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Zusammenfassung

Wir untersuchen stark-wechselwirkende fermionische Materie unter Verwendung funktionaler Renormierungs-
gruppentechniken (RG). Im ersten Teil dieser Arbeit untersuchen wir relativistische, heifle und dichte Quark-
materie, wobei wir uns auf den Mechanismus der spontanen Symmetriebrechung in der Quantenchromodyna-
mik (QCD) mit zwei masselosen Quark-Flavours konzentrieren. Zu diesem Zweck betrachten wir zunachst Nambu-
Jona-Lasinio-artige Modelle, die als effektive Niederenergiebeschreibung der QCD dienen. Wir arbeiten die Be-
deutung der Fierz-Vollstindigkeit in diesen Studien heraus, analysieren die Fixpunktstruktur, studieren die RG-
Fliisse der Vier-Fermionen-Kopplungen und bestimmen die Phasenstruktur bei endlicher Temperatur und quark-
chemischem Potenzial, wobei der Einfluss verschiedener Trunkierungen untersucht wird. Mit Hilfe einer Fierz-
vollstandigen Vier-Quark-Basis studieren wir anschlieflend die Auswirkung von Eichfreiheitsgraden auf die ther-
mische Phasengrenze und erforschen die Phasenstruktur von QCD mit zwei masselosen Quark-Flavours. Wir
stellen fest, dass sich die Phasengrenze signifikant verdndert, sobald Fierz-unvollstindige Ansitze verwendet wer-
den. Dariiber hinaus deuten unsere Fierz-vollstindigen Studien darauf hin, dass die Dynamik bei niedrigem quark-
chemischem Potenzial vorwiegend durch einen nicht-GaufSschen Fixpunkt kontrolliert wird, wodurch sichergestellt
wird, dass die Niederenergiephysik von chiralen Freiheitsgraden dominiert wird. Im Bereich grofier quarkchemi-
scher Potenziale finden wir dariiber hinaus starke Hinweise fiir die Entstehung eines chiralen Diquark-Kondensats.

Im zweiten Teil untersuchen wir Bindungseigenschaften nicht-relativistischer fermionischer Systeme mit weni-
gen Teilchen am Temperaturnullpunkt unter Verwendung eines funktionalen Renormierungsgruppenzuganges zur
Dichtefunktionaltheorie (DFT-RG). Wir geben eine kurze Einfiihrung zur DFT und den bekannten Kohn-Sham-
Gleichungen (KS), diskutieren die Herleitung der DFT-RG-Flussgleichung und betrachten ein eindimensionales
Kernmodell als Beispiel. Mit dem Ziel die Genauigkeit der trunkierten DFT-RG-Gleichungen zu verbessern, stellen
wir eine Optimierung des Startpunktes des RG-Flusses auf Grundlage der KS-Gleichungen vor. Die Anwendbarkeit
des neu entwickelten Ansatzes studieren wir mittels Systeme quasi-eindimensionaler, dipolarer Fermionen, die in
einer harmonischen Falle konfiniert sind. Fiir bis zu fiinf Teilchen berechnen wir Grundzustandsenergien fiir ver-
schiedene Wechselwirkungsstarken und testen dabei die jeweilige Leistungsfahigkeit unterschiedlichster Trunkie-
rungen. In niedrigster Ordnung stellen wir fest, dass unser neuer Ansatz fiir attraktive Wechselwirkungen am besten
abschneidet. Repulsive Wechselwirkungen sind damit aber nur eingeschrankt zugénglich. Wir beobachten weiter-
hin, dass die relative Abweichung zum exakten Resultat mit zunehmender Teilchenzahl kleiner wird.



Abstract

We study the nature of strongly-interacting fermion matter by employing functional Renormalization Group (RG)
techniques. In the first part of this thesis, we examine relativistic hot and dense quark matter focusing on the mech-
anism of spontaneous symmetry breaking in Quantum Chromodynamics (QCD) with two massless quark flavors.
To this end, we consider Nambu-Jona-Lasinio-type (NJL) models serving as effective low-energy descriptions of
QCD. We highlight the significance of Fierz completeness in such studies, analyze the fixed-point structure, study
the RG flows of the four-fermion couplings, and explore the phase structure at finite temperature and quark chemi-
cal potential where we investigate the influence of different truncations. Using a Fierz-complete four-quark basis, we
then study the impact of gauge degrees of freedom on the thermal phase boundary and explore the phase structure
of chiral two-flavor QCD. We find that the phase boundary is significantly altered when Fierz-incomplete ansitze
are considered. Moreover, our Fierz-complete studies suggest that the dynamics at low quark chemical potential is
predominantly controlled by a non-Gaussian fixed point, ensuring that the low-energy physics is governed by chiral
degrees of freedom. For the regime at large quark chemical potential, we find strong indications for the formation
of a chiral diquark condensate.

In the second part, we study bound-state properties of non-relativistic few-fermion systems at zero temperature
using a functional Renormalization Group approach to Density Functional Theory (DFT-RG). We give a short in-
troduction to DFT and the famous Kohn-Sham (KS) equations, discuss the derivation of the DFT-RG flow equation,
and study a one-dimensional nuclear model as an introductory example. To improve the precision of the truncated
DFT-RG equations, we propose an improvement based on the KS equations optimizing the starting point of the
RG flow. As a feasibility study for this new development, we consider a system of quasi-one-dimensional dipolar
fermions confined in a harmonic trap. For up to N = 5 particles, we compute ground-state energies for vari-
ous interaction strengths and let different truncations compete against each other. Within our approximation, our
KS-optimized DFT-RG method performs best for attractive interaction strengths but appears to be less suited in
the repulsive regime of our benchmark system. Compared to exact results, we observe that the relative deviation
decreases for higher particle numbers.
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Chapter 1

Introduction

Strongly-interacting fermionic systems play an essential role in nature where a special interest is attached to those
which can assume non-trivial ground states as a consequence of dynamics on microscopic scales. The physical be-
havior of a quantum system is then often governed by new effective degrees of freedom composed of constituents
of the underlying theory. Below a transition temperature, for instance, it is energetically favorable for fermions to
form Cooper pairs [1] in Bardeen-Cooper-Schrieffer-type (BCS) superconductors [2, 3] accompanied by the emer-
gence of a gap in the excitation spectrum. Such non-trivial ground-state configurations are often related to various
phenomena, which can be noticeable on macroscopic scales, e.g., the electric resistance vanishes identically in the
superconducting phase. In many cases, the transition between two phases dominated by distinct degrees of freedom
has then its origin in the spontaneous breakdown of a continuous global symmetry of the underlying theory.
Spontaneous symmetry breaking mechanisms also play an important role in Quantum Chromodynamics
(QCD) [4-7], the fundamental theory of the strong interaction, describing the intricate interplay between quarks [8]
and gluons. An intriguing aspect of QCD is its non-Abelian gauge structure which implies gluonic self-interactions
already on the level of the classical action and gives rise to several phenomena. For instance, QCD is asymptotically
free [6, 7] meaning that the theory is weakly coupled at large momentum scales. Therefore, given a sufficiently high
temperature 7' 2> 130 MeV [9-13], about a hundred thousand times hotter than the core of the sun, quarks and
gluons appear as a quasi-ideal gas known as the Quark-Gluon Plasma (QGP) [14]. It is expected that the QGP
was the predominant state of matter in the very early universe ¢ < 1075 s [15], shortly after the Big Bang. Below
a critical temperature, however, QCD matter appears to be dominated by hadronic bound states like protons and
neutrons in which the fundamental degrees of freedom, the quarks, are confined [16, 17]. In correspondence to
BCS theory, the formation of new effective degrees of freedom is accompanied by the emergence of a gap, now a
mass gap, so that the quarks acquire a comparably large so-called constituent mass being responsible for a major
part of the observable mass in the universe. As it turns out, fluctuation effects in the strong gauge sector [18-23]
are the main driving force of this physical mechanism which is known as spontaneous chiral symmetry breaking.
Even though QCD provides us with the fundamental description of hadrons and their interplay in our universe,
a direct investigation of the symmetry breaking patterns and critical phenomena at finite baryon density appears to
be challenging. In particular, since QCD becomes strongly coupled at low momentum scales, the use of perturbation
theory is limited. On the other hand, at non-zero densities lattice QCD approaches are plagued by the infamous sign
problem [24]. In the past decades, therefore, Nambu-Jona-Lasinio-type (NJL) models [25, 26] and related quark-
meson (QM) models mainly guided our understanding of the QCD phase diagram and the underlying symmetry
breaking patterns. NJL-type models indeed became a useful tool to study the low-energy regime of QCD [27-30].
The phase structure of QCD at densities of several times of normal nuclear density no = 0.16 fm ™ is of special
interest as these studies suggest that the low-energy regime is governed by new types of degrees of freedom which
are called diquarks [28, 31-35]. The symmetry breaking mechanism which is then expected to occur in QCD
at large density is of the Anderson-type [36-39]. As a consequence, some gluons would acquire an effective so-
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called Meissner mass [40, 41] implying that the strong interaction becomes short-ranged. Since this phenomenon
is well-known from conventional BCS-type superconductors, in QCD, this state of matter is referred to as a color
superconductor [42, 43].

Hadronic matter far beyond normal nuclear density may also be observable in nature. For instance, it is expected
that deconfined or exotic QCD matter could exist in the interior of neutron stars, the very compact remnants of
supernova explosions of massive stars beyond M 2> 8 Mg, see Refs. [44, 45] for reviews. Since they represent
the most compact stellar objects in the universe besides black holes, neutron stars are intriguing laboratories for
the study of dense nuclear matter. In recent years, new experimental efforts have therefore been made to better
understand the composition of neutron stars in order to constrain the equation of state of hadronic matter. At the
moment, there are several promising complementary experiments ongoing. For example, from measurements of
gravitational wave signals of binary neutron stars in the premerger phase, the tidal deformability of the compact
objects can be extracted [46-49] from which the equation of state can be constrained. An alternative approach
is tested by the orbital-based X-ray Neutron star Interior Composite ExploreR (NICER) [50-53] which aims at a
direct measurement of the mass-radius relation of neutron stars. At the same time, it is also an exciting era for
theoretical studies of matter under extreme conditions. For instance, chiral Effective Field Theory (YEFT) [54-
58] as a systematic framework based on an expansion in low-energy degrees of freedom provides us with a reliable
description of the equation of state in the regime of normal nuclear density. Perturbative QCD [59-62], on the other
hand, may be well suited for 70 to 100 times of the nuclear density where QCD becomes weakly coupled. However,
the intermediate density regime of the equation of state still remains challenging to access.

In the first part of the present thesis, we therefore aim at an improvement of our present knowledge of the phase
structure at finite temperature and quark chemical potential. To this end, we consider the functional Renormal-
ization Group [63, 64] to investigate two-flavor QCD in the chiral limit. In particular, we study the RG flow of the
four-fermion correlation functions, the fixed-point structure, and the symmetry breaking patterns of hot and dense
baryonic matter using Fierz-complete ansatze for the scale-dependent four-fermion vertices in the effective action.

In the second part of the thesis, we discuss bound-state properties of one-dimensional non-relativistic few-
fermion systems at zero temperature using a Renormalization Group inspired approach to Density Functional The-
ory (DFT-RG) [65, 66]. In our study, we aim at an enhancement of the convergence properties of the truncated
DFT-RG flow equations by considering a Kohn-Sham-improved starting point for the RG flow.

In the past years, our understanding of light- and medium mass nuclei has been significantly put forward due to
the use of chiral effective field theory interactions [67-78] and the development of improved many-body methods
like the In-Medium Similarity Renormalization Group (IMSRG) [79-84], many-body perturbation theory [85-88],
self-consistent Green’s function approaches [74, 89-91], or coupled-cluster theory [92-97]. Density Functional
Theory (DFT), on the other hand, appears to be the most practicable many-body technique in the regime of heavy
nuclei [98] where impressive theoretical efforts have also been made in order to investigate the nuclear chart over
a wide range of mass number in the last decades. One example for this successful work is the UNEDF/NUCLEI
SciDAC collaboration employing large truncations for the nuclear energy density functional to predict binding
energies for several hundred nuclei, see Refs. [99-102].

Originally, the starting point for DFT is the famous Hohenberg-Kohn (HK) theorem [103, 104] which guaran-
tees, in principle, the existence of a universal energy density functional. The consequences are far-reaching as the
complexity of a given many-body problem with 3V degrees of freedom is considerably reduced due to the fact that
the density is characterized by three coordinates. Unfortunately, the HK theorem only states the existence of the en-
ergy density functional but does not provide any “recipe” for its computation. For the latter, one then often chooses
a global ansatz relying on phenomenological considerations in conventional DFT studies.

Starting from microscopic principles, the DFT-RG framework provides an evolution equation for the two-
particle-point-irreducible (2PPI) effective action allowing for a systematic computation of the HK energy density
functional, see Refs. [105-107] for reviews and Refs. [65, 66] for the seminal works. In this framework, the density
plays the role of an effective bosonic composite field describing the dynamics of the underlying fermionic degrees of



freedom. An intriguing feature of the DFT-RG approach is that exchange-correlation effects are naturally included
which usually turns out to be most challenging in DFT. In recent years, the DFT-RG framework has been put for-
ward in various works. For example, the feasibility of this approach was tested successfully in studies of (0 + 0)-,
(0+1)-, (1 +1)-and (2 + 1)-dimensional field theories with various two-body interactions, e.g., see Refs. [108-
114]. The DFT-RG scheme provides a microscopic and systematic approach to DFT. As it turns out, however, the
previously employed expansion of the energy density functional in terms of density correlation functions entails
rather slow convergence properties for interactions studied up to now. A first step towards an improved ansatz for
the 2PPI evolution equation was considered in Ref. [113] relying on a splitting of the effective action into a mean-
field and a fluctuation part which is then RG evolved by the corresponding RG flow equation. The ground-state
energy results for a (0 + 0)-dimensional toy model seem promising, even though the feasibility of this scheme for
higher dimensions still needs to be investigated because of the increasing computational complexity.

In this work, we shall also present an improvement scheme for the DFT-RG approach. To this end, we initialize
the RG flow at a starting point associated with a system of non-interacting fermions in an external KS potential
which we obtain from solving the KS equations self-consistently. In this context, the KS single-particle states can
be interpreted as an optimized basis for the particular problem under consideration. This approach may also be
compared to advances in other methods such as many-body perturbation theory [85-88, 115] where a suitably
chosen reference system can improve ground-state energy results notably.

The present thesis is organized as follows: We begin in Chap. 2 with a general overview of the theoretical tools we
employ throughout this work. In particular, we discuss the basics of thermal field theory and outline the connection
between the Eulidean path integral and the partition function. We further derive the Wetterich equation and present
some frequently employed approximation schemes for the scale-dependent effective action. In Sec. 2.3, we discuss
the basic aspects of non-Abelian local gauge invariance from which we motivate the famous QCD Lagrangian. We
further give an introduction to the mechanism of spontaneous chiral symmetry breaking and discuss how its onset
can be studied by considering four-fermion correlation functions. In Sec. 2.3.3, we show the importance of Fierz
completeness for the predictive power of four-fermion theories, and discuss in Sec. 2.3.4 the phase structure of
two-flavor QCD at finite temperature and quark chemical potential as it is found in previous NJL model studies.

In Chap. 3, we present key results from our studies of the symmetry breaking patterns in hot and dense quark
matter. We begin in Sec. 3.1 with the study of a one-flavor and one-color NJL-type model at leading order of
the derivative expansion using two different parametrizations for a Fierz-complete four-fermion basis. We study
the vacuum fixed-point structure and explore the one-flavor and one-color phase diagram at finite temperature
and fermion chemical potential. From the observed dominance pattern, i.e., the relative strengths of the scale-
dependent four-fermion couplings, we discuss the emerging symmetry breaking patterns in the low-energy regime.
We compare different regularization schemes, a covariant one and a non-covariant one, and discuss their influence
on physical observables. In Sec. 3.2, we then study the phase structure of an NJL model with two massless quark fla-
vors and [V, colors at finite temperature and quark chemical potential. We introduce a ten-channel Fierz-complete
basis of four-quark interactions obeying a global SU(N,) x SU(2)r x SU(2)r x U(1l)y symmetry and study
the phase boundary of the NJL model in analogy to Sec. 3.1. Additionally, we investigate the impact of U (1) 4-
symmetric initial conditions on the critical temperature and the underlying symmetry breaking patterns. Inspired
by the observed dominances, we study the fixed-point structure of a Fierz-incomplete two-channel approximation
and analyze the RG flow at finite temperature and quark chemical potential. In Sec. 3.3, we investigate QCD with
two massless quark flavors. By including the ten-channel Fierz-complete four-quark basis from the previous section
and the quark-gluon three-point vertex in the effective action, we study the phase structure of QCD and compare
our findings with the results from Sec. 3.2. In Sec. 3.4, we discuss how the present findings may help to constrain
the equation of state of isospin-symmetric nuclear matter.
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In Chap. 4, we study systems of one-dimensional identical fermions using the DFT-RG framework. In Sec. 4.1,
we outline the main statements of the famous Hohenberg-Kohn theorem representing the foundation of Density
Functional Theory. In Sec. 4.2, we further introduce the general idea of the Kohn-Sham (KS) approach to DFT and
discuss the self-consistent KS equations. Moreover, we give an overview about a few approximation schemes for
the exchange-correlation functional which encodes all non-trivial information on the interacting /V-particle system.
In Sec. 4.3, we present a Renormalization Group approach to DFT where we discuss the derivation of the DFT-
RG flow equation for the 2PPI effective action. As an introductory example, we study a one-dimensional nuclear
toy model where we compute ground-state properties of different few-body systems. We further propose a novel
improvement for the DFT-RG framework where we use a system of non-interacting fermions in a KS potential as
a starting point for the DFT-RG flow. In Sec. 4.4, we test this improvement scheme by studying a system of quasi-
one-dimensional fermions in a harmonic trap which interact via a dipolar-type two-body interaction. For this, we
compute the ground-state energy for up to N = 5 particles as a function of the dipolar coupling strength where
we consider different truncations for the DFT-RG flow equations. As a benchmark, we use results from an exact
diagonalization approach.

1.1 List of Publications

The present dissertation was written solely by the author. Nevertheless, most of the presented results rely on works
which were done together with my collaborators in the past years. Some of these works are already published or
exist as preprints. In the following list, we shall give an overview of the publications and where they appear within
this work:

(i) “Fierz-complete NJL model study: fixed points and phase structure at finite temperature and density”
with Jens Braun and Marc Leonhardt
In: Phys. Rev. D96 (2017), 076003
E-print: arXiv:1705.00074 [hep-ph]
Large parts of this publication underlie Sec. 3.1 and the appendices B, C, and E.

(ii) “Fierz-complete NJL model study. II. Toward the fixed-point and phase structure of hot and dense two-flavor
QCD”
with Jens Braun and Marc Leonhardt
In: Phys. Rev. D97 (2018), 076010
E-print: arXiv:1801.08338 [hep-ph]
Many aspects of this article are discussed in Sec. 3.2 and in the appendices B and E.

(iii) “Fierz-complete NJL model study III: Emergence from quark-gluon dynamics”
with Jens Braun and Marc Leonhardt
E-print: arXiv:1909.06298 [hep-ph]
Some results of this article are presented in Sec. 3.3.

(iv) “Symmetric nuclear matter from the strong interaction”
with Marc Leonhardt, Benedikt Schallmo, Jens Braun, Christian Drischler, Kai Hebeler, and Achim Schwenk
E-print: arXiv:1907.05814 [nucl-th]
In Sec. 3.4, we give a short overview of this very recent publication.

(v) “Formation of Selfbound States in a One-Dimensional Nuclear Model — A Renormalization Group based
Density Functional Study”
with Sandra Kemler and Jens Braun
In: J. Phys. G44 (2016), 015101
E-print: arXiv:1606.04388 [nucl-th]


https://arxiv.org/abs/1705.00074
https://arxiv.org/abs/1801.08338
https://arxiv.org/abs/1909.06298
https://arxiv.org/abs/1907.05814
https://arxiv.org/abs/1606.04388

1.1 List of Publications 11

Parts from the introduction to the DFT-RG framework and selected results from this article underlie our
discussion in Sec. 4.3.

In the bibliography, these articles can also be found in Refs. [54, 110, 116-118], respectively.
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Chapter 2

Theoretical Background

In this chapter, we introduce the essential theoretical tools which we employ throughout the first part of the present
work. At the beginning of this chapter, we start with an overview of the general ideas of thermal Quantum Field
Theory from a path integral perspective by working within the so-called Matsubara formalism. Here, we also discuss
how a finite particle density can be realized in relativistic Quantum Field Theories in Euclidean spacetime.

In the second section, we then show the general derivation of the famous Wetterich equation, which is a func-
tional Renormalization Group equation for the quantum effective action. For the latter, we shall briefly discuss
two frequently employed expansion schemes which are predominantly used to study critical behavior in quantum
systems in a nonperturbative fashion.

We further outline the concepts of non-Abelian local gauge invariance in Subsec. 2.3.1 and discuss the mech-
anism of spontaneous chiral symmetry breaking in Subsec. 2.3.2. In this context, we introduce the theory of the
strong interaction as a part of the Standard Model of particle physics. This theory, the famous QCD, is a non-Abelian
gauge theory and describes the interplay of fermionic quark and bosonic gluon degrees of freedom. In Subsec. 2.3.4,
we discuss the conjectured phase diagram of hot and dense two-flavor QCD, which is until today especially based
on model considerations at least at high densities. We emphasize that the first chapter shall only serve as a brief
reminder. For a detailed discussion on the various subjects, we refer to the references we shall give in this chapter.

2.1 Characteristics of Thermal Quantum Field Theory

In this section, we wish to give a short overview of our approach to thermal Quantum Field Theory, which is based
on an Euclidean path integral formalism. As already indicated in the introduction, this section intends to give the
reader an impression of the theoretical concepts we employ in the first part of this work. Therefore, we rather
concentrate on some terminology and definitions, where we avoid to dig too deep into the various details. Note that
the following introduction is mainly based on Refs. [119-123]. Moreover, we use natural units A = ¢ = kg =1
throughout the entire thesis.

An essential property of the path integral is its relation to statistical physics. Here, the partition function Z is
the main theoretical object which contains all non-trivial information about the many-body quantum system under
consideration. The statistical partition function can be written as

Z=Tre PH (2.1)

where 5 = 1/T is the inverse temperature. From the partition function in statistical physics we can then compute
thermal expectation values for any observable O via

B Trle #H O]

( >—W- (2.2)
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Here, the expectation value can be associated with a physical observable, such as the magnetization, which can give
valuable insights into the underlying microscopic dynamics as we shall see below.

From a field-theoretical point of view, the same expression for the statistical partition function Eq. (2.1) can
be derived by considering the transition amplitude, e.g., for a bosonic Quantum Field Theory with a classical ac-
tion Sy [¢] defined for a Minkowski-type spacetime geometry. In particular, the transition amplitude describes the
propagation from a field state |¢,) at time ¢ = 0 to a state |¢,) at some final time ¢ = ts:

b (te,x)=p ()

(Gp] € |B) ~ N / D eiSulé) (23)
¢(07I):¢a (:IZ)

with a proper normalization constant V. We now perform a so-called Wick rotation turning the real time axis onto
the imaginary one by imposing 7 = it. Further, we assume that the system ends up again in the state ¢, after a time
ty = —if3. The transition amplitude can then be related to the statistical partition function Eq. (2.1) by summing over
all states ¢,,. Note that the bosonic field ¢ has now to obey periodic boundary conditions ¢(0, 2) = ¢(/3, «) and the
imaginary time variable 7 is confined on a finite (periodic) interval 7 € (0, 5]. For a system of fermions, however,
the compactified temporal box has to be antiperiodic to ensure Pauli’s principle. For instance, for a fermionic field
type ¢(7, x), the boundary condition (0, z) = — (8, z) has to be fulfilled which is a consequence of the Pauli
exclusion principle on the level of the path integral, see, e.g., Ref. [124]. Due to the compactification of the time
direction, we find discretized so-called Matsubara modes in the energy spectrum where we have w,, = 2n7T for
bosons and v,, = (2n+1)7T for fermions, see also App. A. Note that another convenient property of the imaginary
time formalism is that our originally Minkowskian spacetime metric g,,,, = 7),,,, = diag(—1,+1, 41, +1) becomes
Euclidean g,,,, = 0,, = diag(+1,+1,+1, +1) which simplifies computations on a technical level in many cases.
Nevertheless, we have to handle theoretical objects which are sensitive to the underlying spacetime geometry with
some care, e.g., the properties of the Euclidean Dirac matrices as well as of Euclidean spinor fields [125] do slightly
change, see also App. B.

Now, we can write down the Euclidean path integral or the statistical partition function, respectively:
Z~N / D e~ el9] (2.4)

where Sg denotes the so-called Euclidean classical action. Note that this object requires a suitable regularization.
For the moment, however, we ignore the latter issue and move the discussion concerning a proper regularization to
Sec. 2.2. There, within the non-perturbative functional Renormalization Group framework, a regulator is added to
the classical action on the level of the path integral. The so-called scale-dependent partition function Zj, is then the
starting point for the derivation of the Wetterich equation.

Since we work throughout the present thesis in the imaginary time formalism, we assume from now that all
mathematical objects are defined for a Euclidean spacetime geometry, i.e., S[¢] = Sg[¢]. We add that the so-defined
Euclidean path integral has the further advantage to have a well-defined (positive semidefinite) probability measure,
which is an essential property for many lattice studies of Quantum Field Theories. However, by considering a finite
particle density, the positivity of the probability measure can again be spoiled as we shall discuss at the end of this
chapter.

We add that the finite temperature 7" enters our studies as an external parameter which can be seen as a heat-
bath distinguishing the temporal and spatial components of the Euclidean spacetime. From this, it is clear that the
Poincaré symmetry of relativistic QFT’s is broken at finite temperature, see Sec. 3.1 for a detailed discussion.

From the so-defined partition function (2.4), it is straightforward to define the n-point correlation functions of
a quantum theory under consideration where the correlation functions are basically the expectation values of the
fluctuating fields which enter the classical action. Note, the “one-point” correlation function (¢) is associated with
the expectation value of the fluctuating quantum field itself. We further stress that the correlation functions carry
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all non-trivial information of a quantum system under consideration. For example, from the spectrum of the two-
point function,we can compute possible two-body bound states and resonances. To derive the n-point correlation
function in an efficient way, it is convenient to attach an external source J to the fluctuation field ¢. This is in
analogy to the situation in statistical physics where one introduces an external magnetic field H in Ising-type models
to compute, e.g., the magnetization M, which can be related to the classical field from above, by taking derivatives
of the free energy with respect to the external field H. In the same spirit, we define the so-called source-dependent
partition function

21 = / Do e*SE[¢]+fX To()60) _ wiJ] , (2.5)

where we have defined the Euclidean Schwinger functional W[J] which is the generating functional of the so-called
connected correlation functions. Moreover, we use the shorthand notation x = (7, ). From this, we can derive
the connected n-point correlation function by just performing functional derivatives with respect to the external
source J(z) and setting the source to zero subsequently:

5 5 5
(x1) 0Jg(x2) "~ 0J4(xn)

1nZ[J]> 7 (26)

@)oot = (57

where (.. .)_ indicates that only contributions which are associated with connected correlation functions are con-
sidered. For example, the connected two-point function reads

o ]

(5J¢(X1)5J¢(X2)W[J]> o = (p(x1)o(x2)) — (6(x1)) (B(x2)) - (2.7)

Using the Schwinger functional W[.J], we can now define the quantum effective action I'[¢.;] which has the so-called
classical field ¢ as its fundamental degree of freedom. To compute I'[¢.;], we apply the functional equivalent of a
Legendre transformation for the generating functional W[.J]. This is again in complete analogy to statistical physics
where the different thermodynamical ensembles are connected by means of conventional Legendre transformations.
Then, the quantum effective action reads (e.g. see Ref. [126]):

L[] = sup (—W[J] + /X J(x)%(x)) : (2.8)

Note that the supremum guarantees that the effective action is convex. For instance, we have for any value of the
classical field ¢ a unique source J = Jgup, so that the convexity of the effective action can be ensured, see, e.g.,
Refs. [127-129].

To study the regime of quark matter at finite density, we need to introduce a chemical potential ;o entering
the theory as an external Lagrange multiplier in the partition function. Since we consider two different types of
massless quark flavors, i.e., up and down quarks, we also need two separate types of chemical potentials for each
fermion flavor. Therefore, we add to the fermionic classical action S[@, u, d, d], which encodes the dynamics of our
massless quarks, the following expression:

Sli, u,d,d] — S|, u,d,d] + i, / d*z (ulu) +ipg / d*z (d'd), (2.9)

where we used that the particle density operator associated with a quark flavor ¢ = wu,d can be expressed via
n ~ (q'q), see also Ref. [125] for a review on spinors in Euclidean spacetime. Note that, for each quark flavor g, the
particle number N, is conserved, where the corresponding particle number operator can be written as [ d®z (¢7¢q).
This conservation law can be traced back to a preserved symmetry by virtue of the famous Noether theorem. The
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underlying symmetry which gives rise to the particle conservation is the U(1)y symmetry which is exactly realized
in QCD, see Sec. 2.3.2 for a more detailed discussion.

The two different quark chemical potentials, which are associated with the up- and down-quark density, can be
rewritten using the following transformation:

1

1
ta = 5 (1 + pa) pr = 5 (Ha = pa) (2.10)

where (14 is the quark chemical potential, and z¢; denotes the isospin chemical potential. Loosely speaking, 1, can
be interpreted as the “amount” of baryonic matter compared antimatter. On the other hand, the “amount” of up to
down quarks is controlled by the isospin chemical potential ;7. Using the transformation above, we can write the
classical action in terms of a collective fermion field ¢ = (u, d)T, which stores both flavor types simultaneously.
Using the latter notation, the classical action from Eq. (2.9) can be written as

Sl ) — S[, ¥] + i/lq/d4if (Vo) + iul/d4$ (VyoT39) (2.11)

with the diagonal Pauli matrix 73. Note that for our computations in the present work, we concentrate on so-called
isospin-symmetric matter where an equal number of up and down quarks is assumed. In this case, the chemical
potentials associated with the up and down quarks are identical p,, = g so that the isospin chemical potential
vanishes ;i = 0. For convenience, we shall therefore write throughout this work u = 1, where we implicitly
assume no imbalance between the number of up and down quarks. However, for various astrophysical applications
like the description of dense neutron-rich matter (r; # 0), which most likely exists in the core of neutron stars, see,
e.g., Refs. [44, 45, 58], the approximation ;17 = 0 can only be a first step towards a better understanding of the nature
of dense QCD matter from microscopic interactions. We further stress that we neglect any strange quark degrees
of freedom within our studies. The latter may also have a significant impact on the physics of neutron stars, see,
e.g., Refs. [130, 131] for studies considering strange quark degrees of freedom in their derivation of the equation of
state of dense hadronic matter. Nevertheless, our first-principle study of isospin-symmetric matter with two quark
flavors may already provide us with some constraints for the nuclear equation of state and can give us insights about
the nature of matter at high baryonic density, see Sec. 3.4 for a discussion.

2.2 The Functional Renormalization Group

In this section, we introduce our main framework to study QCD in the strongly-coupled infrared (IR) regime. Since
QCD is asymptotically free, the strong interaction becomes weak in the limit of large momenta [6, 7]. At low
momentum scales, however, the gauge interaction becomes strong and inaccessible with conventional perturbative
methods. In the present work, we therefore employ the functional Renormalization Group (fRG) to study the long-
range and low-momentum physics of QCD. For instance, let us consider a Quantum Field Theory that is defined on a
microscopic high-momentum scale £ = A in the ultraviolet (UV). As we shall see, the Renormalization Group (RG)
flow can then provide us with information on the infrared behavior of the theory by successively resolving quantum
fluctuations. From this, we can determine whether the theory exhibits, e.g., critical behavior giving rise to long-
range correlation effects and a possible finite mass gap, see our discussion in Sec. 2.3.2. In particular, the main idea
of the Renormalization Group relies on a coarse-graining procedure where one usually studies the scaling behavior
of the theory’s associated correlation functions by varying a dimensionful scaling parameter. The corresponding
RG flow is then mostly driven by fluctuation effects and dominated by (scale-invariant) non-trivial fixed points of
the underlying theory space. Note that alone the mere existence of critical fixed points can be of great importance
for the infrared behavior of a theory and may point to new physics in the low-energy regime.

Historically, a perhaps rather descriptive view on the Renormalization Group goes back to Kadanoff [132]. He
constructed a coarse-graining prescription by employing a reframing procedure of a two-dimensional lattice of
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atomic particles with spin sitting on different lattice sites of a grid. By gathering particles in block-type structures
and deriving, e.g., the averaged spin of such a block, one effectively defines a certain type of RG transformation.
Repeating this aforementioned procedure several times, we create new blocks which are assembled again from old
spin-block structures. The so-defined block-spin transformation then allows for a study of the long-range behavior
of, e.g., Ising-type models, to understand the scaling relation of the magnetization as a function of the temperature
close to the critical Curie temperature.

Further developments in the understanding of the Renormalization Group were made by Callan and Symanzik
who studied the dependence of the two-point function by varying the renormalized mass parameter of a theory,
see Ref. [133, 134] for the famous Callan-Symanzik Renormalization Group equation. A closely related view on the
Renormalization Group goes back to Wilson who proposed to integrate out quantum fluctuations piecewise within
so-called momentum shells, see Ref. [135]. For this, one usually starts with a microscopic theory in the limit of large
momenta which can be described best using high-energy degrees of freedom such as quarks and gluons. By succes-
sively integrating out the high-momentum modes, we approach the infrared theory which is possibly dominated by
effective low-energy degrees of freedom such as mesons or nucleons, see Refs. [136, 137] and also Ref. [138] for a
review of Wilsons work. Since the regulator function Ry (p?) appearing in the Wetterich equation we shall discuss
below only slices out momenta around p ~ k, where k defines our continuous RG scale, the functional RG can be
seen as a direct representation of Wilson’s idea.

2.2.1 Derivation of the Wetterich Equation

The Wetterich equation was derived in 1992, see Refs. [63, 64], and corresponds to a Wilson-type Renormalization
Group. By successively integrating out quantum fluctuations momentum shell by momentum shell, the infrared
physics is approached by starting from a microscopic action in the ultraviolet. In the last decades, the Wetterich
and related Renormalization Group equations, were successfully applied in various fields of physics ranging from,
e.g., the description of turbulence in continuum mechanics [139-145] to a theory of quantum gravity [146-157] in
the sense of an asymptotic safety scenario originally proposed by Weinberg [158]. The main object of the Wetterich
equation is the scale-dependent coarse-grained effective action I'y, with an RG-scale parameter k. For 'y, we require:

Jim Ty, = S, lim =T, (2.12)
which means that at an ultraviolet RG-cutoff scale k& = A we recover the microscopic classical action S. In the
infrared limit k — 0, however, we find the full quantum action I' which includes all quantum effects. As we have
mentioned above, the Wetterich equation interpolates between the microscopic physics at high momenta and small
length scales and the macroscopic physics at low momenta and large length scales. In this spirit, it can be compared
to a theoretical microscope resolving physics on different length or momentum scales, respectively. We add that a
further convenient property of the Wetterich equation is that it only deals with fully dressed renormalized n-point
functions.

Let us now discuss the derivation of the Wetterich equation. To this end, we need to regularize the partition
function Z[.J] from the previous section by inserting a proper scale-dependent regulator Ry, (p) implementing the
technical details of the aforementioned momentum shell integration. For this, we define the regularized partition
function [63, 159] which reads

Z[J] ~ N/ D o~ (SEIFASLEN+IT 2 (Wi (2.13)
A

where we introduced the super field ® = (7, 1), Al #)T. The latter contains different quantum field types such
as boson, fermion and gauge fields. Here, the fermion fields are Grassmann-valued and carry internal color as well
as flavor degrees of freedom. Depending on the theory, there can be other quantum fields as well, e.g., ghost fields
for theories of the Yang-Mills type [5, 160] which we shall discuss in Sec. 2.3.1. From Eq. (2.13), we see that each
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field is accompanied by an external source term of the form J7 = (J, fJg, JZ ;s Jp). The different sources
inherit the field properties of their corresponding quantum fields, i.e. source terms coupled to fermion fields are
also anticommuting Grassmann fields and carry the same internal quantum numbers. The matrix-valued regulator
function is included in ASj,[®] which reads:

1
ASi[®] = §<I>T-Rk~¢>

- 1/ (;:)QD (V(@) Ry k()¢ (q) —¢T(—q)R£7k(—q)z[;T(_q)

2
+AL(—q) R (9) AL (q) + ¢(—q) Ro i (0)0(q)) (2.14)

with the regulator matrix Rj. For further details on our conventions, we also refer to App. A. Note that we shall
discuss the regulator Rj, and its properties at the end of this section. From Eq. (2.13), the derivation of the Wetterich
equation can be performed by computing the derivative of the coarse-grained Schwinger functional Wy [.J] with
respect to the RG-scale parameter k:

DWil]] = — (OeASH[®]),, = —%(&CRk)mn (@73,), . (2.15)

Here, the indices m, n shall reflect the matrix structure of the expression above. In the next step, we substitute the
structure above with the full connected two-point function W,gl’l) = (¢ - ®T)_ which can be obtained by taking
the second functional derivative of Wy, [.J] with respect to the source .J:
i 5
1,1
W) = s Wald 57 = (@0, — (@), - (@), 216)
0J 0J
Note that this is done in complete analogy to Eq. (2.7) from the previous section. With the connected two-point
correlation function at hand, we can write for Eq. (2.15):

1
OWilJ) = —5STr[(ORy) - W D] + 9, ASy @], (2.17)

where we introduced the classical field ., = (®). In principle, the classical field ®.) entering the scale-dependent
effective action can, in general, also depend on the RG-scale parameter k. The latter then allows for a continuous
transition from high- to low-energy degrees of freedom [22, 159, 161-164]. Since such an extension lies beyond
the scope of the present work, however, we neglect any k-dependence of the classical field. For convenience, we
moreover introduced a shorthand notation for functional derivatives acting on a functional F'[h]:

T
A A S

Fm = 2 Pl o (2.18)
—— ——
n—times m—times

According to Eq. (2.18), we take derivatives with respect to the super fields ® and J from the right (row vectors) and
derivatives with respect to transposed super fields 7 and J7 from the left (column vectors)! so that the propagator
W,gl’l) becomes matrix-valued in field space as it is already the case for the regulator matrix Ry,.

The coarse-grained effective average action is again defined by using the functional equivalent of a Legendre
transformation of the generating functional Wy[J] (see also the definition in Eq. (2.8)):

P[] = sup (JT Py — ka) — AS[®a]. (2.19)

!In case of purely bosonic theories there is no need to distinguish between left and right derivatives. The Grassmann nature of the fermionic
fields, however, requires a careful treatment of the antisymmetric field subspaces.
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Again, we introduced the supremum condition for the first part of the equation to ensure convexity. However,
compared to Eq. (2.8), there is now a regulator term ~ A}, present in the definition of the coarse-grained effective
action I'y,. Thus, any non-convexities appearing at finite &k originate from the regulator part AS; which is removed
for & — 0 by construction, see our discussion below. Therefore, in case of J = Jgp, it is ensured that I' = I'j,—g is
convex in any case. From here, we shall now always tacitly assume that a source J is chosen such that the supremum
requirement in Eq. (2.19) is fulfilled. From Eq. (2.19), we further deduce:

@(Fk[q)cl] + ASi[Qq]) =

(D77 s g D W)y
soT e soT T
= J. (2.20)

By taking the second functional derivative with respect to the classical field from the right, we find:

5

0D

(Di[®a] + ASK[®a]) —— - W] = Nps 6(z — o) . (2.21)

o
with the identity operator lpg of the underlying field space. Taking the & derivative of Eq. (2.19) and inserting our
result from Eq. (2.17), we find

Okl'k[®al] = %STI‘[(akRk) : W,Sl’l)[J]] : (2.22)

We use our result from Eq. (2.21) to obtain the final form of the famous Wetterich equation:

1 1
O, T[®a] = =STr __OoR )1 , (2.23)
2 F;(Cl’l)[q)cl] + Ry 2

with the dimensionless scale derivative 0; = k Ji. The crossed circle in the diagram on the right-hand side shall
underscore the regulator insertion we perform via 0, Rj,. Moreover, the super trace reflects the nature of our field
space containing both antisymmetric (fermionic) and symmetric (bosonic) field subspaces. Therefore, in case of
an antisymmetric subspace an additional minus sign is added. We also observe that the Wetterich equation has a
simple one-loop structure. However, by no means this shall indicate that only one-loop contributions in the sense of
perturbation theory are present in the Wetterich equation (2.23). On the contrary, it contains an arbitrary number
of perturbative loop orders, see, e.g. Ref. [165] for an explicit example at two-loop order.

As already mentioned, the Wetterich equation can be understood as an interpolation prescription between the
microscopic theory and its corresponding macroscopic counterpart where the latter then gives us a direct access to
the physical ground state. This can be illustrated by drawing the theory space of a Quantum Field Theory which is
spanned by the renormalized couplings associated with the operator structures entering the theory under consid-
eration. In Fig. 2.1, we therefore show two exemplary RG trajectories depicted as grayish lines and associated with
different regularization and/or truncation schemes connecting the effective action at some initial scale & = A and
the full quantum effective action at k = 0 (arrows point towards the infrared direction). Here, the initial conditions
are fixed at the high-momentum scale k = A which are given, e.g., from known experimental constraints or mea-
surements. We emphasize that the trajectories are dominated by fixed points (blue dots) of the theory for which
the beta functions of the renormalized couplings vanish. Note that these fixed points in theory space mark theories
which are scale invariant, i.e., the averaged action I'y, remains constant for any value of k.

We demand for k& — 0 that the regulator is removed so that observables in the infrared physics do not depend
on the regulator choice. However, because of necessary truncations which have to be made and due to the fact that
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Figure 2.1: Illustrated is the theory space spanned by the couplings { \; } which correspond to the operators entering
a given ansatz for the coarse-grained effective action. The fixed points of the theory are depicted as blue dots. The
Wetterich equation interpolates between the bare action I'y,—y = S in the ultraviolet and the full quantum effective
action in the infrared I'y—o = I'. Depending on the employed regulator and used truncations, however, RG flows
are not necessarily unique as illustrated by the two grayish trajectories. Because of necessary truncations, moreover,
the trajectories may end up at different points in the infrared.

a complete integration down to & = 0 can become very challenging if possible at all?, the regulator function has,
nevertheless, an impact on results. Therefore, it is desirable in any case that the influence of the regulator choice is
mild, i.e., the infrared physics should not change drastically.

Let us now discuss the regulator function which we have inserted in the path integral in more detail. Even
though the choice of the regulator is free, there are some minimal and necessary requirements the latter has to fulfill
to ensure, e.g., the imposed boundary conditions Eq. (2.12). The three minimal requirements are (see Ref. [63]):

(i) The regulator remains finite in the limit of vanishing four-momenta:

li R 0. 2.24
o oo T0) > 224

(ii) It diverges suitably for kK — oo to ensure that the quantum effective average action I'y, approaches the classical
action S in the ultraviolet:

lim Ry(q) — oo. (2.25)

k2— 00
(iii) It vanishes in the limit £ — O so that the regulator function is removed in the infrared:

li R =0. 2.26
e B (q) (2.26)

For example, an exponential regulator Ry (p) and its scale derivative O, Ry (p) as a function of the momentum are
depicted in Fig. 2.2. We find that the regulator acts in the infrared regime as an effective mass (i). For momenta
around p? ~ k2, the scale derivative of the regulator only cuts out a small momentum band which illustrates the

2 A spontaneous breakdown of a continuous symmetry can be indicated by a divergence of the RG flow at a finite critical scale k = kcr, see
our discussion in Sec. 2.3.2
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Figure 2.2: The figure shows an exemplary regulator function. For the regularization of any infrared divergences,
the regulator is finite for p — 0 which corresponds to a mass-like term in the propagator. The scale derivative of the
regulator peaks at p> ~ k? implementing the Wilsonian momentum shell integration. For high momenta p? > k2,
the derivative of the regulator renders the propagator finite in the ultraviolet.

aforementioned Wilsonian momentum shell idea. Moreover, it renders the ultraviolet regime finite as it goes to
zero for large momenta so that high-momentum modes are suppressed. All three requirements Egs. (2.24)-(2.26)
are necessary but may not be sufficient for certain theories. The regulator should further not, e.g., introduce an
artificial breaking of fundamental symmetries of a quantum theory under consideration. Otherwise, an inappro-
priate regulator choice can significantly spoil the infrared physics. In worst case scenarios, certain regulator artifacts
can not even be distinguished from real physics which can then lead to false conclusions, see Sec. 3.1.3 where we
demonstrate how an uncareful regulator choice can alter results considerably. Therefore, we demand an extended

set of “weak”/“convenience” requirements:

(iv) The regulator does not violate the chiral symmetry (see Sec. 2.3.2) of the kinetic term in the fermionic action.

(v) It does not introduce an artificial breaking of Poincaré invariance and, in particular, it preserves Poincaré
invariance in the limit 7" — 0 and p — 0.

(vi) It respects the invariance of relativistic theories under the transformation 1 — —p.

(vii) It ensures that the regularization of the loop diagrams is local in terms of temporal and spatial momenta at
any finite value of the RG scale k.

The last requirement aims at all types of regulators which only act on spatial momenta and leave the temporal direc-
tion unregularized. These types of regulators have other technical advantages which we shall discuss in Sec. 3.1.3.
However, they come along with the drawback to be incompatible with the Wilsonian momentum shell idea: For
each infinitesimally small RG step 0k, all temporal momenta contribute simultaneously. Therefore, one rather cuts
out small cylindrical shells with an infinite cylinder height of the four-dimensional momentum space, instead of
integrating out small spherical slices.

For an analytical treatment of the Wetterich equation, it is more convenient to write Eq. (2.23) in a slightly
different mathematical form:

1 -
Ok [®a) = 5 STrd; In {rgv” (@] + Rk} , (2.27)
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with a modified scale derivative 9; = 9, Ry, % which shall indicate that the derivative only acts on the regulator
Rj.. Moreover, the two-point function can be decomposed:

DV [@a] + R = Py + Fie, (2.28)

where we have split the two-point function I'":1)[®,] into a field-independent inverse propagator part P}, which
is basically the two-point function evaluated at ®.,; = 0, and in a field-dependent fluctuation part Fj,. We now
consider the series representation of the logarithmic function In(1 + z) for the expression in Eq. (2.27):

1 -
atrk[q)cl] = §STI' 8t In (Pk +.Fk)
= lengmp 4+ tsmd iﬂw—lf )" (2.29)
= 3 rogin /g, B T tn:1 n k k) > '

with the propagator matrix P, *. Since F}, does not depend on the regulator, the scale derivative only acts on P-
type terms. Using the reformulation of the Wetterich equation above, one usually compares the right- and left-hand
side of Eq. (2.29) in terms of contracted operator structures to deduce the beta functions corresponding to the
renormalized couplings appearing in a given ansatz for the effective action.

Throughout the first part of our present study, we use existing software packages to compute the RG flow equa-
tions for our different quantum systems we shall introduce in the upcoming sections. For the derivation of the
symbolic flows, we use the software package DoFun [166]. For the computation of traces in finite-dimensional
vector spaces (Dirac space, SU(N) space for color and flavor degrees of freedom), we employ the package Form-
Tracer [167] which is based on the FORM library [168]. In the next subsection, we shall briefly discuss different
expansion schemes which are frequently employed in non-perturbative functional Renormalization Group studies.

2.2.2 Approximations and Expansion Schemes

In the last section, we have introduced an exact evolution equation for the effective average action I'j, with the con-
venient property that it is exact at one-loop order. Nevertheless, we also mentioned that, in principle, arbitrarily
high loop orders are included and contribute to the RG flow. Moreover, from the structure of the Wetterich equa-
tion (2.29), we can readily see that an arbitrary n-point function, in general, also depends on the (n + 1)- and
(n 4 2)-point function building up an infinite tower of coupled differential equations. Therefore, interactions other
than those originally considered in the effective action at some UV initial scale A can be generated dynamically. In
particular, all operators which are compatible with the underlying symmetries may appear on the right-hand side
of Eq. (2.29). It can therefore be important to anticipate at least certain fluctuation-induced operators in an ansatz
for the effective action as we shall discuss in detail in Sec. 2.3.2. Our discussion above underscores the requirement
to tailor efficient expansion and appropriate truncation schemes which should be both manageable and provide
reasonably well results already at low expansion order covering the relevant physics of the quantum system under
consideration.

