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Within the left-right model with Majorana neutrinos the corrections to neutrino dipole magnetic moments
(DMM) coming from the g(i)—Higgs bosons are considered. It is shown that when 6(*)-bosons are on the
electroweak scale then their contributions to the DMM are comparable with, and even could exceed, the con-
tributions of the charged gauge bosons. The behavior of a neutrino flux in matter and a magnetic field is
investigated. It was proven that even at E, > my the resonance transitions between the light and heavy
neutrinos are forbidden. Investigation of the collider experiments with the light neutrino beam revealed that
we can detect both the pVV and ;¥ moments. The most perspective reactions are

vy +p — Nyr + X, p+p—" = Neg +Uep + X, p+p—->Wir—e+N.—e+ve+v+X.

1 Introduction

At the end of 2002 as consequence of series of experiments with solar, atmospheric and reactor neutrinos the
existence of the neutrino oscillations has been established. This, in turn, meant that the neutrino has a mass
and the partial lepton flavor violation takes place. At the same time monitoring of the Galaxy by the net
of neutrino telescopes aimed to detect a neutrino signal from the expected galactic supernova explosion has
been starting. Neutrinos also find a use for solution of applied problems as evidenced by the application of
antineutrino detectors for nuclear reactor monitoring in the “on-line” regime and the appearance of a neutrino
geotomography (see, for review, [1]). All this puts forward the neutrino physics in the forefront of natural
sciences. However, in spite of achieved progress there are series unsolved problems in the neutrino physics.
Among these first of all are: (i) the smallness of the neutrino mass m, a 10~5m,; (ii) the value of the neutrino
dipole magnetic moment (DMM); (iii) the neutrino nature (Dirac or Majorana).

Models with the see-saw mechanism give successful explanation of the first problem. In these models heavy
right-handed neutrinos being see-saw partners of light left-handed neutrinos appear. Introducing of heavy
neutrinos N; (i = 1,2, 3) helps to solve some cosmological problems as well. For example, these neutrinos are
used for explanation of the observed baryon asymmetry in the Universe thanks to the leptogenesis.

Interest in electromagnetic neutrino properties is primarily caused by the fact that there exist plenty of
astrophysical systems with intensive magnetic fields where neutrino physics plays an important part. Large
magnetic fields are present in supernovas, neutron stars and white dwarfs, and fields as large as B, = m?/e ~
4.41 x 10'® G can arise in supernova explosions or coalescing neutron stars.

In the standard model (SM) neutrinos are massless particles and the mixing of neutrino states do not
take place. Reconstruction of the neutrino sector of the SM is usually achieved by introducing a right-handed
neutrino singlet (minimally extended SM). However, the explanation of the neutrino mass smallness is absent.
DMM’s predicted by the SM are so small that they are not of any physical interest. It should be also noted
that in the SM the satisfactory mechanism to produce a baryonic asymmetry in the universe is absent. All this
taken together provides strong evidence of Physics beyond the SM.

The purpose of our work is investigation of the neutrino electromagnetic properties in the context of the
left-right-symmetric model (LRM).

2 The left-right-symmetric model

For the first time the model based on the SU(2);, x SU(2)g x U(1)p—1, gauge group (LRM) was proposed at
the beginning of the 1970s [2]. In the LRM quarks and leptons enter into the left- and right-handed doublets
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where a = 1,2,3, in brackets the values of S}V, S} and B — L are given, S}V (S}) is the weak left (right)
isospin while B and L are the baryon and lepton numbers. The gauge boson sector include four charged bosons
(Wi, Wi) and two neutral bosons (Zr, and Zg). There are two possibilities of defining the LR symmetry as
a generalized parity P and as a generalized charge conjugation C. It was found that my, > 2.5 TeV if LR=C
and myy, > 4 TeV if LR=P. We remind that there is the theoretical relation mz, ~ 1.7my, too.

The Higgs sector structure determines the neutrino nature. The mandatory element of the Higgs sector is
the bi-doublet ®(1/2,1/2,0). For the neutrino to be a Majorana particle, the Higgs sector must include two
triplets A (1,0,2), Ag(0,1,2).

The SSB according to the chain

SU(Q)L X SU(Q)R X U(l)B_L — SU(Q)L X U(l)y — U(l)Q

is realized for the following choice of the VEVs:

< 52,3 >= ULT;' <@ >=ky, < 0 >= ko, (2)
vy, << max(ky, k2) << vg. (3)

After the SSB we are left with 14 physical Higgs bosons: four doubly-charged scalars Ag?, four singly-charged
scalars 6(*) and h(i), four neutral scalars S; 234, and two neutral pseudoscalars P ». The detailed discussion
of the Higgs sector structure has been done in [3].

