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The post-processing of quantum key distribution mainly includes error correction and privacy 
amplification. The error correction algorithms and privacy amplification methods used in the existing 
quantum key distribution are completely unrelated. Based on the principle of correspondence 
between error-correcting codes and hash function families, we proposed the idea of time-division 
multiplexing for error correction and privacy amplification for the first time. That is to say, through the 
common error correction algorithms and their corresponding hash function families or the common 
hash function families and their corresponding error-correcting codes, error correction and privacy 
amplification can be realized by time-division multiplexing with the same set of devices. In addition, 
we tested the idea from the perspective of error correction and privacy amplification, respectively. 
The analysis results show that the existing error correction algorithms and their corresponding 
hash function families or the common privacy amplification methods and their corresponding error-
correcting codes cannot realize time-division multiplexing for error correction and privacy amplification 
temporarily. However, according to the principle of correspondence between error-correcting 
codes and hash function families, the idea of time-division multiplexing is possible. Moreover, the 
research on time-division multiplexing for error correction and privacy amplification has some 
practical significance. Once the idea of time-division multiplexing is realized, it will further reduce the 
calculation and storage cost of the post-processing process, reduce the deployment cost of quantum 
key distribution, and help to remote the practical engineering of quantum key distribution.
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Quantum key distribution (QKD)1 is a technique that can provide the information-theoretic secure secret key 
for both parties (Alice and Bob) in long-distance communication. The security of the key is guaranteed by 
physical laws2,3, including the uncertainty principle and the single photon non-cloning theorem. In addition, the 
security of QKD-related theories has been proved strictly4–7. In recent years, QKD has made a lot of progress in 
theory and practice8–14.

QKD includes the quantum signal transmission process and post-processing process15. The former process 
is mainly to change the quantum states of Alice and Bob into approximately the same key, that is, the sifted 
key. However, the sifted key is not secure. The eavesdropper (Eve) may launch some kinds of attacks during the 
quantum transmission process to obtain some information about the sifted key without being discovered by 
Alice and Bob. The latter process mainly includes error correction and privacy amplification. Error correction 
is the adjustment of the approximately identical sifted key held by Alice and Bob to the exact same key. Privacy 
amplification is to compress the information obtained by Eve during the quantum transmission process and 
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error correction process by some calculation or mapping method, which can make Alice and Bob get the shorter, 
identical, and completely secure key from the sifted key. In particular, the common calculation or mapping 
method used in privacy amplification is universal hash function families. At present, the error correction 
algorithms used in the post-processing are completely unrelated to the universal hash function families. 
However, the literature16–18 points out that there is a correspondence between error-correcting codes and hash 
function families. From the perspective of combining error correction and privacy amplification, they are in 
sequence. According to the corresponding relationship principle, if we can construct the hash function families 
corresponding to common error correction algorithms or the error-correcting codes corresponding to universal 
hash function families, then we can adopt the common error correction algorithms and their corresponding 
hash function families or the universal hash function families and their corresponding error-correcting codes 
to realize error correction and privacy amplification through the time-division multiplexing by the same device, 
which will greatly reduce the cost of calculation and storage in the post-processing process.

Based on the principle of correspondence between error-correcting codes and hash function families, we 
propose the idea of time-division multiplexing for error correction and privacy amplification for the first time. 
Firstly, we analyze the characteristics of hash function families corresponding to commonly used error correction 
algorithms in QKD, including BBBSS protocol, Cascade protocol, Winnow protocol, BCH code, Turbo code, 
LDPC code, Polar code, and find that they do not meet the requirements of the hash function family applicable 
to privacy amplification. Then, we construct the error-correcting codes corresponding to the universal hash 
function family (Toeplitz matrix) in privacy amplification and find that it cannot meet the requirements of error 
correction. In summary, time-division multiplexing for error correction and privacy amplification cannot be 
realized temporarily by using the common error correction algorithms and their corresponding hash function 
families or the common privacy amplification methods and their corresponding error-correcting codes in the 
existing QKD. However, according to the correspondence between error-correcting codes and hash function 
families, the idea of time-division multiplexing is possible. In addition, the research has some practical 
implications. Once the idea of time-division multiplexing for error correction and privacy amplification is 
realized, it will further reduce the deployment cost of the post-processing process, and help to promote the 
engineering and practical application of QKD.

