both fields. Considering the

model discussed in section 2.3.1 (the z-axis is chosen along the orientation of the

magnetic field while the direction of the thermal gradient is taken as the y-axis), the
linear response thermoelectric coefficient χx y

is given by:

χx y(q, ω) � (2π)
3

V

∞∫
−∞

dte iω(t−t′)
t′∫

−∞

dt′′− ivFΘ(t − t′)〈
[
Jx(q, t), T0y(−q, t′′)

]
〉, (B.9)

where the current and energy-momentum operators are written as:

Jx(r, t) � esvFΨ
†(r, t) σxΨ(r, t), (B.10)

T0y(r, t) � −i~
2

[
vFΨ

†(r, t) I
↔
∂yΨ(r, t) − sΨ†(r, t) σy

↔
∂0Ψ(r, t)

]
. (B.11)

As mentioned in the previous section, within the exact eigenstates represen-

tation the matrix elements are computed between the single-particle states ϕ that
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diagonalize the unperturbed Hamiltonian2:

Jx(q, t) �
∑

km ,ln
jx
km ,ln(q) a

†
km(t) aln(t) (B.12)

and

T0y(−q, t′′) �
∑
κµ,λν

t0y
κµ,λν(q) a

†
κµ(t′′) aλν(t′′). (B.13)

The matrix elements read:

jx
km ,ln(q) �

1

(2π)3/2

∫
dr e−iqr svFe ϕ†km(r) σ

xϕln(r), (B.14)

t0y
κµ,λν(q) �

1

2

1

(2π)3/2

∫
dr e+iqrϕ†κµ(r)

[
−i~vFI

↔
∂y

]
ϕλν(r)

+
1

4

1

(2π)3/2

∫
dr e+iqrϕ†κµ(r)

[
sσy (

Eκzµ + Eλzν − 2µ
) ]
ϕλν(r), (B.15)

with ϕkm given by Equation (2.29):

ϕkm(r) �
e ikx x e ikz z
√

LxLz

e−(y−kx l2

B)
2/2l2

B√
α2

kz ms + 1

©­­«
αkz ms√

2
M−1(M−1)!π1/2 lB

HM−1

[
y−kx l2

B
lB

]
1√

2
M M!π1/2 lB

HM

[
y−kx l2

B
lB

] ª®®¬ . (B.16)

By integrating Equations (B.14) and (B.15) over the x-z plane, one obtains a

relation between the internal wave-vectors: l � k + q and λ � κ − q. Introducing

this inside the Equations (B.14) and (B.15) and following analogous steps to the ones

presented in the previous section, one can recast the response function as:

χx y(q, ω)� lim

η→0
+

∑
k,mn

(2π)3
V

ivF~ jx
km ,k+qn(q) t

0y
k+qn ,km(q)

[
nkms − nk+qns

]
(Ekz ms − Ekz+qz ns + i~η)(Ekz ms − Ekz+qz ns + ~ω + i~η)

(B.17)

In the above expression, the denominator is composed by the product of two single-

particle energy differences. It stems from the double integration over time that

appears in the thermoelectric coefficient:

χq,ω ∝
∞∫

−∞

dte iω(t−t′)
t′∫

−∞

dt′′Θ(t − t′) e i/~(Ekz ms−Ekz+qz ns )(t−t′′)
(B.18)

2To simplify the notation, we have omitted the chirality dependence on the tensor indices. Current

and energy-momentum operators are computed at the same Weyl node.
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The ambiguity at infinite times is fixed by adding the relaxation term e−η(t−t′′)
in-

side the integrand. Solving the time-integrals, one obtains the result depicted in

Equation (B.17).

B.3 Matrix elements: product of Hermite polynomials
The matrix elements described in Equations (B.14) and (B.15) are written in terms of

Hermite polynomials that satisfy the formula [293]:

∞∫
−∞

dy e y2

Hr(y + a)Hs(x + b) � 2
s r!π1/2bs−r Ls−r

r (−2ab) for s ≥ r , (B.19)

where Lαk (x) is the generalizedLaguerre polynomial. Depending on the energy levels

(m and n) that we are considering, the position of each Hermite polynomial inside

the integral should be arranged so that the condition described in Equation (B.19)

(s ≥ r) is satisfied. For the sake of clarity, consider as an example the electric current

jkm ,k+qn(q). After some algebra, this matrix element reduces to:

jkm ,k+qn(q) �
svFe
(2π)3/2

∫
d ỹ

e−q2

x l2

B/4 e−q2

y l2

B/4 e−i/2 qy (2kx+qx )l2

B e− ỹ2/l2

B[
α2

kz ms + 1

]
1/2 [

α2

kz+qz ns + 1

]
1/2

×
{

αkz ms√
2

M−1(M − 1)!π1/2lB

1√
2

N N!π1/2lB

HM−1

[
ỹ
lB

+
q1

2

]
HN

[
ỹ
lB
−

q2

2

]
+

1√
2

M M!π1/2lB

αkz+qz ns√
2

N−1(N − 1)!π1/2lB

HM

[
ỹ
lB

+
q1

2

]
HN−1

[
ỹ
lB
−

q2

2

]}
.

