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Abstract: Projective State Spaces for Theories of Connections

Quantum gravity aims at combining the insights of Quantum Field Theory (QFT) and General
Relativity (GR) into a consistent fundamental theory. In a non-perturbative, canonical approach
like Loop Quantum Gravity (LQG, [4, 75, 92]), one attempts to directly quantize the spacetime
geometry, while resolutely avoiding the introduction of any supporting background metric. The
price for this background independence [77] is that the technologies commonly employed in QFT to
extract physics in a computationally tractable way are not readily available. Thus, new tools need
to be developed, for example to check the semi-classical limit of the quantum theory or to rigorously
derive its cosmological [16] and astrophysical implications [83, 5, 18] .

In particular, the vacuum states of Fock type used when doing QFT on Minkowski background
have no equivalent when spacetime itself is to be quantized. While the non-standard properties of
the Ashtekar-Lewandowski vacuum used in LQG [19, 8] lead to a compelling picture at Planck scale,
revealing notably a fundamental discreteness of quantum geometry [78, 7], they also contribute to
long-standing issues regarding the design of semi-classical states [90, 51, 36] and the implemen-
tation of the dynamics [88, 91]. This motivates the search for an extension of the LQG Hilbert
space, that could accommodate more general quantum states while retaining the key insights of the
original construction.

This is achieved in the present work using a projective framework [48, 66, 68] , which allows
to dispense altogether from the selection of a vacuum state: instead of defining states as vectors
in one ‘big’ Hilbert space, or more generally as density matrices thereon, one constructs them as
projective families of partial density matrices over a system of ‘small’ Hilbert spaces, each of which
extracts specific degrees of freedom from the full quantum theory. This approach is physically
motivated by interpreting each small Hilbert space as the arena to describe a given experiment,
while the projections binding these partial descriptions together ensure the overall consistency of
the theory.

We will set up projective state spaces of this kind for general theories of connections: this
includes the reformulation of GR using Ashtekar variables [3, 12] that constitutes the starting point
of LQG, and could have applications to other quantum gauge theories as well. To this intend, we
will develop the projective framework beyond the context of linear configuration spaces in which
it was originally formulated, laying down fairly generic prescriptions to turn classical projective
system into quantum ones. To ascertain that the thus obtained quantum state spaces indeed extend
existing ones, we will investigate in detail their relations with various Hilbert spaces. Finally,
we will explore how this approach could help making progress on the aforementioned issues, in
particular by paving the way for the development of more satisfactory semi-classical states.
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Zusammenfassung: Projektive Zustandsräume für Theorien von
Zusammenhängen

Ziel der Quantengravitation ist, die Erkenntnisse der Quantenfeldtheorie (QFT) mit denen der all-
gemeinen Relativitätstheorie (ART) in einer einheitlichen grundlegenden Theorie zu verschmelzen.
Folgt man einem nichtperturbativen, kanonischen Ansatz, wie in der Schleifenquantengravitation
(SQG, [4, 75, 92]), wird versucht gleich die Geometrie der Raumzeit zu quantisieren, wobei die Ein-
führung jeglicher unterstützenden Hintergrundmetrik konsequent vermieden wird. Der Preis dieser
Hintergrundunabhängigkeit [77] ist der Verzicht auf die bewährten Techniken, die es in der QFT
ermöglichen, physikalische Aussage effektiv zu berechnen. Daher müssen neue Werkzeuge entwick-
elt werden, etwa um den semiklassischen Limes der Quantentheorie zu bestätigen, oder um deren
kosmologische [16] und astrophysikalische Bedeutung [83, 5, 18] rigoros abzuleiten.

Insbesondere sind die Fock-artigen Vakuumzustände, die in der QFT auf dem Minkowski-
Hintergrund angewendet werden, nicht mehr verfügbar, wenn die Raumzeit selbst quantisiert
sein soll. Während die einzigartigen Eigenschaften des Ashtekar-Lewandowski Vakuums [19, 8] ,
das der SQG zugrunde liegt, überzeugende, durch eine grundsätzliche Diskretheit [78, 7] auf der
Planck-Skala gekennzeichnete, Einblicke in der der Quantengeometrie liefern, tragen sie auch zu
andauernden Schwierigkeiten bei dem Aufstellen semiklassischer Zustände [90, 51, 36] sowie bei der
Behandlung der Dynamik [88, 91] bei. Dies motiviert die Suche nach einer Erweiterung des SQG-
Hilbertraumes, die die bisher fehlenden Quantenzustände einbeziehen könnte, ohne die Grundsätze
der ursprünglichen Konstruktion aufzugeben.

So eine Erweiterung wird in der vorliegenden Arbeit mithilfe eines projektiven Formalismus
[48, 66, 68] entwickelt, der uns von dem Aussuchen eines Vakuumzustandes befreit: statt Quanten-
zustände als Vektoren (bzw. Dichtematrizen) in einem einzigen, ‘großen’ Hilbertraum zu beschreiben,
werden sie als projektive Familien von partiellen Dichtematrizen über einem System von ‘kleinen’
Hilberträumen zusammengesetzt. Jedem dieser kleinen Hilberträume entspricht die Auswahl bes-
timmter Freiheitsgrade aus der vollen Quantentheorie und wird physikalisch verstanden als die
Arena, wo sich ein gegebenes Experiment abspielt, während die Projektionen, die diese Räume
miteinander verbinden, dafür sorgen, dass aus diesen partiellen Darstellungen eine konsistente
Theorie entsteht.

Wir werden projektive Zustandsräume dieser Art für allgemeine Theorien von Zusammenhängen
aufbauen: dies erfasst insbesondere das Umschreiben der ART mithilfe der Ashtekar-Variablen
[3, 12], das als Ausgangspunkt der SQG dient, und könnte auch bei der Beschreibung anderer
Eichtheorien Anwendungen finden. Hierfür werden wir den projektiven Formalismus jenseits des
Kontextes linearer Konfigurationsräume ausbauen, in dem er bislang formuliert war, und relativ
systematische Vorschriften ausarbeiten, um klassische projektive Systeme in deren Quantenver-
sion umzuwandeln. Um sicherzustellen, dass die so zusammengestellten Quantenzustandsräume
die existierenden wirklich erweitern, werden wir detailliert deren Beziehungen zu verschiedenen
Hilberträumen untersuchen. Schließlich werden wir erforschen, wie dieses Programm bei den oben
genannten Schwierigkeiten helfen könnte, vor allem was die Entwicklung besseren semiklassischen
Zustände betrifft.

2



Acknowledgements

I am deeply grateful to my advisor, Thomas Thiemann, who guided me throughout the last
five years with his valuable advice, and with his example. I am also indebted to Karim Noui,
without whose assistance at the critical moment, I would probably not have gone into quantum
gravity, if I would have attempted a PhD at all. Further, it is a pleasure to acknowledge the
solicitude of Kristina Giesel and Hanno Sahlmann, in particular their accompanying of my first
teaching experiences. And I remain in great appreciation of Günter Mahler, from the University
of Stuttgart, who introduced me to research years ago. Last but not least, I would like to warmly
thank Antonia, Alexander, Norbert, Andreas, Christian, and all the students and postdocs of the
Institute for Quantum Gravity in Erlangen, for inspiring discussions and friendship.

What I owe to my parents is beyond words. The strength of their love envelops me wherever I
go, while the values and faith they gave me light my path. And the reassuring hand of my mother
has been my anchor, in a world that had suddenly become unrecognizable. I also will not forget the
encouragement, each in their own way, by my sisters and brothers-in-law, Odile, Hélène and Yann,
Cécile and Michael, and by my longstanding friend Marie-Pierre. Nor shall I leave unmentioned
the kind missives from F. Benoît, and the comforting evenings at the Offene Kirche St. Klara in
Nürnberg.

This work has been financially supported by the École normale supérieure, Paris, France, bythe Université François Rabelais, Tours, France (via a 3-years doctoral stipend from the FrenchMinistry of Education – Contrat Doctoral Normalien), and by the Friedrich-Alexander-UniversitätErlangen-Nürnberg, Germany (via the Bavarian Equal Opportunities Sponsorship – Förderung vonFrauen in Forschung und Lehre (FFL) – Promoting Equal Opportunities for Women in Researchand Teaching).
This research project has also been supported by funds to Emerging Field Project “QuantumGeometry” from the FAU Erlangen-Nürnberg within its Emerging Fields Initiative.

3



Contents

Abstract: Projective State Spaces for Theories of Connections 1

Zusammenfassung: Projektive Zustandsräume für Theorien von Zusammenhängen 2

Acknowledgements 3

Introduction 7
Context 7
Outline 9
Notations and conventions 12

Projective Limits of State Spaces 17

Chapter 1 – Classical Formalism 17

1 Introduction 17

2 Projective limits of classical phase spaces 182.1 Projective systems of classical phase spaces . . . . . . . . . . . . . . . . . . . . . . . . . 182.2 Maps between classical state spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212.3 Factorizing systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3 Constraints and regularization 343.1 Elementary reductions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353.2 Regularized reductions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Chapter 2 – Quantum Formalism 60

4 Introduction 60

5 Projective limits of quantum state spaces 615.1 Projective systems of quantum state spaces . . . . . . . . . . . . . . . . . . . . . . . . . 625.2 Maps between quantum state spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6 Quantization in special cases 836.1 Position representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 846.2 Holomorphic representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
7 Discussion: toward a systematic quantization framework 104

4



Projective Structure for the Holonomy-Flux Algebra 106

Chapter 3 – Classical Theory 106

8 Introduction 106

9 Theories of connections 1079.1 Phase space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1089.2 Holonomy-flux algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
10 Factorizing system 12010.1 Definition of the label set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12210.2 Directedness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13510.3 Factorization maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
Chapter 4 – Quantum Theory 166

11 Introduction 166

12 Quantum state space 16712.1 Quantization in the position representation . . . . . . . . . . . . . . . . . . . . . . . . . 16812.2 Relation to the Ashtekar-Lewandowski Hilbert space . . . . . . . . . . . . . . . . . . . 172
13 Discussion: imposing the constraints (1/2) 201

Applications and Toy-Models 203

Chapter 5 – Examples of Constraints Regularizations 203

14 Introduction 203

15 Linear constraints on a Kähler vector space 204

16 Second quantization of the Schrödinger equation 21316.1 Classical theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21316.2 Quantum theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
Chapter 6 – Searching for Semi-Classical States 241

17 Introduction 241

18 Obstructions to the construction of narrow states 24218.1 Projective families of characteristic functions . . . . . . . . . . . . . . . . . . . . . . . . 24318.2 A no-go result in the G = R case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
19 Quasi-cofinal sequences 26619.1 Factorized states on cofinal sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . 267

5



19.2 Quasi-cofinal sequences: definition and properties . . . . . . . . . . . . . . . . . . . . 27719.3 One-dimensional toy-model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286
20 Discussion: imposing the constraints (2/2) 303

Conclusion 304
Summary 304
Outlook 305

Appendix 307

A Classical constrained systems 307

B Geometric quantization 312B.1 Prequantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312B.2 Holomorphic representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315B.3 Position representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318
C Wigner characteristic functions 325C.1 Weakly continuous representations of the Weyl algebra . . . . . . . . . . . . . . . . . 325C.2 The Wigner-Weyl transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333
References 348

6



Introduction

Context

Projective State Spaces in Quantum Field Theory

An important step toward the quantization of a classical theory is the choice of a home for the
kinematical quantum states: typically, we look for an Hilbert space supporting a representation of
an algebra of selected kinematical observables. As long as we only deal with finitely many degrees
of freedom, a comprehensive survey of the available options might still be within reach [98] . But
the extent and implications of this initial choice tend to get dramatically more involved in the case
of a field theory, where the very large algebra of kinematical observables can give rise to an intricate
forest of representations. Unfortunately, it is hard to concisely formalize which requirements the
elected representation should satisfy to ensure that it supports the quantum states we are ultimately
interested in, eg. the states that solve the dynamics.

Given these concerns, one may wonder whether we could dispense from committing ourselves
to a definite representation, while still having at our disposal an explicit and constructive descrip-
tion of the state space, suitable for concrete calculations and further exploration of the quantum
theory. In the present work, we will investigate such an alternative way of building the space of
kinematical states, first introduced by Jerzy Kijowski in the late ‘70s [48] and further developed
by Andrzej Okołów recently [66, 68, 69]. Instead of describing states as density matrices over a
single big Hilbert space, we will construct them as projective families of density matrices over small
‘building block’ Hilbert spaces (subsection 5.1). The projections are given as partial traces, so that
each small Hilbert space can be physically interpreted as selecting out specific degrees of freedom.
This formalism allows us to rely more heavily on the physical interpretation of the kinematical
observables, namely how they are measured in practice. This tends to give state spaces that are
bigger (subsection 5.2), but nevertheless technically easier to handle. In particular, we thus start
with better chances to find the states we are looking for.

Canonical Quantum Gravity

Our main motivation to study this projective framework will be its possible application to quan-
tum gravity. More specifically, we will focus on the canonical quantization of general relativity,
starting from an Hamiltonian formulation thereof. Such a formulation is provided by the ADM
formalism (introduced in [70] by Arnowitt, Deser and Misner), which relies on a phase space
describing 3-dimensional spacelike slices. The 3-geometry along the slice is parametrized by the
configuration variables, while its extrinsic curvature (controlling the shape it should have when
embedded in an ambient 4-dimensional spacetime) plays the role of the conjugate momenta.

On this ‘kinematical’ phase space, the dynamics is recovered by imposing constraints (see [105,
section 1.7] and appendix A). Like in gauge theories, these constraints not only delineate a physically
admissible region in phase space (aka. the constraint surface), their Hamiltonian flow also generates
gauge transformations along this constraint surface. A given spatial slice belongs to the constraint
surface if it can be cut out of a 4-geometry fulfilling Einstein equations, while 2 different slices
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are in the same gauge orbit as soon as they can be cut out of the same Einstein geometry.
Hence, each orbit on the constraint surface can be identified with a spacetime obeying the Einstein
equations, and the group of 4-diffeomorphisms acts as the gauge group running through the orbit.
It is common to distinguish between the ‘diffeomorphism’ constraints, generating 3-diffeomorphisms
along the spatial slice, and the ‘Hamiltonian’ ones, generating deformations and displacements of
the slice (thus implementing the evolution in timelike direction).

Instead of trying to directly quantize the canonical theory in terms of the ADM variables (an
approach known as geometrodynamics [103, 104] ), Loop Quantum Gravity (LQG, [4, 92] ) has been
able to push the quantization program further through the use of the Ashtekar variables [3, 12] ,
which provide a reformulation in a language closer to Yang-Mills theory (provided additional
‘Gauss’ constraints are imposed to handle the corresponding gauge invariance, see section 8 for
more details).

The Ashtekar-Lewandowski Hilbert Space

The Hilbert space used in LQG is built around the Ashtekar-Lewandowski vacuum [6, 19, 8],
which is an eigenstate of the spatial geometry: heuristically, the spatial slice it describes has a
degenerate 3-geometry (ie. vanishing volume) and a totally indeterminate extrinsic curvature. The
quantum states are then obtained by adding discrete quantum excitations on top of this vacuum:
namely, quanta of geometry supported on of one-dimensional ‘edges’, so that a typical state is
supported on a finite collection of edges (aka. a graph). This leads to a discrete spectrum for the
geometrical operators measuring areas or volumes along the spatial slice [78, 7] , in accordance to
the physical intuition that, at Planck scale, space should no longer be smooth.

Yet, this nearly complete degeneracy of the spatial geometry, and the maximal uncertainties
attached to most components of its conjugate variable (the extrinsic curvature) in any state of the
Ashtekar-Lewandowski Hilbert space, make the study of the semi-classical regime problematic (see
[51, 36] for a discussion of this problem, together with proposals to circumvent it). We would
like to associate to any point in the classical phase space a corresponding quantum state, suitably
peaked around that point, in both configuration and momentum variables [90] . The trouble is that
an intrinsic asymmetry has been introduced in the role played by the positions versus momenta,
as the vacuum was chosen as an eigenstate of the spatial geometry [11, 23, 33] : no matter how
many discrete excitations are piled up on top of this vacuum, it will never be sufficient to mask
this initial bias.

Similar issues arise when trying to rigorously derive symmetry reduced models [16, 30, 18] out
of the full theory: an important goal here would be to obtain quantum states in the full state space
that would be almost symmetric both in configuration and momentum variables, and that we could
identify with the states of the reduced theory. Setting up such quasi-symmetric states would require
techniques akin to the construction of quasi-classical ones [27] .

Note that the situation here differs crucially from the Fock representation used when doing
quantum field theory on a flat Minkowski background: while the Fock space also describe discrete
excitations on top of a vacuum state, its vacuum is a coherent state with respect to a certain set
of canonically conjugate variables (as provided by mode decomposition of the fields), so it does
not favor half of the variables to the detriment of the others. This is however not an option for
LQG, because the Ashtekar-Lewandowski vacuum is the only diffeomorphism invariant state at our
disposal [55]: using a genuinely non-diffeomorphism-invariant state as vacuum would (in much
the same way as just argued) lead to a quantum theory breaking diffeomorphism invariance, thus
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ruining its background independence, which is a core design principle of the LQG approach [75, 77].

Solving the Theory

Finally, one should also consider the dynamics. Following Dirac prescription [22] , the constraints
of the classical theory should be promoted to operators on the so far purely kinematical Hilbert
space: the quantum states that annihilate them are the physically admissible ones. The discrete-
ness of the spatial geometry in the Ashtekar-Lewandowski state space allows for the transparent
resolution of those constraints which act along the the spatial slice (ie. the Gauss and diffeomor-
phism ones). Although the solutions of the diffeomorphism constraints do not directly belong to the
Ashtekar-Lewandowski Hilbert space (except for the vacuum itself), but rather to its algebraic dual
[37] , the Hilbert space they span can be conveniently described in terms of embeddingless graphs
(ie. graphs whose actual location within the spatial slice is left unspecified).

On the other hand, the Hamiltonian constraints mix non-trivially the position and momentum
variables, making them hard to handle on the Ashtekar-Lewandowski Hilbert space: quantum states
that were initially graph-supported are expected to spread when evolving the spatial slice. The space
of solutions has therefore to be reconstructed using sophisticated techniques [91, 36] and is not yet
fully understood. Moreover, this contributes to the limited usefulness of truncated semi-classical
states, ie. states that would be semi-classical only with respect to selected components of the spatial
geometry and extrinsic curvature: such states would span a subspace transversal to the Hamiltonian
flow (due to the so-called ‘graph-changing’ property of the Hamiltonian constraint operator [88] )
and would thus immediately lose their semi-classicality under time-directed evolution.

Outline

The projective approach to quantum field theory pointed out above was originally proposed in the
context of linear configuration spaces [48, 66, 68], and could thus be applied to the quantification
of general relativity rewritten using real-valued connections (a formulation known as teleparallel
gravity, see [67, 69] ). In the present work, we will develop this projective formalism at a fairly
general level, laying the stage for a similar treatment of theories of connections on arbitrary gauge
groups: this includes general relativity in the Ashtekar formulation, but could have applications
to other gauge theories as well. We will illustrate on simple toy-models how this line of research
could incorporate the dynamics and contribute to the study of the semi-classical limit.

Projective Limits of State Spaces

We will start by a detailed exposition of projective limits of phase spaces [89] (section 2), that
build the natural classical counterpart of projective quantum state spaces (section 5). This will give
us the opportunity to discuss the physical motivations for this approach. Regarding the quantization
of classical projective structures into quantum ones, we will extend previous results by Okołów [68]
to configuration spaces given by simply-connected Lie groups, and to holomorphic quantization of
complex phase spaces (section 6).
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Specific difficulties arise in this context when trying to implement the dynamics (aka. to impose
the constraints, as explained above). In section 3, we will take advantage of having at our disposal
a classical precursor of the formalism to analyze this question without having to deal at the same
time with the inherent subtleties of the quantum dynamics. We will outline a suitable strategy,
with the aim of doing justice both to the deep physical meaning of the issues at hand and to their
practical significance for computations.

To support the claim that this formalism could help designing a quantum state space holding
the states we need, we will also, in subsection 5.2, inspect in detail how quantum projective state
spaces relate to some standard constructions (namely, inductive limits and infinite tensor products
of Hilbert spaces).

Projective Structure for the Holonomy-Flux Algebra

As mentioned, the description, within this projective framework, of a theory of Abelian con-
nections has been developed by Okołów in [68, section 5] and [69] , an important insight being
to use ‘building blocks’ labeled by combinations of edges and surfaces (instead of edges only as
in the case of the Ashtekar-Lewandowski Hilbert space). We will generalize this construction to
an arbitrary gauge group G (in particular, G is neither assumed to be Abelian nor compact). This
involves refining the definition of the label set, as well as deriving explicit formulas to relate the
‘small’ Hilbert spaces attached to different labels (section 10 and subsection 12.1).

If the gauge group happens to be compact, we have at our disposal the well-established Ashtekar-
Lewandowski Hilbert space. We will show that the quantum state space constructed using projective
techniques can be thought as a natural extension of the space of density matrices over the Ashtekar-
Lewandowski Hilbert space (subsection 12.2), while achieving a balanced treatment of configuration
and momentum variables, as is manifest from the classical precursors of both formalisms (projective
limits of phase spaces vs. configuration spaces).

However, for the possibilities offered by this approach to be fully exploited, one should be able to
solve the Gauss and diffeomorphism constraints within the projective framework, before eventually
turning to the Hamiltonian ones (see above). The difficulty is that the techniques developed for
the standard LQG Hilbert space [8] cannot be directly transposed, as they rely strongly on having
states characterized by discrete excitations of the spatial geometry. We will, in sections 13 and 20,
sketch paths to explore this question.

Applications and Toy-Models

In the last part, we will review some work in progress built upon the formalism set up so far.

In view of handling the dynamics of LQG, we will test in two simple toy-models the strategy to
implement constraints in the projective framework, that was proposed in section 3. The first one
(section 15) is a very basic linear model, meant as an illustration of the general procedure, and
we will only discuss it at the classical level. In the second one (section 16), we will reformulate
the Schrödinger equation, treated as a classical field theory, within this projective framework, and
proceed to its (non-relativistic) second quantization. We will then be able to reproduce the physical
content of the usual Fock quantization.

Finally, we will turn to the question of identifying semi-classical states within the state space set
up in the previous part. As we will see (section 18), treating configuration and momentum variables
on equal footing, while a prerequisite for the construction of such states, is not yet sufficient:
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further obstructions lies in the algebra of observables itself (aka. independently of our choice of
representation for this algebra). More precisely, these difficulties are tied to the fact that we are
dealing with a continuum of observables. This motivates the development presented in section 19,
where we will outline how a dense but discrete subalgebra of observables could be extracted while
preserving the universality and diffeomorphism invariance of the quantum theory.

Some very standard material is recalled in the appendices, mostly to fix notations and conventions
in a form suitable for their use in the main text. Content that is non original, but presumably less
well-known, has also been included for the shake of completeness, in particular:
• generalities about projective systems and the projective approach to quantum field theory in
subsections 2.1 and 2.2, and subsection 5.1;

• generalities about the structures underlying Loop Quantum Gravity in section 9, subsections 10.1
and 12.2;

as well as smaller items marked as such throughout the text.

Chap. 1, chap. 2, chaps. 3 and 4, and chap. 5 have been distributed as separate articles [53] through
the arXiv preprint repository (arxiv.org), respectively with the identifiers 1411.3589, 1411.3590,
1411.3592 and 1411.3591.
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Notations and conventions
Unless otherwise stated, all manifolds are smooth manifolds [54] , all maps between them aresmooth, and symplectic structures on them are smooth. All submanifolds are regular (ie. embed-ded) submanifolds [54, chapter 5] . Where infinite dimensional manifolds are considered, these areBanach-modeled smooth manifolds, and symplectic structures on them are assumed to be strongsymplectic structures [20, chap. VII].
Throughout the text, Σ will denote a finite-dimensional, analytic manifold (without boundary), dits dimension (d > 1), G a finite-dimensional Lie group and g its Lie algebra. Where additionalrestrictions on Σ or G are required, they are spelled out at the beginning of the affected sectionsor subsections.

Index of Notations

Symbol Description Reference
(L,M, π)↓ projective system of phase spaces def. 2.3(L, X, φ)× classical factorizing system def. 2.11(L,H,Φ)⊗ projective system of quantum state spaces def. 5.1(L,M, π, δ)DYN elementary reduction of (L,MKIN, πKIN)↓ def. 3.7(L,M, π, δ)DYN,E regularized reduction of (L,MKIN, πKIN)↓ def. 3.16
A smooth connection on P def. 9.2
A⊗(L,H,Φ) algebra of operators over S⊗(L,H,Φ) def. 5.3
A
⊗(L,H,Φ) C ∗-algebra of operators over S⊗(L,H,Φ) prop. 5.4

α mapping of observables dual to σ prop. 2.5
B(d) closed unit ball in Rd def. 9.7
B(M) bounded functions on M def. A.2
B prequantum bundle def. B.2[A, B] commutators of two operators A and B def. B.3
C configuration space def. 2.15
CΣ space of smooth connections on P def. 9.2
C∞(M, R) space of smooth real-valued functions on M def. 2.4
D dense domain of a possibly unbounded operator def. B.3
∇ covariant derivative def. B.1
D∇ curvature 2-form def. B.1
δ symplectic reduction MSHELL →MDYN def. A.1
d dimension of Σ chap. 3divµ X divergence of a vector field X with respect to the measure

µ
def. B.12
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Symbol Description Reference
E smooth electric field def. 9.3
E directed set indexing a regularization scheme def. 3.16
ĕ encharted edge in Σ def. 9.6
e edge, ie. element of Ledges def. 9.6
b(e) starting point of an edge e def. 9.6
f (e) ending point of an edge e def. 9.6
r(e) range of an edge e def. 9.6
e−1 reversed edge of e prop. 10.1
e [p,p′ ] subedge of an edge e prop. 10.1
e2 ◦ e1 composition of edges prop. 10.2
F face in a profile prop. 10.9
F(λ) set of faces in a profile λ prop. 10.9
� ∈

{y , ↑, ↓
} positioning of an edge with respect to a surface prop. 10.6

Fy (λ) set of edges indifferent to a profile λ prop. 10.9
F free-standing face (ie. without reference to a profile) prop. 10.21
F⊥ set of edges indifferent to a face F prop. 10.21
f DYN dynamical observable arising from the kinematical observ-able f def. A.2
f̂ prequantization of an observable f def. B.3
f̂ µ position quantization of an observable f prop. B.14
G finite-dimensional Lie group chap. 3
G P-associated vector bundle with fiber g def. 9.2
g Lie algebra of G chap. 3
γ graph def. 10.3
H Hilbert space def. 5.1
〈 · , · 〉H scalar product on H def. 5.1
HpreQ prequantum Hilbert space L2(M→ B) def. B.3
HHolo Hilbert space of the holomorphic representation prop. B.6
HµPos Hilbert space of the position representation with measure

µ
def. B.13

HAL Ashtekar-Lewandowski Hilbert space prop. 12.7h(e,s,m) holonomy along e as an observable on the continuumphase space MΣ prop. 9.9
h(e,m) holonomy along e as an observable on the classical pro-jective state space S

↓(LHF,M,π)
prop. 10.27

ĥ(e,m) holonomy along e as an observable on the quantum pro-jective state space S⊗(LHF,H,Φ)
prop. 12.2
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Symbol Description Reference
ĥ(e,m)AL holonomy along e as an operator on HAL prop. 12.8
η label, ie. element of L def. 2.3
J complex structure on M def. B.5
L label set, ie. preordered, directed set def. 2.3
4 order on L def. 2.3
LHF label set for the holonomy-flux algebra def. 10.12
Ledges set of all analytical edges def. 9.6
L

(k)edges set of all C k-differentiable edges def. 12.3
Lfaces set of all faces prop. 10.21
Lgraphs set of all analytical graphs def. 10.3
Lprofls set of all profiles def. 10.10
Lsurfcs set of all surfaces def. 9.7
LAL label set for HAL prop. 12.4
L(aux) simplified one-dimensional version of LHF prop. 18.10
L(ext) extended label set, not necessarily directed def. 19.4
L[κ ] label set generated by a sequence (κn)n∈N def. 19.7
L Lie derivative def. B.12[X, Y ] Lie brackets of two vector fields X and Y prop. 2.10[ · , · ]g Lie brackets in g theorem 6.2
λ profile def. 10.10
M, N, . . . symplectic manifolds def. 2.1
M∞ (possibly infinite dimensional) phase space of the contin-uum theory def. 2.6
MΣ continuum phase space for a theory of connections def. 9.3
MKIN kinematical phase space def. A.1
MSHELL constraint surface def. A.1
MDYN reduced phase space def. A.1
MFIX gauge fixing surface in MSHELL prop. A.8
m smooth function G → R to be evaluated on holonomies prop. 9.9
µ smooth measure def. B.12
φ∗ µ push-forward measure def. 6.1
φ∗υ pullback of the 1-form υ def. 2.1
υ vector determined from the 1-form υ via υ = ΩM(υ, ·) def. 2.1
OHolo,C observables compatibles with the holomorphic quantization prop. B.7
OPos,C observables compatibles with the position quantization prop. B.14
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Symbol Description Reference
OPos real-valued observables compatibles with the positionquantization prop. B.14
O
↓(L,M,π) space of observables over S↓(L,M,π) def. 2.4

O⊗(L,H,Φ) space of observables over S⊗(L,H,Φ) prop. 5.5
P momentum space def. C.1
P principal fiber bundle subsection 9.1P(S,s,u) flux through S as an observable on the continuum phasespace MΣ prop. 9.9
P(F,u) flux through F as an observable on the classical projectivestate space S

↓(LHF,M,π)
prop. 10.27

P̂(F,u) flux through F as an observable on the quantum projectivestate space S⊗(LHF,H,Φ)
prop. 12.2

P̂(F,u)AL flux through F as an operator on HAL prop. 12.9
π bundle projection def. B.1
πη′→η projection Mη′ → Mη in a projective system of phasespaces def. 2.3
φη′→η factorizing map Xη′ → Xη′→η × Xη (η 4 η′) in a classicalfactorizing system def. 2.11
φη′′→η′→η three-spaces map Xη′′→η → Xη′′→η′ × Xη′→η (η 4 η′ 4 η′′)in a classical factorizing system def. 2.11
Φη′→η factorizing map Hη′ → Hη′→η⊗Hη (η 4 η′) in a projectivesystem of quantum state spaces def. 5.1
Φη′′→η′→η three-spaces map Hη′′→η → Hη′′→η′ ⊗Hη′→η (η 4 η′ 4 η′′)in a projective system of quantum state spaces def. 5.1
ρ density matrix, aka. (self-adjoint) positive semi-definite,traceclass operator or trace 1 def. 5.2
‖ρ‖1 trace norm of ρ lemma 5.10Σ finite-dimensional, analytic manifold (spatial slice) chap. 3
S
↓(L,M,π) classical projective state space def. 2.3

S⊗(L,H,Φ) quantum projective state space def. 5.2
S
⊗(L,H,Φ) projective limit of spaces of non-negative traceclass oper-ators def. 5.2

Ŝ⊗(L,H,Φ) space of all narrow quantum states (in the linear context) def. 18.5
S̆ encharted surface in Σ def. 9.7
S surface, ie. element of Lsurfcs def. 9.7
r(S) range of a surface S def. 9.7
s (local) cross-section of P def. 9.5
σ map between classical or quantum projective state spaces prop. 2.5
Tx(M) tangent space of M at x def. 2.1
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Symbol Description Reference
Tx f tangential map (aka. derivative) of f at x def. 2.1
T∞(M) space of smooth vector fields on M prop. B.7TrH trace or partial trace over H def. 5.2Trη′→η partial trace in a projective system of quantum state spaces def. 5.2Tr evaluation of an operator in a projective quantum state def. 5.3Tκ weakly continuous representation of the Weyl algebra def. C.3
T group of transformations def. 19.5
T. · action of a group element T ∈ T on projective quantumstates and observables def. 19.5
Uη , Uη′→η action of a group on a projective (pre)-system of quantumstate spaces def. 19.5
V
↓(L, (C,P), (Q,P)) space of projective families of covariance matrices (in thelinear context) def. 18.6

Wρ Wigner characteristic function of a density matrix ρ prop. C.7
W space of Wigner characteristic functions prop. C.6
W
↓(L,(C,P),(Q,P)) space of projective families of characteristic functions def. 18.2

Xf Hamiltonian vector field of f prop. 2.10
X f Hamiltonian vector field of f projected on the configurationspace prop. B.14
Ξ map P→ C∗ arising from Ω in the linear context def. C.1Xκ(s, t) generator in a weakly continuous representation of theWeyl algebra prop. C.4
χη matching of edges to their conjugate faces in a label η ∈

LHF def. 10.12
ΩM symplectic structure on M def. 2.1
{·, ·}M Poisson brackets on M prop. 2.2
ω volume form theorem 6.2
ζη′→η factorizing map Bη′→η×Bη → Bη′ (η 4 η′) in a factorizingsystem of prequantum bundles def. 6.8
ζη′′→η′→η three-spaces map Bη′′→η′ × Bη′→η → Bη′′→η (η 4 η′ 4 η′′)in a factorizing system of prequantum bundles def. 6.8
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Projective Limits of State Spaces

Chapter 1 – Classical Formalism

1. Introduction

The aim of this chapter is to describe the classical structures that, while underlying the con-
structions considered in previous works [48, 66, 68], have not been explicitly analyzed so far. The
discussion of the physical interpretation will follow closely the one that has been given in these
references.

The idea of the projective framework is to assemble a complicated classical theory (typically
a field theory) from a collection of easier, smaller, truncated classical theories, by appropriately
sewing them together. The motivation for this is twofold.

From the physical point of view, even when considering a theory with an infinite number of
degrees of freedom, any given realistic experiment will involve only a finite number of observables,
since measuring an infinite number of observables would require infinite time as well as infinite
memory space (in fact, this means that any experiment can only measure a finite number of boolean
observables, but we will not be that radical here, and will satisfy us with small truncated theories
that are described by finite dimensional phase spaces). We will therefore think of the small partial
theories as spanned by a finite number of elementary degrees of freedom. By "elementary", we
mean those that can be measured in one experimental step, hence the justification for the choice
of a collection of truncations should ultimately come from a careful analysis of what concrete
experiments actually measure.

From a technical point of view, the smaller and easier theories are meant to be a convenient
arena to develop systematic ways of calculating physical predictions. Indeed, a theoretical model
will then be optimally useful if it comes with finite algorithms prescribing how to compute, at a
given precision, the outcome of any arbitrary experiment.
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Note however that the intuitive understanding just sketched has some weak points. One of them
is that, even if we are considering only finitely many observables, it might occur that the Poisson-
algebra they are generating cannot live on a finite dimensional symplectic manifold. Our viewpoint
here is that this problem should not be relevant for the kinematical observables (these are supposed
to build an easy algebra).

Another problem is related to the formulation of deterministic predictions while considering only
finitely many degrees of freedom out of a field theory. In section 3, we will therefore refine the
framework to take into account the dynamics. If the equations of motion can be solved separately
within each building block of the kinematical state space, it is straightforward to obtain their space
of solutions, aka. the dynamical state space (subsection 3.1). Yet, this typically does not hold (we
can rarely write the exact dynamics in closed form within a finite truncation of a field theory).
So, we will have to regularize these equations over the kinematical projective structure, leading us
to consider a sequence of finer and finer regularizations (subsection 3.2). The key idea will then
be to define each dynamical state as a family of successive approximations, converging to some
exact solution of the field equations. In this way, the dynamical state space will naturally acquire
a projective structure, with projections mapping spaces of solutions obtained for more accurate
approximations of the dynamics into the ones obtained for lesser approximations (such projections
are reminiscent of the coarse graining maps, which play a prominent role in covariant approaches
[59] ).

2. Projective limits of classical phase spaces

Having a collection of partial theories is not enough, we need to say how to connect them together
in a consistent way (ie. we do not want our physical predictions to depend on the particular partial
theory in which we computed them). To this intend we will, in subsection 2.1, set up projective limits
of classical phase spaces (aka. of symplectic manifolds), and relate them to the infinite dimensional
phase spaces of classical field theories (subsection 2.2). An important observation is that such
projective limits admit, at least locally, a preferred factorized description (prop. 2.10). Therefore,
we will look more closely at those projective systems where the factorization holds globally: not
only they are often more convenient, they also reflect the core properties of the structures we
are considering, so they are well-suited to get a first hold of complex questions. This will be in
particular comfortable when turning to the quantum formalism in chap. 2, but we will always try
to sketch some ideas on how to strengthen those of our results that make explicit use of such a
global factorization (see in particular section 7 on this point).

2.1 Projective systems of classical phase spaces

To understand how a projective system can be assembled from truncations of a classical theory,
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we first consider two partial theories M and N, where M is a more detailed description of the
physical system at hand, in the sense that all degrees of freedom that are retained by N are also
retained by M. The link between them has then two dual aspects. On the one side, we want to
associate, with any state in M, a state in N, by forgetting the details we presently do not need. On
the other side, we want to identify the observables that can be defined on N with a subalgebra of
the ones that can be defined on M.

Given a specific experiment, any partial theory big enough to describe that experiment (ie hosting
at least all the observables involved in it) should lead to the same predictions. In other words, the
two identifications mentioned above (downward identification of the states and upward identifica-
tion of the observables) should intertwine the evaluation of an observable on a state.

These considerations lead to the following formulation of how some degrees of freedom, spanning
a symplectic manifold N, can be seen as being extracted out of a bigger symplectic manifold M:
what we need is a projection π : M → N, and we will mount observables on N to observables
on M by taking their pullback. We impose a compatibility condition between the projection π
and the symplectic structures of M and N to ensure that the Poisson bracket computed between
two observables in N is identified with the one computed between the corresponding observables
mounted in M.

Definition 2.1 A smooth, surjective map π : M → N between two smooth (possibly infinitedimensional) symplectic manifolds M,ΩM and N,ΩN is said to be compatible with the symplecticstructures iff:
∀x ∈M, ∀υ ∈ T ′π(x)(N), υ = Txπ (π∗υ) (2.1.1)

where T ′π(x)(N) is the topological dual of Tπ(x)(N), Txπ is the differential of π at x , and υ (resp. π∗υ)is the unique vector in Tπ(x)(N) (resp. Tx(M)) such that υ = ΩN,π(x)(υ, ·) (resp. π∗υ = ΩM,x(π∗υ, ·)).
Proposition 2.2 If π : M → N satisfies def. 2.1 and f , g : N → R are smooth maps on N, then
{f , g}N◦π = {f ◦ π, g ◦ π}M where {·, ·}N (resp. {·, ·}M) denotes the Poisson brackets on N (resp.
M).
Proof Eq. (2.1.1) is equivalent to:
∀x ∈M, ∀µ, υ ∈ T ∗π(x)(N), µ (υ) = π∗µ (π∗υ).Using the definition of the Poisson brackets, we therefore have:
∀x ∈M, {f , g}N ◦ π(x) = dgπ(x) (dfπ(x)) = d(g ◦ π)x (d(f ◦ π)x) = {f ◦ π, g ◦ π}M (x).

�

Next, the collection of partial theories, together with the projections between them, can be ar-
ranged into a structure of projective limit. Such a construction has been considered for example in
[89].

That the label set L indexing the partial theories should be directed is manifest if we go back
to the interpretation of these small theories as the arenas to describe specific experiments: if we
want to describe an elaborate experimental protocol, combining two sub-experiments, that can be
described respectively in Mη and Mη′ , we need a symplectic manifold Mη′′ , containing the degrees
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Mη′′

Mη′

Mη

πη′′→η′

πη′′→η

πη′→η

Figure 2.1 – Three-spaces consistency for projective systems of phase spaces

of freedom in Mη as well as the ones in Mη′′ , in order to model the full experiment. And the
three-spaces consistency condition (fig. 2.1) ensures that the connection between a bigger partial
theory Mη′′ and a smaller one Mη is unambiguous, namely that it coincides with the identification
we get if we perform the truncation in two successive steps, going first from Mη′′ to an intermediary
Mη′ and then from Mη′ to Mη.

With this structure for the state space, the observables naturally build an inductive limit, which is
consistent with the discussion above regarding the mounting of observables and indeed corresponds
to the standard construction when looking at functions on a projective limit.

Definition 2.3 A projective system of phase spaces is a triple (L, (Mη
)
η∈L ,

(
πη′→η

)
η4η′

) where:
1. L is a preordered, directed set (we denote the pre-order, ie. a reflexive and transitive binaryrelation, by 4, its inverse by <);
2. (Mη

)
η∈L is a family of symplectic manifolds indexed by L;

3. (πη′→η)η4η′ is a family of surjective maps πη′→η : Mη′ → Mη indexed by {η, η′ ∈ L | η 4 η′}such that πη′→η is compatible with the symplectic structures, πη→η = idMη and ∀η, η′, η′′ ∈
L, η 4 η′ 4 η′′ ⇒ πη′′→η = πη′→η ◦ πη′′→η′ .Whenever possible, we will use the shortened notation (L,M, π)↓ instead of (L, (Mη

)
η∈L ,

(
πη′→η

)
η4η′

).
The projective limit of (L,M, π)↓, denoted by S

↓(L,M,π), is the space:
S
↓(L,M,π) :=

(xη)η∈L ∈∏
η∈L

Mη

∣∣∣∣∣∣ ∀η 4 η′, πη′→η(xη′) = xη

.
On S

↓(L,M,π) we put the initial topology with respect to the family of projections (πη)η∈L where:
πη : S↓(L,M,π)→Mη(xη′)η′∈L 7→ xη =: [(xη′)η′∈L]η.

Definition 2.4 An observable over a projective limit of phase spaces S↓(L,M,π) is an equivalence classin ⋃
η∈L

C∞(Mη , R) for the equivalence relation defined by:
∀η, η′ ∈ L, ∀fη ∈ C∞(Mη , R), ∀fη′ ∈ C∞(Mη′ , R),
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fη ∼ fη′ ⇔
(
∃η′′ ∈ L / η 4 η′′, η′ 4 η′′ & fη ◦ πη′′→η = fη′ ◦ πη′′→η′

) (2.4.1)
The space of observables over S

↓(L,M,π) will be denoted by O
↓(L,M,π). The definition of the equiv-alence relation ensures that the evaluation f (x) = fη(xη) of an element of f = [fη]∼ of O↓(L,M,π) on apoint x = (xη)η∈L in S

↓(L,M,π) is well-defined. From prop. 2.2 the Poisson bracket of two elementsof O↓(L,M,π) is well-defined as an element of O↓(L,M,π) (∀η′ < η, fη ◦ πη′→η ∈ [fη]∼, hence, L beingdirected, we can find a common label to compute the Poisson bracket).
2.2 Maps between classical state spaces

A question that occurs frequently when working with the structure introduced above, is to ask
what happens if we restrict ourselves to a directed subset L′ of the label set L. It is immediate that
a state

(
xη
)
η∈L in the projective structure based on L defines a state

(
xη
)
η∈L′ in the one based on

L′, simply by throwing away all the xη for η ∈ L \L′. But this map from S
↓(L,M,π) into S

↓(L′,M,π) will
in general neither be injective nor surjective.

The injectivity might fail because the structure based on L′ retains less observables than the
structure based on L, and states that can, thanks to these additional observables, be distinguished
in the latter may be indistinguishable in the former. That also the surjectivity might fails is more
subtle: it can occur if L has a label η that is above an infinite number of labels in L′. Then, given

a state
(
xη
)
η∈L′ in S

↓(L′,M,π), it may indeed not be possible to find an xη that will project correctly on

all the xη′ for η′ ∈ L with η′ 4 η.

In the particular case of L′ being cofinal in L, we can however completely identify the two
projective structure, since we can reconstruct any thrown away xη for η ∈ L \ L′ by projecting
down from some η′ ∈ L′ above η.

Proposition 2.5 Let (L,M, π)↓ be a projective system of phase spaces and let L′ be a directedsubset of L. We define the map:
σ : S↓(L,M,π)→ S

↓(L′,M,π)(
xη
)
η∈L 7→

(
xη
)
η∈L′

.
Then, we have a map α : O↓(L′,M,π) → O

↓(L,M,π) such that:
∀x ∈ S

↓(L,M,π), ∀f ∈ O
↓(L′,M,π), α(f )(x) = f (σ (x)) , (2.5.1)and:

∀f, g ∈ O
↓(L′,M,π), {α(f ), α(g)} = α

(
{f , g}

) . (2.5.2)
If L′ is cofinal in L, we have in addition that σ and α are bijective maps.
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Proof It’s an immediate check that σ is indeed valued in S
↓(L′,M,π).Then, for f = [fη]∼,L′ ∈ O

↓(L′,M,π), we define:
α(f ) = [fη]∼,L for fη a representative of f .

We have:
∀η, η′ ∈ L′, ∀fη ∈ C∞(Mη , R), ∀fη′ ∈ C∞(Mη′, R), fη ∼L′ fη′ ⇒ fη ∼L fη′ ,hence α is well-defined as a map O

↓(L′,M,π) → O
↓(L,M,π) .Eq. (2.5.1) and eq. (2.5.2) hold because we can choose any representative we want to carry outthe evaluation or to compute the Poisson brackets.We now suppose that L is cofinal. Then, we can define:

σ̃ : S↓(L′,M,π)→ S
↓(L,M,π)(

xη
)
η∈L′ 7→

(
x̃η
)
η∈L

,
where for η ∈ L, x̃η = πη′→η xη′ , with η′ ∈ L′ and η′ < η. If η′′ is an other element of L′ such that
η′′ < η, there exists η′′′ ∈ L′ / η′ 4 η′′′ & η′′ 4 η′′′ (L′ is directed by hypothesis), hence:

πη′→η xη′ = πη′→η πη′′′→η′ xη′′′ = πη′′′→η xη′′′ = πη′′→η πη′′′→η′′ xη′′′ = πη′′→η xη′′ .If η ∈ L′, we can choose η = η′, so that x̃η = xη, therefore σ ◦ σ̃ = id
S
↓(L′ ,M,π) . On the other hand, if

there exists an element (xη)η∈L ∈ S
↓(L,M,π), such that ∀η′ ∈ L′, xη′ = xη′ , then x̃η = πη′→η xη′ = xη,therefore σ̃ ◦ σ = id

S
↓(L,M,π) .

Then, for f = [fη]∼,L ∈ O
↓(L,M,π), we define:

α̃(f ) = [fη ◦ πη′→η]∼,L′ ,for fη a representative of f and η′ ∈ L′ such that η′ < η. If η′′ is an other element of L′ such that
η′′ < η, there exists η′′′ ∈ L′ / η′ 4 η′′′ & η′′ 4 η′′′ (L′ is directed by hypothesis), hence:(fη ◦ πη′→η) ◦ πη′′′→η′ = fη ◦ πη′′′→η = (fη ◦ πη′′→η) ◦ πη′′′→η′′ ,so that fη ◦ πη′→η ∼L′ fη ◦ πη′′→η .If fκ is an other representative of f , there exists µ ∈ L / µ < η & µ < κ such that fη ◦ πµ→η =
fκ ◦ πµ→κ . Since L′ is cofinal in L, we can choose µ′ ∈ L such that µ′ < µ, and we have:

fη ◦ πµ′→η = fη ◦ πµ→η ◦ πµ′→µ = fκ ◦ πµ→κ ◦ πµ′→µ = fκ ◦ πµ′→κ ,
hence α̃ is well-defined as a map O

↓(L,M,π) → O
↓(L′,M,π) .If fη is a representative of f with η ∈ L′, we can choose η′ = η, so that α̃(f ) = [fη]∼,L′ , therefore

α̃ ◦ α = id
O
↓(L′ ,M,π) . On the other hand, we have for all η ∈ L and all η′ ∈ L with η′ < η,[fη ◦ πη′→η]∼,L = [fη]∼,L, therefore α ◦ α̃ = id

O
↓(L,M,π) . �

We can now rewrite in terms of the concepts we have introduced the program that has been
followed in [48, 66, 68]. When considering a field theory constructed on an infinite dimensional
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manifold M∞, we will first, relying on our understanding of how physical effects are measured in
practice, undertake to identify what the elementary observables should be, and try to construct a
corresponding collection of interconnected partial theories, where each partial theory Mη will be
associated to a finite subset of elementary observables (those that can be defined on Mη, ie. that
only depend on the degrees of freedom retained by Mη). Since we have naturally a projection from

M∞ into each partial theory Mη, we also immediately have a map from M∞ into S
↓(L,M,π).

If the set of all elementary observables separate the points of M∞, then this map will be injective.
Moreover, the projective limit of phase spaces will provide an extension of M∞ in the sense that

M∞ can be identified with a dense subspace of S↓(L,M,π).
Note that choosing a collection of elementary observables is not the same as choosing preferred

coordinates on M∞, for the construction here does not require the elementary observables to be
independent, they can form an overdetermined system. This can make physically a crucial difference:
to illustrate this point, one can think at the set of elementary observables as analogous to the set of
all the linear forms on a vector space, while preferred coordinates would correspond to the choice
of a basis (compare the two examples given in chap. 5 of projective structures implemented along
these lines: the model in section 15 relies on a choice of basis, while the one in section 16 does
not). The set of all linear forms encodes nothing less but nothing more than the linear structure of
the vector space, and this structure might indeed have a deep physical relevance, while we probably
want to avoid relying on a preferred basis, in order not to break the invariance under isomorphisms.

Definition 2.6 We say that a (possibly infinite dimensional) symplectic manifold M∞ is renderedby a projective system of phase spaces (L,M, π)↓ if for all η ∈ L there exists an application
π∞→η : M∞ →Mη such that:1. ∀η ∈ L, π∞→η is surjective and compatible with the symplectic structures;
2. ∀η 4 η′ ∈ L, π∞→η = πη′→η ◦ π∞→η′ .Hence, we have a projective system of phase spaces (L t {∞} ,M, π)↓, where we extend thepreorder of L to L t {∞} by requiring ∀η ∈ L, ∞ � η. From prop. 2.5, we have maps σ↘ :
S
↓(Lt{∞},M,π) → S

↓(L,M,π) and σ−1
∞ : S↓({∞},M,π) → S

↓(Lt{∞},M,π) (since {∞} is cofinal in L t {∞}), soby identifying S
↓({∞},M,π) with M∞, we define:

σ↓ := σ↘ ◦ σ−1
∞ : M∞ → S

↓(L,M,π) .Similarly, we have α↖ : O
↓(L,M,π) → O

↓(Lt{∞},M,π) and α−1
∞ : O

↓(Lt{∞},M,π) → O
↓({∞},M,π), so byidentifying O

↓({∞},M,π) with C∞(M∞, R), we define:
α↑ := α−1

∞ ◦ α↖ : O↓(L,M,π) → C∞(M∞, R) .
Proposition 2.7 With the notations of def. 2.6, σ↓ 〈M∞〉 is dense in S

↓(L,M,π).
Proof Let (xη)η∈L ∈ S

↓(L,M,π). For η ∈ L, we choose yη ∈ M∞ such that π∞→η(yη) = xη (this ispossible, since π∞→η is surjective). We have:
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∀η ∈ L, ∀η′ < η,
[
σ↓
(
yη′
)]

η
= π∞→η

(
yη′
) = πη′→η ◦ π∞→η′

(
yη′
) = πη′→η

(
xη′
) = xη .

Hence, the net (σ↓ (yη′))
η′∈L

converges in S
↓(L,M,π) to (xη)η∈L , therefore (xη)η∈L ∈ Im σ↓ . �

We close this subsection by mentioning the construction of a different kind of maps between
projective systems of phase spaces, that will be of interest when dealing with concrete examples.
Indeed, we will often encounter the situation of having a projective system that has been originally
constructed over a very large and complicated label set (in particular this can be a side-effect of
the way we will handle constraints, as exhibited in section 3), but whose structure happens to
be considerably simpler, because we can group the labels into classes partitioning L, in such a
way that the projective consistency conditions force a symplectomorphic identification between the
manifolds Mη for all η belonging to the same class. Then, we probably want to define a label set
L• by quotienting L according to those classes, and to identify the original projective system on L

with an easier one built on L•.

For example, suppose that the elements of L are pairs (ε, θ), ordered in the product order
(aka. (ε, θ) 4 (ε′, θ′) ⇔ ε 4 ε′ & θ 4 θ ). Now, if it turns out that M(ε,θ) only depends on ε
and π(ε′,θ′)→(ε,θ) only on ε and ε′, then the projective condition on the states will actually impose
x(ε,θ1) = x(ε,θ2). Thus this projective limit is in reality just a projective limit on the set of all ε.

This is a tool that we will use repeatedly in chap. 5 (and whose equivalent at the quantum level
will be instrumental in the result of theorem 12.11).

Proposition 2.8 Let L and L• be directed preordered sets and assume that we are given:
1. a surjective map ` : L→ L• such that ∀η 4 η′ ∈ L, `(η) 4 `(η′) ;
2. a projective system of phase spaces (L•, M•, π•)↓ on L•;
3. and for all η ∈ L, a symplectic manifold Mη together with a symplectomorphism µη : Mη →

M•
`(η) .Then, defining for all η 4 η′ ∈ L the projection:
πη′→η := µ−1

η ◦ π•`(η′)→`(η) ◦ µη′ , (2.8.1)
(L, M, π)↓ is a projective system of phase spaces and the map:

κ : S
↓(L•,M•,π•) → S

↓(L,M,π)(
x•η•
)
η•∈L• 7→

(
µ−1
η

(
x•`(η)
))

η∈L

, (2.8.2)
is bijective. Moreover, there exists a bijective map λ : O↓(L,M,π) → O

↓(L•,M•,π•) such that:
∀x• ∈ S

↓(L•,M•,π•), ∀f ∈ O
↓(L,M,π), λ(f )(x•) = f (κ(x•)) . (2.8.3)

Proof First, we check that κ is well-defined. Let (x•η•)η•∈L• ∈ S
↓(L•,M•,π•) and let η 4 η′ ∈ L. Wehave `(η) 4 `(η′) and from eq. (2.8.1):
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πη′→η
(
µ−1
η′
(
x•`(η′))) = µ−1

η ◦ π•`(η′)→`(η) (x•`(η′)) = µ−1
η
(
x•`(η)) ,

hence (µ−1
η
(
x•`(η)))η∈L ∈ S

↓(L,M,π) .To prove that κ is bijective, we define:
κ̃ : S

↓(L,M,π) → S
↓(L•,M•,π•)(

xη
)
η∈L 7→

(
x•η•
)
η•∈L•

,
where ∀η• ∈ L•, x•η• := µη

(
xη
) for any η such that `(η) = η• (making use of the surjectivity of `).

x•η• does not depend on the choice of η ∈ `−1 〈η•〉; indeed, if `(η) = `(η′), there exists η′′ ∈ L suchthat η′′ < η, η′, hence:
µη
(
xη
) = µη ◦ πη′′→η

(
xη′′
) = π•`(η′′)→`(η) ◦ µη′′ (xη′′)

= π•`(η′′)→`(η′) ◦ µη′′ (xη′′) = µη′ ◦ πη′′→η′
(
xη′′
) = µη′

(
xη′
) .And by construction of κ̃ , we have κ ◦ κ̃ = id

S
↓(L,M,π) as well as κ̃ ◦ κ = id

S
↓(L•,M•,π•) .Now, we define λ by:

λ : O
↓(L,M,π) → O

↓(L•,M•,π•)[fη]∼ 7→ [
fη ◦ µ−1

η
]
∼

.
λ is well-defined, for we have:
∀η, η′ ∈ L, fη ∼ fη′ ⇔

(
∃η′′ < η′, η / fη ◦ πη′′→η = fη′ ◦ πη′′→η′

)
⇔

(
∃η′′ < η′, η / fη ◦ µ−1

η ◦ π•`(η′′)→`(η) = fη′ ◦ µ−1
η′ ◦ π•`(η′′)→`(η′))

⇒
(
fη ◦ µ−1

η ∼ fη′ ◦ µ−1
η′
) .And by construction of λ, eq. (2.8.3) is fulfilled.Finally, to prove that λ is bijective, we construct a map λ̃ by:

λ̃ : O
↓(L•,M•,π•) → O

↓(L,M,π)[
f •η•
]
∼ 7→ [fη]∼ ,

where fη is defined for any η such that `(η) = η• by fη = f •η• ◦ µη . To check that λ̃ is well-defined, let η, η′ ∈ L such that there exist f •`(η), f •`(η′) ∈ [f •η•]∼ (note that this also covers the case
`(η) = `(η′) = η•). Then, there exists η•′′ such that:

f •`(η) ◦ π•η•′′→`(η) = f •`(η′) ◦ π•η•′′→`(η′) ,and, since ` is surjective, there exists η′′ ∈ L such that `(η′′) = η•′′. Next, using that L is a directedset, there exists η′′′ ∈ L with η′′′ < η, η′, η′′. Therefore, we have:
f •`(η) ◦ π•`(η′′′)→`(η) = f •`(η′) ◦ π•`(η′′′)→`(η′)

f •`(η) ◦ µη ◦ πη′′′→η = f •`(η′) ◦ µη′ ◦ πη′′′→η′
f •`(η) ◦ µη ∼ f •`(η′) ◦ µη′ .
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And by construction of λ̃, we have λ̃ ◦ λ = id
O
↓(L,M,π) as well as λ ◦ λ̃ = id

O
↓(L•,M•,π•) . �

Proposition 2.9 The previous result still holds if, instead of requiring ` to be surjective, we simplyrequire ` 〈L〉 to be a cofinal part of L•.
Proof This follows by combining prop. 2.8 with prop. 2.5. �

2.3 Factorizing systems

For technical convenience, we will often specialize to a particular class of projective systems
of phase phases, namely the situation where for any η 4 η′, the symplectic manifold Mη′ can be
identified with the Cartesian product of Mη with a symplectic manifold Mη′→η (in other words the
discarded degrees of freedom can be collected into a phase space Mη′→η).

This restriction is in fact not as radical as one could first think, for given a projection π : M→ N

as in def. 2.1, M can always be locally written as a Cartesian product of symplectic manifolds in
such a way that π correspond to the projection map on one factor of the product. Moreover, there
is only one (local) decomposition having this property.

At the level of observables, writing M as a Cartesian product N⊥ × N implies that the algebra
O′ of all observables over M is generated by O ∪ O⊥, with O the subalgebra of O′ defined by the
observables over N and O⊥ by the ones over N⊥. And asking the symplectic structure on M to
agree with the symplectic structure on the Cartesian product moreover requires that any observable
in O Poisson-commutes with any observable in O⊥. This is the reason why, at least locally, the
symplectic structure on M prescribes how to choose a subalgebra O⊥ completing O: O⊥ has to be
the set of all observables having vanishing Poisson brackets with any observable in O.

To understand better why this factorization of M will not always hold globally, we can examine
how the proof of prop. 2.10 below is done: what we have is a foliation of M, of which each leaf is
locally diffeomorphic to N via π. It is precisely when this local diffeomorphic identification fails to
be a global one, that we will not get a global factorization. This can happen at two different levels.
First, the restriction of π to a given leaf is not necessarily a covering map, although it is locally
diffeomorphic: there can be ‘completeness’ issues, as exemplified by the ad hoc situation where
M = {(x1, x2; p1, p2) ∣∣ |x2| < exp(x1)} ⊂ T ∗(R2) and N = {(x1; p1)} ⊂ T ∗(R). Second, a covering
map need not be bijective, unless N is simply-connected: for example, if M is a symplectomorphic
multiple cover of N, it provides a projection that is compatible with the symplectic structures in the
sense of def. 2.1, but there is no corresponding factorization.

