
 

Unified geometric framework for boundary charges and particle dressings
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We provide a unified geometrical origin for both boundary charges and particle dressings, with a focus
on electrodynamics. The method is furthermore generalizable to QCD and gravity and can be extended to
the nonperturbative domain.
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I. INTRODUCTION

Purely geometrical tools often give valuable insight into
physical questions. Examples abound: from the role of
Riemannian geometry in general relativity, to the use of the
Atiyah-Singer index theorem in studying anomalies in
quantum field theories, with many examples in between,
before, and more recently.
We propose here that another geometrical tool has wide

applications in gauge theories: the field-space connection
form, here called ϖ (pronounced “var-PIE”) [1]. Much like
its finite-dimensional cousin Aμ, the geometric role of ϖ is
to implement gauge covariance. Differently from its finite-
dimensional cousin, ϖ implements covariance in the field
space of gauge theories.
Beyond being a mere mathematical curiosity, this tool

is surprisingly powerful, both in the study of boundary
charges and in the characterization of the dressings of
charged particles in gauge theories.
These two topics—boundary charges and dressings—

were related by Bagan et al. [2], upon defining constituent
quarks as color-charged gauge-invariant entities. Such
entities were built out of a Lagrangian quark, which was
then dressed by a cloud of gluons, a construction analogous
to the Dirac dressing of electrons [3,4].
More recently, charges and dressings have prominently

come together in a series of works in which enlarged
asymptotic symmetry groups and the associated conserved
charges were related to memory effects and soft-photon
dressings (see Ref. [5] and refs therein).
On possibly related developments, new boundary

degrees of freedom (d.o.f.) have been deemed necessary

and introduced both to reinstate gauge invariance in the
presence of boundaries [6,7] and/or to account for the
correct entanglement entropy of gauge theories in finitely
bounded regions (such as black hole spacetimes) [8–10].
As has become clear in the study of asymptotic conditions

on spacetime, there is ambiguity in how we parse “pure
gauge” transformations from the global symmetries.
Prominent examples are the subtle choices of falloff (and
parity) conditions in Refs. [8,11]. These choices are con-
sequential; they translate to different asymptotic charges and
associated algebras [12]. Their ambiguity represents differ-
ent answers to the question ofwhich are the gauge d.o.f.—the
ones to be arbitrarily fixed—and which are not. Or in other
words, in the presence of (asymptotic) boundaries, how do
we tell when a gauge fixing has gone too far?
The field-space connection form ϖ [1] can provide a

common source of explanation and anorganizing principle to
many aspects of the above-mentioned questions: it reconciles
gauge d.o.f. and boundaries, rendering the introduction of
new boundary d.o.f. superfluous. Maintaining covariance
meansϖ always keeps track of all the d.o.f.—including the
possibly gauge ones. Nonetheless, “true” gauge transforma-
tions only give rise to vanishing charges, while global
charges still emerge from the formalism. Given the afore-
mentioned choices and ambiguities, this is a significant
advance.
Moving forward, ϖ has a straightforward relation to

“dressings” [3–5]. More importantly, it also provides a
clear geometric path for obtaining dressings in non-Abelian
theories, even in the nonperturbative setting—an area other
notions of dressings that rely on gauge fixings [4] cannot
reach due to the so-called Gribov prolem [13,14].
Summary of results.—After introducing concepts and

notation for dealing efficiently with the geometry of field
space, we will show how a simple choice of ϖ, naturally
related to the dynamics of a gauge theory, readily provides
a notion of dressing. This is found to coincide with the
Dirac dressing in the context of 3þ 1 electrodynamics.
We then show that usingϖ-covariant symplectic geometry

produces vanishing charges for pure gauge transformations,
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even in the presence of boundaries and when the gauge
parameters are field dependent. Physically, this happens
because our formalism automatically includes those contri-
butions to the charges which can be attributed to dressings.
Moreover, we will show that, using Dirac-like dressings,
the global conserved charges—such as the total electric
charge—are naturally picked out as the only physical ones.
Further results and explicit examples of field-space

connections will appear in a forthcoming publication [15].

