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Abstract. We consider the dual picture of the Yang–Mills theory at large
distances. The dual Higgs model is reformulated in terms of two-point Wightman
functions with the equations of motion involving higher derivatives.

1. Introduction

The nature of confining forces in gauge theories has attracted a lot of attention in recent years.
We consider a model (in four-dimensional space-time (4d)) based on the dual description of a
long-distance Yang–Mills (LDY–M) theory which can provide quark confinement in a system of
static test charges. This article pursues the idea that the vacuum of quantum Yang–Mills (Y–M)
theory is realized by a condensate of monopole–antimonopole pairs [1]–[4]. Since there are no
monopoles as classical solutions with finite energy in a pure Y–M theory, it has been suggested
by ’t Hooft [5] that one might go to the Abelian projection where the gauge group SU (2) is
broken by a suitable gauge condition to its Abelian subgroup U (1). Now there is the well-known
assertion that the interplay between a quark and an antiquark is analogous to the interaction
between a monopole and an antimonopole in a superconductor.

It is known that the topology of the Y–M SU(N)manifold and that of its Abelian subgroup
[U(1)]N−1 are different, and new topological objects can appear if the local gauge transformation
of some gauge function is introduced in our model, e.g., the field strength tensor for the gauge
field Aµ(x) in quantum chromodynamics (QCD) with Dµ(x) = ∂µ + ieAµ(x):

Fµν(x) =
1
ie
([Dµ(x), Dν(x)]− [∂µ, ∂ν ]),
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which transforms with the gauge function Ω(x) as

Fµν(x)→ FΩ
µν(x) = Ω(x)Fµν(x)Ω−1(x)

= ∂µA
Ω
ν (x)− ∂νA

Ω
µ (x) + ie[A

Ω
µ (x), A

Ω
ν (x)]−

1
ie
Ω(x)[∂µ, ∂ν ]Ω−1(x). (1)

The last term in (1) reflects the singular character of the above-mentioned gauge transformation.
One can identify the Abelian projection by making the replacement

FΩ
µν(x)→ Fα

µν(x) = ∂µA
α
ν (x)− ∂νA

α
µ(x)−

1
ie
Ω(x)[∂µ, ∂ν ]Ω−1(x),

where AΩ
µ → Aα

µ, while the label α reflects the Abelian world. This leads to the Dirac string and
magnetic current

Jmon
µ (x) = − 1

2ie
εµνρσ∂νΩ(x)[∂ρ, ∂σ]Ω−1(x)

in the Abelian gauge sector.
Formally, a gauge group element which transforms a generic SU (3) connection onto the

gauge-fixing surface in the space of connections is not regular everywhere in space-time. The
projected (or transformed) connections contain topological singularities (or defects). Such a
singularity may form the worldline(s) of magnetic monopoles. Hence, this singularity leads to
the monopole current Jmon

µ . This is a natural way of performing the transformation from the
Y–M theory to a model dealing with Abelian fields.

Analytical models of the dual QCD with monopoles have been intensively investigated [6]–
[8]. The monopole confinement mechanism is confirmed by many lattice calculations (see
reviews [9] and references therein). We study the Lagrangian model where the fundamental
variables are an octet of dual potentials coupled minimally to three octets of monopole (Higgs)
fields. The dual gauge model is studied at the lowest order of the perturbative series using
canonical quantization. The basic manifestation of the model is that it generates the equations of
motion, where one of them for the scalar (Higgs) field is the equation involving higher derivatives.
Our aim is to apply the previous results [10]–[16] on Wightman functions in 4d models, with
equations of motion (for the scalar fields) involving the dipole-type structure at least, to the model
with monopoles. The monopole fields obeying such equations are classified by their two-point
Wightman functions (TPWF). In the scheme presented in this paper, the flux distribution in the
tubes formed between two heavy colour charges is understood via the following statement: the
Abelian monopoles are excluded from the string region while the Abelian electric flux is squeezed
into the string region. In our model, we use the dual gauge field Ĉa

µ(x) and the monopole field

B̂a
i (x) (i = 1, . . . , Nc(Nc − 1)/2 and a = 1, . . . , 8 is a colour index), which are relevant modes

for infrared behaviour. The local coupling of the B̂a
i -field to the Ĉa

µ-field provides the mass of
the dual field and, hence, a dual Meissner effect. The commutation relations, TPWF and Green
functions, as well-defined distributions in the space S(Rd) of complex Schwartz test functions
on R

d, will be defined in the following text.