The structure of this paper is organized as follows. In “Post-processing process”, we introduce the commonly 
used error correction algorithms and privacy amplification methods in the post-processing process of QKD. In 
“The analysis of time-division multiplexing for error correction and privacy amplification”, we first introduce 
the principle of correspondence between error-correcting codes and hash function families and then analyze 
the possibility of time-division multiplexing for common error correction algorithms and their corresponding 
hash function families from the perspective of error correction or common privacy amplification methods and 
their corresponding error-correcting codes from the perspective of privacy amplification, respectively. Finally, a 
conclusion is given in “Conclusion”.

Post-processing process
The post-processing process mainly includes error correction and privacy amplification. In the following, we 
briefly introduce the error correction algorithms and privacy amplification methods commonly used in the 
existing post-processing process of QKD.

Error correction
The error correction algorithms commonly used in QKD include two types, one is based on the binary search 
algorithm, and the other is based on the error-correcting codes. The former mainly includes BBBSS protocol19 
and Cascade protocol20. The latter mainly includes Winnow protocol21, the error correction algorithms based on 
BCH code22–24, based on Turbo code25, based on LDPC code26,27 and based on Polar code28,29.

BBBSS protocol
In 1992, Bennett et al.19 proposed the BBBSS protocol, which is the earliest error correction algorithm in QKD. 
The core idea of BBBSS protocol is dichotomy and parity check. Its error correction process is roughly as follows: 

	(1)	� Alice and Bob use the same distribution function to rearrange their sifted key to realize the randomization 
of error codes;

	(2)	� According to the estimated bit error rate, Alice and Bob group the sifted key. The length of a group should 
be as short as possible so that the number of bit errors in each group does not exceed one bit;

	(3)	� Alice and Bob perform parity checks on each of their groups and compare the checksums, respectively. If 
the parity of a corresponding group is the same, it indicates that there are no error codes in the group or 
there may be an even number of error codes. Otherwise, it indicates that there are an odd number of errors 
in the group. Then the group is divided into two subgroups, Alice and Bob calculate and compare the parity 
of each subgroup. This is done until the errors are found and corrected.

After the parity of each group is compared, the last bit of the group should be discarded in order to reduce 
information leakage. In addition, at the end of each round, the remaining key will be rearranged and grouped 
again. To keep the number of bit errors in each new group to less than one, we need to increase the size of the 
group, such as to twice the size of the original group. Repeat the process until all errors have been corrected. 
BBBSS protocol is simple to operate and easy to implement, but it requires a large number of interactions.
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Cascade protocol
In 1993, Brassard et al.20 proposed the Cascade protocol with higher error correction efficiency based on BBBSS 
protocol. The difference between Cascade protocol and BBBSS protocol is that the location of each key is recorded 
before each round of error correction. After each round of error correction, the key bit is not discarded. Instead, 
according to the location of the detected error bit, the error group in the previous rounds of error correction is 
deduced back, and the smallest group is selected to continue error correction. This is because since the key bit 
is wrong, it proves that there are still an odd number of errors in the group that the key bit was previously in. 
In this way, Cascade protocol can correct error codes in a more timely and rapid manner, reduce the number 
of interactions, and correspondingly reduce the number of discarded key bits, thus improving error correction 
efficiency. To date, Cascade protocol is still widely used. However, Cascade protocol does not discard the key 
bit after each error correction and must record the location of the key, which increases the communication and 
storage overhead.

Winnow protocol
Since both BBBSS protocol and Cascade protocol are based on binary search, they must have more interactions. 
In order to solve the above problems, Buttler et al.21 first proposed the Winnow protocol based on error-
correcting codes in 2003. The core idea of Winnow protocol is parity check and Hamming code, and its error 
correction process is as follows. 

	(1)	� Alice and Bob also need to group their sifted key;
	(2)	� Alice and Bob calculate their respective parity sums and compare them. If the parity of the corresponding 

group is the same, the last bit of the group is discarded directly. Otherwise, discard the last bit of the group 
and then carry out Hamming error correction;

	(3)	� Hamming error correction process: Alice and Bob multiply the remaining key by the pre-shared check 
matrix to obtain their own syndrome, respectively. The position where the addition of syndrome (modulo 
two plus) is one is the position where the error code is located, and the error correction can be completed 
by directly reversing the error bit. Similarly, in order to ensure the security of the key, Alice and Bob need 
to discard the key bits that are the same as the syndrome bits after each Hamming error correction. Finally, 
Winnow protocol requires multiple rounds of error correction until all errors have been corrected.