II. FIELD-SPACE CONNECTION FORM

Field space preliminaries. Consider the space of fields
φI defined on an n-dimensional manifold M, Φ ¼ fφIg.
In this notation, φI stands for a whole field configuration
fφIðxÞgx∈M, where I is a superindex labeling both the
field’s type and its various components. In the following, a
“double-struck” typeface—like in d, L, X, etc.—will be
consistently used for field-space entities.
On Φ, introduce the de Rahm differential d [16]; it

should be thought of as the analog, on Φ, of the spacetime
differential d. A basis of Λ1ðΦÞ is hence given by ðdφIðxÞÞ.
On a functional f∶Φ → R (reals), d acts as

df ¼
X

I

Z

M
dnx

�
δf

δφIðxÞdφ
IðxÞ

�
≕

Z
df
dφI dφ

I; ð1Þ

where δ=δφ denotes as usual a functional derivative and
the last identity introduces a more homogeneous short-
handed notation. Higher-dimensional (functional) forms
are defined by the above formula and antisymmetrization.
In particular, d2 ¼ 0 (wedge products are left understood).
Functional (spacetime-local) vector fields on Φ are

denoted X ∈ X1ðΦÞ. In components, they read

X ¼
X

I

Z

M
dnx

�
XIðφðxÞÞ δ

δφIðxÞ
�
≕

Z
XI d

dφI ; ð2Þ

where the introduced notation follows that of (1).
Contraction (“inclusion”) of a vector field with a differ-
ential form in Φ is denoted with i and defined by

iXdφI ¼ XI ð3Þ

and the usual rules of linearity and antisymmetrization.
Finally, we introduce the functional Lie derivative along

X of a generic functional form through the Cartan formula

LX ¼ iXdþ diX: ð4Þ

Gauge theories and the connection form. The field space
of Yang-Mills theory coupled to matter is given by a gauge
potential A and (spinorial) matter fields ψ , ΦYM ¼
fφI ¼ ðA;ψÞg, where we suppressed spacetime, spinorial,
Lie algebra, and representation indices.

The group of gauge transformations is taken pointwise in
the space(time) manifold1 M, i.e., G ¼ fgð·Þ∶M → Gg, and
elements gð·Þ ∈ G act on the fields infinitesimally, with
ξ ∈ LieðGÞ, as A ↦ Aþ δξA and ψ ↦ ψ þ δξψ , where

δξA ≔ DAξ ¼ dξþ ½A; ξ�; δξψ ≔ −ξψ ; ð5Þ

and ½·; ·� is the Lie bracket of g ≔ LieðGÞ. This defines a lift
from the Lie algebra of the gauge group, LieðGÞ, into field-
space vector fields X1ðΦYMÞ [17]

LieðGÞ → X1ðΦYMÞ; ξ ↦ ξ♯ðφÞ ≔
Z

δξφ
I d
dφI : ð6Þ

The map ·♯ has a trivial kernel if ψ ≠ 0. The vector fields ξ♯

are canonically defined. Their flows generate gauge orbits
inΦYM, which can be interpreted as the fibers of an infinite-

dimensional principal fiber bundle G ↪ ΦYM→
π ½ΦYM�,

where ½ΦYM� ≔ ΦYM=G is the reduced space of physical
field configurations. This picture emerges in case the action
of the group is free, which is not the case for most gauge
theories. When the group action on Φ has fixed points, i.e.,
there are configurations which are left invariant by
“Killing” gauge transformations, Φ=G is not a manifold
but a stratified manifold [18]. The strata will turn out to be
related to the conserved global charges.
General vector fieldsXwhich are tangent to gauge orbits

in ΦYM will be called “vertical,” and their span at a
φ ∈ ΦYM defines a vertical subspace of the tangent space.
In symbols, TφΦYM⊃Vφ¼Spanfξ♯;ξ∈LieðGÞg. Vertical
fields represent infinitesimal, possibly field-dependent
gauge transformations (for ξ∶ΦYM → LieðGÞ).
Crucially, there is no canonical transversal complement

to the vertical subspaces, TΦYM ≃ V ⊕ H, where H is
(a choice of) “horizontal” subspace. Locally, a choice of H
corresponds to the choice of a vertical projector, V̂φ∶
TφΦYM → Vφ. If one then requires the projector to be
compatible with the gauge-orbit structure of ΦYM, one is
led to introduce a LieðGÞ-valued functional 1-form ϖ ∈
Λ1ðΦYM;LieðGÞÞ, for which H ≔ fX ∈ TΦYMjiXϖ ¼ 0g
and which satisfies the properties of a connection form:

iξ♯ϖ ¼ ξ; Lξ♯ϖ ¼ ½ϖ; ξ� þ dξ: ð7Þ

The last term of the last formula accounts for field-
dependent gauge transformations [1].
Concretely, this construction replaces the ordinary

exterior derivative in field space, d, with a covariant or,
more precisely, horizontal version. For field-space scalars,
e.g., all the φI , this is given by