Unless otherwise stated, all manifolds considered in the present subsection will be finite dimen-sional manifolds.
Proposition 2.10 Let M, N be finite dimensional symplectic manifolds and suppose that thereexists π : M→ N satisfying def. 2.1.Then, for x ∈M, there exist an open neighborhood U of x in M, an open neighborhood V of π(x)in N, a manifold W and a symplectic structure ΩW on W such that there exists a diffeomorphism
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Φ : V×W→ U satisfying ∀y ∈ V, ∀w ∈W, π ◦ Φ(y,w) = y and Φ∗ΩM = ΩN × ΩW.Moreover, Φ is unique in the following sense: if U′ is an open subset of U, V′ is a connectedopen subspace of V, W′ is a symplectic manifold and Φ′ : V′ ×W′ → U′ is a symplectomorphismsuch that ∀y ∈ V′, ∀z ∈W′, π ◦Φ′(y, z) = y, then there exists a symplectomorphism ψ : W′ →W′′(with W′′ an open subset of W) such that ∀y ∈ V′, ∀z ∈W′, Φ′(y, z) = Φ(y, ψ(z)).
Proof Existence. We call D = dim(M), d = dim(N) and n = D − d. For all x ∈M, we define:

Wx = {w ∈ Tx(M) | Txπ(w) = 0} and Vx = {v ∈ Tx(M) | ∀w ∈ Wx, ΩM,x(v, w) = 0}.We have ∀υ ∈ T ∗π(x)(N), ∀w ∈ Wx, ΩM,x(π∗υ, w) = υ◦Txπ(w) = 0, hence ∀υ ∈ T ∗π(x)(N), π∗υ ∈ Vx .For u ∈ Tx(M), we define υu = ΩN,π(x)(Txπ(u), ·). Using eq. (2.1.1), we get ∀u ∈ Tx(M), Txπ (π∗υu)= υu = Txπ(u). So we can write u ∈ Tx(M) as u = (u − π∗υu) + π∗υu with u − π∗υu ∈ Wx and
π∗υu ∈ Vx .Hence, we have Wx + Vx = Tx(M), and therefore Wx ⊕ Vx = Tx(M), since dim(Vx) = dim(M) −dim(Wx). Moreover, since eq. (2.1.1) implies that Txπ is surjective, we have dim(Wx) = D − d anddim(Vx) = D − (D − d) = d.Now we choose x ∈ M and we consider a coordinate patch V1 on N containing π(x), withcoordinates y1, . . . , yd. We define:

Xi,x′ := π∗dyi,π(x′) = d(yi ◦ π)x′ for all x ′ ∈ U1 := π−1 〈V1〉.
X1, . . . , Xd are vector fields on U1 such that ∀x ′ ∈ U1, (X1,x′, . . . , Xd,x′) is a basis of Vx′ . We calculatethe Lie brackets between two of these vector fields:[

Xi, Xj
] = [dyi ◦ π, dyj ◦ π] = d

({
yi ◦ π, yj ◦ π

}) = d
({
yi, yj

}
◦ π
) = π∗d

({
yi, yj

})
where the second equality expresses the Lie brackets of two Hamiltonian vector fields and the thirdequality comes from prop. 2.2.Therefore, we have ∀x ′ ∈ U1, [Xi, Xj]x′ ∈ Vx′ . From Frobenius theorem [54, theorem 14.5], thereexist an open neighborhood U2 of x in U1 and coordinates x1, . . . , xd, xd+1, . . . , xD over U2 such that
∀x ′ ∈ U2, ∂x1,x′, . . . , ∂xd,x′ is a basis of Vx′ . We define:

Φ̃ :U2→N ×Rn

x ′ 7→ π(x ′), (xd+1(x ′), . . . , xD(x ′)).
We can now show that TxΦ̃ : Tx(M) → Tπ(x)(N) × Rn is bijective. Indeed, let u ∈ Tx(M)such that TxΦ̃(u) = 0. Then, in particular, we have Txπ(u) = 0, so u ∈ Wx . On the otherhand, we have dxk,x(u) = 0 for k = d + 1, . . . , D, so u is a linear combination of ∂x1,x, . . . , ∂xd,x ,hence u ∈ Vx . From Wx ⊕ Vx = Tx(M), u = 0. Therefore TxΦ̃ is injective, thus bijective, fordim (Tx(M)) = dim (Tπ(x)(N)×Rn).From the inverse function theorem [54, theorem 5.11], there exists an open neighborhood U3 of

x in U2 such that Φ̃∣∣∣
U3 : U3 → Φ̃ 〈U3〉 is a diffeomorphism. Hence there exist an open connectedneighborhood V of π(x) in N, an open subset W of Rn, an open neighborhood U of x in U3 anda diffeomorphism Φ : V ×W → U such that ∀y ∈ V, ∀z ∈ W, Φ̃(Φ(y, z)) = (y, z). In particular,
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∀y ∈ V, ∀z ∈W, π ◦ Φ(y, z) = y.At every point x ′ ∈ M and for every vector v, w ∈ TΦ−1(x′)(V ×W), TΦ−1(x′)Φ(v, 0) ∈ Vx′ and
TΦ−1(x′)Φ(0, w) ∈ Wx′ . In particular, we have ΩM,x′

(
TΦ−1(x′)Φ(v, 0), TΦ−1(x′)Φ(0, w)) = 0.We now consider z ∈W, w,w ′ ∈ Tz(W) and we define for all y ∈ V,Ωy

W,z(w,w ′) = ΩM,Φ(y,z)(T(y,z)Φ(0, w), T(y,z)Φ(0, w ′)).
Let Ỹ be a vector field on V, let Z̃ , Z̃ ′ be vector fields on W such that Z̃z = w , Z̃ ′z = w ′. We define thevector fields Y = Φ∗ (Ỹ , 0), Z = Φ∗ (0, Z̃) and Z ′ = Φ∗ (0, Z̃ ′) on M. From [Y , Z ] = [Y , Z ′] = 0and dΩM = 0, we have:

Y
(ΩM

(
Z, Z ′

)) = Z
(ΩM

(
Y , Z ′

))
− Z ′ (ΩM (Y , Z )) + ΩM

([Z, Z ′] , Y )
since Yx′ ∈ Vx′ and Zx′, Z ′x′, [Z, Z ′]x′ ∈ Wx′ , we have Y (ΩM

(
Z, Z ′

)) = 0. Therefore the differentialof y 7→ Ωy
W,z(w,w ′) is zero at every point y ∈ V, and V being connected, Ωy

W,z(w,w ′) does notdepend on y. So, we define ΩW,z(w,w ′) = Ωy
W,z(w,w ′).We now can check using eq. (2.1.1) and the definition of ΩW that Φ∗ΩM = ΩN × ΩW. ThereforeΩW is a symplectic structure on W and Φ : V×W→ U is a symplectomorphism.

Uniqueness. We consider symplectic manifolds V, W, and W′, a connected open subset V′ of V,and an application ψ̃ : V′ ×W′ →W such that:Ψ :V′ ×W′→V×W

y, z 7→y, ψ̃(y, z)induces a symplectomorphism V′ ×W′ → Ψ 〈V′ ×W′〉.For y ∈ V′, z ∈W′, v ∈ Ty(V′), w ∈ Tz(W′), we then have:
0 = ΩV×W,Ψ(y,z) (T(y,z)Ψ(v, 0), T(y,z)Ψ(0, w)) = ΩW,ψ(y,z) (T(y,z)ψ̃(v, 0), T(y,z)ψ̃(0, w)).

However, for Ψ to be a diffeomorphism, T(y,z)ψ̃(0, w) should run through Tψ(y,z)(W) when w runsthrough Tz(W). Therefore, we should have T(y,z)ψ̃(v, 0) = 0. Hence, V′ being connected, ψ̃(y, z)cannot depend upon y. Accordingly, we define ψ(z) := ψ̃(y, z), and Ψ|V′×W′→Ψ〈V′×W′〉 being asymplectomorphism requires that ψ|W′→ψ〈W′〉 should be a symplectomorphism.
Note. A more concise (albeit less instructive) proof of this result can be achieved by consideringthe closed 2-form σ := ΩM − π∗ΩN and applying a standard result of symplectic geometry [84,§ 5.24], telling us that the kernel of σ is an involutive distribution, and that σ defines a symplecticform on the quotient. �

In order to build a structure describing a collection of interconnected partial theories, where
the relation between a more detailed partial theory Mη′ and a less detailed one Mη is given by
a factorization of Mη′ as Mη′→η ×Mη, we also need to reformulate the three-spaces consistency
condition that we had for a projective system (fig. 2.1) in terms of a factorization requirement. For
this, we ask for the symplectic manifold Mη′′→η, that holds the degrees of freedom discarded when
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Xη′′

Xη′′→η′× Xη′

Xη′′→η′× Xη′→η × Xη Xη′′→η × Xη

φη′′→η′

φη′′→η

φη′→η

φη′′→η′→η

Figure 2.2 – Three-spaces consistency for factorizing systems

going directly from Mη′′ to Mη, to decompose as the Cartesian product of Mη′′→η′ with Mη′→η, where
Mη′′→η′ holds the degrees of freedom discarded when going as a first step from Mη′′ to Mη′ , and
Mη′→η holds the ones discarded when going as a second step from Mη′ to Mη (fig. 2.2).

Having a factorizing system defined this way then provides us immediately with a projective
system as above. Reciprocally, if we give us a projective system of phase spaces in which any
projection πη′→η can be understood as projecting on a factor of a Cartesian product (that is, if the
result of prop. 2.10 happens to hold globally and not just locally) and if moreover all the Mη are
connected (which sounds physically sensible when speaking of phases spaces), we can construct a
corresponding factorizing system of phase spaces.

Definition 2.11 A factorizing system is a quintuple:(
L,
(
Xη
)
η∈L ,

(
Xη′→η

)
η4η′ ,

(
φη′→η

)
η4η′ ,

(
φη′′→η′→η

)
η4η′4η′′

)
where:1. L is a preordered, directed set;
2. (Xη)η∈L is a family of spaces indexed by L;
3. (Xη′→η)η4η′ is a family of spaces indexed by {η, η′ ∈ L | η 4 η′}, such that, for all η ∈ L, Xη→ηhas only one element;
4. (φη′→η)η4η′ is a family of bijective maps φη′→η : Xη′ → Xη′→η×Xη indexed by {η, η′ ∈ L | η 4 η′}such that φη→η is trivial;
5. (φη′′→η′→η)η4η′4η′′ is a family of bijective maps φη′′→η′→η : Xη′′→η → Xη′′→η′ × Xη′→η indexed by
{η, η′, η′′ ∈ L | η 4 η′ 4 η′′} , such that φη′′→η′→η is trivial whenever η = η′ or η′ = η′′ , and:

29



∀η, η′, η′′ ∈ L / η 4 η′ 4 η′′, (φη′′→η′→η × idXη) ◦ φη′′→η = (idXη′′→η′ × φη′→η) ◦ φη′′→η′ . (2.11.1)
Whenever possible, we will use the shortened notation (L, X, φ)× instead of (L, (Xη)η∈L , (Xη′→η)η4η′ ,(
φη′→η

)
η4η′ ,

(
φη′′→η′→η

)
η4η′4η′′

).
Definition 2.12 A factorizing system of phase spaces is a factorizing system (L,M, φ)× where:
1. for all η ∈ L, Mη is a symplectic manifold, and for all η 4 η′ ∈ L, Mη′→η is a symplecticmanifold, except if η′ = η in which case Mη→η is a set with just one element;
2. for all η 4 η′ ∈ L, φη′→η is a symplectomorphism, and for all η 4 η′ 4 η′′ ∈ L, φη′′→η′→η is asymplectomorphism.

Proposition 2.13 If (L,M, φ)× fulfills def. 2.12 and if, for η 4 η′ ∈ L, we define:
sη′→η :Mη′→η ×Mη→Mη(y, x) 7→ x and πη′→η = sη′→η ◦ φη′→η (2.13.1)

then (L,M, π)↓ is a projective system of phase spaces.Accordingly, we define the space of states by S×(L,M,φ) := S
↓(L,M,π) (def. 2.3) and the space ofobservables by O×(L,M,φ) := O

↓(L,M,π) (def. 2.4).
Proof We need to prove that ∀η 4 η′ ∈ L, πη′→η is a surjective map compatible with the symplecticstructures, that ∀η ∈ L, πη→η = idMη , and that ∀η 4 η′ 4 η′′ ∈ L, πη′′→η = πη′→η ◦ πη′′→η′ .For η ∈ L, we have πη→η = idMη (identifying Mη and its trivial Cartesian product with aone-element set), so in particular it is a surjective map compatible with the symplectic structures.Let η ≺ η′ ∈ L. Mη′→η 6= ∅ (as a manifold), hence sη′→η is surjective, therefore πη′→η is asurjective map.Let (y, x) ∈Mη′→η ×Mη and let υ ∈ T ∗x (Mη). We have:
∀w, v ∈ T(y,x)(Mη′→η ×Mη),

υ ◦
[
T(y,x)sη′→η] (w, v) = υ(v) = ΩMη,x (υ, v) = ΩMη′→η×Mη, (y,x) ((0, υ), (w, v)) ,

so that s∗η′→ηυ = (0, υ), hence [T(y,x)sη′→η] (s∗η′→ηυ) = υ . Therefore sη′→η is compatible with the sym-plectic structures, and since φη′→η is a symplectomorphism, πη′→η is compatible with the symplecticstructures.Let η 4 η′ 4 η′′ ∈ L and define:
sη′′→η′→η :Mη′′→η′ ×Mη′→η ×Mη→Mη(z, y, x) 7→ x .

We have:
sη′′→η′→η ◦

(idMη′′→η′ × φη′→η
) = sη′→η ◦ φη′→η ◦ sη′′→η′ ,

and sη′′→η′→η ◦
(
φη′′→η′→η × idMη

) = sη′′→η .
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Hence, composing eq. (2.11.1) to the right with sη′′→η′→η gives:
sη′′→η ◦ φη′′→η = sη′→η ◦ φη′→η ◦ sη′′→η′ ◦ φη′′→η′ ,so that we have πη′′→η = πη′→η ◦ πη′′→η′ . �

Proposition 2.14 Let (L,M, π)↓ be a projective system of phase spaces and suppose that:1. for all η ∈ L, Mη is connected;
2. for all η ≺ η′ ∈ L, there exist a symplectic manifold Mη′→η and a symplectomorphism φη′→η :

Mη′ →Mη′→η ×Mη such that πη′→η = sη′→η ◦ φη′→η.Then, we can complete this input into a factorizing system (L, M, φ)×.
Proof For η ∈ L, we define Mη→η to be a space with one element and φη→η to be the trivialidentification.Let η 4 η′ 4 η′′ ∈ L. What we need to show is that there exists a symplectomorphism
φη′′→η′→η : Mη′′→η →Mη′′→η′ ×Mη′→η such that eq. (2.11.1) is fulfilled. If η = η′ or η′ = η′′ , we canchoose φη′′→η′→η to be the trivial identification, so we now consider the case η ≺ η′ ≺ η′′.We define:Ψ := φη′′→η ◦ φ−1

η′′→η′ ◦
(idη′′→η′ × φη′→η)−1 : Mη′′→η′ ×Mη′→η ×Mη →Mη′′→η ×Mη .Ψ is a symplectomorphism and satisfies:

∀(z, y, x) ∈Mη′′→η′ ×Mη′→η ×Mη, sη′′→η ◦ Ψ(z, y, x) = x .
Hence, applying the uniqueness part from the proof of prop. 2.10 (with V = V′ = Mη, W =

Mη′′→η and W′ = Mη′′→η′ ×Mη′→η, using that Mη is connected, as V′ must be), there exists asymplectomorphism ψ : Mη′′→η′ × Mη′→η → Mη′′→η such that Ψ = ψ × idMη . Thus we define
φη′′→η′→η = ψ−1. �

If we have a family of finite dimensional symplectic manifolds, where each Mη modeling a partial
theory can be written as a cotangent bundle on a configuration space Cη, then a factorizing system
built over the family

(
Cη
)
η∈L can automatically be lifted as a factorizing system over the family(

Mη
)
η∈L . Reciprocally, if we build a projective system of symplectic manifolds over this family,

such that each projection can be understood as arising from a factorization of the underlying
configuration spaces, and if additionally all the configuration spaces are connected, then not only
can the projective system of symplectic manifolds be put into a factorizing form (as follows from
prop. 2.14), but this factorizing form goes down to a factorizing system of the configuration spaces.

It is important to note that, at the level of configuration spaces, a factorizing system contains
much more input than a projective system does. The situation here is different than what we
have at the level of phase spaces, where projective and factorizing systems can, let aside global
considerations, be matched unambiguously. The reason for this disparity is that the symplectic
structure on the phase spaces played a crucial role in the proof of prop. 2.10: when looking at a
projection between configuration spaces, that retains only a subset of the configuration variables,
we have no additional structure that would allows us to select a preferred complementary set of
discarded variables.
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Definition 2.15 A factorizing system of smooth manifolds is a factorizing system (L,C, φ)× (def. 2.11;in particular eq. (2.11.1) holds) where:
1. for all η ∈ L, Cη is a smooth manifold, and for all η 4 η′ ∈ L, Cη′→η is a smooth manifold,except if η′ = η in which case Cη→η is a set with just one element;
2. for all η 4 η′ ∈ L, φη′→η is a diffeomorphism, and for all η 4 η′ 4 η′′ ∈ L, φη′′→η′→η is adiffeomorphism.

Proposition 2.16 If (L,C, φ)× fulfills def. 2.15 and if:
1. for all η ∈ L (resp. all η, η′ ∈ L with η ≺ η′), we define Mη := T ∗(Cη) (resp. Mη′→η :=
T ∗(Cη′→η)), equipped with the canonical symplectic structure on a cotangent bundle;

2. for all η, η′ ∈ L with η ≺ η′ (resp. all η, η′, η′′ ∈ L with η ≺ η′ ≺ η′′), we naturally lift φη′→η :
Cη′ → Cη′→η×Cη (resp. φη′′→η′→η : Cη′′→η → Cη′′→η′×Cη′→η) to a map φ̃η′→η : Mη′ →Mη′→η×Mη(resp. φ̃η′′→η′→η : Mη′′→η →Mη′′→η′ ×Mη′→η) between the cotangent bundles;

3. for all η ∈ L, we define Mη→η to be a set with one element, and for all η ∈ L (resp. all
η, η′, η′′ ∈ L with η 4 η′ 4 η′′ , such that η = η′ or η′ = η′′ ) we define φ̃η→η (resp. φ̃η′′→η′→η) tobe the trivial identification;then (L,M, φ̃)× is a factorizing system of phase spaces.

Proof We need to prove that ∀η ≺ η′, φ̃η′→η is a symplectomorphism, that ∀η ≺ η′ ≺ η′′, φ̃η′′→η′→η isa symplectomorphism and that eq. (2.11.1) for the maps φ is lifted up to the corresponding equationfor the maps φ̃.For η ∈ L, the symplectic structure on Mη = T ∗(Cη) is defined by:
∀(x, p) ∈Mη, ∀w, w ′ ∈ T(x,p)(Mη), ΩMη,(x,p) (w, w ′) := w ′VER (wHOR)− wVER (w ′HOR

) , (2.16.1)where we define for w ∈ T(x,p)(Mη), wHOR ∈ Tx(Cη) to be the horizontal projection of w , and
wVER ∈ T ∗x (Cη) to be the vertical part of w defined using some local coordinate system around x(the map w 7→ wVER depends on this choice of local coordinates, however the anti-symmetrization ineq. (2.16.1) ensures that the definition of ΩMη,(x,p) is independent of this choice).For η ≺ η′ ∈ L, the map φ̃η′→η : Mη′ →Mη′→η ×Mη is defined by:
∀(x ′, p′) ∈Mη′, φ̃η′→η(x ′, p′) := ((fη′→η ◦ φη′→η(x ′), p′ ◦ [Tφη′→η(x′)φ−1

η′→η

] ( · , 0)) ,
(
sη′→η ◦ φη′→η(x ′), p′ ◦ [Tφη′→η(x′)φ−1

η′→η

] (0, · ))) ,
where fη′→η : Cη′→η × Cη → Cη′→η and sη′→η : Cη′→η × Cη → Cη are the projection maps of theCartesian product. This map is bijective, because φη′→η and [Tφη′→η(x′)φ−1

η′→η

] are.
Let (x, p) ∈ Mη, (y, q) ∈ Mη′→η and (x ′, p′) = φ̃η′→η

((y, q), (x, p)) . From the definition of
φ̃η′→η, we have for all w ∈ T(x′,p′)(Mη′):([Tx′,p′ φ̃η′→η] (w))HOR = ([Tx′ fη′→η ◦ φη′→η] (wHOR), [Tx′ sη′→η ◦ φη′→η] (wHOR)) .
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Now, we choose local coordinates around x in Cη and around y in Cη′→η, so we have localcoordinates around in (y, x) in Cη′→η×Cη that we can transport through φ−1
η′→η as local coordinatesaround x ′ = φ−1

η′→η(y, x) in Cη′ . Using these to define ( · )VER in T(x,p)(Mη), T(y,q)(Mη′→η) and T(x′,p′)(Mη′),we have for all w ∈ T(x′,p′)(Mη′):([Tx′,p′ φ̃η′→η] (w))VER = (wVER ◦ [Ty,xφ−1
η′→η
] ( · , 0), wVER ◦ [Ty,xφ−1

η′→η
] (0, · )) .

Therefore:
∀w, w ′ ∈ T(x′,p′)(Mη′), ΩMη′→η×Mη,((y,x),(q,p)) ([Tx′,p′ φ̃η′→η] (w), [Tx′,p′ φ̃η′→η] (w ′)) =

= w ′VER ◦
[
Ty,xφ−1

η′→η
] ([Tx′ fη′→η ◦ φη′→η]wHOR), 0)+

+w ′VER ◦
[
Ty,xφ−1

η′→η
] (0, [Tx′ sη′→η ◦ φη′→η] (wHOR))− (w ↔ w ′

)
= w ′VER ◦

[
Ty,xφ−1

η′→η
]
◦ [Tx′φη′→η] (wHOR)− (w ↔ w ′

)
= ΩMη′ ,(x′,p′) (w, w ′) .

So φ̃η′→η is a symplectomorphism, and in the same way we prove that for all η ≺ η′ ≺ η′′, φ̃η′′→η′→ηis a symplectomorphism.Let η ≺ η′ ≺ η′′ ∈ L, eq. (2.11.1) for the maps φ implies:
fη′′→η′→η ◦ φη′′→η′→η ◦ fη′′→η ◦ φη′′→η = fη′′→η′ ◦ φη′′→η′ ,
sη′′→η′→η ◦ φη′′→η′→η ◦ fη′′→η ◦ φη′′→η = fη′→η ◦ φη′→η ◦ sη′′→η′ ◦ φη′′→η′ ,
& sη′′→η ◦ φη′′→η = sη′→η ◦ φη′→η ◦ sη′′→η′ ◦ φη′′→η′ ,(where fη′′→η′→η : Cη′′→η′ × Cη′→η → Cη′′→η and sη′′→η′→η : Cη′′→η′ × Cη′→η → Cη′′→η are the projectionmaps of the Cartesian product), and, for all z, y, x ∈ Cη′′→η′ × Cη′→η × Cη:[
Tφ−1

η′′→η′→η(z,y),x φ−1
η′′→η

] ( · , 0) ◦ [Tz,y φ−1
η′′→η′→η

] ( · , 0) = [Tz,φ−1
η′→η(y,x) φ−1

η′′→η′

] ( · , 0) ,
[
Tφ−1

η′′→η′→η(z,y),x φ−1
η′′→η

] ( · , 0) ◦ [Tz,y φ−1
η′′→η′→η

] (0, · ) = [Tz,φ−1
η′→η(y,x) φ−1

η′′→η′

] (0, · ) ◦ [Ty,x φ−1
η′→η
] ( · , 0) ,

&

[
Tφ−1

η′′→η′→η(z,y),x φ−1
η′′→η

] (0, · ) = [Tz,φ−1
η′→η(y,x) φ−1

η′′→η′

] (0, · ) ◦ [Ty,x φ−1
η′→η
] (0, · ) ,

therefore eq. (2.11.1) is fulfilled for the maps φ̃. �

Proposition 2.17 Let (L, M, π)↓ be a projective system of phase spaces and suppose that:1. ∀η ∈ L, Mη = T ∗(Cη) where Cη is a smooth connected manifold;
2. ∀η ≺ η′ ∈ L, there exist a smooth manifold Cη′→η and a diffeomorphism φη′→η : Cη′ → Cη′→η×Cηsuch that πη′→η = s̃η′→η ◦ φ̃η′→η , where s̃η′→η : T ∗ (Cη′→η × Cη

)
' T ∗

(
Cη′→η

)
× T ∗

(
Cη
)
→

T ∗
(
Cη
) is the projection on the second Cartesian factor and φ̃η′→η : T ∗ (Cη′)→ T ∗

(
Cη′→η × Cη

)
is the cotangent lift of φη′→η.
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Then, we can complete this input into a factorizing system (L, C, φ)×.
Proof For η ∈ L, we define Cη→η to be a space with one element and φη→η to be the trivialidentification.Let η 4 η′ 4 η′′ ∈ L. What we need to show is that there exists a diffeomorphism φη′′→η′→η :
Cη′′→η → Cη′′→η′ × Cη′→η such that eq. (2.11.1) is fulfilled. If η = η′ or η′ = η′′ , we can choose
φη′′→η′→η to be the trivial identification, so we now consider the case η ≺ η′ ≺ η′′.Let x ′′, p′′ ∈ T ∗(Cη′) and define:(y′, q′; x ′, p′) = φ̃η′′→η′(x ′′, p′′) ,

(y, q; x, p) = φ̃η′→η(x ′, p′) ,
and (z, r; x•, p•) = φ̃η′′→η(x ′′, p′′) .Now, from πη′′→η = πη′→η ◦ πη′′→η′ , we have x = x• and p = p•, hence:

sη′→η ◦ φη′→η ◦ sη′′→η′ ◦ φη′′→η′(x ′′) = sη′′→η ◦ φη′′→η(x ′′) ,
and p′′ ◦

[
Ty′,x′ φ−1

η′′→η′
] (0, · ) ◦ [Ty,x φ−1

η′→η
] (0, · ) = p′′ ◦

[
Tz,x φ−1

η′′→η
] (0, · ) ,thus, we get:

tη′′→η′→η ◦ Ψ = sη′′→η ,
and (0, 0, · ) = [TΨ] (0, · ) ,

where Ψ := (idCη′′→η′ × φη′→η
)
◦ φη′′→η′ ◦ φ−1

η′′→η and tη′′→η′→η : Cη′′→η′ × Cη′→η × Cη → Cη is theprojection on the third Cartesian factor.Finally, since Cη is connected, there exists a diffeomorphism φη′′→η′→η : Cη′′→η → Cη′′→η′ × Cη′→ηsuch that Ψ = φη′′→η′→η × idCη . �

3. Constraints and regularization

When we try to incorporate the dynamics in the formalism described in the previous section, we
quickly realize that the intuitive picture we were relying on was quite oversimplified. For, although
it should be true that we only need a finite dimensional truncation of the kinematical theory to
hold the elementary kinematical observables associated to any given real experiment, in general we
cannot write the dynamics in a closed form within such a truncation.

We will work in the context of constrained classical theories reviewed in appendix A (initially
unconstrained ones can always be rewritten in this language [105, section 1.8] : we will briefly
illustrate in subsection 16.1 how this is done). As developed in the discussion preceding def. A.2,
we take the point of view that from each kinematical observable arises a corresponding dynamical
observable and, considering a family of functionally independent kinematical observables, it might
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be possible to write functional relations connecting the associated dynamical observables: here
lies the predictive contents of the theory. However, such a functional relation can involve an
infinite number of observables, and thus get silently dropped, if we never look at more than a finite
number of observables at a time. When looking at a typical field theory, the interesting content of
the dynamics lies precisely in those functional relations that can only be written over an infinite
number of observables, and do not emerge from simpler relations within finite set of observables
(a partial differential equation is mostly useless if we only dispose of a discrete, finite set of initial
values).

On the other hand, if the the theory is to have any physically relevant predictivity, namely
if it is to be usable to formulate predictions for the output of some real experiments, it should
at least be possible to approximate the dynamics with relations over finite sets of elementary
dynamical observables (we do nothing else when elaborating numerical techniques to deal with
partial differential equations). In other words, although we may not be able to state exact predictions
for any specific realistic experiment, we can restore predictivity in a weaker sense, by describing
how to refine an experiment and the associated approximate predictions to make them better and
better.

This concept of convergence is physically useful, notwithstanding the fact that we will not perform
the infinite chain of experiments (that would again be a case of measuring an infinite number of
observables, and we already mentioned that this is excluded in practice), because we can convert
it into a notion of plausibility, by stating how to design an experimental protocol such that it will
be highly unlikely that the output lies outside some confidence domain.

The object of this section is to formulate this raw idea more precisely, in order to develop a
procedure to solve constraints in a projective system of phase spaces.

3.1 Elementary reductions

We begin by studying in detail under which conditions the dynamics actually can be formulated
straightforwardly within a projective system of phase spaces, for this will be our building block
when addressing the generic case.

Our aim here is the following: we want to write in each partial kinematical theory MKIN
η a

constraint surface MSHELL
η , and to reassemble the resulting reduced phase spaces MDYN

η (see appendix A)
into a new projective system of phase spaces. And we want to accomplish this in such a way that
we can glue together the maps that, for each η, associate to the kinematical observables on MKIN

η the
corresponding dynamical observables on MDYN

η , thus building a map from the set of all observables
on the kinematical projective system into the set of all observables on the dynamical projective
system. For this map to accurately reproduce a given dynamics, it should give rise to functional
relations between the dynamical observables that catch the full predictive power of the theory and
it should account for the correct dynamical Poisson commutation relations.

We start by looking at a symplectic manifold NKIN, that extracts, via a projection πKIN, specific
degrees of freedom out of a bigger symplectic manifold MKIN (as were introduced in def. 2.1). Given
a phase space reduction on MKIN, with reduced phase space MDYN, we ask whether it is possible to
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δ

πKIN

γ

πDYN

Here, we sketch a symplectic
manifold by a grid, each square
of which is to be thought as a
point in the manifold (and is
emblematic for infinitely many
other points).

MKIN
MSHELL MDYN

NKIN
NSHELL NDYN

Figure 3.1 – Phase space reductions on MKIN and NKIN, related by a projection πKIN

write closed equations, involving only the degrees of freedom retained in NKIN, and capturing all
what the dynamics on MKIN has to say concerning these degrees of freedom.

More precisely, we are looking for a phase space reduction on NKIN, but also for a projection πDYN
allowing to understand the reduced phase space NDYN as a selection of dynamical degrees of freedom
out of MDYN (fig. 3.1). Indeed, if we consider an observable OKIN on NKIN, we can pull it back by πKIN
into an observable OKIN′ on MKIN. So using the dynamics on MKIN, we can obtain a corresponding
dynamical observable ODYN′ on MDYN. Now, if we can write the dynamics in closed form on NKIN, we
can also map directly OKIN to a dynamical observable ODYN on NDYN. The role of the projection πDYN
is then to ensure that the dynamics we have on N is actually consistent with the one on M, by
requiring ODYN′ to be precisely the pullback of ODYN by πDYN.

If this is at all possible, both the reduction on NKIN and the projection πDYN are uniquely determined
by the dynamics we choose on MKIN. Indeed, the constraint surface in NKIN has to be the projection by
πKIN of the one in MKIN (for the constraint surface can be reconstructed if we know which kinematical
observables are mapped to a vanishing dynamical observables), and we have from prop. A.6 (at least
in the finite dimensional case) that a reduction is completely determined by its constraint surface.
Then, the uniqueness of πDYN is enforced by requiring that it correctly makes the connection between
the dynamics on NKIN and the aforementioned map OKIN 7→ ODYN′ (that only depends of πKIN and of the
reduction on MKIN).

Definition 3.1 Let MKIN and NKIN be two symplectic manifolds and πKIN : MKIN → NKIN a surjectivemap compatible with the symplectic structures (def. 2.1). Let (MDYN,MSHELL, δ), resp. (NDYN,NSHELL, γ), bephase space reductions of MKIN, resp. NKIN (def. A.1). We say that these reductions are related by
πKIN if:1. πKIN 〈MSHELL〉 = NSHELL;
2. there exists a surjective map πDYN : MDYN → NDYN, compatible with the symplectic structures, suchthat:
∀x ∈ NSHELL, ∀y′ ∈MDYN, (∃x ′ ∈MSHELL / δ(x ′) = y′ & πKIN(x ′) = x

)
⇔
(
γ(x) = πDYN(y′)) .(3.1.1)

Proposition 3.2 With the notations of def. 3.1, if πDYN,1 and πDYN,2 are two surjective maps satisfyingeq. (3.1.1), then πDYN,1 = πDYN,2.
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Proof Let y′ ∈ MDYN. Since δ is surjective, there exists x ′ ∈ MSHELL such that δ(x ′) = y′. Hence,
πDYN,1(y′) = γ ◦ πKIN(x ′) = πDYN,2(y′). �

Proposition 3.3 We consider the same objects as in def. 3.1 and use the notations introduced indef. A.2. For f ∈ B(NKIN), we have f ◦ πKIN ∈ B(MKIN) and:(f ◦ πKIN)DYN = f DYN ◦ πDYN .
Proof Let y′ ∈MDYN. Using eq. (3.1.1) into eq. (A.2.1), we have:(f ◦ πKIN)DYN (y′) = sup {f ◦ πKIN(x ′) ∣∣ x ′ ∈ δ−1 〈y′〉}

= sup {f (x) ∣∣ x ∈ γ−1 〈πDYN(y′)〉} = f DYN ◦ πDYN(y′).
�

Why do we need to require eq. (3.1.1) for πDYN instead of the seemingly more natural condition
γ ◦ πKIN = πDYN ◦ δ ? The physical reason behind eq. (3.1.1) is that we shall not look at the
map δ but rather at δ−1 〈 · 〉, that sends a point in MDYN to an orbit in MSHELL (and similarly at
γ−1 〈 · 〉 instead of γ), for this is the map that is dual to the application associating a kinematical
observable to a dynamical one (in a way similar to πKIN being dual to the application that sends
an observable on NKIN into an observable on MKIN). And, indeed, we can rewrite eq. (3.1.1) as
πKIN 〈 · 〉 ◦ δ−1 〈 · 〉 = γ−1 〈 · 〉 ◦ πDYN.

That eq. (3.1.1) could fail in situations where γ ◦ πKIN = πDYN ◦ δ does hold, can have local as well
as global causes, as illustrated by the examples below. It happens when the projection of an orbit
in MSHELL, though included in an orbit of NSHELL, does not fill it.

Proposition 3.4 If we replace in def. 3.1 the condition given by eq. (3.1.1) by the weaker assumption:
γ ◦ πKIN = πDYN ◦ δ , (3.4.1)then the previous result (prop. 3.3) does not hold.

Proof As a counter example, we consider the following situation:
1. MKIN = (

R2)3, MDYN = (
R2)2, NKIN = (

R2)2, NDYN = R2 (with the standard symplectic structureon R2: ΩR2(x, p; x ′, p′) = x p′ − x ′ p);
2. ∀(xi, pi)i∈{0,...,2} ∈MKIN, πKIN ((xi, pi)i∈{0,...,2}) = (xi, pi)i∈{0,1};
3. MSHELL = {(xi, pi)i∈{0,...,2} ∣∣ p1 = 0 & x1 = x2} and ∀(xi, pi)i∈{0,...,2} ∈MSHELL, δ ((xi, pi)i∈{0,...,2}) =(xi, pi)i∈{0,2};
4. NSHELL = {(xi, pi)i∈{0,1} ∣∣ p1 = 0} and ∀(xi, pi)i∈{0,1} ∈ NSHELL, γ ((xi, pi)i∈{0,1}) = (x0, p0);
5. ∀(xi, pi)i∈{0,2} ∈MDYN, πDYN ((xi, pi)i∈{0,2}) = (x0, p0).We can check that (MDYN, MSHELL, δ) is a phase space reduction of MKIN and (NDYN, NSHELL, γ) is aphase space reduction of NKIN. πKIN and πDYN are surjective maps compatible with the symplecticstructures, satisfying πKIN 〈MSHELL〉 = NSHELL and γ ◦ πKIN = πDYN ◦ δ .
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However, if we consider f ∈ B(NKIN) defined by:
∀(xi, pi)i∈{0,1} ∈ NKIN, f ((xi, pi)i∈{0,1}) = {1 if x1 6 00 else ,

we have f DYN ◦ πDYN ≡ 1, but:
∀(xi, pi)i∈{0,2} ∈MDYN, (f ◦ πKIN)DYN ((xi, pi)i∈{0,2}) = {1 if x2 6 00 else .

Requiring local conditions in addition to eq. (3.4.1) would not help either, since even if everythingworks well locally, it may still goes wrong globally, as the following example shows:
6. MKIN = (R2)4, MDYN = (R2)2, NKIN = (R2)2, NDYN = R2;
7. ∀(xi, pi)i∈{0,...,3} ∈MKIN, πKIN ((xi, pi)i∈{0,...,3}) = (xi, pi)i∈{0,1};
8. MSHELL = {(xi, pi)i∈{0,...,3} ∣∣ p1 = 0, p2 = 0 & x1 = x3 + exp(x2)} and ∀(xi, pi)i∈{0,...,3} ∈MSHELL,
δ
((xi, pi)i∈{0,...,3}) = (xi, pi)i∈{0,3};

9. NSHELL = {(xi, pi)i∈{0,1} ∣∣ p1 = 0} and ∀(xi, pi)i∈{0,1} ∈ NSHELL, γ ((xi, pi)i∈{0,1}) = (x0, p0);
10. ∀(xi, pi)i∈{0,3} ∈MDYN, πDYN ((xi, pi)i∈{0,3}) = (x0, p0).We can check that (MDYN, MSHELL, δ) is a phase space reduction of MKIN and (NDYN, NSHELL, γ) is aphase space reduction of NKIN. πKIN and πDYN are surjective maps compatible with the symplecticstructures, satisfying πKIN 〈MSHELL〉 = NSHELL and γ ◦ πKIN = πDYN ◦ δ .Moreover, eq. (3.1.1) holds at the linear level, namely:
∀x ′ ∈MSHELL, ∀v ∈ TπKIN(x′)(NSHELL), ∀w ′ ∈ Tδ(x′)(MDYN),(

∃ v ′ ∈ Tx′(MSHELL) / Tx′δ(v ′) = w ′ & Tx′πKIN(v ′) = v
)
⇔
(
TπKIN(x′)γ(v) = Tδ(x′)πDYN(w ′)) ,for this reduces in the present example to:

∀x2 ∈ R, ∀xv1 ∈ R, ∀xw ′3 ∈ R, (∃ xv ′2 , xv ′3 ∈ R2 / xv ′3 = xw ′3 & xv ′3 + exp(x2) xv ′2 = xv1) .
However, if we consider the same f ∈ B(NKIN) as before, we have f DYN ◦ πDYN ≡ 1, but:
∀(xi, pi)i∈{0,3} ∈MDYN, (f ◦ πKIN)DYN ((xi, pi)i∈{0,3}) = {1 if x3 6 00 else .

�

Asking for the dynamics on MKIN to define a dynamics on NKIN in the sense above actually puts
strong restrictions (local as well as global ones) on what the constraint surface in MKIN can be.

If we consider the special case where MKIN and NKIN are symplectic vector spaces, and πKIN is a
linear map, the symplectic structure provides a natural decomposition of MKIN as PKIN ⊕ (PKIN)⊥, with
PKIN = KerπKIN and (PKIN)⊥ ≈ NKIN (where the orthogonal subspace is defined with respect to the
symplectic structure; this is the linear version of prop. 2.10). What are the conditions for a vector
subspace MSHELL of MKIN to define a (linear) dynamics that will descend well through πKIN? An obvious
way of fulfilling this wish is to have a constraint surface MSHELL that decomposes as MSHELL = W ⊕V
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where W and V are vector subsets of PKIN and (PKIN)⊥ respectively: this would be a dynamics with
no interaction between the degrees of freedom in NKIN and the ones in PKIN, so clearly we can write
separately the dynamics on NKIN. However, a closer study of what is really needed shows that we
have an additional freedom to construct admissible constraint surfaces MSHELL: instead of choosing
V as a vector subset of (PKIN)⊥, it is enough for V to be included in W⊥, provided πKIN identifies the
restriction to V of the symplectic structure ΩMKIN with the restriction to NSHELL = πKIN 〈V 〉 of ΩNKIN .

This study of the linear case essentially translates to local necessary conditions in the generic
case. However, this holds only at the points in MSHELL where the derivative of πKIN maps the tangent
space of the orbit of MSHELL going through that point into the tangent space of an orbit of NSHELL: for,
although eq. (3.1.1) implies that πKIN should map an orbit into an orbit, this does not need to hold
at the linear level (the derivative of a surjective map does not need to be surjective; nonetheless
Sard’s theorem [81] tells us, in a specific sense, that this ‘rarely’ fails).

Proposition 3.5 Let MKIN and NKIN be two finite dimensional symplectic manifolds and πKIN :
MKIN → NKIN a surjective map compatible with the symplectic structures. Let (MDYN,MSHELL, δ),resp. (NDYN,NSHELL, γ), be phase space reductions of MKIN, resp. NKIN. Assume these reductions arerelated by πKIN, and let x ′ ∈ MSHELL, y′ := δ(x ′) ∈ MDYN, x := πKIN(x ′) ∈ NSHELL and y := γ(x) ∈ NDYN.Then, πKIN induces a surjective map δ−1 〈y′〉 → γ−1 〈y〉.If moreover Tx′πKIN 〈Tx′ (δ−1 〈y′〉)〉 = Tx

(
γ−1 〈y〉), then there exist Vx′,Wx′ vector subspaces of

Tx′(MSHELL) such that:1. Tx′(MSHELL) = Vx′ ⊕Wx′ & ΩMKIN,x′ (Vx′, Wx′) = {0} ;
2. Vx′ ∩ KerTx′πKIN = {0} & Wx′ ⊂ KerTx′πKIN ;
3. πKIN,∗

x′ ΩNKIN,x|Vx′ = ΩMKIN,x′|Vx′ .
Proof Let πDYN be as in def. 3.1.2. From eq. (3.1.1), we have γ ◦ πKIN = πDYN ◦ δ , hence y = πDYN(y′),and:
∀z ∈ NSHELL, (z ∈ γ−1 〈y〉) ⇔ (

γ(z) = πDYN(y′)) ⇔ (
∃ z′ ∈ δ−1 〈y′〉 / πKIN(z′) = z

)
⇔
(
z ∈ πKIN 〈δ−1 〈y′〉〉) ,

therefore πKIN 〈δ−1 〈y′〉〉 = γ−1 〈y〉.We now moreover assume that Tx′πKIN induces a surjective linear map from KerTx′δ = Tx′
(
δ−1 〈y′〉)into KerTxγ = Tx

(
γ−1 〈y〉). Then, there exist vector subspaces V o

x′ and W o
x′ of KerTx′δ such that:

W o
x′ = KerTx′πKIN ∩ KerTx′δ & KerTx′δ = V o

x′ ⊕W o
x′ ,and Tx′πKIN induces a bijection V o

x′ → KerTxγ.Next, we define the vector subspaces V 1
y′ and W 1

y′ of Ty′(MDYN) by:
W 1

y′ := KerTy′πDYN
& V 1

y′ := (W 1
y′
)⊥ = {v ∈ Ty′(MDYN) ∣∣ ΩDYN,y′ (v, W 1

y′
) = {0}} ,

and since πDYN is compatible with the symplectic structures, we have Ty′(MDYN) = V 1
y′ ⊕ W 1

y′ and
Ty′πDYN being surjective, it induces a bijection V 1

y′ → Ty (NDYN), such that:
39



πDYN,∗
y′ ΩNDYN,y

∣∣∣
V 1
y′

= ΩMDYN,y′∣∣V 1
y′

.
Let W̃ 2

x′ := [Tx′δ ]−1 〈W 1
y′
〉. We have KerTx′δ ⊂ W̃ 2

x′ , and from Txγ ◦ Tx′πKIN 〈W̃ 2
x′

〉 = Ty′πDYN ◦
Tx′δ

〈
W̃ 2

x′

〉 = {0} and KerTxγ = Tx′πKIN 〈KerTx′δ〉 ⊂ Tx′πKIN 〈W̃ 2
x′

〉, we also have Tx′πKIN 〈W̃ 2
x′

〉 =
KerTxγ, hence there exists a vector subspace W 2

x′ of W̃ 2
x′ such that:

W o
x′ ⊕W 2

x′ = KerTx′πKIN ∩ W̃ 2
x′ & W̃ 2

x′ = V o
x′ ⊕W o

x′ ⊕W 2
x′ ,and Tx′δ

〈
W 2

x′
〉 = Tx′δ

〈
W̃ 2

x′

〉 = W 1
y′ for Tx′δ is surjective. Additionally, since Tx′δ is surjective,there exists a vector subspace V 2

x′ of Tx′(MSHELL) such that:
Tx′(MSHELL) = V o

x′ ⊕W o
x′ ⊕ V 2

x′ ⊕W 2
x′ ,with Tx′δ inducing a bijective map V 2
x′ → V 1

y′ . So Txγ ◦ Tx′πKIN = Ty′πDYN ◦ Tx′δ induce a bijectivemap V 2
x′ → Ty (NDYN) = Txγ 〈Tx(NSHELL)〉, therefore Tx′πKIN induce a bijective map V o

x′⊕V 2
x′ → Tx (NSHELL),such that, for all u, v ∈ V o

x′ ⊕ V 2
x′ :ΩNKIN,x (Tx′πKIN(u), Tx′πKIN(v)) = ΩNDYN,y (Txγ ◦ Tx′πKIN(u), Txγ ◦ Tx′πKIN(v))
= ΩNDYN,y (Ty′πDYN ◦ Tx′δ(u), Ty′πDYN ◦ Tx′δ(v))
= ΩMDYN,y′ (Tx′δ(u), Tx′δ(v))
= ΩMKIN,x′ (u, v) .

Finally, defining Vx′ := V o
x′ ⊕ V 2

x′ and Wx′ := W o
x′ ⊕W 2

x′ , we have:ΩKIN,x′ (Vx′, Wx′) = ΩKIN,x′ (V 2
x′, W 2

x′
) (for ΩKIN,x′ (Tx′(MSHELL), KerTx′δ) = {0})

= ΩDYN,y′ (V 1
y′, W 1

y′
) (for ΩKIN,x′|Tx′ (MSHELL) = δ∗x′ ΩDYN,y′)

= {0} (for V 1
y′ = (W 1

y′
)⊥),

and Wx′ ⊂ KerTx′πKIN, while KerTx′πKIN ∩ Vx′ = {0} . �

Returning to the linear case previously mentioned, we can reformulate in terms of constraints the
condition we had for MSHELL to define a closed dynamics on NKIN (through the straightforward duality
between the description of MSHELL as a vector subspace and its description by linear constraints).
This provides a specification of MSHELL as characterized by three sets of constraints CP

i , CN
j , and

Cmix
k , where the CP

i only depend on the variables from PKIN and characterize in PKIN the projection
PSHELL of MSHELL, similarly the CN

j only depend on the variables from NKIN and characterize NSHELL in

NKIN, while the Cmix
k account for possible interactions. These interactions cannot be arbitrary: the

requirements on V discussed above prescribe that the constraints Cmix,x
k , obtained on PKIN from the

Cmix
k by fixing some x ∈ NSHELL, should perform a partial gauge fixing of PSHELL (prop. A.8).
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NKIN
PKIN

PFIX,x1
PFIX,x2
PFIX,x3

××
×x1 x2 x3 NSHELL

MKIN = PKIN ×NKIN
MSHELL = {(y, x) | x ∈ NSHELL, y ∈ PFIX,x}
the PFIX,xi are different gauge fixings
of a common constraint surface PSHELL

Figure 3.2 – A (rather broad but not exhaustive) way to construct an admissible dynamics on MKIN
in the factorizing case

In the generic case of a symplectic manifold MKIN factorizing as MKIN = PKIN × NKIN (such as
considered in subsection 2.3), the insight we gain from the linear case suggests a possibility,
depicted in fig. 3.2, to design dynamics on MSHELL that will project well on NKIN. This provides a much
broader class of admissible dynamics than the trivial ones splitting into independent dynamics on
PKIN and NKIN.

Nevertheless, this procedure only corresponds to a sufficient condition for def. 3.1 to be fulfilled.
Note that the gap between the necessary condition at the linear level supplied by prop. 3.5 and
the characterization of MSHELL considered here does not solely arise from global considerations: for
MSHELL to be of this form, some additional integrability conditions (ie. requirements at the second
order) need to hold, so that we can combine the prescriptions in the tangent space of each point
into prescriptions in small open patches.

Proposition 3.6 Let MKIN = PKIN ×NKIN, where MKIN, PKIN and NKIN are finite dimensional symplecticmanifolds, and define:
πKIN :MKIN→NKIN

y, x 7→ x .
Let (MDYN,MSHELL, δ), (PDYN,PSHELL, θ), resp. (NDYN,NSHELL, γ), be phase space reductions of MKIN, PKIN,resp. NKIN. Assume that there exist a submanifold PFIX of PSHELL and a smooth map:Ψ :PFIX ×NSHELL→PSHELL ×NSHELL

y, x 7→ψ(y, x), x ,
such that:1. ImΨ = MSHELL and Ψ|PFIX×NSHELL→MSHELL is a diffeomorphism;
2. Ψ∗ (ΩMKIN|T (MSHELL)

) = ΩPKIN|T (PFIX) × ΩNKIN|T (NSHELL);
3. ∀x ∈ NSHELL, PFIX,x := ψ 〈PFIX × {x}〉 defines a partial gauge fixing of (PDYN,PSHELL, θ) (prop. A.8).Then, (MDYN,MSHELL, δ) and (NDYN,NSHELL, γ) are related by πKIN.
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Proof From the definition of Ψ, we have πKIN 〈MSHELL〉 = ImπKIN ◦ Ψ = NSHELL.Let x ∈ NSHELL. Using assumption 3.6.1 together with the definition of PFIX,x , the map:
ψx : PFIX → PFIX,x

y 7→ ψ(y, x)
is a diffeomorphism and, by 3.6.2, it satisfies ψx,∗ (ΩPKIN|T (PFIX,x )

) = ΩPKIN|T (PFIX).Now, from prop. A.8, (PDYN, PFIX,x, θ|PFIX,x) is a phase space reduction of PKIN. Hence, defining
θFIX,x := θ|PFIX,x ◦ ψx , (PDYN, PFIX, θFIX,x) is a phase space reduction of PKIN.Using 3.6.2, we have for all x ∈ NSHELL, y ∈ PFIX and for all v ∈ Tx(NSHELL), w ∈ Ty(PFIX):

0 = ΩMKIN (([T(y,x)ψ] (0, v), v) , ([T(y,x)ψ] (w, 0), 0)) = ΩPKIN ([T(y,x)ψ] (0, v), [T(y,x)ψ] (w, 0)) .
However, since ψx is a diffeomorphism, [T(y,x)ψ] (w, 0) runs through Tψ(y,x) (PFIX,x) when w runsthrough Ty(PFIX), so [T(y,x)ψ] (0, v) ∈ (Tψ(y,x) (PFIX,x))⊥∩Tψ(y,x) (PSHELL). As PFIX,x defines a partial gaugefixing of (PDYN,PSHELL, θ), we have Tψ(y,x) (PSHELL) = Tψ(y,x) (PFIX,x) + Kψ(y,x) (PSHELL), hence [T(y,x)ψ] (0, v) ∈
Kψ(y,x) (PSHELL). Therefore, ∂xθFIX,x = 0.Without loss of generality, we can assume that NSHELL is connected (otherwise MSHELL is not con-nected either and we can consider each connected part of NSHELL separately). Then, we can define
θFIX := θFIX,x .Using θFIX, we define:

δ̃ : MSHELL → PDYN ×NDYN
y, x 7→ (θFIX × γ) ◦ (Ψ|PFIX×NSHELL→MSHELL)−1 (y, x) = (θ(y), γ(x)) .

We want to prove that (PDYN ×NDYN, MSHELL, δ̃
) is a phase space reduction of MKIN.

First, we need to show that δ̃ is surjective, that its derivative is surjective at each point, andtransports correctly the restriction to MSHELL of the symplectic structure. Since (Ψ|PSHELL×NFIX→MSHELL)−1
is a diffeomorphism and transports the symplectic structure, we need only to check the correspondingproperties of θFIX × γ. Now, since θFIX and γ corresponds to phase space reductions, they indeedhave the required properties, and so does θFIX × γ.Let (y, x) ∈ PFIX ×NSHELL. We choose a basis (ei)i6k of Kx(NSHELL) (with k := dimKx(NSHELL)) and wecomplete it into a basis (ei)i6n of Tx(NSHELL) (with n := dimTx(NSHELL)). We also choose a basis (fj )j6l of
Ky(PFIX) (with l := dimKy(PFIX)) and complete it into a basis (fj )j6p of Ty(PFIX) (with p := dimTy(PFIX)).Then, we have:

TΨ(y,x)(MSHELL) = Vect {([T(y,x)ψ] (0, ei), ei) ∣∣ i 6 n
} + Vect {([T(y,x)ψ] (fj , 0), 0) ∣∣ j 6 p

} .
As proved above, we have ∀v ∈ Tx(NSHELL), [T(y,x)ψ] (0, v) ∈ Kψ(y,x) (PSHELL). Since ψx is a diffeo-morphism PFIX → PFIX,x , the [T(y,x)ψ] (fj , 0) for j 6 p span Tψ(y,x) (PFIX,x). And since ψx transports thesymplectic structure, we also have ∀w ∈ Ty(PFIX), [T(y,x)ψ] (w, 0) ∈ Kψ(y,x) (PFIX,x) ⇔ w ∈ Ky (PFIX).Therefore, we have:
KΨ(y,x)(MSHELL) = Vect {([T(y,x)ψ] (0, ei), ei) ∣∣ i 6 k

} + Vect {([T(y,x)ψ] (fj , 0), 0) ∣∣ j 6 l
} .
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Using Kψ(y,x) (PFIX,x) ⊂ Kψ(y,x) (PSHELL), we can now check that TΨ(y,x) δ̃ 〈KΨ(y,x)(MSHELL)〉 = {0}. There-fore, the leaf of the foliation K (MSHELL) that goes through Ψ(y, x) is included in δ̃−1 〈{θFIX(y), γ(x)}〉(as leaves of foliation are by definition connected).On the other hand, δ̃−1 〈{θFIX(y), γ(x)}〉 = Ψ〈θFIX,−1 〈{θFIX(y)}〉 × γ−1 〈{γ(x)}〉〉 is connected asimage by a continuous map of a Cartesian product of connected spaces. And its tangent space atΨ(y, x) is given by:
T(y,x)Ψ〈Ky (PFIX)× Kx (NSHELL)〉 = KΨ(y,x)(MSHELL) (using 3.6.2).

Therefore, δ̃−1 〈{θFIX(y), γ(x)}〉 is included in the leaf of the foliation K (MSHELL) that goes throughΨ(y, x).This concludes the proof that (PDYN ×NDYN, MSHELL, δ̃
) is a phase space reduction of MKIN. Now,

using prop. A.6, there exists a symplectomorphism Φ : MDYN → PDYN×NDYN such that Φ ◦ δ = δ̃ . πDYNis then the projection corresponding to this factorization of MDYN. �

We are now ready to consider a projective system of phase spaces MKIN
η , with a phase space

reduction of MKIN
η for each η. As announced at the beginning of this subsection, we want to

examine the situation where the reduced phase spaces MDYN
η can be arranged into a new projective

system of phase spaces, in such a way that the maps, that translate the kinematical observables
into dynamical ones for each η, are intertwined by the projections on both sides. Thus, we can
associate to an observable on the projective limit of the MKIN

η an observable on the projective limit
of the MDYN

η . In a dual way, to each state on this dynamical projective system of phase spaces
corresponds a projective family of orbits in the constraint surfaces MSHELL

η (another option here
would be to consider projective family of probability measures, aka. statistical states, in which
case we would map dynamical statistical states to on-shell supported, gauge invariant, kinematical
statistical states).

The previous study, examining a projection that relates the phase space reductions on two sym-
plectic manifolds, is the key element for this construction. Indeed the requirement that the dynam-
ical phase spaces should readily assemble into a new projective system can actually be enforced by
asking, for each pair of index η 4 η′, that the reductions on MKIN

η and MKIN
η′ should be related by

πKIN
η′→η.

Definition 3.7 Let (L,MKIN, πKIN)↓ be a projective system of phase spaces. An elementary reductionof (L,MKIN, πKIN)↓ is a quadruple ((MDYN
η
)
η∈L ,

(
MSHELL

η
)
η∈L ,

(
πDYN
η′→η
)
η4η′ ,

(
δη
)
η∈L

) such that:
1. (L,MDYN, πDYN)↓ is a projective system of phase spaces;
2. ∀η ∈ L, (MDYN

η ,MSHELL
η , δη) is a phase space reduction of MKIN

η ;
3. ∀η 4 η′ ∈ L, πKIN

η′→η
〈
MSHELL

η′
〉 = MSHELL

η and:
∀xη ∈MSHELL

η , ∀yη′ ∈MDYN
η′ ,
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(
∃xη′ ∈MSHELL

η′ / δη′(xη′) = yη′ & πKIN
η′→η(xη′) = xη

)
⇔
(
δη(xη) = πDYN

η′→η(yη′)) .
Whenever possible, we will use the shortened notation (L,M, π, δ)DYN instead of ((MDYN

η
)
η∈L ,(

MSHELL
η
)
η∈L ,

(
πDYN
η′→η
)
η4η′ ,

(
δη
)
η∈L

).
Definition 3.8 We consider the same objects as in def. 3.7 and we define (in analogy to the definitionof S↓(L,M,π) in def. 2.3) Ŝ↓(L,MKIN,πKIN) as:

Ŝ
↓(L,MKIN,πKIN) :=

(Dη)η∈L ∈∏
η∈L

P(MKIN
η )
∣∣∣∣∣∣ ∀η 4 η′, πKIN

η′→η 〈Dη′〉 = Dη

 ,
where, for η ∈ L, P(MKIN

η ) is the set of subsets of MKIN
η .Then, we define:∆ : S

↓(L,MDYN,πDYN) → Ŝ
↓(L,MKIN,πKIN)(yη)η∈L 7→ (
δ−1
η 〈{yη}〉

)
η∈L

,
which is well-defined as a map S

↓(L,MDYN,πDYN) → Ŝ
↓(L,MKIN,πKIN), for we have ∀η 4 η′ ∈ L, ∀yη′ ∈

MDYN
η′ , δ−1

η
〈{
πDYN
η′→η(yη′)}〉 = πKIN

η′→η
〈
δ−1
η′ 〈yη′〉

〉.
Proposition 3.9 Let (L,MKIN, πKIN)↓ be a projective system of phase spaces and let (L,M, π, δ)DYN
be an elementary reduction of (L,MKIN, πKIN)↓. We define (in analogy to def. 2.4) A↓(L,MKIN,πKIN) as theset of equivalence classes in ⋃

η∈L

B(Mη) for the equivalence relation defined by:
∀η, η′ ∈ L, ∀fη ∈ B(MKIN

η ), ∀fη′ ∈ B(MKIN
η′ ),

fη ∼KIN fη′ ⇔ (∃ η′′ ∈ L / η 4 η′′, η′ 4 η′′ & fη ◦ πKIN
η′′→η = fη′ ◦ πKIN

η′′→η′) ,
and similarly A

↓(L,MDYN,πDYN) with the equivalence relation ∼DYN.Then, the map:
( · )DYN : A

↓(L,MKIN,πKIN) → A
↓(L,MDYN,πDYN)[fη]∼KIN 7→ [
f DYN
η
]
∼DYNis well-defined.For (Dη)η∈L ∈ Ŝ

↓(L,MKIN,πKIN) and f = [fη]∼KIN ∈ A
↓(L,MKIN,πKIN), we define:

[fη]∼KIN ((Dη)η∈L) := sup {fη(x) | x ∈ Dη} ,(the definition of the equivalence relation ∼KIN ensures that this is well-defined)Then, we have for all y ∈ S
↓(L,MDYN,πDYN) and all f ∈ A

↓(L,MKIN,πKIN):
f DYN(y) = f (∆(y)) . (3.9.1)

Proof What we need to show is that for η, η′ ∈ L, fη ∈ B(Mη) and fη′ ∈ B(Mη′), (fη ∼KIN fη′) ⇒(
f DYN
η ∼DYN f DYN

η′
). Indeed if there exist η′′ ∈ L, with η′′ < η, η′′ < η′, and fη′′ ∈ B(Mη′′) such that
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fη ◦ πKIN
η′′→η = fη′ ◦ πKIN

η′′→η′ , then, from prop. 3.3:
f DYN
η ◦ πDYN

η′′→η = (fη ◦ πKIN
η′′→η

)DYN = (fη′ ◦ πKIN
η′′→η′

)DYN = f DYN
η′ ◦ πDYN

η′′→η′ .Then, we only need to check eq. (3.9.1) for a particular representative fη of f :
f DYN(y) = f DYN

η (yη) = sup
x∈δ−1

η 〈{yη}〉
fη(x) = sup

x∈(δDYN(y))η fη(x) = f (∆(y)) .
�

Proposition 3.10 Let (L,MKIN, πKIN)↓ be a projective system of phase spaces. For all η ∈ L, we giveourselves a phase space reduction (MDYN
η ,MSHELL

η , δη) of Mη. The following statements are equivalent:
1. there exists a family of surjective maps (πDYN

η′→η
)
η4η′ such that (L,M, π, δ)DYN is an elementaryreduction of (L,MKIN, πKIN)↓;

2. ∀η 4 η′, (MDYN
η′ ,MSHELL

η′ , δη′) and (MDYN
η ,MSHELL

η , δη) are related by πKIN
η′→η.