(B.20)

where q1 � lB
(
qx − iqy

)
and q2 � lB

(
qx + iqy

)
. In deriving Equation (B.20), the

spatial variable y is rewritten as y � ỹ + l2

B(2kx + qx)/2 − il2

B qy/2. The ordering of

the Hermite polynomials during the integration process will depend on the values

taken by the indices M and N . Using Equation (B.19), the resulting expression takes

the form:

jkm ,k+qn(q) �
svFe
(2π)3/2

e−(q
2

x+q2

y )l2

B/4[
α2

kz ms + 1

]
1/2

e−iqy l2

B(kx+qx/2)[
α2

kz+qz ns + 1

]
1/2 {Ξ(q,m , n) + Ξ2(q,m , n)} ,

(B.21)
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where the functions Ξ are defined as:

Ξ1(q,m , n) � αkz ms

√
2

N (M − 1)!
2

M−1N!

(−q2

2

)N−M+1

LN−M+1

M−1

(
q2l2

B

2

)
(N ≥ M − 1),

(B.22)

Ξ1(q,m , n) � αkz ms

√
2

M−1N!

2
N (M − 1)!

(
+q1

2

)M−N−1

LM−N−1

N

(
q2l2

B

2

)
(M ≥ N + 1),

(B.23)

and

Ξ2(q,m , n) � αkz+qz ns

√
2

N−1M!

2
M(N − 1)!

(−q2

2

)N−M−1

LN−M−1

M

(
q2l2

B

2

)
(N ≥ M + 1),

(B.24)

Ξ2(q,m , n) � αkz+qz ns

√
2

M(N − 1)!
2

N−1M!

(
+q1

2

)M−N+1

LM−N+1

N−1

(
q2l2

B

2

)
(M ≥ N − 1),

(B.25)

with q2 � q2

x + q2

y . The different terms in Ξ are chosen depending on the regime that

we are studying. This scenario is considerably simplified when the local limit q→ 0

is taken. In order to get non-vanishing results, the indices must satisfy the relation

N � M ± 1 to nullify the exponent, which restricts the possible transitions between

Landau levels (selection rules). The combination of this relation and the local limit

makes the generalized Laguerre polynomials equal to 1.

Energy-momentum tensor

The energy-momentum tensor deserves a more detailed analysis. It should be

stressed that only the second line in Equation (B.15) is proportional to the chirality

s of the node. The spatial derivative, when acting on the eigenfunctions of the

unperturbed Hamiltonian, gives rise to two results. The first contribution stems

from the exponential factors exp [−(y − κx l2

B)2/l2

B]. Being the resulting expression

proportional to q, this term vanishes in the local limit. The other contribution

originates from the derivative acting on the Hermite polynomials, that satisfy the

identity:

H′n(x) � 2n Hn−1(x). (B.26)

Once all thedifferent elements areobtained, the calculationof the energy-momentum

tensor t0y
k+qn ,km follows analogously to the current case.



B.4. Thermoelectric response function 99

B.4 Thermoelectric response function
Finally, one gets the thermoelectric response coefficient after computing the product

between the current and energy-momentum tensor at the different regimes. In the

local limit, this coefficient is given by the expression:

χx y(0, ω) � lim

η→0
+

1

4(2π)2

′∑
m ,n

svFe2B
~

∫
dκzξ(m , n , ω)α2

κz ms

×
[
s
(
Eκz ms + Eκz ns − 2µ

)
− ακz ns

√
M − 1 −

√
M/ακz ms

]
, (B.27)

where the summation is restricted to the condition N � M−1 and the dimensionless

function ξ(m , n , ω) is defined as:

ξ(m , n , ω) �
2 [nκz ms − nκz ns]

[
α2

κz ms + 1

]−1
[
α2

κz ns + 1

]−1(
Eκz ms − Eκz ns + iη

) (
Eκz ms − Eκz ns + ω/ωc + iη

) (B.28)

(ωc � vF

√
2eB/~ is the cyclotron frequency). Some comments are in order at this

point. In deriving Equation (B.27), the summation over the allowed values of k is

written as an integral following the general expression:∑
kx ,kz

�

∫
dkxdkz

LxLz

4π2

. (B.29)

The integration over kx is easily computed. Being the integrand independent of kx ,

it accounts for the degeneracy factor eBLy/~ of each Landau level. The coefficient

is further simplified by defining the dimensionless variable κz � ~kz/
√

2eB~. The

eigenvalues are rewritten in the form Ekz ms � ~ωcEκz ms , with Eκz ms a dimensionless

Landau level. Gathering these considerations, the summation over the allowed

values of k reads: ∑
k

�
V eBωc

(2π)2vF~

∫
dκz . (B.30)