Let us now briefly review some expansion schemes used in theoretical calculations. Here, the probably most
frequently employed ansatz is an expansion in powers of a small dimensionless parameter o < 1. Besides using
a small dimensionless coupling constant, one can also expand a theory in 1/N, where N can be the number of
color or flavor degrees of freedom. Other schemes perform an expansion for a small anomalous dimension 7 or use
so-called hard-thermal-loop perturbation theory for studies at finite temperature, see, e.g., Refs. [169-171] for early
works and Refs. [172, 173] for reviews.

Nevertheless, we emphasize that it is far from being trivial to find efficient expansion schemes which are valid
over a wide range of parameter sets and scales. Especially, if one tries to resolve inherently non-perturbative phe-
nomena, e.g., the physics close to a phase transition. Moreover, it would be desirable if an expansion scheme is
systematic in the sense that higher-order contributions improve the findings from lower orders. Unfortunately, the
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radius of convergence of a given expansion can be small so that this might not necessarily be the case. In the follow-
ing, we discuss two frequently used expansion schemes for the effective average action which are often employed in
RG studies. Note that the following discussion mostly relies on the review in Ref. [174]:

o Derivative expansion: We expand the effective average action (or any other functional of interest) by counting
the number of derivatives:

el = [ 4% (0069 + 540,07 + il 00,07 +00)) . @30
with a bosonic field denoted by ¢. Here, the next higher order of the derivative expansion [175-178] would
contain four derivatives O(9*). At leading order of the derivative expansion, the so-called wave-function
renormalizations Zj, is set to one and Y}, as well as all further complicated momentum dependencies of the
n-point correlation functions are dropped. The latter type of simplification is then also known as the so-called
Local Potential Approximation (LPA). Let us now briefly discuss how critical behavior can be studied using a
derivative expansion. For this, we start with the remark that a critical inverse propagator of the type

I~ p(p? + k%) /2, (2.31)

with anomalous dimension 7, can be non-analytic in the momentum structure. The key ingredient why the
derivative expansion is not doomed to fail in this case, can be explained from the observation that for any
finite & > 0, the limit p? — 0 is well defined. Even further, due to the mass-like behavior of the regulator Ry,
long-range modes in the infrared regime are suppressed. Since the scale derivative of the regulator 9, Ry, also
suppresses high-momentum modes p? >> k2, the propagator remains finite in any case. From this discussion,
we see that even an expansion about p? = 0 should yield reasonable results. However, we emphasize that this
is a consequence of the necessary regulator properties Eqgs. (2.24)-(2.24) which has to be fulfilled.

« Expansion in n-point correlation functions: We write the effective action in terms of n-point functions T'("™)
coupled to powers of the field:

a 1
Dulo] = Tuloos) + 3 [ a%are [aPay [n, T 601 (6 = d0a) - (0 - aso,k))] . @32)
n=1 :

where I'(™) denotes the n-th functional derivative with respect to the classical field ¢. Note that ") depends,
in general, on N spacetime coordinates which are not displayed to improve the readability. We further em-
phasize that the expansion is performed around the k-dependent ground state ¢ 5 so that r [po.k] =0,
by construction. Using such an expansion, it is possible to keep track of the interacting ground state for any
finite value of k. By taking arbitrary derivatives of the expansion above, we obtain a coupled set of differential
equations for the various n-point correlation functions depending on the (n + 1)- and (n + 2)-correlation
function. From this, the aforementioned infinite tower of differential equations is very obvious. The main idea
behind this scheme relies on the assumption that higher-order correlation functions have a smaller impact on
observables of interest for certain scales. Therefore, a truncated number of n-point correlation functions still
allows to model the relevant properties of the system under investigation. Based on an expansion in n-point
functions, there are other schemes which try to include the effect of dropped correlation functions partially.
For example, with the Blaizot, Méndez-Galain and Wschebor (BMW) approximation, it is, in principle, pos-
sible to close the tower of flow equations, see Refs. [179, 180] for details.

Aside from the derivative expansion and the expansion in n-point correlation functions, there are other frequently
employed schemes, e.g., an expansion in the canonical dimension, see Ref. [174]. In the first part of this thesis, we
use a derivative expansion in leading order to study hot and dense quark matter, where we consider the RG flow of
effective four-quark interactions. The latter appears to be crucial for our study of the chiral phase transition, see
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our discussion in Sec. 2.3.2. In our study of non-relativistic fermion matter, we employ an expansion in n-point
correlation functions where our fundamental degree of freedom is the density p ~ (1/T1)) and not the classical
field (¢). Therefore, we expand our functional in terms of n-density correlation functions which is, nevertheless, in
complete analogy to the expansion in n-point functions which we have introduced above.

2.3 Phases of QCD and Spontaneous Symmetry Breaking

In this section, we shall give a brief overview of QCD, the theory of the strong interaction. Due to properties like
asymptotic freedom, i.e., the theory becomes weakly coupled for large momentum-scales as discovered by Gross,
Wilczek and Politzer [6, 7], non-Abelian gauge theories like QCD still attract a tremendous scientific interest as they
represent our best understanding of the particles and their interplay in our universe so far.

The quantum fields, which enter QCD as fundamental degrees of freedom are quarks and gluons. In QCD, the up
and the down quark are the two lightest quarks in of the theory. Compared to its constituent quark mass, they have
a comparably small but finite so-called current quark mass m,, ~ 2—5MeV. The latter does not stem from QCD
itself but rather has its origin in the electroweak sector of the Standard Model of particle physics. QCD with only two
flavors can further be considered to obey an approximate global SU (2), x SU(2) p x U (1)y x U (1) 4 symmetry. As
we shall see, this symmetry can break spontaneously. As a consequence, the three pions # = {7, 7°, 7} would
be massless if chiral two-flavor symmetry were exact. Even though they acquire a finite mass because of the explicit
chiral symmetry breaking due to the finite current quark mass, they are still by far the lowest-lying states in the meson
spectrum, i.e., the pion triplet has an averaged mass of m, ~ 138 MeV where the next higher-lying kaon multiplet
has an averaged mass of mx ~ 495 MeV, see Ref. [181]. The pions are so-called (pseudo) Nambu-Goldstone
bosons and can be seen as an example for the prediction of the famous Nambu-Goldstone theorem [182-184]. The
main statement of the latter theorem is that we find massless Nambu-Goldstone modes (bosons) in the theory’s
energy spectrum for each broken generator of the underlying continuous global symmetry group. It is important
to emphasize that the Nambu-Goldstone theorem only holds for continuous symmetries. For instance, there are
no Nambu-Goldstone bosons present for spontaneously broken discrete symmetries, e.g., for theories which obey
a discrete Zo symmetry with ¢(x) — —¢(x). Chiral symmetry is only realized approximately in the underlying
QCD Lagrangian. Throughout the present thesis, for simplicity, we work in the so-called chiral limit m,, — 0. At
least in the vacuum, chiral symmetry is then spontaneously broken in the ground state of the theory. From this, it
follows that the Nambu-Goldstone modes are massless in our case. The breakdown of chiral symmetry also comes
along with the formation of a finite mass gap in the quark propagator giving rise to a dynamically generated and
comparably large constituent quark mass m,, ~ 300 MeV as we shall see in Sec. 2.3.2. The latter is then responsible
for a significant amount of the observable mass created through the spontaneous breakdown of chiral symmetry
that occurred in the early universe.

For large densities, however, various model studies [28, 31-35] predict a tremendously rich QCD phase dia-
gram accompanied by a large variety of different symmetry breaking patterns. Here, the probably most interesting
prediction is a phase rather dominated by so-called diquark degrees of freedom than by mesonic ones [32, 33]. The
underlying quark-quark pairing mechanism shares several similarities to the conventional theory of superconduc-
tivity initially developed by Bardeen, Cooper, and Schrieffer [2, 3], which is the reason why this state of matter is
often referred as a color superconductor [42, 43]. We shall discuss these aspects in more detail in the subsections
2.32and 2.3.4.

We structure the present section as follows: we begin with a short introduction to non-Abelian gauge theories
starting from the requirement of local gauge invariance. To satisfy the latter, we find that the inclusion of gauge
bosons is required which can be identified with gluons for a SU(3) gauge theory like QCD. After that, we discuss
two-flavor QCD at vanishing current quark mass in the chiral limit. We review the spontaneous breakdown of chiral
symmetry induced by strong gauge dynamics and analyze the consequences for the infrared physics. In this context,
we also discuss the influence of gauge degrees of freedom on the fixed-point structure of the effective four-fermion
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vertices playing an essential role in the mechanism of spontaneous chiral symmetry breaking. Finally, we briefly
discuss the conjectured QCD phase diagram at finite temperature and quark chemical potential.

2.3.1 Non-Abelian Local Gauge Invariance and the QCD Lagrangian

We discuss the principles of local gauge symmetry and outline the quantization of non-Abelian gauge theories.
For this, we work along the lines of standard textbooks such as Refs. [126, 185, 186]. Local gauge invariance is
the defining property for all gauge theories. There are two important types of gauge theories. On the one hand,
for example, we have Abelian gauge theories, e.g., Quantum Electrodynamics (QED), where the generators of the
underlying gauge group commute. On the other hand, we also have non-Abelian gauge theories, e.g., QCD or the
Glashow-Salam-Weinberg (GSW) theory of the electroweak force, where the generators do not commute. In the
present subsection, we shall see that for both types of gauge theories, the requirement of local gauge invariance
implies the existence of gauge bosons like photons or gluons.

We begin with the definition of the fermionic matter field 1)(z) appearing in NN, different states®. For this, we
define the column vector

6@) = (41(0) o) .. 1/1Nc(x))T, (233)

with N, = 3 in case of QCD. We further define the local gauge transformation U(x) € SU(N,) for the fermion
field:

Y(z) = Ux)y(z) = eiea(‘r)TQw(x) , (2.34)

with the real-valued generalized rotation angles #%(x) and the infinitesimal hermitian generators 7% of the under-
lying Lie group SU(N..) obeying the (N? — 1)-dimensional Lie algebra

[T*,T"] =if*eT°, (2.35)

with the antisymmetric structure constants f2°¢ in the fundamental representation [187]. For a SU(2) (spin-1/2)
gauge group, e.g., the structure constants are the entries of the three-dimensional totally antisymmetric Levi-Civita
symbol f2%¢ = 3% In case of the color SU(3) gauge group, however, the structure constants are rather involved,
see, e.g., Ref. [126]. Note that for a local transformation it is crucial that we allow for the rotation angles 6% () to
depend on the spacetime coordinates as well.

We now require local gauge invariance of the equations of motion corresponding to a theory under considera-
tion. Let us therefore consider the infinitesimal version of the SU(N..) transformation (2.34) which reads:

VY — p +i0%(2) T (x) + O(6?), ) — b —i0%(2)p(x) T + O(6?%) . (2.36)

where we denote the IV, infinitesimal rotation angles by #? () and use that (7'®)" = 7. In general, the Lagrangian
L of a given theory also entails derivatives acting on the fermion fields, e.g, a kinetic term of the form Ty, ~

()"0, (). Under the local transformation (2.34), we find for the field derivative
0ut(x) — 0,0 () +1(0,0%(2)) T (2) + i10%(x)T* (9,2p(2)) + O(6?) . (2.37)

We immediately see that the infinitesimal local rotation in Eq. (2.36) just corresponds to a linear shift. In this case,
it makes no difference if the transformation was local or global, i.e., the rotation angles can be considered to be
constants for all spacetime points. However, we recognize that this is not true for Eq. (2.37) as the derivative also
acts on the rotation angle 6 (z) itself. To compensate the contribution ~ 9,,6%(z), in the following we introduce a

3For simplicity, we neglect further internal degrees of freedom at this point.
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new bosonic field type.

For the theory underlying this new bosonic gauge field A% (x) witha =1, ..., (N? — 1), we require again local
gauge invariance. Since we wish to define a transformation rule similar to Eq. (2.36), i.e., we have a matrix 7'* acting
on avector 1(x), we use the adjoint representation of the SU (N..). Here, the generators in the adjoint representation
t@ are represented by (N2 — 1, N2 — 1) matrices which are defined via the group structure constants f%¢:

(t")pe = —ifobe. (2.38)

Since the commutation relation is independent of the representation, we have for the generators in the adjoint rep-

resentation:
[t 7] = ifebete. (2.39)

The local SU(N..) gauge transformation for the gauge field A, (z) = Aj;(x)T* for finite rotation angles 6 () can
be written as

i

Au(z) = Az(x) = U(2)A,(2)U " (x) 7 (0,U(2)) U™ (=), (2.40)

where we have introduced a bare gauge coupling constant g. In case of QCD, we shall relate g to the strong coupling.
Using the adjoint representation, the gauge transformation for infinitesimal 0° () reads:

Al (@) = AZ(»T)+%3u9“(x)+96(w)(tc)ab A ()

= AZ(I) + %5‘u9a(x) + fabe AZ(I)QC(I)

1
A+ EDNQ"(x) . (2.41)
Here, we have introduced the so-called covariant derivative
D, =8, —igA% ()T . (2.42)
Using the definition from above, we find that the gauge transformation of (D,,1)) is proportional to 8% (), as desired:
Dyp(z) —  Dytp(x) +i6%(x) (T*Oup — g AT ) — igALT T y) + O(6%)

= D,¥(z) +i0(x)T* Dy (x) + O(6?). (2.43)
Note, the so-defined covariant derivative has the same transformation behavior as it is the case for the matter field
1 itself. Thus, as a “cooking recipe” to set up a locally gauge invariant theory, one has to replace all conventional

four-derivatives acting on matter fields by their covariant counterparts 9, — D,,.
From our discussion above, let us now consider a gauge-invariant kinetic term for the quarks. For this, we assume
that the Ny = 2 quark flavors (up, down) encoded in a matter field > carry N, = 3 different color charges (red,

blue, green). Correspondingly, antiquarks carry anticolors (antired, antiblue, antigreen). Following the “cooking
recipe” from the discussion above, a gauge-invariant kinetic term for the quarks in Euclidean spacetime is given by

Lgyy = V(vuDy +iMyg)o, (2.44)

with a mass matrix M, which we set to zero in the chiral limit M; — 0.
In general, the gauge field A7, is dynamical, too. A local gauge transformation of a possible kinetic term ~ 0, Aj;



2.3 Phases of QCD and Spontaneous Symmetry Breaking 29

then generates again contributions like 9,,0,6%(x). This problem can be solved, by considering the commutator
relation of the covariant derivative D,,, which yields (e.g. see Ref. [185])

[D,.,D,] = —igF?,T?, (2.45)
with the non-Abelian field strength tensor

FY, = 0,A% — 0,A% + gf**c AL A (2.46)

n%

Eq. (2.46) shows an important feature of non-Abelian gauge theories. Due to the non-Abelian structure of the gauge

group SU (N,), we now obtain a term gfabCAZAf, in the field tensor Fj,,

theories. As a consequence, the gauge fields become self-interacting. Let us now compute the transformation of the
field strength tensor F},,. We find:

pv

which does not appear in Abelian gauge

a a abcpb c
F2, — F%, — [0 (2)F,,. (2.47)

As desired, the transformation of F;,

is just linear in 6% (x).

Together with the field strength tensor (2.46), we can now construct the Lagrangian of chiral two-flavor QCD [4-
7]:

LR = Pl D + %FEVF;ZV . (2.48)
As anon-Abelian gauge theory, QCD has several remarkable properties. For example, due to color confinement [16,
17], bound states assembled of quarks always appear as color singlets which have a net zero color charge. A meson,
for instance, consists of a quark and an antiquark where both carry opposite color charges, i.e., the antiquark carries
the anticolor which corresponds to the color of the quark. For baryonic bound states, which are composed of three
quarks, each quark carries a different color so that the net color charge of the three-body bound state is still zero. By
trying to separate a quark spatially, the potential energy in the generated color flux tube increases until it breaks and
a new quark-antiquark pair is created, see, e.g., Refs. [188, 189]. As a consequence, the quarks are always confined
in a color singlet state.

The purely gluonic term ~ F7 Fyj, in Eq. (2.48) corresponds to the famous Yang-Mills theory [5]. As already
indicated, the Yang-Mills Lagrangian contains fundamental three- and four-boson self-interactions which are al-
ready present on the level of the classical action. However, we emphasize that there are other choices possible to
define gauge-invariant Lagrangians from the field strength tensor F},. As one can show, chiral two-flavor QCD as
defined in Eq. (2.48) is simultaneously invariant under charge C and parity P transformations. Nevertheless, one
may also consider a term violating P and C’P which is given by

£9 ~ eguuAUFSVF,{Lg 5 (249)

with a parameter 6 and the antisymmetric Levi-Civita symbol in four dimensions €,,,, ). Interestingly, experimen-
tal tests of QCD suggests that the parameter 6 has to be surprisingly small < 107, see Refs. [190, 191]. This
observation alone may not be an issue since QCD could be a theory where the discrete CP symmetry is exactly
realized. However, as a consequence of the topologically non-trivial quantum vacuum structure of QCD, there are
gauge configurations possible so that terms like (2.49) are generated by QCD itself [192-194]. Therefore, it is not
clear why C’P should not be badly broken. Thus, the main question of the so-called strong CP problem is, why
the parameter 6 should be small at all. For this, there exists a possible solution proposed by Peccei and Quinn in
1977 [195]. To resolve the strong C’P problem, they introduced a new chiral U(1) symmetry, which can break
spontaneously. They showed that for the interacting ground state the theory then assumes, the CP symmetry is
dynamically conserved since the “angle” § becomes small, see Ref. [196] for a review.
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We end this very brief overview of the strong CP problem with the remark that the non-trivial ground state
of the Peccei-Quinn theory is associated with a new hypothetical particle, the axion. Since the discovery that the
observable amount of matter in the universe seems to be insufficient to explain astrophysical observations, e.g., the
anomalous rotation curve of spiral galaxies [197, 198], the axion became a possible candidate for cold dark matter,
see, e.g., Ref. [199] for a review. In general, cold dark matter is a collective expression for the invisible matter at
thermal energies which can only be measured due to its gravitational influence. Dark matter further appears to be
hidden since it is expected to interact only weakly with conventional electromagnetic radiation. Since the prediction
of the axion, there were various experiments proposed and already ongoing [200, 201] to find the axion solving the
strong C'P problem and to understand the nature of cold dark matter.

Up to this point, we discussed non-Abelian gauge theories on a classical level. Since we are interested in the
quantum theory of the strong interaction, we wish to revisit the quantization process of non-Abelian theories. To be
more specific, we concentrate on the gauge fixing procedure on the level of the functional field integral. Originally,
when one tried to compute quantum corrections to scattering amplitudes, several issues were encountered in non-
Abelian gauge theories, questioning the applicability of the latter at first sight. The problems could be resolved when
one recognized that the application of the path integral method for gauge theories also includes an integration over
an infinite number of equivalent gauge configurations. From the discussion above, we know that we can always
employ a gauge transformation to the gauge field Aj so that the Lagrangian (2.48) is left invariant. Using Eq. (2.41),
the redundant gauge orbits can be illustrated. For this, let us assume that Aj; = 0. In this case, we still have
non-vanishing gauge-equivalent modes < 0,,6“(z) accounting to the functional field integral. In that sense, it is
necessary to find a way to properly fix the gauge avoiding an overcounting of gauge orbits in the path integral.

A solution for this problem was found by Faddeev and Popov who presented a method to define a gauge-fixed
functional field integral, see Ref. [160]. To this end, it is necessary to introduce the following identity

1 :/DGcS(G[A(G)]) det (56’;[;49]) ,

(2.50)

with the transformed gauge field A? and a gauge-fixing condition G[A] at our disposal. Obviously, for all gauge-
fixing functionals G[A] which are linear in 6, the functional derivative in the Jacobi determinant does not depend
on the rotation angle. Clearly, this is also the case for the functional determinant itself. For example, we employ as
a covariant gauge condition, see, e.g., Ref. [126]:

G[A] = 0,A4%(x) — w(z), (2.51)

where w®(z) denotes an arbitrary scalar function.
Let us now insert the identity (2.50) in a purely gluonic path integral with the Yang-Mills Lagrangian Ly:

2[0] ~ /DA o= J Evulal /DQ/DA e/ Ells (GA®9)]) det (W)

- / Do / DA S Elils (GAB)]) det <1 8uD#> . @5
g
By introducing a new fermionic field type, the determinant term can be rewritten:

1 _
det ( 8MDM> - / DeDee J OuPue (2.53)
g

Here, the fields ¢ and c are the infamous so-called Faddeev-Popov ghosts. Further, the inverse coupling 1/g has
already been absorbed in the field normalization of the ghost fields. We now integrate over all w(x) where we use
the properties of the functional delta distribution in Eq. (2.52) which just picks one representative from the desired
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gauge condition. For convenience, we add a Gaussian weighting function to the integrand of the w integration giving
only a contribution to the integral normalization:

_ wa(z))2
z[0] ~ / Dw / DO / DADeDee™ JEmAIH@DING (9, A9 (2) — (@) e ) FH

(0uA8)?

= N(©) / Do / DADeDe e J EmlAlHe@.De) o= [ == (2.54)

with an (unimportant) normalization factor A'(£) and a gauge parameter £. Since a gauge transformation is a
linear shift which is followed by a rotation, one can show that the measure remains preserved under infinitesimal
gauge transformations DA(f) = (DA(f))’. As a consequence, the integral over the rotation angle [ D6 can be
computed trivially where we absorb the resulting constant in the normalization N (£) of the functional field integral.
Eventually, we find for the gauge-fixed path integral

Z[0] ~ / DADeDe e J (ExmlAlHe@uDiet 3¢ (0,47)%) (2.55)

In actual computations, the parameter £ can be used to control some details of the employed gauge. For covariant
linear gauges (2.51), two choices are employed very frequently

0, for Landau gauge,

&= (2.56)
1, for Feynman-t’'Hooft gauge .

In our present work, we shall employ for technical reasons Feynman-t’Hooft gauge, see Sec. 3.3.

We end this section with some remarks. The ghost fields emerging from the Jacobi determinant in Eq. (2.53)
transform in the adjoint representation of the SU(N..) group. For the latter, one obtains (N2 — 1) Faddeev-Popov
ghost fields which are present in non-Abelian gauge theories. In the Abelian case, however, they can be completely
removed, e.g., in case of QED. Even though they appear as Grassmann-valued fermion fields, they should by no
means be considered as real particles, i.e., ghost fields do not obey the famous spin-statistics theorem and do only
appear as internal lines, see, e.g., Ref. [186]. Instead, they should be seen as a convenient way to define a gauge-fixing
condition in the functional field integral.

In our discussion, we have assumed that in order to fix the gauge uniquely, it suffices to use the divergence of
the gauge field 9, Af,. Unfortunately, this is not necessarily the case as found by Gribov [202]. For further readings
to the influence of Gribov copies, we refer to the reviews Refs. [203, 204].

The emergence of the unphysical ghost fields is accompanied by new questions, e.g., it is not clear if the so-
defined gauge-fixing procedure holds for non-perturbative studies. Further, as a consequence of our gauge-fixing
procedure, the Faddeev-Popov Lagrangian in Eq. (2.55) is not gauge invariant anymore. Nevertheless, gauge invari-
ance should hold at least for physical observables such as correlation functions. Otherwise, physics could be changed
by just varying the gauge. We note that these questions can be resolved by studying the so-called Becchi-Rouet-Stora-
Tyutin (BRST) symmetry [205-207]. Indeed, one can show that the aforementioned gauge-fixed Faddeev-Popov
Lagrangian in the path integral (2.55) is invariant under global BRST symmetry transformations. The Noether the-
orem then implies the existence of both a conserved charge and current associated with the BRST symmetry. In fact,
the existence of so-called Slavnov-Taylor identities (STI) [208, 209] can be seen as a consequence of BRST charge
conservation where the STT’s are non-trivial relations linking the theory’s different correlation functions. They can
be therefore interpreted as a non-Abelian extension of the famous Ward-Takahashi identity (WTI) in, for example,
QED. However, a detailed discussion of the topics above is not needed and would go beyond the scope of the present
thesis. For further readings, we therefore refer to the literature given above.
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2.3.2 Chiral Symmetry and Spontaneous Chiral Symmetry Breaking

The mechanism of spontaneous symmetry breaking plays a crucial role in the understanding of a wide range of
physical phenomena. The breakdown of a continuous (global) symmetry comes along with a phase transition from
a phase where the symmetry remains intact, to a phase where the symmetry is spontaneously broken in the ground
state. This is then indicated by an order parameter ¢ which assumes a finite value o # 0 in the symmetry broken
regime. To be more specific, consider a theory described by a Lagrangian £ which is invariant under a global
symmetry transformation®. This symmetry is broken spontaneously if the ground state of the given theory obeys a
“lower” symmetry than the corresponding Lagrangian itself. In this subsection, we shall focus on the spontaneous
breakdown of the global SU(2), x SU(2)g x U(1)y x U(1) 4 symmetry of QCD with two massless quark flavors.
Note, however, the axial U(1) 4 is, actually, not a real symmetry of QCD on the quantum level. As we shall discuss
below, it is anomalously broken due to instanton effects [192-194].

In the introduction of this section, we discussed that the Nambu-Goldstone theorem predicts the emergence of
massless Nambu-Goldstone modes in case of the breakdown of a continuous symmetry. Instead of a spontaneous
breaking of a global symmetry, there also exists the possibility of a “spontaneous breakdown” of a continuous local
gauge symmetry by virtue of a Anderson-Higgs-type mechanism, see Refs. [36-39]. Briefly speaking, a gauge field A,
can acquire a dynamically generated Meissner mass [41] rendering the gauge interaction short-ranged. For this, one
usually considers order parameters which are not gauge invariant, possibly indicating the spontaneous breakdown
of the local gauge symmetry. Here, it is essential to emphasize that a local symmetry cannot break in nature [212].
In fact, the choice of a specific gauge-fixing condition already yields an explicit and not spontaneous breaking of the
theory’s gauge symmetry. In such a gauge-fixed theory, a spontaneous breakdown then occurs for the corresponding
global and not for the local symmetry. Nevertheless, we emphasize that the choice of an order parameter which is
gauge dependent can be a useful trick to find, e.g., new quantum phases, and to deduce gauge invariant observables
as a consequence. One example for an Abelian Anderson-Higgs-type mechanism can be found in condensed-matter
physics. In superconductors, one can observe that the magnetic field is expelled from the interior of the latter in the
superconducting phase. This is known as the Meissner-Ochsenfeld effect [41] which is a direct consequence of the
Anderson-Higgs mechanism in the following sense: the effective Meissner mass appearing in the photon propagator
of QED vyields a screening of the electromagnetic force within the superconductor.

Let us now discuss the chiral two-flavor symmetry of QCD in more detail. The QCD Lagrangian for two flavors
in the chiral limit can be written as
— 1 - _

Lous? = L F L, + b ipu” + aipu’ + dhipdt + dBpdr (2.57)
with the covariant derivative Ip = ~u D, which we have introduced in Eq. (2.42). Above, we used the transforma-
tion ¥ = (1 — v5)t), and ¥ = 1(1 4 ~5), to decompose the fermionic spinor fields u and d appearing in the
usual kinetic term 7' ~ (wil)u + dilpd), into their left- and right-handed components, see also Ref. [125]. Then,

)

. . . . Nj=2) . . .
the different chirality doublets can be rotated separately, leaving the Lagrangian £§<ch]32 invariant under chiral
two-flavor transformations:

UL 'LLL 'LLR 'LLR
dL — gL dL ; dR — JR dR 3 (258)

where the rotations g7, and gg are associated with the Lie groups SU(2), and SU(2)g, respectively, see, e.g.,

Ref. [186]. Note that this is impossible if a finite current quark mass ~ (m,, uu + mgq dd) is present, mixing left-
and right-handed fields in our QCD Lagrangian. For actual studies, it appears to be most convenient to rewrite the

#In fact, for having a real global symmetry present in a quantum theory under consideration, it is not sufficient that only the classical
Lagrangian £ is invariant under the specific symmetry operation. It also requires the invariance of the path integral measure. Otherwise, Adler-
Bell-Jackiw-type anomalies [210, 211] can potentially break symmetries on the quantum level which would be present on the classical one.
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transformation Eq. (2.58) in the following form:

SU2), x SUQ2)r: ¥ — e(ia“T“+175[’bTb)¢7 where ¥ = (Z) . (2.59)

Here, the generators T (see App. B) belong to the fundamental representation of the SU(2) Lie algebra. Moreover,
a® and B° are real-valued (global) rotation angles associated with the different group generators. Driven by strong
gauge dynamics, the chiral SU(2), x SU(2)g symmetry’ can dynamically break, see our discussion at the end of
this section.

The complete symmetry group of the Lagrangian (2.57) is an U(2), x U(2)g which is usually decomposed
into SU(2), x SU(2)g x U(1)y x U(1) 4. The rotation of the spinors under U(1)y and U(1) 4 transformations
can be written as

Uy : 1@y, Ul)a: o e5%). (2.60)

From Noether’s theorem, we know that there exists a conserved charge as well as a conserved current for each con-
tinuous symmetry. For our chiral symmetry group, we then have the following conserved covariant currents:

jp =0T v, gt =T s, Ju =Vt Jp = Vrrst - (2.61)

The charge operator f d3z Yty = Np + Np, where N and Ny, denote the number operators of the right- and
left-handed fermion fields, corresponds to the vector current j,, and is associated with the baryon number. Since
the U(1)y symmetry is exactly realized in QCD, the baryon number is conserved. Note that this remains true, even
at the level of the corresponding quantum theory. However, it is expected that baryon conservation is violated in
QCD as a part of the Standard Model, i.e. when electroweak interactions are also considered. Here, the baryon
number is not conserved since the vector U(1)y symmetry is broken through Adler-Bell-Jackiw anomalies [193,
194]. Therefore, it might be possible in nature that processes like the annihilation of protons and neutrons occur.
In reality, however, baryon number violating processes play a negligible role and are extremely unlikely, i.e., it may
not happened once within the entire life span of the universe, see Ref. [213].

Let us now discuss anomalies in more detail. In QCD, the axial U(1) 4 symmetry is anomalously broken at the
level of the quantum theory because of instanton-mediated vacuum transitions. Experimentally, this can be seen,
e.g., from the absence of parity partners in the meson spectrum [214] and the absence of a ninth light Nambu-
Goldstone boson [215]. In Sec. 2.3.1, we have already indicated that gauge-invariant terms such as Eq. (2.49) are,
in principle, allowed to exist in Yang-Mills theory. In fact, in 1975 Belavin et al. [192] showed the existence of
quasi-particle solutions of Yang-Mills theory. These so-called instanton solutions [193, 194] describe topologically
non-trivial vacuum configurations stemming from non-vanishing surface terms such as

=2
. g a a
AN = /d4l’ 8#‘]? = 7327(2 Guyaﬁ / d4:L' wol'aps (262)
where we introduced the so-called (gauge-dependent) Chern-Simons current
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with the topological winding number AN € Z in Eq. (2.62). Further, we used the abbreviation F,, = Fj;, T
and A, = Aj/T. In this case, the winding number AN can be related to topologically distinct vacuum states, see

5This is sometimes also referred as the SU(2)y x SU(2) o symmetry group which is, technically speaking, not completely correct. The
SU(2) 4 is not an actual group as it is not closed. Since 55 = 1, a multiple application of an SU(2) 4 transformation may generate an
element which is part of SU(2)y .
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Refs. [213, 215] for details. The anomalous breaking of the axial U (1) 4 comes into play from the observation that
the divergence of the current ji in Eq. (2.61) is, up to a multiplicative constant, equivalent to the aforementioned
non-vanishing surface term of 9,,j ;:‘:

=2

Oudy = % cuvas b, Fog (2.64)
where the so-called Adler-Bell-Jackiw term can be computed, for example, from a triangle diagram at one-loop
order including vector- as well as axial-vector currents, see also Refs. [211, 213, 215]. Originally, this particular
triangle diagram appeared conspicuous as it seemed to be impossible to find a suitable regularization scheme so
that chiral symmetry and gauge symmetry were conserved simultaneously. From a functional field integral point
of view, the Adler-Bell-Jackiw contribution Eq. (2.64) can also be computed from the path integral measure which
appears to be not invariant under U (1) 4 transformations, see Ref. [216]. Using (2.62) and (2.64), we can construct
a divergenceless current from j f and jf;:

Jb=jn = 2Ngjit (2.65)
Since the divergence of this current has to vanish by construction, the corresponding charge has to be conserved:

0= /d% J& = (Ng— N) — 2NN, (2.66)

where we used that [ d®z j§ = (Ng — Ny). This identity can be associated with the difference between the number
of right- and left-handed particles. Again, N denotes the winding number of the gauge field. From Eq. (2.66), one
can see why the U(1) 4 symmetry is anomalously broken: By considering transitions between two topologically
distinct vacuum states by changing the winding number [V, it is necessary to simultaneously adjust the fermion
chirality (Ng — Np) so that the charge associated with J Ij‘ remains conserved. For instance, consider that there is
a vacuum transition from N — (N + 1). Then, one can show that there exists a net movement, e.g., from right-
handed energy states moving an energy level upwards and from left-handed energy states moving an energy level
downwards, respectively. Since this is done for all flavor types, the net change of the chirality is 2N AN.

Note that this example was presented for the gauge condition Ay = 0, see Ref. [213]. In this case, the instan-
tons are associated with tunneling paths between distinct vacuum configurations which are identified with different
topological winding numbers. One can also find gauges where a unique vacuum state exists. Here, the tunnel-
ing path starts and ends at the same point. Nevertheless, the main statement that the instanton-mediated vacuum
transition alters the chirality remains intact. In our studies, we shall mostly consider an explicit breaking of the
anomalous U(1) 4 symmetry as it is the case in QCD. For this, we implement this breaking on the level of the
four-quark correlation functions as we shall discuss in Sec. 3.2.

Let us now discuss the spontaneous breakdown of the SU (2) 1, X SU(2) g symmetry. For this, let us consider an
effective model of four-quark interactions which can be motivated from the Wilsonian RG in the following sense: at
one-loop order in QCD, four-quark vertices are dynamically generated as a consequence of strong gauge dynamics,
see the box diagram ~ g% in Fig. 2.3. Due to the so-induced effective four-fermion interactions, new types of
diagrams become possible which then also contribute to the RG running of the effective four-quark vertex, e.g.,
triangle-type diagrams ~ g2 are generated which are built from quark-gluon as well as from four-quark vertices.
In our present work, we shall focus on the four-quark sector generated in QCD. The latter is of great importance
since it already provides us with essential information on the mechanism of spontaneous chiral symmetry breaking.
From a Wilsonian perspective, we can then think of the QCD high-momentum modes to be already integrated out.

To better understand the relation between four-quark theories and the mechanism of spontaneous chiral sym-
metry breaking, we consider a purely fermionic model. In this case, we only consider the four-quark diagram oc A\
in Fig. 2.3. Note that we shall also study these so-called Nambu-Jona-Lasinio-type (NJL) models [25, 26] at finite
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Figure 2.3: The figure schematically illustrates the four-fermion diagrams which contribute to the RG running of
the four-fermion vertex (black dots) by considering four-quark and quark-gluon interactions in an ansatz for the
effective action. At large momentum scales, so-called box diagrams on the left-hand side are generated from quark-
gluon interactions (red dots) at one-loop order from first principles. Once the four-quark vertex is generated, two
additional types of diagrams also contribute to the running of the four-quark vertex, see the diagrams on the right-
hand side.

temperature and quark chemical potential in Secs. 3.1 and 3.2. In the pre-QCD era, NJL models were invented
to study chiral symmetry breaking in particle physics based on an analogy to superconductivity from condensed-
matter physics. When QCD was developed, and one recognized that the fundamental constituents of baryonic
matter are quarks, NJL models were successfully reemployed to analyze the low-energy dynamics of QCD. As the
gauge coupling increases for low-momentum scales rendering QCD non-perturbative, model studies have become
an essential tool to explore key features of the strong interaction within mathematically feasible theories, e.g., to
study spontaneous chiral symmetry breaking or the confinement/deconfinement phase transition in Polyakov-loop
extended low-energy models, see, e.g., Refs. [217-227]. However, we also note that NJL models in four spacetime
dimensions are defined with an explicit UV cutoff A as an additional parameter as they are perturbatively nonrenor-
malizable. Note that nonperturbative studies further indicate that they are also not nonperturbatively renormaliz-
able (see, e.g., Refs. [228, 229]). In case of four spacetime dimensions, we shall therefore always consider the UV
cutoff A as well as the regularization scheme as a part of the NJL model itself.

To see why NJL models can help to guide our understanding of the mechanism of spontaneous chiral symmetry
breaking, let us consider the following classical action S i, associated with a one-channel NJL-type model in four

spacetime dimensions:
n 4 7 Ly T\ 2 n 2
Snlitt] = [ ate {(G100) + 5 Awm (G0 = s | e

with the Pauli matrices 7; and the dimensionful scalar-pseudoscalar coupling A(,.). Note that the correspond-
ing dimensionless scalar-pseudoscalar coupling is defined as Ay_r) ~ A(o_m)/AP 2 where D denotes the number
of spacetime dimensions. This action is invariant under global SU(3) gauge transformations and under chiral
SU(2)r, x SU(2)g x U(1)y transformations which we have defined in Egs. (2.59)-(2.60). The partition function
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associated with this NJL model reads:
Z[0] ~ / Dy 'DIE e~ SNIL [¥,¢] ] (2.68)

The purely fermionic path integral above can be rewritten in terms of auxiliary bosonic fields. For this, we insert
the following identity in the partition function Eq. (2.68),

1=N / Do Dy o~ ] "7 o (mi+e®) (2.69)

with the auxiliary fields o and 7;, a normalization constant V, and a parameter 7, ., which remains arbitrary for

2
(o-m
the moment.® In the next step, we perform the linear field shift

ihom) - o) =
U—>U+m(2 ) (), T — T + _(2 ) (YysTin) (2.70)
(o-m) (o-m)

which leaves the value of the path integral unchanged. Above, we have introduced a new Yukawa-type coupling
denoted by h(,.). Our partition function then reads

Z[0] ~ / Do D, D Dj e~ Sttorml | @271)

with the partially bosonized classical action

S[ip, 1,0, m) = /d4x {7];1&% + ih(o-m) (o + y5Tim)Y + % My (07 + wf)} . (2.72)

Here, we made the choice:

N ! ?L(zcr—ﬂ')
Aom) = =5 > (2.73)

(o-7)

so that the four-quark vertex is “removed” by construction: we substitute the scalar-pseudoscalar coupling \(_)
with the mass-like parameter m(%,_m and the new Yukawa-type coupling ﬁ%g_ﬂ).

The partial bosonization we have performed above is known as a Hubbard-Stratonovich (HS) transformation [230,
231] where we exchange our fermionic four-quark vertex for a Yukawa-type interaction with the associated Yukawa
coupling A (,x). The bosonic auxiliary fields o and 7; now mediate the interaction between the quarks within this
new type of effective field theory. We further point to mfg,w) which can now be interpreted as an explicit “screening”
mass term of the bosonic fields o and 7;. Note also that chiral symmetry is still present in our transformed action
(2.72). For the boson fields it is now manifested in terms of an O(NJ%) rotational symmetry, e.g., see Refs. [232,
233].

It is now straightforward to show that once the field o has a non-vanishing field expectation value, the quark
fields acquire an effective fermion mass. For this, we compute the classical equations of motion from the partially
bosonized classical action (2.72):

08

5% o = (i + imy )Y (z), (2.74)

with m,, = h.m) (o), see also Ref. [228] for details. Here, we assumed that the field o acquires a finite field
expectation value (o) ~ (1)) # 0. Because of the non-vanishing fermion mass, it is clear that chiral symmetry

®In principle, the choice of the auxiliary fields is at our disposal. The important point is that the four-quark vertex is “removed” in the
following and we ensure that the integral measure is positive semidefinite.
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can be broken spontaneously if such a non-trivial ground state exists, i.e., if (o) # 0. The important message here
is that the expectation value (7)) can be used as an order parameter for spontaneous chiral symmetry breaking as
it indicates the emergence of a finite fermion mass. The remaining question is, under which circumstances such a
non-trivial ground state may exist. We shall answer this question below.

The functional integral (2.71) can further be computed by splitting the boson fields into a background and a
fluctuation part ¢ = ¢ + d¢. We now perform a so-called mean-field approximation, i.e., we neglect all bosonic
fluctuations of the type 6. Since the fermion fields 1) and v only appear as bilinears, we can compute the functional
field integral for the fermion fields straightforwardly. Asa consequence of the mean-field approximation, the bosonic
field integral becomes also trivial. The effective action computed in a mean-field approximation then reads

1 -
Inplo, 7] = / diz {2 My (62 + ﬁ?)} — TrIn {id + ih(o-r) (& +57:7:) } (2.75)
where we use
Tr O = trDyF,c/ d*z (x| O|z) , (2.76)

with the trace trp r ¢ running over Dirac, flavor, and color space.

We now assume that the bosonic background fields are constant.” We minimize Eq. (2.75) with respect to &
and evaluate that expression at the physical ground state (o). We emphasize that we could also minimize I'yr with
respect to any other field direction as they are all equivalent as a reason of chiral symmetry. The minimization of
the mean-field effective action yields

h d (o)
o) = 8N, ™) / P _ , (2.77)
< > 2 ) (271—)4 p2 + h(Qg,ﬂ-) <O'>2

(o-m

where we find a so-called gap equation® for the homogeneous ground state (o). Here, we point to the fermion

2
(o-m)

mass mi = h <0>2 appearing in the denominator of the gap equation (2.77) above. We further see that the
fermionic four-quark coupling As.r) = h(%Hr) / m?g, ) ppears on the right-hand side of the gap equation (2.77).
Depending on the value of the four-quark coupling A(,.x), one can prove that Eq. (2.77) has, besides the trivial
solution (o) = 0, a non-trivial solution (o) # 0 signaling the spontaneous breakdown of chiral symmetry, see, e.g.,
Ref. [27, 228] for details. As one can show, for A,y < )\f;ij;), the theory remains in the chirally symmetric phase,
where for Ay.r) > )\Cfit') chiral symmetry is broken spontaneously. Note that the value of the critical four-quark

(o-m
crit.

coupling )\(C;ItTr) = X(U_W)AQ depends on the employed regularization scheme, see also our discussion in Chap. 3. In
Fig. 2.4, we show the corresponding Ginzburg-Landau-type potential U (7, 7;) [234], where Tyip = [ d*z U (5, 7;).
On the left-hand side of Fig. 2.4, we show the order-parameter potential in case of a vanishing expectation value
(o) = 0 where the illustration of the order-parameter potential on the right-hand of the figure corresponds to a non-
trivial ground state associated with (o) # 0. In case of a scenario where the symmetry is spontaneously broken,
we observe by studying the potential U (¢, 7r;) that there is an infinite number of energetically equivalent minima
along the valley of the order-parameter potential which are all connected by means of chiral rotations. Since there
is no preference in our chiral model, one minimum is randomly assumed. The situation would be different, if chiral
symmetry was broken by, e.g., a term linear in ~ . The order-parameter potential would be then deformed in a
way such that a unique ground state could possibly exist.

If we expanded the order potential about the non-trivial ground state in case of broken chiral symmetry, we
would find one massive and three massless bosons. According to the Nambu-Goldstone theorem, we can identify
these massless modes with the three Nambu-Goldstone modes associated with the three broken generators of the

axial part of the SU (2), x SU(2) g group. The massless pion modes can moreover be interpreted as a motion along

7In general, the bosonic fields are highly nonlocal. For our present discussion, however, it suffices to neglect the spacetime dependencies.
8Note that we have not regularized this expression so far. In any quantitative computation, a proper regulator has to be considered.
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Figure 2.4: Ginzburg-Landau-type order-parameter potential for a vanishing order parameter (1)) = 0 (left) and
for a finite order parameter value (1)) # 0 associated with a non-trivial ground state (right) indicating a spon-
taneous breakdown of chiral symmetry. We can also see that the curvature of the potential at its origin is positive
M, > 0in case of (1)) = 0. For (p¢)) # 0, the curvature at the origin switches its sign m(%,_,r) < Oin case of a
second-order phase transition. For a first-order phase transition it tends to zero but remains positive.

the valley of the “Mexican hat” on the right-hand side of Fig. 2.4. Within this picture, the massive sigma mode can
then be understood as a motion perpendicular to the valley. Eventually, we emphasize that chiral symmetry is only
broken for the interacting ground state (o) # 0. On the level of the original action, it is preserved in any case which
leaves its imprint from the possibility to rotate one ground state into another one.

From the partially bosonized theory, we have seen that a non-trivial ground state can exist. Further, given that a
finite expectation value for the condensate (1)) exists, the quark fields acquire a finite constituent mass and chiral
symmetry breaks spontaneously. Using the identity given in Eq. (2.73), we can relate the curvature mfa_w) of the
order potential in the bosonized picture to the four-fermion coupling A(,.x). As a consequence, we can formulate a
criterion for spontaneous chiral symmetry breaking already on the level of the four-fermion theory, see Ref.[228]:

A rapidly increasing or diverging four-fermion coupling A(,.r) indicates the onset of spontaneous chiral sym-
metry breaking,

1
2
M) ~

— 0, (2.78)

(o-m)

where m(QU_ﬂ) is the curvature at the origin of the Ginzburg-Landau potential and corresponds to the bosonic
curvature mass, respectively. In particular, a divergence of the four-fermion coupling then signals a change
in the sign of the curvature at the origin of the Ginzburg-Landau-type order-parameter potential.

Following the discussion above, we now have a criterion at hand to study spontaneous chiral symmetry breaking in
four-fermion theories.

So far, we discussed the mechanism of spontaneous chiral symmetry breaking within a purely fermionic NJL-
type model (2.67). In the next step, we discuss how spontaneous chiral symmetry breaking can be triggered by
gluon dynamics in QCD, see Refs. [21, 22, 235]. To this end, we also consider gluonic degrees of freedom entering
our four-quark theory below. We use the criterion for the onset of spontaneous chiral symmetry breaking defined
in Eq. (2.78) and study the RG running of the dimensionless and renormalized four-quark coupling A when gauge
degrees of freedom come into play. For simplicity, we assume that only one four-quark channel is present, e.g, the
scalar-pseudoscalar channel in Eq. (2.67). Note that the four-quark coupling does now depend on the RG scale £,
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Y |

Figure 2.5: Typical four-fermion beta function including gauge degrees of freedom (arrows shall indicate the direc-
tion of the RG flow towards the infrared). For an increasing gauge coupling g, the parabola is shifted downwards
so that the Gaussian (black dot) and non-Gaussian (blue dot) fixed point merge for a critical value of the gauge
coupling g = ger, see the blue curve. For g > gc,, the parabola is not controlled by fixed points anymore, see the
red curve. This graphic has been adapted from Ref. [21].

see also our detailed discussion in Chap. 3. We now consider all four-quark diagrams discussed in Fig. 2.3, i.e., we
also include box- and triangle-type 1PI diagrams. A typical beta function associated with the four-quark vertex then
reads

Br=0A=(D—2)\— a1\? — ashg® — asg?, (2.79)

kP =2 and a dimensionless gauge coupling g ~ gk”/?>~2 where D

with a dimensionless four-quark coupling A ~ A
defines again the number of spacetime dimensions. The coefficients a; are independent on the RG scale £ but may
depend on other external parameters such as temperature or chemical potential, see also Sec. 3.3. For simplicity,
let us now assume that a; > 0. The beta function for this one-channel approximation is sketched in Fig. 2.5. For
this, let us briefly recall the qualitative scaling behavior of the strong running gauge coupling, see, e.g., Refs. [20, 23,
236, 237] for studies using functional RG methods. At large scales k£ >> 1 GeV, the strong coupling ¢ is found to be
rather weak and asymptotically free in the limit & — co. By going to lower scales, however, the value of the strong
coupling increases so that the infrared physics become strongly coupled.