2. The Lagrangian density

Let us consider the Lagrangian density (LD) L of the U(1) × U(1) dual Higgs model
corresponding to the LDY–M theory [8]:

L = 2Tr[−1
4 F̂

µνF̂µν + 1
2(DµB̂i)2]− W (B̂i), (2)
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where

F̂µν = ∂µĈν − ∂νĈµ − ig[Ĉµ, Ĉν ],

DµB̂i = ∂µB̂i − ig[Ĉµ, B̂i],

Ĉµ and B̂i are the SU (3) matrices, g is the gauge coupling constant; Ĉµ = λ8Cµ (λa is the
generator ofSU (3)). F̂µν becomes the Abelian tensor withCµ being the dual to an ordinary vector
potential. The Higgs fields develop their vacuum expectation values (v.e.v.) B̂0i

and the Higgs
potential W (B̂i) has a minimum at B̂0i

. The v.e.v. B̂0i
produce a colour monopole-generating

current confining the electric colour flux. The interaction between a quark Q and antiquark Q̄

is provided by Ĉµ via a Dirac string tensor [17] ˆ̃Gµν having the same colour structure as Ĉµ,

namely ˆ̃Gµν = λ8G̃µν . A bound state of Q and Q̄ occurs with the replacement F̂µν → λ8Gµν ,
where Gµν = ∂µCν − ∂νCµ + G̃µν . Following [8], we choose the colour structure for B̂i-
fields

B̂1 = λ7B1 − λ6B̄1, B̂2 = −λ5B2 + λ4B̄2, B̂3 = λ2B3 − λ1B̄3.

The effective potential looks as follows (see also [8]):

W (B, B̄, B3) = 2
3λ{11[2(B2 + B̄2 − B2

0)
2 + (B2

3 − B2
0)

2] + 7[2(B2 + B̄2) +B2
3 − 3B2

0 ]
2},

where λ is dimensionless. The LD (2) becomes

L(G̃µν) = −1
3G

2
µν + 4|(∂µ − igCµ)φ|2 + 2(∂µφ3)2 − W (φ, φ3), (3)

where φ ≡ φ1 = φ2 = B − iB̄, φ3 = B3; the generating current of (3) is nothing but
the monopole current confining the electric colour flux Jmon

µ = (2/3)∂νGµν(x). The formal
consequence of the Jmon

µ -conservation, ∂µJmon
µ = 0, means that monopole currents form closed

loops.
Since φ1 and φ2 couple to Cµ in the same way [8], we choose B(x) = b(x) + B0, B̄(x) =

b̄(x), B3(x) = b3(x) + B0 with 〈B(x)〉0 
= 0, 〈B̄(x)〉0 
= 0, 〈B3(x)〉0 
= 0. In terms of the new
fields b, b̄, b3, the LD (3) is divided into two parts: L = L1 + L2 where L1 is of lowest order in
g and λ, and with the minimal weak interaction looks as follows:

L1 = −1
3G

2
µν + 4[(∂µb)2 + (∂µb̄)2 + 1

2(∂µb3)2] +m2C2
µ − 4

3µ
2(50b2 + 18b23) + 8m∂µb̄Cµ.

Here, m ≡ gB0 and µ ≡ √
2λB0. The equations of motion for the fields b, b̄, b3 and Cµ are

(∆2 + µ2
1)b(x) = 0;

∆2b̄(x) +m(∂ · C) = 0;
(∆2 + µ2

2)b3(x) = 0;

(∆2 +m2
1)Cµ(x)− ∂µ(∂ · C) + 12m∂µb̄(x)− ∂νG̃µν(x) = 0, (4)

where µ2
1 = (50/3)µ

2, µ2
2 = 12µ

2,m2
1 = 3m

2. The formal solution of equation (4) looks as
follows:

Cµ(x) = α∂νG̃µν(x)− β∂µb̄(x),

withα ≡ (3m2)−1, β ≡ 4/m. We obtain that the dual gauge field is defined via the divergence of
the Dirac string tensor G̃µν(x) shifted by the divergence of the scalar field b̄(x). For large enough
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 x, the monopole field is going to its v.e.v. whileCµ( x → ∞)→ 0 and Jmon
µ ( x → ∞)→ 8m2Cµ.

This implies that in the d = 2h dimensions the b̄(x) field obeys the equation

∆2hb̄(x) � 0, h = 2, 3, . . . , (5)

but ∆2b̄(x) 
= 0. Here, the solutions of equation (5) obey locality, Poincaré covariance and
spectral conditions, and look like the dipole ‘ghosts’ at h = 2.