The coefficient in front of the dimensionless integral ismultiplied by the correspond-

ing coefficients of thematrix elements, leading to the result shown in Equation (B.27).
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Appendix C
Antisymmetric deformation

tensor: two-dimensional versus

three-dimensional Dirac crystals

In this appendix we give some details on the coupling of the antisymmetric part of

the deformation tensor to the electronic excitations in Dirac matter. As discussed in

chapter 4, the underlying symmetries of the crystalline structure constrain the possi-

ble interacting terms arising in the low-energy Hamiltonian. The different effective

couplings are constructed using a symmetry approach and organized following a

systematic expansion in derivatives of the strain tensor and the electron field. To

maintain the continuum low-energy description of the electronic excitations asmass-

less Dirac fermions, the expansion is restricted to be linear in the crystal momentum

k. It is known that the antisymmetric derivative of the displacement vector u can be

eliminated from the effective Hamiltonian of 2D Dirac materials by a local rotation

of the wave-function [294, 242]. The discussion becomes richer in three-dimensional

Dirac systems, where the antisymmetric tensor is related to the vorticity vector. We

will examine the term ψ†ωi jσi k jψ describing the coupling of the antisymmetric

part of the gradient deformation tensor ωi j � 1/2 (∂j ui − ∂i u j) to the low-energy

excitations in 2D and 3D Dirac materials.
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Appendix C. Antisymmetric deformation tensor: two-dimensional versus
three-dimensional Dirac crystals

Two-dimensional Dirac crystals

To first order in the derivative expansion, the effective 2D Hamiltonian induced by

elastic deformations includes the term [294, 242]:

H � −i~vFψ
†σ j
↔
∂jψ − i~vFψ

† (u jk + ω jk
)
σ j
↔
∂kψ (C.1)

where we use the symmetric convention for the derivatives acting on the electron

fields and u jk is the strain tensor. In two-dimensional systems, any antisymmetric

tensor is equivalent to a pseudo-scalar field ω jk � ε jkω, where ε jk is the Levi-Civita

symbol. The dependence on ω jk in Equation (C.1) is canceled by performing a local

rotation of the spinor [294]:

ψ→ ˜ψ � e(i/2)ωσ3ψ, (C.2)

where we have used the relation:

iσ jσ3 � ε jkσk . (C.3)

Indeed, introducing Equations (C.2) and (C.3) in Equation (C.1) and expanding to

linear order in the antisymmetric tensor ω jk , we get:

H � −i~vF ψ
†σ j
↔
∂jψ − i~vF ψ

† (u jk + ω jk
)
σ j
↔
∂kψ

+
~vF

4

ψ†
{
σ j , σ3

} (
∂jω

)
ψ + i~vF ψ

† (ε jkω
)
σ j
↔
∂kψ

� −i~vF ψ
†σ j
↔
∂jψ − i~vF ψ

† (u jk
)
σ j
↔
∂kψ (C.4)

(the contribution from ∂jω vanishes aswell after using the anticommutation relation

of the Pauli matrices). Thus, the effective Hamiltonian of 2D Dirac systems does not

depend on ω jk .

Three-dimensional Dirac crystals

Similarly to the previous case, it is possible to cancel the contribution proportional

to ω jk by a rotation of the spinors. However, this transformation leaves a term pro-

portional to the divergence of the rotated vector not present in the two-dimensional

system. Consider as before the general Hamiltonian

H � −i~vF ψ
†σ j
↔
∂jψ − i~vF ψ

†Vjkσ j
↔
∂kψ, (C.5)
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where Vjk � ε jklVl is an antisymmetric tensor (for the particular case of elastic

deformations,Vjk � ω jk � ε jklΩl , with Ωl being the rotational vector). As before, a

local rotation

ψ→ ˜ψ � e(i/2)Vlσlψ (C.6)

eliminates the contribution proportional to the antisymmetric tensorVjk . Unlike the

previous case, where the axis perpendicular to the plane was a privileged direction,

we must consider an arbitrary rotation (without any particular orientation) in three-

dimensional systems. The resulting expression after applying the transformation

described in Equation (C.6) and expanding to linear order inVjk reads:

H � −i~vF ψ
†σ j
↔
∂jψ − i~vF ψ

†Vjkσ j
↔
∂kψ

+
~vF

4

ψ†
{
σ j , σk

} (
∂jVk

)
ψ + i~vF ψ

† (ε jklVl
)
σ j
↔
∂kψ

� −i~vF ψ
†σ j
↔
∂j jψ +

~vF

4

ψ†
{
σ j , σk

} (
∂jVk

)
ψ, (C.7)

where we used the relation between the Pauli matrices:

{σa , σb} � 2δab (C.8)

σaσb � 2iεabcσc + 2δab (C.9)

The coupling of Vjk to the electronic degrees of freedom is removed by the local

rotation, but a contribution proportional to the divergence of the vector V emerges.

The antisymmetric tensor is dual to a pseudo-vector in 3D systems that gives rise to

new terms in the effective model.
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