It could be shown that the 6(¥)-boson whose mass is defined as

2 = (psf2— pr)h - — D @)
0 ’ " atpr—ps/2
where 12 12 K2 (B Baka)
< a3 1k1 + 283ko
ke = /K2 + k2 ko= —— =% =t 5
+ 1 2 0 ﬁk+, « nga ﬂ 2]{531{?0 ) ()

ky = 174 GeV, and fy, 83, as,p1, ps are the constants entering into the Higgs potential, may lie on the
electroweak scale (EWS). Tt is possible under conditions

k2 + 332k2
3v%, ’

axl,  (p3/2—p1) = (6)

Note, when this scenario is realized two physical Higgs bosons S4 and P>, whose masses are

mg, = (p3/2 = p1)vi,  mp, = (p3/2 — p1)vi (7)

lie on the EWS too.
For a massive Dirac neutrino the most general form of the matrix element for the conserved neutrino
electromagnetic current J;™ is given by the expression

<vP NI vy (p) >=< v (0)iona Fa(@®) + Fe(@®)ys] + (69 — aud) [Fv (6°) + Fa(d®)vs)lv) (p) >, (8)

where ¢ = p' — p, Frm(q?), Fe(q?), Fa(q?) and Fy (q?) are the magnetic, electric, anapole and reduced Dirac
formfactors, respectively. In the static limit (¢ = 0) Fas(¢?) and Fg(g?) define (anomalous) dipole magnetic
moment p;; and dipole electric moment d;;, respectively. At i = j and ¢*> = 0, F4(q?) represents the anapole
neutrino moment.

For a Majorana neutrino all the formfactors, except the axial one F4, are identically equal to zero. As regards
non-diagonal elements, the situation depends on the fact whether C P-parity is conserved or not. For the CP
non-variant case all the four formfactors are nonzero. When C'P invariance takes place and the [y >- and
[v}! >-states have identical (opposite) C'P-parities, then (Fg)i; and (Fa)i; ((Far)i; and (Fy)i;) are different
from zero.

By now we have information concerning the DMMs of ordinary left-handed neutrinos v, while any experi-
mental data associated with the DMMs of heavy right-handed neutrinos N,g is absent. The most sensitive and
established method for the experimental investigation of the neutrino DMMs is provided by direct laboratory
measurements of electron (anti)neutrino-electron scattering at low energies in solar, accelerator and reactor
experiments. The best limit was obtained in the work [4]

py <3.2x 107 Hpp.
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Figure 1. The Feynman diagrams caused by the virtual singly charged boson only.

Contributions to the neutrino DMMs coming from the diagrams with the virtual charged gauge bosons W;
and W; have the following form [5]:

3 2 € vy v;r 2 in?
Z’// _ grm (m i —Zm f )IU’B Z [ﬁegl) + %682)] % Im[UiT/aUai]; (9)
327 - W miy,
,u%;v = M;/zl/j(gl/ — 9R, Uai — Vajvmvi — mNj)g — 5 + 7T/2>5 (10>
gLy 2 9
vN _ JLIR™Mc[B —iort v (k) (k) 4 2
i 52 smgcoszm Im[ U, m} { w2 {1+ea <lnea + 8)] }, (11)
k=1 k
where
m2
vir, = UiTaVaLv NiR = ‘/J;NGRv et(zk) = Taa k= 15 27
Mmiy,

and U;, (Vig) is the mixing matrix in the light (heavy) neutrino sector while £ is the mixing angle in the charged
gauge boson sector. Assuming that

gL = 9gr, my, =4 TeV, £=2x10"" (12)
and N;, Nj are on the EWS, we obtain the small value for p}7 as before, while

|,u§\§fv| ~ 1071 up and | ey N| ~2x 107 Pup. (13)

Contributions to the neutrino DMM coming from the 6*-bosons were found in [6]. They are caused by the
diagrams pictured on Fig. 1. The results are as follows (i # f)

1
MellB 51, Y, 51 M M, ila v o\t
)i = wdle_vodle [y |1 In x Tm[(D% )1 DYy, 14
(M )f 22 (ml,. —m, )/o e [n M + M, m[( fla) laz] ( )
la z ! l/f5 fla
(u™"N)ip = (W )ig (vi — Niyvy — Ny), (15)
M ~
v _ MellB 1 v
(N)ip = 51, 50, /dm ——1In -
272 Z %N @ my, | My
x Ml/'l +
— In || x Im|U;, U ], 16
m%\,](l — .’L') +m12/1$ Mlea ‘| [ jloYa ] ( )
where
My ;= (m%—m2 )z +mi,2® +mj (1 —x), My, = (mi, —m3, )z +miy, z° +m? (1—30)
My, = (mi, —mi )z +m2 z* +m?2 (1 —x), M, 5= (m% —mi )z +m2 2> +m; (1 — ).