We define TPWF Wh(x) in d = 2h dimensions, Wh(x) = 〈b̄(x)b̄(0)〉0, as the distribution
in the Schwartz space S ′(R2h) of moderate distributions on R

2h which obeys the equation

∆2hWh(x) = 0. (6)

The general solution of (6) should be Lorentz invariant and is given in the following form [10]
at h = 2:

W2(x) = a1 ln
l2

−x2
µ + iεx0 +

a2

x2
µ − iεx0 + a3, (7)

where ai (i = 1, 2, 3) are the coefficients, l is an arbitrary length scale. The coefficients a1 and
a2 in (7) can be fixed using the canonical commutation relations (CCR) [Cµ(x), πCν (0)]|x0=0 =
igµνδ

3( x) and [b̄(x), πb̄(0)]|x0=0 = iδ3( x), respectively, with πCµ(x) = −4
3G0µ(x) and πb̄(x) =

8[∂0b̄(x) +mC0(x)]. The standard commutator for the scalar field b̄ is

[b̄(x), b̄(0)] = (2π)2i[4a1E2(x) + a2D2(x)],

where E2(x) = (8π)−1 sgn(x0)θ(x2) and D2(x) = (2π)−1 sgn(x0)δ(x2) are taken into account.
The direct calculation leads to a1 = (m2/48π2) and a2 = −(1/24π2).

The propagator of the b̄-field in S ′(R4) is

τ̂2(p) = weak lim
κ̃2�1

i
3(2π)4

{
m2

[ 1
(p2 − κ2 + iε)2

+ iπ2 ln
κ2

µ̃2 δ4(p)
]

− 1
2

1
p2 − κ2 + iε

}
. (8)

Here, κ is a parameter of the representation and not an analogue of the infrared mass; κ̃2 ≡ κ2/p2.
To define the commutation relation [Cµ(x), Cν(y)], let us consider the canonically conjugate

pair {Cµ, πCν}:

[43Cµ(x), ∂νC0(0)− ∂0Cν(0)− g0ν(∂ · C(0)) + ∆0ν(0)]|x0=0 = igµνδ
3( x), (9)

where ∆µν(x) = gµν(∂ · C(x)) − G̃µν(x) tends to zero as x → 0 and the Dirac string tensor
G̃µν(x) obeys the equation [∆2 + (3m)2]G̃µν(x) = 0. Obviously, the following form of the
free-Cµ-field commutator:

[Cµ(x), Cν(0)] = igµν [ξm2
1E2(x) + cD2(x)], (10)

ensures the CCR (9) at large x2
µ with both ξ and c (in (10)) being real arbitrary numbers but

ξ = 3
4 − 4c.
The free dual gauge field propagator in S ′(R4) in any local covariant gauge is given by

τ̂µν(p) =
∫
d4x exp(ipx)τµν(x) = i

[
gµν −

(
1− 1

ζ

) pµpν

p2 + iε

]
[ξm2

1t̂1(p) + ct̂2(p)], (11)

where

τµν(x) =
igµν

(4π)2
[
ξm2

1 ln(−µ̃2x2
µ + iε) +

c

x2
µ + iε

]
;
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t̂1(p) = weak lim
κ̃2�1

[ 1
(p2 − κ2 + iε)2

+ iπ2 ln
(κ2

µ̃2

)
δ4(p)

]
;

t̂2(p) = weak lim
κ̃2�1

1
2

1
(p2 − κ2 + iε)

.

The gauge parameter ζ in (11) is a real number. The following requirement: (∆2)2τ̃µν(x) =
iδ4(x) on the Green function τµν(x) leads to the constant c having to be equal to zero and
τ̃µν(x) = τµν(x)/(ξm2

1).

3. An approximate solution

To obtain an approximate topological solution for this dual model, we fix the equations
of motion:

∂νGµν = 6ig[φ∗(∂µ − igCµ)φ − φ(∂µ + igCµ)φ∗], (12)

(∂µ − igCµ)2φ = 2
3λ(32B

2
0 − 25|φ|2 − 7φ2

3)φ, (13)

where φ(x) is decomposed as φ(x) = (1/
√
2) exp(if(x))[χ(x) + B0] using the new scalar

variables χ(x) and f(x). The equation of motion (12) transforms into the following
one:

∂νGµν = 6g(χ+B0)2(gCµ − ∂µf)

which means that the b̄(x) field is nothing but a mathematical realization of the
‘massive’ phase B0f(x) at large enough  x, i.e., b̄(x) � (B0/2)S(x)f(x) and
S(x) ≡ (1 + χ(x)/B0)2. Integrating out Gµν over the 2D surface element σµν

in the flux Π =
∫
Gµν(x) dσµν , we conclude that the phase f(x) is varied by

2πn for any integer number n associated with the topological charge [18] inside the
flux tube. Using the cylindrical symmetry we arrive at the field equation ( C →
(C̃(r)/r) eθ):

d2C̃(r)
dr2 − 1

r

dC̃(r)
dr

− 3m2[3 + 2S(r)]C̃(r) + 6nmB0S(r) = 0

with asymptotic transverse behaviour of its solution:

C̃(r) � 4n
7g

−
√

πmr

2k
e−kmr

(
1 +

3
8kmr

)
, k ≡

√
21.