Compared with BBBSS protocol and Cascade protocol, Winnow protocol uses Hamming error correction to 
reduce the number of interactions and improve the error correction rate. However, Winnow protocol needs to 
discard the key with the same number of syndrome after each Hamming error correction, resulting in low error 
correction efficiency. Meanwhile, since Winnow protocol adopts Hamming error correction, only one error can 
be corrected in each error correction process. When there is more than one error in a group, errors may increase 
instead of decrease after each error correction.

Based on BCH code
Since Winnow protocol can only correct one error at a time, the BCH code that can correct multiple errors at the 
same time is introduced into the error correction process of QKD22–24. The error correction algorithm based on 
BCH code is similar to Winnow protocol based on Hamming code. The only difference is that Hamming code is 
replaced by BCH code, and the whole error correction process is basically the same as Winnow protocol.

Based on Turbo code
In 2004, Nguyek et al.25 proposed to apply the Turbo code to the error correction process of QKD. The structure 
of Turbo code used in QKD is similar to that of Turbo code in traditional channels. In other words, convolutional 
encoder, interleaver, and deleter are needed at the encoding end (sender), and soft input and soft output decoder, 
interleaver, deleaver, and decision are needed at the decoding end (receiver). The difference is that in the encoding 
and decoding model of traditional channels, Alice needs to send the information bits and the encoded check bits 
together to Bob, and Bob uses the check bits to correct the errors of the received information. However, in the 
error correction process of QKD, Alice only needs to send the encoded check bits to Bob, who uses the received 
check bits to conduct iterative decoding for the sifted key in his hand, and then uses hash authentication to judge 
whether the decoding is successful. If it is successful, the decoding will be terminated. Otherwise, the iterative 
decoding will continue until the decoding is successful or the maximum number of iterations is reached.

Based on LDPC code
In 2004, Pearson26 proposed to apply the LDPC code to the error correction process of QKD. Its error correction 
process is roughly as follows. 

	(1)	� According to the estimated bit error rate, Alice and Bob choose the appropriate shared check matrix;
	(2)	� Alice sends the eigenvector obtained by multiplying the sifted key with the check matrix to Bob;
	(3)	� Bob adopts the same method to calculate his own eigenvector and compares it with Alice’s eigenvector. If 

they are equal, it proves that the sifted key is the same for both parties. Otherwise, Bob combines his own 
sifted key, bit error rate, check matrix, eigenvector and Alice’s eigenvector, adopts the belief propagation 
(BP) algorithm to carry out iterative decoding until his eigenvector is the same as Alice’s eigenvector.

The error correction algorithm based on LDPC code only needs one interaction to complete error correction, 
which greatly reduces the number of interactions and improves the system throughput. On the other hand, the 
bit error rate changes constantly in the error correction, and the check matrix in the error correction algorithm 
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based on LDPC code is very sensitive to the bit error rate. In order to achieve the optimization of error correction 
efficiency, the check matrix needs to be adjusted constantly according to the change of bit error rate. Thus, the 
communication parties need to store a large number of check matrices, which increases the storage overhead. 
In order to solve the above problems, Elkouss et al.27 proposed an adaptive error correction algorithm based on 
LDPC code.

Based on Polar code
In 2012, Jouguet et al.28 introduced the Polar code into QKD for the first time. The use of Polar code greatly 
improves the error correction rate and efficiency, especially in the case of long code. In 2014, Nakassis et al.29 
presented multiple application modes of Polar code in the QKD environment and analyzed the number of 
keys consumed by the error correction process in each application mode. Compared with the error correction 
algorithm based on LDPC code, the error correction algorithm based on Polar code has the advantages of flexible 
rate change and lower coding complexity in QKD.