Proof By definition of an elementary reduction of (L,MKIN, πKIN)↓, we have 3.10.1 ⇒ 3.10.2.To prove the other direction, we need to show that the πDYN
η′→η induced by the πKIN

η′→η satisfy thethree-spaces consistency condition:
∀η 4 η′ 4 η′′ ∈ L, πDYN

η′′→η = πDYN
η′→η ◦ πDYN

η′′→η′ .
For xη ∈MSHELL

η , yη′′ ∈MDYN
η′′ , we have (using def. 3.7.3 for η 4 η′ and η′ 4 η′′):(

δη(xη) = πDYN
η′→η

(
πDYN
η′′→η′(yη′′))) ⇔ (

∃xη′ ∈MSHELL
η′ / δη′(xη′) = πDYN

η′′→η′(yη′′) & πKIN
η′→η(xη′) = xη

)
⇔
(
∃xη′ ∈MSHELL

η′ , ∃xη′′ ∈MSHELL
η′′ / δη′′(xη′′) = yη′′ & πKIN

η′′→η′(xη′′) = xη′ & πKIN
η′→η(xη′) = xη

)
⇔
(
∃xη′′ ∈MSHELL

η′′ / δη′′(xη′′) = yη′′ & πKIN
η′→η

(
πKIN
η′′→η′(xη′′)) = xη

) .
Hence, using πKIN

η′→η ◦ πKIN
η′′→η′ = πKIN

η′′→η, and applying prop. 3.2 with πDYN
η′′→η and πDYN

η′→η ◦ πDYN
η′′→η′ , wehave πDYN

η′′→η = πDYN
η′→η ◦ πDYN

η′′→η′ . �

Recalling the discussion of subsection 2.2, regarding restrictions and extensions of the label set,
we would like to understand how elementary reductions pass through these operations. It is quite
straightforward that everything will go smoothly if we restrict the label set.

The interesting question occurs when we have an elementary reduction on a subset L′ of L. In
particular, if L′ is cofinal in L, we can identify the kinematical spaces of states and observables
over the projective system restricted to L′ with the ones over the original projective system on L

(prop. 2.5), thus the transport of observables (from the kinematical to the dynamical theory) and
states (from the dynamical to the kinematical theory) arising from an elementary reduction on L′

immediately defines corresponding transport maps between the kinematical projective structure on
L and the dynamical projective structure (which is then only defined for the label set L′). In other
words, we are still able to glue together the dynamical phase spaces MDYN

η (η ∈ L′) into a dynamical
projective structure, to inherit observables on this structure and to project back its states. However,
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in general, there will not exist an elementary reduction on L, that would reproduce the same
transport maps (modulo the identification of the thus obtained dynamical structure on L with its
restriction to L′). This point will play a key role when moving to the regularization of a dynamics
that does not break down well on the projective structure (subsection 3.2).

What is lacking, when trying to extend to L an elementary reduction on L′, is the assurance
that there will exist phase space reductions of the MKIN

η for η ∈ L \ L′, and that these reductions

will be compatible with each other, as well as with the given reductions on L′: specifically, for
any pair of labels η 4 η′ (one or both being in L \ L′) the reductions should be related by πKIN

η′→η

(the elementary reduction on L′ already accounts for the compatibility when both labels are in L′).
Prop. 3.12 shows slightly weaker hypotheses under which the extension is possible, provided the
MKIN

η for η ∈ L \ L′ are finite dimensional.

Proposition 3.11 Let (L, MKIN, πKIN)↓ be a projective system of phase spaces and (L, M, π, δ)DYNbe an elementary reduction of (L, MKIN, πKIN)↓. If L′ is a directed subset of L, (L′, M, π, δ
)DYN isan elementary reduction of (L′, MKIN, πKIN)↓ and we have:

σ̂ KIN
L→L′ ◦ ∆ = ∆′ ◦ σ DYN

L→L′ ,where σ̂ KIN
L→L′ : Ŝ↓(L,MKIN,πKIN) → Ŝ

↓(L′,MKIN,πKIN), σ DYN
L→L′ : S↓(L,MDYN,πDYN) → S

↓(L′,MDYN,πDYN) are defined in analogyto prop. 2.5, while ∆ : S↓(L,MDYN,πDYN) → Ŝ
↓(L,MKIN,πKIN) and ∆′ : S↓(L′,MDYN,πDYN) → Ŝ

↓(L′,MKIN,πKIN) are defined asin def. 3.8.In addition, for any f ∈ A
↓(L′,MKIN,πKIN), we have:(

βKIN
L←L′(f ))DYN = βDYN

L←L′ (f DYN) ,
where βKIN/DYN

L←L′ : A
↓(L′,MKIN/DYN,πKIN/DYN) → A

↓(L,MKIN/DYN,πKIN/DYN) are defined in analogy to prop. 2.5, while
( · )DYN : A↓(L,MKIN,πKIN) → A

↓(L,MDYN,πDYN) and ( · )DYN : A↓(L′,MKIN,πKIN) → A
↓(L′,MDYN,πDYN) are defined as in prop. 3.9.

Proof That (L′, M, π, δ
)DYN is an elementary reduction of (L′, MKIN, πKIN)↓ can be immediatelychecked from def. 3.7.Let (yη)η∈L ∈ S

↓(L,MDYN,πDYN) . We have:
σ̂ KIN
L→L′ ◦ ∆((yη)η∈L) = σ̂ KIN

L→L′

((
δ−1
η 〈yη〉

)
η∈L

) = (δ−1
η 〈yη〉

)
η∈L′

= ∆′ ((yη)η∈L′) = ∆′ ◦ σ DYN
L→L′

((
yη
)
η∈L

) .
Let f = [fη]∼KIN ∈ A

↓(L′,MKIN,πKIN) . We have:(
βKIN
L←L′(f ))DYN = [f DYN

η
]
∼DYN = βDYN

L←L′ (f DYN
′ ) .

�

Proposition 3.12 Let (L, MKIN, πKIN)↓ be a projective system of phase spaces and let L′ be a cofinalsubset of L. We assume:
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1. that we are given an elementary reduction (L′, M, π, δ
)DYN of (L′, MKIN, πKIN)↓ ;

2. that for any η ∈ L \ L′, MKIN
η is finite dimensional and we are given a phase space reduction(

MDYN
η , MSHELL

η , δη
) of MKIN

η ;
3. that for any η ∈ L, and for any η′ ∈ L′ with η′ < η, the reductions on MKIN

η′ and MKIN
η are relatedby πKIN

η′→η .
Then, (L′, M, π, δ

)DYN can be completed into an elementary reduction (L, M, π, δ)DYN of (L, MKIN,
πKIN)↓ .
Lemma 3.13 Let MKIN, NKIN and PKIN be symplectic manifolds and assume that NKIN and PKIN are finitedimensional. Let πKIN1 : MKIN → NKIN, πKIN2 : NKIN → PKIN, and πKIN3 : MKIN → PKIN be projections compatiblewith the symplectic structures, satisfying πKIN3 = πKIN2 ◦ πKIN1 . Let (MDYN, MSHELL, δ), (NDYN, NSHELL, γ) and(PDYN, PSHELL, η) be phase space reductions of MKIN, NKIN and PKIN respectively.If the reductions on MKIN and NKIN are related by πKIN1 and the reductions on MKIN and PKIN arerelated by πKIN3 , then the reductions on NKIN and PKIN are related by πKIN2 .
Proof Applying def. 3.1.1 for πKIN1 and πKIN3 , we have:

πKIN2 〈NSHELL〉 = πKIN2 〈πKIN1 〈MSHELL〉〉 = πKIN3 〈MSHELL〉 = PSHELL.
Let πDYN1 : MDYN → NDYN and πDYN3 : MDYN → PDYN be as in def. 3.1.2. For any y, y′ ∈ MDYN such that

πDYN1 (y) = πDYN1 (y′), there exists z ∈ γ−1 〈πDYN1 (y)〉 ⊂ NSHELL (for γ is surjective from def. A.1.2) and, usingeq. (3.1.1), there exist x, x ′ ∈MSHELL such that:
δ(x) = y, δ(x ′) = y′ and πKIN1 (x) = z = πKIN1 (x ′).Therefore, πKIN3 (x) = πKIN2 (z) = πKIN3 (x ′), so using again eq. (3.1.1), we have πDYN3 (y) = η ◦ πKIN2 (z) =

πDYN3 (y′).Hence, πDYN3 is constant on the level sets of πDYN1 , so there exists a map πDYN2 : NDYN → PDYN such that
πDYN3 = πDYN2 ◦ πDYN1 .Now, for z′ ∈ PSHELL and w ∈ NDYN, there exists y ∈ MDYN such that πDYN1 (y) = w (for πDYN1 issurjective) and we have:(

η(z′) = πDYN2 (w)) ⇔ (
η(z′) = πDYN3 (y)) ⇔ (

∃ x ∈MSHELL / δ(x) = y & πKIN3 (x) = z′
)

⇔
(
∃ z ∈ NSHELL / γ(z) = w & πKIN2 (z) = z′

) ,where the last equivalence comes from setting z = πKIN1 (x) (for proving ‘⇒’) and using eq. (3.1.1)with γ(z) = πDYN1 (y) (for ‘⇐’). Hence, πDYN2 fulfills eq. (3.1.1).In particular, we then have η ◦ πKIN2 = πDYN2 ◦ γ. Thus, since NKIN, NDYN and PDYN are smooth finitedimensional manifolds, η ◦ πKIN2 is smooth and γ is surjective with surjective derivative at any point(def. A.1.3), the rank theorem implies [54, prop. 5.19] that πDYN2 is smooth.Finally, we need to show that πDYN2 is a surjective map compatible with the symplectic structures.We have πDYN2 〈NDYN〉 = πDYN2 〈πDYN1 〈MDYN〉〉 = πDYN3 〈MDYN〉 = PDYN. And, for any w ∈ NDYN, there exists
y ∈MDYN with πDYN1 (y) = w , so that for any υ ∈ T ∗πDYN2 (w) (PDYN):
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[TwπDYN2 ] (υ ◦ [TwπDYN2 ]) = [TwπDYN2 ] ◦ [TyπDYN1 ] (υ ◦ [TwπDYN2 ] ◦ [TyπDYN1 ])
= [TyπDYN3 ] (υ ◦ [TyπDYN3 ]) = υ ,

therefore πDYN2 fulfills eq. (2.1.1). �

Proof of prop. 3.12 Let η ∈ L and η′ ∈ L \ L′, with η′ < η. Since L′ is a cofinal part of L, thereexists η′′ ∈ L′ such that η′′ < η′ < η. Using lemma 3.13 (MKIN
η′ is finite dimensional, for η′ ∈ L \L′,so MKIN

η is finite dimensional, for η 4 η′), the reductions on MKIN
η′ and MKIN

η are related by πKIN
η′→η.Hence, using prop. 3.10, there exists an elementary reduction (L, M, π̃ , δ)DYN of (L, MKIN, πKIN),where ∀η 4 η′ ∈ L, π̃KIN

η′→η = πKIN
η′→η. And by prop. 3.2, ∀η 4 η′ ∈ L′, π̃DYN

η′→η = πDYN
η′→η, which suppliesthe desired result. �

In practice, we will be interested in a kinematical projective structure that is a rendering, by
a system of finite dimensional manifolds MKIN

η , of an infinite dimensional symplectic manifold
MKIN
∞ (def. 2.6). If the phase space reduction on MKIN

∞ satisfies the (admittedly very restrictive)
requirement that it projects as a closed dynamics on MKIN

η for all η, we will get an elementary
reduction of the kinematical projective structure, and the thus obtained dynamical projective system
will automatically be a rendering of the physical phase space MDYN

∞ (fig. 3.3).

Moreover, the map turning observables on the kinematical projective structure into observables
on the dynamical structure coincides with the one that can be defined directly from the phase space
reduction of MKIN

∞ (identifying the observables on the projective structures with functions on MKIN
∞ or

MDYN
∞ , as described in def. 2.6). It cannot be too much emphasized that this is a crucial point, for

a physical theory is more than just a space of states: it is also a labeling of the observables over
this state space, that associates to the elementary observables a particular physical meaning. This
labeling is the interface that allows us to make the connection between a given concrete measure
protocol and an observable of the theory, between the experimental world and the mathematical
formalism. Hence, from a physical point of view, a rendering of the physical phase space would
be useless if we do not tell at the same time how the elementary observables of our theory are
constructed in this rendering.

As already mentioned above, we have, dual to the translation of observables, the possibility of
transporting dynamical states back to the kinematical theory (as projective families of orbits), and
again this transport reflects the map δ−1

∞ 〈 · 〉 that sends a point in MDYN
∞ to an orbit in MSHELL

∞ . This is
probably not needed when the constraints are there to implement dynamics, since, as soon as we
have obtained the physical state space (and observables thereon!), the kinematical theory has played
its role and can be discarded. However, the same mathematical formalism of imposing constraints
can also describe the symmetry restriction of a theory. It has in this case an entirely different
physical interpretation, and we are then not only interested in the symmetry restricted theory itself,
but we also want to understand its states as special, symmetric states in the full theory (note that
the constraints describing symmetry restriction being second class, we map a state on the restricted
state to a state on the unrestricted side: orbits are in this case just single points).

Proposition 3.14 Let (L,MKIN, πKIN)↓ be a rendering of a (possibly infinite dimensional) symplectic
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η η
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Figure 3.3 – Elementary reduction and rendering

manifold MKIN
∞ (def. 2.6) and let (MDYN

∞ , MSHELL
∞ , δ∞) be a phase space reduction of MKIN

∞. We supposethat, for all η ∈ L:1. Mη is finite dimensional;
2. we are given a phase space reduction (MDYN

η , MSHELL
η , δη

) of MKIN
η that is related by πKIN

∞→η to thereduction of MKIN
∞.

Then, we have an elementary reduction (L, M, π, δ)DYN of (L, MKIN, πKIN)↓ and a rendering of MDYN
∞by (L,MDYN, πDYN)↓ such that, for any y∞ ∈MDYN

∞ :
σ̂ KIN
↓
(
δ−1
∞ 〈y∞〉

) = ∆ ◦ σ DYN
↓ (y∞) , (3.14.1)

where σ̂ KIN
↓ : P (MKIN

∞)→ Ŝ
↓(L,MKIN,πKIN), σ DYN

↓ : MDYN
∞ → S

↓(L′,MDYN,πDYN) are defined in analogy to def. 2.6.Moreover, for any f ∈ A
↓(L,MKIN,πKIN), we have:(

βKIN
↑ (f ))DYN = βDYN

↑ (f DYN), (3.14.2)
where βKIN/DYN

↑ : A↓(L,MKIN/DYN,πKIN/DYN) → B(MKIN/DYN
∞ ) are defined in the same way as αKIN/DYN

↑ : O↓(L,MKIN/DYN,πKIN/DYN) →
C∞(MKIN/DYN

∞ , R) (def. 2.6).
Proof From prop. 3.12, we can complete the phase space reduction (MDYN

∞ , MSHELL
∞ , δ∞) of MKIN

∞ into anelementary reduction (L t {∞} , M, π, δ)DYN of (L t {∞} , MKIN, πKIN)↓. In particular, (L t {∞} , MDYN,
πDYN)↓ is a projective system of phase spaces; in other words, (L, MDYN, πDYN)↓ is a rendering of MDYN

∞ .Eq. (3.14.1) and eq. (3.14.2) then follow by applying twice the corresponding results from prop. 3.11(to go down from L t {∞} to both L and {∞}), together with:
σ̂ KIN
↓ = σ̂ KIN

Lt{∞}→L ◦ σ̂
KIN,−1
Lt{∞}→{∞} & σ DYN

↓ = σ DYN
Lt{∞}→L ◦ σ

DYN,−1
Lt{∞}→{∞} ,

and:
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βKIN
↑ = βKIN,−1

Lt{∞}←{∞} ◦ β
KIN
Lt{∞}←L & βDYN

↑ = βDYN,−1
Lt{∞}←{∞} ◦ β

DYN
Lt{∞}←L .

�

3.2 Regularized reductions

We now turn to the general case, where, typically, the prerequisites of the previous section will
not be satisfied.

Recall that, as underlined above (prop. 3.12), these prerequisites will become milder and milder if
we look for elementary reductions only defined on smaller and smaller cofinal subsets of the label
set L: the argument is that it’s easier to write closed dynamics over truncations of the theory if
we consent to give up the coarsest truncations for lost and to only try to formulate such truncated
dynamics in partial theories retaining enough elementary observables (and being thus able to exhibit
finer properties of the states). On the other hand, for what we are interested in (namely, defining a
projective structure for the dynamical theory, constructing on it the observables inherited from the
kinematical theory, and, if need be, embedding its states in the initial projective structure), such
an elementary restriction restricted to a cofinal part of L is all we need.

This observation motivates the following strategy: we will try to design an approximating scheme,
indexed by a directed set E, that approaches the exact constraints (unadapted to the projective
structure) by approximate constraints, projecting well on the MKIN

η at least for all η ∈ Lε (where
ε ∈ E parametrizes the level of approximation and Lε is a cofinal part of L that depends on ε). We
expect that the label subset Lε will get smaller and smaller (yet remaining cofinal), since formulating
more accurate approximations of the dynamics will require deeper and deeper knowledge of the
properties of the states (such knowledge that is only accessible in partial theories with labels at the
high end of L).

As an illustration of this idea, suppose that L consists of all possible finite subsets of points on
the real line (ordered by inclusion), take E to be the set of positive reals ε and define Lε ⊂ L to
select those subsets in which next neighbor points have a distance of at most ε. Thus a label η ∈ L

will only qualify for belonging to Lε if, given a real function f , it can provide an approximation
f |η with at least a resolution of ε (over the convex hull of η). As ε gets smaller and smaller, we
retain less and less labels η, yet Lε will keep cofinal. Notice that in this example we would use
on E the reverse order ε 4 ε′ ⇔ ε > ε′, because we think of the partial order on E in terms of
coarser lattices being included in finer ones, rather than as an ordering of the lattice parameters
(thus we will sometimes refer to the continuum limit as ε =∞, in the sense of having an infinitely
fine lattice, although in the present case ε = 0 would have been more intuitive).

To make it more precise what we mean by approaching the exact constraints, we want the
approximation scheme to come with an additional input, namely a family of projections, going
from the space of exact solutions of the dynamics MDYN into each space of approximate solutions
MDYN,ε: it will tell us, for each level of approximation ε ∈ E, how to map the exacts orbits in MSHELL
to their approximate versions in MSHELL,ε. In other words, we will associate to each orbit in the exact
constraint surface a family (indexed by E) of orbits intended to approach it, thus setting the stage
to formulate a notion of convergence (this point will be examined more closely in the second half
of the present subsection).
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Besides, it is sensible that the map from MDYN to MDYN,ε does not retain all degrees of freedom,
so that it only depends on the most distinctive properties of the dynamical states in MDYN: the
approximation of an exact solution should drop those finest details, that can anyway not be handled
correctly by the coarse dynamics underlying MDYN,ε. More precisely, we will require that the family
of approximated theories build on their own a projective system of phase spaces (with label set E),
and, in addition, we would like the approximating maps, bringing us from a finer approximated
dynamical theory to a coarser one, to be expressible at the level of the truncated theories MDYN,ε

η , so
that we can assemble all MDYN,ε

η into a big projective system of phase spaces (whose label set will be
a part of E× L). The return of these quite restrictive requirements is that it supplies immediately
a dynamical projective structure, where we can represent the dynamical states and start doing
calculations with them, even before we have settled the question of convergence.

Clearly, we are assuming here that we are provided with some non-trivial input, that will have
to come from a precise understanding of the system under study. The examples in chap. 5, besides
demonstrating that the procedure described here can indeed be put into practice in simple systems,
also give some insights on how the needed input can be obtained, but it will require more extensive
investigations to develop systematic ways of constructing suitable approximating schemes in the
sense above.

Proposition 3.15 Let E,4 and L,4 be preordered, directed sets and suppose there exists for all
ε ∈ E a cofinal part Lε of L such that:
∀ε 4 ε′,Lε ⊃ Lε′ .

We define EL := {(ε, η) | ε ∈ E, η ∈ Lε} and equip it with the preorder:
∀(ε, η), (ε′, η′) ∈ EL, (ε, η) 4 (ε′, η′) ⇔ (

ε 4 ε′ & η 4 η′
).

Then EL,4 is directed.
Proof Let (ε, η), (ε′, η′) ∈ EL. Since E and L are directed, there exist ε′′ ∈ E and η̃ ∈ L such that
ε, ε′ 4 ε′′ and η, η′ 4 η̃. Lε′′ being cofinal in L, there exists η′′ ∈ Lε′′ / η̃ 4 η′′. �

Definition 3.16 Let (L,MKIN, πKIN)↓ be a projective system of phase spaces. A regularized reductionof (L,MKIN, πKIN)↓ is a sextuple:(
E, (Lε)ε∈E , (MDYN,ε

η
)(ε,η)∈EL , (MSHELL,ε

η
)(ε,η)∈EL ,(πDYN,ε′→ε

η′→η

)
(ε,η)4(ε′,η′) ,

(
δεη
)(ε,η)∈EL)

such that:1. E is a directed set indexing a family (Lε)ε∈E of decreasing (∀ε 4 ε′,Lε ⊃ Lε′), cofinal parts of
L as in prop. 3.15;

2. ∀ε ∈ E, ((MDYN,ε
η
)
η∈Lε ,

(
MSHELL,ε

η
)
η∈Lε ,

(
πDYN,ε→ε
η′→η

)
η4η′

,
(
δεη
)
η∈Lε

) is an elementary reduction of
(Lε,MKIN, πKIN)↓;

3. (EL, (MDYN,ε
η
)(ε,η)∈EL ,(πDYN,ε′→ε

η′→η

)
(ε,η)4(ε′,η′)

) is a projective system of phase spaces.
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Whenever possible, we will use the shortened notation (L,M, π, δ)DYN,E instead of (E, (Lε)ε∈E ,(
MDYN,ε

η
)(ε,η)∈EL , (MSHELL,ε

η
)(ε,η)∈EL , (πDYN,ε→ε

η′→η

)
(ε,η)4(ε′,η′) ,

(
δεη
)(ε,η)∈EL).

At that point we have written a projective structure for the dynamical theory, but as we em-
phasized in the previous subsection, constructing the space of physical states is of little use if we
do not prescribe how to define on it the observables inherited from the kinematical theory. As a
first step in this direction, we will construct maps that transport kinematical observables into the
dynamical theory at some level of approximation ε : given a particular kinematical observable, the
dynamical observables constructed this way, for all possible ε, should be thought of as successive
approximations of the exact dynamical version of this kinematical observable.

Moreover, we can check that these maps transform well under restriction of the label sets L

and E (provided the label subsets L′ and E′ considered are such that we still have a regularized
reduction after restricting ourselves to E′L′). We will make use of this result at the end of the
present subsection, when we will consider how regularized reductions interact with renderings.

Definition 3.17 We consider the same objects as in def. 3.16. For ε ∈ E, we define ∆ε :
S
↓(EL,MDYN,πDYN) → Ŝ

↓(L,MKIN,πKIN) as:
∆ε := σ̂ KIN,−1

L→Lε ◦ ∆ε
Lε ◦ σ DYN

EL→Lε ,
where σ DYN

EL→Lε : S↓(EL,MDYN,πDYN) → S
↓(Lε,MDYN,ε,πDYN,ε→ε) is defined as in prop. 2.5 (for the directed part

{(ε, η) | η ∈ Lε} of EL), ∆ε
Lε : S↓(Lε,MDYN,ε,πDYN,ε→ε) → Ŝ

↓(Lε,MKIN,πKIN) is defined as in def. 3.8 (for theelementary reduction (Lε,Mε, πε→ε, δε)↓ of (Lε,MKIN, πKIN)↓), and σ̂ KIN
L→Lε : Ŝ↓(L,MKIN,πKIN) → Ŝ

↓(Lε,MKIN,πKIN)is defined in analogy to prop. 2.5 (for the cofinal part Lε of L).Similarly, we define ( · )ε : A↓(L,MKIN,πKIN) → A
↓(EL,MDYN,πDYN) as:

( · )ε := βDYN
EL←Lε ◦ ( · )DYN,ε ◦ βKIN,−1

L←Lε ,
where βDYN

EL←Lε : A
↓(Lε,MDYN,ε,πDYN,ε→ε) → A

↓(EL,MDYN,πDYN) and βKIN
L←Lε : A

↓(Lε,MKIN,πKIN) → A
↓(L,MKIN,πKIN) aredefined as in analogy to prop. 2.5 (for the directed part {(ε, η) | η ∈ Lε} of EL and the cofinal part

Lε of L) and ( · )DYN,ε : A↓(Lε,MDYN,ε,πDYN,ε→ε) → A
↓(Lε,MKIN,πKIN) is defined as in prop. 3.9 (for the elementaryreduction (Lε,Mε, πε→ε, δε)↓ of (Lε,MKIN, πKIN)↓).We have for all y ∈ S

↓(EL,MDYN,πDYN) and all f ∈ A
↓(L,MKIN,πKIN):

f ε(y) = f (∆ε(y)) .
Proposition 3.18 Let (L,MKIN, πKIN)↓ be a projective system of phase spaces and let (L,M, π, δ)DYN,Ebe a regularized reduction of (L,MKIN, πKIN)↓. Let L′ and E′ be directed subsets of L and E respec-tively, such that, for all ε ∈ E′, L′ε := Lε ∩ L′ is a cofinal part of L′ .Then, (L′,M, π, δ

)DYN,E′ is a regularized reduction of (L′,MKIN, πKIN)↓ and, for any ε ∈ E′, wehave:
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σ̂ KIN
L→L′ ◦ ∆ε = ∆′ε ◦ σ DYN

EL→E′L′ , (3.18.1)
where σ̂ KIN

L→L′ : Ŝ↓(L,MKIN,πKIN) → Ŝ
↓(L′,MKIN,πKIN), σ DYN

EL→E′L′ : S↓(EL,MDYN,πDYN) → S
↓(E′L′,MDYN,πDYN) are defined inanalogy to prop. 2.5, while ∆ε : S↓(EL,MDYN,πDYN) → Ŝ

↓(L,MKIN,πKIN) and ∆′ε : S↓(E′L′,MDYN,πDYN) → Ŝ
↓(L′,MKIN,πKIN)are defined as in def. 3.17.In addition, for any f ∈ A

↓(L′,MKIN,πKIN) and any ε ∈ E′, we have:(
βKIN
L←L′(f ))ε = βDYN

EL←E′L′ (f ε) , (3.18.2)
where βKIN

L←L′ : A
↓(L′,MKIN,πKIN) → A

↓(L,MKIN,πKIN) and βDYN
L←L′ : A

↓(E′L′,MDYN,πDYN) → A
↓(EL,MDYN,πDYN) are de-fined in analogy to prop. 2.5, while ( · )ε : A↓(L,MKIN,πKIN) → A

↓(EL,MDYN,πDYN) and ( · )ε : A↓(L′,MKIN,πKIN) →
A
↓(E′L′,MDYN,πDYN) are defined as in def. 3.17.

Proof L′ε being a cofinal part of L′ for all ε ∈ E′ ensures that def. 3.16.1 is fullfiled. Moreover, E′L′is then a directed subset of EL, hence def. 3.16.3 holds. Lastly, def. 3.16.2 follows from prop. 3.11,since, for any ε ∈ E′, L′ε is a directed part of Lε (as a cofinal part of the directed set L′).Let ε ∈ E′. We have L ⊃ L′,Lε ⊃ L′
ε, hence:

σ̂ KIN
L′→L′ε ◦ σ̂ KIN

L→L′ = σ̂ KIN
Lε→L′ε ◦ σ̂ KIN

L→Lε .And, from EL ⊃ E′L′,Lε ⊃ L′
ε (identifying Lε with the subset {(ε, η) | η ∈ Lε} of EL and L′

ε

with the subset {(ε, η) ∣∣ η ∈ L′
ε} of E′L′ as in def. 3.17), we also have:

σ DYN
Lε→L′ε ◦ σ DYN

EL→Lε = σ DYN
E′L′→L′ε ◦ σ DYN

EL→E′L′ .So, using the definition of ∆ε and ∆′ε from def. 3.17:
σ̂ KIN
L→L′ ◦ ∆ε = σ̂ KIN

L→L′ ◦ σ̂
KIN,−1
L→Lε ◦ ∆ε

Lε ◦ σ DYN
EL→Lε

= σ̂ KIN,−1
L′→L′ε ◦ σ̂

KIN
Lε→L′ε ◦ ∆ε

Lε ◦ σ DYN
EL→Lε

= σ̂ KIN,−1
L′→L′ε ◦ ∆′εL′ε ◦ σ DYN

Lε→L′ε ◦ σ DYN
EL→Lε (using prop. 3.11)

= σ̂ KIN,−1
L′→L′ε ◦ ∆′εL′ε ◦ σ DYN

E′L′→L′ε ◦ σ DYN
EL→E′L′

= ∆′ε ◦ σ DYN
EL→E′L′ .Similarly, we have:( · )ε ◦ βKIN

L←L′ = βDYN
EL←E′L′ ◦ ( · )ε .

�

Now, we would like to give a precise definition of the convergence we have been hinting at
repeatedly above. To ascertain convergence is crucial for ensuring that we will get consistent
predictions when refining the level of approximation at which we are conducting the calculations.

Our unchanged goal is to make it possible to transport kinematical observables over to the
dynamical theory, not only in an approximated fashion, but in such a way that we faithfully realize
the transport prescribed by the exact dynamics we are trying to implement (and, if the constraints
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Figure 3.4 – Convergence of a net of orbits

we are considering describe a symmetry restriction, we are also interested in the correct embedding
of the symmetric states in the full theory; as we already underlined in the previous subsection, the
map between observables and the one between states are the two dual aspects of the bond between
the initial or kinematical theory and the restricted or dynamical one). Additionally, we would like
to be able to investigate the properties of this correct dynamics (at a certain level of precision) by
making use of the approximated dynamics, where calculations will probably be more tractable.

The straightforward course is to obtain the correct transport map as the limit of the net of
approximated maps introduced previously. As illustrated in fig. 3.4, we begin by defining, given
a family of orbits in a manifold, a notion of convergence, which is adjusted to our method for
transposing kinematical observables into dynamical ones (as explained in appendix A, this method
is itself motivated by taking the indicator functions as model observables).

Definition 3.19 Let M be a finite dimensional manifold and let (Nε)ε∈E be a net of subsets of M.We say that the net (Nε)ε∈E converges to the subset N∞ if:
1. ∀U open set ⊂M such that N∞ ∩ U 6= ∅, ∃ε ∈ E / ∀ε′ < ε, Nε′ ∩ U 6= ∅;
2. and ∀K compact set ⊂M such that N∞ ∩ K = ∅, ∃ε ∈ E / ∀ε′ < ε, Nε′ ∩ K = ∅.

Proposition 3.20 Let M and (Nε)ε∈E be as in def. 3.19 and let f ∈ C∞o (M, R) (the space ofcompactly supported, smooth, real-valued functions on M). We define:
f ε := sup {f (x) | x ∈ Nε} & f∞ := sup {f (x) | x ∈ N∞}.

Then, lim
ε∈E,4

f ε = f∞.
Proof Let δ > 0. We choose x ∈ N∞ such that f (x) > f∞ − δ/2. f is smooth, so there exists anopen neighborhood U of x such that ∀x ′ ∈ U, f (x ′) > f∞−δ . From def. 3.19.1, there exists ε1 suchthat ∀ε′ < ε1, Nε′ ∩ U 6= ∅. Hence, ∀ε′ < ε1, f ε′ > f∞ − δ .Let K := {x ∈M | f (x) > f∞ + δ}. Since f is compactly supported, K is compact. We have
K ∩ N∞ = ∅, so, from def. 3.19.2, there exists ε2 such that ∀ε′ < ε2, Nε′ ∩ K = ∅. Hence,
∀ε′ < ε2, f ε′ 6 f∞ + δ .
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E being directed, there exists ε < ε1, ε2. Then, ∀ε′ < ε,
∣∣f∞ − f ε′∣∣ 6 δ . �

For any state over the dynamical projective system, and any η ∈ L, the framework laid at the
beginning of the present subsection allows to construct a net of approximated orbits representing
this dynamical state in MKIN

η (def. 3.17). Thus we can define the space R of all dynamical states such
that, for all η, the net of their approached projections on MKIN

η converges in the sense above.

Hopefully, R will be dense in the space of all dynamical states, but we do not require both spaces
to coincide. It is in fact not really surprising that formulating the exact dynamics may require
to consider only states that are well-behaved enough (we can view this prescription on the same
footing as, for example, the routine requirement for fields to be smooth so that we can describe
their dynamics by partial differential equations).

Reciprocally, we can also associate to any (sufficiently regular) kinematical observable its corre-
sponding exact dynamical version, as an observable defined on R. At this point we can comment
on the issue raised in section 1, namely that even the Poisson-algebra generated by finitely many
observables could be too complicated to be represented on a finite dimensional symplectic mani-
fold. We had argued that this problem should not arise when looking at kinematical observables,
yet it might (and generically will) occur for the dynamical observables. By defining a dynamical
observable as the limit of a family of imperfect estimations, we escape this difficulty. On the one
hand, each such estimation can be expressed over a sufficiently big partial theory, while keeping the
partial theories finite dimensional, because the regularization allows us to keep under control the
algebra generated by finitely many of these approximated versions of the observables. On the other
hand, an exact dynamical observable, being a limit, is allowed to depend on the full projective state(
yεη
)(ε,η)∈EL ∈ R.

Definition 3.21 Let (L,MKIN, πKIN)↓ be a projective system of finite dimensional phase spaces andlet (Y ε)ε∈E be a net in Ŝ
↓(L,MKIN,πKIN). We say that the net (Y ε)ε∈E converges to the element Y∞ ∈

Ŝ
↓(L,MKIN,πKIN) iff:
1. ∀η ∈ L, the net (Y ε

η )ε∈E converges to the subset Y∞η of MKIN
η in the sense of def. 3.19.

If (L,M, π, δ)DYN,E is a regularized reduction of (L,MKIN, πKIN)↓, we say that the regularizationconverges on a subset R of S↓(EL,MDYN,πDYN) iff:
2. ∀y ∈ R, the net (∆ε(y))ε∈E converges in Ŝ

↓(L,MKIN,πKIN).
Proposition 3.22 Let (L,MKIN, πKIN)↓ be a projective system of finite dimensional phase spaces. Wedefine:

A
o,↓(L,MKIN,πKIN) = {f ∈ A

↓(L,MKIN,πKIN)
∣∣∣ ∃η ∈ L, ∃fη ∈ f / fη ∈ C∞o (MKIN

η , R)} .
If the net (Y ε)ε∈E in Ŝ

↓(L,MKIN,πKIN) converges to the element Y∞ ∈ Ŝ
↓(L,MKIN,πKIN), then, for all f ∈

A
o,↓(L,MKIN,πKIN), the net (f (Y ε))ε∈E converges to f (Y∞).If (L,M, π, δ)DYN,E is a regularized reduction of (L,MKIN, πKIN)↓ such that the regularization con-
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verges on R ⊂ S
↓(EL,MDYN,πDYN), then, for all f ∈ A

o,↓(L,MKIN,πKIN), we can define an application f DYN on Rby:
∀y ∈ R, f DYN(y) := lim

ε∈E,4
f ε(y) .

Proof Let f ∈ A
o,↓(L,MKIN,πKIN) and let η ∈ L, fη ∈ f such that fη ∈ C∞o (MKIN

η , R). For all ε ∈ E, wehave f (Y ε) = sup
Y εη
fη (for we can choose any representative of f to evaluate f on Y ε). Now, the net

(Y ε
η )ε∈E converges to the subset Y∞η of MKIN

η , hence, using prop. 3.20:lim
ε∈E,4

f (Y ε) = sup
Y∞η

fη = f (Y∞) .
Now, if y ∈ R, we have from def. 3.21 that the net (∆ε(y))ε∈E converges in Ŝ

↓(L,MKIN,πKIN). Hence,the net (f (∆ε(y)))ε∈E converges, but we have ∀ε ∈ E, f (∆ε(y)) = f ε(y) (def. 3.17). �

Finally, we want to discuss how renderings (def. 2.6) can be incorporated in this procedure,
and more specifically, how regularized reductions can be used to mirror phase space reductions
in infinite dimensional symplectic manifolds. Given a rendering of some infinite dimensional
symplectic manifold MKIN

∞, and a phase space reduction thereof, we will aim at constructing a
regularized reduction whose dynamical projective system renders the dynamical phase space MDYN

∞ .
Additionally, we will require that the regularization converges (at least) on the dynamical states
that are identified, through this rendering, with points in MDYN

∞ , and that, for any such state, the
family of orbits reflecting it in the kinematical structure can be identified with the corresponding
orbit in MKIN

∞.

Then, besides being provided with a rendering of the dynamical theory, this last point will ensure
that the maps linking the kinematical side and the dynamical one are appropriately intertwined by
the identifications arising from the renderings on both sides.

In prop. 3.24, we formulate more concise assumptions that are sufficient to bring forth this
optimal setting. As illustrated in fig. 3.5, it relies on the successive approximations of the dynamics
being formulated as phase space reductions of MKIN

∞, and the thus defined dynamical phase spaces
MDYN,ε
∞ building a rendering of the exact dynamical theory (denoted by MDYN,∞

∞ ).

Proposition 3.23 Let (L,MKIN, πKIN)↓ be a projective system of finite dimensional phase spaces andlet (L,M, π, δ)DYN,E be a regularized reduction of (L,MKIN, πKIN)↓. Assume that we have a symplecticmanifold MKIN
∞ and a phase space reduction (MDYN

∞ , MSHELL
∞ , δ∞) of MKIN

∞ such that:
1. we have a rendering of MKIN

∞ by (L,MKIN, πKIN)↓ and of MDYN
∞ by (EL, MDYN, πDYN)↓;

2. for all y in MDYN
∞ , the net (∆ε ◦ σ DYN

↓ (y))ε∈E converges in Ŝ
↓(L,MKIN,πKIN) to σ̂ KIN

↓
(
δ−1
∞ 〈{y}〉

), where
σ DYN
↓ : MDYN

∞ → S
↓(EL,MDYN,πDYN) is defined as in def. 2.6 and σ̂ KIN

↓ : P(MKIN
∞)→ Ŝ

↓(L,MKIN,πKIN) is defined ina similar way.
Then, the regularization converges on R := Im σ DYN

↓ and for all y ∈ MDYN
∞ , for all f ∈ A

o,↓(L,MKIN,πKIN),we have:
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∞→∞
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Figure 3.5 – Regularized reduction and rendering

f DYN ◦ σ DYN
↓ (y) = (βKIN

↑ (f ))DYN (y) .
Proof Let y ∈MDYN

∞ and f ∈ A
o,↓(L,MKIN,πKIN). We have, using prop. 3.22:

f DYN ◦ σ DYN
↓ (y) = lim

ε∈E,4
f ε ◦ σ DYN

↓ (y) = lim
ε∈E,4

f ◦ ∆ε ◦ σ DYN
↓ (y) = f ◦ σ̂ KIN

↓
(
δ−1
∞ 〈{y}〉

)
= βKIN

↑ (f ) (δ−1
∞ 〈{y}〉

) = sup
δ−1
∞ 〈{y}〉

βKIN
↑ (f ) = (βKIN

↑ (f ))DYN (y) .
�

Proposition 3.24 Let (L,MKIN, πKIN)↓ be a projective system of finite dimensional phase spacesyielding a rendering of a symplectic manifold MKIN
∞. Let E be a directed preordered set and assumethat:1. for any ε ∈ E t {∞}, we have a phase space reduction (MDYN,ε

∞ , MSHELL,ε
∞ , δε∞) of MKIN

∞;
2. for any ε ∈ E, we have a cofinal subset Lε of L and an elementary reduction((

MDYN,ε
η
)
η∈Lεt{∞} ,

(
MSHELL,ε

η
)
η∈Lεt{∞} ,

(
πDYN,ε→ε
η′→η

)
η4η′

,
(
δεη
)
η∈Lεt{∞}

) of (Lε t {∞} ,MKIN, πKIN)↓,
arising from (MDYN,ε

∞ , MSHELL,ε
∞ , δε∞);

3. we have a rendering of MDYN,∞
∞ by (E, MDYN

∞ , πDYN
∞→∞)↓;

4. for any ε 4 ε′, Lε′ ⊂ Lε and, for any η ∈ Lε′ , we have a projection πDYN,ε′→ε
η→η : MDYN,ε′

η →MDYN,ε
η ,compatible with the symplectic structures, and such that πDYN,ε→ε

∞→η ◦ πDYN,ε′→ε
∞→∞ = πDYN,ε′→ε

η→η ◦ πDYN,ε′→ε′
∞→η .

Then, defining L̃ := Lt{∞} and Ẽ := Et{∞} (extending the preorders in such a way that ∞
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is a greatest element), we can complete this input to build a regularized reduction (L̃,M, π, δ
)DYN,Ẽ

of (L̃,MKIN, πKIN)↓.If we moreover have:
5. for any y ∈MDYN,∞

∞ , the net (σ̂ KIN
↓
(
δε,−1
∞ 〈πDYN,∞→ε

∞→∞ (y)〉))
ε∈E

converges in Ŝ
↓(L,MKIN,πKIN) to σ̂ KIN

↓
(
δ∞,−1
∞ 〈y〉

) ;
then the hypotheses of prop. 3.23 are fulfilled.
Proof For any ε ∈ E we define L̃ε := Lε t {∞} and we additionally define L̃∞ := {∞}. Withthis def. 3.16.1 is fulfilled.For any ε ∈ E, def. 3.16.2 comes from assumption 3.24.2, and for ∞ ∈ Ẽ, it reduces to(MDYN,∞
∞ , MSHELL,∞

∞ , δ∞∞ ) being a phase space reduction of MKIN
∞, which has been assumed in 3.24.1.For any ε 4 ε′ ∈ Ẽ and any η ∈ L̃ε, η′ ∈ L̃ε′ with η 4 η′, we define πDYN,ε′→ε

η′→η := πDYN,ε→ε
η′→η ◦

πDYN,ε′→ε
η′→η′ . From assumption 3.24.2, πDYN,ε→ε

η′→η : MDYN,ε
η′ → MDYN,ε

η is a projection compatible with thesymplectic structures, and from assumption 3.24.4 (or 3.24.3 if η′ = ∞), πDYN,ε′→ε
η′→η′ : MDYN,ε′

η′ → M
DYN,ε
η′is a projection compatible with the symplectic structures. Hence, πDYN,ε′→ε

η′→η : MDYN,ε′
η′ → MDYN,ε

η is aprojection compatible with the symplectic structures.Let (ε, η) 4 (ε′, η′) 4 (ε′′, η′′) ∈ ẼL̃. We have η′, η′′ ∈ Lε′ , hence, using points 3.24.2 and 3.24.4:
πDYN,ε→ε
η′′→η′ ◦ π

DYN,ε′→ε
η′′→η′′ ◦ π

DYN,ε′→ε′
∞→η′′ = πDYN,ε→ε

∞→η′ ◦ πDYN,ε′→ε
∞→∞ = πDYN,ε′→ε

η′→η′ ◦ πDYN,ε′→ε′
η′′→η′ ◦ πDYN,ε′→ε′

∞→η′′ .
Since πDYN,ε′→ε′

∞→η′′ is surjective, we then have:
πDYN,ε→ε
η′′→η′ ◦ π

DYN,ε′→ε
η′′→η′′ = πDYN,ε′→ε

η′→η′ ◦ πDYN,ε′→ε′
η′′→η′ ,hence, using once more from 3.24.2:

πDYN,ε′→ε
η′→η ◦ πDYN,ε′′→ε′

η′′→η′ = πDYN,ε→ε
η′→η ◦ πDYN,ε→ε

η′′→η′ ◦ π
DYN,ε′→ε
η′′→η′′ ◦ π

DYN,ε′′→ε′
η′′→η′′

= πDYN,ε→ε
η′′→η ◦ πDYN,ε′→ε

η′′→η′′ ◦ π
DYN,ε′′→ε′
η′′→η′′ . (3.24.1)

Now, using repeatedly 3.24.4, together with 3.24.3, we have:
πDYN,ε′→ε
η′′→η′′ ◦ π

DYN,ε′′→ε′
η′′→η′′ ◦ πDYN,ε′′→ε′′

∞→η′′ = πDYN,ε→ε
∞→η′′ ◦ πDYN,ε′→ε

∞→∞ ◦ πDYN,ε′′→ε′
∞→∞

= πDYN,ε′′→ε
η′′→η′′ ◦ π

DYN,ε′′→ε′′
∞→η′′

and, since πDYN,ε′′→ε′′
∞→η′′ is surjective:

πDYN,ε′→ε
η′′→η′′ ◦ π

DYN,ε′′→ε′
η′′→η′′ = πDYN,ε′′→ε

η′′→η′′ . (3.24.2)
Combining eq. (3.24.1) and eq. (3.24.2), we get:
πDYN,ε′→ε
η′→η ◦ πDYN,ε′′→ε′

η′′→η′ = πDYN,ε→ε
η′′→η ◦ πDYN,ε′′→ε

η′′→η′′ = πDYN,ε′′→ε
η′′→η ,

therefore (ẼL̃, MDYN, πDYN)↓ is a projective system of phase spaces, so def. 3.16.3 holds.
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Thus, using prop. 3.18 with assumption 3.24.2, (L,M, π, δ)DYN,E is a regularized reduction of(L,MKIN, πKIN)↓, while (EL, MDYN, πDYN)↓ is a rendering of MDYN,∞
∞ .We now assume that assumption 3.24.5 holds. Using eq. (3.18.1) for EL ⊂ ẼL̃, we have:

σ̂ KIN
L̃→L

◦ ∆̃ε = ∆ε ◦ σ DYN
ẼL̃→EL

,
and using it for Ẽ {∞} ⊂ ẼL̃:

σ̂ KIN
L̃→{∞} ◦ ∆̃ε = δε,−1

∞ 〈 · 〉 ◦ σ DYN
Ẽ{∞}→{(ε,∞)} ◦ σ DYN

ẼL̃→Ẽ{∞}

= δε,−1
∞ 〈 · 〉 ◦ σ DYN

ẼL̃→{(ε,∞)} ,
therefore:∆ε ◦ σ DYN

↓ = ∆ε ◦ σ DYN
ẼL̃→EL

◦ σ DYN,−1
ẼL̃→{(∞,∞)}

= σ̂ KIN
L̃→L

◦ σ̂ KIN,−1
L̃→{∞}

◦ δε,−1
∞ 〈 · 〉 ◦ σ DYN

ẼL̃→{(ε,∞)} ◦ σ DYN,−1
ẼL̃→{(∞,∞)}

= σ̂ KIN
↓ ◦ δε,−1

∞ 〈 · 〉 ◦ πDYN,∞→ε
∞→∞ .

Hence, for all y ∈MDYN,∞
∞ , the net (∆ε ◦ σ DYN

↓ (y))ε∈E converges in Ŝ
↓(L,MKIN,πKIN) to σ̂ KIN

↓
(
δ∞,−1
∞ 〈y〉

) .
�

At this point, the question that remains open is how to construct a rendering of MDYN,∞ by a
net of reduced phase spaces MDYN,ε, arising from constraint surfaces approaching MSHELL,∞. In other
words, we are lacking systematic recipes for setting up regularization schemes in the sense of the
procedure just described.

Among the tools that are at our disposal is the gauge fixing/unfixing trick (taken from [14],
where it was however used in a completely different context), that would consist in first partially
gauge fixing (prop. A.8) the original phase space reduction, and then gauge unfixing it in a slightly
different direction: thus we would deform the orbits (in the view of improving their projectability),
and get an approximation of the dynamics that should be satisfactory in some neighborhood of
the common gauge fixing surface (this technique is the one used in section 16). Another option,
that might be in particular relevant when the gauge orbits are infinite dimensional, could be to
drastically gauge fix them, before progressively lifting the gauge fixing conditions, thus approaching
a given orbit by an increasing net of submanifolds inside it. In both cases, we get a natural
symplectomorphism between MDYN,∞ and each MDYN,ε, so we probably want to combine such methods
with projections from MDYN,∞ into symplectic submanifolds of it, to drop the degrees of freedom that
are disproportionately accurate at a given level of approximation.

Also, there is presumably some link between the regularization procedure we are considering and
various concepts developed eg. in the context of Loop Quantum Gravity (often within a Lagrangian
setting), exploring the interplay between discretization, coarse graining, diffeomorphism invariance,
and the continuum limit [59]. Studying more precisely how these approaches are related to the
strategy proposed here could in particular help incorporate renormalization group ideas into the
picture.
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Chapter 2 – Quantum Formalism

4. Introduction

While finite dimensional symplectic manifolds are comparatively easy to quantize, allowing the
formulation of rather systematic procedures (such as geometric quantization [105], of which a
brief account is given in appendix B), quantizing infinite dimensional ones (aka. field theories)
is substantially more involved: typically, we have to rely on some additional insight, telling us
how to break them down into a stack of finite dimensional truncations and how to afterwards
reassemble the pieces into a consistent quantum theory. The projective approach to quantum field
theory introduced in [48, 68] , and reviewed in subsection 5.1 below, makes this concept central
to the formalism, by representing each truncation on a ‘small’ Hilbert space, before sewing the
thus obtained partial quantum theories together into a projective structure. Like in the classical
formalism described in the previous chapter, the labels indexing these partial theories are to be
thought as selecting finitely many degrees of freedom out of the considered infinite dimensional
theory. Whenever the degrees of freedom retained by some label η are also covered by a finer label
η′, the usual rules of quantum mechanics suggest to identify the small Hilbert space Hη associated
to η as a tensor product factor in Hη′ : this allows to compute partial traces of density matrices
on Hη′ , which is how the relation between the corresponding partial quantum theories will be
formalized in def. 5.2.

We pointed out in the main introduction that this approach has the potential to deliver bigger
state spaces, as it sidesteps the need to specialize into a single representation of the algebra of
observables. To demonstrate this property, we will, in subsection 5.2, inspect how the quantum
state spaces built this way compare to those provided by other quantization methods, that are also
assembled from ‘small’ Hilbert spaces, yet sewed in a different manner (this analysis will then be
applied to the relation with the standard LQG Hilbert space in subsection 12.2, and with the Fock
space of QFT in subsection 16.2).

As stressed in section 1, there is a correspondence between projective limits of symplectic mani-
folds on the classical side and projective limits of state spaces on the quantum side. Accordingly,
one can try to formulate a quantization program to turn a classical projective system into a quan-
tum one. In [68] Andrzej Okołów established such a quantization prescription: by identifying
appropriate assumptions, he was able to set up what we would call, in the terminology of def. 2.15,
a factorizing system of linear configuration spaces, which could then be quantized in a projective
form. He subsequently used this construction to obtain the kinematical state space of a certain
theory of quantum gravity [69]. In subsection 6.1, we will extend this result to configuration spaces
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given as simply-connected Lie groups. This is meant as a preparation for a corresponding treatment
of Loop Quantum Gravity, but could probably have applications to other gauge field theories as well
(viz. chaps. 3 and 4). Additionally, holomorphic quantization will be discussed in subsection 6.2,
following the lines of geometric quantization (note that the quantum projective structure used in
subsection 16.2 could be seen as arising from such an holomorphic quantization, although we will
arrive at it from a different perspective).

Note that the heuristic picture that was presented at the beginning of subsection 2.1 as a justifi-
cation for the projective formalism becomes a bit more involved when we go over to the quantum
theory. In particular, we had justified the directedness of the label set L by arguing that, given
any two experiments, involving observables included respectively in the labels η and η′, we should
be able to describe the simultaneous realization of both experiments, hence the need for a label
η′′ < η, η′ . However, this argument obviously does not hold any more in the quantum theory, where
complementarity forbids the simultaneous measurement of non-commuting observables. As a way
out, we could simply decide to restrict the elementary observables (the ones that are accounted
for in L) to a set of mutually compatible observables, but that would force us to hard-code in the
theory which observables we intend to actually measure (and to drop those that could a priori be
measured but will not). This in turn creates severe difficulties, because we need to prescribe how
to select in advance the set of those truly measured observables without spoiling predictivity (see
eg. the concerns raised in [24]).

In the following, we bypass this discussion by assuming that we get the kinematical quantum
state space via the quantization of a nice classical projective limit, so that it will not be a problem,
for any finite set of kinematical observables to represent them on a ‘simple’ Hilbert space, whether
these kinematical observables can be simultaneously measured or not. On the other hand it is to
be expected that the algebra generated by a finite set of dynamical quantum observables will not be
easily represented: already on the classical side we had underlined that a finite set of dynamical
classical observables may generate an intricate Poisson-algebra (recall the comment before def. 3.21).
Like in the classical formalism, we must therefore expect that the exact dynamical observables will
have to be approximated by approached ones, which in particular build a tractable algebra.

5. Projective limits of quantum state spaces

The crucial insight of the projective formalism, that goes back to Jerzy Kijowski [48], is that
quantum states will be realized as projective families of density matrices, and not as families of
vector states. This is actually a repercussion of the specific viewpoint of this formalism, namely
that labels in L stand for a selection of observables (and not eg. for a selection of states). Indeed,
in order to project a state from a more detailed partial quantum theory, represented on an Hilbert
space Hη′ , to a coarser one, with Hilbert space Hη, we need a map that will retain from a state
only the features needed to compute expectation values of the observables on Hη: this is what the
partial trace on a tensor product factor accomplishes but it can only be defined as a map between
density matrices (the partial trace of a pure state can be a mixed state and conversely).
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While this has been previously rather seen as a weakness of the construction (see the discussion
in [68, section 6.2]), we argue that such a generalized framework will be, in practice, indistinguish-
able from a more traditional theory on a Hilbert space: given a particular experiment, we should
be able to select an η such that everything takes place within Hη. Moreover it seems advantageous
to start with a very large kinematical state space, thus avoiding the inherent arbitrariness of re-
stricting it a priori to some particular subspace, and to wait until there is a real need for such a
restriction, together with clear requirements on how to perform it (in the light of section 3, this
could be because we are forced to consider only the states for which the regularization scheme,
needed to implement the dynamics, converges; this intuition is supported by the toy-model studied
in section 16).

In order to clarify the claim made above, that quantum state spaces described as projective limits
tend to be ‘bigger’, we will examine precisely how they compare to those built on inductive limits of
Hilbert spaces (theorem 5.9) or on infinite tensor products (theorem 5.11): these are constructions
that incorporate ingredients somewhat similar to the projective approach, but differ notably by
seeking a global Hilbert space for the quantum theory.

5.1 Projective systems of quantum state spaces

In this subsection, we present the projective approach to quantum field theory [48, 68], formu-
lating it in a form as close as possible to the classical formalism set up in section 2. Indeed, the
projective systems of quantum state spaces described here can be seen as the direct equivalents of
the factorizing systems we had on the classical side (subsection 2.3), replacing Cartesian products
of classical phase spaces by tensor products of Hilbert spaces, in accordance to the basic principles
of quantum mechanics (in particular, the three-spaces consistency from fig. 2.1 is straightforwardly
transformed into its quantum version illustrated in fig. 5.1).

While we had convinced ourselves that the factorizing systems are quite generic among the
projective systems of classical phase spaces (see the argument laid in prop. 2.10), their quantum
counterparts seem to be even more broadly applicable (viz. section 7).

Definition 5.1 A projective system of quantum state spaces is a quintuple:(
L,
(
Hη
)
η∈L ,

(
Hη′→η

)
η4η′ ,

(Φη′→η
)
η4η′ ,

(Φη′′→η′→η
)
η4η′4η′′

)
where:1. L is a preordered, directed set (we denote the pre-order by 4, its inverse by <);
2. (Hη

)
η∈L is a family of Hilbert spaces indexed by L;

3. (Hη′→η
)
η4η′ is a family of Hilbert spaces indexed by {η, η′ ∈ L | η 4 η′}, such that dim(Hη→η) =1 for all η ∈ L;

4. (Φη′→η
)
η4η′ is a family of isomorphisms of Hilbert spaces Φη′→η : Hη′ → Hη′→η ⊗Hη indexedby {η, η′ ∈ L | η 4 η′} such that Φη→η is trivial (by isomorphism of Hilbert spaces we mean a
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Hη′′

Hη′′→η′ ⊗ Hη′

Hη′′→η′ ⊗ Hη′→η ⊗ Hη Hη′′→η ⊗ Hη

Φη′′→η′

Φη′′→η

Φη′→η

Φη′′→η′→η

Figure 5.1 – Three-spaces consistency for projective systems of quantum state spaces

(bijective) unitary map between Hilbert spaces);
5. (Φη′′→η′→η

)
η4η′4η′′ is a family of isomorphisms of Hilbert spaces Φη′′→η′→η : Hη′′→η → Hη′′→η′ ⊗

Hη′→η indexed by {η, η′, η′′ ∈ L | η 4 η′ 4 η′′} , such that Φη′′→η′→η is trivial whenever η = η′or η′ = η′′ , and:
∀η 4 η′ 4 η′′ ∈ L, (Φη′′→η′→η ⊗ idHη) ◦ Φη′′→η = (idHη′′→η′ ⊗ Φη′→η) ◦ Φη′′→η′ . (5.1.1)

Whenever possible, we will use the shortened notation (L,H,Φ)⊗ instead of (L, (Hη
)
η∈L ,(

Hη′→η
)
η4η′ ,

(Φη′→η
)
η4η′ ,

(Φη′′→η′→η
)
η4η′4η′′

).
Definition 5.2 Let (L,H,Φ)⊗ be a projective system of quantum state spaces. For η ∈ L, wedefine Sη the space of (self-adjoint) positive semi-definite, traceclass operators on Hη and Sη thespace of density matrices:

Sη = {ρη ∈ Sη
∣∣ TrHη ρη = 1} .For η 4 η′ ∈ L, we define:

Trη′→η : Sη′ → Sη

ρη′ 7→ TrHη′→η (Φη′→η ◦ ρη′ ◦ Φ−1
η′→η) .

From eq. (5.1.1), we have:
∀η 4 η′ 4 η′′ ∈ L, Trη′→η ◦ Trη′′→η′ = Trη′′→η .

Hence, (L, (Sη)η∈L , (Trη′→η)η4η′) forms a projective system and we denote its projective limit
by S

⊗(L,H,Φ). The maps Trη′→η being linear under conical combinations (ie. under addition andmultiplication by positive reals), S⊗(L,H,Φ) forms a cone (ie. we can equip it with a notion of additionand positive multiplication).
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Now, for all η 4 η′ ∈ L, Trη′→η 〈Sη′〉 = Sη, hence (L, (Sη)η∈L , (Trη′→η)η4η′) also forms aprojective system. Accordingly, a state on (L,H,Φ)⊗ is a family (ρη)η∈L such that ∀η ∈ L, ρη isa density matrix over Hη and ∀η 4 η′, Trη′→η ρη′ = ρη. We denote the space of states by S⊗(L,H,Φ).
The projective structure conferred to the space of states comes with a natural inductive structure

for the observables (see [48, section 6] or [68, section 6.2] as well as [86, section 1] ). Thus, we can

define a C∗-algebra A
⊗(L,H,Φ) of bounded operators, as the inductive limit of the algebras Aη that

live over each Hη. Then, the states defined above can be seen as states on A
⊗(L,H,Φ) in the sense

of [41, part III, def. 2.2.8]. Looking at states over a C∗-algebra is in a sense more fundamental
than looking at density matrices over a specific representation of this algebra. Indeed, any such
representation can be split into cyclic components, and each cyclic component arises from a state
over the algebra via the GNS construction [34]. Reciprocally, any state ρ over the algebra defines a
corresponding GNS representation, and the irreducible representations are precisely the ones that
arise from pure states (states that cannot be written as a non trivial convex superposition of other
states) [41, part III, theorem 2.2.17].

