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Abstract

This thesis deals with static and dynamical traversable wormholes. We study both
charged and uncharged versions of these wormholes and analyse them in general
relativity and alternate theories of gravity. We investigate thermodynamic properties
of these objects including the unified first law and generalized surface gravity.

A two way traversable wormhole is a tunnel-like object comprising of trapped
surfaces between horizons, defined as temporal outer trapping horizons. Usually, in
a spacetime there are trapped, untrapped or marginal surfaces. On trapped surfaces
both of the ingoing and outgoing light rays either converge or diverge, on untrapped
surfaces one of the ingoing or outgoing light rays converges and the other diverges
while on the marginal surfaces one or both of the ingoing or outgoing light rays remain
constant (i.e., neither converge nor diverge but travel parallely). Trapping horizons
are the hyper-surfaces foliated by marginal surfaces that may be past, future or
bifurcating and further, outer, inner or degenerate. These trapping horizons coincide
at the throat in static wormholes. For the purpose of studying thermodynamics,
we have used a technique which was first developed in the literature for studying
spherically symmetric black hole spacetimes. This technique uses a 242 formalism
to derive the generalized surface gravity at a trapping horizon which becomes part
of the first law of wormhole dynamics which is obtained from the unified first law
by taking its projection along the trapping horizon. This unified first law is the
rearrangement of Einstein field equations which can easily be generalized to f(R,T)
gravity, where R is the Ricci scalar and 7' is the trace of the stress-energy tensor,
and non-minimal curvature-matter coupling where the equations, when written in the
form of the Einstein tensor, replace the role of stress-energy tensor with an effective
stress-energy tensor.

Chapter 1 is about some basic concepts that are related with the main subject of
the thesis. In Chapter 2 we have reviewed the Hayward formalism and its application

to the Morris-Thorne wormholes in Einstein’s gravity. The generalized surface gravity,

il



unified first law of thermodynamics and wormhole dynamics have been studied at
(bifurcating) trapping horizons. We work out the generalized surface gravity for
wormholes of different shapes as well. Thermodynamic stability of Morris-Thorne
wormholes has been discussed in GR. We have also investigated thermodynamics in
non-minimal curvature-matter coupling which produces very complex equations. The
extension of this work to f(R,T") gravity has been done for Morris-Thorne wormholes.

Chapter 3 deals with thermodynamics of charged wormholes, which are static as
well as spherically symmetric. The electric charge acts as additional matter to the
Morris-Thorne wormhole which is already constructed by exotic matter. All the anal-
ysis (unified first law, thermodynamic stability and generalized surface gravity) done
in Chapter 2 for Morris-Thorne wormholes is generalized to the charged wormholes
in this chapter. In the absence of electric charge the results that have been derived
in Chapter 2 can be recovered.

In Chapter 4 we study thermodynamics of dynamical traversable wormholes. We
considered uncharged dynamical wormholes which are the time generalization of static
Morris-Thorne wormholes. These wormholes are investigated in the background of
different cosmological models, with and without the cosmological constant, and which
include the power-law and exponential cosmologies also. The generalized surface grav-
ity is evaluated at the trapping horizon and the unified first law of thermodynamics
is set up. The trapping horizon in this case is not bifurcating but a past trapping
horizon which does not coincide with the throat of the wormhole and it corresponds
to the expanding universe. The thermodynamic stability of these wormholes has also
been investigated. Some cases of asymptotically flat, de Sitter and anti-de Sitter
wormholes have been considered as well. We have also extended the results from un-
charged to charged dynamical wormholes. All the work done for uncharged dynamical
wormholes has been generalized to charged dynamical wormholes. In the absence of
charge the results derived for uncharged dynamical wormholes can be recovered.

We summarize our results and conclude the thesis in Chapter 5.

v
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Chapter 1

Introduction

1.1 Historical background of general relativity

Gravity is a fundamental interaction between bodies which we experience in everyday
life. Gravity plays a very important role in our lives. It gives weight to objects on
the Earth. The Moon’s gravity produces tides in water on the Earth. Gravity keeps
planets moving in their respective orbits and helps maintain the structure of a gaseous
star. It is gravity which is responsible for the structure of galaxies on the large scale.
Galileo Galilei studied gravity scientifically in the late 16th and early 17th century.
However, gravity remained a puzzle for a long time until 1665, when Isaac Newton
stated his law of universal gravitation called the “inverse square gravitational law”
[1]: “Every body attracts every other body with a force proportional to the product of
their masses and inversely proportional to the square of the distance between them”.
Mathematically this force of gravity is given by

mimes
2 b

F=G

(1.1)

r

where G is the gravitational constant, mq, mo are masses of two objects and r is the

distance between their centres. Newtonian gravity explained the phenomena, related
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to gravity, of that time successfully. But soon it was realized that this gravity needs
modification to explain all the aspects of gravity. The planet Mercury does not follow
the orbit prescribed for it by Newtonian physics. Classically, the perihelion shift of
this planet was predicted to be 1064” of arc per century which is 43" of arc per century
more than the observed value. To resolve this issue it was postulated that a new
planet, which was named Vulcan, is present whose orbit lies between that of Mercury
and the Sun. However it could not be detected even with best telescopes. Giving up
Vulcan, it was assumed that it was a planet which lies always on the other side of the
Sun relative to the Earth. This would have to lie in the same orbit as the Earth. This
hypothetical planet was called anti-Earth due to its position. But this suggestion was
not acceptable due to two reasons: firstly it would have perturbed Venus and Mars
substantially and secondly its equilibrium position would have been unstable. Hence,
no satisfactory solution to this problem could be given in Newtonian physics. This
outstanding issue of that time was resolved by Albert Einstein in 1915 by introducing
his famous theory of general relativity (GR) [2]. In GR, gravity is described as the
curvature of spacetime which results due to the distribution of matter. Heavy and
light masses produce high and low curvature in spacetime, respectively. Newtonian
gravity works very well in limiting cases, where velocities of objects are small with
small energies and masses are small, and it is simpler to work in this gravity. In most
practical applications, Newtonian gravity is sufficient to work with. However, GR
refines Newtonian gravity in a more subtle way and reduces to Newtonian gravity in
the limit of small velocities and small gravitational strength of objects.

GR is the most successful and universally accepted gravitational theory which is
consistent with the observations. The predictions of GR range from the existence
of black holes and gravitational waves to the models of cosmology. It explains the
planetary motion, physics of black holes and the deviation of light coming from the
distant stars and galaxies from the straight path very well. The GR shapes our

universe, it tells us that our universe contains warped regions of spacetimes (black
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holes).

The perihelion shift of Mercury was the first test of GR that happened to fit the
observation. In 1919, bending of light in gravitational fields due to massive objects
confirmed the predictions of GR. Then this theory was confirmed by many other
observations and experiments which include the gravitational redshift of light and
gravitational time dilation. The predictions of GR are well tested in the fields of
binary pulsars, both in the weak and strong field limits. GR has proven to be a
successful theory both on theoretical as well as observational fronts [2-4]. Recently
this theory has successfully been confirmed by the detection of gravitational waves
[5, 6]. The gravitational field equations in this theory, by adopting the gravitational
Lagrangian density £,, = R, are given by [2—4]

1 G
R, — §ngf = —1T,,. (1.2)

oA
Here R, is the Ricci tensor, R is the Ricci scalar, T}, is the stress-energy tensor,
G is the Newtonian constant of gravitation, ¢ is the speed of light in vacuum and
guv 1s the metric tensor. These equations describe the gravitational phenomena of
normal matter very well but the theory cannot satisfactorily explain some phenomena
on large scale like the accelerated expansion of the universe, dark matter, quantum
gravity and cosmic inflation etc. GR is not the ultimate theory at all. It has also faced
some problems, described above, giving rise to modified theories of gravity. Since our
universe is undergoing cosmic acceleration as revealed by experimental data [7-10],
the late-time cosmic acceleration of the universe produces imbalance in gravitational
field equations. The accelerated expansion is one of the major problems that GR
could not satisfactorily explain. This accelerated expansion can be explained to some
extent by adopting the Lagrangian £,, = R—2A, where A is the cosmological constant,

which was included by Einstein himself in 1917. Thus Einstein field equations become
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2, 3]

TG

1
R,uu - iRgNV + Agm/ = 7Tul/~ (13)

These latter equations explain, to some extent, the accelerating expansion of the
universe but there is still some doubt in the explanation of this phenomenon and the
above mentioned problems as well [11-13]. Because of the inability of GR to account
for this acceleration and other problems, several candidates have been proposed in the
literature, that range from dark energy models to theories of modified gravity, among
which f(R) and f(R,T) theories are well known, where T is the trace of the stress-
energy tensor. Einstein field equations can be obtained from the Einstein-Hilbert
action using an action principle in which gravitational Lagrangian density was a linear
function of the scalar invariant R. However, there is no evidence that gravitational
Lagrangian density must be only a linear function of R. Thus a modification of the
Einstein-Hilbert action was proposed to explain this accelerated expansion and other
problems too that remained unexplained by GR. For this purpose, in the modified
gravitational Lagrangian density, a function f(R) was introduced [14] and later it
was further investigated and developed [15-17]. The first model in f(R) theory was
introduced in Ref. [18] and then some corrections in the gravitational action were
made to explain cosmic acceleration [19]. A new term 7" = g, 7" in f(R) theory was
introduced and a new f(R,T) theory, a generalization of the f(R) theory, was also
presented [20]. To obtain the modified field equations in the context of f(R) gravity,
the metric approach is usually used in the literature in which the action is varried
with respect to metric g,,,. But there are other approaches also, which are used such
as the Palatini formalism [21-26], where both the connections and metric are treated
as seperate variables, and metric-affine formalism [26], where we vary the matter
part of the action with respect to the connection. Thus modified gravitational field
equations were obtained that not only explained the late-time accelerated expansion
of the universe but also other problems mentioned above, in the context of f(R)

gravity. As far as the dark matter is concerned, the possibility of studying the galactic
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dynamics of massive test particles without taking into account the dark matter was
also investigated in the framework of f(R) gravity [27-30]. Exotic matter was also
considered responsible for cosmic inflation at early times and accelerated expansion
of the universe at late times. GR could not explain this acceleration but f(R) gravity

does this without the presence of exotic matter.

1.2 Wormbholes and their historical background

A wormhole is a tunnel like structure that connects two distant regions of the same
universe or different universes. It has two mouths connected by a throat (the minimum
radius of the wormhole ry). Wormholes are believed to be formed due to high intense
gravitational fields. Wormholes are a construct of GR, which predicts wormholes
mathematically, where each mouth of a wormhole is a black hole. However, a black
hole which comes to existence due to natural death of a star does not make a wormhole
by itself. Wormholes could create shortcuts for long journeys, but passage through
them could be harmful too, due to danger of sudden collapse, high radiations and
interaction of traveler with the exotic matter. However, we note that this problem can
be overcome by wormholes which are supported by exotic matter. Exotic matter is
characterised with a negative energy density and a huge negative pressure. Wormholes
can be used to send information through them, in different regions of space, if they
contain sufficient exotic matter, whether naturally occurring or added artificially.
Wormbholes can also play the role of time machines if one of its mouth is moved
relative to the other [31]. Wormhole spacetime structure is supported by exotic
matter which violates the null energy condition (NEC) and the weak energy condition
(WEC), according to Einstein field equations. This means that the matter has very
strong negative pressure and even the energy density is negative according to the
static observer. Some studies [9, 32—41] seem to support the idea that a major part of

our universe consists of stuff that violates NEC. It was shown that phantom energy
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could be a form of exotic matter which has the property to violate NEC and it is the
energy that supports the traversable wormhole spacetime [42, 43]. Now, as the exotic
matter and ordinary matter are time-reversed versions of each other, so one may also
think that wormholes and black holes are also the time-reversed versions of each other
if thermodynamic behaviour of both is same. These investigations have improved the
physical status of wormholes [44, 45]. However, in extended theories of relativity these
violations of energy conditions can be avoided such as in f(R) theory, where R is the
Ricci scalar, and Gauss-Bonnet theory as these theories provide corrections to the
Einstein and matter stress-energy tensors. These corrections might be ignored in the
solar system regime but they play plausible role in the regime of strong gravitational
field and on cosmological and galactic level [12, 46-51].

The name wormhole was firstly suggested by Misner and Wheeler [52], although
it was not a new idea. In early 20th centuray, many authours including Flamm
[53], Weyl [54], Einstein and Rosen [55] discussed these objects, However, Morris
and Thorne worked out spherically symmetric and static wormholes in 1988 which
were also traversable as they did not contain the event horizon [56]. After that
many attempts were made to generalize the spacetime by introducing time-dependent
factors in the metric.

The first hints pointing towards wormhole physics were made in 1916 by Lud-
wig Flamm [53]. In 1935 Einstein and Rosen gave the idea of “bridges” created in
spacetime, which connect different points through a narrow tunnel and theoretically
provide shortcuts, resulting in reducing the time of travel and distance. But passage
through that bridge from one region to another was not possible due to the presence of
event horizon, and such type of bridges are now referred to as Einstein-Rosen bridges
[55]. The metric of Einstein-Rosen bridge can be obtained by putting v? = r — 2M
in the Schwarzschild metric

2M oM
ds® = —(1 — ==)dt* + (1 — =) dr® + r*(d6? + sin® 0d¢?), (1.4)
T T
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so that the Schwarzschild solution in the Einstein-Rosen form is given by

U2

d82 = —mdt2 + 4(U2 + 2M)dv2 + (U2 + 2M)2dQ27 (15)

where the new coordinate v ranges in (—oo,00) and M represents the mass of the
gravitational source. The singularities, r = 0 and r = 2M, which were appearing
in Schwarzschild solution, are now avoided in these new coordinates. The region
near v = ( is called bridge which connects two asymptotically flat regions which
are situated at v = oo and v = —oo. The Einstein-Rosen bridge contains an event
horizon which means we can enter from one side of the bridge but cannot reappear
on the other side, just like a black hole which is one-way membrane. Also, another
problem with these bridges is that their circumference fluctuates between zero to its
maximum value so fast, that it becomes impossible for a traveller to cross it, even if
it is moving with the speed of light. Thus Einstein-Rosen bridges cannot be used for
travelling.

In 1950s, next major development in wormhole physics was by Wheeler and Mis-
ner. They created a framework which explained classical physics by Riemannian
geometry of nontrivial topological manifolds. The term wormhole was first used in
1957 as: “There is a net flux of lines of force through what topologists would call a
handle of the multiply-connected space and what physicists might perhaps be excused
for more vividly terming a wormhole” [52].

In 1963, rotating black hole solutions were introduced by Kerr. From the Kerr
black hole solution, in case of slow rotation, similar type of construction came into
existence as the Einstein-Rosen bridge from the Schwarzschild solution, but with same
problems of horizon and tidal forces. On the other hand, fast rotating black holes
allow for fast transportaion but in this case the traveller does not have a choice to
select the destination.

Recently a considerable interest in wormhole physics has been seen in two direc-
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tions: one with the Euclidean signature metrics and the other with the Lorentzian
wormholes [57-59]. Lorentzian wormholes that are traversable were first investigated
by Morris and Thorne [56] in 1988. Morris and Thorne realized that wormholes could
allow the traveller to go from one region to another region and that could be possible
if, unlike a black hole, wormhole must be without event horizon. Their approach was
to find such a wormhole spacetime that does not contain event horizon in order to
be traversable from one region to the other region. They introduced a spherically
symmetric and static wormhole metric. It was found that Morris-Thorne wormholes
(MTWHs) violate some energy condition. However this is not surprising as energy
conditions are not universal; there are number of phenomena which have been dis-
covered to violate energy conditions. Now there are attempts to shift from static to
non-static wormholes.

After the discovery of MTWHs, research advanced in various directions, concern-
ing generalizations of MTWHs, and major ones are as follows.

Cubic and polyhedral wormholes were constructed by using thing-shell formalism,
which have no constraints obeying spherical symmetry [60]. The throat was defined
to be as 2-dimensional hypersurface of minimal area [61, 62]. A general class of solu-
tions which describe spherically symmetric wormholes were also obtained [63]. The
wormhole model which allows traversability to be extracted out of the quantum foam
was also introduced [64]. Conformal wormholes [65, 66] and their further generaliza-
tion were also described [67]. The general form of rotating axially symmetric and
stationary wormhole was first described in Refs. [68, 69] and violations of energy
conditions was discussed in detail [70]. Thermodynamic properties and entropy of
wormholes have also been discussed in literature [44, 45, 71, 72].

Recently, macroscopic humanly traversable wormhole solutions were constructed
using dark sector based on the Randall-Sundrum II model [73]. These wormholes
exist in cold and flat ambient space and they permit traveler to survive the tidal

forces. It takes very short proper time (less than a second) to travel through them
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between distant regions within our galaxy, but tens of thousands of years as seen from
outside. These wormholes look like an intermediate-mass charged black holes from
outside.

It was shown [74] that wormhole-like configuration can be formed between two
massive objects situated in two parallel universes, modeled by two branes. The strong
gravitational attraction between these objects deforms the branes, object touch and
wormbhole-like configuration is formed. The heavier and compact the objects are, the

formation of wormhole-like configuration is more likely to occur.