Besides the diagrams pictured on Fig.1 the contributions to the neutrino DMM come from diagrams shown
on Fig.2.
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Figure 2. The Feynman diagrams caused by both the virtual singly charged boson and charged gauge boson.
These diagrams give the following contributions to the neutrino DMMs
. . 1 M ~
o 1gr.MebB Sin 25 / 1 V10
)iy = —/——— Q) 5 Qs & —5— dx In — %
(M(S )u 32\/57‘(2 IZ vadlg Wiy { m%/vl 0 MVi/S — MuiW1 Mle
X (me%VI +2(2z — 32*) My, w, + (2° — 2*)(m2, + m?,i,) + 2% (m2 +
+my,my,,)) +2(32° — 22) | In + - x Im[U,, Uy,i]—
Ml/i/S ls - lW1 lW1
—(W1 — Wg,u;r,la — I/{Z—T,laeid))} + (mui A mui/)a (17)
. 2 1 My, =
INN 1grMelbB cos” & / 1 N8
7% = Ay 5 Qs —5— dz In
( g Jia 16+/272 zz Nadla =Wy { m%VZ 0 lMNj/S — My, w, Mn,w,
X (me%VZ +2(2z — 32%) My, w, + (2° — x4)(m?vj + m?vj,) + xQ(m?vj—i—
N N N
W
+mijNj,)) + 2(3$2 _ 2$) <1n M6 - + N 72ZN 1 l% ) X Im[u;,laulaj] +
Nj/6 ) W2 W2
(W = Wi, € = €+ m/2,Uly, — Uy ™)+ (my, & ma),
. . 1 M. =
wN LgLmelt sin 2 / dx N;é 3
uit )y = ———m— Qs Qs 57 MU, In X |x°(my, + my,)—
(3™ = =4 T5ms Z Wy N, { oy Ty Moy Ty | [0+ )
—2*(3my, + mn;,) + 2zmy, | x Im[e*id’L{;laUlai] + (W — Wa, ¢ — 0)} + (mn; <> my,), (18)
where
by, = (miy, —my)e+mi (L—x), Iy, =1, (v = Ny),
Iz = (m?—ml%i)erlea(lf:c), lév :l%’(l/i — N;), Iy, +m12,iz2 = M,,w,,
M, 5 =1%+m 2°, My, w, = My,w, (v; = N;), 1 4+ my 2 = My 5.

Let us estimate the expressions for the DMMs obtained in this work using the values of the LRM parameters
(12) and assuming that mz = 100 GeV. As will be shown later, in the heavy neutrino sector only two scenarios
are possible: (i) the heavy neutrino masses are (quasi) degenerated and the mixing angles between heavy and
light neutrinos are equal (quasi mass degeneracy — QMD); (ii) the heavy neutrino masses are arbitrary and
the mixing inside the same generation is absent (no mass degeneracy — NMD). Then, we get

(W")ip m =107 pp,  (W"V)ip 2 =5 x 10" Pup, (W N)ip 21070 pp

for the QMD case and

(u)ig = =5 x 10" M up, (M) =10 %up,  (WN)ip 2 10 %up

for the NMD case.
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3 Phenomenology of heavy neutrinos

Let us consider the motion of the high-energy beam of the left-handed electron neutrinos in matter and a
twisting magnetic field. We shall be constrained by the two flavor approximation. The object of our investigation
represents the system with the wave function U7 = (Ver, VurL, Ner, Ny r) and with the mixing matrix of the
form

cosfYy  sin6f, 0 0 cos B 0 sin 611 0
7 sinfY, cos 0y, 0 0 0 cos Oa9 0 sin 699 (19)
o 0 0 cosf,  sindl, —sinfq1 0 cosf11 0
0 0 —sin 9{2 cos 9{\5 0 — sin fo9 0 cos 9o
The corresponding Hamiltonian is determined by the expression
HUV 7-Ll/
= < pr Mo ) , (20)
H,y HNN
where
M- CguAZ + SguAt]:V + C2911E + Ver — (I)/2 CGHCOZZAZ + 59115922A{<;V + MVEV;LBJ-
vy 69110922AZ + 89118922Aév + MueuuBL _ngzAZ — S%ZZA(Z:V + 029222 + VuL — (19/2 )

