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Abstract. A notion of Quantum Motion Algebra (QMA) allows to construct quantum state
spaces for various physical systems moving under a given group of motion. The main idea
of QMA is a construction of a group algebra with involution generated by a group of motion
G. After defining a linear and nonnegative functional on this algebra one can construct the
appropriate quantum state space by means of the Gelfand-Naimark-Segal theorem. The QMA
method can be also applied in the modeling of physical systems requiring additional degrees of
freedom or additional constraints.

The presented paper gives a brief description of the QMA method. As an example of
the QMA application, we present a model of nuclear collective pairing where the nonnegative
functional is generated by a temperature dependent quantum density operator.

1. Introduction
Every quantum system can be associated with a group of characteristic motions. In this
paper, such groups are understood as Lie groups which form the configuration spaces of the
corresponding physical systems. For example, for the rotational motion, the characteristic group
is the SO(3) group, for the relativistic type of motion the smallest group of motions seems to
be the Poincare group. Such groups not only supply required degrees of freedom but also
they are equipped with some useful algebraic structures and mathematical tools. It seems to be
interesting and valuable to use this natural connection among physical models and characteristic
groups of motions to construct the appropriate configuration spaces. An interesting purpose of
the QMA approach is to analyze such constructions.

This paper illustrates some basic principles of QMA constructions. As an example, the
collective pairing model is considered. This example shows quite new features of the QMA
formalism. For instance, the QMA approach allows for the construction of continuous and
discrete quantum wave packets simulating both, wave and particle nature of the system under
consideration. Every single element of QMA can be understood as quantum interference of a
point and a field like object.

The QMA allows for the unique construction of the quantum state space of the physical
system. It is generated by a positively defined function on the group of motions. This function
represents some elementary amplitudes among points of the configuration space. Finally, it
determines a scalar product in the state space of the quantum system. In addition, this
inner product can be dependent on some additional physical parameters describing the system,
e.g., temperature, shape deformation, and others. This property opens new possibilities for
applications of the QMA formalism.
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2. Quantum motion algebra
The Gelfand-Naimark-Segal (GNS) construction can be applied to any linear algebra with
involution. In our case we deal with the Banach algebra with involution A. The required
positive linear functional ρ : A → C is uniquely determined by a positive function on the group
of motion. It is an important ingredient of a physical model [1, 2]. It allows to use the GNS
theorem to construct the Hilbert space Hρ for a given quantum system. In addition, one gets a
representation ϕρ of the algebra A in a form of bounded linear operators on this Hilbert space,
i.e., ϕρ : A → B(Hρ).

The support of the constructed Hilbert space Hρ is identified with the quotient space A/Iρ,
where

Iρ = {a ∈ A : ρ(a∗a) = 0} (1)

is a closed left ideal. This quotient space is completed by all Cauchy sequences with respect of
the norm generated by the following inner product

∀a,b∈A ⟨[a]ρ|[b]ρ⟩ = ρ(b∗a) . (2)

The action of the algebra on these equivalence classes is represented by the left shift operators

∀b∈A ϕρ(a)[b]ρ = [ab]ρ . (3)

The cyclic vector ξρ for which ϕρ(A)ξρ is dense in Hρ is represented by the unit element of
the algebra. In the case if the algebra does not contain a unit element then ξρ is equal to the
approximate unit.

Let G be a locally compact Lie group and dµ(g) be a left invariant Haar measure on this
group. The required convolutive algebra composes of the following pairs of functions on the
group G

S = f(g) + υ̌(gn) , (4)

where f ∈ L1(G, dµ(g)) and υ̌ ∈ l1(G). In general, the function f is not a continuous function
but in our terminology we call it a continuous part of the algebra, similarly the υ̌ is called the
discrete part, respectively. The additive operation is defined in the standard way

S1 + S2 := (f1 + f2) + (υ̌1 + υ̌2) . (5)

The multiplication in the algebra is represented by the convolution operation over the group G