The states that can be represented as density matrices over the GNS representation of a state
ρ form the folium of ρ (see also prop. 5.8 on this point), and Fell’s theorem [29] tells us that,
whenever ρ yields a faithful GNS representation, its folium will be, in a definite sense, dense in
the set of all states over the algebra. While this mitigates the universality concerns posed by the
(more or less arbitrary) choice of a representation (that we raised in the general introduction), it
does not completely eliminate them: although we could, in principle, approximate any desired state
by a family of states that belong to the chosen representation, we would still have to carefully
check the convergence properties of this family (to ensure that it provides a consistent physical
picture). On the other hand, by working at the level of the full space of states over the algebra, we
would lack any constructive description of the states. The framework presented here can thus be
seen as a middle ground: we are trying not to restrict the space of states too much (see prop. 5.12
and the discussion at the end of section 18), while providing a fairly explicit characterization for it
(especially if the label set can be made countable, as we will investigate in details in section 19).

Note that this framework is somewhat reminiscent of other approaches where one is looking at
states over an inductive limit C∗-algebra, like Algebraic Quantum Field Theory [41, part III], or the
General Boundary Formulation of quantum field theory (in its positive version [63] ). There are,
however, substantial differences. Notably, the building blocks of our algebra of observables will be
in practice very small algebras: each Aη, instead of being meant to include all the operators needed
to interpret any arbitrary experiment taking place in some given region of spacetime, should be
thought as only containing the operators needed for the description of finitely many experiments.
More deeply, the purpose of giving the algebra of observables an inductive limit structure is in
our case not so much to encode additional physically essential information (eg. the localization
of the operators and associated causal structure) but rather to arrive at a description of the space
of states as concrete and as convenient as possible (by building it from small representations that
are well under control and suitable for calculation). Of course, we could combine both aspects, by
decorating the projective structure with this extra information: for example, we could map a region
in spacetime to the set of all η that can be seen as contained in this region.
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Definition 5.3 We consider the same objects as in def. 5.2. For η ∈ L, we denote by Aη thealgebra of bounded operators on Hη and, for η 4 η′ ∈ L, we define:
ιη′←η : Aη → Aη′

Aη 7→ Φ−1
η′→η ◦

(idHη′→η ⊗ Aη
)
◦ Φη′→η

.
By definition ιη′←η is injective and, from eq. (5.1.1), we have:
∀η 4 η′ 4 η′′, ιη′′←η′ ◦ ιη′←η = ιη′′←η . (5.3.1)

Accordingly, an operator over S⊗(L,H,Φ) is an equivalence class in ⋃
η∈L

Aη for the equivalence relation
defined by:
∀η, η′ ∈ L, ∀Aη ∈ Aη, ∀Aη′ ∈ Aη′,

Aη ∼ Aη′ ⇔
(
∃η′′ ∈ L / η 4 η′′, η′ 4 η′′ & ιη′′←η

(
Aη
) = ιη′′←η′

(
Aη′
)) (5.3.2)

The space of operators over S
⊗(L,H,Φ) will be denoted by A⊗(L,H,Φ). For A = [Aη]∼ ∈ A⊗(L,H,Φ) and

ρ = (ρη)η∈L ∈ S
⊗(L,H,Φ), we can define TrρA := TrHηρηAη. The definition of the equivalence relationensures that this is well-defined.

Proposition 5.4 For η 4 η′ ∈ L, the map ιη′←η is an injective C ∗-algebra morphism (ie. an injective,isometric ∗-algebra morphism). Hence, A⊗(L,H,Φ) can be equipped with a normed ∗-algebra structureas an inductive limit of C ∗-algebras. And denoting by A
⊗(L,H,Φ) the completion of A⊗(L,H,Φ) withrespect to the operator norm, A⊗(L,H,Φ) is a C ∗-algebra.

Then, for all ρ ∈ S⊗(L,H,Φ), Tr (ρ · ) can be extended by continuity as a state over A⊗(L,H,Φ).
Proof That ιη′←η is a C ∗-algebra morphism for any η 4 η′ is ensured by Φη′→η being a Hilbertspace isomorphism and by the properties of the tensor product of operators.Next, let ρ ∈ S⊗(L,H,Φ), and let [Aη]∼ , [Bη′ ]∼ ∈ A⊗(L,H,Φ). For any η′′ < η′, η and any a, b ∈ C, wehave:1. Tr ρ (aA+ bB) = TrHη′′ ρη′′

(
a ιη′′←η(Aη) + b ιη′′←η′(Bη′)) = aTr (ρ A) + bTr (ρB) ;

2. Tr (ρ A) = TrHη (ρη Aη) 6 ‖Aη‖ = ‖A‖ ;
3. Tr (ρ1) = TrHη (ρη idHη) = 1 ;
4. Tr (ρ A+ A) = TrHη (ρη A+

η Aη) > 0 .
�

Proposition 5.5 For η ∈ L, we denote by Oη the algebra of densely defined (possibly unbounded)self-adjoint operators on Hη. For η 4 η′ ∈ L, the map ιη′←η (def. 5.3) can be extended to Oη → Oη′ .Indeed, if Oη ∈ Oη is a self-adjoint operator on Hη , with dense domain Dη ⊂ Hη , then the operatorΦ−1
η′→η ◦

(idHη′→η ⊗Oη

)
◦ Φη′→η , defined on the dense subset Φ−1

η′→η 〈Hη′→η ⊗Dη〉 of Hη′ (wherethe ⊗ is understood as a tensor product of vector spaces, ie. without any completion), is essentiallyself-adjoint and we define ιη′←η(Oη) as its unique self-adjoint extension [73, section VIII.10]. An
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observable over a projective limit of quantum state spaces S⊗(L,H,Φ) is then defined as an equivalenceclass in ⋃
η∈L

Oη in analogy to eq. (5.3.2).
The space of observables over S⊗(L,H,Φ) will be denoted by O⊗(L,H,Φ). For O = [Oη]∼ ∈ O⊗(L,H,Φ), wecan define the spectrum ς(O) of O as the spectrum ς(Oη) of any representative Oη of O and, for Wa measurable subset of ς(O), we can define IW (O) as the equivalence class [IW (Oη)]∼ ∈ A⊗(L,H,Φ) ofthe spectral projector IW (Oη).Hence, for a state ρ = (ρη)η∈L ∈ S⊗(L,H,Φ), we can define the probability of measuring O in W as

ρ [O ∈ W ] := Tr ρ IW (O).
Proof ς(Oη) being independent of the choice of a representative Oη comes from:
∀η′ < η, ς

(Φ−1
η′→η ◦

(idHη′→η ⊗Oη

)
◦ Φη′→η

) = ς
(
Oη
) ,

where we used [73, theorem VIII.33] together with the fact that Φη′→η is an Hilbert space isomorphism.That Oη ∼ Oη′ implies IW (Oη) ∼ IW (Oη′) comes from:
∀η′ < η, IW

(Φ−1
η′→η ◦

(idHη′→η ⊗Oη

)
◦ Φη′→η

) = Φ−1
η′→η ◦

(idHη′→η ⊗ IW (Oη)) ◦ Φη′→η ,
as can be ascertained using the spectral theorem in its multiplication operator form [73, theoremVIII.4]. �

5.2 Maps between quantum state spaces

In order to investigate the relations between the spaces of quantum states assembled this way and
more standard constructions, we will use the same tool as we used to make the connection between
classical projective structures and infinite dimensional symplectic manifolds, namely extensions
and restrictions of the label set. As in subsection 2.2, the strategy will be to extend the label
set by adding to it a greatest element (associated to the ‘big’ Hilbert space to which we want to
make contact), before restricting ourselves to this greatest element alone (thus ending with a trivial
projective system that can be identified with the target Hilbert space). A bit unintuitively, the non-
trivial switch of state space occurs during the first step: this is because a greatest element forms by
definition a cofinal part, which makes the second step innocuous.

Proposition 5.6 Let (L,H,Φ)⊗ be a projective system of quantum state spaces and let L′ be adirected subset of L. We define the map:
σ : S

⊗(L,H,Φ)→ S
⊗(L′,H,Φ)(

ρη
)
η∈L 7→

(
ρη
)
η∈L′

.
σ is conically linear (ie. compatible with addition and multiplication by positive scalars).Moreover, we have a map α : A⊗(L′,H,Φ) → A

⊗(L,H,Φ) such that:
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∀ρ ∈ S
⊗(L,H,Φ), ∀A ∈ A

⊗(L′,H,Φ), Tr (ρ α(A)) = Tr (σ (ρ)A) , (5.6.1)and α is a C ∗-algebra morphism.If L′ is cofinal in L, we have in addition that σ and α are bijective maps.
Proof The proof works in the same way as in the classical case (prop. 2.5). The conical linearity of
σ and morphism property of α comes from their definition (with α being defined in analogy to theclassical case). Eq. (5.6.1) can be first checked for S⊗(L,H,Φ) and A(L′,H,Φ) and expanded by continuityand conical linearity. �

Proposition 5.7 In particular, if L admits a greatest element Λ, there exist bijective maps σ :
S
⊗(L,H,Φ) → SΛ (SΛ being the space of (self-adjoint) positive semi-definite, traceclass operators over

HΛ) and α : AΛ → A
⊗(L,H,Φ) such that ∀ρ ∈ S

⊗(L,H,Φ), ∀A ∈ AΛ, Tr (ρ α(A)) = TrΛ (σ (ρ)A).
Proof This is an application of prop. 5.6 for the cofinal part L′ = {Λ} of L, using the obviousidentification of S⊗({Λ},H,Φ) with SΛ and A

⊗({Λ},H,Φ) with AΛ. �

If we choose a particular state in a projective limit of quantum state spaces, we can use it
as a vacuum to construct a corresponding GNS representation of the inductive limit algebra of
observables [68, section 6.2], and this representation will naturally inherit a structure of inductive
limit Hilbert space (like the Hilbert space used as starting point in LQG, see [6, 60, 8]). We
will specialize in the case where the vacuum state we are using projects as a pure state on every
Hη. Whether there exists such a pure projective state of course depends on the specific projective
structure under consideration, however we will be interested in situations where the natural vacuum
turns out to be of this type (notably in prop. 6.5 and prop. 16.17). In this case, the inductive limit
Hilbert space is obtained from a collection of ‘reference states’ ζη′→η ∈ Hη′→η, that allows us to
see the tensor product factor Hη as a vector subspace in Hη′ . Any density matrix over such an
inductive limit Hζ can then be unambiguously mapped to a state in the projective limit, but the
converse typically does not hold, and in fact, we can formulate a handy condition to check if a
state on the projective structure has its counterpart as a density matrix on Hζ .

Proposition 5.8 Let (L, H, Φ)⊗ be a projective system of quantum state spaces and let ρ =(
ρη
)
η∈L ∈ S⊗(L,H,Φ) . For all η ∈ L, ρη is a state over Aη and we denote by HGNS

ρη , ( · )GNS the GNSrepresentation constructed from this state [41, section III.2.2].Then, for all η 4 η′ ∈ L, there exists an injective linear map τη′←η : HGNS
ρη → HGNS

ρη′ . τη′←η isisometric onto its image and satisfies:
∀Aη ∈ Aη, τη′←η ◦ AGNS

η = (ιη′←η(Aη))GNS ◦ τη′←η . (5.8.1)
Moreover, for all η 4 η′ 4 η′′ ∈ L, we have τη′′←η′ ◦ τη′←η = τη′′←η , hence we can define an Hilbert
space HGNS

ρ as (the completion of) the inductive limit of (L, (HGNS
ρη

)
η∈L

,
(
τη′←η

)
η4η′

) and HGNS
ρ

can be identified with the GNS representation of A⊗(L,H,Φ) arising from the state ρ (prop. 5.4).If in addition there exists, for all η ∈ L, a vector ζη ∈ Hη such that ρη = |ζη 〉 〈 ζη|, then
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HGNS
ρη ≈ Hη and for all η 4 η′ there exists a vector ζη′→η ∈ Hη′→η such that the map τη′←η is givenby:
∀ψ ∈ Hη, τη′←η(ψ) = Φ−1

η′→η
(
ζη′→η ⊗ ψ

) . (5.8.2)
Proof Explicit description of HGNS

ρη . Let η ∈ L. By applying the spectral theorem to the (self-adjoint) positive semi-definite, traceclass, normalized operator ρη, there exist Nη ∈ N t {∞}, anorthonormal family (ζ (k)
η
)
k6Nη

in Hη and a family of strictly positive reals (p(k)
η
)
k6Nη

such that:
ρη = ∑

k6Nη

p(k)
η
∣∣ζ (k)
η
〉 〈

ζ (k)
η
∣∣ ,

with ∑
k6Nη

p(k)
η = 1.

We define the map Ψρη by:
Ψρη : Aη → H+

η ⊗Hη

A 7→
∑

k6Nη

√
p(k)
η

〈
ζ (k)
η

∣∣∣⊗ ∣∣∣A ζ (k)
η

〉 ,
where H+

η is the topological dual of Hη equipped with its natural Hilbert space structure. The mapΨρη is well-defined, for we have:∑
k6Nη

∥∥∥∥√p(k)
η
〈
ζ (k)
η
∣∣⊗ ∣∣A ζ (k)

η
〉∥∥∥∥2 = ∑

k6Nη

p(k)
η
∥∥∣∣A ζ (k)

η
〉∥∥2
6 ‖A‖2 . (5.8.3)

Moreover, it has following properties:1. Ψρη is C-linear;
2. ∀A, B ∈ Aη, Ψρη(AB) = (idH+

η ⊗ A
) Ψρη(B) ;

3. ∀A, B ∈ Aη,
〈Ψρη(A), Ψρη(B)〉

H+
η ⊗Hη

=
= ∑

k,k ′6Nη

√
p(k)
η

√
p(k ′)
η

〈
ζ (k ′)
η

∣∣∣ ζ (k)
η

〉
⊗
〈
A ζ (k)

η

∣∣∣ B ζ (k ′)
η

〉
= ∑

k6Nη

p(k)
η ⊗

〈
ζ (k)
η
∣∣ A+B ζ (k)

η
〉 = TrHη ρη A+B ;

4. Ψρη 〈Aη〉 = Vect{√p(k)
η

〈
ζ (k)
η

∣∣∣⊗ |ψ〉 | k 6 Nη, ψ ∈ Hη

}
(‘⊂’: by definition of Ψρη ; ‘⊃’: by considering operators of the form ∣∣ψ 〉 〈 ζ (k)

η
∣∣ )

= Vect{√p(k)
η

〈
ζ (k)
η

∣∣∣ | k 6 Nη

}
⊗Hη =: Kρη ⊗Hη .

Therefore, we can identify HGNS
ρη with Kρη ⊗Hη and we have:
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∀A ∈ Aη, AGNS = idKρη ⊗ A .
Definition of the injections τη′←η . Let η 4 η′ ∈ L. We define a C-linear map:

τη′←η : Vect{√p(k)
η
〈
ζ (k)
η
∣∣ | k 6 Nη

}
⊗Hη → Vect{√p(k ′)

η′

〈
ζ (k ′)
η′

∣∣∣ | k ′ 6 Nη′

}
⊗Hη′

by:
∀k 6 Nη, ∀ψ ∈ Hη, τη′←η

(√
p(k)
η
〈
ζ (k)
η
∣∣⊗ |ψ〉) =

= ∑
k ′6Nη′ ,e

〈Φ−1
η′→η

(
e ⊗ ζ (k)

η
) ∣∣∣ ζ (k ′)

η′

〉 √
p(k ′)
η′

〈
ζ (k ′)
η′

∣∣∣⊗ ∣∣Φ−1
η′→η (e ⊗ ψ)〉

=∑
e

〈√ρη′ ◦ Φ−1
η′→η

(
e ⊗ ζ (k)

η
)∣∣⊗ ∣∣Φ−1

η′→η (e ⊗ ψ)〉 ,
where (e) is an orthonormal basis of Hη′→η and √ρη′ is defined via spectral resolution. We have:
∀k 6 Nη, ∀ψ ∈ Hη,

∥∥∥∥τη′←η(√p(k)
η
〈
ζ (k)
η
∣∣⊗ |ψ〉)∥∥∥∥2 =

=∑
e,e′

〈√ρη′ ◦ Φ−1
η′→η

(
e ⊗ ζ (k)

η
) ∣∣ √ρη′ ◦ Φ−1

η′→η
(
e′ ⊗ ζ (k)

η
)〉 〈Φ−1

η′→η
(
e′ ⊗ ψ

) ∣∣ Φ−1
η′→η (e ⊗ ψ)〉

=∑
e

〈Φ−1
η′→η

(
e ⊗ ζ (k)

η
) ∣∣ ρη′ ◦ Φ−1

η′→η
(
e ⊗ ζ (k)

η
)〉
‖ψ‖2

= 〈ζ (k)
η
∣∣ (Trη′→η ρη′) ζ (k)

η
〉
‖ψ‖2

= p(k)
η ‖ψ‖

2 = ∥∥∥∥√p(k)
η
〈
ζ (k)
η
∣∣⊗ |ψ〉∥∥∥∥2 .

Therefore τη′←η is well-defined and can be extended as an injection HGNS
ρη → HGNS

ρη′ , which isisometric onto its image. For Aη ∈ Aη we can check directly that eq. (5.8.1) is satisfied, using
AGNS
η = idKρη ⊗ Aη .Next, we have:∑

k6Nη

TrHη′ ρη′ ιη′←η
(∣∣ζ (k)

η
〉 〈

ζ (k)
η
∣∣) = TrHη ρη = 1

= ∑
k6Nη,k ′6Nη′ ,e

p(k ′)
η′

∣∣∣〈ζ (k ′)
η′

∣∣∣ Φ−1
η′→η

(
e ⊗ ζ (k)

η
)〉∣∣∣2 ,

but since all p(k ′)
η′ are strictly positive and ∑

k ′6Nη′

p(k ′)
η′ = 1, this implies:
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∀k ′ 6 Nη′ ,
∑
k6Nη,e

∣∣∣〈ζ (k ′)
η′

∣∣∣ Φ−1
η′→η

(
e ⊗ ζ (k)

η
)〉∣∣∣2 = 1 = ∥∥∥ζ (k ′)

η′

∥∥∥2 ,
and therefore:
∀k ′ 6 Nη′ , ζ (k ′)

η′ = ∑
k6Nη,e

〈Φ−1
η′→η

(
e ⊗ ζ (k)

η
) ∣∣∣ ζ (k ′)

η′

〉 ∣∣Φ−1
η′→η

(
e ⊗ ζ (k)

η
)〉 . (5.8.4)

With this we can now prove:
∀Aη ∈ Aη, τη′←η ◦ Ψρη(Aη) =

= ∑
k6Nη,k ′6Nη′ ,e

〈Φ−1
η′→η

(
e ⊗ ζ (k)

η
) ∣∣∣ ζ (k ′)

η′

〉 √
p(k ′)
η′

〈
ζ (k ′)
η′

∣∣∣⊗ ∣∣Φ−1
η′→η

(
e ⊗ Aη ζ (k)

η
)〉

= ∑
k ′6Nη′

√
p(k ′)
η′

〈
ζ (k ′)
η′

∣∣∣⊗ ∣∣∣ιη′←η (Aη) ζ (k ′)
η′

〉
= Ψρη′ ◦ ιη′←η

(
Aη
) . (5.8.5)

Thus, for η 4 η′ 4 η′′ ∈ L, τη′′←η′ ◦ τη′←η = τη′′←η follows from eq. (5.3.1) together with point5.8.4 above.
Inductive limit Hilbert space as GNS representation of A⊗(L,H,Φ) . Let HGNS

ρ be (the completion of) the
inductive limit of (L, (HGNS

ρη

)
η∈L

,
(
τη′←η

)
η4η′

) . Eq. (5.8.1) provides a representation of A⊗(L,H,Φ) ,
hence of A⊗(L,H,Φ) , on HGNS

ρ , which we will denote by A 7→ AGNS
ρ . In addition, eq. (5.8.5) ensures thatwe can consistently assemble the family of maps (Ψρη

)
η∈L into a map Ψρ : A⊗(L,H,Φ) → HGNS

ρ , and,by eq. (5.8.3), we can extend this map to A
⊗(L,H,Φ) . Now, the properties of the individual Ψρη ensurethat Ψρ has the following properties:5. Ψρ is C-linear;

6. ∀η, η′ ∈ L, ∀ A = [Aη]∼ , B = [Bη′ ]∼ ∈ A⊗(L,H,Φ), ∀η′′ < η, η′,

Ψρ (AB) = Ψρ
([Aη′′ Bη′′ ]∼) = [AGNS

η′′ Ψρη′′ (Bη′′)]∼ = AGNS
ρ Ψρ (B) ;

7. ∀A, B ∈ A⊗(L,H,Φ), 〈Ψρ (A) , Ψρ (B)〉
HGNS
ρ

= Tr ρ A+B ;
8. Ψρ

〈
A
⊗(L,H,Φ)〉 = HGNS

ρ .
Therefore, we can identify HGNS

ρ with the GNS representation of A⊗(L,H,Φ) arising from the state ρ.
Note. This result could be proved at a more abstract level, by directly using eq. (5.8.5) to define
τη′←η. Here we gave the explicit expressions as a bonus.
Pure projective state. We now assume that for all η ∈ L Nη = 0 and we define ∀η ∈ L, ζη := ζ (0)

η .Thus ∀η ∈ L, Kρη ≈ C and therefore HGNS
ρη ≈ Hη . Then, for η 4 η′, eq. (5.8.4) becomes:
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ζη′ = ∑
e BON of Hη′→η

〈Φ−1
η′→η

(
e ⊗ ζη

) ∣∣ ζη′〉 ∣∣Φ−1
η′→η

(
e ⊗ ζη

)〉 ,
hence, defining ζη′→η := ∑

e BON of Hη′→η

〈Φ−1
η′→η

(
e ⊗ ζη

) ∣∣ ζη′〉 |e〉, we get ζη′ = Φ−1
η′→η

(
ζη′→η ⊗ ζη

) .
Inserting into the definition of τη′←η and applying the identification Kρη ≈ C provides eq. (5.8.2).�
Theorem 5.9 Let (L,H,Φ)⊗ be a projective system of quantum state spaces and suppose thereexists a family of vectors (ζη′→η)η4η′ such that:
1. ∀η 4 η′, ζη′→η ∈ Hη′→η & ‖ζη′→η‖ = 1;
2. ∀η 4 η′ 4 η′′, Φη′′→η′→η(ζη′′→η) = ζη′′→η′ ⊗ ζη′→η.
We define an Hilbert space Hζ as (the completion of) the inductive limit of (L, (Hη

)
η∈L ,

(
τη′←η

)
η4η′

),where the injective maps τη′←η are defined as:
∀η 4 η′ ∈ L, τη

′←η : Hη → Hη′

ψ 7→ Φ−1
η′→η

(
ζη′→η ⊗ ψ

) .
Then, there exist maps σ : Sζ → S

⊗(L,H,Φ) and α : A⊗(L,H,Φ) → Aζ (Sζ being the space of (self-adjoint)positive semi-definite, traceclass operators over Hζ and Aζ the algebra of bounded operators on
Hζ ) such that:
3. ∀ρ ∈ Sζ , ∀A ∈ A

⊗(L,H,Φ), TrHζ (ρ α(A)) = Tr (σ (ρ)A);
4. σ is injective;
5. σ 〈Sζ〉 = {(ρη)η∈L

∣∣∣∣∣ sup
η∈L

(inf
η′<η

TrHη′

(
ρη′ Θη′|η

)) = Tr ρ = 1} ,
where Sζ is the space of density matrices over Hζ and:

Θη′|η := Φ−1
η′→η ◦

(
|ζη′→η〉〈ζη′→η| ⊗ idHη

)
◦ Φη′→η .

We will, in the proof below, rely heavily on the so-called trace norm, which, for a positive
traceclass operator is just its trace. The reason why this is the appropriate norm for our purpose is
twofold. First, it plays nicely with the partial traces, since the trace norm of a partial trace of ρ is
always bounded by the trace norm of ρ itself (it is obviously equal in the case of a positive ρ, and
the bound follows by decomposing a general ρ into positive and negative parts, or by invoking the
next point). Second, it supports the physical interpretation of quantum states, revolving around the
evaluation of observable expectation values, since the trace norm of ρ is precisely the norm of the
continuous linear functional A 7→ Tr ρ A defined on the algebra of bounded operators (this can be
proven using the polar decomposition of ρ [73, theorem VI.10] ). An additional advantage is that
the traceclass operators form a Banach space with respect to this norm [82].

Lemma 5.10 Let H be an Hilbert space. For any traceclass operator ρ on H we define its tracenorm ‖ρ‖1 (aka. Schatten-norm with p = 1 [82]) by:
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‖ρ‖1 := Tr√ρ+ ρ .
Let (Jα)α be a family of closed vector subspaces of H, forming a directed preordered set underinclusion, and such that:
H =⋃

α
Jα .

Define Θα to be the orthogonal projection on Jα .The following statements hold:1. for any (self-adjoint) positive semi-definite, traceclass operator ρ on H, the net (Θα ρΘα)αconverges in trace norm to ρ;
2. if (ρα)α is a net of (self-adjoint) positive semi-definite, traceclass operators on H such that:

∀α, α ′ / Jα ⊂ Jα ′, ρα = Θα ρα ′ Θα ,and if sup
α

Tr ρα = l < ∞, then there exists a (self-adjoint) positive semi-definite, traceclass
operator ρ on H such that ρα = Θα ρΘα and Tr ρ = l .

Proof The trace norm is well-defined, since for any traceclass operator ρ on H, ρ+ ρ is a self-adjointpositive semi-definite operator on H, so its square-root can be defined by spectral resolution, andthis square-root is traceclass (by definition of ρ being traceclass).
Statement 5.10.1. Let ρ be a (self-adjoint) positive semi-definite, traceclass operator on H. Thereexist real numbers pk > 0 (k ∈ N) and vectors ψk in H with ‖ψk‖ = 1 such that:

ρ =∑
k

pk |ψk 〉 〈 ψk | &

∑
k

pk = Tr ρ > 0 .
Hence, we have for any α:
‖ρ − Θα ρΘα‖1 6∑

k

pk
∥∥ |ψk 〉〈 ψk | − |Θα ψk 〉〈 Θα ψk |

∥∥1 .
Let ε > 0 and let N ∈ N such that:∑

k>N

2 pk 6 ε2 .
Since H is the completion of the union of the Jα (which are directed with respect to inclusionsubordinate to the labels α), there exists, for every k 6 N , an αk such that ‖ψk − Θαk ψk‖ 6 ε6 .And since the family (Jα)α is directed under inclusion, there exists α such that ⋃k6N Jαk ⊂ Jα . Let
α ′ such that Jα ′ ⊃ Jα . Then, we have:
∀k 6 N, ‖ψk − Θα ′ ψk‖ 6

ε6 .
On the other hand, for any k 6 N , the non-zero eigenvalues of |ψk 〉 〈 ψk | − |Θα ′ ψk 〉 〈 Θα ′ ψk |are:
λ± = µ22 ± µ

√1− 3µ24 with µ := ‖ψk − Θα ′ ψk‖ ,
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each one with multiplicity 1. So from µ 6 ε6 and µ 6 1 (‖ψk‖ = 1), we have:∥∥ |ψk 〉 〈 ψk | − |Θα ′ ψk 〉 〈 Θα ′ ψk |
∥∥1 = |λ+|+ |λ−| 6 3 µ 6 ε2 .

Therefore,
‖ρ − Θα ′ ρΘα ′‖1 6

(∑
k6N

pk
ε2
) + ε2 6 ε .

Statement 5.10.2. Since the family (Jα)α is directed and each Jα is a vector subspace of H,
J := ⋃α Jα is a vector subspace of H and, by hypothesis, J is dense in H.For any ψ, ψ′ ∈ J, we define:

ρψ,ψ′ := 〈ψ, ρα ψ′〉 for α such that ψ, ψ′ ∈ Jα .
ρψ,ψ′ is well-defined, since there exists αψ , resp. αψ′ , such that ψ ∈ Jαψ , resp. ψ ∈ Jαψ , hence thereexists α such that ψ, ψ′ ∈ Jα ; and if α ′ is an other index such that ψ, ψ′ ∈ Jα ′ , then there exists
α ′′ with Jα , Jα ′ ⊂ Jα ′′ , so we have:
〈ψ, ρα ψ′〉 = 〈Θα ψ, ρα ′′ Θα ψ′〉 = 〈ψ, ρα ′′ ψ′〉 = 〈Θα ′ ψ, ρα ′′ Θα ′ ψ′〉 = 〈ψ, ρα ′ ψ′〉 .Moreover, (ψ, ψ′) 7→ ρψ,ψ′ is a positive semi-definite, sesquilinear form on J and:
∀ψ, ψ′ ∈ J, |ρψ,ψ′ | 6 l ‖ψ‖ ‖ψ′‖ ,hence, there exists a positive semi-definite, self-adjoint, bounded operator ρ on H, such that:
∀ψ, ψ′ ∈ J, ρψ,ψ′ := 〈ψ, ρ ψ′〉 .So, for any α and any ψ, ψ′ ∈ H, we have:
〈ψ, Θα ρΘα ψ′〉 = 〈Θα ψ, ρΘα ψ′〉 = 〈Θα ψ, ρα Θα ψ′〉 = 〈ψ, ρα ψ′〉 ,therefore ρα = Θα ρΘα .Now, suppose ρ would not be traceclass. Then, there would exist a finite orthonormal family ψk ,

k ∈ {1, . . . , N} such that:
N∑
k=1 〈ψk , ρ ψk〉 > l+ 1 ,

Next, like in the proof of statement 5.10.1, we can find α satisfying:
∀k 6 N, ∀α ′ / Jα ′ ⊃ Jα , ‖ψk − Θα ′ ψk‖ 6

1
N (2l+ 1) .

Hence, using ‖ρ‖ 6 l (where ‖ · ‖ is the operator norm):
N∑
k=1 〈ψk , ρ ψk〉 6

N∑
k=1
(
〈Θα ′ ψk , ρΘα ′ ψk〉+ 2l+ 1

N (2l+ 1)
)

6 Tr ρα ′ + 1 6 l+ 1 ,
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which would then be contradictory.Lastly, ρ being a (self-adjoint) positive semi-definite, traceclass operator on H, the first statementimplies that the net (ρα)α converges in trace norm to ρ, hence lim
α

Tr ρα = Tr ρ. So Tr ρ 6 l and, forany ε > 0, there exists αε such that:
∀α ′ / Jα ′ ⊃ Jαε , Tr ρα ′ 6 Tr ρ+ ε .Therefore, for any α , choosing α ′ such that Jα ∪ Jαε ⊂ Jα ′ , we have:Tr ρα 6 Tr ρα ′ 6 Tr ρ+ ε .Thus, l 6 Tr ρ, hence Tr ρ = l. �

Proof of theorem 5.9 Existence of σ and α satisfying 5.9.3. The inductive limit defining Hζ isconsistent since for all η 4 η′ 4 η′′ ∈ L and for all ψ ∈ Hη:
τη′′←η′ ◦ τη′←η(ψ) = Φ−1

η′′→η′ ◦
(idHη′′→η′ ⊗ Φη′→η

)−1 (
ζη′′→η′ ⊗

(
ζη′→η ⊗ ψ

))
= Φ−1

η′′→η ◦
(Φη′′→η′→η ⊗ idHη

)−1 ((ζη′′→η′ ⊗ ζη′→η)⊗ ψ)
= Φ−1

η′′→η
(
ζη′′→η ⊗ ψ

) = τη′′←η(ψ) .Additionally, for all η ∈ L, we call τζ←η the injective map Hη → Hζ .Let η ∈ L. We define an Hilbert space Hζ→η as (the completion of) the inductive limit of(
{κ ∈ L | κ < η} ,

(
Hκ→η

)
κ<η ,

(
τκ′←κ→η

)
κ′<κ<η

), where the injective maps τκ′←κ→η are definedas:
∀κ ′ < κ < η, τκ

′←κ→η : Hκ→η → Hκ′→η
ψ 7→ Φ−1

κ′→κ→η (ζκ′→κ ⊗ ψ) .
We can prove that ∀κ ′′ < κ ′ < κ < η, τκ′′←κ′→η ◦ τκ′←κ→η = τκ′′←κ→η in a way similar to above,using:(idHκ′′→κ′ ⊗ Φκ′→κ→η

)
◦ Φκ′′→κ′→η = (Φκ′′→κ′→κ ⊗ idHκ→η

)
◦ Φκ′′→κ→η , (5.9.1)

which can be proved by acting on both sides with ( · ⊗ idHη

)
◦Φκ′′→η and using repeatedly eq. (5.1.1).Additionally, for all κ < η, we call τζ←κ→η the injective map Hκ→η → Hζ→η .Then, we can combine the isomorphisms Φκ→η : Hκ → Hκ→η ⊗Hη defined for κ < η into anisomorphism Φζ→η : Hζ → Hζ→η ⊗Hη, for we have, for all κ ′ < κ < η:Φκ′→η ◦ τκ′←κ = (τκ′←κ→η ⊗ idHη

)
◦ Φκ→η ,as can be shown using eq. (5.1.1).Similarly, we can combine the isomorphisms Φκ→η′→η : Hκ→η → Hκ→η′ ⊗Hη′→η defined for κ <

η′ < η into an isomorphism Φζ→η′→η : Hζ→η → Hζ→η′⊗Hη′→η, for we have, for all κ ′ < κ < η′ < η:
Φκ′→η′→η ◦ τκ′←κ→η = (τκ′←κ→η′ ⊗ idHη′→η

)
◦ Φκ→η′→η ,

as can be shown using eq. (5.9.1).Moreover, we have (again from eq. (5.1.1) ):
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(Φζ→η′→η ⊗ idHη

)
◦ Φζ→η = (idHζ→η′ ⊗ Φη′→η

)
◦ Φζ→η′ .

Now, if we define Lζ := L t {ζ} and extend the preorder on L to Lζ by requiring ∀η ∈
L, η ≺ ζ , we can therefore assemble these objects into a projective system of quantum state spaces(
Lζ ,H,Φ)⊗.Using prop. 5.6, we then have maps σ↘ : S⊗(Lt{ζ},H,Φ) → S

⊗(L,H,Φ) and α↖ : A⊗(L,H,Φ) → A
⊗(Lt{ζ},H,Φ),and, using prop. 5.7, we have maps σ−1

ζ : Sζ → S
⊗(Lt{ζ},H,Φ) and α−1

ζ : A⊗(Lt{ζ},H,Φ) → Aζ . Hence, wedefine:
σ := σ↘ ◦ σ−1

ζ & α := α−1
ζ ◦ α↖ .

Properties of σ (5.9.4 and 5.9.5). For all η 4 η′, we define:Θη′|η := Φ−1
η′→η ◦

(
|ζη′→η〉〈ζη′→η| ⊗ idHη

)
◦ Φη′→η = τη′←η τ+

η′←η ,which is the orthogonal projection on the image of τη′←η in Hη′ , and, for all η ∈ L, Θζ|η, which isthe orthogonal projection on the image of τζ←η in Hζ and satisfy:Θζ|η ◦ τζ←η = τζ←η & ∀η′ < η, Θζ|η ◦ τζ←η′ = τζ←η′ ◦ Θη′|η .
We start by deriving a useful identity, for η 4 η′ ∈ L and A a self-adjoint, traceclass operatoron Hη′ :
τ+
η′←η A τη′←η = TrHη′→η

[(
|ζη′→η〉〈ζη′→η| ⊗ idHη

) (Φη′→η AΦ−1
η′→η
) (
|ζη′→η〉〈ζη′→η| ⊗ idHη

) ]
= Trη′→η (Θη′|η AΘη′|η

) . (5.9.2)
Let ρζ ∈ Sζ . For κ ∈ L, we define ρ̃κ := Θζ|κ ρζ Θζ|κ , and δκ := ρζ − ρ̃κ . ρ̃κ is a positivesemi-definite, traceclass operator, and, from lemma 5.10.1, δκ converges in trace norm to 0.Moreover, for any κ ∈ L, δκ is self-adjoint, so we can write δκ = δ+

κ − δ−κ where δ±κ arethe positive and negative parts of δκ (defined by spectral resolution), hence (σ (δ±κ ))η are positivesemi-definite, self-adjoint operators on Hη, and from the conical linearity of σ :
∀κ ∈ L, σ (ρζ ) = σ (ρ̃κ) + σ (δ+

κ )− σ (δ−κ ) =: σ (ρ̃κ) + σ (δκ) ,hence:
∀κ ∈ L, ∀η ∈ L,

(
σ (ρζ ))η = (σ (ρ̃κ))η + (σ (δκ))η .

Additionally, we have:TrHη

(
σ (δ±κ ))η = Tr (σ (δ±κ )1) = TrHζ

(
δ±κ α(1)) = TrHζ

(
δ±κ idHζ

) = TrHζ δ±κ ,
where 1 ∈ A

⊗(L,H,Φ) is the equivalence class of idHη . So, we get:
∀κ ∈ L,

∥∥∥(σ (δκ))η∥∥∥1 6
∥∥∥(σ (δ+

κ ))η∥∥∥1 + ∥∥∥(σ (δ−κ ))η∥∥∥1 = TrHζ δ+
κ + TrHζ δ−κ = ‖δκ‖1 ,

therefore the net ((σ (ρ̃κ))η)κ∈L converges in trace norm to (σ (ρζ ))η.Now, for η′ < κ ∈ L, we have:
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(σ (ρ̃κ))η′ = Trζ→η′ ρ̃κ = Trζ→η′ Θζ|η′ ρ̃κ Θζ|η′

= τ+
ζ←η′ ρ̃κ τζ←η′

= τη′←κ τ+
ζ←κ ρζ τζ←κ τ+

η′←κ

= Φ−1
η′→κ

(
|ζη′→κ〉〈ζη′→κ| ⊗

(
τ+
ζ←κ ρζ τζ←κ

) ) Φη′→κ , (5.9.3)
and, for η′ < κ ′ < κ ∈ L:Θη′|κ (σ (ρ̃κ′))η′ Θη′|κ = τη′←κ τ+

κ′←κ τ+
ζ←κ′ ρζ τζ←κ′ τκ′←κ τ+

η′←κ

= (σ (ρ̃κ))η′ .
Hence, for all η, κ ∈ L, and for all η′ ∈ L such that η′ < η and η′ < κ , we have:Trη′→η Θη′|κ

(
σ (ρ̃η′))η′ Θη′|κ = (σ (ρ̃κ))η . (5.9.4)

On the other hand:∥∥∥[Trη′→η Θη′|κ
(
σ (ρζ ))η′ Θη′|κ

]
− (σ (ρ̃κ))η∥∥∥1

= ∥∥∥[Trη′→η Θη′|κ
(
σ (ρζ ))η′ Θη′|κ

]
−
[Trη′→η Θη′|κ

(
σ (ρ̃η′))η′ Θη′|κ

]∥∥∥1
6
∥∥∥Θη′|κ

(
σ (ρζ )− σ (ρ̃η′))η′ Θη′|κ

∥∥∥1
= ∥∥∥Θη′|κ

(
σ (δη′))η′ Θη′|κ

∥∥∥1 6 ‖δη′‖1 ,
as can be shown by decomposing the self-adjoint operator δη′ in positive and negative parts.Therefore, we have:

lim
η′<κ,η

Trη′→η (Θη′|κ
(
σ (ρζ ))η′ Θη′|κ

) = (σ (ρ̃κ))η , (5.9.5)
where the limit is taken in the trace norm. And we can now take the net limit on κ:lim

κ∈L
lim
η′<κ,η

Trη′→η (Θη′|κ
(
σ (ρζ ))η′ Θη′|κ

) = (σ (ρζ ))η . (5.9.6)
Now, for ρζ 6= ρ′ζ ∈ Sζ , there should exist κ ∈ L such that:(

τ+
ζ←κ ◦ ρζ ◦ τζ←κ

)
6= (τ+

ζ←κ ◦ ρ′ζ ◦ τζ←κ
) ,which, from eq. (5.9.3), implies:

∀η < κ, (σ (ρ̃κ))η 6= (σ (ρ̃′κ))η ,
but, using eq. (5.9.5), (σ (ρ̃κ))η can be computed from σ (ρζ ), hence σ (ρζ ) 6= σ (ρ′ζ ). Therefore, σ|Sζ isinjective, so, from the conical linearity of σ , σ is injective.Then, for ρζ ∈ Sζ , we have (from eq. (5.9.6)):
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lim
η∈L

lim
η′<η

TrHη′

( (
σ (ρζ ))η′ Θη′|η

) = TrHζρζ = 1 ,
and, since the net (TrHη′

( (
σ (ρζ ))η′ Θη′|η

))
η′<η

is decreasing, while the net:(lim
η′<η

TrHη′

( (
σ (ρζ ))η′ Θη′|η

))
η∈L

= (TrHζ

(
ρ̃η
) )

η∈L ,
is increasing, the limits are given respectively by the infimum and by the supremum, so:

σ (ρζ ) ∈ {(ρη)η∈L ∈ S⊗(L,H,Φ)
∣∣∣∣∣ sup
η∈L

(inf
η′<η

TrHη′

(
ρη′ Θη′|η

)) = 1} .
To prove that this condition indeed characterizes σ 〈Sζ〉, we now consider (ρη)η∈L ∈ S⊗(L,H,Φ) suchthat:

sup
η∈L

(inf
η′<η

TrHη′

(
ρη′ Θη′|η

)) = 1 .
Let η ∈ L. We have 0 6 inf

η′<η
TrHη′

(
ρη′ Θη′|η

) = µη 6 1. We consider the net (ρ̌η′|η)η′<η, where
ρ̌η′|η is a positive semi-definite, traceclass operator on Hη defined by:

ρ̌η′|η := Trη′→η (Θη′|η ρη′ Θη′|η

) .
For η′′ < η′ < η ∈ L, we have:
ρ̌η′|η − ρ̌η′′|η = Trη′′→η ( (ιη′′←η′(Θη′|η)− Θη′′|η

)
ρη′′
(
ιη′′←η′(Θη′|η)− Θη′′|η

)) ,
and ιη′′←η′(Θη′|η)− Θη′′|η = Φ−1

η′′→η′ ◦
[(idHη′′→η′ − |ζη′′→η′〉〈ζη′′→η′|

)
⊗ Θη′|η

]
◦ Φη′′→η′ ,

hence ρ̌η′|η−ρ̌η′′|η is also a positive semi-definite, traceclass operator on Hη. Its trace is TrHη′

(
ρη′ Θη′|η

)
− TrHη′′

(
ρη′′ Θη′′|η

) = TrHη ρ̌η′|η − TrHη ρ̌η′′|η, therefore (TrHη ρ̌η′|η
)
η′<η is decreasing and converges to

µη.Thus, (ρ̌η′|η)η′<η is a Cauchy net and, since the traceclass operators form a Banach space withrespect to the trace norm [82], it converges in trace norm to a positive semi-definite, traceclassoperator ρ̌η on Hη, with TrHη ρ̌η = µη.Moreover, for κ 4 κ ′ ∈ L, we have:
τ+
κ′←κ ρ̌κ′ τκ′←κ = lim

η<κ′
τ+
κ′←κ ρ̌η|κ′ τκ′←κ

= lim
η<κ′

ρ̌η|κ = ρ̌κ (using eq. (5.9.2) ).
Hence, since sup

κ∈L
TrHκ ρ̌κ = 1, there exists, from lemma 5.10.2, an operator ρ̌ζ ∈ Sζ satisfying:

∀κ ∈ L, τ+
ζ←κ ρ̌ζ τζ←κ = ρ̌κ .

Therefore, we have:
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∀η, κ ∈ L, ∀η′ < η, κ,
(
σ
((̃
ρ̌ζ
)
κ

))
η
= Trη′→η Θη′|κ ρ̌η′ Θη′|κ (using eqs. (5.9.3) and (5.9.4) ),

hence, applying for η′ = κ < η ∈ L:(
σ
(
ρ̌ζ
) )

η = lim
κ<η

Trκ→η ρ̌κ
= lim

κ<η
lim
κ′<κ

Trκ→η ρ̌κ′|κ
On the other hand, we can show as above that for any κ 4 κ ′, ρκ−ρ̌κ′|κ is a positive semi-definite,traceclass operator on Hκ , with trace smaller than 1− µκ . Thus, ρ = σ

(
ρ̌ζ
). �

As a corollary of the previous result, we also consider the case of infinite tensor products
[99, 93]. Given a family of Hilbert spaces (Jλ)λ∈F , we can build its infinite tensor product (ITP)
HF , which will in general be a non-separable Hilbert space. On the other hand, we can also
build a projective system of quantum state spaces where the ‘small’ Hilbert spaces are given by
tensor products of finitely many Jλ . In this case, we still can map density matrices on HF to
states in the projective limit, but this mapping will no longer be injective, because we can define
considerably more observables over the infinite tensor product, and we can use them to distinguish
between states that are indistinguishable if we solely use the algebra of observables defined over the
projective system. However, if we believe that these latter observables (which can be sensible only
to correlations between finitely many Jλ) are the only experimentally measurable ones, additional
distinctions between states might be objectionable.

Interestingly, the ITP HF, while being a really huge Hilbert space, still fails (except in absolutely
degenerate cases) to reproduce the full state space of the projective system: this can be traced back
to the fact that the latter allows to model states that are patently more ‘statistical’ than any state
realizable on HF. Also, grouping the tensor product factors Jλ into finite tensor products before
performing the ITP construction generically gives rise to inequivalent Hilbert spaces (ie. ITP’s are
not associative, see [99, section 4.2] ), while such a grouping does not affect the projective state
space (as a consequence of prop. 5.6). We will further investigate the comparison between projective
state spaces and ITP Hilbert spaces in props. 19.2 and 19.13.

Theorem 5.11 Let (Jλ)λ∈F be a family of Hilbert spaces (with dim Jλ 6= 0 for each λ ∈ F) anddefine:1. L := {Λ ⊂ F | #Λ < ∞} equipped with the preorder ⊂ ;
2. ∀Λ ∈ L, HΛ := ⊗λ∈Λ Jλ ;
3. ∀Λ ⊂ Λ′ ∈ L, HΛ′→Λ := HΛ′\Λ with ΦΛ′→Λ the natural identification HΛ′ → HΛ′\Λ ⊗HΛ .Then, we can complete these elements into a projective system of quantum state spaces (L, H, Φ)⊗.Let HF be infinite tensor product of (Jλ)λ∈F . There exist maps σ : SF → S

⊗(L,H,Φ) and α :
A
⊗(L,H,Φ) → AF such that:

4. ∀ρ ∈ SF, ∀A ∈ A
⊗(L,H,Φ), TrHF

(ρ α(A)) = Tr (σ (ρ)A);
5. if {λ ∈ F | dim Jλ > 1} is infinite, σ is neither injective nor surjective.
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Proof Clearly, (L, ⊂) is a directed set and, defining, for any Λ ⊂ Λ′ ⊂ Λ′′ ∈ L, ΦΛ′′→Λ′→Λ asthe natural identification HΛ′′\Λ → HΛ′′\Λ′ ⊗HΛ′\Λ , we obtain a projective system of quantum statespaces (L, H, Φ)⊗.
Existance of σ and α satisfying 5.11.4. The ITP HF arising from (Jλ)λ∈F can be written as [99,chapter 4]:

HF =⊕[f ] H[f ] ,
where the [f ] are equivalence classes in {(fλ)λ∈F ∈ (Jλ)λ∈F ∣∣∣∣∣ ∑

λ∈F

∣∣‖fλ‖Jλ − 1∣∣ converges } for the
equivalence relation:

(fλ)λ∈F ' (gλ)λ∈F ⇔
∑
λ∈F

∣∣〈fλ, gλ〉Jλ − 1∣∣ converges ,
and the Hilbert space H[f ] is (the completion of) the inductive limit of (L, (⊗λ∈Λ Jλ)Λ∈L , (τfΛ′←Λ)Λ⊂Λ′),the inductive maps τfΛ′←Λ being defined as:
∀Λ ⊂ Λ′, τfΛ′←Λ : ⊗λ∈Λ Jλ → ⊗

λ∈Λ′ Jλ
ψ 7→

(⊗
λ∈Λ′\Λ fλ

)
⊗ ψ ,

for f some representative of [f ] such that ∀λ ∈ F, ‖fλ‖Jλ = 1 (note that every equivalence classadmits normalized representatives: given a representative (gλ)λ∈F , there can be at most finitelymany λ such that gλ = 0, so, defining fλ to be some normalized vector of Jλ , if gλ = 0, and
fλ := gλ/‖gλ‖Jλ otherwise, we have fλ ' gλ).Now, choosing such a normalized representative f for each equivalence class [f ] , we can identify
H[f ] with the Hilbert space Hζf constructed as in theorem 5.9 for the family (ζ fΛ′→Λ)Λ⊂Λ′ given by:
∀Λ, ζ fΛ→Λ = 1 & ∀Λ ( Λ′, ζ fΛ′→Λ := ⊗λ∈Λ′\Λ fλ .Hence, as in the proof of theorem 5.9, we can construct for all Λ ∈ L an Hilbert space H[f ]→Λ andan Hilbert space isomorphism Φ[f ]→Λ : H[f ] → H[f ]→Λ ⊗HΛ, and for all Λ ⊂ Λ′, we can construct anHilbert space isomorphism Φ[f ]→Λ′→Λ : H[f ]→Λ → H[f ]→Λ′ ⊗HΛ′→Λ, satisfying:(Φ[f ]→Λ′→Λ ⊗ idHΛ

)
◦ Φ[f ]→Λ = (idH[f ]→Λ′ ⊗ ΦΛ′→Λ) ◦ Φ[f ]→Λ′ .

We define:
∀Λ ∈ L, HF→Λ =⊕[f ] H[f ]→Λ , ΦF→Λ =⊕[f ] Φ[f ]→Λ & ∀Λ ⊂ Λ′, ΦF→Λ′→Λ =⊕[f ] Φ[f ]→Λ′→Λ .

Note that HF→Λ can also be identified as the ITP of (Jλ)λ∈F\Λ .Defining L := L∪ {F} and extending the preorder on L to L by ∀Λ ∈ L, Λ ⊂ F, we thus havea projective system of quantum state spaces (L,H,Φ)⊗. As in the proof of theorem 5.9, we canthen define σ and α by first using prop. 5.7 to go from HF to (L,H,Φ)⊗ and then using prop. 5.6
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to go from (L,H,Φ)⊗ to (L,H,Φ)⊗.
Properties of σ (5.11.5). Let ρF ∈ SF . For Λ ∈ L, we have:(

σ (ρF))Λ = TrF→Λ ρF = TrHF→Λ
(ΦF→Λ ◦ ρF ◦ Φ−1

F→Λ)
=∑[f ] TrH[f ]→Λ

(Φ[f ]→Λ ◦ Π[f ] ◦ ρF ◦ Π+[f ] ◦ Φ−1[f ]→Λ
) ,

where Π[f ] : HF → H[f ] is the orthogonal projection on H[f ].Thus, σ does not see the correlations between different H[f ] that might be contained in ρF , andtherefore σ cannot be injective if there exist more than one equivalence class (as will be the case if
{λ ∈ F | dim Jλ > 1} is infinite, see below). Indeed, if ψ, ψ′ are two normalized states in HF with
ψ ∈ H[f ], ψ′ ∈ H[g] and [f ] 6= [g], then:

σ
(12 |ψ〉〈ψ|+ 12 |ψ′〉〈ψ′|

) = σ
(∣∣∣∣ψ + ψ′√2

〉〈
ψ + ψ′√2

∣∣∣∣) .
On the other hand, let ρ = (ρΛ)Λ∈L ∈ S

⊗(L,H,Φ) and suppose there exists ρF ∈ SF such that
ρ = σ (ρF). If TrHF

ρF = 0, then ρF = 0, hence ρ = 0. Therefore, if ρ 6= 0, we have TrHF
ρF > 0, andtherefore there should exist at least one [f ] such that TrH[f ]

(Π[f ] ρF Π+[f ]
)
> 0. Using theorem 5.9,we then have:

supΛ∈L
( infΛ′⊃Λ TrHΛ′

(
ρΛ′ΘfΛ′|Λ)) =∑[g] supΛ∈L infΛ′⊃Λ TrHΛ′

(TrH[g]→Λ′
(Φ[g]→Λ′ ◦ Π[g] ρF Π+[g] ◦ Φ−1[g]→Λ′

) ΘfΛ′|Λ)
> supΛ∈L infΛ′⊃Λ TrHΛ′

(TrH[f ]→Λ′
(Φ[f ]→Λ′ ◦ Π[f ] ρF Π+[f ] ◦ Φ−1[f ]→Λ′

) ΘfΛ′|Λ)
= TrH[f ]

(Π[f ] ρF Π+[f ]
)
> 0 ,

with ΘfΛ′|Λ = Φ−1Λ′→Λ ◦ (∣∣ζ fΛ′→Λ〉〈ζ fΛ′→Λ∣∣⊗ idHΛ
)
◦ ΦΛ′→Λ (we have used in the first line that the sum∑[g] is absolutely convergent in trace norm, and that the argument of infΛ′⊃Λ , resp. of supΛ∈L , ispositive and decreasing with Λ′, resp. increasing with Λ, see the proof of theorem 5.9).Now, we suppose that we have a infinite part Γ ⊂ F such that ∀γ ∈ Γ, dim Jγ > 1, and, for all

γ ∈ Γ, we choose g1
γ and g2

γ two normalized vectors in Jγ that are orthogonal with each other. Wedefine:
∀Λ ∈ L / Λ ⊂ Γ, ∀ (εγ)γ∈Λ ∈ {0, 1}Λ , g(ε)Λ := ⊗γ∈Λ gεγγ ∈ HΛ .

Then, we choose some (gλ)λ∈F\Γ, with ∀λ ∈ F \ Γ, gλ ∈ Jλ and ‖gλ‖Jλ = 1. We define, for anyΛ ∈ L:
∀
(
εγ
)
γ∈Λ∩Γ ∈ {0, 1}Λ∩Γ , g(ε)Λ := (⊗λ∈Λ\Γ gλ

)
⊗ g(εγ )Λ∩Γ

and ρΛ := 12#(Λ∩Γ) ∑(ε)
∣∣∣g(ε)Λ

〉〈
g(ε)Λ
∣∣∣ .
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We can check that (ρΛ)Λ∈L ∈ S
⊗(L,H,Φ) and we have, for any f and any Λ ⊂ Λ′:

TrHΛ′
(
ρΛ′ΘfΛ′|Λ) = ∏

γ∈(Λ′\Λ)∩ΓTrJγ ( 12
(∣∣g1

γ
〉〈
g1
γ
∣∣ + ∣∣g2

γ
〉〈
g2
γ
∣∣) |fγ〉〈fγ|) ∏

λ∈(Λ′\Λ)\ΓTrJλ (|gλ〉〈gλ| |fλ〉〈fλ|)
= ∏
γ∈(Λ′\Λ)∩Γ

12
(∣∣〈g1

γ, fγ
〉∣∣2 + ∣∣〈g2

γ, fγ
〉∣∣2) ∏

λ∈(Λ′\Λ)\Γ TrJλ (|〈gλ, fλ〉|2) .
Thus, we get for any f and any Λ ⊂ Λ′ the bound:

TrHΛ′
(
ρΛ′ΘfΛ′|Λ) 6 2#(Λ∩Γ)2#(Λ′∩Γ) .

Hence,
∀Λ ∈ L, infΛ′⊃Λ TrHΛ′

(
ρΛ′ΘfΛ′|Λ) = 0 and supΛ∈L

( infΛ′⊃Λ TrHΛ′
(
ρΛ′ΘfΛ′|Λ)) = 0 ,

so (ρΛ)Λ∈L /∈ Imσ , and therefore σ is not surjective. �

As expressed by theorems 5.9.3 or 5.11.4, the mappings considered above rely on matching different

explicit representations of certain abstract states on the algebra A
⊗(L,H,Φ) (def. 5.3 and prop. 5.4).

Finally, we can also characterize the space of projective states within the space of all states over
the algebra: such a characterization is easily adapted from the characterization of normal states
over a W ∗-algebra [87, corollary III.3.11].

While the space of states on an algebra is never empty 1 (in fact, these states even separate the
points of the algebra, as follows from [87, theorem I.9.23] ), it is not quite clear whether the space
of projective states S⊗(L,H,Φ) could turn out to be empty. Indeed, even a seemingly healthy projective
limit (namely, an inverse limit limit defined on a directed label set, such that all involved spaces
are non empty and all gluing maps are surjective, aka. are projection maps) can actually be empty.
An instructive example is given in [101] , and we will come back to this potential issue with regard
to a concrete projective system at the end of section 18. Note that this issue cannot affect countable
label sets, which have the additional advantage of allowing for a constructive description of the
projective states. Hence, the development of section 19, aiming at restricting an uncountable label
set to a suitably selected countable subset thereof, could provide a way out if necessary.

Proposition 5.12 We consider the same objects as in prop. 5.4. Let Q⊗(L,H,Φ) denote the space ofstates over A⊗(L,H,Φ) (ie. the positive linear forms of norm 1 on A
⊗(L,H,Φ)). Then the map:

χ : S⊗(L,H,Φ) → Q⊗(L,H,Φ)
ρ 7→ Tr (ρ · ) ,

is injective and its image is characterized by:
υ ∈ χ

〈
S⊗(L,H,Φ)〉

1. Thanks to Alexander Stottmeister for pointing out this result to me.
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⇔ ∀η ∈ L, ∀ (Ji)i∈I familly of closed, mutually orthogonal vector subspaces of Hη ,

υ
(
ι←η
(∑

i∈I

Πi

)) =∑
i∈I

υ
(
ι←η(Πi)) ,

where ι←η denotes the canonical injection of Aη in A
⊗(L,H,Φ) and, for i ∈ I , Πi denotes the orthgonalprojection on the closed vector subspace Ji of Hη .

Proof That χ is well-defined as a map S⊗(L,H,Φ) → Q⊗(L,H,Φ) has been discussed in prop. 5.4. Let
ρ ∈ S⊗(L,H,Φ), η ∈ L and (Ji)i∈I be a family of closed, mutually orthogonal vector subspaces of Hη .
Let, for any finite subset α ⊂ I , Jα := ⊕

i∈α
Ji , and J := ⊕

i∈I

Ji . Let, for any finite subset α ⊂ I ,
Θα :=∑

i∈α
Πi be the orthogonal projection on Jα , and Θ :=∑

i∈I

Πi be the orthogonal projection on
J. From lemma 5.10.1 (applied to the non-negative, traceclass operator Θ ρη Θ on J ⊂ Hη), the net(Θα ρη Θα

)
α converges in trace norm to Θ ρη Θ , hence:∑

i∈I

Tr (ρ ι ← η(Πi)) = lim
α

∑
i∈α

TrHη

(
ρη Πi

) = lim
α

TrHη

(Θα ρη Θα
)

= TrHη

(Θ ρη Θ) = Tr (ρ ι←η(∑
i∈I

Πi

)) .
Next, let ρ, ρ′ ∈ S⊗(L,H,Φ) such that χ(ρ) = χ(ρ′) and η ∈ Hη . For any ψ, ψ′ ∈ Hη , we have:
〈ψ′, ρη ψ〉 = TrHη ρη |ψ 〉 〈 ψ′| = Tr (ρ ι←η (|ψ 〉 〈 ψ′|) ) = Tr (ρ′ ι←η (|ψ 〉 〈 ψ′|) ) = 〈ψ′, ρ′η ψ〉 ,

hence ρη = ρ′η . Since this holds for any η ∈ L and for any ρ, ρ′ ∈ S⊗(L,H,Φ) such that χ(ρ) = χ(ρ′),
χ is injective.Reciprocally, let υ ∈ Q⊗(L,H,Φ) such that, for any η ∈ L and any familly (Ji)i∈I of closed, mutuallyorthogonal vector subspaces of Hη :

υ
(
ι←η
(∑

i∈I

Πi
)) =∑

i∈I

υ
(
ι←η(Πi)) . (5.12.1)

Let η ∈ L and let (ei)i∈I be an orthonormal basis of Hη. For any finite subset α ⊂ I , we define theoperator ρ(α)
η on the finite dimensional vector subspace Jα := Vect {ei | i ∈ α} of Hη by:

∀i, j ∈ α,
〈
ej
∣∣ ρ(α)

η ei
〉 := υ

(
ι←η
( ∣∣ei 〉 〈 ej∣∣ )) .