1.3 Energy conditions

In discussing classical GR, there are at least seven types of energy conditions which,
for the matter, are formulated in terms of its stress-energy tensor T,;,. These include
null, weak, strong, dominant, average null, average weak and average strong energy
conditions (NEC, WEC, SEC, DEC, ANEC, AWEC and ASEC) [59]. In GR these
conditions are used in several theorems such as the no-hair theorem and black hole
thermodynamics. For the purpose to elaborate some of these energy conditions, we

consider the stress-energy tensor, given by

p 0 0 0
0 0 0

o — |0 , (1.6)
0 0 p O
00 0 ps

where p and p; (i = 1,2,3), are the energy density and three principal pressures,

respectively.
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1.3.1 Null energy condition

The NEC, for any null vector /%, satisfies
Tol®1” > 0, (1.7)
which in terms of energy density and pressure becomes

p+p; > 0. (1.8)

In GR one may obtain solutions by considering a metric and then solving Einstein
field equations to get the matter source which is compatible with the corresponding
geometry. In this way, at the wormhole throat, the flaring out condition is imposed
by the tunnel like structure of a wormhole. Thus from this flaring out condition and
the field equations it is revealed that the NEC is violated at or near the throat. At
the throat NEC is violated or it is at the verge of violation. Thus wormhole throat is
threaded by exotic matter (a matter that violates NEC). In this case energy is called

phantom energy.

1.3.2 Weak energy condition

The WEC is given by
Topt?t® > 0, (1.9)

for any timelike vector t*. This condition, in addition to NEC, requires the positivity
of local energy density as measured by any timelike observer. In terms of pressure it
can be written as

p>0andp+p; > 0. (1.10)

The WEC ensures that all observers measure positive energy density, that is, normal

matter is observed. However in wormholes, violation of NEC implies violation of

10
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WEC as well.

1.3.3 Strong energy condition

The SEC asserts that for any timelike vector t¢,
1 ayb
(T — 5 Tgu)t"t" 2 0. (1.11)

This condition implies NEC but does not, in general, implies WEC. In terms of

pressure and energy density it takes the form

p+pi=0andp+) pi>0. (1.12)

1.3.4 Dominant energy condition

The dominant energy condition (DEC) requires that, in addition to WEC, T%t, be
null or time like. Thus it implies WEC, which further implies NEC. However SEC
cannot necessarily be obtained from DEC. It says that energy density is positive and

energy flux is not spacelike. For perfect fluid it yields

p>lpil- (1.13)

In case of negative energy density, violation of NEC implies the violation of DEC.

1.4 Embedding

To capture the properties of curved spacetimes conveniently, especially with dimen-
sions greater or equal to 3, embedding diagram can be used. A curved two dimensional
surface is visualised within a flat three dimensional space using injective and structure

preserving map ®. Consider a hypersurface of dimension n, ¥,,, which is a subspace

11
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of an n + 1 dimensional spacetime manifold, M,. One can describe a hypersurface in

terms of an embedding as

®: %, — M. (1.14)

If the coordinates y® and z® describe ¥ and M, respectively, then the embedding &
describes the points in M with coordinates x® that corresponds to points in > with
coordinates y* as ® : 2 = x%(y®). It is a good idea if some coordinates are common
in the hypersurface and the spacetime into which it is embedded.

The properties of geometry can be conveniently visualized by embedding its equa-
torial plane in three-dimensional Euclidean spacetime, in cylindrical coordinates (7, p, «).
The embedding diagram is characterized by the embedding formula Z = Z(p) deter-

mining a surface in the Euclidean space with the line element.

dz\2
dl% = l1+ = ]dpQ—{—p?dozz, 1.15
v (Z) (1.15)

isometric to the 2-dimensional equatorial plane of the line element [75]
di* = hy.dr® + hggdg?®. (1.16)

The azimuthal coordinate can be identified (o« = ¢) which immediately leads to
dz? dry2
(ch )= hrr(d—p> ~1. (1.17)
Using paremetric form, Z(p) = Z(r(p)), with r being the parameter, the embedding

formula takes the form
dz
dr

dp

1/ A — (%)2

(1.18)

If h,. — (dp/dr)? > 0 then embedding diagram can be constructed.

12
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1.5 Carter-Penrose Diagram

The Carter-Penrose diagrams are two dimensional diagrams. The purpose of these
diagrams is to bring the infinities to finite distances in the diagrams. This is done by
choosing the suitable coordinate transformations and using conformal rescaling of the
metric. The coordinate transformations should possess two properties. Firstly, these
transformations should compactify the spacetime within a finite boundary. Secondly
light rays should always lie on £45° angles. Under conformal rescaling, the causal
nature of the vector field remains invariant, that is, a vector which was timelike or
spacelike before conformal mapping remains timelike or spacelike afterward also, and
light cones remain preserved (ds®> = 0). Generally, timelike or spacelike geodesics do
not map into each other, however null geodesics are mapped into each other.

The Carter-Penrose diagram of Einstein-Rosen bridge [76] is shown in Fig. 1.1.

Future time-like infinity Future time-like infinity
\ Wormbhole throat /
\ ¥ 4
Future null infinity & /\ 7 Future null infinity
P

Spatial
infinity

Spatial

Universe ll infinity

Universe |

Past null infinity Past null infinity

Past time-like infinity Past time-like infinity

Figure 1.1. Penrose diagram of non-traversable Einstein-Rosen wormhole.

In Fig. 1.1, wormhole throat is the horizon which is shown by the two dashed
lines. Every point on the wormhole throat corresponds to the two points at the same

height on the two dashed lines.
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Counsider the metric

d82 = — (1 — %) dt2 + 1d/r227n + (T2 + a2)dQ2. (]_]_9)
r*+a = Vitta

Here ¢t and r ranges in (—oo,00). This metric represents the two-way traversable
wormhole for a > 2m [31, 56, 60, 61]. Throat is located at » = 0 and the negative
and positive values of radial coordinate, r, corresponds to the two universes. Its

Carter-Penrose diagram [77] is shown in Fig. 1.2.

Future time-like infinity

Wormhole throat

Future null infinity Future null infinity

Spatial
infinity

Spatial

infinity Universe Il

Universe |

Past null infinity Past null infinity

Past time-like infinity

Figure 1.2. Penrose diagram of the two-way traversable wormhole.

1.6 Killing horizons

A Killing horizon is a null hypersurface in spacetime on which Killing vector becomes
null. The Killing horizons define the boundaries of stationary spacetimes, black holes,

white holes and cosmological regions. These are defined by the Killing vector k£ which
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satisfies the Killing equation
Vaky + Vipk, =0, (1.20)

where V, is the covariant derivative. Associated to Killing horizon is the geometric
quantity, called surface gravity Kgque. If surface gravity vanishes then Killing horizon
is called degenerate. In GR, the Killing horizon and stationary event horizon are
same (78], for example in Schwarzschild geometry, the event horizon r = 2M is also
a Killing horizon, because timelike Killing vector k* = (0/0t)* becomes null on this,
which is timelike in the region » > 2M and spacelike in the region r < 2M. Generally,
in static spacetimes, any event horizon is also a Killing horizon with Killing vector
k® = (0/0t)*. However, in stationary asymptotically flat spacetimes (not necessarily
static), event horizon and Killing horizon match for the Killing vector which consists
of two vectors, one associated with time symmetry and the other with rotational

symmetry

ke = (8/0t)" + Qu(9/06)°, (1.21)

where Qy is the angular velocity at the horizon [79, 80]. In non-staionary spacetimes
that do not admit timelike Killing vector, the concept of Killing horizon ceases to be
useful. Conformal Killing horizons have been focussed in such spacetimes but this
way does not seem to be very productive because this direction is a priori restrictive
one. Hence, the Kodama vector plays its role, which resembles in some way to the

Killing field, to define surface gravity and thermodynamics of spacetime horizons.

1.7 Trapping horizon

Contraction or expansion of ingoing and outgoing light rays from a surface define
the surface to be trapped or untrapped. The concept of trapped surfaces was first
proposed by Penrose [81], which is an important concept to describe black holes,

white holes and wormholes locally in terms of trapping horizons. Consider a light
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flash that originates on a surface, then it forms two wave fronts, one ingoing and the
other outgoing, which travel perpendicular to the surface. The expansions of these
wave fronts describe the surface to be trapped or untrapped. Let ©, and ©_ be
the expansions in the outgoing and ingoing directions, perpendicular to the surface,
respectively. If the area of both the outgoing and ingoing wave fronts is increasing
(©4 > 0) or decreasing (©4 < 0), or equivalently ©,0_ > 0 then surface is trapped.
The former case corresponds to white holes while latter to black holes. The union of
all the trapped surfaces form a trapping region and the boundary of a trapping region
is called the trapping horizon, and a spacelike slice of a trapping horizon is called the
apparent horizon. Outside the horizon we have untrapped surface, i.e., ©,60_ < 0,
which means one of the expansions (0, or ©_) has changed its sign. We consider
that the outgoing expansion ©, changes sign across the horizon, while the ingoing
expansion O _ keeps the same sign. Then we must have on the horizon, ©, = 0, which
makes the product ©,©_ = 0 on the horizon. This is called a marginal surface. Thus,
a trapping horizon is a hypersurface which is foliated by marginal surfaces [82-84].
Now, a spherically symmetric spacetime metric can locally be written as

ds* = —2e~TdeTde + r2dQ?

n—1

(1.22)

where the areal radius, r, and f are functions of local coordinates (1, ¢7) and dQ2_, is
the (n—1)-sphere with unit radius. We consider spacetime being time-orientable with
Oy = 0/0&F being future pointing. There are two null geodesics which correspond to
£ =constant and £~ =constant, which can be obtained from considering radial null
congruences, by putting ds> = 0. The expansions of these two congruences can be
written as

—1
0, ="

—dar. (1.23)

Now a trapping horizon is a hypersurface on which one of the null expansions vanishes.

Henceforth we take ©, = 0. The trapping horizon is future if ©_ < 0 or past if
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©_ > 0, it is outer if ©, decreases in the ingoing direction (0_O, < 0) and inner if
O increases in the ingoing direction (0_O4 > 0) [82-84].

In black holes, trapping horizon is used to study thermodynamics, and it has been
claimed that it is the area of trapping horizon, instead of event horizon area, which
is associated with entropy in black hole thermodynamics [85-88].

Trapping horizons and event horizons are distinct in general, and there are space-
times where trapping horizon is present while event horizon is not [89, 90]. The
difference of the area of trapping horizon from event horizon has been studied for

particular spacetimes in Ref. [91].

1.8 Black holes and traversable wormbholes

Wormbholes gained attention from researchers and some respectability for their the-
oretical existence in GR, after the article published by Morris and Thorne in 1988
about traversable wormholes [56]. One motivation for studying wormholes is that
they can increase our understanding of gravity where energy conditions violations
take place due to Casimir effect or Hawking radiation.

Wormbholes and black holes are very similar if studied using local properties. But,
they are usually defined by global properties which make them quite distant from each
other [56]. Also global properties do not have compatibility of event horizons with
traversability. Black holes and wormholes are interconvertible objects as suggested
by Hayward [92]. A mechanism was developed for such conversions and a framework
was proposed for unification between black holes and wormholes. Construction of a
traversable wormhole from Schwarzschild black hole has also been proposed through
analytical solution [93]. Locally both these objects are defined by the presence of
marginal surfaces, which are one-way traversable for black holes (or white holes)
and two-way traversable for wormholes, respectively. These marginal surfaces form

trapping horizon. Both black holes and wormholes are characterized by outer trapping
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horizons [82, 84, 92]. In the case of static black holes, examples of outer trapping
horizons are event horizons or Killing horizons, while wormhole throat is an example
of a double outer trapping horizon in the case of static and spherically symmetric
wormholes. Standard black hole solutions and MTWHs have same spatial topology,
R x S?, and spatial geometry can be identical for Schwarzschild black holes and
spatially Schwarzschild wormholes [56]. In each case minimal surface joins the two
asymptotically flat regions.

Now, the key difference in defining black holes and wormholes is that black hole
outer trapping horizon is achronal (spacelike or null), while wormhole outer trapping
horizon is temporal (timelike); this means that black holes are one-way traversable
while wormholes are two-way traversable, as desired in each case [92]. The Einstein
field equations imply that black holes and wormholes occur under the influence of
positive and negative energy densities, respectively. This means black holes occur in
natural matter or vacuum, while wormhole structure is supported by what is called
exotic matter [56]. Thus black holes occur naturally while wormholes do not. How-
ever, presence of negative energy density in quantum field theory makes the possibility
of constructing wormholes still open. If, theoratically, large amount of exotic matter
in the universe can exist then wormholes and black holes, are equally, the prediction
of GR.

The trapping horizon evolves under positive and negative energy densities, thus
causal type of trapping horizon can be shifted from achronal to temporal or temporal
to achronal. Addition of normal matter or dispersion of exotic matter can convert
a wormhole into black hole. Geometrically, a double outer trapping horizon, which
constitutes the throat of a static spherically symmetric wormhole, bifurcates under
generic purturbation, which forms trapped region. If the two horizons become null
and they enclose the future trapped region then it would be a black hole. Conversely,
wormholes can also be formed from black holes if exotic matter is introduced. This

exotic matter results in the two black hole horizons to shift from achronal to temporal,
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and unified as a throat of a wormhole. In the case of Schwarzschild black hole, which
evaporates when considered semiclassically, the trapping horizon becomes timelike
due to infalling negative energy particle inside the horizon during Hawking radiation
phenomena, thus converting it into a traversable wormhole. This also suggests that

the endpoint of Hawking radiation could be a wormhole [92].

1.9 Surface gravity

Surface gravity “g” of an astronomical object is the gravitational acceleration, which
a hypotheticle particle experiences on its surface. Its units is that of an acceleration,
which is meter per square second in SI system of units. In astrophysics, surface
gravity may be expressed as log g, where g is measured in cgs system [94].

Thus earth’s surface gravity becomes logg = 2.992. The surface gravity of a
white dwarf is very high and that of neutron star is even higher. In black hole,
surface gravity is measured relativistically.

Newtonian concept of gravitational acceleration is not clear cut in relativity. For
a black hole, one cannot define surface gravity using Newtonian concept, because the
value of surface gravity becomes infinite on the horizon. Thus a renormalized value is
used which is equal to the product of Newtonian value and gravitational time dilation
factor; the former becomes infinite on the horizon while the latter approaches zero on
the horizon.

In relativity, surface gravity is defined in those spacetimes where event horizon
is a Killing horizon. For a static Killing horizon the surface gravity ‘rguasie is the
acceleration, as exerted at infinity, which is needed to keep an object at the horizon.
In mathematical terms, if k* is a suitably normalized Killing vector, then we define
the surface gravity as [95]

kVok® = Karick®, (1.24)

which is evaluated at the horizon. In the case of static asymptotically flat spacetime,
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we choose the normalization such that k%k, — —1 as r — 00, and so that kgt > 0.

The surface gravity for stationary spacetimes is well defined. The reason is that
all stationary spacetimes have a horizon that is Killing [95]. Recently, the surface
gravity of dynamical spacetimes which do not admit a Killing vector has also been
defined [96]. Various authors have suggested different definitions and, as of current,

there is no agreement as to which definition, if any, is correct [97].

1.10 Kodama vector and surface gravity

Different notions of surface gravity, associated with horizons, have been introduced
in the literature. For static and stationary spacetimes, timelike Killing vector field
is present outside the horizon, which becomes null on it. Hence various definitions
of surface gravity coincide and are well known. In dynamical situations, no timelike
Killing vector field is present and notion of surface gravity is meaningless.

Kodama vector generalises the Killing vector and is used as a substitute in ther-
modynamics of non-static horizons. Any spherically symmetric metric can be written

in the form

ds? = hgydz®dx’ + R?dO?, (1.25)

where a,b = 0,1 and R is the areal radius. Now, the Kodama vector is orthogonal to
2-sphere of symmetry and it lies in 2-dimentional (¢, R) space. For the metric (1.25),
it is defined as [98]

K®* = ¢®V,R, (1.26)

where €% is the anti-symmetric volume form of the 2- metric hyy, [95]. In the case of
MTWHs which we will discuss in Chapter 2, this vector becomes K = /1 — b(r)/ro;,
which is null when b(r) = r and timelike, otherwise. In the case of dynamical worm-
holes which we will discuss in Chapter 4, this vector becomes K = a(t)\/mat +
H Rm&, which is spacelike when HR > /1 —0b(r)/r, null when HR =
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1 — b(r)/r and timelike when HR < /1 — b(r)/r. The drawback with Kodama vec-
tor is that it is defined only in spacetimes which are spherically symmetric. However
there are attempts to generalise it for spacetimes which are non-spherically symmetric
[99]. Kodama vector is parallel to Killing vector in static spacetimes, however they

are not equal in general.

1.11 Null coordinates

Null coordinates are associated with light rays. We consider the Minkowski space-
time. On outgoing light rays, u = t — r remains constant. This means that as time
t increases, the radial coordinate r also increases. Different light rays relate with
different values of u. Similarly on ingoing light rays, v = ¢ 4+ r remains constant.
This means that as time t increases, the value of radial coordinate r decreases. Here
u changes along ingoing light ray while v remains constant. However along outgoing
light ray v changes and v remains constant. Thus u and v label points on ingoing
and outgoing light rays, respectively. These are called null coordinates as they label
light rays.

Null coordinates can be found by integrating ds* = 0 for a radial ray (§ = ¢ =
constant), for instance, for the Schwarzschild metric one obtains

dr?
(i zmpe ~ 0

r

dt* = (1.27)

where r, is the new radial coordinate such that v =t — r, and v =t + r,, where

r—2m
2m

r. =71+ 2mlog | |. (1.28)
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1.12 Misner-Sharp energy

Gravitational field, produced by a massive source, contains energy. In relativity,
equivalence of energy and mass means that it is only the combined energy which may
be measured at a distance. Also gravitational field is non-linear in general which
means the mass of a source and its kinetic and gravitational energy do not combine
in a linear way to produce the active (effective) gravitational energy. In spherical
symmetric spacetimes, this effective energy is the Schwarzschild energy in vacuum.
Generally, there are many definitions of the so-called energy in literature, but in known
physical limits those do not possess relevant physical properties, hence there is no
agreed definition of gravitational energy in GR except in asymptotic flat spacetimes
at infinity. At spatial infinity, one has energy called Arnowitt-Deser-Misner energy
[100] and at null infinity, it is the Bondi-Sachs energy [101, 102].
In spherically symmetric spacetimes, Misner-Sharp (MS) energy (F) exists, which
is given by
E= 2(1 — VU V,r), (1.29)

where V is the covariant derivative. This energy E possesses all the physical charac-
teristics that the active gravitational energy has. It reduces to Newtonian energy in
Newtonian limits, and behaves well in small spheres, large spheres, test particles and

special relativistic limits [103].