The field equation (13) is given by

d2χ̂(r)
dr2 +

1
r

dχ̂(r)
dr

−
{[n − gC̃(r)

r

]2
+
25
3
λ[2B2

0 − χ̂2(r)]
}
χ̂(r) � 0,

where χ̂(r) = χ(r) +B0. The profile of the colour electric field in the flux tube at large r looks
as follows:

Ez(r) =
√

πm

2kr

(
km − 1

2r

)
e−kmr.
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4. The confinement potential in analytic form

Now, our aim is to obtain the confinement potential in an analytic form for the system of
interacting static test charges of a quark and an antiquark. According to the distribution (8),
the static potential in R

3 is a rising function with r = | x| [14, 15]:

Pstat(r) ∼ 1
22hπ3/2

1
(h − 1)!Γ(3/2− h)r2h−3,

and the Fourier transformation of the analytic function rσ at σ 
= −d,−d − 2, . . . is [15]

F{rσ} =
(4π
p2

)(σ+d)/2
π−σ/2Γ[(σ + d)/2]

Γ(−σ/2)
.

We define the static potential as Pstat(r) = limT→∞[T−1 · A(r)] and the action A(r) is given
by the colour source current part of the LD L(p) = − jµ

α(−p)τ̂µν(p) jν
α(p) with the quark current

 jµ
α(x) =  Qαg

µ0[δ3( x −  x1) − δ3( x −  x2)]. Here,  Qα = e ρα is the Abelian colour electric
charge of a quark while  ρα is the weight vector of the SU (3) algebra: ρ1 = (1/2,

√
3/6),

ρ2 = (−1/2,
√
3/6), ρ3 = (0,−1/

√
3) [18];  x1 and  x2 are the position vectors of a quark and

an antiquark, respectively.
As a consequence of the dual field propagator (11), and using the following representation

in the sense of generalized functions [11]:

weak lim
κ̃2�1

[ 1
(p2 − κ2 + iε)2

+ iπ2 ln
κ2

µ̃2 δ4(p)
]

=
1
4
∂2

∂p2

1
−p2 − iε ln

−p2 − iε
µ̃2 =

1
2

1
(p2 + iε)2

(
5− 3 ln −p2 − iε

µ̃2

)
,

we get

Pstat(r) = −
 Q2

16π

[
ξm2r(−12.4 + 6 ln µ̃r) + O

(c

r

)]
. (14)

Hence, the string tension a in Pstat(r) ∼ ar emerges as

a � 3
4
π

g2m
2 =

3
4
αsm

2,

where the logarithmic correction in (14) has been ignored at large distances r ∼ µ̃−1.
We obtain a � 0.18 GeV2 for the mass of the dual Cµ-field m = 0.8 GeV, and αs =
π/g2 = e2/(4π) = 0.37, fixed from fitting the heavy quark–antiquark spectrum [19]. The
string tension afixed = 1.0 GeV fm−1 extracted from the Regge slope of the hadrons [20]
then determines the fixed value of the mass mfixed = 0.85 GeV. Performing a formal
comparison, let us recall that the string tensions in papers [21] and [22] are equal to a =
(430 MeV)2 and (440 MeV)2, respectively. We found that for a sufficiently long string the
∼r behaviour of the static potential is dominant; for a short string the singular interaction
provided by the second term in (14) becomes important if the average size of the monopole is
even smaller.
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5. Conclusions

Finally, some conclusions can be stated:

(a) We have actually derived the analytic expressions for the propagators of both the b̄-field (8)
and the dual gauge boson field (11) in S ′(R4). Our result should be regarded as the
distributions (8) and (11) in a weak sense.

(b) The dual gauge bosons become massive due to their interaction with scalar field(s).
But not every scalar species becomes massive, since the symmetry-breaking pattern is
SU(3) → U(1)× U(1) and one scalar field remains massless. We see that the fields b(x)
and b3(x) receive their masses, and the b̄(x) field—in combination with ∂νG̃µν(x)—forms
the vector field Cµ(x) obeying the equation of motion for the massive vector field with the
mass m = gB0. The solution for the b̄(x) field can be identified as a ‘ghost’-like particle in
a similar manner.

(c) The form of the potential (14) grows linearly with the distance r apart from a logarithmic
correction.

(d) The string tension a obtained is quite close to a phenomenological value.

(e) Since no real physics can depend on the choice of the gauge group (where the Abelian group
appears as a subgroup), there seems to be a new mechanism of confinement [23].
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