υ ◦ ι←η being a positive linear form on Aη , ρ(α)
η is a positive (semi-definite) operator, and, Jαbeing finite dimensional, it is traceclass. Moreover, for any finite subsets α ⊂ α ′ ⊂ I , ρ(α)

η =Θα ′→α ρ(α ′)
η Θα ′→α , with Θα ′→α the orthogonal projection on the vector subspace Jα in Jα ′ . And,using eq. (5.12.1), we have:

sup
α

TrJα ρ(α)
η = sup

α

∑
i∈α

υ
(
ι←η
(
|ei 〉 〈 ei|

)) = υ
(
ι←η
(idHη

)) = 1 .
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So, from lemma 5.10.2, there exists a positive (semi-definite) traceclass operator ρη on Hη , withTrHη ρη = 1 and:
∀i, j ∈ I,

〈
ej
∣∣ ρη ei〉 = υ

(
ι←η
( ∣∣ei 〉 〈 ej∣∣ )) .

Let ψ ∈ Hη and, for any finite subset α ⊂ I , let ψα be the orthogonal projection of ψ on Jα .The net (ψα)α converges in norm to ψ, hence:
〈ψ | ρη ψ〉 = lim

α
〈ψα | ρη ψα〉 = lim

α
υ
(
ι←η
(
|ψα 〉 〈 ψα |

)) = υ
(
ι←η
(
|ψ 〉 〈 ψ|

)) ,
where we have used that υ is linear and bounded. Thus, for any orthogonal projection Π on a finitedimensional vector subspace of Hη , we have, by linearity:TrHη ρη Π = υ ◦ ι←η

(Π) . (5.12.2)
Now, eq. (5.12.1) holds not only for υ◦ ι←η but also for TrHη

(
ρη ·

), as was shown in the first part ofthe present proof, so eq. (5.12.2) can be extended to any orthogonal projection Π on a closed vectorsubspace of Hη . By linearity and norm-continuity, it can therefore be extended to any boundedself-adjoint operator on Hη (since the linear span of the orthogonal projections is norm-dense inthe space of bounded self-adjoint operators, as follows from the spectral theorem). But any boundedoperator Aη on Hη can be written as A(+)
η + i A(−)

η with A(+)
η , A(−)

η bounded self-adjoint operators on
Hη , so eq. (5.12.2) holds for any such Aη as well. In other words, we have:TrHη

(
ρη ·

) = υ ◦ ι←η , (5.12.3)as linear forms on Aη .Finally, let η 4 η′ ∈ L, and let ρη , resp. ρη′ , be the positive traceclass operator thus constructedon Hη , resp. Hη′ . Let ρ(η′)
η := Trη′→η ρη′ . For any ψ, ψ′ ∈ Hη , we have:

〈ψ′ | ρη ψ〉 = υ ◦ ι←η
(
|ψ 〉 〈 ψ′|

) = υ ◦ ι←η′
(
ιη′←η

(
|ψ 〉 〈 ψ′|

))
= TrHη′

(
ρη′ ιη′←η

(
|ψ 〉 〈 ψ′|

)) = 〈ψ′ ∣∣∣ ρ(η′)
η ψ

〉 .
Thus, ∀η 4 η′, Trη′→η ρη′ = ρη , so ρ := (

ρη
)
η∈L ∈ S⊗(L,H,Φ) , and, by norm-continuity, eq. (5.12.3)extends to all A⊗(L,H,Φ) as χ(ρ) = υ . �

6. Quantization in special cases

The motivation of section 2 was to pave the way for a better understanding of how a quantum
projective structure as described in the previous section can be constructed starting from a classical
field theory. The procedure we have in mind here, is, given an infinite dimensional symplectic
manifold, to first build its rendering by a system of finite dimensional manifolds (the partial theories,
that encapsulate insights from a careful analysis of how measurements are done experimentally),
and then quantize this projective system (with the aim of getting a quantum theory assembled from
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‘small’ Hilbert spaces, on which calculations should be workable).

In this section, we will consider two basic, yet fairly generic cases, namely position and holo-
morphic representations, assuming that we have a factorizing system on the classical side (see
subsection 2.3). In both cases, the key prerequisite is that the polarizations, that endow each
symplectic manifold Mη with the additional structure needed for quantization (the choice of con-
figuration variables or the complex structure, respectively), should be compatible, in an appropriate
sense, with the projections defining the projective system.

In this section, all manifolds are assumed to be smooth finite dimensional manifolds.
6.1 Position representation

The starting point for position quantization will be a projective limit of classical phase spaces
arising from a factorizing system of configuration spaces as described in prop. 2.16. Then, there
is only one additional ingredient required, namely we need to find a family of measures on these
configuration spaces that are intertwined by the factorization maps. With this, constructing the
projective system of quantum state spaces is a straightforward generalization of [68, subsections
3.4.3 to 3.4.5], since an L2-space over a Cartesian product of measure spaces has a natural tensor
product factorization.

Surely, given an arbitrary projective system of phase spaces, it will in general not be possible
to rewrite it as arising from a factorizing system of configuration spaces. However, we consider
in theorem 6.2 an important case where we indeed get such a factorizing form automatically,
namely when each individual phase space can be identified with the cotangent bundle on a simply-
connected Lie group (assuming some appropriate compatibility conditions between the projections
and these identifications). The idea is that the group structure, together with the favorable topology,
fills exactly the gap between the local result from prop. 2.10 and the global factorization we want
to have. Also, using Haar measures, we can easily build a family of measures for this factorizing
system.

Note that this result in particular covers the situation considered in [68] (looking at Rn as an
additive Lie group), the proof we will give below being in fact nothing but the non-linear version
of the procedure described in [68, section 3.4]. At the same time, it lays the ground to address the
question raised in this reference, as to whether the construction can be generalized to non-Abelian
gauge theories (this will be the endeavor of chaps. 3 and 4, but for the limitation acknowledged at
the end of section 9 regarding gauge invariance). To make the relation clearer between the objects
in [68] and the ones we are using here, let us look in more detail at the assumptions of theorem 6.2.
That each ‘small’ phase space Mη is a cotangent bundle on a simply-connected Lie group, equipped
with its canonical symplectic structure, is a weaker version of assumptions 2, 3b and 4 in [68].
The most crucial assumption is that we start from a projective system of phase spaces: on the one
hand, the compatibility of the projections with the symplectic structures provides the seeds of the
desired factorizations, on the other hand its three-spaces consistency condition will turn into the
corresponding condition for the quantum projective system (eq. (5.1.1)). This is ensured in [68] by
assumptions 3a and 6. Finally, the condition 6.2.2, corresponding to the rest of assumption 6 in
[68], ensures the compatibility of the projection maps both with the configuration polarizations (so
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that the factorization of the phase spaces will descend to a factorization of the configuration spaces)
and with the group structure (otherwise we would not be able to really make use of this structure).
Note that, thanks to the compatibility of the projections with the symplectic structures, simply
assuming that the map, besides acting independently on the position and momentum variables,
is linear in the momentum variables is sufficient to ensure a full compatibility with the group
structure, as expressed by eqs. (6.2.1) and (6.2.2).

Definition 6.1 A factorizing system of measured manifolds is a factorizing system of smooth, finitedimensional, manifolds (L,C, φ)× (def. 2.15) such that:1. for all η ∈ L, Cη is equipped with a smooth measure µη (def. B.12);
2. for all η ≺ η′ ∈ L, Cη′→η is equipped with a smooth measure µη′→η (on Cη→η we will use thecounting measure);
3. for all η ≺ η′ ∈ L, φη′→η is volume-preserving, and for all η ≺ η′ ≺ η′′ ∈ L, φη′′→η′→η isvolume-preserving; in other words, we require:

∀η ≺ η′, φη′→η,∗ µη′ = µη′→η × µη ,
and ∀η ≺ η′ ≺ η′′, φη′′→η′→η,∗ µη′′→η = µη′′→η′ × µη′→η .

Theorem 6.2 Let (L, M, π)↓ be a projective system of phase spaces such that:1. ∀η ∈ L, Mη = T ∗(Cη) where Cη is a simply-connected Lie group; by relying on left translations,we thus have an identification Lη : Mη → Cη × Lie∗(Cη) ;
2. ∀η 4 η′, πη′→η = L−1

η ◦ (ρη′→η × λη′→η) ◦ Lη′ where ρη′→η is a map Cη′ → Cη and λη′→η is a
linear map Lie∗(Cη′)→ Lie∗(Cη) .

Then, there exists a factorizing system of measured manifolds (L, (C, µ), φ)× such that (L, M, π)↓arises from (L, C, φ)× (in the sense of prop. 2.16).
Proof Conditions on ρη′→η and λη′→η. Let η ∈ L and x ∈ Cη. There exists an open neighborhood
U of 0 in Lie(Cη) such that the map:

Ψx : U → Cη

X 7→ x . exp(X ) ,
is a diffeomorphism onto its image, hence it provides a local coordinate system around x in Cη. Wecan lift it to a local trivialization of the cotangent bundle Mη = T ∗(Cη) :

Ψ̃x : U × Lie∗(Cη) → Mη

X, ` 7→ x . exp(X ), ` ◦ [TXΨx ]−1 .
Using eq. (2.16.1), we then get, for all ` ∈ Lie∗(Cη) and for all (u, v), (u′, v ′) ∈ Lie(Cη)× Lie∗(Cη):

ΩMη, Ψ̃x (0,`)
([
T(0,`)Ψ̃x

] (u, v), [T(0,`)Ψ̃x

] (u′, v ′)) = v ′(u)− v(u′) .
Next, we have:
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Lη ◦ Ψ̃x : U × Lie∗(Cη) → Cη × Lie∗(Cη)
X, ` 7→ x . exp(X ), ` ◦ [TXΨx ]−1 ◦ [T1 (x . exp(X ) . · )] = ` ◦ adXidLie(Cη)−e−adX ,

where we have used:
[Texp(X ) (exp(−X ) . · )] ◦ [TX exp] = idLie(Cη) − e−adXadX ,

as follows from the Baker–Campbell–Hausdorff formula.Therefore, for all x, ` ∈ Cη× Lie∗(Cη) and for all (u, v), (u′, v ′) ∈ Tx(Cη)× Lie∗(Cη), the symplecticform on Mη is given by:(
L−1,∗
η ΩMη

)(x,`) ((u, v), (u′, v ′)) = v ′ ◦ L−1
η,x(u)− v ◦ L−1

η,x(u′) + `
([
L−1
η,x(u), L−1

η,x(u′)]Lie(Cη)
) ,

where Lη,x := [T1 (x . · )] : Lie(Cη)→ Tx(Cη). This allows us to express the map · : T ∗(Mη)→ T (Mη)(defined from the symplectic structure as in def. 2.1) and we have for any p, k ∈ T ∗x (Cη)× Lie(Cη) :
(p, k) ◦ [TL−1

η (x,`) Lη] = [T(x,`)L−1
η
] (
Lη,x(k), ` ([k, · ]Lie(Cη)

)
− p ◦ Lη,x

) .
Let η 4 η′. We can now formulate the conditions on ρη′→η and λη′→η for πη′→η to be compatiblewith the symplectic structures as:[Tx′ρη′→η] ◦ Lη′,x′ ◦ λ∗η′→η = Lη,ρη′→η(x′) , (6.2.1)

and [
λ∗η′→η( · ), λ∗η′→η( · )]Lie(Cη′ ) = λ∗η′→η

([ · , · ]Lie(Cη)
) . (6.2.2)

Cη as a Lie subgroup of Cη′ . πη′→η being surjective, so is λη′→η, thus λ∗η′→η : Lie(Cη) → Lie(Cη′)is injective, and, from eq. (6.2.2), it is a Lie algebra morphism. Therefore, λ∗η′→η 〈Lie(Cη)〉 is aLie subalgebra of Lie(Cη′) so there exists a unique connected Lie subgroup C̃η of Cη′ such that
T1

(
C̃η

) = λ∗η′→η 〈Lie(Cη)〉 [100, theorem 3.19]. C̃η is an immersed submanifold in Cη′ and its tangent
space at x ′ ∈ C̃η is given by:

Tx′
(
C̃η

) = Lη′,x′ ◦ λ∗η′→η 〈Lie(Cη)〉 .
Let x ′1, x ′2 ∈ Cη′ and define:
κx′1,x′2 : Cη′ → Cη

x ′ 7→ ρη′→η(x ′1 . x ′) . ρη′→η(x ′2 . x ′)−1 .
For any k ∈ Lie(Cη), we have:[

T1 κx′1,x′2
]
◦ λ∗η′→η(k) =

= [Tρη′→η(x′1) ( · . ρη′→η(x ′2)−1)] ◦ [Tx′1 ρη′→η] ◦ Lη′,x′1 ◦ λ∗η′→η(k) ++[Tρη′→η(x′2) (ρη′→η(x ′1) . ( · )−1)] ◦ [Tx′2 ρη′→η] ◦ Lη′,x′2 ◦ λ∗η′→η(k)
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= [Tρη′→η(x′1) ( · . ρη′→η(x ′2)−1)] ◦ Lη,ρη′→η(x′1)(k)+[Tρη′→η(x′2) (ρη′→η(x ′1) . ( · )−1)] ◦ Lη,ρη′→η(x′2)(k)(using eq. (6.2.1) )
= [T1

(
x 7→ ρη′→η(x ′1) . x . x−1 . ρη′→η(x ′2)−1)] (k) = 0 .

With this, we get, for any x ′ ∈ C̃η:[
Tx′ κx′1,x′2

] 〈
Tx′
(
C̃η

)〉 = [Tx′ κx′1,x′2] ◦ Lη′,x′ ◦ λ∗η′→η 〈Lie (Cη)〉
= [T1 κx′1.x′, x′2.x′

]
◦ λ∗η′→η

〈Lie (Cη)〉 = {0} ,
thus, C̃η being connected by definition, κx′1,x′2 is constant on C̃η for any x ′1, x ′2 ∈ Cη′ . In particular,applying with x ′2 = 1 gives:
∀x ′o ∈ Cη′, ∀x ′ ∈ C̃η, ρ̃η′→η(x ′o . x ′) = ρ̃η′→η(x ′o) . ρ̃η′→η(x ′) , (6.2.3)

where ∀x ′ ∈ Cη′, ρ̃η′→η(x ′) := ρη′→η(1)−1 . ρη′→η(x ′) .Therefore, ρ̃η′→η|C̃η→Cη
is a smooth group homomorphism, and, moreover, its derivative at 1 is aLie algebra isomorphism, for we have using eq. (6.2.1):[T1 ρ̃η′→η] ◦ λ∗η′→η = L−1
η,ρη′→η(1) ◦ [T1 ρη′→η] ◦ λ∗η′→η = idLie(Cη) .

Hence, ρ̃η′→η|C̃η→Cη
is a Lie group isomorphism, for C̃η is connected and Cη is simply-connected[100, prop. 3.26]. We will denote by Λη′←η : Cη → C̃η its inverse.

Factorizing system. We define Cη′→η := ρ̃−1
η′→η 〈1〉. ρ̃η′→η has surjective derivative at each point, so

Cη′→η is a smooth manifold as level set of a constant rank map [54, theorem 5.22]. Next, we definethe map φη′→η by:
φη′→η : Cη′ → Cη′→η × Cη

x ′ 7→ x ′ .
(Λη′←η ◦ ρ̃η′→η(x ′))−1 , ρη′→η(x ′) .

φη′→η is well-defined for, using eq. (6.2.3), we have for all x ′ ∈ Cη′ :
ρ̃η′→η

(
x ′ .Λη′←η (ρ̃η′→η(x ′)−1)) = ρ̃η′→η(x ′) . ρ̃η′→η(x ′)−1 = 1 .To prove that φη′→η is a bijective map, we define a map φ̃η′→η by:

φ̃η′→η : Cη′→η × Cη → Cη′

y, x 7→ y . σ−1 .Λη′←η (x) ,
where σ := Λη′←η (ρη′→η(1)) . Using again eq. (6.2.3), we can check that φη′→η ◦ φ̃η′→η = idCη′→η×Cηand φ̃η′→η ◦ φη′→η = idCη′ . Since both φη′→η and φ̃η′→η are smooth, φη′→η is a diffeomorphism.From eq. (6.2.1), we have:
∀x ∈ Cη, [TxΛη′←η] = Lη′,Λη′←η(x) ◦ λ∗η′→η ◦ L−1

η,x .
Thus, for any y, x ∈ Cη′→η × Cη, the derivative of φ−1

η′→η satisfies:
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∀u ∈ Tx(Cη), [Ty,x φ−1
η′→η
] (0, u) = Lη′, φ−1

η′→η(y,x) ◦ λ∗η′→η ◦ L−1
η,x(u) . (6.2.4)

So we get, for any x ′, p′ ∈ T ∗(Cη′):
πη′→η(x ′, p′) = (ρη′→η(x ′), p′ ◦ Lη′,x′ ◦ λ∗η′→η ◦ L−1

η,ρη′→η(x′)
)

= (sη′→η ◦ φη′→η(x ′), p′ ◦ [Tx′ φη′→η]−1 (0, · )) ,
where sη′→η : Cη′→η × Cη → Cη is the projection on the second Cartesian factor. We can now useprop. 2.17 to build from these objects a factorizing system (L, C, φ)× that gives rise to (L, M, π)↓.
Volume forms. For any η ∈ L, we choose a non-zero dη-form ω̃η on Lie(Cη) (with dη := dimCη)and we define a right-invariant volume form ωη on Cη by:
∀x ∈ Cη, ∀u1, . . . , udη ∈ Tx(Cη), ωη(u1, . . . , udη) := ω̃η

(
R−1
η,x u1, . . . , R−1

η,x udη
) ,where Rη,x := T1 ( · . x) . We call µη the smooth measure arising from the volume form ωη.Let η 4 η′, y ∈ Cη′→η and w1, . . . , wdη′→η ∈ Ty(Cη′→η) = Ker [Ty ρη′→η] (with dη′→η :=dimCη′→η = dη′ − dη). The map:

α : Lie(Cη)dη → R

u1, . . . , udη 7→ ω̃η′
(
R−1
η′,y(w1), . . . , R−1

η′,y(wdη′→η), Aη′←η,y(u1), . . . , Aη′←η,y(udη)) ,
where Aη′←η,y := Ady ◦ λ∗η′→η ◦Ad−1

ρη′→η(1) , is a dη-form on Lie(Cη), so there exists ωη′→η,y(w1, . . . , wdη′→η)
∈ R such that:

α(u1, . . . , udη) = ωη′→η,y(w1, . . . , wdη′→η) ω̃η(u1, . . . , udη) .
Now, using the expression for φ−1

η′→η given above, we have, for any y, x ∈ Cη′→η × Cη:
∀w ∈ Ty(Cη′→η), R−1

η′,φ−1
η′→η(y,x) ◦

[
Ty,x φ−1

η′→η
] (w, 0) = R−1

η′,y(w) ,
and, from eq. (6.2.4), we also have:
∀u ∈ Tx(Cη), R−1

η′,φ−1
η′→η(y,x) ◦

[
Ty,x φ−1

η′→η
] (0, u) = Aη′←η,y ◦ R−1

η,x (u) ,
where we have used that λ∗η′→η = T1Λη′←η with Λη′←η a group homomorphism. With this, we cancheck that φ−1,∗

η′→η ωη′ = ωη′→η ∧ωη . In particular, this implies that ωη′→η is a smooth volume form on
Cη′→η . Thus, defining µη′→η to be the corresponding smooth measure, we get φη′→η,∗ µη′ = µη′→η×µη.Finally, for any η 4 η′ 4 η′′, φη′′→η′ , φη′→η and φη′′→η are volume-preserving, hence so is
φη′′→η′→η × idCη (using eq. (2.11.1) ) and therefore φη′′→η′→η itself. �

Proposition 6.3 Let (L,C, φ)× be a factorizing system of measured manifolds. We define:1. for η ∈ L, Hη := L2(Cη, dµη);
2. for η ≺ η′ ∈ L, Hη′→η := L2(Cη′→η, dµη′→η), and:

Φη′→η : Hη′ → Hη′→η ⊗Hη
ψ 7→ ψ ◦ φ−1

η′→η
,
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with the natural identification of L2(Cη′→η, dµη′→η)⊗L2(Cη, dµη) with L2(Cη′→η×Cη, dµη′→η×dµη).Then, we can complete these objects to build a projective system of quantum state spaces(L,H,Φ)⊗.
Proof We define:3. for η ≺ η′ ≺ η′′ ∈ L,

Φη′′→η′→η : Hη′′→η → Hη′′→η′ ⊗Hη′→η
ψ 7→ ψ ◦ φ−1

η′′→η′→η
,

with the natural identification of L2(Cη′′→η′, dµη′′→η′)⊗ L2(Cη′→η, dµη′→η) with L2(Cη′′→η′ × Cη′→η,
dµη′′→η′ × dµη′→η);4. for η ∈ L, Hη→η := C and we define Φη→η to be the natural isomorphic identification between
Hη and C⊗Hη;

5. for η 4 η′ ∈ L, we define Φη′→η→η (resp. Φη′→η′→η) to be the natural isomorphic identificationbetween Hη′→η and Hη′→η ⊗ C (resp. C⊗Hη′→η).That Φη′→η for η ≺ η′ defines an Hilbert space isomorphism comes from the volume-preservingproperty of φη′→η and from the fact that L2(C, dµ) ⊗ L2(C′, dµ′) can be unitarily identified with
L2(C×C′, dµ ×dµ′) (thanks to Fubini’s theorem). Similarly, Φη′′→η′→η for η ≺ η′ ≺ η′′ is an Hilbertspace isomorphism.We now just need to check the three-spaces consistency condition eq. (5.1.1). We consider
η ≺ η′ ≺ η′′ (since the condition is trivially satisfied whenever η = η′ or η′ = η′′ ):
∀ψ ∈ Hη,

(Φη′′→η′→η ⊗ idHη

)
◦ Φη′′→η(ψ) =

= (ψ ◦ φ−1
η′′→η

)
◦
(
φ−1
η′′→η′→η ⊗ idCη

)
= (ψ ◦ φ−1

η′′→η′
)
◦
(idCη′′→η′ ⊗ φ

−1
η′→η

) (using eq. (2.11.1) )
= (idHη′′→η′ ⊗ Φη′→η

)
◦ Φη′′→η′ (ψ) .

�

To argue that the quantum projective system composed above actually provides a quantization
of the classical one (as specified by the factorizing system of configuration spaces we started
from), we need to say how classical observables on the latter are turned to quantum observables
on the former. For this, we import the prescriptions of geometric quantization (summarized in
appendix B.3, especially in prop. B.14, and rewritten here more explicitly using the benefit of
working in a phase space given as a cotangent bundle). Thus, for each η, we can formulate the
quantization condition (the choice of preferred configuration variables is tied to a selection of which
observables can be directly quantized) as well as the definition of the quantized observables. The
key statement is that the compatibility conditions imposed on the family of measures is sufficient
to ensure that these prescriptions, supplied separately for each η, will fit readily into a coherent
picture.
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Proposition 6.4 We consider the same objects as in prop. 6.3. Let (L,M, φ̃)× be the factorizingsystem of phase spaces constructed from (L,C, φ)× as in prop. 2.16 and let f = [fη]∼ ∈ O×(L,M,φ̃)(prop. 2.13).If there exists a representative fη of f such that:
∃X fη complete vector field on Cη / ∀(x, p) ∈Mη, [T(x,p) γη] (Xfη,(x,p)) = X fη,x , (6.4.1)where γη : Mη = T ∗(Cη) → Cη is the bundle projection, then this condition is satisfied by allrepresentatives of f . Accordingly, we define:
O
×,Pos(L,C,φ) := {f ∈ O×(L,M,φ̃)

∣∣∣ ∃ fη ∈ f satisfying eq. (6.4.1) } .
For fη ∈ f ∈ O

×,Pos(L,C,φ), we can define f̂ µηη as a densely defined, essentially self-adjoint operator on
Hη (with dense domain Dη ⊂ Hη) by:
∀ψ ∈ Dη, ∀x ∈ Cη, f̂ µηη (ψ)(x) := ψ(x) fη(x, 0) + i [dψ]x (X fη,x

) + i2 ψ(x) (divµη X fη
) (x) ,

where divµη X fη is defined by LX fη µη = (divµη X fη
)
µη (def. B.12).Then, the application:

·̂ µ : O
×,Pos(L,C,φ) → O⊗(L,H,Φ)[fη]∼ → [

f̂ µηη
]
∼

,
is well-defined (O⊗(L,H,Φ) has been defined in prop. 5.5).
Proof Quantization condition. For η 4 η′ ∈ L, we define πη′→η : Cη′ → Cη, λη′→η : Cη′ → Cη′→η,and π̃η′→η : Mη′ →Mη, λ̃η′→η : Mη′ →Mη′→η, such that:

∀x ′ ∈ Cη′, φη′→η(x ′) = (λη′→η(x ′), πη′→η(x ′))
& ∀(x ′, p′) ∈Mη′ , φ̃η′→η(x ′, p′) = (λ̃η′→η(x ′, p′), π̃η′→η(x ′, p′)) .

From prop. 2.16, we then have:
∀η 4 η′ ∈ L, γη ◦ π̃η′→η = πη′→η ◦ γη′ & γη′→η ◦ λ̃η′→η = λη′→η ◦ γη′ .

Let fη ∈ C∞(Mη , R) satisfying eq. (6.4.1) and let η′ < η. Using the previous identity, we have:
∀(x ′, p′) ∈Mη′, [Tx′ πη′→η] ◦ [T(x′,p′) γη′ ] (Xfη ◦ π̃η′→η,(x′,p′)) =

= [Tπ̃η′→η(x′,p′) γη] ◦ [T(x′,p′) π̃η′→η] ([π̃∗η′→η dfη]x′,p′)

= [Tπ̃η′→η(x′,p′) γη]([dfη]π̃η′→η(x′,p′)) (using eq. (2.1.1) )
= [Tπ̃η′→η(x′,p′) γη] (Xfη,π̃η′→η(x′,p′)) = X fη,πη′→η(x′) ,
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and:
∀(x ′, p′) ∈Mη′, [Tx′ λη′→η] ◦ [T(x′,p′) γη′ ] (Xfη ◦ π̃η′→η,(x′,p′)) =

= [Tλ̃η′→η(x′,p′) γη′→η] ◦ [T(x′,p′) λ̃η′→η]([π̃∗η′→η dfη]x′,p′)
= 0 ,

since [π̃∗η′→η dfη]x′,p′ ∈ (Ker [T(x′,p′) π̃η′→η])⊥ = Ker [T(x′,p′) λ̃η′→η] .
Therefore, [T(x′,p′) γη′ ] (Xfη ◦ π̃η′→η,(x′,p′)) only depends on x ′. If we now define:
∀x ′ ∈ Cη′, X fη ◦ π̃η′→η,x′ := [T(x′,0) γη′ ] (Xfη ◦ π̃η′→η,(x′,0)) ,

we have X fη ◦ π̃η′→η ∈ T∞(Cη′) (the space of smooth vector fields on Cη′) and:
∀(x ′, p′) ∈Mη′, [T(x′,p′) γη′ ] (Xfη ◦ π̃η′→η,(x′,p′)) = X fη ◦ π̃η′→η,x′ .Moreover, we have:
∀x ′ ∈ Cη′, [Tx′ φη′→η] (X fη ◦ π̃η′→η,x′

) = (0, X fη,πη′→η(x′)
) . (6.4.2)

In particular, the completeness of X fη implies that X fη ◦ π̃η′→η is complete as well, so fη ◦ π̃η′→η fulfillseq. (6.4.1).On the other hand, for fη ∈ C∞(Mη , R), if there exists η′ < η such that fη ◦ π̃η′→η satisfyeq. (6.4.1), then, in the same way as above:
∀(x ′, p′) ∈Mη′ ,

[
Tπ̃η′→η(x′,p′) γη

] (
Xfη,π̃η′→η(x′,p′)

) = [Tx′ πη′→η] (X fη ◦ π̃η′→η,x′
) .

Now, the right-hand side does not depend on p′, and we have, for any x ′ ∈ Cη′ :{(
πη′→η(x ′), p) ∣∣ p ∈ Tx(Cη)} = {π̃η′→η(x ′, p′) | p′ ∈ Tx′(Cη′)} .

So, πη′→η being surjective, there exists a smooth vector field X fη on Cη such that ∀(x, p) ∈
Mη , [T(x,p) γη] (Xfη,(x,p)) = X fη,x , and we again have eq. (6.4.2) . Therefore, fη also satisfy eq. (6.4.1) .
Quantized observable. Let fη ∈ f ∈ O

×,Pos(L,C,φ). From prop. B.14, fη can be quantized into an essentiallyself-adjoint operator f̂ µηη on Hη and one can check that both definitions coincides. We now want todetermine ιη′←η(f̂ µηη ) for η′ < η. We start by deriving an identity for divµη X fη :(divµη′ X fη ◦ π̃η′→η

)
µη′ = LX fη ◦ π̃η′→η

µη′

= φ−1
η′→η,∗

[
Lφ−1,∗

η′→η

(
X fη ◦ π̃η′→η

) φη′→η,∗ µη′
]

= φ−1
η′→η,∗

[
Lφ−1,∗

η′→η

(
X fη ◦ π̃η′→η

) µη′→η × µη
] (using def. 6.1.3)
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= φ−1
η′→η,∗

[
L(0, X fη) µη′→η × µη] (using eq. (6.4.2) )

= φ−1
η′→η,∗

[
µη′→η ×

(
LX fη µη

)]
= [(divµη X fη

)
◦ πη′→η

]
µη′ .

Hence, it follows:divµη′ X fη ◦ π̃η′→η = (divµη X fη
)
◦ πη′→η . (6.4.3)

Now, let ψ ∈ Φ−1
η′→η 〈Hη′→η ⊗Dη〉 (where Dη is the domain of f̂ µηη and the ⊗ is to be understoodas a tensor product of vector spaces, that is without any completion in contrast to a tensor productof Hilbert spaces). Then, we have:

∀(y, x) ∈ Cη′→η × Cη,
(idHη′→η ⊗ f̂

µη
η

)
◦ Φη′→η(ψ)(y, x) =

= ψ ◦φ−1
η′→η(y, x) fη(x, 0)+i [∂xψ ◦ φ−1

η′→η
](y,x) (X fη,x

)+ i2 ψ ◦φ−1
η′→η(y, x) (divµη X fη

) (x)
= ψ ◦ φ−1

η′→η(y, x) fη ◦ π̃η′→η(φ−1
η′→η(y, x), 0) + i [dψ]φ−1

η′→η(y,x)
(
X fη ◦ π̃η′→η,φ−1

η′→η(y,x)
) +

+ i2 ψ ◦ φ−1
η′→η(y, x) (divµη′ X fη ◦ π̃η′→η

)
◦ φ−1

η′→η(y, x) (using eqs. (6.4.2) and (6.4.3) )
= (Φη′→η ◦ ̂fη ◦ π̃η′→η

µη′) (ψ)(y, x) .
Therefore, ∀fη, fη′ ∈ f ∈ O

×,Pos(L,C,φ), f̂ µηη ∼ f̂ µη′η′ . �

We close this subsection with an application of theorem 5.9: under the additional hypothesis that
the measures are normalized to unity, we can construct an inductive limit of Hilbert spaces from
the Hη, whose space of states is naturally embedded in the one of the projective structure developed
above. As long as all Cη have finite volume (hence in particular if they are compact), it is always
possible to consistently normalize the measures to unity. Note however that, depending on the
projective structure under consideration, it may not be possible to equip all Cη with normalizable
measures fulfilling the factorization requirement def. 6.1.3 (see eg. the models considered in [65, 66] ,
in particular the discussion in [65, section 1.1] ).

As realized recently by Bianca Dittrich and Marc Geiller [23, section V.D], the natural classical
precursor of an inductive limit of Hilbert spaces is a hybrid projective/injective limit of phase spaces,
where the space attached to a coarser label η is obtained from the one attached to a finer label η′

via symplectic reduction (aka. imposing constraints, see see [105, section 1.7] or def. A.1). Calling
Mη′←η the constraint surface (with respect to which this symplectic reduction takes place), we have a
projection from Mη′←η into Mη (to quotient out the gauge orbits), while Mη′←η is naturally embedded
in Mη′ (as a submanifold), hence the hybrid character of the construction. At the quantum level, the
identification of Hη with the subspace Vect(ζη′→η)⊗Hη of Hη′→η⊗Hη ≈ Hη′ (theorem 5.9) can then
be seen as reflecting the imposition of these constraints. In the special case we are considering here,
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ζη′→η will be the uniform wave-function in Hη′→η ≈ L2(Cη′→η, dµη′→η) : the corresponding constraints
set all impulsion variables in Mη′→η to zero, thus making the configuration variables in Cη′→η pure
gauge. The inductive limit of Hilbert spaces therefore corresponds in this case to a projective limit
of configuration spaces (as expressed by the formula for τη′←η in Prop. 6.5 below, η is extracted
from η′ through the projection on the second Cartesian factor in Cη′ ≈ Cη′→η × Cη ). As we will see
in subsection 12.2, this result allows to make contact with the Ashtekar-Lewandowski Hilbert space
of LQG [19, 8] , which is indeed known to arise from of a projective limit of configuration spaces
[60, 92].

Proposition 6.5 We consider the same objects as in prop. 6.3, and we now additionally assume:
∀η ∈ L, µη(Cη) = 1.

Then, we can also construct an Hilbert space H⊕ as (the completion of) the inductive limit of(
L,
(
Hη
)
η∈L ,

(
τη′←η

)
η4η′

), where the injective maps τη′←η are defined as:
∀η 4 η′ ∈ L, τη′←η :Hη→Hη′

ψ 7→ψ ◦ sη′→η ◦ φη′→η
, with sη′→η :Cη′→η × Cη→Cη(x, y) 7→ y .

There exist maps σ : S⊕ → S
⊗(L,H,Φ) and α : A⊗(L,H,Φ) → A⊕ (S⊕ being the space of (self-adjoint)positive semi-definite, traceclass operators over H⊕ and A⊕ the algebra of bounded operators on

H⊕) such that:
1. ∀ρ ∈ S⊕, ∀A ∈ A

⊗(L,H,Φ), TrH⊕ (ρ α(A)) = Tr (σ (ρ)A);
2. σ is injective;
3. σ 〈S⊕〉 = {(ρη)η∈L

∣∣∣∣∣ sup
η∈L

inf
η′<η

∫
Cη′→η×Cη′→η
dxdx ′

∫
Cη

dy ρη′
(
φ−1
η′→η(x, y);φ−1

η′→η(x ′, y)) = Tr ρ = 1}
where S⊕ is the space of density matrices over H⊕ and ρη ( · ; · ) is the integral kernel of ρη.

Proof This is an application of theorem 5.9, where for η 4 η′ ∈ L, we define:
ζη′→η ≡ 1 ∈ Hη′→η .We have ∀η 4 η′, ‖ζη′→η‖ = 1, since µη′→η(Cη′→η) = µη′(Cη′) / µη(Cη) = 1, and ∀η 4 η′ 4

η′′, Φη′′→η′→η(ζη′′→η′) ≡ 1 ≡ ζη′′→η′ ⊗ ζη′→η . �

Finally, note that, as far as the construction of the quantum projective state space and observables
thereof is concerned, we can actually dispense from having a factorizing system of measures.
Indeed, if we just have families

(
µη
)
η∈L and

(
µη′→η

)
η4η′ of smooth measures, which do not satisfy

the compatibility conditions from def. 6.1.3, we can rely on the canonical identification introduced
in prop. B.15 to relate the position representation built on the measure µη′ with the one built on

the measure φ−1
η′→η,∗(µη′→η × µη). Provided this conversion is incorporated in the definition of the

quantum projective structure, one can check that the three-spaces consistency condition still holds.
In contrast, the consistency of the measures is essential for the inductive construction of prop. 6.5,
where it ensures the necessary compatibility of the reference states ζη′→η .
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6.2 Holomorphic representation

We now turn to the holomorphic representation. In order to get the scalar product right, we
cannot spare, when doing holomorphic quantization, a formulation using a prequantum bundle Bη

(see [105, section 8] and appendix B, def. B.2) constructed over Mη (this differs from the previous
subsection, for when dealing with configuration representation, the relevant part of the bundle
structure is flat and, as a result, the prequantum bundle only needs to be taken into account
if a unified context for describing various representations is demanded). Therefore, we begin by
examining how to arrange prequantum bundles built on the Mη into a form of factorizing structure
suitable for quantization. More precisely, we are looking for a way to connect the Bη bundles that
will provide the required tensor product factorizations of the corresponding L2-spaces of bundle
cross-sections (the prequantum Hilbert spaces, see [105, section 8] and def. B.3).

To address this question, we go back to the basics underlying the tensor product decomposition of
the L2-space of complex-valued functions over a Cartesian product N×N′: there, the tensor product
of a function on N with a function on N′ is obtained as their pointwise product. Accordingly, what
we need in the hermitian line bundle case is an operation to make the ‘product’ of a point in the
bundle above N with a point in the one above N′, and we want this operation to be valued in the
bundle we happen to have above N ×N′.

Definition 6.6 Let M, N′ and N be three smooth, finite dimensional, manifolds, and let φ : M →
N′×N be a diffeomorphism. Let BM, BN′ and BN be hermitian line bundles (def. B.1), respectivelywith base M, N′ and N. We call a smooth map ζ : BN′ × BN → BM a factorization of BMcompatible with φ iff:1. φ ◦ πBM

◦ ζ = πBN′ × πBN
, where πBM

, πBN′ and πBN
are the bundles projections of BM,

BN′ and BN respectively;
2. ∀z′ ∈ BN′, ∀z ∈ BN, |ζ(z′, z)| = |z′| |z| ;
3. ∀z′ ∈ BN′, ∀z ∈ BN, ∀λ′, λ ∈ C, ζ(λ′z′, λz) = λ′λ ζ(z′, z) .

Proposition 6.7 We consider the same objects as in def. 6.6. Moreover, we assume that N′ and
N are equipped with smooth measures µN′ and µN, and we equip M with the smooth measure
µM := φ−1

∗ (µN′ × µN). Then, there exists a unique Hilbert space isomorphism:Φζ : L2 (M→ BM, dµM)→ L2 (N′ → BN′, dµN′
)
⊗ L2 (N→ BN, dµN) ,such that:

∀s′ ∈ L2 (N′ → BN′, dµN′
)
, ∀s ∈ L2 (N→ BN, dµN) , Φζ

(
ζ̃(s′, s)) = s′ ⊗ s ,

where ∀x ′, x ∈ N′ ×N, ζ̃(s′, s) ◦ φ−1(x ′, x) := ζ
(
s′(x ′), s(x)).

Proof We define HM := L2 (M→ BM, dµM), and similarly HN′ and HN.We first want to prove that Vect {ζ̃(s′, s) ∣∣∣ s′ ∈ HN′ & s ∈ HN

} is dense in HM. It is well-
defined as a vector subspace of HM for ∀s′ ∈ HM, ∀s ∈ HN, ζ̃(s′, s) is a cross-section of
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BM (from def. 6.6.1) and ∥∥∥ζ̃(s′, s)∥∥∥
M

= ‖s′‖N′ ‖s‖N (from def. 6.6.2 and Fubini’s theorem), hence
ζ̃(s′, s) ∈ HM.The cross-sections with compact support are dense in HM, and, by partition of the unity, theyare linear combinations of cross-sections with compact support of the form W := φ−1 〈V ′ × V〉,where V ′ is a trivialization patch for BN′ and V a trivialization patch for BN. Given a non-zerocross-section s, resp. s′, of BN′|V ′ , resp. BN|V , we define a non-zero cross-section s′′ of BM|W by:
∀x ′, x ∈ V ′ × V , s′′ ◦ φ(x ′, x) := ζ

(
s′(x ′), s(x)) .Thus, using the trivialization defined by s′, resp. s, s′′, to identify the vector subspace of HN′ ,resp. HN, HM, of cross-sections with compact support in V ′, resp. V , W , with L2 (V ′, dµN′|V ′),resp. L2 (V , dµN|V ), L2 (W, dµN|W

), the restriction ζ̃W of ζ̃ to these vector subspaces is given by:
ζ̃W (f ′ s′, f s) = (f ′ ⊗ f) ◦ (φ|W→V ′×V ) s′′ (from def. 6.6.3).

Hence, its image is dense in L2 (W, dµN|W
) = L2 (V ′, dµN′|V ′)⊗ L2 (W, dµN|W

) (which equalityfollows from def. 6.6.2 and Fubini’s theorem).Now, the application:
ζ̃ : HN′ ×HN → HM(s′, s) 7→ ζ̃(s′, s)is a bilinear map (from def. 6.6.3) and satisfies (from def. 6.6.2 and Fubini’s theorem):
∀s′, t′ ∈ HN′, ∀s, t ∈ HN,

〈
ζ̃(s′, s), ζ̃(t′, t)〉

M
= 〈s′, t′〉N′ 〈s, t〉N .

Hence, there exists a unique Hilbert space isomorphism Φ−1
ζ : HN′ ⊗ HN → Vect Imζ̃ = HM,such that ∀s′ ∈ HN′, ∀s ∈ HN, Φ−1

ζ (s′ ⊗ s) = ζ̃(s′, s). �

With this, we can now present the announced factorizing structure for prequantum bundles. As
usual, we need to require an appropriate ‘three-spaces consistency’ that will support the correspond-
ing consistency of the projective limits we are ultimately interested in (fig. 6.1 looks slightly different
from what we had for factorizing system of phase spaces in fig. 2.2, because we are forced to define
the maps ζ in the direction opposite to our standard convention for factorizing maps). Note that
we also have a compatibility condition involving the connection of the prequantum bundles, that
will come into play when (pre-)quantizing observables and expressing the holomorphic condition.

Definition 6.8 Let (L, M, φ)× be a factorizing system of finite dimensional phase spaces (def. 2.12).A factorizing system of prequantum bundles for (L, M, φ)× is a quadruple:((
Bη,∇η

)
η∈L ,

(
Bη′→η,∇η′→η

)
η4η′ ,

(
ζη′→η

)
η4η′ ,

(
ζη′′→η′→η

)
η4η′4η′′

)
such that:1. ∀η ∈ L, (Bη, ∇η

) is a prequantum bundle for Mη (def. B.2);
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Bη′′

Bη′′→η′× Bη′

Bη′′→η′× Bη′→η × Bη Bη′′→η× Bη

ζη′′→η′

ζη′′→η

ζη′→η

ζη′′→η′→η

Figure 6.1 – Three-spaces consistency for factorizing systems of prequantum bundles

2. ∀η 4 η′ ∈ L, (Bη′→η, ∇η′→η
) is a prequantum bundle for Mη′→η (except for the case η = η′:

Mη→η has only one element and Bη→η = C);
3. ∀η 4 η′ ∈ L, ζη′→η : Bη′→η ×Bη → Bη′ is a factorization of Bη′ compatible with φη′→η : Mη′ →

Mη′→η ×Mη ;
4. ∀η 4 η′ ∈ L, ∀y ∈ Bη′→η, ∀z ∈ Bη,[

Ty,z ζη′→η
] 〈Hory(Bη′→η, ∇η′→η)× Horz(Bη, ∇η)〉 = Horζη′→η(y,z)(Bη′, ∇η′) , (6.8.1)

where Horz(Bη, ∇η) is defined as the ∇η-horizontal subspace of Tz(Bη) for z ∈ Bη, andHory(Bη′→η, ∇η′→η) is defined similarly for y ∈ Bη′→η;5. ∀η 4 η′ 4 η′′ ∈ L, ζη′′→η′→η : Bη′′→η′ ×Bη′→η → Bη′′→η is a smooth map such that:
ζη′′→η ◦ (ζη′′→η′→η × idBη) = ζη′′→η′ ◦ (idBη′′→η′ × ζη′→η) . (6.8.2)

Def. 6.8 seems to require a lot, so it is reassuring that, at least in the topologically trivial case,
we can construct such a structure for any factorizing system of phase spaces satisfying nothing
but the quantization rule [105, section 8.3], which is anyhow mandatory to ensure the existence of
prequantum bundles for the Mη.

Theorem 6.9 Let (L,M, φ)× be a factorizing system of finite dimensional phase spaces such that:1. ∀η ∈ L, Mη is simply-connected;
2. ∀η ∈ L, ∀S a closed oriented 2-surface in Mη, ∫

S
Ωη ∈ 2πZ, where Ωη is the symplecticstructure of Mη.Then there exists a factorizing system of prequantum bundles for (L,M, φ)×.
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Proof For η 4 η′ ∈ L, we have that Mη′→η is simply-connected, otherwise Mη′ ≈ Mη′→η ×Mηwould not be simply-connected.Besides, for any oriented 2-surface Sη′ in Mη′ , we have:∫
Sη′

Ωη′ = ∫
φη′→η ◦Sη′

φ−1,∗
η′→η Ωη′

= ∫
φη′→η ◦Sη′

Ωη′→η × Ωη = ∫
Sη′→η

Ωη′→η + ∫
Sη

Ωη , (6.9.1)
where Sη′→η, resp. Sη, is the projection on Mη′→η, resp. Mη, of φη′→η ◦ Sη′ (which is an oriented2-surface in Mη′→η ×Mη). In particular, if Sη′→η is a closed oriented 2-surface in Mη′→η, applyingeq. (6.9.1) to Sη′ := φ−1

η′→η ◦
(
Sη′→η × {xη}

), where xη is any point in Mη, gives:∫
Sη′→η

Ωη′→η = ∫
Sη′

Ωη′ ∈ 2πZ .
Let (xoη)η∈L ∈ S×(L,M,φ) and let η ∈ L. The construction in [105, section 8.3] tells us that, thanksto the conditions 6.9.1 and 6.9.2, we can construct a prequantum bundle (Bη, ∇η

) for Mη in such away that Bη can be identified with the equivalence classes in:{(
xη, zη, γη

) ∣∣ xη ∈Mη, zη ∈ C, γη is a piecewise smooth path from xoη to xη} ,for the equivalence relation:
((
xη, zη, γη

)
'
(
x ′η, z′η, γ′η

) )
⇔

xη = x ′η
z′η = zη exp (−i ∫Ση(γη,γ′η) Ωη

) ,
where Ση(γη, γ′η) is any oriented 2-surface in Mη such that ∂Ση(γη, γ′η) = γ′η

−1 . γη . Moreover, the
∇η-parallel transport along some path γ′η in Mη is then given by:

P∇ηγ′η

([
γ′η(0), zη, γη]' ) = [γ′η(1), zη, γ′η . γη]' .

Since we proved above that, for all η 4 η′, Mη′→η also fulfills these conditions, we can makethe same construction to obtain a prequantum bundle (Bη′→η, ∇η′→η
), using as origin the point

xoη′→η ∈Mη′→η , defined by φη′→η(xoη′) = (xoη′→η, xoη ) .Now, for η 4 η′ ∈ L, we define ζη′→η : Bη′→η ×Bη → Bη′ by:
ζη′→η

([xη′→η, zη′→η, γη′→η]' , [xη, zη, γη]' ) := [φ−1
η′→η(xη′→η, xη), zη′→η zη, φ−1

η′→η(γη′→η, γη)]' .This is a well-defined map, for we have, using eq. (6.9.1):
exp(−i ∫Ση′(φ−1

η′→η(γη′→η, γη), φ−1
η′→η(γ′η′→η, γ′η))Ωη′

) =
= exp(−i ∫Ση′→η(γη′→η, γ′η′→η)Ωη′→η

) exp(−i ∫Ση(γη, γ′η) Ωη

) .
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Moreover, we can check that it fulfills defs. 6.6.1 to 6.6.3.Let xη′ ∈ Mη′ and (xη′→η, xη) = φη′→η(xη′). Let γη and γη′→η be piecewise smooth paths from
xoη to xη, and xoη′→η to xη′→η, respectively. We can choose local coordinates around xη′→η in Mη′→ηand around xη in Mη. Hence, we have diffeomorphisms ψη′→η : [−1, 1]dη′→η → Uη′→η, resp. ψη :[−1, 1]dη → Uη, where dη′→η := dimMη′→η, resp. dη := dimMη, and Uη′→η, resp. Uη, is an openneighborhood of xη′→η in Mη′→η, resp. of xη in Mη. This provides us local trivializations of thebundles Bη′ , Bη′→η and Bη, by:
∀rη′→η ∈ [−1, 1]dη′→η , ∀zη′→η ∈ C,

Ψη′→η(rη′→η, zη′→η) = [ψη′→η(rη′→η), zη′→η, χrη′→η . γη′→η]' ,
∀rη ∈ [−1, 1]dη , ∀zη ∈ C,

Ψη(rη, zη) = [ψη(rη), zη, χrη . γη]' ,
∀rη′→η, rη ∈ [−1, 1]dη′→η × [−1, 1]dη , ∀zη′ ∈ C,

Ψη′(rη′→η, rη, zη′) = [φ−1
η′→η

(
ψη′→η(rη′→η), ψη(rη)) , zη′, φ−1

η′→η

(
χrη′→η . γη′→η, χrη . γη

)]
'

,
where χrη′→η : τ 7→ ψη′→η(τ rη′→η) and χrη : τ 7→ ψη(τ rη) .And we have:
∀rη′→η, rη ∈ [−1, 1]dη′→η × [−1, 1]dη , ∀zη′→η, zη ∈ C,

Ψ−1
η′ ◦ ζ

(Ψη′→η(rη′→η, zη′→η), Ψη(rη, zη)) = (rη′→η, rη, zη′→η zη) ,Therefore, ζη′→η is smooth.Then, for γ′η′→η a path in Mη′→η, and γ′η a path in Mη, we have:
P∇η′φ−1

η′→η(γ′η′→η, γ′η) ◦ ζη′→η
([
γ′η′→η(0), zη′→η, γη′→η]' , [γ′η(0), zη, γη]' ) =

= [φ−1
η′→η

(
γ′η′→η(1), γ′η(1)) , zη′→η zη, φ−1

η′→η
(
γ′η′→η . γη′→η, γ′η . γη

)]
'

= ζη′→η
(
P∇η′→ηγ′η′→η

([
γ′η′→η(0), zη′→η, γη′→η]') , P∇ηγ′η

([
γ′η(0), zη, γη]')) ,

hence P∇η′φ−1
η′→η(γ′η′→η, γ′η) ◦ ζη′→η = ζη′→η ◦

(
P∇η′→ηγ′η′→η

, P∇ηγ′η

) . Therefore, eq. (6.8.1) is fulfilled.
Lastly, for η 4 η′ 4 η′′ ∈ L, we can in a similar way define a map ζη′′→η′→η : Bη′′→η′ ×Bη′→η andwe have:
ζη′′→η ◦ (ζη′′→η′→η × idBη) ([xη′′→η′, zη′′→η′, γη′′→η′ ]' , [xη′→η, zη′→η, γη′→η]' , [xη, zη, γη]' ) =

= [φ−1
η′′→η

(
φ−1
η′′→η′→η(xη′′→η′, xη′→η), xη) , zη′′→η′ zη′→η zη, φ−1

η′′→η
(
φ−1
η′′→η′→η(γη′′→η′ , γη′→η), γη)]'

= [
φ−1
η′′→η′

(
xη′′→η′, φ−1

η′→η(xη′→η, xη)) , zη′′→η′ zη′→η zη, φ−1
η′′→η′

(
γη′′→η′, φ−1

η′→η(γη′→η, γη))]'
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(using eq. (2.11.1) )
= ζη′′→η′ ◦

(idBη′′→η′ × ζη′→η
) ([xη′′→η′, zη′′→η′, γη′′→η′ ]' , [xη′→η, zη′→η, γη′→η]' , [xη, zη, γη]' ) ,

therefore eq. (6.8.2) holds. �

The last ingredient we need in order to perform prequantization are measures on the Mη and
Mη′→η, and they should be compatible, like we asked when setting up the configuration repre-
sentation. But this is in fact something we can get automatically and in a very straightforward
way from the structure (L,M, φ)×, since a symplectic form gives us a natural volume form and
the compatibility of the symplectic forms is enough to ensure the compatibility of their associated
volume form.

Proposition 6.10 Let (L,M, φ)× be a factorizing system of finite dimensional phase spaces. Wedefine:
1. for η ∈ L, the volume form ωη := 1(dη/2)! Ωη ∧ . . . ∧ Ωη = 1(dη/2)! Ω∧dη/2η on Mη (where dη =

dimMη) and the corresponding smooth measure µη on Mη ;
2. for η ≺ η′ ∈ L, the volume form ωη′→η := 1(dη′→η/2)! Ωη′→η ∧ . . . ∧ Ωη′→η = 1(dη′→η/2)! Ω∧dη′→η/2η′→ηon Mη′→η (where dη′→η = dimMη′→η) and the corresponding smooth measure µη′→η on Mη′→η .Then, this equips (L,M, φ)× with a structure of factorizing system of measured manifolds (def. 6.1).

Proof That ωη, resp. ωη′→η, is a nowhere-vanishing top-dimensional form on Mη, resp. Mη′→η, canbe checked in local Darboux coordinates.What is left to prove is the compatibility of these definitions of the volume forms with the maps
φη′→η and φη′′→η′→η (def. 6.1.3). For η ≺ η′, we have:

φ−1,∗
η′→η ωη′ = 1(dη′/2)! (φ−1,∗

η′→η Ωη′
)∧dη′ /2

= 1(dη′/2)! (Ωη′→η × Ωη
)∧dη′ /2 (since φη′→η is a symplectomorphism)

= 1(dη′→η/2)! (dη/2)! (Ωη′→η
)∧dη′→η/2 ∧ (Ωη

)∧dη/2
= ωη′→η ∧ ωη ,

hence φη′→η,∗ µη′ = µη′→η × µη , and similarly, for η ≺ η′ ≺ η′′:
φη′′→η′→η,∗ µη′′→η = µη′′→η′ × µη′→η .

�

On the grounds of the preliminaries developed so far, the prequantization of a factorizing system
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of prequantum bundles is actually very similar to what we did for the position quantization, and,
again, the link connecting the classical structure and the (pre-)quantum one is demonstrated by
exposing the correspondence between observables.

Proposition 6.11 Let (L,M, φ)× be a factorizing system of finite dimensional phase spaces,equipped with a structure of factorizing system of measured manifolds according to prop. 6.10, andlet ((Bη, ∇η
)
η∈L ,

(
Bη′→η, ∇η′→η

)
η4η′ ,

(
ζη′→η

)
η4η′ ,

(
ζη′′→η′→η

)
η4η′4η′′

) be a factorizing system ofprequantum bundles for (L, M, φ)×.We define:1. for η ∈ L, HpreQ
η := L2(Mη → Bη, dµη);

2. for η ≺ η′ ∈ L, HpreQ
η′→η := L2(Mη′→η → Bη′→η, dµη′→η), and ΦpreQ

η′→η := Φζη′→η : HpreQ
η′ → H

preQ
η′→η ⊗

HpreQ
η .

Then, we can complete these elements into a projective system of quantum state spaces (L,HpreQ,ΦpreQ)⊗.
Proof The proof works like the one for prop. 6.3, using prop. 6.7 and:
∀η ≺ η′ ≺ η′′, ∀s′′ ∈ H

preQ
η′′→η′, ∀s′ ∈ H

preQ
η′→η, ∀s ∈ HpreQ

η ,

Φ−1
ζη′′→η′ ◦

(id
H

preQ
η′′→η′
⊗ Φ−1

ζη′→η

) (s′′ ⊗ s′ ⊗ s) = ζ̃η′′→η′
(
s′′, ζ̃η′→η(s′, s))

= ζ̃η′′→η
(
ζ̃η′′→η′→η(s′′, s′), s) (from eq. (6.8.2) and eq. (2.11.1) )

= Φ−1
ζη′′→η ◦

(Φ−1
ζη′′→η′→η ⊗ id

H
preQ
η

) (
s′′ ⊗ s′ ⊗ s

) .
�

Proposition 6.12 We consider the same objects as in prop. 6.11. Let fη ∈ C∞(Mη , R) such that
Xfη is a complete vector field on Mη . Let fη′ ∈ C∞(Mη′, R), such that fη ∼ fη′ (the equivalencerelation is defined in eq. (2.4.1), where we use πη′→η from eq. (2.13.1) ). Then, Xfη′ is a completevector field on Mη′ . Defining the prequantization f̂η of fη , resp. f̂η′ of fη′ , as a densely defined,essentially self-adjoint, operator on HpreQ

η , resp. HpreQ
η′ (def. B.3 and prop. B.4), we moreover have

f̂η ∼ f̂η′ (with the equivalence relation defined in eq. (5.3.2) ).Hence, defining:
O
×,preQ(L,M,φ) := {f ∈ O×(L,M,φ) ∣∣ ∃ fη ∈ f

/
Xfη is complete }

(where O×(L,M,φ) has been introduced in prop. 2.13), we can map a classical observable f = [fη]∼ ∈
O
×,preQ(L,M,φ) to a prequantum observable f̂ := [f̂η]

∼
∈ O⊗(L,HpreQ,ΦpreQ) (prop. 5.5).

Proof Let fη ∈ C∞(Mη , R) and let η′ < η. Using the definition of πη′→η in terms of the symplec-tomorphism φη′→η , we have Xfη◦πη′→η = Tφ−1
η′→η

(0, Xfη) . Hence, Xfη is a complete vector field iff
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Xfη ◦ πη′→η is.
Now, let s′ ∈ ΦpreQ,−1

η′→η

〈
H

preQ
η′→η ⊗DpreQ

η

〉 (where DpreQ
η ⊂ HpreQ

η is the dense domain of f̂η and the ⊗is to be understood as a tensor product of vector spaces). We define:
ΦpreQ
η′→η(s′) =: ∑

α
tα ⊗ sα , with ∀α, sα ∈ DpreQ

η .
Then, we have:
∀(y, x) ∈Mη′→η ×Mη,

[ΦpreQ,−1
η′→η ◦

(id
H

preQ
η′→η
⊗ f̂η

)
◦ ΦpreQ

η′→η(s′)] ◦ φ−1
η′→η(y, x) =

=∑
α
ζη′→η

[
tα(y), (fη(x) sα(x) + i∇η, Xfη s

α(x))]
=∑

α
fη ◦ πη′→η ◦ φ−1

η′→η(y, x) [ζ̃η′→η (tα , sα)] ◦ φ−1
η′→η(y, x) +

+i∑
α

[
∇η′, Tφ−1

η′→η(0,Xfη ) ζ̃η′→η (tα , sα)] ◦ φ−1
η′→η(y, x) (using eq. (6.8.1) and def. 6.6.3 )

= [(fη ◦ πη′→η) s′ + i∇η′, Xfη ◦ πη′→η
s′
]
◦ φ−1

η′→η(y, x)
= [ ̂fη ◦ πη′→η (s′)] ◦ φ−1

η′→η(y, x) .
Therefore, we have ∀fη ∈ C∞(Mη , R), ∀η′ < η, f̂η ∼ ̂fη ◦ πη′→η.Hence, for any η, η′ ∈ L and any fη ∈ C∞(Mη , R), fη′ ∈ C∞(Mη′, R) such that fη ∼ fη′ , Xfη iscomplete iff Xfη′ is, and we have f̂η ∼ f̂η′ . �

Finally, we obtain the advertised holomorphic representation for a choice of Kähler structure on
the symplectic manifolds Mη. Requiring the factorizing maps to be holomorphic is enough to ensure
that the holomorphic subspaces of the prequantum Hilbert spaces Hη set up above will correctly
decompose over the already arranged tensor product factorizations, as can be shown by proving the
corresponding factorizing properties of the orthogonal projections on these (closed) vector subspaces.