526 v
TH(A?] - AZ - 22) + :u’VeNeBi 89116922Aév - 69118922AS + MVeNuBi
HI/N = S
0 b
CGIISQZZA?] - 59110922AZ + /LVENLLBJ- %(AZ - A(]:V - 22) + :LLVHN;LBJ-

T T . .
HNN = Huw (011 — 011 + 5,922 — O + §,VeL — Ver, Vur = Vur, © = —@),

2 2 2 2

m m mi. —m
o(s) = % cos 207, (sin 267,), Ai\és) = % cos 207 (sin 207,),
m2 +m2 —m3, —m3
3> = V1 vy ¥ Ny Ny , C20,,, = COS 29kk; k= 17 2,

Ver (Ver) and V,,1, (V,r) are the matter potentials (MPs) describing the matter interaction with the left(right)-
handed electron neutrino and muon neutrino:

Ver = V2Gp(Ne — Ny /2) + VI, VL = *\/EGFN"/QJFV#I%’

2.2 2.2
_ g2Ne - g CGWN" \7s R=— 9 CGWN'” VH _ aga - e2a N (21)
am,  8(cg —sg )my, " 8(c3,, —s3,)mz, " 2my  m2 )T

Ver

where N, (N,,) is the density of electrons (neutrons), cg,, = cosOw, so,, = sinfy, Oy is the Weinberg angle
and we have neglected the mixing in the gauge boson sector.

Equalling the corresponding elements of the Hamiltonian (20), we can find all the totality of the resonance
conversions in the case under consideration. Under fulfillment of the condition

Ver = Vur = —(c3y + ¢31)AY — (s33 4 s71)AY + (C2055 — €26,,)% (22)

the ver, — v,-resonance (Mikheyev-Smirnov-Wolfenstein — MSW) occurs. Since the description of the MSW-
resonance within the SM is sufficiently successful, then corrections to the SM predictions must be small in
any SM extensions. Let us find out constraints on the LRM parameters that follow from this demand. The
right-handed side of Eq. (22) will be close to the SM predictions in two cases: (i) the heavy neutrino masses
my, and my, are arbitrary while the mixing inside generations is absent (NMD)

911 = 922 = 0, (23)

(ii) the angles 611 and 029 are equal to each other but not equal to zero whereas the heavy neutrino masses are
(quasi)degenerated (QMD)

911 = 922 and (m?\b — m?vl)cos 2912832 ~ (m12,2 — mzl) (24)
If the conditions .
Ver = Ver = ® = (070 = 6.)(s2 — ¢2) — 220, A, (25)

and
Vo, —Vop —® = —62 (2 + si) — 63 (s2 + ci) — A(co0, +c20,,) (26)
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are fulfilled, we would have the ve;, — Neg- and ver, — N, g resonance transitions, respectively. It is clear that
both the NMD- and QMD-schemes do not allow the existence of this resonances. So we may conclude, in spite
of rather big values of uz-”jN , in oscillation experiments with left-handed light neutrinos beam we have not the
ghost of a chance to observe the heavy neutrinos production even at energies E, > my.

Now we proceed to collider experiments. First we consider the process of the heavy neutrino production
under collision of light neutrino beam with the proton target

vur +p = 7" = Nur + X, (27)
where X is a nondetecting hadron state. The corresponding subprocesses are
vur + @ =" = Nur + g, (28)

vur, +G; = v = Nur + G- (29)

Let us set the light neutrino mass equal to zero and do not take interest in the polarization of the initial and
final particles. Calculations lead to the following value of the total cross section

2 2 UN2
o(vup = N, X) = 22 "jn ) S / [ (@) + fo.(@)] [2mdvas — 20252
B 2ma in
2ol mn B (5 o) - - (o) <2m3i2ws+m%m Y

where s is the total energy squared of the colliding v,-neutrino and proton in the center-of-mass frame, f,, (x)
and f;. (x) are the distribution functions of quarks and antiquarks inside the proton. When p'N =10"8up and
s = 10 TeV, we have o(v,p — N,pX) ~ 10 fb. It is clear that at the existing experiment technique we could
detect this process.