S1 ◦ S2 = (f1 + υ̌1) ◦ (f2 + υ̌2) := (f1 ◦ f2) + (f1 ◦ υ̌2) + (υ̌1 ◦ f2) + (υ̌1 ◦ υ̌2) , (6)

where

(f1 ◦ f2)(g) :=
∫
G
dµ(h) f1(h) f2(h

−1g) , (7)

(υ̌1 ◦ f2)(g) :=
∑

hn∈G

υ̌1(hn) f2(h
−1
n g) , (8)

(f1 ◦ υ̌2)(g) :=
∑

hn∈G

∆G(h
−1
n ) f1(gh

−1
n ) υ̌2(hn) , (9)

(υ̌1 ◦ υ̌2)(gn) :=
∑

hn∈G

υ̌1(hn) υ̌2(h
−1
n gn) . (10)

f1 ◦ f2, υ̌1 ◦ f2, f1 ◦ υ̌2, ∈ L1(G, dµ(g)) and υ̌1 ◦ υ̌2 ∈ l1(G). The ∆G(h) is a modular function
of the group G.
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The involution operation of S = f + υ̌ ∈ QMA is defined as follows

S♯ := f ♯ + υ̌♯ , (11)

where

f ♯(g) := ∆G(g
−1)f(g−1)⋆ , (12)

υ̌ ♯(g) := υ̌(g−1)⋆ . (13)

The positive linear functional which is needed for the GNS construction, in our case, is generated
by a quantum density functional ρ acting in an auxiliary Hilbert space. The value of the
functional on any group element is defined by taking the following trace

ρ(g) = ⟨ρ; g⟩ = Tr[ρg] , (14)

ρ(S) = ⟨ρ; f + υ̌⟩ =
∫
G
dµ(g)f(g) ⟨ρ; g⟩+

∑
gn∈G

υ̌(gn) ⟨ρ; gn⟩ . (15)

The inner product which comes from the GNS construction has a form

⟨S1|S2⟩ =
〈
ρ;S#

1 ◦ S2

〉
(16)

and the left ideal is as follows

I0 =
{
S : Tr

[
ρS# ◦ S

]
= 0

}
. (17)

The Hilbert space obtained with the GNS construction represent the quantum state space of a
physical system under consideration.

Model of nuclear collective pairing with temperature
Within the QMA formalism we can apply the generator coordinate like method to construct
required equations of motion [3, 4, 5]. For simplicity, let us assume that QMA consists only of
the continuous part, i.e., S = f ∈ QMA(G) (υ̌ = 0). Let H be a Hamiltonian of the system
on an auxiliary Hilbert space K describing a cold nucleus with the temperature T = 0. Let the
operators T (g) : G → U(K) represent an unitary representation of the group G in K.

As it is well known, the generator coordinate method is based on the following variational
principle

δ [⟨S|H|S⟩ − E⟨S|S⟩] = 0 . (18)

The solution of this variational principle leads to the so called Griffin-Hill-Wheeler type equation∫
dg′Tr[ρT (g−1)HT (g′)]f(g′) = E

∫
dg′Tr[ρT (g−1g′)]f(g′) , (19)∫

dg′H(g, g′)f(g′) = E

∫
dg′N (g, g′)f(g′) . (20)

We illustrate the above method considering a model of the nuclear collective pairing [6, 7].
Nuclear pairing is a kind of short-range nuclear attractive force that leads to the BCS type
correlations in nuclei. As an effect of this pairing the fermionic quasiparticles, the so-called
Cooper nucleon pairs, are produced. However, another description can be applied: the rotation
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about the nucleon number axis and the pairing gap can be considered as two collective variables.
These collective variables can be also represented by the bosonic creation annihilation operators.