Definition 6.13 A factorizing system of Kähler manifolds is a factorizing system of phase spaces(L,M, φ)× (def. 2.12) such that:
1. for all η ∈ L, Mη is equipped with a complex structure Jη such that (Mη, Ωη, Jη

) is a Kählermanifold (def. B.5);
2. for all η ≺ η′ ∈ L, Mη′→η is equipped with a complex structure Jη′→η such that (Mη′→η, Ωη′→η, Jη′→η

)
is a Kähler manifold;

3. for all η ≺ η′ ∈ L, φη′→η is holomorphic, and for all η ≺ η′ ≺ η′′ ∈ L, φη′′→η′→η is holomorphic.
Proposition 6.14 We consider the same objects as in prop. 6.11, but we now moreover assume that
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(L,M, φ)× is a factorizing system of Kähler manifolds. We define:
1. for η ∈ L, HHolo

η := HpreQ
η ∩ Holo (Mη → Bη

) (prop. B.6);
2. for η ≺ η′ ∈ L, HHolo

η′→η := H
preQ
η′→η ∩ Holo (Mη′→η → Bη′→η

) and for η ∈ L, HHolo
η→η := HpreQ

η→η = C .
Then, for all η 4 η′, ΦpreQ

η′→η
〈
HHolo

η′
〉 = HHolo

η′→η ⊗HHolo
η and for all η 4 η′ 4 η′′, ΦpreQ

η′′→η′→η
〈
HHolo

η′′→η
〉 =

HHolo
η′′→η′ ⊗HHolo

η′→η . Hence, defining:
3. for η 4 η′ ∈ L, ΦHolo

η′→η := ΦpreQ
η′→η

∣∣∣
HHolo
η′ →HHolo

η′→η⊗H
Holo
η

;
4. and for η 4 η′ 4 η′′ ∈ L, ΦHolo

η′′→η′→η := ΦpreQ
η′′→η′→η

∣∣∣
HHolo
η′′→η→HHolo

η′′→η′⊗H
Holo
η′→η

;
(L,HHolo,ΦHolo)⊗ is a projective system of quantum state spaces.
Proof First, for every η ∈ L, we can define a complex structure on Bη in the following way: for
z ∈ Bη, with x = πBη(z), we have Tz (Bη

) = Horz (Bη, ∇η
)
⊕ Tz

(
π−1

Bη
(z)), where Horz (Bη, ∇η

)
can be identified Tx(Mη), and thus equipped with the lift of the complex structure Jη,x , while on
Tz
(
π−1

Bη
(z)), the multiplication by i provide a natural complex structure. With this, a cross-sectionof Bη is holomorphic if and only if it is holomorphic as a map Mη → Bη.Similarly, for every η 4 η′ ∈ L, we have a complex structure on Bη′→η. Eq. (6.8.1), togetherwith defs. 6.6.1, 6.6.3 and the holomorphicity of φη′→η, ensures that ζη′→η is holomorphic as a map

Bη′→η ×Bη → Bη′ .For η ∈ L, ΦpreQ
η→η is a trivial identification, hence the desired result holds. Thus, we consider

η ≺ η′ ∈ L. We first want to prove that ΦpreQ
η′→η ◦ ΠHolo

η′ ◦ ΦpreQ,−1
η′→η = ΠHolo

η′→η ⊗ ΠHolo
η , where ΠHolo

η′ :
H

preQ
η′ → HHolo

η′ is the orthogonal projection on the closed vector subspace HHolo
η′ in H

preQ
η′ , and ΠHolo

η ,ΠHolo
η′→η are defined analogously.Let t ∈ H

preQ
η′→η, s ∈ HpreQ

η and define t = ΠHolo
η′→η t and s = ΠHolo

η s. By definition of ΦpreQ
η′→η, we have:

∀y, x ∈Mη′→η ×Mη, ΦpreQ,−1
η′→η

(
t ⊗ s

)
◦ φ−1

η′→η(y, x) = ζη′→η(t(y), s(x)) .
But, as a composition of holomorphic maps, (y, x) 7→ ζη′→η(t(y), s(x)) is holomorphic. Hence, φη′→ηbeing holomorphic, ΦpreQ,−1

η′→η
(
t ⊗ s

)
∈ HHolo

η′ .Let s′ ∈ HHolo
η′ . Using the volume-preserving property of φη′→η, we compute:〈

s′, ΠHolo
η′ ◦ ΦpreQ,−1

η′→η (t ⊗ s)〉
Hη′

= 〈s′, ζ̃η′→η(t, s)〉
Hη′

= ∫
Mη′→η

dµη′→η(y) ∫
Mη

dµη(x) 〈s′ ◦ φ−1
η′→η(y, x), ζη′→η(t(y), s(x))〉Bη′

.
For y, x ∈Mη′→η ×Mη we define uy(x) ∈ Bx

η such that:
∀u′ ∈ Bx

η,
〈
s′ ◦ φ−1

η′→η(y, x), ζη′→η(t(y), u′)〉Bη′
= 〈uy(x), u′〉Bη

,
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uy(x) is well-defined, since the left-hand side is a C-linear function of u′ (from def. 6.6.3).Since s′ ∈ HHolo
η′ , the map x 7→ s′ ◦ φ−1

η′→η(y, x) is holomorphic, and for any (local) anti-holomorphiccross-section u′ of Bη, the map:
x 7→

〈
ζη′→η(t(y), u′), s′ ◦ φ−1

η′→η(y, x)〉Bη′
,

is holomorphic (for the connection is a U(1)-connection, so the parallel transport preserve the scalarproduct). Therefore, the cross-section uy is holomorphic. Moreover, using def. 6.6.2:
∀x ∈Mη, |uy(x)| 6 ∣∣s′ ◦ φ−1

η′→η(y, x)∣∣ |t(y)| ,
thus, by Fubini theorem, for almost every y in (Mη′→η, dµη′→η

), uy ∈ HHolo
η .Hence, for almost every y ∈Mη′→η:∫

Mη

dµη(x) 〈s′ ◦ φ−1
η′→η(y, x), ζη′→η(t(y), s(x))〉Bη′

= ∫
Mη

dµη(x) 〈uy(x), s(x)〉Bη

= 〈uy, s〉Hη
= 〈uy, ΠHolo

η s
〉
Hη

= ∫
Mη

dµη(x) 〈s′ ◦ φ−1
η′→η(y, x), ζη′→η(t(y), s(x))〉Bη′

.
And we can prove in a similar way that, for almost every x ∈Mη′→η:∫

Mη′→η

dµη′→η(y) 〈s′ ◦ φ−1
η′→η(y, x), ζη′→η(t(y), s(x))〉Bη′

=
= ∫

Mη′→η

dµη′→η(y) 〈s′ ◦ φ−1
η′→η(y, x), ζη′→η(t(y), s(x))〉Bη′

.
Therefore, we arrive at:〈

s′, ΠHolo
η′ ◦ ΦpreQ,−1

η′→η (t ⊗ s)〉
Hη′

= 〈s′, ΦpreQ,−1
η′→η (t ⊗ s)〉

Hη′
.

Since this holds for all s′ ∈ HHolo
η′ and we have already proved that ΦpreQ,−1

η′→η
(
t ⊗ s

)
∈ HHolo

η′ , we have:
ΠHolo
η′ ◦ ΦpreQ,−1

η′→η (t ⊗ s) = ΦpreQ,−1
η′→η (t ⊗ s) ,which gives us the announced result:

ΦpreQ
η′→η ◦ ΠHolo

η′ ◦ ΦpreQ,−1
η′→η = ΠHolo

η′→η ⊗ ΠHolo
η .

Hence, ΦpreQ
η′→η

〈
HHolo

η′
〉 = ΦpreQ

η′→η ◦ΠHolo
η′ ◦ΦpreQ,−1

η′→η

〈
H

preQ
η′→η ⊗HpreQ

η

〉 = ΠHolo
η′→η⊗ΠHolo

η

〈
H

preQ
η′→η ⊗HpreQ

η

〉 =
HHolo

η′→η ⊗HHolo
η . And the relation involving ΦpreQ

η′′→η′→η can be proved in a similar way. �

Note that in an holomorphic representation, the evaluation of the holomorphic wave-function at
a given point in phase space is a bounded linear form (via an argument similar to the proof of
prop. B.6), hence is dual to a vector in the Hilbert space: this defines the coherent state centered
around this classical point. Now, if we choose an element in the projective family of symplectic
manifolds we started from, ie. a projective family of points

(
xη
)
η∈L , we can form a projective family
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of quantum states, by considering, in each HHolo
η , the coherent state centered around xη . This family

of states will moreover be of the form considered in theorem 5.9, so we can apply this result to get
a corresponding inductive limit Hilbert space and characterize its range in the quantum projective
state space (for example, the Fock representation we will consider in prop. 16.17 can be obtained in
this manner).

Here, the classical precursor for this inductive limit of Hilbert spaces (in the spirit of the the
discussion preceding prop. 6.5) is an inductive limit of phase spaces: the restriction to the subspaceVect(ζη′→η)⊗Hη of Hη′→η⊗Hη ≈ Hη′ can be seen as the quantum implementation of the second class
constraints selecting

{
xη′→η

}
×Mη in Mη′→η ⊗Mη ≈Mη′ (with xη′→η defined through (xη′→η , xη) :=

φη′→η(xη′ ) ).

7. Discussion: toward a systematic quantization framework

While the quantization schemes laid out in section 6 cover the most common use cases and,
indeed, will be sufficient for the rest of the present work, it appears likely that they could be further
developed. The goal would be to have general quantization prescriptions, building upon geometric
quantization [105], to quantize any projective system of classical phase spaces, as soon as we give
us a consistent family of polarizations thereon.

In particular, it should be possible to relax the requirement of having a global factorization.
Recall that in our discussion of the local factorization result (prop. 2.10), we had identified two
different kinds of obstructions that could prevent it from holding globally. In both cases, we can
sketch a route for proceeding to quantization nevertheless.

The first kind of obstruction is realized when Mη′ cannot be written as a Cartesian product, but

at least can be seen as an open subset of a bigger manifold M̃η′ := Mη′→η ×Mη. This suggests to
deal with this situation by a slight generalization of def. 5.1, allowing Hη′ to be a closed vector

subspace in a bigger Hilbert space H̃η′ := Hη′→η ⊗Hη. Then, the density matrices over Hη′ could

be seen as density matrices over H̃η′ , with support restricted to Hη′ . Thus, it would still be possible

define a map Trη′→η : Sη′ → Sη by first embedding Sη′ in S̃η′ and then tracing over Hη′→η. While
such a map could no longer be seen as a partial trace over a tensor factor in Hη′→η, it should still
retain the properties that we really need for the formalism to make sense (in particular, appropriate
compatibility with the evaluation of expectation values).

The other obstacle for a global factorization is illustrated by taking Mη′ as a covering space of
Mη: in this case we still have the option of writing Mη′ 'Mη′→η×Mη with a discrete space Mη′→η,
but we have to accept that the identification will not be everywhere smooth: there will be cuts,
and the disposition of these cuts will, when going over to the quantum theory, be imprinted in the
precise interpretation of the observables. For example if Mη′ = U(1) = Mη (aka. circles), and the
projection πη′→η wraps Mη′ n times around Mη , so that the length of Mη is ` while the length
of Mη′ is n `, a suitable factorization of Hη′ := L2(Mη′ ) can be written in terms of the respective
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momentum eigenbasis as |2π k ′/n`〉η′ = |r〉η′→η ⊗ |2π k/`〉η , where k ′ = n k + r (Euclidean division).

It might even be possible to go further and relax the need to choose consistent polarizations on
the classical projective system. For example, if the small phase spaces Mη are linear (or affine),
different choices of linear complex structures on Mη (making Mη into a complex vector or affine
space) yield unitarily equivalent holomorphic quantizations (see [105, sections 9.5 and 10.4] as
well as [49] ): one could then, when trying to relate a finer label η′ and a coarser one η, use
these identifications to switch to compatible choices of complexes structures on Mη′ and Mη (in a
way similar to the option, outlined at the end of subsection 6.1, to dispense from the choice of a
consistent family of measures in the context of position quantization).

The bottom line is that quantizing a classical projective system will often be a fairly automatic
procedure, and, in practice, most of the work goes into setting up this classical system in the first
place. This is markedly illustrated by the next part, devoted to the design of projective quantum
state spaces for a certain class of classical theories: while it will require appropriate forethought
to arrange the classical factorizing system and check its validity (section 10), the quantization step
(subsection 12.1) will be a straightforward application of subsection 6.1.

In particular, there tends to be a conflict, when preparing a projective or factorizing system along
the lines of section 2, between the three-spaces consistency condition (fig. 2.1) and the requirement
for the label set to be directed:
• when the three-spaces consistency fails, it is generally a sign that some information is miss-
ing from the labels: if we cannot unambiguously attach a precise physical meaning to each
label (in the form of a specific sub-algebra of observables), we cannot guarantee that a given
coarser/smaller label will always be extracted identically from a finer/bigger one, no matter in
how many successive steps this extraction is done;

• on the other hand, the richer the structure of the labels is, the harder it gets to order them in
a way that do full justice to the information they carry, while ensuring directedness.

These opposing considerations will play a prominent role in section 10, as we will have to carefully
select a suitable label set (subsection 10.1), balancing the implications of directedness (subsec-
tion 10.2) with the need for the labels to fully specify the subset of observables to which they refer
(subsection 10.3).

Finally, while we have discussed extensively how the classical structures presented in section 2
can be converted into their quantum analogues, we have not yet formalized how to infer from
the strategy exposed in section 3 a program for dealing with constraints at the quantum level.
Nevertheless, an example will be considered in subsection 16.2, suggesting how such a program
could look like.
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Projective Structure for the
Holonomy-Flux Algebra

Chapter 3 – Classical Theory

8. Introduction

Theories of connections are field theories in which the field (aka. configuration variable) is
a connection in a principal bundle [50, section I.5] (whose base is the spatial slice and whose
structure group is the gauge group of the theory), like eg. the electromagnetic potential (with gauge
group G = U(1) ). The corresponding conjugate variable is then analogous to the electric field of
electrodynamics.

Our interest in such theories stems from the reformulation of General Relativity (GR) in terms
of the Ashtekar variables [3, 4, 12] . Recall from the introduction of the present work, that the
canonical version of GR (aka. the ADM formalism) provided us with a phase space using the3-metric on a spatial slice as configuration variable and the extrinsic curvature of this slice as
momentum variable. The key step is then to express the 3-metric on the spatial slice in terms
of a triad field, that maps, at each point, an internal 3-dimensional Euclidean space into the
tangent space. This introduces an additional gauge invariance, since rotations within this internal
space do not affect the reconstructed metric. Therefore, we will have, besides the diffeomorphism
and Hamiltonian constraints already mentioned in the main introduction, additional constraints
implementing this gauge invariance, referred to as ‘Gauss’ constraints, owing to their analogy with
the Gauss law of electromagnetism.

To reconstruct a connection in this context, we start from the parallel transport prescribed by the
3-metric on the tangent bundle of the spatial slice (as determined by its Christoffel symbols), convert
it into a parallel transport between the internal spaces (using the triad that solders, at each point, the
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internal space to the tangent space), and add to the thus obtained connection a term proportional
to the extrinsic curvature of the slice: this yields an object that still transforms as a connection
under gauge transformation (because the connections form an affine space, see def. 9.2), while
being canonically conjugate with the triad field (because the metric and the extrinsic curvature
were canonically conjugate). This allows the triad field (more precisely, its densitized version,
obtained through renormalization by the volume element) to play the role of the ‘electric field’ in
the resulting theory of connections. This works because, in dimension d = 3, the Lie algebra
su(2) of the group of rotations (in whose dual the electric field should be valued) can be identified
with the 3-dimensional Euclidean space (on which the triad is indexed). Generalizations of this
construction to higher dimensions [15] require the addition of extra constraints to compensate for
the mismatch of dimensions between the defining and adjoint representations of the corresponding
rotation group.

Beware that, following the prevalent usage in the LQG literature, we will, from now on, refer
to the connection as the position variable, and to the electric field as its conjugate momentum
variable. This is reasonable in the context of usual gauge theory, where the connection is the gauge
field, but somewhat at odds with the physical interpretation of the Ashtekar variables sketched
above, since the intrinsic geometry along the spatial slice is encoded by the electric field while its
extrinsic curvature enters the definition of the connection. The reason for this convention is that
the quantum theory (section 12) is more easily formulated in the ‘connection representation’, which
we will think of as a position representation.

To arrive at this quantum theory, we first have to decide what our elementary observables will
be (recall the discussion in section 1). Smearing the (densitized) triad along 2-dimensional surfaces
yields ‘flux’ observables, taking value in the dual of su(2), while the parallel transport prescribed
by the Ashtekar connection along 1-dimensional edges gives rise to SU(2)-valued ‘holonomies’ (see
[92, sections II.6.2 and II.6.3] or prop. 9.9 below). Those flux and holonomy observables have the
advantage of being defined purely in terms of geometric objects (namely surfaces and edges), without
having to refer to any fixed background metric: this makes them particularly suitable as the basic
ingredients of a diffeomorphism invariant quantum theory. Still, their Poisson-brackets are finite
(see [92, section II.6.4] or prop. 9.10 below) and the ‘holonomy-flux algebra’ they generate is simple
enough to allow a representation as operators on an Hilbert space (the Ashtekar-Lewandowski
Hilbert space [19, 8] to which we will come back in subsection 12.2).

As we will see, a projective quantum state space can also be build from this algebra. Inspired by
previous works (in [68, section 5] and [69] , achieving the application of the projective framework
to models involving real-valued connections), we will, once equipped with an appropriate label set
(theorem 10.14), proceed, in theorem 10.25, to set up a factorizing system of configuration spaces:
as argued in subsection 6.1, and in particular in theorem 6.2, this is a fairly generic way of writing
down a projective limit of phase spaces, provided that a family of real polarizations can be chosen
consistently across all partial phase spaces, and it paves the way for its quantization in the position
representation, that we will perform in subsection 12.1.

107



9. Theories of connections

The aim of this section is to briefly recall the canonical formulation of classical theories of
connections, as well as the derivation of the holonomy-flux algebra mentioned above, to set the
stage for the construction of a projective description thereof (in section 10). The material we will
be reviewing is very standard, as it constitutes the foundation of LQG [4, 8] , and a comprehensive
exposition thereof can be found in [92, sections II.6 and IV.33].

9.1 Phase space

To make the classical theory well-defined, we extend the space of smooth connections into a
reflexive Banach space (this will ensure the non-degeneracy of the symplectic structure on the
corresponding phase space). This is achieved using a Sobolev space (with p = 2, k = 0) of bundle
cross-sections [96, 72]: in contrast to the usual (p = 2) Sobolev spaces of functions on Rn, it does
not carry a canonical Hilbert structure, but (partial) scalar products can be defined locally using
coordinates patches, and, in the case of a compact spatial slice Σ, the topologies induced by these
coordinate-dependent scalar products fit together. In this way, we get a configuration space having
the topology of an Hilbert space, and this is all what we will need.

Note that the restriction to a compact spatial slice is physically somewhat artificial: we make
this assumption in the present section for mathematical convenience, to avoid having to carefully
impose suitable boundary conditions. We will anyway be able to drop this restriction as soon as we
will turn to the construction of a projective state space for this theory. In addition, we also requireΣ to be oriented. This is again for convenience, and we could dispense from this assumption by
working below with densities instead of volume forms: the former always exist and they can be
integrated without reference to an overall orientation of Σ [31, section 11.4] .

Let (P , G, C) be a smooth principal fiber bundle over Σ [50, section I.5]. In this whole section 9,we assume that Σ is compact and oriented.
Definition 9.1 Let V be a vector bundle on Σ. The Sobolev space Ho(Σ → V) on V can bedefined intrinsically (ie. without any choice of coordinates or bundle trivialization) with the followingproperties [96] :1. It has the topology of a Hilbert space, hence it is in particular an (infinite-dimensional) smoothmanifold modeled on a reflexive Banach space [20, chapter VII] .
2. The space of C∞(Σ→ V) of smooth cross-sections of V is dense in Ho(Σ→ V).
3. The topological dual of Ho(Σ → V) is canonically identified with Ho

(Σ→ ΛdT ∗(Σ)⊗ V∗
),where ΛdT ∗(Σ) denotes the volume form bundle on Σ and ⊗ the vector bundle tensor product.More generally, for any k ∈ {0, . . . , d} , the topological dual of Ho(Σ→ ΛkT ∗(Σ)⊗V) is canoni-cally identified with Ho

(Σ→ Λd−kT ∗(Σ)⊗ V∗
) and we have, for any Q ∈ C∞

(Σ→ ΛkT ∗(Σ)⊗ V
)
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and any F ∈ C∞
(Σ→ Λd−kT ∗(Σ)⊗ V∗

) :
F (Q) := ∫ΣQ ∧ F ,

where ∧ : (ΛkT ∗(Σ)⊗ V
)
×
(ΛlT ∗(Σ)⊗ V∗

)
→ Λk+lT ∗(Σ) denotes the contraction of a V-valued k-form with a V∗-valued l-form (note that this expression fixes our sign convention forthe identification ΛdT ∗(Σ)⊗ ΛkT (Σ) ≈ Λd−kT ∗(Σ) ).

The space of smooth connections on P is an affine space, the linear part of which consists –
modulo the choice of a local cross-section – of g-valued 1-forms. The corresponding momentum
space thus consists – again up to (local) gauge choice – of g∗-valued (d−1)-forms (or more precisely
densitized vector fields, which, in the case of an oriented slice Σ, can be converted into (d−1)-forms).
We are careful here to formulate the definitions in a gauge- and coordinate-independent language,
so it does come as a surprise that automorphisms of the bundle give raise to symplectomorphisms
on the thus defined phase space (these automorphisms are combinations of diffeomorphisms and
gauge transformations; a split between pure diffeomorphisms vs. pure gauge shifts can be made
with respect to a reference cross-section).

Definition 9.2 Let G be the P-associated vector bundle arising from the adjoint action of G on g[50, section I.5], that is the quotient of P × g by the equivalence relation:(p, u) ∼ (p′, u′) ⇔ ∃g ∈ G
/
p′ = pCg−1

& u′ = adg(u) .A smooth connection on P [50, section II.1] is a smooth g-valued 1-form A on P satisfying:1. ∀p ∈ P , Ap ◦ [T1 pC · ] = idg(where [T1 pC · ] denotes the tangent map at 1 of the map G → P , g 7→ pCg);2. ∀p ∈ P , ∀g ∈ G, ApCg ◦ [Tp · Cg] = adg−1 ◦ Ap(where [Tp · Cg] denotes the tangent map at p of the map P → P , p′ 7→ p′Cg).Given a smooth connection A and a smooth section Q of T ∗(Σ) ⊗ G , there is a unique smoothconnection A′ =: A+ Q such that:
∀p ∈ P , ∀v ∈ Tp(P), Qπ(p) ◦ [Tpπ] (v) = [(p, A′p(v)− Ap(v))]∼ ,where π denotes the bundle projection of P .The space of smooth connections on (P , G, C) is thus an affine space over C∞ (Σ→ T ∗(Σ)⊗ G) .It can then be extended into an affine space CΣ over TCΣ := Ho (Σ→ T ∗(Σ)⊗ G), in which it formsa dense subspace.

Definition 9.3 Let MΣ := T ′(CΣ) ≈ CΣ × PΣ , where PΣ := Ho
(Σ→ Λd−1T ∗(Σ)⊗ G∗

) and let ΩMΣbe the canonical symplectic structure on MΣ , which can be defined through (see [20, section VII.2],but beware that we are using an opposite sign convention here, to match eq. (2.16.1) ):
∀(A, E) ∈MΣ, ∀Q,Q′ ∈ TA(CΣ) = TCΣ, ∀F, F ′ ∈ TE (PΣ) = PΣ ≈ (TCΣ)′ ,ΩMΣ,(A,E) ((Q, F ), (Q′, F ′)) := F ′(Q)− F (Q′) ,where we have used the identification provided by def. 9.1.3. Since CΣ is a smooth manifold
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modeled on a reflexive Banach space, ΩMΣ is a strong symplectic structure (ie. for each (A, E) ∈
MΣ , (Q, F ) 7→ ΩMΣ,(A,E) ((Q, F ), · ) is an isomorphism T(A,E)(MΣ)→ T ′(A,E)(MΣ) ).
Definition 9.4 Let Φ be a smooth bundle automorphism of P , namely a smooth diffeomorphism
P → P satisfying:1. there exists a smooth diffeomorphism φ : Σ→ Σ such that π ◦ Φ = φ ◦ π ;
2. ∀g ∈ G, ( ·Cg) ◦ Φ = Φ ◦ ( ·Cg) .Φ induces a diffeomorphism ΦG on G such that:
∀p ∈ P , ∀u ∈ g, ΦG

([(p, u)]∼) = [(Φ(p), u)]∼ .For any smooth connections A, A′ and any Q ∈ C∞(Σ→ T ∗(Σ)⊗G) such that A′ = A+Q (def. 9.2),we have Φ∗,−1 A′ = Φ∗,−1 A + TΦ∗,−1Q, where Φ∗,−1 A (resp. Φ∗,−1 A) denotes the pullback of the1-form A (resp. A′) by Φ−1 and TΦ∗,−1Q is defined by:
∀x ∈ Σ, (TΦ∗,−1Q)x = ΦG ◦ Qφ−1(x) ◦ [Txφ−1] .

Φ∗,−1, resp. TΦ∗,−1, can be extended by continuity to an affine bijective map ΦCΣ on CΣ , resp. toa linear isomorphism TΦCΣ on TCΣ . Finally, it can be lifted to a map ΦMΣ on MΣ :
∀(A, E) ∈MΣ ≈ CΣ × (TCΣ)′ , ΦMΣ(A, E) := (ΦCΣ(A), E ◦ TΦ−1

CΣ
) ,and, by construction, ΦMΣ is a symplectomorphism (ie. Φ∗MΣ ΩMΣ = ΩMΣ ).

The evaluation of the connection or electric field at a given point of Σ is not a well-defined
observable on this phase space (it would be only densely defined on the Sobolev space we are
considering). To get smooth observables we need to smear the basic variables in all d dimensions.
This is the reason why the Poisson algebra of the holonomies and fluxes, that we will introduce
in the next subsection as smearing on lower dimensional geometrical objects, will have to be
regularized.

Definition 9.5 Let U, s be a smooth local cross-section of P and let f , resp. q, be a smooth,
g∗-valued, (d − 1)-form, resp. a smooth, g-valued, 1-form, on Σ, with supp f , suppq ⊂ U . For anysmooth connection A on P and any E ∈ C∞(Σ→ Λd−1T ∗(Σ)⊗ G∗), we define:ÛXf ,s(A, E) := ∫

U
As ∧ f & ÙPq,s(A, E) := ∫

U
q ∧ Es ,

where:
∀x ∈ Σ, As;x := As(x) ◦ [Txs] & Ex( · , . . . , · ) =: [(s(x), Es;x( · , . . . , · ))]∼ .ÛXf ,s and ÙPq,s can be extended by continuity to R-valued smooth affine maps on MΣ , and wehave:{ÙPq,s, ÛXf ,s

}
MΣ ≡

∫
U
q ∧ f .

Moreover, for any smooth bundle automorphism Φ of P , we have:
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ÛXf ,s ◦ ΦMΣ = ÛXφ∗f ,Φ−1◦s◦φ & ÙPq,s ◦ ΦMΣ = ÙPφ∗q,Φ−1◦s◦φ .
9.2 Holonomy-flux algebra

To fix our notations and definitions, we begin by writing down what we mean precisely by the
edges and surfaces, that will label the elementary observables of the holonomy-flux algebra. An
important precision is that these geometric objects will be required to be analytic. While this is
not needed for the definition of the holonomies and fluxes themselves, it comes into play for the
regularization of their Poisson brackets (see the comments preceding prop. 9.10 below), and it will be
crucial for the construction of an associated projective system, where it will ensure the directedness
of the label set (lemmas 10.5 and 10.8). For similar reasons, analyticity is also required for the
construction of the Ashtekar-Lewandowski representation of the holonomy-flux algebra [4, 8] .

On the other hand, the class of edges and surfaces we will be using here is actually more
restrictive than strictly necessary: we are considering only fully analytic edges and fully analytic,
disc-shaped surfaces, embedded in a single analytic coordinate patch, in contrast to the class
of semi-analytic edges and surfaces commonly used in LQG [92, section IV.20]. This is purely
for convenience, and as far as the construction of the quantum state space is concerned, it has
absolutely no incidence: the label set we will build from these restricted classes of edges and
surfaces (def. 10.12) is a cofinal part of the one we could build from a broader, semi-analytic class,
so prop. 5.6 allows to identify the corresponding projective state spaces (and a similar result holds
at the level of the inductive limit construction underlying the Ashtekar-Lewandowski Hilbert space,
see subsection 12.2 and in particular the proof of theorem 12.11 for more details).

Definition 9.6 An analytic, encharted edge in Σ is an analytic diffeomorphism ĕ : U → V , where
U is an open neighborhood of [0, 1]× {0}d−1 in Rd, and V is an open subset of Σ. We call L̆edgesthe set of all encharted edges, and for ĕ ∈ L̆edges we define its starting point b(ĕ) := ĕ(0, 0), itsending point f (ĕ) := ĕ(1, 0) and its range r(ĕ) := ĕ

〈[0, 1]× {0}d−1〉.
We say that ĕ1, ĕ2 ∈ L̆edges are equivalent, and we write ĕ1 ∼ ĕ2, iff:
r (ĕ1) = r (ĕ1) & b (ĕ1) = b (ĕ2) .

This defines an equivalence relation on L̆edges . Its set of equivalence classes will be denoted by
Ledges. An element e ∈ Ledges is called an edge, and we can define its starting point b(e), itsending point f (e) and its range r(e), since these are the same for any representative of e.
Note. If d = 1, Rd−1 = {0} , and [0, 1]× {0}d−1 ≈ [0, 1] ⊂ R .
Definition 9.7 An analytic, encharted surface in Σ is an analytic diffeomorphism S̆ : U → V , where
U is an open neighborhood of {0} × B(d−1) in Rd (B(d−1) being the closed unit ball of Rd−1), and
V is an open subset of Σ. We call L̆surfcs the set of all encharted surfaces, and for S̆ ∈ L̆surfcs wedefine its range r(S̆) := S̆

〈
{0} × B(d−1)〉.We say that S̆1 : U1 → V1, S̆2 : U2 → V2 ∈ L̆surfcs are equivalent, and we write S̆1 ∼ S̆2, iff:
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r
(
S̆1) = r

(
S̆2) & S̆1 〈U ′1 ∩ (R+ ×Rd−1)〉 = S̆2 〈U ′2 ∩ (R+ ×Rd−1)〉 ,

where U ′1 (resp. U ′2) is an open neighborhood of {0} × B(d−1) in U1 (resp. in U2), and R+ is the setof non-negative reals. This defines an equivalence relation on L̆surfcs . Its set of equivalence classeswill be denoted by Lsurfcs. An element S ∈ Lsurfcs is called a surface, and we can define its range
r(S), since it is the same for any representative of S .
Note. If d = 1, Rd−1 = {0} , and {0} × B(d−1) ≈ {0} ⊂ R .

As hinted above, the holonomy and flux observables are not smooth functions on the continuum,
infinite dimensional phase space of def. 9.3 (in fact, they are not even everywhere defined). On the
other hand, by smearing the connection, which is a 1-form, on a 1-dimensional object, respectively
the electric field, which is (d − 1)-form, on a (d − 1)-dimensional object, we ensure that these
observables are diffeomorphism-covariant: they can be expressed in the language of coordinates-
free differential geometry and depend only on the geometric objects indexing them. This purely
geometric dependence is also the guarantee that their Poisson brackets can be regularized in an
intrinsic way (see [4], [92, section II.6.4] or prop. 9.10 below), ie. without having to depend on any
auxiliary supporting structure (such as a particular choice of coordinates or a background, fiducial
metric).

As a technical side note, the concept of orientation that matters for the definition of a flux
operator is the orientation of the normal of its supporting surface: what we are really doing is to
integrate on the unoriented surface the density obtained by contracting its oriented normal (which
is a 1-form) with the electric field (which, properly, is a densitized vector field). Although this aspect
is somewhat obscured as we take the shortcut to rely on a bulk orientation on Σ (converting an
orientation of the normal into an orientation of the surface itself, and densitized vector fields into(d − 1)-forms), this is the reason for the precise definition of the equivalence relation in def. 9.7.

Definition 9.8 Let (τi)16i6k (with k := dimG) be a basis of g and (τ i)16i6k be the correspondingdual basis in g∗. Let (δε)ε>0 be a smooth regularization of the δ-distribution in Rd, ie. a familly ofsmooth maps δε : Rd → R+ such that, for any ε > 0:
1. ∫ dx1 . . . dxd δε(x1, . . . , xd) = 1 ,
2. supp δε ⊂ B(d)

ε (where B(d)
ε is the closed ball of radius ε and center 0 in Rd).For any x ∈ Rd, we define δε,x : x ′ 7→ δε(x ′ − x) .Let V , s be a smooth local cross-section of P and let ĕ : U1 → V1 ⊂ V be an encharted edge inΣ. Since U1 is an open neighborhood of the compact subset [ 0, 1 ]× {0}d−1 of Rd, there exists ε1such that:

∀t ∈ [0, 1], B(d)
ε1, (t,0) ⊂ U1(where B(d)

ε,x denotes the closed ball of center x and radius ε in Rd). For any ε ∈ ] 0, ε1 [ , t ∈ [ 0, 1 ]and i ∈ {1, . . . , k} , we define:
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f ĕ,iε,t := {ĕ−1,∗ (sgn(ĕ) δε,(t,0) dx2 ∧ . . . ∧ dxd) τ i0 outside of V1 ,
where sgn(ĕ) := +1 if ĕ is orientation-preserving, −1 if it is orientation-reversing (with respect tothe canonical orientation on U1 ⊂ Rd and to the chosen orientation on V1 ⊂ Σ). We can then, forany smooth map m : G → R and any ε ∈ ] 0, ε1 [ , define:

h(ĕ,s,m)
ε : MΣ → R(A, E) 7→ m

[
Pexp (∫ 10 dt ÛXf ĕ,iε,t ,s

(A, E) τi)] ,
where we implicitly sum over i ∈ {1, . . . , k} and Pexp denotes the G-valued, path-ordered (withrespect to t), exponential.Similarly, let S̆ : U2 → V2 ⊂ V be an encharted surface in Σ and let ε2 such that:
∀y ∈ B(d−1), B(d)

ε2, (0,y) ⊂ U2 .
For any ε ∈ ] 0, ε2 [ , y ∈ B(d−1) and i ∈ {1, . . . , k} , we define:

qS̆ε,y,i := {S̆−1,∗ (δε,(0,y) dx1) τi0 outside of V2 .
We can then, for any u ∈ g and any ε ∈ ] 0, ε2 [ , define:

P(S̆,s,u)
ε : MΣ → R(A, E) 7→ ∫

B(d−1) dy ÙPqS̆ε,y,i,s
(A, E) τ i(u) .

Proposition 9.9 We consider the same objects as in def. 9.8 and we fix a smooth connection A on
P as well as a smooth G∗-valued (d − 1)-form E . For any smooth map m : G → R, we have:

h(e,s,m)(A, E) := lim
ε→0 h(ĕ,s,m)

ε (A, E) = m
[
Pexp (∫ 10 γ∗ĕ,sA

)] ,
where γĕ,s : [0, 1] → R, t 7→ s ◦ ĕ(t, 0) . Note that h(e,s,m)(A, E) only depends on the equivalenceclass e of ĕ.Similarly, for any u ∈ g, we have:

P(S,s,u)(A, E) := lim
ε→0 P(S̆,s,u)

ε (A, E) = ∫
r̊(S) (ι∗E)(us) ,

where r̊(S) := S̆
〈
{0} × B̊(d−1)〉 (with B̊(d−1) the open ball of center 0 and radius 1 in Rd−1), ι isthe canonical injection r̊(S)→ Σ, r̊(S) is oriented so that:

∀y ∈ r̊(S), ∀υ ∈ Λd−1T ∗y (Σ), ι∗υ > 0 ⇔ S̆−1,∗(dx1) ∧ υ > 0 ,and us ∈ C∞(V → G) is defined by:
∀x ∈ V , us(x) = [(s(x), u)]∼ .

Again, P(S,s,u) only depends on the equivalence class S of S̆ .
Proof Putting all definitions together, we have, for any smooth map m : G → R and any ε ∈ ] 0, ε1 [ :
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ÛXf ĕ,iε,t ,s
(A, E) = ∫

U1 δε,(t,0) Ã
i
ĕ,s ∧ dx2 ∧ . . . ∧ dxd ,

where U1 carries the canonical orientation of Rd and Ãiĕ,s the 1-form is defined by:
∀x ∈ U1, Ãiĕ,s;x = τ i ◦ As◦ĕ(x) ◦ [Tx s ◦ ĕ] .This can be rewritten as the following unoriented integral:ÛXf ĕ,iε,t ,s

(A, E) = ∫
U1 dx1 . . . dxd δε,(t,0)(x) Ãiĕ,s(∂x1) .

Since Ãiĕ,s is a smooth 1-form on U1 and ⋃
t∈[0,1]Bε1, (t,0) is a compact subset of U1 ⊂ Rd, we have,

uniformly in t:
lim
ε→0 ÛXf ĕ,iε,t ,s

(A, E) = Ãiĕ,s;(t,0)(∂x1) = τ i ◦ As◦ĕ(t,0)
(
d
dt′s ◦ ĕ(t′, 0)

∣∣∣∣
t′=t
) = τ i ◦ Aγĕ,s(t) (γ′ĕ,s(t)) .

Thus, we get:
lim
ε→0 h(ĕ,s,m)

ε (A, E) = m
[
Pexp(∫ 1

0 dt Aγĕ,s(t) (γ′ĕ,s(t)))] = m
[
Pexp (∫ 10 γ∗ĕ,sA

)] .
Similarly, for any u ∈ g and any ε ∈ ] 0, ε2 [ :ÙPqS̆ε,y,i,s

(A, E) τ i(u) := ∫
U2 dx1 . . . dxd δε,(0,y)(x) ẼS̆,s,u(x)

where ẼS̆,s,u is the smooth map U2 → R defined by:
∀x ∈ U2, ẼS̆,s,u(x) := sgn(S̆) ES̆(x)

([
TxS̆

](∂x2), . . . , [TxS̆](∂xd)) ([(s ◦ S̆(x), u)]
∼

) .
Thus, we get:

lim
ε→0 P(S̆,s,u)

ε = ∫
B(d−1)dy2 . . . dyd ẼS̆,s,u(0, y)

We now switch back to an oriented integral, taking care of the orientation:
lim
ε→0 P(S̆,s,u)

ε = ∫
B̊(d−1) sgn(S̆) (S̆ ◦ ι̃)∗ES̆,s,u

where ι̃ denotes the canonical injection B̊(d−1) ≈ {0} × B̊(d−1) → Rd and the (d − 1)-form ES̆,s,u isdefined by:
∀y ∈ r̊(S), ∀w2, . . . , wd ∈ Ty (r̊(S)) ,

ES,s,u;y (w2, . . . , wd) = Ey (w2, . . . , wd) ([(s(y), u)]∼) .
Orienting r̊(S) so that sgn(S̆ ◦ ι̃) = sgn(S̆), we obtain the final expression:

lim
ε→0 P(S̆,s,u)

ε = ∫
r̊(S) ES̆,s,u = ∫

r̊(S) (ι∗E)(us) .
Note that this orientation on r̊(S) does not depend on the choice of the representative S̆ of S thanks
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We represent edges by arrows (going from b(e) to f (e)) and surfaces by double lines.
The plane S̆

〈
{0} ×Rd−1〉 is represented by a dashed line when its disposition is relevant,

and all surfaces are assumed to be oriented upward.

Figure 9.1 – Sign factors for generic intersections and our conventions for non-generic ones

to the way the equivalence class was defined in def. 9.7. �

We now come to the regularization of the Poisson Poisson brackets between the holonomy and
flux observables. Thanks to the analyticity, this computation can be broken down to a few elemen-
tary cases: indeed, given an edge and a surface, we can cut the edge into parts having a simple
intersection with the surface, and express the holonomy along the full edge as the composition of
the holonomies along these parts (see [92, section II.6.4] or the slight reformulation of this result,
in a form suitable for the projective construction, in prop. 10.7 and fig. 10.2).

In the two generic cases – an edge part that either passes cleanly through the surface or does not
intersect it, the regularization give an unambiguous prescription for the Poisson brackets. There
are also a few non-generic cases: edge parts that are entirely included in the surface, cross the
boundary of the surface or start/end on the surface (note that the case of an edge hitting the
surface tangentially is rescued by the analyticity and can be treated among the generic cases). A
well-defined regularization for those can only be obtained by fine-tunning how the limit in prop. 9.10
should be taken and/or by imposing additional conditions on the δ-regularization from def. 9.8.
We will not detail these considerations here, and simply accept the resulting Poisson brackets as
a matter of conventions: the prescriptions we will adopt in the following are the ones commonly
used in LQG, and are summarized in fig. 9.1.

Finally, we need to fix the remaining commutation relations to get the advertised holonomy-flux
algebra. While the Poisson brackets of the holonomies with each others can be set to zero, in
accordance with the fact that they all only depend on the connection, the same does not hold for
the fluxes (unless the gauge group G is Abelian). Although the latter were obtained in prop. 9.9 as
limits of mutually Poisson-commuting functions on the phase space, their Poisson brackets with
the holonomies enforce non-vanishing commutators, in order to get a valid algebra of observables,
namely an algebra satisfying the Jacobi identity. More precisely, the Poisson bracket of two fluxes,
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supported by intersecting surfaces S and S′, and indexed by two vectors u, u′ ∈ g, should be
a flux-like observable (in terms its commutation relations with the holonomies), supported on the
intersection S∩S′ and indexed by the Lie bracket

[
u, u′

]
g
. This non-commutation of the fluxes will

play quite an important role throughout the development of the next section and we will discuss it
in more depth in the light of prop. 10.28.

Proposition 9.10 We consider the same objects as in prop. 9.9. For any smooth map m : G → Rand any u ∈ g, we define:{P(S,s,u), h(e,s,m)}lim (A, E) := lim
ε→0

{P(S̆,s,u)
ε , h(ĕ,s,m)

ε

}
MΣ (A, E) ,

whenever the limit on the right hand side exists and is independent of the δ-regularization (δε)ε>0 .We have:1. if r(e) ∩ r(S) = ∅, then:{P(S,s,u), h(e,s,m)}lim (A, E) = 0 ,
2. if r(e) ∩ r(S) = {ĕ(c, 0)} with c ∈ ] 0, 1 [ and ĕ(c, 0) ∈ r̊(S), then:{P(S,s,u), h(e,s,m)}lim (A, E) = sgn(e, S) d

drm
[
Pexp (∫ 1

c γ
∗
ĕ,sA
)
. er u.Pexp (∫ c0 γ∗ĕ,sA)]∣∣∣∣

r=0 ,
where sgn(e, S) = ±1 if there exists ε ∈ ] 0, ε1 [ such that:

ĕ
〈 [c, c + ε]× {0} 〉 ⊂ S̆ 〈U2,±〉 & ĕ

〈 [c − ε, c]× {0} 〉 ⊂ S̆ 〈U2,∓〉 ,(with U2,± := U2 ∩ (R± ×Rd−1)) and sgn(e, S) = 0 otherwise (note that this sign does notdepend on the choice of the representatives ĕ of e, resp. S̆ of S).
Proof Poisson brackets at finite ε. Let ε ∈ ] 0, min(ε1, ε2) [. For any ψ ∈ C∞

([0, 1]× [−1, 1], g), wehave:
d
drm

[
Pexp(∫ 1

0 dt ψ(t, r))]∣∣∣∣
r=0 =

= ∫ 1
0 dm d

drm
[
Pexp(∫ 1

m
dt ψ(t, 0)) . eψ(m,r).Pexp(∫ m

0 dt ψ(t, 0))]∣∣∣∣
r=0

= ∫ 1
0 dm

[
T1 m

[
Pexp(∫ 1

m
dt ψ(t, 0)) . · .Pexp(∫ m

0 dt ψ(t, 0))]] (∂rψ(m, 0)) .
Let Q ∈ Ho(Σ→ T ∗(Σ)⊗ G) and F ∈ Ho(Σ→ Λd−1T ∗(Σ)⊗ G∗) . Applying this general formula to
ψ(t, r) = ÛXf ĕ,iε,t ,s

(A+ r Q, E + r F ) τi yields:
[
T(A,E)h(ĕ,s,m)

ε
] (Q, F ) = ∫ 1

0 dm Hm
ε (τi) [T(A,E)ÛXf ĕ,iε,m,s

] (Q, F )
where, for any m ∈ [0, 1] , Hm

ε ∈ g∗ is defined by:
Hm
ε := [T1 m

[
Pexp(∫ 1

m
dt ÛXf ĕ,iε,t ,s

(A, E) τi) . · .Pexp(∫ m

0 dt ÛXf ĕ,iε,t ,s
(A, E) τi)]] .
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Also, by the dominated convergence theorem, we have, for any Q ∈ Ho(Σ → T ∗(Σ) ⊗ G) and any
F ∈ Ho(Σ→ Λd−1T ∗(Σ)⊗ G∗) :[

T(A,E)P(S̆,s,u)
ε

] (Q, F ) = ∫
B(d−1)dy τ j (u) [T(A,E)ÙPqS̆ε,y,j ,s

(A, E)] (Q, F ) .
Together with the Poisson bracket expression from def. 9.5, this implies:{P(S̆,s,u)

ε , h(ĕ,s,m)
ε

}
MΣ (A, E) =

= ∫
B(d−1)dy τ j (u) ∫ 1

0 dm Hm
ε (τi) {ÛXf ĕ,iε,m,s,

ÙPqS̆ε,y,j ,s

}
MΣ (A, E)

= ∫
B(d−1)dy

∫ 1
0 dm τ j (u)Hm

ε (τi) ∫
Vo
qS̆ε,y,j ∧ f ĕ,iε,m

= ∫
B(d−1)dy

∫ 1
0 dm Hm

ε (u) ∫
Vo
S̆−1,∗(δε,(0,y)dx1) ∧ ĕ−1,∗ (sgn(ĕ) δε,(m,0) dx2 ∧ . . . ∧ dxd)

= ∫
B(d−1)dy

∫ 1
0 dm Hm

ε (u) ∫
Uo
δε,(m,0) (S̆−1 ◦ ĕ)∗(δε,(0,y)dx1) ∧ dx2 ∧ . . . ∧ dxd

= ∫
B(d−1)dy

∫ 1
0 dm Hm

ε (u) ∫
Uo
dx δε,(m,0)(x) δε,(0,y)(S̆−1 ◦ ĕ(x)) [(S̆−1 ◦ ĕ)∗ dx1]

x
(∂x1) , (9.10.1)

where Vo := V1 ∩ V2 and Uo := ĕ−1 〈Vo〉 (oriented as subsets of Σ, resp. Rd).
Limit in the case r(e) ∩ r(S) = ∅ . If r(e) ∩ r(S) = ∅, then, by compacity, there exists εo ∈] 0, min(ε1, ε2) [ such that:

ĕ
〈 ⋃
m∈[0,1]B

(d)
εo, (m,0)

〉
∩ S̆

〈 ⋃
y∈B(d−1)

B(d)
εo, (0,y)

〉 = ∅ .
Hence, for any ε < εo , {P(S̆,s,u)

ε , h(ĕ,s,m)
ε

}
MΣ (A, E) = 0. Therefore, {P(S,s,u), h(e,s,m)}lim (A, E) = 0 .

Limit in the case r(e)∩r(S) = {ĕ(c, 0)} . We now assume that there exist c ∈ ] 0, 1 [ and b ∈ B̊(d−1)such that r(e) ∩ r(S) = {ĕ(c, 0)} = {S̆(0, b)} . We define α : Uo → R and β : Uo → Rd−1 by:
∀x ∈ Uo , S̆−1 ◦ ĕ(x) = (α(x), β(x)) .Inserting this definition in eq. (9.10.1) and reordering the integrals yields:{P(S̆,s,u)

ε , h(ĕ,s,m)
ε

}
MΣ (A, E)

= ∫
Uo
dx1 dx̃

∫
[0,1]×B(d−1)dmdy Hm

ε (u) δε(x1 −m, x̃) δε(α(x1, x̃), β(x1, x̃)− y) ∂x1α(x1, x̃) .
Next, performing the change of variables (m, y) 7→ (y1, ỹ) := (x1 −m, β(x1, x̃)− y) , we get:{P(S̆,s,u)

ε , h(ĕ,s,m)
ε

}
MΣ (A, E) = ∫

Uo
dx1 dx̃

∫
[x1−1, x1 ]×B(d−1)1, β(x1 ,x̃)
dy1 dỹ Hx1−y1

ε (u) δε(y1, x̃) δε(α(x1, x̃), ỹ) ∂x1α(x1, x̃) .
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(9.10.2)
Uo is an open neighborhood of (c, 0) in Rd. Let ε3 ∈ ] 0, min(c, 1− c, 1− ‖b‖) [ such that:
B(d)
ε3,(c,0) ⊂ Uo & ∀x ∈ B(d)

ε3,(c,0) , ‖β(x)− (0, b)‖ < 1− ‖b‖3 .
In particular, for any x1 ∈ ] c − ε3, c + ε3 [ , (x1, 0) ∈ Uo and ‖β(x1, 0)‖ < 1 . On the other hand, wehave:
{x1 ∈ [0, 1] | (x1, 0) ∈ Uo, α(x1, 0) = 0 & ‖β(x1, 0)‖ 6 1} = {(0, c)} .Therefore, for any x1 ∈ ] c − ε3, c + ε3 [ , α(x1, 0) = 0 ⇔ x1 = c. Since α is analytic, there exists

N > 1 such that:
∂Nx1α(c, 0) 6= 0 .Hence, there exists ε4 ∈ ] 0, ε3 [ such that:
∀(x1, x̃) ∈ B(d)

ε4,(c,0) , ∂Nx1α(x1, x̃) 6= 0
Let τ > 0 and let ε5 ∈ ] 0, ε4 [ such that:
∀m ∈ [c − ε5, c + ε5] , ∀ε ∈ ] 0, ε5 [ , ∥∥Hm

ε (u)−Hc
o(u)∥∥ < τ

N ,
where Hc

o ∈ g∗ is defined by:
Hc
o := [T1m

[
Pexp (∫ 1

cdt γ∗ĕ,s A
)
. · .Pexp (∫ c0dt γ∗ĕ,s A

)] ] .
Finally, ĕ 〈 [0, c − ε5/3] ∪ [c + ε5/3, 1] 〉 and r(S) are compact subsets of Σ and do not intersect,hence, there exists ε6 ∈ ] 0, min(ε1, ε2) [ such that:
ĕ
〈 ⋃
m∈ [0,c−ε5/3]∪ [c+ε5/3,1]B

(d)
ε6, (m,0)

〉
∩ S̆

〈 ⋃
y∈B(d−1)

B(d)
ε6, (0,y)

〉 = ∅ .
Note that this in particular implies ε6 < ε5/3 and we have, for any ε ∈ ] 0, ε6 [ :
∀(x1, x̃) ∈ Uo \

([c − 2ε5/3, c + 2ε5/3]× B(d−1)
ε5/3

)
,

∀m ∈ [0, 1] , ∀y ∈ B(d−1), (x1, x̃) ∈ B(d)
ε,(m,0) ⇒ S̆−1 ◦ ĕ(x1, x̃) /∈ B(d)

ε, (0,y) .Moreover, for any (x1, x̃) ∈ [c − 2ε5/3, c + 2ε5/3] × B(d−1)
ε5/3 , we have (x1, x̃) ∈ B(d)

ε5, (c,0) ⊂ B(d)
ε4, (c,0) ⊂

B(d)
ε3, (c,0) , and, by definition of ε3 :

[−ε5/3, ε5/3]× B(d−1)
ε5/3 ⊂ [x1 − 1, x1]× B(d−1)1,β(x1,x̃) .For ε ∈ ] 0, ε6 [ , we can thus rewrite eq. (9.10.2) as:{P(S̆,s,u)

ε , h(ĕ,s,m)
ε

}
MΣ (A, E)

= ∫ c+2ε5/3
c−2ε5/3dx1

∫
B(d−1)
ε5/3
dx̃
∫

[−ε5/3, ε5/3]×B(d−1)
ε5/3

dy1 dỹ Hx1−y1
ε (u) δε(y1, x̃) δε(α(x1, x̃), ỹ) ∂x1α(x1, x̃)
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= ∫
B(d−1)
ε5/3
dx̃
∫ ε5/3
−ε5/3dy1 δε(y1, x̃) ∫ c+2ε5/3

c−2ε5/3dx1 ∂x1α(x1, x̃) Hx1−y1
ε (u) ∫

B(d−1)
ε5/3
dỹ δε

(
α(x1, x̃), ỹ) .

Since {x1 ∈ [c − 2ε5/3, c + 2ε5/3] | α(x1, 0) = 0} = {c} , we have:
α(c − 2ε5/3, 0) < 0 & α(c + 2ε5/3, 0) > 0 if sgn(e, S) = +1
α(c − 2ε5/3, 0) > 0 & α(c + 2ε5/3, 0) < 0 if sgn(e, S) = +1
α(c ± 2ε5/3, 0) > 0 or α(c ± 2ε5/3, 0) < 0 if sgn(e, S) = 0 .

Let ε7 ∈ ] 0, ε6 [ such that:
∀x̃ ∈ B(d−1)

ε7 ,
∣∣α(c ± 2ε5/3, x̃)− α(c ± 2ε5/3, 0)∣∣ < ∣∣α(c ± 2ε5/3, 0)∣∣2 ,

and let εo := min (ε7, 12∣∣α(c + 2ε5/3, 0)∣∣, 12∣∣α(c − 2ε5/3, 0)∣∣) . Then, for any ε ∈ ] 0, εo [ and any
x̃ ∈ B(d−1)

ε , we get:∫ c+2ε5/3
c−2ε5/3dx1 ∂x1α(x1, x̃) ∫

B(d−1)
ε5/3
dỹ δε

(
α(x1, x̃), ỹ) = ∫ α(c+2ε5/3, x̃)

α(c−2ε5/3, x̃)dα
∫
B(d−1)
ε5/3
dỹ δε

(
α, ỹ

) = sgn(e, S) ,
by performing a change of variable in the oriented integral and using the properties of δε .Therefore, for any ε ∈ ] 0, εo [ , we have:∣∣∣∣{P(S̆,s,u)

ε , h(ĕ,s,m)
ε

}
MΣ (A, E)− sgn(e, S)Hc

o(u)∣∣∣∣
6
∫
B(d−1)
ε5/3
dx̃
∫ ε5/3
−ε5/3dy1 δε(y1, x̃) ∫ c+2ε5/3

c−2ε5/3dx1
∣∣∂x1α(x1, x̃)∣∣ ∣∣Hx1−y1

ε (u)−Hc
o(u)∣∣ ∫

B(d−1)
ε5/3
dỹ δε

(
α(x1, x̃), ỹ)

6
τ
N

∫
B(d−1)
ε5/3
dx̃
∫ ε5/3
−ε5/3dy1 δε(y1, x̃) ∫[c−2ε5/3, c+2ε5/3]dx1 ∣∣∂x1α(x1, x̃)∣∣ ∫

B(d−1)
ε5/3
dỹ δε

(
α(x1, x̃), ỹ) .

To perform the change of variable x1 7→ α(x1, x̃) in the unoriented integral over x1 , we need todecompose its domain [c − 2ε5/3, c + 2ε5/3] into pieces over which α( · , x̃) is injective. Since, forany x̃ ∈ B(d−1)
ε5/3 , ∂Nx1α( · , x̃) is non-zero over this domain (by definition of ε4), ∂x1α( · , x̃) changes itssign at most N − 1 times. Hence, we need at most N such pieces. Therefore, we get:

∀ε ∈ ] 0, εo [ , ∣∣∣∣{P(S̆,s,u)
ε , h(ĕ,s,m)

ε

}
MΣ (A, E)− sgn(e, S)Hc

o(u)∣∣∣∣ 6 τ .
As τ was arbitrary, this concludes the proof. �

The claim made many times above that the holonomy-flux algebra is particularly suitable for the
description of a diffeomorphism-invariant theory of connections can be substantiated by observing
that diffeomorphisms act on holonomies and fluxes simply by shifting the supporting edges and
surfaces. More precisely, keeping in mind that we need to preserve analyticity, what we have is
an action of the semi-analytic diffeomorphisms [92, section IV.20] on the algebra generated by the
holonomy and flux observables (regardless of whether fully analytic or semi-analytic edges and
surfaces are used, because, as hinted above, the generated algebra is the same in both cases, see
subsection 12.2). This is sufficient to implement diffeomorphism invariance because arbitrary diffeo-
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morphisms can be approximated by semi-analytic ones (by contrast, fully analytic diffeomorphisms,
that can be completely characterized by their restriction to any small open subset of Σ, do not form
a dense subgroup of the group of all diffeomorphisms; see the extended discussion in section 19
exploring what is needed for a satisfactory implementation of diffeomorphism invariance).

Actually 1, one could argue that the algebra generated by the linear smearings introduced in
def. 9.5 (say compactly supported ones if we want to switch back to a possibly non-compact slice Σ)
also carry an action of the group of diffeomorphisms: the observable labeled by a certain (d − 1)-
or 1-form is transformed into the observable labeled by the pullback of this form. In addition, a
projective state space could be easily derived for this algebra: the configuration spaces spanned
by finitely many smearings of the connection are affine spaces, so we would be in the context of
[68] (that we covered in theorem 6.2 and that we will reexamine from a different perspective in
subsection 18.1). However, the behavior of these linear observables under gauge transformation is
not very convenient: in particular, if we want to express the transformation of a smearing of the
connection in terms of a smearing in the same reference cross-section s, we need to include an
extra contribution (because connections only transform as cross-sections of G up to an additional
constant, coming from the derivative of the gauge transformation under consideration). By contrast,
the transformation of an holonomy is perfectly transparent, as it only depends on the gauge shifts
at the beginning and at the end of the edge.

On the other hand, fluxes in a fixed cross-section s do not transform well under gauge trans-
formation: unless the considered gauge transformation is constant (with respect to s) along the
surface supporting a flux observable, the transformation of this observable will not be of the flux
type (at least not relative to this cross-section s). Instead, it will be a weighted flux, obtained by
integrating the electric field weighted by a (g-valued) function on the surface (so that the non-
constant gauge transformation can be absorbed into the weight function). This is not a problem in
the context of the Ashtekar-Lewandowski Hilbert space HAL because, as stressed in the main in-
troduction, the nature of the Ashtekar-Lewandowski vacuum enforces discreteness of the geometry
along the slice (which is encoded by the electric field): more precisely, the flux operator through a
surface S, when evaluated on states in HAL , is effectively supported on discrete points of S. Thus,
the full algebra generated by holonomies and weighted fluxes can be represented on HAL without
overhead. Unfortunately, weighted fluxes cannot be incorporated in the projective structure we will
setup in the subsequent sections (basically because, as argued above, fluxes on intersecting surfaces
do not Poisson-commute, so that the algebra generated by two different weighted fluxes supported
on the same surface could be infinite-dimensional, which would prevent us from assembling the
continuum theory out of small, finite-dimensional phase spaces).

Because of this, the projective state space we will construct will not be gauge-invariant. In
particular, we will, from now on, assume that a global cross-section s can be chosen in P (dropping
from the notations the explicit s-labeling of all observables): both the algebra of observables and
the state space will depend on this choice. This is a severe shortcoming of the construction, and
we will sketch in sections 13 and 20 a path to overcome it.

1. Thanks to Jerzy Lewandowski for drawing my attention to this possibility.
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10. Factorizing system

The construction employed in LQG to obtain the Ashtekar-Lewandowski representation of the
holonomy-flux algebra uses an inductive limit of ‘small’ Hilbert spaces, with building blocks labeled
by graphs (see [60, 8], [92, section II.8.2] or subsection 12.2). Equivalently, it can be understood
as relying on a projective limit of finite dimensional configuration spaces (recall that we have
underlined the correspondence around prop. 6.5). Each graph corresponds to a selection of position
variables, namely the holonomies along its edges: it thus defines a small configuration space, that
can be identified with GN (one group variable per edge).