Further we consider possibilities of the observation of the transit DMM of the heavy neutrino at LHC. We
start with the single heavy neutrino production in the process

p+p—=7"—= Ne+7. + X. (31)

The differential cross section for the corresponding subprocess is given by the expression

do _ 2ng N P 2 2 (9 4 4 2
E(qiqi — Nole) = T {250f + 8% (m% + 2my,) — 8(2my,, +my) — 2mqui} . (32)
B
To integrate the expression (32) gives
2n2.a2 MVN 2 84
6(qig; — NeVe) = —q;n%'ﬂ §4| {3 + 2m§i§3 — 8% [my + Qmi,mi + Qmi] +
el'B
mfy 4 2
+25 T—mNm +mNm +2mNm (33)

With the help of the obtained expression one can find o(pp — V. N.X). At the LHC energies and pu*" being
equal to 10~%up the cross section of the reaction (31) is in the region of very small values 102 fb.

Let us approach to the problem of detecting the transit DMM p*"V on the other hand. With zero value of
N, the dominant decay channel of the heavy neutrino is

Ny = g+ W5 — 1o + 25 (34)

The corresponding decay width is defined by the expression

9437”}:’\/
FN%ZW*%Z"QNC
( R ]J) 102473 m~ (35)

where the fermion masses have been neglected and the both lepton channels I'(N — [T W;*) = (N — I"W2™¥)
have been summed. However, if the u;.’jN moment has nonzero value, the heavy neutrino may also decay into
the channel

Ny — v+ (36)
The decay width will look like

2a|MUN|2

2
lu’Bme

mNL

F(Nl — ’}/l/l) = (37)
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We see that when my, = 100 GeV and gV = 10~8up the decay width I'(N;, — vyv;,) could exceed T'(N;, —
v1427) over several orders of magnitude. Note, that the DMM p*"V rapidly decreases with the growth of my
and in the region of my ~ 300 GeV the both decay widths have the same order of magnitude ~ 107% GeV.
Further one may choose the process of the heavy neutrino production having the most cross section and detect
the heavy neutrino through the decay channel (36).

At LHC there are two possibilities for observing the heavy neutrino production. The former is the single
heavy neutrino production that may take place due to the reaction

p+p— Wi —et +N.+ X. 38
R

At mw, = 4 TeV, the cross section of this reaction is as high as 3 x 1073 pb. This estimate of o(pp — eN.X)
is valid for my = 100 GeV and are not practically changed to the extent my =~ 0.6my,. Pair production of
heavy neutrinos take place in the reaction

p+p—Zh — N.+N.+ X. (39)
Supposing the fulfillment of mz, = 1.7mw, = 6.8 TeV we have
o(pp — Z — N.N.X) ~ 3 x 107° pb. (40)

The value (40) is also given for my = 100 GeV and it is weakly changed up to my ~ 0.4my,. So, we see, that
for detecting heavy neutrinos the reaction (38) is the most perspective.

For my, in the range of several hundreds GeV, the total N, width is at most a few percents of m,. Thus,
we can take the narrow width approximation:

olpp — W — eNe — evey) ~ o(pp — Wi — eNe)Br(Ne — ve). (41)
Then, assuming that my, = 100 GeV, my, =4 TeV and p*V = 10~8up, we obtain
o(pp = W}, — eNe — evey) ~ 3 fh. (42)

So, under the integrated luminosity f Ldt =10 fb~! we shall observe 30 events. However, under increasing the
heavy neutrino mass Br(N, — v.7) is sharply decreased. For example, when my, = 300 GeV there will be 15
events only.

Let us proceed to detection of 1™VV. We address to the pair production of the heavy neutrinos taking into
account the DMM gV V. Then, we shall have

p+p—Zh v = No+ Np+ X. (43)

Note, that the weak and electromagnetic diagrams do not interfere. The corresponding subprocesses are as
follows
G +T — Zi — No+ N, (44)

4% +q —7" = No+ Ny (45)

2 2|, NoNp|2 4m2
Com — QS'ZQmQ'” . (46)
B

When pM ~ 107845 and mz, = 6.8 TeV, then the ratio

The cross section of (45) looks like

R=o0(pp =" = NaNa)/o(pp = Zf, = NaN,)
is close to one.

4 Conclusion

Within the left-right-symmetric model contributions to the neutrino dipole magnetic moments coming from the
sectors of the gauge bosons and Higgs bosons have been considered. It has been shown that the contributions
caused by the singly charged 6 (+)_Higgs bosons could exceed that caused by the charged gauge bosons.

Investigation of the resonance conversion ver, — v,1, (Mikheyev-Smirnov-Wolfenstein resonance) has revealed
that in the heavy neutrino sector only two scenarios could be realized: (i) the heavy neutrino masses are quasi-
degenerated and the mixing angles between heavy and light neutrinos are equal; (ii) the heavy neutrino masses
are arbitrary and the mixing inside the same generation is absent.
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It was proven that in oscillation experiments with left-handed light neutrinos beam we cannot observe the
heavy neutrinos production even at energies F, > my.