1.13 First law of black hole statics

The first law of black hole statics concerns with stationary black holes [84]. This law
involves in its expression the static definition of surface gravity. The surface gravity

is obtained by solving the equation

]{T(V A ka) = /{statickm (130)
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on the Killing horizon, generated by the Killing vector k*. Here A denotes the an-
tisymmetric tensor product and kg is the surface gravity of a black hole which
determines the temperature on a black hole. Now the first law of black hole statics
is given by

dA
dE = /m;cd + work done, (1.31)
™

where E is the energy on the horizon which is analogue of the internal energy in

classical thermodynamics.

1.14 Wormhole thermodynamics

Thermodynamics is the branch of physics that deals with heat energy and its connec-
tion with other forms of energies. It tells us how thermal energy is converted from
one form of energy to another and how matter is affected by thermal energy. The first
law of thermodynamics relates the internal energy of a closed system to heat supplied
or removed from a thermodynamic system, and thermodynamic work. This law is
the law of conservation of energy related to thermodynamic processes, which states
that “energy can neither be created nor destroyed, however, it can be transformed
from one form to another form of energy".

If AU denotes the change in the internal energy of a closed system, ) denotes
the heat energy supplied or removed from a system and W the thermodynamic work
done by that closed system on its surroundings then a mathematical statement of the

first law of thermodynamics can be put in the form as
AU =Q —-W, (1.32)

where () is positive if heat is supplied to a system and negative otherwise.
There exists a deep connection between two branches of physics, thermodynamics

and gravity. Stephen Hawking suggested that black holes emit thermal radiation
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having temperature proportional to surface gravity and entropy proportional to the
horizon area [104-106]. The Hawking temperature of accelerating and rotating black
holes with electric and magnetic charges was calculated in [107, 108]. This build a
relationship between Einstein field equations and thermodynamics. It was Jacobson
who first derived Einstein field equations from first law of thermodynamics and a
relationship between entropy and horizon area of a black hole [109]. Padmanabhan
proposed that Einstein field equations when evaluated on the event horizon can be
put into the form of first law of thermodynamics, T'dS = dE + PdV, in the regime
of spherically symmetric, stationary black hole spacetimes [110, 111]. Here T, S, E
and P are the temperature, entropy, energy and pressure respectively. Later it was
shown that the first law of thermodynamics can also be obtained from Einstein field
equations at apparent horizons in various gravity theories as T'dS = dE+ WdV [104—
106, 109-112]. This relationship between thermodynamics and gravity can also be
extended to braneword cosmoslogy [113, 114]. Corrections to entropy and horizon
area of black holes by applying the exact differential properties to the first law of
thermodynamics was discussed in Ref. [115].

Hayward developed a formalism using local quantities to describe the thermody-
namic properties of spherically symmetric black holes using trapping horizons [92].
The presence of trapping horizon in wormholes suggests that this formalism can also
be used to discuss the thermodynamic properties of wormholes. The thermodynamic
properties of traversable wormholes have been discussed in literature [44, 45, 72, 116—
118]. Here, in this thesis, we will apply this formalism to spherically symmetric

traversable wormholes to discuss their thermodynamics.
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Thermodynamics of Morris-Thorne

wormbholes

In this chapter we will investigate the thermodynamic properties of MTWHs at trap-
ping horizons using a formalism which was first used to discuss thermodynamics of
spherically symmetric black holes [84]. The need and significance of characterizing
black holes by using local considerations has been stressed in the literature [44, 45, 82—
84, 119]. Black holes are described by the presence of event horizons, which is the
global property and hence cannot be located by observers. Now, trapping horizon
is a pure local concept, and in this way the thermodynamic properties of spherically
symmetric dynamical black holes were studied using local considerations. We will em-
ploy the definition of surface gravity [72, 120] where we will use the trapping horizon
instead of Killing horizon, and Kodama vector will play the role of Killing vector. In
this chapter, we will first review Hayward formalism [84] which discusses thermody-
namics of spherically symmetric spacetimes on trapping horizons and its application
to MTWHs. We will also discuss thermodynamic stability of these objects and extend
the formalism to non-minimal curvature-matter coupling and f(R,T') gravity at the

end.
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2.1 Hayward formalism

Here we use a formalism [84] that defines the properties of real black holes using
local quantities that are physically meaningful. This formalism recovers the thermo-
dynamic results of black holes when we use global considerations at event horizons in
the static vacuum case. Thus, this formalism generalizes the results of global consid-
erations. In traversable wormholes, it is not possible to deduce any thermodynamic
property using global considerations as there is no event horizon there. So, we use
local quantities to study the thermodynamic properties of wormholes using trapping
horizons. These exhibit similar properties as those of a black hole.

Now, any spherically symmetric metric can be written as
ds® = 2g, _daxdx™ 4 r2dQ?, (2.1)

where r and g, are functions of the null coordinates (z*,x7), that correspond to
the two preferred null normal directions for the symmetric spheres 0y = 9/dz*, and
r is the so-called areal radius [84] and d)? is the metric for the unit 2-sphere. We
define the expansions as

2

@:I: = ;aﬂ:r. (22)

These expansions tell us whether the light rays are expanding (© > 0) or contracting
(© < 0), or equivalently, area of the sphere increases or decreases in the null directions.
Since the sign of ©,0_ is invariant, a sphere is trapped if ©,0_ > 0, untrapped if
©,60_ <0, or marginal if ©,0_ = 0. For fixed ©, > 0 and ©_ < 0, d, is also fixed
outgoing and 0_ ingoing null normal vector. A surface which is foliated by marginal

spheres is known as a trapping horizon. For the trapping horizon r,, we choose
This trapping horizon is future if ©_ < 0, past if ©_ > 0 and bifurcating if ©_ = 0.
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Further, this trapping horizon is outer if 9_©, < 0, inner if 9_0, > 0, or degenerate
if 0.0, =0.

The huge bodies produce gravitational field around themselves which contain grav-
itational energy. This energy and the material mass produce combined effective energy
in relativity, due to the equivalence principle of mass and energy. This combination of
mass and energy usually takes place in a non-local and non-linear way. This is because
the gravitational field is non-linear in general. In spherically symmetric cases, this is
the Schwarzschild energy in vacuum. Generally, in relativity, there is no agreement
on the definition of energy, except for the asymptotically flat spacetimes at infinity,
where one has the Arnowitt-Deser-Misner energy and the Bondi-Sachs energy at spa-
tial and null infinities, respectively [83]. Therefore, there should be such a definition
of energy from which one can find these asymptotic energies, appropriately. Remark-
ably, this is the MS energy that exists in spherical symmetry, which can be written
as [103]

E = ;7’(1 — 01r0,r) = g(l —2¢770,rd 1), (2.4)

which on a trapping horizon reads E = rj,/2.

We can formulate a unified first law (UFL) in spherically symmetric spacetimes
[84]. This law describes the gradient of the active gravitational energy, using Einstein
field equations, as a sum of two terms, the energy supply term and the work term.
When we project this along the trapping horizon we get the first law of black hole
dynamics. This expression involves the area and surface gravity and has the same
form as the black hole statics if we replace the perturbations by the derivative along
the trapping horizon. For the first law of black hole dynamics we need to define the
generalized surface gravity (GSG) using Kodama vector and trapping horizon in the
same manner as the first law of black hole statics requires the stationary definition
of surface gravity using Killing vector and Killing horizon. Also, this expression
involves energy at horizon rather than at infinity. This formalism can also be applied

to wormholes by virtue of the presence of trapping horizon in these objects.
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Using the stress-energy tensor of the background fluid we construct a function and

a vector in the local coordinates as

W= _g+—T+_7 (25)

and

'lp = T++a+7"a+ + Tﬁfa,ra,. (26)

Now the UFL can be written by taking gradient of the gravitational energy and

using Einstein field equations as [84]

8iE = Awi + w&iV, (27)

where A = 47r? and V = 47r3/3 are the area and areal volume of the spheres of
symmetry and the corresponding flat space, respectively. We can interpret w and
physically as the energy density and the energy flux (outward flux minus the inward
flux). The right hand side of the UFL (2.7) is the sum of two terms, the first term
Ay, called the energy supply term, produces variation in energy of the spacetime
and the second term, wd. V', called the work term, supports the spacetime structure.

Now the Einstein field equations of interest in local coordinates are

1
0i6i = —561 + @iai log(—g+_) — 87?Tii, (28)
1
8i®¢ = —@+@7 + ﬁngf + 87TT+7, (29)
8T
a+@_ + 8_@+ + @+®_ - —ZTQQ, (210)

where T, is the stress energy tensor in coordinates 2™, z7, 0, ¢.
In non-stationary spherically symmetric spacetimes we use Kodama vector K
instead of Killing vector which was introduced by Kodama [98] and which reduces

to a Killing vector in stationary cases when there is vacuum. The Kodama vector in
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null coordinates is given by

K=—g"(0,r0_ —0_rd,). (2.11)
The magnitude of K is
2F
K|? = g KK = == — 1. (2.12)
r

Note that |K|?> = 0 on the trapping horizon ry,.

The trapping horizon is provided by this Kodama vector which is null on a hyper-
surface d,r = 0. In a dynamical spacetime, the trapping horizon and the Kodama
vector play the same role as the Killing horizon and the Killing vector play in the
static case. In static spacetimes the hypersurface where the Killing vector vanishes
is defined as the boundary of the spacetime but here we use Kodama vector instead.
In the above, E' is the Noether charge of Kodama vector. Kodama vector and Killing
vector have some similar properties [83], thus allowing the definition of the GSG. The

GSG k on a trapping horizon can be expressed as [120]
KV K, = +kK,, (2.13)

which, on using the Einstein field equation (2.9), can be written as

E
K= — —4mrpw. (2.14)
Th

This surface gravity, from Eq. (2.13), equivalently, can also be expressed as

1
K= ig“bé?a(‘)br, (2.15)

on a trapping horizon. Here ¢g® is the inverse of the metric tensor g,. It follows
that Kk < 0, Kk = 0 and k > 0 for inner, degenerate and outer trapping horizons,

respectively. As mentioned above, in dynamical spherical spacetimes the Kodama
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vector is the analogue of a time-like Killing vector. We cannot define surface gravity
in traversable wormholes using Killing vector because it does not vanish everywhere.
But still we can use Kodama vector instead and define the GSG for static as well as
dynamical traversable wormhole at a trapping horizon.

Finally, Eq. (2.7) when projected along the trapping horizon gives the first law of

wormhole dynamics which can be expressed as

KA’
8

E =

+wV, (2.16)

where we have used the notation F' = 2.VF. Here z = 279, + 27 d_ is a tangent
vector to the trapping horizon. This expression defines a relation between the surface

area and geometric entropy as

S o Alp. (2.17)

2.2 Morris-Thorne wormholes

The thermodynamic properties can also be studied for a wormhole by virtue of the
presence of a trapping horizon, and the results analogous to those for a black hole
can be obtained [92]. We also investigate wormholes of different shapes for their
thermodynamic properties. In this section we will apply the Hayward formalism to
MTWHs. We consider a spherically symmetric, static and traversable wormhole given

by Morris and Thorne [56]. In coordinates (t,1,6, ¢) this metric can be written as
ds? = —e**Wat? 4 di* + r*(1)dQ?, (2.18)

where dQ2? = df#? + sin? fd¢? and l-coordinate runs from —oo to co. This wormhole
solution covers two asymptotically flat regions which are joined together at [ = 0.
This point [ = 0 is the location of the wormhole throat, the minimum radius of a

wormhole, r(l) = rg. Thus —oco <[ < 0 and 0 <[ < oo cover the two asymptotically
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22() must be finite every where and when [ — oo then r(1)/|l| — 1

flat regions. Also e
and e2®*®) — constant, in order to have asymptotically flat regions. In Schwarzschild

coordinates metric (2.18) can be written as

2 20(r) 742 dr? 2 702
ds® = —e”®\"dt” + -G + r2dQ)’, (2.19)
where the proper radial distance is transformed as
7" dr*
I(r)= j:/ ;, (2.20)
ro /1 —b(r*)/r*

where + refer to the two asymptotically flat regions which are connected through
the wormhole throat. In metric (2.19), ®(r) and b(r) are called the redshift and the
shape functions of a wormhole, since the first corresponds to the gravitational redshift
of the universe and the latter determines the shape of a wormhole. The shape of a
wormhole can be seen from the embedding space in coordinates (Z,r, ¢), where the

2-surface

- ~1/2
Z(r) = i/ (b(r) . 1) dr (2.21)

has the same geometry as the 2-surface § = 7/2 and ¢t = constant, in metric (2.19).
The function Z(r) is called the embedding function. The graph of Eq. (2.21), when
revolved around the axis of rotation, the Z-axis, gives the shape of the wormhole [64].
At the wormbhole throat a coordinate singularity b(rg) = r¢ occurs and b(r) < r for
r > ro. This condition ensures the finiteness of the proper radial distance defined by
Eq. (2.20). Here r, the radial coordinate, decreases from oo to a minimum radius 7y,
the throat of the wormhole where there occurs coordinate singularity b(rg) = o, then
it increases from rg back to co. Thus both the flat regions are now represented by
ro < r < 0o. In order for a wormhole to be traversable the existence of event horizon

29 (r

should be prohibited which are the surfaces where ¢**") becomes zero. Thus ®(r)

should be finite everywhere to prevent the event horizon [56].
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Now for the stress-energy tensor we take the perfect fluid which is completely
described by its energy density and pressure [121]. In the component form it is
written as

T! = —p(r), T} = pu(r), T§ = T = pu(r), (222)

r

where p(r), p.(r) and py(r) are, respectively, the energy density, radial pressure and
tangential pressure. For isotropic pressure p,.(r) = py(r), otherwise the pressure will
be anisotropic.

For a traversable wormhole solution a flaring out condition (b — b'r)/b* > 0 at
or near the throat is imposed. Further, at throat b(r¢) = ro and V'(rg) < 1 is also
imposed to have a wormhole solution. The violation of NEC, in fact, is because
of these restrictions [56, 122, 123], since Einstien’s field equations and flaring out
condition imply that p + p, < 0. Also from Einstein equations b'(r) and p(r) have

same sign, therefore, it is advisable to demand ¥/(r) > 0 to minimize the exoticity.

2.3 Trapping horizons and their classification

To obtain the trapping horizon from metric (2.19), we can write it in the form of Eq.
(2.1), using the null coordinates x+ = t + r, and = = t — r, where r and r, are

related by the equation

d?" gt o
| Rt \V1—=0/r. (2.23)

Grr

Here r and g,_ = —e??/2 are functions of the null coordinates x* and z~.
The stress-energy tensor from coordinates (t,7,0, ¢) to (z7, 27,6, ¢) is transformed

through the equation
o 02 0a0
v Qae av P

(2.24)

where p, v run over new coordinates (z, 7,0, ¢) and a, b over old coordinates (¢, r, 0, ¢).
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The expansions can be written as

e<I>
O. =+—1/1—b/r. (2.25)
T

Now, a trapping horizon is defined as the surface foliated by spheres in which ©,60_ =
0. Here, for trapping horizon, we choose ©,|, = 0 which implies 9, 7|, = 0 giving
b(rp) = rp. Also, on the throat, b(rg) = ro, which implies that for metric (2.19) the
trapping horizon and throat of the wormhole coincide, that is r, = ry. In our case

O], = 0 implies ©_|;, = 0, so we have a bifurcating trapping horizon here and

2200 (' (1g) — 1)
4rd ’

0.0, = (2.26)

on the trapping horizon (throat). The sign of 0_O, depends on the value of b'(ry),
and thus the trapping horizon is outer if ¥'(ro) < 1, inner if ¥ (rg) > 1 and degenerate
if b'(ro) = 1. The flaring out condition depicts that ¥'(r¢) < 1, and thus we have an
outer trapping horizon which is bifurcating as well.

Since Killing vecctor is present in these spacetimes but there is no hypersurface
where it is null, the Killing horizon is absent. However we have the Kodama vector

which for the Morris-Thorne metric takes the form

b
Kt = e 1 M0 (2.27)

|K|? = == —1, (2.28)

which becomes zero on the trapping horizon ry. Thus trapping horizon is provided

by this Kodama vector which is null on a hypersurface r = ry.
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2.4 Thermodynamics of Morris-Thorne wormholes

2.4.1 Generalized surface gravity

Using expression (2.4) the MS energy for the metric (2.19) is given by
b
E= g) (2.29)

on a trapping horizon which reads F = ry/2.

Einstein equations of interest (2.8)-(2.10) in local coordinates are

1
010, = —591 + 0401 log(—g,_) — 2me*®(p + pr), (2.30)
1
0:03 = —0,0_ + 29+ +21e” (p — py), (2.31)
0,0_+0_0,+0,0_ = —8np,. (2.32)

Here, from Eq. (2.24), we have used

29
T = T__ze(p;p”), (2.33)
20
T, = T_+:e<'04p’”), (2.34)
Tye = 1°p,. (2.35)

Now, because of the absence of a Killing horizon, surface gravity cannot be obtained
as defined by Gibbons and Hawking [106]. However, due to the presence of trapping
horizon, we can obtain it by using Kodama vector. Using Eq. (2.15), the GSG, &, on

a trapping horizon can be expressed as

1—b(ro)
= e 2‘
K I (2.36)

which is positive since ¥'(rg) < 1. On using Einstein field equations (2.30) and (2.31),
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it can also be written, respectively, as

k= =270 (p+ pr) |n, (2.37)

and

1
= ——2 — Py . 2.38
k=g mro(p — pr) |n (2.38)

The Hawking temperature 7' = —kj, /27 [44, 45] in our case from Eq. (2.36)

becomes
_ ]_ — b,(T())

8mro

T = (2.39)

which is negative for the outer trapping horizon (0'(r¢) < 1), since £ > 0. It means
the particles coming out of a wormhole have the same properties as that of a phantom
energy because this energy is linked with negative temperature as well. Or, we can
say that the phantom energy is responsible for this negative temperature [124].