Let us now assume that we start in the perturbative regime of QCD where g < 1. The solid black curve in
Fig. 2.5 then depicts this situation for the four-quark beta function. Here, we find an IR-attractive Gaussian fixed
point which we display in black and an IR-repulsive non-Gaussian fixed point A* which we depict in blue. If we
started with A(UV) = 0 or at least A(VV) < \*, we would never find that the system becomes critical as it would
always be governed by the attractive Gaussian fixed point. By lowering the scale, the value of the strong coupling
increases. The parabola is then shifted downwards, turning the Gaussian fixed point into a non-Gaussian fixed
point. By further increasing the gauge coupling, both non-Gaussian fixed points approach each other. Eventually,
for a critical value of the strong coupling g = g, the fixed points merge, see the blue dashed curve. Given that a
critical value of the gauge coupling is exceeded g > g.r, the parabola is not controlled by any real-valued fixed points
anymore. In this setting, any value of A yields a rapidly increasing four-fermion coupling driving the system towards
criticality in any case, see the red dotted curve. From the criterion formulated in Eq. (2.78), we can then relate
the rapidly increasing/diverging four-quark coupling A to the onset of spontaneous (chiral) symmetry breaking as
discussed above. Note that the mechanism above takes place at zero temperature and is solely driven by gluonic
degrees of freedom. In Sec. 3.3.1, we shall discuss what might change when thermal fluctuations come into play.
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So far, we focused on spontaneous chiral symmetry breaking in QCD. However, for QCD at finite temperature
and chemical potential, various symmetry breaking patterns are expected to occur. In Sec. 2.3.4, we therefore present
a selection of different QCD matter states from model studies, where we concentrate on the two-flavor case. Since
the different phases of QCD are again associated with non-trivial ground states, the general arguments above still
hold, i.e., the onset of spontaneous global symmetry breaking is again indicated by a rapidly increasing/diverging
four-fermion coupling. Note that within the truncations used in the present work, the true nature of the ground state
in the broken regime is inaccessible. Nevertheless, the four-fermion flows in the symmetric regime can potentially
provide us with additional information about the regime governed by spontaneous symmetry breaking as we shall
discuss in Chap. 3.

2.3.3 Mean-Field Ambiguity and Fierz Completeness

In the previous section, we have seen how we can study the phenomenon of spontaneous chiral symmetry breaking
by employing NJL-type four-fermion models. We have already indicated that it is usually not sufficient to consider
only one four-fermion channel in the effective action for a theory under investigation. In this section, we shall see
why this is the case. For this, let us consider an NJL-type model without any color or flavor degrees of freedom.
Further, we assume that the effective action is invariant under global U(1)y x U(1)4 symmetry transformations.
Moreover, we consider only one four-fermion channel of the scalar-pseudoscalar type:

riol = [[ate {2000 + 5 2,3 (G0 - (Prs0P] 250)

with a vertex renormalization Z, and a wave-function renormalization Z,,. Note that we work throughout this
thesis in the so-called pointlike limit of the four-point correlation functions in the effective action:

X (Oj)* = {plkigo}ija(m)z!?b(pz)l“f;ild(pl,pz,p37p4)¢c(ps)wd(p4), (2.81)

where a, b, ¢, d shall denote spinor indices. We therefore neglect all non-trivial momentum information which
would be encoded in the four-fermion correlation functions. In the discussion below, the pointlike four-fermion
interactions shall play an essential role.

We now employ the Wetterich equation (2.29) to derive the running of the renormalized scalar-pseudoscalar
coupling. From this, we readily find expressions like

STr (p,g—1>fk7>,g—1>fk) ~ Zodo trp (Vo0 X const. + ... (2.82)

where the trace on the right-hand side shall only run over Dirac space. The vector-type channel (¢),,)? appearing
in (2.82) is a result of quantum fluctuations stemming from the right-hand side of the Wetterich equation (2.23).
In fact, our finding would account to the running of a fictitious vector coupling Ay-. This is an example that all
channels which are compatible with the underlying symmetries can appear. However, we have no vector-like channel
present in the truncation above. To this end, we can try to rewrite the vector-type interaction by means of so-called
Fierz transformations (see App. B). In general, Fierz transformations correspond to a non-trivial rearrangements of
indices in the fermionic tensor structures of the four-fermion vertices. Together with the antisymmetry requirement
implemented by the Grassmann-valued fermion fields, one can find various identities for the different interaction
channels, see Ref. [238] for a detailed discussion. Note that the possible reorderings of the fermion fields would be
more restricted if we considered momentum dependencies of the four-fermion vertex beyond the pointlike limit.
For the vector channel, e.g., one finds the following Fierz identity:

(V1) = Wy s¥)? — 2 ()2 — (Pys)?] . (2.83)
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We see that we may rewrite the vector channel again into a scalar-pseudoscalar channel which comes at the cost
of introducing an additional axial-vector contribution. In particular, we deduce that the model we have defined in
Eq. (2.80) is incomplete with respect to Fierz transformations, i.e., in the one-channel approximation it is impossible
to map all four-fermion channels appearing on the right-hand side of the Wetterich equation onto the original ansatz
(2.80). This implies that we would have to make further approximations and neglect vector-type or axial-vector-type
couplings in a one-channel calculation. Even worse, any approximation would not be unique since Fierz-identities
could always be used to reshuffle contributions from one channel to another. This issue appears for all types of
so-called Fierz-incomplete ansétze including at least quartic fermion couplings and is known as the Fierz ambiguity.

However, by considering Fierz-complete ansitze, this problem can be resolved. Indeed, in case of our simple toy
model at vanishing temperature and quark chemical potential defined by Eq. (2.80), it would be sufficient to add a
vector-type or axial-vector-type channel to take care of all different four-fermion interactions appearing as a result
of fluctuation effects. The overall strategy to avoid Fierz ambiguities in four-fermion theories can now be formulated
as follows:

(i) Findall possible four-fermion interactions which are compatible with the underlying symmetries of the theory

under consideration.

(ii) Derive all Fierz identities for the four-fermion channels found above and reduce the number of invariant
channels by the number of obtained non-trivial Fierz identities.

The second requirement ensures that a Fierz-complete ansatz does not contain more channels than necessary to set
up the entire underlying theory space. Otherwise, we would get an overcomplete Fierz basis so that information
would be distributed over multiple channels. The latter is not a real flaw since all crucial information on quantum
fluctuations is still encoded in the overcomplete Fierz basis. Nevertheless, computations are simplified considerably
when the number of channels is reduced.

Fortunately, the reduction of the channels by means of Fierz identities can be mapped to a problem in linear
algebra. By unfolding the antisymmetrized quartic tensor structures appearing in the four-fermion channels, they
can be represented as large column vectors. For this, we can compute numerically the rank of the basis matrix which
provides us the “ideal” number of basis elements required for a Fierz-complete basis.

Even though we mostly work in the purely fermionic sector where the Fierz ambiguity is under control, we
wish to add some words of caution in situations where one may be interested in low-energy observables. In the
last section, we have used a Hubbard-Stratonovich transformation to partially bosonize our one-channel model
and made a mean-field approximation where we ignored all types of bosonic fluctuations. Unfortunately, the price
we need to pay for this is to bring back the Fierz ambiguity which is then also known as the so-called mean-field
ambiguity [162, 239].

The reason why this is the case, can be understood as follows: Fierz identities tell us that there are generic
redundancies in our quartic couplings. For example, we could add in Eq. (2.80) a vector (z/;fy“w)Q and an axial-
vector (1)7,75%)? channel with the corresponding couplings Ay and )\ 4, respectively. This ansatz would then be
overcomplete as discussed above. Following Refs. [162, 239], we may introduce an unphysical parameter +y into our
ansatz reflecting the free choice of the Fierz basis:

Ao = A — 29\, Av = (1 =)\, Aa =Y. (2.84)

Physical observables of all kinds, however, must not be effected by any value of +y as it just corresponds to an al-
ternative basis choice. Loosely speaking, the parameter +y just adds a complicated zero to our ansatz. If one now
performs a Hubbard-Stratonovich transformation and computes the functional field integral within a mean-field
approximation, one may find again a non-trivial vacuum state. For this, we can compute a critical four-fermion
coupling® 5\3“,{, for which the curvature 7m?2 switches its sign signaling the onset of spontaneous chiral symmetry

Note that the value of the critical four-fermion coupling also depends on the particular cutoff scheme.
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breaking. Let us further assume that we are only interested in the curvature associated with the mass of the scalar &
and pseudoscalar 7; background fields. Therefore, we set the other composite fields, which are associated with the
vector and axial-vector couplings, to zero V,, = A,, = 0. Using the analogue of Eq. (2.73), one finds for the value
of the critical four-fermion coupling

- h?
N = 2ot g, @85
mU,A
However, using Eq. (2.84), we find
ALHE = O + 29X (2.86)

which depends on the unphysical parameter -, see Ref. [239] for a detailed discussion. This underscores that there
is again the Fierz ambiguity present at the level of the mean-field approach. By making any choice for v we could,
in principle, obtain arbitrary values for 5\;‘3\“ and mg A Trespectively. The reason why a mean-field study still may
work is the following: for sufficiently small values of the vector coupling S\’V, A» the influence on 5\;‘35\“ may be not
too strong, see Ref. [162].

One may wonder why this ambiguity is present in the partially bosonized study at all. The problem can be traced
back to the mean-field choice we made at the bosonization scale A. In mean-field theory, we ignore all bosonic
fluctuations ~ §¢. In particular, we neglect contributions such as

—_————

ONi ~ S tnm h2h2, ~ ' v 2.87
2 ;a i : : (2.87)
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where h,,, denote different Yukawa-type couplings associated with quark-meson interaction channels and a,,,,, are
coefficients which correspond to the one-loop diagrams above, see also Refs. [22, 228, 239]. It is obvious that there
is a back-coupling from the mesonic to the fermionic sector. This observation can be linked to mean-field studies in
the following way: Even though we tried to get rid of the fermionic degrees of freedom by performing a Hubbard-
Stratonovich transformation, for any infinitesimal RG step A — A —Jk they are generated again by virtue of bosonic
box diagrams as shown in Eq. (2.87). As a consequence, they contribute to the running of the four-fermion beta
function.

The good news is that this problem can be resolved by employing dynamical bosonization techniques which
has been put forward in Refs. [22, 159, 161-164] and successfully applied in various QCD-type studies, see, e.g.,
Refs. [23,235,240-242]. The basic idea of this method relies on a continuous transition from fermionic to composite
bosonic operators by also considering bosonic fluctuations as shown above. For such a powerful extension, the
classical fields of the bosonic operators in the Wetterich equation (2.23) has then to become scale-dependent as well
D — Oy.

As indicated above, in our present study, we investigate the mechanism of spontaneous symmetry breaking by
starting the RG flow in the (chirally) symmetric regime. To describe the dynamics close to the phase transition line,
we employ four-fermion theories as discussed above. Since we consider Fierz-complete ansitze, there is no kind of
Fierz ambiguity present in our truncations. Nevertheless, we shall also discuss the consequences of Fierz-incomplete
ansitze for NJL-type models and their impact on physical observables like the chiral phase boundary. As we do not
include mesonic degrees of freedom in our studies in Chap. 3, we neglect any scale dependence of the classical field.
In future works, however, it is inevitable to use dynamical hadronization techniques, at least if one is interested in
computing low-energy observables such as quark and meson masses in the (chirally) broken regime.
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Figure 2.6: Sketch of the conjectured two-flavor QCD phase diagram at finite temperature 7" and quark chemical
potential ;s from model considerations, see Ref. [254] for a review. At vanishing current quark mass and quark chem-
ical potential, the crossover at finite temperature might become a second-order phase transition, see, e.g., Ref. [232].
If this is the case, the critical endpoint (EP) would then turn into a so-called tricritical point, separating the second-
from the first-order phase transition line, see main text for details.

2.3.4 Conjectured Phases of Two-Flavor QCD

In this subsection, we discuss the conjectured QCD phase diagram at finite temperature 7" and quark chemical po-
tential . First, we begin with the remark that our current knowledge of the QCD phase diagram at finite chemical
potential is mostly based on model studies since lattice QCD methods are plagued by the infamous sign problem,
see, e.g., Ref. [24]. Briefly speaking, due to the inclusion of a finite chemical potential, the measure of the corre-
sponding Euclidean path integral is no longer positive semidefinite. To surmount the sign problem, there are several
attempts presently ongoing. For example, one may employ an imaginary chemical potential and perform an ana-
Iytic continuation towards the real chemical potential axis, see, e.g., Refs. [243-245]. Unfortunately, this approach
is limited to p1/T < 1. A promising alternative approach is the Complex-Langevin (CL) method, which is based on
stochastic quantization [246, 247]. The latter has already been successfully applied for QCD at finite temperature
and quark chemical potential as well as for ultracold gases in several works [248-252] and may provide us with
more insights into the dynamics underlying the QCD phase diagram in future studies, see Ref. [253] for the current
status of the CL framework.

Let us now discuss the conjectured QCD phase diagram from model considerations. Note that in many cases,
the employed models are related to those of the NJL type we have discussed in the last subsection. We begin with the
QCD phase diagram with two quark flavors, i.e., up and down, and neglect all quark flavors with larger current quark
masses, i.e., strange, charm, bottom and top quarks. For our first discussion, we assume that both light quark flavors
have a small but finite current masses m,, q 2, 0. We know from Sec. 2.3.2 that chiral symmetry is then explicitly
broken. Using the aforementioned parameters for the quark masses, the phase diagram of QCD may look similar to
Fig. 2.6, see Refs. [254-256] for reviews. For very high temperatures 7' > T¢., ~ 130 MeV, see Ref. [9, 10] for recent
lattice studies, the quarks and gluons are found in a deconfined state, the so-called Quark-Gluon Plasma (QGP).
Since quantum fluctuations are strongly suppressed due to the large thermal screening mass in the propagators at
high temperature, the QGP can be seen, in a first approximation, as a free quantum gas consisting of quarks and
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gluons, see, e.g., Refs. [257-259]. By lowering the temperature, one expects at zero quark chemical potential ;1 = 0
a crossover at a pseudocritical temperature of T, ~ 132 MeV [9, 10] where the light quarks gradually condense to
form hadronic bound states, see the light-blue regime in Fig. 2.6. At non-zero quark chemical potential, however,
a first-order phase transition line at finite temperature separating the QGP from a phase dominated by a finite
gap is expected. The latter then implies the existence of a critical endpoint of the first-order transition line at finite
temperature and quark chemical potential. Nevertheless, the existence as well as the position of this critical endpoint
is still a subject of theoretical, see, e.g., Refs. [227, 260-266], and ongoing experimental works, see, e.g., Ref. [267].
Inside the hadronic phase at zero temperature, there is a first-order liquid-gas phase transition of nuclear matter
[268-271] at a quark chemical potential of ;1 >~ 310 MeV. Moreover, at finite temperature the associated first-order
transition line ends in a critical endpoint. This is comparable to the conjectured endpoint of the first-order transition
line separating the QGP from condensed hadronic matter.

Before we study the regime of large quark chemical potential and low temperature, let us first discuss the limit
of vanishing current quark masses m,, 4 — 0. Here, we have a situation as described in Sec. 2.3.2 where the QCD
Lagrangian obeys chiral symmetry. In the chiral limit, it is argued that the crossover at finite temperature and zero
chemical potential could become a second-order phase transition [232]. However, recent lattice QCD results, see,
e.g., Refs. [272-275], indicate that the thermal phase transition at vanishing quark chemical potential could also
be first order. Therefore, the true nature of the phase transition is still not settled and remains an open question.
Nevertheless, if there exists a second-order phase transition at ;o = 0, the expected critical endpoint might turn into
a tricritical point. Note that we shall also assume in our NJL-type and QCD studies in the next chapter that the up
and down quarks have a vanishing current quark mass.

Let us turn to the expected state of matter at large quark chemical potential. Here, mean-field studies suggest
that it becomes favorable for up and down quarks of different colors to form Cooper-type pairs, so-called diquarks,
as it is the case in the Bardeen-Cooper-Schrieffer (BCS) theory of superconductivity, see, e.g. Refs. [32, 33, 42, 43]
and for rather general overviews Refs. [28, 35, 254]. In Fig. 2.6, the so-called color superconducting (2SC) phase is
highlighted using a light-red color tone. We emphasize that the 2SC phase has been found to be favorable in case of
two massless quark flavors as well as for small finite current quark masses for the up and down quarks. The phase
transition line between the hadronic state and the 2SC phase is likely to be first order where the transition between
the QGP and the 2SC phase is expected to be second order, see, e.g., Refs. [28, 276]. In contrast to the hadronic
phase, within the 2SC phase, the chiral symmetry remains likely to be intact [277]. For example, this is true for a
diquark condensate of the form

8~ (1 ysepeli)) (2.88)

with €7 = egca’ﬁ ) and e = XM \vhich are antisymmetric tensors in flavor and color space, respectively. Fur-

ther, we have introduced the conjugated fields /¢ = C¢/” and /¢ = 7'C with the charge conjugation operator
C = i7y270. A diquark which corresponds to a '-type condensate isa J© = 0F state and is predominantly preferred
by one-gluon exchange diagrams [277] and instanton-induced strong correlations [215, 278] by model studies [33,
278] at high densities. The formation of a J© = 0% diquark condensate is then accompanied by a spontaneous
breakdown of the global U(1)y symmetry implying the violation of the baryon number. At the same time, one
also expects a spontaneous breaking of the (global) SU(3) color gauge symmetry by virtue of the Anderson-Higgs
mechanism. As indicated in the introduction of this section, the 25C order parameter Eq. (2.88) signaling the onset
of spontaneous local symmetry “breaking’, is not gauge invariant. Nevertheless, it appears to be legitimate to utilize
non-gauge invariant order parameters to achieve a basic overview of the phase structure and the underlying sym-
metry breaking patterns. In that sense, we shall also employ this type of order parameter in our studies. However,
we emphasize that the associated diquark gap in the energy spectrum is indeed a gauge invariant quantity as one can
show, see Ref. [28]. Still, the exact nature of the phase dominated by diquark degrees of freedom is not completely
understood. For instance, quark-quark bound states other than 0% -type diquarks, i.e., states with non-vanishing
spin, are also discussed by various authors and may also exist for different parameter settings, see, e.g., Ref. [28] for



2.3 Phases of QCD and Spontaneous Symmetry Breaking 45

an overview.

So far, we concentrated on the phase diagram of two-flavor QCD. Let us now briefly discuss the QCD phase
diagram if a strange quark with a non-vanishing current quark mass comes into play. For this, at large quark chemical
potential, there is another state of matter discussed in the light of diquark-type bound states. Within the so-called
Color-Flavor-Locking (CFL) phase [33, 35], the chiral symmetry is spontaneously broken as it is the case in the
hadronic phase. Nevertheless, within the CFL phase, there is still a BCS-type pairing of quarks ongoing with all
three flavor and color degrees of freedom involved. The latter then form spinless Cooper pairs with vanishing center-
of-mass momentum ¢ = 0. Note further that the mass of the strange quark does also have an essential influence
on the expected order of the phase transition line separating the deconfined QGP from the gapped matter states.
For instance, we have already seen that a vanishing current quark mass for the up and down quark may crucially
alter the type of the finite temperature phase transition at zero quark chemical potential. This is also the case for a
finite strange quark mass, where the order of the phase transition line at vanishing quark chemical potential is still
not completely understood. Here, the famous Columbia plot, see, e.g., Refs. [273, 279], gives an overview of the
expected nature of the phase transition at finite temperature and zero chemical potential as a function of the light
and strange quark mass.

We end this very brief summary of the QCD phase diagram at finite quark chemical potential with the remark
that we discussed by far not all possible phases which are expected to emerge within dense QCD matter. In particu-
lar, we only considered QCD matter at zero isospin chemical potential. At non-vanishing isospin chemical potential,
for example, one expects in analogy to a Fulde-Ferrell-Larkin-Ovchinnikov-type (FFLO) superconductor [280, 281]
where the Cooper pairs carry a finite center-of-mass momentum ¢, the possible existence of a corresponding crys-
talline color superconducting state in QCD [34, 282, 283]. As one would expect it for a FFLO-type superconductor
of atomic matter, the order parameter of a color crystal condensate would then acquire a modulation in position
space.

We emphasize that aside from usual hadronic matter, there are still experimental verifications missing for any
of the discussed types of exotic matter states at large u. Due to the sign problem which we have mentioned at the
beginning of this section, an exploration of the dense QCD regime using conventional lattice methods also turns out
to be less feasible. Therefore, in our present work, we employ the functional Renormalization Group which allows
us to study the (T, 1) plane over a wide range of temperature and quark chemical potential including fluctuation
effects beyond a mean-field approximation.






Chapter 3

Phases and Fixed-Points of

Strong-Interaction Matter

In this chapter, we study the phase diagram of strong-interaction matter in the plane spanned by the temperature
T and the quark chemical potential ;1. We begin in Sec. 3.1 with a Fierz-complete one-flavor and one-color NJL-
type model study. Here, we discuss the fixed-point structure of the corresponding vacuum theory and analyze the
running of the four-fermion couplings. At finite temperature and fermion chemical potential, we then compute
the phase diagram from two different Fierz-complete approaches, showing that the resulting phase boundaries are
unique. On the other hand, we shall see that this is not the case for Fierz-incomplete basis choices. In the end, we
discuss the impact of different types of regularization schemes from a technical point of view.

In Sec. 3.2, we then present a Fierz-complete NJL study with two flavors and three colors. We discuss the critical
phase boundary in the (7', i) plane, where we compare different Fierz-incomplete basis sets with our ten-channel
Fierz-complete approach. Further, we analyze the fixed-point structure and analyze the pseudo fixed-point behavior
under a variation of the temperature and quark chemical potential for a two-channel approximation. The pseudo
fixed-point structure then provides us with further valuable insight into the dynamics underlying the observed
symmetry breaking patterns.

We finally study in Sec. 3.3 the phase boundary of two-flavor QCD by employing the Fierz-complete basis from
the previous section. Further, we consider dynamical gluon degrees of freedom so that the four-quark interactions
are generated automatically from the RG running of the strong coupling. We discuss the phase diagram and compare
the QCD study with our NJL model from Sec. 3.3. Eventually, we give an outlook to future studies on the equation
of state for isospin-symmetric strong-interaction matter based on this work.

3.1 Nambu-Jona-Lasinio: One Flavor and One Color

We begin our first study with a purely fermionic NJL model at finite temperature and fermion chemical potential,
see Ref. [116] for the original paper. For simplicity, we study massless fermions with no further internal degrees
of freedom like color or flavor (Ny = N. = 1). These type of chiral theories have already been investigated
intensively for different truncations and approximations, see, e.g., Refs. [162, 228, 284]. In our study, we investigate
the underlying mechanisms of spontaneous chiral symmetry breaking by employing a Fierz-complete ansatz. Since
there are no flavor degrees of freedom present in our study below, the chiral U(2) x U(2) g symmetry in QCD is
replaced by a residual global U (1) 4 x U(1)y symmetry obeying the following transformation rules for the spinor
fields 1) and ):
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Ul)a P e, P Y (3.1)
and
Uly ) pe P — el (3.2)

Here, o denotes in both cases a real-valued “rotation angle” as we have discussed in Sec. 2.3.2. Recall that the U (1)
symmetry is related to the conservation of the fermion number.
The classical action in Euclidean spacetime which is invariant under Egs. (3.1) and (3.2) is given by

_ B _ - _
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Here, the scalar-pseudoscalar four-fermion interaction appearing in the classical action carries similar quantum
numbers like the o-meson and the pions, which we have discussed in Sec. 2.3.2. Nevertheless, the NJL-type model
we consider in this section is drastically simplified as we neglect color and flavor degrees of freedom. In the study
below, the onset of the spontaneous breakdown of the chiral U(1) 4 symmetry is signaled by the formation of the
condensate (1¢)) which serves as an order parameter. To distinguish the breakdown of the chiral U (1) 4 from a
breakdown of the U (1)1, symmetry we further consider the order parameter (1) C~y51)) with C = iy9, associated
with a difermion-type condensate. The latter can be compared to diquark-type condensates in QCD matter which
we expect to exist at large quark chemical potential, see our discussion in Sec. 2.3.4. Below, we shall discuss how
difermion-type four-fermion correlation functions can be included in our present study and how they are related to
conventional “fermion-antifermion-type” four-fermion interactions by means of Fierz transformations.

Due to the external heat bath and the finite chemical potential, some symmetries of the vacuum theory un-
derlying Eq. (3.3) are broken explicitly. Since we distinguish the temporal direction of spacetime by considering a
finite temperature and fermion chemical potential, the (Euclidean) Poincaré symmetry is broken. Due to the finite
fermion chemical potential, we further break the invariance under discrete charge conjugations C. Note that the
classical action is still invariant under discrete time 7 and parity P transformations. One may wonder, why our QFT
is not invariant under CP7T as one might expect. For this, we emphasize that a prerequisite for the famous CP7T
theorem is Lorentz invariance (cf. Ref. [126]), which is violated by introducing, e.g., a fermion chemical potential.

As an ansatz for our effective action I', we have to consider the most general action which satisfies the sym-
metries underlying our theory. We already know from our “recipe” in Sec. 2.3.3 that we have also to include four-
fermion channels other than [(L/;i/))z - (7/;’751#)2] as the Wetterich equation (2.23) dynamically generates all types
of four-fermion interaction which are compatible with the symmetries. For instance, we also need to take vector-
type (¥7,%)? and axial-vector-type (¢, v51)? four-fermion channels into account. In leading order (LO) of the
derivative expansion, see also Sec. 2.2.2, we then find six channels which are invariant under U (1)y x U(1) 4 trans-
formations:

g 8 :
Tuoldu) = [ dr [ @b {d(Zdh + 24100s ~ Zyiw)o
0
270005 Py LZ0AL vy =Lk vy - L2080 ()
2 oo ) VAV I 2 VAV 1 2 ANA I
1 < 1 -
—§Zi/\j (AL)—iZ%i (TH)} . (34)

The scale-dependent dimensionless vertex renormalizations are denoted by Z, Z‘”,, 7, Zﬂl, Z+%,and Zl‘r where
the dimensionful bare couplings are defined as ), j\l“/, AP 5\[‘4, A4 and ;\g«. The abbreviations we use in Eq. 3.4 for
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the six four-fermion channels are:

(S—P) =@Wv)?— (WYy1)?, (1)) = (Wooit)? — (Wooys)?,
Vi) = (@oe)?, (Vi) = @),
(A = @yosv)?, (A1) = (Wvvse)*. (3.5)

Furthermore, because of the explicit breaking of the Poincaré symmetry, we separately renormalize in Eq. (3.4) the
temporal Z |l and spatial Z spacetime components of the fermionic wave function. Nevertheless, the leading order
of the derivative expansion corresponds to treat the four-fermion vertices in the pointlike limit, see Eq. (2.81). As
a consequence, the running of the wave-function renormalizations become trivial, as we shall discuss below. We
further identify in Eq. (3.4) the renormalization function corresponding to the fermion chemical potential by Z,,. At
vanishing temperature, we have 7! = Z I'= Z* for Z,,i < my. The fermion (pole) mass, possibly generated in
the infrared, is here denoted by m = 1 /Z~, where m ; describes the bare fermion mass. The relation between the
wave-function renormalization Z and the renormalization function of the chemical potential Z,, is a consequence
of the Silver-Blaze property of QFT’s at zero temperature and finite chemical potential, see Refs. [285-288] and our
discussion in Ref. [116].

Since our present ansatz (3.4) is overcomplete, we can reduce the number of basis elements by using Fierz identi-
ties, see App. B.3.1. In case of the six four-fermion channels in Eq. (3.5), we only find three to be linear independent
at finite temperature and chemical potential. In our case, we therefore employ the following Fierz-complete ansatz:

_ E _
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Of course, the choice of the three channels above is not unique. In this study, we demonstrate this by considering a
second Fierz-complete basis which shall be of the difermion-type. Obviously, the values of the scale-dependent cou-
plings then depend on the the particular choice of the Fierz basis. However, the crucial feature of a Fierz-complete
basis is that physical observables are basis independent, e.g., the critical temperature is invariant under arbitrary
Fierz transformations if a Fierz-complete basis is used, see our discussion in Sec. 3.1.2. We emphasize that this is
not the case for any Fierz-incomplete basis.

In principle, the ansatz (3.6) would also receive contributions from higher order fermion self-interactions, e.g.,
from eight-fermion interactions. As it turns out, however, eight-fermion correlation functions do not couple to the
four-fermion sector at this order of the derivative expansion and are therefore not included, see Ref. [228] for details.

Note that the pointlike limit does not provide us with any information on the momentum structure of the cor-
relation functions encoding the underlying mass spectrum of the theory. The onset of the formation of a finite
condensate associated with spontaneous symmetry breaking is then signaled by diverging four-fermion couplings
at some finite critical RG scale k = k.,, see our criterion in Sec. 2.3.2. The divergence in a four-fermion channel
then indicates that the curvature at the origin of the corresponding Ginzburg-Landau potential (see Fig. 2.4) tends
to zero so that a non-trivial ground state may be assumed. In the leading order of the derivative expansion in our
purely fermionic formulation of I', we cannot study the theory within a regime where at least one symmetry is bro-
ken spontaneously. Nevertheless, we can start our RG flow in the symmetric regime, e.g., at high temperatures,
where it is expected that the symmetries underlying our theory remain intact. By lowering the temperature at a
given value of the chemical potential, we then find a critical temperature Tt below which the pointlike limit breaks
down. From this, we can deduce an upper bound for the critical phase transition line T, (1) separating the gapped
from the ungapped regime. In former studies, this line of argumentation has already been successfully applied for
gauge theories, see Refs. [19-21]. From a phenomenological point of view, however, the meaning of the critical
temperature can be manifold. In particular, the critical temperature cannot be related to the breakdown of a spe-
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cific symmetry. As we shall see, the divergence in one four-fermion channel automatically triggers divergences in
all other four-fermion channels. Therefore, the true nature of the condensate forming in the infrared is difficult to
assess in the present study. Nevertheless, we employ a technique which allows for a first estimate of the forming
ground state as we shall discuss in the next subsection.

A divergence in the four-fermion couplings serves as an indicator for the breakdown of the pointlike limit and
signals the onset of spontaneous symmetry breaking. However, the criterion might be not sufficient. To be more
specific, symmetry restoration mechanisms might still exist in the deep infrared, e.g., quantum fluctuations could
restore the symmetry at low scales. If the physical phase transition is of first-order, a divergence in the four-fermion
couplings may only hint to a region of metastability. In this case, aliquid-gas-type phase transition which is expected
to be of first order cannot be reliably resolved using our present ansatz. Phase transitions which are of second
order can in principle be readily detected within our framework, e.g., the color superconducting phase transition is
expected to be of second order, see our discussion in Sec. 2.3.4.

Let us further discuss the regularization scheme we use throughout this study. For the latter, we employ a four-
dimensional exponential regulator respecting the Poincaré symmetry of the theory in the vacuum limit 77 — 0
and pt — 0, see also App. C. This is an essential property as we find that the Fierz-complete vacuum beta functions
with two channels [162, 228] can be recovered straightforwardly from our Fierz-complete beta functions (E.1)-(E.3)
at finite temperature and fermion chemical potential. Therefore, covariance can be restored in the vacuum. Since
vacuum observables are usually used to fix the theory’s parameters in the ultraviolet, it is desirable for any regular-
ization scheme to have a consistent vacuum limit. Note that this is not necessarily the case for spatial regularization
schemes where we find a broken Poincaré symmetry of the theory even in the vacuum limit.

In the next subsection, we discuss the limit of vanishing temperature and chemical potential. By studying the
fixed-point structure and the RG flows associated with the four-fermion beta functions, we can analyze the nature
of the condensates which are expected to form in the infrared. At finite temperature and fermion chemical potential,
we then expect, at least at low fermion chemical potential, the formation of a finite chiral condensate o ~ (11)),
breaking the axial U(1) 4 symmetry.

3.1.1 Vacuum Theory and Fixed Points

Before we discuss the full Fierz-complete NJL model at finite temperature and fermion chemical potential, we begin
with the discussion of the corresponding vacuum theory, where 7' — 0 and 1+ — 0. In this limit, a Fierz-complete
ansatz is given by just two linear independent four-fermion channels [162, 228]. As a first step, it is required that
we discuss the renormalization of the ansatz (3.6). For this, we can rewrite our bare four-fermion couplings \i =
s, Xu,, A } with the renormalization functions Z; = {Z,, Z‘”,7 73t} into dimensionless renormalized couplings

 Zik*N

>\’i (ZJ‘)2 )

(3.7)

where we used the field redefinition
Y= (Zh)73, v (Zh)7E. (3.8)

The leading order of the derivative expansion implies that we treat the four-fermion vertices in the pointlike limit. As
a consequence, the flow equations associated with the wave-function renormalizations of the fermion propagator
vanish identically 3;Z! = 9,Z+ = 0. Note that the corresponding anomalous dimensions n* = —d;In Z+
and 7]“ = -0;InZ I are then equal to zero. Therefore, the wave-function renormalizations remain constant and
independent on k where we choose Z+ = ZI = 1 at the initial RG scale.

Let us now discuss the Fierz-complete set of beta functions in the vacuum limit. For our covariant regularization
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Figure 3.1: Typical four-fermion beta function 9, A, in the vacuum as a function of the coupling A;. We also display
the Gaussian fixed point in black and the non-Gaussian fixed points in blue. The grayish dotted parabola depicts
the influence of more than one channel which can lift the beta function upwards or downwards. With this shift, the
former Gaussian fixed point turns into a non-Gaussian one. Possibly, there are non-trivial critical values for A; so
that the beta function is not controlled by any real-valued fixed point anymore.

scheme (see also App. C), we obtain:

Ohe = Br, =2X, —8us (A2 + 4N Ay + 37, (3.9)
A = Bay, =2xy —4vs (Ao 4+ Av)? (3.10)

with vy = 1/(327%). Note that we assume /\lx‘/ = ){ in (3.6) which holds at zero temperature and chemical
potential. We emphasize again that up to some numerical constants which depend on the particular regularization
scheme, our beta functions agree with literature calculations, see Refs. [162, 228].

As a first analysis, we start with a Fierz-incomplete one-channel truncation. For this, we set in Eq. (3.9) the
coupling Ay = 0 by hand. The remaining flow equation for the chiral scalar-pseudoscalar four-fermion channel
then reads

Ao = Pr, =2 s — Sug)2, (3.11)

which has a non-Gaussian fixed point at \* = 872. The latter is infrared repulsive as it turns out from a stability
analysis

9B«

="

) (3.12)

A

with the positive critical exponent O governing the scaling behavior of physical observables close to the fixed point
As. We can compute the scale dependence of the four-fermion coupling in this one-channel approximation exactly:

)\((TUV)
AN© )\(UUV) )\guv) ’
(E) (1 T ) + Py

where AS”Y) denotes the starting value of the coupling A, at the UV scale A. The situation is illustrated in Fig. 3.1,

Ao (k) = (3.13)

where we show the shape of a typical beta function in case of vanishing temperature and chemical potential, see the
black curve (arrows point towards the infrared). We find that if the UV value of the scalar-pseudoscalar coupling
AYY) s chosen smaller than the fixed point value AUV < AL, the system is dominated by the Gaussian fixed
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point of the theory. From Eq. (3.13), it then follows that the flow of the dimensionless renormalized coupling A,
tends to zero in the infrared. In this case, the theory is ungapped and remains in the symmetric phase. On the other
hand, for AY"Y) > AL, a quantum phase transition, i.e., a vacuum phase transition, is triggered and the flow of the
scalar-pseudoscalar coupling diverges at some finite critical scale

ker = A(ANS)BO(AN,). (3.14)
Here, we have introduced the relative distance to the non-Gaussian fixed point

(UV) _
AN, = u
ATY)

(3.15)
From the relation above, we can readily deduce that a finite critical scale k., can only be found in case of AX\, > 0.
Since the system is governed by the Gaussian fixed point for AX, < 0, the theory remains in the symmetric phase
as discussed above.

Note that if there was more than one channel present in our truncation, we would observe that four-fermion
channels associated with the couplings \; are, in principle, able to move the parabola upwards or downwards, see
the dotted gray line in Fig. 3.1. This can be seen from the structure of the beta functions, e.g., in Eq. (3.9) where the
running Ay -coupling can shift the parabola associated with the scalar-pseudoscalar coupling A,. This mechanism
is comparable to the impact of the running gauge coupling ~ g, as discussed in Sec. 2.3.2. We shall come back to
this point when we discuss the effect of gluonic degrees of freedom at the end of this chapter.

The critical scale (3.14) sets the scale for all low-energy observables, which are then functions of the critical scale
themselves. As we have discussed in the previous section, a diverging four-fermion coupling A signals the onset of
spontaneous chiral symmetry breaking. Since the four-fermion coupling A, is related to the bosonic curvature mass
m2, see Eq. (2.73), of the corresponding partially bosonized theory via A, ~ 1/m?, a divergence in the \, coupling
implies that the curvature tends to zero m2 — 0. However, as we have discussed in Sec. 2.3.2, this criterion may not
be sufficient for spontaneous symmetry breaking since there might be symmetry restoration processes occurring in
the deep IR regime, see also Refs. [21, 22].

Let us now discuss the flow equations (3.9) and (3.10) which are Fierz-complete at vanishing temperature and
fermion chemical potential. In general, we can visualize the corresponding theory space by using a stream diagram,
see Fig. 3.2. Note that the arrows point again in the direction of the infrared. In the vacuum, besides the Gaussian
fixed point at 7 = (0, 0), we find two non-Gaussian fixed points which have the numerical values 77 = (372, 2)
(blue dot) and F» = (—3272,1672). Note that the values are regularization scheme dependent and correspond
to our covariant regulator. The critical points describe situations in which the beta functions of our theory vanish.
Then, the system shows scale-invariant behavior, i.e., the theory does not change under RG transformations and
behaves the same on all length or momentum scales, see also our generalized picture Fig. 2.1 from Chap. 2. Note
further that the non-Gaussian points are not stable fixed points. Each of them has an infrared attractive and repulsive
direction.

As initial conditions at the UV scale k = A, we choose in case of more than one channel for the rest of the

present study /\%V) = )\EEV) = /\g/UV)

= 0. From our coupled set of RG flow equations, these channels are then
solely dynamically induced by quantum fluctuations. The remaining free parameter of our theory is, therefore, the
UV value of the scalar-pseudoscalar coupling /\ETUV). Indeed, from QCD vacuum studies, see, e.g., Ref. [23], we find
that the scalar-pseudoscalar channel is dominantly generated in the RG flow of full QCD. As we eventually aim at a
study of QCD, we mimic this situation here and only choose a finite UV value for the scalar-pseudoscalar coupling.
We shall come back to this in the next section.

In Fig. 3.2, we show an exemplary RG flow for initial conditions of the type as specified by the magenta dot.
From the coupled RG equations, we find (red-colored) critical separatrices slicing the underlying theory space in

three domains, which are governed by different fixed points. For this showcase, the magenta starting point lies in
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Figure 3.2: The beta functions (3.9) and (3.10) are visualized as a stream plot where the arrows point in the infrared
direction. The Gaussian fixed point (Fp) is shown in black and one of the two non-Gaussian fixed points (F;) in
blue. For illustration, we further show an RG trajectory (pink line) which approaches the separatrix (red line) in
the infrared. The theory space is sliced by the separatrices in three domains D1, Dy and D3. The dominance of
the scalar-pseudoscalar channel can be deduced from the relative location of the bisectrix (black dotted line) to the
separatrix separating D; from Ds.

domain D5, which is dominated by the repulsive direction of the fixed point F;. If the system is initialized in this
domain, the four-fermion couplings rapidly increase and diverge at a finite critical scale. The magenta trajectory
then asymptotically approaches the separatrix in the deep infrared. The separatrix which intersect the Gaussian and
the non-Gaussian fixed point F; has a smaller gradient than the bisectrix (black dotted line) and points towards the
Ao direction. From the magenta RG trajectory approaching the latter separatrix, we may then deduce that the scalar-
pseudoscalar channel becomes large and dominates the infrared regime. The dominance pattern of the competing
running couplings can then provide us with information on the symmetry breaking patterns and possible forming
condensates at £ — 0, see also Refs. [19-21].

Fig. 3.3 illustrates the magenta trajectory from a different perspective. Here, we present the (inverse) flows of the
Ao and Ay coupling as a function of the RG scale k. The dominance of the scalar-pseudoscalar channels is, moreover,
manifested in A, (k) > Ay (k) for values k close to the critical scale k.,;. On the other hand, the inverse coupling
A, 1 associated with the curvature of the effective potential, tends “faster” to zero than the competitive coupling
Ay'. Therefore, we expect the formation of a finite chiral condensate with (y9)) # 0. At least for )\SJ V) = 0and
AYY) € Dy, our analysis suggests the onset of spontaneous chiral symmetry breaking in accordance with naive
expectation that the ground state is governed by chiral degrees of freedom at 7' = p = 0.

We close this subsection with some general comments on the choice of our initial conditions and our dominance
analysis from which we infer the nature of the theory’s ground state. First, from Fig. 3.2 we deduce that by setting
AYY) = 0, we still find a dominance in the scalar-pseudoscalar channel, given we choose a sufficiently large starting
value for the vector coupling, i.e., the initial value should lie in the domain D;. In the (deep) infrared, one would
then observe an RG flow similar to the one we found for our previously employed UV initial condition in the
domain D,. This is an interesting observation in the following sense; the dominance in the scalar-pseudoscalar

channel associated with a spontaneously broken chiral symmetry seems to be rather robust and weakly dependent
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Figure 3.3: RG running of the couplings A, and Ay for initial conditions as used in Fig. 3.2. Further, we also show
the inverse couplings A, * and \j;' as a function of the RG scale k at vanishing temperature and chemical potential.
We observe that both couplings rapidly increase and, eventually, diverge at a finite critical scale k¥ = k., indicating
the onset of spontaneous symmetry breaking.

on the particular choice of UV initial conditions. This statement is true as long as the RG flow starts in D; or Ds.
Throughout this study, we continue to use this dominance argumentation we employed above. We emphasize that for
a quantitative study of the possibly forming condensates in the infrared, we would need to study, e.g., at least parts
of the momentum structure of the four-fermion correlation functions. Especially in the deep infrared, quantum
fluctuations could still change the dominance pattern so that vector-type condensates might emerge. Even though
it appears to be rather unlikely, a possible vector-like condensate cannot be ruled out using the pointlike limit.

3.1.2 Phase Structure

We discuss the one-flavor and one-color NJL model at finite temperature and fermion chemical potential. In anal-
ogy to the previous section, we start again with an analysis of a one-channel approximation only considering a
scalar-pseudoscalar channel, before investigating the thermal Fierz-complete basis. Again, we obtain the finite-
temperature one-channel approximation from the Fierz-complete set of equations (E.1)-(E.3) by setting /\l“, =\ =
0 by hand. Note that this method yields different beta functions compared to a direct computation starting with an
ansatz with only one scalar-pseudoscalar channel. This discrepancy provides an illustrative example of how Fierz
incompleteness can lead to ambiguities. Even in situations where two different calculations start from an identical
Fierz-incomplete ansatz, e.g., to derive the beta function of the theory’s renormalized couplings, the so-obtained
results are usually not unique.

For our studies at finite temperature and chemical potential, as a first step, we shall neglect the running of the
renormalization function associated with the fermion chemical potential. For this, we set throughout this work
Z,, = 1. In that case, we find for the running of the scalar-pseudoscalar channel

B, = 2Xg — 160402 L(T, fir), (3.16)
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with the temperature- and chemical-potential-dependent function

cirir) = 3 (8D 0,-i) + 12 (7,0, <) )
1™ (7,0, —iir) — lﬁfg“)(r, 0, —ifi) . (3.17)

The purely fermionic threshold functions I(*):(*), which correspond to one-loop 1PI diagrams, are defined in App. C.
Here, we use again the exponential regularization scheme, which is also discussed in App. C. We further denote
the dimensionless temperature by 7 = T'/k and the dimensionless chemical potential by i, = u/(27T). We
note that the threshold functions, see Egs. (C.18)-(C.21), do now depend on the temperature and on the fermion
chemical potential. The behavior of the threshold functions under a variation of temperature and chemical potential
is essential for the overall dynamics of our thermal NJL model. For this, we shall analyze their influence on the beta
functions in more detail at the end of the present section.

In agreement with the one-channel beta function from the previous subsection, we find £(0,0) = 3 reproducing
our result in the vacuum limit Eq. (3.11), as it should be the case. We emphasize again that this would not be possible
if we used a spatial regularization scheme. In the next step, we solve Eq. (3.16) analytically, which yields:

Ao (T, 1, k) = A (3.18)
o s My - © (UV) ’ .
()7 (1 + 4257 2T )
with
1 k
I(T. k) = 53 /A AK'K L(7 jirr) . (3.19)

We find for the non-Gaussian fixed point \* = 872, which is again in agreement with our previous vacuum study.
As initial conditions for the RG flow equations at finite temperature, we fix the UV value of the scalar-pseudoscalar
coupling AV 50 that we reproduce a certain critical temperature at vanishing fermion chemical potential Ty =
Ter (i = 0). To see that the critical temperature and the initial value AV are related, let us now define the following

necessary condition for spontaneous symmetry breaking at finite temperature and fermion chemical potential:

1
im——— —0. 3.20
K30 Ay (Tors 1, ) (3.20)

By using Eq. (3.18), we find from Eq. (3.20) an implicit equation for T¢,:

Ag
0= ()\(UV)) +4Z(Ter, p1,0). (3.21)
With Eq. (3.14), we can reformulate Eq. (3.21) to relate the critical scale in the vacuum kg = k(T = 0, 4 = 0)
and the critical phase transition temperature 7,:

ko = A (1 +4Z(Te, 1,0)) . (3.22)

It is clear from our discussion of the one-channel approach in the vacuum that a critical temperature can only be
found for )\((,UV) > Ak

From Eq. (3.21), we can follow that there exists a one-to-one correspondence between the critical temperature

)

Ty (1) at a given fermion chemical potential and the UV value of the scalar-pseudoscalar channel AV, Using this
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Figure 3.4: Phase boundaries in the (7', 1) plane of our one-flavor and one-color NJL model as it is found from
a one-channel (green), two-channel (orange) and Fierz-complete ansatz for the effective action, see main text for
details.

observation, we can now discuss the scale-fixing procedure for our finite-temperature study where we choose:

)\*
0= (A(U‘iv)) +47(Ty=0.132A,0,0) (3.23)

where we use A = 1 GeV as an UV cutoff scale!® and, therefore, obtain as a critical temperature Ty = T (u = 0) =
0.132 GeV. Formally, the latter choice is motivated by the critical temperature at vanishing chemical potential found
in a recent lattice QCD study [9] considering one massive and two light quark flavors. Recall that we eventually aim
at a study of QCD. For an alternative choice for the critical temperature, we refer to the original publication where
we used Tp = 0.15 GeV. Nevertheless, we find that for both scale-fixing procedures, the qualitative findings remain
unchanged. To adjust a critical temperature of T, (1 = 0) = 0.132 GeV in our model, we emphasize again that we
only tune the AV and set all other couplings to zero. The other couplings are then generated dynamically within
the RG flow. Note that we use this type of scale fixing in all NJL-type models we study throughout this thesis.

Let us now investigate the phase boundary as it is obtained from a one-channel, a two-channel and a Fierz-
complete ansatz for the effective action Eq. (3.6). In general, the influence of more than one fermion channel on a
beta function can still be explained phenomenologically within the already discussed vacuum picture, see Fig. 3.1.
Loosely speaking, the parabola associated with a four-fermion beta function is shifted upwards or downwards in
the presence of more than one four-fermion coupling.

In Fig. 3.4 we now present the critical temperature T, (x) in the (T, 1) plane as obtained from three different
truncations. Inside of the depicted curves, we observe that the running four-fermion couplings diverge at a finite
critical scale k., indicating the breakdown of at least one of the symmetries of our model. Outside the phase bound-
aries, all dimensionless four-fermion couplings tend to zero in the infrared limit limy_,o A; (k) = 0 implying that
the system remains in a phase with no spontaneously broken symmetry, i.e., no finite gap emerges and the RG flow

19We have also checked that our results remain unchanged by using RG-consistent larger cutoff scales, see Ref. [276] for a detailed discussion
of RG consistency.
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in the theory space is dominated by the Gaussian fixed point, see Sec. 3.1.1. As indicated in the previous section, we
observe that a divergence in one four-fermion channel simultaneously triggers divergences in all other channels.

By comparing the one-channel approximation with our two-channel and Fierz-complete three-channel ap-
proach, at zero temperature, we find that the phase boundary of our one-channel approximation exhibits a critical
fermion chemical potential p., /Ty ~ 1.0 above no spontaneous symmetry breaking is observed. For the two-
channel approach, this critical chemical potential is shifted towards larger values where we find pe, /Ty =~ 1.05.
The phase boundary of the Fierz-complete ansatz has the largest extent. Here, we observe for the critical fermion
chemical potential i, /Ty ~ 1.3.

