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Abstract The Seebeck effect and the Nernst effect, which
reflect the appearance of electric fields along x-axis and along
y-axis (Ex and Ey), respectively, induced by the thermal gra-
dient along x-axis, are studied in the QGP at an external mag-
netic field along z-axis. We calculate the associated Seebeck
coefficient (Sxx ) and Nernst signal (N ) using the relativistic
Boltzmann equation under the relaxation time approxima-
tion. In an isotropic QGP, the influences of magnetic field
(B) and quark chemical potential (μq ) on these thermoelec-
tric transport coefficients are investigated. In the presence
(absence) of weak magnetic field, we find Sxx for a fixed
μq is negative (positive) in sign, indicating that the domi-
nant carriers for converting heat gradient to electric field are
negatively (positively) charged quarks. The absolute value
of Sxx decreases with increasing temperature. Unlike Sxx ,
the sign of N is independent of charge carrier type, and its
thermal behavior displays a peak structure. In the presence
of strong magnetic field, due to the Landau quantization of
transverse motion of (anti-)quarks perpendicular to magnetic
field, only the longitudinal Seebeck coefficient (Szz) exists.
Our results show that the value of Szz at a fixed μq in the low-
est Landau level (LLL) approximation always remains pos-
itive. Within the effect of high Landau levels, Szz exhibits a
thermal structure similar to that in the LLL approximation. As
the Landau level increases further, Szz decreases and even its
sign changes from positive to negative. The computations of
these thermoelectric transport coefficients are also extended
to a medium with momentum-anisotropy induced by initial
spatial expansion as well as strong magnetic field.
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1 Introduction

Quantum chromodynamics (QCD) is the fundamental the-
ory of the strong interaction, and the Lattice QCD calcula-
tions have predicted a crossover phase transition from the
hadronic matter to the quark–gluon plasma (QGP) can be
realized with the increase of temperature at the small or van-
ishing baryon chemical potential [1,2]. Heavy-ion collisions
(HICs) experiments with very large center-of-mass colliding
energies, e.g., the relativistic heavy-ion collision (RHIC) at
BNL and the large hadron collision (LHC) at CERN also pro-
vide an opportunity to deeply exploring the phase structure
and the transport properties of strongly interacting matter at
the extreme conditions. In the non-central HICs, the presence
of an enormous magnetic field in the direction perpendicular
to the reaction plane is expected [3]. The theoretical esti-
mate of field strength at primary stage of collisions can reach
eB ∼ m2

π ∼ 0.02 GeV2 for RHIC and eB ∼ 15m2
π ∼ 0.3

GeV2 for LHC [4–9]. And this magnetic field can persist
long-lived due to the presence of electrical conductivity of
medium [9–11]. In the past years, a variety of novel insights
of strongly interacting matter induced by strong magnetic
background field have sparkled considerable research, such
as chiral magnetic effect [8,12,13], the chiral magnetic wave
[14,15], inverse magnetic catalysis [16–22], and the heavy
quark transport [23–29], etc. Thus, investigating the mag-
netic field-induced phenomenological consequences and the
effect of magnetic field on transport properties can provide a
comprehensive understanding of the complex QCD matter.

Transport coefficients, characterizing the dynamical evo-
lution of system, play a crucial role to probe the strongly inter-
acting matter. Recently, numerous works have been devoted
to studying the effects of magnetic field on transport coef-
ficients in QCD matter. Due to the uncertainty of the real-
istic magnitude of magnetic field produced in the initial
stage of HICs, we only consider that the magnetic field is
constant and homogeneous in present work. In the pres-
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ence of a magnetic field oriented along z-axis the Landau
gauge Aμ = (0, 0,−Bx, 0) (B is the strength of an artifi-
cial magnetic field) is chosen as usual, where Aμ denotes
the electromagnetic potential. By solving the Dirac equa-
tion of motion, the dispersion relation for light (anti-)quarks
in the QGP is obtained quantum-mechanically as [30–32]

ε f,l =
√
p2
z + m2

f + 2l|q f eB| (l = 0, 1, . . . are the quan-

tum numbers of the Landau energy levels; m f is the current
mass for f th flavor (anti-)quarks; pz is the momentum of
charged particle along the direction of magnetic field; q f e
is the electric charge of f th flavor quarks.). In the literature,
the ranges of magnetic field can be roughly categorized into
three scenarios: the weak magnetic case or classical case, the
strong magnetic field case or higher Landau levels (hLLs)
case, the strong magnetic field limit case or lowest Lan-
dau level (LLL) case, which are implemented by different
scale hierarchies. In the weak field case within the regime
g2T 2 � eB (g is the QCD charge, g � 1), the tempera-
ture acts as the dominant scale in the presence of magnetic
field, the quantum effect due to Landau quantization is not
included, the magnetic field effect can be seen at the classi-
cal level in the so-called cyclotron motion of charged parti-
cle. Furthermore, we reasonably assume that the scattering
mechanism of partons and thermodynamics in the weakly
magnetized medium are unaffected by the presence of mag-
netic field. With the increase of B, in the strong magnetic
field case within the regime eB � g2T 2 introduced in Ref.
[33], the quantum effect is increasingly obvious, the Landau
quantization of the cyclotron motion is seen at the quan-
tum level and the kinetic energy of quarks gets discreted
into Landau levels. As the magnetic field increases further,
in the extreme magnetic field limit with the scale hierarchy
eB � T 2, the magnitude of magnetic field is sufficiently
greater than other energy scales in the thermal medium, the
transition from the LLL to the hLLs requires a large energy
gap

√
eB to excite. Consequently, the contribution from the

hLLs are neglected due to the suppression of the Boltzmann
factor ∼ e−√

2leB/T , only keeps the contributions from the
LLL. In the context of weak field, electrical conductivity
of QGP recently have been computed using the kinetic the-
ory [34] and quasi-particle models [35,36]. And the system-
atic studies of shear viscosity at weak field have been done
within perturbative QCD in leading log [37]. These observ-
ables have also been investigated in hadronic matter at weak
magnetic field within hadron resonance gas (HRG) model
[38,39]. At the strong magnetic field within the LLL approx-
imation, electrical conductivity along the direction of mag-
netic field in the QGP has been estimated using diagrammatic
method [40], perturbative QCD approach [41], and effective
quasi-particle model [42]. In the LLL approximation, the
effect of magnetic field on other observables, such as viscosi-
ties [43–47], heavy quark complex potential [48] diffusion

coefficients of heavy quark [23,27], heavy quark collisional
energy loss [49], the properties of quarkonium states [50] and
jet quenching parameter [51] also have been studied. Further-
more, the effect of hLLs on various transport coefficients has
been investigated recently in Refs. [27,33,47,52].

Besides aforementioned common transport coefficients,
some attention recently has been turned to the studies of
electromagnetic and thermoelectric effects such as the Hall
effect, the Seebeck effect and the Nernst effect, which are also
fundamental to understand the electrical transport properties
of QCD matter. The Hall effect describes the generation of
a transverse electric field in an electric current-carrying con-
ductor when a uniform magnetic field perpendicular to the
direction of current is applied, which is usually studied in
solid materials. In the hot QCD matter, due to the significant
initial velocity of charged particles along the beam direction
is perpendicular to the produced magnetic field created in
non-central HICs, the Lorentz force can result in an electric
current normal to both the initial velocity of charged parti-
cles and the magnetic field, which indicates the investigation
of the Hall effect in QCD matter is reasonable. Actually,
the conductivity associated this Hall current, the Hall con-
ductivity, in the baryon rich hadronic matter as well as the
QGP has been estimated already using the kinetic theory
[34,36,38]. The Hall component of shear viscosity has also
recently been studied in holographic model [53]. Further-
more, in the presence of magnetic field, a current of charge
carriers can be deflected, whether it is an electrical current
or a thermal current. When a temperature gradient along x-
axis (∇x T ) exists in a conducting medium, a corresponding
electric field (Ex ) can arise. By applying an external mag-
netic field along z-axis, the thermal current of charge carri-
ers generated by the temperature gradient along x-axis can
be deflected to y-axis, resulting in an electric field along
y-axis (Ey). The appearance of Ex and Ey due to the ther-
mal gradient along x-axis is called the Seebeck effect and
the Nernst effect, respectively. Accordingly, the proportion-
ality constants, Ex∇x T

and Ey
∇x T

, in zero-current condition are
called the Seebeck coefficient (Sxx ) and the Nernst signal
(N or Sxy). The strength of Sxx and N reflects the efficiency
of the thermoelectric materials regarding the conversion of
heat into electrical power. In condensed matter physics, the
Seebeck effect and the Nernst effect have been studied in
various solid state matters, such as semiconductors [54], Bis-
muth [55], graphene [56–58] and Weyl semimetal [59,60].
The Seebeck coefficient and the Nernst coefficient have also
been estimated in hot and dense hadronic matter at zero mag-
netic field [61] as well as at nonzero magnetic field [62].
The Nernst effect in a strongly correlated system at finite
magnetic field has also been studied by the gauge gravity
duality [63]. Very recently, the Seebeck coefficient of QGP
in the LLL approximation has been computed using quasi-
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particle model [64]. To the best of our knowledge, there is
no estimation of the Seebeck effect and the Nernst effect for
QGP in the weak magnetic field case. Hence, this provides
one of main motivations for the phenomenological research
in this paper. Conventionally, an ideal assumption that the
constituents of QGP or of hadronic matter are isotropic in
momentum space has been employed in most existing esti-
mations of thermoelectric coefficients. However, due to the
geometry of primary fireball generated in HICs is asymmet-
ric, the different pressure gradients along different directions
make the expansion along the beam direction (denoted by
‖) more rapid than that along the directions perpendicular to
beam direction (denoted by ⊥), i.e. p‖ � p⊥ [65–67,72].
The presence of shear viscosity also can contribute to such
momentum-space anisotropy, thus the anisotropy can sur-
vive a long time [72]. There are some studies to explore
the influence of momentum-anisotropy induced by the ini-
tial spatial expansion on various transport coefficients [65–
67], collective excitations of hot QCD medium [68–71] and
quarkonium bound state [72–76]. Apart from the initial spa-
tial expansion-driven momentum anisotropy, the momentum
anisotropy also can be induced by strong magnetic field. As
mentioned earlier, in the strong magnetic field the motion of
charged particles perpendicular to the direction of magnetic
field (denoted by ⊥) can be quantum-mechanically restricted
due to Landau quantization, the dynamic motion is mainly
along the direction of magnetic field (denoted by ‖), i.e.,
p⊥ � p‖. Recently, the influence of this anisotropy induced
by strong field on common transport coefficients has also
been analyzed in Refs. [77,78]. Hence, it is also of interest
to study how the momentum anisotropy induced by initial
spatial expansion and strong magnetic field affects the quan-
titative and qualitative features of thermoelectric coefficients
in the QGP.