Now the usual surface gravity, defined by the use of Killing vector, means there
is a force which acts on a test particle in a gravitational field. In our case, both
Killing vector and Kodama vector are present but Kodama vector is more relevant
as it vanishes on a particular hypersurface unlike Killing vector, and in the vacuum
case it reduces to Killing vector as well. Thus, one could suspect that the GSG which
is defined by using Kodama vector means more than just a force acting on the test
particle in a gravitational field, and some extra effects on the test particle could be
predicted. However, if these extra effects on a test particle vanish by some kind of
symmetry then there is a possibility that such a symmetry would also give rise to a

degenerate trapping horizon.

2.4.2 Some specific cases of different shape functions

Shape function b(r) = r3/r
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Here we take [123] the shape function b(r) = r3/r. This shape function satisfies
the necessary conditions, which have been discussed in the beginning, to have a
traversable wormhole solution. However this corresponds to negative energy density

p. Using this shape function Eq. (2.21) becomes

r4\/r2 =1}
Z(r) = 4rgln — Y% (2.40)

To

This embedding function Z(r) is depicted in Fig. 2.1 where we have set ro = 1.

-10 -5 0 5 10

Figure 2.1. Embedding function Z(r) for b(r) = r2/r and ry = 1.

In this case, we note that, the Kodama vector from Eq. (2.27) takes the form

6(I> 7’(2)

K= —. (2.42)

This positive GSG gives the negative Hawking temperature 7' = —1/47r.
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Shape function b(r) = /ror

Here we consider the shape function b(r) = /ror [123]. The necessary condi-
tions for a traversable wormhole solution are satisfied by this shape function. The

embedding function in this case from Eq. (2.21) takes the form

4(7”0)1/4
3

Z(r) = + (V= V/70)*2 4 3\/ro(v/r = /o)) (2.43)

The embedding diagram for this shape function is shown in Fig. 2.2, where we have

set 7o = 1.

-10 -

Figure 2.2. Embedding function Z(r) for b(r) = \/ror and ro = 1.

The Kodama vector, in this case, from Eq. (2.27) becomes

GCI) Ty
Ki=——1—4/—. 2.44
i=-T1- " (2.44)

Using this in Eq. (2.36) and evaluating on the trapping horizon yields the GSG

K=—) (2.45)
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which is always positive, and this gives negative Hawking temperature ' = —1/167ry.

Shape function b(r) = ro(;-)7, 0 <y <1

Now, we assume the shape function b(r) = ro(+)?, 0 < v < 1. The embedding

r
T0

function in this case for v = 0 from Eq. (2.21) is given as

Z(r) = £2y/ro(r — ro). (2.46)

The graph of this function is shown in Fig. 2.3, where we have taken ry = 1

-6-

Figure 2.3. Embedding function Z(r) for b(r) = ro and ry = 1.

The Kodama vector takes the form

62<I> r v—1
Ki=——/1—[— ) 2.47
* 2 <T’0> ( )

In this case the GSG, from Eq. (2.36), on the trapping horizon becomes

-7
= . 2.48
: 47"0 ( )
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This is positive since 0 < v < 1, giving negative Hawking temperature 7" = —(1 —
v)/87rg.

2.4.3 Unified first law

Now for deriving the UFL we first construct a fuction w and a vector v using expres-

sions (2.5) and (2.6) as

(2.49)

and

wi:i£@)1—i(pzm>. (2.50)

Taking the derivative of MS energy F and making use of Einstein field equations

(2.30) and (2.31), we get
| b
O0LE = £21rpe®y[1 — -. (2.51)
r

From Egs. (2.49)-(2.51) UFL (2.7) can be formulated. On the trapping horizon
(throat) all the terms appearing in the UFL vanish, thus resulting in no evolution of
the throat. However, generally, the gradient of MS energy is always positive in the
outgoing direction while negative in the ingoing direction because p is positive. The
energy density w is positive even though energy conditions are violated. Energy flux
depends on the sign of p+ p,., which is negative in our case due to exotic matter which
gets energy from the spacetime, however energy removal due to energy flux term does

not become so large that it could alter the sign of gradient of MS energy.
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2.4.4 First law of wormhole dynamics

The first law of wormhole dynamics is obtained by projecting the UFL along the

trapping horizon. This projection yields the following equation

I{effA’
8

E' = + WV, (2.52)

where, F' = 2. VE, A’ = 2 VA and V' = 2.VV with z = 279, + 27 0_ being the
vector tangent to the trapping horizon.

Eq. (2.52) includes in its expression the effective GSG and the area. This expres-
sion looks the same as the first law of black hole statics but here perturbations are
replaced with the derivation along the trapping horizon. This first law of wormhole
dynamics differs from the first law of black hole statics in the aspect that here we
use the definition of the effective GSG defined at trapping horizon, instead of surface
gravity defined at the Killing horizon used in the first law of black hole statics [84].

Eq. (2.52) can also be written in the form

E =-TS +wV’, (2.53)
on the trapping horizon with
S=—". (2.54)

Eq. (2.53) contains negative sign in the first term on the right hand side. It is
because of the energy removed from the wormhole. Thus the first law of wormhole
dynamics can be stated as “the change in the active gravitational energy is equal to

the energy removed from the wormhole and the work done in the wormhole”.

2.4.5 Thermodynamic stability

In this section we study the thermodynamic stability of wormholes under considera-

tion using the variables E, T, S, P and V. We follow the usual criterion [125, 126] for
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thermodynamic stability, that is, % I7< 0and Cp > Cy > 0, where P = (p,+2p;)/3
is the average pressure and Cp and Cy are specific heats at constant pressure and
volume, respectively.

We subtract Eq. (2.37) from (2.38) and rearrange the terms to obtain

I (2.55)
A — '
Eq. (2.32) on the trapping horizon yields
K
2p = —. 2.56
Pt oy ( )
From these values, using the definition of Hawking temperature (T = —k/27), we
obtain the average pressure P as
D DPr + 2pt 1 T
p— - _ - 2.57
3 24mr2 3r’ (257)

which is the equation of state in three state parameters T, P and V. From this
equation we can analyze thermodynamic stability of the wormhole.

Stable equilibrium of thermodynamic system requires that % |7< 0 where

oP (4m/3)%3  (4m/3)\/3T

= 2.58
AT gV4/3 (2:58)
Now to ensure the stable equilibrium we must have
T < L (2.59)
—  dmr’ '

and thus the temperature assumes negative values everywhere for stable equilibrium

which is attributed to the exotic matter. From Eq. (2.57) we have

P> ! .
— 247r?

(2.60)
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Another condition for stable equilibrium is Cp > Cy, > 0. Now, since constant V'

means constant £ and S so by the definition of CYy/,

E
J %50, (2.61)

v =57 v=Taz

which means we can define heat capacity only at constant pressure as

dS 2112 (247 Pr? + 1)

Cp=T— |p= _ , 2.62
7 iy (2:62)
where, from Eq. (2.57)
— 1
T=—-3rP+—). 2.63
3P+ o) (2:63)

Now, from Eq. (2.60), to ensure the stable equilibrium, we can take the value of P,

for any non-negative €, as
1

P=—"_+e. 2.64
247T7“2+€ (2.64)

Thus Eq. (2.62) on using the above takes the form

1
Cp = o +2m°. (2.65)

which is always positive. Thus the MTWHs are thermodynamically stable. This
means that for stable equilibrium the average pressure is always positive, while tem-
perature is always negative as is also depicted in Ref. [71] in which the possibility of

negative temperature emerging from the exotic matter distribution was proposed.

2.5 Morris-Thorne wormholes in non-minimal
curvature-matter coupling

In the regime of GR, NEC is not satisfied in wormholes, near throat which results

in further violations of other energy conditions such as WEC, SEC, and DEC, in
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the same area [56, 59]. However these energy conditions may get some respect in
modified gravitational theories which provide corrections to the Einstein tensor and
stress-energy tensor. These correction terms are not very fruitful on small scale such
as in solar system, however on large scale such as galactic, cosmological and on fields
of strong gravitation, where there are some doubts of failure of GR, these correction
terms play a significant role. Importance and applications of these extended theories
of gravity has been enlightened in Refs. [12, 46-51]. In this way it may happen
that wormholes be filled with no more exotic matter but ordinary natural matter
which respect energy conditions. Such an approach has been used for f(R) gravity
[127, 128]. Recently, in 2009, It was shown that there exist a wormhole sulution which
obeys the energy conditions when analyzed in f(R) gravity [123] and this solution has
been generalized in Refs. [129-131].

Thus, in GR, NEC violation is necessary for a traversable wormhole. However, in
higher curvature theories, such as Gauss-Bonnet theory, the matter that threads the
wormbhole respects NEC but it is now effective stress-energy tensor which is responsible
for NEC violation. In curvature-matter coupling in f(R,T") gravity solutions have
been analyzed [132].

In this section we will extend the Hayward technique to the non-minimal curvature-
matter coupling in the backgound of static MTWHs. Here we start with the gravita-

tional field equations of non-minimal curvature-matter coupling in f(R) gravity.

2.5.1 Gravitational field equations

In GR, while deriving gravitational field equations, the gravitational Lagrangian den-
sity, £,, = R, is adopted in Hilbert action. This choice is not the ultimate choice.
Thus in place of R, a general function f(R) was introduced and thus the modified
field equations were derived which explained those phenomena that GR could not
account for [14]. Some models in f(R) gravity, which combine dark energy and in-

flation, were also presented [133, 134]. The possibility to understand the galactic
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dynamics of huge massive test particles without considering dark matter has also
been investigated [30, 135]. This modified theory was further generalized by the in-
clusion of explicit coupling, between matter and f(R), in action [136]. This resulted
in non-geodesic motion of massive particles and an extra force which is orthogonal to
the four-velocity. This model was enhanced to arbitrary coupling, both in geometry
and matter [137]. The coupling effects were incorporated in (effective) stress-energy
tensor.

Consider the action of the non-minimal curvature-matter coupling in the context

of f(R) gravity given by [136]

5= [ [5oA(B) + {1+ 0B} La| v=gdis, (2.66)

where f;(R) (i = 1,2) are arbitrary functions which depend upon R, L,, is the matter
Lagrangian density and k = 8w, ¢ is the determinant of the metric tensor and A, is
the coupling constant that characterizes the strength of interaction between curvature
and matter. To obtain gravitational field equations we vary this action with respect

to the metric g,, and get the following equations

;fl(R)gw/ — V,.V,Fi(R) + 9, 0F(R) (2.67)

= =20 F%(R) L Ry + 200 (VY = g 0) L Fa( R)

+ [14+ Xafo(R)| T

pv

Fi(R)R,, —

where we have used the notation F;(R) = 0f;/0OR. The matter stress-energy tensor

is given by

m_ 2 0(/=gLm)
= =g (2.68)

Here, for simplicity, we take perfect fluid. It has also been argued [138] that L,, = p
is the natural choice for perfect fluid, where p is the pressure [139, 140]. This choice

imposes vanishing of the extra force produced by the non-minimal curvature-matter
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coupling [136]. Further, L,, = p does indeed reproduce the fluid equations of state
but this choice is not the only one [141]. There are other choices for the matter
Lagrangian density as well, such as L,, = —p and L,, = —na, where p is the energy
density, a is the physical free energy defined as a = p/n—TS, S being the entropy, T
the temperature and n is the particle number density [79, 140-142]. Here, we will take
L., = —p and consider the specific case f;(R) = R, thus gravitational field equations
(2.67) reduce to

G = 871! (2.69)

pv

where G\, = R, — %Rg#,, is the Einstein tensor and 7] ﬁ,ff is called the effective

stress-energy tensor given by

Telh = (14 XMR) T+ 2Xs [pRu — (VY0 — g 0)p] - (2.70)

2.5.2 Generalized surface gravity

In this section we will derive the expression of the GSG in the context of f(R) gravity.
From the effective stress-energy tensor, on using background fluid, we can construct

a function

w = —g T+ D (2.71)

P — Dr b p—pr  2p®
= +A2l(1—T){(p+pr)@”+(p+pr)(<1>’)2—2+T—p”—p’<1>’

r

@’ p_ Pl p—p
+ (b—b/r){w(Perr)Jrrg,—}Jr 5|

and the vector

=T ro, + T Do _ro_. (2.72)
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The gravitational field equations, in the case of MTWHSs, of interest are

1 +p A
—8i@i — 5@1 + @i(“)i 10g(—g+_) = 62(I> [P 4p + 2—:2(p +p7~) (273)
b PtPrvan  PHDeyane PP PP
#x(1= 9] = e - @y - ) -
PP : @ @2pt+p) P
T2 2 }+A2(b_br){_(”+p’”)4r2_ o8 42| |

1 e®(p—np) X [p—p,
0505 +0.-6, — 0. = (p4 P) | 5 21P r2p (2.74)

+(1- i){(p + )"+ (p+p) (@) = B

2p®" Y p_r
— =P+ (b= V) — R
L R A S B U R Tl U O il

The GSG & satisfies
KV Ky = £ K, (2.75)

on the trapping horizon. which is equivalent to
eff 1 ab
R =09 0uOpr. (2.76)

For the MTWHs, on using the gravitational field equations, this gives

1 — Pr
reIF = o 2mro (p - Pr) — 47roAs [p ” P (2.77)

To

- (S 2]
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keFf = _op [7’0 (p + pr> - Ag{ (p + pr> @'(ro) <1 - b'(ro)>
2Q+M)Q—Hm0_f{pwﬁ

+
To To
2,0(1 - b'(r0)>
+ . + p'(ro) (1 — b'(rg)> H : (2.78)
0
The effective Hawking temperature can be calculated from T¢// = —g¢/f /27,

which is negative in our case of outer trapping horizon.

2.5.3 Unified first law

In spherical symmetric spacetimes, the UFL can also be formulated by using the
gravitaional field equations for non-minimal curvature-matter coupling. According
to this law the derivative of active gravitational energy, on using the gravitaional
equations, is divided into two terms, the work term and the energy supply term. In

components form Eq. (2.72) can be written as

/ b|p+ A
eff _ (3] 7 P Dr 2
P = £e®y /1 . [ 1 + 22 (p+pr) (2.79)

//

b P+ pr P+Dry,cna PTD p® pt PP
#x(1 = D) {- (e (@ - (O B

#2000 { =) g — PP -

Now, taking gradient of the active gravitaional energy using gravitational field

equations, yields the following result

OLE = AT + wtTo, V. (2.80)
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This result is called the UFL, where

2,0 P b P
0E = HAmr*e® 1~ - [2 +X(1--) {_7“2 — " p’cb’} (2.81)
PP A2p
Xo(b—br)d—L - L 4, 220
el ){ 73 27“2}—1—7"2]7

and w®/ is called the effective energy density while 1¢//, the effective energy flux.
All the terms appearing in the UFL vanish on the trapping horizon (throat) resulting
in no evolution of the throat.

The right hand side of Eq. (2.80) consists of two terms: The first term, which is
responsible for the variation of spacetime energy, is called the energy supply term,
as due to the energy flux it produces variation in spacetime energy; and the second
term, which supports the structure of spacetime, is called the work term which is

carried out inside the wormbhole.

2.6 Thermodynamics of Morris-Thorne wormholes
in f(R,T) gravity

One of the theory that gained significant attraction is the f(R,T") gravity theory.
This gravity was proposed by T. Harko and his collaborators and it extends the f(R)
gravity, by the inclusion of dependence of the Lagrangian on the trace T of the stress-
energy tensor [20]. They used the metric formalism for deriving the gravitational field
equations, also for test particles they obtained the equation of motion, followed from
the covariant divergence of the stress-energy tensor. The models of f(R,T) gravity
have been used in a number of works to satisfactorily explain the cosmological prob-
lems [143-147], gravitational waves [148], thermodynamics [149-152] and accelerated
expansion of the universe in the late times [153-156].

In this section we will discuss the gravitational field equations of f(R,T) gravity
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and then using these equations we will find the GSG and formulate the UFL for the
MTWHs. We will use the Kodama vector and trapping horizon of these wormholes
which we have obtained earlier in this chapter. Finally we will include coupling in

f(R,T) gravity and extend our results for the non-minimal curvature-matter coupling.