Privacy amplification
After the error correction process, the keys of both Alice and Bob are identical. However, the key cannot be used 
as a secure key. Because during the quantum transmission process, Eve could launch some kinds of attacks to get 
some information about the key. Moreover, the error correction process will also give away some information. 
Therefore, the communication parties need to carry out the privacy amplification process to get the final secure 
key. Privacy amplification is the process of calculating or mapping a longer key to get a shorter but fully secure 
key. In privacy amplification, the most commonly used calculating or mapping method is to use the hash function 
families to hash the sifted key. It should be emphasized that not all hash function families can be used for privacy 
amplification. In particular, the hash function family suitable for privacy amplification in QKD generally needs 
to meet the following four requirements30: 

	(1)	� The hash function family should be universal or nearly universal;
	(2)	� The number of bits to represent a particular hash function in the hash function family should be fairly low;
	(3)	� The hash function family should have a large input size and output size;
	(4)	� The computation of hash function in the hash function family should be efficient.

Here is a brief explanation of why these four requirements must be met. The first requirement is that universality 
directly affects the quality of generated key, that is, the more universal the hash function family, the better the 
security of the generated key. The second requirement stems from the fact that in a hash function family, the 
choice of the hash function is random, and such a choice needs to be passed between Alice and Bob. But it does 
not matter, because the choice of the hash function does not have to be secret. It is acceptable to represent a 
hash function with the number of bits required proportional to the input size. Here’s why we need both large 
input and large output. In QKD, Alice and Bob estimate the number of bits that need to be removed for privacy 
amplification in a statistical sense by comparing the sample key. Such estimation must use random and evenly 
distributed test samples over the QKD running blocks, or they may be misestimated due to time-dependent 
attacks. Increasing the number of test samples can improve the accuracy of statistical estimation, but on the 
other hand, it also reduces the number of samples available for key generation. The ideal is to have a large block 
size from which a large number of test samples can be extracted, but the proportion of the test samples in the 
block is small. As a trade-off, we want the input size of the hash function family to be as large as possible, and 
the output size to be correspondingly large. Finally, the computational efficiency of hash function has important 
practical significance. In the real-time application of QKD, the extraction of secure key should not take too 
much time. In addition, the rapid development of high-speed QKD systems requires that the processing speed 
of privacy amplification must be fast enough.

The following is a brief introduction to the definitions of hash function family and universal hash function 
family17,18.

Definition 1  A (N; n, m) hash function family is a set of H of N hash functions such that h : X → Y  for each 
h ∈ H, where |X | = n and |Y| = m. Generally, n ≥ m.

Definition 2  A (N; n, m)-hash function family, H, is δ − universal provided that for any two distinct elements 
x1, x2 ∈ X , there exist at most δN  hash functions h ∈ H such that h(x1) = h(x2). The parameter δ is often 
referred to as the collision probability of the hash function family. We will use the notation δ − U as an abbre-
viation for δ− universal.

To more conveniently describe the universality of a hash function family to make it independent of the output 
size m, let ε = δm. Specifically, the hash function family is said to be universal if and only if ε = 1; the hash 
function family is said to be approximately universal when ε ≈ 1. In other words, the closer ε is to 1, the more 
universal the hash function family becomes.

There are three kinds of universal hash function families commonly used to achieve privacy amplification, 
which are based on binary matrix31–33, modular arithmetic30, and finite field multiplication34.

First, let’s look at the first kind, the universal hash function family based on binary matrix31. Let A = GF(2)n, 
B = GF(2)m. For T, a m× n binary matrix, let hT(x) = Tx be the product of T with the column vector x. Then, 
H = {hT : T ∈ GF(2)m×n} is universal. In the above family, the identification of the hash function, namely the 
matrix T, requires mn bits, which is unfortunately not acceptable for the QKD application. For example, when 
the input length is n ≈ 105 and m = O(n), then a number of bits of the order 1010 will need to be transmitted. 
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Furthermore, the computation will be O(mn) = O(n2). Fortunately, we can limit the size of the hash function 
family by requiring that the matrix above be a Toeplitz matrix. This means that for any i,  j, t, Ti,j = Ti+t,j+t 
where 1 ≤ i, i + t ≤ m, 1 ≤ j, j + t ≤ n. Moreover, such hash function family HToeplitz is still universal32,33. The 
advantage of adopting Toeplitz matrix is that transferring a Toeplitz matrix of m× n requires at most m + n− 1 
bits, because Toeplitz matrix can be completely determined by its first row and first column. In addition, the 
multiplication of Toeplitz matrix can reduce the computational complexity from O(n2) to O(n log n) by fast 
fourier transform (FFT). The concrete form of Toeplitz matrix is as follows:

	

T =




tn tn−1 tn−2 tn−3 · · · t3 t2 t1
tn+1 tn tn−1 tn−2 tn−3

. . . t3 t2
... tn+1 tn tn−1 tn−2 tn−3

. . . t3
tn+m−3

. . . tn+1 tn tn−1 tn−2 tn−3
...

tn+m−2 tn+m−3
. . . tn+1 tn tn−1 tn−2 tn−3

tn+m−1 tn+m−2 tn+m−3 · · · tn+1 tn tn−1 tn−2




� (1)

The second kind is the universal hash function family based on modular arithmetic30, which has the following 
form:

	 Hn,m = {ha,b : a, b ∈ Z2n, gcd (a, 2) = 1, b ̸= 0} ,� (2)

where ha,b(x) = ⌊(ax + b mod 2n)/2n−m⌋, x ∈ Z2n. Compared with other types of universal hash function 
families, the computational efficiency of the universal hash function family based on modular arithmetic is 
relatively high. However, fully describing such a hash function in this family requires 2n bits, which is more than 
the number of bits needed to describe a Toeplitz matrix. In general, n > m15.

The third is the universal hash function family based on finite field multiplication34. Let A = GF(2n), B = {0, 1}m
. Let hc (x) be defined as the first m bits of the product cx in a polynomial representation of GF (2n). The set

	 HGF(2n)→{0,1}m = {hc : c ∈ GF (2n)}� (3)

is a universal hash function family. Specially, the locations of the m extracted bits do not matter for the family to 
be universal. In addition, describing one of the hash functions requires only n bits (that is, the value of c).

The analysis of time-division multiplexing for error correction and privacy 
amplification
The correspondence between error-correcting codes and hash function families
In order to better explain the correspondence between error-correcting codes and hash function families, we 
briefly introduce the error-correcting codes and array representation of hash function families.

Let Y  be an alphabet of q symbols. An (N,K, d, q) code is a set C of K vectors (called codewords) in YN  such 
that the Hamming distance between any two distinct vectors in C is at least d. If the code is linear (i.e., if q is a 
prime power, Y = Fq, and C is a subspace of (Fq)

N), then we will say that the code is an [N, k, d, q] code, where 
k = logq K  is the dimension of the code17,18.

We will often depict a (N ;n,m) hash function family, say H, in the form of a N × n array of m symbols, 
where the rows are indexed by the functions in H, the columns are indexed by the elements in X , and the entry in 
row h and column x of the array is h (x) (for every h ∈ H and every x ∈ X ). Each row of the array corresponds 
to one of the functions in the family. We denote this array by Array(H) and call it an array representation of the 
hash function family H. If H is a δ − U(N ;n,m) hash function family, then in any two columns of Array(H)
, it follows that there exist at most δN  rows of Array (H) such that the entries in the two given columns are 
equal17,18.

It was Bierbrauer et al.16 who first pointed out the correspondence between error-correcting codes and hash 
function families. D.R. Stinson later gave it in the form of the following theorem17,18.

Theorem 1  If there exists an(N,K, d, q)code, then there exists a
(
1− d

N

)
− U(N ;K, q)hash function family. Con-

versely, if there exists anδ − U(N ;n,m)hash function family, then there exists an(N, n,N (1− δ) ,m)code.

Proof  Suppose C = {C1, . . . , CK} is the hypothesized code. Construct an N ×K  array, Array, in which the 
columns are the codewords in C. If we look at any two columns of Array, we see that they contain different entries 
in at least d. Setting d = (1− δ)N , the associated hash function family has δ = 1− d/N .

The process can be reversed: by taking the columns of the array associated with an δ − U(N ;n,m) hash 
function family as codewords of a code, we obtain an (N,K, d, q) code with d ≥ N(1− δ). □
Theorem 1 states that there is a correspondence between error-correcting codes and hash function families. 
Specifically, let the codewords in the stated codes correspond to the columns of Array(H), where H is the stated 
hash function family. A specific example is given below17. The array representation of the hash function family 
is shown in Table 1.
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Example 1  The following 13 − U(3; 9, 3) hash function family {hi : i ∈ Z3} is equivalent to a (3, 9, 2, 3) code.