Let us now discuss the dominance patterns for the different types of approaches we consider, see Fig. 3.4. By
construction, we find for the one-channel ansatz a dominance in the scalar-pseudoscalar channel. For the two-
channel approach, we set Al = Ai> which corresponds to our Fierz-complete computation in the vacuum, see also
Fig. 3.2. Clearly, the two-channel approximation is still Fierz complete at T' = p = 0. We find for /Ty 2 0.5 a
dominance in the (S— P) channel associated with the breakdown of chiral symmetry. Interestingly, for temperatures
0.5 2 T/Tp 2 0.1 the dominance pattern changes, now suggesting a vector-like condensate in this regime. The
latter condensate indicates that an additional spontaneous breakdown of the Poincaré symmetry may be found. Note
that this occurs on top of the explicit breaking of Poincaré symmetry due to the presence of a finite heat bath and
fermion chemical potential. For T'//Ty < 0.1, we find a dominance in the chiral scalar-pseudoscalar channel again.
Finally, let us examine the full Fierz-complete basis considering all three channels. Here, we encounter a dominance
of the (S — P) channel for temperatures 7'/Ty 2 0.8. Further, we find in agreement with the two-channel case,
a dominance of the (V}) and the (V) channel. Compared to the two-channel approximation, we observe in the
Fierz-complete case a significantly larger temperature interval T'/Ty < 0.8 where the vector-type channels appear to
be dominant. Over a wide range of the temperature domain, we find that a dominance of the (V) channel associated
with a density-type condensate n ~ (1)iyp1)) seems favorable. Only within a small interval of 0.1 > T'/T, > 0.02,
we find a dominance of the (V) channel. At the end of this analysis, we would like to emphasize again that a
dominance in one channel does not necessarily imply that the low-energy regime is governed by the corresponding
condensate.

Next, we shall investigate the influence of a different basis set on the phase structure of our model. We shall see
that a change of the Fierz-complete basis does not alter the phase boundary at all. This is crucial as the particular basis
choice should not influence physical observables. The dominance pattern is, however, not unique and can change.
In particular, we observe that our presently employed four-fermion basis does not contain a channel which would
be sensitive to a possible breakdown of the U (1)}, symmetry. From condensed-matter physics, however, we know
that at a sufficiently low temperature and finite chemical potential, a pairing between the interacting fermions of
different spin species close to the Fermi surface becomes energetically favorable. The associated formation of a BCS-
type energy gap [2, 3] in the excitation spectrum is then accompanied with a breakdown of the U(1)y symmetry.
The latter indicates the formation of Cooper pairs of two correlated fermions. In Sec. 2.3.4, we already discussed this
briefly in case of QCD. There, we argued that the possible pairing mechanisms could be manifold since the quarks
also carry more internal degrees as it is the case, e.g., in QED.

To make contact to phenomenology, in the following, we include difermion-type four-fermion channels in our
ansatz for the effective action. The difermion condensates, which are possibly created in the infrared regime at finite
fermion chemical potential, are then indicated by a dominance in the corresponding “four-difermion” channel. As
mentioned above, this is then accompanied with a spontaneous breakdown of the U(1)y symmetry. We use the
following ansatz for the effective action:

_ B _ 1-
I, = /0 dT/d3x {qp(zlmao + ZY17;0; — Zuipyo)y + 3AD.0 (S = P)

1< 1<
7§>\DSP (SC - PC) — 5)\])0 (AHC) } R (3.24)
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where we defined the following abbreviations for the difermion-type four-fermion interaction channels:

(SC — PC)
(4)

(e (W Cy) — (PsCoT) (T Crs)
(Vy075C0T) (T Cros) - (3.25)

The difermion channels above can be computed from the conventional four-fermion channels by employing a par-
ticular type of Fierz transformation, see Eq. (B.20). Using this, we can map the effective action (3.24) onto our
previously studied effective action (3.6), i.e., the difermion-type interaction channels can be assembled from a com-
bination of conventional four-fermion channels. We then find:

6 —
iy = / dT/d% {w(Z'Wo@o + Zhii0; — Zuipryo)
0

1, - 1-

+§()\D,cr + Apsp + §>\D0) (S—P)
1 - 3

—5 (= Apse = 5Ano) (V)
1, - 1-

—5( — Apsp + 5/\Do) (V1) } . (3.26)

From this, we read off the transformation rules mapping the new four-fermion couplings to the old ones. This can

be written conveniently in a compact matrix notation:

5\0 1 1 % S\D,o
5\&, - 0 —1 7% S\Dsp . (3.27)
Ao 0o -1 1 Ao

The matrix above has full rank. The latter is of great importance as it is not necessarily true for Fierz-incomplete
basis types. In the next step, we invert the matrix and use it to find the new beta functions associated with our
difermion-type four-fermion basis:

Brp.. 1 % % B,
Brose 0 _i _% 6)\L|/ . (3.28)
ﬂ)\Do O - % % 5)\%/

Using the new parameterization for our Fierz-complete four-fermion basis in our ansatz, we may now check more
directly for possible difermion condensates indicating a BCS-type ground state by studying the fate of the U (1)
symmetry in the infrared regime. For example, a dominance in the (A C) may now indicate the formation of a
condensate (1)7'Coy51)) with positive parity breaking U(1)y but leaving U (1) 4 intact. Moreover, the channel
also breaks the Poincaré symmetry explicitly. Further, the condensate ()7 C~51)) corresponding to the (SC — PC)
channel would be a J¥ = 07 state breaking both, the U(1)y as well as the chiral U(1) 4 symmetry. We stress that
the ansatz (3.24) is not more general as it is related to ansatz (3.6) by means of Fierz transformations. Our present
considerations do only make obvious that a spontaneous breaking of the U (1)}, symmetry could be less visible in
the ansatz (3.6) as it would be indicated by a simultaneous dominance in more than one channel, namely in (V}))
and (V) according to Eq. (3.27).

Let us now discuss the different symmetry breaking patterns by employing the new difermion-type ansatz (3.24)
and study the phase boundaries as obtained from a one-channel, two-channel and Fierz-complete approximation,
see Fig. 3.5. In analogy to our previous study, we deduce the one- and two-channel beta functions by setting all other
four-fermion couplings to zero by hand (see our discussion Sec. 3.1.1). Again, we begin with the one-channel ap-
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Figure 3.5: We show the phase boundary of the NJL model in the (7, 1) plane using a difermion-type parame-
terization (3.24). We compare the critical temperatures as it is found from a one-channel (green), a two-channel
(orange) and a Fierz-complete ansatz. Note that the phase boundary of the Fierz-complete study is identical to the
one presented in Fig. 3.4 as it should be.

proximation. Here, the phase diagram does not change at all as it can be readily seen from the first row in Eq. (3.27).
For our two-channel ansatz, however, we find a qualitative change of the phase boundary. For two channels, we now
locate the critical chemical potential above which no spontaneous symmetry breaking of any kind occurs beyond
the critical chemical potential associated with the Fierz-complete truncation. For the previously used two-channel
approximation, this was not the case. Of great importance is the observation that the phase boundary associated
with the difermion-type Fierz-complete basis is identical to the phase boundary as obtained from our previously
employed Fierz-complete ansatz Eq. (3.6). This underscores the essential property of Fierz-complete basis sets for
which physical observables such as the critical temperature T, (u) are unique and independent of the individual
basis choice. For instance, that this is not true for a Fierz-incomplete ansatz, can be readily seen for the two-channel
truncations. Both, the shape of the phase boundary and the dominance pattern are altered considerably.

A more detailed analysis of the dominance pattern underlying our two-channel and three-channel difermion-
type ansitze reveals several differences compared to our previous study, at least for large chemical potential. By
considering only two channels, we find that close to the phase boundary, the entire phase diagram is dominated by
the (S — P) channel associated with the breakdown of the chiral U(1) 4 symmetry. For our Fierz-complete three-
channel ansatz, we find again more than a single dominance. In the temperature range 1 2> T'/T 2 0.8, we observe
a dominance of the chiral (S — P) channel in accordance to our findings from our previously discussed Fierz-
complete ansatz (3.6). On the other hand, in the temperature region 0.8 2 7'/Tj, we find that the (A C) channel
becomes dominant. The formation of a ground state associated with the (A} ;C) channel would then break the U (1)y/
symmetry spontaneously. Therefore, from the dominance patter of the difermion-type basis choice Eq. (3.24), we
indeed find some indications for the formation of Cooper-type pairs at large fermion chemical potentials 11/To 2>
1.2.

Let us briefly summarize our observations as obtained from both approaches, see Egs. (3.6) and (3.24). We begin
with the general comment that both basis sets are complete with respect to Fierz transformations. A very impressive
confirmation of this statement is that both phase boundaries obtained from the different approaches are in perfect
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agreement. Using the pointlike limit, we may not be entirely sure about the type of forming condensates in the
infrared. Nevertheless, as we independently observe a dominance in the (S — P) channel for a temperature range
of 1 > T/Ty = 0.8 and chemical potentials /Ty < 1.2 in both parametrizations, we may carefully conclude that
the low-energy physics is dominated by chiral degrees of freedom. For both Fierz-complete ansitze, we moreover
find a transition of the dominance pattern from a domain presumably governed by spontaneous chiral symmetry
breaking, to aregion 7'/T; < 0.8 which is potentially dominated by other types of symmetry breaking mechanisms.
The observed dominance of the (A4 C)-type four-fermion channel suggests that this regime in the (7', 1) plane could
be rather governed by difermion-type degrees of freedom. The corresponding condensate would then spontaneously
break the Poincaré as well as the U(1)y symmetry of our theory. Note that this should also leaves its imprint in a
BCS-type scaling behavior [32] of the critical scale k., as a function of the fermion chemical potential, see our
discussion in Ref. [116]. In this case, we would expect at zero temperature that the phase boundary would extend
to arbitrary large values of the chemical potential which we do not observe in our study. Therefore, a final answer
to that question lies beyond the scope of the present work and shall be postponed to future studies.

Finally, let us discuss the impact of the threshold functions Egs. (C.18)-(C.21) computed within our four-
dimensional regularization scheme on the underlying fixed-point structure. The threshold functions can be related
to one-loop diagrams and depend on the temperature and the fermion chemical potential. Qualitatively, their role
can be understood best, by considering a simple one-channel beta function. For this, we investigate the underly-
ing fixed-point dynamics and examine the influence of the threshold function on the expected shape of the phase
diagram. In the following, we shall distinguish threshold functions of the lf) (Egs. (C.18) and (C.19)) from those
of the l(iF ) (Egs. (C.20) and (C.21)) type. For the former type of threshold function, the fermion chemical poten-
tial appears with a positive sign +iy in each denominator of the propagator structures. For threshold functions of
the lf) type, however, the chemical potential appears in one denominator of the propagator with a positive +ig
and in the other one with a negative —iy sign. In fact, under a variation of the fermionic chemical potential, we
find that threshold functions of the liF) type behave very differently compared to those of the lf ) type as we shall
demonstrate below.

Let us now assume that only a lS_F) -type threshold function is present in the one-channel beta function. In this
case, we find

A =2X — i 1TAN2 (3.29)

Here, we assume, without loss of generality, that ¢, > 0. We can now draw the corresponding parabola of the beta
function (3.29), see the solid black curve on the left-hand-side in Fig. 3.6. As we have already discussed before, we
find a Gaussian fixed point (black dot) and a non-trivial non-Gaussian fixed point A* (blue dot). At finite temper-
ature or fermion chemical potential, the vacuum fixed points then turn into pseudo fixed points. For instance, at
finite temperature, one can show that

1 50 for % > 1. (3.30)
This is a consequence of a screening effect due to the finite thermal Matsubara mass ~ T'. For temperatures larger
than the RG scale k, the thermal mass suppresses all types of quantum fluctuations, i.e., loop contributions like oc A\
vanish for T > k, see Eq. (3.29). This situation is shown on the left-hand side of Fig. 3.6 (red curve) where we show
that the pseudo fixed point (blue) drifts towards infinity A* — oo for T//k — oo. From this, it follows that if one
has chosen a starting value for the coupling ) larger than the fixed point A(VY) > \*(T' = 0) so that the system is
governed by spontaneous symmetry breaking at zero temperature, then, by increasing the temperature, there exists
a value so that the pseudo fixed point becomes larger than the UV initial value A(VY) < \*(T = T.,). Eventually,
the system is again dominated by the Gaussian fixed point and remains in the symmetric phase. Indeed, we also
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Figure 3.6: Illustration of a one-channel beta function for the special case that it is only governed by lSrF) -type (left)

or lf ) -type threshold functions (right). For threshold functions of the l(f) type, we find that the non-Gaussian fixed

point is shifted towards infinity \* — oo, by independently increasing the temperature or the fermion chemical

potential. In case the one-channel beta function is governed by l(iF)—type diagrams, at vanishing temperature, the

non-Gaussian fixed point drifts towards the Gaussian fixed point and merges with the latter in the limit 1/k — oo,
see main text for details. In this case, any finite value for A(VV) > 0 suffices to drive the system towards criticality.

find a similar screening behavior for the fermion chemical potential:
1®) K
Y/ —0 for T > 1. (3.31)

Alone from these considerations, we can conclude that the phase diagram of a four-fermion theory only dominated
by diagrams of the lf) type have both, a critical temperature Tt (1) and a critical fermion chemical potential at
zero temperature /i, above which no spontaneous symmetry breaking occurs.

We now discuss our second type of diagrams. Again, we assume that only lf ) -type diagrams enter a one-channel
beta function of the form

A =2X — e 182 (3.32)

with the positive constant c. We begin again with the behavior of the fixed points under a variation of the temper-

ature. As it was the case for the ZS_F) -type threshold functions, we observe a thermal screening behavior in the limit

of temperatures larger than the RG scale:

T
1 0 for o> 1 (3.33)
This is not too surprising since the Matsubara modes in the propagator structures of lf) -type threshold functions

appear in a similar way as it is the case for threshold functions of the ZSFF) types, see Eqgs. (C.18)-(C.21). The more
interesting observation can be made at zero temperature and finite fermion chemical potential. Here, we find

1)~ (%)2 for % > 1. (3.34)
On the right-hand side of Fig. 3.6, we show the behavior of the parabola at zero temperature and finite chemical
potential (dashed blue curve) compared to the vacuum case (solid black curve). By increasing the fermion chemical
potential, the pseudo fixed point “moves” towards the Gaussian fixed point and merges with the latter for u/k — oc.
At the same time, we find lf) ~ (u/k)?. We now observe at finite chemical potential and zero temperature that
the fermion loops are antiscreened so that the quadratic part oc A2 of Eq. 3.32 dominates the beta function. For
a theory only governed by ! SEF) -type diagrams, a critical chemical potential at zero temperature yi., does not exist.
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The fact that the Gaussian and the non-Gaussian fixed point merge in case p/k — 00, can be related to the famous
Cooper instability [1]: For all \(UY) > 0, we have A(UV) > \*(y — 00). We then find a diverging four-fermion
coupling \ at a critical scale ke, for any A(VV) > 0. The latter observation perfectly fits in the picture of BCS theory.
Here, it is favorable for weakly-interacting fermions “sitting” on the Fermi surface to form Cooper pairs. In this case,
the Fermi surface becomes unstable, which leads to a gapped energy spectrum [2, 3]. We add that the formation of
a BCS-type gap also leaves its imprint in the scaling behavior of physical observables such as the critical scale, see
Ref. [116, 228] for a detailed discussion.

Due to the thermal Matsubara mass for high temperatures 7' > k, we found that both, the lf)-type as well
as the lf)—type threshold functions show a screening effect so that loop contributions are suppressed. From this,
we conclude that we can always find a critical temperature T¢,, above which no spontaneous symmetry breaking is
observed. Nevertheless, the RG flow is, in general, governed by a competition between all four-fermion couplings
where all kinds of threshold functions are involved simultaneously. It is, therefore, by no means clear that the phase
diagram exhibits a critical chemical potential at zero temperature x., as we found it in our study, see, e.g., Fig. 3.4.
Indeed, we shall see in the second NJL model study in Sec. 3.2 that a y, is not observed.

3.1.3 Spatial Regularization

We end the present NJL model study, by discussing to what extent the particular choice of the regularization scheme
can change our findings. For this, we employ in the present subsection a so-called spatial regulator for the NJL
model, see Egs. (C.25)-(C.28) for the so-derived threshold functions.

Let us start with the discussion in the limit of vanishing temperature and fermion chemical potential. For con-
sistency, a proper regularization scheme should recover the correct vacuum limit of a given theory for 7' — 0
and 4 — 0, see Eq. (3.9) and (3.10). For the four-dimensional regularization scheme, we employ throughout this
work, the requirement above can readily be verified for our Fermi-surface-adapted regulator Eq. (C.2). In the vac-
uum limit, the latter then turns into the usual four-dimensional exponential regulator [289, 290]. From this, it is
straightforward to show that the beta functions at finite temperature and chemical potential Eqgs. (E.1)-(E.3) can be
reduced to the vacuum limit. For details on our Fermi-surface-adapted regulator, we refer to App. C and Refs. [116,
159].

The spatial regulator (C.6), however, breaks the Poincaré symmetry even at T’ = p = 0. In particular, we find
different beta functions for the couplings )\l“, and \{> even at zero temperature and fermion chemical potential. In
Fig. 3.7, we show the phase boundaries in the (T, 1) plane for our one-flavor and one-color NJL-type model as
obtained by employing a Fermi-surface-adapted shape function (C.2) in gray and the spatial regulator (C.6) in blue.
Using a non-covariant regulator, we notice that the phase boundary changes significantly. For example, in contrast
to our study using a covariant regularization scheme, we cannot observe a critical chemical potential y., at zero
temperature. Indeed, the vanishing of /i, can be traced back to the use of the three-dimensional regulator.

The use of a spatial regulator further alters the observed dominance pattern considerably. By employing the
Fermi-surface-adapted regularization scheme, we find a dominance of the (S — P) channel for 1 > T/T; 2 0.8,
indicating the formation of a finite chiral condensate. In Fig. 3.7, we find for the spatial regulator within the same
temperature domain a dominance of the (V})) channel. The latter would indicate the onset of the formation of a
vector condensate with a density-type order parameter (1)y%). Even more, we encounter a dominance of the W)
channel already in the limit of vanishing chemical potential ¢ = 0. Using our covariant regularization scheme,
however, we observe a clear dominance of the (S — P) channel. This example is of importance as it shows how non-
covariant regularization schemes can considerably spoil the phenomenological interpretation of results already at
> 1.5,a

~

vanishing chemical potential. Using the spatial regulator, we find for larger chemical potential 1/Tp
transition from a regime which is dominated by the (V) channel towards a regime dominated by the (V. ) channel.
However, we never observe a dominance of the (S — P) channel.

For the threshold functions Egs. (C.25)-(C.28), we further notice some issues from a mathematical point of
view. By considering the zero temperature limit 7" — 0 of the spatially regularized threshold functions, we observe
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Figure 3.7: Phase boundaries of the Fierz-complete NJL model study with one flavor and one color in the (T, ;1) plane
as it is obtained by using a covariant Fermi-surface adapted regulator Eq. (C.2) (gray line) and from a Fierz-complete
study considering a Poincaré-breaking spatial regulator Eq. (C.6) (blue line). A spatial regulator significantly alters
the shape and the observed dominances of the phase boundary, see Sec. 3.1.3 for details.

a second-order pole at u/k = 1. The latter then leads to “spurious” divergences in the integration of the RG flow.
As it turns out, the spatially regularized threshold functions do not exhibit a consistent zero temperature limit for
any non-zero chemical potential. Only the limit 4 — 0 and " — 0 exists. However, we emphasize that even at
T = p = 0, the vacuum beta functions cannot be reproduced by employing the three-dimensional spatial regulator,
see our discussion above.

We emphasize that our Fermi-surface-adapted regularization scheme (C.2) is also not free of problems. For
instance, our four-dimensional regulator breaks the Silver-Blaze symmetry of QFT’s at finite chemical potential, see
Ref. [285]. Briefly speaking, at zero temperature, the Silver-Blaze property requires that for all chemical potentials
smaller than the theory’s pole mass ;1 < m all physical observables are invariant under a variation of ;1. Note that
m y denotes the dynamically generated fermion mass. To understand this, one may think of the excitation spectrum
of our theory. Here, the chemical potential has to exceed a certain critical value (the fermion mass) so that particles
can be generated. Only then it is possible that physical observables depend on the chemical potential. We find
that our four-dimensional regularization scheme does not fulfill the Silver-Blaze property. The reason is that our
Fermi-surface-adapted regulator introduces artificial poles in the momentum structure of the propagator, spoiling
the Silver-Blaze symmetry as a consequence. In our case, we therefore find a mild modification for 1 < my of, e.g.,
the critical scale k.,, for any finite value of the chemical potential, see Ref. [116] for a discussion.

We end this subsection with a short summary. We discussed in Sec. 2.2 some convenient requirements a regu-
lator at finite temperature and chemical potential should fulfill, see (iv)-(vii), see p. 23. We notice that the spatial
regularization scheme violates the requirement that it should preserve Poincaré invariance in the limit of vanishing
temperature and fermion chemical potential (v). Further, it also violates requirement (vii) meaning that the tem-
poral direction remains unregularized. Moreover, the considered spatial regulator introduces artificial divergences
in the scale integrations. We find that this cumulates in a significantly changed shape of the phase boundary. Fur-
thermore, at vanishing fermion chemical potential the dominance pattern now rather suggests a vector-type than a
chiral condensate.
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3.2 Nambu-Jona-Lasinio: Two Flavors and Three Colors

Based on our work in Ref. [117], we now study the phase boundary of a two-flavor and N,-color NJL model at
finite temperature and quark chemical potential'!. The two-flavor NJL model we investigate in the present section
shares many properties with two-flavor QCD, e.g., it also obeys a two-flavor SU(2), x SU(2) g symmetry, which
can break spontaneously, see our discussion in Sec. 2.3.2. Therefore, to explore the phase diagram of the NJL model
at finite temperature and quark chemical potential, we consider a Fierz-complete set of four-fermion interactions
which enter our ansatz for the effective averaged action. Working along the lines of our one-flavor and one-color
NJL model study from the previous section, we then analyze the fixed-point structure and discuss the symmetry
breaking patterns in the (T, 1) plane, see Sec. 2.3.4.

The Fierz-complete basis we consider at finite temperature and quark chemical potential obeys a global SU (N,.) x
SU(2)r, x SU(2)r x U(1)y symmetry and is composed of ten different four-quark interaction channels. At the
same time, we observe that a Fierz-complete four-quark basis, which is also invariant under U (1) 4 transformations,
is assembled from eight linearly-independent basis elements. Using this observation, we identify within our ten-
channel Fierz-complete basis a four-dimensional U (1) 4-breaking subspace from which we can deduce two sum
rules. We then find that both sum rules are fulfilled exactly if the axial U (1) 4 symmetry is preserved. In our study,
we further consider a Fierz-incomplete one-channel and two-channel approach to study the impact of Fierz incom-
pleteness on the phase boundary at finite temperature and quark chemical potential. Furthermore, we analyze the
dominance pattern of our running four-quark couplings close to the phase boundary to study the nature of the
condensates which are possibly formed in the infrared regime.

In a separate study, we further investigate a Fierz-incomplete two-channel ansatz which is motivated by the
observed dominance patterns at finite temperature and quark chemical potential from the Fierz-complete approach.
As it turns out, we expect chiral degrees of freedom to be dominant at low quark chemical potential where we expect
diquark degrees of freedom to become dominant at large quark chemical potential. For our Fierz-incomplete two-
channel approach, we then analyze the fixed-point structure and study the pseudo fixed-point dynamics by varying
the dimensionless temperature or chemical potential in Sec. 3.2.2. In this context, we deduce from the observed
pseudo fixed-point structure a possible mechanism, which allows for a dynamical transition from chiral to diquark
degrees of freedom by increasing the chemical potential.

We start with the classical action S underlying our two-flavor and /N.-color NJL model:

i = [ ar @0 {50yt Shom [0 - G|}, 639

with the inverse temperature 5 = 1/T and the quark chemical potential ;1. We note that the model corresponds to
the one we have already considered in the vacuum to discuss spontaneous chiral symmetry breaking, see Sec. 2.3.2.
The classical action (3.35) obeys a global chiral SU(2), x SU(2)g x U(1)y and a global SU(N,) color symmetry.
We already mentioned that we mostly consider N. = 3 which correspond to QCD. Nevertheless, we shall also
discuss some key properties if the large- N, limit is considered, see our discussion below.

Recall that the scalar-pseudoscalar channel in the classical action serves as an order parameter for spontaneous
chiral symmetry breaking. This follows from the fact that the scalar-pseudoscalar channel is related to the bosonic
composite fields (11)) ~ o and ()y57;9)) ~ 7; which can be readily seen by performing a Hubbard-Stratonovich
transformation, see our discussion in Sec. 2.3.2. For (¢)) = 0, chiral symmetry remains intact where a non-
vanishing expectation value (1)) # 0 indicates that the chiral symmetry is spontaneously broken. We know from
the criterion defined in Eq. (2.78) that the onset of spontaneous (chiral) symmetry breaking is still indicated by a
diverging four-fermion coupling. For details, we refer to Secs. 2.3.2 and 3.1.

Let us now discuss some particular four-quark channels we shall consider in our Fierz-complete study below.
We begin with the remark that the scalar-pseudoscalar channel in (3.35) breaks the axial U (1) 4 symmetry explicitly.

'We mostly consider N = 3 as it is the case in QCD. For a detailed large- N study, we refer to the original work, see Ref. [117]
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Therefore, we note that the influence of the U(1) 4 anomaly can be absorbed in the scalar-pseudoscalar channel at
the level of the classical action (3.35), see Ref. [27] for a review. However, we can “repair” the axial U (1) 4 symmetry
by considering the following four-quark channel:

~ det (P(1 + 75)1) + det ((1 — 75)1) | (3.36)

where the determinant is defined in flavor space. Four-quark structures like Eq. (3.36) can be deduced from the
topologically non-trivial vacuum structure in QCD, which is responsible for the violation of the axial U(1) 4 sym-
metry, see our discussion in Sec. 2.3.2 and Refs. [194, 215, 291-293] for details. In our Fierz-complete basis, we also
consider a four-quark structure like (3.36) which then serves as a convenient control parameter for the instanton-
induced axial U (1) 4 breaking. From this, we may also study the influence of a restored U (1) 4 symmetry on physical
observables like the critical temperature.

From our discussion in Sec. 2.3.4, we shall further include a diquark-type four-quark channel in the Fierz-
complete basis. Model studies suggest that at large chemical potentials, diquark degrees of freedom may become
important. As a consequence, we also include a four-quark channel associated with the formation of a 2SC-type
diquark [32, 33, 42, 43] condensate, see Eq. (2.88). A dominance of the associated four-quark channel then suggests
the onset of a spontaneous breakdown of the U(1)y symmetry. Moreover, we further note that the formation
of a finite diquark condensate &' is also accompanied by a spontaneous breakdown of the (global) color SU(3)
symmetry, see Refs. [36-39]. We add that a §'-type condensate preserves the chiral SU(2);, x SU(2)r symmetry,
see Ref. [277].

In analogy to our study in the previous section, because of the external heat bath and the finite quark chemical
potential, the Poincaré symmetry and the charge conjugation invariance are broken explicitly, see Sec. 3.1 for a
detailed discussion. We consider the following ansatz for the effective average action, which we use to study the
two-flavor and IN.-color NJL model at finite temperature and quark chemical potential:

B B _ 1 <
uoliv) = [ ar [@a {0 (2t + 2000 - Zina) 643 3 2L}, 63)

jeB

where Z!l and Z* are associated with the temporal and spatial components of the wave-function renormalizations
corresponding to the fermion fields. Moreover, the renormalization function Z,, corresponds to the quark chemical
potential (i, see Sec. 3.1 for details. The leading order of the derivative expansion implies again that we treat the
four-quark correlation functions in the pointlike limit (2.81). It is then clear from our discussion in the previous
section that the wave-function renormalizations Z!l = Z+ = 1 remain constant for any value of k.

The Fierz-complete basis BB is composed of the four-quark tensor structures denoted by £;, which are accom-
panied by a bare coupling \; and a vertex renormalization Z;. For the renormalization of the four-quark couplings,
we refer to Eq. (3.7). The Fierz-complete basis associated with a global SU(N.) x SU(2)r x SU(2)gr x U(1)y
symmetry has ten basis elements. From these ten channels, we have six which are invariant under global SU(N,.) x
SU(2)r, x SU(2)gr x U(1)y x U(1) 4 transformations:

Lormy, = (@109)” + @)’ (338)
Lyvia, = (7/_”Yi"/))2+(_i')’i757/})27 (3.39)
Lv-ay, = (7/;701/))2*(@5170751/))27 (3.40)
Loy, = (@)’ — (D)’ (3.41)
Loppaps = (@0T%)” + (Gino3T"w)” (3.42)
Lopapn = (03T0)" = (PiinsTw)” (3.43)
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The remaining four channels are invariant under SU(N,.) x SU(2); x SU(2)r x U(1)y transformations but
break the axial U (1) 4 symmetry explicitly to include the effects from the chiral Adler-Bell-Jackiw-type anomaly in
our ansatz for the effective action:

Lom = @) = @rsme)”, (3.44)
Lissry. = (@) = @rsmv)” + @se)” — (dr)? (3.45)
Lose = 4(&572%/)0) (i s TAY) | (3.46)
Ligipps = (@T)" = (PysmT )’ + ($rsT) "~ (driT9)? (3.47)

where, e.g., (1575Ti¢)2 = (Yv57i0) (Yy57,%) and the T%s denote the generators of SU(N,). Further, the 7; are
the three Pauli matrices which are related to the generators of the SU(2) group. Note also that the group generators
with capital index, e.g., the generators T, belong to the antisymmetric subspace of the SU(3) Lie group in the
fundamental representation. The SU(3) generators are represented by the eight Gell-Mann matrices, where the
three antisymmetric generators are conventionally given by A € {2,5,7}. We emphasize that the choice of the
Fierz-complete basis is not unique and motivated by phenomenological considerations. Since we wish to investi-
gate spontaneous chiral symmetry breaking, it is reasonable to include a scalar-pseudoscalar £,y channel in our
approach. As discussed, we also have a determinant-type channel L5 p)_ in our ansatz to study the impact of the
chiral anomaly on the phase structure. To be further sensitive to the formation of possible diquark condensates at
large quark chemical potential, we also consider the channel L.

As mentioned in beginning, the basis Egs. (3.38)-(3.47) is Fierz-complete by assuming that U (1) 4 is anoma-
lously broken in the UV. However, the basis is overcomplete if we assume that the U (1) 4 symmetry is intact. Then,
it turns out that a Fierz-complete basis at finite temperature and chemical potential in case of a restored axial sym-
metry is given by eight linearly-independent channels. In this case, it is clear that the U (1) 4-breaking subspace is
reducible by means of Fierz identities to construct axially symmetric four-quark channels such as

Lis—py, = W)? — (bysmip)® — (Vysh)? + (Yrinh)?. (3.48)

From the considerations above, we derive two sum rules for the four-quark couplings associated with the four-quark
channels in the U (1) 4-breaking subspace:

(1) Y _

SU(l)A = Aesc + )‘(S+P)‘1‘” =0, (3.49)
2) R, N.—1 - 1- _

SU(I)A = )\(S+P)7 — 72]\[0 )\CSC+§)\(G_W) =0. (3.50)

The sum rules above are only fulfilled if the axial U (1) 4 symmetry is respected. Note further that the sum rules are
only valid for our particular Fierz basis choice which we denote by B. Since all Fierz-complete basis sets associated
with a specific symmetry group are related to each other by means of Fierz transformations, the mapping from one
set of couplings to a different one reads

N =MNX, (3.51)

where M denotes an n x n matrix with det M # 0, see our example in Sec. 3.1.2. Here, Xis the original coupling set
associated with our present Fierz-complete basis. The vector X then contains new couplings associated with a new
Fierz complete basis. Thus, the sum rules (3.49) and (3.50) can be transformed to be used in different Fierz-complete
parameterizations. Note that there is no necessity to choose four U (1) 4 -breaking and six U (1) 4 -invariant channels.
For instance, we also found a ten-channel Fierz-complete basis with a two-dimensional U (1) 4-breaking subspace.
The sum rules then become trivial for the following reason: Since an eight-channels basis is already Fierz-complete,
the remaining two couplings have to be set to zero in order to preserve the axial U (1) 4 symmetry.
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3.2.1 Fixed-Point and Phase-Structure Analysis

We begin our discussion with a one-channel approach. In complete analogy to our study in Sec. 3.1.1, we only
consider the scalar-pseudoscalar channel £(,.~) and neglect the RG running of all other four-quark channels. Note
that we deduce the Fierz-incomplete beta functions, i.e., the one-channel and the two-channel approximation, from
the Fierz-complete RG flow equations (E.4)-(E.13) by setting all other couplings, except the ones we are interested
in, to zero. For instance, for the one-channel approximation, we use \; — Oforalli # (o-m). The RG flow equation
for the scalar-pseudoscalar coupling then reads
F . F .

OXomy = 2Nom—64vs 2NA1)AZ, (zﬁj (7,0, —ifir) + 1) (7,0, —WT)) 7 (3.52)
with vy = 1/(3272), 7 = T/k, and fi, = p/(27T) = pu/(27k7). Let us first discuss the limit of vanishing tem-
perature and quark chemical potential. The vacuum beta function can be extracted from Eq. (3.52) by considering:

N (F) T (F) IR P
%11}110512%) (l”+ (1,0, —ifi;) + 1)) (7,0, Z/M)) 1 (3.53)

The RG flow equation at zero temperature and chemical potential then reads

8t)\(g_.,r) = 2)\(0_@—% (1 + ;M) )\(QU_TF) . (3.54)
Note that we used again the Fermi-surface-adapted regulator we already employed in the previous section, see App. C
and our discussion in Sec. 3.1.3. For our discussion below, we do not specify the number of color degrees of freedom
N, here.

Let us now discuss the fixed-point structure of the one-channel beta function above. From our previous NJL-
type model study, we again expect to find an IR-repulsive non-Gaussian as well as an IR-attractive Gaussian fixed
point. Indeed, for the non-Gaussian fixed point we obtain

2 2
A T (3.55)

o-T) NC +*% .

Note that the fixed-point value does also depend on the particular regularization scheme and therefore on the reg-
ulator shape function 7, see App. C. To trigger spontaneous symmetry breaking in a one-channel approximation,
we need to choose Ao > 0, with Ao = (Al v —

o) /\Z‘U_Tr))/)\((g\;)), see our discussion in Secs. 3.1 and 2.3.2.
In this case, the four-quark coupling A, diverges at a finite critical scale

fror = A (Ado-m)? 0(Aoom) (3.56)

with the UV cutoff scale A. The critical scale then sets the scale of all (chiral) low-energy observables, e.g., the quark
mass m,;. Note that the equation for the critical scale k., is identical to the one we found in the previous NJL model
study, see also Eq. (3.14).

Interestingly, we observe that the non-Gaussian fixed point above is still present by considering a large- N, ex-
pansion of the full Fierz-complete set of RG flow equations. Let us, therefore, briefly summarize some key results
from the large- N, study in Ref. [117]. In the large- V. limit, we observe that the fixed point (3.55) “sits” on the
(o-7) axis with one IR-repulsive direction. All other nine directions are IR-attractive. Then, the ten-dimensional
Fierz-complete theory space is reduced to only one dimension. In this case, the beta function associated with the
scalar-pseudoscalar channel decouples from the other nine beta functions so that the RG flow is limited to the di-
rection in theory space which is associated with the A(,.r) coupling. However, the latter is of course only true if we
solely tune the A,y coupling in the UV. Since the theory space associated with the Fierz-complete ansatz is gov-
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erned by 210

= 1024 fixed points, other choices of initial conditions may then potentially lead to the observation
that the RG flow is controlled by a different interacting fixed point, even at small chemical potential.

From the large- N, observations, we may already suggest that not only the one-channel but also the RG flow
associated with the Fierz-complete ansatz could be dominated by the non-Gaussian fixed point (3.55), at least if we
choose our initial conditions sufficiently close to this particular fixed point. In this setting, we expect that the infrared
physics at small quark chemical potential should be governed again by chiral degrees of freedom and spontaneous
chiral symmetry breaking. We stress, however, that beyond the large- N, limit the non-Gaussian fixed point is
pushed away from the \(,.r) axis so that all channels are dynamically generated again, even though we only tune

the scalar-pseudoscalar coupling in the UV.

Let us now discuss the case of more than one channel where we begin with the scale-fixing procedure in the
present NJL-type study at finite temperature and quark chemical potential. In a nutshell, we adopt the scale-fixing
prescription as already discussed in Sec. 3.1. Therefore, we only tune the scalar-pseudoscalar coupling in the UV
to recover a certain critical temperature at vanishing quark chemical potential. All other couplings are set to zero.
Note again that such a scale-fixing procedure can be motivated from QCD studies (cf. Ref. [23]) which expect the
scalar-pseudoscalar channel at ' = 1 = 0 to be of most relevance in the infrared regime. The critical temperature
we adjust at zero quark chemical potential reads Ty /A = T (1 = 0)/A = 0.132 with A = 1GeV and stems
again from a recent lattice QCD study, see Ref. [9]. Note that the critical temperature is still the largest value for the
temperature we can compute so that all couplings remain finite for all &, see our definition Eq. (3.20). Below this
critical value for the temperature, we find a critical scale k., and the onset of spontaneous symmetry breaking is
signaled by divergences of the four-quark couplings, see also our discussion in Sec. 3.1.1. As we perform the same
scale-fixing procedure like in Sec. 3.1, we may compare the results as obtained from our one-flavor and one-color
NJL-type model with the results from our present two-flavor and three-color study. In both Fierz-complete model
calculations, we can then investigate the influence of flavor and color degrees of freedom on the shape and extent of
the phase boundary.

We add that the actual scale-fixing procedure differs from the one we employed in the original publication,
see Ref. [117]. There, we fixed the scale of our theory at 7' = p = 0. By considering the partially bosonized
one-channel NJL model within a mean-field approach, we derived the relation between the constituent quark mass
my, ~ (11b) and the critical scale k., see our discussion in Sec. 2.3.2. We adjusted the critical scale k., so that we
found a constituent quark mass of m, /A = 0.3 with A = 1 GeV as it is expected in QCD. We then switched to the
multi-channel approximation and tuned the UV value of the scalar-pseudoscalar coupling in a way that we obtained
the same value for the critical scale kg, as it was found in the mean-field approach. The UV values of all other nine
couplings were set to zero.

We now discuss the phase diagram for N, = 3 in the (T, u1) plane. For this, we consider three different types of
truncations. Besides the one-channel and the Fierz-complete approximation, we further use a two-channel ansatz
where we choose the scalar-pseudoscalar and the diquark channel. The latter choice can be motivated from our
discussion in Sec. 2.3.4 where we mentioned that model studies expect the formation of a diquark condensate at
large quark chemical potential. Therefore, to make contact to phenomenology and to study the impact of Fierz-
incomplete approximations using more than one channel, we also study the phase structure as obtained from a
two-channel ansatz below. Our results are shown in Fig. 3.8. We begin with the discussion of the general shape
of the phase diagram. Here, we find that for p/Ty < 2 all three phase boundaries lie on top of each other. The
latter observation underscores our conjecture that the non-Gaussian fixed point (3.55) governs the RG flow at least
at low quark chemical potential. Recall that the non-Gaussian fixed-point is located on the (o-7) axis of the Fierz-
complete ansatz for V. — 00, see Ref. [117]. Since we only tune the (o-7) channel in the UV, it seems conclusive
to find for N. = 3 that the RG flow of the Fierz-complete approach is also governed by the fixed point \{, , at
2 2, however, we find that the

~

least at low quark chemical potential. For larger quark chemical potential 1/Tj
Fierz-complete ansatz differs from the other approximations qualitatively. For the one-channel ansatz, for example,
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Figure 3.8: Phase diagram of the two-flavor and three-color NJL model in the (7, ;1) plane as obtained from a
one-channel, two-channel, and Fierz-complete calculation. For /Ty < 2, we observe that the scalar-pseudoscalar
coupling appears to be most dominant. For larger quark chemical potential, we find a dominance of the csc-channel
suggesting the formation of a J© = 07 -type diquark condensate.

we find a critical chemical potential at 1/T =~ 2.75 above which no spontaneous symmetry breaking of any kind
is observed. By studying the one-channel beta function Eq. (3.52), this behavior might have been already expected.
From the fact that only [/, -type threshold functions enter the one-channel beta function (3.52), we conclude from
our our discussion in the previous section that loop contributions are screened for large quark chemical potential
w/k — oo.

Let us now discuss the two-channel and the Fierz-complete approach in more detail. We begin with the ob-
servation that neither for the two-channel nor for the Fierz-complete approach a critical chemical potential i,
is observed for the studied values of the quark chemical potential in Fig. 3.8. We further observe that the phase
boundary associated with the Fierz-complete ansatz lies significantly higher (up to 70% for 1/Ty ~ 4.0) compared
to the one we obtain from the two-channel approach. Let us also compare the phase boundaries we found in the
previous section, see Fig. 3.4, with the phase boundaries from the present study where we also consider flavor and
color degrees of freedom. We observe that all types of ansitze we have employed in the previous NJL model study
exhibit a ¢, at zero temperature. At least for the Fierz-complete and the two-channel approach a critical chemical
potential is not observed. Even though the one-channel approximations in both model studies exhibit a fic,, the
value of the latter in our present NJL model study is nearly twice as large compared the one we found in the one-
flavor and one-color case. Thus, we find that the phase boundary associated with an NJL-type model seems to get
“stretched” towards larger quark chemical potential by also including internal color and flavor degrees of freedom.

In Fig. 3.8, we distinguish the most dominant four-quark channels using different line styles. By construction,
the one-channel approximation is only governed by the scalar-pseudoscalar channel. For the two-channel and the
Fierz-complete ansatz, we find that for /Ty < 2, the scalar-pseudoscalar coupling associated with spontaneous
chiral symmetry breaking (solid lines) appears to be the most dominant channel close to the phase boundary. For
larger quark chemical potential 11/Ty 2 2, however, we find for the two-channel and the Fierz-complete approach a
regime where the csc-channel becomes dominant (dashed lines). A dominance in the csc-channel then indicates the
onset of the spontaneous breakdown of the vector U (1)y and the (global) color SU(3) symmetry. The latter would
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Figure 3.9: Scale dependence of the ten dimensionful four-quark couplings of the Fierz-complete basis as a function
of the scale parameter k as obtained from two different values of the quark chemical potential at temperatures close
to the phase boundary. Left panel: For 1/Ty = 0and T'/T 2, 1, we observe a dominance of the scalar-pseudoscalar

channel. Right panel: For /Ty = 4 and T'/Ty 2 0.39, the diquark channel dominates significantly where other

channels with a non-trivial color structure like the (V' + A)ﬁdj channel appear to be subleadingly dominant.

imply the formation of a diquark condensate which is associated with a finite diquark gap in the energy excitation
spectrum. We emphasize that we did not tune the strength of the diquark channel by hand. As discussed above,
we only tuned the UV value associated with the scalar-pseudoscalar coupling. The emergence of a dominance in
the diquark channel is therefore a result of non-trivial dynamics in our coupled system of beta functions. Since we
observe a change in the dominance pattern already on the level of the rather simple two-channel ansatz, we shall
study the latter in more detail in the next subsection. There, we shall investigate the underlying pseudo-fixed-point
dynamics at finite temperature and quark chemical potential giving rise to a mechanism which possibly explains the
transitions from chiral to diquark degrees of freedom at large p.

In Fig. 3.9 we present the scale dependence of the various dimensionful four-quark couplings entering our Fierz-
complete ansatz for two exemplary values of the quark chemical potential slightly above the critical temperature.
The left panel shows the competing four-quark channels at ;4 = 0. Here, we find that the scalar-pseudoscalar
coupling appears to be most dominant suggesting the onset of spontaneous chiral symmetry breaking below a critical
temperature of T'/Ty ~ 1. Furthermore, we find that the channels (V — A)idj and (V' — A)) are subdominant.
The right panel shows the running couplings for 11/Ty = 4and T'/T, 2, 0.39 where we now find a dominance of the
diquark-type four-quark channel. In the latter case, we would expect that the low-energy regime is governed by a
JP = 0% diquark state with positive parity. Interestingly, we observe that the channels (V + A)ﬂdj and (V — A)3%Y
which do also carry a non-trivial color structure are subdominant.

Even though the phase boundaries differ from each other considerably, it is remarkable that the dominance
patterns of our previous NJL model study with Ny = N, = 1 and our present one show similar features. At
low fermion/quark chemical potential, physics seems to be governed by a finite chiral condensate, where for large
chemical potential difermion-type condensation seems to be favored. For the one-flavor and one-color model,
we have already discussed that a dominance in the (A} C) channel may be associated with the breakdown of the
global U(1)y . The latter is then accompanied with the formation of Cooper-type pairs and the generation of a finite
Meissner mass. This picture may be adopted for the present theory with QCD-like degrees of freedom where we
may also expect from our dominance arguments a breakdown of the vector U(1)y symmetry. Moreover, in a color
superconducting 2SC phase [40], it is expected that the color SU (3) symmetry breaks down to an SU(2). In QCD,
the latter would imply that five of the eight gluons acquire a finite Meissner mass, see also our discussion in Sec. 2.3.4.
Still, we may argue that our specific choice of initial conditions may introduce a bias in our computations leading to
a “spurious” dominance of, e.g., the scalar-pseudoscalar channel. However, we shall see that our QCD study from
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Figure 3.10: Phase boundaries as obtained from our Fierz-complete ansatz for U (1) 4-breaking (blue curve) and
U (1) a-conserving (orange curve) initial conditions. The solid lines denote a dominance of the (o-7) channel where
the dashed lines indicate a dominance of the csc-channel. The dashed-dotted part of the orange curve shall indicate
a dominance of the (V' + A)ﬁdj channel.

first-principle confirms our results of the present NJL-type model, see Sec. 3.3.

The UV initial conditions we considered so far break the axial U (1) 4 symmetry. One may ask to what extent the
phase diagram is modified if U(1) 4 is conserved in the RG flow. For this, we need to consider U (1) 4-symmetric
initial conditions for our Fierz-complete four-quark ansatz. To this end, we use the sum rules Egs. (3.49) and
(3.50), which provide us with a class of initial conditions satisfying the requirement to start the RG flow ata U (1) 4-
symmetric point in theory space. For example, we can require that )\EUV) = Oforalli € B\{(c-7), (S+ P)_}and
choose )\((E\;)) = —2)\8323)7 so that U(1) 4 is conserved. Indeed, we then find that both sum rules are satisfied ex-
actly forall k > k,. Atthe critical scale k = k,, given that the RG flow is rather dominated by the IR-repulsive part
of the non-Gaussian fixed point, all four-quark couplings diverge and indicate the breakdown of at least one of the
continuous symmetries. Since a breakdown of the SU(2), x SU (2) p symmetry is accompanied by a simultaneous
breakdown of the axial U (1) 4, the sum rules shall diverge, too.

In Fig. 3.10, we show the phase diagram of our two-flavor and three-color NJL model as obtained from a Fierz-
complete ansatz using U (1) 4-symmetric initial conditions (orange line). Moreover, we compare the phase bound-
ary from the U(1) 4-symmetric study with our previous Fierz-complete ansatz using U (1) 4-violating initial con-
ditions (blue line), see Fig. 3.8. The scale-fixing procedure employed in the symmetric case is chosen in analogy
to the U(1) 4-violating case: we only tune the UV values of )\EEZ)) and Ag}:gi according to Eq. (3.50) so that we
recover again a critical temperature of 7o /A = 0.132 with A = 1 GeV at zero chemical potential. On a qualitative
level, we note that for the two types of initial conditions, the shapes of both phase boundaries appear to be rather
similar, see Fig. 3.10. Only for /Ty 2 2.0, the phase boundaries start to deviate. In particular, at /T ~ 4.0
we find that the critical temperature associated with U (1) 4-breaking initial conditions lies about 10% higher than
the one which was computed from axially symmetric starting values. Leaving the deviation at large quark chemical
potential aside, we can conclude that the use of U(1) 4-conserving initial conditions has a subleading effect on the
the critical temperature for the studied values of the quark chemical potential.