In principle, we could associate to any such graph a corresponding phase space, as the cotangent
bundle on its configuration space. However, if we now consider a big graph γ′ and a subgraph γ of
γ′, there is no preferred way of defining a projection from the phase space Mγ′ thus associated to
γ′ into the phase space Mγ associated to γ. In order to define unambiguously such a projection, we
would indeed have to specify how the impulsion variables described by Mγ should be transported
to Mγ′ (having in mind that a downward projection between the phase spaces is dual to an upward
injection between the algebras of observables). We pointed out in prop. 2.10 that a projection
between the phase spaces encapsulates, at least locally, the same information as a factorization of
Mγ′ into a Cartesian product of Mγ times a complementary phase space Mγ′→γ (remember that the
complementary degrees of freedom were characterized by their vanishing Poisson brackets with the
retained ones). In addition, if the projection we are considering is compatible with the splitting
of the phase spaces into position and momentum variables (like in the setup we considered in
theorem 6.2), this factorization of Mγ′ should go down to a factorization Cγ′ ≈ Cγ′→γ × Cγ of the
underlying configuration spaces.

As stressed before def. 2.15, it is essential to get such a preferred choice of complementary
configuration variables (spanning Cγ′→γ ) that we specify not only which configuration variables are
to be retained by γ, but also which momentum variables: if we are only provided with a projection
between configuration spaces, we cannot single out suitable complementary variables within Cγ′ .
These considerations suggest that the desired projective structure should rely on labels that are
made not only of edges but also of surfaces, whose role will be, for each label η, to select which
fluxes are to be the momentum variables associated to η. Besides, such mixed labels clearly sounds
promising in view of giving the holonomies and fluxes a more symmetric status (in support of the
goal, put forward in the main introduction, to help study of the semi-classical regime of the theory).

The need to include surfaces in the labels was already recognized by Okołów in [68, 69]. The label
set he was using is however not immediately applicable to the non-Abelian case, which requires,
as we will see, to impose more restrictive conditions on the relative disposition of the edges and
surfaces. The reason why complications emerge in the non-Abelian case is the following. As
mentioned above, a projection from the phase spaces associated to a finer label η′ into the one
associated to a coarser label η is dual to an embedding of the algebra of observables selected by
η into the algebra of observables selected by η′. Moreover, this embedding is linear and preserves
the Poisson brackets (prop. 2.2), ie. it is an injective algebra morphism. But this requires that the
vector space generated by the observables associated to η, within the algebra of η′, should be closed
under Poisson brackets, and that the algebra structure thus induced by η′ should match the one
seen from η.
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This is a rather harmless requirement in the Abelian case, for there the Poisson bracket of a
flux variable with an holonomy variable is just a constant (possibly 0 depending on the intersection
of the corresponding edge and surface) and the flux operators commute with each other (see the
comment preceding prop. 9.10), so the set of observables associated to a collection of edges and
surfaces will automatically be closed under Poisson brackets. The aim of the present section will
therefore be to determine which collections of edges and surfaces are admissible when the gauge
group is arbitrary, and to check that the label set they are forming, although much reduced, is still
directed.

Actually there do exist possibilities to write the state space of a theory of connection in projective
form while using labels made of edges only: two such models have been for example proposed in
[66] and, at the classical level, in [89]. In subsection 12.2, we will discuss in more details how a
non ambiguous choice of complementary variables is achieved in these proposals without explicitly
referring to the momentum variables in the definition of the labels, and why the thus obtained
projective structures would altogether not fit our purpose.

10.1 Definition of the label set

We begin by recalling a few elementary properties on the subject of edges and surfaces [92,
section II.6] , that we will use again and again in the following.

Subedges, and in particular the splitting of an edge into parts, will play an important role in
the construction, because the holonomy along a composed edge is just the composition of the
holonomies on its parts.

Proposition 10.1 Let e ∈ Ledges and let p 6= p′ be two distinct points in r(e). Then, there exists aunique edge e [p,p′ ] ∈ Ledges such that:
r
(
e [p,p′ ]) ⊂ r(e) , b

(
e [p,p′ ]) = p & f

(
e [p,p′ ]) = p′ . (10.1.1)

We denote by e−1 the reversed edge e−1 := e [f (e),b(e)] . We also define a strict, total order on thepoints of r(e) by:
∀p ∈ r(e), b(e) <(e) p ⇔ b(e) 6= p

& ∀p, p′ ∈ r(e) \ {b(e)} , p <(e) p′ ⇔ r
(
e [b(e),p]) ( r

(
e [b(e),p′ ]) (10.1.2)

For any p1 6= p4 ∈ r(e) and any p2 6= p3 ∈ r
(
e [p1,p4 ]), we have:

1. (e [p1,p4 ]) [p2,p3 ] = e [p2,p3 ] , so in particular (e−1)−1 = e , (e−1) [p1,p4 ] = e [p1,p4 ] and (e [p1,p4 ])−1 =
e [p4,p1 ];

2. r (e [p1,p4 ]) = {{p ∈ r(e) | p1 6(e) p 6(e) p4} if p1 <(e) p4
{p ∈ r(e) | p4 6(e) p 6(e) p1} if p1 >(e) p4 ;

3. p2 <(e [p1,p4 ] ) p3 ⇔
{
p2 <(e) p3 if p1 <(e) p4
p2 >(e) p3 if p1 >(e) p4 .
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Proof Existence and uniqueness. Let p 6= p′ ∈ r(e) and let ĕ : U → V be a representative of e.Let t 6= t′ ∈ [0, 1] such that ĕ(t, 0) = p and ĕ(t′, 0) = p′. The map φ1, defined by:
φ1 : U → Rd ≈ R×Rd−1(τ, x) 7→ (t + τ (t′ − t), x) ,

is an analytic diffeomorphism onto its image W1 := φ1 〈U〉, with φ1(0, 0) = (t, 0), φ1(1, 0) = (t′, 0)and φ1 〈[0, 1]× {0}d−1〉 = [t, t′] × {0}d−1. Next, U is an open neighborhood of [0, 1] × {0}d−1 in
Rd, thus also of [t, t′] × {0}d−1. Hence, U1 := φ−11 〈U〉 is an open neighborhood of [0, 1] × {0}d−1in Rd. Defining W ′1 = φ1 〈U1〉 and V1 := ĕ 〈W ′1〉, ĕ1 := ĕ|W ′1→V1 ◦ φ1|U1→W ′1 is an encharted edge,
with b(ĕ1) = p, f (ĕ1) = p′ and r(ĕ1) = ĕ

〈[t, t′]× {0}d−1〉 ⊂ r(ĕ).
Let ĕ2 : U2 → V2 be an encharted edge such that b(ĕ2) = p, f (ĕ2) = p′ and r(ĕ2) ⊂ r(ĕ). Since Vis an open neighborhood of r(ĕ) in Σ, W2 := (ĕ2)−1 〈V 〉 is an open neighborhood of [0, 1]× {0}d−1in Rd and φ2 = (ĕ−1) ◦ ( ĕ2|W2

) : W2 → U is an analytic diffeomorphism onto its image. Moreover,we have φ2(0, 0) = (t, 0), φ2(1, 0) = (t′, 0) and φ2 〈[0, 1]× {0}d−1〉 ⊂ [0, 1] × {0}d−1. So, by the
intermediate value theorem, φ2 〈[0, 1]× {0}d−1〉 = [t, t′]×{0}d−1, and therefore r(ĕ1) = r(ĕ2). Sincewe also have b(ĕ2) = p = b(ĕ1), ĕ1 and ĕ2 are two representative of the same edge e [p,p′ ] .Prop. 10.1.1 then follows immediately from eq. (10.1.1).
Order on r(e). That eq. (10.1.2) unambiguously defines is a strict order on r(e) (ie. an irreflexive andtransitive relation) can be checked directly. Moreover, if ĕ is a representative of e and t, t′ ∈ [0, 1]are such that ĕ(t, 0) = p and ĕ(t′, 0) = p′, we have, from the previous point:

p <(e) p′ ⇔ t < t′ .In particular, <(e) is therefore a total order.Let p1 6= p4 ∈ r(e) and p2 6= p3 ∈ r
(
e [p1,p4 ]). Using the explicit expression above for arepresentative of e [p1,p4 ], there exist t1 6= t4 ∈ [0, 1] and t2 6= t3 ∈ [t1, t4] such that ∀i 6 4, ĕ(ti, 0) = piand we have:

r
(
e [p1,p4 ]) = ĕ

〈[t1, t4]× {0}d−1〉 and p2 <(e [p1 ,p4 ] ) p3 ⇔
(
t2 − t1
t4 − t1 <

t3 − t1
t4 − t1

) ,
which yields props. 10.1.2 and 10.1.3. �

Proposition 10.2 We say that e1, . . . , en ∈ Ledges are composable iff there exist an edge e ∈ Ledgesand points p0, p1, . . . , pn in r(e) such that:
b(e) = p0 <(e) p1 <(e) . . . <(e) pn−1 <(e) pn = f (e) & ∀i ∈ {1, . . . , n} , ei = e [pi−1,pi ] . (10.2.1)Then e is uniquely determined by e1, . . . , en and we write e = en◦. . .◦e1 . Moreover, the followingproperties holds:

1. e−1
n , . . . , e−11 are composable and e−1 = e−11 ◦ . . . ◦ e−1

n ;
2. ∀i 6 j ∈ {1, . . . , n} , ei, . . . , ej are composable and e [b(ei),f (ej )] = ej ◦ . . . ◦ ei ;
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3. if, for all i ∈ {1, . . . , n}, there exist composable edges ei,1, . . . , ei,mi ∈ Ledges such that ei =
ei,mi ◦ . . . ◦ ei,1, then e1,1, . . . , e1,m1, . . . , . . . , en,1, . . . , en,mn are composable and:

e = en,mn ◦ . . . ◦ en,1 ◦ . . . ◦ . . . ◦ e1,m1 ◦ . . . ◦ e1,1 .
Proof Let e1, . . . , en ∈ Ledges and let e ∈ Ledges and p0, p1, . . . , pn ∈ r(e) be as in eq. (10.2.1). Let
ĕ be a representative of e and t0, t1, . . . , tn ∈ [0, 1] such that ĕ(ti, 0) = pi for all i 6 n. Then, usingauxiliary results from the proof of prop. 10.1, eq. (10.2.1) can be rewritten as:0 = t0 < t1 < . . . < tn−1 < tn = 1

and ∀i ∈ {1, . . . , n} , ĕ〈[ti−1, ti]× {0}d−1〉 = r(ei) & ĕ(ti−1, 0) = b(ei) .
Thus, r(e) = n⋃

i=1 r(ei) and b(e) = b(e1), and therefore e is uniquely determined by e1, . . . , en .
Then, props. 10.2.1 to 10.2.3 can be checked using props. 10.1.1 to 10.1.3. �

Definition 10.3 A graph is a finite set of edges γ ⊂ Ledges such that:
∀e 6= e′ ∈ γ, r(e) ∩ r(e′) ⊂ {b(e), f (e)} ∩ {b(e′), f (e′)} .

We denote the set of graphs by Lgraphs and we equip it with the preorder (reflexive and transitiverelation):
∀γ, γ′ ∈ Lgraphs,

γ 4 γ′ ⇔
(
∀e ∈ γ, ∃ e1, . . . , en ∈ γ′, ∃ ε1, . . . , εn ∈ {±1} / e = eεnn ◦ . . . ◦ e

ε11 ) .(10.3.1)(The transitivity of 4 follows from props. 10.2.1 and 10.2.3.)
As a warming up for the more difficult proof of directedness that we will carry out in subsec-

tion 10.2 (where we will be dealing with labels that are made of edges and surfaces), we recall
here why the set of analytic graphs Lgraphs is directed [60, 92]. Note that it is only in lemma 10.5
(and in its analogue for the intersection of an edge with a surface, viz. lemma 10.8) that the ana-
lyticity actually plays a role. Hence, any class of edges (and surfaces) that could provide such an
intersection property would do as well for the whole construction [10].

Proposition 10.4 Let γ̃ be a finite set of edges. Then, there exists γ ∈ Lgraphs such that ∀e ∈
γ̃, {e} 4 γ.In particular, Lgraphs, 4 is a directed preordered set.
Lemma 10.5 Let e, e′ ∈ Ledges such that:
∀p ∈ r(e) \ {b(e)} , ∃ p′ ∈ r(e) / b(e) <(e) p′ <(e) p & p′ ∈ r(e′) . (10.5.1)

Then, there exists p ∈ r(e) \ {b(e)} such that r (e [b(e),p]) ⊂ r(e′) .
Proof Let ĕ : U → V , resp. ĕ′ : U ′ → V ′, be a representative of e, resp. e′. Eq. (10.5.1) can be
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rewritten:
∀t ∈ ] 0, 1] , ∃ t′ ∈ ] 0, t [ / ĕ(t′, 0) ∈ r(e′) . (10.5.2)

U being an open neighborhood of [0, 1] × {0}d−1 in Rd there exists ε ∈]0, 1] such that ]−ε, ε[ ×
{0}d−1 ⊂ U . Now, the map t′ 7→ ĕ(t′, 0) is continuous from ]−ε, ε[ into Σ and r(e′) is compact, so
b(e) = ĕ(0, 0) ∈ r(e′) ⊂ V ′. Hence, since V ′ is an open subset of Σ, there exists ε′ ∈]0, ε] such that
ĕ
〈]− ε′, ε′[×{0}d−1〉 ⊂ V ′.
Thus, we can define a map ψ :]− ε′, ε′[→ Rd−1 by:
ψ : ]− ε′, ε′ [ → Rd−1

t 7→ s ◦
(
ĕ′
)−1 ◦ ĕ(t, 0) ,

where s : Rd ≈ R × Rd−1 → Rd−1 is the projection map on the second Cartesian factor. ψ isanalytic as a composition of analytic maps and, from eq. (10.5.2), 0 is an accumulation point of
ψ−1 〈0〉, hence ψ ≡ 0.Next, we define the map ψ′ :]− ε′, ε′[→ R by:

ψ′ : ]− ε′, ε′ [ → R

t 7→ p ◦
(
ĕ′
)−1 ◦ ĕ(t, 0) ,

where p : Rd ≈ R × Rd−1 → R is the projection map on the first Cartesian factor. ψ′ is acontinuous, injective map (combining ψ ≡ 0 with the bijectivity of ĕ and ĕ′), ψ′(0) ∈ [0, 1], and fromeq. (10.5.2) there exists ε′′ ∈]0, ε′[ such that ψ′(ε′′) ∈ [0, 1], hence by the intermediate value theorem
ψ′ 〈[0, ε′′]〉 ⊂ [0, 1]. In other words, defining p := ĕ(0, ε′′) ∈ r(e)\{b(e)}, we have r (e [b(e),p]) ⊂ r(e′).

�

Proof of prop. 10.4 Intersection of 2 edges. Let e1, e2 ∈ Ledges . We define:
C (e1, e2) := {e3 ∈ Ledges | r(e3) ⊂ r(e1) ∩ r(e2)} ,and:
c(e1, e2) := {p ∈ r(e1) ∩ r(e2) ∣∣ ∀e3 ∈ C (e1, e2), p ∈ r(e3) ⇒ p ∈ {b(e3), f (e3)}} .

Then, for any p ∈ r(e1) \ {b(e1)} we have, by applying lemma 10.5 to e = e1, [p,b(e1)], e′ = e2 andusing prop. 10.1:
∃ p′ <(e1) p / (

∀p′′ ∈ r(e1), p′ <(e1) p′′ <(e1) p ⇒ p′′ /∈ r(e2)) or r (e1, [p′,p]) ⊂ r(e2) ,and therefore:
∃ p′ <(e1) p / ∀p′′ ∈ r(e1), p′ <(e1) p′′ <(e1) p ⇒ p′′ /∈ c(e1, e2) .Similarly, for any p ∈ r(e1) \ {f (e1)}, applying lemma 10.5 to e = e1, [p,f (e1)], e′ = e2 yields:
∃ p′ >(e1) p / ∀p′′ ∈ r(e1), p <(e1) p′′ <(e1) p′ ⇒ p′′ /∈ c(e1, e2) .

Hence, choosing a representative of e1 and using the explicit form of <(e1) from the proof ofprop. 10.1, we can, for any p ∈ r(e1), construct an open neighborhood Vp of p in r(e1) such that
c(e1, e2) ∩ Vp ⊂ {p}. Since r(e1) is compact, we thus have that c(e1, e2) is finite.
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Let p ∈ r(e1) ∩ r(e2) \ c(e1, e2). Using prop. 10.1.2 together with the definition of c(e1, e2), thereexists p′ ∈ r(e1) such that:
p′ <(e1) p and r

(
e1, [p′,p]) ⊂ r(e2) .Thus, using again the explicit form of <(e1) in terms of some representative of e1, we can define

pinf ∈ r(e1) by:
pinf = inf

<(e1)
{
p′ ∈ r(e1) ∣∣ p′ <(e1) p & r

(
e1, [p′,p]) ⊂ r(e2)} ,

and pinf ∈ r(e2) (for r(e1) ∩ r(e2) is closed in r(e1)). Moreover, for any p′′ ∈ r(e1) with pinf <(e1)
p′′ <(e1) p, there exists p′ ∈ r(e1) such that:

p′ <(e1) p′′ <(e1) p and r
(
e1, [p′,p]) ⊂ r(e2) ,

therefore p′′ ∈ r(e2). Hence, r (e1, [pinf,p]) ⊂ r(e2) . On the other hand, if there exists e3 ∈ C (e1, e2)with pinf ∈ r(e3), then e3 = e1, [b(e3),f (e3)], thus there exists p′′ ∈ {b(e3), f (e3)} such that:
p′′ 6(e1) pinf <(e1) p and r

(
e1, [p′′,p]) ⊂ r(e2) ,so pinf = p′′. Therefore, pinf ∈ c(e1, e2). Similarly, we can construct psup ∈ c(e1, e2) such that

p <(e1) psup and r (e1, [p,psup ]) ⊂ r(e2) . To summarize, we have proved:
∀p ∈ r(e1) ∩ r(e2) \ c(e1, e2),

∃ pinf, psup ∈ c(e1, e2) / pinf <(e1) p <(e1) psup & r
(
e1, [pinf,psup ]) ⊂ r(e2) . (10.5.3)

Intersection of 3 edges. Let e1, e2, e3 ∈ Ledges and consider p ∈ r(e1) ∩ r(e2) ∩ r(e3) with p /∈
c(e1, e3) ∪ c(e2, e3). Then, for i = 1, 2, there exist p′i, p′′i ∈ r(e3) such that:

p′i <(e3) p <(e3) p′′i and r
(
e3, [p′i,p′′i ]) ⊂ r(ei) .

Hence, defining p′ := max
<(e3)

(
p′1, p′2) and p′′ := min

<(e3)
(
p′′1 , p′′2), we have:

p′ <(e3) p <(e3) p′′ and e3, [p′,p′′ ] ∈ C (e1, e2) .Thus, p /∈ c(e1, e2). In other words, we get:
c(e1, e2) ∩ r(e3) ⊂ c(e1, e3) ∪ c(e2, e3) .

Directedness of Lgraphs . Let γ̃ be a finite subset of Ledges, and define:
c(γ̃) := ⋃

e1,e2∈γ̃
c(e1, e2) .

Let e1 ∈ γ̃. From the previous point, we have:
c(e1, γ̃) := c(γ̃) ∩ r(e1) = ⋃

e2∈γ̃
c(e1, e2) ,

and since all c(e1, e2) are finite, so is c(e1, γ̃). Moreover, {b(e1), f (e1)} = c(e1, e1) ⊂ c(e1, γ̃), sothere exist ne1 > 1 and pe10 , . . . , pe1
ne1 ∈ r(e1) such that:
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b(e1) = pe10 <(e1) pe11 <(e1) . . . <(e1) pe1
ne1 = f (e1) and c(e1, γ̃) = {pe10 , . . . , pe1

ne1
} .

Hence, e1 = e1, ne1 ◦ . . . ◦ e1, 1 , where e1,i := e1, [pe1i−1,pe1i ] .Let e1, e2 ∈ γ̃ and i ∈ {1, . . . , ne1}. Suppose that there exists p ∈ r(e1,i) \ {pe1
i−1, pe1

i } such that
p ∈ r(e2) . By definition of e1,i, we then have p ∈ r(e1) ∩ r(e2) \ c(e1, e2), so from eq. (10.5.3),
∃ k 6 i − 1, ∃ k ′ > i

/
r
(
e1, [pe1k ,pe1k′ ]

)
⊂ r(e2) .

Thus, we have in particular r(e1,i) ⊂ r(e2). Moreover, r(e1,i) ∩ c(e2, γ̃) = r(e1,i) ∩ c(γ̃) = r(e1,i) ∩
c(e1, γ̃) = {pe1

i−1, pe1
i }. Hence, there exist j ∈ {1, . . . , ne2} such that:(

pe1
i−1 = pe2

j−1 & pe1
i = pe2

j

) or (
pe1
i−1 = pe2

j & pe1
i = pe2

j−1
) .

In other words, we have proved:
∀e1, e2 ∈ γ̃, ∀i ∈ {1, . . . , ne1} ,(

r(e1,i) ∩ r(e2) ⊂ {pe1
i−1, pe1

i }
) or (∃ j ∈ {1, . . . , ne2} , ∃ ε = ±1 / e1,i = eε2,j) .Moreover, we have from prop. 10.1.2:

∀e1 ∈ γ̃, ∀i 6= j ∈ {1, . . . , ne1} , r(e1,i) ∩ r(e1,j ) ⊂ {pe1
i−1, pe1

i } ,so we get:
∀e1, e2 ∈ γ̃, ∀i ∈ {1, . . . , ne1} , ∀j ∈ {1, . . . , ne2} ,(

r(e1,i) ∩ r(e2,j ) ⊂ {pe1
i−1, pe1

i }
) or (∃ ε = ±1 / e1,i = eε2,j) . (10.5.4)

Finally, we define the finite subset γ′ := {e1,i ∣∣ e1 ∈ γ̃, i ∈ {1, . . . , ne1}
}
⊂ Ledges and we canconstruct γ ⊂ γ′, such that:

∀e ∈ γ′, ∃! ε = ±1 / eε ∈ γ .From eq. (10.5.4), we then have:
∀e, e′ ∈ γ,

(
r(e) ∩ r(e′) ⊂ {b(e), f (e)}) or (e = e′

) .Therefore γ ∈ Lgraphs and, by construction, ∀e1 ∈ γ̃, {e1} 4 γ.In particular, for any γ, γ′ ∈ Lgraphs, there exists γ′′ ∈ Lgraphs, such that ∀e ∈ γ ∪ γ′, {e} 4 γ′′,hence γ, γ′ 4 γ′′. �

We now bring the surfaces into play. In accordance with prop. 9.10 (and the conventions
summarized on fig. 9.1), the symplectic structure of the ‘small’ phase spaces spanned by finitely
many holonomies and fluxes (and therefore, on the quantum side, the action of the flux operators
in the position representation) will be specified by the relative positioning of the corresponding
edges and surfaces.

It will make the construction in subsection 10.3 appreciably simpler to consider ‘one-sided’ fluxes,
that only interact with the edges reaching the surface from one side (flux associated to a surface
in the ‘continuum’ picture of def. 9.8 will then be recovered as the half-difference of the one-sided
fluxes on both sides of this surface, see prop. 10.28). Also, we will impose that all edges having a
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Figure 10.1 – Examples of edges above (on the left, assuming the surface is oriented upward) and
indifferent to a surface (on the right)

non-trivial interaction with a given surface should start from that surface (reorienting them if need
be), so that flux operators always act at the beginning of edges. Thus, we classify the edges adapted
to a surface as being above, below or indifferent to it (instead of the slightly different classification
as outside/inside/up/down [92, section II.6.4]).

Since the surfaces we are considering are closed, one might be worried that an edge hitting some
surface precisely on its boundary would have an unclear positioning: this is however not the case,
for our surfaces have been defined in def. 9.7 as being embedded within an open analytic plane,
which extends beyond the surface itself and allows to distinguish between above and below in its
neighborhood. In particular, an edge intersecting the boundary of a surface can only be indifferent
to that surface if it runs along the same analytic plane.

Examples of well-positioned edges are shown in fig. 10.1. Note that all figures will be drawn
in the case d = 2 (where both edges and surfaces are one-dimensional), as this is sufficient to
illustrate most aspects of the construction (we will comment on subtleties arising in the physically
more relevant case d = 3 when appropriate).

Proposition 10.6 Let e ∈ Ledges and S ∈ Lsurfcs. We say that:
1. e is indifferent to S , and we write e y S , if there exist a representative S̆ : U → V of S and
e1, . . . , en ∈ Ledges such that:

e = en ◦ . . . ◦ e1 & ∀i ∈ {1, . . . , n} , r(ei) ∩ r(S) = ∅ or r(ei) ⊂ S̆ 〈Uo〉 ,where Uo := U ∩
(
{0} ×Rd−1);

2. e is above S , and we write e ↑ S , if there exist a representative S̆ : U → V of S and
e1, e2 ∈ Ledges such that:

e = e2 ◦ e1, e2 y S, r(e1) ∩ r(S) = {b(e)} & r(e1) \ {b(e)} ⊂ S̆ 〈U+ \ Uo〉 ,where U+ := U ∩
(
R+ ×Rd−1);

3. e is below S , and we write e ↓ S , if there exist a representative S̆ : U → V of S and
e1, e2 ∈ Ledges such that:
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The points in
c(e, S) are marked

by crosses.

Figure 10.2 – Adapting an edge to a given surface

e = e2 ◦ e1, e2 y S, r(e1) ∩ r(S) = {b(e)} & r(e1) \ {b(e)} ⊂ S̆ 〈U− \ Uo〉 ,where U− := U ∩
(
R− ×Rd−1) and R− is the set of non-positive reals.We have the following properties:4. these 3 cases are mutually disjoint;

5. if e y S , then e−1 y S ;
6. if e1, e2 ∈ Ledges are such that e = e2 ◦ e1, then, for any � ∈ {y , ↑, ↓

} :
e � S ⇔ e1 � S & e2 y S .

Proof Assertion 10.6.4 follows from the definition of the equivalence relation in def. 9.7, assertions10.6.5 and 10.6.6 from the properties of subedges (prop. 10.1) and edge compositions (prop. 10.2).�
Given some surface, we mentioned in the comments preceding prop. 9.10 that any edge can be

subdivided into parts adapted to that surface [92, section II.6.4]. As announced, this is the second
place where the requirement for analyticity plays a critical role: it ensures that an edge cannot
cross the plane of the surface more than finitely many times (fig. 10.2). Thus, we can cut this edge
at each intersection point, and, splitting again each section in two parts, we can reorient these
parts so that they start from the surface.

Proposition 10.7 For any e ∈ Ledges and any S ∈ Lsurfcs, there exist e1, . . . , en ∈ Ledges and
ε1, . . . , εn ∈ {±1} such that:

e = eεnn ◦ . . . ◦ e
ε11 & ∀i ∈ {1, . . . , n} , ei �i S with �i∈ {y , ↑, ↓

} .
Lemma 10.8 Let e ∈ Ledges and S ∈ Lsurfcs. Then, there exists p ∈ r(e) \ {b(e)} such that
e[b(e),p] � S with � ∈ {y , ↑, ↓

} .
Proof If b(e) /∈ r(S), then there exists an open neighborhood of b(e) in r(e) that does not intersects
r(S), for r(S) is compact. Hence, choosing some representative of ĕ and using the explicit expressionfor the range of a subedge (from the proof of prop. 10.1), there exists p ∈ r(e) \ {b(e)} such that
r
(
e[b(e),p]) ∩ r(S) = ∅, so e[b(e),p] y S .We now assume b(e) ∈ r(S) and we pick out representatives ĕ : U → V of e and S̆ : U ′ → V ′
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of S . U is an open neighborhood of [0, 1] × {0}d−1 in Rd, V ′ an open neighborhood of r(S) inΣ, and ĕ(0, 0) ∈ r(S). Hence, as in the proof of lemma 10.5, there exists ε ∈]0, 1] such that
ĕ
〈]−ε, ε[× {0}d−1〉 ⊂ V ′ and we can define an analytic map ψ :]− ε, ε[→ R by:
ψ : ]− ε, ε[ → R

t 7→ p ◦
(
S̆
)−1
◦ ĕ(t, 0) ,

where p : Rd ≈ R×Rd−1 → R is the projection map on the first Cartesian factor.If there exists ε′ ∈ ]0, ε[ such that ∀t ∈ ]0, ε′[ , ψ(t) > 0 (resp. < 0), we can take p := ĕ(ε′′, 0),with some ε′′ ∈ ]0, ε′[, and we have e[b(e),p] ↑ S (resp. ↓ S ). Hence, there only remains to consider:
∀ε′ ∈ ]0, ε[ , ∃ t1, t2 ∈ ]0, ε′[ /ψ(t1) > 0 & ψ(t2) 6 0 .The intermediate value theorem yields:
∀ε′ ∈ ]0, ε[ , ∃ t ∈ ]0, ε′[ /ψ(t) = 0 .

Therefore, 0 is an accumulation point of ψ−1 〈0〉, so ψ ≡ 0. Defining p = ĕ(ε′, 0) for some ε′ ∈ ]0, ε[,we thus get e[b(e),p] y S . �

Proof of prop. 10.7 Transversal crossings c(e, S). Let e ∈ Ledges and S ∈ Lsurfcs. We define:
c(e, S) := {p ∈ r(e) ∣∣∣ ∃ p′ ∈ r(e) \ {p} / e[p,p′ ] ↑ S or e[p,p′ ] ↓ S} . (10.8.1)

Let p ∈ r(e) \ {b(e)}. Applying lemma 10.8 to e[p,b(e)] and S , there exists p′ <(e) p such that
e[p,p′ ] �p S with �p∈ {y , ↑, ↓

} . Let q ∈ r(e) such that p′ <(e) q <(e) p and assume that there
exists q′ ∈ r(e) \ {q} such that e[q,q′ ] �q S with �q∈ {y , ↑, ↓

} . Since q ∈ r(e[p,p′ ]) \ {p, p′}, thereexists q′′ ∈ (r(e[q,q′ ]) \ {q, q′}) ∩ (r(e[p,p′ ]) \ {p, p′}). From prop. 10.6.6, e[q,q′′ ] �q S . On the otherhand, we have either e[p,p′ ] = e[q′′,p′ ] ◦ e[q,q′′ ] ◦ e[p,q] (if q′′ <(e) q) or e[p,p′ ] = e[q,p′ ] ◦ e[q′′,q] ◦ e[p,q′′ ] (if
q′′ >(e) q), so using twice prop. 10.6.6 (together with prop. 10.6.5), we get e[q,q′′ ] y S . Therefore,prop. 10.6.4 yields �q=y .Thus, for any p ∈ r(e) \ {b(e)}, there exists p′ <(e) p such that:
∀q ∈ r(e), p′ <(e) q <(e) p ⇒ q /∈ c(e, S) .Similarly, for any p ∈ r(e) \ {f (e)}, there exists p′ >(e) p such that:
∀q ∈ r(e), p <(e) q <(e) p′ ⇒ q /∈ c(e, S) .As in the proof of prop. 10.4, this ensures that c(e, S) is finite.

Subedges with no transversal crossing are indifferent. Let p 6= p′ ∈ r(e) such that r(e′)∩c(e, S) =
∅, with e′ := e[p,p′ ]. Applying lemma 10.8 to e′ and recalling the definition of c(e, S), there exists
p′′ ∈ r(e′) \ {p} such that e[p,p′′ ] y S . This allows to define psup ∈ r(e′) \ {p} by:

psup := sup
<(e′)
{
p′′ ∈ r(e′) \ {p} ∣∣ e[p,p′′ ] y S

} .
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Applying lemma 10.8 to e[psup,p], there exists p′′ such that:
p 6(e′) p′′ <(e′) psup and e[psup,p′′ ] y S .On the other hand, by definition of psup , there exists p′′′ such that:
p′′ <(e′) p′′′ <(e′) psup and e[p,p′′′ ] y S .Combining props. 10.6.5 and 10.6.6, we thus get e[p,psup ] y S .Let p′′ ∈ r(e′) \ {p, p′} such that e[p,p′′ ] y S . Applying lemma 10.8 to e[p′′,p′ ], there exists p′′′ suchthat:
p′′ <(e′) p′′′ 6(e′) p′ and e[p′′,p′′′ ] y S ,hence e[p,p′′′ ] y S (using again prop. 10.6.6), and therefore p′′ <(e′) psup. So we have psup = p′.Together with the previous point, this implies:
∀p 6= p′ ∈ r(e), r

(
e[p,p′ ]) ∩ c(e, S) = ∅ ⇒ e[p,p′ ] y S . (10.8.2)

Well-positioned subedges. Let p 6= p′ ∈ r(e) such that r (e[p,p′ ]) ∩ c(e, S) ⊂ {p}. Applyinglemma 10.8 to e[p,p′ ], there exists p′′ ∈ r
(
e[p,p′ ]) \ {p} such that e[p,p′′ ] � S with � ∈ {y , ↑, ↓

} .If p′′ = p′, then e[p,p′ ] � S . Otherwise, we have r
(
e[p′′,p′ ]) ∩ c(e, S) = ∅, so from eq. (10.8.2),

e[p′′,p′ ] y S , and therefore e[p,p′ ] � S (using e[p,p′ ] = e[p′′,p′ ] ◦ e[p,p′′ ] together with prop. 10.6.6). Thus,we have proved:
∀p 6= p′ ∈ r(e), r

(
e[p,p′ ]) ∩ c(e, S) ⊂ {p} ⇒ e[p,p′ ] � S with � ∈ {y , ↑, ↓

} . (10.8.3)
Decomposition of e adapted to S. Since c(e, S) is finite there exists n > 1, κ ∈ {0, 1} and
p0, p1, . . . , pn ∈ r(e) such that:

b(e) = p0 <(e) p1 <(e) . . . <(e) pn−1 <(e) pn = f (e) ,and:
c(e, S) = {p2k+κ | k ∈ N, 2k + κ 6 n} . (10.8.4)For i ∈ {1, . . . , n}, we define:
εi = {+1 if i+ κ is odd

−1 if i+ κ is even ,
and ei = eεi[pi−1,pi ]. From eqs. (10.8.3) and (10.8.4), there exists �i∈ {y , ↑, ↓

} such that ei �i S .Moreover, we have e = eεnn ◦ . . . ◦ e
ε22 ◦ eε11 . �

As argued at the beginning of the present section, a satisfactory projective limit of phase spaces
for conjugate holonomy and flux variables requires labels containing not only edges but also sur-
faces. The difficulty is that we cannot prevent the surfaces in a label to intersect wildly, for this
would void the hopes for directedness: if a surface S1 belongs to some label, and a surface S2
belongs to some other label, there has to be, in a directed label set, a label containing both S1 and
S2 at the same time. On the other hand, the set of variables described by a label should be closed
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under Poisson brackets: as already stressed, the algebra of observables associated to some label η
will be mounted by pullback into the algebra of any finer label η′ in a way that preserves the Pois-
son brackets (prop. 2.2), so the brackets between two variables should be correct all the way down
from the very first label in which these two variables appear. Since we know from subsection 9.2
that fluxes associated to intersecting surfaces do not commute (at least as soon as the gauge group
G is non-Abelian), the additional variables arising as their Poisson brackets should therefore be
included as soon as these surfaces are considered.

Thus, whenever the surfaces in a label η intersect, the flux variables supported on their inter-
section are naturally among the observables selected by η. Accordingly, the momentum variables
assigned to this label are not attached to the individual surfaces in η, but rather to so called ‘faces’,
which enumerate all possible non trivial ways of positioning an edge with respect to these surfaces.
It might be that different collections of surfaces actually result in the same set of momentum vari-
ables, which motivates the equivalence relation introduced in def. 10.10. Also, the ordering of the
corresponding equivalence classes is prescribed by the comparison of their associated algebras of
momentum variables (as will become clear in prop. 10.26).

This also means that the flux operators we are retaining as observables (prop. 10.27) are not just
the ones supported on the ‘round’ surfaces described in def. 9.7, but also on all finite intersections
and differences thereof. This is the reason why we could afford to start form a fairly limited class
of surfaces (although relaxing our definition, eg. by cutting an arbitrary compact piece out of an
analytic plane, instead of only considering disk-shaped surfaces, would be relatively harmless).

Proposition 10.9 Let λ̃ be a finite set of surfaces. For �: λ̃ → {y , ↑, ↓
}
, S 7→ �S , we define:

F�(λ̃) := {e ∈ Ledges ∣∣∣ ∀S ∈ λ̃, e �S S
} .

In particular (abusing notations by writing y for the constant map S 7→y ), we have the set of alledges that are indifferent to every surface in λ̃:
Fy (λ̃) = {e ∈ Ledges ∣∣∣ ∀S ∈ λ̃, e y S

} .
The set of faces in λ̃ is defined as:

F(λ̃) := {F�(λ̃) ∣∣∣ �: λ̃ → {y , ↑, ↓
} /

F�(λ̃) 6= ∅ & � 6≡y} ,
(where � 6≡y stands for {S | �S 6=y } 6= ∅). In addition, we define:

Fany(λ̃) := ⋃
F ∈F(λ̃)

F ,
and, for F, F ′ ⊂ Ledges :

F ′ ◦ F := {e2 ◦ e1 | e1 ∈ F, e2 ∈ F ′, and e1, e2 are composable} .
We have the following properties:

1. the elements of F(λ̃) are disjoints;
2. for any F ∈ F(λ̃) ∪ {Fy (λ̃)} , Fy (λ̃) ◦ F = F ;
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3. Fy (λ̃) = {e ∈ Ledges ∣∣∣ ∀p 6= p′ ∈ r(e), e[p,p′ ] /∈ Fany(λ̃)} ;
4. for any e ∈ Ledges there exist e1, . . . , en ∈ Ledges and ε1, . . . , εn ∈ {±1} such that:

e = eεnn ◦ . . . ◦ e
ε11 and ∀i ∈ {1, . . . , n} , ei ∈ Fany(λ̃) ∪ Fy (λ̃) .

Proof Assertions 10.9.1 and 10.9.2 follow from prop. 10.6.4 and 10.6.6 respectively.
Assertion 10.9.3. From prop. 10.6, we have:

Fy (λ̃) ⊂ {e ∈ Ledges ∣∣∣ ∀p 6= p′ ∈ r(e), e[p,p′ ] /∈ Fany(λ̃)} .
We now want to prove the reverse inclusion.Let e ∈ Ledges such that for any p 6= p′ ∈ r(e), e[p,p′ ] /∈ Fany(λ̃). Let So ∈ λ̃ and p 6= po ∈ r(e)such that e[p,po ] �o So with �o∈ {y , ↑, ↓

} . Choose an ordering of the finitely many remaining
surfaces λ̃ \ S = {S1, . . . , Sm}, and define pi and �i for i ∈ {1, . . . , n} such that:

pi ∈ r
(
e[p,pi−1 ]) \ {p} and e[p,pi ] �i Si ,by applying inductively lemma 10.8 to e[p,pi−1 ] and Si . From prop. 10.6.6, e[p,pm ] ∈ F�(λ̃) where

�: λ̃ → {y , ↑, ↓
} is defined by ∀i ∈ {0, . . . , m} , �Si :=�i . Since e[p,pm ] /∈ Fany(λ̃), �≡y , therefore

�o=y .Hence, c(e, So) = ∅ (where c(e, So) has been defined in eq. (10.8.1) ). So, using eq. (10.8.2) with
p = b(e) and p′ = f (e), e y So. As this holds for any So ∈ λ̃, e ∈ Fy (λ̃).
Assertion 10.9.4. Let e ∈ Ledges. We define:

c(e, λ̃) := ⋃
S∈λ̃

c(e, S) .
c(e, λ̃) is finite, for λ̃ is finite and each c(e, S) is finite. Moreover, eq. (10.8.3) becomes:
∀p 6= p′ ∈ r(e), r

(
e[p,p′ ]) ∩ c(e, λ̃) ⊂ {p} ⇒ e[p,p′ ] ∈ Fany(λ̃) ∪ Fy (λ̃) .

Thus we can form a decomposition of e adapted to λ̃ exactly like in the last step of the proof ofprop. 10.7. �

Definition 10.10 We define on the set of finite subsets of Lsurfcs an equivalence relation by:
λ̃ ∼ λ̃′ ⇔ F(λ̃) = F(λ̃′) .

Its set of equivalence classes will be denoted by Lprofls. An element λ ∈ Lprofls is called a profile,and we can define its set of faces F(λ) and the corresponding set of indifferent edges Fy (λ), sincethese are the same for any representative of λ (thanks to prop. 10.9.3).
Proposition 10.11 We equip Lprofls with the binary relation:
∀λ, λ′ ∈ Lprofls,
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λ 4 λ′ ⇔
(
∀F ∈ F(λ), ∃ F1, . . . , Fm ∈ F(λ′) /F = Fy (λ) ◦ m⋃

i=1 Fi
) .

For any two finite sets of surfaces λ̃, λ̃′, we have:[
λ̃
]profl 4 [ λ̃ ∪ λ̃′ ]profl ,

where [ · ]profl denotes the equivalence class in Lprofls .In particular, Lprofls, 4 is a directed preordered set.
Proof Let λ̃, λ̃′ be two finite sets of surfaces and F ∈ F(λ̃). There exists �: λ̃ → {y , ↑, ↓

}, with
�6≡y , such that F = F�(λ̃). We define:

F(λ̃, λ̃′, �) := {F� ′(λ̃ ∪ λ̃′) ∣∣∣ F� ′(λ̃ ∪ λ̃′) ∈ F(λ̃ ∪ λ̃′) & �′|λ̃ =�} .
Let e ∈ F (F 6= ∅ by definition of F(λ̃)). By applying inductively lemma 10.8 to the surfaces in λ̃′and using prop. 10.6.6 (as in the proof of prop. 10.9.3), there exists p ∈ r(e)\{b(e)} and an extension
�′: λ̃ ∪ λ̃′ → {y , ↑, ↓

} of � such that e[b(e),p] ∈ F� ′(λ̃ ∪ λ̃′) . Let p′ ∈ r
(
e[b(e),p]) \ {b(e), p}. From

prop. 10.6.6, we have e[b(e),p′ ] ∈ F� ′(λ̃ ∪ λ̃′) and e[p′,f (e)] ∈ Fy (λ̃). Therefore, e ∈ Fy (λ̃) ◦ F� ′(λ̃ ∪ λ̃′).In particular, F� ′(λ̃ ∪ λ̃′) 6= ∅ and, since �6≡y , we also have �′ 6≡y . Thus, F� ′(λ̃ ∪ λ̃′) ∈ F(λ̃, λ̃′, �).So F(λ̃, λ̃′, �) 6= ∅ and there exists F1, . . . , Fm ∈ F(λ̃ ∪ λ̃′) such that:
F(λ̃, λ̃′, �) = {F1, . . . , Fm} .

and we just proved that F ⊂ Fy (λ̃) ◦ m⋃
i=1 Fi .Now, let e1, e2 be composable edges such that e1 ∈ Fi for some i ∈ {1, . . . , m} and e2 ∈ Fy (λ̃).

By definition of F(λ̃, λ̃′, �), e1 ∈ F , hence, by 10.9.2, e2 ◦ e1 ∈ F . Therefore, Fy (λ̃) ◦ m⋃
i=1 Fi ⊂ F .

So, we have [ λ̃ ]profl 4 [ λ̃ ∪ λ̃′ ]profl .To prove that Lprofls, 4 is a directed preordered set, only the transitivity of 4 remains to bechecked. Let λ, λ′, λ′′ ∈ Lprofls with λ 4 λ′ and λ′ 4 λ′′. Using the definition of 4 on Lprofls togetherwith prop. 10.9.3, we have:
Fy (λ′′) ⊂ Fy (λ′) ⊂ Fy (λ) .Then, for any F ∈ F(λ′′), we can use prop. 10.9.2 to write:
Fy (λ) ◦ Fy (λ′′) ◦ F = Fy (λ) ◦ F = Fy (λ) ◦ Fy (λ) ◦ F ,so we get:
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Figure 10.3 – Examples of valid labels

Fy (λ) ◦ Fy (λ′) ◦ F = Fy (λ) ◦ F , (10.11.1)and therefore λ 4 λ′′. �

Finally, we are ready to describe what our labels should be, keeping in mind that each label is
meant to be associated with a small, finite dimensional phase space, on which the observables it
selects can be represented. As underlined many times, this phase space should be big enough for
their Poisson algebra to be correctly reproduced. Yet it should not be too big either, otherwise
the projection between the phase spaces corresponding to two labels η 4 η′ would not be uniquely
characterized by the sole prescription of how its pullback should mount the observables from η to
η′.

These considerations reveal that edges and faces should comes in conjugate pairs. In particular, if
the label contains intersecting surfaces, it should also contain edges that will probe the intersection
from every side, so that the additional momentum variables promoted above are supplied with
suitable conjugate configuration variables (fig. 10.3).

Definition 10.12 We define the label set LHF by:
LHF := {(γ, λ) ∈ Lgraphs × Lprofls ∣∣ ∃ χ : γ → F(λ) bijective /∀e ∈ γ, e ∈ χ(e)}.For η = (γ, λ) we define its underlying graph γ(η) := γ and profile λ(η) := λ, its set of faces

F(η) := F(λ) and its set of indifferent edges Fy (η) := Fy (λ), as well as the unique bijective map
χη : γ(η)→ F(η) such that ∀e ∈ γ(η), e ∈ χη(e) (uniqueness follows from the fact that the faces in
F(η) are disjoints, see prop. 10.9.1).We equip LHF with the product preorder, defined by:
∀η, η′ ∈ LHF, η 4 η′ ⇔

(
γ(η) 4 γ(η′) & λ(η) 4 λ(η′)) .
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10.2 Directedness

It is of critical importance for the intended construction of a projective state space that the label
set LHF should be directed (eg. the pivotal ‘three-spaces consistency’ condition gets truly useful
in combination with the directedness of the label set). Since both Lgraphs and Lprofls are directed
on their own, so is Lgraphs × Lprofls, thus it is sufficient to show that LHF is a cofinal part of
Lgraphs × Lprofls . In other words, given some arbitrary graph γ and profile λ, we want to construct
a finer graph γ′ and a finer profile λ′ that are adapted to each other in the sense of def. 10.12.

For this, we will proceed in successive steps. First we will subdivide the edges of γ to adapt them
to λ in the sense of prop. 10.7. Next we will add a bunch of small surfaces to ensure there is never
more than one edge belonging to a given face, and we will add a few small edges to populate the
faces that do not yet contain one edge. Finally we will add a few more small surfaces so that every
edge has its fellow face. Note that the order of these steps is important, for we have to ensure that
what has been achieved at a given point will be preserved by the subsequent steps. Also, we should
take care that the whole procedure only requires a finite sequence of operations: graphs have been
defined as finite sets of edges, while profiles arise from finite sets of surfaces, thus adding infinitely
many edges or surfaces, or subdividing an edge into infinitely many parts, would not lead to a
valid label.

Definition 10.13 For any γ ∈ Lgraphs and any λ ∈ Lprofls, we define:
1. M (1)(γ,λ) := {χ : γ → F(λ) ∪ {Fy (λ)} ∣∣ ∀e ∈ γ, e ∈ χ(e)} ;
2. M (2)(γ,λ) := {χ ∈ M (1)(γ,λ)

∣∣∣ ∀F ∈ F(λ), ∀e, e′ ∈ χ−1 〈F〉 , e = e′
} ;

3. M (3)(γ,λ) := {χ ∈ M (2)(γ,λ)
∣∣∣ ∀F ∈ F(λ), χ−1 〈F〉 6= ∅

} ;
4. M (4)(γ,λ) := {χ ∈ M (3)(γ,λ)

∣∣∣ χ−1 〈Fy (λ)〉 = ∅
} = {χ : γ → F(λ) ∣∣ χ bijective & ∀e ∈ γ, e ∈ χ(e)} .

Theorem 10.14 LHF, 4 is a directed preordered set.
Lemma 10.15 Let γ ∈ Lgraphs and λ ∈ Lprofls. Then, there exists γ′ ∈ Lgraphs , such that γ 4 γ′ and
M (1)(γ′,λ) 6= ∅.
Proof This follows from prop. 10.9.4 and the definition of 4 on Lgraphs (def. 10.3). �

The next step is to deal with the faces that contain more than one edge of the graph. The key
idea here is to add some small surfaces with respect to which these edges have distinct positionings:
thus, they will not belong to the same face any more. If they have different starting points, we
can simply add, for each of them, a small surface going through its starting point, with respect to
witch it is, say, above (as we do for the edge on the right in fig. 10.4). If many edges start from the
same point of the face, we will add, for each e among these, a small surface arranged so that e is
indifferent to it, while all other edges starting from that point are either above or below it: this is
another way of ensuring that two different edges will have a distinct positioning with respect to at
least one of the added surfaces (see the two edges on the left in fig. 10.4).
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Figure 10.4 – Adding surfaces to separate the edges into different faces

Figure 10.5 – Only a transversal surface can separate an edge from its analytic continuation

Given an edge e and a bunch of other edges
{
e′
}
starting from the same point, we therefore want

to construct a surface that contains an initial subedge of e and intersect each e′ transversally at
the common starting point b(e) = b(e′): in two dimensions, where "surfaces" are one-dimensional,
we can cut such a surface out of the very analytic curve that provides e; in higher dimension, the
family of surfaces that contains e is parametrized by continuous parameters, so we just need to
pick out one that passes in between the finitely many edges starting from b(e). However, if the
analytic extension of e beyond b(e) is among the edges

{
e′
}
, it will automatically be in the analytic

plane of any surface containing an initial subedge of e, and thus indifferent to that surface, as
illustrated on fig. 10.5. Note that it may seems at first a very unlucky special case, that precisely
the analytic extension of e also belongs to the graph, but we should keep in mind that this very
situation is produced in great numbers when we subdivides the edges of γ to adapt them to the
given λ (fig. 10.2). To deal with this case we need to also include an additional small surface with
respect to which e is of the "above" type, because its analytic continuation will then be of the
"below" type: this will ensure that these two edges do not belong to the same face at the end. To
avoid laborious case distinctions in the proof, we add surfaces quite liberally, and, for any initial
face F containing more than one edge, and any edge e belonging to F , we will systematically add
two small surfaces, one along e and the other transverse to e. Proceeding this way we probably
end up with much more faces that would have been strictly necessary to separate the edges into
distinct faces: we generate a lot of new faces that do not contain any edge at all. On the other
hand, we will have to deal with such faces in a latter step anyway, so it does not cost us more to
add more of those in the present step.

It is by contrast crucial that we preserve what has been achieved in the previous step, namely
that all edges of the graph are adapted to the new profile. When adding a surface for an edge e,
we can make it as small as we want around b(e) without prejudice to the requirements above. In
particular, we can ensure that it does not intersect any edge of the graph that does not go through
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Figure 10.6 – Dealing with an edge that ends precisely where surfaces will have to be added

b(e). Moreover, for any edge e′ that start at b(e), the analyticity of edges and surfaces will ensure
that, provided the surface is chosen small enough around b(e), e′ will either be above or below it or
indifferent to it. The only edges e′ that might be problematic here are therefore those that contains
b(e) but not as starting point. Since e and e′ are edges of a graph, b(e) should then be f (e′), and
we deal preventively with this potential source of difficulties by subdividing e′ and reorienting the
second part so that it now starts from b(e) (see fig. 10.6). Note that, by doing so, we admittedly
increase the number of edges, but not the number of those for which we will then need to add
small surfaces, for the first part of e′ takes the place of e′ in χ(e′), while its second part is in
Fy (λ). Thus this does not cause infinite recursion, and the total number of surfaces added during
the present step is finite, as it should.

Lemma 10.16 Let γ ∈ Lgraphs and λ ∈ Lprofls such that M (1)(γ,λ) 6= ∅. Then, there exists γ′ ∈ Lgraphsand λ′ ∈ Lprofls , such that γ 4 γ′, λ 4 λ′ and M (2)(γ′,λ′) 6= ∅.
Proof One-dimensional case. We first consider the case d = 1. Let χ ∈ M (1)(γ,λ) , F ∈ F(λ), and
e, e′ ∈ χ−1 〈F〉. By definition of F(λ), there exists S ∈ Lsurfcs and � ∈ { ↑, ↓ } such that e, e′ � S .By reversing the orientation of S if necessary, we can assume that �=↑ . Let S̆ : U → V be arepresentative of S . Then, b(e) = S̆(0) = b(e′) (for r(S) = {

S̆(0)} when d = 1) and there exists
p ∈ r(e) \ {b(e)} , resp. p′ ∈ r(e′) \ {b(e′)} , such that r (e[b(e),p]) , r (e′[b(e′),p′ ]) ⊂ S̆ (U ∩R+) .Let ĕ, resp. ĕ′, be a representative of e, resp. e′, and let t, resp. t′, such that p = ĕ(t), resp. p′ =
ĕ′(t′). The map φ : [0, 1]→ U, τ 7→ S̆−1 ◦ ĕ(τt) is injective as a composition of injective maps. It iseverywhere postive and φ(0) = 0, so there exists s > 0 such that φ(1) = s and φ〈 [0, 1] 〉 = [0, s] ,ie. r (e[b(e),p]) = S̆

〈 [0, s] 〉 , with S̆(s) = p. Similarly, there exists s′ > 0 such that r (e′[b(e′),p′ ]) =
S̆
〈 [0, s′] 〉 , with S̆(s′) = p′. Let s′′ ∈ ] 0, min(s, s′) [ . We have S̆(s′′) ∈ r(e)∩r(e′)\{b(e), f (e), f (e′)} ,hence e = e′ (from def. 10.3). Thus, χ ∈ M (2)(γ,λ) , and in particular M (2)(γ,λ) 6= ∅ . For the rest of thisproof, we will therefore assume d > 1.

Construction of γ′. Let χ ∈ M (1)(γ,λ) . We define:
γ(1,χ) := {e ∈ γ

∣∣ ∃ e′ 6= e
/
χ(e) = χ(e′) ∈ F(λ)} ,and:

B
(
γ(1,χ)) := {b(e) | e ∈ γ(1,χ)} .

Let e ∈ γ. Since γ is a graph, r(e) ∩ B (γ(1,χ)) ⊂ {b(e), f (e)} . If f (e) /∈ r(e) ∩ B (γ(1,χ)),
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we define γ′e := {e} . Otherwise, we choose some point p ∈ r(e) \ {b(e), f (e)} and we define
γ′e := {e[b(e),p], e[f (e),p]} .
γ′ := ⋃e∈γγ

′
e is a graph such that γ 4 γ′ and, from prop. 10.6, there exists χ ′ ∈ M (1)(γ′,λ), satisfying

B
(
γ′(1,χ ′)) = B

(
γ(1,χ)) . Moreover, we now have for any e ∈ γ′, r(e) ∩ B (γ′(1,χ ′)) ⊂ {b(e)} .

Construction of λ′. Let e ∈ γ′(1,χ ′) and define:
γ′(e) := {e′ ∈ γ′ | b(e) ∈ r(e′)} = {e′ ∈ γ′ | b(e) = b(e′)} .

We choose a representative ĕ : U → V of e and a real ε > 0 such that B(d)
ε ⊂ U (where B(d)

ε isthe closed ball of radius ε and center 0 in Rd). We define:
S̆ĕ,ε : Uε → V

x 7→ ĕ(ε x) with Uε := {x ∈ Rd ∣∣ ε x ∈ U
} .

Since {0}×B(d−1) ⊂ B(d) ⊂ Uε , S̆ĕ,ε is an analytic, encharted surface in Σ. We denote by Sĕ,ε thecorresponding surface (def. 9.7). We also define, for any θ ∈ S(d−2) (with S(d−2) the unit sphere in
Rd−1):

Rθ : R×Rd−1 → R×Rd−1(t, y) 7→ (−θ.y, y+ (t − θ.y) θ) .
Rθ is an analytic diffeomorphism Rd → Rd and:

Rθ
〈
{0} × B(d−1)〉 ⊂ Rθ

〈
B(d)〉 = B(d) ⊂ Uε .

Hence, S̆ĕ,ε,θ defined by S̆ĕ,ε,θ := S̆ĕ,ε ◦ Rθ : R−1
θ 〈Uε〉 → V is an analytic, encharted surface in Σ.We denote by Sĕ,ε,θ the corresponding surface.Let e′ ∈ γ′(e) \ {e}. We define:

K(e,e′) = {θ ∈ S(d−2) ∣∣ ∃ p ∈ r(e′) \ {b(e′)} / e′[b(e′),p] y Sĕ,ε,θ
} .

Since b(e′) = b(e) = ĕ(0) ∈ r
(
Sĕ,ε,θ

) for any θ ∈ S(d−2), we have from prop. 10.6 (together withthe definition of the equivalence relation in def. 9.7):
∀θ ∈ K(e,e′), ∃ p′ ∈ r(e′) \ {b(e′)} / r (e′[b(e′),p′ ]) ⊂ ĕ

〈
U ∩ Rθ

〈
{0} ×Rd−1〉〉 ,where we have used:

S̆ĕ,ε,θ
〈
R−1
θ 〈Uε〉 ∩

(
{0} ×Rd−1)〉 = ĕ

〈
U ∩ Rθ

〈
{0} ×Rd−1〉〉 .

Suppose now that there exist d − 1 vectors θ1, . . . , θd−1 ∈ S(d−2), linearly independent in Rd−1,such that ∀i 6 d − 1, θi ∈ K(e,e′). Then, there exists p′′ ∈ r(e′) \ {b(e′)} such that:
r
(
e′[b(e′),p′′ ]) ⊂ ĕ

〈
U ∩

d−1⋂
i=1 Rθi

〈
{0} ×Rd−1〉〉 = ĕ

〈
U ∩

(
R× {0} )〉 .

Since b(e′) = ĕ(0) and r(e) ∩ r(e′) ⊂ {b(e), f (e)} (for e 6= e′ and both belong to the graph γ′), wehave, by the intermediate value theorem, r (e′[b(e′),p′′ ]) = ĕ 〈[−α, 0]× {0}〉 for some α > 0. Thus,
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e′[b(e′),p′′ ] ↓ Sĕ,ε .Accordingly, we define:
γ′(e,0) := {e} ∪ {e′ ∈ γ′(e)

∣∣∣ ∃ p′′ ∈ r(e′) \ {b(e′)} / e′[b(e′),p′′ ] ↓ Sĕ,ε} ,
and γ′(e,1) := γ′(e) \ γ′(e,0). Then, for any e′ ∈ γ′(e,1), K(e,e′) has measure zero in S(d−2) (for example withrespect to the standard measure on S(d−2) if d > 3, and with respect to the counting measure if
d = 2). Hence, there exists θ1 ∈ S(d−2) such that ∀e′ ∈ γ′(e,1), θ1 /∈ K(e,e′) .Now, from lemma 10.8 and prop. 10.6.6, there exist, for any e′ ∈ γ′(e), pe′ ∈ r(e′) \ {b(e′)} and
�e′,e,0, �e′,e,1∈ {y , ↑, ↓

} such that:
e′[b(e′),pe′ ] �e′,e,0 Sĕ,ε and e′[b(e′),pe′ ] �e′,e,1 Sĕ,ε,θ1 .By construction, we have:
∀e′ ∈ γ′(e,0) \ {e} , �e′,e,0=↓ and ∀e′ ∈ γ′(e,1), �e′,e,1 6=y .On the other hand, we can check from the definition of Sĕ,ε and Sĕ,ε,θ1 that:
�e,e,0=↑ and �e,e,1=y .Thus, we get ∀e′ ∈ γ′(e) \ {e} , (�e′,e,0, �e′,e,1) 6= (�e,e,0, �e,e,1) .