As is shown in Table 1, there are three hash functions in the above family, namely h0, h1, and h2. There are nine 
possible inputs to the hash function. When you use a ternary field, you need two bits to represent the input, They 
are (0, 0), (0, 1), (0, 2), (1, 1), (1, 1), (2, 0), (2, 1) and (2, 2). There are three possible outputs of the hash function. 
When a ternary field is used, a bit is needed to represent the output, namely 0, 1, 2. Taking input (0, 0) as an 
example, when the hash function h0 is selected, its output is 0, that is, h0 (0, 0) = 0. Accordingly, the codeword 
is expressed in the ternary system. The code length of the code block is 3, the number of codewords is 9, and 
the Hamming distance is 2. Each column of Array (H) is a codeword. For example, the codeword for the first 
column is (0, 0, 0)T.

From the perspective of error correction
This part will start from the perspective of error correction, based on the commonly used error correction 
algorithms in QKD and Theorem 1, and construct the hash function families corresponding to the common 
error correction algorithms. Then, by analyzing whether the constructed hash function families meet the 
requirements of the hash function family applicable to privacy amplification, we will judge whether the 
common error correction algorithms and their corresponding hash function families can realize time-division 
multiplexing for error correction and privacy amplification.

Based on BBBSS protocol or Cascade protocol
According to Section 2.1, in the BBBSS protocol and Cascade protocol, Alice and Bob only continuously compare 
their parity sums to locate and correct error codes, but do not involve error-correcting codes. Therefore, we 
cannot make use of the correspondence between error-correcting codes and hash function families, cannot find 
the hash function families corresponding to BBBSS protocol and Cascade protocol through Theorem 1, and also 
cannot realize time-division multiplexing for error correction and privacy amplification.

Based on Winnow protocol
Winnow protocol is an error correction algorithm based on Hamming code. According to Theorem 1, if there 
exists a Hamming code [N, k, d, q], where the code length is N = 2r − 1, the number of information bits is 
k = 2r − 1− r, the minimum Hamming distance is d = 3, the base number is q = 2, the number of check bits 
is r ≥ 3 and is an integer, then there must be a hash function family,

	

(
1− 3

2r − 1

)
− U(2r − 1, 2r − 1− r, 2).

At this point,

	
δ = 1− 3

2r − 1
, � (4)

	
ε = δq = 2− 6

2r − 1
. � (5)

Obviously, ε is an increasing function of r, so we have

	
ε ≥ 8

7
> 1, (r ≥ 3) .� (6)

That is, the hash function family constructed by the Hamming code does not satisfy the first requirement for the 
hash function family applicable in privacy amplification—universal (ε = 1) or approximately universal (ε ≈ 1)
. In addition, Winnow protocol generally uses (7, 4) Hamming code first. In this case, the input and output 
sizes of the corresponding approximate universal hash function family are both small, in which the number of 
input bits is 4 and the number of output bits is 1. Obviously, this does not satisfy the third requirement for a 
hash function family that applies to privacy amplification. If we want to increase the number of input bits, we 
have to increase r and ε, which will cause the corresponding hash function family to deviate even more from 
universality. Moreover, the Hamming code is defined in the binary field, and the number of output bits can only 
be 1.

Therefore, it is impossible to realize time-division multiplexing for error correction and privacy amplification by 
Winnow protocol based on Hamming code and its corresponding hash function family.

(0, 0) (0, 1) (0, 2) (1, 0) (1, 1) (1, 2) (2, 0) (2, 1) (2, 2)

h0 0 0 0 1 1 1 2 2 2

h1 0 1 2 1 2 0 2 0 1

h2 0 2 1 1 0 2 2 1 0

Table 1.  Array representation of the hash function family 13 − U(3; 9, 3).
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Based on BCH code
Similarly, the basic BCH code is also defined in the binary field, and the output of the corresponding hash function 
family is only one bit. The number of output bits is too small, which also fails to meet the third requirement for 
the hash function family in the privacy amplification, that is, large input size and large output size.

Therefore, the error correction algorithm based on BCH code cannot be combined with its corresponding 
hash function family to realize time-division multiplexing for error correction and privacy amplification.