In present work, we first calculate the Seebeck coefficient
(Sxx ) and the Nernst signal (N ) in an (an-)isotropic QGP at
the weak magnetic field case within the hierarchy of scale
eB � g2T 2. Next, we calculate the longitudinal Seebeck
coefficient (Szz) in the (an-)isotropic QGP under the LLL
approximation within the hierarchy of scales αseB � T 2 �
eB introduced by Fukushima et al. [23]. In the strong mag-
netic field, the Debye mass from quark-loops is proportional
to

√
αs,BeB (αs,B is magnetic field-dependent QCD running

coupling constant) [16,79,80]. The first inequality indicates
that the self-energy corrections to hard LLL (anti-)quarks and
gluons can be reasonably neglected in leading order of per-
turbative QCD calculation. Different to the traditional binary
scatterings, due to the dimensional reduction of (anti-)quarks
in the presence of strong magnetic field, the dimensional mis-
match between (anti-)quarks and gluons leads to the novel
scattering process, i.e., the quark–antiquark pair to gluon is
possible [10,41]. In the LLL approximation, we consider
two kind of scattering processes, namely, quark–antiquark

pair to gluon 2 → 1 process and usual quark–antiquark t-
channel 2 → 2 process, where the small current (anti-)quark
mass cannot be ignored because the scatterings are forbid-
den in massless limit according to the chirality conserva-
tion [81]. When the magnetic field is not so large within the
regime g2T 2 � eB, the contribution from hLLs needs to
be considered in the computation of Szz . Note that in this
work the magnetic field is regarded as an external degree of
freedom, namely, we neglect the back reaction of medium on
magnetic field.

The paper is organized as follows. In Sect. 2, we derive the
general formulas of thermoelectric and electric conductivity
tensors in an (an-)isotropic medium at the weak magnetic
field by solving the relativistic Boltzmann equation under
the relaxation time approximation (RTA). And the general
expressions of the Seebeck coefficient and the Nernst signal
are presented. In Sect. 3, using the same methodological in
Sect. 2, we also deduce the formulas of both longitudinal ten-
sors and the longitudinal Seebeck coefficient, in the strong
magnetic field with the Landau quantization. In Sect. 4, the
generalized expression of the thermal relaxation times related
to quark chemical potential and anisotropic parameter at dif-
ferent magnetic field regimes are given. In Sect. 5, we discuss
the qualitative and quantitative features of thermoelectric
transport coefficients. In Sect. 6, we present a summary and
provide an outlook for the future. More detailed derivation
of the relaxation time in zero magnetic field and in the LLL
approximation can be found in Appendix A and Appendix
B, respectively.

2 Thermoelectric coefficients in an (an-)isotropic
medium at weak magnetic field

It is sufficient to calculate the thermoelectric coefficients
using the kinetic theory approach. At weak magnetic field
within the hierarchy of scale eB � g2T 2, the phase space
and the single particle energy are intact by magnetic field
through the Landau quantization. The magnetic field enters
through the cyclotron frequency of the charged particles as
in classical picture. Accordingly, the dynamic evolution of a
single particle distribution function fa in the uniform elec-
tric field E and magnetic field B can be determined by the
relativistic Boltzmann equation [34]

∂ fa
∂t

+ va · ∇ fa + ea[E + va × B] · ∂ fa
∂p

= C[ fa]. (1)

where, ea = qae, qa and va ≡ dεa
d = p/εa are fractional

charged value and the velocity for particle species a, respec-
tively. εa = √

p2 + m2
a is the energy of particle species a,

where ma is current mass of ath species. In the weak mag-
netic field, we do not consider the trivial setup in which the
electric field is parallel to the direction of magnetic field, i.e.,
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E ‖ B because there is no Lorentz force term to bend the tra-
jectory of a charged particle. We take E = (Ex , Ey, 0) and
B = (0, 0, B) in the system so that the Hall effect and the
Nernst effect can exist. The right side of Eq. (1) is the collision
term or collision integral, which describes the rate of change
of the single-particle distribution induced by scatterings. We
assume the system is close to the local thermodynamic equi-
librium, and introduce the commonly used relaxation time
approximation (RTA). In the RTA, the collision term can be
expressed as

C[ fa] � −δ fa
τa

. (2)

Here, τa is the relaxation time of species a which describes
how fast the system reaches the equilibrium again. And δ fa
is the infinitesimal change in distribution function due to
external disturbance,

δ fa = fa − f̄a, (3)

with f̄a being the local equilibrium distribution function of
ath species. In an isotropic medium or an anisotropic medium
caused by initial spatial expansion, f̄a in the local rest frame
can be expressed as [71]

f̄a(p, μa) =
⎧
⎨
⎩

f̄ 0
a = 1

e(

√
p2+m2

a−μa )β±1
, (ξ = 0)

f̄ ξ
a = 1

e(

√
p2+ξ(p·n)2+m2

a−μa )β±1
, (ξ �= 0)

(4)

where β = 1/T and μa denote inverse temperature and
chemical potential of species a, respectively. ± in Eq. (4) cor-
responds to fermions and bosons, separately. The anisotropic
parameter ξ in Eq. (4) is defined as [71]

ξ = 〈p2⊥〉
2〈p2‖〉

− 1, (5)

where p‖ = p · n and p⊥ = p − n(p · n) are the
momentum components which are parallel and perpendic-
ular to the momentum anisotropy direction (n), respectively.
p = (|p| sin θ cos φ, |p| sin θ sin φ, |p| cos θ), where we use
a notation |p| ≡ p for convenience. n = (sin α, 0, cos α),
where α is the angle between z direction and n direction.
Accordingly, (p·n)2 = p2(sin θ cos φ sin α+cos θ cos α)2 =
p2c(θ, φ, α). In this work, we consider the anisotropy direc-
tion is along the beam direction, so α is fixed as π/2,
n = (1, 0, 0). Note that ξ > 0 stands for a contraction of
distribution function along n direction whereas −1 < ξ < 0
represents the stretching of distribution function along n
direction. As mentioned in Section. 1, for the anisotropic
QGP induced by the initial spatial expansion, ξ is always
larger than zero. In the weak ξ limit (|ξ | � 1), f̄ ξ

a can be
expanded in Taylor series to leading order term of ξ ,

f̄ ξ
a = f̄ 0

a − ξβ

2εa
f̄ 0
a (1 − f̄ 0

a )(p · n)2. (6)

Considering the distribution function and chemical potential
are time independent and space-time independent, respec-
tively, Eq. (1) can be rewritten as

[
νa − ea B(vx

∂

∂py
− vy

∂

∂px
)

]
fa

= νa f̄a − ea Ex
∂

∂px
f̄a

−ea Ey
∂

∂py
f̄a − (va · ∇ f̄a), (7)

where νa = 1/τa is the inverse relaxation time of ath species.
We further assume the solution of Eq. (7) in an anisotropic
medium satisfies the following linear form,

f ξ
a = f̄ ξ

a − 1

νa
eE · ∂ f̄ ξ

a

∂p
− 
 · ∂ f̄ ξ

a

∂p
− 1

νa
v · ∇ f̄ ξ

a , (8)

with 
 being an unknown quantity related to magnetic field.
Inserting Eq. (8) into Eq. (7) and assuming no temperature
gradient exists along z-axis, we obtain

0 = νa Fa(
xvx + 
yvy)

+ωc,a Fa
νa

(eExvy − eEyvx )

+ωc,a

νa
Ga(∇yT vx − ∇x T vy)

+ωc,a Fa(
xvy − 
yvx ), (9)

where ωc,a = ea B/εa is the cyclotron frequency of species
a. The expressions of Ga and Fa in Eq. (9) can read as

Fa = β f̄ 0
a (1 ± f̄ 0

a )(1 + ξc(θ, φ, α))

−ξβ2 p2c(θ, φ, α)

2εa
f̄ 0
a (1 ± f̄ 0

a )

×
(

1 − f̄ 0
a ± f̄ 0

a + 1

βεa

)
, (10)

Ga = β2(εa − μa) f̄
0
a (1 ± f̄ 0

a )

−ξβ3 p2c(θ, φ, α)

2εa
(εa − μa) f̄

0
a (1 ± f̄ 0

a )

×
(

1 − f̄ 0
a ± f̄ 0

a − 1

β(εa − μa)

)
, (11)

Comparing the coefficients of vx and vy , one gets

νa Fa
x − ωc,a
eEy

νa
Fa − ωc,a Fa
y

+ωc,a

νa
Ga∇yT = 0, (12)

νa Fa
y + ωc,a
eEx

νa
Fa + ωc,a Fa
x

−ωc,a

νa
Ga∇x T = 0. (13)
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Solving Eqs. (12) and (13), we obtain


x = − ω2
c,aeEx

νa(ω2
c,a + ν2

a )

+ ωc,aeEy

ω2
c,a + ν2

a
− ωc,aGa

Fa(ωc,a + ν2
a )

∇yT

+ ω2
c,aGa

νa Fa(ω2
c,a + ν2

a )
∇x T, (14)


y = − ωc,aeEx

ωc,a + ν2
a

− ω2
c,aeEy

νa(ω2
c,a + ν2

a )
+ ω2

c,aGa

Faνa(ω2
c,a + ν2

a )
∇yT

+ ωc,aGa

Fa(ω2
c,a + ν2

a )
∇x T . (15)

Inserting Eqs. (14)–(15) to Eq. (8), we finally obtain the fol-
lowing perturbative term,

δ f ξ
a = f ξ

a − f̄ ξ
a = ωc,a Fa

(ω2
c,a + ν2

a )
(eEyvx − eExvy)

+ νa Fa
ω2
c,a + ν2

a
(eExvx + eEyvy)

+ ωc,aGa

ω2
c,a + ν2

a
(∇x T vy − ∇yT vx )

− νaGa

ω2
c,a + ν2

a
(∇x T vx + ∇yT vy). (16)

In a conducting medium, the charge carriers moving along
the direction of thermal current generated by the thermal gra-
dient accumulate on the cold side and an electric field can
be generated. This electric field in turn induces an electric
current in the opposite direction to the thermal current, con-
sequently, a net electric current may exist in the medium.
When a magnetic field perpendicular to the thermal gra-
dient (assuming the thermal gradient is along x direction)
is applied, the charge carriers moving along the direction
of thermal gradient and along induced electric field can be
deflected, a net electric current perpendicular to both the ther-
mal gradient and magnetic field can also be generated. Hence,
in the linear response theory, the general formula of electric
current density (Ja) for species a in response to electric field
(E) and temperature gradient (∇T ) is given by [82–85]

Ja = ea

∫
d3p

(2π)3 vδ fa = σ̂a · E + α̂a(−∇T ), (17)

where σ̂a and α̂a are the electrical conductivity tensors and
the thermoelectric conductivity tensors for species a, respec-
tively. And the electric current density can further decompose
as [86,87]

Jx,a = σxx,a Ex + σxy,a Ey + αxx,a(−∇x T )

+αxy,a(−∇yT ), (18)

Jy,a = σyy,a Ey + σyx,a Ex + αyy,a(−∇yT )

+αyx,a(−∇x T ). (19)

The first term in Eq. (18) (Eq. (19)) is the electric current
due to the electric field along x (y)-axis induced by the more
accumulating carriers on the cold side of medium, and the
third term in Eq. (18) (Eq. (19)) is the thermal current due
to the thermal gradient in x (y)-axis. The second term and
fourth term in Eq. (18) (Eq. (19)) are deuterogenic terms due
to the deflection of the first term and third term in Eq. (19)
(Eq. (18)) by the magnetic field directed along z-axis.

