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Abstract

This thesis deals with static and dynamical traversable wormholes. We study both

charged and uncharged versions of these wormholes and analyse them in general

relativity and alternate theories of gravity. We investigate thermodynamic properties

of these objects including the unified first law and generalized surface gravity.

A two way traversable wormhole is a tunnel-like object comprising of trapped

surfaces between horizons, defined as temporal outer trapping horizons. Usually, in

a spacetime there are trapped, untrapped or marginal surfaces. On trapped surfaces

both of the ingoing and outgoing light rays either converge or diverge, on untrapped

surfaces one of the ingoing or outgoing light rays converges and the other diverges

while on the marginal surfaces one or both of the ingoing or outgoing light rays remain

constant (i.e., neither converge nor diverge but travel parallely). Trapping horizons

are the hyper-surfaces foliated by marginal surfaces that may be past, future or

bifurcating and further, outer, inner or degenerate. These trapping horizons coincide

at the throat in static wormholes. For the purpose of studying thermodynamics,

we have used a technique which was first developed in the literature for studying

spherically symmetric black hole spacetimes. This technique uses a 2+2 formalism

to derive the generalized surface gravity at a trapping horizon which becomes part

of the first law of wormhole dynamics which is obtained from the unified first law

by taking its projection along the trapping horizon. This unified first law is the

rearrangement of Einstein field equations which can easily be generalized to 𝑓(𝑅, 𝑇 )

gravity, where 𝑅 is the Ricci scalar and 𝑇 is the trace of the stress-energy tensor,

and non-minimal curvature-matter coupling where the equations, when written in the

form of the Einstein tensor, replace the role of stress-energy tensor with an effective

stress-energy tensor.

Chapter 1 is about some basic concepts that are related with the main subject of

the thesis. In Chapter 2 we have reviewed the Hayward formalism and its application

to the Morris-Thorne wormholes in Einstein’s gravity. The generalized surface gravity,
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unified first law of thermodynamics and wormhole dynamics have been studied at

(bifurcating) trapping horizons. We work out the generalized surface gravity for

wormholes of different shapes as well. Thermodynamic stability of Morris-Thorne

wormholes has been discussed in GR. We have also investigated thermodynamics in

non-minimal curvature-matter coupling which produces very complex equations. The

extension of this work to 𝑓(𝑅, 𝑇 ) gravity has been done for Morris-Thorne wormholes.

Chapter 3 deals with thermodynamics of charged wormholes, which are static as

well as spherically symmetric. The electric charge acts as additional matter to the

Morris-Thorne wormhole which is already constructed by exotic matter. All the anal-

ysis (unified first law, thermodynamic stability and generalized surface gravity) done

in Chapter 2 for Morris-Thorne wormholes is generalized to the charged wormholes

in this chapter. In the absence of electric charge the results that have been derived

in Chapter 2 can be recovered.

In Chapter 4 we study thermodynamics of dynamical traversable wormholes. We

considered uncharged dynamical wormholes which are the time generalization of static

Morris-Thorne wormholes. These wormholes are investigated in the background of

different cosmological models, with and without the cosmological constant, and which

include the power-law and exponential cosmologies also. The generalized surface grav-

ity is evaluated at the trapping horizon and the unified first law of thermodynamics

is set up. The trapping horizon in this case is not bifurcating but a past trapping

horizon which does not coincide with the throat of the wormhole and it corresponds

to the expanding universe. The thermodynamic stability of these wormholes has also

been investigated. Some cases of asymptotically flat, de Sitter and anti-de Sitter

wormholes have been considered as well. We have also extended the results from un-

charged to charged dynamical wormholes. All the work done for uncharged dynamical

wormholes has been generalized to charged dynamical wormholes. In the absence of

charge the results derived for uncharged dynamical wormholes can be recovered.

We summarize our results and conclude the thesis in Chapter 5.
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Chapter 1

Introduction

1.1 Historical background of general relativity

Gravity is a fundamental interaction between bodies which we experience in everyday

life. Gravity plays a very important role in our lives. It gives weight to objects on

the Earth. The Moon’s gravity produces tides in water on the Earth. Gravity keeps

planets moving in their respective orbits and helps maintain the structure of a gaseous

star. It is gravity which is responsible for the structure of galaxies on the large scale.

Galileo Galilei studied gravity scientifically in the late 16th and early 17th century.

However, gravity remained a puzzle for a long time until 1665, when Isaac Newton

stated his law of universal gravitation called the “inverse square gravitational law”

[1]: “Every body attracts every other body with a force proportional to the product of

their masses and inversely proportional to the square of the distance between them”.

Mathematically this force of gravity is given by

𝐹 = 𝐺
𝑚1𝑚2

𝑟2 , (1.1)

where 𝐺 is the gravitational constant, 𝑚1,𝑚2 are masses of two objects and 𝑟 is the

distance between their centres. Newtonian gravity explained the phenomena, related
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CHAPTER 1. INTRODUCTION

to gravity, of that time successfully. But soon it was realized that this gravity needs

modification to explain all the aspects of gravity. The planet Mercury does not follow

the orbit prescribed for it by Newtonian physics. Classically, the perihelion shift of

this planet was predicted to be 1064′′ of arc per century which is 43′′ of arc per century

more than the observed value. To resolve this issue it was postulated that a new

planet, which was named Vulcan, is present whose orbit lies between that of Mercury

and the Sun. However it could not be detected even with best telescopes. Giving up

Vulcan, it was assumed that it was a planet which lies always on the other side of the

Sun relative to the Earth. This would have to lie in the same orbit as the Earth. This

hypothetical planet was called anti-Earth due to its position. But this suggestion was

not acceptable due to two reasons: firstly it would have perturbed Venus and Mars

substantially and secondly its equilibrium position would have been unstable. Hence,

no satisfactory solution to this problem could be given in Newtonian physics. This

outstanding issue of that time was resolved by Albert Einstein in 1915 by introducing

his famous theory of general relativity (GR) [2]. In GR, gravity is described as the

curvature of spacetime which results due to the distribution of matter. Heavy and

light masses produce high and low curvature in spacetime, respectively. Newtonian

gravity works very well in limiting cases, where velocities of objects are small with

small energies and masses are small, and it is simpler to work in this gravity. In most

practical applications, Newtonian gravity is sufficient to work with. However, GR

refines Newtonian gravity in a more subtle way and reduces to Newtonian gravity in

the limit of small velocities and small gravitational strength of objects.

GR is the most successful and universally accepted gravitational theory which is

consistent with the observations. The predictions of GR range from the existence

of black holes and gravitational waves to the models of cosmology. It explains the

planetary motion, physics of black holes and the deviation of light coming from the

distant stars and galaxies from the straight path very well. The GR shapes our

universe, it tells us that our universe contains warped regions of spacetimes (black

2



CHAPTER 1. INTRODUCTION

holes).

The perihelion shift of Mercury was the first test of GR that happened to fit the

observation. In 1919, bending of light in gravitational fields due to massive objects

confirmed the predictions of GR. Then this theory was confirmed by many other

observations and experiments which include the gravitational redshift of light and

gravitational time dilation. The predictions of GR are well tested in the fields of

binary pulsars, both in the weak and strong field limits. GR has proven to be a

successful theory both on theoretical as well as observational fronts [2–4]. Recently

this theory has successfully been confirmed by the detection of gravitational waves

[5, 6]. The gravitational field equations in this theory, by adopting the gravitational

Lagrangian density ℒ𝑚 = 𝑅, are given by [2–4]

𝑅𝜇𝜈 − 1
2𝑅𝑔𝜇𝜈 = 8𝜋𝐺

𝑐4 𝑇𝜇𝜈 . (1.2)

Here 𝑅𝜇𝜈 is the Ricci tensor, 𝑅 is the Ricci scalar, 𝑇𝜇𝜈 is the stress-energy tensor,

𝐺 is the Newtonian constant of gravitation, 𝑐 is the speed of light in vacuum and

𝑔𝜇𝜈 is the metric tensor. These equations describe the gravitational phenomena of

normal matter very well but the theory cannot satisfactorily explain some phenomena

on large scale like the accelerated expansion of the universe, dark matter, quantum

gravity and cosmic inflation etc. GR is not the ultimate theory at all. It has also faced

some problems, described above, giving rise to modified theories of gravity. Since our

universe is undergoing cosmic acceleration as revealed by experimental data [7–10],

the late-time cosmic acceleration of the universe produces imbalance in gravitational

field equations. The accelerated expansion is one of the major problems that GR

could not satisfactorily explain. This accelerated expansion can be explained to some

extent by adopting the Lagrangian ℒ𝑚 = 𝑅−2Λ, where Λ is the cosmological constant,

which was included by Einstein himself in 1917. Thus Einstein field equations become

3



CHAPTER 1. INTRODUCTION

[2, 3]

𝑅𝜇𝜈 − 1
2𝑅𝑔𝜇𝜈 + Λ𝑔𝜇𝜈 = 8𝜋𝐺

𝑐4 𝑇𝜇𝜈 . (1.3)

These latter equations explain, to some extent, the accelerating expansion of the

universe but there is still some doubt in the explanation of this phenomenon and the

above mentioned problems as well [11–13]. Because of the inability of GR to account

for this acceleration and other problems, several candidates have been proposed in the

literature, that range from dark energy models to theories of modified gravity, among

which 𝑓(𝑅) and 𝑓(𝑅, 𝑇 ) theories are well known, where 𝑇 is the trace of the stress-

energy tensor. Einstein field equations can be obtained from the Einstein-Hilbert

action using an action principle in which gravitational Lagrangian density was a linear

function of the scalar invariant 𝑅. However, there is no evidence that gravitational

Lagrangian density must be only a linear function of 𝑅. Thus a modification of the

Einstein-Hilbert action was proposed to explain this accelerated expansion and other

problems too that remained unexplained by GR. For this purpose, in the modified

gravitational Lagrangian density, a function 𝑓(𝑅) was introduced [14] and later it

was further investigated and developed [15–17]. The first model in 𝑓(𝑅) theory was

introduced in Ref. [18] and then some corrections in the gravitational action were

made to explain cosmic acceleration [19]. A new term 𝑇 = 𝑔𝜇𝜈𝑇
𝜇𝜈 in 𝑓(𝑅) theory was

introduced and a new 𝑓(𝑅, 𝑇 ) theory, a generalization of the 𝑓(𝑅) theory, was also

presented [20]. To obtain the modified field equations in the context of 𝑓(𝑅) gravity,

the metric approach is usually used in the literature in which the action is varried

with respect to metric 𝑔𝜇𝜈 . But there are other approaches also, which are used such

as the Palatini formalism [21–26], where both the connections and metric are treated

as seperate variables, and metric-affine formalism [26], where we vary the matter

part of the action with respect to the connection. Thus modified gravitational field

equations were obtained that not only explained the late-time accelerated expansion

of the universe but also other problems mentioned above, in the context of 𝑓(𝑅)

gravity. As far as the dark matter is concerned, the possibility of studying the galactic

4



CHAPTER 1. INTRODUCTION

dynamics of massive test particles without taking into account the dark matter was

also investigated in the framework of 𝑓(𝑅) gravity [27–30]. Exotic matter was also

considered responsible for cosmic inflation at early times and accelerated expansion

of the universe at late times. GR could not explain this acceleration but 𝑓(𝑅) gravity

does this without the presence of exotic matter.

1.2 Wormholes and their historical background

A wormhole is a tunnel like structure that connects two distant regions of the same

universe or different universes. It has two mouths connected by a throat (the minimum

radius of the wormhole 𝑟0). Wormholes are believed to be formed due to high intense

gravitational fields. Wormholes are a construct of GR, which predicts wormholes

mathematically, where each mouth of a wormhole is a black hole. However, a black

hole which comes to existence due to natural death of a star does not make a wormhole

by itself. Wormholes could create shortcuts for long journeys, but passage through

them could be harmful too, due to danger of sudden collapse, high radiations and

interaction of traveler with the exotic matter. However, we note that this problem can

be overcome by wormholes which are supported by exotic matter. Exotic matter is

characterised with a negative energy density and a huge negative pressure. Wormholes

can be used to send information through them, in different regions of space, if they

contain sufficient exotic matter, whether naturally occurring or added artificially.

Wormholes can also play the role of time machines if one of its mouth is moved

relative to the other [31]. Wormhole spacetime structure is supported by exotic

matter which violates the null energy condition (NEC) and the weak energy condition

(WEC), according to Einstein field equations. This means that the matter has very

strong negative pressure and even the energy density is negative according to the

static observer. Some studies [9, 32–41] seem to support the idea that a major part of

our universe consists of stuff that violates NEC. It was shown that phantom energy

5



CHAPTER 1. INTRODUCTION

could be a form of exotic matter which has the property to violate NEC and it is the

energy that supports the traversable wormhole spacetime [42, 43]. Now, as the exotic

matter and ordinary matter are time-reversed versions of each other, so one may also

think that wormholes and black holes are also the time-reversed versions of each other

if thermodynamic behaviour of both is same. These investigations have improved the

physical status of wormholes [44, 45]. However, in extended theories of relativity these

violations of energy conditions can be avoided such as in 𝑓(𝑅) theory, where 𝑅 is the

Ricci scalar, and Gauss-Bonnet theory as these theories provide corrections to the

Einstein and matter stress-energy tensors. These corrections might be ignored in the

solar system regime but they play plausible role in the regime of strong gravitational

field and on cosmological and galactic level [12, 46–51].

The name wormhole was firstly suggested by Misner and Wheeler [52], although

it was not a new idea. In early 20th centuray, many authours including Flamm

[53], Weyl [54], Einstein and Rosen [55] discussed these objects, However, Morris

and Thorne worked out spherically symmetric and static wormholes in 1988 which

were also traversable as they did not contain the event horizon [56]. After that

many attempts were made to generalize the spacetime by introducing time-dependent

factors in the metric.

The first hints pointing towards wormhole physics were made in 1916 by Lud-

wig Flamm [53]. In 1935 Einstein and Rosen gave the idea of “bridges” created in

spacetime, which connect different points through a narrow tunnel and theoretically

provide shortcuts, resulting in reducing the time of travel and distance. But passage

through that bridge from one region to another was not possible due to the presence of

event horizon, and such type of bridges are now referred to as Einstein-Rosen bridges

[55]. The metric of Einstein-Rosen bridge can be obtained by putting 𝑣2 = 𝑟 − 2𝑀

in the Schwarzschild metric

𝑑𝑠2 = −(1 − 2𝑀
𝑟

)𝑑𝑡2 + (1 − 2𝑀
𝑟

)−1𝑑𝑟2 + 𝑟2(𝑑𝜃2 + sin2 𝜃𝑑𝜑2), (1.4)

6



CHAPTER 1. INTRODUCTION

so that the Schwarzschild solution in the Einstein-Rosen form is given by

𝑑𝑠2 = − 𝑣2

𝑣2 + 2𝑀𝑑𝑡2 + 4(𝑣2 + 2𝑀)𝑑𝑣2 + (𝑣2 + 2𝑀)2𝑑Ω2, (1.5)

where the new coordinate 𝑣 ranges in (−∞,∞) and 𝑀 represents the mass of the

gravitational source. The singularities, 𝑟 = 0 and 𝑟 = 2𝑀 , which were appearing

in Schwarzschild solution, are now avoided in these new coordinates. The region

near 𝑣 = 0 is called bridge which connects two asymptotically flat regions which

are situated at 𝑣 = ∞ and 𝑣 = −∞. The Einstein-Rosen bridge contains an event

horizon which means we can enter from one side of the bridge but cannot reappear

on the other side, just like a black hole which is one-way membrane. Also, another

problem with these bridges is that their circumference fluctuates between zero to its

maximum value so fast, that it becomes impossible for a traveller to cross it, even if

it is moving with the speed of light. Thus Einstein-Rosen bridges cannot be used for

travelling.

In 1950s, next major development in wormhole physics was by Wheeler and Mis-

ner. They created a framework which explained classical physics by Riemannian

geometry of nontrivial topological manifolds. The term wormhole was first used in

1957 as: “There is a net flux of lines of force through what topologists would call a

handle of the multiply-connected space and what physicists might perhaps be excused

for more vividly terming a wormhole” [52].

In 1963, rotating black hole solutions were introduced by Kerr. From the Kerr

black hole solution, in case of slow rotation, similar type of construction came into

existence as the Einstein-Rosen bridge from the Schwarzschild solution, but with same

problems of horizon and tidal forces. On the other hand, fast rotating black holes

allow for fast transportaion but in this case the traveller does not have a choice to

select the destination.

Recently a considerable interest in wormhole physics has been seen in two direc-
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CHAPTER 1. INTRODUCTION

tions: one with the Euclidean signature metrics and the other with the Lorentzian

wormholes [57–59]. Lorentzian wormholes that are traversable were first investigated

by Morris and Thorne [56] in 1988. Morris and Thorne realized that wormholes could

allow the traveller to go from one region to another region and that could be possible

if, unlike a black hole, wormhole must be without event horizon. Their approach was

to find such a wormhole spacetime that does not contain event horizon in order to

be traversable from one region to the other region. They introduced a spherically

symmetric and static wormhole metric. It was found that Morris-Thorne wormholes

(MTWHs) violate some energy condition. However this is not surprising as energy

conditions are not universal; there are number of phenomena which have been dis-

covered to violate energy conditions. Now there are attempts to shift from static to

non-static wormholes.

After the discovery of MTWHs, research advanced in various directions, concern-

ing generalizations of MTWHs, and major ones are as follows.

Cubic and polyhedral wormholes were constructed by using thing-shell formalism,

which have no constraints obeying spherical symmetry [60]. The throat was defined

to be as 2-dimensional hypersurface of minimal area [61, 62]. A general class of solu-

tions which describe spherically symmetric wormholes were also obtained [63]. The

wormhole model which allows traversability to be extracted out of the quantum foam

was also introduced [64]. Conformal wormholes [65, 66] and their further generaliza-

tion were also described [67]. The general form of rotating axially symmetric and

stationary wormhole was first described in Refs. [68, 69] and violations of energy

conditions was discussed in detail [70]. Thermodynamic properties and entropy of

wormholes have also been discussed in literature [44, 45, 71, 72].

Recently, macroscopic humanly traversable wormhole solutions were constructed

using dark sector based on the Randall-Sundrum II model [73]. These wormholes

exist in cold and flat ambient space and they permit traveler to survive the tidal

forces. It takes very short proper time (less than a second) to travel through them
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between distant regions within our galaxy, but tens of thousands of years as seen from

outside. These wormholes look like an intermediate-mass charged black holes from

outside.

It was shown [74] that wormhole-like configuration can be formed between two

massive objects situated in two parallel universes, modeled by two branes. The strong

gravitational attraction between these objects deforms the branes, object touch and

wormhole-like configuration is formed. The heavier and compact the objects are, the

formation of wormhole-like configuration is more likely to occur.

1.3 Energy conditions

In discussing classical GR, there are at least seven types of energy conditions which,

for the matter, are formulated in terms of its stress-energy tensor 𝑇𝑎𝑏. These include

null, weak, strong, dominant, average null, average weak and average strong energy

conditions (NEC, WEC, SEC, DEC, ANEC, AWEC and ASEC) [59]. In GR these

conditions are used in several theorems such as the no-hair theorem and black hole

thermodynamics. For the purpose to elaborate some of these energy conditions, we

consider the stress-energy tensor, given by

𝑇 𝜇𝜈 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝜌 0 0 0

0 𝑝1 0 0

0 0 𝑝2 0

0 0 0 𝑝3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (1.6)

where 𝜌 and 𝑝𝑖 (𝑖 = 1, 2, 3), are the energy density and three principal pressures,

respectively.
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1.3.1 Null energy condition

The NEC, for any null vector 𝑙𝑎, satisfies

𝑇𝑎𝑏𝑙
𝑎𝑙𝑏 ≥ 0, (1.7)

which in terms of energy density and pressure becomes

𝜌+ 𝑝𝑖 ≥ 0. (1.8)

In GR one may obtain solutions by considering a metric and then solving Einstein

field equations to get the matter source which is compatible with the corresponding

geometry. In this way, at the wormhole throat, the flaring out condition is imposed

by the tunnel like structure of a wormhole. Thus from this flaring out condition and

the field equations it is revealed that the NEC is violated at or near the throat. At

the throat NEC is violated or it is at the verge of violation. Thus wormhole throat is

threaded by exotic matter (a matter that violates NEC). In this case energy is called

phantom energy.

1.3.2 Weak energy condition

The WEC is given by

𝑇𝑎𝑏𝑡
𝑎𝑡𝑏 ≥ 0, (1.9)

for any timelike vector 𝑡𝑎. This condition, in addition to NEC, requires the positivity

of local energy density as measured by any timelike observer. In terms of pressure it

can be written as

𝜌 ≥ 0 𝑎𝑛𝑑 𝜌+ 𝑝𝑖 ≥ 0. (1.10)

The WEC ensures that all observers measure positive energy density, that is, normal

matter is observed. However in wormholes, violation of NEC implies violation of

10
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WEC as well.

1.3.3 Strong energy condition

The SEC asserts that for any timelike vector 𝑡𝑎,

(𝑇𝑎𝑏 − 1
2𝑇𝑔𝑎𝑏)𝑡𝑎𝑡𝑏 ≥ 0. (1.11)

This condition implies NEC but does not, in general, implies WEC. In terms of

pressure and energy density it takes the form

𝜌+ 𝑝𝑖 ≥ 0 𝑎𝑛𝑑 𝜌+
∑︁

𝑝𝑖 ≥ 0. (1.12)

1.3.4 Dominant energy condition

The dominant energy condition (DEC) requires that, in addition to WEC, 𝑇 𝑎𝑏𝑡𝑎 be

null or time like. Thus it implies WEC, which further implies NEC. However SEC

cannot necessarily be obtained from DEC. It says that energy density is positive and

energy flux is not spacelike. For perfect fluid it yields

𝜌 ≥| 𝑝𝑖 | . (1.13)

In case of negative energy density, violation of NEC implies the violation of DEC.

1.4 Embedding

To capture the properties of curved spacetimes conveniently, especially with dimen-

sions greater or equal to 3, embedding diagram can be used. A curved two dimensional

surface is visualised within a flat three dimensional space using injective and structure

preserving map Φ. Consider a hypersurface of dimension 𝑛, Σ𝑛, which is a subspace

11
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of an 𝑛+ 1 dimensional spacetime manifold, 𝑀𝑛. One can describe a hypersurface in

terms of an embedding as

Φ : Σ𝑛 → 𝑀𝑛+1. (1.14)

If the coordinates 𝑦𝑎 and 𝑥𝛼 describe Σ and 𝑀 , respectively, then the embedding Φ

describes the points in 𝑀 with coordinates 𝑥𝛼 that corresponds to points in Σ with

coordinates 𝑦𝑎 as Φ : 𝑥𝛼 = 𝑥𝛼(𝑦𝑎). It is a good idea if some coordinates are common

in the hypersurface and the spacetime into which it is embedded.

The properties of geometry can be conveniently visualized by embedding its equa-

torial plane in three-dimensional Euclidean spacetime, in cylindrical coordinates (𝑍, 𝜌, 𝛼).

The embedding diagram is characterized by the embedding formula 𝑍 = 𝑍(𝜌) deter-

mining a surface in the Euclidean space with the line element.

𝑑𝑙2𝐸 =
[︃
1 +

(︁𝑑𝑧
𝑑𝜌

)︁2
]︃
𝑑𝜌2 + 𝜌2𝑑𝛼2, (1.15)

isometric to the 2-dimensional equatorial plane of the line element [75]

𝑑𝑙2 = ℎ𝑟𝑟𝑑𝑟
2 + ℎ𝜑𝜑𝑑𝜑

2. (1.16)

The azimuthal coordinate can be identified (𝛼 ≡ 𝜑) which immediately leads to

(︁𝑑𝑍
𝑑𝜌

2)︁
= ℎ𝑟𝑟

(︁𝑑𝑟
𝑑𝜌

)︁2
− 1. (1.17)

Using paremetric form, 𝑍(𝜌) = 𝑍(𝑟(𝜌)), with 𝑟 being the parameter, the embedding

formula takes the form
𝑑𝑍

𝑑𝑟
= ±

√︃
ℎ𝑟𝑟 − (𝑑𝜌

𝑑𝑟
)2. (1.18)

If ℎ𝑟𝑟 − (𝑑𝜌/𝑑𝑟)2 ≥ 0 then embedding diagram can be constructed.
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1.5 Carter-Penrose Diagram

The Carter-Penrose diagrams are two dimensional diagrams. The purpose of these

diagrams is to bring the infinities to finite distances in the diagrams. This is done by

choosing the suitable coordinate transformations and using conformal rescaling of the

metric. The coordinate transformations should possess two properties. Firstly, these

transformations should compactify the spacetime within a finite boundary. Secondly

light rays should always lie on ±450 angles. Under conformal rescaling, the causal

nature of the vector field remains invariant, that is, a vector which was timelike or

spacelike before conformal mapping remains timelike or spacelike afterward also, and

light cones remain preserved (𝑑𝑠2 = 0). Generally, timelike or spacelike geodesics do

not map into each other, however null geodesics are mapped into each other.

The Carter-Penrose diagram of Einstein-Rosen bridge [76] is shown in Fig. 1.1.

Figure 1.1. Penrose diagram of non-traversable Einstein-Rosen wormhole.

In Fig. 1.1, wormhole throat is the horizon which is shown by the two dashed

lines. Every point on the wormhole throat corresponds to the two points at the same

height on the two dashed lines.
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Consider the metric

𝑑𝑠2 = −
(︃

1 − 2𝑚√
𝑟2 + 𝑎2

)︃
𝑑𝑡2 + 𝑑𝑟2

1 − 2𝑚√
𝑟2+𝑎2

+ (𝑟2 + 𝑎2)𝑑Ω2. (1.19)

Here 𝑡 and 𝑟 ranges in (−∞,∞). This metric represents the two-way traversable

wormhole for 𝑎 > 2𝑚 [31, 56, 60, 61]. Throat is located at 𝑟 = 0 and the negative

and positive values of radial coordinate, 𝑟, corresponds to the two universes. Its

Carter-Penrose diagram [77] is shown in Fig. 1.2.

Figure 1.2. Penrose diagram of the two-way traversable wormhole.