In particular, although the multi-base BCH code, also known as Reed-Solomon (RS) code35, has not been 
used in the error correction of QKD, as a special BCH code, it is briefly analyzed here. On the one hand, RS 
code adopts multi-digit encoding rather than binary encoding, and has more output bits of the corresponding 
hash function compared with the basic BCH code, so it may be able to meet the third requirement of the hash 
function family applicable to privacy amplification. On the other hand, the length of RS code is odd. In order to 
obtain codewords with even lengths and increase the ability of error detection, people generally use extended RS 
code. The extended RS code is no longer cyclic, the decoding process is more complex, and the computational 
efficiency of the corresponding hash function family is lower36. Therefore, it cannot meet the fourth requirement 
of the hash function family applicable to privacy amplification.

In summary, under the existing conditions, the error correction algorithm based on RS code and its 
corresponding hash function family cannot realize the time-division multiplexing for error correction and 
privacy amplification.

Based on Turbo code or LDPC code or Polar code
For Turbo code, because they are no longer linear codes, the calculation of the minimum Hamming distance is 
relatively complicated at present37. For LDPC code, the exact calculation of its minimum Hamming distance is 
a non-deterministic polynomial complete (NPC) problem. In other words, the time complexity of calculating 
the minimum Hamming distance of LDPC code cannot be expressed by a polynomial38–41. As for Polar code, 
it does not consider the minimum distance characteristic at the beginning of its design, but uses channel 
combination and channel splitting to choose a specific coding scheme. Moreover, a probabilistic algorithm is 
used in decoding42. In general, the minimum Hamming distance d for the error correction algorithms based on 
Turbo code or LDPC code or Polar code in post-processing cannot be calculated quantitatively and accurately, 
which results in the first requirement for a hash function family applicable to privacy amplification—universality 
cannot be measured well.

In addition, for the convenience of representation and calculation, Turbo code, LDPC code and Polar code 
all adopt binary coding. Therefore, like Winnow protocol based on Hamming code and the error correction 
algorithm based on BCH code, the number of output bits of hash function family constructed based on Turbo 
code, LDPC code or Polar code is too small, only one bit. They do not meet the third requirement for a hash 
function family applicable to private amplification—large input and output sizes.

Based on the above two reasons, the time-division multiplexing for error correction algorithms based on 
Turbo code, LDPC code or Polar code and their corresponding hash function families cannot be realized at 
present.

The hash function families, which are directly converted by the common error correction algorithms in 
the post-processing of QKD through Theorem 1, are compared and summarized with the requirements for 
the hash function family suitable for privacy amplification, as shown in Table 2. In Table 2, “✓” indicates that 
the requirement is met, “×” indicates that the requirement is not met, and “-” indicates that the requirement is 
not analyzed. Because all requirements need to be met before the hash function family can be used for privacy 
amplification. It can be seen from Table 2 that the hash function families corresponding to common error 
correction algorithms cannot simultaneously meet the requirements for the hash function family applicable 
to privacy amplification. That is to say, from the perspective of error correction, the existing error correction 
algorithms commonly used in the post-processing of QKD and their corresponding hash function families 
according to Theorem 1 cannot realize time-division multiplexing for error correction and privacy amplification 
temporarily.

From the perspective of privacy amplification
The Toeplitz matrix is the most commonly used universal hash function family in the privacy amplification of 
QKD. Therefore, in this part, we will construct the error-correcting codes based on Toeplitz matrix and Theorem 
1 from the perspective of privacy amplification. Then, by analyzing whether the constructed error-correcting 
codes meet the requirements of the error correction algorithm in the error correction of QKD, we can judge 

The bases

Reqs Req 1 Req 2 Req 3 Req 4

BBBSS protocol or Cascade protocol × × × ×
Winnow protocol × - × -

BCH code - - × -

RS code - - ✓ ×
Turbo code or LDPC code or Polar code × - × -

Table 2.  According to Theorem 1, the hash function families transformed by the common error correction 
algorithms are compared with the requirements of the hash function family in privacy amplification.
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whether the corresponding error-correcting codes and Toeplitz matrix can realize time-division multiplexing 
for error correction and privacy amplification.