In the steady state (i.e., putting Jx,a = Jy,a = 0),
to avoid complicating the unambiguous determination of
the Seebeck coefficient and the Nernst signal, we assume
the thermal gradient purely along x-axis, i.e. ∇x T �= 0,
∇yT = 0 (isothermal condition). Using the Onsager reci-
procity relation of the thermoelectric and electric conductiv-
ity tensors in a magnetic field, σxx,a(αxx,a) = σyy,a(αyy,a)

and σxy,a(αxy,a) = −σyx,a(−αyx,a), we finally derive the
expressions of the Seebeck coefficient (Sxx,a) and the Nernst
signal (Na) for ath species from Eqs. (18) and (19) [86–89]

Sxx,a = Ex

∇x T

∣∣∣∣
Jx,a=Jy,a=0

= σxx,aαxx,a + σxy,aαxy,a

σ 2
xx,a + σ 2

xy,a
, (20)

Na = Ey

∇x T

∣∣∣∣
Jx,a=Jy,a=0

= σxy,aαxx,a − σxx,aαxy,a

σ 2
xx,a + σ 2

xy,a
. (21)

Inserting Eq. (16) to Eq. (17) and using Eqs. (18) and (19), by
intergrating over θ and φ, we get the expressions of the elec-
trical conductivity (σxx,a) and the Hall conductivity (σxy,a)
of ath species in an anisotropic medium, which can be pre-
sented in a matrix form

(
σxx,a
σxy,a

)
= da

e2q2
aβ

6

∫
dp

(π2)

p4

ε2
a

1

ω2
c,a + (ν

ξ
a )2

(
ν

ξ
a

ωc,a

)

f̄ 0
a (1 ± f̄ 0

a )(1 + ξ

3
)

−da
e2q2

aβ
2ξ

36

∫
dp

π2

p6

ε3
a

1

ω2
c,a + (ν

ξ
a )2

×
(

ν
ξ
a

ωc,a

)
f 0
a (1 ± f̄ 0

a )(1 − f̄ 0
a ± f̄ 0

a + 1

βεa
),

(22)

where da and ν
ξ
a are degeneracy factor and the ξ -dependent

inverse relaxation time for particle species a, respectively.
When ξ = 0, Eq. (22) reduces to the standard form in the
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isotropic medium,
(

σxx,a
σxy,a

)
= da

e2q2
aβ

3

∫
d3p

(2π)3

p2

ε2
a

1

ω2
c,a + (νa)2

(
νa

ωc,a

)

× f̄ 0
a (1 ± f̄ 0

a ). (23)

Accordingly, the thermoelectric conductivity (αxx,a) and the
Hall-like thermoelectric conductivity (αxy,a) of ath species
within the effect of momentum anisotropy also can read as
(

αxx,a
αxy,a

)
= da

eqaβ2

6

∫
dp

π2

p4

ε2
a

εa − μa

ω2
c,a + (ν

ξ
a )2

(
ν

ξ
a

ωc,a

)
f̄ 0
a (1 ± f̄ 0

a )

−da
eqaβ3ξ

36

∫
dp

π2

p6

ε3
a

1

ω2
c,a + (ν

ξ
a )2

(
ν

ξ
a

ωc,a

)

×(εa − μa) f̄
0
a (1 ± f̄ 0

a )

×(1 − f̄ 0
a ± f̄ 0

a − 1

β(εa − μa)
). (24)

In the isotropic medium, the matrix of the thermoelectric
conductivity tensors can be simplified as
(

αxx,a
αxy,a

)
= da

eqaβ2

3

∫
d3p

(2π)3

p2

ε2
a

εa

ω2
c,a + ν2

a

(
νa

ωc,a

)

× f̄ 0
a (1 ± f̄ 0

a ) − da
eqaβ2

3

×
∫

d3p
(2π)3

p2

ε2
a

μa

ω2
c,a + ν2

a

(
νa

ωc,a

)
f̄ 0
a (1 ± f̄ 0

a ).

(25)

Since the total Seebeck coefficient (Sxx ) and the total Nernst
signal (N ) are the sum of contributions from different types of
carriers weighted by the respective electrical conductivities
[90–93], in the QGP with three-flavor (anti-)quarks ( f =
u, d, s), the expressions of Sxx and N can be naturally
written as,

Sxx =
∑

f (Sxx,q f σxx,q f + Sxx,q̄ f σxx,q̄ f )∑
f (σxx,q f + σxx,q̄ f )

,

N =
∑

f (Nq f σxx,q f + Nq̄ f σxx,q̄ f )∑
f (σxx,q f + σxx,q̄ f )

. (26)

The denominator in Eq. (26) denotes the total electrical con-
ductivity (σxx ), accordingly other total conductivity tensors
from different flavors (anti)-quarks also can be given asσxy =∑

f (σxy,q f + σxy,q̄ f ), αxx = ∑
f (αxx,q f + αxx,q̄ f ), αxy =∑

f (αxy,q f + αxy,q̄ f ). When the magnetic field is turned
off, the Nernst effect is absent and only the Seebeck effect
exists. At the same time, the expression of Sxx,a reduces
to Sxx,a = αxx,a

σxx,a
. We note that the conductivity tensors are

coupling-constant-dependent, however, the Seebeck coeffi-
cient and Nernst signal are unaffected by different coupling

constants. It can be understood that the coupling constant
term, which is embedded in the relaxation time, in the numer-
ator of Eq. (26) is exactly cancelled by that in the denomina-
tor.

3 Thermoelectric coefficients in an (an-)isotropic
medium at strong magnetic field

At strong magnetic field directed in z-axis within the regime
eB � T 2, in the significant Landau quantization, if we still
take electric field along x-direction, the electrical conduc-
tivity (σxx ) is zero in the one-loop calculation [94] and the
Hall conductivity becomes σxy = ne/B (ne is electron num-
ber density) [33]. Very recently, S. Lin and L. Yang have
deduced the general formulas of σxx and σxy in chiral kinetic
theory with full Landau level basis at the strong magnetic
field along z-axis [95]. However, due to the lack of corre-
sponding collision term, it still remains a great challenge to
fully understand the flavor dynamics of a magnetized QCD
plasma in the background of strong magnetic field perpen-
dicular to electric field. Accordingly, we focus on a simply
setup in which the direction of electric field is parallel to the
direction of magnetic field. Therefore, the linear Boltzmann
equation of the magnetic-field-dependent single particle dis-
tribution fB,a at an external electric field E = (0, 0, Ez) in
the RTA can be given as

∂ fB,a

∂t
+ vz∇z fB,a + ea Ez

∂ fB,a

∂pz
= −δ fB,a

τB,a
, (27)

where the correction term δ fB,a can be written as

δ fB,a = −τB,a[vz∇z f̄B,a + eqa Ez
∂ f̄ B,a

∂pz
]. (28)

Due to the motion of (anti-)quarks in the Landau quantization
is mainly restricted to the direction of magnetic field, the
equilibrium distribution function of charge particle f̄ B,a in
an isotropic medium and in an anisotropic medium induced
by strong magnetic field can read as

f̄ B,a(pz, μa) =
⎧
⎨
⎩

f̄ 0
B,a = 1

e(εa,l−μa )β±1
, (ξ ′ = 0) ,

f̄ ξ ′
B,a = 1

e
(
√

ε2
a,l+ξ ′(p·n′)2−μa )β±1

, (ξ ′ �= 0).

(29)

Here we assume that the direction of momentum anisotropy
n′ is directed in the direction of magnetic field, and p ≈
(0, 0, pz), as Refs. [77,78]. Unlike the anisotropic parameter
ξ , the anisotropic parameter induced by strong magnetic field
(ξ ′) is always negative because the momentum component
along the direction of momentum anisotropy (viz, along the
direction of magnetic field) is dominant as compared to that

along other directions. In the small ξ ′ limit (|ξ ′| � 1), f̄ ξ ′
B,a
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also can be expanded to leading order of ξ ′,

f̄ ξ ′
B,a = f̄ 0

B,a − ξ ′βp2
z

2εa,l
f̄ 0
B,a(1 ± f̄ 0

B,a). (30)

The phase space integration for ath charged particle due
to the dimensional reduction of motion in Landau quantiza-

tion is modified to
∫ d3p

(2π)3 = ∑∞
l=0

|qaeB|
2π

∫ +∞
−∞

dpz
2π

, where
eB/(2π) is the density of states in two spatial directions
perpendicular to the direction of magnetic field [32,96]. In
the linear response theory, the longitudinal electric current
density of species a can be written as

Jz,a =
∑
l

ga,lqae
|qaeB|

2π

∫ +∞

−∞
dpz
2π

vzδ fB,a

= σzz,a Ez + αzz,a(−∇zT ), (31)

with ga,l being the degeneracy factor of ath species. For
quarks and anti-quarks, ga,l = ∑

f (2 − δ0l)Nc, in which
(2 − δ0l) and Nc are spin degeneracy factor of the Landau
levels and the number of quark colors, respectively. Since the
direction of temperature gradient is parallel to the direction
of magnetic field in the strongly magnetized medium, the
Nernst effect vanishes. Setting Jzz,a = 0, the longitudinal
Seebeck coefficient of ath species, Szz,a , can be expressed as
Szz,a = Ez

∇zT
= αzz,a

σzz,a
, where σzz,a (αzz,a) is the longitudinal

electrical (thermoelectric) conductivity of ath species. Using
Eqs. (28)–(31) the formulas of σzz,a and αzz,a in the (an-
)isotropic medium can be respectively derived as,

σzz,a = −e2q2
a
|qaeB|β2ξ ′

2π

∑
l

ga,l

×
∫ +∞

−∞
dpz
2π

p4
z

2ε3
a,l

τ
ξ ′
B,a f̄

0
B,a(1 ± f̄ 0

B,a)

(
1 − 2 f̄ 0

B,a + 1

βεa,l

)