1.6 Killing horizons

A Killing horizon is a null hypersurface in spacetime on which Killing vector becomes

null. The Killing horizons define the boundaries of stationary spacetimes, black holes,

white holes and cosmological regions. These are defined by the Killing vector 𝑘𝑎 which
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satisfies the Killing equation

∇𝑎𝑘𝑏 + ∇𝑏𝑘𝑎 = 0, (1.20)

where ∇𝑎 is the covariant derivative. Associated to Killing horizon is the geometric

quantity, called surface gravity 𝜅𝑠𝑡𝑎𝑡𝑖𝑐. If surface gravity vanishes then Killing horizon

is called degenerate. In GR, the Killing horizon and stationary event horizon are

same [78], for example in Schwarzschild geometry, the event horizon 𝑟 = 2𝑀 is also

a Killing horizon, because timelike Killing vector 𝑘𝑎 = (𝜕/𝜕𝑡)𝑎 becomes null on this,

which is timelike in the region 𝑟 > 2𝑀 and spacelike in the region 𝑟 < 2𝑀 . Generally,

in static spacetimes, any event horizon is also a Killing horizon with Killing vector

𝑘𝑎 = (𝜕/𝜕𝑡)𝑎. However, in stationary asymptotically flat spacetimes (not necessarily

static), event horizon and Killing horizon match for the Killing vector which consists

of two vectors, one associated with time symmetry and the other with rotational

symmetry

𝑘𝑎 = (𝜕/𝜕𝑡)𝑎 + Ω𝐻(𝜕/𝜕𝜑)𝑎, (1.21)

where Ω𝐻 is the angular velocity at the horizon [79, 80]. In non-staionary spacetimes

that do not admit timelike Killing vector, the concept of Killing horizon ceases to be

useful. Conformal Killing horizons have been focussed in such spacetimes but this

way does not seem to be very productive because this direction is a priori restrictive

one. Hence, the Kodama vector plays its role, which resembles in some way to the

Killing field, to define surface gravity and thermodynamics of spacetime horizons.

1.7 Trapping horizon

Contraction or expansion of ingoing and outgoing light rays from a surface define

the surface to be trapped or untrapped. The concept of trapped surfaces was first

proposed by Penrose [81], which is an important concept to describe black holes,

white holes and wormholes locally in terms of trapping horizons. Consider a light

15



CHAPTER 1. INTRODUCTION

flash that originates on a surface, then it forms two wave fronts, one ingoing and the

other outgoing, which travel perpendicular to the surface. The expansions of these

wave fronts describe the surface to be trapped or untrapped. Let Θ+ and Θ− be

the expansions in the outgoing and ingoing directions, perpendicular to the surface,

respectively. If the area of both the outgoing and ingoing wave fronts is increasing

(Θ± > 0) or decreasing (Θ± < 0), or equivalently Θ+Θ− > 0 then surface is trapped.

The former case corresponds to white holes while latter to black holes. The union of

all the trapped surfaces form a trapping region and the boundary of a trapping region

is called the trapping horizon, and a spacelike slice of a trapping horizon is called the

apparent horizon. Outside the horizon we have untrapped surface, i.e., Θ+Θ− < 0,

which means one of the expansions (Θ+ or Θ−) has changed its sign. We consider

that the outgoing expansion Θ+ changes sign across the horizon, while the ingoing

expansion Θ− keeps the same sign. Then we must have on the horizon, Θ+ = 0, which

makes the product Θ+Θ− = 0 on the horizon. This is called a marginal surface. Thus,

a trapping horizon is a hypersurface which is foliated by marginal surfaces [82–84].

Now, a spherically symmetric spacetime metric can locally be written as

𝑑𝑠2 = −2𝑒−𝑓𝑑𝜉+𝑑𝜉− + 𝑟2𝑑Ω2
𝑛−1, (1.22)

where the areal radius, 𝑟, and 𝑓 are functions of local coordinates (𝜉+, 𝜉−) and 𝑑Ω2
𝑛−1 is

the (𝑛−1)-sphere with unit radius. We consider spacetime being time-orientable with

𝜕± = 𝜕/𝜕𝜉± being future pointing. There are two null geodesics which correspond to

𝜉+ =constant and 𝜉− =constant, which can be obtained from considering radial null

congruences, by putting 𝑑𝑠2 = 0. The expansions of these two congruences can be

written as

Θ± = 𝑛− 1
𝑟

𝜕±𝑟. (1.23)

Now a trapping horizon is a hypersurface on which one of the null expansions vanishes.

Henceforth we take Θ+ = 0. The trapping horizon is future if Θ− < 0 or past if
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Θ− > 0, it is outer if Θ+ decreases in the ingoing direction (𝜕−Θ+ < 0) and inner if

Θ+ increases in the ingoing direction (𝜕−Θ+ > 0) [82–84].

In black holes, trapping horizon is used to study thermodynamics, and it has been

claimed that it is the area of trapping horizon, instead of event horizon area, which

is associated with entropy in black hole thermodynamics [85–88].

Trapping horizons and event horizons are distinct in general, and there are space-

times where trapping horizon is present while event horizon is not [89, 90]. The

difference of the area of trapping horizon from event horizon has been studied for

particular spacetimes in Ref. [91].

1.8 Black holes and traversable wormholes

Wormholes gained attention from researchers and some respectability for their the-

oretical existence in GR, after the article published by Morris and Thorne in 1988

about traversable wormholes [56]. One motivation for studying wormholes is that

they can increase our understanding of gravity where energy conditions violations

take place due to Casimir effect or Hawking radiation.

Wormholes and black holes are very similar if studied using local properties. But,

they are usually defined by global properties which make them quite distant from each

other [56]. Also global properties do not have compatibility of event horizons with

traversability. Black holes and wormholes are interconvertible objects as suggested

by Hayward [92]. A mechanism was developed for such conversions and a framework

was proposed for unification between black holes and wormholes. Construction of a

traversable wormhole from Schwarzschild black hole has also been proposed through

analytical solution [93]. Locally both these objects are defined by the presence of

marginal surfaces, which are one-way traversable for black holes (or white holes)

and two-way traversable for wormholes, respectively. These marginal surfaces form

trapping horizon. Both black holes and wormholes are characterized by outer trapping
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horizons [82, 84, 92]. In the case of static black holes, examples of outer trapping

horizons are event horizons or Killing horizons, while wormhole throat is an example

of a double outer trapping horizon in the case of static and spherically symmetric

wormholes. Standard black hole solutions and MTWHs have same spatial topology,

𝑅 × 𝑆2, and spatial geometry can be identical for Schwarzschild black holes and

spatially Schwarzschild wormholes [56]. In each case minimal surface joins the two

asymptotically flat regions.

Now, the key difference in defining black holes and wormholes is that black hole

outer trapping horizon is achronal (spacelike or null), while wormhole outer trapping

horizon is temporal (timelike); this means that black holes are one-way traversable

while wormholes are two-way traversable, as desired in each case [92]. The Einstein

field equations imply that black holes and wormholes occur under the influence of

positive and negative energy densities, respectively. This means black holes occur in

natural matter or vacuum, while wormhole structure is supported by what is called

exotic matter [56]. Thus black holes occur naturally while wormholes do not. How-

ever, presence of negative energy density in quantum field theory makes the possibility

of constructing wormholes still open. If, theoratically, large amount of exotic matter

in the universe can exist then wormholes and black holes, are equally, the prediction

of GR.

The trapping horizon evolves under positive and negative energy densities, thus

causal type of trapping horizon can be shifted from achronal to temporal or temporal

to achronal. Addition of normal matter or dispersion of exotic matter can convert

a wormhole into black hole. Geometrically, a double outer trapping horizon, which

constitutes the throat of a static spherically symmetric wormhole, bifurcates under

generic purturbation, which forms trapped region. If the two horizons become null

and they enclose the future trapped region then it would be a black hole. Conversely,

wormholes can also be formed from black holes if exotic matter is introduced. This

exotic matter results in the two black hole horizons to shift from achronal to temporal,
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and unified as a throat of a wormhole. In the case of Schwarzschild black hole, which

evaporates when considered semiclassically, the trapping horizon becomes timelike

due to infalling negative energy particle inside the horizon during Hawking radiation

phenomena, thus converting it into a traversable wormhole. This also suggests that

the endpoint of Hawking radiation could be a wormhole [92].

1.9 Surface gravity

Surface gravity “𝑔” of an astronomical object is the gravitational acceleration, which

a hypotheticle particle experiences on its surface. Its units is that of an acceleration,

which is meter per square second in SI system of units. In astrophysics, surface

gravity may be expressed as log 𝑔, where 𝑔 is measured in cgs system [94].

Thus earth’s surface gravity becomes log 𝑔 = 2.992. The surface gravity of a

white dwarf is very high and that of neutron star is even higher. In black hole,

surface gravity is measured relativistically.

Newtonian concept of gravitational acceleration is not clear cut in relativity. For

a black hole, one cannot define surface gravity using Newtonian concept, because the

value of surface gravity becomes infinite on the horizon. Thus a renormalized value is

used which is equal to the product of Newtonian value and gravitational time dilation

factor; the former becomes infinite on the horizon while the latter approaches zero on

the horizon.

In relativity, surface gravity is defined in those spacetimes where event horizon

is a Killing horizon. For a static Killing horizon the surface gravity ‘𝜅𝑠𝑡𝑎𝑡𝑖𝑐’ is the

acceleration, as exerted at infinity, which is needed to keep an object at the horizon.

In mathematical terms, if 𝑘𝑎 is a suitably normalized Killing vector, then we define

the surface gravity as [95]

𝑘𝑎∇𝑎𝑘
𝑏 = 𝜅𝑠𝑡𝑎𝑡𝑖𝑐𝑘

𝑏, (1.24)

which is evaluated at the horizon. In the case of static asymptotically flat spacetime,
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we choose the normalization such that 𝑘𝑎𝑘𝑎 → −1 as 𝑟 → ∞, and so that 𝜅𝑠𝑡𝑎𝑡𝑖𝑐 ≥ 0.

The surface gravity for stationary spacetimes is well defined. The reason is that

all stationary spacetimes have a horizon that is Killing [95]. Recently, the surface

gravity of dynamical spacetimes which do not admit a Killing vector has also been

defined [96]. Various authors have suggested different definitions and, as of current,

there is no agreement as to which definition, if any, is correct [97].

1.10 Kodama vector and surface gravity

Different notions of surface gravity, associated with horizons, have been introduced

in the literature. For static and stationary spacetimes, timelike Killing vector field

is present outside the horizon, which becomes null on it. Hence various definitions

of surface gravity coincide and are well known. In dynamical situations, no timelike

Killing vector field is present and notion of surface gravity is meaningless.

Kodama vector generalises the Killing vector and is used as a substitute in ther-

modynamics of non-static horizons. Any spherically symmetric metric can be written

in the form

𝑑𝑠2 = ℎ𝑎𝑏𝑑𝑥
𝑎𝑑𝑥𝑏 +𝑅2𝑑Ω2, (1.25)

where 𝑎, 𝑏 = 0, 1 and 𝑅 is the areal radius. Now, the Kodama vector is orthogonal to

2-sphere of symmetry and it lies in 2-dimentional (𝑡, 𝑅) space. For the metric (1.25),

it is defined as [98]

𝐾𝑎 = 𝜖𝑎𝑏∇𝑏𝑅, (1.26)

where 𝜖𝑎𝑏 is the anti-symmetric volume form of the 2- metric ℎ𝑎𝑏 [95]. In the case of

MTWHs which we will discuss in Chapter 2, this vector becomes K =
√︁

1 − 𝑏(𝑟)/𝑟𝜕𝑡,

which is null when 𝑏(𝑟) = 𝑟 and timelike, otherwise. In the case of dynamical worm-

holes which we will discuss in Chapter 4, this vector becomes K = 𝑎(𝑡)
√︁

1 − 𝑎𝑏/𝑅𝜕𝑡 +

𝐻𝑅
√︁

1 − 𝑎𝑏/𝑅𝜕𝑟, which is spacelike when 𝐻𝑅 >
√︁

1 − 𝑏(𝑟)/𝑟, null when 𝐻𝑅 =
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√︁
1 − 𝑏(𝑟)/𝑟 and timelike when 𝐻𝑅 <

√︁
1 − 𝑏(𝑟)/𝑟. The drawback with Kodama vec-

tor is that it is defined only in spacetimes which are spherically symmetric. However

there are attempts to generalise it for spacetimes which are non-spherically symmetric

[99]. Kodama vector is parallel to Killing vector in static spacetimes, however they

are not equal in general.

1.11 Null coordinates

Null coordinates are associated with light rays. We consider the Minkowski space-

time. On outgoing light rays, 𝑢 = 𝑡 − 𝑟 remains constant. This means that as time

𝑡 increases, the radial coordinate 𝑟 also increases. Different light rays relate with

different values of 𝑢. Similarly on ingoing light rays, 𝑣 = 𝑡 + 𝑟 remains constant.

This means that as time 𝑡 increases, the value of radial coordinate 𝑟 decreases. Here

𝑢 changes along ingoing light ray while 𝑣 remains constant. However along outgoing

light ray 𝑣 changes and 𝑢 remains constant. Thus 𝑢 and 𝑣 label points on ingoing

and outgoing light rays, respectively. These are called null coordinates as they label

light rays.

Null coordinates can be found by integrating 𝑑𝑠2 = 0 for a radial ray (𝜃 = 𝜑 =

constant), for instance, for the Schwarzschild metric one obtains

𝑑𝑡2 = 𝑑𝑟2

(1 − 2𝑚
𝑟

)2 = 𝑑𝑟2
*, (1.27)

where 𝑟* is the new radial coordinate such that 𝑢 = 𝑡− 𝑟* and 𝑣 = 𝑡+ 𝑟*, where

𝑟* = 𝑟 + 2𝑚 log |𝑟 − 2𝑚
2𝑚 |. (1.28)
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1.12 Misner-Sharp energy

Gravitational field, produced by a massive source, contains energy. In relativity,

equivalence of energy and mass means that it is only the combined energy which may

be measured at a distance. Also gravitational field is non-linear in general which

means the mass of a source and its kinetic and gravitational energy do not combine

in a linear way to produce the active (effective) gravitational energy. In spherical

symmetric spacetimes, this effective energy is the Schwarzschild energy in vacuum.

Generally, there are many definitions of the so-called energy in literature, but in known

physical limits those do not possess relevant physical properties, hence there is no

agreed definition of gravitational energy in GR except in asymptotic flat spacetimes

at infinity. At spatial infinity, one has energy called Arnowitt-Deser-Misner energy

[100] and at null infinity, it is the Bondi-Sachs energy [101, 102].

In spherically symmetric spacetimes, Misner-Sharp (MS) energy (𝐸) exists, which

is given by

𝐸 = 𝑟

2(1 − ∇𝑎𝑟∇𝑎𝑟), (1.29)

where ∇ is the covariant derivative. This energy 𝐸 possesses all the physical charac-

teristics that the active gravitational energy has. It reduces to Newtonian energy in

Newtonian limits, and behaves well in small spheres, large spheres, test particles and

special relativistic limits [103].

1.13 First law of black hole statics

The first law of black hole statics concerns with stationary black holes [84]. This law

involves in its expression the static definition of surface gravity. The surface gravity

is obtained by solving the equation

𝑘.(∇ ∧ 𝑘𝑎) = 𝜅𝑠𝑡𝑎𝑡𝑖𝑐𝑘𝑎, (1.30)
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on the Killing horizon, generated by the Killing vector 𝑘𝑎. Here ∧ denotes the an-

tisymmetric tensor product and 𝜅𝑠𝑡𝑎𝑡𝑖𝑐 is the surface gravity of a black hole which

determines the temperature on a black hole. Now the first law of black hole statics

is given by

𝑑𝐸 = 𝜅𝑠𝑡𝑎𝑡𝑖𝑐𝑑𝐴

8𝜋 + 𝑤𝑜𝑟𝑘 𝑑𝑜𝑛𝑒, (1.31)

where 𝐸 is the energy on the horizon which is analogue of the internal energy in

classical thermodynamics.

1.14 Wormhole thermodynamics

Thermodynamics is the branch of physics that deals with heat energy and its connec-

tion with other forms of energies. It tells us how thermal energy is converted from

one form of energy to another and how matter is affected by thermal energy. The first

law of thermodynamics relates the internal energy of a closed system to heat supplied

or removed from a thermodynamic system, and thermodynamic work. This law is

the law of conservation of energy related to thermodynamic processes, which states

that “energy can neither be created nor destroyed, however, it can be transformed

from one form to another form of energy".

If △𝑈 denotes the change in the internal energy of a closed system, 𝑄 denotes

the heat energy supplied or removed from a system and 𝑊 the thermodynamic work

done by that closed system on its surroundings then a mathematical statement of the

first law of thermodynamics can be put in the form as

△𝑈 = 𝑄−𝑊, (1.32)

where 𝑄 is positive if heat is supplied to a system and negative otherwise.

There exists a deep connection between two branches of physics, thermodynamics

and gravity. Stephen Hawking suggested that black holes emit thermal radiation
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having temperature proportional to surface gravity and entropy proportional to the

horizon area [104–106]. The Hawking temperature of accelerating and rotating black

holes with electric and magnetic charges was calculated in [107, 108]. This build a

relationship between Einstein field equations and thermodynamics. It was Jacobson

who first derived Einstein field equations from first law of thermodynamics and a

relationship between entropy and horizon area of a black hole [109]. Padmanabhan

proposed that Einstein field equations when evaluated on the event horizon can be

put into the form of first law of thermodynamics, 𝑇𝑑𝑆 = 𝑑𝐸 + 𝑃𝑑𝑉 , in the regime

of spherically symmetric, stationary black hole spacetimes [110, 111]. Here 𝑇, 𝑆,𝐸

and 𝑃 are the temperature, entropy, energy and pressure respectively. Later it was

shown that the first law of thermodynamics can also be obtained from Einstein field

equations at apparent horizons in various gravity theories as 𝑇𝑑𝑆 = 𝑑𝐸+𝑊𝑑𝑉 [104–

106, 109–112]. This relationship between thermodynamics and gravity can also be

extended to braneword cosmoslogy [113, 114]. Corrections to entropy and horizon

area of black holes by applying the exact differential properties to the first law of

thermodynamics was discussed in Ref. [115].

Hayward developed a formalism using local quantities to describe the thermody-

namic properties of spherically symmetric black holes using trapping horizons [92].

The presence of trapping horizon in wormholes suggests that this formalism can also

be used to discuss the thermodynamic properties of wormholes. The thermodynamic

properties of traversable wormholes have been discussed in literature [44, 45, 72, 116–

118]. Here, in this thesis, we will apply this formalism to spherically symmetric

traversable wormholes to discuss their thermodynamics.
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Thermodynamics of Morris-Thorne

wormholes

In this chapter we will investigate the thermodynamic properties of MTWHs at trap-

ping horizons using a formalism which was first used to discuss thermodynamics of

spherically symmetric black holes [84]. The need and significance of characterizing

black holes by using local considerations has been stressed in the literature [44, 45, 82–

84, 119]. Black holes are described by the presence of event horizons, which is the

global property and hence cannot be located by observers. Now, trapping horizon

is a pure local concept, and in this way the thermodynamic properties of spherically

symmetric dynamical black holes were studied using local considerations. We will em-

ploy the definition of surface gravity [72, 120] where we will use the trapping horizon

instead of Killing horizon, and Kodama vector will play the role of Killing vector. In

this chapter, we will first review Hayward formalism [84] which discusses thermody-

namics of spherically symmetric spacetimes on trapping horizons and its application

to MTWHs. We will also discuss thermodynamic stability of these objects and extend

the formalism to non-minimal curvature-matter coupling and 𝑓(𝑅, 𝑇 ) gravity at the

end.
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2.1 Hayward formalism

Here we use a formalism [84] that defines the properties of real black holes using

local quantities that are physically meaningful. This formalism recovers the thermo-

dynamic results of black holes when we use global considerations at event horizons in

the static vacuum case. Thus, this formalism generalizes the results of global consid-

erations. In traversable wormholes, it is not possible to deduce any thermodynamic

property using global considerations as there is no event horizon there. So, we use

local quantities to study the thermodynamic properties of wormholes using trapping

horizons. These exhibit similar properties as those of a black hole.

Now, any spherically symmetric metric can be written as

𝑑𝑠2 = 2𝑔+−𝑑𝑥
+𝑑𝑥− + 𝑟2𝑑Ω2, (2.1)

where 𝑟 and 𝑔+− are functions of the null coordinates (𝑥+, 𝑥−), that correspond to

the two preferred null normal directions for the symmetric spheres 𝜕± = 𝜕/𝜕𝑥±, and

𝑟 is the so-called areal radius [84] and 𝑑Ω2 is the metric for the unit 2-sphere. We

define the expansions as

Θ± = 2
𝑟
𝜕±𝑟. (2.2)

These expansions tell us whether the light rays are expanding (Θ > 0) or contracting

(Θ < 0), or equivalently, area of the sphere increases or decreases in the null directions.

Since the sign of Θ+Θ− is invariant, a sphere is trapped if Θ+Θ− > 0, untrapped if

Θ+Θ− < 0, or marginal if Θ+Θ− = 0. For fixed Θ+ > 0 and Θ− < 0, 𝜕+ is also fixed

outgoing and 𝜕− ingoing null normal vector. A surface which is foliated by marginal

spheres is known as a trapping horizon. For the trapping horizon 𝑟ℎ, we choose

Θ+|ℎ = 0. (2.3)

This trapping horizon is future if Θ− < 0, past if Θ− > 0 and bifurcating if Θ− = 0.
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Further, this trapping horizon is outer if 𝜕−Θ+ < 0, inner if 𝜕−Θ+ > 0, or degenerate

if 𝜕−Θ+ = 0.

The huge bodies produce gravitational field around themselves which contain grav-

itational energy. This energy and the material mass produce combined effective energy

in relativity, due to the equivalence principle of mass and energy. This combination of

mass and energy usually takes place in a non-local and non-linear way. This is because

the gravitational field is non-linear in general. In spherically symmetric cases, this is

the Schwarzschild energy in vacuum. Generally, in relativity, there is no agreement

on the definition of energy, except for the asymptotically flat spacetimes at infinity,

where one has the Arnowitt-Deser-Misner energy and the Bondi-Sachs energy at spa-

tial and null infinities, respectively [83]. Therefore, there should be such a definition

of energy from which one can find these asymptotic energies, appropriately. Remark-

ably, this is the MS energy that exists in spherical symmetry, which can be written

as [103]

𝐸 = 1
2𝑟(1 − 𝜕𝑎𝑟𝜕𝑎𝑟) = 𝑟

2(1 − 2𝑔+−𝜕+𝑟𝜕−𝑟), (2.4)

which on a trapping horizon reads 𝐸 = 𝑟ℎ/2.

We can formulate a unified first law (UFL) in spherically symmetric spacetimes

[84]. This law describes the gradient of the active gravitational energy, using Einstein

field equations, as a sum of two terms, the energy supply term and the work term.

When we project this along the trapping horizon we get the first law of black hole

dynamics. This expression involves the area and surface gravity and has the same

form as the black hole statics if we replace the perturbations by the derivative along

the trapping horizon. For the first law of black hole dynamics we need to define the

generalized surface gravity (GSG) using Kodama vector and trapping horizon in the

same manner as the first law of black hole statics requires the stationary definition

of surface gravity using Killing vector and Killing horizon. Also, this expression

involves energy at horizon rather than at infinity. This formalism can also be applied

to wormholes by virtue of the presence of trapping horizon in these objects.
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Using the stress-energy tensor of the background fluid we construct a function and

a vector in the local coordinates as

𝜔 = −𝑔+−𝑇
+−, (2.5)

and

𝜓 = 𝑇++𝜕+𝑟𝜕+ + 𝑇−−𝜕−𝑟𝜕−. (2.6)

Now the UFL can be written by taking gradient of the gravitational energy and

using Einstein field equations as [84]

𝜕±𝐸 = 𝐴𝜓± + 𝜔𝜕±𝑉, (2.7)

where 𝐴 = 4𝜋𝑟2 and 𝑉 = 4𝜋𝑟3/3 are the area and areal volume of the spheres of

symmetry and the corresponding flat space, respectively. We can interpret 𝜔 and 𝜓

physically as the energy density and the energy flux (outward flux minus the inward

flux). The right hand side of the UFL (2.7) is the sum of two terms, the first term

𝐴𝜓±, called the energy supply term, produces variation in energy of the spacetime

and the second term, 𝜔𝜕±𝑉 , called the work term, supports the spacetime structure.

Now the Einstein field equations of interest in local coordinates are

𝜕±Θ± = −1
2Θ2

± + Θ±𝜕± log(−𝑔+−) − 8𝜋𝑇±±, (2.8)

𝜕±Θ∓ = −Θ+Θ− + 1
𝑟2 𝑔+− + 8𝜋𝑇+−, (2.9)

𝜕+Θ− + 𝜕−Θ+ + Θ+Θ− = −8𝜋
𝑟2 𝑇𝜃𝜃, (2.10)

where 𝑇𝜇𝜈 is the stress energy tensor in coordinates 𝑥+, 𝑥−, 𝜃, 𝜑.

In non-stationary spherically symmetric spacetimes we use Kodama vector 𝐾

instead of Killing vector which was introduced by Kodama [98] and which reduces

to a Killing vector in stationary cases when there is vacuum. The Kodama vector in
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null coordinates is given by

𝐾 = −𝑔+−(𝜕+𝑟𝜕− − 𝜕−𝑟𝜕+). (2.11)

The magnitude of K is

|K|2 = 𝑔𝑎𝑏𝐾
𝑎𝐾𝑏 = 2𝐸

𝑟
− 1. (2.12)

Note that |K|2 = 0 on the trapping horizon 𝑟ℎ.

The trapping horizon is provided by this Kodama vector which is null on a hyper-

surface 𝜕+𝑟 = 0. In a dynamical spacetime, the trapping horizon and the Kodama

vector play the same role as the Killing horizon and the Killing vector play in the

static case. In static spacetimes the hypersurface where the Killing vector vanishes

is defined as the boundary of the spacetime but here we use Kodama vector instead.

In the above, 𝐸 is the Noether charge of Kodama vector. Kodama vector and Killing

vector have some similar properties [83], thus allowing the definition of the GSG. The

GSG 𝜅 on a trapping horizon can be expressed as [120]

𝐾𝑎∇[𝑏𝐾𝑎] = ±𝜅𝐾𝑏, (2.13)

which, on using the Einstein field equation (2.9), can be written as

𝜅 = 𝐸

𝑟2
ℎ

− 4𝜋𝑟ℎ𝜔. (2.14)

This surface gravity, from Eq. (2.13), equivalently, can also be expressed as

𝜅 = 1
2𝑔

𝑎𝑏𝜕𝑎𝜕𝑏𝑟, (2.15)

on a trapping horizon. Here 𝑔𝑎𝑏 is the inverse of the metric tensor 𝑔𝑎𝑏. It follows

that 𝜅 < 0, 𝜅 = 0 and 𝜅 > 0 for inner, degenerate and outer trapping horizons,

respectively. As mentioned above, in dynamical spherical spacetimes the Kodama
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vector is the analogue of a time-like Killing vector. We cannot define surface gravity

in traversable wormholes using Killing vector because it does not vanish everywhere.

But still we can use Kodama vector instead and define the GSG for static as well as

dynamical traversable wormhole at a trapping horizon.