The dominance pattern, however, is modified for large quark chemical potentials. While we still find a domi-
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nance of the scalar-pseudoscalar channel for small values of the quark chemical potential, we now observe for 11 /T; 2>
1.8 a dominance of the (V + A)TldJ channel by employing U (1) 4-symmetric initial conditions. Interestingly, the

condensate associated with the (V' + A)ﬂdj channel breaks the global color SU (3) symmetry which is compatible

with our findings using U (1) 4-violating initial conditions. A possible condensate associated with the (V' + A)ﬂdj
channel could be identified, e.g., with a vector-like spin-1 ground state, see Ref. [28] for a review. Nevertheless,
we observe for 11/T, > 1.8 that all channels which carry a non-trivial color structure, i.e., the csc, (S + P)*Y,
(V- A)idj channel, are still subleadingly dominant.

Let us briefly summarize our findings. First, compared to our previous NJL-mode study, we do not observe a
critical chemical potential y., at zero temperature by employing Fierz-complete approaches. We further note that
the specific shape of the phase boundary from our Fierz-complete ansatz remains almost unchanged if we consider
axially symmetric initial conditions. Nevertheless, the influence of the axial U (1) 4 anomaly on the phase structure
seems to be stronger if we consider larger quark chemical potentials. Second, at least for our actual choice of initial
conditions, the dominance pattern we observe close to the phase boundary appears very robust. In particular, we
find that at large quark chemical potential 11/Tp > 2.0 diquark-type condensates, which carry a non-trivial color
structure, are favored. At small quark chemical potential, however, we always find that the scalar-pseudoscalar

channel becomes dominant which is then associated with the spontaneous breakdown of chiral symmetry.

3.2.2 Symmetry-Breaking Mechanism

In the previous subsection we have seen that we find indications for a color-superconducting condensate already on
the level of the two-channel approximation. Remarkably, the change from a regime rather dominated by diquark
than by chiral degrees of freedom occurs naturally at a large quark chemical potential, i.e., there is no need to tune
the diquark channel “by hand” in the UV in order to observe a dominance in the csc-channel. To better understand
the physics underlying this mechanism, let us now analyze the fixed-point structure of the Fierz-incomplete two-
channel ansatz. The beta functions for the A(,.) and Asc couplings then read

O Ao-m) = 2Noom + 6404 (—(2Ne + DAL, ) + (Ne + D Aoom) Acsc) zﬁfp (7,0, —ip,)

1
+64v4( — (2Ne + DNy + 2 (3Ne = DArmAese

1 .
_g(NC - 2)/\25C)ZS_F+) (1,0, —ip,) , (3.57)
Odesc = 2Aese + 64vs (=N, oy + (Ne — 2)A2) 11D (7,0, —ipsy )
+6404 (=A% m) — 2N (o-mAcse + 4A2.) lﬁfg (7,0, —ipy)
+6402 vl (7,0, —ipr )
6404 (A2 ) — 2MomAcse + AAE) 1T (1,0, —ipr) (3.58)

where we have set again all other couplings and their flow equations in our Fierz-complete ansatz to zero and
considered N, = 3. Interestingly, we do not find any lf ) -type threshold functions entering the beta function
associated with scalar-pseudoscalar channel. Indeed, this can be compared to the one-channel approximation we
discussed in Sec. 3.2.2 where we already observed that only threshold functions of the ZS_F) type appeared. From
our analysis in the previous section, we know that at zero temperature lf) functions show a screening effect for

w/k > 1. Onthe other hand, for alarge quark chemical potential, the f)

threshold functions have an antiscreening
effect for sufficiently small temperatures. In our last NJL model study, we then related the lf) -type function to BCS
theory in the following sense; we found in a one-channel approach that the non-Gaussian pseudo-fixed point moved
for p1/k > 1 towards the Gaussian fixed point and merged with the latter for /k — oo. Any finite UV value of

the four-fermion coupling would be then sufficient to drive the system towards criticality, see our discussion in the
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Figure 3.11: RG flow of the beta functions (3.57) and (3.57) at zero temperature and quark chemical potential (left
panel) and for non-zero temperature and zero quark chemical potential (right panel), arrows point towards the
infrared. The pink dot represents our choice of initial condition in the UV. For increasing temperature, the non-
Gaussian fixed point (blue) is shifted away from the Gaussian fixed point (black), increasing the domain Ds. For
a critical temperature value, the pink dot lies within the area of influence of the Gaussian fixed point. For high
temperatures, the theory remains in the symmetric regime as the RG flow is governed by the Gaussian fixed point
in this case.

previous section. Therefore, it seems reasonable to assume that any kind of BCS-type behavior, has its origin in flow
equation associated with A.s.. However, this is of course only true if we employ the simplified two-channel ansatz.
Let us now discuss the vacuum fixed-point structure. For 7' = p = 0 and N, = 3, we find four fixed points

‘Fj = ()‘Eka-w),j’ )‘:sc,j):

Fily,—3 = (0,0), (3.59)
Fo| .y ~ (5.165,-1.088) (3.60)
Fa|y,_s ~ (1.262 = 11.567, —8.728 — i0.841), (3.61)
|N _y ~ (1.262 411.567, —8.728 +i0.841) . (3.62)

Obviously, only two of the four fixed points are real-valued which shall be important in our study below. More-
over, we already know the non-Gaussian fixed point F, from the one-channel discussion in the previous section.
Considering a large- N, expansion up to the order O(1/N?2), we find for Fy:

272 32 72
Falle) = (zvaN)

We find that the large- N, expansion also corresponds to our findings in the one channel approach (3.55). Inleading

(3.63)

order and for our present choice of initial conditions, i.e., we only tune AU ) ) and set A's." to zero, the fixed point

F2 controls again the infrared behavior of our truncated two-channel ap}()roach see Ref. [117].

Let us now analyze the fixed-point structure of the coupled set of beta functions (3.57) and (3.57), by studying
the corresponding RG flow. The left panel of Fig. 3.11 shows the RG flow at T = p = 0, where the arrows shall
indicate the direction of the flow towards the infrared regime. We depict the Gaussian fixed point in black and the
real-valued non-Gaussian fixed point F2(N, = 3) in blue. Moreover, we find that the theory space is sliced by
separatrices (red lines) into three different domains D;. The pink dot shall denote an exemplary choice of UV initial
conditions where we use )\EEZ)) > 0and A5 = 0 as discussed above. We find that for all UV values which
lie in domain D; or Do, the infrared regime is governed by a non-trivial vacuum ground state accompanied by a
spontaneously broken symmetry. Moreover, for all initial conditions in D;, we shall observe a dominance of the
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scalar-pseudoscalar channel since all trajectories approach the red separatrix pointing in the direction of the A,
coupling. One may now speculate whether it is possible to trigger a dominance in the csc channel by using different
initial conditions, e.g., we use a sufficiently large value for AV, However, since all trajectories approach the red
separatrix in the UV, it appears to be rather difficult to find a set of initial conditions so that a dominance in the csc
channel is observed. For initial values in D3, however, the theory remains ungapped and the RG flow approaches
the Gaussian fixed point in the deep infrared. In this case, all symmetries remain intact in the low-energy regime.

Let us now turn on the dimensionless temperature 7'/ k and discuss how the RG flow changes, see the right panel
of Fig. 3.11. The dashed red line shows the separatrices at 7" = ;1 = 0 where the solid red lines are the separatrices
at T/k = 0.4. We find that the domain Dj is significantly increased. Moreover, The (pseudo) fixed point F> is
moved towards larger values of A, so that the separatrices are shifted accordingly. For the presented panel on
the right-hand side of Fig. 3.11, the dimensionless temperature 7 = 0.4 is chosen sufficiently large so that the pink
dot (UV initial value) is now located in D3 and not in D5 anymore. This implies that the theory is now dominated
by the Gaussian fixed point (black). For the infrared regime it follows that the ground state becomes trivial and the
system remains ungapped. In fact, we have already seen a similar behavior for the parabola associated with the beta
function of the one-channel approach we considered in our one-flavor and one-color NJL model study, see Fig. 3.6.
Here, the non-Gaussian-pseudo-fixed point moved also towards larger values when increasing the dimensionless
temperature. In both cases, there exists a critical value for T'/k, above which no spontaneous symmetry breaking
can occur. This critical temperature then corresponds to the finite-temperature phase boundary T, (), separating
the broken from the unbroken regime. In the previous section, we already indicated that this behavior can be traced
back to the Matsubara screening mass ~ 1’ in our propagator structures, see Eq. (C.9).

In the next step, we study the RG flow at zero temperature 7' = 0 and finite quark chemical potential, see
Fig. 3.12. The top left panel shows again the RG flow at T = p = 0, see our discussion above. We now increase
the dimensionless quark chemical potential up to a certain critical value 1/k = (u/k)q, where we observe that the
formally imaginary fixed points 73 and F, turn into real-valued non-Gaussian (pseudo) fixed points, see the two
new blue dots “sitting” almost on top of each other in the top right panel of Fig. 3.12. Note that for 0 < p/k <
(11/k)o =~ 0.298 the RG flow should not change at all as a result of the Silver-Blaze property, see Refs. [116, 285].
However, we already discussed in Sec. 3.1.3 that our presently used Fermi-surface-adapted cutoft scheme (mildly)
violates the Silver-Blaze symmetry of our theory. As a consequence, we observe a modification of the RG flow for
(dimensionless) quark chemical potentials below (/k)o.

The newly emerged real-valued non-Gaussian fixed points drastically alter the underlying theory space as they
introduce new separatrices creating the domains D, and Ds, see the bottom right panel of Fig. 3.12. By further in-
creasing the quark chemical potential, we observe that one of the new non-Gaussian fixed points moves towards the
former real-valued vacuum fixed point F, see the bottom left panel. We further notice that this new non-Gaussian
fixed point does only have IR repulsive directions, i.e., it defines an unstable point in theory space. Nevertheless,
we find that by starting with our choice of UV initial condition (pink dot), the system is still driven in the direction
defined by the A(,_r) coupling. By increasing the dimensionless quark chemical potential even further, we observe
an annihilation of the old non-Gaussian fixed point 7, and the newly created non-Gaussian fixed point, i.e., both
fixed points are now located in the complex plane. Again, the structure of the theory space changes. The latter is
now divided into three different domains D1, D3 and D5 due to the disappearance of the separatrix which pointed
in the direction of the scalar-pseudoscalar channel, see bottom right panel. We stress that this separatrix was re-
sponsible for the observed dominance pattern which suggested the onset of spontaneous chiral symmetry breaking
at low quark chemical potential. For larger 1/k, the remaining non-Gaussian fixed point approaches the Gaussian
one. It is further important that the remaining fixed point now “sits” almost on the A¢sc axis. For u/k — oo the
Gaussian and non-Gaussian fixed point merge so that a small finite value in the ultraviolet suffices to render the
system critical. Thus, we find again the famous Cooper instability. Moreover, the RG flow is now tilted pointing in
the direction associated with the A.s. coupling, see the bottom right panel. This observation is key to understand
the change of the dominance pattern we have observed in our phase diagram, see Fig. 3.8. From our starting point
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Figure 3.12: RG flow at zero temperature and finite chemical potential as obtained from the beta functions Egs. (3.57)
and (3.58) which we show in the A(s.x)-Acsc plane. Top left panel: For ' = p = 0, two of the four fixed points
are real-valued, see the Gaussian fixed point (black) and the non-Gaussian fixed point (blue). For initial conditions
of the RG flow starting in D;, we observe a dominance of the A\(,.r) channel, see the red separatrix pointing in the
A(o-m) direction. Top right panel: For u1/k = (u/k)o = 0.298, all four (pseudo) fixed points are real valued. Bottom
left panel: By further increasing (1/k, one of the newly appeared non-Gaussian fixed points drifts towards the Acsc
axis. The other one moves towards the old non-Gaussian fixed point (F3). Bottom right panel: The old and the
new non-Gaussian fixed point annihilate and become imaginary. The RG flow is then tilted and dominated by the
remaining non-Gaussian fixed point. The corresponding separatrix now points in the A direction which can give
rise to a dominance in the diquark channel.

(pink dot), the RG flow is now driven towards the A.s. direction implying a dominance of the diquark channel and
the possible emergence of a finite diquark gap.

Even though an analysis of the fixed-point structure of the Fierz-complete ansatz seems rather infeasible, the
mechanism we observe for two channels can already provide us with valuable insights in the dynamics underlying
our Fierz-complete phase diagram. For a two-channel approach, we have seen how a dominance in the diquark chan-
nel can be induced by fluctuation effects, even though we start the RG flow with A&ECV) = 0. We further recovered a
typical fixed-point behavior as it is expected for BCS-type pairing, i.e., we observed within our two-channel approx-
imation that the non-Gaussian fixed point and the Gaussian fixed point merge for i1/k — 0o. We conclude that our
two-flavor and three-color NJL-type study suggests that physics at low chemical potential is dominated by a spon-
taneous breakdown of the chiral SU(2);, x SU(2) g symmetry and the formation of a chiral condensate (1)) # 0.
For larger chemical potentials, the breakdown of the vector U (1) and the color SU(3) symmetry seems favorable.

The low-energy physics would be then dominated by the formation of a diquark condensate (i)“vsel)) # 0.
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3.3 Hot and Dense Two-Flavor QCD

In the present section of the first part, we shall now study two-flavor'> QCD in the chiral limit, see Ref. [118] for
the original publication. To this end, we also take gluon self-interactions from the Yang-Mills sector into account
by using results for the RG running of the scale-dependent strong gauge coupling from previous works [18-20]
computed in the background-field formalism. The latter then enters our theory as an external input function as we
shall discuss below. Because of two-gluon exchange diagrams, the four-quark interaction channels we discussed in
the previous section, are then generated solely from gluon dynamics. From Fig. 2.3, we already know that we need
to consider three different types of four-quark diagrams. Each of them then appears in four different versions due
to the presence of an external heat bath and finite quark chemical potential.'®

The structure of the present section is as follows: We begin with an introduction of the ansatz we use for the
effective average action. We then analyze the different approximations and truncations we perform and discuss
possible improvements for future works. In the next subsection, we examine the general form of our four-quark
beta functions and review the mechanism of spontaneous chiral symmetry breaking in QCD at finite temperature.
Simultaneously, we analyze the finite-temperature behavior of our strong coupling and discuss our scale-fixing pro-
cedure. In the last subsection, we then compare the phase boundaries of two-flavor QCD at finite temperature and
quark chemical potential where we use the running strong coupling as obtained from Yang-Mills theory (N; = 0)
and QCD (/N = 2). In analogy to our previous studies, we also discuss the RG running of the four-quark couplings
from which we deduce the symmetry breaking patterns underlying our phase diagram.

For two-flavor QCD with massless quarks, the so-called classical action in the chiral limit reads

Sach | = / dar [ @ { (D +WOM)¢+4F5VF,7V}7 (3.64)

with the covariant derivative D, = 9, —igAj;T* and the quark chemical potential xi. Note that a summation over
color and flavor degrees of freedom is implicitly assumed. We know from the quantization of Yang-Mills theory in
Sec. 2.3.1 that we still need to fix the gauge. Employing the Faddeev-Popov method, the resulting Faddeev-Popov
ghost fields enter our theory as additional degrees of freedom, see our discussion in Sec. 2.3.1.

As an ansatz for the coarse-grained average effective action, we need to anticipate again all possible operators
which are compatible with the symmetries and generated in the Wetterich equation as a result of quantum fluctua-
tions, e.g., we also need to take arbitrarily high powers of the Yang-Mills field strength tensor F}j, F}j, into account.
For the matter sector, we assume that the most important correlation functions to study the onset of spontaneous
symmetry breaking are four-quark vertices as discussed in the previous NJL studies. In the present case, however,
the four-quark vertices are solely generated from gluodynamics. As a Fierz-complete basis, we adopt the four-quark
channels which we found in our two-flavor and three-color NJL-type model. An ansatz for the effective action at

finite temperature and quark chemical potential is then given by
Crol4, / r [ @ {5 (20 + 2510, - Zuiina) ¥+ 2,5 (P, 457°0) )

AL (g2 [, 9] + Tym[A] + Tge[A4], (3.65)

120ne may ask what might change if more than two flavors were present. For instance, if we consider a Fierz-complete basis for QCD with
two massless quark flavors and one massive strange quark. At zero temperature and quark chemical potential, a complete basis would be given
by 25 different four-quark channels.

13We already observed such a splitting on the level of the purely fermionic threshold functions at finite temperature and quark chemical
potential, see, e.g., Egs. (C.18)-(C.21).
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where the abbreviations read

_ 1 [P _

Loyl ¥] = 5/0 dT/dst' >z L (3.66)
JEB
1 g 3 a ra
FYM[A] = ZA dr /d .’tFleW,, (3.67)
B

1 3 a\2

Iy[A] = % J, dr [ d°x (0,A5)". (3.68)

In Eq. (3.65), the temporal and spatial fermionic wave-function renormalizations are Z$ and Z 1')}, the renormaliza-
tion function for the quark chemical potential is Z,,, and the quark-gluon vertex renormalization is denoted by Z,,.
The wave-function renormalization Z4 of the gluon field is encoded in the field strength tensor £, which reads

Fp, = Z)* (0,48 — 0,48 + Z)*Z,g " AL A7) (3.69)

Note that the Yang-Mills part 'y also contains three-gluon ~ A2 and four-gluon ~ A* interactions which we shall
neglect on the level of the ansatz (3.65). On the level of the running coupling, however, we emphasize that non-trivial
gluon self-interactions are included, see Refs. [18-20]. In principle, due to the heat bath, the gluon fields would also
require a separate renormalization of the magnetic Z4! and the electric Z% field components, see, e.g., Refs. [237,
294]. We further note that same is also true for the quark-gluon vertex renormalization Z; which then splits into
a contribution parallel Z y and perpendicular Z, QL to the heat bath. For simplicity, however, we shall neglect such a
rather involved truncation in the present work. For completeness, at least the electric and magnetic wave-function
renormalizations appear in our definition of the renormalized gluon propagator, see Eq. (C.16).

Note that we work again in the pointlike limit of the four-quark correlation functions as well as for the quark-
gluon three-point vertex. In analogy to our previous studies, we shall further neglect the RG running of the fermionic
wave-function renormalizations 8th; = 8tZJL = 0yZ, = Oand set Z,, = Zj; = ZD) = Z;l = 1 for all £. Note
that the latter assumption was exact in leading order of the derivative expansion when we studied purely fermionic
NJL-type models. Including gauge degrees of freedom, however, there exists a non-zero one-gluon exchange dia-
gram contributing to the running of Z,. At least at large momentum scales, however, QCD studies suggest that the
running of the latter can be assumed to be subleading, see, e.g., Refs. [23, 240]. Therefore, in our present work, we
also neglect the running of the fermionic wave-function renormalization and defer a detailed study to future works.

The term I 7y> in Eq. (3.66) entering our ansatz for the effective action represents the two-flavor and three-
color Fierz-complete four-quark basis we discussed in Sec. 3.2. Here, the Z; are associated with the four-quark vertex
renormalizations, the \; are the bare four-quark couplings and the £; denote our four-quark operators obeying a
global SU(2)1, x SU(2) g x U(1)y symmetry, see also Egs. (3.38)-(3.47). For the renormalization of the four-quark
couplings \;, see Eq. (3.7).

In the next step, let us renormalize the quark-gluon vertex in our ansatz. To this end, we use the field redefinitions

for the fermionic field, see Eq. (3.8), and for the gluonic fields A}, — AfLZgl/ ?. From this, we find

ZZgQ

2 g

e L - (3.70)
(Z)2Za

with g, = \/4ma, x in D = 4. As a consequence of the modified Ward-Takahashi identity (mWTI), which arises
due to the presence of a regulator function in our functional RG framework, see, e.g., Refs. [159, 295-300], one
observes that the beta function of the quark-gluon vertex is also modified by the running four-quark couplings.
In this case, diagrams of the type depicted in Fig. 3.13 do also contribute to the beta function of the quark-gluon
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Figure 3.13: 1PI diagram contributing to the beta function of the quark-gluon vertex.

vertex, see Ref. [301] for a detailed discussion. The general form of the relation between the quark-gluon vertex
renormalization Z, and the fermionic wave-function renormalization Zj; can be written as
Zy

Sr=14) ot (T, 1) N (3.71)
Y i€B

(F)

where B denotes the set of Fierz-complete basis elements Eqs. (3.38)-(3.47) and the coeflicients a, ’ are associated
with one-loop diagrams and need to be determined in an additional calculation. For convenience, we shall neglect
any correction terms imposed by the mWTI in our present work and set Z,/Z j = 1. Nevertheless, a more careful
investigation of the mWTT and their influence on observables is reasonable and should be done in future studies.

A further crucial approximation stems from the way the gauge coupling from the background-field study [18-
20] enters our ansatz (3.65). We emphasize that already at zero temperature and quark chemical potential, there
are in general three different types of gauge couplings associated with, e.g., four-gluon, three-gluon and quark-
gluon vertices which require, in principle, separate vertex renormalizations, see, e.g., Ref. [240]. As it turns out,
for sufficiently large momentum scales k£ > 1 GeV, one observes that all gauge couplings coincide perfectly and
follow the perturbative result at one-loop order. In the infrared regime, however, the RG flow of the three different
gauge couplings usually deviate considerably so that a separate renormalization would be necessary. For our study
below, we now identify the running gauge coupling computed in Refs. [18-20] with the quark-gluon vertex defined
in Eq. (3.70). This essential approximation is valid at large momentum scales but no longer correct in the non-
perturbative infrared regime. Nevertheless, from our studies in Secs. 3.1, 3.2, and from Ref. [22], we may expect
that the influence of the gauge coupling in the infrared regime on the RG flow of the four-quark couplings could be
rather weak. The reason for the latter conjecture relies on our findings that the low-energy regime is governed by
the non-Gaussian fixed points of the purely fermionic low-energy theory dominating the RG flow of the four-quark
vertices. Therefore, we expect that once the gauge degrees of freedom rendered the four-quark couplings sufficiently
large, the dynamics should mostly be governed by the underlying fixed-point structure of an emerging “NJL-type”
model.

The main ingredient from the background-field study [18-20] which we use to compute the running of the
quark-gluon vertex is the anomalous dimension

 0iZa
Za

na = (3.72)
in D = 4. Note that the latter contains non-trivial information from the gauge sector and is a function of the scale-
dependent coupling g7, the dimensionless temperature 7'/k and the number of flavors Ny so that we may write
na =nalg* T, Ny).

We further ignore any dependence of the gauge coupling on the quark chemical potential. The latter would
naturally enter the beta function of the strong gauge coupling at one-loop order by virtue of the following vacuum
polarization diagram

O Za ~ gp ™ (T, p) ~ : (3.73)
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In our present study, however, we shall adopt the strong coupling as computed from Refs. [18-20] and postpone
further improvements on the RG running of g7 to future works.

Eventually, let us now briefly discuss the gauge-fixing condition we employ. For this, we included I'y¢ in our
ansatz where ¢ denotes the gauge-fixing parameter for linear covariant gauges. In general, the parameter £ is also
scale dependent £ = . From this, it follows that a properly gauge-fixed theory at some initial scale & = A in
the ultraviolet flows towards a different gauge in the infrared where usually £x—g # €x=na. As it turns out, Landau
gauge ¢ = 0 is an attractive infrared fixed point in theory space [302] and might therefore be a reasonable choice.
For our study at finite temperature and chemical potential, however, we shall work in the Feynman-t’Hooft gauge
& = 1 for technical reasons. Due to the broken Poincaré symmetry, we find that the use of Landau gauge yields
an additional mixing of momentum structures in the threshold functions. By considering Feynman-t’Hooft gauge
& = 1, amixing can be avoided as the Lorentz structure of the gluon propagator becomes proportional to the identity
operator P4 ~ 0, see Eq. (C.16). For convenience, we shall therefore employ Feynman-t'Hooft gauge and set

=1

3.3.1 Running Gauge Coupling at Finite Temperature and Scale-Fixing Procedure

Let us now discuss the structure of the four-quark beta functions in our study. Again, we employ software packages
[166, 167] to compute the beta functions of our renormalized four-quark couplings. The general workflow is given in
App. D. In contrast to our previous NJL studies, we shall not provide a detailed analytical form of the beta functions
associated with the four-quark couplings since the corresponding expressions appear to be rather lengthy and even
exceed the one we found in case of the purely fermionic two-flavor and three-color NJL model, see App. E. A typical
four-quark beta function in our QCD study is assembled from quadratic fermion loops ~ A, A, triangle-type
diagrams ~ \,, g7, and box-type diagrams ~ g¢. For instance, the beta function associated with a coupling \; being
part of our ten-channel Fierz-complete basis (3.38)-(3.47) can be written in D = 4 as:

Ohi=2X + D AT ) Mada + Y BT ) A g (T) + CO(T ) gi(T), (3.74)

n,meB neB

where Agf%@, B® and C,(:’) can be interpreted as generalized “threshold functions” related to the fermionic-, and
mixed-type one-loop diagrams, respectively.

For our semi-analytical derivation, we further made some consistency checks, e.g., we have tested that in the limit
gr — 0, we recover the beta functions corresponding to the purely fermionic NJL-type model Egs. (E.4)-(E.13).
Moreover, for vanishing temperature and quark chemical potential, our system of beta functions is in agreement
with Fierz-complete vacuum studies from previous works, see, e.g., Ref. [301], at least if we consider a covariant
four-dimensional regularization scheme.

We briefly review the mechanism of spontaneous symmetry breaking in chiral QCD at finite temperature. In
that sense, the present discussion is a sequel of Sec. 2.3.2. At vanishing temperature, we already discussed that for
gr > 0 the parabola associated with a one-channel four-quark beta function is shifted downwards, see Fig. 2.5.
The Gaussian and non-Gaussian fixed point then merge at some g.; = gr=r,, at a critical scale k.. In this setting,
the RG flow is for g;, > g not controlled by any real-valued fixed point anymore so that spontaneous symmetry
breaking can occur. This is the basic mechanism in the vacuum for only one four-quark channel, see Fig. 2.5. We
now discuss the modifications when a thermal heat bath is present. At finite temperature, loop contributions are
screened due to a thermal Matsubara mass, see also our discussion in Sec. 3.1.2. Therefore, one usually observes
a complicated interplay between gauge and thermal degrees of freedom. While gauge degrees of freedom “push”
the parabola downwards so that the real-valued fixed points disappear, see solid black curve in Fig. 3.14, thermal
degrees of freedom suppress loop contributions and can recreate the theory’s fixed points in the infrared (dashed
red curve). In the deep infrared k — 0, only the linear part ~ \; of the beta function is present in Eq. (3.74) as the
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Figure 3.14: Illustration of a typical four-quark beta function at finite temperature. Thermal degrees of freedom
broaden and heighten the parabola associated with the four-quark beta function. Even though the parabola is not
controlled by real-valued fixed points (solid black curve), spontaneous symmetry breaking can be delayed or even
prevented at finite temperature as the fixed points can be recreated in the infrared (dashed red curved). In the deep
infrared, the non-Gaussian fixed point is pushed towards infinity so that the Gaussian fixed point dominates the RG
flow. For details, see main text.

non-Gaussian fixed point is moved towards infinity. Therefore, to trigger spontaneous symmetry breaking at finite
temperature, the gluon degrees of freedom have to move the parabola downwards “sufficiently” fast as a function of
the RG time so that symmetry breaking can occur.

Let us now discuss the scale-fixing procedure of our QCD-type study. To make contact to the NJL-type studies
from the previous sections, we adjust the UV value of the strong gauge coupling g7_ , at the UV scale A = 10 GeV
so that we recover the critical temperature T¢, (1 = 0) = Tp = 0.0132 A computed in a recent lattice QCD study
[9]. Again, the critical temperature T} is defined as the value of T below which all four-quark couplings diverge. We
stress that we now set the UV values of the four-quark couplings to zero /\EUV) = 0 for all i € B. The four-quark
interactions are then solely generated by strong gauge dynamics. Therefore, for QCD with massless quark flavors
the remaining parameter is the strong gauge coupling.

We estimate the influence of the neglected vacuum polarization Eq. (3.73) by comparing the critical temperature
in the (7, 1) plane as obtained from two different choices for N;. On the one hand side, we consider ayy =
g2(T, Nt = 0)/(4m) which corresponds to a pure Yang-Mills (YM) RG running of the strong gauge coupling. In
this case, no fermionic vacuum polarizations are present. On the other hand, we study aqcp = g2 (T, Ny =
2)/(4m) associated with the RG running of two-flavor QCD where diagrams like Eq. (3.73) are included, but do
not depend on the quark chemical potential. Since ayy does not include any matter contributions whereas the
latter are present for all 41 in case of aqcp, we expect that the “true” pi-dependent running strong coupling of two-
flavor QCD should be located between arynm and aqep, see Ref. [303]. Note that we use for both types of o, the
same scale-fixing procedure as described above. Naturally, we then have Ty yam = Tp,qep by construction. Fixing
the critical temperature at zero chemical potential, we obtain the following UV initial values for the strong gauge
coupling: abey = ap_a(T/A = 0.0132, Ny = 2) ~ 0.212 (QCD) and a{}}” = ap_a(T/A = 0.0132, N; =
0) ~ 0.186 (YM). The reason why agc\g > ag(Ul\Z/) relies on matter screening effects which are present for Ny > 0.
This can be readily verified by considering the one-loop beta function of the strong gauge coupling:

22 4 g3
2 _ _ = k 6
Orgy, = < 3 N, 3 Nf> (ar)? +0(gp) - (3.75)
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Figure 3.15: Running strong gauge coupling cqcp = o (T, Ny = 2) as a function of the dimensionful scale &
as obtained from Refs. [18-20] for three different temperature values as well as from a one-loop study at vanishing
temperature. The scale is fixed at A = 10 GeV so that we find a critical temperature 7o /A = Te (= 0)/A =
0.0132, see main text for details.

Here, the matter contribution ~ N appears with an opposite sign relative to the Yang-Mills term ~ N,. Thus, for
increasing Ny, the matter screening effects become larger. As a consequence, aEQUC\g has to be greater than a%@/)
so that the same critical temperature at zero chemical potential can be adjusted.

Let us further analyze the general behavior of the running strong coupling. In Fig. 3.15, we therefore show
the aqep from [18-20] for three temperature values as a function of the RG scale k. As a comparison, we also
present the running of o, as obtained from a one-loop calculation at zero temperature (dotted red line). The latter
exhibits a Landau-pole, as soon as the theory becomes strongly coupled by approaching the infrared for k — 0.
We further note that for large k, all gauge couplings become asymptotically free. Furthermore, we observe for k >
T that the finite-temperature RG running of the strong gauge couplings from fRG calculations coincide perfectly
with the universal vacuum one-loop running from perturbation theory. At k& ~ T, we can moreover see that the
gauge couplings assume a global maximum. Here, we find that the absolute height of this maximum increases for
a decreasing temperature and vice versa. This behavior is essential as it controls at which temperature spontaneous
symmetry breaking is induced in the four-quark sector. In particular, we observe for T'/T > 1.0 and k — 0 that the
strong gauge coupling ciqep remains below a scale- and temperature-dependent critical value a1 (1) rendering
all four-quark couplings finite so that no spontaneous symmetry breaking is triggered, see Refs. [18-20] for details.
As an example for the latter case, we show aqcp at T/Ty ~ 3.8, see solid blue curve in Fig. 3.15. To trigger
spontaneous symmetry breaking, it is necessary that agcp exceeds o, (1) by approaching the infrared. For this,
we exemplary show in Fig. 3.15 the strong gauge coupling at T'/Tj ~ 0.7 (dashed-dotted green curve) for which we
observe that the four-quark couplings diverge at a finite critical scale. Moreover, for momenta k < T'and & — 0, we
observe that the temperature-dependent strong gauge coupling decreases obeying a power-law scaling. The reason
for this behavior is based on an effective dimensional reduction of QCD. Since low-lying momentum modes with
large wave lengths exceed the finite extent of the temporal box size in Euclidean spacetime, the theory becomes
effectively three dimensional. The system is then attracted by a non-Gaussian IR fixed point of three-dimensional
QCD being associated with a power-law scaling behavior for k& — 0, see Ref. [18] for details.
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Figure 3.16: Phase boundary of chiral two-flavor QCD in the (7', i) plane. We compare the critical temperatures
as obtained from aqcp with two quark flavors (solid blue line), from pure Yang-Mills theory cvyn (dashed orange
line), and our NJL model study with two flavors and three colors from Sec. 3.2 (dotted green line). See main text for
details.

3.3.2 Phase Boundary of Chiral Two-Flavor QCD

Let us eventually discuss the phase structure of two-flavor QCD as it is found by considering the ansatz (3.65) for
the effective action. For this, we show in Fig. 3.16 the finite-temperature phase boundary in the (7', ;1) plane as it is
obtained from ayn (V5 = 0, dashed orange line) and from aqcp (Nf = 2, solid blue line), see also our discussion
in the previous section. We stress again that we only assume a finite UV value for the strong gauge coupling whereas

EUV) = 0 for all i € B. Note that this choice of UV initial conditions respects the axial U(1) 4 symmetry

we set A
which is then preserved throughout the RG flow. Moreover, we compare the QCD results with the phase boundary
we have originally found in the purely fermionic two-flavor and three-color Fierz-complete NJL model study using
U (1) a-symmetric initial conditions (dotted green line), see also Sec. 3.2.

First, we notice that we cannot find any indications for a critical chemical potential /1., at zero temperature as
it was found, e.g., in our NJL model study with one flavor and one color (Sec. 3.1.2) or for the one-channel approx-
imation in our two-flavor and three-color NJL model (Sec. 3.2.1). Further, we observe that the phase boundaries
as obtained from a Yang-Mills and QCD running gauge coupling agree well over a wide range of quark chemical
potential. Remarkably, we find that both phase boundaries exhibit small “kinks” at a quark chemical potential
p/To ~ 2.0 where the slopes change notably, see also our discussion at the end of this section. By comparing the
phase boundaries as obtained from aqcp and ayn with the one originally found in the NJL model study from
Sec. 3.2, we observe that the overall shapes of all three phase boundaries qualitatively agree at least for ;1/Ty < 2.0.
For larger quark chemical potential, however, this appears not to be the case. In particular, the critical temperature
at /Ty ~ 4.0 associated with two-flavor QCD is approximately 100% greater than the one we find in the purely
fermionic NJL model. Apparently, from our observations we deduce that gauge degrees of freedom seem to have a
significant impact and increase the critical temperature at large quark chemical potential considerably.
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Let us now discuss the symmetry breaking patterns in our two-flavor QCD study. In the upper panel of Fig. 3.17,
we show the phase boundary in the (7', i) plane as computed from the running gauge coupling with Ny = 2. In
this figure, the dominant four-quark couplings close to the phase boundary are highlighted by using two different
line colors. In particular, at low quark chemical potential 11/Ty < 2.0, we observe a dominance of the scalar-
pseudoscalar channel indicating the spontaneous breakdown of chiral symmetry and the formation of a non-zero
chiral condensate (solid blue line). Exemplary, we therefore show the corresponding RG flow of the various dimen-
sionful four-quark couplings \; at 11/Ty ~ 1.0 close to the critical temperature Tt (p1/Ty = 1.0)/Ty = 0.95 as a
function of the RG scale k, see the central panel in Fig. 3.17. By comparing the relative strengths of the ten four-
quark channels, we can readily verify that the (o-7) channel appears to be the utmost dominant channel at low quark
chemical potential. Note, even though we found in our previous NJL model study (see Fig. 3.10) for /Ty < 1.8 a
dominance of the scalar-pseudoscalar channel, we could not be sure whether the emerging dominance pattern was
probably just an “artifact” of the choice of our boundary conditions for the RG flow, i.e., we assumed a non-zero
UV value of the scalar-pseudoscalar channel in our study. In the light of our two-flavor QCD study, however, we
find that a dominance of the scalar-pseudoscalar channel originates solely from dynamics in the strong gauge sector.
In that sense, our previous choice of UV initial conditions for the low-energy model can indeed be justified by the
present QCD study.

At large quark chemical potential, we previously found indications for the formation of a diquark condensate
implying a (BCS-type) color superconducting ground state. As we shall discuss now, our QCD study confirms
these observations. Above, we already mentioned that the slopes of the phase boundaries (cf. Fig. 3.16) change
significantly at /Ty ~ 2.0. Interestingly, we observe that the latter quark chemical potential coincides with the
one above which the dominance pattern changes. For 11/Ty > 2.0, we then find that the (S + P)¥ as well as the
csc channel become dominant simultaneously, see dashed orange line. From the sum rule (3.49), this behavior is
expected as we start the RG flow with /\EUV) = 0 implying that the axial U (1) 4 symmetry is conserved. In the lower
panel of Fig. 3.17 we illustrate the RG flow of the ten dimensionful four-quark couplings at /Ty ~ 4.0 close to the
critical temperature Ty, (11/Ty = 4.0)/Ty > 0.74. By construction, the RG flows associated with the (S + P)*®
and the csc channel fulfill Agse = —5\( S p)i- It is remarkable, however, that we observe a dominance of these
two channels even though we start with U(1) 4-conserving initial conditions. Recall that we found in the NJL-
model study the (V + A)ﬁdj channel to be dominant for large quark chemical potential in the U(1) 4-symmetric
case. A dominance of the latter channel would be then associated with the formation of a finite spin-1 condensate.
However, our QCD study rather suggests the emergence of a spin-0 condensate which would break the axial U (1) 4
symmetry. In principle, we can also “implement” the anomalous breaking of the U(1) 4 symmetry on the level

of the initial conditions by choosing )‘E[SJJ\:J)PL > 0 mimicing the effect of instanton-induced vacuum transitions

ISJ_\:},)_ < 1 and found that the position of the

phase boundaries as well as the dominance pattern remain almost unchanged. For a quantitative study it would be

in the UV. We qualitatively tested such modifications for 0 < )\E

necessary to compute the instanton density from which it would be possible to estimate the corresponding value of
the (S + P)_ channel at a given RG initial scale, see, e.g., Refs. [193, 194, 293]. In any case, this would go beyond
the scope of the present discussion.
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Figure 3.17: Phase structure of two-flavor QCD from the running gauge coupling ccqcp (upper panel) in the (T, p)
plane. Central and lower panel: RG running of the dimensionful four-quark couplings for two values of the quark
chemical potential close to the phase boundary T' 2 T¢,(u). For u/Ty < 2.0, the scalar-pseudoscalar channel

appears to be dominant (solid blue line) where for 11/T 2 2.0 the observed dominance pattern suggests a ground
state rather dominated by diquarks (dashed orange line), see main text for a discussion.
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3.4 Discussion and Outlook

Let us summarize our results from the first part of this thesis and give an outlook to ongoing studies based on the
present work. We began in Sec. 3.1 with a Fierz-complete NJL-type model with one flavor and one color. First,
we studied the RG flow of the four-fermion couplings in the vacuum and analyzed the fixed-point structure of the
underlying theory space. At finite temperature 7" and quark chemical y, we explored the phase boundary as it
was found from a one-channel, two-channel and a Fierz-complete three-channel ansatz. We further analyzed how
Fierz-incomplete truncations affect the predictive power of model studies where we showed that the shapes of the
phase boundaries associated with Fierz-incomplete approaches are considerably altered. The dominance pattern
of the four-fermion channels close to the phase boundary provided us with some indications about the nature of
the condensate forming in the low-energy regime. We used two different Fierz-complete parametrizations for the
four-fermion sector and found that the dynamics close to the phase boundary is governed over a wide range of the
quark chemical potential by the scalar-pseudoscalar channel suggesting the onset of spontaneous chiral symmetry
breaking. At large quark chemical potential, we found in both Fierz-complete parametrizations dominances in
channels which are associated with the spontaneous breakdown of the Poincaré symmetry.

In Sec. 3.2, we discussed a Fierz-complete NJL model with two flavors and N, colors at finite temperature and
quark chemical potential. The Fierz-complete basis we found in this case is composed of ten four-quark channels
which are invariant under global SU(N.) x SU(2)r, x SU(2)g x U(1)y transformations. We studied the phase
structure in the (7', 1) plane and examined the underlying dominance patterns. For U (1) 4-breaking initial condi-
tions, we found for our Fierz-complete parameterization that the dynamics close to the phase boundary is expected
to be dominated by chiral degrees of freedom at small quark chemical potential where a dominance of the diquark
channel indicated that a color superconducting ground state is favored at large quark chemical potential. Inspired
by the observed dominance pattern of the Fierz-complete approach, we studied a Fierz-incomplete two-channel
ansatz and analyzed the pseudo fixed-point structure which then gave rise to a possible mechanism allowing for
a dynamical change in the observed dominance pattern from the scalar-pseudoscalar to the diquark channel by
varying the quark chemical potential.

Eventually, we studied the phase boundary and symmetry breaking patterns of two-flavor QCD in the chiral
limit, see Sec. 3.3. We employed the ten-channel Fierz-complete four-quark basis from Sec. 3.2 and included the
quark-gluon vertex in our ansatz. In the background-field formalism, we identified the coupling associated with
the quark-gluon vertex with the scale-dependent gauge coupling from QCD adopting the one from Refs. [18-20].
Since QCD induces fermion self-interactions at one-loop order by means of two-gluon exchange, the four-quark
couplings are now generated dynamically in the RG flow. We studied the phase structure in the (7', 1) plane where
we compared the QCD phase boundary with the one we have found in our NJL model study. We observed that gluon
degrees of freedom are expected to become particularly important in the regime at large quark chemical potential
where we found that the critical temperature in QCD appears to be significantly larger than in the NJL model case.
From our Fierz-complete analysis of the dominance patterns, we moreover concluded that the regime at low quark
chemical potential is expected to be dominated by spontaneous chiral symmetry breaking where at large quark
chemical potential the onset of diquark condensation becomes favorable.

A long-term goal of our studies is to provide a fully ab initio description of dense strong-interaction matter and
a systematic computation of the corresponding equation of state. Clearly, the present study represents only a first
step towards future efforts. Nevertheless, as we shall discuss below, the results from the present work can be already
helpful to constrain the equation of state at least in the isospin-symmetric case at zero temperature. To compute the
equation of state, e.g., the pressure as a function of the chemical potential P (), it is necessary to compute the full
quantum effective action since

P=—21 lim TT[®,). (3.76)

4 T—0
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where V} is the four-dimensional spacetime volume and ®.¢ denotes the ground state of the theory under con-
sideration, see, e.g., Ref. [276]. Throughout our Fierz-complete four-fermion studies, we employed the derivative
expansion in leading order implying the so-called pointlike limit for the four-quark vertex. We further discussed that
the pointlike limit neglects relevant information, i.e., it only allows us to detect the onset of spontaneous symmetry
breaking but does not allow us to study the system within the broken regime. Therefore, our present truncation is
only suited for the symmetric regime and low-energy observables remain inaccessible. In this approximation, the
equation of state in the symmetric regime at zero temperature and finite quark chemical potential then corresponds
to the Stefan-Boltzmann pressure Psp of an ideal gas of non-interacting quarks at zero temperature

1

Pon = NeNppo -

(3.77)
From our QCD study with two flavors, we would expect that the low-energy physics is mostly governed by chiral
degrees of freedom at low and by diquark degrees of freedom at large quark chemical potential. This observation
can be used to construct an effective low-energy model and combine it with the results from our QCD study in
order to gain access to low-energy observables and the equation of state, respectively. For this, let us briefly outline
the overall strategy:

Our dominance pattern suggests to use a so-called quark-meson-diquark (QMD) model for the low-energy
sector which take mesonic, the 0 meson and pions, as well as diquark degrees of freedom into account, see Refs. [28,
35, 54, 276, 277, 304, 305]. Together with our Fierz-complete QCD study, we can constrain the input parameters of
the QMD model by using our findings from the high-energy sector. To this end, we extract at zero temperature the
coupling values associated with the (o-7) and the csc-channel from the Fierz-complete QCD RG flow of four-quark
couplings at different “transition” scales Ag > k¢, (T = 0, 1) and for different quark chemical potentials 1. In a next
step, we can then use the “measured” ratio of the scalar-pseudoscalar and the diquark coupling at the scale Ag as a
boundary condition for the parameters entering the QMD model. To analyze the dependence of our predictions for
low-energy observables on the “transition” scale, we vary Ag. For more details about the boundary conditions and
our scale-fixing procedure, we refer to Ref. [54].

Our first very recent study [54] in this direction indicates that the so-derived equation of state of isospin-
symmetric nuclear matter already provides reasonable results for the intermediate density regime 20 < n/ng <
300, where ngy denotes the nuclear saturation density. By studying the speed of sound ¢? as a function of the nu-
clear density, one recognizes that at large densities n/ng > 100, the value of the speed of sound approaches the
Stefan-Boltzmann limit of an ideal fermion gas c2 = 1/3, see, e.g., Refs. [59, 60]. Nevertheless, recent constraints
on the speed of sound from mass-radius observations of neutron stars [306] suggest that c; should exceed this limit
at intermediate densities. By also taking diquark degrees of freedom into account, a local maximum of the speed of
sound can indeed be observed [54]. Here, the estimated peak height is rather insensitive to a variation of the read-
out scale, where we find ¢? ~ 0.42 for Ay = 450 MeV. The position of the peak, however, is sensitive to the latter
and varies between n/ng =~ 10...20 for Ag = 450...600 MeV. Moreover, our current research suggests that the
consideration of diquark degrees of freedom is crucial for the existence of such a local maximum at intermediate
densities. For further details, see Ref. [54].

To study the low-energy regime of QCD in future works, one may further introduce a k-dependent classical
field @4, allowing for a continuous “transition” from high-energy to low-energy degrees of freedom. Such an ansatz
has various advantages, e.g., low-energy observables can be accessed by also taking fluctuations beyond mean-field
approximation into account, see Refs. [22, 23, 159, 161-164, 235, 240-242, 307]. A next step towards a full ab initio
description of dense quark matter would be therefore to employ dynamical bosonization techniques. In particular,
in a first study it might be sufficient to keep track of all ten four-quark channels and dynamically bosonize only the
scalar-pseudoscalar and the diquark channel which we expect to become resonant in the infrared. In this case, the
order-parameter potential as well as the equation of state can then be computed without any use of a “transition”
scale. In fact, since the scale Ay emerges naturally in the dynamical hadronization process, any dependence of the
low-energy observables on A disappears.
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Chapter 4

Renormalization Group and Density
Functional Theory

In the second part of the present thesis, we shall now study non-relativistic one-dimensional fermion matter at zero
temperature by employing a Renormalization Group inspired approach to Density Functional Theory (DFT-RG).
For this, we begin in Sec. 4.1 with a short overview of the main statements of the famous Hohenberg-Kohn (HK)
theorem as it represents the foundation of conventional Density Functional Theory (DFT).

Starting from a global ansatz for the HK energy density functional, we outline the derivation of the famous Kohn-
Sham (KS) equations in Sec. 4.2.1. Solving the latter self-consistently then correspond to a minimization of the HK
energy density functional. To include exchange-correlation effects in conventional DFT studies, we briefly discuss
two so-called coupling-constant integration techniques and introduce the Local-Density Approximation (LDA).

In Sec. 4.3, we introduce a Renormalization Group approach to DFT, which relies on the relation between the
HK energy density functional and the two-particle-point-irreducible (2PPI) effective action. For this, we discuss
some field-theoretical technicalities of the DFT-RG framework before we present a one-dimensional nuclear model
of few fermions which interact via a short-range repulsive and long-range attractive two-body interaction. We show
results for the ground-state energy per particle as a function of the confining box size and give an estimate for the
few-body ground-state energy in the continuum limit. In the end of Sec. 4.3, we present an improvement for the
truncated DFT-RG flow equations by using a KS system as a starting point.

Section 4.4 then deals with a system of quasi-one-dimensional dipolar fermions which are confined in an exter-
nal harmonic potential. We briefly introduce the setting of our model and compute for different truncated DFT-RG
flows the ground-state energy per particle as a function of the dipolar coupling strength where we compare our
results with those from exact diagonalization.