+e2q2
a
|qaeB|β

2π

∑
l

ga,l

×
∫ +∞

−∞
dpz
2π

p2
z

ε2
a,l

τ
ξ ′
B,a f̄

0
a,B

(1 ± f̄ 0
B,a)(1 + ξ ′), (for ξ ′ �= 0); (32)

= e2q2
a
|qaeB|β

2π

∑
l

ga,l

×
∫ +∞

−∞
dpz
2π

p2
z

ε2
a,l

τB,a f̄
0
B,a(1 ± f̄ 0

B,a), (for ξ ′ = 0);
(33)

αzz,a = −eqa
|qaeB|β3ξ ′

2π

∑
l

ga,l

×
∫ +∞

−∞
dpz
2π

p4
z

2ε3
a,l

τ
ξ ′
B,a(εa,l − μa) f̄

0
B,a(1 ± f̄ 0

a )

×
(

1 − 2 f̄ 0
B,a − 1

β(εa,l − μa)

)

+eqa
|qaeB|β2

2π

∑
l

ga,l

×
∫ +∞

−∞
dpz
2π

p2
z

ε2
a,l

τ
ξ ′
B,a(εa,l − μa) f̄

0
B,a

×(1 ± f̄ 0
B,a), (for ξ ′ �= 0); (34)

= eqa
|qaeB|β2

2π

∑
l

ga,l

×
∫ +∞

−∞
dpz
2π

p2
z

ε2
a,l

τB,a(εa,l − μa) f̄
0
B,a

×(1 ± f̄ 0
B,a), (for ξ ′ = 0). (35)

Here τB,a(τ
ξ ′
B,a) is the magnetic-field-dependent relaxation

time of species a in the isotropic (anisotropic) medium.
Finally, the total longitudinal Seebeck coefficient in the QGP
with three-flavor can be given as

Szz =
∑

f (Szz,q f
σzz,q f

+ Szz,q̄ f
σzz,q̄ f

)
∑

f (σzz,q f
+ σzz,q̄ f

)

=
∑

f (αzz,q f
+ αzz,q̄ f

)
∑

f (σzz,q f
+ σzz,q̄ f )

= αzz

σzz
, (36)

with αzz (σzz) being the total longitudinal thermoelectric
(electrical) conductivity.

4 Thermal relaxation time

In this work, the relaxation time is a vital dynamic input
for the calculation of thermoelectric coefficients in the QGP.
The computation of relaxation time inevitably involves the
choice of effective running coupling constant, which can
control the behavior of transport parameters critically. The
effect of momentum anisotropy also can enter the effective
coupling constant through the calculation of Debye mass
using the anisotropic distribution functions. Conventionally,
the Debye screening mass is obtained by the static limit of
the gluon self-energy in Hard Thermal Loop (HTL) theory
[97]. In this work, we use a parallel approach, i.e., the semi-
classical transport theory [98–100] to get it. Furthermore,
as the Debye screening mass manifests itself in the collec-
tive oscillation of the medium through the dispersion relation
[101], accordingly it can be affected by the Landau quanti-
zation. As mentioned in Sect. 1, the scattering processes are
significantly different at weak and strong magnetic fields,
therefore we split this section into two separate parts: (A)
without Landau quantization, and (B) with Landau quantiza-
tion. The effects of momentum anisotropy induced by initial
spatial expansion and strong magnetic field also straightly
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enter into the relaxation time and the Debye mass through
replacing the isotropic distribution functions in associated
expressions with the momentum anisotropic counterparts.

4.1 Without Landau quantization

At weak magnetic field within the regime g2T 2 � eB, the
motions of particles in the QGP are not affected by the mag-
netic field through the Landau quantization. The Debye mass
(mD) in the isotropic medium for vanishing magnetic field
can be expressed as [42]

m2
D = −4παs

∫
d3p

(2π)3

⎡
⎣2Nc

d f̄ 0
g

dp
+

∑
f

∑
i=q f ,q̄ f

d f̄ 0
i

dp

⎤
⎦ ,

(37)

where μq (μq̄ ) is quark (anti-quark) chemical potential and

μq̄ = −μq . When μq/T � 1, m2
D = 4παsT 2

[
( Nc

3 + N f
6 )

+ (
μq
T )2 N f

2π2

]
for the massless case, where N f represents the

number of quark flavors. This result is equal to the leading-
order result in HTL approximation [102–107]. In the momen-
tum anisotropic medium induced by initial spatial expansion,
the Debye mass needs to be modified by roughly replacing
the isotropic distribution function with the anisotropic distri-
bution function, which can be written as

(mξ
D)2 = 4παs

∫
d3p

(2π)3 [2NcFg + N f (Fq + Fq̄)]. (38)

In an anisotropic medium induced by initial spatial expan-
sion, the ξ -dependent effective coupling constant can be

defined as αe f f = (mD)2

(mξ
D)2

αs , where αs = 6π

(33−2N f ) ln

(
2πT
�M̄S

)

is the one-loop running coupling at �M̄S = 176 MeV for
N f = 3 [108]. For the elastic process a1(P1) + a2(P2) →
a3(P3)+a4(P4) (Pi=1,2,3,4 is the four-momentum of i th par-
ticle), the inverse relaxation time of species a1, 1/τ1, can be
given as (see Appendix A for the detailed derivation)

τ−1
1 =

∑
pro

d2

δ34 + 1

∫
d3p2

(2π)3 f̄2(1 ± f̄4)
∫

dt
dσ pro

dt

2tu

s2 ,

(39)

where s, t, u are Mandelstam variables, and dσ pro

dt is the dif-
ferential cross section for a specific scattering process. In
our work only the elastic scatterings, vi z, (1) gq → gq, (2)
qq → qq, (3) qq̄ → qq̄ , (4)qq ′ → qq ′, (5) qq̄ ′ → qq̄ ′
are considered. We reasonably discard the inelastic pro-
cesses like qq̄ → gg due to their small contributions. The
differential cross sections in the leading order perturbative
QCD calculation for the massless case can be found in Refs.
[109,110]. Finally, the momentum-averaged thermal relax-
ation time of (anti-)quarks in the isotropic medium can be

written as

νq(q̄) = τ−1
q(q̄) = dg

∫
d3p

(2π)3 f̄ 0
g (p)

(
1 + f̄ 0

g (p)
)

×1

4

g4

π〈sq(q̄)g〉

[
ln

〈sq(q̄)g〉
μ2
D

− 139

108

]

+dq(q̄)

∫
d3p

(2π)3 f̄ 0
q(q̄)(p, μq(q̄))

(
1 − f̄ 0

q(q̄)(p, μq(q̄))
)

×1

9

g4

π〈sqq(q̄q̄)〉

[
ln

〈sqq(q̄q̄)〉
μ2
D

− 152

96

]

+dq̄(q)

∫
d3p

(2π)3 f̄ 0
q̄(q)(p, μq̄(q))

(
1 − f̄ 0

q̄(q)(p, μq̄(q))
)

×1

9

g4

π〈sqq̄〉

[
ln

〈sqq̄〉
μ2
D

− 147

120

]

+dq ′(q̄ ′)

∫
d3p

(2π)3 f̄ 0
q ′(q̄ ′)(p, μq(q̄))

(
1 − f̄ 0

q ′(q̄ ′)(p, μq(q̄))
)

×1

9

g4

π〈sqq(q̄q̄)〉

[
ln

〈sqq(q̄q̄)〉
μ2
D

− 17

12

]

+dq̄ ′(q ′)

∫
d3p

(2π)3 f̄ 0
q̄ ′(q ′)(p, μq̄(q))

(
1 − f̄ 0

q̄ ′(q ′)(p, μq̄(q))
)

×1

9

g4

π〈sqq̄〉

[
ln

〈sqq̄〉
μ2
D

− 17

12

]
, (40)

where 〈si j 〉 = 2〈pi 〉〈p j 〉 and 〈pi 〉 =
∫ d3pi

(2π)3
|pi | f̄ 0

i
∫ d3p

(2π)3
f̄ 0
i

is the ther-

mal average value of pi . And in Eq. (40) the degeneracy fac-
tors of gluons and (anti-)quarks are dg = 2spin×(N 2

c −1) and
dq(q̄) = 2spin×Nc×N f , respectively. q ′(q̄ ′) denotes incom-
ing (anti-)quark, which is different to another incoming (anti-
)quark in flavor type. μ2

D = g2T 2 denotes infrared regulator.
In the anisotropic medium induced by initial spatial expan-
sion, the ξ -dependent inverse relaxtion time of (anti-)quark,
ν

ξ

q(q̄), can be obtained by substituting f̄ 0
i and αs in Eq. (40)

with f̄ ξ
i and αe f f , respectively. Consequently, the thermal

average of pg as well as pq(q̄) with anisotropic momentum
distribution can be rewritten as

〈p〉ξi=g,q,q̄ = T
Li4(−e−βμi )

Li3(−e−βμi )

4ξ − 6

ξ − 2
, (41)

with Lin(z) being the PolyLog function.
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4.2 With Landau quantization

In the presence of strong magnetic field, only fermionic part
of the Debye mass is affected by the Landau quantization,
Eq. (37) can be modified as

m2
D,B = −4παs,B

[ ∫
d3p

(2π)3 2Nc
d

dp
f̄ 0
g + 1

2

∑
f

|q f eB|
2π

×
∞∑
l=0

(2 − δ0l)

∫ +∞

−∞
dpz
2π

∑
i=q f ,q̄ f

d f̄ 0
B,i

dp

]
, (42)

where a QCD factor as 1
2 is considered. In the regime of

T 2 � eB within the LLL approximation, the running cou-
pling constant mainly depends on magnetic field, which is
given as [16,79]

α−1
s,B(B) = α0

s (μ0)
−1 + 11Nc

12π
ln

(
�2

QCD + M2
B

μ2
0

)

+ 1

3π

∑
f

|q f eB|
σ

, (43)

where α0
s (μ0) = 12π

11Nc ln(
μ2

0+M2
B

�2
V

)

, MB = 1 GeV and σ =

0.18 GeV2 are infrared mass and the string tension, respec-
tively. In Refs. [16], �V and μ0 are taken as 0.385 and 1.1
GeV, respectively. In the LLL approximation with the hierar-
chy of scale eB � T 2, Eq. (42) for the massless case reduces
to

m2
D,B = 4παs,BT

2 Nc

3
+ 4παs,B

∑
f

|q f eB|
4π2

∞∑
l=0

(2 − δ0l)

×
[

1

e(
√

2l|q f eB|+μq )/T + 1
+ 1

e(
√

2l|q f eB|−μq )/T + 1

]

= 4παs,B[T 2 Nc

3
+

∑
f

|q f eB|
4π2 ]