Finally, Eq. (2.7) when projected along the trapping horizon gives the first law of

wormhole dynamics which can be expressed as

𝐸 ′ = 𝜅𝐴′

8𝜋 + 𝜔𝑉 ′, (2.16)

where we have used the notation 𝐹 ′ = 𝑧.∇𝐹 . Here 𝑧 = 𝑧+𝜕+ + 𝑧−𝜕− is a tangent

vector to the trapping horizon. This expression defines a relation between the surface

area and geometric entropy as

𝑆 ∝ 𝐴|ℎ. (2.17)

2.2 Morris-Thorne wormholes

The thermodynamic properties can also be studied for a wormhole by virtue of the

presence of a trapping horizon, and the results analogous to those for a black hole

can be obtained [92]. We also investigate wormholes of different shapes for their

thermodynamic properties. In this section we will apply the Hayward formalism to

MTWHs. We consider a spherically symmetric, static and traversable wormhole given

by Morris and Thorne [56]. In coordinates (𝑡, 𝑙, 𝜃, 𝜑) this metric can be written as

𝑑𝑠2 = −𝑒2Φ(𝑙)𝑑𝑡2 + 𝑑𝑙2 + 𝑟2(𝑙)𝑑Ω2, (2.18)

where 𝑑Ω2 = 𝑑𝜃2 + sin2 𝜃𝑑𝜑2 and 𝑙-coordinate runs from −∞ to ∞. This wormhole

solution covers two asymptotically flat regions which are joined together at 𝑙 = 0.

This point 𝑙 = 0 is the location of the wormhole throat, the minimum radius of a

wormhole, 𝑟(𝑙) = 𝑟0. Thus −∞ < 𝑙 < 0 and 0 < 𝑙 < ∞ cover the two asymptotically
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flat regions. Also 𝑒2Φ(𝑙) must be finite every where and when 𝑙 → ±∞ then 𝑟(𝑙)/|𝑙| → 1

and 𝑒2Φ(𝑙) → constant, in order to have asymptotically flat regions. In Schwarzschild

coordinates metric (2.18) can be written as

𝑑𝑠2 = −𝑒2Φ(𝑟)𝑑𝑡2 + 𝑑𝑟2

1 − 𝑏(𝑟)
𝑟

+ 𝑟2𝑑Ω2, (2.19)

where the proper radial distance is transformed as

𝑙(𝑟) = ±
∫︁ 𝑟

𝑟0

𝑑𝑟⋆√︁
1 − 𝑏(𝑟⋆)/𝑟⋆

, (2.20)

where ± refer to the two asymptotically flat regions which are connected through

the wormhole throat. In metric (2.19), Φ(𝑟) and 𝑏(𝑟) are called the redshift and the

shape functions of a wormhole, since the first corresponds to the gravitational redshift

of the universe and the latter determines the shape of a wormhole. The shape of a

wormhole can be seen from the embedding space in coordinates (𝑍, 𝑟, 𝜑), where the

2-surface

𝑍(𝑟) = ±
∫︁ (︃

𝑟

𝑏(𝑟) − 1
)︃−1/2

𝑑𝑟 (2.21)

has the same geometry as the 2-surface 𝜃 = 𝜋/2 and 𝑡 = constant, in metric (2.19).

The function 𝑍(𝑟) is called the embedding function. The graph of Eq. (2.21), when

revolved around the axis of rotation, the 𝑍-axis, gives the shape of the wormhole [64].

At the wormhole throat a coordinate singularity 𝑏(𝑟0) = 𝑟0 occurs and 𝑏(𝑟) < 𝑟 for

𝑟 > 𝑟0. This condition ensures the finiteness of the proper radial distance defined by

Eq. (2.20). Here 𝑟, the radial coordinate, decreases from ∞ to a minimum radius 𝑟0,

the throat of the wormhole where there occurs coordinate singularity 𝑏(𝑟0) = 𝑟0, then

it increases from 𝑟0 back to ∞. Thus both the flat regions are now represented by

𝑟0 < 𝑟 < ∞. In order for a wormhole to be traversable the existence of event horizon

should be prohibited which are the surfaces where 𝑒2Φ(𝑟) becomes zero. Thus Φ(𝑟)

should be finite everywhere to prevent the event horizon [56].
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Now for the stress-energy tensor we take the perfect fluid which is completely

described by its energy density and pressure [121]. In the component form it is

written as

𝑇 𝑡
𝑡 = −𝜌(𝑟), 𝑇 𝑟

𝑟 = 𝑝𝑟(𝑟), 𝑇 𝜃
𝜃 = 𝑇 𝜑

𝜑 = 𝑝𝑡(𝑟), (2.22)

where 𝜌(𝑟), 𝑝𝑟(𝑟) and 𝑝𝑡(𝑟) are, respectively, the energy density, radial pressure and

tangential pressure. For isotropic pressure 𝑝𝑟(𝑟) = 𝑝𝑡(𝑟), otherwise the pressure will

be anisotropic.

For a traversable wormhole solution a flaring out condition (𝑏 − 𝑏′𝑟)/𝑏2 > 0 at

or near the throat is imposed. Further, at throat 𝑏(𝑟0) = 𝑟0 and 𝑏′(𝑟0) < 1 is also

imposed to have a wormhole solution. The violation of NEC, in fact, is because

of these restrictions [56, 122, 123], since Einstien’s field equations and flaring out

condition imply that 𝜌 + 𝑝𝑟 < 0. Also from Einstein equations 𝑏′(𝑟) and 𝜌(𝑟) have

same sign, therefore, it is advisable to demand 𝑏′(𝑟) > 0 to minimize the exoticity.

2.3 Trapping horizons and their classification

To obtain the trapping horizon from metric (2.19), we can write it in the form of Eq.

(2.1), using the null coordinates 𝑥+ = 𝑡 + 𝑟* and 𝑥− = 𝑡 − 𝑟* where 𝑟 and 𝑟* are

related by the equation

𝑑𝑟

𝑑𝑟*
=
√︃

− 𝑔𝑡𝑡

𝑔𝑟𝑟

= 𝑒Φ
√︁

1 − 𝑏/𝑟. (2.23)

Here 𝑟 and 𝑔+− = −𝑒2Φ/2 are functions of the null coordinates 𝑥+ and 𝑥−.

The stress-energy tensor from coordinates (𝑡, 𝑟, 𝜃, 𝜑) to (𝑥+, 𝑥−, 𝜃, 𝜑) is transformed

through the equation

𝑇 𝜇
𝜈 = 𝜕𝑥𝜇

𝜕𝑥𝑎

𝜕𝑥𝑏

𝜕𝑥𝜈
𝑇 𝑎

𝑏 (2.24)

where 𝜇, 𝜈 run over new coordinates (𝑥+, 𝑥−, 𝜃, 𝜑) and 𝑎, 𝑏 over old coordinates (𝑡, 𝑟, 𝜃, 𝜑).
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The expansions can be written as

Θ± = ±𝑒Φ

𝑟

√︁
1 − 𝑏/𝑟. (2.25)

Now, a trapping horizon is defined as the surface foliated by spheres in which Θ+Θ− =

0. Here, for trapping horizon, we choose Θ+|ℎ = 0 which implies 𝜕+𝑟|ℎ = 0 giving

𝑏(𝑟ℎ) = 𝑟ℎ. Also, on the throat, 𝑏(𝑟0) = 𝑟0, which implies that for metric (2.19) the

trapping horizon and throat of the wormhole coincide, that is 𝑟ℎ = 𝑟0. In our case

Θ+|ℎ = 0 implies Θ−|ℎ = 0, so we have a bifurcating trapping horizon here and

𝜕−Θ+ = 𝑒2Φ(𝑟0)(𝑏′(𝑟0) − 1)
4𝑟2

0
, (2.26)

on the trapping horizon (throat). The sign of 𝜕−Θ+ depends on the value of 𝑏′(𝑟0),

and thus the trapping horizon is outer if 𝑏′(𝑟0) < 1, inner if 𝑏′(𝑟0) > 1 and degenerate

if 𝑏′(𝑟0) = 1. The flaring out condition depicts that 𝑏′(𝑟0) < 1, and thus we have an

outer trapping horizon which is bifurcating as well.

Since Killing vecctor is present in these spacetimes but there is no hypersurface

where it is null, the Killing horizon is absent. However we have the Kodama vector

which for the Morris-Thorne metric takes the form

𝐾± = 𝑒−Φ(𝑟)

√︃
1 − 𝑏(𝑟)

𝑟
. (2.27)

The magnitude of K from Eq. (2.12) takes the form

|𝐾|2 = 𝑏(𝑟)
𝑟

− 1, (2.28)

which becomes zero on the trapping horizon 𝑟0. Thus trapping horizon is provided

by this Kodama vector which is null on a hypersurface 𝑟 = 𝑟0.
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2.4 Thermodynamics of Morris-Thorne wormholes

2.4.1 Generalized surface gravity

Using expression (2.4) the MS energy for the metric (2.19) is given by

𝐸 = 𝑏(𝑟)
2 , (2.29)

on a trapping horizon which reads 𝐸 = 𝑟0/2.

Einstein equations of interest (2.8)-(2.10) in local coordinates are

𝜕±Θ± = −1
2Θ2

± + Θ±𝜕± log(−𝑔+−) − 2𝜋𝑒2Φ(𝜌+ 𝑝𝑟), (2.30)

𝜕±Θ∓ = −Θ+Θ− + 1
𝑟2 𝑔+− + 2𝜋𝑒2Φ(𝜌− 𝑝𝑟), (2.31)

𝜕+Θ− + 𝜕−Θ+ + Θ+Θ− = −8𝜋𝑝𝑡. (2.32)

Here, from Eq. (2.24), we have used

𝑇++ = 𝑇−− = 𝑒2Φ(𝜌+ 𝑝𝑟)
4 , (2.33)

𝑇+− = 𝑇−+ = 𝑒2Φ(𝜌− 𝑝𝑟)
4 , (2.34)

𝑇𝜃𝜃 = 𝑟2𝑝𝑡. (2.35)

Now, because of the absence of a Killing horizon, surface gravity cannot be obtained

as defined by Gibbons and Hawking [106]. However, due to the presence of trapping

horizon, we can obtain it by using Kodama vector. Using Eq. (2.15), the GSG, 𝜅, on

a trapping horizon can be expressed as

𝜅 = 1 − 𝑏′(𝑟0)
4𝑟0

, (2.36)

which is positive since 𝑏′(𝑟0) < 1. On using Einstein field equations (2.30) and (2.31),
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it can also be written, respectively, as

𝜅 = −2𝜋𝑟0 (𝜌+ 𝑝𝑟) |ℎ, (2.37)

and

𝜅 = 1
2𝑟0

− 2𝜋𝑟0(𝜌− 𝑝𝑟) |ℎ . (2.38)

The Hawking temperature 𝑇 = −𝜅ℎ/2𝜋 [44, 45] in our case from Eq. (2.36)

becomes

𝑇 = −1 − 𝑏′(𝑟0)
8𝜋𝑟0

, (2.39)

which is negative for the outer trapping horizon (𝑏′(𝑟0) < 1), since 𝜅 > 0. It means

the particles coming out of a wormhole have the same properties as that of a phantom

energy because this energy is linked with negative temperature as well. Or, we can

say that the phantom energy is responsible for this negative temperature [124].

Now the usual surface gravity, defined by the use of Killing vector, means there

is a force which acts on a test particle in a gravitational field. In our case, both

Killing vector and Kodama vector are present but Kodama vector is more relevant

as it vanishes on a particular hypersurface unlike Killing vector, and in the vacuum

case it reduces to Killing vector as well. Thus, one could suspect that the GSG which

is defined by using Kodama vector means more than just a force acting on the test

particle in a gravitational field, and some extra effects on the test particle could be

predicted. However, if these extra effects on a test particle vanish by some kind of

symmetry then there is a possibility that such a symmetry would also give rise to a

degenerate trapping horizon.

2.4.2 Some specific cases of different shape functions

Shape function 𝑏(𝑟) = 𝑟2
0/𝑟
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Here we take [123] the shape function 𝑏(𝑟) = 𝑟2
0/𝑟. This shape function satisfies

the necessary conditions, which have been discussed in the beginning, to have a

traversable wormhole solution. However this corresponds to negative energy density

𝜌. Using this shape function Eq. (2.21) becomes

𝑍(𝑟) = ±𝑟0 ln
𝑟 +

√︁
𝑟2 − 𝑟2

0

𝑟0
. (2.40)

This embedding function 𝑍(𝑟) is depicted in Fig. 2.1 where we have set 𝑟0 = 1.

Figure 2.1. Embedding function 𝑍(𝑟) for 𝑏(𝑟) = 𝑟2
0/𝑟 and 𝑟0 = 1.

In this case, we note that, the Kodama vector from Eq. (2.27) takes the form

𝐾± = −𝑒Φ

2

√︃
1 − 𝑟2

0
𝑟2 . (2.41)

Using this in Eq. (2.36) and evaluating on the trapping horizon gives the GSG

𝜅 = 1
2𝑟0

. (2.42)

This positive GSG gives the negative Hawking temperature 𝑇 = −1/4𝜋𝑟0.
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Shape function 𝑏(𝑟) = √
𝑟0𝑟

Here we consider the shape function 𝑏(𝑟) = √
𝑟0𝑟 [123]. The necessary condi-

tions for a traversable wormhole solution are satisfied by this shape function. The

embedding function in this case from Eq. (2.21) takes the form

𝑍(𝑟) = ±4(𝑟0)1/4

3
[︁
(
√
𝑟 −

√
𝑟0)3/2 + 3√

𝑟0(
√
𝑟 −

√
𝑟0)1/2

]︁
. (2.43)

The embedding diagram for this shape function is shown in Fig. 2.2, where we have

set 𝑟0 = 1.

Figure 2.2. Embedding function 𝑍(𝑟) for 𝑏(𝑟) = √
𝑟0𝑟 and 𝑟0 = 1.

The Kodama vector, in this case, from Eq. (2.27) becomes

𝐾± = −𝑒Φ

2

√︃
1 −

√︂
𝑟0

𝑟
. (2.44)

Using this in Eq. (2.36) and evaluating on the trapping horizon yields the GSG

𝜅 = 1
8𝑟0

, (2.45)
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which is always positive, and this gives negative Hawking temperature 𝑇 = −1/16𝜋𝑟0.

Shape function 𝑏(𝑟) = 𝑟0( 𝑟
𝑟0

)𝛾, 0 ≤ 𝛾 < 1

Now, we assume the shape function 𝑏(𝑟) = 𝑟0( 𝑟
𝑟0

)𝛾, 0 ≤ 𝛾 < 1. The embedding

function in this case for 𝛾 = 0 from Eq. (2.21) is given as

𝑍(𝑟) = ±2
√︁
𝑟0(𝑟 − 𝑟0). (2.46)

The graph of this function is shown in Fig. 2.3, where we have taken 𝑟0 = 1

Figure 2.3. Embedding function 𝑍(𝑟) for 𝑏(𝑟) = 𝑟0 and 𝑟0 = 1.

The Kodama vector takes the form

𝐾± = −𝑒2Φ

2

√︃
1 −

(︂
𝑟

𝑟0

)︂𝛾−1
. (2.47)

In this case the GSG, from Eq. (2.36), on the trapping horizon becomes

𝜅 = 1 − 𝛾

4𝑟0
. (2.48)
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This is positive since 0 ≤ 𝛾 < 1, giving negative Hawking temperature 𝑇 = −(1 −

𝛾)/8𝜋𝑟0.

2.4.3 Unified first law

Now for deriving the UFL we first construct a fuction 𝜔 and a vector 𝜓 using expres-

sions (2.5) and (2.6) as

𝜔 = 𝜌− 𝑝𝑟

2 , (2.49)

and

𝜓± = ±𝑒Φ(𝑟)
√︃

1 − 𝑏

𝑟

(︂
𝜌+ 𝑝𝑟

4

)︂
. (2.50)

Taking the derivative of MS energy 𝐸 and making use of Einstein field equations

(2.30) and (2.31), we get

𝜕±𝐸 = ±2𝜋𝑟2𝜌𝑒Φ

√︃
1 − 𝑏

𝑟
. (2.51)

From Eqs. (2.49)-(2.51) UFL (2.7) can be formulated. On the trapping horizon

(throat) all the terms appearing in the UFL vanish, thus resulting in no evolution of

the throat. However, generally, the gradient of MS energy is always positive in the

outgoing direction while negative in the ingoing direction because 𝜌 is positive. The

energy density 𝜔 is positive even though energy conditions are violated. Energy flux

depends on the sign of 𝜌+𝑝𝑟, which is negative in our case due to exotic matter which

gets energy from the spacetime, however energy removal due to energy flux term does

not become so large that it could alter the sign of gradient of MS energy.

39



CHAPTER 2. THERMODYNAMICS OF MORRIS-THORNE WORMHOLES

2.4.4 First law of wormhole dynamics

The first law of wormhole dynamics is obtained by projecting the UFL along the

trapping horizon. This projection yields the following equation

𝐸 ′ = 𝜅𝑒𝑓𝑓𝐴′

8𝜋 + 𝜔𝑒𝑓𝑓𝑉 ′, (2.52)

where, 𝐸 ′ = 𝑧.∇𝐸, 𝐴′ = 𝑧.∇𝐴 and 𝑉 ′ = 𝑧.∇𝑉 with 𝑧 = 𝑧+𝜕+ + 𝑧−𝜕− being the

vector tangent to the trapping horizon.

Eq. (2.52) includes in its expression the effective GSG and the area. This expres-

sion looks the same as the first law of black hole statics but here perturbations are

replaced with the derivation along the trapping horizon. This first law of wormhole

dynamics differs from the first law of black hole statics in the aspect that here we

use the definition of the effective GSG defined at trapping horizon, instead of surface

gravity defined at the Killing horizon used in the first law of black hole statics [84].

Eq. (2.52) can also be written in the form

𝐸 ′ = −𝑇𝑆 ′ + 𝜔𝑉 ′, (2.53)

on the trapping horizon with

𝑆 = 𝐴|𝐻
4 . (2.54)

Eq. (2.53) contains negative sign in the first term on the right hand side. It is

because of the energy removed from the wormhole. Thus the first law of wormhole

dynamics can be stated as “the change in the active gravitational energy is equal to

the energy removed from the wormhole and the work done in the wormhole”.

2.4.5 Thermodynamic stability

In this section we study the thermodynamic stability of wormholes under considera-

tion using the variables 𝐸, 𝑇, 𝑆, 𝑃 and 𝑉 . We follow the usual criterion [125, 126] for
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thermodynamic stability, that is, 𝜕𝑃
𝜕𝑉

|𝑇 ≤ 0 and 𝐶𝑃 ≥ 𝐶𝑉 ≥ 0, where 𝑃 = (𝑝𝑟 +2𝑝𝑡)/3

is the average pressure and 𝐶𝑃 and 𝐶𝑉 are specific heats at constant pressure and

volume, respectively.

We subtract Eq. (2.37) from (2.38) and rearrange the terms to obtain

𝑝𝑟 = − 1
8𝜋𝑟2 . (2.55)

Eq. (2.32) on the trapping horizon yields

2𝑝𝑡 = 𝜅

2𝜋𝑟 . (2.56)

From these values, using the definition of Hawking temperature (𝑇 = −𝜅/2𝜋), we

obtain the average pressure 𝑃 as

𝑃 = 𝑝𝑟 + 2𝑝𝑡

3 = − 1
24𝜋𝑟2 − 𝑇

3𝑟 , (2.57)

which is the equation of state in three state parameters 𝑇, 𝑃 and 𝑉 . From this

equation we can analyze thermodynamic stability of the wormhole.

Stable equilibrium of thermodynamic system requires that 𝜕𝑃
𝜕𝑉

|𝑇 ≤ 0 where

𝜕𝑃

𝜕𝑉
|𝑇 = (4𝜋/3)2/3

36𝜋𝑉 5/3 + (4𝜋/3)1/3𝑇

9𝑉 4/3 . (2.58)

Now to ensure the stable equilibrium we must have

𝑇 ≤ − 1
4𝜋𝑟 , (2.59)

and thus the temperature assumes negative values everywhere for stable equilibrium

which is attributed to the exotic matter. From Eq. (2.57) we have

𝑃 ≥ 1
24𝜋𝑟2 . (2.60)
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Another condition for stable equilibrium is 𝐶𝑃 ≥ 𝐶𝑉 ≥ 0. Now, since constant 𝑉

means constant 𝐸 and 𝑆 so by the definition of 𝐶𝑉 ,

𝐶𝑉 = 𝜕𝐸

𝜕𝑇
|𝑉 = 𝑇

𝜕𝑆

𝜕𝑇
|𝑉 = 0, (2.61)

which means we can define heat capacity only at constant pressure as

𝐶𝑃 = 𝑇
𝜕𝑆

𝜕𝑇
|𝑃 = 2𝜋𝑟2(24𝜋𝑃𝑟2 + 1)

24𝜋𝑃𝑟2 − 1
, (2.62)

where, from Eq. (2.57)

𝑇 = −(3𝑟𝑃 + 1
8𝜋𝑟 ). (2.63)

Now, from Eq. (2.60), to ensure the stable equilibrium, we can take the value of 𝑃 ,

for any non-negative 𝜖, as

𝑃 = 1
24𝜋𝑟2 + 𝜖. (2.64)

Thus Eq. (2.62) on using the above takes the form

𝐶𝑃 = 1
6𝜖 + 2𝜋𝑟2. (2.65)

which is always positive. Thus the MTWHs are thermodynamically stable. This

means that for stable equilibrium the average pressure is always positive, while tem-

perature is always negative as is also depicted in Ref. [71] in which the possibility of

negative temperature emerging from the exotic matter distribution was proposed.

2.5 Morris-Thorne wormholes in non-minimal

curvature-matter coupling

In the regime of GR, NEC is not satisfied in wormholes, near throat which results

in further violations of other energy conditions such as WEC, SEC, and DEC, in
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the same area [56, 59]. However these energy conditions may get some respect in

modified gravitational theories which provide corrections to the Einstein tensor and

stress-energy tensor. These correction terms are not very fruitful on small scale such

as in solar system, however on large scale such as galactic, cosmological and on fields

of strong gravitation, where there are some doubts of failure of GR, these correction

terms play a significant role. Importance and applications of these extended theories

of gravity has been enlightened in Refs. [12, 46–51]. In this way it may happen

that wormholes be filled with no more exotic matter but ordinary natural matter

which respect energy conditions. Such an approach has been used for 𝑓(𝑅) gravity

[127, 128]. Recently, in 2009, It was shown that there exist a wormhole sulution which

obeys the energy conditions when analyzed in f(R) gravity [123] and this solution has

been generalized in Refs. [129–131].

Thus, in GR, NEC violation is necessary for a traversable wormhole. However, in

higher curvature theories, such as Gauss-Bonnet theory, the matter that threads the

wormhole respects NEC but it is now effective stress-energy tensor which is responsible

for NEC violation. In curvature-matter coupling in 𝑓(𝑅, 𝑇 ) gravity solutions have

been analyzed [132].

In this section we will extend the Hayward technique to the non-minimal curvature-

matter coupling in the backgound of static MTWHs. Here we start with the gravita-

tional field equations of non-minimal curvature-matter coupling in 𝑓(𝑅) gravity.

2.5.1 Gravitational field equations

In GR, while deriving gravitational field equations, the gravitational Lagrangian den-

sity, ℒ𝑚 = 𝑅, is adopted in Hilbert action. This choice is not the ultimate choice.

Thus in place of 𝑅, a general function 𝑓(𝑅) was introduced and thus the modified

field equations were derived which explained those phenomena that GR could not

account for [14]. Some models in 𝑓(𝑅) gravity, which combine dark energy and in-

flation, were also presented [133, 134]. The possibility to understand the galactic
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dynamics of huge massive test particles without considering dark matter has also

been investigated [30, 135]. This modified theory was further generalized by the in-

clusion of explicit coupling, between matter and 𝑓(𝑅), in action [136]. This resulted

in non-geodesic motion of massive particles and an extra force which is orthogonal to

the four-velocity. This model was enhanced to arbitrary coupling, both in geometry

and matter [137]. The coupling effects were incorporated in (effective) stress-energy

tensor.

Consider the action of the non-minimal curvature-matter coupling in the context

of 𝑓(𝑅) gravity given by [136]

𝑆 =
∫︁ [︂ 1

2𝑘𝑓1(𝑅) + {1 + 𝜆2𝑓2(𝑅)}𝐿𝑚

]︂√
−𝑔𝑑4𝑥, (2.66)

where 𝑓𝑖(𝑅) (𝑖 = 1, 2) are arbitrary functions which depend upon 𝑅, 𝐿𝑚 is the matter

Lagrangian density and 𝑘 = 8𝜋, 𝑔 is the determinant of the metric tensor and 𝜆2 is

the coupling constant that characterizes the strength of interaction between curvature

and matter. To obtain gravitational field equations we vary this action with respect

to the metric 𝑔𝜇𝜈 and get the following equations

𝐹1(𝑅)𝑅𝜇𝜈 − 1
2𝑓1(𝑅)𝑔𝜇𝜈 − ∇𝜇∇𝜈𝐹1(𝑅) + 𝑔𝜇𝜈�𝐹1(𝑅) (2.67)

= −2𝜆2𝐹2(𝑅)𝐿𝑚𝑅𝜇𝜈 + 2𝜆2
(︁
∇𝜇∇𝜈 − 𝑔𝜇𝜈�

)︁
𝐿𝑚𝐹2(𝑅)

+
[︁
1 + 𝜆2𝑓2(𝑅)

]︁
𝑇𝑚

𝜇𝜈 ,

where we have used the notation 𝐹𝑖(𝑅) = 𝜕𝑓𝑖/𝜕𝑅. The matter stress-energy tensor

is given by

𝑇𝑚
𝜇𝜈 = − 2√

−𝑔
𝛿(√−𝑔𝐿𝑚)

𝛿𝑔𝜇𝜈
. (2.68)

Here, for simplicity, we take perfect fluid. It has also been argued [138] that 𝐿𝑚 = 𝑝

is the natural choice for perfect fluid, where 𝑝 is the pressure [139, 140]. This choice

imposes vanishing of the extra force produced by the non-minimal curvature-matter
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coupling [136]. Further, 𝐿𝑚 = 𝑝 does indeed reproduce the fluid equations of state

but this choice is not the only one [141]. There are other choices for the matter

Lagrangian density as well, such as 𝐿𝑚 = −𝜌 and 𝐿𝑚 = −𝑛𝑎, where 𝜌 is the energy

density, 𝑎 is the physical free energy defined as 𝑎 = 𝜌/𝑛−𝑇𝑆, 𝑆 being the entropy, 𝑇

the temperature and 𝑛 is the particle number density [79, 140–142]. Here, we will take

𝐿𝑚 = −𝜌 and consider the specific case 𝑓𝑖(𝑅) = 𝑅, thus gravitational field equations

(2.67) reduce to

𝐺𝜇𝜈 = 8𝜋𝑇 𝑒𝑓𝑓
𝜇𝜈 , (2.69)

where 𝐺𝜇𝜈 = 𝑅𝜇𝜈 − 1
2𝑅𝑔𝜇𝜈 is the Einstein tensor and 𝑇 𝑒𝑓𝑓

𝜇𝜈 is called the effective

stress-energy tensor given by

𝑇 𝑒𝑓𝑓
𝜇𝜈 =

(︁
1 + 𝜆2𝑅

)︁
𝑇𝑚

𝜇𝜈 + 2𝜆2
[︁
𝜌𝑅𝜇𝜈 −

(︁
∇𝜇∇𝜈 − 𝑔𝜇𝜈�

)︁
𝜌
]︁
. (2.70)

2.5.2 Generalized surface gravity

In this section we will derive the expression of the GSG in the context of 𝑓(𝑅) gravity.