In collider experiments we can detect both the ¥~ and u”" moments. The most promising reactions are
as follows

vur +p — Nyp + X (0 <10 fb),
p+p—=7 = Neg+Ver, +X (0 <1077 D).
The nonzero value of u*Y could be also observed through the decay
Ner — " = Ver.
A good example is the process
p+p—->Wp—e+N.—e+rve+v+X.
Using the narrow width approximation we get
olpp = Wi — eNe — evey) ~ o(pp — Wi — eNe)Br(Ne — vey) < 3 fb.
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We investigate the chiral properties of near-zero modes for thick classical center vortices in SU(2) lattice gauge
theory as examples of the phenomena which may arise in a vorex vacuum. In particular we analyze the creation
of near-zero modes from would-be zero modes of various topological charge contributions from center vortices.
We show that colorful spherical vortex and instanton ensembles have very similar Dirac eigenmodes and also
vortex intersections are able to give rise to a finite density of near-zero modes, leading to chiral symmetry
breaking via the Banks-Casher formula. We discuss the influence of the magnetic vortex fluxes on quarks and
how center vortices may break chiral symmetry.

1 Introduction

The breaking of chiral symmetry is an effect which is strongly related to the structure of the non-perturbative
vacuum of QCD. The only method at present available to tackle this non-perturbative problem is lattice QCD
(LQCD). A well established theory of ySB relies on instantons [1-3], which are localized in space-time and
carry a topological charge of modulus 1. According to the Atiyah-Singer index theorem [4], a zero mode of
the Dirac operator arises, which is concentrated at the instanton core. In the instanton liquid model [5, 6]
overlapping would-be zero modes split into low-lying nonzero modes which create the chiral condensate. Center
vortices [7], closed magnetic flux tubes, are promising candidates for explaining confinement. The vortex
model of confinement is theoretically appealing and was confirmed by a multitude of numerical calculations,
both, in lattice Yang-Mills theory and within a corresponding infrared effective model, see e.g. [8,9]. Lattice
simulations indicate that vortices are responsible for topological charge and ySB as well [10-12], and thus unify
all nonperturbative phenomena in a common framework. A similar picture to the instanton liquid model exists
insofar as lumps of topological charge arise at the intersection and writhing points of vortices. The colorful,
spherical SU(2) vortex was introduced in previous article of our group [13] and may act as a prototype for
this picture, as it contributes to the topological charge by its color structure, attracting a zero mode like an
instanton. We show how the interplay of various topological structures from center vortices (and instantons)
leads to near-zero modes, which by the Banks-Casher relation [14] are responsible for a finite chiral condensate.
We compute a varying number of the lowest-lying overlap Dirac eigenfunctions and visualize their chiral density.

2 Free Dirac eigenmodes

Fig. 1 shows the chiral density of free overlap eigenmodes obtained numerically using the MILC code. The
modes are found with the Ritz functional algorithm [15,16] with random start and for degenerate eigenvalues
the eigenmodes span a randomly oriented basis in the degenerate subspace. Therefore the numerical modes
presented in Fig. 1 are linear combinations of plane waves with momenta £p,, and show plane wave oscillations
of 2p,, in the chiral density. The first eight degenerate modes consist of plane waves with ps = /24, hence
there is one sine (cosine) oscillation in time direction, the next eight have py = £3m/24, i.e., three oscillations
in the time direction. The oscillations of x g and y, are separated by half an oscillation length, i.e., the maxima
of p4 correspond to minima of p_ and vice versa. Accordingly, the scalar density p(z,) = %(XTR(JUH)XR(,@M) +

XTL(x#)XL(x#)) = 1/Ny is constant (Ny ... lattice volume).