≈ αs,B

∑
f

|q f eB|
π

, (44)

which is consistent with the one-loop calculation in the pres-
ence of strong magnetic field [41,48,111]. Replacing f̄ 0

B,i

with f̄ ξ ′
B,i in Eq. (42), we can get the following ξ ′-dependent

Debye mass mξ ′
D,B in an anisotropic medium induced by

strong magnetic field

(mξ ′
D,B)2 = 4παs,B

∑
f

|q f eB|
4Tπ

∫ +∞

−∞

∞∑
l=0

dpz
2π

(2 − δ0l)

×
∑
i=q,q̄

Hi , (45)

where Hi = f̄ 0
B,i (1− f̄ 0

B,i )(1+ξ ′)− ξ ′βp2
z

2εi,l
f̄ 0
B,i (1− f̄ 0

B,i )(1−
2 f̄ 0

B,i+ 1
βεi,l

). The effective coupling constant associated with
momentum anisotropy induced by strong magnetic field is

also defined as αe f f,B = (mξ ′
D,B)2αs,B/m2

D,B . In the strong
magnetic field within the LLL approximation, except for the
usual elastic 2 → 2 processes, the quark–antiquark pair
to gluon 2 → 1 process and vice versa are also allowed,
which is kinetically forbidden for weak or zero magnetic
field case because two massive particle cannot become a
massless particle. In the strong magnetic field, due to the
spatial dimensional mixmatch between (anti-)quarks and glu-
ons, the transverse momentum component of the gluon acts
as “ the gluon mass”, so that the gluon can be generated
by two massive particles and vice versa. And in the hier-
archy αs,BeB � T 2 � eB, when m2

q � αs,BeB, the
2 → 2 processes are subleading compared to the 2 → 1
process because the typical scale of collision rate for 2 → 2
processes ∝ α2

s,B is parametrically smaller than the typi-
cal scale of 2 → 1 process ∝ αs,B (more details see Ref.
[41]). However, when m2

q � αs,BeB, the quark–antiquark
t-channel scattering process and the 2 → 1 process are
same order of running constant αs,B . Therefore, in present
work, the collision terms with respect to two scattering pro-
cesses, vi z, quark–antiquark to gluon q(P)+q̄(P ′) → g(K )

and quark–antiquark t-channel scattering q(P) + q̄(P ′′) →
q(P ′)+q̄(P ′′′) are considered under the restrictive hierarchy
of scales m2

q � αs,BeB � T 2 � eB. Following Ref. [41],
we generalize the computation of the relaxation time of f th
(anti-)quarks for 2 → 1 process to the case of finite chemical
potential (μq �= 0) and anisotropic medium (ξ ′ �= 0),

1

τ
ξ ′
B,q(q̄)

∣∣∣∣
2→1

(T, pz, μq , l = 0)

= αe f f,BCRm2
f

ε f,0

(
1 − f̄ ξ ′

B,q(q̄)(pz, μq(q̄))
)

×
∫ +∞

−∞
dp′

z

ε′
f,0

f̄ ξ ′
B,q̄(q)(p

′
z, μq̄(q))

(
1 + f̄g(k)

)
.

(46)

Here CR = N2
c −1

2Nc
is the Casimir factor. fg(k) = 1

ek/T −1
with

k = |k| = ε f,0+ε′
f,0, where ε f,0 =

√
p2
z + m2

f and ε′
f,0 =√

p′2
z + m2

f . Furthermore, at nonzero μq , the relaxation time

of f th (anti-)quarks for 2 → 2 process in an anisotropic
medium is given as (details in Appendix B)

1

τ
ξ ′
B,q(q̄)

∣∣∣∣
2→2

(T, pz, μq , l = 0)

= αe f f,B
m2

f

ε f,0

(
1 − f̄ ξ ′

B,q̄(q)(pz, μq̄(q))

)
. (47)
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We can observe that the inverse relaxation times for 2 → 1
and 2 → 2 processes are of the same order of αe f f,B . Cur-
rently, the relaxation time of (anti-)quarks for 2 → 1 process
beyond the LLL approximation at zero chemical potential
has been studied in a more realistic regime eB � g2T 2

[33,44,52]. Similarly, we extend it to the case of μq �= 0 and
ξ ′ �= 0,

1

τ
ξ ′
B,q(q̄)

∣∣∣∣
2→1

(T, pz, μq , l)

= 1

4ε f,l

(
1 − f̄ ξ ′

B,q(q̄)(pz, μq(q̄), l)
)

×
∞∑
l ′≥l

∫ +∞

−∞
dp′

z

2π

1

2ε′
f,l ′

f̄ ξ ′
B,q̄(q)(p

′
z, μq̄(q), l

′)

×
(

1 + f̄ ξ ′
g (k)

)
X (l, l ′, H). (48)

Here H is defined as H = (εq,l+εq̄,l′ )2−(pz+p′
z)

2

2e|q f B| [33,44] and

X (l, l ′, H) can read as

X (l, l ′, H) = 4παe f f,BCR
l!
l ′!e

−H Hl ′−l
([

4m2
f

−4|q f eB|(l + l ′ − H)
1

H
(l + l ′)

]
F(l, l ′, H)

+16|q f eB|l ′(l + l ′) 1

H
Ll ′−l
l (H)Ll ′−l

l−1 (H)

)
.

(49)

For l > 0, F(l, l ′, H) = [Ll ′−l
l (H)]2 + l ′

l [Ll ′−l
l−1 (H)]2 as

well as F(l, l ′, H) = 1 for l = 0, where the function Lα
n (x)

stands for the generalized Laguerre polynomial. In the limit
of eB � T 2, e−K ≈ 1, the result in Eq. (48) is consistent
with that in Eq. (46). In this work, we take thermal averaged
relaxation time 〈τB,q〉 of quarks as dynamic input for the
computation of thermoelectric coefficients, which is defined
as

〈τB,q〉(T, μq) = 1

〈τ−1
B,q〉

=
∑∞

l=0

∫ +∞
−∞ dpz f̄ 0

B,q(q̄)(pz)∑∞
l=0

∫ +∞
−∞ dpzτ

−1
B,q(pz) f̄

0
B,q(pz)

.

(50)

In the anisotropic medium, the ξ ′-dependent thermal aver-

aged relaxation time of quark, 〈τ ξ ′
B,q〉, also can be obtained by

substituting f̄ 0
B,q and τ−1

B,q in Eq. (50) with f̄ ξ ′
B,q and (τ

ξ ′
B,q)

−1,
respectively. And in the numerical calculation we artificially
truncate the sum of Landau levels at a finite maximum l.

Fig. 1 The temperature dependence of the thermal relaxation time for
u quarks (τu ) at different quark chemical potentials, viz, μq=0.0 GeV
(black solid line), 0.1 GeV (green dotted line) and 0.2 GeV (blue dashed
line) for B = 0. The estimation of τu at μq = 0.0 GeV is also extended
to the anisotropic medium induced by initial spatial expansion with
ξ = 0.2 (red dotted-dashed line) and 0.3 (purple short-dashed line)

5 Numerical result and discussion

In the numerical calculation, we use the current masses of
three-flavor quarks (mu = 3 MeV, md = 5 MeV and
ms = 80 MeV) as input parameters. As mentioned in Sect. 1,
under the weak magnetic field (g2T 2 > eB) all scatterings
of partons in the QGP are unaffected by magnetic field, thus
the calculation of the relaxation time remains the same as
in the absence of the magnetic field. In Fig. 1, the thermal
behavior of the relaxation time for u-quarks (τu) at various
quark chemical potentials (μq ) and anisotropic parameters
(ξ ) is displayed. We observe that τu decreases with increas-
ing temperature and the order of magnitude of τu at small
temperature is much larger than that at high temperature.
We also notice τu decreases as μq increases at small tem-
perature, whereas the decreasing feature of τu with μq is
marginal at high temperature (T > 0.4 GeV). This is because
that with increasing temperature the ratio μq/T becomes
smaller, which leads to the result of different factors associ-
ated with e±μq/T in Eq. (40) is nearly μq -independent. From
Fig. 1 we also can clearly see that τu in an anisotropic QGP
(ξ = 0.1) has an overall improvement compared to that in an
isotropic QGP, and the degree of improvement can be further
strengthened with the increase of ξ . To better understand the
qualitative and quantitative behaviors of the total Seebeck
coefficient (Sxx ) and the total Nernst signal (N ) for weak
magnetic field, we first present our results of the total elec-
trical (σxx , σxy) and thermoelectric (αxx , αxy) conductivity
tensors. In Fig. 2a, we perform the temperature dependence
of the total electrical conductivity (σxx ) at μq = 0.1 GeV for
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(a) (b) (c)

(d) (e) (f)

Fig. 2 a, d The temperature dependences of the electrical conduc-
tivity (σxx ) and the Hall conductivity (σxy) for μq = 0.1 GeV at
different weak magnetic fields, namely, eB = 0 GeV2 (black solid
line), 0.02 GeV2 (cyan dotted lines), 0.04 GeV2 (blue dashed lines),
0.06 GeV2 (red dotted-dashed lines). b, e The temperature dependences
of σxx and σxy for eB = 0.05 GeV2 at μq = 0 GeV (black solid line),

0.1 GeV (cyan dotted lines), 0.15 GeV (blue dashed lines) and 0.2 GeV
(red dotted-dashed lines). c, f The temperature dependences of σxx and
σxy for μq = 0.1 GeV and eB = 0.05 GeV2 in a weakly anisotropic
medium with ξ = 0 (black solid lines), 0.1 (cyan dotted lines), 0.2 (blue
dashed lines), 0.3 (red dotted-dashed lines)

different weak magnetic fields. At the vanishing magnetic
field, the thermal evolution of σxx,q f for f th flavor is basi-
cally dominated by the multiplicative result of factors, i.e.,
the relaxation time (τq f ) and quark distribution function ( f̄ 0

q f
)

in the integrand of Eq. (23). At small T , the sharply decreas-
ing feature of τq f (T ) significantly wins over the increasing
feature of f̄ 0

q f
(T ), therefore the total electrical conductiv-

ity (σxx ) decreases with increasing temperature. However, at
high T , the increasing behavior of f̄ 0

q f
(T ) is more promi-

nent than the decreasing behavior of τq f (T ). As a result,
σxx for vanishing magnetic field decreases at small T then
increases at high T , as shown in Fig. 2a. In the presence
of B, we observe that σxx has a suppression compared to
that in the vanishing B. This is due to that a additional fac-
tor, 1/(1 + (ωc,q f τq f )

2), in integrand of Eq. (23) is always
less than 1. We see that σxx monotonously increases with
increasing T at nonzero B, which is different with the ther-
mal behavior of σxx at zero field. This can be understood
as follows: The qualitative behavior of σxx,q f for f th flavor
at weak B is basically coming from the interplay between
τq f /(1 + (ωc,q f τq f )