From the effective stress-energy tensor, on using background fluid, we can construct

a function

𝜔 = −𝑔+−𝑇
+−(𝑒𝑓𝑓) (2.71)

= 𝜌− 𝑝𝑟

2 + 𝜆2

[︃(︁
1 − 𝑏

𝑟

)︁{︃
(𝜌+ 𝑝𝑟)Φ′′ + (𝜌+ 𝑝𝑟)(Φ′)2 − 𝜌− 𝑝𝑟

𝑟2 + 2𝑝Φ′

𝑟
− 𝜌′′ − 𝜌′Φ′

}︃

+ (𝑏− 𝑏′𝑟)
{︃

Φ′

2𝑟2 (𝜌+ 𝑝𝑟) + 𝑝

𝑟3 − 𝜌′

2𝑟2

}︃
+ 𝜌− 𝑝𝑟

𝑟2

]︃
,

and the vector

𝜓 = 𝑇++(𝑒𝑓𝑓)𝜕+𝑟𝜕+ + 𝑇−−(𝑒𝑓𝑓)𝜕−𝑟𝜕−. (2.72)
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The gravitational field equations, in the case of MTWHs, of interest are

−𝜕±Θ± − 1
2Θ2

± + Θ±𝜕± log(−𝑔+−) = 𝑒2Φ
[︃
𝜌+ 𝑝𝑟

4 + 𝜆2

2𝑟2 (𝜌+ 𝑝𝑟) (2.73)

+ 𝜆2
(︁
1 − 𝑏

𝑟

)︁{︃
− (𝜌+ 𝑝𝑟

2 )Φ′′ − (𝜌+ 𝑝𝑟

2 )(Φ′)2 − (𝜌+ 𝑝𝑟

2𝑟2 ) − 𝑝Φ′

𝑟

− 𝜌′′

2 − 𝜌′Φ′

2

}︃
+ 𝜆2(𝑏− 𝑏′𝑟)

{︃
−(𝜌+ 𝑝𝑟)

Φ′

4𝑟2 − (2𝜌+ 𝑝𝑟)
2𝑟3 − 𝜌′

4𝑟2

}︃]︃
,

𝜕±Θ∓ + Θ−Θ+ − 1
𝑟2 𝑔±∓ = 𝑒2Φ(𝜌− 𝑝𝑟)

4 + 𝑒2Φ𝜆2

2

[︃
𝜌− 𝑝𝑟

𝑟2 (2.74)

+
(︁
1 − 𝑏

𝑟

)︁{︃
(𝜌+ 𝑝𝑟)Φ′′ + (𝜌+ 𝑝𝑟)(Φ′)2 − 𝜌− 𝑝𝑟

𝑟2

+ 2𝑝Φ′

𝑟
− 𝜌′′ − 𝜌′Φ′

}︃
+ (𝑏− 𝑏′𝑟)

{︃
Φ′

2𝑟2 (𝜌+ 𝑝𝑟) + 𝑝

𝑟3 − 𝜌′

2𝑟2

}︃]︃
.

The GSG 𝜅 satisfies

𝐾𝑎∇[𝑏𝐾𝑎] = ±𝜅𝑒𝑓𝑓𝐾𝑏, (2.75)

on the trapping horizon. which is equivalent to

𝜅𝑒𝑓𝑓 = 1
2𝑔

𝑎𝑏𝜕𝑎𝜕𝑏𝑟. (2.76)

For the MTWHs, on using the gravitational field equations, this gives

𝜅𝑒𝑓𝑓 = 1
2𝑟0

− 2𝜋𝑟0

(︃
𝜌− 𝑝𝑟

)︃
− 4𝜋𝑟0𝜆2

[︃
𝜌− 𝑝𝑟

𝑟2
0

(2.77)

+
(︃

1 − 𝑏′(𝑟0)
)︃{︃

Φ′(𝑟0)
2𝑟0

(︃
𝜌+ 𝑝𝑟

)︃
+ 𝑝

𝑟2
0

− 𝜌′(𝑟0)
2𝑟0

}︃]︃
,
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𝜅𝑒𝑓𝑓 = −2𝜋
[︃
𝑟0

(︃
𝜌+ 𝑝𝑟

)︃
− 𝜆2

{︃(︃
𝜌+ 𝑝𝑟

)︃
Φ′(𝑟0)

(︃
1 − 𝑏′(𝑟0)

)︃

+
2
(︃
𝜌+ 𝑝𝑟

)︃(︃
1 − 𝑏′(𝑟0)

)︃
𝑟0

−
2
(︃
𝜌+ 𝑝𝑟

)︃
𝑟0

+
2𝜌
(︃

1 − 𝑏′(𝑟0)
)︃

𝑟0
+ 𝜌′(𝑟0)

(︃
1 − 𝑏′(𝑟0)

)︃}︃]︃
. (2.78)

The effective Hawking temperature can be calculated from 𝑇 𝑒𝑓𝑓 = −𝜅𝑒𝑓𝑓/2𝜋,

which is negative in our case of outer trapping horizon.

2.5.3 Unified first law

In spherical symmetric spacetimes, the UFL can also be formulated by using the

gravitaional field equations for non-minimal curvature-matter coupling. According

to this law the derivative of active gravitational energy, on using the gravitaional

equations, is divided into two terms, the work term and the energy supply term. In

components form Eq. (2.72) can be written as

𝜓𝑒𝑓𝑓
± = ±𝑒Φ

√︃
1 − 𝑏

𝑟

[︃
𝜌+ 𝑝𝑟

4 + 𝜆2

2𝑟2 (𝜌+ 𝑝𝑟) (2.79)

+ 𝜆2
(︁
1 − 𝑏

𝑟

)︁{︃
−(𝜌+ 𝑝𝑟

2 )Φ′′ − (𝜌+ 𝑝𝑟

2 )(Φ′)2 − (𝜌+ 𝑝𝑟

2𝑟2 ) − 𝑝Φ′

𝑟
− 𝜌′′

2 − 𝜌′Φ′

2

}︃

+ 𝜆2(𝑏− 𝑏′𝑟)
{︃

−(𝜌+ 𝑝𝑟)
Φ′

4𝑟2 − (2𝜌+ 𝑝𝑟)
2𝑟3 − 𝜌′

4𝑟2

}︃]︃
.

Now, taking gradient of the active gravitaional energy using gravitational field

equations, yields the following result

𝜕±𝐸 = 𝐴𝜓𝑒𝑓𝑓
± + 𝜔𝑒𝑓𝑓𝜕±𝑉. (2.80)
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This result is called the UFL, where

𝜕±𝐸 = ±4𝜋𝑟2𝑒Φ

√︃
1 − 𝑏

𝑟

[︃
𝜌

2 + 𝜆2
(︁
1 − 𝑏

𝑟

)︁{︂
− 𝜌

𝑟2 − 𝜌′′ − 𝜌′Φ′
}︂

(2.81)

+ 𝜆2(𝑏− 𝑏′𝑟)
{︃

− 𝜌

𝑟3 − 𝜌′

2𝑟2

}︃
+ 𝜆2𝜌

𝑟2

]︃
,

and 𝜔𝑒𝑓𝑓 is called the effective energy density while 𝜓𝑒𝑓𝑓 , the effective energy flux.

All the terms appearing in the UFL vanish on the trapping horizon (throat) resulting

in no evolution of the throat.

The right hand side of Eq. (2.80) consists of two terms: The first term, which is

responsible for the variation of spacetime energy, is called the energy supply term,

as due to the energy flux it produces variation in spacetime energy; and the second

term, which supports the structure of spacetime, is called the work term which is

carried out inside the wormhole.

2.6 Thermodynamics of Morris-Thorne wormholes

in 𝑓 (𝑅, 𝑇 ) gravity

One of the theory that gained significant attraction is the 𝑓(𝑅, 𝑇 ) gravity theory.

This gravity was proposed by T. Harko and his collaborators and it extends the 𝑓(𝑅)

gravity, by the inclusion of dependence of the Lagrangian on the trace 𝑇 of the stress-

energy tensor [20]. They used the metric formalism for deriving the gravitational field

equations, also for test particles they obtained the equation of motion, followed from

the covariant divergence of the stress-energy tensor. The models of 𝑓(𝑅, 𝑇 ) gravity

have been used in a number of works to satisfactorily explain the cosmological prob-

lems [143–147], gravitational waves [148], thermodynamics [149–152] and accelerated

expansion of the universe in the late times [153–156].

In this section we will discuss the gravitational field equations of 𝑓(𝑅, 𝑇 ) gravity
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and then using these equations we will find the GSG and formulate the UFL for the

MTWHs. We will use the Kodama vector and trapping horizon of these wormholes

which we have obtained earlier in this chapter. Finally we will include coupling in

𝑓(𝑅, 𝑇 ) gravity and extend our results for the non-minimal curvature-matter coupling.

2.6.1 𝑓(𝑅, 𝑇 ) gravity

In 𝑓(𝑅) gravity, a new term 𝑇 , the trace of the stress-energy tensor, was introduced

in Ref. [20], thus a new modified 𝑓(𝑅, 𝑇 ) gravity theory was introduced. The 𝑓(𝑅, 𝑇 )

gravity models depend on the source term representing the variation of the matter

stress-energy tensor with respect to the metric. Different choices of matter Lagrangian

produce different set of field equations. Different models in 𝑓(𝑅, 𝑇 ) gravity, consid-

ering its explicit forms, and their properties have been discussed in [20]. In 𝑓(𝑅, 𝑇 )

gravity, the action can be written as

𝑆 =
∫︁ √

−𝑔
[︂ 1
16𝜋𝑓(𝑅, 𝑇 ) + 𝐿

]︂
𝑑4𝑥, (2.82)

where 𝑔 is determinant of the metric tensor, 𝑓(𝑅, 𝑇 ) is the function of the Ricci scalar

𝑅 and the trace of the stress-energy tensor 𝑇 (i.e., 𝑇 = 𝑔𝜇𝜈𝑇𝜇𝜈), while 𝐿 is the matter

Lagrangian density. We vary this action with respect to the metric tensor 𝑔𝜇𝜈 , for the

case 𝑓(𝑅, 𝑇 ) = 𝑅 + 2𝜆1𝑇 with constant 𝜆1, and obtain the following field equations

[20]

𝐺𝜇𝜈 = 8𝜋𝑇 𝑒𝑓𝑓
𝜇𝜈 , (2.83)

where 𝐺𝜇𝜈 is the Einstein tensor and 𝑇 𝑒𝑓𝑓
𝜇𝜈 is the effective stress-energy tensor defined

as

𝑇 𝑒𝑓𝑓
𝜇𝜈 = 𝑇 (𝑚)

𝜇𝜈 + 𝜆1

4𝜋

{︂
𝑇 (𝑚)

𝜇𝜈 + 𝑃𝑔𝜇𝜈 + 1
2𝑔𝜇𝜈𝑇

(𝑚)
}︂
, (2.84)

with 𝑇 (𝑚) = 𝑔𝜇𝜈𝑇 (𝑚)
𝜇𝜈 is the trace of the matter stress-energy tensor and 𝑃 = (𝑝𝑟 +

2𝑝𝑡)/3 is the average pressure.
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2.6.2 Generalized surface gravity and unified first law

We can also formulate the UFL in 𝑓(𝑅, 𝑇 ) gravity using gravitational field equations

in the expression of gradient of the MS energy. The gravitational field equations of

interest for MTWHs in 𝑓(𝑅, 𝑇 ) gravity are

𝜕±Θ± = −1
2Θ2

± + Θ±𝜕± log(−𝑔+−) − 2𝜋𝑒2Φ(𝜌+ 𝑝𝑟)
{︃

1 + 𝜆1

4𝜋

}︃
, (2.85)

𝜕±Θ∓ = −Θ+Θ− + 1
𝑟2 𝑔+− + 2𝜋𝑒2Φ(𝜌− 𝑝𝑟) − 𝜆1𝑒

2Φ
{︂

−𝜌+ 4𝑝𝑟

3 + 5𝑝𝑡

3

}︂
.(2.86)

Now, from the effective stress-energy tensor (2.84) we can construct a function 𝜔𝑒𝑓𝑓

and a vector 𝜓𝑒𝑓𝑓 as

𝜔𝑒𝑓𝑓 = −𝑔+−𝑇
+−𝑒𝑓𝑓 = 𝜌− 𝑝𝑟

2 − 𝜆1

4𝜋

{︂
−𝜌+ 4𝑝𝑟

3 + 5𝑝𝑡

3

}︂
, (2.87)

and

𝜓𝑒𝑓𝑓 = 𝑇++𝑒𝑓𝑓𝜕+𝑟𝜕+ + 𝑇−−𝑒𝑓𝑓𝜕−𝑟𝜕−. (2.88)

On using the gravitational field equations (2.85) and (2.86), the GSG (2.36) can also

be expressed as

𝜅𝑒𝑓𝑓 = −2𝜋𝑟0 (𝜌+ 𝑝𝑟) (1 + 𝜆1

4𝜋 ), (2.89)

and

𝜅𝑒𝑓𝑓 = 1
2𝑟0

− 2𝜋𝑟0(𝜌− 𝑝𝑟) + 𝜆1𝑟0

{︂
−𝜌+ 4𝑝𝑟

3 + 5𝑝𝑡

3

}︂
. (2.90)

We can write Eq. (2.88) in the component form as

𝜓𝑒𝑓𝑓
± = ±𝑒Φ

√︃
1 − 𝑏

𝑟

(𝜌+ 𝑝𝑟)
4

{︃
1 + 𝜆1

4𝜋

}︃
. (2.91)

The UFL can also be extended from Einstein to 𝑓(𝑅, 𝑇 ) gravity. The gradient of

the MS energy (2.4), with the use of gravitational field equations (2.85) and (2.86)
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can be written in the form

𝜕±𝐸 = 𝐴𝜓𝑒𝑓𝑓
± + 𝜔𝑒𝑓𝑓𝜕±𝑉, (2.92)

where 𝜔𝑒𝑓𝑓 and 𝜓𝑒𝑓𝑓
± are given in Eqs. (2.87) and (2.91),respectively, while

𝜕±𝐸 = ±2𝜋𝑟2𝑒Φ

√︃
1 − 𝑏

𝑟

{︃
𝜌+ 𝜆1

4𝜋

[︃
3𝜌
2 − 5𝑝𝑟

6 − 5𝑝𝑡

3

]︃}︃
. (2.93)

2.7 Non-minimal curvature-matter coupling in

𝑓 (𝑅, 𝑇 ) gravity

In this section we extend the work, presented in previous section, to the non-minimal

curvature-matter coupling. We consider the action for the non-minimal curvature-

matter coupling, in the context of 𝑓(𝑅, 𝑇 ) gravity, given by

𝑆 =
∫︁ [︂ 1

16𝜋𝑓1(𝑅, 𝑇 ) + {1 + 𝜆2𝑓2(𝑅)}𝐿
]︂√

−𝑔𝑑4𝑥, (2.94)

where 𝑓1(𝑅, 𝑇 ) is an arbitrary function of 𝑅 and 𝑇 while 𝑓2(𝑅) is an arbitrary function

of 𝑅 only. Here 𝜆2 is called coupling constant and it characterizes curvature-matter

coupling strength. We will consider the simplest case by taking 𝑓1(𝑅, 𝑇 ) = 𝑅+ 2𝜆1𝑇

and 𝑓2(𝑅) = 𝑅. The gravitational field equations in this case, by varying the action

with respect to 𝑔𝜇𝜈 , are obtained as

𝐺𝜇𝜈 = 8𝜋𝑇 𝑒𝑓𝑓
𝜇𝜈 , (2.95)

where

𝑇 𝑒𝑓𝑓
𝜇𝜈 =

(︁
1 + 𝜆2𝑅

)︁
𝑇𝑚

𝜇𝜈 + 2𝜆2
[︁
𝜌𝑅𝜇𝜈 −

(︁
∇𝜇∇𝜈 − 𝑔𝜇𝜈�

)︁
𝜌
]︁

(2.96)

+ 𝜆1

4𝜋

{︂
𝑇 (𝑚)

𝜇𝜈 + 𝑃𝑔𝜇𝜈 + 1
2𝑔𝜇𝜈𝑇

(𝑚)
}︂
.
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is the effective stress-energy tensor. Before proceeding further, we introduce the

following notation

𝑢 = 𝑢(𝑟) = 1 − 𝑏(𝑟)
𝑟
, (2.97)

𝑤 = 𝑤(𝑟) = 𝑒2Φ, (2.98)

𝑢′ = 𝑏− 𝑏′𝑟

𝑟2 , (2.99)

𝑤′ = 2𝑒2ΦΦ′, (2.100)

𝑤′′ = 2𝑒2ΦΦ′′ + 4𝑒2ΦΦ′2. (2.101)

Now, the gravitational field equations of interest in this case take the form

𝜕±Θ± = −1
2Θ2

± + Θ±𝜕± log(−𝑔+−)

− 4𝜋𝑤
{︃
𝜌+ 𝑝𝑟

2 + 𝜆1

8𝜋 (𝜌+ 𝑝𝑟) + 𝜆2𝑝𝑟𝑙4
𝑟𝑤

+ 𝜆2(𝜌+ 𝑝𝑟)
4𝑟2𝑤2

[︃
𝑙3 − 𝑟2𝑙1

]︃
− 𝜆2𝑙2

2𝑤

}︃
,

(2.102)

𝜕±Θ∓ = −Θ+Θ− + 1
𝑟2 𝑔+−

+ 4𝜋𝑤
{︃
𝜌− 𝑝𝑟

2 − 𝜆1𝑙7
4𝜋 + 𝜆2(𝜌− 𝑝𝑟)𝑙6

𝑟2 − 𝜆2𝑙2
2𝑤 + 𝜆2(𝜌+ 𝑝𝑟)𝑙1

4𝑤2 + 𝜆2𝑝𝑟𝑙5
𝑟𝑤

}︃
.

(2.103)
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Here we have defined

𝑙1 = 2𝑢𝑤𝑤′′ − 𝑢𝑤′2 + 𝑤𝑤′𝑢′, (2.104)

𝑙2 = 2𝑤𝑢𝜌′′ + 𝑤𝑢′𝜌′ + 𝜌′𝑤′𝑢, (2.105)

𝑙3 = 4𝑤2(1 − 𝑢− 2𝑟𝑢′), (2.106)

𝑙4 = 𝑤𝑢′ − 𝑤′𝑢, (2.107)

𝑙5 = 𝑤𝑢′ + 𝑤′𝑢, (2.108)

𝑙6 = 1 − 𝑢, (2.109)

𝑙7 = −𝜌+ 4𝑝𝑟

3 + 5𝑝𝑡

3 . (2.110)

From the effective stress-energy tensor (2.96) we can construct a vector 𝜓𝑒𝑓𝑓 and

a function 𝜔𝑒𝑓𝑓 as

𝜓𝑒𝑓𝑓 = 𝑇++𝑒𝑓𝑓𝜕+𝑟𝜕+ + 𝑇−−𝑒𝑓𝑓𝜕−𝑟𝜕−, (2.111)

and

𝜔𝑒𝑓𝑓 = −𝑔+−𝑇
+−(𝑒𝑓𝑓) = 𝜌− 𝑝𝑟

2 − 𝜆1𝑙7
4𝜋 + 𝜆2(𝜌− 𝑝𝑟)𝑙6

𝑟2

+ 𝜆2(𝜌+ 𝑝𝑟)𝑙1
4𝑤2 − 𝜆2𝑙2

2𝑤 + 𝜆2𝑝𝑟𝑙5
𝑟𝑤

. (2.112)

Using a similar procedure as before the effective GSG, on using the gravitational field

equations (2.102) and (2.103), for the non-minimal case, are obtained as

𝜅𝑒𝑓𝑓 = −2𝜋𝑟ℎ

{︃
𝜌+ 𝑝𝑟 + 𝜆1(𝜌+ 𝑝𝑟)

4𝜋 + 2𝜆2(𝜌+ 𝑝𝑟)
4𝑟2

ℎ𝑤

[︃
4𝑤 − 𝑟2

ℎ𝑤
′𝑢′ − 8𝑟ℎ𝑤𝑢

′
]︃

+ 2𝜆2𝑝𝑟𝑢
′

𝑟ℎ

− 𝜆2𝜌
′𝑢′
}︃
, (2.113)
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and

𝜅𝑒𝑓𝑓 = 1
2𝑟ℎ

− 2𝜋𝑟ℎ(𝜌− 𝑝𝑟) + 𝜆1𝑟

[︃
− 𝜌+ 4𝑝𝑟

3 + 5𝑝𝑡

3

]︃
− 4𝜋𝜆2(𝜌− 𝑝𝑟)

𝑟ℎ

− 𝜋𝜆2𝑟ℎ(𝜌+ 𝑝𝑟)𝑤′𝑢′

𝑤
− 4𝜋𝜆2𝑝𝑟𝑢

′ + 2𝜋𝜆2𝑟ℎ𝜌
′𝑢′. (2.114)

The effective thermal temperature, in this case, can be calculated as 𝑇 𝑒𝑓𝑓 = −𝜅𝑒𝑓𝑓/2𝜋.

In the component form, Eq. (2.111) can be written as

𝜓± = ±
√
𝑢𝑤

2

{︃
𝜌+ 𝑝𝑟

2 + 𝜆1

8𝜋 (𝜌+ 𝑝𝑟) − 𝜆2𝑙2
2𝑤 + 𝜆2(𝜌+ 𝑝𝑟)

4𝑟2𝑤2

[︃
𝑙3 − 𝑟2𝑙1

]︃
+ 𝜆2𝑝𝑟𝑙4

𝑟𝑤

}︃
.

(2.115)

Now taking gradient of Eq. (2.4), and using Eqs. (2.102) and (2.103) in it, we get

𝜕±𝐸 = ±2𝜋𝑟2√𝑢𝑤
{︃
𝜌+ 𝜆1

8𝜋

[︃
𝜌+ 𝑝𝑟 − 2𝑙7

]︃
− 𝜆2𝑙2

𝑤
+ 𝜆2𝜌

4𝑟2𝑤2

[︃
𝑙3 + 4𝑤2𝑙6

]︃}︃
.

(2.116)

Thus UFL in non-minimal curvature-matter coupling can also be formulated from

Eqs. (2.112), (2.115) and (2.116) as

𝜕±𝐸 = 𝐴𝜓𝑒𝑓𝑓
± + 𝜔𝑒𝑓𝑓𝜕±𝑉. (2.117)

Thus, the results of this section provide correction by replacing the stress-energy

tensor of matter with the effective stress-energy tensor which includes in it further

corrections due to coupling also.
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Chapter 3

Thermodynamics of charged

wormholes

The MTWHs can be generalized by adding extra matter to them. One way of doing

this is to add charges which behave as additional matter to the static MTWHs whose

structure is already maintained by the exotic matter. We will consider charged worm-

holes (CWHs) [157] in this chapter and study their thermodynamics, horizon mechan-

ics and thermodynamic stability. CWHs are the charged extension of static MTWHs.

Also, absence of event horizon in these objects do not disturb their traversability,

however now traversability conditions are imposed on the effective shape function

which will be discussed in detail in this chapter.

In this chapter, we will extend the formalism of finding GSG and UFL to CWHs.

These thermodynamic workouts will be done in Einstein’s gravity and then the work

will be generalized to non-minimal curvature-matter coupling and further in 𝑓(𝑅, 𝑇 )

gravity.

3.1 Charged wormholes (CWHs)

The metric for CWHs is described by [157]
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𝑑𝑠2 = −
[︃
𝑒2Φ(𝑟) + 𝑞2

𝑟2

]︃
𝑑𝑡2 + 𝑑𝑟2

1 − 𝑏(𝑟)
𝑟

+ 𝑞2

𝑟2

+ 𝑟2𝑑Ω2, (3.1)

where 𝑞 is the scalar electric charge. This wormhole is the combination of static

MTWHs and Reissner-Nordström spacetime. If in this metric 𝑞 = 0 then it simply

becomes MTWHs. For Φ = 0 = 𝑏, it represents Reissner-Nordström black hole for

zero mass, and it becomes flat Minkowski metric if 𝑏 = Φ = 𝑞 = 0. The effective

shape and redshift functions of CWHs (3.1) are 𝑏𝑒𝑓𝑓 (𝑟) = 𝑏(𝑟) − 𝑞2/𝑟 and Φ𝑒𝑓𝑓 (𝑟) =
1
2 ln(𝑒2Φ + 𝑞2/𝑟2), respectively. Thus the shape of CWHs will vary with charge 𝑞 by

additional factor 𝑞2/𝑟. At the new throat 𝑟0, a coordinate singularity 𝑏𝑒𝑓𝑓 (𝑟0) = 𝑟0

occurs, which implies

𝑟0 = 1
2(𝑏±

√︁
𝑏2 − 4𝑞2), (3.2)

which for 𝑞 = 0 gives 𝑟0 = 0 and 𝑟0 = 𝑏(𝑟0). The first root is meaningless, so we

have only one throat corresponding to the larger root. Now the condition 𝑏𝑒𝑓𝑓 (𝑟) < 𝑟

for 𝑟 > 𝑟0 in terms of 𝑏(𝑟) implies 𝑏(𝑟) − 𝑞2/𝑟 < 𝑟. The positiveness and flaring out

conditions for CWHs imply 𝑏𝑒𝑓𝑓 (𝑟) > 0 and 𝑏′
𝑒𝑓𝑓 < 𝑏𝑒𝑓𝑓/𝑟, which can be written as

𝑏 >
𝑞2

𝑟
, (3.3)

and

𝑏′ <
𝑏

𝑟
− 2𝑞2

𝑟2 . (3.4)

Thus for CWHs the flaring out condition implies that 𝑏′(𝑟) should be smaller by an

additional factor of 2𝑞2/𝑟2, as compared to MTWHs, while the value of 𝑏(𝑟) should

be bigger atleast by a factor 𝑞2/𝑟 compared to MTWHs to meet the positiveness

condition of effective shape function 𝑏𝑒𝑓𝑓 (𝑟) [157].