4.1 The Hohenberg-Kohn Theorem

DFT is originally based on a very famous theorem by Hohenberg and Kohn in 1964. The essential statement of
the Hohenberg-Kohn (HK) theorem [103, 104] is the observation that there exists a one-to-one correspondence
between the external potential veys, the ground-state wave function |¢y), and the ground-state density ng of a
many-body quantum system. From this, it can be followed that there exists a universal functional F'[n] which is
independent on the particular choice of the external potential veyxt (), see our discussion below. More generally,
the HK theorem implies that all ground-state observables can be expressed as functionals of the density which can
be advantageous in many-body calculations. For instance, an N-body system is naturally described by at least 3NV
(spatial) coordinates. However, since only three spatial coordinates specify the density, DFT allows for a reduction
of the required coordinate space from 3N to three. Potentially, it therefore allows for an effective description of
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Figure 4.1: The graphic illustrates the main statement of the HK theorem. The latter ensures, e.g., that there is no
ground-state wave function which simultaneously belongs to two different external potentials. (figure adopted from
Ref. [308]).

many-body systems

Let us now briefly discuss some key aspects of the HK theorem. For this, we adopt the discussion from Ref. [308].
Note that in the following we shall assume that the ground state of a given many-body problem is non-degenerate.
We begin with the definition of three sets. The first one contains external potentials vey which differ by more than
a constant:

V = {Vext | Vext is multiplicative, corresponding non-degenerate ground state |t) exists,

potentials differ by more than a constant v/, # vext + const.} . (4.1)
We further define a set of distinct ground-state wave functions belonging to the external potentials in V:

G = {|[¥o) | [to) is ground state corresponding to one element in

ground states differ by more than a phase factor [¢)) # €% 1))} . (4.2)
The final set contains ground-state densities which are computed from the ground-state wave functions above:
N = {ngs | ngs = (10| n [ho) is a ground-state density associated with [¢)g) € G} . (4.3)

We may now define twomaps A : V — Gand B : G — N for the three sets given above. On the one hand,
one can now ask whether there is a ground-state wave function in G which stems simultaneously from two different
potentials in V. On the other hand, one may ask whether there exists a ground-state density in A/ which originates
from two distinct ground-state wave functions in G, see also Fig. 4.1. The important statement of the HK is that
this can not be the case. Therefore, the maps A and B are unique. For a proof of the HK theorem, see Ref. [103].
From the uniqueness of A and B we deduce the existence of an inverse map B~! which then defines a unique
functional of the density |+/[n]). The latter maps the ground-state density ng onto the corresponding ground-state
wave function [¢o). The so-defined functional is universal and identical for all systems with similar interaction.
Moreover, it does not depend on the external potential vext. Note, however, that the information on vyt is still
encoded in the structure of the ground-state density ngs as a consequence of the HK theorem. From the latter, we
can now express any observable as a functional of the density

Oln] = ({Y[n][Of¢[n]) . (44)
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In particular, we can define the following universal functional F'[n] which is given by
Fln] = @R][T+WIgn]) (4.5)

with a many-body kinetic energy operator 7" and an interaction W. From this, we can write down the famous energy
density functional via

E[n] = F[n]—l—/ Vext ()0 () . (4.6)

From the Rayleigh-Ritz variational principle [309], one can further show that the correct ground-state energy of the
many-body problem is given by minimizing the energy density functional:

E,s = i%fE[n}. (4.7)

The many-body problem can therefore be reformulated in the following sense. In order to compute the ground-state
energy of a quantum system under consideration, it suffices to minimize the energy density functional E[n], instead
of diagonalizing the many-body Hamilton operator.

In Eq. (4.7) we defined the ground-state energy as the infimum of the energy density functional E[n]. The latter
could indicate the existence of a variational principle to compute the ground-state density of a many-body system

5 ([0}

with a chemical potential i and the particle number N. However, from a mathematical point of view, the existence

via

=0, (4.8)
n(@)=ng(x)

of the expression (4.8) is not guaranteed as it requires that F[n] is at least defined on a sufficiently dense set of
densities n. As one can show, this relates to the problem whether there exists an external potential vy, for all
possible normalized densities n, which simultaneously correspond to the ground state of veyt. The question is
whether all densities n are v-representable. Indeed, one can find counterexamples where even positive-semidefinite
and continuous densities do not fulfill this requirement implying that these densities are not v-representable, see, e.g.,
Ref. [310]. For certain systems and external potentials, there exists a solution based on the Lieb functional [310-312]
representing an extension of the Hohenberg-Kohn density functional in a sense that the functional derivative (4.8)
exists. However, such a discussion exceeds the scope of the present work. For details, we refer to classical textbooks
on this topic, e.g., see Ref. [308].

So far, we did not discuss how the functional F'[n] can be derived. Unfortunately, the HK theorem only guaran-
tees the existence of F'[n] but does not provide a “recipe” for the computation of the exact energy density functional.
Presumably, the structure of the functional F'[n] has to be very complicated as it has to be valid for any particle
number and external potential for a given . In general, it is therefore not possible to write down the exact energy
density functional. Instead, it is necessary to find reliable expansion and approximation schemes. In Sec. 4.2, we
shall discuss this issue in more detail.

In atomic physics, quantum systems like molecules can often be described by employing a Born-Oppenheimer
approximation [313]. In this case, the electrons seem to be confined within a “static” external potential veyt gener-
ated by the surrounding atomic nuclei. For selfbound many-body quantum systems like nuclei, however, no such
potential exists. Moreover, in nuclear DFT the construction of the energy density functional does often rely on
making a global ansatz for F'[n] so that parameters entering such a study originate from fits of external experimen-
tal data. In any case, nuclear DFT appears to be the only feasible many-body technique to study nuclei in the heavy
mass region. In the past years, the applicability of nuclear DFT in this region has been impressively demonstrated
by various work, e.g., by the UNEDF/NUCLEI SciDAC collaboration, see Refs. [99-102] and also Ref. [105]. There-
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fore, it is of great importance to further develop new theoretical tools for nuclear DFT to construct both systematic
and microscopic nuclear energy density functionals.

4.2 The Kohn-Sham Approach to DFT

In this section, we introduce the KS equations and outline the main steps for their derivation. For this, the HK energy
density functional is usually decomposed into different contributions which we shall discuss in detail separately.
A minimization of the ansatz then provides us with the self-consistent KS equations which are usually solved by
making an initial guess for the density. We further point out the obstacles of conventional DFT when one tries to
take exchange and correlation effects into account. Therefore, we discuss in the second subsection techniques like
coupling constant integration which allow in principle to include non-trivial exchange-correlation contributions in a
rather systematic way. Briefly, we also present the Local-Density Approximation (LDA) which appears to be a very
frequently employed truncation in various DFT calculations.

4.2.1 The Kohn-Sham Equations

The famous KS equations [104] were published one year after the proof of the HK theorem. In their work, Kohn and
Sham used the one-to-one correspondence between the ground-state density 4, the external potential veyy, and the
ground-state wave function |¢g)to map the density of an interacting many-body problem onto a problem of non-
interacting fermions confined in a suitably chosen external potential vkg. The latter then mimics the complicated
many-body exchange-correlation contributions which are present in a many-body quantum system. To compute the
KS equations (see Ref. [308] for a pedagogical introduction), one starts by considering the following general ansatz
for the HK energy density functional:

En] = Ts[n] + Eext[n] + Euln] + Exc[n] . (4.9)

To better understand the idea behind the decomposition (4.9), let us now discuss the different contributions in more
detail. The first part T3[n] denotes the kinetic energy functional of N non-interacting fermions'* and is defined by

%,
2

(@lal| T folu]) = Tlnl = 3 (-2 [ oilnl(en) (=) b, (410

where we use the following convention for the Heaviside function:

0(£é;) =

1 for =g >0,
{ T (4.11)

0 otherwise,

with &; = ¢; —ep where we tacitly assume 7 — 0T. Moreover, |®[n]) shall denote the N -particle Slater determinant
consisting of an antisymmetrized product of NV single-particle states'>. One may wonder why the single-particle
states ¢[n](x) are functionals of the density as well. This observation follows directly from the HK theorem by
considering that a variational change in the density, e.g., by a variation of the external potential of the system, leads
to a simultaneous response of the orbitals as well.

The second term in Eq. (4.9) contains the external potential and reads

Eexs[n] =/ Vext (1) n(z1) . (4.12)

M For convenience, we focus in this work on one-dimensional and non-degenerate quantum systems.
15Note that we assume for simplicity that the non-interacting ground state is non-degenerate, see, e.g., Ref. [308] for a discussion of gener-
alizations.
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Figure 4.2: Self-consistent Kohn-Sham iteration procedure. One usually starts with a trial density ng or a trial KS
potential vkg . The KS equations (4.14) are then solved repeatedly until some convergence criterion is achieved, e.g.,
the difference between ground-state energies of two adjacent iteration steps is smaller than a predefined uncertainty.

Here, we assume that the external potential veyt () is “static” and does not depend on the density. Further, the third
term in Eq. (4.9) is known as the so-called Hartree contribution which reads

:él;Ln@gmm@gm@y (4.13)

Note that the Hartree term contains no particle-exchange-type Ex[n] or particle-correlation-type E.[n] energy con-
tributions. For the latter, we have the fourth term in Eq. (4.9) which is called the exchange-correlation energy func-
tional F.[n] including all complicated non-trivial particle exchange and correlation energy contribution which are
present in an interacting many-body system. From this, it is clear that this part requires the most attention in a KS
study. In general, different approaches are possible. In the next subsection, we shall therefore give a quick overview
about possible types of approximations for the exchange-correlation energy functional.

Let us now discuss the Kohn-Sham equations. In principle, the derivation of the latter can be done straightfor-
wardly by taking the functional derivative of the functional (4.9) with respect to the density. Eventually, we obtain
the famous Kohn-Sham equations [104] which read

2
(—8; + vks[n] (CC)> bi[n](z) = spiln](x), (4.14)

with the KS single-particle orbital ¢;[n](x), the corresponding KS single-particle energy ¢; and the external KS
potential

vks[n] () = Vext (@) + vu[n](z) + v [n](z) . (4.15)

Here, vexs () denotes the usual external potential and vyp[n](x) the Hartree potential. The latter can be written as
mm@=/7m@w%m. 4.16)
z1

The last term in Eq. (4.15) denotes the exchange-correlation potential which can be formally written as

6Exc [n]

Sn(z) (4.17)

Uxc [n] (33) =
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Apparently, the exchange-correlation potential is not given in a closed form.

Since we compute Eq. (4.14) from a minimization of the functional Eq. (4.9), the ground-state density associated
with the HK energy functional is equivalent to the one we find when we solve the Kohn-Sham equations. Then, the
ground-state density for a non-degenerate quantum system is given by

Ngs () = Y 0(=&3) | pilngs] ()] . (4.18)

i

For the degenerate case, we refer again to textbooks, see, e.g., Ref. [308].

As already indicated, the Kohn-Sham equations are solved iteratively, see Fig. 4.2. One usually starts the KS cycle
with a trial density ngg ¢ or a trial potential vksg . In the next step, the single-particle Schrodinger equation (4.14)
is (numerically) solved. After the first iteration step, one usually computes from the KS orbitals the new ground-
state density 14 1 which is then used to derive the new KS potential vkg 1. The procedure is repeated until some
predefined convergence criterion is achieved. For example, one can compute the KS ground-state energy

E?SS [n = ng) = Z 0(—&;)e; — / Ngs (L) Vxe [Ngs) (2) — B [ngs| + Exc|ngs) (4.19)

i T
and require that |Eé<sS [Mgs,it1] — Egss [ngs,i]| < 0, for a predefined 6 > 0. The reason why the KS procedure should
converge relies on the fact that it corresponds to a minimization of the HK energy functional. Nevertheless, it is also
clear that there can be various local minima lying “close” to the real ground state. In such cases, loosely speaking,
the convergence of the self-consistent KS procedure can be even “arbitrarily slow” [314].

Let us add some words of caution concerning the interpretation of the KS single-particle states. The latter shall
by no means be confused with real excitation energies of the complicated /NV-body problem. Even though there are
possible physical interpretations of the KS orbitals [315], they should rather be seen as a convenient basis choice to
describe the ground-state density. In our Renormalization Group approach to DFT, this property is essential as it
allows us to construct an improved starting point for the RG flow from the KS single-particle states, see Sec. 4.3.

4.2.2 Approximations for the Exchange-Correlation Energy Functional

Before we shed some light on different approximation schemes for the exchange-correlation functional Ey.[n], we
emphasize that the following discussion does not claim to be comprehensive in any sense. Since the development
of DFT, there have been many efforts to find good expansion and approximations which systematically describe the
complicated many-particle correlations. In principle, there are at least two exact representations of Ey.[n] relying
both on the so-called coupling-constant integration method, see Ref. [308] for an overview. Therefore, at least in
principle, it is possible to give a systematic prescription to include non-trivial particle exchange-correlations in DFT.

In the following, we shall discuss two approaches aiming at an exact representation of the exchange-correlation
functional F.[n]; the Kohn-Sham perturbation theory [316, 317] and the so-called adiabatic connection [318, 319].
In both cases, one introduces an auxiliary coupling constant A ranging between A € [0, 1]. For A = 0, one ensures
that the system consists of N non-interacting fermions confined in a Kohn-Sham-type external potential vkg(x).
The latter is then described by the Hamiltonian

Hygs =T + / vks(z)n(x). (4.20)
For A = 1, however, the particle-particle interaction encoded in the two-body operator U is switched on and the

KS-type external potential is deformed in a way such that only the external potential remains. For instance, for the
so-called adiabatic connection, the A-dependent Hamiltonian reads

H,=T+ / v} (z)n(z) + AU, (4.21)
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where one requires for the A\-dependent potential

vks (@) for X=0,
v3°(z) = ¢ unknown for 0<A<1, (4.22)
Vext (T) for A=1.

The Hamiltonian which is associated with Kohn-Sham perturbation theory (KSPT) can also be deduced from Eq. (4.21).
One only has to replace the A\-dependent potential v (x) with

VREPT(2) = vexy + (1 = ) (Vi + Vxc) - (4.23)

Note that the crucial difference between Kohn-Sham perturbation theory and the adiabatic connection is that in the
latter case the density has to fulfill the following boundary condition:

g A (1) = (Ygs ()| 2(2) [Ws (V) = ngs a=0(2) - (4.24)

The important assumption in case of the adiabatic connection is that the ground-state density n,s(x) has to be v-
representable for any unknown potential v3¢ along its path for 0 < A < 1. In other words, one tries to find an external
potential v3¢ for 0 < A < 1 so that the ground-state density remains constant for any value of A throughout the RG
flow. This requirement is, in general, not fulfilled by the potential v¥5FT (z), see Eq. (4.23), i.e., for KS perturbation
theory. In the latter case, the ground-state density depends on the coupling constant \ as well.

For Kohn-Sham perturbation theory and for the adiabatic connection, one can now construct a differential equa-

tion for the A\-dependent ground-state energy:
aAEgs.)\ =0 <\Ijgs()‘)| Hy |\I/gs(>‘)> : (4.25)

This is the starting point for the derivation of an exact expression for the interacting ground-state energy from
which one can extract the correct form of the exchange-correlation functional Ey., see Ref. [308] for details on
the calculation. Note that the so-defined coupling-constant integration methods share some aspects with our RG
approach to DFT which we shall introduce in the next section. There, we also insert an auxiliary coupling constant
A into the path integral which allows us to turn on the interaction strength gradually. From this, we then derive an
exact functional RG equation for the energy density functional, see Sec. 4.3.

The coupling-constant integration methods discussed above can, in principle, be used to construct rather system-
atic approximations for Ey.. In practice, however, results from, e.g., the adiabatic connection, are often of limited
use as the corresponding density functional of the ground-state wave function | ¥4 (A)[n]) is unknown. Below, we
therefore discuss a different approximation which is employed frequently in DFT studies.

Let us now briefly discuss the Local-Density Approximation (LDA) for the exchange-correlation energy func-
tional. The method relies on the idea of mapping the exchange-correlation energy Ey. of the inhomogeneous fermion
system onto a corresponding problem in the thermodynamic limit. Here, the particle number N and the volume
L are assumed to be infinite where the density N/L is kept constant. Note that the LDA implies that the system
cannot depend on any external potential vex anymore. Therefore, the homogeneous fermion gas (HFG) is mostly
governed by the kinetic energy T" and exchange-correlation effects. The HFG has many further advantages, e.g., as
a result of homogeneity, the rather complicated density functionals become simple functions of the homogeneous
density. Moreover, in most homogeneous systems, plane waves are a natural choice so that computations are sim-
plified considerably. To make the transition from the homogeneous system back to the inhomogeneous, we have to
replace the homogeneous density of the HFG by a corresponding local density:

ELPAn] = / n(z) eura (Mhom) 7 (4.26)

T Nhom—1(T)
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with the energy density of the homogeneous Fermi gas egpg. In comparison to other approximations for Ey.[n],
the LDA has the advantage that it is free of any parameters. Note also that the LDA represents the leading-order
term of a gradient expansion of the energy density functional. From Eq. (4.26), we can now compute the exchange-
correlation contribution for the KS potential vkg in LDA. For this, we have to compute the functional derivative of
Eq. (4.26) which yields

denrg (n(2))

LDA HFG

v nj(xr) = n(x nr) —————. 4.27
The latter then enters the self-consistent KS equations (4.14). In this section, we only presented a tiny part of all
truncation schemes which are employed in DFT these days. For more details on the gradient expansion and a general
overview of other approximation schemes in DFT, we refer to Ref. [320].

4.3 A Renormalization Group Approach to DFT

The present section deals with an RG approach to DFT applied to one-dimensional fermions at zero temperature.
For this, we begin in Sec. 4.3.1 with the derivation of the DFT-RG flow equation by starting from the microscopic
(classical) action. We show the relation between the 2PPI effective action and the HK energy density functional and
discuss how correlation functions can be computed within the DFT-RG framework.

In Sec. 4.3.2, we discuss a one-dimensional nuclear toy model with a long-range attractive and short-range
repulsive two-body interaction based on our work from Ref. [110]. We show some key results where we focus on
the calculation of few-body ground-state energies in a finite volume. Therefore, by confining the fermions in an
external box, we compute ground-state energies for different box sizes and give an estimate for the continuum limit.

In Sec. 4.3.3, we discuss an improvement scheme for the DFT-RG method based on the self-consistent KS equa-
tions. There, we outline the basic idea of a KS-optimized starting point for the truncated DFT-RG flow and give a
“recipe” for its computation. Moreover, we further discuss to what extent such an improvement is systematic and
can be amended.

4.3.1 Derivation of the DFT-RG Flow Equation

Let us now briefly review the derivation of the DFT-RG equation and its basic properties. Note that the following
introduction is mostly based on Ref. [110]. For more details, we refer to the original publication. We begin our
discussion with the so-called classical action S in the imaginary time formalism. In the present work, the latter
describes a system of one-dimensional identical fermions confined in an (optional) external potential V) (z) which
interact via a two-body potential Usy (7, x, 7/, 2):

sl = [ [weo (oo nm) e
5 [ 0 a0 e e R Y ) (628

The integral abbreviations | _ depend on the problem’s geometry under consideration, e.g., for a box of size L with
(anti)periodic boundary conéiitions, the coordinates x; are defined for V), = 0 within the intervalx € [-L/2, L/2).
For a harmonic trap we use in general x € R, see App. A. The two-body interaction is assumed to be local in time
and does only depend on the relative distance of the particles Ua, (7, z, 7', 2") = §(7 — 7/)U(x — ). Moreover,
we include a regulator-type function R 5 which has to fulfill the properties

lim Ry(r,z,7",2") =0, and lim Ry(r,z,7",2") =1, (4.29)
A—0 A—1
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where the flow parameter is defined on the finite interval A € [0, 1]. Note that the external potential does also
depend on the regulator choice R . Moreover, the boundary conditions for V) correspond to the particular system
under consideration and shall be discussed below for the different examples separately.

The regulator function R 5 shall gradually turn on the interaction and modify the shape of the external potential
in a predefined fashion. For instance, in case of A = 0, the system does only consist of non-interacting fermions
confined in, e.g., a box with (anti)periodic boundary conditions or in a harmonic trap, respectively. By increasing
the auxiliary coupling constant A from zero to one, the fermions begin to interact via the two-body potential Us;,.
At XA = 1 the interaction is fully turned on and the shape of the confining potential V" is modified according to
the choice of boundary conditions. For example, the confining potential V' can be switched off to study selfbound
systems. Note that we use throughout this thesis Ry = A. However, in future studies one may also consider different
types of regulator functions. As we know from relativistic studies, the choice of the regulator function encodes the
specific form of the momentum (shell) integrations in a given theory. Depending on the system under consideration,
it could be helpful to adapt the regulator function according to the specific problem of interest to increase, e.g., the
speed of convergence, see Ref. [110] for a discussion.

In the previous section, we briefly discussed the basic ideas of coupling-constant integration. If we now compare
how the parameter A enters the classical action S, we observe similarities. For example, the coupling constant
in S shall also turn on the two-body interaction gradually which is also the case in coupling-constant integration
techniques. As we shall see below, however, our field-theoretical approach directly provides us with information
on the ground-state energy, density and higher correlation functions. Furthermore, exchange-correlation eftects are
systematically included. The latter are encoded in the n-density correlation functions of our theory. Again, the RG
flow of the external potential depends on the particular system under consideration. For instance, it is also possible
that the external potential remains constant and independent on the flow parameter A. For example, this is the case
in our study of one-dimensional fermions in a periodic box in the next subsection. We also add that the action S},
we consider in the present study, contains only a two-body potential Us;,. However, it is possible to include higher
N-body interactions as it would be necessary if we, e.g., study nuclei with chiral three-nucleon forces, see Ref. [70]
for a review.

Let us now turn to the derivation of the DFT-RG flow equations. In analogy to the derivation of the Wetterich
equation, we begin with the partition function

Z)\ [J] ~ /’Dl/J*Dll) e_sk[”/)*vw]""f_r fm J(7,x) (Y (1,2)P(T,2)) = eW)\[J] , (430)

where we coupled a space- and time-dependent source J(7, ) to the density-type field p ~ 1¢*1). Moreover, in-
stead of introducing a finite chemical potential, we fix the particle number N by employing appropriate boundary
conditions for the initial conditions of the density correlation functions, see Ref. [321]. Note further that the particle
number N is conserved by the RG flow, see Ref. [110]. We also stress that the external background potential V()
in the effective action S can be absorbed completely by the source term J with the shift / — J + V. From a
DFT point of view, this is nothing but the universality of the energy density functional as stated by Hohenberg and
Kohn [65].
From the generating functional

WilJ] = In Z,[J], (4.31)

we can compute connected density correlation functions by means of functional derivatives. Further, we may expand
the functional W [J] in the spirit of a vertex expansion in terms of correlation functions:

1
W/\[J] :G&O) —&-//Gg\l)(T,l')J(T,l')-i-i/ / / /G&Q)(Tl,l‘l,TQ,Z‘Q)J(Tl,xl)J(TQ,LL'Q)—|—... .(4.32)
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Here, we obtain the density correlation function G&n') by performing n functional derivatives with respect to the
source and set the latter to zero. For example, we compute the time-dependent ground-state density via

SWi[J
Pes (T, ) = Gg\l)(T, x) = (U(;\'[x]) ) (4.33)

The time-dependent n-density correlation function can then be computed via

" Wi[J]
I (11, 21) - 6 (Tny )

Gg\”)(ﬁ, TlyeyTn, Tn) = (4.34)

J=0

We stress that we require an infinite number of correlation functions even for the description of a non-interacting
system. Note further that we define the time-independent ground-state density in the following way

) 1 B/2
Ngs, A () 1= Blgrgo 3 / oo d7 pgsa(T,2) (4.35)

where [ defines the extent of the imaginary time interval with 7 € [—3/2, 3/2) and is, moreover, associated with
the inverse temperature 5 = 1/7T. Note that we consider throughout the present work 8 — oo. In the next step,
we define the 2PPI effective action using the functional analogue of a Legendre transformation:

ral =swp { -+ [ [ sanno} . (436)

where the supremum ensures the convexity of the density functional I"y[p], see Ref. [110]. Moreover, the 2PPI
classical field can be computed from
SWALJ]
T, L) = —F—=. 4.37

PTr) = 5 a) (437)
Note that this is again in correspondence to the 1PI classical field entering the Wetterich equation. As indicated
above, the 2PPI effective action I'y[p] is related to the Hohenberg-Kohn energy density functional. In contrast to
conventional DFT, we use time-dependent source terms J = J(7, x) implying time-dependent correlation func-
tions, see Eq. (4.34). For field-theoretical approaches using time-independent sources, see, e.g., Refs. [66, 110, 321-
325]. The energy density functional can then be computed from

Bule] = Jim STls]. (438)

where the ground-state energy can be extracted from the ground-state density:

1 1
Eo = lim —=Ty\[pgsa] = — lim — . 4.39
gsr = Jim 2T [Pgs.A] Jm 3 W [0] (4.39)
The expression above can be verified from the spectral decomposition of the partition function Z ~ Y e #Fnx
where we assume E,, x < E,,11 ) withn > 0. It can further be shown that the functional I"[p] does not depend
on the source J, as it should be:

ol'x[p]
oJ

—0, (4.40)
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for fixed p. Moreover, it is straightforward to show that

oLz [p]

=J(z), (4.41)

which is the 2PPI version of the Hohenberg-Kohn variational principle from which we deduce for J — 0 the ground-
state density pgs ». The latter is required to compute the A-dependent ground-state energy Es » in our formulation.
Further, one can show that two-density correlation functions associated with the functional W[.J] and the two-point
function associated with I'[p] are related in the following sense:

W] _ <52F[p] > ! .

5Jo6J Spdp (4.42)

Higher-order 2PPI correlation functions can then be computed from the connected ones accordingly, see Ref. [110].

Let us now discuss the construction of the n-density correlation functions. For this, we note that the density
correlation functions can be constructed from one-particle propagators. In our present work, we shall use this
property to derive the two-density and three-density correlation function. In particular, we find for the one-particle
propagator:

Ao(m1, 71,72, 72) = —(TY(71,21)¢" (72, 72))
— (Y(m1, 1)V (12, 22)) 05 (11 — T2) + (V™ (T2, 22)00(T1, 1)) O (T2 — 1) , (4.43)

where 7 denotes the time-ordering operator and

(4.44)

6, (7) 1 for 7>0 and 7—0T,
o T P—
0 otherwise.

The time-dependent ground-state density of the non-interacting theory can be extracted from the one-particle prop-
agator which we have defined above:

Pesa=0(T1,21) = lim+ Ao(T1,21,72,21) . (4.45)
7'2*)7'1

Note further that the most general n-density correlation function can be derived from one-particle propagators via

(_1>n+1

G (Xt xn) = Y Z Ao(Xirs Xin) Ao (Xias Xis) -+ Do(Xip 1 Xin) s (4.46)
(215eees in)ESnH
with x = (7,z). Moreover, S,, describes all possible permutations of the indices iy,...,i,. For example, the

(non-interacting) two- and three-density correlation functions read

GE\2=)0(X17X2) = —Ao(x2, x1)Ao (X1, X2) , (4.47)
and
GE\?Z()(XDX%XS) = Ao(x1,x2)A0(x2, X3)A0(x3, x1) + Ao(x2, X1)Ao(x1, x3) Ao (X3, x2) . (4.48)

Both identities play a crucial role in our Kohn-Sham-improved DFT-RG approach in which we automatically con-
struct the two- and three-density correlation functions from one-particle propagators within our numerical set-up,
see Sec. 4.3.3.

Let us now discuss the functional RG equation for the generating functional W [J]. The latter can be derived
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straightforwardly from Eq.(4.31) by taking the derivative with respect to the flow parameter A. From this, we find

SWA[J]
6J(x2)

5W 5W
W] = — / (VA1) 5 A 1 / / MA Uss (x5 x2) (3R(x1, X2))
X1 X2 Xl

1

2
_2/X1 . Uab(x1, x2) (OxRa(x15X2)) (6J5 WilJ] SWalJ]

(x2)0J (x1) - 8J(x2)

where we use the shorthand notations [ = [ [ and d(x1 — x2) = d(z1 — @2) (71 — 72). We add that the DFT-
RG flow equation (4.49) can be generalized to higher dimensions. Furthermore, fermions with internal degrees

d(x2 — X1)> , (4.49)

of freedom can be considered as well, see, e.g., Ref. [108] for a study of ultracold spin-1/2 fermions in a box with
periodic boundary conditions.

The flow equation above describes the change of the generating functional under a gradual variation of the flow
parameter A: One starts the RG flow at A = 0 where the theory is free and the interaction is switched off. At this
point, the theory is well understood and the n-density correlation functions we gave in Eq. (4.46) can be computed
straightforwardly. However, we emphasize that an exact description of the non-interacting theory still requires an
infinite number of n-density correlation functions. The DFT-RG flow equation (4.49) then interpolates between the
non-interacting system at A = 0 and the interacting many-body problem at A = 1 where the interaction is fully
switched on. We stress that this is done in a non-perturbative fashion as we automatically include arbitrarily high
orders of the interaction Uy, by solving the evolution equation (4.49).

We further observe that by considering an expansion scheme like Eq. (4.32), we receive an infinite tower of
coupled differential equations for the different n-density correlation functions. For instance, we find that the m-
density correlation function Gf\m) depends, in general, on all density correlation functions with order 1 < m <
(n + 2) as it can be verified from the structure of the DFT-RG flow equation (4.49). In practice, we therefore
need to truncate the tower of flow equations at a given order. For this, it can be shown that results are improved
significantly by considering truncations which entail Gg\njol) and nggz) within the flow equation for Gg\n), even
if we set 8)\Gg\m) = 0 form > (n + 1). The reason for this observation relies on the structure of the coupled set
of DFT-RG flow equations which can also be related to many-body perturbation theory. Using truncations for the
tower of RG flow equations as described above, we could notably reduce certain truncation artifacts, for example,
spurious fermion self-interactions, see Ref. [110] for details.

We already mentioned that the functionals W [J] and T" 5 [p] are related and can be transformed into each other.
In fact, it is straightforward to compute a functional Renormalization Group equation for the density functional
' [p]. For the latter, we find

oanll = [ @Vt +3 [ [ pbaUalae) @R ) pxa)

2
% /><1 /><2 Uab(X1, x2) (OxRa(x15X2)) ((5 PAU)]) (X27X1)—P(X2)5(X2—X1)> . (4.50)

dpdp

Interestingly, the DFT-RG equation for the functional W [J] as well as the flow equation for the density functional
" [p] look very similar. Nevertheless, we emphasize that the correlation functions which enter our flow equations
are not identical, see Ref. [110]. The functional W)[J] relies on connected density correlation functions Win)
entering our computations, whereas 2PPI correlation functions underlie the DFT-RG flow of the density functional
T'x[p]. We further stress that the computation of initial conditions for the 2PPI flow equation (4.50) requires an
inversion of the two-density correlation function G 5\2) . The latter can be computed from the one-particle propagator
given in Eq. (4.43). However, while an inversion of Gg\z) can be simple for theories obeying a translation symmetry
in space and time, it can be involved as soon as translation invariance is broken because of, e.g., an external potential.
Therefore, throughout the present thesis, we use Eq. (4.49) and consider connected n-density correlation functions

as the building blocks in our coupled set of DFT-RG flow equations.
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We observe that the structures of the flow equations (4.49) and (4.50) are related to the one we found for the
Wetterich equation (1PI) (2.23) as they all exhibit a simple one-loop structure. As already indicated, however, this
does by no means imply that only one-loop contributions in the sense of perturbation theory are present. Of course,
there are also several differences on a technical level. For example, the regulator entering the Wetterich equation is
inserted in the kinetic part of the classical action which is not the case in our DFT-RG framework. Here, we find
that the latter is inserted alongside the two-body interaction of the classical action.

Moreover, we note that the Callan-Symanzik equation [133, 134] and the DFT-RG flow equations above are also
related. Originally, the Callan-Symanzik equation was derived to investigate the scaling behavior of the correlation
functions under a variation of the renormalized mass parameter. In our case, we study the scaling relations of the
density correlation functions under a variation of the scale parameter ), see Ref. [110] for a detailed discussion.

Let us further analyze the DFT-RG equations (4.49) and (4.50). The part ~ fxmm p(x1)U (x1,x2)p(x2) ap-
pearing in both DFT-RG equations is often referred to as the Hartree term. We already encountered such a con-
tribution in our discussion of conventional DFT, see Eq. (4.16). There, we stated that the latter does not include
exchange-correlation effects as they are included in Fock-type contributions. For this, we find in our present DFT-
RG approach the term ~ le wU (x1, X2)W @ (x2, x1) encoding all exchange and correlation contributions of the

Lo p(x2)0(x2 — x1) present in our
evolution equation. The latter is important as it implements the Pauli exclusion principle for identical fermions, see

many-body problem under consideration. Moreover, we also find a term ~ fx

our discussion in Ref. [110].

4.3.2 An Introductory Example: A One-Dimensional Nuclear Model

In the present subsection, we review some results of our work in Ref. [110] where we studied a one-dimensional
nuclear toy model employing the DFT-RG framework. In particular, we shall focus on the few-body case where
we investigate bound-state properties of N identical one-dimensional toy nucleons which are confined within a
finite box and interact via a two-body interaction potential. The latter is given by two Gaussians with a long-range
attractive tail and short-range repulsive “core”:

g _(m1—=9)? g _(m—=9)?
U — = ’ — ‘ 4.51
(z1 — 22) P I oam ° >, (4.51)
adopting the parameters g, 01 and o5 from Ref. [326] which read
Gg=gLo=24 and &y =o09L;" =4.0. (4.52)

Here, the length scale Ly = 01 = 0.2 defines the extent of our toy model nucleons and serves as a normalization
length scale in our study below. Note that the values of these parameters were in Ref. [326] fitted such that the model
mimics saturation properties of realistic nuclei.

Let us now discuss the overall set-up we use to compute the ground-state energies of the corresponding few-
body systems. First of all, we shall consider periodic boundary conditions for odd particle numbers and antiperiodic
boundary conditions for even particle numbers. Note that the latter choice ensures that the non-interacting system
of N particles in a box is non-degenerate. Furthermore, we assume that the confining box of length L remains
unchanged for any value of A. Thus, we have 9\ V) (z) = 0 in our present study. In addition, because of the presence
of the box, translation invariance is broken explicitly in our system. Therefore, we use a periodic extension of the
interaction potential so that translation invariance is enforced. This can be done by dropping oft-diagonal elements
of the interaction matrix £, ,, which is defined by the following Fourier decomposition:

Uy —w2) =Y L (85 (21)) "0 (22) , (4.53)
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with U(x; — z2) = g(z1 — x2) and the (anti)periodic plane wave basis functions

¢£f><x>=%e-w%) with / (6D ()7 6D (&) = Gy (4.54)

Moreover, we have

Z(@g)( 1)" ¢(1 (w2) 25 (x1—xzo+nlL), (4.55)

n

(1)

where the discretized momenta py, * correspond to antiperiodic or periodic boundary conditions, respectively:

2nmw
= 7 (P) _
Pn, 7 )

and p, T (4.56)

with n, m € Z. The single-particle states ¢>£,,I) (x) enter the definition of the one-particle propagator A. As already
discussed, the latter can be considered as the building block for all connected density correlation functions of the
non-interacting fermion gas, e.g., see Eqs. (4.47)-(4.48). Using the single-particle states above, we find for the one-
particle propagator:

dwe iw(T1—72) .
Al = -3 / @ @) o ()

—iw + &p

:*Z{ b (11 = 72) = 0(=2{)0 (2 = 1) } (0 (1)) "0\ () e~ "I =721 (457)

where the single-particle energy states are et = (pg) )2 /2. Here, we employ a plane-wave basis representation for

the one-particle propagator associated with a non-interacting few-fermion system in an (anti)periodic box. Natu-
rally, the basis choice reflects the properties of the quantum system under consideration. For example, in case of
non-interacting fermions within an (anti)periodic box, a plane-wave basis is reasonable as the corresponding prop-
agator becomes diagonal. Nevertheless, this basis choice could be inefficient at A = 1 where the interaction is fully
turned on. Therefore, to anticipate certain properties of the interacting system, a variation of the starting point at
A = 0 could be worthwhile. In the next section, we shall discuss this in more detail.

Using Eq. (4.57), we can compute the initial conditions for the density correlation functions GE\”:)O which enter
our DFT-RG flow equations. For this, we consider density correlation functions up to G (1) Because of translation
invariance, however, the density correlation function G 0 vanishes identically. Furthermore, the density becomes
constant and homogeneous so that pgs x=0 = /L. Since translation symmetry is conserved for every RG step, it
can be shown that the flow equation for the density vanishes identically 05 pgs » = 0. As a consequence, the density
remains homogeneous for all values of ), in particular, at A = 1. Note that this does not imply that the intrinsic
density of the quantum system, the many-body wave function, is also constant. In fact, the latter can be computed
from the two-density correlation function and appears to be inhomogeneous, see Ref. [110] for details. Therefore,
the remaining density correlation functions which we need to compute at A = 0 using the present truncation are
Gg\zz)o and G(;i)o.

Let us now discuss the overall structure of the RG flow equations for the ground-state energy Ey » and the
two-density correlation function GE\Q). As indicated above, we obtain the flow equations for the different density
correlation functions by using the expansion (4.32) of the functional W[.J] and plug the latter into Eq. (4.32) where
we compare the left- and right-hand side in powers of the source. From this, we find the following DFT-RG flow
equations:

1 N
O\Egs ) = 572 / / (x1 —x2) 5/ / GE\Q)(O7I1,O7I2)U($2 —x1) — 5 U(0), (4.58)
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3AG&2)(T1,I1,72,I2) = *///G&Q)(Tl,l'l,Tg,Ig)U(Ig7I4)G§\2)(7‘3,I4,7‘2,Ig)
3 Jaz oy

1
*5///U(fl?3*I4)GE\4)(T37I4,T37I37717I1,T27$2)7 (4.59)
T3 Y I3 YTy

where we have set the flows of all higher correlation functions to zero Jy Gg\n) = 0 with n > 2. For the functional
form of the initial conditions for G&ZZ)O and Gg\i)o as well as for some further technical details, we refer the reader
to Refs. [108, 110].

Neglecting the flow of the two-density correlation function 9yG 5\2) = 0, we find the simplest truncation possible
where we only consider the running of the ground-state energy. In our study, we shall denote this as the leading
order (LO) approximation, where only the ground-state energy itself depends on the flow parameter A. The density
as well as the two-density correlation function remain at their initial values throughout the RG flow. Moreover, we
denote a truncation, which also includes the running of the two-density correlation function as the next-to-leading
order (NLO), as it is the natural extension since the flow equation associated with the ground-state density vanishes.
As we have already stressed, we can also expand Eq. (4.32) to even higher density correlation functions to deduce
the corresponding RG flow equations, e.g., for GE\4). From the structure of the DFT-RG equation (4.49), it follows
that the latter does also depend on G(f) and Gg\(j), see our discussion above.

Even though an extension to higher correlation functions is straightforward from a theoretical point of view,
it can be rather tedious in practical computations. Therefore, let us briefly discuss the numerical implementation
of our DFT-RG flow equation and estimate the required computational resources. For instance, the four-density
correlation function Gg\4) depends on four space and time coordinates. If one takes into account that the density
correlation functions do only depend on the relative time and space coordinates'®, we still have (N, )?(Nj)? differ-
ent numerical values which need to be computed and stored in case of G 5\4) in (1+41) dimensions. Here, Ny, and N
denote the number of lattice sites of space and time coordinates, respectively. This example shows that, depending
on the number of lattice sites, we expect that the memory demand approximately increases at least exponentially
with n being the n-th density correlation function. The rough consideration shows that it is not reasonable at some
point to improve a given truncation solely by including higher-order correlation functions. Therefore, further ex-
pansion schemes for the functionals W[.J] and I'[p] are discussed in Ref. [110], which do not rely on an expansion
in terms of density correlation functions but rather, e.g., on a derivative-type expansion for the time-dependent
density field as it is usually done in relativistic theories, see also Sec. 2.2.2 in the first part of this thesis.

Let us now discuss the results for two particles confined in an antiperiodic box which interact via the two-body
potential Eq. (4.51). Again, we use an antiperiodic box to ensure that the ground-state energy of the non-interacting
fermion system is not degenerate. In the left panel of Fig. 4.3, we show the ground-state energy per particle as a
function of the inverse density as it is obtained in leading order (green) and next-to-leading order (blue) from the
truncated DFT-RG flow equations. As a benchmark, we also present the results from an exact diagonalization of the
two-body Hamiltonian (black) where the dotted line represents the corresponding continuum limit. We also show
the ground-state energy for free fermions in an antiperiodic box (red) as an additional comparison.

We observe that the exact ground-state energy decreases for 1/nys < 7 Ly starting from a positive value. Inter-
secting the line of zero energy at 1/ng4 ~ 5, the ground-state energy per particle further decreases reaching a local
minimum at 1/ngs = 7 Lo. The ground-state energy then slightly increases for larger inverse densities and reaches
alocal maximum at 1/ngs & 17.5 L. For larger inverse densities, the ground-state energy decreases again and ap-
proaches slowly the continuum value E/N |cons. &~ —0.0094 (1/L3) from above. Note that the exact value for the
two-body ground-state energy in a finite box still differs from the exact continuum value by 10% at 1 /ngs ~ 80 Lo,
underscoring the rather slow convergence of the finite-size results towards the continuum. Moreover, the specific
shape of the ground-state energy in a finite volume reflects the shape of the corresponding two-body interaction
potential, which has a repulsive core at small distances and becomes attractive in the long-range limit.

16This is only true if translation invariance is intact and not broken due to, e.g., an external potential.
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Figure 4.3: Left panel: Energy per particle Es /N as a function of the inverse ground-state density 1 /n4g for two par-
ticles. We show the exact two-body results in black where the dotted line represents the continuum value. Leading-
and next-to-leading order DFT-RG results are shown in green and blue, respectively, see also Refs. [108, 110] for
details. Right panel: Energy per particles over the inverse density for up to /N = 10 particles. All data points were
computed in NLO, see main text for details.

The LO and NLO results from the DFT-RG study are for 1/ngs < 5 Lo in agreement with the exact solution.
Moreover, they assume for 5Ly < 1/ng < 8L a local minimum in correspondence with the exact results. Here,
we observe for the DFT-RG study at NLO that it provides even better results than the corresponding study at LO.
For very large inverse densities 1/ngs — 0o, however, the LO and NLO DFT-RG results approach the zero-energy
axis implying that the presently used truncations are not capable to reproduce the correct long-range behavior of
the quantum system because of missing higher-order correlation functions. From a simple dimensional analysis,
we find that the (dimensionful) ground-state energy needs to fulfill the scaling behavior Egs(L) ~ L~ in order to
remain finite in the limit of low densities. Nevertheless, we observe a significant improvement by going from the LO
to the NLO, i.e, by also considering the flow equation associated with the two-density correlation function. In fact,
we find that by including higher density correlation functions, the results from the DFT-RG study are improved and
approach the exact result from above. The latter observation underscores our claim that the expansion in n-density
correlation functions is systematic.

In the right panel of Fig. 4.3, we show the ground-state energy per particle for up to N' = 10 particles as it is found
in NLO of our DFT-RG framework. First of all, we recognize that the overall shape of the curves associated with
different NV-particle ground-state energies as a function of the inverse density looks quite similar on a qualitative
level. For all computed particle numbers the ground-state energies start at large densities, decrease, assume a local
minimum and then tend to zero in the low-density regime in correspondence to the two-body case. Note that the
location of the local minimum is shifted towards higher densities by increasing the particle number V.

Even though the present truncation is incapable to reproduce the ground-state energy in the long-range limit,
we can still estimate the ground-state energy in the continuum. To this end, we use the observation that the results
from our DFT-RG study approach the exact two-body solution from above. Assuming that this is true for N > 2,
we can estimate the continuum ground-state energy with

Es = inf E(L). (4.60)

In Fig. 4.4, we show the continuum results for the ground-state energy per particle computed by using the estimate
Eq. (4.60) for different particle numbers within the NLO of the DFT-RG method. As a comparison, we also show
the exact two-body result (black triangle) as well as results for four and eight particles from a Monte-Carlo (MC)
study (red diamonds), see Ref. [326]. Note that the error bars associated with the MC study results are smaller than
the red symbols according to Ref. [326]. We find that our DFT-RG approach is in qualitative agreement with both
the exact and the MC results. However, our NLO study still underestimates the exact two-body ground-state energy



4.3 A Renormalization Group Approach to DFT 105

0 T T T T T T T T T
DFT-RG (NLO) ©
MC L 4
o Exact v
— 001}V i
Né,’ 0.0 o
= o)
Z
= 0]
w002 | . ° ]
(0]
© o
*
_0.03 ! ! ! ! ! ! ! !

Figure 4.4: Estimated binding energy E//N as a function of the particle number for N = 2,...,10. We also show
the exact result for two particles (black triangle) and Monte-Carlo results (red diamonds) from Ref. [326].

by ~ 30%. By comparing our DFT-RG results in NLO with those from the MC study, we find that the ground-state
energies are found to be consistently greater but the relative difference decreases with N. Moreover, this is also
compatible with our observation in the thermodynamic limit (N/L = const. and L — o0), where we perfectly
recover the Hartree-Fock (HF) approximation, see Ref. [110] for details.

In our brief review of aspects of Ref. [110], we focused on the ground-state energies of few-body systems confined
in a finite box with (anti)periodic boundary conditions. As we have seen above, the DFT-RG approach provides a
systematic framework to use DFT for ab initio studies. Nevertheless, we also indicated that the memory demand of
higher density correlation functions increases exponentially making an improvement of a given truncation rather
infeasible at some point. Therefore, it would be desirable to find an improvement for a given truncation at some
order by keeping the number of correlation functions fixed.

4.3.3 A Kohn-Sham Improvement for DFT-RG

The basic idea to improve our DFT-RG framework relies on a Kohn-Sham-optimized starting point. We use that the
solution of the self-consistent KS equations already provides us with a KS single-particle basis which can be seen
as “optimized” to represent the interacting many-body ground-state density. The KS ground-state density ngs(z),
which is constructed from the KS single-particle orbitals ¢;[ng](x), then minimizes a given ansatz for the energy
density functional (4.9) and corresponds to a KS system of N non-interacting fermions. Therefore, we use the
non-interacting KS system as a starting point for the truncated DFT-RG flow and expect that we include sufficient
information on the interacting many-body ground state already at the beginning of the DFT-RG flow to improve
our results. To establish such a method, however, we need to consider a KS-improved external potential vks(z) in
our set of DFT-RG flow equations breaking translation invariance explicitly. For our present proof-of-concept study,
let us therefore concentrate on a scenario where the fermions are confined in a A-dependent external potential in
which case the density is inhomogeneous for any value of \.

The KS single-particle orbitals ¢;[ngs](x), which correspond to the KS system, then enter our RG study at the
level of the one-particle propagator 2. The latter then becomes a density functional itself:

¢i(x) — ¢i[ngs](x), and therefore: Ag(7y, 21,72, x2) = Ag[ngs](T1, 21, T2, T2) . (4.61)

One may argue that one still has the issue to compute exchange and correlation contributions which remain unknown
in a conventional KS ansatz, e.g., in vy (). However, we emphasize that we only use the KS system as a starting
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point for the RG flow. In principle, it should not be necessary to include exchange-correlation effects in our KS ansatz
at all as they are generated dynamically by solving the DFT-RG flow equations.
Let us summarize the individual steps for our KS-improved DFT-RG framework:

(i) Make an initial guess for the KS potential vkg and solve the KS equations self-consistently. From this, one
finds the KS single-particle states and single-particle energies. We stress that the ansatz for vgg(z) does not
need to be very sophisticated, e.g., we may drop all exchange-correlation-type effects. This potential now
determines the non-interacting starting point of our RG flow.

(ii) Compute the n-density correlation functions GE\n:)O from the single-particle orbitals ¢; [n45] which enter the
density correlation function through the one-particle propagator Ag[ngs].

(iii) Solve the DFT-RG flow equations for the KS-improved n-density correlation functions within a given trunca-
tion. Here, one may choose different boundary conditions for the external KS trap, e.g., one can switch it off in
the RG flow Vy—1 (x) = 0 or use V=1 (z) = vext(2), depending on the physical system under consideration.

We emphasize that the KS step (i) is mainly included to generate a better suited basis set. Note further that the
initial condition for the RG flow equation associated with the ground-state energy Fqs = is not identical to the
KS ground-state energy (4.19). The latter is associated with the ground-state energy of the interacting many-body
system described by the HK energy functional (4.9) and evaluated at the ground-state density nys(x). The starting
point of our DFT-RG flow, however, corresponds to a system of non-interacting fermions which are trapped in an
external KS potential. In this case, the initial condition for the ground-state energy is the sum over the KS single-
particle energy states:

Bgn—o=»_0(—&)e;. (4.62)

In general, it is by no means ensured that the so-defined KS-improved DFT-RG framework performs even better
than the usual DFT-RG flow equations without an optimized starting point. However, the KS improvement we
discussed above can be implemented in an existing DFT-RG code rather easily and “adds” a secondary control
parameter to improve results as obtained from the DFT-RG method. For example, the so-defined KS-improvement
scheme enables us to possibly amend a specific truncation in n-density correlation functions even further by also
considering, e.g., LDA-type exchange-correlation contributions in the KS potential vks(x). Nevertheless, such a
further improvement lies beyond the scope of the present thesis. In our study below, we shall only consider a Hartree-
type contribution as an ansatz for the KS potential vks () neglecting all exchange-correlation effects. The latter are
then included by solving the corresponding DFT-RG flow equations.