The standard pairing Hamiltonian written in terms of the creation–annihilation nucleon
operators has the following form

HP = −GP+P , P+ =
∑
ν>0

c+ν c
+
ν̄ , (21)

where G =const., ν defines the single particle energies numbered by integers ν, and the operators
c+ν̄ create the time reversed single–particle nucleon states c+ν . It was shown in [8] that the
collective treatment of the paring phenomena requires two collective variables (∆, ϕ). The first
one ∆ ∈ (0,∞) is interpreted as the pairing energy gap parameter, ϕ ∈ [0, 2π) is the gauge
angle. By using these two variables one can construct boson creation annihilation operators

s+µ =
1

2
eiµϕ

[
α(∆)− β(∆)

∂

∂∆
+

1

µα(∆)
Λ̂− F (∆)

]
, (22)

sµ =
1

2
e−iµϕ

[
α(∆)− β(∆)

∂

∂∆
+

1

µα(∆)
Λ̂ + F (∆)

]
, (23)

µ = ±2 , (24)

where α(∆) and β(∆) are arbitrary functions which fulfil the following condition

β(∆)
∂α

∂∆
= 1 . (25)

F (∆) is defined as follows

F (∆) =
i

2

[
β(∆)

ρ(∆)

∂ρ

∂∆
+

∂β

∂∆
− 1

α

]
, (26)

Λ̂ = N̂ − N0 , (27)

where N̂ is a particle number operator, N0 is the number of nucleons in a core of the nucleus
under consideration. The function ρ(∆) is a weight function in the scalar product defined by
the integral

⟨Ψ|χ⟩ =
∫ 2π

0
dϕ

∫ ∞

0
d∆ ρ(∆)Ψ(ϕ,∆)∗χ(ϕ,∆) . (28)

The operators s+µ , sµ can be used to construct the pairing Hamiltonian in the language of
boson creation annihilation operators. The group of motion in this case is the noncompact
four-dimensional symplectic group Sp(4, R) generated by the bilinear forms s+µ s

+
µ′ , sµsµ′ , s+µ sµ′ ,

where µ, µ′ = ±2.
In the following we consider only one of possible quantum motions. It is the so called pairing

rotation. The corresponding algebra is created by a subgroup of the full group of motion, namely
the symmetry group of the Hamiltonian in the collective space. This group is generated by the
excess-deficit operator Λ̂ expressed in terms of the operators (22,23) in following form:

Λ̂ = 2
(
s+2 s2 − s+−2s−2

)
. (29)

These gauge transformations form the SO(2) group

G(ϕ) = eiϕΛ̂ where Λ̂ = N̂ − N0 , (30)



XII International Symposium on Quantum Theory and Symmetries (QTS12)
Journal of Physics: Conference Series 2667 (2023) 012048

IOP Publishing
doi:10.1088/1742-6596/2667/1/012048

5

where N̂ is the particle number operator. This transformation can be interpreted as a rotation
about the number of particle axis.

The collective pairing boson operators s±µ transform according to the same irreducible

representation of the gauge group SO(2) as the fermionic pairing operators P+ and P

G(ϕ)†s+2 G(ϕ) = ei2ϕs+2
G(ϕ)†s−2G(ϕ) = ei2ϕs−2

, G(ϕ)†P+G(ϕ) = ei2ϕP+ , (31)

G(ϕ)†s+−2G(ϕ) = e−i2ϕs+−2

G(ϕ)†s2G(ϕ) = e−i2ϕs2
, G(ϕ)†PG(ϕ) = e−i2ϕP (32)

Using this property one can construct the pairing Hamiltonian. It is a two dimensional harmonic
oscillator Hamiltonian with an additional term

Ĥ = h0 + ϵ2s
+
2 s2 + ϵ−2s

+
−2s−2 + κĈ2 = h0 + εN̂ +

1

2
ηΛ̂ + κĈ2 , (33)

where ϵ = 1
2(ϵ2+ϵ−2) is the average single boson energy, η = 1

2(ϵ2−ϵ−2) is the particle asymmetry

parameter and Ĉ is the Casimir operator of group SU(1, 1)

Ĉ2 =
1

4

(
1

4
Λ̂2 − 1

)
. (34)

The functional required for the GNS construction is obtained from the density operator
representing the canonical ensemble where H is the Hamiltonian of the system and T is
temperature of the nucleus