2.6.1 f(R,T) gravity

In f(R) gravity, a new term 7', the trace of the stress-energy tensor, was introduced
in Ref. [20], thus a new modified f(R,T') gravity theory was introduced. The f(R,T)
gravity models depend on the source term representing the variation of the matter
stress-energy tensor with respect to the metric. Different choices of matter Lagrangian
produce different set of field equations. Different models in f(R,T') gravity, consid-
ering its explicit forms, and their properties have been discussed in [20]. In f(R,T)

gravity, the action can be written as

5 = /\/—_g [Mliwf(R’ T) + L| d'a, (2.82)

where g is determinant of the metric tensor, f(R,T) is the function of the Ricci scalar
R and the trace of the stress-energy tensor 1" (i.e., T' = ¢"*T},,), while L is the matter
Lagrangian density. We vary this action with respect to the metric tensor g"”, for the
case f(R,T) = R+ 2\T with constant A;, and obtain the following field equations
20

G = 8Tl (2.83)

pv

where G, is the Einstein tensor and T,f,ff is the effective stress-energy tensor defined

as

e m )\1 m D ]' m
T =T + o {T}LV) + Py, + §g,wT( )} : (2.84)

with 70" = QWT,ET) is the trace of the matter stress-energy tensor and P = (p, +

2p;)/3 is the average pressure.
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2.6.2 Generalized surface gravity and unified first law

We can also formulate the UFL in f(R,T') gravity using gravitational field equations
in the expression of gradient of the MS energy. The gravitational field equations of

interest for MTWHs in f(R,T) gravity are

1 A
0:04L = _561 + 0.0: log(—g._) — 2me*®(p + pr) {1 + 4;} , (2.85)
1 4p,. 5
0.0+ = —-0,60_+ 39+- +2me*® (p — p,) — A e®® {—p + g + ?I:t} (2.86)

Now, from the effective stress-energy tensor (2.84) we can construct a function wel

and a vector ¢/ as

— A 4 5
eff _ f—eff _ P —DPr 1 { Dr pt} 5 87
w = —g, 1 =5 i —p+ 3 +—3 ; (2.87)
and
W =Tt 9 o, + T 0 ro_. (2.88)

On using the gravitational field equations (2.85) and (2.86), the GSG (2.36) can also

be expressed as

A
kT = —2mrg (p+p,) (14 ﬁ), (2.89)
and
1 dp,. 5
keI = o —27T7“0(P—pr)+)\17’0{—ﬂ+ g +§t} (2.90)

We can write Eq. (2.88) in the component form as

b (;)—F pr) )\1
eff [
Yy = *+e \/1—; 14+ —7. (2.91)

The UFL can also be extended from Einstein to f(R,T) gravity. The gradient of

the MS energy (2.4), with the use of gravitational field equations (2.85) and (2.86)
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can be written in the form
OLF = AYST + wfo, v, (2.92)

where w7/ and 1§/’ are given in Eqs. (2.87) and (2.91),respectively, while

b A 3p 5pr 5pt
OLFE = +2mr2e®y/1 - = Ml e R Y 2.93
* eI TN T2 T 6 3 (2.93)

2.7 Non-minimal curvature-matter coupling in
f(R,T) gravity

In this section we extend the work, presented in previous section, to the non-minimal
curvature-matter coupling. We consider the action for the non-minimal curvature-

matter coupling, in the context of f(R,T) gravity, given by

S — /[ (R T) + {14 Mfo(R)} L] v=gd'z, (2.94)

where fi(R,T) is an arbitrary function of R and T while fy(R) is an arbitrary function
of R only. Here ), is called coupling constant and it characterizes curvature-matter
coupling strength. We will consider the simplest case by taking fi(R,T) = R+ 2MT
and fo(R) = R. The gravitational field equations in this case, by varying the action

with respect to g"”, are obtained as

G = 8T, (2.95)
where
Tl = (14 MR) T+ 2X [pRu — (VY0 — g, 0)p] (2.96)
/\1 m D 1 m
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is the effective stress-energy tensor.

following notation

Before proceeding further, we introduce the

u = u(r)=1——=, (2.97)
w = w(r)=e*?, (2.98)
W = b;;’lr, (2.99)
w o= 2T, (2.100)
w' = 202" + 4297, (2.101)

Now, the gravitational field equations of interest in this case take the form

1
Oi@i = —§@i+@i8ilog(—g+_)
p+pr A Xaprls  Xa(p+pr) 2 Aaly
— — . I3 —rl | — — ¢,
47”0{ 2 +87T(p—|—p)—0— rw + 4r2w? s 2w
(2.102)
1
8:|:@:F = —@+@_+ﬁg+_
p—0r Mlz Xlp—p)le  Xla X(p+p)li Aopyls
4 — — .
+ Ww{ 2 47 + r2 2w + 4w? + rw
(2.103)
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Here we have defined

L = 2uww” —uw? +ww', (2.104)
la = 2wup” +wid'p + pw'u, (2.105)
Iz = 4w*(1—wu—2ru), (2.106)
Iy, = wiu —wu, (2.107)
I5 = wu' +wu, (2.108)
b = 1—u, (2.109)
= —p+ 4? + E’gt. (2.110)

From the effective stress-energy tensor (2.96) we can construct a vector ¢¢// and

a function we/ as

I =TT g ro, + T _ro_, (2.111)
and
W = g, et PP Milr | dalp = po)le
2 A7 72
X(p+p)li Xala Aopls
— ) 2.112
+ 4w? 2w + W ( )

Using a similar procedure as before the effective GSG, on using the gravitational field

equations (2.102) and (2.103), for the non-minimal case, are obtained as

A ) 2X S
eff —27T7“h{p+p,,«+ 1(p4+p)+ z(p2+p) dw — 12wl — Sryd
T 4ryw
2\gpptt
L 2apu _AQp,u,} (2.113)
Th

23



CHAPTER 2. THERMODYNAMICS OF MORRIS-THORNE WORMHOLES

and
1 dp. | Spi|  Amda(p —pr)
ol = — 2 — A7l — vy OP ERAP T Pr)
K o mru(p — pr) + 11”[ P+t -
)\ N !,/
mAarn(p + pr)w'u — 4t hoprtt + 2w Aoy’ (2.114)
w
The effective thermal temperature, in this case, can be calculated as T¢// = —x¢/f /2.

In the component form, Eq. (2.111) can be written as

- Vuw [p+p- A Xaly  Xa(p+pr) 9 Aoprly
Y = & 2 2 + 87?<p +pe) = 2w + 4r2w? ls =77 + rw |
(2.115)

Now taking gradient of Eq. (2.4), and using Eqgs. (2.102) and (2.103) in it, we get

A Nols A
OLE = i27rr2\/uw{p + 2 [p + pr — 217] e, 2P [13 + 4w2l6] }

s w 4r2qp?
(2.116)

Thus UFL in non-minimal curvature-matter coupling can also be formulated from

Egs. (2.112), (2.115) and (2.116) as
OLFE = A + welfoLv. (2.117)

Thus, the results of this section provide correction by replacing the stress-energy
tensor of matter with the effective stress-energy tensor which includes in it further

corrections due to coupling also.
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Chapter 3

Thermodynamics of charged

wormbholes

The MTWHs can be generalized by adding extra matter to them. One way of doing
this is to add charges which behave as additional matter to the static MTWHs whose
structure is already maintained by the exotic matter. We will consider charged worm-
holes (CWHs) [157] in this chapter and study their thermodynamics, horizon mechan-
ics and thermodynamic stability. CWHs are the charged extension of static MTWHs.
Also, absence of event horizon in these objects do not disturb their traversability,
however now traversability conditions are imposed on the effective shape function
which will be discussed in detail in this chapter.

In this chapter, we will extend the formalism of finding GSG and UFL to CWHs.
These thermodynamic workouts will be done in Einstein’s gravity and then the work
will be generalized to non-minimal curvature-matter coupling and further in f(R,T)

gravity.

3.1 Charged wormholes (CWHs)

The metric for CWHs is described by [157]
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o+ rd, (3.1)

2

2
ds® = — [e”(’”) + (12] dt* +
r 1—

where ¢ is the scalar electric charge. This wormhole is the combination of static
MTWHs and Reissner-Nordstrom spacetime. If in this metric ¢ = 0 then it simply
becomes MTWHs. For & = 0 = b, it represents Reissner-Nordstrom black hole for
zero mass, and it becomes flat Minkowski metric if b = ® = ¢ = 0. The effective
shape and redshift functions of CWHs (3.1) are bess(r) = b(r) — ¢*/r and ®gsp(r) =
11n(e?® + ¢*/r?), respectively. Thus the shape of CWHs will vary with charge ¢ by

additional factor ¢?/r. At the new throat 7o, a coordinate singularity by (7o) = 7o

7o = ;(b + /02 — 4¢?), (3:2)

which for ¢ = 0 gives 7o = 0 and 7y = b(79). The first root is meaningless, so we

occurs, which implies

have only one throat corresponding to the larger root. Now the condition b.sf(r) < r
for r > 7y in terms of b(r) implies b(r) — ¢?/r < r. The positiveness and flaring out

conditions for CWHs imply bess(r) > 0 and b, < bess/r, which can be written as

2

q
b>— 3.3
L, (33
and
b 2¢?
bl < ; - ?- (3.4)

Thus for CWHs the flaring out condition implies that b'(r) should be smaller by an
additional factor of 2¢%/r?, as compared to MTWHs, while the value of b(r) should
be bigger atleast by a factor ¢*/r compared to MTWHs to meet the positiveness
condition of effective shape function bess(r) [157].

Now for the electro-magnetic stress-energy tensor we consider a Lagrangian

1
L= ——F. 3F.,¢"¢" 3.5
o Larthed™ g™, (3.5)
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where F,3 is the electro-magnetic field tensor, given by

0O 1 00
-1 0 0 O
F,, =e(r) (3.6)
0O 000
0O 0 0O

Now T'9) = (1/47m)(F\nF) — 19,0 Fre F27) is the electro-magnetic stress-energy tensor,

v

which on using Eq. (3.6) takes the form [157]

14

1
THe) = gg%zmg(:a, 3,1,1)76, (3.7)

where ¢ = &(r) = (q/r*)\/|goog11| is the radial component of electric field, while
v = (r2e?®™ + ¢t and § = r? — rb(r) + ¢*.

3.2 Trapping horizon and its classification

In this section we find trapping horizon for the CWHs (3.1). Since in CWHs event
horizon is not present so we cannot use global considerations to study the thermody-
namics. Instead we use the concept of trapping horizon which is defined using local
considerations for spherically symmetric spacetimes. In order to obtain the expres-
sion for trapping horizon, we transform the metric (3.1) into a new form (2.1) using

null coordinates. Thus metric (3.1) can be written in the form (2.1) by introducing

the null coordinates 2™ = ¢ +r, and 2= = ¢t — r,, where r and r, satisfy the following
equation
dr [ gu . q? b(r) ¢*
S B L )+ ) (1 - 224+ 2. 3.8
dr, Grr © + r2 r + 72 (3.8)
Here
1 20(r) ¢
9+- =75 (6 + 2 (3.9)
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and areal radius r are functions of the null coordinates, related with the outgoing and
ingoing light rays normal to each symmetric spheres 0+ = 9/d2%, while dQ2? refers to

the metric on the unit 2-sphere. One can define the expansions as

2 2
O = 26&7’ = ii\l (ezq’(” + ;]12> (1 L) + q>. (3.10)

r r r2

These expansions tell us about the convergence or divergence of light rays in the null
direction normal to a sphere. Also, © > 0, means light rays are expanding while
they are contracting for, © < 0, in the null directions normal to the sphere. Or
equivalently the area of a sphere is expanding or contracting in the null directions.
Now the sign of ©,0_ is a geometrical invariant. A metric sphere is trapped if
©,0_ > 0, yielding
% —rb(r) + ¢* < 0, (3.11)

untrapped if ©,0_ < 0, yielding

2 —rb(r) +¢* > 0, (3.12)
and marginal if ©,60_ = 0, yielding

r? —rb(r) + ¢* = 0. (3.13)

If on an untrapped sphere the orientations ©, > 0 and ©_ < 0 are locally assumed
then 0, and 0_ are also assumed as the null normal vectors in the outgoing and
ingoing directions, respectively.

For trapping horizon, a hypersurface on which, ©,0_ = 0, we choose

@+|h - 0, (3].4)
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which gives
2

b(ra) = 15 + f% (3.15)
Thus at r, = 7y, this trapping horizon is future if ©_ < 0, past if ©_ > 0 and
bifurcating if ©_ = 0. Here ©, = 0 implies ©_ = 0 which makes the trapping
horizon bifurcating.

This horizon may be outer, inner or degenerate depending on the sign of 0_0O,.

It is outer if 0_©, < 0, which gives

2 2
b—tr> 2L (3.16)
r
inner if _0O, > 0, yielding
2 2
b—br < =L (3.17)
r
and degenerate if 0_0O, = 0, giving
2 2
b—tr="2L (3.18)
r

3.3 Thermodynamics of charged wormholes

The MS energy for CWHs is given by

2
q

- — 3.19
2r’ ( )

N S

E = g(l — 29770, r0_r) =

On the trapping horizon it becomes E = r,/2.

The Kodama vector (2.11) in the covariant form, in this case, yields

1 7 b(?”) q?
_ _ 2P(r) 1 _ N e
K. = N <e + r2> (1 2+ L), (3.20)

This vector provides a trapping horizon which is null on hyper surface ©,|, = 0.
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This vector is the generalization of a Killing vector that can be obtained from it in
stationary vacuum cases.

Now the Einstein-Maxwell equations (2.8)-(2.10) in local coordinates are

1 2m
0:04 = —5921 + 04101 log(—g4-) — 73(,0 + ) (r?e*® + ¢°), (3.21)
1 27 3q°
0:0; =—-0,0_+ 29+ T 72(,0 —pr — 47TT4)(T262¢ +¢%), (3.22)
¢
8+®_ + a_@+ + @+@_ = —87T(pt + 87‘[‘1”4)' (323)

where the stress-energy tensor 7}, is the sum of the matter part TL(LT) and electro-
magnetic part lﬁf;), ie., T, = !S,T,”) + TF(“@/). Here From Eq. (2.24), in this case, we

have used

(r?e*® + ¢*)(p + p;)

T = T _= 3.24
++ 492 ’ ( )
2 2% 2 — p, — 3¢2/4mrt
T+, — 7‘!7+ — (T € + q )(p p 3q / r ) , (325)

42
2
Too = 1°(pe+ )- (3.26)

Smrrd

From the stress-energy tensor we can construct a function w and a vector ) as

_ — 3¢
— g, Tt PP 2
w g+ 2 871'7’47 (3 7)
and

lp = T++8+7‘(9+ + T__i?_ra_. (328)

It is worth noticing that Killing horizon is not present in these CWHs, despite
the presence of a Killing vector. Hence the GSG cannot be defined by Killing vector

and instead, we make use of the Kodama vector and trapping horizon. The GSG &
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satisfies (2.13), which in the case of CWHs takes the form

L ()~ gt}
— 2
K ye , (3.29)

which is positive due to the flarring out condition. The GSG (3.29) on using Einstein
field equations (3.21) and (3.22), becomes

K = =27y (P +pr> ) (330)
and
1 3q°
=— -2 —Pr— —)- 3.31
f= g~ 2mnlp—p 4w§) (3.31)
The thermal temperature can be calculated from the formula 7' = —k /27, which is

negative. However one could avoid this negative temperature by making claim that
this is the problem only at horizon, but ingoing radiations appearing at one mouth of
the wormbhole, following the classical trajectory, would reappear as outgoing radiation
on the other mouth of the wormhole, unavoiding this negative temperature. This is
not surprising as wormholes are argued to be constructed by phantom energy which
may be characterized by negative temperature. Thus wormholes emit radiations
associated with negative temperature in the same way as black holes emit radiations
associated with positive temperature.

Since we are dealing with CWHs which are also spherically symmetric like MTWHs,
hence we can also formulate UFL in these wormholes from the gradient of MS energy,
on using the gravitational field equations.

Eq. (3.28), in the component form, can be written as

wi:i\l <62¢+7‘{z> (1—M+q2>p2pr- (3.32)

r r?

Taking gradient of Eq. (3.19) and making use of Egs. (3.27) and (3.32), the UFL can
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be formulated as

GiE = A’l?b:t + w@iV, (333)
where
_ ) q? b ¢ 3¢?
GiE—iz’iT’f’ \/(62¢+7’2)(1_T+T2) {p— 871'7'4 . (334)

In Eq. (3.33), on the right hand side, there appear two terms, Ay, and wd.V. The
first one is called the energy supply term which produces change in the gravitational
energy due to energy flux ¢, while the second one is called the work term that is

carried out in the wormhole to support its configuration.

3.3.1 Thermodynamic stability

In this section we will examine the thermodynamic stability of wormholes for a specific
case (¢ = 0). Thermodynamic stability of wormholes can be ensured by showing that
%kp < 0and Cp > Cy > 0, where P = (p, + 2p;)/3 is the average pressure while
Cp and Cy are specific heats at constant pressure and volume, respectively.

Subtracting Eq. (3.30) from (3.31), and rearranging the terms yields

1 3¢
8tr2  8mrt’

Solving Eq.(3.23) on the trapping horizon and using the definition of surface gravity

we obtain
T(r?e®® + ¢?) e
r3 Amrd’

Uy = — (3.36)

Now from Eqs. (3.35) and (3.36), we can find the equation of state in three state
parameters (P, V, T) as

(3.37)

]1/3 [47?]1/3 A7Tq?

1/3
Pl | 5| A
7776V 2 4374V 4 81V 9V

From this equation of state, thermodynamic stability of the wormhole can be ana-
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lyzed. Taking derivative with respect to V', we obtain

opP TR A O 7 R dr 1P anTq?
T = | SN, P ] - il S)
A [26244WV“] 5 l59049v71 * [2187V“] g (339

For thermodynamic stability gT]j|T < 0, which yields

r? + 10¢?
= A+ 127rg?’

(3.39)

which shows that temperature assumes negative values everywhere, which is not sur-
prising as it could be attributed to the presence of the exotic matter. Using this in
Eq. (3.37), we get

1 5¢% | (rP+10¢°)(r* +¢*)
24mr2  24mrt 12776 + 367142

P> - (3.40)
For ¢ = 0 the average pressure always assumes positive values, however for ¢ # 0 it
may be negative somewhere.

Stable equilibrium also requires that C'p > Cy, > 0. Now, at constant volume S

is also constant, so specific heat at constant volumes vanishes

oE oS

Y =orlv=Tor

v = 0. (3.41)

So, we can define specific heat only at constant pressure as

oE oS 2mr?(r? + ¢?)
C'P - 7’P — 7’P - 724g2) (12 2 (342>
! = Tar =
We substitute
_ 1 5 2 2 10 2 2 2
b ¢, (r’+10¢°)(r* + ¢°) be (3.43)

C24mr? 247t 12776 4 36714 ¢?

in Eq. (3.42), which also ensures Eq. (3.40) for any € > 0. Thus Eq. (3.42) takes the
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form
(2 +¢») | (r? + ) (r* + 10¢%) + 12mert(r? + 3¢?)