3 The Colorful Spherical Vortex

The spherical vortex was introduced in [13] and analyzed in more detail in [17] and [18]. It is constructed with
t-links in a single time slice at fixed ¢ = t;, given by Ui(a”) = exp (ia(|7" — 7 |)7/r - &), where  is the spatial
part of z;,. The profile function «(r) changes from 7 to 0 in radial direction for the negative spherical vortex,
or from 7 to 27 for the positive (anti-)vortex. This gives a hedgehog- like configuration, since the color vector
points in (or against) the radial direction at the vortex radius R. The hedgehog-like structure is crucial for our
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Figure 1. Chiral density of the low-lying eigenmodes of the free overlap Dirac operator: ps#1 (left), ps#7
(center) ps#9 (right). The modes clearly show the plane wave behavior with oscillations of 2p,, (see text).

analysis. The ¢-links of the spherical vortex define a map S® — SU(2), characterized by a winding number

1
N =i [ Eren w0V 00U I)) 1)
resulting in N = —1 for positive (anti-) and N = +1 for negative spherical vortices. Obviously such windings
influence the Atiyah-Singer index theorem giving a topological charge @ = —1 for positive and @ = +1

for negative spherical vortices (anti-vortices). Hence, spherical vortices attract Dirac zero modes similar to
instantons. In [18] we showed that the spherical vortex is in fact a vacuum-to-vacuum transition in the time
direction which can even be regularized to give the correct topological charge also from gluonic definitions. In
Fig. 2a we see that a single instanton has nearly exactly the same eigenvalues as a single spherical vortex. We
interpreted the nonzero modes as eigenmodes of the free Dirac operator, which are shifted slightly because of
their interaction with the nontrivial gauge field content. In Fig. 5 we show that even the chiral densities of the
lowest eigenmodes distribute similarly, except for the fact that the response of the fermions to the spherical
vortex is squeezed in the time direction, since the vortex is localized in a single time slice (¢ = 5). Another
interesting issue is that the nonzero eigenmodes show plane wave oscillations, like the free eigenmodes in Fig. 1.
We further plot the spectra of instanton—anti-instanton, spherical vortex-anti-vortex and instanton-anti-vortex
pairs in Fig. 2a. We again see nearly exactly the same eigenvalues for instanton or spherical vortex pairs, but
now we get instead of two would-be zero modes a near-zero mode for each pair. The chiral density plots in
Fig. 6 for the instanton—anti-instanton pair and Fig. 7 for the spherical vortex-anti-vortex pair show, besides the
similar densities, that the near-zero mode is a result of two chiral parts corresponding to the two constituents of
the pairs. The nonzero modes can again be identified with the free overlap modes with the same side remark for
mode #8. Finally in Fig. 2b we plot the eigenvalues of two (anti-)instantons and two spherical (anti-)vortices
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g feReenEs
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*
o1} - | o
BomoRoR R R T+
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Figure 2. The lowest overlap eigenvalues for instanton and spherical vortex configurations compared to the
eigenvalues of the free (overlap) Dirac operator.

giving topological charge @ = 2 (Q = —2) and therefore two zero modes, two vortex-anti-vortex pairs with
two near-zero modes and a configuration with two vortices and an anti-vortex (i.e., a single vortex plus one
vortex-anti-vortex pair) giving one zero mode (¢ = 1) and one near-zero mode. The results clearly show that
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we may draw the same conclusions for spherical vortices as for instantons concerning the creation of near-zero
modes.

4 Plane vortices

We define plane vortices parallel to two of the coordinate axes by links varying in a U(1) subgroup of SU(2).
This U(1) subgroup is generated by one of the Pauli matrices o, i.e., U, = exp(i¢o;). Upon traversing a vortex
sheet, the angle ¢ increases or decreases by 7w within a finite thickness of the vortex. Since we use periodic
(untwisted) boundary conditions for the links, vortices occur in pairs of parallel sheets, each of which is closed
by virtue of the lattice periodicity. We call vortex pairs with the same vortex orientation parallel vortices
and vortex pairs of opposite flux direction anti-parallel. If thick, planar vortices intersect orthogonally, each
intersection carries a topological charge |Q| = 1/2, whose sign depends on the relative orientation of the vortex
fluxes [19], see Fig. 3. Fig. 3b indicates the position of the vortices after center projection, leading to (thin)
P-vortices at half the thickness [8].

Parallel Vortices Geometry Anti-parallel Vortices

Figure 3. A single time-slice of a 12%-lattice with intersecting vortices (center). The horizontal planes are the
xy-vortices, which exist only at this time. The vertical lines are the zt-vortices, which continue over the whole
time axis. The vortices intersect in four points, giving topological charge ¢ = 2 for parallel vortices (lhs) or
@ = 0 for anti-parallel vortices (rhs).