Suppose that the Toeplitz matrix Tm×n and key column vector Sn×1 with m rows and n columns, then the key 
column vector after hashing Rm×1 = Tm×n · Sn×1, that is,

	




r1
r2
...

rm−2

rm−1

rm



=




tn tn−1 tn−2 tn−3 · · · t3 t2 t1
tn+1 tn tn−1 tn−2 tn−3

. . . t3 t2
... tn+1 tn tn−1 tn−2 tn−3

. . . t3
tn+m−3

. . . tn+1 tn tn−1 tn−2 tn−3
...

tn+m−2 tn+m−3
. . . tn+1 tn tn−1 tn−2 tn−3

tn+m−1 tn+m−2 tn+m−3 · · · tn+1 tn tn−1 tn−2







s1
s2
...

sn−2

sn−1

sn




� (7)

The above Toeplitz matrix is represented in the form of δ − U, namely

	
1

2m
− U(2n+m−1; 2n, 2m).

To simplify the analysis, we directly adopt ε = 1. According to the description of Theorem 1, the error-correcting 
codes corresponding to this hash function family can be expressed as

	
(
2n+m−1, 2n, 2n+m−1 − 2n−1, 2m

)
.

The error correction performance of this code is analyzed below, as shown in Table 3. On the one hand, the 
Hamming distance of the error-correcting codes is d = 2n−1(2m − 1), and it is large, so the error-correcting 
ability is relatively strong. But on the other hand, the code length is 2n+m−1, the number of information bits is 
log2

n

2m = n
m , and the code rate is

	
rate =

n

m · 2n+m−1
≪ 1.� (8)

Therefore, the code rate is too low. In addition, according to literature43, when error-correcting codes are used in 
the error correction process of QKD, the information leakage is approximately the number of check bits, that is,

	
leakEC ≈ 2n+m−1 − n

m
.� (9)

According to formula (9), it can be seen that the error-correcting codes leak too much information, and the error 
correction efficiency is too low.

In summary, although the error-correcting code corresponding to the Toeplitz matrix has a strong error-
correcting ability, its code rate is too low, the information leakage is too large, and the error correction efficiency 
is too low. Thus, it still cannot be used in the error correction of QKD. In other words, from the perspective of 
privacy amplification, the existing privacy amplification method (i.e., Toeplitz matrix) commonly used in QKD 
and its error-correcting codes constructed through Theorem 1 cannot achieve time-division multiplexing for 
error correction and privacy amplification.

Conclusion
Based on the principle of correspondence between error-correcting codes and hash function families, the idea 
of time-division multiplexing for error correction and privacy amplification is proposed for the first time in 
order to reduce the calculation and storage overhead of the post-processing in QKD. The analysis results show 
that the hash function families corresponding to the common error correction algorithms in QKD constructed 
based on the correspondence relation principle cannot meet the requirements for the hash function family 
applicable to the privacy amplification process, and the error-correcting codes corresponding to the common 
privacy amplification methods in QKD constructed based on the correspondence relation principle cannot 
meet the requirements for the error-correcting codes applicable to the error correction process. Therefore, the 
common error correction algorithms and their corresponding hash function families or the common privacy 
amplification methods and their corresponding error-correcting codes in the existing QKD cannot realize time-
division multiplexing for error correction and privacy amplification temporarily.

Performance Index Index Value Conclusion

Hamming distance d = 2n−1(2m − 1) Relatively strong

Code rate rate = n
m·2n+m−1 ≪ 1 Too low

Information leakage leakEC ≈ 2n+m−1 − n
m

Too much

Table 3.  The performance of Toeplitz matrix corresponds to the error-correcting codes.
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However, the present research results do not show that the idea of time-division multiplexing for error 
correction and privacy amplification is not feasible. On the contrary, it shows that more research is needed. 
As a cryptography and coding expert D.R. Stinson put it in his paper18, “We have also emphasized the close 
connections between universal hash families, error-correcting codes and orthogonal arrays. · · ·  It is our belief 
that coding theory is the ‘right’ way to view hash families and that the enormous amount of research on coding 
theory in the last 50 or so years has not been exploited to its full potential in the study of universal hash families and 
their many applications”. At the same time, relevant studies show that the integration of sifting, error correction 
and privacy amplification into one process can increase quadratically the size of the secret key allowing to raise 
up the secret key rate at least theoretically, such as the method of binary frames44. In addition, the research on 
time-division multiplexing for error correction and privacy amplification has some practical significance. Once 
the idea of time-division multiplexing is realized, it will further reduce the calculation and storage cost of post-
processing, reduce the equipment deployment cost of QKD, and help to promote the engineering and practical 
application of QKD.
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