Cp = (3.44)

6er2(r? + 3¢?)?
All terms involved on the right hand side are positive, thus specific heat is positive
everywhere subjected to the constraint (3.40). Thus the wormholes could be thermo-

dynamically stable.

3.4 Non-minimal curvature-matter coupling

This section deals with the extension of the work presented in this chapter before to
non-minimal curvature-matter coupling. In Einstein’s filed equations, Hilbert action
is used in which Lagrangian density is a linear function of the Ricci scalar, R, however
there is no evidence that this must be only a linear function of R, so in place of R
a function f(R) was proposed and modified field equations were obtained [14], and
which was further investigated in Refs. [15-17]. We, in our case, consider a non-

minimal curvature-matter coupling in f(R) gravity whose action is given by

5= / [ FUR) + {14 X fo(R)} (L™ + L) | V=gds, (3.45)

where f1(R) and f3(R) are arbitrary functions of the Ricci tensor R, \s is the coupling
constant which characterises the strength of the curvature-matter coupling, L™ and
L¢ are the matter Lagrangian and the Lagrangian due to charge, respectively. The
following gravitational field equations can be obtained from this action by varying

with respect to g"” as

1
FA(R) Ry = 5 i(R)guw = ViV FL(R) + gD (R) = =20 Fy(R)(L™ + L) Ry,
+20(V,uV, = gu0) (L7 + L) Fa(R) + |1+ Ao fo(R)| (T + Tf,).

(3.46)
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For the specific case, when fi1(R) = fo(R) = R, the gravitational field equations take

the form
G, = 8rTel! (3.47)

pv

where G, = R, — %Rgm, is the Einstein tensor and T ;jzf is called the effective

stress-energy tensor, given by
Tl = (14 XR) (T3 + T5,) + 2% [ pRu — (VY = gw0)p] . (3.48)

From now onward, we will use the notation introduced below

U = U(r>:1—b(:)+7qj, (3.49)
W = W)=+ zz (3.50)
o= o bl:j — 2 (3.51)
—— 2(7“362(1:13)/ — q2)7 (3.52)
W — 2(rte?®@” + 2::(32‘1’@’2 + 3q2). (3.53)

The gravitational field equations of interest now become

1 ; A
0104 = —591 + 04101 log(—g4-) — 47TW{ d —;p — ﬁ lQWUpN WUy
+ WU+ AP D) g2 ooy ggww - 2w
4r2W?2
Aap,
SrIV2U" — 4W2U] + QV]; lWU’ - W’U] } (3.54)
r
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1 o 32 A .
0,0, = —@+@_+rﬁu_+4ﬂy{p br_ 20 “p+p)PUWWV'

2 S 4W2
3Xa¢?

_ 2 T
LM’+WWU]+MWWH

[—r%w%f+2ﬂUmnV”—4wﬂ
+FWWW+MWWU+MWU+MW4+M%?wk—ﬂ

)‘2pr
rW

A
[WU+UW%+N;PQWUM—WWW—AWUH.

(3.55)

From effective-stress energy tensor, we can construct a vector ¢/ and a function

Wl as
eIt = 7N g, ro, + 777D ro_| (3.56)
and
2
eff _ _ T+—(eff) _ P — Dr _ 3q )\2<p+pr> 9 " ”2 177!
w g 5 ey T2 UWW?" —UW= +WW'U
)\ 2
BN ey oUW AW 4 R WWU 4 e WW'U
167r811/2
A
n MMﬂUWJMﬂU]+m;l—mWUM—JVUﬂ—dWWﬂ
)‘2pr / / )\2(P - pr)
—_— |1 - . )
—%TWlWU+UW’+ = U (3.57)

The effective surface gravity, evaluated on the trapping horizon, in this case becomes

2Xap, U’ i, 2M(p+pr)
AU L P T P
T 20U 4r2W

eff — _anh{@ +p,) + l4W — W'y’ — 87“hWU'] },

(3.58)
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and
2ry, AP Pr 2rd  AWrs | " " 2
A DW'U A e (p — pr
TAarn(p + pr) _Amda(p —pr) + 27N\ p U (3.59)
w Th
The effective thermal temperature can be calculated as 7%/ = —x¢// /27,

Eq. (3.56) in the component form becomes

VOW N . Aapr
e = {pﬂ’ _ 2 lQWUp”JrW p+W’Up’]+T2V];

2 2W
>\2<p + pr)
4r2W?2

lWU/ — W’U]
+ [4W2 + P2WRU = 2rUWW" — P2WW'U' — 8rW?2U' — 4W2U1 }

(3.60)

The gradient of MS energy on using gravitational field equations (3.54) and (3.55)

can be written as

3¢ A
0LFE = iQm“Q\/WU{p— 7 4 2[—2WU,0”—WU’p’—W’Up']

gmrdt W
/\Qp 3)\2(12 2
+ ﬂl2 —2U — QTU/] + W 2r WWHU +47"WW/U
+ ArWPU' + AWPU — AW? — WU + r2WW’U’] } (3.61)

Thus UFL, in non-minimal curvature-matter coupling, can be formulated from

Egs. (3.57), (3.60) and (3.61) as
OLE = AT + w10,V (3.62)

The results obtained in this section have the same form as obtained earlier in this

chapter with the stress-energy tensor 7}, being replaced by T, le;f .
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3.5 Thermodynamics of charged wormholes in f(R,T)
gravity

In this section we will consider CWHs in the context of f(R,T') gravity and extend
the formalism for finding GSG and UFL to f(R,T) gravity. In f(R,T) gravity, action

can be written as [20]

1

S = /\/—_g(mﬁf(R, T)+ L™+ L)d*z (3.63)

where g is the determinant of metric tensor, f(R,T') is the function of Ricci scalar
R and trace of the stress-energy tensor 7' (T = ¢"*T},), while L™ and L¢ are the
matter lagrangian and lagrangian due to charge, respectively. Varying this action
with respect to the metric tensor g"*, for the case f(R,T) = R+ 2\T with constant

A1, gives the following field equations
G = 87T FH) (3.64)

where G, is the Einstein tensor and T(7F) is the effective stress-energy tensor

defined as

A m) 1
TED = 70 + 7 + o {T;W) + Py + igW(T“”) + T(e))} (3.65)
with 7 = QWT;ST) and T = g’“’Téﬁ), In the present case, the effective stress-

energy tensor can be written as

EFF) __ EFF)(m EFF)(e
TEFF) = piZFnm) 4 pEree) (3.66)

nuv

where

m m m D 1 m
TEFEm = 7 (T + Py, + §T< ) 1), (3.67)
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and

A
T EFF)(e Te 1 e
,151/ )©) ,Sy) 87 ( )g;u/; (368)

are the effective stress-energy tensor due to matter which is threading the wormhole
and effective electro-magnetic stress-energy tensor, respectively. The gravitational

field equations of interest in this case become

1 o2 (r2e?® 2 A
0101 = —50L +0.9:log(—g; ) — ( 5 7) pp+ = (p+pr) ¢
2 T 4
(3.69)
1 A1 (7’262(I> + q2) 4p, Ot q2
aﬂ:@:‘: = —@+@_ + 729_5__ — 2 —p + 3 + ? + Sy
27 (r?e?® + ¢?) 3q>
+ - p=pP— ) (3.70)

From the effective stress-energy tensor (3.65), we can construct a function w®’/ and

a vector ¥/ as

2 2
eff — g q—eff _P—P 3¢ A [ - 4Ape bp g -
’ . Py Ty BTY

I =Tl rg + T 9 ro_. (3.72)

Using Eqgs. (3.69) and (3.70), the GSG (3.29) becomes

A
kT = 27y (p+pr) (1 + ﬁ), (3.73)
and
Kl ! 27 ( 3 )+ Air + 2. + op + . (3.74)
= — —27 —Pr— —— - — . .
o WP = Pr= ) AT TP T T e T g
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Eq. (3.72) in the component form can be written as

v’ =

Ve @) (12 = rb(r) + ) {

A
e P+ 1(p+pr)}. (3.75)

47

Now, the gradient of MS energy can be written in the form of UFL on using field
equations (3.69) and (3.70) as

OLF = AYST + weff o, v, (3.76)

where

0+E = i27r\/(r262‘1’ + ¢2)(r2 —rb(r) + ¢?)

3¢ M\ [3 5p, D 2
X{w_q+1v_p_%_Q]}

rrd 4w

(3.77)

3.6 Non-minimal curvature-matter coupling in f(R,T)
gravity

We will extend the results derived so far to the non-minimal curvature-matter coupling

in f(R,T) gravity for the case of CWHs. The relevant action is given by

5= /[ﬁ (R, T) + {14 Mfo(R)} (L™ + L) | V=gd'z, (3.78)

we will consider the simple case by considering f1(R,T) = R+ 2M\T and f2(R) = R,
thus using these in above equation and varying with respect to g** we get the following

gravitational field equations

G = 871! (3.79)

pv
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where

Tl = (14 MR) (T +T5,) + 2% |pRyuw — (VuVe — gw0)p]  (3.80)

nv
)\1 m D 1 m e
is the effective stress-energy tensor of f(R,T) gravity under coupling. We will use
the notations defined in Egs. (3.49) to (3.53). Thus for CWHs, in this case, the

gravitational field equations of interest are

1 5 p+pe  Mlp+pr)  AaprLy
S log(—gs_) — 4
Gi@i 2@:|: + @ié?i og( g+ ) WW{ 5 + . + W
Ao (p + pr) 2 AoLo
LT T ] BTN (3:81)
1 p—pr 3¢  Mlp—pr)Le . NoprLs
= — _ — . 4 —
0.0 0,6_+ = gi_ + WW{ i ey + = + T
XLy Xa(p+pr)la 3N2q? 9 MLz
— Li—Ls—4 Ly — .
oW T 4 Tompoyyz || Lrm L mArWLap = =0
(3.82)

Here we have used

Ly = 2UWW" —UW"?+WW'U, (3.83)
Ly = 2WUY"+WU'p' + pW'U, (3.84)
Ly = 4W?(1—-U —2rU"), (3.85)
L, = WU -W'U, (3.86)
Ly = WU +W'U, (3.87)
Lg = 1-U, (3.88)
L = —pi il o @ (3.89)

3 3 2mrd’
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From the effective stress-energy tensor (3.80), we can construct a vector ¥*// and

a function we/ as

VeIt = el g 0, + T ro_, (3.90)
and
2
eff — _, ety _ P Pr 3¢° MLz da(p—pr)Le | Aalp+pr)Ln
w g+— 2 871'7’4 A + r2 T 4W2
3h2q? 2 XoprLs — AaLo
+ tesyps |l La = ArW Ly |+ 2 - S0 (3.91)

Eq. (3.29), on using Egs. (3.81) and (3.82) can also be written as

e Al(p +p7‘) 2)\2(P +pr)
,fo — —ZWTh{(P+pr)+ i + 47“]21W 4W—T}2LW/U/—8T}LWU/
2\op, U’
+ Qp o AQ[)/U/}7 (392)
Th
and
1 2 dp. | Spr | ¢
ff — 1 _9 _ Al — R 2 — 47 Aop, U’
" oy~ 2mnle pTHQr;’;JF lr[ Py Ty Tga| T Amen
A , rr’ 4 )\ — Dy
U T 2rn(p + P )W'U" Awds(p — pr)
%% Th
3)‘2(]2 211777/ !
— 4 —4 . .
Wi raW U + 4r, WU 4% (3.93)
Eq. (3.90) in the component form becomes
VUW [(p+p A ALy AoprLy  Xa(p+py)
= 4+ rp A L) — d | —1*Ly + Ls| ¢
Ve > G Rt e Tl R
(3.94)

The gradient of MS energy on using the gravitational field equations (3.81) and (3.82)
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can be written as

2

3 A A
OLE = i27rr2\/UW{p— q +1[p—|—pr—2L7]+ 2b [L3+4W2L6]

8mrt 8w 4r2T/2

Moy 3hog?
- 22 [r2L1 ~ Ly - 4rWL4] } (3.95)

Thus UFL in non-minimal curvature-matter coupling can be formulated from Egs.

(3.91), (3.94) and (3.95) as

OLFE = AT + o, v, (3.96)
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Chapter 4

Thermodynamics of dynamical

wormbholes

In GR, in static traversable wormholes, the violation of NEC is the key ingredient.
However, it was shown that the NEC and WEC get some respect in some regions and
for certain time durations at the throat, in the case of time dependent (dynamical)
wormbhole solutions [65, 66]. These wormholes are the time generalization of MTWHs.
We will consider dynamical wormholes (DWHs) in this chapter with and without
charge and study their thermodynamics. The UFL and GSG will be investigated in
Einstein’s gravity. We also work out GSG for specific uncharged DWHs for different
cosmological models. Thermodynamic stability is also investigated. We will also use

the areal radius coordinates to investigate these thermodynamic workouts.

4.1 Uncharged dynamical wormholes

We consider uncharged DWHs in a cosmological background, which are generalization

of the MTWHs to a time dependent background [121],

2
j + TQdQQ s (41)

T

d
ds? = —e22@r) g2 4 a2(t) L T
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in coordinates (¢,7,0, ¢) where dQ? = df? + sin? 0d¢?. The radial coordinate 7 ranges
in [ryp, 0o]. Here the minimum radius r = r corresponds to the throat of the wormhole
which connects two regions, each region is ry < r < co. At r — oo this metric becomes
flat, a(t) is the dimensionless parameter called the scaling factor of the universe.
It tells us how our universe is expanding. It is known that the expansion rate of
our universe is increasing with time which implies @(t) > 0 or a(t) is an increasing
function of time (here over dot represents the time derivative). ®(t,r) is the redshift
function as it corresponds to the gravitational redshift. This function should be finite
everywhere in order to prevent the existence of an event horizon which is the necessary
requirement for a wormhole to be traversable and when r — oo this redshift function
should vanish. At the wormhole throat a coordinate singularity b(rq) = 7o occurs and
b(r) < r for r > r.

The flaring out condition for wormholes requires that o < b(r)/r at or near the
throat. These are the conditions on ®(¢,7) and b(r) which provide a traversable
wormbhole solution. It is clear that when ®(¢,r) and b(r)/r tend to zero then the met-
ric (4.1) becomes the flat Friedmann-Robertson-Walker (FRW) metric, and Morris-
Thorne metric is recovered when ®(t,r) = ®(r) and a(t) — 1. Here in this paper we
take ®(t,r) = 0 so that the wormhole metric (4.1) takes the form

2

d
ds? = —dt? + a2(t) L’;U 42402 . (4.2)

r

Now for the stress-energy tensor we take the perfect fluid which is completely

described by its energy density and isotropic pressure [121], with components

T = —p(t,r), T] = po(t,r), T) = T) = pilt,r), (4.3)

T

where p(t,r), p.(t,r) and pi(t,r) are, respectively, the energy density, radial pres-
sure and tangential pressure. For isotropic pressure p,(t,7) = pi(t,r), otherwise the

pressure will be anisotropic.
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Using null coordinates (z*, z7), the metric (4.2) can be transformed into the form

ds® = 29, _dr"dz~ + R*d?, (4.4)
where
dt dr
drt = — + —— 4.5
Y (4.5)
and
dt d
de™ = — — 77“’ (4.6)
a 1%

here ™ corresponds to the outgoing radiation and z~ to the ingoing radiation. Here
R and g, = —a?/2 are functions of the null coordinates (™, z~), that correspond to
the two preferred null normal directions for the symmetric spheres 0y = 9/dz*, and
R = a(t)r is the so-called areal radius and dQ? is the metric for the unit 2-sphere.

Now, we define the expansions as
Or=—-0+tR=aH+ —/1——. (4.7)
A sphere is trapped if ©,0_ > 0, which yields
b
PR -1+ % >0, (4.8)
R
untrapped if ©,0_ < 0, yielding
b
PR -1+% <o, (4.9)
R
or marginal if ©,0_ = 0, giving
ab

H?R? — 1+ 7 =0 (4.10)
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where H = a/a is the Hubble parameter. Here, for the trapping horizon, we choose
0_ =0, (4.11)

where the symbol (=) henceforth shows evaluation on the trapping horizon R, =

a(t)ry, which gives the expression for the trapping horizon as

ab
HR —/1— —=0. 4.12
R—/ I 0 ( )

Note that the choice ©_ = 0 corresponds to expanding universe (@ > 0), on the other
hand if we chose ©, = 0, then it will lead us to the contracting universe (a < 0). Also
note that unlike the static MTWHs, the trapping horizon and the throat of uncharged
DWHs do not coincide. In the case of static MTWHSs the trapping horizon is given
by b(rg) = ro which is also the value of the shape function at the throat. But in this
case, because of the presence of the scaling factor a(t), they do not coincide. This

trapping horizon is future if ©, < 0 (or equivalently 0, R < 0), giving

b
HR+M1—%§<Q (4.13)

past if O, > 0 (or equivalently 0, R > 0), giving

HR+4/1—— >0, (4.14)

E

and bifurcating if O, = 0 (or equivalently 0, R = 0), giving

HR+4/1—— 0. (4.15)

Note that since we have made choice ©_ = 0 which corresponds to expanding universe

(a > 0), this makes the trapping horizon to be past as can be seen from Eq. (4.14),
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while Egs. (4.13) and (4.15) are not satisfied for @ > 0. In our case on the trapping
horizon ©, > 0 and ©_ = 0. Thus, in case of expanding universe, it is the ingoing
expansion which changes sign across the trapping horizon and vanishes on it while
the outgoing expansion keeps the sign same. Therefore, inside the trapping horizon
we have ©. > 0 and outside the trapping horizon we have ©, > 0 but ©_ < 0. This
implies that inside the trapping horizon HR > \/m, on the trapping horizon
HR = m and outside the trapping horizon HR < m. Further, this

trapping horizon is outer if 0,0 _ < 0, giving

H (ab — RV)

—_ 2 —_—

o tH T <0 (4.16)
inner if 9,0_ > 0, giving

H (ab — RY)

S A — 4.1

5 + Y 0, (4.17)

or degenerate if 0, ©_ = 0, giving

H ., (ab—RV)
o P T

I

0. (4.18)

4.1.1 Generalized surface gravity of uncharged dynamical

wormbholes

The MS energy for uncharged DWHs (4.2) can be expressed as

1
FE = iR(l — 0°RO,R) = ];(1 — 29770, RO_R), (4.19)
which gives
R ab
E==|H’R*+—=]|. 4.2
5 [ R*+ R] (4.20)

On a trapping horizon this expression reads £ = R/2.
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Now the Einstein field equations (2.8)-(2.10) take the form

1
0104 = —591 + ©40+ 10g(—g+_) — 8Ty 4, (4.21)
1
8T
@Jr@, == —8+@7 - 3,@+ - ﬁTQ@, (423)

where the components of stress-energy tensor, on solving Eq. (2.24), in this case take

the form
2
T,, = T = a(p;rp’”), (4.24)
20, _
T+_ — T_+ — a’(p4p'r‘)7 (425)
Ty = Rp,. (4.26)

The Kodama vector in null coordinates is given by

K= —g+7(3+R(9, — Q,R&F), (427)

which for spacetime (4.2) in covariant form becomes

a ab
Ky=—|+HR 1——=. 4.28
+ 5 ( + R) (4.28)
The magnitude of K is
K> = 2y (4.29)
=% : .