4.4 Quasi-One-Dimensional Fermions in a Harmonic Trap

In the present section, we now discuss a proof-of-concept study where we apply our KS-improved DFT-RG approach
for a system of quasi-one-dimensional fermions which mimics the situation in dipolar Fermi gases [327-331]. We
assume that the fermions are confined within a one-dimensional trap even in case the interaction is fully turned
on. In particular, we require at the starting point of the RG flow Vy—o(z) = vkg(x), with the KS potential vkg(x)
computed from a self-consistent KS procedure in a Hartree approximation. At the end point of the RG flow, we
have V\—1 (%) = vext () so that the auxiliary KS potential present at A = 0 is switched off leaving us solely with a
harmonic potential describing the experimental situation.

We begin this section with a brief introduction to our model and introduce the two-body dipolar interaction
potential we shall consider throughout this study. In the second subsection, we then present the DFT-RG flow
equations underlying our computations. Afterwards, we present the ground-state energy per particle as a function
of the dipolar coupling strength, where we employ different truncation types using the DFT-RG framework. In
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Figure 4.5: Quasi-one-dimensional dipolar interaction U (Z) adopted from Refs. [327-329]. We show the two-body
potential for attractive d? > 0 values as well as for one repulsive d? < 0 value of the dipole interaction strength d?,
see main text for details.

particular, we consider the DFT-RG flow equations associated with the ground-state energy 0y Egs » as well as the
ground-state density Oxngs,» and discuss our results as obtained from a KS-improved starting point for the DFT-RG
flow. As a benchmark, we consider exact diagonalization to compute the ground-state energies per particle up to
N =5.

4.4.1 Dipolar Interaction

Let us begin our discussion with an introduction to the model for which we employ the DFT-RG approach. In our
study, we shall investigate a single-component one-dimensional system of few fermions confined within a harmonic
potential veyy at zero temperature. We further assume that the identical fermions interact via a tunable dipolar two-
body interaction which we shall introduce below.

Before we discuss the details of the interaction potential, we emphasize that ultracold'” one-dimensional few-
body systems are also of great interest from an experimental point of view and have become a frequently studied
subject in recent years, see, e.g., Refs. [335-339] and Refs. [334, 340] for reviews. To this end, one considers so-
called cigar-shaped quasi-one-dimensional microtraps [341] which basically consist of three-dimensional optical
traps with frequencies wj for the y-z plane and w along the z-direction. Given that w; > wj, the fermions
with mass m are effectively confined within an effective harmonic potential vex () = (1/ 2)mwﬁa:2 along the
x-direction.

Let us now discuss the two-body interaction we assume for our system throughout our studies. The effective
dipole-dipole'® interaction which we use is adopted from Refs. [327-329] and reads

V@) _2‘2 VIR (14 2 <1 " <%>) —zcz] , (469

7Note that at sufficiently low temperatures, single-component Fermi gases are dominated by the p-wave channel since the s-wave channel
is forbidden as a consequence of the Pauli exclusion principle, e.g., see Refs. [332-334].
18The nature of the dipoles can be magnetic or electric, depending on the actual system under consideration.
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with the error function erf(z) and the reduced relative coordinate & = |x1 — x2|/l . Here, the length scales read
lj/1 = \/1/(mw, 1), wherew, defines the longitudinal or transverse trap frequencies of a fictitious experimen-
tal set-up, respectively. Initially, this effective dipole-dipole interaction potential was constructed from the usual
dipole interaction o< 1/|7|? in a so-called single-mode approximation where the dipole interaction was averaged
over the ground state of the purely transverse motion, see, e.g., Ref. [327] for details.

In our study, we fix the trap frequencies as well as the fermion masses such that m = w, = w) = 1 which
means that we measure all relevant dimensionful quantities, e.g., the ground-state energy or the dipole interaction
strength d?, in natural units of one. Clearly, from an experimental point of view the assumption of equal transverse
and longitudinal trap frequencies is not compatible with the construction of a cigar-shaped potential within an
experimental set-up. However, in the present study we rather concentrate on the KS improvement of our theoretical
DFT-RG framework. For simplicity, we therefore make the approximation w| = w .

The dipole-type interaction potential Eq. (4.63) is presented in Fig. 4.5 for different values of the dipole strength
d?, playing the role of a tunable coupling constant in our study. We shall investigate both, the repulsive d? < 0 as
well as the attractive d? > 0 regime by varying the interaction strength d2, see our study below. Note, for large spatial
distances & >> 1, the interaction potential Eq. (4.63) tends to zero such as U (z) ~ —2d?/|z|® which corresponds
to the usual limiting behavior of a classical dipole-dipole interaction, see Ref. [330]. Nevertheless, for £ — 0 the
interaction remains finite where its amplitude is controlled by the dipole coupling constant d?. The effective dipole-
dipole interaction potential can therefore be understood as a mixture between a local and a non-local two-body
interaction.

4.4.2 DFT-RG Approach to Quasi-One-Dimensional Fermions

Let us now study quasi-one-dimensional fermions with an effective dipole-dipole interaction using our DFT-RG
framework. In principle, the rather general classical action Eq. (4.28) we have considered in our introductory ex-
ample in Sec. 4.3.2 can be reused for the system of fermions trapped in an external potential. In the previous model,
we have set the flow of the external potential 9, V) (x) to zero as the (anti)periodic box remained to be unchanged
for any value of the flow parameter \. We now start the DFT-RG flow with a KS-improved trap at A = 0 fully
switching off the auxiliary KS potential at A = 1. To this end, we define a A\-dependent external potential:

Wa(z) = Avext () + (1 — X) vks[n](x) . (4.64)
For the KS potential vkg[n](z), which enters the self-consistent KS equations (4.14), we use
vks[n](2) = Vext () + vu[n](z), (4.65)

neglecting all types of exchange-correlation terms vy [n] for convenience in the present feasibility study which then
only enter within our DFT-RG framework. From the definition of our A-dependent external potential V) (z), we
can now compute the derivative with respect to the RG flow parameter 0, V) (), see Eq. (4.49). We have

6V (z) = OxVa(z) = —vu[n)(z) (4.66)

where we find that the only term from the KS procedure, which enters the DFT-RG flow equations, stems from the
Hartree contribution of the KS potential.

Let us now discuss the DFT-RG flow equations in leading and next-to-leading order for the few-body quantum
system under consideration. In principle, since the derivation of the DFT-RG flow equations for the different n-
density correlation functions is similar to the example in Sec. 4.3.2, we refer to Refs. [108, 110] for details on the
computation. The main difference in our present study is that we now consider a A\-dependent external trap. We use
the external potential given in (4.66) as well as the DFT-RG flow equation (4.49) where we find for the flow equation
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of the ground-state energy
OEesn = / oV (x1)nx(z1) / / nx(z1) U(z1 — 22) nx(z2)
x1

N
by | [ U m) 600000 - TU0), (4.67)

and for the flow equation of the ground-state density

hna(z) = _// 5V($1)Gg\2:)0(7—17$1;07$)_///n/\(xl)U(xl_$2)Gg\2:)0(7'1’33270’m)
1
_5/// U(xz—x1)G&20(717w1,7—17x2707x)

// G/\ o(T1,21,0,2) U(0) . (4.68)

We already indicated that, because of the presence of a finite external potential, translation invariance is explicitly
broken. Thus, in contrast to our study in Sec. 4.3.2, the flow equation associated with the ground-state density does
not vanish identically. Note that the same is true for the initial condition of the three-density correlation function
G&B:)O which now enters the RG flow equation of the ground-state density. According to our previous definition, we
entitle the truncation which only considers the RG flow equation of the ground-state energy as the leading order
(LO) where the truncation which also takes the RG flow of the ground-state density into account as the next-to-
leading order (NLO). Thus, in our present study, the two-density correlation function G E\QZ)O and the three-density
correlation function Gg\:’z
DFT-RG flow.

o are independent of the flow parameter A and stay at their initial value throughout the

Let us briefly discuss the numerical set-up of our DFT-RG approach. We derive the initial conditions for the n-
density correlation functions by using the one-particle propagator (4.57) computed on a spatial lattice of size L with
Ny, grid points and a temporal lattice of size 5 with N grid points. In particular, we use ; = —L/2 + [ (L/Np,)
with [ € [0, N;, — 1] for the spatial and 7,,, = —3/2 + m (8/Ng) with m € [0, Ng — 1] for the temporal lattice.
Note that we consider periodic boundary conditions for all lattice types. Moreover, we only use even values for Vg
in order to guarantee that the limit 7 — 0 is included. We moreover implement the single-particle orbitals from the
KS system into our DFT-RG framework by making the following substitutions in Eq. (4.57):

oD (z) — ¢E9 () and gD 5 g(KS) (4.69)

where qf)(KS)( ) and 255 are the KS single-particle orbitals and energies of the KS system, we discussed above.
Further, for the Fermi energy we use ESV %) = a%KS) in our non-degenerate system. Note that the sum over the
single-particle states in Eq. (4.57) is now bounded by a cutoff mode ny,,x. The latter corresponds to the maximum
number of spatial grid points of the model space which is used to solve the KS equations (4.14) iteratively.

For the numerical implementation of the one-particle propagator, it is crucial that the time ordering, which
is encoded in the Heaviside function 0, (7), is properly implemented. For example, it is important to guarantee
that lim,_,g- Ag(7,2,0,2) = ngs(z). We moreover checked that the flow equation for the ground-state density
vanishes if translation-invariant boundary conditions are used, i.e., we could reproduce the leading-order result from
our one-dimensional nuclear model in Sec. 4.3.2. Instead computing the time-independent ground-state density via
Eq. (4.35), we further assume pgs(0, ) ~ ngs(z) within our numerical implementation of Egs. (4.67) and (4.68).
The latter appears to be a good approximation given that the temporal box [ is chosen suitably large. At least in our
present study, we observe that this approximation has a rather small impact on the ground-state energy.

Let us also discuss some details on the used lattice sizes in our study. We consider different grid sizes and num-
bers of grid points for the spatial and temporal coordinates where we keep N, /L = 4,6, 8 fixed. We observe that
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Figure 4.6: Ground-state energy per particle as a function of the dipole interaction strength d? /I, for N = 2,...,5
fermions as obtained from a self-consistent KS approach using a Hartree approximation (solid colored lines). We
compare the KS ground-state energy after ¢ = 30 (solid) and ¢ = 31 (dashed) iteration steps, see main text for
details. The KS ground-state energy is further compared to results as obtained from exact diagonalization (dotted
gray lines).

a spatial grid size of L = 10 appears to be sufficient for the presently investigated particle numbers and interaction
strengths. In our study, we compute the ground-state energy as a function of N, /L and use an extrapolation to the
limit Nz, /L — oo. In case of the temporal lattice, we find 5 = 20 with N3 /8 = 4,6, 8 to be sufficient for our few-
body system under consideration. In analogy to the treatment of the spatial grid, we also perform N3/ — oo for
the ground-state energy as obtained from our DFT-RG study below. In order to have a benchmark, we further use
exact diagonalization to compute the ground-state energy for N = 2, ..., 5 particles. In this case, we employ Slater
determinants as a many-body basis using harmonic oscillator single-particle states. For this, we use up to Nygo < 9
basis functions and extrapolate the ground-state energy to Nyo — oo.

Before we discuss the full KS-optimized DFT-RG computation, let us begin with the results from the self-
consistent KS procedure. As an initial guess for the ground-state density nys, we choose the one corresponding
to a system of /N non-interacting identical fermions in a harmonic trap. During the KS iteration, we compute the
KS ground-state energy per particle (4.19) of two successive iteration steps and stop the self-consistent procedure as
soon as some predefined convergence criterion is achieved. The results of the KS ground-state energy (see Eq. (4.19))
as a function of the dipole interaction strength d? /I, using a Hartree approximation (HKS) is presented in Fig. 4.6.
In particular, we show the ground-state energy as obtained after ¢ = 30 (solid lines) and ¢ = 31 (dashed lines)
iterations. For comparison, we also show results from an exact diagonalization of this problem (dotted gray lines),
see our discussion above. For coupling values d?/I; > —3.0, we observe that both ground-state energies coincide
perfectly. For instance, at d?/l; ~ 10.0 the relative deviation between the two ground-state energies is negligi-
ble [( LS50 — ERNS41)/ERES 50] < 10710, From this, we can follow that the self-consistent KS procedure is
converged for i > 30 at least for d? /1 > —3.0.

On the other hand, we find that for dipolar coupling strengths d?/1, < —3.0, the ground-state energies from

two successive iteration steps significantly deviate. A more careful analysis reveals that the HKS ground-state energy
“jumps” for two consecutive iteration steps between the depicted ground-state energies shown for d?/l; < —3.0
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Figure 4.7: Ground-state energy per particle as a function of the dipole coupling d /1| forupto N = 5 particles and
for different truncation types for our DFT-RG framework. At LO (dashed orange lines) and NLO (dashed-dotted
green lines), we show “unimproved” results for the ground-state energy using our DFT-RG approach and compare
them with a KS-improved NLO DFT-RG calculation (dotted red lines) starting the RG flow from a KS system in
a Hartree approximation. As a benchmark, we show ground-state energies from exact diagonalization (solid blue
lines).

in Fig. 4.6. The fact that we do not find a self-consistent solution for the KS equations for d? /1, < —3.0 also leaves
its imprint in the KS-improved version of the DFT-RG approach as we shall discuss below. Nevertheless, we stress
that there is, in principle, no need for the DFT-RG method to start the RG flow at a point which is associated with a
self-consistent KS solution. However, since we perform the KS procedure in order to shift the starting point of the
DFT-RG flow “closer” to the actual interacting many-body ground state, the use of non-self-consistent KS solutions
appears at least debatable.

By comparing the ground-state energies from the HKS framework with those from exact diagonalization, we
find that the HKS results reproduce the exact results only on a qualitative level at best, see Fig.. 4.6. This observation
is expected since we neglect any exchange-correlation effects on the level of the KS potential vkg. We further observe
in Fig. 4.6 that all ground-state energies per particle from the exact computations seem to intersect at d*/1, = 5.0.
Note that the same behavior is also observed for the ground-state energies from the HKS approach, where the
intersection point is shifted towards smaller values of d2 /I compared to the exact results.

Finally, let us discuss the results from our KS-improved DFT-RG framework. In Fig. 4.7, we present the (dimen-
sionless) ground-state energy per particle E,s/(Nw ) as a function of the dipole interaction strength d? /1, . We
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show the LO (dashed orange lines) and NLO (dashed-dotted green lines) results from an “unimproved” DFT-RG
study starting the DFT-RG flow from a system of non-interacting fermions in a harmonic trap. Moreover, we also
show our results from exact diagonalization (solid blue lines) representing our benchmark for the ground-state en-
ergy. Further, we present a KS-improved DFT-RG approach in a Hartree approximation (dotted red line). Note that
we use the NLO truncation of the DFT-RG flow equations for our HKS-improved DFT-RG study (HKS+NLO).
We start with the discussion of the LO results computed within our DFT-RG framework. Here, we find that
for all considered particle numbers, the DFT-RG computation in LO agrees well for very small coupling constants
2l S

~

1 but fails to describe the ground-state energy behavior for strong attractive or repulsive couplings.
Taking also the running of the ground-state density into account, our findings in NLO are improved significantly
at least in the repulsive regime, i.e., at d?/I; ~ —10.0, the relative deviation from the exact results is reduced
from AELC /ES*t ~ 16% in LO to AEN"C /ESx2t ~ 3% in NLO. Note that this observation appears to be
rather independent of the particle number. For attractive dipolar coupling constants, however, we find that the
NLO results from our DFT-RG study overestimate the exact ground-state energies for stronger attractive interactions
considerably. For small (positive) couplings 0 < d? /1, < 2.5, the NLO results still agree reasonably well with those
from exact diagonalization. Nevertheless, for higher attractive interactions d? /I > 2.5, our results from NLO do
reproduce the exact ground-state energies only qualitatively.

Let us now turn to the KS-improved DFT-RG study in next-to-leading order (HKS+NLO) where we start the
RG flow at A = 0 with a KS system using a Hartree approximation for the KS potential. Throughout this study,
we use the KS single-particle states as obtained after ¢ = 30 KS iterations. In the repulsive regime, we observe for
—3.0 < d?/11 < 0 that the HKS+NLO results are in good agreement with those from the NLO study where both
are already capable to reproduce the exact ground-state energy reasonably well. For stronger repulsive interactions,
however, we observe that the HKS+NLO approximation fails and performs even worse than the usual DFT-RG
approach in LO. From our discussion of the pure KS system, see Fig. 4.6, we observe that within our presently used
Hartree approximation for the KS potential, the point where the HKS+NLO truncation breaks down, coincides with
the dipole interaction strength d? /I, ~ —3.0 below which the KS procedure does not converge anymore. Note, we
also tested to start the RG flow using the KS single-particle orbitals and energies from the KS system after i = 31
KS iterations. However, we observed that the issues persisted. From this, we deduce that the KS-improved DFT-RG
method within the used HKS+NLO approximation appears to be not well-suited to describe the repulsive regime of
the few-body system under consideration. For repulsive couplings, it turns out that the system of non-interacting
fermions confined in a harmonic trap already represents a reasonable starting point for the DFT-RG flow.

Let us now discuss the attractive regime. Here, we find that the HKS+NLO truncation performs significantly
better than the NLO approach, improving our findings for the ground-state energy as a function of the coupling
strength considerably. For strong attractive interactions d?/l; =~ 10.0, we find that the HKS+NLO approxi-
mation underestimates the exact ground-state energy for two particles (see upper left panel of Fig. 4.7) still by
AEgHSKS"’NLO JEg*t ~ 50%, where the usual NLO approach overestimates the exact ground-state energy by
nearly AEgSLO /Bt ~ 200%. We further observe that the HKS+NLO approach provides better results in case
of larger particle numbers. For example, in case of N = 5 particles, the NLO approach misses the correct ground-
state energy by AESSLO /Egx*t =~ 100% whereas the HKS+NLO study predicts the exact value of the five-body
ground-state energy better than AEE};ISKSJFNLO JEgxaet o~ 2% for the depicted coupling range, see the bottom-right
panel of Fig. 4.7.

Our study indicates that the HKS-improved DFT-RG approach provides reasonably well results within the at-
tractive regime of our dipolar two-body interaction. Moreover, the KS-improved DFT-RG framework works par-
ticularly well for large particle numbers. For instance, the HKS+NLO ground-state energy for /N = 5 particles is in
good agreement with the results from our exact study. Note, we already observed that the DFT-RG method provides
better results for increasing particle numbers in our nuclear toy-model study [110] using an “unimproved” starting
point for the RG flow. In our present study, we emphasize that we have chosen the most simple KS potential possi-
ble. On the level of the self-consistent KS procedure, we completely neglected all exchange-correlation eftects, which
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only entered our approach through the DFT-RG flow equations for the ground-state energy and density. Indeed,
the fact that the strongly-interacting five-body system in the attractive regime can be well-described by employing
our comparably simple truncations is promising for future studies.

Furthermore, by using the DFT-RG flow equations (4.67) and (4.68), it would be interesting to study if more
sophisticated approximations for the KS potential vks(x) are capable to improve our results from the HKS+NLO
truncation even further. For example, we may also consider an exchange-correlation term in the KS potential using,
e.g., an LDA-type approximation. In this context, it would also be interesting to study if a so-improved KS potential
could be better suited to provide a description for the repulsive regime.






Chapter 5
Conclusion

The first part of this thesis was dedicated to the study of the phase structure of relativistic hot and dense strong-
interaction matter working in the framework of the functional Renormalization Group. Studying Fierz-complete
NJL models and two-flavor QCD, we analyzed the fixed-point structure and symmetry breaking patterns at finite
temperature and quark chemical potential where we examined the impact of Fierz incompleteness on physical ob-
servables.

In the second part, we employed a Renormalization Group inspired approach to Density Functional Theory
studying bound-state properties of non-relativistic one-dimensional fermions at zero temperature where we aimed
to improve the truncated DFT-RG flow equations based on an optimization of the starting point. To this end, we
solved the KS equations self-consistently and initialized the RG flow from the non-interacting KS system.

We began our discussion in Sec. 3.1 with a one-flavor and one-color NJL-type model at finite temperature and
fermion chemical potential, considering a classical action being invariant under global U(1) 4 x U(1)y symmetry
transformations. As an ansatz for the effective action at leading order of the derivative expansion, we then found
six four-fermion channels obeying the underlying symmetries. Moreover, by means of Fierz transformations the
six channels could be reduced to a three-channel Fierz-complete basis. We showed that we recover the vacuum
results from previous NJL model studies given that we use a covariant four-dimensional regularization scheme. By
analyzing the underlying fixed-point structure in theory space, we then found two real-valued non-Gaussian fixed
points controlling the RG flow in theory space.

At finite temperature and fermion chemical potential, we then studied the phase boundary separating the gapped
from the ungapped regime by using a one-channel, two-channel, and a three-channel Fierz-complete set of four-
fermion channels as a basis in theory space. To fix the scale, we tuned the UV value associated with the scalar-
pseudoscalar coupling to recover a certain critical temperature at zero quark chemical potential. In our study, we
observed that the use of Fierz-incomplete approaches could have a significant impact on the shape of the phase
boundary. For instance, we found that the critical chemical potential zi., above which no spontaneous symmetry
breaking of any kind is observed, is about 20% greater in a Fierz-complete approach than in a one-channel study, see
Fig. 3.4. We further considered a Fierz-complete difermion-type parameterization as a basis, where we observed that
the phase boundaries of the corresponding Fierz-complete studies are identical as it should be. We also showed that
this is not the case for Fierz-incomplete approaches. For example, the critical chemical potentials as obtained from
different two-channel parametrizations differ significantly, see Figs. 3.4 and 3.5. We conclude that Fierz-incomplete
approximations can either overestimate or underestimate the extent of the phase boundary which is associated with
spontaneous symmetry breaking. We found that the error depends strongly on the type and number of considered
four-fermion channels in a Fierz-incomplete basis. Since we worked in the pointlike limit of the four-fermion cor-
relation functions, a detailed study of the theory’s ground state in the regime which is governed by a spontaneously
broken symmetry is not possible. To still get some insights in the structure of the ground state in the infrared, we an-
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alyzed the dominance pattern of the scale-dependent four-fermion couplings close to the phase boundary. For this,
we “monitored” their relative strength and argued that a dominance in a particular channel can be considered as an
indication for the onset of the corresponding condensate. This is also supported by recent condensed-matter stud-
ies [342]. We observed that for a wide range of fermion chemical potential, the utmost dominant channel in both
Fierz-complete parameterizations is the scalar-pseudoscalar channel associated with spontaneous chiral symmetry
breaking. The dominance pattern in the regime of large fermion chemical potential, however, is inconclusive. We
found that channels which explicitly break the Poincaré symmetry appear to be dominant in both Fierz-complete
studies.

To gain further insights from the theory’s ground state, we analyzed the scaling relations of the one-loop dia-
grams which enter our four-fermion study using a simple one-channel truncation, see Fig. 3.6. In particular, we
discussed the fixed-point behavior under a variation of the temperature and fermion chemical potential where we
could distinguish two types of loop diagrams exhibiting different kinds of scaling behavior: One class of diagrams
generates a BCS-type scaling behavior of physical observables and is found to dominate the regime at large quark
chemical potential, whereas a second class of diagrams suppresses this scaling behavior in the latter regime.

We further discussed the impact of a non-covariant regularization scheme on the phase boundary at finite tem-
perature and fermion chemical potential. We observed that both the dominance pattern and the shape of the phase
diagram are changed significantly. Even at 1 = 0 where the study using a covariant regulator indicated the forma-
tion of a chiral condensate, we found a vector-type condensate to be favored by employing a non-covariant regulator
type. Moreover, our study at low temperature using a non-covariant regulator suggested that the theory’s ground
state is governed by spontaneous symmetry breaking for all investigated values of the chemical potential, see Fig. 3.7.

In Sec. 3.2, we studied the phase structure of a Fierz-complete NJL model with two flavors and V.. colors at
leading order of the derivative expansion. We found that a Fierz-complete four-quark basis is given by ten channels
obeying a global SU(N,.) x SU(2)r x SU(2)r x U(1)y symmetry. In particular, the Fierz-complete basis is
composed of six channels which are invariant under global SU(N.) x SU(2);, x SU(2)g x U(1)y x U(1)4
transformations and four channels which break the axial U(1) 4 symmetry explicitly. In our Fierz-complete basis,
we included a scalar-pseudoscalar channel since its corresponding condensate serves as an order parameter for
spontaneous chiral symmetry breaking and a diquark channel associated with BCS-type pairing. Moreover, from the
U (1) o-breaking subspace of our Fierz-complete four-quark basis, we deduced sum rules which are exactly fulfilled
given that the axial symmetry is intact. The sum rules then imply that a Fierz-complete basis which respects the
U(1) 4 symmetry has eight independent channels. The latter then implies that the ten-dimensional theory space
can be reduced to eight dimensions.

In our RG study of this model, we began with a discussion of a one-channel approximation where we only
considered the scalar-pseudoscalar channel. In the vacuum limit, we then studied the fixed-point structure where
we found a real-valued non-Gaussian fixed point dominating the RG flow towards the infrared regime. We found
that a corresponding fixed point also exists in case of the full Fierz-complete study. In particular, by considering a
large- N, expansion at leading order of the full Fierz-complete set of four-quark interactions, we observed that the
specific non-Gaussian fixed point is located precisely on the axis associated with the scalar-pseudoscalar coupling.
A stability analysis moreover revealed that this fixed point has only one repulsive IR direction which points into the
direction of the scalar-pseudoscalar axis. All other nine directions were found to be IR attractive. We followed that,
if the RG flow is initiated sufficiently “close” to the fixed point, the latter should dominate the low-energy regime at
low quark chemical potential.

Furthermore, we studied the phase structure in the (7', ;1) plane using the one-channel ansatz from the vac-
uum study, a two-channel approximation composed of a scalar-pseudoscalar and a diquark channel, and the full
ten-channel Fierz-complete approach, see Fig. 3.8. To fix the scale, we tuned again only the scalar-pseudoscalar cou-
pling in the UV to recover Ty ~ 132 MeV which corresponds to the chiral phase transition temperature recently
found in lattice QCD studies [9]. We observed that the regime at small chemical potential 1 < 260 MeV appears to
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be mostly governed by the aforementioned non-Gaussian fixed point which leaves its imprint in the observation that
the phase boundaries from all three truncations coincide. At large quark chemical potential, however, we observed
again how Fierz-incomplete truncations can affect important key properties. In particular, we found that the phase
boundary associated with the one-channel approximation exhibits a critical chemical potential ., ~ 360 MeV
whereas a non-trivial ground state governs the phase diagrams associated with the two-channel and Fierz-complete
approximation for all studied values of y. We further found that the phase boundary of the Fierz-complete approach
is about 70% greater at y ~ 530 MeV, than the corresponding phase boundary of the two-channel ansatz. At small
quark chemical potential S 260 MeV, we then detected a dominance of the scalar-pseudoscalar channel in all
truncations. For larger quark chemical potential, we deduced from the dominance pattern of the Fierz-complete
ansatz that the formation of a non-zero diquark condensate is favored. We further observed that four-quark chan-
nels, other than the diquark channel, which correspond to a ground state with a non-trivial color structure are
subdominant, e.g., (V + A)ﬂdj— and (V — A)ﬁdj—type channels.

We further studied the impact of U (1) 4-symmetric initial conditions on the phase structure of the NJL model
where we found that the overall shape of the phase boundary remains mostly unaffected, see Fig. 3.10. At small
quark chemical potential, we still observed a dominance of the scalar-pseudoscalar channel in agreement with our
study using a set of U (1) 4-breaking initial conditions. At large quark chemical potential, we recognized a change
of the dominance pattern and found indications for a diquark condensate associated with the (V' + A)ﬂdj channel.

Since the scalar-pseudoscalar and the diquark channel were found to be most dominant over a wide range of
the phase diagram, we studied the pseudo fixed-point structure of the corresponding Fierz-incomplete two-channel
ansatz in more detail, see Fig. 3.12. To this end, we investigated the behavior of the pseudo fixed points under a
variation of the dimensionless quark chemical potential. Our studies reveal an intriguing mechanism of fixed-point
creation and annihilation which can lead to a change in the dominance pattern, and explains the appearance of
diquark dominance at large chemical potential.

In the final study of the first part, we explored the phase structure of QCD with two massless quark flavors at
finite temperature and quark chemical potential, see Sec. 3.3. To this end, we considered the Fierz-complete four-
quark basis from Sec. 3.2 and included the quark-gluon vertex in our ansatz. We identified the coupling associated
with the quark-gluon vertex with the scale-dependent strong gauge coupling g, from a background-field study, see
Refs. [18-20]. Moreover, to estimate the effects of matter contributions to the running of the strong coupling, we
considered two different types of scale-dependent strong couplings, namely aqcp (Ny = 2) and aym (Vy = 0).
To fix the scale in our QCD study, we tuned the strong gauge couplings in the UV so that we found 7 ~ 132 MeV
at . = 0 corresponding to the value of the transition temperature in the aforementioned lattice QCD studies [9].
In the four-quark sector, we set the initial conditions of all four-quark couplings to zero to ensure that they are
generated dynamically in the RG flow.

With this set-up at hand, we studied the phase structure in the (T, ;1) plane as obtained from agcp and aywm
using the Fierz-complete four-quark basis from Sec. 3.2. Here, we found that both phase boundaries agree well over
a wide range of the quark chemical potential. We further compared the results from QCD with those from our
NJL model study in Sec. 3.2. We observed at p» >~ 530 MeV that the critical transition temperature is about 100%
greater than the one we found in the NJL model case. The latter implies that gauge degrees of freedom are expected
to become essential at large quark chemical potential and have a crucial impact on the phase structure. We further
studied the dominance pattern of QCD where we found the scalar-pseudoscalar channel to be dominant at small
chemical potential 1 < 260 MeV. At larger chemical potential, we found a simultaneous dominance of the diquark
and the (S + P)*¥ channel. Since we used U (1) 4-conserving initial conditions ()\EUV) = 0), this observation is a
direct consequence of the sum rules for the four-quark interactions, see (3.49).

Even though our study cannot provide a final answer concerning the condensate forming in the low-energy
regime, the fixed-point structure found in our large- V. analysis and the dominance pattern provide several indi-
cations that the gapped phase is governed by chiral degrees of freedom at low, and by diquark degrees of freedom
at large chemical potential. Still, the specific type of the diquark condensate remains to be unknown. From our
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present work, however, a chirally symmetric J© = 0% diquark condensate appears to be favored.

Let us now give a brief outlook to future studies of hot and dense strong-interaction matter using the functional
Renormalization Group. In Sec. 3.4, we already discussed that we have the long-term goal to compute the equation
of state from first principles. To this end, it is required to better understand the true nature of the ground state of
high-density QCD in the regime, which is governed by spontaneous symmetry breaking. Therefore, a meaningful
step towards the description of isospin-symmetric nuclear matter would be to employ dynamical bosonization tech-
niques [22, 23, 159, 161-164, 235, 240-242, 307] in order to study bound-state properties of diquarks and mesons,
see our discussion in Sec. 2.3.3. However, a description of, e.g., dense neutron-rich matter, which is expected to
exist within the core of neutron stars, would further require to introduce an isospin asymmetry in our ansatz for the
effective action. In this case, the Fierz-complete four-quark basis has to be reconsidered as well. Since it is more-
over expected [130, 343-345] that fluctuations in the strange sector could have a sizable effect on thermodynamic
quantities, it might be worthwhile to also consider strange quark degrees of freedom in future works. As we foresee
that such a study might be rather involved, it could be then also necessary to further develop existing numerical and
analytical tools [166, 167, 346] in order to gain access to the equation of state of QCD at large density.

In the second part of the present thesis, we began with a short introduction to DFT based on the famous
Hohenberg-Kohn theorem and discussed a conventional approach to DFT by employing the self-consistent Kohn-
Sham equations, see Chap. 4. There, we also gave a brief overview of how exchange-correlation effects can be included
in DFT calculations before we presented an RG approach to DFT based on a microscopic formulation for the HK
energy density functional. We showed that the latter is related to the 2PPI effective action for which we presented
an RG flow equation in the spirit of the Wetterich equation.

As a preliminary example, we showed some key results from a nuclear toy model study [110] where we consid-
ered one-dimensional identical fermions which interact via a long-range attractive and short-range repulsive two-
body interaction, see Sec. 4.3.2. We confined the fermions in a box with (anti)periodic boundary conditions and
considered a periodic extension of the two-body interaction rendering the latter translation invariant. In this case,
we showed that the DFT-RG flow preserves translation invariance as it should be. Using the DFT-RG framework,
we derived flow equations for the ground-state energy (LO) and the two-density correlation function (NLO). In LO
and NLO of the DFT-RG flow equations, we then computed the ground-state energy for two particles as a function
of the inverse homogeneous density from the DFT-RG approach and used results from an exact diagonalization
method to benchmark our findings, see Fig. 4.3. We found that the DFT-RG method is systematic as results from
the DFT-RG framework are improved by taking the flow of higher-order correlation functions into account. Using
our present truncations, we found that for small box sizes our results agree with the exact ones. In the large-volume
limit, however, our results as obtained from our DFT-RG approach in LO and NLO did not converge to the known
exact values for the ground-state energy. Furthermore, we also showed ground-state energy results as a function of
the inverse density for up to ten particles. To estimate the few-body ground-state energy in the continuum limit,
we utilized the observation that the results in LO and NLO of the DFT-RG framework approach the exact two-body
ground-state energy from above. Using this approximation, we compared the few-body ground-state energy in the
continuum limit as found from the DFT-RG approach in NLO with MC results from Ref. [326]. We observed that
the ground-state energies from our DFT-RG flow equations in NLO are in a qualitative agreement with the MC
findings where we found that our present truncation still overestimates the exact two-body ground-state energy
by ~ 30%. For increasing particle number, the relative difference continuously decreases. For N = 8, for example,
the difference is smaller than ~ 20%.

In Sec. 4.3.3, we introduced a possible improvement scheme for our DFT-RG framework. In particular, we
discussed the idea that we initialize the DFT-RG flow at a KS system assuming that the KS single-particle orbitals
already represent an “optimized” basis for the ground-state density. The single-particle states enter the definition of
the one-particle propagator which represents the building block of all higher density correlation functions. Further-
more, we gave a “recipe” how such a KS improvement scheme can be implemented in a given DFT-RG framework.

Asaproof-of-concept study, we considered quasi-one-dimensional identical fermions at zero temperature which
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interact via a dipolar two-body potential in a harmonic trap, see Sec. 4.4. We derived the DFT-RG flow equations
for the ground-state energy (LO) and density (NLO) where we computed initial conditions for density correlation
functions up to G g\n:)O withn < 3. For the KS potential, we used a Hartree truncation dropping all types of exchange-
correlation effects. In our first study, we computed the few-body ground-state energy for up to five particles for
attractive and repulsive dipolar interaction strengths as it is obtained from the self-consistent KS procedure. To
benchmark our findings, we used an exact diagonalization of the corresponding Hamiltonian. We observed that
the KS ground-state energy can reproduce our exact results only on a qualitative level. We further found that the
KS procedure converges for attractive dipolar interaction strengths. However, for sufficiently large repulsive dipolar
couplings, we found that KS procedure is non-convergent. In particular, we observed that the ground-state energy
“jumped” between two values for consecutive iteration steps.

For up to five particles, we then studied the ground-state energies for various coupling strengths in LO and NLO
of the DFT-RG flow equations. We used a “conventional” approach where the starting point of the RG flow corre-
sponds to a non-interacting fermion system in an external harmonic trap (NLO). As an alternative starting point, we
considered a system of non-interacting fermions in a KS potential (HKS+NLO) where we gradually switched off the
KS contributions at A = 1 while solving the RG equations. For small repulsive interactions, the conventional NLO
and the improved HKS+NLO approximations perform both reasonably well compared to exact results. For large
repulsive interaction strengths, however, we found that the conventional NLO approach performs in the present
truncation scheme better than the HKS+NLO approximation. We backtraced this behavior to the KS procedure
which did not converge for sufficiently large repulsive interaction strengths. For attractive interaction strengths,
we observed that the HKS+NLO DFT-RG approximation performs better than the conventional LO and NLO ap-
proximations. For instance, for the two-body problem, we found a deviation relative to the exact results of about
~ 200% for the strongest considered couplings in the conventional NLO approximation, compared to ~ 50% us-
ing the HKS+NLO truncation. For five particles, we observed for the same coupling strength a relative deviation
of ~ 100% in the conventional NLO approximation whereas the HKS+NLO approach predicts the ground-state
energy better than ~ 2%.

Let us discuss possible amendments to the DFT-RG framework. A first reasonable step towards a better under-
standing of the KS-improved DFT-RG flow would be to study whether a KS potential which also includes exchange-

correlation effects could systematically improve our results for the ground-state energy. A possible choice would be
LDA

Xc

extension beyond the presently employed Hartree approximation. A further crucial step would also be to consider

to consider an LDA term vLP4 (z) in our ansatz for the KS potential v¥5(z) which might be seen as a “natural”
the flow equation associated with the density correlation function Gg?) which would require Gg\i)o entering as an
initial condition. In order to study systems like nuclei, an extension of the DFT-RG flow equation towards higher
dimensions is worthwhile.

The present thesis represents a step forward to better understand critical phenomena in strong-interaction mat-
ter at large densities, and to the development of efficient theoretical techniques to study bound-state properties of
few- and many-fermion systems from first principles. Therefore, our work may be helpful to guide the construction
of improved hadronic equations of state from ab initio calculations for astrophysical applications in the future.
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Appendix A

Notations and Conventions

In this appendix, we shall give some frequently used notations and conventions appearing within the two parts of
the work.

A.1 Relativistic Conventions

Throughout the thesis, we consider natural units where we set A = ¢ = kg = 1. Note that we use the same
convention in the non-relativistic part of this work. As a consequence, we can express all dimensionful physical
quantities in terms of energy or length scales, respectively:

[length] "' = [momentum] = [energy] = [temperature] . (A1)

Using the definitions above, the (quantum) fields in position space entering our studies have the following mass
dimension:

Y] =[¢] = D2_ ! X [momentum] , (A2)

A =[0] = D2— 2 X [momentum] , (A3)

where D = d + 1 is the number of spacetime dimensions. Here, 1) and ) shall denote fermionic spinor fields, e.g.,
quarks, where ¢ and A, shall denote bosonic fields, e.g., mesons and gluons. Note that both field types fulfill distinct
commutation relations. For instance, bosonic fields commute whereas fermionic fields are Grassmann-valued and
anticommute, see, e.g., Ref. [125], which is reflected by the underlying field-space metric, see Ref. [159]. If not
mentioned otherwise, we do not resolve internal Dirac, color and flavor indices of spinor fields. Further, we usually
assume a summation over indices in contracted tensor structures. We further introduce the super field ® and the
super source J in position space:

W ~J
1/_)T T T n Ji/; T 7 T a
o = B G AR c T = (T =TT I8, Te) - (A
A i
¢ Jo

Note that functional derivatives with respect to the super field/source are defined in field space as followed: deriva-
tives acting from the left are represented by column vectors whereas derivatives acting from the right are represented
by row vectors. The latter definition is a consequence of the non-trivial metric the field-space obeys. For conve-
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nience, we further define
JU @ = / (Juto + g+ T4 AL+ Jo0) (A.5)
Vb

where Vp is the D-dimensional spacetime volume. Because of the aforementioned non-trivial field-space metric,
the regulator matrix Rj, has a non-diagonal structure. For the latter, we therefore use the following matrix repre-

sentation:
0 —REZ’ k 0 0
Ry 0 0 0
R, = ’ A6
k 0 0 R(jlb’,]é,w 0 ( )
0 0 0 Ry

Note that the definition of the regulator matrix in field space above also corresponds to our present definition of the
super field ®.

At finite temperature, the temporal direction in Euclidean spacetime is distinguished explicitly. Moreover, the
latter direction is compactified so that we have for the imaginary time 7 € (0, 5] with the inverse temperature
B = 1/T. Therefore, the integration over the D-dimensional spacetime volume is modified as follows:

/dDm — /06 dT/ddx, (A7)
/(;f)pD — Tnioo/(;i];w (A.8)

with d = D — 1. Moreover, our Fourier conventions for the fermionic spinor fields 1, 1 and the boson field ¢ at
non-zero temperature read:

> d4 o
Y(r, %) = T Z /ﬁw(un,meww ,

— . i ddp - —ip,
(%) = T Z /(271_)(17/)(%“15)6 Pt

B(wn, P) P (A.9)

" G a4
gb(T,CL’) =T _Z_ /(QWZ;d

where we use the shorthand notation p,z" = por + p'- £ and py € {wy, v, }. Here, we have introduced the
Matsubara frequencies associated with bosonic w,, = 2n7T and fermionic v,, = (2n + 1)7T modes, respectively.

A.2 Non-Relativistic Conventions

In this subsection, we give a few abbreviations we use in the second part of this thesis at hand.

A.2.1 One-dimensional Fermions in a Box

In our brief review of Ref. [110], we use antiperiodic boundary conditions pﬁf” = (2n+1)/L for even particle num-
bers and periodic boundary conditions pSIP) = 2nm /L for odd particle numbers ensuring that the non-interacting
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ground state is non-degenerate. In a finite box of size L, we use the following abbreviations

L=] L=l %

/E idx, ZE Z . (A.10)

n n=—oo

A.2.2 One-dimensional Fermions in a Harmonic Trap

In our feasibility study of one-dimensional fermions confined within a harmonic trap, we use

o'} oodw
/T:/mdf, /w:/,mﬁ’

/QCE/_O;dx, Zzi (A.11)






Appendix B

Identities and Fierz Transformations

In this appendix, we give some identities at hand which can be helpful in relativistic calculations. Moreover, we give
our definitions for the Clifford and the SU () algebra. Furthermore, we shall discuss the Fierz transformations in
more detail and introduce some Fierz identities we use in this work.

B.1 Euclidean Clifford-Algebrain D =3 + 1

We define the Clifford algebra in D = 3 + 1 Euclidean spacetime dimensions via:

{7} = A =201, (B.1)
(’yy,)'r — ,_Y/J, , (B2)

Y5 = 7172737, (B.3)

Ty = %[w“ "] = %(W“W” =" (B.4)

Further, we provide the following useful relations for various combinations and traces of Dirac matrices:

{1} = 0, (B.5)

()" = s, (B.6)

()= ()" = 1p, (B.7)
Yy = dp Y — o, (B.S)

Pt = 8 = 5 4 8+ ey s (B.9)
T P) = N G 5, (B.10)
iTr(’y“fy”fyA'yp’ys) = deuurp s (B.11)

where 15 denotes the four-dimensional identity matrix in Dirac space and €,,,,», the four-dimensional Levi-Civita
symbol.
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B.2 SU(NN) Algebra

The commutation relation for the N2 — 1 generators 7% of the SU(N') Lie group reads
[T, T = if*teTe, (B.12)

with the antisymmetric structure constant f%°¢. We further define

1
Ta = 57_(1’ (B13)

where 7 are, e.g., the Pauli matrices in case of SU(2) or Gell-Mann matrices in case of SU(3), see also App. B.3.
The generators 7' are ortho-normalized and fulfill

1
Te(TT?) = 5 5. (B.14)

The Fierz identities of SU(NN') generators are discussed in the section below.

B.3 Fierz Transformations

Non-trivial Fierz identities can be derived for practically all n-point functions given that at least four Grassmann-
valued fields are involved. From a reordering of the latter, one can deduce relations between different interaction
channels. In the present thesis, we focus on four-quark interactions which appear to be most relevant to study
spontaneous symmetry breaking in QCD. For this, we shall discuss in this appendix two types of field reorderings
in more detail. First, we note that the 16 Dirac matrices

T4 = {1, y5, 0 19955 O} (B.15)

with ¢ > v, form a basis in the space of complex 4 x 4 matrices. Furthermore, this basis is ortho-normalized and
fulfills

Tr(rAFB) — 4648 . (B.16)

Let us now consider a fermionic four-point function with the four anticommuting fermion fields ¥, 1. From a
reordering of the latter, we can now deduce non-trivial relations between the tensor structures. For this, we write

DT bitjder =Y AP TR dipjibpy = = APTETE byt . (B.17)
B B

For this type of field reordering, we derive the following Fierz transformations:

(M) @ (D i1 1 1 s (Dir @ (D
(¥5)i5 ® (V5) ki I 1 -1 -1 3 (v5)it @ (¥5);
(V)i @ (V)i =1 -1 -3 3 0 (Vu)it ® (Vu)kj : (B.18)
(vuy5)ij © ((7u75) kit 1 -1 & -3 0 (vuys)it ® (vuys)kj
(Ou)ij ® (U,w)kl 3 3 0 0 —% (0u)it @ (pw)kj
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Similar to the reordering given above, there exists a second type of non-trivial Fierz identities. The latter can be

derived by considering:
DT bisbetn = P (TPC)in(CTP)1j hitbwibry (B.19)
B

with C = iy270. Note, the minus sign is missing since we performed an even number of permutations of Grassman-
valued fields. The Fierz transformations now read:

()i @ (Wi i 1 1 i s (C)ik ® (C)i;
(75)i5 © (V5) kit 11 111 ()it @ (Cy5)i;
W@ | =[-1 1 5 -3 0 (7uC)ik @ (Cru)is (B.20)
(95)is @ (1775 Lo=1 5 =3 0 f [ (90 ® (iCyus)y
(0ur)ij ® (0w )kl -3 -3 0 0 1 (0,0 C)i ® (Cow )i

In principle, there are other reorderings of our fermion fields possible. As it turns out, however, in case of four-
fermion interactions, all reorderings other than described above lead to rather trivial identities, see Ref. [238] for a
detailed discussion about Fierz identities in four-fermion theories.

We do also find Fierz transformations for the generators of the SU (V) Lie group associated with, e.g., the color
space (Gell-Mann matrices) or the flavor space (Pauli matrices). For this, we find

(Dij @ (D ~ 3 (D @ (M)
’ N ! (B21)
(194 @ (T") 1t N2 2L (T%)it @ (T%)1j -
For the second type of field reordering Eq. (B.19), we find
(Dij © (M 3 3 (79)ik ® (771 (8.22)
()i @ (Tu ) \*+ —85) \0Ha@ (),

where Tr(7%7%) = 2§%. Here, the matrices 7° (1) belong to the symmetric (antisymmetric) subspace of the

corresponding SU () group. Note that the symmetric subspace does also contain the normalized identity matrix

75 =/2/N1L

B.3.1 Fierz Identities: NJL Model with One Flavor and One Color

In this subsection, we show the Fierz identities we derive from the four-fermion channels in the one-flavor and one-
color NJL model at finite temperature and fermion chemical potential, see Sec. 3.1. Recall that this model obeys a
global U(1)y x U(1)4 symmetry. We begin with the Fierz identities of the “fermion-antifermion” type where we
find:

(A = %(S - P) - % (Vi) + % V1), (B.23)
(A1) = 2(5-P)+3 (W) +5 (V1) (B24)

(1) = 3(Vj) — (V). (B.25)
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On the other hand, the Fierz identities which correspond to the “fermion-difermion” type read:

(SC — PC)

where we use the abbreviations

(SC — PC)
(4€)
(ALC)

Here, the charge conjugation operator is defined as C = ivya7o.
ansatz (3.5) can be reduced from six to three four-fermion channels, see Sec. 3.1 for details.