2) and f̄ 0
q f

. At small T , τq f is large and

σxx (T ) ∼ ∑
f τq f f̄

0
q f

/(1 + (ωc,q f τq f )
2) ∼ ∑

f f̄ 0
q f

/τq f ,

consequently, σxx increases with increasing T . At high T ,
τq f is relatively small, τq f /(1 + (ωc,q f τq f )

2) ∼ τq f , the
thermal behavior of σxx at weak field is consistent with the
counterpart at zero field. Alternatively, the dependence of
σxx on B only arises from the cyclotron frequency (ωc,q f ).
Therefore, σxx decreases as B grows at small T due to
σxx (B) ∼ ∑

f
1

ω2
c,q f

, and the positive effect of B on σxx

is unconspicuous at high T due to σxx (B) ∼ constant. Next,
we consider the effect of quark chemical potential (μq ) on the
estimations of the conductivity tensors at eB = 0.05 GeV2.
We remind the reader that at finite μq due to the number
density of quarks is always larger than that of anti-quarks
in the QGP, the contribution of quarks to the tensors in
magnitude is prominent. At relatively small temperature,
σxx (μq) ∼ ∑

f f̄ 0
q f

(μq)/τq f (μq), where both f̄ 0
q f

(μq) and
1/τq f (μq) are increasing functions. Whereas, at high T , τq f

is nearly unchanged with the variation of μq as shown in
Fig. 1, thus σxx (μq) ∼ ∑

f f̄ 0
q f

(μq). As the ratio μq/T at

high T is small, the Boltzmann factor eμq/T in quark distri-
bution increases insignificantly with an increase of μq . As a
result, with the increase of μq , σxx increases at T < 0.3 GeV
then remains almost constant at T > 0.3 GeV, as shown in
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Fig. 2b. The momentum anisotropy induced by initial spatial
expansion is also considered in the estimation of the tensors.
In Fig. 2c, the T dependence of σxx at μq = 0.1 GeV and
eB = 0.05 GeV2 in the weakly anisotropic QGP (we take
ξ = 0.1, 0.2 and 0.3) is performed. As illustrated in Fig 2c,
the thermal behavior of σxx in an anisotropic medium is con-
sistent with the counterpart in an isotropic medium. How-
ever, the dependence of σxx on ξ is nonmonotonic in the
entire T domain of interest, which can be easily understood
from the expression of σxx,q f in Eq. (22). Since the first
term in Eq. (22) is numerically much larger than the sec-
ond term, thus the ξ dependence of σxx,q f is mainly deter-

mined by
τq f (ξ)

1+ω2
c,q f

τq f (ξ)2 (1 + ξ) in the first term. At small

T , σxx (ξ) ∼ ∑
f (1 + ξ)/τq f (ξ), where the increasing fea-

ture of (1+ξ ) is compensated by the decreasing feature of
1/τq f (ξ), leading σxx as a decreasing function of ξ . At high
T , σxx (ξ) ∼ ∑

f τq f (ξ)(1 + ξ), σxx increases as ξ grows.
Due to the absence of the Hall effect at the vanishing mag-

netic field, the calculation of the total Hall conductivity (σxy)
is only performed in the magnetic background field. In the
isotropic QGP, for the Hall conductivity of f th flavor quarks,
σxy,q f , its thermal behavior is mainly dominated by the form
factor ωc,q f τ

2
q f

/(1 + (ωc,q f τq f )
2) and associated quark dis-

tribution ( f̄ 0
q f

) in Eq. (23). The numerator of the form factor
reminds us that the sign of σxy,q f is dependent of quark type.
Due to the discrepancies of various flavor quarks in fractional
charge value (qu,d,s = 2/3,−1/3,−1/3) and mass, σxy,u is
greater than σxy,d +σxy,s . This is why the sign of σxy always
remains positive. In Fig. 2d we see that σxy at a fixed B
for μq = 0.1 GeV exhibits a nonmonotonic thermal behav-
ior. More exact, σxy(T ) first increases, reaches a maximum
then decreases. This peak structure of σxy(T ) has also been
observed in Ref. [34]. We can understand this behavior in the
following way. At small T , σxy(T ) ∼ ∑

f f̄ 0
q f

, where f̄ 0
q f

is

an increasing function of T . At highT ,σxy(T ) ∼ ∑
f τ 2

q f
f̄ 0
q f

and the decreasing feature of τ 2
q f

(T ) greatly overwhelms the

increasing feature of f̄ 0
q f

(T ), leading σxy as a decreasing
function of T . From Fig. 2d we also see that as B rises, σxy
decreases at small T due to σxy(B) ∼ 1/B, and increases at
high T due to σxy(B) ∼ B. Moreover, the position for the
maximum of σxy shifts toward higher T with the increase
in B. In Fig. 2e, σxy increases as μq grows, which can be
well understood from the behavior of prominent σxy,u(μq).
In the entire T domain of interest, the qualitative behavior of
σxy,u(μq) is almost determined by quark distribution func-
tion. Compared to σxx (μq), we note that the effect of μq on
σxy is obvious at high temperature, which is attributed to the
increment in quark distribution function with the increase of
μq is comparable to the value of σxy itself. In the momen-
tum anisotropic medium, the absolute value of σxy,q f for
various flavors increases monotonously with the increase

of ξ because
|ωc,q f |τq f (ξ)2(1+ξ)

1+(ωc,q f τq f (ξ))2 in Eq. (22) is an increasing

function of ξ . Although σxy,u itself is relatively larger than
σxy,d +σxy,s in magnitude, the variation in σxy,d +σxy,s with
ξ is numerically stronger (weaker) than the variation in σxy,u
with ξ at T < 0.3 GeV (at T > 0.3 GeV) (we don’t display
the figure, but it’s a truth). Hence, with the increase of ξ , σxy
first decreases at relatively low T then increases at high T , as
shown in Fig. 2f. We also observe that as ξ grows, the maxi-
mum of σxy increases and shifts towards higher temperature.

For the total thermoelectric conductivity (αxx ), the com-
putation is also limited to nonzero chemical potential case.
From a quantitative respect, the first term in Eq. (25) is
numerically larger than the second term. This mathemati-
cal difference arises from the different power of momentum
in respective integrands. From a qualitative respect, for the
thermoelectric conductivity of f th flavor quarks, αxx,q f , its
thermal behavior under nonzero B and nonzero μq is deter-

mined by
q f τq f

1+(q f ωc,q f τq f )2 and f̄ 0
q f

in Eq. (25), as well as its

sign depends on the quark type. Thus the absolute αxx,q f

for various flavors is similar to σxx,q f in the qualitative and
quantitative. However, because of the sensitivity of αxx,q f in
charge characteristic and mass, the qualitative and quantita-
tive behavior of the total thermoelectric conductivity (αxx )
is different to that of the total electrical conductivity (σxx ).
In Fig 3a, αxx at a nonzero B exhibits negative in sign.1 At
high enough temperature, μq/T ∼ 0, the Boltzmann fac-
tor eμq/T in f̄ 0

q f
becomes smaller, the numerical difference

between αxx,d + αxx,s and αxx,u reduces gradually. As a
result, αxx is closer to zero with increasing T , as illustrated
in Fig. 3a. And with the increase of B, we clearly see that
the thermal behavior of αxx,q f exhibit a valley structure. The
μq and ξ dependence on the absolute αxx in the entire T
domain of interest is similar to the counterpart on σxx . Fur-
thermore, as ξ grows, the minimum of αxx shifts towards
higher temperature.

For the total Hall-like thermoelectric conductivity (αxy),
the estimation is limited to the case of nonzero B, which can
be easily understood from the corresponding expression in
Eq. (25). Similar to αxx , the numerical value of αxy for a fixed
μq is also mainly determined by the first term in Eq. (25), the
difference is that the sign of αxy is independent of quark type
and always remains positive. Since the thermal behavior of

αxy,q f mainly depends on
q f ωc,q f τ 2

q f

1+(ωc,q f τq f )2 and f̄ 0
q f

in Eq. (25),

the temperature and magnetic field dependences of αxy are
allied to that of σxy , as shown in Fig. 3d. In Fig. 3e, we clearly
observe that αxy decreases as μq increases at small T , which

1 In this paper, the sign of αxx for a fixed μq at the vanishing mag-
netic field exhibits positive. However, we do not discuss much αxx in
the vanishing magnetic field qualitatively or quantitatively due to it’s
marginal results (10−4 ∼ 10−5) at 0.2 GeV < T < 0.4 GeV.
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(a) (b) (c)

(d) (e) (f)

Fig. 3 a, d The temperature dependences of the thermoelectric con-
ductivity (αxx ) and the Hall-like thermoelectric conductivity (αxy) for
μq = 0.1 GeV at different magnetic fields, namely, eB = 0 GeV2 (black
solid line), 0.02 GeV2 (cyan dotted lines), 0.04 GeV2 (blue dashed
lines), 0.06 GeV2 (red dotted-dashed lines).b, eThe temperature depen-
dences of αxx and αxy for eB = 0.05 GeV2 at μq = 0 GeV (black solid

line), 0.1 GeV (cyan dotted lines), 0.15 GeV (blue dashed lines) and
0.2 GeV (red dotted-dashed lines). c, f The temperature dependences
of αxx and αxy for μq = 0.1 GeV and eB = 0.05 GeV2 in a weakly
anisotropic QGP induced by initial spatial expansion with ξ = 0 (black
solid lines), 0.1 (cyan dotted lines), 0.2 (blue dashed lines), 0.3 (red
dotted-dashed lines)

is opposite to the behavior of σxy(μq). This is attributed that
at small T though the first term in the expression of αxy is
much larger than the second term in magnitude, the incre-
ment of the first term with the increase of μq is compen-
sated by the more significant reduction of the second term.
At high T , αxy remains almost constant with the variation of
μq because μq/T at high T is small, the variation of e±μq/T

in distribution functions is negligible compared to the value

of αxy itself. In the anisotropic medium,
q f ωc,q f τq f (ξ)2

1+ω2
c,q f

τ(ξ)2 for

f th quarks in Eq. (24) is an increasing function of ξ at any
given T . In addition, the variation of the first term for αxy in
Eq. (24) with ξ is more greater than the counterpart of the
second term. Therefore, αxy increases as ξ increases in the
entire T domain of interest, as shown in Fig. 3f.