Now for the electro-magnetic stress-energy tensor we consider a Lagrangian

𝐿𝑒 = − 1
16𝜋𝐹𝛼𝛽𝐹𝛾𝜎𝑔

𝛼𝛾𝑔𝛽𝜎, (3.5)
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where 𝐹𝛼𝛽 is the electro-magnetic field tensor, given by

𝐹𝜇𝜈 = 𝜀(𝑟)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0

−1 0 0 0

0 0 0 0

0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (3.6)

Now 𝑇 (𝑒)
𝜇𝜈 = (1/4𝜋)(𝐹𝜇𝜆𝐹

𝜆
𝜈 − 1

4𝑔𝜇𝜈𝐹𝜆𝜎𝐹
𝜆𝜎) is the electro-magnetic stress-energy tensor,

which on using Eq. (3.6) takes the form [157]

𝑇 𝜇(𝑒)
𝜈 = 1

8𝜋𝜀
2𝑑𝑖𝑎𝑔(3, 3, 1, 1)𝛾𝛿, (3.7)

where 𝜀 = 𝜀(𝑟) = (𝑞/𝑟2)
√︁

|𝑔00𝑔11| is the radial component of electric field, while

𝛾 = (𝑟2𝑒2Φ(𝑟) + 𝑞2)−1 and 𝛿 = 𝑟2 − 𝑟𝑏(𝑟) + 𝑞2.

3.2 Trapping horizon and its classification

In this section we find trapping horizon for the CWHs (3.1). Since in CWHs event

horizon is not present so we cannot use global considerations to study the thermody-

namics. Instead we use the concept of trapping horizon which is defined using local

considerations for spherically symmetric spacetimes. In order to obtain the expres-

sion for trapping horizon, we transform the metric (3.1) into a new form (2.1) using

null coordinates. Thus metric (3.1) can be written in the form (2.1) by introducing

the null coordinates 𝑥+ = 𝑡+ 𝑟* and 𝑥− = 𝑡− 𝑟*, where 𝑟 and 𝑟* satisfy the following

equation
𝑑𝑟

𝑑𝑟*
=
√︃

− 𝑔𝑡𝑡

𝑔𝑟𝑟

=

⎯⎸⎸⎷(︃𝑒2Φ(𝑟) + 𝑞2

𝑟2

)︃(︃
1 − 𝑏(𝑟)

𝑟
+ 𝑞2

𝑟2

)︃
. (3.8)

Here

𝑔+− = −1
2

(︃
𝑒2Φ(𝑟) + 𝑞2

𝑟2

)︃
, (3.9)
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and areal radius 𝑟 are functions of the null coordinates, related with the outgoing and

ingoing light rays normal to each symmetric spheres 𝜕± = 𝜕/𝜕𝑥±, while 𝑑Ω2 refers to

the metric on the unit 2-sphere. One can define the expansions as

Θ± = 2
𝑟
𝜕±𝑟 = ±1

𝑟

⎯⎸⎸⎷(︃𝑒2Φ(𝑟) + 𝑞2

𝑟2

)︃(︃
1 − 𝑏(𝑟)

𝑟
+ 𝑞2

𝑟2

)︃
. (3.10)

These expansions tell us about the convergence or divergence of light rays in the null

direction normal to a sphere. Also, Θ > 0, means light rays are expanding while

they are contracting for, Θ < 0, in the null directions normal to the sphere. Or

equivalently the area of a sphere is expanding or contracting in the null directions.

Now the sign of Θ+Θ− is a geometrical invariant. A metric sphere is trapped if

Θ+Θ− > 0, yielding

𝑟2 − 𝑟𝑏(𝑟) + 𝑞2 < 0, (3.11)

untrapped if Θ+Θ− < 0, yielding

𝑟2 − 𝑟𝑏(𝑟) + 𝑞2 > 0, (3.12)

and marginal if Θ+Θ− = 0, yielding

𝑟2 − 𝑟𝑏(𝑟) + 𝑞2 = 0. (3.13)

If on an untrapped sphere the orientations Θ+ > 0 and Θ− < 0 are locally assumed

then 𝜕+ and 𝜕− are also assumed as the null normal vectors in the outgoing and

ingoing directions, respectively.

For trapping horizon, a hypersurface on which, Θ+Θ− = 0, we choose

Θ+|ℎ = 0, (3.14)
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which gives

𝑏(𝑟ℎ) = 𝑟ℎ + 𝑞2

𝑟ℎ

. (3.15)

Thus at 𝑟ℎ = 𝑟0, this trapping horizon is future if Θ− < 0, past if Θ− > 0 and

bifurcating if Θ− = 0. Here Θ+ = 0 implies Θ− = 0 which makes the trapping

horizon bifurcating.

This horizon may be outer, inner or degenerate depending on the sign of 𝜕−Θ+.

It is outer if 𝜕−Θ+ < 0, which gives

𝑏− 𝑏′𝑟 >
2𝑞2

𝑟
, (3.16)

inner if 𝜕−Θ+ > 0, yielding

𝑏− 𝑏′𝑟 <
2𝑞2

𝑟
, (3.17)

and degenerate if 𝜕−Θ+ = 0, giving

𝑏− 𝑏′𝑟 = 2𝑞2

𝑟
. (3.18)

3.3 Thermodynamics of charged wormholes

The MS energy for CWHs is given by

𝐸 = 𝑟

2(1 − 2𝑔+−𝜕+𝑟𝜕−𝑟) = 𝑏

2 − 𝑞2

2𝑟 , (3.19)

On the trapping horizon it becomes 𝐸 = 𝑟ℎ/2.

The Kodama vector (2.11) in the covariant form, in this case, yields

𝐾± = −1
2

⎯⎸⎸⎷(︃𝑒2Φ(𝑟) + 𝑞2

𝑟2

)︃(︃
1 − 𝑏(𝑟)

𝑟
+ 𝑞2

𝑟2

)︃
. (3.20)

This vector provides a trapping horizon which is null on hyper surface Θ+|ℎ = 0.
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This vector is the generalization of a Killing vector that can be obtained from it in

stationary vacuum cases.

Now the Einstein-Maxwell equations (2.8)-(2.10) in local coordinates are

𝜕±Θ± = −1
2Θ2

± + Θ±𝜕± log(−𝑔+−) − 2𝜋
𝑟2 (𝜌+ 𝑝𝑟)(𝑟2𝑒2Φ + 𝑞2), (3.21)

𝜕±Θ∓ = −Θ+Θ− + 1
𝑟2 𝑔+− + 2𝜋

𝑟2 (𝜌− 𝑝𝑟 − 3𝑞2

4𝜋𝑟4 )(𝑟2𝑒2Φ + 𝑞2), (3.22)

𝜕+Θ− + 𝜕−Θ+ + Θ+Θ− = −8𝜋(𝑝𝑡 + 𝑞2

8𝜋𝑟4 ). (3.23)

where the stress-energy tensor 𝑇𝜇𝜈 is the sum of the matter part 𝑇 (𝑚)
𝜇𝜈 and electro-

magnetic part 𝑇 (𝑒)
𝜇𝜈 , i.e., 𝑇𝜇𝜈 = 𝑇 (𝑚)

𝜇𝜈 + 𝑇 (𝑒)
𝜇𝜈 . Here From Eq. (2.24), in this case, we

have used

𝑇++ = 𝑇−− = (𝑟2𝑒2Φ + 𝑞2)(𝜌+ 𝑝𝑟)
4𝑟2 , (3.24)

𝑇+− = 𝑇−+ = (𝑟2𝑒2Φ + 𝑞2)(𝜌− 𝑝𝑟 − 3𝑞2/4𝜋𝑟4)
4𝑟2 , (3.25)

𝑇𝜃𝜃 = 𝑟2(𝑝𝑡 + 𝑞2

8𝜋𝑟4 ). (3.26)

From the stress-energy tensor we can construct a function 𝜔 and a vector 𝜓 as

𝜔 = −𝑔+−𝑇
+− = 𝜌− 𝑝𝑟

2 − 3𝑞2

8𝜋𝑟4 , (3.27)

and

𝜓 = 𝑇++𝜕+𝑟𝜕+ + 𝑇−−𝜕−𝑟𝜕−. (3.28)

It is worth noticing that Killing horizon is not present in these CWHs, despite

the presence of a Killing vector. Hence the GSG cannot be defined by Killing vector

and instead, we make use of the Kodama vector and trapping horizon. The GSG 𝜅
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satisfies (2.13), which in the case of CWHs takes the form

𝜅 = 1 − 𝑏′(𝑟ℎ) − 𝑞2/𝑟2
ℎ

4𝑟ℎ

, (3.29)

which is positive due to the flarring out condition. The GSG (3.29) on using Einstein

field equations (3.21) and (3.22), becomes

𝜅 = −2𝜋𝑟ℎ (𝜌+ 𝑝𝑟) , (3.30)

and

𝜅 = 1
2𝑟ℎ

− 2𝜋𝑟ℎ(𝜌− 𝑝𝑟 − 3𝑞2

4𝜋𝑟4
ℎ

). (3.31)

The thermal temperature can be calculated from the formula 𝑇 = −𝜅/2𝜋, which is

negative. However one could avoid this negative temperature by making claim that

this is the problem only at horizon, but ingoing radiations appearing at one mouth of

the wormhole, following the classical trajectory, would reappear as outgoing radiation

on the other mouth of the wormhole, unavoiding this negative temperature. This is

not surprising as wormholes are argued to be constructed by phantom energy which

may be characterized by negative temperature. Thus wormholes emit radiations

associated with negative temperature in the same way as black holes emit radiations

associated with positive temperature.

Since we are dealing with CWHs which are also spherically symmetric like MTWHs,

hence we can also formulate UFL in these wormholes from the gradient of MS energy,

on using the gravitational field equations.

Eq. (3.28), in the component form, can be written as

𝜓± = ±

⎯⎸⎸⎷(︃𝑒2Φ + 𝑞2

𝑟2

)︃(︃
1 − 𝑏(𝑟)

𝑟
+ 𝑞2

𝑟2

)︃
𝜌+ 𝑝𝑟

4 . (3.32)

Taking gradient of Eq. (3.19) and making use of Eqs. (3.27) and (3.32), the UFL can
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be formulated as

𝜕±𝐸 = 𝐴𝜓± + 𝜔𝜕±𝑉, (3.33)

where

𝜕±𝐸 = ±2𝜋𝑟2

√︃
(𝑒2𝜑 + 𝑞2

𝑟2 )(1 − 𝑏

𝑟
+ 𝑞2

𝑟2 )
{︃
𝜌− 3𝑞2

8𝜋𝑟4

}︃
. (3.34)

In Eq. (3.33), on the right hand side, there appear two terms, 𝐴𝜓± and 𝜔𝜕±𝑉 . The

first one is called the energy supply term which produces change in the gravitational

energy due to energy flux 𝜓, while the second one is called the work term that is

carried out in the wormhole to support its configuration.

3.3.1 Thermodynamic stability

In this section we will examine the thermodynamic stability of wormholes for a specific

case (Φ = 0). Thermodynamic stability of wormholes can be ensured by showing that
𝜕𝑃
𝜕𝑉

|𝑇 ≤ 0 and 𝐶𝑃 ≥ 𝐶𝑉 ≥ 0, where 𝑃 = (𝑝𝑟 + 2𝑝𝑡)/3 is the average pressure while

𝐶𝑃 and 𝐶𝑉 are specific heats at constant pressure and volume, respectively.

Subtracting Eq. (3.30) from (3.31), and rearranging the terms yields

𝑝𝑟 = − 1
8𝜋𝑟2 − 3𝑞2

8𝜋𝑟4 . (3.35)

Solving Eq.(3.23) on the trapping horizon and using the definition of surface gravity

we obtain

2𝑝𝑡 = −𝑇 (𝑟2𝑒2Φ + 𝑞2)
𝑟3 − 𝑞2

4𝜋𝑟4 . (3.36)

Now from Eqs. (3.35) and (3.36), we can find the equation of state in three state

parameters (𝑃 , 𝑉 , 𝑇 ) as

𝑃 = −
[︃

1
7776𝜋𝑉 2

]︃1/3

− 5𝑞2
[︃

𝜋

4374𝑉 4

]︃1/3

− 𝑇

[︃
4𝜋

81𝑉

]︃1/3

− 4𝜋𝑇𝑞2

9𝑉 . (3.37)

From this equation of state, thermodynamic stability of the wormhole can be ana-
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lyzed. Taking derivative with respect to 𝑉 , we obtain

𝜕𝑃

𝜕𝑉
|𝑇 =

[︃
1

26244𝜋𝑉 5

]︃1/3

+ 5𝑞2
[︃

32𝜋
59049𝑉 7

]︃1/3

+ 𝑇

[︃
4𝜋

2187𝑉 4

]︃1/3

+ 4𝜋𝑇𝑞2

9𝑉 2 . (3.38)

For thermodynamic stability 𝜕𝑃
𝜕𝑉

|𝑇 ≤ 0, which yields

𝑇 ≤ − 𝑟2 + 10𝑞2

4𝜋𝑟3 + 12𝜋𝑟𝑞2 , (3.39)

which shows that temperature assumes negative values everywhere, which is not sur-

prising as it could be attributed to the presence of the exotic matter. Using this in

Eq. (3.37), we get

𝑃 ≥ − 1
24𝜋𝑟2 − 5𝑞2

24𝜋𝑟4 + (𝑟2 + 10𝑞2)(𝑟2 + 𝑞2)
12𝜋𝑟6 + 36𝜋𝑟4𝑞2 . (3.40)

For 𝑞 = 0 the average pressure always assumes positive values, however for 𝑞 ̸= 0 it

may be negative somewhere.

Stable equilibrium also requires that 𝐶𝑃 ≥ 𝐶𝑉 ≥ 0. Now, at constant volume 𝑆

is also constant, so specific heat at constant volumes vanishes

𝐶𝑉 = 𝜕𝐸

𝜕𝑇
|𝑉 = 𝑇

𝜕𝑆

𝜕𝑇
|𝑉 = 0. (3.41)

So, we can define specific heat only at constant pressure as

𝐶𝑃 = 𝜕𝐸

𝜕𝑇
|𝑃 = 𝑇

𝜕𝑆

𝜕𝑇
|𝑃 = 2𝜋𝑟2(𝑟2 + 𝑞2)

𝑟2 + 3𝑞2 − 2(𝑟2+𝑞2)(𝑟2+10𝑞2)
𝑟2(24𝜋𝑟2𝑃 +1+5𝑞2/𝑟2)

. (3.42)

We substitute

𝑃 = − 1
24𝜋𝑟2 − 5𝑞2

24𝜋𝑟4 + (𝑟2 + 10𝑞2)(𝑟2 + 𝑞2)
12𝜋𝑟6 + 36𝜋𝑟4𝑞2 + 𝜖, (3.43)

in Eq. (3.42), which also ensures Eq. (3.40) for any 𝜖 > 0. Thus Eq. (3.42) takes the
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form

𝐶𝑃 =
(𝑟2 + 𝑞2)

[︃
(𝑟2 + 𝑞2)(𝑟2 + 10𝑞2) + 12𝜋𝜖𝑟4(𝑟2 + 3𝑞2)

]︃
6𝜖𝑟2(𝑟2 + 3𝑞2)2 . (3.44)

All terms involved on the right hand side are positive, thus specific heat is positive

everywhere subjected to the constraint (3.40). Thus the wormholes could be thermo-

dynamically stable.

3.4 Non-minimal curvature-matter coupling

This section deals with the extension of the work presented in this chapter before to

non-minimal curvature-matter coupling. In Einstein’s filed equations, Hilbert action

is used in which Lagrangian density is a linear function of the Ricci scalar, 𝑅, however

there is no evidence that this must be only a linear function of 𝑅, so in place of 𝑅

a function 𝑓(𝑅) was proposed and modified field equations were obtained [14], and

which was further investigated in Refs. [15–17]. We, in our case, consider a non-

minimal curvature-matter coupling in f(R) gravity whose action is given by

𝑆 =
∫︁ [︂ 1

16𝜋𝑓1(𝑅) + {1 + 𝜆2𝑓2(𝑅)} (𝐿𝑚 + 𝐿𝑒)
]︂√

−𝑔𝑑4𝑥, (3.45)

where 𝑓1(𝑅) and 𝑓2(𝑅) are arbitrary functions of the Ricci tensor 𝑅, 𝜆2 is the coupling

constant which characterises the strength of the curvature-matter coupling, 𝐿𝑚 and

𝐿𝑒 are the matter Lagrangian and the Lagrangian due to charge, respectively. The

following gravitational field equations can be obtained from this action by varying

with respect to 𝑔𝜇𝜈 as

𝐹1(𝑅)𝑅𝜇𝜈 − 1
2𝑓1(𝑅)𝑔𝜇𝜈 − ∇𝜇∇𝜈𝐹1(𝑅) + 𝑔𝜇𝜈�𝐹1(𝑅) = −2𝜆2𝐹2(𝑅)(𝐿𝑚 + 𝐿𝑒)𝑅𝜇𝜈

+ 2𝜆2
(︁
∇𝜇∇𝜈 − 𝑔𝜇𝜈�

)︁
(𝐿𝑚 + 𝐿𝑒)𝐹2(𝑅) +

[︁
1 + 𝜆2𝑓2(𝑅)

]︁
(𝑇𝑚

𝜇𝜈 + 𝑇 𝑒
𝜇𝜈).

(3.46)
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For the specific case, when 𝑓1(𝑅) = 𝑓2(𝑅) = 𝑅, the gravitational field equations take

the form

𝐺𝜇𝜈 = 8𝜋𝑇 𝑒𝑓𝑓
𝜇𝜈 , (3.47)

where 𝐺𝜇𝜈 = 𝑅𝜇𝜈 − 1
2𝑅𝑔𝜇𝜈 is the Einstein tensor and 𝑇 𝑒𝑓𝑓

𝜇𝜈 is called the effective

stress-energy tensor, given by

𝑇 𝑒𝑓𝑓
𝜇𝜈 =

(︁
1 + 𝜆2𝑅

)︁
(𝑇𝑚

𝜇𝜈 + 𝑇 𝑒
𝜇𝜈) + 2𝜆2

[︁
𝜌𝑅𝜇𝜈 −

(︁
∇𝜇∇𝜈 − 𝑔𝜇𝜈�

)︁
𝜌
]︁
. (3.48)

From now onward, we will use the notation introduced below

𝑈 = 𝑈(𝑟) = 1 − 𝑏(𝑟)
𝑟

+ 𝑞2

𝑟2 , (3.49)

𝑊 = 𝑊 (𝑟) = 𝑒2Φ + 𝑞2

𝑟2 , (3.50)

𝑈 ′ = 𝑏𝑟 − 𝑏′𝑟2 − 2𝑞2

𝑟3 , (3.51)

𝑊 ′ = 2(𝑟3𝑒2ΦΦ′ − 𝑞2)
𝑟3 , (3.52)

𝑊 ′′ = 2(𝑟4𝑒2ΦΦ′′ + 2𝑟4𝑒2ΦΦ′2 + 3𝑞2)
𝑟4 . (3.53)

The gravitational field equations of interest now become

𝜕±Θ± = −1
2Θ2

± + Θ±𝜕± log(−𝑔+−) − 4𝜋𝑊
{︃
𝜌+ 𝑝𝑟

2 − 𝜆2

2𝑊

[︃
2𝑊𝑈𝜌′′ +𝑊𝑈 ′𝜌′

+ 𝑊 ′𝑈𝜌′
]︃

+ 𝜆2(𝜌+ 𝑝𝑟)
4𝑟2𝑊 2

[︃
4𝑊 2 + 𝑟2𝑊 ′2𝑈 − 2𝑟2𝑈𝑊𝑊 ′′ − 𝑟2𝑊𝑊 ′𝑈 ′

− 8𝑟𝑊 2𝑈 ′ − 4𝑊 2𝑈

]︃
+ 𝜆2𝑝𝑟

𝑟𝑊

[︃
𝑊𝑈 ′ −𝑊 ′𝑈

]︃}︃
, (3.54)
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𝜕±Θ∓ = −Θ+Θ− + 1
𝑟2 𝑔+− + 4𝜋𝑊

{︃
𝜌− 𝑝𝑟

2 − 3𝑞2

8𝜋𝑟4 + 𝜆2(𝜌+ 𝑝𝑟)
4𝑊 2

[︃
2𝑈𝑊𝑊 ′′

− 𝑈𝑊 ′2 +𝑊𝑊 ′𝑈 ′
]︃

+ 3𝜆2𝑞
2

16𝜋𝑟6𝑊 2

[︃
− 𝑟2𝑊 ′2𝑈 + 2𝑟2𝑈𝑊𝑊 ′′ − 4𝑊 2

+ 𝑟2𝑊𝑊 ′𝑈 ′ + 4𝑟𝑊𝑊 ′𝑈 + 4𝑟𝑊 2𝑈 ′ + 4𝑊 2𝑈

]︃
+ 𝜆2(𝜌− 𝑝𝑟)

𝑟2

[︃
1 − 𝑈

]︃

+ 𝜆2𝑝𝑟

𝑟𝑊

[︃
𝑊𝑈 ′ + 𝑈𝑊 ′

]︃
+ 𝜆2

2𝑊

[︃
− 2𝑊𝑈𝜌′′ −𝑊𝑈 ′𝜌′ − 𝜌′𝑊 ′𝑈

]︃}︃
.

(3.55)

From effective-stress energy tensor, we can construct a vector 𝜓𝑒𝑓𝑓 and a function

𝜔𝑒𝑓𝑓 as

𝜓𝑒𝑓𝑓 = 𝑇++(𝑒𝑓𝑓)𝜕+𝑟𝜕+ + 𝑇−−(𝑒𝑓𝑓)𝜕−𝑟𝜕−, (3.56)

and

𝜔𝑒𝑓𝑓 = −𝑔+−𝑇
+−(𝑒𝑓𝑓) = 𝜌− 𝑝𝑟

2 − 3𝑞2

8𝜋𝑟4 + 𝜆2(𝜌+ 𝑝𝑟)
4𝑊 2

[︃
2𝑈𝑊𝑊 ′′ − 𝑈𝑊 ′2 +𝑊𝑊 ′𝑈 ′

]︃

+ 3𝜆2𝑞
2

16𝜋𝑟6𝑊 2

[︃
− 𝑟2𝑊 ′2𝑈 + 2𝑟2𝑈𝑊𝑊 ′′ − 4𝑊 2 + 𝑟2𝑊𝑊 ′𝑈 ′ + 4𝑟𝑊𝑊 ′𝑈

+ 4𝑟𝑊 2𝑈 ′ + 4𝑊 2𝑈

]︃
+ 𝜆2

2𝑊

[︃
− 2𝑊𝑈𝜌′′ −𝑊𝑈 ′𝜌′ − 𝜌′𝑊 ′𝑈

]︃

+ 𝜆2𝑝𝑟

𝑟𝑊

[︃
𝑊𝑈 ′ + 𝑈𝑊 ′

]︃
+ 𝜆2(𝜌− 𝑝𝑟)

𝑟2

[︃
1 − 𝑈

]︃
. (3.57)

The effective surface gravity, evaluated on the trapping horizon, in this case becomes

𝜅𝑒𝑓𝑓 = −2𝜋𝑟ℎ

{︃
(𝜌+ 𝑝𝑟) + 2𝜆2𝑝𝑟𝑈

′

𝑟ℎ

− 𝜆2𝜌
′𝑈 ′ + 2𝜆2(𝜌+ 𝑝𝑟)

4𝑟2
ℎ𝑊

[︃
4𝑊 − 𝑟2

ℎ𝑊
′𝑈 ′ − 8𝑟ℎ𝑊𝑈 ′

]︃}︃
,

(3.58)
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and

𝜅𝑒𝑓𝑓 = 1
2𝑟ℎ

− 2𝜋𝑟ℎ(𝜌− 𝑝𝑟) + 3𝑞2

2𝑟3
ℎ

− 3𝜆2𝑞
2

4𝑊𝑟5
ℎ

[︃
𝑟2

ℎ𝑊
′𝑈 ′ + 4𝑟ℎ𝑊𝑈 ′ − 4𝑊

]︃
− 4𝜋𝜆2𝑝𝑟𝑈

′

− 𝜋𝜆2𝑟ℎ(𝜌+ 𝑝𝑟)𝑊 ′𝑈 ′

𝑊
− 4𝜋𝜆2(𝜌− 𝑝𝑟)

𝑟ℎ

+ 2𝜋𝜆2𝑟ℎ𝜌
′𝑈 ′. (3.59)

The effective thermal temperature can be calculated as 𝑇 𝑒𝑓𝑓 = −𝜅𝑒𝑓𝑓/2𝜋.

Eq. (3.56) in the component form becomes

𝜓± = ±
√
𝑈𝑊

2

{︃
𝜌+ 𝑝𝑟

2 − 𝜆2

2𝑊

[︃
2𝑊𝑈𝜌′′ +𝑊𝑈 ′𝜌′ +𝑊 ′𝑈𝜌′

]︃
+ 𝜆2𝑝𝑟

𝑟𝑊

[︃
𝑊𝑈 ′ −𝑊 ′𝑈

]︃

+ 𝜆2(𝜌+ 𝑝𝑟)
4𝑟2𝑊 2

[︃
4𝑊 2 + 𝑟2𝑊 ′2𝑈 − 2𝑟2𝑈𝑊𝑊 ′′ − 𝑟2𝑊𝑊 ′𝑈 ′ − 8𝑟𝑊 2𝑈 ′ − 4𝑊 2𝑈

]︃}︃
.