ρ =
1

Z
exp

(
− 1

kT
Ĥ

)
. (35)

The left ideal in such a case is trivial and consists of only zero algebra element

I0 = {0} . (36)

Using the variational principle the equation of motion is of the following form∫ 2π

0
dϕ Tr

[
G(ϕ2)

†ĤG(ϕ1)ρ
]
f(ϕ1) = E

∫ 2π

0
dϕ Tr

[
G(ϕ2)

†G(ϕ1)ρ
]
f(ϕ1) . (37)

The corresponding eigensolutions are

fλ(ϕ) = e−iλϕ, λ− even, (38)

Eλ = 2ε exp

(
− 2

kT
ε

)
+

 h0 − λ
2 (ε− η) + κ

4

(
λ2

4 − 1
)

for λ < 0

h0 +
λ
2 (ε+ η) + κ

4

(
λ2

4 − 1
)

for λ ≥ 0
. (39)

The quantum number λ describes the number of particles exceeding the fixed number N0.
It means, that if lambda is lower than zero the number of particles is less than N0. The
eigenenergies form a parabolic-like shape with respect to λ. They are dependent on temperature
of a nucleus under consideration. This term controls the vertical position of eigensolution on
the energy plot.

The figures Figure 1 and Figure 2 represent the contribution of pairing rotation to nuclear
masses for different mass numbers. Left panels present the plots of isobar masses for the mass
number A (for the Figure 1 A = 156, for the Figure 2 A = 164), N denotes the neutron number,
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Figure 1. a) Contribution of pairing rotation to nuclear masses, N denotes the neutron number
and λ = N −N0 for A = 156. The red dots represent experimental masses, the blue line shows
the eigenvalues Eλ for T = 0.
b) Temperature dependence of E0, i.e., for λ = 0. The red line represents the experimental
nuclear mass of the most stable isobar, the gray lines shows E0 as a function of temperature kT .

Figure 2. a) Contribution of pairing rotation to nuclear masses, N denotes the neutron number
and λ = N −N0 for A = 164. The red dots represent experimental masses, the blue line shows
the eigenvalues Eλ for T = 0.
b) Temperature dependence of E0, i.e., for λ = 0. The red line represents the experimental
nuclear mass of the most stable isobar, the gray lines shows E0 as a function of temperature kT .

and λ = N−N0 (for Figure 1 N0 = 92, for Figure 2 N0 = 98). The red dots are the experimental
values. The blue curve comes from our theoretical calculations for zero temperature fitted to the
experimental data, by using the least squares method. The presented values of the parameters
h0, ϵ, η, κ come from the fitting procedure.

On the right panel, we present energy for the most stable isobar (λ = 0). It is dependent
on temperature of the nucleus.The e The red line corresponds to known experimental nuclear
masses, the gray lines show the masses E0 for different temperatures.

Conclusions
The QMA is a flexible tool that allows to analyze various types of quantum motions. On the
one hand, this flexibility is ensured by a freedom in a choice of the positive function on the
group of motions. It defines the inner product. This leads to quantum state spaces suitable for
a given physical problem. One can see, that every positive functional imposes some constraints
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on the quantum motion. In addition, such functionals allow to implement some more realistic
physical properties of the system. The presented example shows a temperature dependence of
nuclear collective pairing excitation energy. More exactly, we restricted full motion only to the
nuclear collective pairing rotation. This method allows for more detailed analysis of complicated
quantum motions.

The QMA approach can be also used also a quantization method. This approach was
discussed in the following papers [9, 10, 11]. The crucial assumption in this approach is the
fact that the configuration space is formed by the parameter space of the group of motions. The
quantization procedure is based on a correspondence between the points from the configuration
space and a special kind of a quantum projection operators. These operators form a non-
orthogonal decomposition of unity in the state space. On the other hand, these operators
can be also related to some elementary quantum states interpreted as quantum points of the
quantum configuration space. Using this interpretation, one can find a quantum counterpart of
any classical observable as the appropriate deformation of the non-orthogonal decomposition of
unity.
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