Since the quantitative and qualitative behaviors of both
the total Seebeck coefficient (Sxx ) and the total Nernst sig-
nal (N ) are attributed by the intricate interplay of four con-
ductivity tensors, we only phenomenologically discuss the
impacts of magnetic field (B), quark chemical potential (μq ),
and anisotropic parameter (ξ ) on Sxx and N step by step. In
Fig. 4a, we display the temperature dependence of Sxx for
finite B at μq = 0.1 GeV. In the semiconductor, a positive

(negative) Sxx implies that the generated electric current runs
toward (away from) the direction of high temperature end in
an electron (hole) rich side. In other word, Sxx is negative for
negatively charge carriers and positive for positively charge
carriers. Similarly, in the QGP, the sign of Sxx is positive
(negative), indicating that the major carriers who dominate
the conversion from a temperature gradient to an electric field
are positively (negatively) charged quarks. In our work, the
sign of Sxx in the QGP for μq = 0.1 GeV at zero B is positive
and the numerical values of Sxx are in 0.0006 < Sxx < 0.003
at 0.2 GeV � T � 0.4 GeV. It’s worth noting that our results
are close to the results in Ref. [61], where the values of Sxx for
the QGP at the vanishing magnetic field for μB = 0.05 GeV
lie in the regime of 0 < Sxx < 0.005 under the same temper-
ature region. At the nonzero (zero) magnetic field, the sign of
Sxx in the QGP is negative (positive), which is consistent with
the sign of αxx . But the thermal behavior of Sxx is monotonic
instead of nonmonotonic. At high enough T , Sxx approaches
to zero, indicating the system along x-axis is close to an
isothermal state. And the absolute value of Sxx in the QGP
increase as B increases. From Fig. 4b, c, we observe that the
absolute Sxx significantly increases as μq and ξ increase at
T < 0.4 GeV. Next, we start to discuss the Nernst effect.
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(a) (b) (c)

Fig. 4 a The temperature dependence of the Seebeck coefficient (Sxx )
for μq = 0.1 GeV at different magnetic fields, namely eB = 0 GeV2

(black solid line), 0.02 GeV2 (cyan dotted line), 0.04 GeV2 (blue dashed
line), 0.06 GeV2 (red dotted-dashed line). b The temperature depen-
dence of Sxx for eB = 0.05 GeV2 at μq = 0.1 GeV (cyan dotted line),

0.15 GeV (blue dashed line) and 0.2 GeV (red dotted-dashed line). c The
temperature dependence of Sxx for μq = 0.1 GeV and eB = 0.05 GeV2

in a weakly anisotropic medium with ξ = 0 (black solid line), 0.1 (cyan
dotted line), 0.2 (blue dashed line), 0.3 (red dotted-dashed line)

(a) (b) (c)

Fig. 5 a The temperature dependence of the Nernst signal (N ) for
μq = 0.1 GeV at different magnetic fields, namely eB = 0.02 GeV2

(cyan dotted line), 0.04 GeV2 (blue dashed line), 0.06 GeV2 (red dotted-
dashed line). b The temperature dependence of N for eB = 0.05 GeV2

at μq = 0 GeV (black solid line), 0.1 GeV (cyan dotted line), 0.15 GeV

(blue dashed line) and 0.2 GeV (red dotted-dashed line). c The temper-
ature dependence of N for μq = 0.1 GeV and eB = 0.05 GeV2 in
a weakly anisotropic medium with ξ = 0 (black solid line), 0.1 (cyan
dotted line), 0.2 (blue dashed line), 0.3 (red dotted-dashed line)

For vanishing B, there is no Lorentz force to bend the tra-
jectories of the thermally diffusing charge carriers, so the
Nernst effect is absent. Figure 5a shows the evolution of N
as a function of T at different B for μq = 0.1 GeV. Unlike
Sxx , N in sign is independent of the charge carrier type,
which can well understand from the associated expression.
We can clearly see the value of N always remains positive
and the thermal evolution of N at the magnetic field has a
peak structure. We also observe as B grows, N decreases
at small T whereas increases at high T , which is consistent
with σxy(B) and αxy(B) in the qualitative. In this work, the
maximum of N for μq = 0.1 GeV approximately is 2.8. We
can zoom in Fig. 5b and observe that the μq dependence of
N is very similar to αxy(μq), except that N weakly decreases
as μq increases at T < 0.26 GeV. Anyway, the effect of μq

on N is not obvious. The effect of momentum anisotropy

induced by initial spatial expansion on N at μq = 0.1 GeV
for eB = 0.05 GeV2 is plotted in Fig. 5c. We see that as
ξ increases, N decreases at relatively low temperature then
increases at high temperature, which is qualitatively akin to
σxy(ξ). Furthermore, with the rise in ξ , the maximum of N
falls and slightly shifts to higher temperature.

The investigation of the thermoelectric coefficient is also
converted to the strong magnetic background field. The cal-
culation of the longitudinal conductivity tensors is first per-
formed under the LLL approximation. In the LLL approx-
imation, 2 → 1 scattering process and 2 → 2 scattering
process are taken into account. Although the inverse relax-
ation times in Eqs. (46) and (47) for two kind of pro-
cesses are of the same order of αs,B , the numerical value
of inverse relaxation time for 2 → 2 process is marginal
compared with that for 2 → 1 process. Since the largest
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Fig. 6 The temperature dependence of Seebeck coefficient along the
direction of magnetic field (Szz) for 2→1 process (black lines) and
2→ 2 process (red lines) in the LLL approximation. Solid lines and
dotted lines represent the calculations of Sxx for eB = 10m2

π GeV2 are
performed at μq = 0.1 GeV and at 0.2 GeV, respectively. Dashed lines
denote the temperature dependence of Sxx at μq = 0.2 GeV for eB =
10m2

π GeV2 in an anisotropic medium induced by strong magnetic field
(we take ξ ′ = −0.2). Within the assumed regime m2

q � αs,BeB �
T 2 � eB, we artificially take eB = 10m2

π GeV2 and the appropriate
temperature can be concentrated within the region 0.25 GeV � T �
0.4 GeV

inverse relaxation time determines the final inverse relax-
ation time, the 2 → 1 process is significantly dominated
over 2 → 2 process in the strong magnetized QGP. Nev-
ertheless, we still can compute the respective contribution
to the component of the longitudinal Seebeck coefficient,
namely, Szz , in the LLL approximation. Figure 6 demon-
strates that Szz of isotropic QGP in the LLL approximation
for μq = 0.1 GeV decreases with increasing temperature.
Unlike Sxx at weak magnetic field, the sign of Szz at strong
magnetic field within the LLL approximation is positive,
indicating that the dominant charge carriers for converting
the thermal gradient along the direction of magnetic field to
electric field are positively charged quarks. Yet, in Ref. [64]
the result of Szz is negative because the sensitivity of the
relaxation time in the quark chemical potential is not taken
into account. We also observe the value of Szz for 2 → 1
process is comparable with that for 2 → 2 process. Actually,
Szz in the LLL approximation is independent of B due to
the fact that the B-dependent factors in the numerator of Szz
and the counterparts in the denominator cancel out. Similar
to the previous calculation in weak magnetic field, we also
consider the effect of quark chemical potential (μq ) on Szz in
the LLL approximation. As illustrated in Fig. 6, Szz for both
2 → 1 process and 2 → 2 process numerically increases
as μq increases in entire T domain of interest. In compari-
son to the isotropic medium, Szz in a strong magnetic field-

driven anisotropic medium (we take ξ ′ = −0.2) remains
unchanged in the qualitative but has a quantitative enhance-
ment. Finally, the calculation of Szz is also extended to a more
realistic regime g2T 2 � eB in which the contribution from
higher Landau levels (hLLs) are considered. In Fig. 7a and
b, as Landau level (l) increases, we note that the scaled lon-
gitudinal electrical conductivity (σzz/T ) increases, whereas
the scaled longitudinal thermoelectric conductivity (αzz/T )
decreases. In our work, the numerical values of σzz/T at
eB = 10m2

π GeV2 and μq = 0 GeV within the consider-
ation of hLLs contribution are in 0.3 < σzz/T < 0.7 for
0.2 GeV � T � 0.5 GeV, which is consistent with the
result (0.2 < σzz/T < 0.7) of existing report [42] in the
same configuration. And in present work, σzz/T within the
effect of hLLs also quantitatively lies in the range of Lattice
QCD results (0.1 � σel/T � 1.0) from Refs. [112–114]. In
Fig. 7c, we see that the thermal behavior of Szz beyond the
LLL approximation with l = 20 is similar to the counterpart
of Szz in the LLL approximation. Due to the decreasing fea-
tures of both αzz and 1/σzz with increasing Landau level as
shown in Fig. 7a, b, the value of Szz can be suppressed as
the Landau level rises. And Szz even changes sign from posi-
tive to negative as the Landau level grows, which mimics the
dependence of αzz on the Landau level. The change of Szz in
sign reflects the dominant charge carriers for converting the
heat gradient along z-axis to electric field become negatively
charged quarks rather than positively charged quarks as the
increase of Landau level. Furthermore, at higher temperature,
Szz for various Landau levels converges to zero, indicating
that the system along z-axis is in a nearly isothermal state.

6 Conclusion

A theoretical investigation on the Seebeck effect and the
Nernst effect of QGP in the magnetic fields has been pre-
sented. The associated Seebeck and Nernst signal are the
functions regarding the electrical conductivity tensors and the
thermoelectric conductivity tensors, which can be obtained
by solving the relativistic Boltzmann equation under the
relaxation time approximation. We found in the presence
(absence) of weak magnetic field along z-axis, Sxx for a
nonzero quark chemical potential is negative (positive) in
sign, indicating that the dominant charge carriers for convert-
ing heat gradient into electric field are negatively (positively)
charged quarks. We found as temperature increases, Sxx first
decreases (absolute value increases) then gradually tends to
zero, which implies that at high enough temperature the sys-
tem reaches an isothermal state. And the absolute value of
Sxx has a further enhancement with the increase in mag-
netic field and quark chemical potential. We also extended
the exploration to an anisotropic QGP, where the partons
exhibit a local anisotropy (ξ �= 0) in the momentum space
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(a) (b) (c)

Fig. 7 The temperature dependences of the scaled longitudinal elec-
trical conductivity (σzz/T ) (a), the scaled longitudinal thermoelectric
conductivity (αzz/T ) (b) and the longitudinal Seebeck coefficient (Szz)

(c) within different Landau levels (l =20 (orange solid lines), 30 (cyan
dotted lines), 50 (blue dashed lines), 60 (red dotted-dashed lines) and 70
(purple wide-dashed lines)) for eB = 10m2

π GeV2 at μq = 0.1 GeV

due to the rapid expansion of initial fireball along the beam
direction. The results showed that the absolute value of Sxx
in a weakly anisotropic medium has an obvious enhancement
compared to that in an isotropic medium (ξ = 0), and with
the increase of ξ this increment can be strengthened. Differ-
ent from monotonous thermal behavior of Sxx , the tempera-
ture dependence of the Nernst signal (N ) for weak magnetic
field exhibits a peak structure, and N in sign is independent
of the type of charge carriers. As magnetic field as well as
anisotropic parameter (ξ ) increase, N decreases at relatively
small temperature whereas increases at high temperature.
In contrast to the effects of magnetic field and momentum
anisotropy, with the increase in quark chemical potential,
N increases at small temperature whereas decreases at high
temperature.