(3.60)

The gradient of MS energy on using gravitational field equations (3.54) and (3.55)

can be written as

𝜕±𝐸 = ±2𝜋𝑟2
√
𝑊𝑈

{︃
𝜌− 3𝑞2

8𝜋𝑟4 + 𝜆2

𝑊

[︃
− 2𝑊𝑈𝜌′′ −𝑊𝑈 ′𝜌′ −𝑊 ′𝑈𝜌′

]︃

+ 𝜆2𝜌

𝑟2

[︃
2 − 2𝑈 − 2𝑟𝑈 ′

]︃
+ 3𝜆2𝑞

2

16𝜋𝑟6𝑊 2

[︃
2𝑟2𝑊𝑊 ′′𝑈 + 4𝑟𝑊𝑊 ′𝑈

+ 4𝑟𝑊 2𝑈 ′ + 4𝑊 2𝑈 − 4𝑊 2 − 𝑟2𝑊 ′2𝑈 + 𝑟2𝑊𝑊 ′𝑈 ′
]︃}︃
. (3.61)

Thus UFL, in non-minimal curvature-matter coupling, can be formulated from

Eqs. (3.57), (3.60) and (3.61) as

𝜕±𝐸 = 𝐴𝜓𝑒𝑓𝑓
± + 𝜔𝑒𝑓𝑓𝜕±𝑉, (3.62)

The results obtained in this section have the same form as obtained earlier in this

chapter with the stress-energy tensor 𝑇𝜇𝜈 being replaced by 𝑇 (𝑒𝑓𝑓)
𝜇𝜈 .
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3.5 Thermodynamics of charged wormholes in f(R,T)

gravity

In this section we will consider CWHs in the context of 𝑓(𝑅, 𝑇 ) gravity and extend

the formalism for finding GSG and UFL to 𝑓(𝑅, 𝑇 ) gravity. In 𝑓(𝑅, 𝑇 ) gravity, action

can be written as [20]

𝑆 =
∫︁ √

−𝑔( 1
16𝜋𝑓(𝑅, 𝑇 ) + 𝐿𝑚 + 𝐿𝑒)𝑑4𝑥 (3.63)

where 𝑔 is the determinant of metric tensor, 𝑓(𝑅, 𝑇 ) is the function of Ricci scalar

𝑅 and trace of the stress-energy tensor 𝑇 (𝑇 = 𝑔𝜇𝜈𝑇𝜇𝜈), while 𝐿𝑚 and 𝐿𝑒 are the

matter lagrangian and lagrangian due to charge, respectively. Varying this action

with respect to the metric tensor 𝑔𝜇𝜈 , for the case 𝑓(𝑅, 𝑇 ) = 𝑅+ 2𝜆1𝑇 with constant

𝜆1, gives the following field equations

𝐺𝜇𝜈 = 8𝜋𝑇 (𝐸𝐹 𝐹 )
𝜇𝜈 (3.64)

where 𝐺𝜇𝜈 is the Einstein tensor and 𝑇 (𝐸𝐹 𝐹 )
𝜇𝜈 is the effective stress-energy tensor

defined as

𝑇 (𝐸𝐹 𝐹 )
𝜇𝜈 = 𝑇 (𝑚)

𝜇𝜈 + 𝑇 (𝑒)
𝜇𝜈 + 𝜆1

4𝜋

{︂
𝑇 (𝑚)

𝜇𝜈 + 𝑃𝑔𝜇𝜈 + 1
2𝑔𝜇𝜈(𝑇 (𝑚) + 𝑇 (𝑒))

}︂
(3.65)

with 𝑇 (𝑚) = 𝑔𝜇𝜈𝑇 (𝑚)
𝜇𝜈 and 𝑇 (𝑒) = 𝑔𝜇𝜈𝑇 (𝑒)

𝜇𝜈 , In the present case, the effective stress-

energy tensor can be written as

𝑇 (𝐸𝐹 𝐹 )
𝜇𝜈 = 𝑇 (𝐸𝐹 𝐹 )(𝑚)

𝜇𝜈 + 𝑇 (𝐸𝐹 𝐹 )(𝑒)
𝜇𝜈 (3.66)

where

𝑇 (𝐸𝐹 𝐹 )(𝑚)
𝜇𝜈 = 𝑇 (𝑚)

𝜇𝜈 + (𝑇 (𝑚)
𝜇𝜈 + 𝑃𝑔𝜇𝜈 + 1

2𝑇
(𝑚)𝑔𝜇𝜈), (3.67)
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and

𝑇 (𝐸𝐹 𝐹 )(𝑒)
𝜇𝜈 = 𝑇 (𝑒)

𝜇𝜈 + 𝜆1

8𝜋𝑇
(𝑒)𝑔𝜇𝜈 , (3.68)

are the effective stress-energy tensor due to matter which is threading the wormhole

and effective electro-magnetic stress-energy tensor, respectively. The gravitational

field equations of interest in this case become

𝜕±Θ± = −1
2Θ2

± + Θ±𝜕± log(−𝑔+−) − 2𝜋(𝑟2𝑒2Φ + 𝑞2)
𝑟2

{︃
𝜌+ 𝑝𝑟 + 𝜆1

4𝜋 (𝜌+ 𝑝𝑟)
}︃
,

(3.69)

𝜕±Θ∓ = −Θ+Θ− + 1
𝑟2 𝑔+− − 𝜆1(𝑟2𝑒2Φ + 𝑞2)

𝑟2

{︃
−𝜌+ 4𝑝𝑟

3 + 5𝑝𝑡

3 + 𝑞2

2𝜋𝑟4

}︃

+ 2𝜋(𝑟2𝑒2Φ + 𝑞2)
𝑟2

(︃
𝜌− 𝑝− 3𝑞2

4𝜋𝑟4

)︃
. (3.70)

From the effective stress-energy tensor (3.65), we can construct a function 𝜔𝑒𝑓𝑓 and

a vector 𝜓𝑒𝑓𝑓 as

𝜔𝑒𝑓𝑓 = −𝑔+−𝑇
+−𝑒𝑓𝑓 = 𝜌− 𝑝

2 − 3𝑞2

8𝜋𝑟4 − 𝜆1

4𝜋

{︃
−𝜌+ 4𝑝𝑟

3 + 5𝑝𝑡

3 + 𝑞2

2𝜋𝑟4

}︃
, (3.71)

and

𝜓𝑒𝑓𝑓 = 𝑇++𝑒𝑓𝑓𝜕+𝑟𝜕+ + 𝑇−−𝑒𝑓𝑓𝜕−𝑟𝜕−. (3.72)

Using Eqs. (3.69) and (3.70), the GSG (3.29) becomes

𝜅𝑒𝑓𝑓 = −2𝜋𝑟ℎ (𝜌+ 𝑝𝑟) (1 + 𝜆1

4𝜋 ), (3.73)

and

𝜅𝑒𝑓𝑓 = 1
2𝑟ℎ

− 2𝜋𝑟ℎ(𝜌− 𝑝𝑟 − 3𝑞2

4𝜋𝑟4 ) + 𝜆1𝑟ℎ

{︃
−𝜌+ 4𝑝𝑟

3 + 5𝑝𝑡

3 + 𝑞2

2𝜋𝑟4

}︃
. (3.74)
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Eq. (3.72) in the component form can be written as

𝜓𝑒𝑓𝑓
± = ±

√︁
(𝑟2𝑒2Φ + 𝑞2) (𝑟2 − 𝑟𝑏(𝑟) + 𝑞2)

4𝑟2

{︃
𝜌+ 𝑝𝑟 + 𝜆1

4𝜋 (𝜌+ 𝑝𝑟)
}︃
. (3.75)

Now, the gradient of MS energy can be written in the form of UFL on using field

equations (3.69) and (3.70) as

𝜕±𝐸 = 𝐴𝜓𝑒𝑓𝑓
± + 𝜔𝑒𝑓𝑓𝜕±𝑉, (3.76)

where

𝜕±𝐸 = ±2𝜋
√︁

(𝑟2𝑒2Φ + 𝑞2)(𝑟2 − 𝑟𝑏(𝑟) + 𝑞2)

×
{︃
𝜌− 3𝑞2

8𝜋𝑟4 + 𝜆1

4𝜋

[︃
3𝜌
2 − 5𝑝𝑟

6 − 5𝑝𝑡

3 − 𝑞2

2𝜋𝑟4

]︃}︃
.

(3.77)

3.6 Non-minimal curvature-matter coupling in 𝑓 (𝑅, 𝑇 )

gravity

We will extend the results derived so far to the non-minimal curvature-matter coupling

in 𝑓(𝑅, 𝑇 ) gravity for the case of CWHs. The relevant action is given by

𝑆 =
∫︁ [︂ 1

16𝜋𝑓1(𝑅, 𝑇 ) + {1 + 𝜆2𝑓2(𝑅)} (𝐿𝑚 + 𝐿𝑒)
]︂√

−𝑔𝑑4𝑥, (3.78)

we will consider the simple case by considering 𝑓1(𝑅, 𝑇 ) = 𝑅+ 2𝜆1𝑇 and 𝑓2(𝑅) = 𝑅,

thus using these in above equation and varying with respect to 𝑔𝜇𝜈 we get the following

gravitational field equations

𝐺𝜇𝜈 = 8𝜋𝑇 𝑒𝑓𝑓
𝜇𝜈 , (3.79)
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where

𝑇 𝑒𝑓𝑓
𝜇𝜈 =

(︁
1 + 𝜆2𝑅

)︁
(𝑇𝑚

𝜇𝜈 + 𝑇 𝑒
𝜇𝜈) + 2𝜆2

[︁
𝜌𝑅𝜇𝜈 −

(︁
∇𝜇∇𝜈 − 𝑔𝜇𝜈�

)︁
𝜌
]︁

(3.80)

+ 𝜆1

4𝜋

{︂
𝑇 (𝑚)

𝜇𝜈 + 𝑃𝑔𝜇𝜈 + 1
2𝑔𝜇𝜈(𝑇 (𝑚) + 𝑇 (𝑒))

}︂
,

is the effective stress-energy tensor of 𝑓(𝑅, 𝑇 ) gravity under coupling. We will use

the notations defined in Eqs. (3.49) to (3.53). Thus for CWHs, in this case, the

gravitational field equations of interest are

𝜕±Θ± = −1
2Θ2

± + Θ±𝜕± log(−𝑔+−) − 4𝜋𝑊
{︃
𝜌+ 𝑝𝑟

2 + 𝜆1(𝜌+ 𝑝𝑟)
8𝜋 + 𝜆2𝑝𝑟𝐿4

𝑟𝑊

+ 𝜆2(𝜌+ 𝑝𝑟)
4𝑟2𝑊 2

[︃
− 𝑟2𝐿1 + 𝐿3

]︃
− 𝜆2𝐿2

2𝑊

}︃
, (3.81)

𝜕±Θ∓ = −Θ+Θ− + 1
𝑟2 𝑔+− + 4𝜋𝑊

{︃
𝜌− 𝑝𝑟

2 − 3𝑞2

8𝜋𝑟4 + 𝜆2(𝜌− 𝑝𝑟)𝐿6

𝑟2 + 𝜆2𝑝𝑟𝐿5

𝑟𝑊

− 𝜆2𝐿2

2𝑊 + 𝜆2(𝜌+ 𝑝𝑟)𝐿1

4𝑊 2 + 3𝜆2𝑞
2

16𝜋𝑟6𝑊 2

[︃
𝑟2𝐿1 − 𝐿3 − 4𝑟𝑊𝐿4

]︃
− 𝜆1𝐿7

4𝜋

}︃
.

(3.82)

Here we have used

𝐿1 = 2𝑈𝑊𝑊 ′′ − 𝑈𝑊 ′2 +𝑊𝑊 ′𝑈 ′, (3.83)

𝐿2 = 2𝑊𝑈𝜌′′ +𝑊𝑈 ′𝜌′ + 𝜌′𝑊 ′𝑈, (3.84)

𝐿3 = 4𝑊 2(1 − 𝑈 − 2𝑟𝑈 ′), (3.85)

𝐿4 = 𝑊𝑈 ′ −𝑊 ′𝑈, (3.86)

𝐿5 = 𝑊𝑈 ′ +𝑊 ′𝑈, (3.87)

𝐿6 = 1 − 𝑈, (3.88)

𝐿7 = −𝜌+ 4𝑝𝑟

3 + 5𝑝𝑡

3 + 𝑞2

2𝜋𝑟4 . (3.89)
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From the effective stress-energy tensor (3.80), we can construct a vector 𝜓𝑒𝑓𝑓 and

a function 𝜔𝑒𝑓𝑓 as

𝜓𝑒𝑓𝑓 = 𝑇++𝑒𝑓𝑓𝜕+𝑟𝜕+ + 𝑇−−𝑒𝑓𝑓𝜕−𝑟𝜕−, (3.90)

and

𝜔𝑒𝑓𝑓 = −𝑔+−𝑇
+−(𝑒𝑓𝑓) = 𝜌− 𝑝𝑟

2 − 3𝑞2

8𝜋𝑟4 − 𝜆1𝐿7

4𝜋 + 𝜆2(𝜌− 𝑝𝑟)𝐿6

𝑟2 + 𝜆2(𝜌+ 𝑝𝑟)𝐿1

4𝑊 2

+ 3𝜆2𝑞
2

16𝜋𝑟6𝑊 2

[︃
𝑟2𝐿1 − 𝐿3 − 4𝑟𝑊𝐿4

]︃
+ 𝜆2𝑝𝑟𝐿5

𝑟𝑊
− 𝜆2𝐿2

2𝑊 . (3.91)

Eq. (3.29), on using Eqs. (3.81) and (3.82) can also be written as

𝜅𝑒𝑓𝑓 = −2𝜋𝑟ℎ

{︃
(𝜌+ 𝑝𝑟) + 𝜆1(𝜌+ 𝑝𝑟)

4𝜋 + 2𝜆2(𝜌+ 𝑝𝑟)
4𝑟2

ℎ𝑊

[︃
4𝑊 − 𝑟2

ℎ𝑊
′𝑈 ′ − 8𝑟ℎ𝑊𝑈 ′

]︃

+ 2𝜆2𝑝𝑟𝑈
′

𝑟ℎ

− 𝜆2𝜌
′𝑈 ′
}︃
, (3.92)

and

𝜅𝑒𝑓𝑓 = 1
2𝑟ℎ

− 2𝜋𝑟ℎ(𝜌− 𝑝𝑟) + 3𝑞2

2𝑟3
ℎ

+ 𝜆1𝑟

[︃
− 𝜌+ 4𝑝𝑟

3 + 5𝑝𝑡

3 + 𝑞2

2𝜋𝑟4

]︃
− 4𝜋𝜆2𝑝𝑟𝑈

′

+ 2𝜋𝜆2𝑟ℎ𝜌
′𝑈 ′ − 𝜋𝜆2𝑟ℎ(𝜌+ 𝑝𝑟)𝑊 ′𝑈 ′

𝑊
− 4𝜋𝜆2(𝜌− 𝑝𝑟)

𝑟ℎ

− 3𝜆2𝑞
2

4𝑊𝑟5
ℎ

[︃
𝑟2

ℎ𝑊
′𝑈 ′ + 4𝑟ℎ𝑊𝑈 ′ − 4𝑊

]︃
. (3.93)

Eq. (3.90) in the component form becomes

𝜓± = ±
√
𝑈𝑊

2

{︃
𝜌+ 𝑝𝑟

2 + 𝜆1

8𝜋 (𝜌+ 𝑝𝑟) − 𝜆2𝐿2

2𝑊 + 𝜆2𝑝𝑟𝐿4

𝑟𝑊
+ 𝜆2(𝜌+ 𝑝𝑟)

4𝑟2𝑊 2

[︃
− 𝑟2𝐿1 + 𝐿3

]︃}︃
.

(3.94)

The gradient of MS energy on using the gravitational field equations (3.81) and (3.82)
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can be written as

𝜕±𝐸 = ±2𝜋𝑟2
√
𝑈𝑊

{︃
𝜌− 3𝑞2

8𝜋𝑟4 + 𝜆1

8𝜋

[︃
𝜌+ 𝑝𝑟 − 2𝐿7

]︃
+ 𝜆2𝜌

4𝑟2𝑊 2

[︃
𝐿3 + 4𝑊 2𝐿6

]︃

− 𝜆2𝐿2

𝑊
+ 3𝜆2𝑞

2

16𝜋𝑟6𝑊 2

[︃
𝑟2𝐿1 − 𝐿3 − 4𝑟𝑊𝐿4

]︃}︃
. (3.95)

Thus UFL in non-minimal curvature-matter coupling can be formulated from Eqs.

(3.91), (3.94) and (3.95) as

𝜕±𝐸 = 𝐴𝜓𝑒𝑓𝑓
± + 𝜔𝑒𝑓𝑓𝜕±𝑉, (3.96)
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Chapter 4

Thermodynamics of dynamical

wormholes

In GR, in static traversable wormholes, the violation of NEC is the key ingredient.

However, it was shown that the NEC and WEC get some respect in some regions and

for certain time durations at the throat, in the case of time dependent (dynamical)

wormhole solutions [65, 66]. These wormholes are the time generalization of MTWHs.

We will consider dynamical wormholes (DWHs) in this chapter with and without

charge and study their thermodynamics. The UFL and GSG will be investigated in

Einstein’s gravity. We also work out GSG for specific uncharged DWHs for different

cosmological models. Thermodynamic stability is also investigated. We will also use

the areal radius coordinates to investigate these thermodynamic workouts.

4.1 Uncharged dynamical wormholes

We consider uncharged DWHs in a cosmological background, which are generalization

of the MTWHs to a time dependent background [121],

𝑑𝑠2 = −𝑒2Φ(𝑡,𝑟)𝑑𝑡2 + 𝑎2(𝑡)
⎡⎣ 𝑑𝑟2

1 − 𝑏(𝑟)
𝑟

+ 𝑟2𝑑Ω2

⎤⎦ , (4.1)
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in coordinates (𝑡, 𝑟, 𝜃, 𝜑) where 𝑑Ω2 = 𝑑𝜃2 + sin2 𝜃𝑑𝜑2. The radial coordinate 𝑟 ranges

in [𝑟0,∞]. Here the minimum radius 𝑟 = 𝑟0 corresponds to the throat of the wormhole

which connects two regions, each region is 𝑟0 < 𝑟 < ∞. At 𝑟 → ∞ this metric becomes

flat, 𝑎(𝑡) is the dimensionless parameter called the scaling factor of the universe.

It tells us how our universe is expanding. It is known that the expansion rate of

our universe is increasing with time which implies 𝑎̈(𝑡) > 0 or 𝑎̇(𝑡) is an increasing

function of time (here over dot represents the time derivative). Φ(𝑡, 𝑟) is the redshift

function as it corresponds to the gravitational redshift. This function should be finite

everywhere in order to prevent the existence of an event horizon which is the necessary

requirement for a wormhole to be traversable and when 𝑟 → ∞ this redshift function

should vanish. At the wormhole throat a coordinate singularity 𝑏(𝑟0) = 𝑟0 occurs and

𝑏(𝑟) < 𝑟 for 𝑟 > 𝑟0.

The flaring out condition for wormholes requires that 𝑏′ < 𝑏(𝑟)/𝑟 at or near the

throat. These are the conditions on Φ(𝑡, 𝑟) and 𝑏(𝑟) which provide a traversable

wormhole solution. It is clear that when Φ(𝑡, 𝑟) and 𝑏(𝑟)/𝑟 tend to zero then the met-

ric (4.1) becomes the flat Friedmann-Robertson-Walker (FRW) metric, and Morris-

Thorne metric is recovered when Φ(𝑡, 𝑟) = Φ(𝑟) and 𝑎(𝑡) → 1. Here in this paper we

take Φ(𝑡, 𝑟) = 0 so that the wormhole metric (4.1) takes the form

𝑑𝑠2 = −𝑑𝑡2 + 𝑎2(𝑡)
⎡⎣ 𝑑𝑟2

1 − 𝑏(𝑟)
𝑟

+ 𝑟2𝑑Ω2

⎤⎦ . (4.2)

Now for the stress-energy tensor we take the perfect fluid which is completely

described by its energy density and isotropic pressure [121], with components

𝑇 𝑡
𝑡 = −𝜌(𝑡, 𝑟), 𝑇 𝑟

𝑟 = 𝑝𝑟(𝑡, 𝑟), 𝑇 𝜃
𝜃 = 𝑇 𝜑

𝜑 = 𝑝𝑡(𝑡, 𝑟), (4.3)

where 𝜌(𝑡, 𝑟), 𝑝𝑟(𝑡, 𝑟) and 𝑝𝑡(𝑡, 𝑟) are, respectively, the energy density, radial pres-

sure and tangential pressure. For isotropic pressure 𝑝𝑟(𝑡, 𝑟) = 𝑝𝑡(𝑡, 𝑟), otherwise the

pressure will be anisotropic.
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Using null coordinates (𝑥+, 𝑥−), the metric (4.2) can be transformed into the form

𝑑𝑠2 = 2𝑔+−𝑑𝑥
+𝑑𝑥− +𝑅2𝑑Ω2, (4.4)

where

𝑑𝑥+ = 𝑑𝑡

𝑎
+ 𝑑𝑟√︁

1 − 𝑏
𝑟

, (4.5)

and

𝑑𝑥− = 𝑑𝑡

𝑎
− 𝑑𝑟√︁

1 − 𝑏
𝑟

, (4.6)

here 𝑥+ corresponds to the outgoing radiation and 𝑥− to the ingoing radiation. Here

𝑅 and 𝑔+− = −𝑎2/2 are functions of the null coordinates (𝑥+, 𝑥−), that correspond to

the two preferred null normal directions for the symmetric spheres 𝜕± = 𝜕/𝜕𝑥±, and

𝑅 = 𝑎(𝑡)𝑟 is the so-called areal radius and 𝑑Ω2 is the metric for the unit 2-sphere.

Now, we define the expansions as

Θ± = 2
𝑅
𝜕±𝑅 = 𝑎𝐻 ± 𝑎

𝑅

√︃
1 − 𝑎𝑏

𝑅
. (4.7)

A sphere is trapped if Θ+Θ− > 0, which yields

𝐻2𝑅2 − 1 + 𝑎𝑏

𝑅
> 0, (4.8)

untrapped if Θ+Θ− < 0, yielding

𝐻2𝑅2 − 1 + 𝑎𝑏

𝑅
< 0, (4.9)

or marginal if Θ+Θ− = 0, giving

𝐻2𝑅2 − 1 + 𝑎𝑏

𝑅
= 0 (4.10)
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where 𝐻 ≡ 𝑎̇/𝑎 is the Hubble parameter. Here, for the trapping horizon, we choose

Θ− ∼= 0, (4.11)

where the symbol (∼=) henceforth shows evaluation on the trapping horizon 𝑅ℎ =

𝑎(𝑡)𝑟ℎ which gives the expression for the trapping horizon as

𝐻𝑅 −
√︃

1 − 𝑎𝑏

𝑅
∼= 0. (4.12)

Note that the choice Θ− ∼= 0 corresponds to expanding universe (𝑎̇ > 0), on the other

hand if we chose Θ+ ∼= 0, then it will lead us to the contracting universe (𝑎̇ < 0). Also

note that unlike the static MTWHs, the trapping horizon and the throat of uncharged

DWHs do not coincide. In the case of static MTWHs the trapping horizon is given

by 𝑏(𝑟0) = 𝑟0 which is also the value of the shape function at the throat. But in this

case, because of the presence of the scaling factor 𝑎(𝑡), they do not coincide. This

trapping horizon is future if Θ+ < 0 (or equivalently 𝜕+𝑅 < 0), giving

𝐻𝑅 +
√︃

1 − 𝑎𝑏

𝑅
< 0, (4.13)

past if Θ+ > 0 (or equivalently 𝜕+𝑅 > 0), giving

𝐻𝑅 +
√︃

1 − 𝑎𝑏

𝑅
> 0, (4.14)

and bifurcating if Θ+ ∼= 0 (or equivalently 𝜕+𝑅 ∼= 0), giving

𝐻𝑅 +
√︃

1 − 𝑎𝑏

𝑅
∼= 0. (4.15)

Note that since we have made choice Θ− ∼= 0 which corresponds to expanding universe

(𝑎̇ > 0), this makes the trapping horizon to be past as can be seen from Eq. (4.14),
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while Eqs. (4.13) and (4.15) are not satisfied for 𝑎̇ > 0. In our case on the trapping

horizon Θ+ > 0 and Θ− ∼= 0. Thus, in case of expanding universe, it is the ingoing

expansion which changes sign across the trapping horizon and vanishes on it while

the outgoing expansion keeps the sign same. Therefore, inside the trapping horizon

we have Θ± > 0 and outside the trapping horizon we have Θ+ > 0 but Θ− < 0. This

implies that inside the trapping horizon 𝐻𝑅 >
√︁

1 − 𝑎𝑏/𝑅, on the trapping horizon

𝐻𝑅 ∼=
√︁

1 − 𝑎𝑏/𝑅 and outside the trapping horizon 𝐻𝑅 <
√︁

1 − 𝑎𝑏/𝑅. Further, this

trapping horizon is outer if 𝜕+Θ− < 0, giving

𝐻̇

2 +𝐻2 − (𝑎𝑏−𝑅𝑏′)
4𝑅3 < 0, (4.16)

inner if 𝜕+Θ− > 0, giving

𝐻̇

2 +𝐻2 − (𝑎𝑏−𝑅𝑏′)
4𝑅3 > 0, (4.17)

or degenerate if 𝜕+Θ− ∼= 0, giving

𝐻̇

2 +𝐻2 − (𝑎𝑏−𝑅𝑏′)
4𝑅3

∼= 0. (4.18)

4.1.1 Generalized surface gravity of uncharged dynamical

wormholes

The MS energy for uncharged DWHs (4.2) can be expressed as

𝐸 = 1
2𝑅(1 − 𝜕𝑎𝑅𝜕𝑎𝑅) = 𝑅

2 (1 − 2𝑔+−𝜕+𝑅𝜕−𝑅), (4.19)

which gives

𝐸 = 𝑅

2

[︃
𝐻2𝑅2 + 𝑎𝑏

𝑅

]︃
. (4.20)

On a trapping horizon this expression reads 𝐸 ∼= 𝑅/2.
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Now the Einstein field equations (2.8)-(2.10) take the form

𝜕±Θ± = −1
2Θ2

± + Θ±𝜕± log(−𝑔+−) − 8𝜋𝑇±±, (4.21)

𝜕±Θ∓ = −Θ+Θ− + 1
𝑅2 𝑔+− + 8𝜋𝑇±∓, (4.22)

Θ+Θ− = −𝜕+Θ− − 𝜕−Θ+ − 8𝜋
𝑅2𝑇𝜃𝜃, (4.23)

where the components of stress-energy tensor, on solving Eq. (2.24), in this case take

the form

𝑇++ = 𝑇−− = 𝑎2(𝜌+ 𝑝𝑟)
4 , (4.24)

𝑇+− = 𝑇−+ = 𝑎2(𝜌− 𝑝𝑟)
4 , (4.25)

𝑇𝜃𝜃 = 𝑅2𝑝𝑡. (4.26)

The Kodama vector in null coordinates is given by

𝐾 = −𝑔+−(𝜕+𝑅𝜕− − 𝜕−𝑅𝜕+), (4.27)

which for spacetime (4.2) in covariant form becomes

𝐾± = −𝑎

2

⎛⎝±𝐻𝑅 +
√︃

1 − 𝑎𝑏

𝑅

⎞⎠ . (4.28)

The magnitude of K is

|𝐾|2 = 2𝐸
𝑅

− 1. (4.29)

Note that |𝐾|2 ∼= 0 on the trapping horizon Θ− ∼= 0.