1Here, M may be either a spatial or spacetime manifold. We
will specialize to a spatial one later.
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dH ¼ d − δϖ ð8Þ

[ϖ being valued in LieðGÞ and δϖ being defined as in (5)],
while in the case of the field-space connection, its hori-
zontal variation defines the field-space curvature

F ≔ dHϖ ¼ dϖ þ 1

2
½ϖ;ϖ�: ð9Þ

These definitions are in complete analogy with the finite-
dimensional principal fiber bundle picture of gauge theory;
see, e.g., Ref. [17].
In Ref. [1], we argued that horizontal field variations,

i.e., horizontal tangent vectors in Φ, have the interpretation
of “physical changes with respect to the choice of ϖ.”
In the following, we will flesh this out.

III. ELECTRODYNAMICS

The simplest notion of horizontality—and thus of ϖ—is
given by orthogonality to V with respect to a metric on field
space. Such a metric is required to be invariant along the
gauge orbits to ensure the covariance of ϖ [19,20].
We now specialize to a simple example. Let us consider

Maxwell theory in a preferred 3þ 1 decomposition on
M ¼ Σ × R, and let us take field space to be the space of
“instantaneous configurations,” ΦMax ≔ fAiðxÞgx∈Σ, and
GMax ≔ fgð·Þ∶Σ ×R → Uð1Þg. Field histories, Aiðx; tÞ, are
curves in this space. Here, we will denote general vectors at
A by a, i.e., a≡ R

ai d
dAi

∈ TAΦMax.
The last component of the electromagnetic potential, that

is, A0, is a Lagrange multiplier that can be freely fixed to
any function λðx; tÞ along a curve Aiðx; tÞ. To ensure
covariance with respect to history-dependent gauge trans-
formations, we add an extra ϖ-dependent term,
A0 ¼ λþ itϖ. Here, t ¼ R

_Ai
d
dAi

∈ TAΦMax is the “evolu-

tion vector” along a curve Aðx; tÞ ⊂ ΦMax, the dot meaning
derivation with respect to t (the evolution need not be on
shell). Note that itϖ gauge transforms in the manner
expected of A0.
Define on ΦMax the constant DeWitt (super)metric h·; ·i

to be given by the ultralocal contraction of two tangent
vectors a; a0 ∈ TAΦMax through the inverse metric gij

of Σ,

ha; a0iA ¼
Z

Σ
d3x

ffiffiffi
g

p
gijaiðxÞa0jðxÞ ð10Þ

(if Σ is noncompact, appropriate falloff conditions at spatial
infinity are presupposed for normalizability.)
As is easy to see, this is the field-space metric which

contracts _Ai (the components of t) in the kinetic term of
the Lagrangian. In this sense, this metric is compatible
with the phase space structure of the theory and therefore

constitutes a dynamically preferred choice.2 This is also
the reason why we will sometimes refer to the DeWitt
metric as a “kinematical metric.”
Vertical vectors at Ai are spanned by ai ¼ δξAi ¼ −i∂iξ,

where3 ξ ∈ LieðGMaxÞ ≅ iC∞ðΣÞ. Notice that, in the
present Abelian case, the δξAi are field independent. It is
easy to find the orthogonal (horizontal) complement of the
vertical vectors

R
δξA

d
dA from (10). From this, using that the

horizontal projection of a generic a is a − ðiaϖÞ♯, one
derives that at A ∈ ΦMax the resulting ϖ must satisfy a
Laplace equation with Neumann boundary conditions,

∇2ϖ ¼ idivðdAÞ; nj∇jϖj∂Σ ¼ in · dAj∂Σ; ð11Þ

where ni is the (spacelike) normal to ∂Σ, if this is not empty
(see Ref. [15] for details). The unique solution to this
equation is