B.3.2 Fierz Identities: NJL Model with Two Flavors and /N, Colors

(S-P)— 3 (V) +

w N

—-(8—-P)+

DN = DN =

(e (T CY) — (hysCoT) (T Cyse))
(V1075CT ) (T Crovs)

= (rsCY ") (T Crisy) -

(B.26)

(B.27)

(B.28)

(B.29)
(B.30)
(B.31)

Using the identities above, the overcomplete

Let us also discuss the derivation of the Fierz-complete four-quark basis which we use in our two-flavor and N,-

color NJL-type study, see Sec. 3.2. In principle, we need to consider the most general ansatz invariant under global

SU(N.) x SU(2)r, x SU(2)r x U(1)y transformations. We find 10 color-singlet channels:

Ls-p),
Lisyp)_

L),
Lw),
Lo,
Lay,

Lv-ny

L

(v-4)]
L),

Lirys

with the Pauli matrices 7¢. The four-quark channels given above can also appear as color multiplets:

l:(S P)“dJ -

L

(8+P)*

»C(V)adj -
L

Corl

E(A)adj -

Lopys =

[V

- (7/_1170V57a¢)2 ;
- (1/;1%‘“/57'11/1)2 ;
(1/_)001’757‘1@[1)2 )

— (v T Y)? —
- (&WSTbTaiﬁ)? +

(B.32)
(B.33)
(B.34)
(B.35)
(B.36)
(B.37)
(B.38)
(B.39)

(B.40)
(B.41)

(B.42)
(B.43)
(B.44)
(B.45)
(B.46)

(B.47)
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Lopayms = (07T )? = (DT T0)” (B.48)
Liy_ayfea = (v bTaw) @WW:&TZ)T%?)Q , (B.49)
Lipypas = (Yoo, T 1/’) (@UOZ‘WsTbTaZ/J)? ; (B.50)
Ligygos = (Voo TT9)* — (dooinsT %)’ | (B.51)

with the generators in color space T'*. We emphasize that these 20 channels are still not all four-quark channels
which may be possible. For instance, we could further construct various linear combinations or consider diquark-
type four-quark interactions which respect the underlying symmetries. As it turns out, however, the set of four-
quark channels presented above is already overcomplete. Moreover, diquark-type four-quark channels are also
encoded indirectly. For example, the csc channel we consider in our two-flavor and N.-color NJL model study can
be completely decomposed into “quark-antiquark-type” four-quark channels using
1 1

Lese = —gﬁ(V_A)H ﬁ(v Ay, T L (v A)’dJ + E(V Ay — §£(5+p)7 + E(S+P)idj , (B.52)
where we choose N. = 3. Let us now briefly discuss how we extract our Fierz-complete four-quark basis from the
set of 20 channels. Instead of deriving the various Fierz identities analytically like in App. B.3.1, we use an alternative
way and employ a numerical approach. For this, it is required that the tensor structures of the four-quark channels
are represented as large column vectors. We then compute the rank of the corresponding matrix where we observe
that only 10 channels from those given above are linear independent. We therefore deduce that our Fierz-complete
basis consists of ten four-quark channels, see Egs. (3.38)-(3.47) for our individual choice.






Appendix C

Regulators, Propagators and Threshold
Functions

In this appendix, we introduce the regulators, propagators and the (purely) fermionic threshold functions at finite
temperature and quark chemical potential we employ in this thesis.

C.1 Regulators

We shall briefly discuss the regularization schemes we used in our present work. For this, we introduce two dif-
ferent regulators which are representatives of two distinct classes of regularization schemes, namely so-called four-
dimensional/covariant and three-dimensional/spatial regularization schemes. In Sec. 3.1.3, we discuss the advan-
tages and disadvantages of the two different schemes from a physical point of view. Here, we shall rather focus on
the explicit form of the regulators and discuss (some) technicalities.

C.1.1 Covariant Regulators

In this subsection, we introduce the four-dimensional regulator functions we use in our studies of hot and dense
quark matter. Let us begin with the Fermi-surface-adapted regulator we use for fermionic propagators. In the spirit
of regulators employed in RG studies of ultracold Fermi gases [347] with spin- and mass-imbalance [348, 349], we
tailored a covariant regularization scheme which ensures that fluctuation effects are integrated out around the Fermi
surface. Momenta on the Fermi surface || ~ p are then only taken into account for k — 0 where the regulator
vanishes. For details on the construction of the Fermi-surface-adapted regularization scheme, a general discussion
about covariant regulators, and remarks to the Silver-Blaze symmetry of field theories, we refer to Ref. [116]. Here,
we shall only give the explicit form of our four-dimensional regulator we use in this work. Our Fermi-surface-
adapted regulator reads

RY = —(p+ iop)re (C.1)

where 7, is the so-called regulator shape function, which is assumed to be dimensionless and real-valued, depends
on the momenta pg, p;, the chemical potential ;o and the RG scale k. Moreover, the latter has to fulfill some necessary
constraints which we shall not discuss here. For details, we refer to Sec. 2.2 and Ref. [63, 116]. In our studies, we
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use an exponential regulator shape function!® which can be written as:

1
= — (C.2)
w A /1 — efuurw,
with the dimensionless quantity wy = wy /k, where
wi =wi(po,p) =p5 + (Pl £ 1) (C3)

Note that w can be related to the quasiparticle dispersion relation of ungapped chiral fermions. In this case,w_ (0, p)
can be interpreted as the energy which is necessary to create a particle above the Fermi surface with momentum p.
On the other hand, w4 (0, p) corresponds to the energy which is required to create an antiparticle. In the limit of
vanishing chemical potential, w4 reduces to

W] o=+ 57, (4

so that ry, turns into the conventionally covariant chirally symmetric regulator function.

Of course, our choice for the shape function is not unique. For instance, we could also employ, e.g., so-called
Litim-type regulators [350-352] where we would need to substitute w, w_ for the momentum p? in the argument
of the corresponding shape function. For more details about the properties a Fermi-surface adapted regulator shape
function needs to fulfill in general, we refer to Ref. [116].

Let us now give the explicit expression of the four-dimensional regulator shape function we consider for our
internal gluonic lines. In our QCD studies, we consider an exponential shape function which reads:

n—1

n o __ Yy

=— C5
S (€3)

with y = p?/k?. Note that we use for our actual computations in this work n = 1.

C.1.2 Spatial Regulator

In our one-color and one-flavor NJL-type study, see Sec. 3.1.3, we also investigate the influence of so-called three-
dimensional regularization schemes which only act on spatial momenta whereas they leave temporal momenta
unregularized, see Refs. [233, 353-355]. As already discussed in Sec. 3.1.3, this class of regulators introduces an
artificial breaking of the Poincaré symmetry even in case of vanishing temperature and chemical potential, see also
Sec. 2.2 for a discussion. The general form of such a spatial regulator reads

=2
p
R;f (p) = —pry <k:2> ) (C.6)
with the regulator shape function 7. The latter does only act on spatial momenta:
k? 2_ =2

We note that in most cases the momentum integrations and the Matsubara summations may be performed analyt-
ically by employing the regulator shape function above which can be advantageous in certain situations.

19Throughout this thesis, we do not consider scale-dependent renormalization factors Z!l, Z, and Z,,. The following replacements might
be necessary in the definition of the regulator function RZ’ and within the shape function r, if such renormalization factors were included:
po — Zlpo,pi = Z+pi,and p — Zyp.
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C.2 Propagators

In this section, we introduce the dressed propagators using covariant and non-covariant regulators we use in Chap. 3.
The so-defined dressed propagators (inverse two-point functions) then enter DoFun [166, 346] and FormTracer [167],
which we employ to derive the RG flow equations corresponding to the renormalized four-quark couplings. We start
with the fermionic two-point function which reads

1—‘5[,11;,1) =0 = _Zj(FYO[éw po + 2# iﬂf] + 7 . ﬁ) 60102 §f1f2 ’ (CS)

with 2, = ZJ}) /Zj; and 2, = Z, /Zj; Note that indices, which are associated with the fundamental representa-
tion of the SU(3) color group, are denoted by ¢y, ca, . . ., where those, which are associated with the fundamental
representation of the SU(2) flavor group, are denoted by f1, fa, . ... For the adjoint representation of the SU(3)
color group, we choose a, b, . . .. We stress that Dirac indices shall not be resolved. Using a covariant regularization
scheme, we find for the dressed quark propagator

Yol2y po + Zuip] +7 -0
([Bypo + 2, 1p)% + p2) (1 +-74) Z5;

(1,1) R N
(FW ¢0+Rw’k) = Poy)™ ==

Ocrcy Ofy fa - (C.9)

Using a non-covariant regularization scheme, the dressed quark propagator reads

-1 _ 2 2,1 ¥-p(1+ry)
(1,1>’ ) po -1 YolZppot+ Zuin] + - p(1+ry
r( +R = (Py,) "t =—
e A Y R RS (EaRC

Ocrco O, fo - (C.10)

The corresponding regulator shape functions r, for the three- and four-dimensional regularization schemes we use
in our work can be found in App. C.1.

Let us now turn to the gauge sector. We begin again with the bosonic two-point function for the gluons. For
this, we write

AL
T =atprzl (2513,5 + PN+ %“‘ wa> : (C.11)

with the gauge-fixing parameter ¢, the reduced wave function renormalizations 25§ = Z% /73, 24 = 7% /7
and the four-momentum p = (pg, p). For convenience, we introduced magnetic and electric projectors above:

PM = (1-3,0)(1— 6,0) (a,w —%’”) : (C.12)
E _ T M
P = Wy - P (C.13)

Here, we further used transversal and longitudinal polarization tensors which read

T PuPv
H[U/ = (6MV - ;2 ) 5 (C14)
LoV
nh, = b f . (C.15)
b
Note that the projectors HZZ{L, Pﬁ,/ M fulfill the usual projection rules, e.g., PE,P% =0and Pf:,Pf; = pr, asone

can check straightforwardly. We add that we do not distinguish between color-electrical and color-magnetic com-
ponents of the gluon propagator in the present work. Nevertheless, for the sake of completeness, we decompose the
dressed gluon propagator in Euclidean spacetime at finite temperature into magnetic and electric field components
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where we obtain:

(L1 . -1 ot E M )
(FAA o0 + RA,k) = (Paa) " = m (AE P;w + P LHW . (C.16)

For details on the workflow using DoFun and FormTracer, we refer to App. D.

C.3 Threshold Functions

We introduce the threshold functions we use in our thesis. Recall that the threshold functions can be related to
one-loop diagrams, see also Fig. 2.3. We add that, in this appendix, we focus on the purely fermionic threshold
functions which play a major role in our NJL model studies in Secs. 3.1 and 3.2. Note that the so-defined threshold
functions appear in all our studies within Chap. 3.

C.3.1 Covariant Regularization

For convenience, we define a shorthand notation for the dimensionless (regularized) fermion propagator:

- 1
Gy(yo,y,w) = T (C.17)

Using a four-dimensional regularization scheme, e.g., the Fermi-surface-adapted shape function (C.2), the threshold
functions associated with purely fermionic one-loop diagrams can be written as:

+oo
D | vt [+ 2emin ) (14 r0)?
% (Gul(on + 2mrir) 2 yw))’| . (C18)
1w i) = = Z / dyydy [ (14 re)? +w) (Gl +27700)% p,w))°] . (C19)
“+o0
[ = =5 3 / dyyrzat[wnwmf)( = 207fir)(1+ 7)°

X Gop (0, + 277 [1r)2, 4y, w) Gy (0, — 27077 )2, w)} , (C.20)

“+oo
e = 5 % [Tanta e )

’I’L*—OO

x Gy ((Fn+217jir)%, y, w) Gy (7 —277fr) %, y,w)] . (C21)

with y = p?/k? where the scale derivative J; can formally be defined as 9, = (a,rw) . Above, we further used
0zt =07l =8,2 1w = 0 as it is the case at leading order of the derivative expans10n in our NJL model studies.
Note that the latter appears to be an approximation in our QCD study, see our discussion in Sec. 3.3. In case of our
four-dimensional Fermi-surface-adapted regularization scheme, the scale derivative can be written as:

~ (yo + y)e*(yo*H/) 0
at - = <3 .
(1fe*(yo+y))§ Ory

(C.22)
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In the limit of vanishing quark chemical potential, one can moreover show that the four threshold functions (C.18)-
(C.21) can be reduced to two threshold functions:

1) (r,w,0) = lﬁ? (r,w,0) = lﬁF)(T,w, 0),

I+
1) (r,0,0) = 1F) (1, 0,0) = 117 (7,0,0).

Further, one can show that

400 ~
0 1 (Opry) (1 +1y) (72 +y)
15 (7,0,0) + 18 (1,0,0) = 7 Z / dyy? (Orry s : (C.23)
i - ) W o (72 +y) (14 7y)? + ]

Let us briefly comment on the box-type and triangle-type diagrams, we employ in our study in Sec. 3.3. As already
discussed in Sec. 3.3, we shall not give the explicit form of the four-quark beta functions corresponding to our QCD
study as they appear to be rather lengthy. Therefore, it would also be less reasonable to give an explicit form of the
threshold function associated with box- and triangle-type diagrams at this point. Here, we only note that at finite
temperature and quark chemical potential the boson-fermion diagrams in Feynman gauge ¢ = 1 do also appear in
four different “versions” in analogy to our purely fermionic diagrams above, i.e., parallel/transversal to the heat bath
and the quark chemical potential appears with +ij/+ip in the denominators. For further details on the mixed-type
threshold functions in the vacuum, e.g., see Ref. [228].

C.3.2 Spatial Regularization
In analogy to Sec. C.3.1, we define a dimensionless propagator where we now use a spatial/three-dimensional reg-
ularization scheme:

1
yot+y(l4+ry)?+w’

éi}patial(ym Y, UJ) = (C24)

For the purely fermionic threshold functions, we then find:

+o00 o0
F - 1 1, _
l|(|+),spatial(7-’w"u’7) = 57 Z /0 dy yz 0, [(Vn +2n7fir)° X

n=—oo

~ . 2
X (foa“al((&n+2m,17)2,y,w)) } , (C.25)

+oo oo
- 1 1=
1) wputi (o ir) = =57 D /0 dyy2 0 [(y(1+74)* +w) x

n=—oo

~spatial /7 ~ - 2
X (Gfpp ' 1((Vn+277w7)27y,w)) } . (C.26)

+oo oo
F - 1 12 ],- N .
D i) = =37 3 [ a0+ 2mrs) o~ i)

X Gfppatial((ﬂn + 277 iy )2, y,w)éfbpatial((ﬁn —277iir)%, y, w)} , (C27)

+oo 00
F . 1 1~
Z(L:I):,Spatial(TﬂwvluT) = _57_ Z /0 dyyzat [(y(l +r¢)2 -|-w) %

n=—oo

X éfppatial((ﬁn + 277 iy )2, y,w)ézpatial((ﬁn —2n7fir)2, y, w)} , (C.28)
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where y = 52 /k?. Using the shape function Eq. (C.7), we obtain for the scale derivative

~ 1 0
O =—001-y)-—, (C.29)
t y? arw

where we used 9,7l = 9,7+ = 9,7, = 0 again. Employing the shape function Eq. (C.7), the threshold functions
can be computed analytically. For instance, we find:

F .~ F o~
lﬁJr),spatial(T? W, _1/1‘7) + l(L-l)-,spatial(T’ w, _IMT)

19 1 2n7i, — 1+ w 27 + V1w
= a0 {m {tanh( o ) - tanh( = , (C.30)

2

F o~ F o~
l\(\:l:),spatial(T’ w, _IM"') + Z(Li),spatial(T’ w, _IN’T)

10 { 1 tanh(|\/1—|—</J—27r7'/1|)
V1+tw — 277

:_687(.0 21
1 b (lvl+w+2ﬂwl) } . (C3)

+———tan
[V1+w + 277 27

In Sec. 3.1.3, we already mentioned that the purely fermionic threshold functions exhibit a second-order pole in the
zero-temperature limit given that one uses the three-dimensional regularization scheme Eq. (C.7). We emphasize

that this second-order pole emerges at 1 = v/ k2 + w in Eq. (C.31) not only in the sum l\(|F:|;),spatial(T’ w, —ifi, ) and
1®)

1 +,spatial
with the spatial regulator (C.7) yield the same result in the limit 7 — 0, i, — 0,andw — 0:

(T,w, —ifi; ), but also in the individual threshold functions. We further note that the threshold functions

1
(F) — B —
l|\+,spatial (0’ 0, 0) - lJ_:t,spatial(O’ 0, 0) 19 (C32)

_ Z(F)
(0) 070) 12

_(®
(07 07 0) =1 || £ ,spatial

1+ ,spatial



Appendix D

Derivation of Flow Equations with DoFun
and FormTracer

We give a basic overview on how we compute the RG flow for the four-fermion couplings using the software packages
DoFun [166, 346] and FormTracer® [167]. For this, we give a “cooking recipe” at hand to calculate the beta function
associated with the four-fermion channels in this thesis. Note that the general idea of this “recipe” can also be applied
to the running of couplings other than four-fermion vertices. Clearly, some steps need to be adapted in this case.

(i) Define the effective action, renormalized propagators, and vertices (App. C) as described in Ref. [166]. Note
that vertices like the four-fermion vertex V[psiblql,...],psib[q2,...],psilq3,...],
psila4,...]], and propagators like the fermion propagator P [psilql,...],psib[q2,...]] often en-
tail internally contracted operators. To ensure that the traces in the next steps are computed correctly, it is
highly recommended to collect all internal (dummy) indices and define local variables for them within the
Module of the corresponding vertex or propagator.

(ii) Compute the right-hand side of the Wetterich equation using the DoFun function doRGE. Note that we use in
our present implementation the optional argument tDerivative->False as we later compute the threshold
functions “by hand”. We also stress that the index ordering in the definition of the functions doRGE and getFR
differs. The latter is especially important in case of Grassmann-valued fields. For details, we refer to Ref. [166].

(iii) Throughout our work, we usually have more than one four-fermion channel present in our ansatz for the
effective action. In order to project the tensor-valued result from doRGE onto our original scalar four-fermion
couplings in our ansatz, it is necessary to construct suitable projectors. To ensure that the latter set is complete,
it appears to be most convenient to construct the set of projectors P(%) 0)?
basis we use for the four-fermion vertex. It is then straightforward for the i-th projector to set \; — 0

from the Fierz-complete tensor

where ¢ # j in the four-fermion vertex V defined in step (i). Note that the so-defined projectors are not yet
ortho-normalized.

(iv) With the aid of the function FormTrace included in the package FormTracer, we compute the traces in, e.g.,
Dirac, flavor and color space. We begin with the left-hand side of the Wetterich equation using

W)zﬂ“) ] , (D.1)

()2
(2:2)
() _
The result of (D.1) for a projector P(%L)Q

2011 this work, we use DoFun 2.0.4 and FormTracer 2.3.6

where I' , 1s the tensor-valued four-fermion vertex we defined in DoFun in step (i), see also Eq. (2.81).

associated with a channel 7 is a linear combination of the various
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(v)

(vi)

four-fermion couplings ~ a;;\;. We compute the trace (D.1) for all channels 4 in our complete basis 3. From
this, we further identify the coefficients a;; of the matrix A. For instance, in case of our Fierz-complete four-
quark basis with ten channels, the coefficient matrix A is a ten by ten square matrix with full rank implying
that A can be inverted.

Using FormTrace, we compute the traces of the projectors from step (iii) together with the algebraic expres-
sion of the four-fermion correlation function from getAE. For convenience, in our semi-analytical computa-
tions we identify the threshold functions already within this step and analyze them separately. We emphasize
again that the functions doRGE and getFR use different index orderings. It is therefore necessary to perform
the identification of auxiliary indices used in doRGE with “physical” indices in getAE with some care to avoid
sign issues, see also Ref. [166]. For instance, in case of our four-fermion vertex, we assign in our present
implementation the field psib[q2, . . .] to the first auxiliary index aux1 whereas we assign psib[ql,...]
to aux2.

Since our projectors are not ortho-normalized, we need to invert the matrix A from step (iv) to derive the RG
flow equations associated with the four-fermion couplings. In particular, we need to solve the simple matrix
equation

aij)\j = bl 5 (D.Z)

where the vector b; entails the projected and traced results from step (v). Inverting the matrix (a;;) yields the
set of RG flow equations for our four-fermion couplings ;.



Appendix E

Beta Functions

In this appendix, we present the RG flow equations of the one-flavor and one-color (Sec. 3.1) as well as of the two-
flavor and N.-color NJL model (Sec. 3.2). Note that we do not show the RG flow equations associated with the QCD
calculations in Sec. 3.3 as they appear to be very lengthy and less instructive. Note also that we derived the RG flow
equations using already existing software packages [166, 167, 346]. We also refer to App. D for more details.

E.1 Beta Functions: NJL Model with One Flavor and One Color

We start with the Fierz-complete set of RG flow equations of our one-flavor and one-color NJL-type model. For the
latter, we find

X = 2\, — 1604 (—/\?, + 2l + (k)2 - 2)\(,)\%,) 1) (7,0, —ifi,)
160, (3A?, ol g+ A5 + (D)2 + 8/\0)\$) 1F) (7,0, —ijir)
1604 (—Ag — oAb+ 3(A¢)2) 1 (7,0, ~ijir)
— 1604 (3A?, +axAl +3008)2 + 6A0A¢) 1 (7,0, ifi,) (E.1)
o = 2L 1601 (=22 + 20,0 + AN — ()2 = 4028 ) 1EL(7, 0, i)
+16v, (43 —o0l2 —2x Al —ealad — ()2 - 4)\0)\€;) 1) (7,0, —ifir)
+16u4 (302 + (A))2 + 600)2 + 608 ) 1Y) (7,0, —iir)
+160, (—A?, + A2+ Al +ealad + 6AJA¢) 1 (7,0, ~ijir), (B2)
INF = 20+ %61;4 (=22 = D =22 0F = A0) = 1008)2 = A, 2F ) 1L (7,0, i)
—%;4 (3A?, + a2 axal 4 10()\%,)2) 1F) (7,0, —ifir)
~16u, (Ai oAl — (b2 + 2)\(,)\%,) 1 (7,0, ~ijir)
1604 (A?, + S +5(005)% + 6)\[,)\%/) 1 (7.0, ~ifi-). (E.3)

with vy = 1/(3272). For the threshold functions, we refer to App. C. Note that the presently used parameteriza-
tion (A, )\“l,, Ai) for the RG flow equations is not unique. In general, considering suitable Fierz transformations,
we may transform the current four-fermion basis into a different one. For instance, we also use a difermion-type
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parameterization for the beta functions which we discuss in detail in Sec. 3.1.2. The explicit transformation rules
are given in Eq. (3.28).

E.2 Beta Functions: NJL Model with Two Flavors and N, Colors

In this subsection, we show the beta functions of our Fierz-complete NJL model study with two flavors and N, col-
ors. Note that the parameterization we use as a Fierz-complete four-quark basis is based on phenomenological
considerations, see our discussion in Sec. 3.2. For our ten channels, we obtain:

8t)\(0_,r) = 2X\om) + 64114( — /\ (o-m) — A\ o-mA (S+P)_ — 4/\(S+P) + Ao-m) /\(V+A + Ao-m) /\(V A),

1 2
+3A(¢7—7r)>\(V+A)L - >\(V+A)de >\(V+A)L + >\ (o- 7r)>\(V A) L + 2>\(o ) )\(V,A)'ddj - @A(S+P)idj

2 4 )
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N,
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2
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—4NcAe-mAs+P)- = ANeA(s1p). = Nedo-mA (g4 pyaai = 2NeA(s4P)_ A g pynti — )‘(S+P)“d3
N, N, 1 4 1
+7c>\(o—7r)/\(v+A)'«‘TdJ‘ - = (V+A)ddj - g)\(a-n)Acsc - g)\(S-i-P),)\csc - g/\(S—O—P adj /\csc
2

N, 9
A(S_)'_P)id-j /\CSC + NCA(O'-W))\CSC + 2Nc)\(S+P), )\CSC + ?A(S_;'_p)adJ )\CbC + 3 Acsc

3N,
_7>\35C>Z(F) (T O _iﬂT)

5 2
+64v4 (3% mAW+4); + 3)‘(V+A)H Aw+aps = 3AemAVAL T ZAw LA AV+A).L

1 1 F .
_67]\70)\(0'771'))\(‘/4,14)?‘(11 - W)\?V_’_A)adj)li:)t(’ra 07 _1/1‘7') 9 (E4)
3 2
OtAcse = 2Aesc T 64U4< )\(a' T 2X(- 7T))‘(\/+A)adJ - )‘(V+A)adJ + 3)‘(‘/ A)J.>‘(V APRS T )‘(V Ayl
3N 3 3N,
4 (V- A)ddj =+ 2>\(V—A)” /\csc - §>\(V—A)idj /\csc + TA(V_A)‘TJ >\csc 2)\256

FNNZ I (7,0, —i7ir)

6401 ( = Wy = DomAs1p). — Wsip). — omAsspya = BNS+P) gyt — Xog, pras



E.2 Beta Functions: NJL Model with Two Flavors and N, Colors 143

2 4 4
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at)\(S+P)adj = 2)\(S+P)adj + 64vy ()\(J,ﬂ) + 2A(S+P)a_dj)\(v+A)” — 5)\(0-_77))\(‘/+A)ﬁdj + A(SJ'_P)_A(VJFA)ﬂd_]

+/\?VJFA)adJ T2 e-mAW+a) T4 SR AWy T2 (g pypaidv ) = BAW-a) Ay gyaa
3 2 2 Ne
9N, >‘(3+P)de)‘(v+A)adJ - EA(S+P)a_dj>\(V+A)J_ >‘(v Ay + ?)‘(S+P)idJ)‘(v+A)adJ
3N

1
2
)\(V A)mdj + 2>‘(V+A)H )\csc - 2)\(V—A)” )\csc - 2>\(V+A)ad3 )\CSC + )‘(V,A)adj )\csc
1 N, 3N, .
R a5 A ags dese = “5 N gy e+ 200 = N )\Esc)lﬁi) (7,0, —ifir)

+64vy </\(<7-7r) + 4A(0—_7T)>\(S+p)7 + 4)\(5_,’_1:.)7 + 4/\(U_ﬂ))\(s+P)zidj + 8A(S+P)7 A(S+P)idj

2
A srpya = AsrpypaAdv-ay 2 emAw—a) T A s+P) Av-a)L — Aspppadm-a),

1
_7)‘(0'7‘)/\(V—A)‘1dj - )‘(SJFP)—)‘(V—A)T“ + /\(S+P)idj’\(V—A)jd-i + SA(V*A)L/\(V—A)TJ

1
2
1\72)‘(S+P)de + Nig)‘(S+P)idj)‘

2 1 2
2
N, >‘(s+P)adJ - EA(S+P)adj)\ V-A)L — ﬁ/\(ff-ﬂ)‘(v—A)idj - ﬁCA(SJrP)J\(V—A)Tj

2 4
(V—A)3i — E)‘(G-ﬂ))‘(ﬂp)iﬂj - EA(5+P)—)‘(S+P)&:U

L 2 (F) -
R sy ays 2N )\(V s )1 (7,0, =)
2 2 11
2
+64’U4< — )\(0_77) + g)\(o_ﬂ)/\(v_;,_A)” + *)\(S+p)7A(V+A)|l + g)\(s+P)zidj>\(V+A)“ + g)\(g ) /\(V+A)adj
8
_g)\(SJrP) A(VJFA)MJ AQVJFA)W + )\<a mAV+a), + g)‘(S+P),/\(V+A)L

10 1
+§)\(S+P)idj)‘(V+A)L - )‘(VfA) Ayt T 2ZAW-a) Ay gyeai + N2 )‘(S+P)ad3/\(V+A)adJ

2 2
" 3N, )‘(S+P)“dj>‘(V+A)u - /\(U ’T)A(V+A)“C” " 3N, >‘(S+P)J\(V+A)de
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1

*W/\(SHD)MJ

N

Ne

2
/\(V+A)‘“” - TMA(S+P)1‘”’\<V+AM - /\(v )38 A(s+P>"L‘”A(V+A)de

6
2
)\(V A)ad_] + 6)\(V+A)adj )\csc + 2)\(V+A)J_ )\csc - 2)\(V A)J_)\csc - )\(V A)adJ )\csc

1 N, N, .
""ﬁ/\(v_A)id.i /\csc - ?C/\(V_FA)?‘CU /\csc + ?C/\(V_A)idj )\CSC)ZS_FJ)r (7-7 O, _I,UT)

2
+64v4< D VAN VS VS DY M) L NS VA VR

(S+P)* 3

4 4 8
AP AV-a) — g AsrppuAv-a) 3 AemAv-a), + AP Av-a).

5 5 5
_g)\(S-FP)idj)\(V*A)L - 6)‘(0-7T)>‘(V—A)‘j_dj - §>‘(S+P)->‘(V—A)a<lJ + 3)‘(s+P)idi)‘(V—A)idj

1, 2
A=Ay A —ay TRV Ayt T FEAserys T gga s Ay -

2 4 2 4
+E/\(U-7T))‘(S+P)idj + FC)‘(SJrP)f)\(SJ,-P)idj - 37]\;'6)‘(5+P)idj)‘(V*A)ll - 37]V'C)\(S+P)idj)\(V7A)L
2 4 5

7371\fc/\("'”)/\("ﬂ“)1dj ~ 3N AP Avoapy g Aspy i A ap

3

X 2 e )17, 0,i7ir) (E.6)

1 1
ONs+p). = 2Xs+p) + 64114( - f)\(g(,_ﬂ + Ao-mAs+p) + 2)\fs+p)7 t 3AemAv+a),

1

2
Jr2>‘(S+PL)‘(V+A)n >‘<G MAWV - Ayt Alo- ﬂ)>‘(v+A)adJ + >‘(S+P)adJ)‘(V+A)adJ - 2/\(V+A)£|‘Id3

1
“5MemAV+A)L T 2A s+ Avra) T Ay ppad v, T >‘(V+A)ad3)\(V+A)L

1 3 9 1
_5/\(0_”))\(‘/,14)L — /\(U'”)A(V—A)T" + iA(V*A)L/\(V—A)‘ldj - 8/\(V Ay + 27]\/,(:2/\(5+P)-idj

1 1

A A

2
_m (S+pP)>d PR

(VA _Nig)\(SJrP)a_dj)\(V""A)J_ AN2 (V=41

1 2 ) 1
+2 % Nom) = W*(a-ﬂ%w)“j TN AP Asypy TMA<S+P)*:‘“ ~ N NemAw
—5 N N As+P) - A paye + /\?w apr F Ao AV AR Avra),
3 3 2 2
4N )\(J ) A(V Ay, — )‘(V A)J_)\(VfA)idj - >\(V A)adj + 2NC>‘(S+P)_
Nc 3NC 2 1
+NCA(S+P)_)\(S+P)z1dj + 7)‘(S+P)—)‘(V+A)T‘dj + T)\(V_A)idj - )\(U»w))‘csc + 5/\(5+P)a_dj )\csc
1 3 1
7>‘(V+A)H >\csc + )\(V_A)H )\csc + 7)\(V+A)adj /\csc - iA(VfA)idj >\csc - T]VCQA(VJFA)MU >\csc
1 1 3
+FC)\(V+A)H Acse — N, )\(V A) Aesc + AN, )\(V+A)adJ Acse + W)\(V—A)adj Acse — Nc)‘(S+P),)\csc
N, N, 3N,
—7C)\(S+P)id.i /\csc - 4C)\(V+A)1dl/\csc + 4 C)‘(V—A)Tj)‘CSC - /\gsc /\zsc
N

F .~
Azqc)lﬁﬁv 0, ~ifir)
+641}4( - 5)‘(20-70 — 2)\(0—_7;)A(S+p)7 — 2)‘%S+P), — 2/\(U_W))\(5+P)idj — 4A(S+P)7A(S+P);idj

1 1 1
2
A(S+P)am + §>\(a-rr>/\(v+A)H - 5)\(0-#))\(\/%)” = As+P)_Av-a), — 5)\<a-w)/\(v+A)L
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1>\(V+A)adj)\(V+A)J_ - %)\(U’W))\(V—A)J_ = As+P)_ AW-a), + AgpppaAv—a),
+§/\“””)A<V*A>i‘” AP A i&&P)i“(M)Tj - g)‘(V—A)LA(V—A)Tj
+ﬁ/\?5+mi@ i ﬁ/\“*l’ﬁd‘”\("—f“)?‘i N NLEA("'”)’\(SJrP)‘“:’j - Nlcz/\(S+P)f)‘(S+P)idj
_;TEA?SJrP)T” N Nig)‘(S+P)idj>‘(V—A)L - 2]1[2 Ao-m A/ — )38 NLCQ)\(S-FP)?)‘(V,A)TH
+ﬁ)\(S+P)idj)\(V—A)idj - 4—}?{62)\?‘/_14)“, 2]1\7 Aoomy + 20 ANo-mA(s+P)_ + Nlc)‘%erP)f
JrNic/\(‘”“)>‘(S+P)'“l‘” + ]\%)‘(S+P)f>‘(s+P)"i‘ij + QLNCA?S+P)TU - %M)‘(a—w)A(v+A)“dJ
—irNic)\(U'Tr))\(vﬂé‘)l * J\flc)\(SJrP)*)\(V*A)L - QL_]\TC)\(S-i-P)idj)\(V—A)TU + TJ\ICA(VfA)L)‘(V—A)idJ

3 12 .
+47]\ICA(V7A)TU)ZHi (1,0, —ifi,)

1
+64vy (*

1 2
2 2
5Mom T AemAs+p)- T 2054 p)_ + 3AMe-mA sy T gAS+P)- Asypym

1 2 1 1
g Mo-mAv Ay T 3ASHP)I- AV T 3 s AV T gAe-mAV-a),

5 1 1 1
>‘(<f g /\(V+A)“d’ + )‘ (5+P)- >‘(V+A)ad3 - E/\(S+P)idj/\(V+A)ﬁdj + g)‘(VJrA)H)‘(VJrA)adJ

2
+= )\?VJrA)md] + >\ (@e-mAV+A), T 3)\(S+P),>\(V+A)L + §>\(5+P)z:dj/\(v+A)L

1 1 1 1
3)\(V+A)adJ)\(V+A) — 6)\ a—w))\(VfA)L — g)\(a_ﬂ))\(v_A)idj + *)\(V,A)H )\(V—A)idj

)\2

A (V+A)adJ N2 (S+P)>H

2
_A(V_A)J_A(ViA)a’dJ + >\(V A)adj + W (S+P)adj

1
_W/\(S+P)’1dj/\(v+f4)ll - 6N2 NI W)/\(V—&-A)’d] - 3N2 )‘(S+P)J\(V+A)“d1

1 2 1,
+W)‘(S+P)idj)‘(V+A)ﬂdj - 37]\[62)‘(S+P)a_dj)‘(V+A)¢ TN v-ant T 3 >\<a )

A

2 9 1
2N PR )‘(S+P)idj - ﬁc/\(S+P)f)‘(s+P)idJ - A(S+P)mj + ST\,C)\(UW))\(V+A)H
2 1 1 1
3N v AP AWy ﬁc)\w—w))\(vM)ﬂdi T 2N, )‘(S+P))‘(V+A)'ﬁdi - 37]\70)‘(5+P)'idj)‘(v+A)ﬂdj
7T 2 4 1
“aN, )\(V+A)md] 3N, o ANoe-mAV+A), T 3—]\[6)\(S+P),)\(V+A)L + TMA(U-K))\(V_A)TJ
1 2

1 2
_TMA(V*A)II)\(V—A)TJ + EA(V*A)L)‘(V—A)“” 2N.. )‘(v Ay +2N6A(S+P)—

N. N, N,
+NeA S+P)f)‘(s+P)“‘” + f/\(s+P)idi + 7/\(S+P) )‘(V+A)’d‘ + f/\(s+P)id~’/\(v+A)’dl

ﬂAZVM)TT‘” N A?V AT %A("'”)ACSC * %’\““’)—ACSC + é Arsapyraidese = AV+a), Aese
FAW -4y, Aese + EA(v—A)idj Acsc + ﬁ/\(‘,_maﬁj Acsc — 3]1\/. A5 pysiAcse 121N /\(V+A)’dJ Aese
+Nic/\(V+A)i Acse — NLCA(V—A)L)\CSC - %/\(meidj Acse = NeA(s4p)_ Acse — %A(S+P)idj Aesc
_%)‘(wﬂq)i% Acse — %)\(ViA)idj Acse — 3)\356 + NF)\ESC)ZSF_,')_(T, 0, —ifi,)
+64v4(%>\(2mw) + 2\ omA(s+p)_ + 20 s1p) T QA(SH,)MJ - %A(U_W)A(HA)H - %A(U_W)A(V_A)H
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1 1 1
—§>\(S+P)_)\(V—A)H + g)‘(S+P)idj)\(V—A)H 6)\(V+A)H >\(V+A)adl + 6)\(" WAV +A) L

1 5 5
t3AVapAVLa)L — gAemAv-a), — gAE+P) - Av-a), Tt §A<s+P>idV\<V—An

5 1
+§/\(U-W))‘(V—A)‘1dj + §A(S+P)*)‘(V—A)Tj — E)\(S+P)‘1dj/\(V—A)‘1dj — 5/\(\/,‘4)” /\(V—A)id‘j

1, 1 1
A=A AV—a T gREAsepys T A AV —ay T A
1, 1 2
4']\702/\(S+P)J\(S+P)*Ldj + W/\(S+P)idj - 37]\/'(:2/\(S+P)idj>‘(V—A)H - 37]\762)\(S+P)idj>\(‘/—f4h
2 5 1,
_W)‘(a-ﬂ)k(va)‘f‘j T N2 SR Av—a g At Aw-ay T gReAv_ay
2 2 ., 1 2
~3 N o Nom — ﬁ%-w%(sw» N AP T Ao m A ey T AR A ey

1

2
3N A(U ™) )\(V A)H 3Nc )‘(S+P)_)‘(V—A)” 12N >\(0‘ T A(V+A)idj

(J-ﬂ))\(S+P)idj

2
)\(S-',-P)adJ

1 9 4 1
+12N /\(V+A)“‘d3 3N o AMoemAv-a) T ?TVC/\(SJrP))‘(VfA)L - 37]\](:/\(8+P)‘1d-j/\(V—A)‘1d-i

1 1 F .
+W)\(V,A)”)\(V_A)idj + FA(V,A)L/\(V_A)MJ )\?V A adj>l5_i(7', 0, —ifir), (E.7)

1 1
INveay, = Aty + 640 5Am + 20 mAsp)- + 20 s1p) 5 AemA gy py
I I ( ) 9 ( )=

+)‘(S+P)—)‘(S+P)“d’ + >‘(s+p)ddl + /\(V+A)|| T 2 e-mAW-a); T A+ Av-ay,
Y

3 3
2
+8>\(V+A)ad_| + )‘(V+A)L — 3)\(V+A)H )\(V Ay, T Z)\(U,W)A(ViA)idj — TNQ )\(S+P)zidj
! A2 A A L A2 L —A A
TENZ (VAR T Ni? AV =TT TGN, NS+ T N, VAV AL
2 1 3
T Ao mAv-aL + AemAv e F TNCA(V*A)H Aw—ayai — ANeAwray Awv-a),
3N,
_T)‘(V"‘A)H )\(ViA)idj — Ao-m)Acse — )\(S+P)_)\csc + 2)\(S+P)adj Acsc — )\(V“‘A)H Aesc
1 2 2 1
*m)\(s+p)adj Acsc + ﬁ)\(o'ﬂr))\csc + EA(S-FP),)\CSC - TZ\ZC)\(S+P)idj Acsc + NCA(V-&-A)H Acse

F
+)‘§sc - )‘gsc) l‘(|+)(7- 0,—i T)

1 ) 1 ) 3
640 (= SNy - /\(V+A)“ + Pem Ay - SA(VM)MJ — Xy,
1 2 1 (F) .
+WA(V+A)TJ' + ﬁc>\(g_ﬂ—))\(\/_|_,4)L + 2N >\(V+A)adj)\ (V4+A) L )lHi (T,O, —I[LT)

1 2
+64v, (7>\(U_W))\(S+P)idj + )\(S+p)_ )\(S+P)adJ + 3)\(S+P)adj — 2)\(0_77))\(\/_14)” - )\(V+A) " )\(V_A)H

3
2
/\(V+A)“‘“ + /\<V+A>H/\(V+A)l + Ay, 3 ay Av—a), — T NemA_ gya

2 1
2 2
3N2 /\(S+P adj + 12N2 )\(V+A adj 37]\762/\(0-70)\(‘/_14)1@ - TMA(UW))\(S"'P)TJ

2 1
2
*37]\[6)‘(5+P)—>‘(S+P)"idj N )‘(S+P)‘de + TA(U*W))‘(V—A)H 6N, )‘(V+A)H)\(V+A)"de

1
_3N )\(V_,_A)adJ)\(VJrA)L - 3N )\(0 w)/\(V A) L 3N )\(0' ) )‘(V—A)i"j - Tj\fc)\(quA)H )\(V—A)idj
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3N, 1
HAN AW 44y, Av-a), + TA(V-',-A)H Aw—ayi T AemAese + A(s4P) - Acse + EA(SJFP)eidJ Acse
1 2 2 1
+/\(V+A)” )\csc + W)\(S_i_p)adi )\csc - TJ\TCA(U—‘N)/\CSC - 3W)‘(S’JrP),ACSC - 67]Vc/\(S+P)idj /\csc

C

_Nc)‘(V+A)|| Acse — >\2 + 7)\(235(;)11]?_?_(7_) 0; _i,a'r)

6 CsC 3N
1 1 Y
+64’U4 (Z)\(o- ) )\(V+A)1d] - A(V+A)” )‘(V+A + )\(V-&-A)L 3N2 )\(g ) )\(V+A)1d’ — W)\(V""A)ﬁdj
2 1 4
N Ao AV F G A A paps T g AemAr ).
1 .
~3N. )\(V+A)adj A(V+A)L)lﬁ_:z(7-7 0, —ifir), (E.8)
1 1
2 2
8t)\(V+A)L = 2)‘(V+A)L + 647}4( QN /\(S-Q—P)“d’ + 2)\(S+P)“di + 5)\csc)\(s+p)idj + §A(U-ﬂ))\(S+P)idj

1 2
+)\(S+P),>\(S+p)‘idj - TJVCACSC)\(S+p)‘idj + )\(V_)'_A)J_ + ACSCA(O'-TK') + Acsc)\(S-&-P),
1
—2XNo-mA(v-a), — ZA(a-ﬂ))\(V_A)idj + Acsc A4y, T AV Avra), T A V-1, Avia),

N,
FAV+ay AV+a) L — NedcseAwray, +ANAv—a) Ava, + 5 Av_apmidyra),

1 1 1 P .
TR e Av-a T g Av-aAvran 2N, N AV, )lﬁ+) (7,0, —ifir)
1
2 (F) .~
+64vy (/\(v+,4>L A Avra, T o AvagsAva, + jw—w&wmidj)l”i (7,0, ~iA7)

1 1 1 1
+64?]4( A + g)\((f—ﬂ' )\CSC + 7)\(S+P),)\CSC + 7)\(S+p)ﬂdj )\CSC + 7)\(V+A)L )\csc

g \ese
*?C/\(V+A)L/\csc - 6]1\7 A(s+pydiAcse T >\20. T >\(5+P) + QA?SJFP)MJ + /\(V+A)
+£A§VMM + %A(,,_,F)A(SHD), + §A(M)A(S Loy F A4 P)_Aggy pyedi — gAw_ﬂ)A(V,Ah
_%)‘(J—W))‘(vfmj‘” + %NV—A)MVH)L + %/\(V—A) Aw+a), + §A<V+A>M<V+A>L

I NAV -4 Avia + A ap A a5 Afﬁp)ddl - SLMA(U_@A(S Py
_%A(S+P)*A<S+P>?dj + %MA(U,W)A(WA)T - %MA(HA)HA(VM)WM
_GL]VC)‘(V_A)TJ)‘(VﬁLA)L - 3J1\/- AvrapsAwv+a, + %WA?SJFP)@
+ﬁ/\?wmad])l( (7,0, —ifir)

1., 1 1.4 1., 7.9
+64U4( - g)‘(o-rr) 12)‘(V+A)adl)‘ o-m) T g)‘(VJrA) 24)\(V+A)’d’ - 6)‘(\/+A)L

2 1 1
AV A vt F G AV A paps T g Awae A ean

1 9 (F) -
T 24N2 A(V+A>i‘“)l¢ﬂt(7’ 0, =ifir). (E:9)
3
2 2
a15)\(\/—A)H = 2)\(V—A)H + 647}4( N, )\CSC - 2)\(;5(; )\(V—A)” Acse — 5)\(‘/714)11(11' Acse + Nc)\(V—A)H Acsc
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3 2 2

+§NC)\(V7A)idj ACSC - )\(J ) + >\(V A) + 5)\(‘/7/_1) 2)\(V+A)aidj - 3)\(V_A)“ )\(V_A)J_
3 3 2

+= )‘(V A)J_A(V A)2d + 2X(6- ﬂ))\(V+A)|| + Ao- ﬂ))\(v+A)adJ 2N, )‘(V A + 8N )\(V Ay

3 2 1 2
(V—A)2 — >‘(v Ayl + TNC/\(VJrA)TJ
3 1
+W/\(V—A>H/\(V_A)idi - T]\,CA(V—A)M\W_A)TU TN N MemA W ay

3
“2NATy 1), — g NeAw-a),A

2 (F) i
+8N2)\(V A)adj>l|H (1,0, —ifi,)

3
+64’U4( )\(U ) 6)\(S+p)7 )\(g_ﬂ) — 3>\(S+P)adj>\(o-_7r) + FA(SJ’_P)idj /\(U_Tr) — 6/\%5_,'_13)7

1
2 2 2
QA(s+p)adJ - §A<va>” — A V-a). 8)‘(\/ ayar ~ OAs1P) - Agg g pyeas
3 2 2
_EA(V*A)L)\(V—A)M] /\(S+P)de /\(V A)24 + ﬁc)‘(SJrP)—)‘(SJrP)i‘“
3 3 e 3 e (F) i~
"o, Aw-ayz — Tzvg’\(sw)i‘“ ~ 8N2 ’\<v A)‘"“”)ll\i (7,0, ~ifir)

+64U4( )\(a )~ )\(VJFA)H )\(0_77) — )\(V+A)1dj)\ (o-m) + N, )\(V+A)adJ )\(U ) — )\%V*A)H — )‘%VfA)L

1
2
+§/\(V+A)ﬁdj + AcscA(v—a), + 4)\(V—A)” AW =4y, T AcseAy_qyeai + §>\(V—A)H A -y

—AW-a), Ay + 2Ny gy, — Afv e + 2N Nvgay, = NedeseAw—a),

—NedeseAy_ qyeas + ch/\(V—A)H)‘(va)jdj + TMAﬁva)idj - A?VJrA)adJ

7Nic>‘(V—A)||)‘(V—A)jdj + N%/\(V—A)M(VfA)jdj - ﬁ)\?va)i‘”)l(l-&-(T’o’ —ifir)
+64U4<%)\(20_,r) +2X(54P) Mo-m) + Ay pyati Moom) — Nicx(smidj Mooy + 2025, py + 2)\(5 © oy

2
>‘(V A T 4>\(V Ayadi + 2)‘(S-|rP)—>‘(S-s-P)“‘°lj - A(V—A)HA(V—AM - §>‘(V—A)H)‘(V—A)jdj

2
2 2
_>\(V—A)J_ )\(VfA)idj - )\(SJ'_P)adJ >\(V A)adj — 7)\(S+P)7)\(S+P)a_dj

1 1 )
+W/\(V*A)u )‘(V—A)“fj + ﬁc/\(‘/*f‘h)‘(V—A)‘““iJ Nz )\(S+P)ad3

N2 Xy )L (7,0, =) (E.10)
) = 2\ 4 N °\2 )\2 )\2 A A 3)\ A
t\(V—-A), — (V-A)L +6 U4( csc + N Nesc T 5 cse T (V—=A) Nesc — 5 (VfA)idj csc

NC 1 2 ) 2 2
—N AW -4y, Acse + 5 - Ay A)a‘“)\CSC + N, )‘(v A)adJ)‘CbC - 5)‘(0-70 - g)‘(V—A)i‘” - 2)‘(V+A)“‘“
+2)\(V,A)H >\(V7A)L + iA(V*A)L)‘(V—A)TU + A(O-_W)A(V+A)adj 2>\(a—7r))\(V+A) + 2N, )‘(V AL

3 9 N, 3,
+ N )\(V A)adj + 2N )\(V—}-A)J_ )\(V A)L A(V A)de )‘(0 w T 4NC A(V*A)idj
2

2 2 (F) .~
+2N )\(V—&-A)"‘dJ - KA(V*A)L)‘(V—A)T” - E)‘(" m) )‘(V+A)adJ N2 v A)‘dJ)llH (7,0, i)

1 1 4
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