For the configuration in Fig. 3a we get two real zero modes, according to the total topological charge @) = 2 of
the four intersections. These modes we analyzed in [20], they peak at least at two of the four topological charge
contributions of @ = 1/2. If we intersect anti-parallel vortex pairs orthogonally we get two intersection points
with topological charge @ = +1/2 and two intersection points with topological charge @ = —1/2 (Fig. 3b),
hence total @ = 0. For such a configuration we get four real near-zero modes, with local chirality peaks at
the intersection points, according to their topological charge contribution, see Fig. 4b and compare to Fig. 3
c. Now, the mechanism of Sec. 3 or the analog instanton liquid model does not directly apply to the case of
planar vortices, since there are no localized lumps of topological charge @ = +1. Nevertheless the vortices
attract chiral (near-)zero modes via their intersections with topological charge @@ = £+1/2, which can be related
to merons [21] and calorons [22]. We expect that vortex intersections, writhing points and even color structure
contributions of vortices to topological charge are able to create a finite density of near-zero modes and break
chiral symmetry via the Banks-Casher relation.

5 Conclusions

Fermions do not seem to make much of a difference between instantons and spherical vortices and the instanton
liquid model can be extended to colorful spherical center vortices. Further also vortex intersections attract
(would-be) zero modes which contribute via interactions to a finite density of near-zero modes with local chiral
properties, i.e., local chirality peaks at corresponding topological charge contributions. In Monte Carlo config-
urations we do not, of course, find perfectly flat or spherical vortices, as one does not find perfect instantons.
The general picture of topological charge from vortex intersections, writhing points and even color structure
contributions or instantons can provide a general picture of xSB: any source of topological charge can attract
(would-be) zero modes and produce a finite density of near-zero modes leading to chiral symmetry breaking
via the Banks-Casher relation. Here one also has to ask what could be the dynamical explanation of ySB. We
can try the conjecture that only a combination of color electric and magnetic fields leads to xSB, electric fields
accelerating color charges and magnetic fields trying permanently to reverse the momentum directions on spiral
shaped paths. Such reversals of momentum keeping the spin of the particles should especially happen for very
slowly moving color charges. Alternatively we could argue that magnetic color charges are able to flip the spin of
slow quarks, i.e. when they interact long enough with the vortex structures. Finally, it seems that vortices not
only confine quarks into bound states but also change their helicity in analogy to the instanton liquid model. In
accordance with Casher’s argument, a force strong enough to confine quarks is also generally expected to break
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Figure 4. a) The lowest overlap eigenvalues for plane vortex configurations compared to the eigenvalues of the
free (overlap) Dirac operator (red crosses) and spherical vortex configurations. b) Chiral density ps#0 in the
intersection plane of all four near-zero modes of crossing flat vortex pairs with opposite flux direction (Q = 0).

chiral symmetry [23], we therefore conclude that the center vortex model of quark confinement may indeed
be capable of describing chiral symmetry breaking. We should also mention that other mechanisms of chiral
symmetry breaking in addition to the instanton liquid paradigm may be operative in the Yang-Mills vacuum.
For instance, it also seems possible that, even in the absence of would-be zero modes, the random interactions
of quarks with the vortex background may be strong enough to smear the free dispersion relation such that a
finite Dirac operator spectral density at zero virtuality is generated. In fact, a confining interaction by itself
generates chiral symmetry breaking, independent of any particular consideration of would-zero modes connected
to topological charge. However, this effect on its own is not sufficiently strong for a quantitative explanation of
the chiral condensate; other effects, among them possibly the ones considered in this article, must play a role.
We cannot give a conclusive answer to the question of a dynamical explanation for the mechanism of ySB and
only speculate on the importance of our results for Monte Carlo configurations, since there vortices are neither
perfectly flat nor spherical, as there are no perfect instantons either. But the importance of the long-range
nature of low-dimensional topological structures for the understanding of the mechanism of xSB in QCD was
underlined by various results of different groups [24-30], and agrees well with a vortex picture of xySB. For more
details see [31].
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Figure 5. Chiral densities of overlap eigenmodes: a) zero mode (left), first (center), ninth (right) and b)
eighth (p5 left, p4 center and p_ right) nonzero modes for an instanton; c¢) and d) the same as a) and b) but
for a spherical vortex.
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Figure 6. Chiral densities (p5 left, p; center and p_ right column) of the a) lowest (near-zero), b) second-lowest
(nonzero) and c) eighth (nonzero) eigenmode of the overlap Dirac operator for an instanton—anti-instanton pair.

d) ps of the sixth (left), seventh (center) and ninth (right) eigenmode.
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Figure 7. Same as Fig. 6 but for a spherical vortex-anti-vortex pair. Chiral densities (p5 left, p4 center and
p— right column) of the a) lowest (near-zero), b) second-lowest (nonzero) and c) eighth (nonzero) eigenmode.
d) ps of the sixth (left), seventh (center) and ninth (right) eigenmode.
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