ϖðxÞ ¼ ið∇−2divðdAÞÞðxÞ ¼ i
Z

Σ

d3y
4π

∂idAiðyÞ
jx − yj ; ð12Þ

where for definiteness we fixed Σ ≅ R3 with fast decaying
boundary conditions. This expression for ϖ satisfies (7).
We name a connection form derived through the above

algorithm a Singer-DeWitt connection; it was introduced
by Singer in Ref. [14] but presaged by DeWitt in Ref. [21].
In the case of Maxwell theory, in which photons are
uncharged and the δξAi are field independent, the Singer-
DeWitt connection is also field independent. We shall
come back to this point when we discuss the generaliza-
tion to non-Abelian theories. Since the gauge transforma-
tion for the vector potential Ai involves derivatives of ξ,
the resulting Singer-DeWitt connection turns out to be
nonlocal.
Note that if we add (charged) matter fields to the pure

Maxwell theory, obtaining ΦQED ¼ fðA;ψÞg, the above
would still be a valid connection form on the full ΦQED.
Remark 1.—A Lorentz-covariant treatment, which uses a

space of histories for Aμ rather than a space of configu-
rations for Ai, is possible in principle and also in practice
for a Euclidean signature. Otherwise,ϖ requires choices of
Green functions and introduces time nonlocalities in the
construction of the connection. We leave the investigation
of these aspects for Ref. [15].

2The knowledge of the kinematic terms of the Lagrangian
together with the demand of minimal coupling (gauge structure)
is enough to reconstruct the full dynamics of gauge theories
coupled to matter.

3We adopt the anti-Hermitian convention for g when G is
unitary, but we still keep the Maxwell field real—so that it is
valued in −ig. For notational simplicity, we fix the electron
charge to þ1.
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IV. DRESSINGS

For field-space curves Aiðx; tÞ, in analogy with a Wilson
line, we define through a path-ordered exponential the
field-dependent field-space “parallel transport”

h½A� ¼ P exp
Z

A⋆←A
ϖ; ð13Þ

where ðA⋆ ← AÞ ¼ fAðtÞg is a field-space path linking the
configuration A to the initial configuration A⋆ ¼ Að0Þ, the
arrow indicating the direction of path ordering.
Under a field-dependent gauge transformation g½A�ð·Þ

∈ G, Eq. (13) transforms at every point x ∈ Σ as
h½A� ↦ g½A�−1h½A�g½A⋆�, as follows from (7). We consider
the initial configuration to be a fully fixed reference
configuration, so that g⋆ ≡ g½A⋆� ¼ Id.
Now, define the dressed matter and gauge fields by

ψ̂ ¼ h−1ψ and Â ¼ Ah ¼ Aþ h−1dh: ð14Þ

Under the action of g½A�, the dressed fields transform into

ðÂþ g−1⋆ dg⋆; g−1⋆ ψ̂Þ ¼g⋆¼IdðÂ; ψ̂Þ. In other words, under
gauge transformations which leave A⋆ fixed, the corre-
sponding dressed fields are fully gauge invariant.
In the case of Maxwell theory, the Singer-DeWitt

connection given in (12) is independent of A, and con-
sequently, h½A� is path independent in field space. If (for
mere convenience) we choose A⋆ to be in the gauge
∂iA⋆

i ¼ 0, then

h½A� ¼ expði∇−2divAÞ ð15Þ

is readily recognized to be the Dirac dressing. Henceforth,
we will call the field-space connection form of (12) the
(kinematical) Dirac-Singer-DeWitt connection.
Remark 2.—To make contact with the Faddeev-Kulish

dressing [22,23]—the one relevant for soft charges [5]—we
briefly note that in Lorentz gauge, which in momentum

space reads pμÃμ ¼ 0, we obtain h½A� ¼ exp ð i
2π

R d3p
2Ep

piÃi
pjpj

Þ
which coincides on shell (pipi ¼ E2

p) with the Faddeev-
Kulish dressing in the rest frame of the electron. To make
explicit contact with Ref. [4,24], we note that their two
fundamental demands of a static dressing correspond,
irrespectively of gauge fixings, to the first condition
of (7), and to setting λðx; tÞ ¼ 0 in the definition
A0 ¼ λþ itϖ.