The trapping horizon is provided by this Kodama vector which is null on a hy-

persurface 𝜕−𝑅 ∼= 0. Now, the GSG 𝜅 on a trapping horizon can be expressed as

𝐾𝑎∇[𝑏𝐾𝑎] ∼= ±𝜅𝐾𝑏. (4.30)
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For metric (4.2) the surface gravity on trapping horizon becomes

𝜅 ∼= −𝐻̇𝑅

2 −𝐻2𝑅 + 1
4𝑅2 (𝑎𝑏− 𝑏′𝑅) , (4.31)

which on using Einstein field equations (4.21) and (4.22) can be written as

𝜅 ∼= −𝐻̇𝑅 −𝐻2𝑅 − 2𝜋𝑅 (𝜌+ 𝑝𝑟) , (4.32)

and

𝜅 ∼=
𝐸

𝑅2 − 4𝜋𝑅𝜔 = 1
2𝑅 − 2𝜋𝑅(𝜌− 𝑝𝑟). (4.33)

This surface gravity, from Eq. (4.30), equivalently, can also be expressed as

𝜅 ∼=
1
2𝑔

𝑎𝑏𝜕𝑎𝜕𝑏𝑅, (4.34)

on a trapping horizon. It follows that 𝜅 < 0, 𝜅 = 0 and 𝜅 > 0 for inner, degenerate

and outer trapping horizons, respectively.

The Hawking temperature is 𝑇 ∼= −𝜅/2𝜋 which, in our case from Eq. (4.31),

becomes

𝑇 ∼= − 𝜅

2𝜋 = − 1
2𝜋

[︃
−𝐻̇𝑅

2 −𝐻2𝑅 + 1
4𝑅2 (𝑎𝑏− 𝑏′𝑅)

]︃
, (4.35)

which is negative for the outer trapping horizon since 𝜅 > 0.

4.1.2 Unified first law for uncharged dynamical wormholes

We can formulate the UFL for uncharged DWHs, in the same manner as for MTWHs,

due to their spherical symmetric nature. Using the stress-energy tensor of the back-

ground fluid we construct a function, 𝜔, and a vector, 𝜓, in the local coordinates

as

𝜔 = −𝑔+−𝑇
+− = 𝜌− 𝑝𝑟

2 , (4.36)
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and

𝜓 = 𝑇++𝜕+𝑅𝜕+ + 𝑇−−𝜕−𝑅𝜕−. (4.37)

In components form it can be written as

𝜓± =
(︂
𝜌+ 𝑝𝑟

4

)︂⎛⎝−𝑎𝐻𝑅 ± 𝑎

√︃
1 − 𝑎𝑏

𝑅

⎞⎠ . (4.38)

Now the UFL can be written by taking gradient of the gravitational energy and using

Einstein field equations as

𝜕±𝐸 = 𝐴𝜓± + 𝜔𝜕±𝑉, (4.39)

with

𝜕±𝐸 = 2𝜋𝑎𝑅2

⎛⎝±𝜌
√︃

1 − 𝑎𝑏

𝑅
−𝐻𝑅𝑝𝑟

⎞⎠ , (4.40)

where 𝐴 = 4𝜋𝑅2 and 𝑉 = 4𝜋𝑅3/3 are the area and areal volume of the spheres of

symmetry and the corresponding flat space, respectively.

The variation of gravitational energy is always positive in the outgoing direction

because 𝜌 > 0 and 𝑝𝑟 < 0, however, in the ingoing direction, it is positive inside

the trapping horizon while outside the trapping horizon its sign depends on how

much exotic matter is present there, for large amount of exotic matter it should be

positive. The work term is also positive in the outgoing direction, as energy density

𝜔 is positive besides the fact that energy conditions are not satisfied. In the ingoing

direction this is positive inside the trapping horizon and negative outside the trapping

horizon. The sign of energy supply term depends on the sign of 𝜌 + 𝑝𝑟 (in case of

black holes this term corresponds to the fluid which provides energy to the spacetime

and respects NEC, hence positive, while it is negative in the case of wormholes where

fluid removes energy from the spacetime and violates NEC). Thus in the outgoing

direction it is positive inside the trapping horizon and negative outside the trapping

horizon. However, in the ingoing direction this term is always positive in our case

(𝜌+ 𝑝𝑟 < 0).
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On the trapping horizon (𝜕−𝑅 = 0), in the outgoing direction, energy flux vanishes

while both variation of gravitational energy and work term are positive. Thus change

in gravitational energy equals the work done in the wormhole on the trapping horizon.

In the ingoing direction, on the trapping horizon, work term vanishes while both

variation of energy and energy flux are positive. Thus change in gravitational energy

equals the energy supply and no work is done on the trapping horizon.

At the throat, all the terms enetering in UFL, the variation of gravitational energy,

energy supply term and the work term, are always positive both in the outgoing as

well as ingoing direction.

4.1.3 Thermodynamic stability of uncharged dynamical worm-

holes

In this section we study the thermodynamic stability of wormholes under considera-

tion using the variables 𝐸, 𝑇, 𝑆, 𝑃 and 𝑉 . We follow the usual criterion for thermo-

dynamic stability, that is 𝜕𝑃
𝜕𝑉

|𝑇 ≤ 0 and 𝐶𝑃 ≥ 𝐶𝑉 ≥ 0, where 𝑃 = (𝑃𝑟 + 2𝑃𝑡)/3 is the

average pressure and 𝐶𝑃 and 𝐶𝑉 are specific heats at constant pressure and volume,

respectively.

We subtract Eq. (4.32) from (4.33) and rearrange the terms to obtain

𝑝𝑟 = − 1
8𝜋𝑅2 − 𝐻̇ +𝐻2

4𝜋 . (4.41)

Solving Eq. (4.23) on the trapping horizon and using the definition of GSG and

Hawking temperature, yields

2𝑝𝑡 = −𝑎2𝑇

𝑅
. (4.42)

From Eqs. (4.41) and (4.42) we obtain the average pressure 𝑃 as

𝑃 = 𝑝𝑟 + 2𝑝𝑡

3 = − 1
24𝜋𝑅2 − 𝐻̇ +𝐻2

12𝜋 − 𝑎2𝑇

3𝑅 , (4.43)
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which is the equation of state in three state parameters 𝑇, 𝑃 and 𝑉 . From this

equation we can analyze the thermodynamic stability of wormhole.

Stable equilibrium of a thermodynamic system requires that 𝜕𝑃
𝜕𝑉

|𝑇 ≤ 0 where

𝜕𝑃

𝜕𝑉
|𝑇 = (4𝜋/3)2/3

36𝜋𝑉 5/3 + (4𝜋/3)1/3𝑎2𝑇

9𝑉 4/3 . (4.44)

Now, to ensure the stable equilibrium we must have

𝑇 ≤ − 1
4𝜋𝑎2𝑅

, (4.45)

thus the temperature assumes negative values everywhere for stable equilibrium which

is attributed to the exotic matter. From Eq. (4.43) we have

𝑃 ≥ 1
24𝜋𝑅2 − 𝐻̇ +𝐻2

12𝜋 . (4.46)

If the scale factor is a linear function of time then 𝑎̈ = 0 and then 𝑃 will assume the

positive values everywhere, otherwise it could be negative somewhere.

Another condition for stable equilibrium is 𝐶𝑃 ≥ 𝐶𝑉 ≥ 0. Now since, the constant

𝑉 means constant 𝐸 and 𝑆 so by the definition of 𝐶𝑉 ,

𝐶𝑉 = 𝜕𝐸

𝜕𝑇
|𝑉 = 𝑇

𝜕𝑆

𝜕𝑇
|𝑉 = 0, (4.47)

which means we can define heat capacity only at constant pressure as

𝐶𝑃 = 𝑇
𝜕𝑆

𝜕𝑇
|𝑃 = (24𝜋𝑃𝑅2 + 2𝐻̇𝑅2 + 2𝐻2𝑅2 + 1)2𝜋𝑅2

24𝜋𝑃𝑅2 + 2𝐻̇𝑅2 + 2𝐻2𝑅2 − 1
, (4.48)

where from Eq. (4.43),

𝑇 = − 1
𝑎2

(︃
3𝑅𝑃 + 1

8𝜋𝑅 + 𝐻̇𝑅 +𝐻2𝑅

4𝜋

)︃
. (4.49)
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Now from Eq. (4.46), to ensure the stable equilibrium, we can take the value of 𝑃 ,

for any non-negative 𝜖, as

𝑃 = 1
24𝜋𝑅2 − 𝐻̇ +𝐻2

12𝜋 + 𝜖. (4.50)

Thus Eq. (4.48) on using Eq. (4.50) takes the form

𝐶𝑃 = 1
6𝜖 + 2𝜋𝑅2. (4.51)

which is always positive. Thus the uncharged DWHs could be thermodynamically

stable. This means that for stable equilibrium the average pressure is always positive

for linear scale factor, however it may also have negative values for non-linear scale

factor while temperature is always negative as is also depicted in Ref. [71] in which

the possibility of negative temperature emerging from the exotic matter distribution

was proposed.

4.1.4 Generalized surface gravity for wormholes with and

without the cosmological constant

In this section we consider wormholes of different shapes in different cosmologies with

and without the cosmological constant Λ. We will analyze these for anisotropic fluid

where radial and tangential pressures satisfy 𝑝𝑟 = 𝜔𝑟𝜌 and 𝑝𝑡 = 𝜔𝑡𝜌. Clearly for

𝜔𝑟 = 𝜔𝑡 pressure becomes isotropic.

Static wormholes

Here we discuss static wormholes for cosmological constant (Λ = 0). In the static

case (𝑎(𝑡) = 1) we take shape function 𝑏(𝑟) = 𝑟0( 𝑟
𝑟0

)−1/𝜔𝑟 . Here 𝜔𝑟 is a constant state

parameter, satisfying 𝑝𝑟 = 𝜔𝑟𝜌 and 𝑝𝑡 = −1
2(1 + 𝜔𝑟)𝜌, where 𝑝𝑟 and 𝑝𝑡 are radial and
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tangential pressures while 𝜌 is the energy density. For this case the metric (4.2) takes

the form [158]

𝑑𝑠2 = −𝑑𝑡2 + 𝑑𝑟2

1 − (𝑟/𝑟0)−(1+𝜔𝑟)/𝜔𝑟
+ 𝑟2𝑑Ω2. (4.52)

In the range 𝜔𝑟 < −1, we have asymptotically flat wormhole metric with positive

energy density while for 𝜔𝑟 > 0 the energy density becomes negative but still we

have an asymptotically flat wormhole. This static traversable wormhole was first

considered in Ref. [43]. In the static case we have a bifurcating trapping horizon on

the wormhole throat location, 𝑟ℎ = 𝑟0. The Kodama vector in this case becomes

𝐾± = −1
2

√︁
1 − (𝑟/𝑟0)−(1+𝜔𝑟)/𝜔𝑟 . (4.53)

Finally, the surface gravity from Eq. (4.30) when evaluated on the trapping horizon

𝑟 = 𝑟ℎ = 𝑟0 takes the form

𝜅 ∼=
1 + 𝜔𝑟

4𝑟0𝜔𝑟

. (4.54)

Evolving wormholes with Λ = 0

We discuss a non-static wormhole with shape function

𝑏(𝑟) = 𝑟0(
𝑟

𝑟0
)−1/𝜔𝑟 + 𝑘𝑟3

0( 𝑟
𝑟0

)3 − 𝑘𝑟3
0( 𝑟
𝑟0

)−1/𝜔𝑟 , (4.55)

in the background of a cosmology with the scale factor 𝑎(𝑡) = 𝑡
√

−𝑘+𝐹 , where 𝑘 and

𝐹 are constants and 𝜔𝑟 satisfies the same conditions as discussed above for the static

case. This shape function also satisfies the near throat conditions discussed earlier.

With these values the wormhole metric can be written as [158]

𝑑𝑠2 = −𝑑𝑡2+(
√

−𝑘𝑡+𝐹 )2
(︃

𝑑𝑟2

1 − (𝑟/𝑟0)−(1+𝜔𝑟)/𝜔𝑟 − 𝑘𝑟2
0( 𝑟

𝑟0
)2 + 𝑘𝑟2

0( 𝑟
𝑟0

)−(1+𝜔𝑟)/𝜔𝑟
+ 𝑟2𝑑Ω2

)︃
.

(4.56)
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Here 𝑘 = −1, 0,+1 correspond to open, flat and closed universe, respectively. In the

above case must have 𝑘 ≤ 0 for preserving the Lorentzian signatures. Otherwise, for

𝑘 > 0 the signatures changes to the Euclidean one giving rise to Euclidean wormholes.

The trapping horizon for this metric is given by the expression

√
−𝑘 −

√︃
1 − (𝑟ℎ/𝑟0)−(1+𝜔𝑟)/𝜔𝑟 − 𝑘𝑟2

0(𝑟ℎ

𝑟0
)2 + 𝑘𝑟2

0(𝑟ℎ

𝑟0
)−(1+𝜔𝑟)/𝜔𝑟 = 0, (4.57)

whereas the Kodama vector in the component form becomes

𝐾± = −𝑡
√

−𝑘 + 𝐹

2

(︃
±

√
−𝑘𝑟 +

√︃
1 − (𝑟/𝑟0)−(1+𝜔𝑟)/𝜔𝑟 − 𝑘𝑟2

0( 𝑟
𝑟0

)2 + 𝑘𝑟2
0( 𝑟
𝑟0

)−(1+𝜔𝑟)/𝜔𝑟

)︃
.

(4.58)

Finally, the surface gravity from Eq. (4.30) on trapping horizon takes the form

𝜅 ∼=
𝑘𝑟

2(𝑡
√

−𝑘 + 𝐹 )
+ 1

4𝑟2(
√

−𝑘𝑡+ 𝐹 )

[︃
(1 + 𝜔𝑟)𝑟0(1 − 𝑘𝑟2

0)
𝜔𝑟

( 𝑟
𝑟0

)−1/𝜔𝑟 − 2𝑘𝑟3
0( 𝑟
𝑟0

)3
]︃
.

(4.59)

Inflating de Sitter wormholes

When we include the cosmological constant, the wormholes do not remain asymp-

totically flat and the expansion of the wormhole is accelerated. Here we discuss a case

of exponential scale factor 𝑎(𝑡) = 𝑎0𝑒
±
√

Λ/3𝑡 for Λ > 0. For this scale factor we take

the shape function 𝑏(𝑟) = 𝑟0( 𝑟
𝑟0

)−1/𝜔𝑟 , so that the wormhole metric takes the form

𝑑𝑠2 = −𝑑𝑡2 + 𝑎2
0𝑒

±2
√

Λ/3𝑡

[︃
𝑑𝑟2

1 − (𝑟/𝑟0)−(1+𝜔𝑟)/𝜔𝑟
+ 𝑟2𝑑Ω2

]︃
, (4.60)

describing contracting and expanding wormholes. The positive sign in this scale

factor represents inflation giving exponential expansion of an inflating wormhole.

These wormholes were first considered in Ref. [64]. This wormhole is asymptotically

de Sitter for 𝜔𝑟 < −1 with positive energy density everywhere, while for 𝜔𝑟 > 0 the
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energy density is negative everywhere and the wormhole solution is still asymptotically

de Sitter universe. When Λ vanishes we obtain the static case discussed earlier. For

these wormholes the trapping horizon is given by the expression

± 𝑎0

√︁
Λ/3𝑒±

√
Λ/3𝑡𝑟ℎ −

√︁
1 − (𝑟ℎ/𝑟0)−(1+𝜔𝑟)/𝜔𝑟 = 0, (4.61)

whereas the Kodama vector in the component form is given by

𝐾± = −𝑎0𝑒
±
√

Λ/3𝑡

2

(︂
±𝑎0(±

√︁
Λ/3)𝑒±

√
Λ/3𝑡𝑟 +

√︁
1 − (𝑟/𝑟0)−(1+𝜔𝑟)/𝜔𝑟

)︂
, (4.62)

yielding the surface gravity

𝜅 ∼= −𝑎0𝑟Λ𝑒±
√

Λ/3𝑡

3 + 𝑟0(1 + 𝜔𝑟)
4𝑎0𝜔𝑟𝑟2𝑒±

√
Λ/3𝑡

( 𝑟
𝑟0

)−1/𝜔𝑟 . (4.63)

Evolving de Sitter wormholes in closed universe

Now we discuss the more general case when Λ ̸= 0, and the shape function is

given by Eq. (4.55). As the cosmological constant is nonzero, the wormhole is not

asymptotically flat. For different values of constant 𝑘 we can have different kinds of

scale factors discussed in detail in Ref. [121]. For 𝑘 = 1 and Λ > 0, we take the scale

factor given by 𝑎(𝑡) =
√︁

3
Λ cosh(

√︁
Λ
3 𝑡+ 𝜑0) where 𝜑0 is a constant. With these values

the de Sitter wormhole of a closed universe becomes

𝑑𝑠2 = −𝑑𝑡2

+ 3
Λ cosh2(

√︃
Λ
3 𝑡+ 𝜑0)

(︃
𝑑𝑟2

1 − (𝑟/𝑟0)−(1+𝜔𝑟)/𝜔𝑟 − 𝑟2
0( 𝑟

𝑟0
)2 + 𝑟2

0( 𝑟
𝑟0

)−(1+𝜔𝑟)/𝜔𝑟
+ 𝑟2𝑑Ω2

)︃
.

(4.64)
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The trapping horizon for this wormhole is given by the expression

sinh(
√︃

Λ
3 𝑡+𝜑0)𝑟ℎ −

√︃
1 − (𝑟ℎ/𝑟0)−(1+𝜔𝑟)/𝜔𝑟 − 𝑟2

0(𝑟ℎ

𝑟0
)2 + 𝑟2

0(𝑟ℎ

𝑟0
)−(1+𝜔𝑟)/𝜔𝑟 = 0, (4.65)

and the Kodama vector in the component form is given by

𝐾± = −

√︁
3
Λ cosh(

√︁
Λ
3 𝑡+ 𝜑0)

2

(︃
± sinh(

√︃
Λ
3 𝑡+ 𝜑0)𝑟

+
√︃

1 − (𝑟/𝑟0)−(1+𝜔𝑟)/𝜔𝑟 − 𝑟2
0( 𝑟
𝑟0

)2 + 𝑟2
0( 𝑟
𝑟0

)−(1+𝜔𝑟)/𝜔𝑟

)︃
. (4.66)

Evaluating Eq. (4.30) on the trapping horizon gives for the surface gravity

𝜅 ∼= −
√

Λ𝑟
2
√

3
cosh(

√︃
Λ
3 𝑡+ 𝜑0) −

√
Λ𝑟 tanh(

√︁
Λ
3 𝑡+ 𝜑0) sinh(

√︁
Λ
3 𝑡+ 𝜑0)

2
√

3

−
√

Λ
4𝑟2

√
3 cosh(

√︁
Λ
3 𝑡+ 𝜑0)

[︃
(1 + 𝜔𝑟)𝑟0(1 − 𝑟2

0)
𝜔𝑟

( 𝑟
𝑟0

)−1/𝜔𝑟 − 2𝑟3
0( 𝑟
𝑟0

)3
]︃
. (4.67)

Evolving de Sitter wormholes in open universe

If in Eq. (4.55) we take 𝑘 = −1 then for Λ > 0 the scale factor is given by

𝑎(𝑡) =
√︁

3
Λ sinh(

√︁
Λ
3 𝑡+ 𝜑0) and the wormhole metric takes the form

𝑑𝑠2 = −𝑑𝑡2

+ 3
Λ sinh2(

√︃
Λ
3 𝑡+ 𝜑0)

(︃
𝑑𝑟2

1 − (𝑟/𝑟0)−(1+𝜔𝑟)/𝜔𝑟 + 𝑟2
0( 𝑟

𝑟0
)2 − 𝑟2

0( 𝑟
𝑟0

)−(1+𝜔𝑟)/𝜔𝑟
+ 𝑟2𝑑Ω2

)︃
.

(4.68)

In this case the expression for the trapping horizon is

cosh(
√︃

Λ
3 𝑡+ 𝜑0)𝑟ℎ −

√︃
1 − (𝑟ℎ/𝑟0)−(1+𝜔𝑟)/𝜔𝑟 + 𝑟2

0(𝑟ℎ

𝑟0
)2 − 𝑟2

0(𝑟ℎ

𝑟0
)−(1+𝜔𝑟)/𝜔𝑟 = 0 (4.69)
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and the Kodama vector takes the form

𝐾± = −

√︁
3
Λ sinh(

√︁
Λ
3 𝑡+ 𝜑0)

2

(︃
± cosh(

√︃
Λ
3 𝑡+ 𝜑0)𝑟

+
√︃

1 − (𝑟/𝑟0)−(1+𝜔𝑟)/𝜔𝑟 + 𝑟2
0( 𝑟
𝑟0

)2 − 𝑟2
0( 𝑟
𝑟0

)−(1+𝜔𝑟)/𝜔𝑟

)︃
. (4.70)

Thus surface gravity on trapping horizon becomes

𝜅 ∼= −
√

Λ𝑟
2
√

3
sinh(

√︃
Λ
3 𝑡+ 𝜑0) −

√
Λ𝑟 coth(

√︁
Λ
3 𝑡+ 𝜑0) cosh(

√︁
Λ
3 𝑡+ 𝜑0)

2
√

3

−
√

Λ
4𝑟2

√
3 sinh(

√︁
Λ
3 𝑡+ 𝜑0)

[︃
(1 + 𝜔𝑟)𝑟0(1 + 𝑟2

0)
𝜔𝑟

( 𝑟
𝑟0

)−1/𝜔𝑟 + 2𝑟3
0( 𝑟
𝑟0

)3
]︃
. (4.71)

Evolving anti-de Sitter wormholes in open universe

Finally we discuss a case of negative cosmological constant (Λ < 0) with 𝑘 = −1

in Eq. (4.55). We take the scale factor as 𝑎(𝑡) =
√︁

−3
Λ 𝑠𝑖𝑛(

√︁
−Λ
3 𝑡 + 𝜑0), so that the

wormhole metric can be written as

𝑑𝑠2 = −𝑑𝑡2 + −3
Λ sin2(

√︃
−Λ
3 𝑡+ 𝜑0)

×
(︃

𝑑𝑟2

1 − (𝑟/𝑟0)−(1+𝜔𝑟)/𝜔𝑟 + 𝑟2
0( 𝑟

𝑟0
)2 − 𝑟2

0( 𝑟
𝑟0

)−(1+𝜔𝑟)/𝜔𝑟
+ 𝑟2𝑑Ω2

)︃
. (4.72)

Its trapping horizon is given by the expression

cos(
√︃

−Λ
3 𝑡+𝜑0)𝑟ℎ −

√︃
1 − (𝑟ℎ/𝑟0)−(1+𝜔𝑟)/𝜔𝑟 + 𝑟2

0(𝑟ℎ

𝑟0
)2 − 𝑟2

0(𝑟ℎ

𝑟0
)−(1+𝜔𝑟)/𝜔𝑟 = 0, (4.73)
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and the Kodama vector takes the form

𝐾± = −

√︁
−3
Λ 𝑠𝑖𝑛(

√︁
−Λ
3 𝑡+ 𝜑0)

2

(︃
± cos(

√︃
−Λ
3 𝑡+ 𝜑0)𝑟

+
√︃

1 − (𝑟/𝑟0)−(1+𝜔𝑟)/𝜔𝑟 + 𝑟2
0( 𝑟
𝑟0

)2 − 𝑟2
0( 𝑟
𝑟0

)−(1+𝜔𝑟)/𝜔𝑟

)︃
. (4.74)

Using all these expressions the surface gravity becomes

𝜅 ∼=
√

−Λ𝑟
2
√

3
sin(

√︃
−Λ
3 𝑡+ 𝜑0) −

√
−Λ𝑟 cot(

√︁
−Λ
3 𝑡+ 𝜑0) cos(

√︁
−Λ
3 𝑡+ 𝜑0)

2
√

3

−
√

−Λ
4𝑟2

√
3 sin(

√︁
−Λ
3 𝑡+ 𝜑0)

[︃
(1 + 𝜔𝑟)𝑟0(1 + 𝑟2

0)
𝜔𝑟

( 𝑟
𝑟0

)−1/𝜔𝑟 + 2𝑟3
0( 𝑟
𝑟0

)3
]︃
. (4.75)

4.1.5 Areal radius coordinates

Sometimes it is useful to employ areal radius 𝑅 ≡ 𝑎(𝑡)𝑟 as a coordinate instead of 𝑟.

The Schwarzschild-like coordinates are one of this kind of coordinate systems. Also,

these systems provide what are called the pseudo-Painleve-Gullstrand coordinates

[159]. Using the areal radius, metric (4.2) can be written in the pseudo-Painleve-

Gullstrand form as

𝑑𝑠2 = −
[︃

1 − 𝑎𝑏
𝑅

−𝑅2𝐻2

1 − 𝑎𝑏
𝑅

]︃
𝑑𝑡2 + 𝑑𝑅2(︁

1 − 𝑎𝑏
𝑅

)︁ − 2𝐻𝑅(︁
1 − 𝑎𝑏

𝑅

)︁𝑑𝑡𝑑𝑅 +𝑅2𝑑Ω2, (4.76)

As required in the Painleve-Gullstrand coordinates the coefficient of 𝑑𝑅2 is not unity

[160].

To obtain the Schwarzschild-like form we define a new time 𝑇 by using the trans-

formation

𝑑𝑇 = 1
𝐹

(𝑑𝑡+ 𝛽𝑑𝑅) , (4.77)

where 𝐹 is the integration factor which satisfies

𝜕

𝜕𝑅
( 1
𝐹

) = 𝜕

𝜕𝑡
( 𝛽
𝐹

). (4.78)
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Here 𝛽(𝑡, 𝑅) will be chosen later. Using Eq. (4.77) in Eq. (4.76) implies

𝑑𝑠2 = −
[︃

1 − 𝑎𝑏
𝑅

−𝑅2𝐻2

1 − 𝑎𝑏
𝑅

]︃
𝐹 2𝑑𝑇 2 +

⎡⎣1 + 2𝐻𝑅𝛽 −
(︁
1 − 𝑎𝑏

𝑅
−𝑅2𝐻2

)︁
𝛽2

1 − 𝑎𝑏
𝑅

⎤⎦ 𝑑𝑅2

+
⎡⎣2𝐹𝛽

(︁
1 − 𝑎𝑏

𝑅
−𝑅2𝐻2

)︁
− 2𝐻𝑅𝐹

1 − 𝑎𝑏
𝑅

⎤⎦ 𝑑𝑇𝑑𝑅 +𝑅2𝑑Ω2. (4.79)

The cross term 𝑑𝑇𝑑𝑅 is eliminated if we choose

𝛽 = 𝐻𝑅

1 − 𝑎𝑏
𝑅

−𝑅2𝐻2 . (4.80)

Thus metric (4.79) takes the diagonal form

𝑑𝑠2 = −
[︃

1 − 𝑎𝑏
𝑅

−𝑅2𝐻2

1 − 𝑎𝑏
𝑅

]︃
𝐹 2𝑑𝑇 2 +

[︃
1

1 − 𝑎𝑏
𝑅

−𝑅2𝐻2

]︃
𝑑𝑅2 +𝑅2𝑑Ω2, (4.81)

where 𝐹 = 𝐹 (𝑇,𝑅), 𝑎 and 𝐻 depend on 𝑇 implicitly.