Note that |K|* = 0 on the trapping horizon ©_ = 0.
The trapping horizon is provided by this Kodama vector which is null on a hy-

persurface 0_R = 0. Now, the GSG & on a trapping horizon can be expressed as

KQV[[,Ka} = :l:/{Kb. (430)
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For metric (4.2) the surface gravity on trapping horizon becomes

HR 1 )

12

K

which on using Einstein field equations (4.21) and (4.22) can be written as

k= —-HR— H’R—27R(p+p,), (4.32)
and

~ L R orr(r—p) (4.33)

/<;_R2 7rw-2R TR(p — pr). .

This surface gravity, from Eq. (4.30), equivalently, can also be expressed as
1 ab
K = 59 0.0 R, (4.34)

on a trapping horizon. It follows that x < 0, kK = 0 and x > 0 for inner, degenerate
and outer trapping horizons, respectively.
The Hawking temperature is T = —k/27 which, in our case from Eq. (4.31),
becomes .
K 1 HR

1
P — B 2 —_ J— /
o 5 5 H R+4R2 (ab—VR)|, (4.35)

I

T

which is negative for the outer trapping horizon since x > 0.

4.1.2 Unified first law for uncharged dynamical wormholes

We can formulate the UFL for uncharged DWHs, in the same manner as for MTWHs,
due to their spherical symmetric nature. Using the stress-energy tensor of the back-
ground fluid we construct a function, w, and a vector, v, in the local coordinates

as
P — Pr

w = _ng*T—i__ = 9 )

(4.36)
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and

W =T"0,R0, + T ~0_Ro_. (4.37)

In components form it can be written as

y = (,O-ZPT) (—aHRiaM) . (4.38)

Now the UFL can be written by taking gradient of the gravitational energy and using

Einstein field equations as

0+F = Ay + woiV, (439)

b
0. E = 21aR? (ipm - % - HRpT> , (4.40)

where A = 47R* and V = 47 R3/3 are the area and areal volume of the spheres of

with

symmetry and the corresponding flat space, respectively.

The variation of gravitational energy is always positive in the outgoing direction
because p > 0 and p, < 0, however, in the ingoing direction, it is positive inside
the trapping horizon while outside the trapping horizon its sign depends on how
much exotic matter is present there, for large amount of exotic matter it should be
positive. The work term is also positive in the outgoing direction, as energy density
w is positive besides the fact that energy conditions are not satisfied. In the ingoing
direction this is positive inside the trapping horizon and negative outside the trapping
horizon. The sign of energy supply term depends on the sign of p + p, (in case of
black holes this term corresponds to the fluid which provides energy to the spacetime
and respects NEC, hence positive, while it is negative in the case of wormholes where
fluid removes energy from the spacetime and violates NEC). Thus in the outgoing
direction it is positive inside the trapping horizon and negative outside the trapping

horizon. However, in the ingoing direction this term is always positive in our case

(p+pr <0).
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On the trapping horizon (0_ R = 0), in the outgoing direction, energy flux vanishes
while both variation of gravitational energy and work term are positive. Thus change
in gravitational energy equals the work done in the wormhole on the trapping horizon.
In the ingoing direction, on the trapping horizon, work term vanishes while both
variation of energy and energy flux are positive. Thus change in gravitational energy
equals the energy supply and no work is done on the trapping horizon.

At the throat, all the terms enetering in UFL, the variation of gravitational energy,
energy supply term and the work term, are always positive both in the outgoing as

well as ingoing direction.

4.1.3 Thermodynamic stability of uncharged dynamical worm-

holes

In this section we study the thermodynamic stability of wormholes under considera-
tion using the variables E,T,S, P and V. We follow the usual criterion for thermo-
dynamic stability, that is % |lr<0and Cp > Cy > 0, where P = (P.+2P,)/3 is the
average pressure and Cp and Cy are specific heats at constant pressure and volume,
respectively.
We subtract Eq. (4.32) from (4.33) and rearrange the terms to obtain
1 H+H
87 R? 47

Solving Eq. (4.23) on the trapping horizon and using the definition of GSG and

Hawking temperature, yields

a*T
From Eqs. (4.41) and (4.42) we obtain the average pressure P as
= Dr + 2py 1 H + H? a’*T
P _ _ _ 4.43
3 247 R? 127 3R’ (443)
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which is the equation of state in three state parameters 7, P and V. From this
equation we can analyze the thermodynamic stability of wormhole.

Stable equilibrium of a thermodynamic system requires that % |7< 0 where

opP (4m/3)%/3 (4w /3)Y/3a®T

— |r= 4.44
v = 36rye7a 9gy/4/3 (4.44)
Now, to ensure the stable equilibrium we must have
< L (4.45)
~  4ma?*R’ '

thus the temperature assumes negative values everywhere for stable equilibrium which

is attributed to the exotic matter. From Eq. (4.43) we have

_ 1 H+ H?
P> — ) 4.46
— 247 R? 127 ( )

If the scale factor is a linear function of time then ¢ = 0 and then P will assume the
positive values everywhere, otherwise it could be negative somewhere.
Another condition for stable equilibrium is C'» > Cy, > 0. Now since, the constant

V' means constant £ and S so by the definition of Cy,

E
0 E— (4.47)

Cv =57 v=Tgz

which means we can define heat capacity only at constant pressure as

oS (247 PR? 4+ 2HR? + 2H?R? 4 1)27R?

Cpr=T-= |p= _ - , 4.48
p=Toplp 247 PR? + 2HR2 + 2H2R? — 1 (4.48)
where from Eq. (4.43),
1 _ 1 HR+ H?R
T =_—-—_ P . 4.4
a? <3R + TR * 4 ) (4.49)
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Now from Eq. (4.46), to ensure the stable equilibrium, we can take the value of P,

for any non-negative ¢, as

_ 1 H + H?
P = - ) 4.
24m R? 1or € (4.50)

Thus Eq. (4.48) on using Eq. (4.50) takes the form

1
Cp=— +21R% (4.51)
6€

which is always positive. Thus the uncharged DWHs could be thermodynamically
stable. This means that for stable equilibrium the average pressure is always positive
for linear scale factor, however it may also have negative values for non-linear scale
factor while temperature is always negative as is also depicted in Ref. [71] in which
the possibility of negative temperature emerging from the exotic matter distribution

was proposed.

4.1.4 Generalized surface gravity for wormholes with and

without the cosmological constant

In this section we consider wormholes of different shapes in different cosmologies with
and without the cosmological constant A. We will analyze these for anisotropic fluid
where radial and tangential pressures satisfy p, = w,p and p, = wyp. Clearly for

w, = w; pressure becomes isotropic.
Static wormholes

Here we discuss static wormholes for cosmological constant (A = 0). In the static
case (a(t) = 1) we take shape function b(r) = 7"0(%)_1/“”. Here w, is a constant state

parameter, satisfying p, = w,p and p; = —%(1 + w,.)p, where p, and p; are radial and
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tangential pressures while p is the energy density. For this case the metric (4.2) takes
the form [158]
dr?

2 42 2 2
ds® = —dt* + 1= (r Jr)~0Fa/or + 7r°dQ”. (4.52)

In the range w, < —1, we have asymptotically flat wormhole metric with positive
energy density while for w, > 0 the energy density becomes negative but still we
have an asymptotically flat wormhole. This static traversable wormhole was first
considered in Ref. [43]. In the static case we have a bifurcating trapping horizon on

the wormhole throat location, r, = ry. The Kodama vector in this case becomes

1
K. — _5\/1 — (1 /o)~ (twe) /e (4.53)

Finally, the surface gravity from Eq. (4.30) when evaluated on the trapping horizon

r =1, = ro takes the form

R 1:;5 (4.54)
Evolving wormholes with A =0
We discuss a non-static wormhole with shape function
b{r) = rol) ™ () = k() (4.55)

in the background of a cosmology with the scale factor a(t) = tv/—k+ F, where k and
F are constants and w, satisfies the same conditions as discussed above for the static
case. This shape function also satisfies the near throat conditions discussed earlier.

With these values the wormhole metric can be written as [158]

dr?
T (o) T R+ R () (T

r
To

ds® = —dt* 4+ (v —kt+F)? ( + r2d§22> :

(4.56)
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Here k = —1,0, 41 correspond to open, flat and closed universe, respectively. In the
above case must have & < 0 for preserving the Lorentzian signatures. Otherwise, for
k > 0 the signatures changes to the Euclidean one giving rise to Euclidean wormholes.

The trapping horizon for this metric is given by the expression

vk V 1 (rafro)-henfor — krg("y2 4 kg0 =0, (4.57)

To To

whereas the Kodama vector in the component form becomes

VR AF r
2

K= )_(I‘H'Jr)/wr

To To

(i\/ —kr + \/1 — (r/ro)~(twr)fwr — kr%(L)Q + krd(
(4.58)
Finally, the surface gravity from Eq. (4.30) on trapping horizon takes the form

r

[12

) kr 1 [(1 + wy)ro(1 — kr)

vk ) R (Lyver = amr(C ).

Wr To To

(4.59)
Inflating de Sitter wormholes

When we include the cosmological constant, the wormholes do not remain asymp-

totically flat and the expansion of the wormhole is accelerated. Here we discuss a case

+£+/A/3t

of exponential scale factor a(t) = ape for A > 0. For this scale factor we take

-1

the shape function b(r) = ro(~)~1/%", so that the wormhole metric takes the form

ro

dr?
1 — (r/rg)=(twr)/wr

ds? = —dt? 4 a2e*2V A3 +r2dQ?| (4.60)
describing contracting and expanding wormholes. The positive sign in this scale
factor represents inflation giving exponential expansion of an inflating wormbhole.
These wormholes were first considered in Ref. [64]. This wormbhole is asymptotically

de Sitter for w, < —1 with positive energy density everywhere, while for w, > 0 the
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energy density is negative everywhere and the wormhole solution is still asymptotically
de Sitter universe. When A vanishes we obtain the static case discussed earlier. For

these wormholes the trapping horizon is given by the expression

+ ag\/A/3eEVA By, — \/1 — (rp/ro)~(twn)/wr = 0, (4.61)

whereas the Kodama vector in the component form is given by

otV/A/3t

K, — _aﬂf (iao(i\/f/@@i\/A_/Btr +4/1- (r/ro)—uwr)/w) L (4.62)

yielding the surface gravity

o arAetVA N ro(1+ wy) ( r -1/
a 3 Qagw,r2eTVA/BL To -

K (4.63)

Evolving de Sitter wormholes in closed universe

Now we discuss the more general case when A # 0, and the shape function is
given by Eq. (4.55). As the cosmological constant is nonzero, the wormhole is not
asymptotically flat. For different values of constant k& we can have different kinds of
scale factors discussed in detail in Ref. [121]. For k£ =1 and A > 0, we take the scale
factor given by a(t) = \/% cosh(\/gt + ¢o) where ¢q is a constant. With these values

the de Sitter wormhole of a closed universe becomes

ds® = —dt*

+ icosh?( §t+¢o) i’ +7r2d0? ) .
AT L (rro)~nlor = ()2 4 ()~
(4.64)
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The trapping horizon for this wormhole is given by the expression

R

~(Hwr)/wr = 0. (4.65
To TO) ’ ( )

Sinh(\/§t+ bo)TH — \/1 — (rp/1o)~rwn)for — p2(

and the Kodama vector in the component form is given by

3 A
P \/;cosh<\/;t + o) ( + smh(\/gt + o)

2

+ \/1 —(r/ro)~ (I4wr)/wr — ( 24 <r> (1+Wr)/w7°>. (4.66)

To To

Evaluating Eq. (4.30) on the trapping horizon gives for the surface gravity

N VAr \/X VAr tanh(\/gt + ¢0) sinh(\/gt + ¢o)
K ~93 cosh( gt-l-(?o)— 23
- VA (L+w)ro(l=78) 7 1/ 3 3]
T G -y e

Evolving de Sitter wormholes in open universe

If in Eq. (4.55) we take k = —1 then for A > 0 the scale factor is given by
a(t) = \/% sinh(\/gt + ¢p) and the wormhole metric takes the form

ds* = —di’

+ 2?2+ go) o’ 4 r2d0? )
A 3 L — (r/ro)~(renfor 4§ ()2 — rg ()~ (Hen/er
(4.68)

In this case the expression for the trapping horizon is

Tn Tn

P =3t

—(1+w7-)/wr — 0 469
To TO) ( )

A
COSh(\/gt + do)rn — \/1 — (rn/mo) ~(rwn)fer 4 rg(—
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and the Kodama vector takes the form

3 gj A
K, — _\ff\smh(\/;t—i_w<:|:c0sh(\/§t—|—¢0)r

2

" \/1 = (rfro) (el (2 —»ra<7”>-<L*“”/“T)- (4.70)

To To

Thus surface gravity on trapping horizon becomes

VA \/K VAr coth(\/gt + ¢o) COSh(\/gt + ¢o)
PR —2\/§smh( §t+¢0)_ 23

4r2\/§sinh(\/§t+¢o)l w, (ro) +2 0(7,0) (4.71)

Evolving anti-de Sitter wormholes in open universe

Finally we discuss a case of negative cosmological constant (A < 0) with & = —1
in Eq. (4.55). We take the scale factor as a(t) = \/52sin(y/5* + ¢y), so that the

wormbhole metric can be written as

-3 —A
ds* = —dt* + e SIHQ(\/?t + ¢o)

dr? )
dQ?) . (4.72
’ Q—vmomwM+@qy—%w>mww+r ) .

0

Its trapping horizon is given by the expression

“A
cos(,/7t+¢o)rh— ¢ 1 — (rfro)~(+en/wr 4 p2(Ty2 2 (Thy—twn e = 0, (4.73)

To To
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and the Kodama vector takes the form

=3¢ —A
K, = - \/Tsm(\éjt ) ( + COS(\/ _?)At + ¢o)r

" V L= (rfro)~(H4en)er ()2 - ra<7°>—“+“’“””)- (4.74)

To To

Using all these expressions the surface gravity becomes

V=Ar ( _—AH- ) \/—_Arcot(\/%t+¢o)cos(\/%t+¢o)

73 sin 3 Po) — 23
) Wy [a+wmu+%> e 73Tﬂ
1r2/Bsin( 2 + o) wor (e w2 (47)

~

r

4.1.5 Areal radius coordinates

Sometimes it is useful to employ areal radius R = a(t)r as a coordinate instead of r.
The Schwarzschild-like coordinates are one of this kind of coordinate systems. Also,
these systems provide what are called the pseudo-Painleve-Gullstrand coordinates
[159]. Using the areal radius, metric (4.2) can be written in the pseudo-Painleve-

Gullstrand form as

1—-% _ R2f? dR? 2H
ds? — — [ R ] dt? + Rab — i dtdR + R*dQ?, (4.76)
% (1-%) (-%)

As required in the Painleve-Gullstrand coordinates the coefficient of dR? is not unity
[160].
To obtain the Schwarzschild-like form we define a new time 7" by using the trans-

formation
1

dr
F

(dt + BdR) , (4.77)
where F' is the integration factor which satisfies

0 1 0 B
() = 5 (), (4.75)
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Here (¢, R) will be chosen later. Using Eq. (4.77) in Eq. (4.76) implies

1 —a _ R2p2 1+2HRB — (1 — % — R2H?) B2
ds? = — [ ] F2dT? + ( = ) dR?
I — % =%
[2FB(1—% — R?2H?) —2HRF
- (1-% - ) dTdR + R*dQ?. (4.79)
L "R
The cross term d7'dR is eliminated if we choose
HR
= . 4.80
Thus metric (4.79) takes the diagonal form
1— % R2H?
ds® = — l K Z ] F2dT? + L —a RQHQ] dR? + R*dQ?, (4.81)

where F' = F(T, R), a and H depend on T implicitly.
This metric (4.81) can be put in the form of (4.4) by using null coordinates x* =
T+ R, and = =T — R, where

1—%— RH*F
dR/dR, = |- T = Lo } . (4.82)
9RR 1 — ab

The trapping horizon in this case is given by ©_ = %ELR = 0 which gives

(1 — CZ)’) ~ H*R*. (4.83)

Here we have bifurcating trapping horizon as ©_ = 0 implies ©, = 0.