V. LOCAL AND GLOBAL CHARGES

In the presence of finite boundaries,4 gauge invariance
can pose a challenge (e.g., Refs. [5–8,11,25–28]),

especially if one has in the formalism field-dependent
gauge transformations, implied by dressings of all sorts. In
this section, we will show that using dH as opposed to d in
the spacetime-covariant symplectic approach [1] allows us
to gain complete local gauge invariance, while retaining—
when using the Dirac-Singer-DeWitt connection—solely
the physical conserved charges. We will also show that, in
light of the previous section, dH-symplectic geometry
corresponds to the symplectic geometry of the dressed
fields.
We start by recalling the construction of the charges in

the symplectic language. Whenever the Lagrangian density
LðφÞd4x is invariant under gauge transformations, as in
Yang-Mills,5

0 ¼ Lξ♯Ld
4x ¼ ELIδξφ

Id4xþ dθðφ; δξφÞ; ð16Þ

here, ELIðφÞ are the Euler-Lagrange equations for φI, and
θ ¼ ΠIdφI ∈ Λ1ðΦÞ ⊗ Λ3ðMÞ is standard notation for the
(pre)symplectic current (we use densitized momenta ΠI).
One can define the (on-shell) conserved Noether current
density jξ as (e.g., Ref. [26])

jξ ≔ iξ♯θ≡ θðφ; δξφÞ: ð17Þ

In particular, the extra invariance Lξ♯θ ¼ 0 implies, via
the Cartan formula, the Hamiltonian flow equation iξ♯Ω ¼
−djξ, thus indicating a symmetry generator [Ω ¼ dθ is the
(pre)symplectic 2-form].
In Yang-Mills theories, it is easy to show that the Noether

current density is exact, jξ ≈ dðEξÞ, when on shell of the
Gauss constraint (a condition we signal with ≈). Hence, the
associated charge is a pure boundary quantity. This is why
one talks always about “boundary charges.”
Now, Lξ♯θ ¼ 0 holds in Yang-Mills theories only for

field-independent gauge transformations, i.e., only if
dξ ¼ 0. This led us to introduce the horizontal symplectic
current [1],

θH ≔ ΠIdHφ
I ¼ θ þ ΠIδϖφ

I; Lξ♯θH ≡ 0: ð18Þ

The last equality is easily checked in Yang-Mills theory.
It then follows that ΩH ≔ dHθH ¼ dθH is d exact—which
makes it a viable presymplectic form—and

jHξ ≔ iξ♯θH ¼ 0: ð19Þ

This formula is valid locally onM, at the density level. The
message it conveys is that gauge transformations carry no
physical charge with respect to this particular decompo-
sition of vertical-horizontal (or gauge-physical) d.o.f.
However, there is still room for conserved global charges.

4These should be understood as boundaries of a subregion
of Σ.

5In general relativity, there are subtleties with boundary terms
[25,27].
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Before addressing global charges, one remark is in order.
The symplectic potential as derived from L is defined up to
a d-exact term. In Yang-Mills theory, it is precisely such a
boundary term that distinguishes θ from θH [1,7],

θH ≈ θ þ dðEϖÞ; ð20Þ

and similarly, apart from boundary terms, ðΩHÞjbulk ≈Ωjbulk.
As is customary in gauge theories and general relativity, pure
boundary contributions can be highly nonlocal; although the
image is restricted to the boundary, their domain depends on
the fields throughout thewholemanifold—this is the case for
the Dirac-Singer-DeWitt connection (12), but does not need
to be for other choices [15].
Global charges. So far, we have implicitly assumed that

ϖ provides a 1-1 relation between LieðGÞ and Vφ. In
practice, this is not always the case, even if the operator
·♯∶LieðGÞ → Vφ is pointwise in Φ an isomorphism (we
assume ψ ≠ 0); there may exist particular ξo ∈ LieðGÞ for
which iξ♯oϖ ¼ 0. Such ξ♯o’s—if they exist—are thus hori-
zontal with respect to ϖ. Therefore, according to our
identification horizontal∼“physical,” the transformations
corresponding to ξo’s play the role of actual symmetries,
not of “unphysical” gauge transformations.
For the specific example of the Dirac-Singer-DeWitt

connection onΦQED, from (12), one sees that∇2ξo ¼ 0 is a
sufficient condition for iξ♯oϖ ¼ 0. From (11), one infers that
this condition is also necessary and, moreover, that ξo has
to satisfy vanishing Neumann boundary conditions. Hence,
we conclude that for the Dirac-Singer-DeWitt connection,
the only ξo’s satisfying iξ♯oϖ ¼ 0 are constant ξo’s (we
assume Σ has trivial cohomology).
The physical relevance of the symmetry transformations