In the strong magnetic field, the Seebeck coefficient along
the direction of magnetic field, Szz , has been calculated under
the LLL approximation and beyond the LLL approximation.
The value of Szz in the LLL approximation always remains
positive and increases as quark chemical potential rises. And
we found Szz in the LLL approximation is independent of
the magnetic field strength. Under the same condition, the
value of Szz for 2 → 2 process is comparable with that for
2 → 1 process, even though the former process is far less
important than the latter process in the strongly magnetized
QGP. In addition, Szz in the anisotropic QGP induced by
strong magnetic field with ξ ′ = −0.2 has an overall enhance-
ment compared to that in the isotropic medium. With the
increase of Landau level, Szz decreases and even changes the
sign from positive to negative. For the future investigation,
we may study the Seebeck coefficient and the Nernst sig-
nal at the magnetic field in the hadronic phase and near the
transition phase region based on van der Waals hadron res-
onance gas (VDWHRG) model and QCD effective models
(e.g., Polyakov Nambu-Jona-Lasinio model and Polyakov

Quark Meson model), respectively. Especially, a direct com-
parison of the results in the hadronic and partonic phases
would be instructive.
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Appendix A

The collision term of species a1 for the binary process
a1(P1)+a2(P2) → a3(P3)+a4(P4) is given by [115,116]

C[ f1] =
∑
pro

d2

1 + δ34

1

2ε1

4∏
i=2

∫
d�i (2π)4δ4(Ptot )|Mpro|2

× [ f1 f2(1 ± f3)(1 ± f4) − f3 f4(1 ± f1)(1 ± f2)] .

(A1)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Eur. Phys. J. C           (2021) 81:623 Page 17 of 19   623 

In the above, Ptot = P1 + P2 − P3 − P4. Pi=1,2,3,4 =
(εi ,pi ) denotes the four-momentum of particle, where εi =√
p2
i + m2

i . We use a notation d�i = d3pi
(2π)32εi

for conve-
nience. The factor 1/(1 + δ34) is introduced to avoid double
counting when particle a1 and a2 are identical. Mpro is the
scattering amplitude for a specific binary process. Consider-
ing the distribution slightly derivate the equilibrium, hence
the local momentum distribution of i th species is given by
fi = f̄ 0

i + δ fi = f̄ 0
i + β f̄ 0

i (1 ± f̄ 0
i )χi (pi ), where χi is

the response function in the effect of electric field. For (anti-
)quarks, the associated response functions hold the relation
of χq̄(p) = χq(−p) due to the charge conjugation symmetry.
However, for gluons χg is zero. Using the detailed balance
condition f̄ 0

1 f̄ 0
2 (1± f̄ 0

3 )(1± f̄ 0
4 ) = f̄ 0

3 f̄ 0
4 (1± f̄ 0

1 )(1± f̄ 0
2 ),

the collision term can be rewritten as

C[ f1] =
∑
pro

d2

1 + δ34

1

2εp1

4∏
i=2

∫
d�i (2π)4δ4(Ptot4)|Mpro|2

×[ f̄ 0
1 f̄ 0

2 (1 ± f̄ 0
3 )(1 ± f̄ 0

4 )]β
×(χ3(p3) + χ4(p4) − χ2(p2) − χ1(p1)). (A2)

Since the response function χi (pi ) is an odd function ofpi for
(anti-)quarks or is zero for gluons, whereas other integrand
is an even function of pi , the result of the integral related to
χ j (pi ) (i = 2, 3, 4) is zero. Using relaxation time approxi-
mation C[ f1] = −δ f1/τ1 = −β f̄ 0

1 (1 ± f̄ 0
1 )χ1(p1)/τ1, we

can obtain momentum dependent thermal relaxation time of
species a1, namely,

τ−1
1 =

∑
pro

d2

δ34 + 1

∫
d3p2

(2π)3

f̄ 0
2 (1 ± f̄ 0

3 )(1 ± f̄ 0
4 )

(1 ± f̄ 0
1 )

×
∫

dt
dσ pro

dt
, (A3)

where dσ pro

dt = 〈|Mpro|2〉
16πs2 denotes the differential scattering

cross section with respect to the Mandelstam variables s, t ,
u.

Due to the large angle scattering is the most efficient
mechanism for the transport process in a plasma with long-
range interaction [117–119], a phenomenological weight fac-
tor sin θ2/2 = 2tu/s2 (θ is the scattering angle in the cen-
ter of mass system) is introduced in Eq. (A3). Alternatively,
when the momentum transfer |p1 − p3| = |p2 − p4| is small
or t = |P1−P3| = |P2−P4| � √

s, we assume that f̄1 = f̄3
and f̄2 = f̄4 for the elastic scatterings, the thermal relaxation
time can finally be rewritten as

τ−1
1 =

∑
pro

d2

δ34 + 1

∫
d3p2

(2π)3 f̄ 0
2 (1 ± f̄ 0

4 )

∫
dt

dσ pro

dt

2tu

s2 .

(A4)

The integration in terms of t-channel only has the logarith-
mic infrared divergence [119]. And this divergence can be

regulated by restricting the t-channel integration from −s
to −μ2

D , where μ2
D = g2T 2 is the infrared regulator in the

upper bound of the t integration [119].

Appendix B

Apart from q + q̄ → g process, another dominant process
in the LLL approximation with the specific regime m2

q �
αs,BeB � T 2 � eB is t channel q (P) + q̄ (P ′′) →
q (P ′) + q̄ (P ′′′) scattering. The associated collision term
has been presented by K.Hattori et al in Ref. [41] using the
leading order perturbative QCD approach. We extend their
result to nonzero quark chemical potential case, which has
the following form

C[ fB,q(pz, μq)]2→2

= 2g4TRCR

( |q f eB|
2π

)
(16m4

f )

× 1

(2ε f,0)2 β f̄ 0
B,q(pz, μq)(1 − f̄ 0

B,q̄(pz, μq̄))

×
∫

dp′
z

2π

1

(ε′
f,0)

2

ε f,0ε
′
f,0

|ε f,0 p′
z − ε′

f,0 pz |

×
∫

d2q⊥
(2π)2 e

− q2⊥
eB

1(
q2 + Re�z(q) + iIm�z(q)

)2

× f̄ 0
B,q̄(p

′
z, μq̄)(1 − f̄ 0

B,q(p
′
z, μq))(χq(p

′
z) − χq(pz)),

(B1)

where q = p′ − p = p′′ − p′′′ is the momentum transfer,
q2 = q2⊥−q2|| and −q2|| = −(P ′−P)2|| = 2(ε f,0ε

′
f,0−pz p′

z−
m2

f ). ε f,0 =
√
p2
z + m2

f and ε′
f,0 =

√
p′2
z + m2

f . Re�z(q)

and Im�z(q) in Eq. (B1) are the real and imaginary parts
of gluon self-energy along the direction of magnetic field,
respectively. In the static limit (q0 → 0), Re�z is the Debye
mass mD,B . In the work of Hasan et al. [50], the imaginary
part of gluon self-energy in the strong magnetic field is given
as

Im�z(q)

q0

∣∣∣∣
q0→0

= −g2

q
πT 2

2
− g2

q2
z

∑
f m

2
f |q f eB|

8πT
. (B2)

Thus we can note that Im�z(q) vanishes in the static limit.
Furthermore, in chirality nonflip case pz · p′

z > 0, |ε f,0 p′
z −

ε′
f,0 pz | and −q2|| can rewritten as [41],

|ε f,0 p
′
z − ε′

f,0 pz | = m2
f |p′2

z − p2
z |

|ε f,0 p′
z + ε′

f,0 pz |
≈ m2

f

ε f,0
|p′

z − pz |
(B3)
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and

− q2|| = 2(ε f,0ε
′
f,0 − pz p

′
z − m2

f ) = 2m2
f (p

′
z − pz)2

ε f,0ε
′
f,0 + pz p′

z + m2
f

≈ m2
f

ε2
f,0

(p′
z − pz)

2, (B4)

respectively. In the hierarchy of scale eB � T 2, the form

factor e− q2⊥
eB can reasonably be neglected due toq2⊥ ∼ −q2|| �

T 2 � eB, andm2
D,B always dominates over q2|| in the regime

αs,BeB � m2
q . Therefore, Eq. (B1) can further reduce to

C[ fB,q(pz, μq)]2→2

= 8πα2
s TRCR

(
eB

2π

)m2
f β

ε f,0
f̄ 0
B,q(pz, μq)

(
1 − f̄ 0

B,q̄(pz, μq̄)
)

×
∫

dp′
z

2π

1

|p′
z − pz |ε′

f,0/ε f,0

× 1

m2
D,B

f̄ 0
B,q̄(p

′
z, μq̄)

×
(

1 − f̄ 0
B,q(p

′
z, μq)

) (
χq(p

′
z) − χq(pz)

)
. (B5)

For the small pz − p′
z , χq(p′

z)−χq(pz) can be approximated
as

(χq(p
′
z) − χq(pz)) ≈ (p′

z − pz)∂pzχq(pz)

= −(p′
z − pz)∂p′

z
χq(p

′
z). (B6)

Therefore, the collision term for 2 → 2 process when m2
q �

αseB is given by

C[ fB,q(pz, μq)]2→2 = −2α2
s,BTRCR

(
eB

π

) m2
f β

E f,0m2
D,B

× f̄ 0
B,q(pz, μq)

(
1 − f̄ 0

B,q(pz, μq)
)

× f̄ 0
B,q̄(pz, μq̄)

(
1 − f̄ 0

B,q̄(pz, μq̄)
)

×χq(pz). (B7)

In the LLL approximation with the hierarchy of scale eB �
T 2, m2

D,B ≈ ∑
f

αs,B |q f eB|
π

= 2αs,BTRCR
( eB

π

)
. Using

C[ fB,q ] = −β f̄ 0
B,q(1 + f̄ 0

B,q)χq/τB,q , we finally get ther-
mal relaxation time of (anti-)quarks for f th flavor for 2→2
process,

1

τB,q(q̄)

∣∣∣∣
2→2

= αs,B
m2

q

ε f,0
f̄ 0
q̄(q)(pz, μq̄(q))

(
1 − f̄ 0

q̄(q)(pz, μq̄(q))
)

. (B8)

In the anisotropic medium induced by strong mag-
netic field, the thermal relaxation time associated with the

anisotropic parameter (ξ ′) can be obtained by straightfor-

wardly substituting f̄ 0
B,q and αs,B in Eq. (B8) with f̄ ξ ′

B,q and
αe f f,B , respectively.
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