The MS energy, energy flux and energy density are given, respectively, by

E = ]; ll - [1 - ‘Z’ — RQHQ] F] , (4.84)
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1—%— RH*F
)

,lvb:l::j:(p_}—pr i b ;
41— 2

(4.85)

(4.86)

It may be noted that £ = R/2 on the trapping horizon only. Now, with the quantity

o b 2Ry 1% - RH?| F

which on using Einstein field equations takes the form

E
K= =2nR(p+p,) = = 47 Rw.

4.2 Charged dynamical wormholes

(4.87)

(4.88)

(4.89)

(4.90)

In this section we will consider DWHs which contain electric charge. Their static

version has been discussed in detail in Chapter 3. Thus these wormholes generalize

the wormholes which we have discussed in the previous chapters. We investigate UFL

and GSG of these wormholes in Einstein’s gravity and study their thermodynamic

stability at the end. The charged extension of metric (4.1) can be written as

2 ®(t,r) ¢\ o 2 dr’ 2 1092
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If we take a(t) = 1 we obtain the (static) CWHs [157]. The charge act as extra
matter in addition to exotic matter. Now, the effective redshift function is described
as @p(t,r) = 11In(e*®®) + g% /r?), which should be finite everywhere for the absence
of event horizon and should vanish at infinity. Here we will consider ®.ss(t,7) = 0
throughout this chapter. The traversability conditions, effective throat and effective
shape function have already been discussed in detail in Chapter 3.

Now metric (4.91) can be transformed into the form (4.4) by introducing

dt d
dot == + U— (4.92)
« i-gi
di d
dr= == — — (4.93)
« Vi-g
and
CL2
gi- =5 (4.94)

The expansions in this case take the form

2 a ab  a?q?
= — = —HR+\|1——=+—-,. 4.
O+ Ra:tR I { R \/ 7 + 7 } (4.95)
For trapping horizon we chose ©_ = (, which gives
ab  a?q?
HR —{/1— —+ — =0. 4.96
\/ 7 T R (4.96)

which corresponds to the case a(t) > 0 and it corresponds to the expanding universe.
On the trapping horizon we have ©, = 2aH which is positive thus the trapping hori-
zon is past. Thus, in our case on the trapping horizon ©, > 0 and ©_ = 0. Inside the

trapping horizon we have ©, > 0 and outside the trapping horizon we have ©, > 0

but ©_ < 0. Therefore, inside the trapping horizon HR > \/1 —ab/R + a?¢*/R?, on

the trapping horizon HR = \/ 1 —ab/R + a?¢?/R? and outside the trapping horizon
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HR < \/ 1 —ab/R + a%¢*/ R?. However, it may be outer, inner or degenerate depend-
ing on the sign of 9, ©_ as positive, negative or zero, respectively, on the trapping

horizon, given by

H ab—VR 2a2¢*
_ “q} (4.97)

_gQHQ -
0+ a{ T Tar TR

4.2.1 Generalised surface gravity and UFL for charged dy-

namical wormholes

The MS energy for charged DWHs takes the form
R b 2.2
E:z{HQRMT—“R%}, (4.98)

which is positive. This expression, on trapping horizon, becomes £ = R/2. The

Einstein-Maxwell field equations (4.21)-(4.23) are

1
0+04 = —591 + 0,04 10g(—g+_) - 27TCL2(,0 + pr), (499)
1 N 3a'q?
8i@¢ = —®+@_ + ﬁg_t,__ + 2ma {p — Pr — m s (4100)
a4q2
@Jr@, = —({L@, — 8,@+ — 87 {pt + 87TR4} s (4101)

where the stress-energy tensor 7, is the sum of the matter part T’ 517) and electro-

magnetic part lgi), ie, T, = }ST) + T;Ef,). Here From Eq. (2.24), in this case, we
have used
2
T, = T _= W, (4.102)
2 —p, — 3 4.2 4 R4
VR R Ul 4‘” ¢ /AR (4.103)
atg?
T R? 4.104
66 (pe + g —7) (4.104)
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Solving Eq. (4.30) on the trapping horizon, the surface gravtiy &, in this case, is

found to be _
HR ab— VR a’¢?
~ _— _H°R — : 4.105
e TTUR TR (4.105)

This, on using Eqs. (4.99) and (4.100), can also be written as

k= —HR— H’R —27R(p +p,), (4.106)
and

_F 1 3alq?

The derivative of MS energy, on using Eqs. (4.99) and (4.100), can be written as

3atq? ab  a?q? 3a*q?
2

From the stress-energy tensor, 7}, = Tgy + T we can construct a function

v
__p—p 3¢
— g, Tt = . 4.1
w g+ 2 87TR47 ( 09)
and a vector
a(p+pr) \/ ab  a?q?
= {1l - =+ ——H . 411

Ve 1 { R HE (4.110)

Thus the UFL (4.39) can be formulated using Eqs. (4.108), (4.109) and (4.110).

We must be careful about the conditions that govern the signs of the terms involved
in UFL. We note that the energy supply term is always positive in the ingoing direction
as p+ p, < 0. In the outgoing direction, it is positive inside the trapping horizon and
negative outside the trapping horizon. The work term, in the outgoing direction, is
positive if (p — p,) > 3a'¢? /47 R* and negative otherwise. In the ingoing direction,
inside the trapping horizon it keeps the same behaviour while outside the trapping

horizon its behaviour reverses. The gradient of MS energy, in the outgoing direction,
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is positive if p > 3a*¢q?/87R* and —p, > 3a*¢?/8TR* while it is negative if p <
3atq? /87 R* and —p, < 3a’¢?/8nR'. In the ingoing direction, inside the trapping
horizon it is positive when p > 3a*¢?/87R* and —p, > 3a'¢?/87R* and in the range
p < 3a'¢’/87R* < —p,. Outside the trapping horizon it is positive when p <
3atq? /87 R* and —p, < 3a*q?/8mR*, and in the range p < 3a*q*/8TR* < —p,.

On the trapping horizon, in the outgoing direction, the gradient of MS energy
and the work term are equal and they can be positive or negative, depending on
the amount of charge in the wormhole. In the absence of charge these terms are
positive, also if p — p, > 3a’q?/47R?* then these terms are positive. However, they
can get negative if large amount of charge is present in the wormhole such that
p — pr < 3a*q*/AmR*. The energy supply term vanishes on the trapping horizon in
the outgoing direction always. In the ingoing direction, the gradient of MS energy
and the energy supply terms is same and always positive while the work term vanishes
on the trapping horizon.

At the throat, in both the directions, ingoing and outgoing, the energy supply
term is always positive, however, the other two terms are positive for small quantity
of charge while negative for large quantity. Thus, when there is less amount of charge
in the wormhole such that (p — p,) > 3a¢?/47R* then all the terms appearing in
the UFL are positive. If more charge is added such that —p, = 3a*¢?/87R* then
the gradient of MS energy vanishes while the energy supply term and the work term
become equal in magnitude but their signs are not same. If (p — p,) = 3a'¢® /47 R*
then work density vanishes while gradient of MS energy and energy supply term
becomes same. Here we also note that if both the conditions —p, = 3a'q?/87R?* and
(p — pr) = 3a'q?/An R* are met at the same time then this will ensure that p = —p,,
and thus it will respect the NEC. Thus exotic nature of the material supporting the
wormhole may be lost. Thus both the conditions cannot be met at the same time in
the case of a wormhole supported by exotic matter. If more charge is added to the

wormbhole such that —p, < 3a'¢?/87R*, then the gradient of MS energy and the work
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term become negative, however, the energy supply term is still positive. This means

that increasing charge induces an increase in work density in the negative direction.

4.2.2 Thermodynamic stability of charged dynamical worm-
holes
We will examine thermodynamic stability of charged DWHs, in this section, using

the same criterion discussed earlier for uncharged DWHs. We subtract Eq. (4.107)
from (4.106), obtaining

1 H+H? 3d*¢?
STR2 A STRY

Py = (4.111)

Solving Eq. (4.101) on the trapping horizon, using the definition of surface gravity

and Hawking temperature, we get

a’T a*q?

2pp = —— — ——. 4.112
PETTR T iR (4.112)
From Eqs. (4.111) and (4.112), the average pressure P can be found as
_ pt2 1 H+H? T 1q?
pobrtep A HE o Saqn (4.113)
3 241 R? 127 3R 24nR*

The thermodynamic stability can be analyzed from equation of state (4.113). Taking

derivative of this with respect to V' at constant temperature, we get

(4.114)

v 7= 36x1 9y/4/3 59049V7

P  (47/3)*3  (4m/3)V3a2T 42< 32 )1/3
oV

Now, for stable thermodynamic equilibrium of a thermodynamic system, we must

have g—‘lj |7< 0 which is ensured for

2 4.2
T<—R + 10a*q

4.11
- dra? R3 ( 5)
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This negative temperature can be attributed to exotic matter. Solving Eqgs. (4.113)

and (4.115), we find
' 2 4,2
B> 1 H+H 15a*q

— . 4.116
— 247 R? 127 + 241 R4 ( )

If the scale factor is a linear function of time then ¢ = 0 and then P will assume
positive values everywhere, otherwise it could be negative somewhere.
Another condition for stable thermodynamic equilibrium is Cp > Cy > 0. Now,

since constant V' means constant E and S so by the definition of C',

E
0 o5 lv=0, (4.117)

Cv =57 =Tz

which means we can define heat capacity only at constant pressure as

08 (247 PR* + 2HR* + 2H?R* + R? + 5a*¢®)2n R?

Cp=T— |p= _ : , 4.118
P T P e PR 2 R T 2H R — R — 15atq? (4.118)
where from Eq. (4.113),
r——Luppy L HRAIR Sid (4.119)
a2 8TR 47 STR3’ '

Now, from Eq. (4.116), to ensure the stable thermodynamic equilibrium, we can take

the value of P, for any non-negative e, as

1 H+ H? 15a%¢?

P = - : 4.120

2ArR: 127 24mRi € (4.120)
Thus Eq. (4.118) on using Eq. (4.120) takes the form
1 S5atq?

Cp=—+21R? : 4.121

P 6e Temht 3R%e ( )

All the terms appearing in the above equation are positive which ensures Cp > Cy >

0. Thus charged DWHs could be thermodynamically stable.
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Chapter 5

Summary and conclusion

In this thesis we have studied traversable wormholes and their thermodynamics in
Einstein’s gravity and alternate theories of gravity. We have studied MTWHs as well
as DWHs, with and without electric charge. For our purpose we have used a 2 + 2
formalism developed earlier [44, 45, 84, 92] and extended its application to DWHs. In
this formalism thermodynamics of spherically symmetric spacetimes is studied using
an approach which uses the local coordinates to discuss black holes and wormholes
(both are characterised by the presence of outer trapping horizons). We have applied
the formalism that uses the local quantities instead of global quantities to study
thermodynamics of spacetimes. These local quantities allow us to find the trapping
horizon, which is a generalization of the Killing horizon, on which Kodama vector,
a generalization of the Killing vector, becomes null. The union of all the trapped
surfaces form a trapping region and the boundary of a trapping region is called a
trapping horizon which is the surface foliated by marginal spheres on which one of
the null expansions becomes zero. Thus, equivalently, on trapping horizon light rays
travel parallel to each other in either direction, ingoing or outgoing or both, with no
increase or decrease of distance in between them which shows that the area of the
sphere is constant there.

There are different types of trapping horizons depending on the sign of expansions
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and their derivatives. In the static case (MTWHs and CWHs) we have a bifurcating
trapping horizon which results in neither expansion nor contraction of outgoing and
ingoing light rays and this horizon coincides with the location of the throat. However,
in non-static case (DWHs) we have a past trapping horizon which corresponds to the
expanding universe.

Here, in this thesis, we have considered MTWHs, CWHs, uncharged DWHs and
charged DWHs and discussed their thermodynamics in GR and f(R,T) gravity and
further considered non-minimal curvature-matter coupling as well for the case of
MTWHs and CWHs. Due to the spherically symmetric properties of these space-
times, the Hayward technique is applicable to discuss the thermodynamic properties
of these spacetimes as well. In these wormhole spacetimes Killing horizons do not
exist despite the presence of the Killing vector so that the surface gravity could not be
found by using the Killing vector, hence the usual definition of finding surface gravity
is not applicable here. But the Kodama vector, a generalization of the Killing vector,
still exists that reduces to the Killing vector if there is vacuum. This Kodama vector
allows the presence of trapping horizon which can be used to derive the GSG. Thus, in
this case, the Kodama vector and trapping horizon play the role of the Killing vector
and Killing horizon, respectively. Using this technique, the expression of the GSG
has been derived in each case. This GSG is positive, negative or zero for outer, inner
or degenerate trapping horizons, respectively. In our case of outer trapping horizon
we have positive GSG and equivalently negative Hawking temperature. However, one
could avoid this negative temperature by making claim that this is the problem only
at horizon, but ingoing radiations appearing at one mouth of the wormhole, following
the classical trajectory, would reappear as outgoing radiation on the other mouth of
the wormhole, unavoiding this negative temperature. This is not surprising as worm-
holes are argued to be constructed by phantom energy which may be characterized
by negative temperature. Thus wormholes emit radiations associated with negative

temperature in the same way as black holes emit radiations associated with positive
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temperature. Later on this expression becomes the part of the first law of wormhole
dynamics which is obtained from the UFL by projecting it along the trapping horizon.

The UFL is obtained from the MS energy by taking its gradient that results in two
terms, on using the gravitational field equations, the energy removal term and the
work term. In Chapters 2 and 3 we have considered MTWHs and CWHs. We observe
that in GR, in the static case (MTWHs and CWHs), all the terms entering UFL,
vanish on the trapping horizon (throat) of the wormhole. This results in no evolution
of the throat and, in general, the variation of gravitational energy and the work term
have same signs (positive in outgoing direction and negative in ingoing direction)
opposite to the energy removal term. However, in the case of uncharged DWHs,
discussed in Chapter 4, there is a variation of sign in different regions of the spacetime.
Here, in uncharged DWHs, the situation is different; first of all the trapping horizon
and throat do not coincide here and different behaviour of terms appearing in UFL
is observed. We note that, on the throat, all the terms entering UFL are positive
both in the ingoing and outgoing directions. Thus, the direction does not matter
on the throat in the case of uncharged DWHs. However, on the trapping horizon
we observe that the energy removal term and the work term vanish in the outgoing
and ingoing directions, respectively. This means that the variation of gravitational
energy and the work terms are equal and positive in the outgoing direction, and in the
ingoing direction the variation of gravitational energy and energy supply terms are
equal and positive. Inside the trapping horizon, all the terms appearing in the UFL
are always positive both in the outgoing as well as ingoing direction. Outside the
trapping horizon, the variation of gravitational energy and work terms are positive in
the outgoing direction but the energy removal term is negative, while in the ingoing
direction the variation of gravitational energy is also positive provided enough amount
of exotic matter is present there, however, the energy removal and work terms are
positive and negative, respectively.

We have discussed wormholes in different cosmological models, with and without
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the cosmological constant, in Chapter 4 for their thermodynamic properties. These
include de Sitter and anti-de Sitter wormholes in open, closed and flat universes.
Further, we have discussed cases of asymptotically flat and asymptotically de Sitter
wormbholes as well.

We have also extended our results to the charged DWHs in Chapter 4. By carefully
observing the terms in the UFL we note that the behaviour of the energy supply
term is the same as in the case of uncharged DWHs in each region and in both
the directions. However, gradient of the MS energy and work terms are affected by
different amounts of charge. When p — p, > 3a’¢?/47R* then both the terms show
similar behaviour as in the case of uncharged DWHs. If p — p, < 3a’¢*/47R* then
the sign of the work term becomes opposite to that in the case of uncharged DWHs.
However, the gradient of MS energy reverses its sign always in the outgoing direction.
In the ingoing direction, its sign is same on the trapping horizon and also other than
the trapping horizon (provided p < 3a%q?/87R* < —p, holds) as in uncharged DWHs,
but it reverses its sign on the throat and other than the trapping horizon (provided
p < 3a'q®/8TR* < —p, does not hold).

Further, a non-minimal curvature-matter coupling has been considered in MTWHs
and CWHs, due to which the gravitational field equations when written in the form of
the Einstein tensor replace the role of the stress-energy tensor with an effective tensor
that consists of the normal matter and curvature stress-energy tensors and reduces
to the normal matter stress-energy tensor if the coupling constant Ao — 0. These
results have been further generalized to the case of f(R,T) gravity. The results of
non-minimal curvature-matter coupling and those derived in f(R,T) gravity reduce
to the results derived for the Einstein’s gravity when Ay — 0 and A\; — 0, respectively.

Thermodynamic stability has been discussed in GR for the wormholes. In the case
of MTWHs and CWHs we have discussed thermodynamic stability for the specific
case & = 0. The MTWHs are thermodynamically stable when the temperature 7' <

—1/4nr and the average pressure P > 1/24mr?. This negative temperature could be
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attributed to exotic matter. It was found that the CWHs are also thermodynamically
stable provided

r? 4+ 10¢>
T - )
473 + 127rq?
p 1 5¢> (r? +10¢%)(r? + ¢?)

S 24mr? 247t 12776 + 367rig?

thus temperature is also negative in this case, however, the average pressure may
assume negative values unlike the case of MTWHs. In the case of uncharged DWHs

thermodynamic stability is ensured for

T < —1/4na’R,
: 2
P> 1 _H+H’
- 247w R? 127

here temperature is always negative but the average pressure may assume negative
values for non-linear scale factor. However, for linear scale factor the average pressure
is always positive. In the case of charged DWHs the thermodynamic equilibrium is

maintained for

2 4.2
T < _R + 10a*q

- dmra® 3
P 1 H+ H? 15a*¢?

> - + ,
— 24w R2 127 247 R4

thus, in this case temperature always assumes negative values, however, the average
pressure is positive for linear scale factor and for non-linear scale factor it may be

negative somewhere.
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