ξo ¼ cnst is confirmed by the nonvanishing of the corre-
sponding horizontal Noether current

jHξo ¼ iξ♯o ½E ∧ dHAþ ðψ̄γμdHψÞ � dxμ�
¼ −ξoψ̄γμψ � dxμ ¼ −ξoje; ð21Þ

where ψ̄ ≔ ψ†γ0 and je is the electron current density.
Thus, we see that the Dirac-Singer-DeWitt connection

automatically picks out global gauge transformations in
electromagnetism as being physically distinct from local
ones. This is in contrast with those formalisms involving
new boundary d.o.f., which tend to provide infinitely many
boundary charges, one for each multipole moment of
ξjbdry [7].
The non-Abelian and gravitational analogs of electromag-

netism’s global gauge transformations are Killing gauge
transformations and diffeomorphisms [15]. Because of non-
linearities, their very existence crucially depends on the
properties of the field configuration, such as, e.g., ametric gμν
possessingKilling vector fields or a gauge potentialAa

μ being

reducible. A similar result was discussed by DeWitt [19].
There, Killing transformations are picked out as the only
actual symmetries by the nonlinearities of the theory.
Horizontal symplectic potential equals the dressed

symplectic potential. Finally, we show that gauge charges
vanish thanks to the contribution of the dressings—this
follows from equivalence between the use of a horizontal
symplectic potential and that of “dressed” fields (14). It is
enough to show that dHA ¼ AdhdÂ and dHψ ¼ hdψ̂ ,
where Ad is the adjoint action of the group (the notation
encompasses the non-Abelian case). The definition of h via
a path-ordered exponential (13) suffices to show that6

dhh−1 ¼ ϖ, which implies the result. This result can be
summarized as

θðφ̂;dφ̂Þ ¼ θHðφ;dφÞ: ð22Þ

VI. OUTLOOK

As anticipated, field-space covariance provides for the
first time a unified geometrical origin to both boundary
charges and particle dressings in 3þ 1 electrodynamics.
This advance will be important in two main areas (and their
intersection): the study of boundary properties in gauge
theories and nonperturbative treatments of non-Abelian
gauge theories.
a. Boundaries in gauge theories. After a complete gauge

fixing, one can decide once and for all what is physical and
what is gauge, and information related to the latter d.o.f. is
obscured if not lost. This becomes extremely relevant for
gauge theories in the presence of boundaries, both asymp-
totic and not. For boundaries may accidentally break or
otherwise fix certain gauge symmetries, which one would
like to preserve in the physics of the system [5–8,11,25–28].
New d.o.f. are sometimes inserted into the theory to restore
the sought-after invariance [7–10]. The field-space connec-
tion form,ϖ, being gauge covariant and not invariant, retains
the information about gauge directions. Some of these
directions can still manifest themselves as global charges,
but charges associated to generic local gauge symmetries
happily always vanish in the field space–covariant setting.
In other words, in the cases explored so far, ϖ has defeated
the purpose of new d.o.f. at boundaries; nothing is lost with
ϖ, so nothing needs to be restored.
The introduction of ϖ begs for applications in other

scenarios in which boundary d.o.f. have been introduced,
such as Refs. [8,29,30]. In those contexts in which there is
still controversy, it couldgive a natural characterizationof the
true physical charges as opposed to the purely gauge ones.
b. Nonperturbative, non-Abelian gauge theories. Many

of the specific properties seen here are particular to the

6½d; d� ¼ 0 implies dðh−1dhÞ ¼ dðh−1dhÞ þ ½h−1dh; h−1dh�.
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Abelian case. For a non-Abelian gauge theory, ϖ could
still be defined through orthogonality with respect to the
obvious generalization of the DeWitt kinematical super-
metric for the gauge field, Eq. (10). In that case, ϖ turns
out to be field dependent, and the field-space Wilson line
becomes path (or history) dependent due to the presence
of field-space curvature, F ¼ dHϖ ≠ 0. Indeed, ϖ cannot
be everywhere flat, since that would imply there exists a
global (horizontal) section, in contradiction to the findings
of Gribov [13,14]. Nonetheless, a well-defined, nonper-
turbative dressing, which reduces to (12) around A⋆ ¼ 0 at
lowest order in perturbation theory, still exists. In this
context, what we have just described in the last sentence,
is essentially a geometrized version of the proposals of
Ref. [2]. Lastly, we note that a fully Lorentz-covariant ϖ
for QCD (in the Euclidean setting) would lead to a

dressing similar to the Gribov-Zwanziger kind [31,32].
Understanding the natural extension of dressings to the
nonperturbative regime in QCD which ϖ provides, and
possible relations of this dressing to Gribov-Zwanziger
and confinement, is an interesting future direction.
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