This metric (4.81) can be put in the form of (4.4) by using null coordinates 𝑥+ =

𝑇 +𝑅* and 𝑥− = 𝑇 −𝑅* where

𝑑𝑅/𝑑𝑅* =
√︃

−𝑔𝑇 𝑇

𝑔𝑅𝑅

=

[︁
1 − 𝑎𝑏

𝑅
−𝑅2𝐻2

]︁
𝐹√︁

1 − 𝑎𝑏
𝑅

. (4.82)

The trapping horizon in this case is given by Θ− ∼= 2
𝑅
𝜕−𝑅 = 0 which gives

(︃
1 − 𝑎𝑏

𝑅

)︃
∼= 𝐻2𝑅2. (4.83)

Here we have bifurcating trapping horizon as Θ− ∼= 0 implies Θ+ ∼= 0.

The MS energy, energy flux and energy density are given, respectively, by

𝐸 = 𝑅

2

[︃
1 −

[︃
1 − 𝑎𝑏

𝑅
−𝑅2𝐻2

]︃
𝐹

]︃
, (4.84)
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𝜓± = ±(𝜌+ 𝑝𝑟)

[︁
1 − 𝑎𝑏

𝑅
−𝑅2𝐻2

]︁
𝐹

4
√︁

1 − 𝑎𝑏
𝑅

, (4.85)

𝜔 = 𝜌− 𝑝𝑟

2 . (4.86)

It may be noted that 𝐸 ∼= 𝑅/2 on the trapping horizon only. Now, with the quantity

𝜕±𝐸 = ±
2𝜋𝑅2𝜌

[︁
1 − 𝑎𝑏

𝑅
−𝑅2𝐻2

]︁
𝐹√︁

1 − 𝑎𝑏
𝑅

, (4.87)

the UFL is satisfied. The Kodama vector in this case takes the form

𝐾± =

√︁
1 − 𝑎𝑏

𝑅

𝐹
, (4.88)

with ‖𝐾‖2 ∼= 0 on the trapping horizon. The GSG from Eq. (4.30) becomes

𝜅 ∼= −𝑎𝑏′

2𝑅 + 𝑎𝑏

2𝑅2 −𝐻2𝑅, (4.89)

which on using Einstein field equations takes the form

𝜅 ∼= −2𝜋𝑅(𝜌+ 𝑝𝑟) = 𝐸

𝑅2 − 4𝜋𝑅𝜔. (4.90)

4.2 Charged dynamical wormholes

In this section we will consider DWHs which contain electric charge. Their static

version has been discussed in detail in Chapter 3. Thus these wormholes generalize

the wormholes which we have discussed in the previous chapters. We investigate UFL

and GSG of these wormholes in Einstein’s gravity and study their thermodynamic

stability at the end. The charged extension of metric (4.1) can be written as

𝑑𝑠2 = −(2𝑒Φ(𝑡,𝑟) + 𝑞2

𝑟2 )𝑑𝑡2 + 𝑎2(𝑡)
⎡⎣ 𝑑𝑟2

1 − 𝑏(𝑟)
𝑟

+ 𝑞2

𝑟2

+ 𝑟2𝑑Ω2

⎤⎦ . (4.91)
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If we take 𝑎(𝑡) = 1 we obtain the (static) CWHs [157]. The charge act as extra

matter in addition to exotic matter. Now, the effective redshift function is described

as Φ𝑒𝑓𝑓 (𝑡, 𝑟) = 1
2 ln(𝑒2Φ(𝑡,𝑟) +𝑞2/𝑟2), which should be finite everywhere for the absence

of event horizon and should vanish at infinity. Here we will consider Φ𝑒𝑓𝑓 (𝑡, 𝑟) = 0

throughout this chapter. The traversability conditions, effective throat and effective

shape function have already been discussed in detail in Chapter 3.

Now metric (4.91) can be transformed into the form (4.4) by introducing

𝑑𝑥+ = 𝑑𝑡

𝑎
+ 𝑑𝑟√︁

1 − 𝑎𝑏
𝑅

+ 𝑎2𝑞2

𝑅2

, (4.92)

𝑑𝑥− = 𝑑𝑡

𝑎
− 𝑑𝑟√︁

1 − 𝑎𝑏
𝑅

+ 𝑎2𝑞2

𝑅2

, (4.93)

and

𝑔+− = −𝑎2

2 . (4.94)

The expansions in this case take the form

Θ± = 2
𝑅
𝜕±𝑅 = 𝑎

𝑅

⎧⎨⎩𝐻𝑅 ±
√︃

1 − 𝑎𝑏

𝑅
+ 𝑎2𝑞2

𝑅2

⎫⎬⎭ . (4.95)

For trapping horizon we chose Θ− ∼= 0, which gives

𝐻𝑅 −
√︃

1 − 𝑎𝑏

𝑅
+ 𝑎2𝑞2

𝑅2
∼= 0. (4.96)

which corresponds to the case 𝑎(𝑡) > 0 and it corresponds to the expanding universe.

On the trapping horizon we have Θ+ ∼= 2𝑎𝐻 which is positive thus the trapping hori-

zon is past. Thus, in our case on the trapping horizon Θ+ > 0 and Θ− ∼= 0. Inside the

trapping horizon we have Θ± > 0 and outside the trapping horizon we have Θ+ > 0

but Θ− < 0. Therefore, inside the trapping horizon 𝐻𝑅 >
√︁

1 − 𝑎𝑏/𝑅 + 𝑎2𝑞2/𝑅2, on

the trapping horizon 𝐻𝑅 ∼=
√︁

1 − 𝑎𝑏/𝑅 + 𝑎2𝑞2/𝑅2 and outside the trapping horizon
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𝐻𝑅 <
√︁

1 − 𝑎𝑏/𝑅 + 𝑎2𝑞2/𝑅2. However, it may be outer, inner or degenerate depend-

ing on the sign of 𝜕+Θ− as positive, negative or zero, respectively, on the trapping

horizon, given by

𝜕+Θ− ∼= 𝑎2
{︃
𝐻2 + 𝐻̇

2 − 𝑎𝑏− 𝑏′𝑅

4𝑅3 + 2𝑎2𝑞2

4𝑅4

}︃
. (4.97)

4.2.1 Generalised surface gravity and UFL for charged dy-

namical wormholes

The MS energy for charged DWHs takes the form

𝐸 = 𝑅

2

{︃
𝐻2𝑅2 + 𝑏

𝑟
− 𝑎2𝑞2

𝑅2

}︃
, (4.98)

which is positive. This expression, on trapping horizon, becomes 𝐸 ∼= 𝑅/2. The

Einstein-Maxwell field equations (4.21)-(4.23) are

𝜕±Θ± = −1
2Θ2

± + Θ±𝜕± log(−𝑔+−) − 2𝜋𝑎2(𝜌+ 𝑝𝑟), (4.99)

𝜕±Θ∓ = −Θ+Θ− + 1
𝑅2 𝑔+− + 2𝜋𝑎2

{︃
𝜌− 𝑝𝑟 − 3𝑎4𝑞2

4𝜋𝑅4

}︃
, (4.100)

Θ+Θ− = −𝜕+Θ− − 𝜕−Θ+ − 8𝜋
{︃
𝑝𝑡 + 𝑎4𝑞2

8𝜋𝑅4

}︃
, (4.101)

where the stress-energy tensor 𝑇𝜇𝜈 is the sum of the matter part 𝑇 (𝑚)
𝜇𝜈 and electro-

magnetic part 𝑇 (𝑒)
𝜇𝜈 , i.e., 𝑇𝜇𝜈 = 𝑇 (𝑚)

𝜇𝜈 + 𝑇 (𝑒)
𝜇𝜈 . Here From Eq. (2.24), in this case, we

have used

𝑇++ = 𝑇−− = 𝑎2(𝜌+ 𝑝𝑟)
4 , (4.102)

𝑇+− = 𝑇−+ = 𝑎2(𝜌− 𝑝𝑟 − 3𝑎4𝑞2/4𝜋𝑅4)
4 , (4.103)

𝑇𝜃𝜃 = 𝑅2(𝑝𝑡 + 𝑎4𝑞2

8𝜋𝑅4 ). (4.104)
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Solving Eq. (4.30) on the trapping horizon, the surface gravtiy 𝜅, in this case, is

found to be

𝜅 ∼= −𝐻̇𝑅

2 −𝐻2𝑅 + 𝑎𝑏− 𝑏′𝑅

4𝑅2 − 𝑎2𝑞2

2𝑅3 . (4.105)

This, on using Eqs. (4.99) and (4.100), can also be written as

𝜅 ∼= −𝐻̇𝑅 −𝐻2𝑅 − 2𝜋𝑅(𝜌+ 𝑝𝑟), (4.106)

and

𝜅 ∼=
𝐸

𝑅2 − 4𝜋𝑅𝜔 = 1
2𝑅 − 2𝜋𝑅

{︃
𝜌− 𝑝𝑟 − 3𝑎4𝑞2

4𝜋𝑅4

}︃
. (4.107)

The derivative of MS energy, on using Eqs. (4.99) and (4.100), can be written as

𝜕±𝐸 = 2𝜋𝑎𝑅2

⎧⎨⎩±
(︃
𝜌− 3𝑎4𝑞2

8𝜋𝑅4

)︃√︃
1 − 𝑎𝑏

𝑅
+ 𝑎2𝑞2

𝑅2 −𝐻𝑅

(︃
𝑝𝑟 + 3𝑎4𝑞2

8𝜋𝑅4

)︃⎫⎬⎭ . (4.108)

From the stress-energy tensor, 𝑇𝜇𝜈 = 𝑇 (𝑚)
𝜇𝜈 + 𝑇 (𝑒)

𝜇𝜈 , we can construct a function

𝜔 = −𝑔+−𝑇
+− = 𝜌− 𝑝𝑟

2 − 3𝑎4𝑞2

8𝜋𝑅4 , (4.109)

and a vector

𝜓± = 𝑎(𝜌+ 𝑝𝑟)
4

⎧⎨⎩±
√︃

1 − 𝑎𝑏

𝑅
+ 𝑎2𝑞2

𝑅2 −𝐻𝑅

⎫⎬⎭ . (4.110)

Thus the UFL (4.39) can be formulated using Eqs. (4.108), (4.109) and (4.110).

We must be careful about the conditions that govern the signs of the terms involved

in UFL. We note that the energy supply term is always positive in the ingoing direction

as 𝜌+ 𝑝𝑟 < 0. In the outgoing direction, it is positive inside the trapping horizon and

negative outside the trapping horizon. The work term, in the outgoing direction, is

positive if (𝜌 − 𝑝𝑟) > 3𝑎4𝑞2/4𝜋𝑅4 and negative otherwise. In the ingoing direction,

inside the trapping horizon it keeps the same behaviour while outside the trapping

horizon its behaviour reverses. The gradient of MS energy, in the outgoing direction,
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is positive if 𝜌 > 3𝑎4𝑞2/8𝜋𝑅4 and −𝑝𝑟 > 3𝑎4𝑞2/8𝜋𝑅4 while it is negative if 𝜌 <

3𝑎4𝑞2/8𝜋𝑅4 and −𝑝𝑟 < 3𝑎4𝑞2/8𝜋𝑅4. In the ingoing direction, inside the trapping

horizon it is positive when 𝜌 > 3𝑎4𝑞2/8𝜋𝑅4 and −𝑝𝑟 > 3𝑎4𝑞2/8𝜋𝑅4 and in the range

𝜌 < 3𝑎4𝑞2/8𝜋𝑅4 < −𝑝𝑟. Outside the trapping horizon it is positive when 𝜌 <

3𝑎4𝑞2/8𝜋𝑅4 and −𝑝𝑟 < 3𝑎4𝑞2/8𝜋𝑅4, and in the range 𝜌 < 3𝑎4𝑞2/8𝜋𝑅4 < −𝑝𝑟.

On the trapping horizon, in the outgoing direction, the gradient of MS energy

and the work term are equal and they can be positive or negative, depending on

the amount of charge in the wormhole. In the absence of charge these terms are

positive, also if 𝜌 − 𝑝𝑟 > 3𝑎4𝑞2/4𝜋𝑅4 then these terms are positive. However, they

can get negative if large amount of charge is present in the wormhole such that

𝜌 − 𝑝𝑟 < 3𝑎4𝑞2/4𝜋𝑅4. The energy supply term vanishes on the trapping horizon in

the outgoing direction always. In the ingoing direction, the gradient of MS energy

and the energy supply terms is same and always positive while the work term vanishes

on the trapping horizon.

At the throat, in both the directions, ingoing and outgoing, the energy supply

term is always positive, however, the other two terms are positive for small quantity

of charge while negative for large quantity. Thus, when there is less amount of charge

in the wormhole such that (𝜌 − 𝑝𝑟) > 3𝑎4𝑞2/4𝜋𝑅4 then all the terms appearing in

the UFL are positive. If more charge is added such that −𝑝𝑟 = 3𝑎4𝑞2/8𝜋𝑅4 then

the gradient of MS energy vanishes while the energy supply term and the work term

become equal in magnitude but their signs are not same. If (𝜌 − 𝑝𝑟) = 3𝑎4𝑞2/4𝜋𝑅4

then work density vanishes while gradient of MS energy and energy supply term

becomes same. Here we also note that if both the conditions −𝑝𝑟 = 3𝑎4𝑞2/8𝜋𝑅4 and

(𝜌− 𝑝𝑟) = 3𝑎4𝑞2/4𝜋𝑅4 are met at the same time then this will ensure that 𝜌 = −𝑝𝑟,

and thus it will respect the NEC. Thus exotic nature of the material supporting the

wormhole may be lost. Thus both the conditions cannot be met at the same time in

the case of a wormhole supported by exotic matter. If more charge is added to the

wormhole such that −𝑝𝑟 < 3𝑎4𝑞2/8𝜋𝑅4, then the gradient of MS energy and the work
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term become negative, however, the energy supply term is still positive. This means

that increasing charge induces an increase in work density in the negative direction.

4.2.2 Thermodynamic stability of charged dynamical worm-

holes

We will examine thermodynamic stability of charged DWHs, in this section, using

the same criterion discussed earlier for uncharged DWHs. We subtract Eq. (4.107)

from (4.106), obtaining

𝑝𝑟 = − 1
8𝜋𝑅2 − 𝐻̇ +𝐻2

4𝜋 − 3𝑎4𝑞2

8𝜋𝑅4 . (4.111)

Solving Eq. (4.101) on the trapping horizon, using the definition of surface gravity

and Hawking temperature, we get

2𝑝𝑡 = −𝑎2𝑇

𝑅
− 𝑎4𝑞2

4𝜋𝑅4 . (4.112)

From Eqs. (4.111) and (4.112), the average pressure 𝑃 can be found as

𝑃 = 𝑝𝑟 + 2𝑝𝑡

3 = − 1
24𝜋𝑅2 − 𝐻̇ +𝐻2

12𝜋 − 𝑎2𝑇

3𝑅 − 5𝑎4𝑞2

24𝜋𝑅4 . (4.113)

The thermodynamic stability can be analyzed from equation of state (4.113). Taking

derivative of this with respect to 𝑉 at constant temperature, we get

𝜕𝑃

𝜕𝑉
|𝑇 = (4𝜋/3)2/3

36𝜋𝑉 5/3 + (4𝜋/3)1/3𝑎2𝑇

9𝑉 4/3 + 5𝑎4𝑞2
(︃

32𝜋
59049𝑉 7

)︃1/3

. (4.114)

Now, for stable thermodynamic equilibrium of a thermodynamic system, we must

have 𝜕𝑃
𝜕𝑉

|𝑇 ≤ 0 which is ensured for

𝑇 ≤ −𝑅2 + 10𝑎4𝑞2

4𝜋𝑎2𝑅3 . (4.115)
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This negative temperature can be attributed to exotic matter. Solving Eqs. (4.113)

and (4.115), we find

𝑃 ≥ 1
24𝜋𝑅2 − 𝐻̇ +𝐻2

12𝜋 + 15𝑎4𝑞2

24𝜋𝑅4 . (4.116)

If the scale factor is a linear function of time then 𝑎̈ = 0 and then 𝑃 will assume

positive values everywhere, otherwise it could be negative somewhere.

Another condition for stable thermodynamic equilibrium is 𝐶𝑃 ≥ 𝐶𝑉 ≥ 0. Now,

since constant 𝑉 means constant 𝐸 and 𝑆 so by the definition of 𝐶𝑉 ,

𝐶𝑉 = 𝜕𝐸

𝜕𝑇
|𝑉 = 𝑇

𝜕𝑆

𝜕𝑇
|𝑉 = 0, (4.117)

which means we can define heat capacity only at constant pressure as

𝐶𝑃 = 𝑇
𝜕𝑆

𝜕𝑇
|𝑃 = (24𝜋𝑃𝑅4 + 2𝐻̇𝑅4 + 2𝐻2𝑅4 +𝑅2 + 5𝑎4𝑞2)2𝜋𝑅2

24𝜋𝑃𝑅4 + 2𝐻̇𝑅4 + 2𝐻2𝑅4 −𝑅2 − 15𝑎4𝑞2
, (4.118)

where from Eq. (4.113),

𝑇 = − 1
𝑎2 (3𝑅𝑃 + 1

8𝜋𝑅 + 𝐻̇𝑅 +𝐻2𝑅

4𝜋 + 5𝑎4𝑞2

8𝜋𝑅3 ). (4.119)

Now, from Eq. (4.116), to ensure the stable thermodynamic equilibrium, we can take

the value of 𝑃 , for any non-negative 𝜖, as

𝑃 = 1
24𝜋𝑅2 − 𝐻̇ +𝐻2

12𝜋 + 15𝑎4𝑞2

24𝜋𝑅4 + 𝜖. (4.120)

Thus Eq. (4.118) on using Eq. (4.120) takes the form

𝐶𝑃 = 1
6𝜖 + 2𝜋𝑅2 + 5𝑎4𝑞2

3𝑅2𝜖
. (4.121)

All the terms appearing in the above equation are positive which ensures 𝐶𝑃 ≥ 𝐶𝑉 ≥

0. Thus charged DWHs could be thermodynamically stable.
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Chapter 5

Summary and conclusion

In this thesis we have studied traversable wormholes and their thermodynamics in

Einstein’s gravity and alternate theories of gravity. We have studied MTWHs as well

as DWHs, with and without electric charge. For our purpose we have used a 2 + 2

formalism developed earlier [44, 45, 84, 92] and extended its application to DWHs. In

this formalism thermodynamics of spherically symmetric spacetimes is studied using

an approach which uses the local coordinates to discuss black holes and wormholes

(both are characterised by the presence of outer trapping horizons). We have applied

the formalism that uses the local quantities instead of global quantities to study

thermodynamics of spacetimes. These local quantities allow us to find the trapping

horizon, which is a generalization of the Killing horizon, on which Kodama vector,

a generalization of the Killing vector, becomes null. The union of all the trapped

surfaces form a trapping region and the boundary of a trapping region is called a

trapping horizon which is the surface foliated by marginal spheres on which one of

the null expansions becomes zero. Thus, equivalently, on trapping horizon light rays

travel parallel to each other in either direction, ingoing or outgoing or both, with no

increase or decrease of distance in between them which shows that the area of the

sphere is constant there.

There are different types of trapping horizons depending on the sign of expansions
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and their derivatives. In the static case (MTWHs and CWHs) we have a bifurcating

trapping horizon which results in neither expansion nor contraction of outgoing and

ingoing light rays and this horizon coincides with the location of the throat. However,

in non-static case (DWHs) we have a past trapping horizon which corresponds to the

expanding universe.

Here, in this thesis, we have considered MTWHs, CWHs, uncharged DWHs and

charged DWHs and discussed their thermodynamics in GR and 𝑓(𝑅, 𝑇 ) gravity and

further considered non-minimal curvature-matter coupling as well for the case of

MTWHs and CWHs. Due to the spherically symmetric properties of these space-

times, the Hayward technique is applicable to discuss the thermodynamic properties

of these spacetimes as well. In these wormhole spacetimes Killing horizons do not

exist despite the presence of the Killing vector so that the surface gravity could not be

found by using the Killing vector, hence the usual definition of finding surface gravity

is not applicable here. But the Kodama vector, a generalization of the Killing vector,

still exists that reduces to the Killing vector if there is vacuum. This Kodama vector

allows the presence of trapping horizon which can be used to derive the GSG. Thus, in

this case, the Kodama vector and trapping horizon play the role of the Killing vector

and Killing horizon, respectively. Using this technique, the expression of the GSG

has been derived in each case. This GSG is positive, negative or zero for outer, inner

or degenerate trapping horizons, respectively. In our case of outer trapping horizon

we have positive GSG and equivalently negative Hawking temperature. However, one

could avoid this negative temperature by making claim that this is the problem only

at horizon, but ingoing radiations appearing at one mouth of the wormhole, following

the classical trajectory, would reappear as outgoing radiation on the other mouth of

the wormhole, unavoiding this negative temperature. This is not surprising as worm-

holes are argued to be constructed by phantom energy which may be characterized

by negative temperature. Thus wormholes emit radiations associated with negative

temperature in the same way as black holes emit radiations associated with positive
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temperature. Later on this expression becomes the part of the first law of wormhole

dynamics which is obtained from the UFL by projecting it along the trapping horizon.

The UFL is obtained from the MS energy by taking its gradient that results in two

terms, on using the gravitational field equations, the energy removal term and the

work term. In Chapters 2 and 3 we have considered MTWHs and CWHs. We observe

that in GR, in the static case (MTWHs and CWHs), all the terms entering UFL,

vanish on the trapping horizon (throat) of the wormhole. This results in no evolution

of the throat and, in general, the variation of gravitational energy and the work term

have same signs (positive in outgoing direction and negative in ingoing direction)

opposite to the energy removal term. However, in the case of uncharged DWHs,

discussed in Chapter 4, there is a variation of sign in different regions of the spacetime.

Here, in uncharged DWHs, the situation is different; first of all the trapping horizon

and throat do not coincide here and different behaviour of terms appearing in UFL

is observed. We note that, on the throat, all the terms entering UFL are positive

both in the ingoing and outgoing directions. Thus, the direction does not matter

on the throat in the case of uncharged DWHs. However, on the trapping horizon

we observe that the energy removal term and the work term vanish in the outgoing

and ingoing directions, respectively. This means that the variation of gravitational

energy and the work terms are equal and positive in the outgoing direction, and in the

ingoing direction the variation of gravitational energy and energy supply terms are

equal and positive. Inside the trapping horizon, all the terms appearing in the UFL

are always positive both in the outgoing as well as ingoing direction. Outside the

trapping horizon, the variation of gravitational energy and work terms are positive in

the outgoing direction but the energy removal term is negative, while in the ingoing

direction the variation of gravitational energy is also positive provided enough amount

of exotic matter is present there, however, the energy removal and work terms are

positive and negative, respectively.

We have discussed wormholes in different cosmological models, with and without
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the cosmological constant, in Chapter 4 for their thermodynamic properties. These

include de Sitter and anti-de Sitter wormholes in open, closed and flat universes.

Further, we have discussed cases of asymptotically flat and asymptotically de Sitter

wormholes as well.

We have also extended our results to the charged DWHs in Chapter 4. By carefully

observing the terms in the UFL we note that the behaviour of the energy supply

term is the same as in the case of uncharged DWHs in each region and in both

the directions. However, gradient of the MS energy and work terms are affected by

different amounts of charge. When 𝜌 − 𝑝𝑟 > 3𝑎4𝑞2/4𝜋𝑅4 then both the terms show

similar behaviour as in the case of uncharged DWHs. If 𝜌 − 𝑝𝑟 < 3𝑎4𝑞2/4𝜋𝑅4 then

the sign of the work term becomes opposite to that in the case of uncharged DWHs.

However, the gradient of MS energy reverses its sign always in the outgoing direction.

In the ingoing direction, its sign is same on the trapping horizon and also other than

the trapping horizon (provided 𝜌 < 3𝑎4𝑞2/8𝜋𝑅4 < −𝑝𝑟 holds) as in uncharged DWHs,

but it reverses its sign on the throat and other than the trapping horizon (provided

𝜌 < 3𝑎4𝑞2/8𝜋𝑅4 < −𝑝𝑟 does not hold).

Further, a non-minimal curvature-matter coupling has been considered in MTWHs

and CWHs, due to which the gravitational field equations when written in the form of

the Einstein tensor replace the role of the stress-energy tensor with an effective tensor

that consists of the normal matter and curvature stress-energy tensors and reduces

to the normal matter stress-energy tensor if the coupling constant 𝜆2 → 0. These

results have been further generalized to the case of 𝑓(𝑅, 𝑇 ) gravity. The results of

non-minimal curvature-matter coupling and those derived in 𝑓(𝑅, 𝑇 ) gravity reduce

to the results derived for the Einstein’s gravity when 𝜆2 → 0 and 𝜆1 → 0, respectively.

Thermodynamic stability has been discussed in GR for the wormholes. In the case

of MTWHs and CWHs we have discussed thermodynamic stability for the specific

case Φ = 0. The MTWHs are thermodynamically stable when the temperature 𝑇 ≤

−1/4𝜋𝑟 and the average pressure 𝑃 ≥ 1/24𝜋𝑟2. This negative temperature could be
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attributed to exotic matter. It was found that the CWHs are also thermodynamically

stable provided

𝑇 ≤ − 𝑟2 + 10𝑞2

4𝜋𝑟3 + 12𝜋𝑟𝑞2 ,

𝑃 ≥ − 1
24𝜋𝑟2 − 5𝑞2

24𝜋𝑟4 + (𝑟2 + 10𝑞2)(𝑟2 + 𝑞2)
12𝜋𝑟6 + 36𝜋𝑟4𝑞2 ,

thus temperature is also negative in this case, however, the average pressure may

assume negative values unlike the case of MTWHs. In the case of uncharged DWHs

thermodynamic stability is ensured for

𝑇 ≤ −1/4𝜋𝑎2𝑅,

𝑃 ≥ 1
24𝜋𝑅2 − 𝐻̇ +𝐻2

12𝜋 ,

here temperature is always negative but the average pressure may assume negative

values for non-linear scale factor. However, for linear scale factor the average pressure

is always positive. In the case of charged DWHs the thermodynamic equilibrium is

maintained for

𝑇 ≤ −𝑅2 + 10𝑎4𝑞2

4𝜋𝑎2𝑅3 ,

𝑃 ≥ 1
24𝜋𝑅2 − 𝐻̇ +𝐻2

12𝜋 + 15𝑎4𝑞2

24𝜋𝑅4 ,

thus, in this case temperature always assumes negative values, however, the average

pressure is positive for linear scale factor and for non-linear scale factor it may be

negative somewhere.
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