Next, using def. 9.7 and prop. 10.6, there exists p′e′ ∈ r
(
e′[b(e′),pe′ ]

)
\ {b(e′), pe′} such that:

r
(
e′[b(e′),p′e′ ]

)
\ {b(e′)} ⊂ S̆ĕ,ε

〈
Uε ∩ D�e′,e,0 ∩ Rθ1

〈
D�e′,e,1

〉〉 , (10.16.1)
where Dy := {0} ×Rd−1, D↑ := (R+ \ {0})×Rd−1 and D↓ := (R− \ {0})×Rd−1. Since:⋃

e′∈γ′\γ′(e)
r(e′) ∪ ⋃

e′∈γ′(e)
r
(
e′[p′e′ ,f (e′)]

)
is a compact set of Σ that does not contain b(e), there exists an open neighborhood W of b(e) in
V such that:
∀e′ ∈ γ′ \ γ′(e), r(e′) ∩W = ∅ and ∀e′ ∈ γ′(e), r (e′[p′e′ ,f (e′)]) ∩W = ∅ .

ĕ−1 〈W〉 is an open neighborhood of 0 in Rd, hence there exists ε′ ∈]0, ε] such that B(d)
ε′ ⊂ ĕ−1 〈W〉.We define:

Se,0 := Sĕ,ε′ and Se,1 := Sĕ,ε′,θ1 .For k ∈ {0, 1}, we have r (Se,k) ⊂ W , therefore:
∀e′ ∈ γ′ \ γ′(e), e′ y Se,k and ∀e′ ∈ γ′(e), e′[p′e′ ,f (e′)] y Se,k .

In addition, we get from eq. (10.16.1):
∀e′ ∈ γ′(e), e′[b(e′),p′e′ ] �e′,e,k Sĕ,k ,

thus, using prop. 10.6.6:
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Figure 10.7 – Adding a small edge to populate a face that was empty

∀e′ ∈ γ′(e), e′ �e′,e,k Sĕ,k .
To summarize, we have proven that, for any e ∈ γ′(1,χ ′) there exist a finite set of surfaces λ̃′e :=
{Se,0, Se,1} and a map χ ′e : γ′ → F

(
λ̃′e
)
∪ Fy

(
λ̃′e
) such that:

∀e′ ∈ γ′, e′ ∈ χ ′e(e′) & ∀e′ ∈ γ′ \ {e} , χ ′e(e′) 6= χ ′e(e) .
Finally, we choose λ̃ ⊂ Lsurfcs such that λ = [ λ̃ ]profl and we define a profile λ′ by:

λ′ := λ̃ ∪ ⋃
e∈γ′(1,χ′)

λ̃e


profl

.
Then, λ 4 λ′ (prop. 10.11) and the map χ ′′ : γ′ → F(λ′) ∪ {Fy (λ′)} , given by:
∀e′ ∈ γ′, χ ′′(e′) = χ ′(e′) ∩ ⋂

e∈γ′(1,χ′)
χ ′e(e′),

belongs to M (2)(γ′,λ′) . �

We will now turn to populating faces that do not contain any edge yet. The basic idea is to pick
some edge in the concerned face and to add it to our graph (remember that faces have been defined
as non empty set of edges in prop. 10.9). Since the edge we add is chosen in a face of λ, the result
of the first step is preserved, and since we add a single edge per face, and only for those faces that
do not already contain an edge of the graph, there is no problem with the second step either. The
only precaution required here is therefore to make sure that the added edges, together with the
already present ones, form a graph, ie. intersects only at their extremities. Now, if we have picked
some edge e in a face F , any initial subedge of edge of e will also be in F , and will do just as
well for our purpose. This way, if e intersects another edge e′ (either an edge of the graph, or one
of the to-be-added edges), and if this intersection takes place away from b(e), we can simply make
e shorter to avoid it (fig. 10.7 shows an edge being added to a face that were initially empty: we
make the added edge small enough so that it stays away from any preexisting edges). Moreover, it
cannot be that e has a common initial subedge with another edge e′ for this would mean that e′

belongs to F , in contradiction with the preserved validity of step two (eg. the fact that we do not
get more that one edge per face, as underlined above).

The only kind of intersection that cannot be fixed by shortening e is therefore the situation in
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Figure 10.8 – An edge that runs along a surface (or an intersection of surfaces) may need to be
subdivided when populating the corresponding faces

which e∩e′ = {b(e)}. As illustrated in fig. 10.8, it might not be possible to prevent this by a careful
choice of e, because b(e) has to belong to every surface involved in the face F (this is indeed
a necessary condition for e to belongs to F ): it might force b(e) to be in the interior of some
edge e′. Not that this concern is not an artifact of the dimension two: even when the surfaces
have dimension d − 1 > 1, there are faces that arises at the intersection of surfaces, and this
intersection could be one-dimensional, with an edge running along it. Thus, the present step might
require, besides the addition of new edges, also the subdivision of preexisting edges of the graph.
Such a subdivision does not, however, threaten the two previous steps, nor does it lead to infinite
recursion in the present step, for the first part of the subdivided edge e′ will belong to χ(e′), and
every subsequent parts will be of the Fy (λ) type.
Lemma 10.17 Let γ ∈ Lgraphs and λ ∈ Lprofls such that M (2)(γ,λ) 6= ∅. Then, there exists γ′ ∈ Lgraphs ,such that γ 4 γ′ and M (3)(γ′,λ) 6= ∅.
Proof Auxiliary result: Intersection of edges belonging to different faces. Let e ∈ Ledges and
F ∈ F(λ) such that e ∈ F . Suppose that there exists p 6= q ∈ r(e) and F ′ ∈ F(λ) ∪ {Fy (λ)} suchthat the subedge e[p,q] ∈ F ′. Then, from prop. 10.6.6, there exists q′ ∈ r

(
e[p,q]) \ {p, q} such that

e[p,q′ ] ∈ F ′. Since q′ /∈ {b(e), f (e)} , we are in one of the following situations:
e = e[q′,f (e)] ◦ e[p,q′ ] if b(e) = p <(e) q′ <(e) f (e)
e = e[q′,f (e)] ◦ e[p,q′ ] ◦ e[b(e),p] if b(e) <(e) p <(e) q′ <(e) f (e)
e = (e[p,q′ ])−1 ◦ e[b(e),q′ ] if b(e) <(e) q′ <(e) p = f (e)
e = e[p,f (e)] ◦ (e[p,q′ ])−1 ◦ e[b(e),q′ ] if b(e) <(e) q′ <(e) p <(e) f (e)

.
Hence, from props. 10.6.5 and 10.6.6, we have either F ′ = F (if p = b(e) ) or F ′ = Fy (λ) (otherwise).Let e1, e2 ∈ Ledges and F1, F2 ∈ F(λ) such that e1 ∈ F1, e2 ∈ F2 and:
∀p ∈ r (e1) \ {b(e)} , ∃ p′ ∈ r (e1) /b (e1) <(e1) p′ <(e1) p & p′ ∈ r (e2) .

Then, from lemma 10.5, there exists q ∈ r (e1) \ {b (e1)} such that r (e1, [b(e1),q]) ⊂ r (e2), hence
e2, [b(e1),q] = e1, [b(e1),q]. Since e1, [b(e1),q] ∈ F1 6= Fy (λ) (by definition of F(λ) ), the previous argumentapplied to the subedge e2, [b(e1),q] of e2, together with prop. 10.9.1, implies that F1 = F2 .Thus, we have proven that, for any e1, e2 ∈ Ledges and any F1 6= F2 ∈ F(λ) such that e1 ∈ F1and e2 ∈ F2, there exists p ∈ r (e1) \ {b (e1)} such that r (e1, [b(e1),p])∩ r (e2) ⊂ {b (e1) , p} . Hence,there exists p′ ∈ r

(
e1, [b(e1),p]) \ {b (e1)} such that r (e1, [b(e1),p′ ]) ∩ r(e2) ⊂ {b (e1)} .

Construction of γ′. Let χ ∈ M (2)(γ,λ) and define:
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F(2,χ)(λ) := {F ∈ F(λ) ∣∣ χ−1 〈F〉 = ∅
} .For any F ∈ F(2,χ)(λ) , we choose an edge eF ∈ F , and we define:

γ(2,χ) := {eF | F ∈ F(2,χ)(λ)}.
Let e ∈ γ(2,χ) and F ∈ F(2,χ)(λ) such that e ∈ F . For any ẽ ∈ γ, e ∈ F̃ with F̃ = χ(ẽ) ∈

F(λ)\F(2,χ)(λ). And for any ẽ ∈ γ(2,χ) \{e} , there exists F̃ ∈ F(2,χ)(λ)\{F} such that ẽ ∈ F̃ . Hence,for any ẽ ∈ γ ∪ γ(2,χ) \ {e}, there exists pe,ẽ ∈ r(e) \ {b(e)} such that r (e[b(e),pe,ẽ ]) ∩ r(ẽ) ⊂ {b(e)} .Since γ ∪ γ(2,χ) \ {e} is a finite set, there exists pe such that:
∀ẽ ∈ γ ∪ γ(2,χ) \ {e} , r (e[b(e),pe ]) ∩ r(ẽ) ⊂ {b(e)} .

We define γ′e := {e[b(e),pe ]} and χ ′e : γ′e → F(λ)∪{Fy (λ)} , e[b(e),pe ] 7→ F . Then, for any e′ ∈ γ′e , wehave r(e′) ⊂ r(e) , e′ ∈ χ ′e(e′) and:
∀ẽ ∈ γ ∪ γ(2,χ) \ {e} , r(e′) ∩ r(ẽ) ⊂ {b(e′), f (e′)} .

Let e ∈ γ. The set {b(ẽ) | ẽ ∈ γ(2,χ) & b(ẽ) ∈ r(e)} is finite, hence there exist ne > 1 andcomposable edges e1, . . . , ene ∈ Ledges such that e = ene ◦ . . . ◦ e1 and:
{b(ẽ) | ẽ ∈ γ(2,χ) & b(ẽ) ∈ r(e)} ⊂ ne⋃

i=1 {b(ei), f (ei)} .
We define γ′e := {e1, . . . , ene} . We also define the map χ ′e : γ′e → F(λ) ∪ {Fy (λ)} by:

χ ′e(e1) := χ(e) & ∀k ∈ {2, . . . , ne} , χ ′e(ek ) := Fy (λ) .Then, for any e′ ∈ γ′e , we have r(e′) ⊂ r(e) , e′ ∈ χ ′e(e′) (combining e ∈ χ(e) with props. 10.6.6 and10.2.3) and:
∀ẽ ∈ γ \ {e} , r(e′) ∩ r(ẽ) ⊂ r(e′) ∩ {b(e), f (e)} ⊂ {b(e′), f (e′)} ,where we have used that γ ∈ Lgraphs . For any ẽ ∈ γ(2,χ) , we have by definition of γ′e and γ′ẽ :
∀e′ ∈ γ′e, ∀ẽ′ ∈ γ′ẽ, r(e′) ∩ r(ẽ′) ⊂ r(e′) ∩ ne⋃

i=1 {b(ei), f (ei)} ⊂ {b(e′), f (e′)} .
Additionaly, we have from props. 10.2 and 10.1:
∀e′ 6= e′′ ∈ γ′e, r(e′) ∩ r(e′′) ⊂ {b(e′), f (e′)} .

Finally, we construct a finite set of edges γ′ as γ′ := ⋃
e∈γ∪γ(2,χ) γ′e , and we define a map

χ ′ : γ′ → F(λ) ∪ {Fy (λ)} by:
∀e ∈ γ ∪ γ(2,χ), ∀e′ ∈ γ′e, χ ′(e′) := χ ′e(e′)(χ ′ is well-defined since the γ′e for different e are disjoints by construction). By putting togetherwhat we have proven above, we get:
∀e′ 6= ẽ′ ∈ γ′, r(e′) ∩ r(ẽ′) ⊂ {b(e′), f (e′)} ,thus γ′ ∈ Lgraphs , and, by definition of γ′e for e ∈ γ, γ 4 γ′. We also have ∀e′ ∈ γ′, e′ ∈ χ ′(e′)and:
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Figure 10.9 – Adding a small surface through the middle of a still unpaired edge

Figure 10.10 – Accidental extra faces need to be populated

∀F ∈ χ 〈γ〉 , χ ′−1 〈F〉 = {e1 ∣∣ e ∈ χ−1 〈F〉} & ∀F ∈ F(2,χ)(λ), χ ′−1 〈F〉 = γ′eF .
Hence, using F(λ) = F(2,χ)(λ) t (χ 〈γ〉 \ {Fy (λ)}) and χ ∈ M (2)(γ,λ) , we obtain that χ ′ ∈ M (3)(γ,λ) . �

Finally, we want to consider those edges that do not yet belong to any face. If e is such an edge,
we will let a small surface cut it through the middle, subdivide e accordingly, and reorient the
parts so that they start from the added surface (fig. 10.9): thus one part will be above the surface,
and the other below. Since this surface goes through an interior point pe of e, we can ensure,
by making it small enough, that it does not cross any other edges of the graph (by definition of a
graph, pe can not belong to any other edge). Thus, the results of the first two steps are preserved.

However, if e lies inside some preexisting surface, the achievement of the third step might have
to be restored at this point: besides the two faces now populated by the two parts of e, there
might be additional new faces corresponding to intersections of the added small surface with the
preexisting ones. If this occurs, we will need to add a few edges to populate those faces (fig. 10.10),
but we can make sure that all added edges, together with the two parts of e, intersects at most at
their starting points. Also, by making the added edges shorter if required, we can prevent them to
intersect any other edge of the graph. Thus, there is no need for further subdivision of the edges
(in contrast to the situation depicted in fig. 10.8 that could arise in the previous step), and we have
achieved the goal announced at the beginning of the present subsection.

Lemma 10.18 Let γ ∈ Lgraphs and λ ∈ Lprofls such that M (3)(γ,λ) 6= ∅. Then, there exists γ′ ∈ Lgraphsand λ′ ∈ Lprofls , such that γ 4 γ′, λ 4 λ′ and M (4)(γ′,λ′) 6= ∅.
Proof Let λ̃ ⊂ Lsurfcs such that λ = [λ̃]profl and χ ∈ M (3)(γ,λ) . We define:

γ(3,χ) := {e ∈ γ
∣∣ χ(e) = Fy (λ)} & γ′0 := γ \ γ(3,χ) .

Thus, χ 〈γ′0〉 ⊂ F(λ) and, by definition of M (3)(γ,λ) , χ0 := χ|γ′0→F(λ) is bijective.For each e ∈ γ(3,χ) , we choose a representative ĕ : Ue → Ve of e and define pe := ĕ(0.5, 0) . Since,
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for any e ∈ γ(3,χ) , ⋃e′∈γ\{e} r(e′) is a compact set that does not contain pe (for pe ∈ r(e)\{b(e), f (e)}and γ ∈ Lgraphs), there exists an open neighborhood We of pe in Ve such that:
∀e′ ∈ γ \ {e} , r(e′) ∩We = ∅ .Next, {pe | e ∈ γ(3,χ)} is finite and Σ is Hausdorff, hence there exists a family (W ′

e
)
e∈γ(3,χ) of disjointopen subsets of Σ such that, for any e ∈ γ(3,χ) , W ′

e is an open neighborhood of pe in We . Thus, wehave:
∀e ∈ γ(3,χ), W ′

e ∩

 ⋃
e′∈γ\{e}

r(e′) ∪ ⋃
e′∈γ(3,χ)\{e}

W ′
e′

 = ∅ . (10.18.1)
Let e ∈ γ(3,χ) . There exists ε > 0 such that {0.5} × B(d−1)

ε ⊂ ĕ−1 〈W ′
e〉 and we define:

S̆e : U ′e → Ve
t, y 7→ ĕ(t + 0.5, ε y) with U ′e := {(t, y) | (t + 0.5, ε y) ∈ Ue} .

Since {0} × B(d−1) ⊂ U ′e , S̆e is an analytic, encharted surface in Σ. We denote by Se thecorresponding surface. We can check from the definition of S̆e that r(Se) ⊂ W ′
e and:

e↑ := e[pe,f (e)] ∈ Fe,↑ & e↓ := e[pe,b(e)] ∈ Fe,↓ ,
where Fe,↑ := {e′ ∈ Fy (λ) ∣∣∣ e′ ↑ Se} and Fe,↓ := {e′ ∈ Fy (λ) ∣∣∣ e′ ↓ Se} (using e ∈ χ(e) = Fy (λ)together with props. 10.6.5 and 10.6.6). Defining γ′e,0 := {e↑, e↓} , we moreover have:
∀e′ ∈ γ′e,0, r(e′) ∩ {b(e), f (e)} ⊂ {f (e′)} , (10.18.2)
and ∀e′ 6= ẽ′ ∈ γ′e,0, r(e′) ∩ r(ẽ′) ⊂ {b(e′)} = {b(ẽ′)} . (10.18.3)

Next, we define:
F(e,↑)(λ) := {F ∈ F(λ) ∣∣∣ ∃ e′ ∈ F

/
e′ ↑ Se

}
& F(e,↓)(λ) := {F ∈ F(λ) ∣∣∣ ∃ e′ ∈ F

/
e′ ↓ Se

} .
For each F ∈ F(e,↑)(λ) (resp. F ∈ F(e,↓)(λ) ), we define:

Fe,F,↑ := {e′ ∈ F
∣∣∣ e′ ↑ Se} (resp. Fe,F,↓ := {e′ ∈ F

∣∣∣ e′ ↓ Se} ),
and we choose an edge ee,F,↑ ∈ Fe,F,↑ (resp. ee,F,↓ ∈ Fe,F,↓ ). We also define:

γ′e,2 := {ee,F,↑ | F ∈ F(e,↑)(λ)} ∪ {ee,F,↓ | F ∈ F(e,↓)(λ)} .
The sets {Fe,↑, Fe,↓} , {Fe,F,↑ | F ∈ F(e,↑)(λ)} and {Fe,F,↓ | F ∈ F(e,↓)(λ)} are disjoints subsetsof F (λ̃ ∪ {Se}) . Hence, defining:
F(e) (λ̃ ∪ {Se}) := {Fe,↑, Fe,↓} ∪ {Fe,F,↑ | F ∈ F(e,↑)(λ)} ∪ {Fe,F,↓ | F ∈ F(e,↓)(λ)} ,

F(e) (λ̃ ∪ {Se}) ⊂ F
(
λ̃ ∪ {Se}

) and there exists a bijective map χe,2 : γ′e,0∪γ′e,2 → F(e) (λ̃ ∪ {Se})such that, for any e′ ∈ γ′e,0 ∪ γ′e,2 , e′ ∈ χe,2(e′) .
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Let e′ ∈ γ′e,2 . There exists F ′ := χe,2(e′) ∈ F
(
λ̃ ∪ {Se}

) such that e′ ∈ F ′. Moreover, for any
ẽ′ ∈ γ′e,0 ∪ γ′e,2 \ {e′} , there exists F̃ ′ := χe,2(ẽ′) ∈ F

(
λ̃ ∪ {Se}

)
\ {F ′} such that ẽ′ ∈ F̃ ′. Thus,using the auxiliary result from the proof of lemma 10.17, there exists, for any ẽ′ ∈ γ′e,0 ∪ γ′e,2 \ {e′} ,a point qe′,ẽ′ ∈ r(e′) \ {b(e′)} such that r (e′[b(e′),qe′,ẽ′ ]) ∩ r(ẽ′) ⊂ {b(e′)} . Hence, there exists

qe′ ∈ r(e′) \ {b(e′)} such that:
∀ẽ′ ∈ γ′e,0 ∪ γ′e,2 \ {e′} , r (e′[b(e′),qe′ ]) ∩ r(ẽ′) ⊂ {b(e′)} .

Since W ′
e is an open subset of Σ containing b(e′) (for b(e′) ∈ r(Se) ⊂ W ′

e ), there exists q′e′ ∈
r
(
e′[b(e′),qe′ ]

)
\ {b(e′)} such that r (e′[b(e′),q′e′ ]) ⊂ W ′

e . Also, we have r (e′[b(e′),q′e′ ]) ⊂ r(e′) and, fromprop. 10.6.6, e′[b(e′),q′e′ ] ∈ F ′.
Defining γ′e,1 := {e′[b(e′),q′e′ ] ∣∣∣ e′ ∈ γ′e,2} and γ′e := γ′e,0∪γ′e,1 , there exists therefore a bijective map

χe : γ′e → F(e) (λ̃ ∪ {Se}) such that, for any e′ ∈ γ′e , e′ ∈ χe(e′) .In addition, we have:
∀e′ ∈ γ′e,0, r(e′) ⊂ r(e) & ∀e′ ∈ γ′e,1, r(e′) ⊂ W ′

e , (10.18.4)
and ∀e′ ∈ γ′e,1, ∀ẽ′ ∈ γ′e \ {e′} , r(e′) ∩ r(ẽ′) ⊂ {b(e′)} . (10.18.5)

But, since for any e′ ∈ γ′e,1 , b(e′) ∈ r(Se) , and for any ẽ′ ∈ γ′e,0 , r(ẽ′)∩r(Se) ⊂ {b(ẽ′)} , eq. (10.18.5)together with eq. (10.18.3) implies:
∀e′ 6= ẽ′ ∈ γ′e, r(e′) ∩ r(ẽ′) ⊂ {b(e′)} . (10.18.6)

Now, we define:
γ′ := γ′0 ∪ ⋃

e∈γ(3,χ)
(
γ′e
)
& λ̃′ := λ̃ ∪

⋃
e∈γ(3,χ)

{Se} .
The fact that γ is a graph, together with eqs. (10.18.1), (10.18.2), (10.18.4) and (10.18.6), ensures that
γ′ is again a graph. Moreover, by definition of γ′e,0 for e ∈ γ(3,χ) , γ 4 γ′, and, from prop. 10.11,
λ 4 λ′ where λ′ := [λ̃′]profl . Next, we define:

F(0)(λ̃′) := {F ∩ Fy (λ̃′ \ λ̃) ∣∣∣ F ∈ F(λ̃)} ,
and, for any e ∈ γ(3,χ) , F(e)(λ̃′) := {F ∩ Fy

(
λ̃′ \ (λ̃ ∪ {Se})) ∣∣∣ F ∈ F(e)(λ̃ ∪ {Se})} .

Since, for any e ∈ γ(3,χ) , r(Se) ⊂ W ′
e , we have:{

e′ ∈ Ledges ∣∣∣ ∃ �e∈ {↑, ↓} / e′ �e Se} ⊂ {e′ ∈ Ledges | b(e′) ∈ r(Se)}
⊂ {e′ ∈ Ledges | b(e′) ∈ W ′

e} . (10.18.7)Therefore, for any e 6= ẽ ∈ γ(3,χ) , we get, using W ′
e ∩W ′

ẽ = ∅ :
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{
e′ ∈ Ledges ∣∣∣ ∃ �e, �ẽ∈ {↑, ↓} / e′ �e Se & e′ �ẽ Sẽ

} = ∅ .
This, together with the definition of F(e)(λ̃ ∪ {Se}) for e ∈ γ(3,χ), implies:

F(λ̃′) ⊂ ⋃
e∈{0}tγ(3,χ)

F(e)(λ̃′) .
In addition, we can define for any e ∈ {0} t γ(3,χ) a bijective map χ ′e : γ′e → F(e)(λ̃′) by:
∀e′ ∈ γ′0, χ ′0(e′) := χ0(e′) ∩ Fy (λ̃′ \ λ̃) & ∀e′ ∈ γ′e, χ ′e(e′) := χe(e′) ∩ Fy

(
λ̃′ \ (λ̃ ∪ {Se})) .For any e ∈ {0} t γ(3,χ), χ ′e satisfies:

∀e′ ∈ γ′e, e′ ∈ χ ′e(e′) ,as follows from the corresponding property of χe together with eqs. (10.18.1), (10.18.4) and (10.18.7).In particular, we thus have:
∀e ∈ {0} t γ(3,χ), ∀F ∈ F(e)(λ̃′), F 6= ∅ ,so, we obtain:
F(λ̃′) = ⋃

e∈{0}tγ(3,χ)
F(e)(λ̃′) .

Since the domains of the bijective maps χ ′e for e ∈ {0}tγ(3,χ) are disjoints, as well as their images,they can be combined into a well-defined bijective map χ ′ : γ′ → F(λ′) . Hence, M (4)(γ′,λ′) 6= ∅. �

Proof of theorem 10.14 Let (γ, λ), (γ′, λ′) ∈ LHF . Since Lgraphs, 4 and Lprofls, 4 are directed sets(props. 10.4 and 10.11), there exists (γ1, λ1) ∈ Lgraphs × Lprofls such that γ, γ′ 4 γ1 and λ, λ′ 4 λ1 .By chaining lemmas 10.15 to 10.18 and using the transitivity of 4 on Lgraphs and Lprofls , there exists(γ′′, λ′′) ∈ Lgraphs × Lprofls such that γ1 4 γ′′ , λ1 4 λ′′ and M (4)(γ′′,λ′′) 6= ∅. Thus, (γ′′, λ′′) ∈ LHF and(γ, λ), (γ′, λ′) 4 (γ′′, λ′′) . �

10.3 Factorization maps

The labels introduced in subsection 10.1 are meant to identify corresponding small algebras of
observables, and the ordering has been chosen such that, whenever η 4 η′, there is a natural
injection of the algebra labeled by η into the one labeled by η′. By carefully adjusting under which
conditions a collection of edges and surfaces can be turned into a label, we have ensured that
these algebras of observables can be represented on small phase spaces Mη and Mη′ respectively,
and that the identification between observables on Mη and Mη′ unambiguously prescribes a suitable
projection from Mη′ into Mη .

Moreover, this projection is compatible with the symplectic structures (def. 2.1), and is actually
of the form that was considered in theorem 6.2 (as will be shown in prop. 10.26). Thus, we expect
from this theorem that the obtained projective system of symplectic manifolds goes down to a
factorizing system on the underlying configuration spaces (def. 2.15). Indeed, we will prove that it
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is the case by giving the explicit expressions for the factorization maps (with the added benefit that
no further restriction need to be imposed on the finite-dimensional Lie group G, while theorem 6.2
have been derived in the case of simply-connected groups). Once we have such a factorizing system
of configuration spaces, it will be straightforward to quantize it into a projective quantum state
space (along the lines of [68] and subsection 6.1), as we will do in subsection 12.1.

We start by attaching to each label η a configuration space Cη : Cη is nothing but the configuration
space routinely associated in LQG to the graph γ(η), with one group var per edge (corresponding
to the value of the holonomy along this edge). We also attach to η a momentum space Pη : as
announced in subsection 10.1, momentum variables are assigned to the faces of the label (eventually,
we will, in prop. 10.26, rely on left translations to identify the cotangent bundle T ∗(G) with G× g∗,
and thus T ∗(Cη) with Cη×Pη , using the pairing χη between edges and their conjugate faces provided
by def. 10.12).

Also, we introduce a few notations to discuss how the holonomy along an edge, or the flux
through a face, can be related to the variables in Cη and Pη (provided η is fine enough to describe
the desired observable). Since we want to deduce the correct projective structure from the interpre-
tation of the labels in terms of observables, it is particularly important that the relation between
these observables and the variables in the small phase spaces should be unambiguous. This will
ensure that the factorization maps are well-defined, and will be essential for proving three-spaces
consistency in the resulting factorizing system (eq. (2.11.1) and fig. 2.2): as stressed many times
above, this consistency condition, combined with the directedness of LHF, indeed expresses the
concern for an unequivocal meaning of the variables attached to a label.

For a clean labeling of the flux observables we formulate in prop. 10.21 a notion of ‘free-standing’
faces. In prop. 10.9 the different faces corresponding to a certain collection of surfaces {S} have
been defined as particular sets of edges, and each such face F can only contain edges that are
adapted to every surface in {S}. In particular, an edge can be prevented from belonging to F
simply because it crosses transversally some surface of the collection, even this surface is in reality
unrelated to the face F . Thus, a given flux operator is described in different profiles by different set
of edges, and its characterization by a more intrinsic set is only obtained after compensating this
effect.

Definition 10.19 For any η ∈ LHF, we define its associated configuration space:
Cη := {h : γ(η)→ G} ≈ G#γ(η) ,where #γ(η) < ∞ denotes the number of edges in γ(η). Since G is a finite-dimensional Lie group,

Cη is a finite-dimensional smooth manifold.Similarly, we define the corresponding momentum space:
Pη := {P : F(η)→ g∗} ≈ (g∗)#F(η) ,which is a finite-dimensional real vector space.

Proposition 10.20 Let e ∈ Ledges . We define:
Lgraphs/e := {γ ∈ Lgraphs | {e} 4 γ} .

For any γ ∈ Lgraphs/e , there exists a unique map aγ→e : {1, . . . , nγ→e} → γ (with nγ→e > 1) such
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that:
e = aγ→e(nγ→e)εγ→e(nγ→e) ◦ . . . ◦ aγ→e(1)εγ→e(1) , (10.20.1)where, for any k ∈ {1, . . . , nγ→e}:
εγ→e(k) := {+1 if b (aγ→e(k)) <(e) f (aγ→e(k))

−1 if b (aγ→e(k)) >(e) f (aγ→e(k)) . (10.20.2)
Moreover, aγ→e then induces a bijection {1, . . . , nγ→e} → Hγ→e , where:

Hγ→e := {e′ ∈ γ | r(e′) ⊂ r(e)} . (10.20.3)
Proof Let γ ∈ Lgraphs/e . Since {e} 4 γ, there exist nγ→e > 1 and a map aγ→e : {1, . . . , nγ→e} → γsuch that:

e = aγ→e(nγ→e)εγ→e(nγ→e) ◦ . . . ◦ aγ→e(1)εγ→e(1) ,where, for any k ∈ {1, . . . , nγ→e}, εγ→e(k) is defined as in eq. (10.20.2). By definition of thecomposition of edges (prop. 10.2), aγ→e is injective and for any k ∈ {1, . . . , nγ→e}, aγ→e(k) ∈ Hγ→e .Next, let e′ ∈ Hγ→e , and let p ∈ r(e′) \ {b(e′), f (e′)}. Since p ∈ r(e), there exits k ∈
{1, . . . , nγ→e} such that p ∈ aγ→e(k), so, γ being a graph, e′ = aγ→e(k). Thus, aγ→e inducesa bijection {1, . . . , nγ→e} → Hγ→e . In particular, nγ→e = #Hγ→e .Finally, defining the map µ : Hγ→e → r(e) by:
∀e′ ∈ Hγ→e, µ(e′) := {b(e′) if b(e′) <(e) f (e′)

f (e′) if b(e′) >(e) f (e′) ,
prop. 10.2 implies that µ ◦ aγ→e is strictly increasing (using < on {1, . . . , nγ→e} and <(e) on r(e)),hence the uniqueness. �

Proposition 10.21 For any F ⊂ Ledges, we define:
F⊥ := {e ∈ Ledges ∣∣ ∀p 6= p′ ∈ r(e), e[p,p′ ] /∈ F

} ,and we will denote by Lfaces the set:
Lfaces := ⋃

λ∈Lprofls
{
F⊥ ◦ F

∣∣ F ∈ F(λ)} .
In addition, we define for any F ∈ Lfaces :

Lprofls/F := {λ′ ∈ Lprofls ∣∣ ∃ λ 4 λ′, ∃ F ∈ F(λ) /F = F⊥ ◦ F
} .

Then, for any F ∈ Lfaces and any λ′ ∈ Lprofls/F , we have:
F = F⊥ ◦

⋃
F ′∈Hλ′→F

F ′ , (10.21.1)
where Hλ′→F := {F ′ ∈ F(λ′) ∣∣ F ′ ⊂ F

} .
Proof Let λ ∈ Lprofls , F ∈ F(λ), F := F⊥ ◦ F and λ′ ∈ Lprofls such that λ′ < λ. From props. 10.6.5
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and 10.6.6, we have:
F⊥ = F⊥ ◦ F⊥ & F⊥ = (F⊥ ◦ F)⊥ = F⊥ .Hence, for any F ′ ∈ Hλ′→F :
F⊥ ◦ F ′ ⊂ F⊥ ◦ F = F⊥ ◦ F⊥ ◦ F = F ,

therefore F⊥ ◦⋃F ′∈Hλ′→F
F ′ ⊂ F .Now, by definition of the preorder 4 on Lprofls (prop. 10.11), there exist F ′1, . . . , F ′m ∈ F(λ′)(m > 1) such that:

F = Fy (λ) ◦ m⋃
i=1 F

′
i .

For any i ∈ {1, . . . , m}, Fy (λ) ◦ F ′i ⊂ F implies F ′i ⊂ F ⊂ F (using again props. 10.6.5 and 10.6.6),so F ′i ∈ Hλ′→F . And from prop. 10.9.3, Fy (λ) ⊂ F⊥, therefore:
F ⊂ F⊥ ◦

m⋃
i=1 F

′
i ⊂ F⊥ ◦

⋃
F ′∈Hλ′→F

F ′.
�

Props. 10.20 and 10.21 make it possible to unambiguously attach a physical interpretation to the
variables in Cη and Pη , and are therefore at the root of the relation between the variables assigned
to a label η and the ones assigned to a finer label η′. Although we will directly give an analytic
expression for the factorization map φη′→η : Cη′ → Cη′→η × Cη and we will not explicitly make use
of theorem 6.2, the proof we gave for this result (following ideas from [68, section 3.4] ) provides
the right hints regarding why such a factorization map does exist, and how it should be defined so
that it leads to the desired projection between the phase spaces.

The key idea is that the momentum variables assigned to the label η can be mounted into the
phase space associated to η′, and therefore correspond to certain vector fields on Cη′ . Each orbit
under the finite transformations generated by these vector fields can then be naturally identified
with Cη (for the relation between the configuration variables in Cη and Cη′ yields a projection from
Cη′ into Cη which intertwines the action of these transformations). The complementary space Cη′→η

can thus be taken as the corresponding quotient space, which itself can be identified with the
preimage of some point in Cη (eg. the function mapping every edge in γ(η) to the identity element
in G) under the projection Cη′ → Cη .

This prescription can equivalently be expressed as the realization that the space Cη′→η , together
with the projection from Cη′ into Cη′→η , can be completely specified by identifying a maximal set of
variables in Cη′ which are not acted upon by the fluxes retained in the label η. On the other hand,
the projection from Cη′ into Cη is obtained by writing down the edges in η as compositions of edges
in η′. Thus, the first step toward the determination of the factorization map is to state precisely
how the edges and faces of the label η lie within η′ . For this, we will classify the edges of η′ into
various categories depending on whether they belong to some face and/or are part of some edge of
η. Note that no edge in γ(η′) can be a subedge of two different edges in γ(η), nor can it belong to
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(3)
(1)

(3)

(1)

(1)
(1)

(2)
(2)

(0)(0)

η′

η

Figure 10.11 – Classification of the edges in η′ < η: a tag (κ) denotes an edge belonging to H(κ)
η′→η

(prop. 10.22)

two different faces in F(η), nor can a subedge of an edge e ∈ γ(η) belongs to any face in F(η) but
χ(e). So we are left with the 4 options listed in prop. 10.22 and depicted in fig. 10.11.

Clearly, the group variables corresponding to edges of η′ of type ‘0’ or ‘2’ (those that do not belong
to any face among F(η)) qualify as complementary variables (they are not acted upon by the fluxes
retained in η). Also, knowing the holonomy along some edge of η, as well as the holonomies along
all edges of η′ that compose it except the first one, the holonomy along this first part (which is of
type ‘1’) can be reconstructed. Hence, the group variables corresponding to edges of type ‘1’ can be
safely droped when extracting Cη′→η (fig. 10.12).

Dealing with the group variables corresponding to edges of type ‘3’ is slightly more subtle. Such
an edge e′ ∈ γ(η′) belongs to some face F ∈ F(η) without being the initial part of the conjugate edge
e ∈ γ(η). To build a group variable invariant under the flux corresponding to F , we will compose
the holonomy along e−1 (which ends in F ) followed by the holonomy along e′ (which starts in F ).
In this way the action of the flux through F cancel out, while the variable in Cη′ that corresponds
to the considered edge e′ can still be reconstructed from the variables in Cη′→η and Cη (fig. 10.13).

Note that we could equally well take the composition of the holonomy along e−11 followed by the
holonomy along e′, with e1 the first part of e (in its decomposition into edges of η′). These two
alternatives only differ by a function of the group variables attached to the remaining parts of e,
which already belongs to Cη′→η (these remaining parts being edges of type ‘2’ as outlined above),
so it is nothing but a change of coordinates on Cη′→η , and therefore of no consequences for the
construction.

Proposition 10.22 Let η 4 η′ ∈ LHF. We define:
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(1)
(1)

(2)
(2)

(0)(0)

η′

η

η′ → η

Figure 10.12 – Complementary variables related to edges of type ‘0’ or ‘2’, edges of type ‘1’ do not
demand any extra complementary variable

(3)
(1)

(3)

(1) η′

η

η′ → η

Figure 10.13 – Complementary variables related to edges of type ‘3’
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1. H(0)
η′→η := {e′ ∈ γ(η′) | ∀e ∈ γ(η), r(e′) 6⊂ r(e) & e′ /∈ χη(e)} ;and, for any e ∈ γ(η) :

2. H(1)
η′→η,e := {e′ ∈ γ(η′) | r(e′) ⊂ r(e) & e′ ∈ χη(e)} ;

3. H(2)
η′→η,e := {e′ ∈ γ(η′) | r(e′) ⊂ r(e) & e′ /∈ χη(e)} ;

4. H(3)
η′→η,e := {e′ ∈ γ(η′) | r(e′) 6⊂ r(e) & e′ ∈ χη(e)} ;Then,{
H(0)
η′→η

}
∪
⋃
e∈γ(η)

{
H(1)
η′→η,e, H

(2)
η′→η,e, H

(3)
η′→η,e

}
is a partition of γ(η′) .Additionally, we define:
∀κ ∈ {1, 2, 3} , H(κ)

η′→η := ⋃
e∈γ(η)H

(κ)
η′→η,e .

Proof For any e ∈ γ(η), {H(1)
η′→η,e, H

(2)
η′→η,e, H

(3)
η′→η,e

} is a partition of:
H(4)
η′→η,e := H(1)

η′→η,e ∪ H
(2)
η′→η,e ∪ H

(3)
η′→η,e = {e′ ∈ γ(η′) | r(e′) ⊂ r(e) or e′ ∈ χη(e)} .Since we have:

H(0)
η′→η = {e′ ∈ γ(η′) ∣∣∣ ∀e ∈ γ(η), e′ /∈ H(4)

η′→η,e

} ,
there only remains to prove that the H(4)

η′→η,e for e ∈ γ(η) are mutually disjoint.Let e ∈ γ(η) and let e′ ∈ γ(η′) such that r(e′) ⊂ r(e) . There exists p ∈ r(e′)\{b(e′), f (e′)}. Fromprop. 10.1, we get p /∈ {b(e), f (e)}, thus ∀ẽ ∈ γ(η) \ {e} , p /∈ r(ẽ) , for γ(η) is a graph. Therefore,
∀ẽ ∈ γ(η) \ {e} , r(e′) 6⊂ r(ẽ) . Moreover, e ∈ χη(e) and for any ẽ ∈ γ(η) \ {e} , χη(ẽ) 6= χη(e) , sousing the auxiliary result at the beginning of the proof of lemma 10.17, e′ /∈ χη(ẽ) . Hence, we haveproved:
∀e 6= ẽ ∈ γ(η), ∀e′ ∈ γ(η′), (r(e′) ⊂ r(e) ⇒ e′ /∈ H(4)

η′→η,ẽ

) .
Now let e ∈ γ(η) and let e′ ∈ γ(η′) such that e′ ∈ χη(e) . Then, from the previous point, we get
∀ẽ ∈ γ(η) \ {e} , r(e′) 6⊂ r(ẽ) . And, since the elements of F(η) are disjoints and χη is bijective, wealso have ∀ẽ ∈ γ(η) \ {e} , r(e′) /∈ χη(ẽ) . Therefore, we obtain the desired result:
∀e 6= ẽ ∈ γ(η), H(4)

η′→η,e ∩ H
(4)
η′→η,ẽ = ∅ .

�

Proposition 10.23 Let η 4 η′ ∈ LHF and e ∈ γ(η). We have {e} 4 γ(η′), and making use ofprop. 10.20, we define:
nη′→η,e := nγ(η′)→e , aη′→η,e := aγ(η′)→e & εη′→η,e := εγ(η′)→e .

We then have:
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εη′→η,e(1) = +1 , H(1)
η′→η,e = {aη′→η,e(1)} & H(2)

η′→η,e = {aη′→η,e(k) | k > 1} , (10.23.1)
therefore nη′→η,e = #H(2)

η′→η,e+1 and aη′→η,e induces a bijection {1, . . . , nη′→η,e} → H(1)
η′→η,e∪H

(2)
η′→η,e.Also, for any F ∈ F(η), we have, using the notations of prop. 10.21 with F = F⊥ ◦ F , λ(η′) ∈

Lprofls/F and:
Hλ(η′)→F = H(1,3)

η′→η,F := {F ′ ∈ F(η′) ∣∣ χ−1
η′ (F ′) ∈ F

} = {χη′(e′) ∣∣∣ e′ ∈ H(1)
η′→η,χ−1

η (F ) ∪ H(3)
η′→η,χ−1

η (F )
} .(10.23.2)

Proof Let e ∈ γ(η). From eq. (10.20.3) aη′→η,e induces a bijection into its image:
Hγ(η′)→e = H(1)

η′→η,e ∪ H
(2)
η′→η,e ,and from eq. (10.20.1) together with props. 10.6.5 and 10.6.6:

aη′→η,e(1)εη′→η,e(1) ∈ χη(e) & ∀k > 1, aη′→η,e(k) /∈ χη(e).Then, writing aη′→η,e(1)εη′→η,e(1) = e[p,p′ ], there exists p′′ ∈ r
(
e[p,p′ ])\{p, p′} ⊂ r(e)\{b(e), f (e)} suchthat e[p,p′′ ] ∈ χη(e). This can only hold if p = b(e), ie. εη′→η,e(1) = +1. Thus, we get:

aη′→η,e(1) ∈ H(1)
η′→η,e & ∀k > 1, aη′→η,e(k) ∈ H(2)

η′→η,e.
Let F ∈ F(η) and F = F⊥ ◦ F . For any F ′ ∈ Hλ(η′)→F , we have χ−1

η′ (F ′) ∈ F ′ ⊂ F , hencethere exist e1 ∈ F and e2 ∈ F⊥ such that χ−1
η′ (F ′) = e2 ◦ e1 . But from prop. 10.6.6 together with

Fy (η′) ⊂ Fy (η) (as in the proof of prop. 10.11), we have e2 ∈ Fy (η′) ⊂ Fy (η), so χ−1
η′ (F ′) ∈ F . Thus,we get Hλ(η′)→F ⊂ H(1,3)

η′→η,F . Reciprocally, let F ′ ∈ F(η′) such that χ−1
η′ (F ′) ∈ F ⊂ F . Then, fromeq. (10.21.1), there exist e1 ∈ F ′′, for some F ′′ ∈ Hλ(η′)→F , and e2 ∈ F⊥, such that χ−1

η′ (F ′) = e2 ◦ e1.And since χ−1
η′ (F ′) ∈ F ′, we also have e1 ∈ F ′, therefore F ′ = F ′′ ∈ Hλ(η′)→F (for the elements of

F(η′) are disjoint from prop. 10.9.1). This proves H(1,3)
η′→η,F ⊂ Hλ(η′)→F , hence Hλ(η′)→F = H(1,3)

η′→η,F . �

Proposition 10.24 Let η 4 η′ ∈ LHF and define:
Cη′→η := {h(0) : H(0)

η′→η → G
}
×
{
h(2) : H(2)

η′→η → G
}
×
{
h(3) : H(3)

η′→η → G
} .

Like Cη , Cη′→η is a finite-dimensional smooth manifold.To any hη′ ∈ Cη′ we associate maps hη : γ(η) → G, h(0)
η′→η : H(0)

η′→η → G, h(2)
η′→η : H(2)

η′→η → G,
h(3)
η′→η : H(3)

η′→η → G by:
1. ∀e′ ∈ H(0)

η′→η, h
(0)
η′→η(e′) := hη′(e′) ;

2. ∀e ∈ γ(η), hη(e) := (nη′→η,e∏
k=2 [hη′ ◦ aη′→η,e(k)]εη′→η,e(k)) . [hη′ ◦ aη′→η,e(1)]

with the convention that products of group elements are ordered from right to left:
∀g1, . . . , gn ∈ G,

n∏
k=1 gk := gn . . . . . g1 ;
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3. ∀e′ ∈ H(2)
η′→η, h

(2)
η′→η(e′) := hη′(e′) ;

4. ∀e ∈ γ(η), ∀e′ ∈ H(3)
η′→η,e, h

(3)
η′→η(e′) := hη′(e′) . (hη(e))−1 (with hη(e) from 10.24.2).

Then, the map φη′→η : hη′ 7→ h(0)
η′→η , h

(2)
η′→η , h

(3)
η′→η ; hη is a diffeomorphism Cη′ → Cη′→η × Cη .

Proof φη′→η is smooth for G is a Lie group. Next, for any jη ∈ Cη and any (j (0)η′→η, j (2)η′→η, j (3)η′→η) ∈
Cη′→η we define a map jη′ by:
5. ∀e′ ∈ H(0)

η′→η, jη′(e′) := j (0)η′→η(e′) ;
6. ∀e ∈ γ(η), ∀e′ ∈ H(1)

η′→η,e, jη′(e′) :=  2∏
k=nη′→η,e

[
j (2)η′→η ◦ aη′→η,e(k)]−εη′→η,e(k)

 . jη(e) ;
7. ∀e′ ∈ H(2)

η′→η, jη′(e′) := j (2)η′→η(e′) ;
8. ∀e ∈ γ(η), ∀e′ ∈ H(3)

η′→η,e, jη′(e′) := j (3)η′→η(e′) . jη(e) .Having a partition of γ(η′) (prop. 10.22) ensures that jη′ is well-defined and, again because G is aLie group, the map φ̃η′→η : j (0)η′→η , j (2)η′→η , j (3)η′→η ; jη 7→ jη′ is a smooth map Cη′→η × Cη → Cη′ . We cancheck that φ̃η′→η ◦ φη′→η = idCη′ and φη′→η ◦ φ̃η′→η = idCη′→η×Cη , thus φη′→η is a diffeomorphism. �
In order for the previously defined factorization maps to provide a valid factorizing system,

they should fulfill the three-spaces consistency condition (eq. (2.11.1) and fig. 2.2). As detailed in
subsection 2.3, we need a map φη′′→η′→η identifying Cη′′→η with Cη′′→η′ × Cη′→η , in agreement with
the factorization maps φη′′→η , φη′′→η′ and φη′→η : given three labels η 4 η′ 4 η′′, the variables
discarded when going down in one step from η′′ to η should be the same as the ones discarded
when going, in two successive steps, first from η′′ to η′ and then from η′ to η. This will ensure that
there is no ambiguity as to how the variables associated to the label η are to be extracted from the
phase space corresponding to η′′.

To ascertain that this is indeed the case, we have to distinguish the different ways, for an edge
e′′ of η′′, to be positioned with respect to the edges and faces of η′ and η: this yields 13 inequivalent
possibilities, as depicted in fig. 10.14. Only one of them is compatible with e′′ being of type ‘1’ for
transition η′′ → η, while, in the 12 others case, the group variable attached to e′′ contributes to
the variables of Cη′′→η , in terms of which φη′′→η′→η then needs to be appropriately specified (see the
points 10.25.5 to 10.25.10 of the proof below).

Note that we could have made use of prop. 2.17 to obtain the three-spaces consistency of the
factorization maps from a similar condition formulated at the level of the projections between the
small phase spaces def. 2.3 and fig. 2.1: that these projections fulfills such a condition can indeed
be read out from their expression (that will be given in prop. 10.26). Yet, using this result would
require G to be connected: a restriction that appears quite artificial when the factorization map
φη′→η in prop. 10.24 has been expressed solely in terms of the group operations (multiplication and
inverse). Preferably, the three-spaces consistency can be obtained in full generality directly at the
level of the factorization maps: once the correct explicit expression for φη′′→η′→η has been deduced
from the one for φη′→η , it is a straightforward (albeit rather fastidious) check that eq. (2.11.1) holds.
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(3, 2) (3, 3) (3, 1)
(2, 3)(1, 3)

(1, 2)

(2, 2)
(1, 1)
(2, 1)

(2, 0)

(1, 0)

(3, 0)
(0)

η′′

η′

η

η′′ → η′

η′ → η

η′′ → η

Figure 10.14 – Three-spaces consistency: in the illustration of η′′, a tag (κ′,κ) denotes an edge
belonging to H(κ′)

η′′→η′,e for some e in H(κ)
η′→η and a tag (0) denotes an edge belonging to H(0)

η′′→η′ (for
better readability we have tagged only one edge of each type)

156



Theorem 10.25 Let η 4 η′ 4 η′′ ∈ LHF. There exists a diffeomorphism φη′′→η′→η : Cη′′→η →
Cη′′→η′ × Cη′→η such that:(

φη′′→η′→η × idCη

)
◦ φη′′→η = (idCη′′→η′ × φη′→η

)
◦ φη′′→η′ (aka. eq. (2.11.1) ).

This provides a factorizing system of smooth manifolds (LHF,C, φ)× (def. 2.15).
Proof Let η 4 η′ 4 η′′ ∈ LHF. Let e ∈ γ(η) and, for any k ∈ {1, . . . , nη′→η,e + 1}, define:

s(k)
η′′→η′→η,e := k−1∑

r=1 nη′′→η′,aη′→η,e(r) .Using prop. 10.2 together with the uniqueness of aη′′→η,e (prop. 10.20), we then get nη′′→η,e =
s(nη′→η,e+1)
η′′→η′→η,e and, for any k ∈ {1, . . . , nη′→η,e} and any l ∈ {s(k)

η′′→η′→η,e + 1, . . . , s(k+1)
η′′→η′→η,e

} :
aη′′→η,e(l) =

aη′′→η′,aη′→η,e(k)
(
l − s(k)

η′′→η′→η,e

) if k = 1 or εη′→η,e(k) = +1
aη′′→η′,aη′→η,e(k)

(
s(k+1)
η′′→η′→η,e + 1− l) otherwise ,

εη′′→η,e(l) =
εη′′→η′,aη′→η,e(k)

(
l − s(k)

η′′→η′→η,e

) if k = 1 or εη′→η,e(k) = +1
−εη′′→η′,aη′→η,e(k)

(
s(k+1)
η′′→η′→η,e + 1− l) otherwise .

Next, for any F ∈ F(η), we have:
H(1,3)
η′′→η,F = ⋃

F ′∈H(1,3)
η′→η,F

H(1,3)
η′′→η′,F ′

(the proof is similar to the one for the second part of prop. 10.23).In particular, using eqs. (10.23.1) and (10.23.2), we then get, for any e ∈ γ(η):
1. H(0)

η′′→η = H(0)
η′′→η′ ∪

⋃
e′∈H(0)

η′→η

H(4)
η′′→η′,e′ ∪

⋃
e′∈H(2)

η′→η

H(3)
η′′→η′,e′ ∪

⋃
e′∈H(3)

η′→η

H(2)
η′′→η′,e′ ;

2. H(1)
η′′→η,e = ⋃

e′∈H(1)
η′→η,e

H(1)
η′′→η′,e′ ;

3. H(2)
η′′→η,e = ⋃

e′∈H(1)
η′→η,e

H(2)
η′′→η′,e′ ∪

⋃
e′∈H(2)

η′→η,e

(
H(1)
η′′→η′,e′ ∪ H

(2)
η′′→η′,e′

) ;
4. H(3)

η′′→η,e = ⋃
e′∈H(1)

η′→η,e

H(3)
η′′→η′,e′ ∪

⋃
e′∈H(3)

η′→η,e

(
H(1)
η′′→η′,e′ ∪ H

(3)
η′′→η′,e′

) ;
Now, for any (h(0)

η′′→η, h
(2)
η′′→η, h

(3)
η′′→η

)
∈ Cη′′→η , we define:

5. ∀e′ ∈ H(0)
η′→η , j (0)η′→η(e′) := (nη′′→η′,e′∏

k=2
[
h(0)
η′′→η ◦ aη′′→η′,e′(k)]εη′′→η′,e′ (k)) .

[
h(0)
η′′→η ◦ aη′′→η′,e′(1)]

(well-defined since H(1)
η′′→η′,e′ ∪ H

(2)
η′′→η′,e′ ⊂ H(0)

η′′→η);
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6. ∀e′ ∈ H(2)
η′→η , j (2)η′→η(e′) := (nη′′→η′,e′∏

k=2
[
h(2)
η′′→η ◦ aη′′→η′,e′(k)]εη′′→η′,e′ (k)) .

[
h(2)
η′′→η ◦ aη′′→η′,e′(1)]

(well-defined since H(1)
η′′→η′,e′ ∪ H

(2)
η′′→η′,e′ ⊂ H(2)

η′′→η);
7. ∀e′ ∈ H(3)

η′→η , j (3)η′→η(e′) := (nη′′→η′,e′∏
k=2

[
h(0)
η′′→η ◦ aη′′→η′,e′(k)]εη′′→η′,e′ (k)) .

[
h(3)
η′′→η ◦ aη′′→η′,e′(1)]

(well-defined since H(1)
η′′→η′,e′ ⊂ H(3)

η′′→η and H(2)
η′′→η′,e′ ∪ H

(0)
η′′→η′,e′ ⊂ H(2)

η′′→η);
8. ∀e′′ ∈ H(0)

η′′→η′ , j (0)η′′→η′(e′′) := h(0)
η′′→η(e′′)(well-defined since H(0)

η′′→η′ ⊂ H(0)
η′′→η);

9. ∀e′′ ∈ H(2)
η′′→η′ , j (2)η′′→η′(e′′) := {h(0)

η′′→η(e′′) if e′′ ∈ H(0)
η′′→η

h(2)
η′′→η(e′′) if e′′ ∈ H(2)

η′′→η(well-defined since H(2)
η′′→η′ ⊂ H(0)

η′′→η ∪ H
(2)
η′′→η);

10. ∀e′ ∈ γ(η′), ∀e′′ ∈ H(3)
η′′→η′,e′ ,

j (3)η′′→η′(e′′) :=


h(0)
η′′→η(e′′) . (j (0)η′→η(e′))−1 if e′ ∈ H(0)

η′′→η

h(0)
η′′→η(e′′) . (j (2)η′→η(e′))−1 if e′ ∈ H(2)

η′′→η

h(3)
η′′→η(e′′) . ∏nη′→η,e

k=2
(
j (2)η′→η ◦ aη′→η,e(k))εη′→η,e(k) if e′ ∈ H(1)

η′′→η,e (with e ∈ γ(η) )
h(3)
η′′→η(e′′) . (j (3)η′→η(e′))−1 if e′ ∈ H(3)

η′′→η(using j (0)η′→η , j (2)η′→η and j (3)η′→η from 10.25.5 to 10.25.7; well-defined since H(3)
η′′→η′,e′ ⊂ H(0)

η′′→η in thefirst two cases, and H(3)
η′′→η′,e′ ⊂ H(3)

η′′→η in the last two cases).
Then, the map φη′′→η′→η : h(0)

η′′→η , h
(2)
η′′→η , h

(3)
η′′→η 7→ j (0)η′′→η′ , j (2)η′′→η′ , j (3)η′′→η′ ; j (0)η′→η , j (2)η′→η , j (3)η′→η is smooth

Cη′′→η → Cη′′→η′ × Cη′→η .Let hη′′ ∈ Cη′′ , and define:
11. (h(0)

η′′→η′ , h
(2)
η′′→η′ , h

(3)
η′′→η′ ; hη′) := φη′′→η′

(
hη′′
)
∈ Cη′′→η′ × Cη′ ;

12. (h(0)
η′→η , h

(2)
η′→η , h

(3)
η′→η ; hη) := φη′→η

(
hη′
)
∈ Cη′→η × Cη ;

13. (h(0)
η′′→η , h

(2)
η′′→η , h

(3)
η′′→η ; jη) := φη′′→η

(
hη′′
)
∈ Cη′′→η × Cη ;

14. (j (0)η′′→η′ , j (2)η′′→η′ , j (3)η′′→η′ ; j (0)η′→η , j (2)η′→η , j (3)η′→η) := φη′′→η′→η′
(
h(0)
η′′→η , h

(2)
η′′→η , h

(3)
η′′→η

) .Using the definitions of φη′→η (from prop. 10.24) and φη′′→η′→η′ , we can check that:(
j (0)η′′→η′ , j (2)η′′→η′ , j (3)η′′→η′ ; j (0)η′→η , j (2)η′→η , j (3)η′→η ; jη) =

= (h(0)
η′′→η′ , h

(2)
η′′→η′ , h

(3)
η′′→η′ ; h(0)

η′→η , h
(2)
η′→η , h

(3)
η′→η ; hη) .

In other words, eq. (2.11.1) is fulfilled. But this also ensures that φη′′→η′→η is a diffeomorphism for
φη′′→η′ , φη′→η , and φη′′→η are diffeomorphisms (prop. 10.24). Together with the directedness of LHF
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proved in theorem 10.14, this yields the desired factorizing system (def. 2.15). �

Finally, we wrap up the classical side of the construction by writing down the symplectic manifold
Mη attached to a label η, the projection from Mη′ into Mη (as prescribed by the factorization φη′→η ,
for η 4 η′), and the expression of the holonomy and flux observables over Mη . These explicit
formulas allow to check (prop. 10.28) that we indeed reproduce the holonomy-flux algebra that was
derived in prop. 9.10 in the context of the infinite phase space description of a theory of connections,
thus validating a posteriori the intuitive arguments that were repeatedly asserted above (on account
of the underlying physical interpretation of the labels).

Note that, as announced at the beginning of the present section, the projections Mη′ → Mη

are of the form that was considered in theorem 6.2 (making Cη into a Lie group via pointwise
multiplication and inverse).

Proposition 10.26 To any η ∈ LHF we associate the symplectic manifold Mη := T ∗(Cη) (with itscanonical symplectic structure as a cotangent bundle), which we identify with Cη × Pη (def. 10.19)via:
Lη : Mη → Cη × Pη

h, p 7→ h,
(
F 7→ p ◦

[
T1

(
t 7→ R (F )

η,t h
)]) ,

the map R (F )
η,t h ∈ Cη being defined for F ∈ F(η), t ∈ G, and h ∈ Cη by:

∀e ∈ γ(η), R (F )
η,t h(e) := {h(e) . t if χη(e) = F

h(e) else .
For any η 4 η′ ∈ LHF, we define πη′→η : Mη′ → Mη as πη′→η = s̃η′→η ◦ φ̃η′→η , where s̃η′→η :
T ∗(Cη′→η×Cη) ≈ T ∗(Cη′→η)×T ∗(Cη)→ T ∗(Cη) is the projection on the second Cartesian factor and
φ̃η′→η : T ∗(Cη′) → T ∗(Cη′→η × Cη) is the cotangent lift of φη′→η . Then, (LHF, M, π)↓ is a projectivesystem of phase spaces (props. 2.16 and 2.13).Moreover, we have:

Lη ◦ πη′→η ◦ L−1
η′ : Cη′ × Pη′ → Cη × Pη

hη′ , Pη′ 7→ hη , Pη
,

where hη and Pη are given in terms of hη′ and Pη′ by:
∀e ∈ γ(η), hη(e) = (nη′→η,e∏

k=2 [hη′ ◦ aη′→η,e(k)]εη′→η,e(k)) . [hη′ ◦ aη′→η,e(1)] , (10.26.1)
and ∀F ∈ F(η), Pη(F ) = ∑

F ′∈H(1,3)
η′→η,F

Pη′(F ′) . (10.26.2)
Proof For any η, Lη is a diffeomorphism Mη → Cη × Pη by definition of χη (def. 10.12).Let (hη′ , pη′) ∈Mη′ and (hη′ , Pη′) = Lη′(hη′ , pη′) . We have:
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φ̃η′→η
(
hη′ ; pη′) = (h(0)

η′→η , h
(2)
η′→η , h

(3)
η′→η , hη ; pη′ ◦ [Tφη′→η(hη′ )φ−1

η′→η

]) ,
with h(0)

η′→η , h
(2)
η′→η , h

(3)
η′→η , hη constructed from hη′ as in prop. 10.24 (in particular, hη is given byeq. (10.26.1)). Thus:

πη′→η
(
hη′ ; pη′) = (hη ; pη′ ◦ [Thηφ−1

η′→η

(
h(0)
η′→η , h

(2)
η′→η , h

(3)
η′→η , ·

)]) ,
and finally Lη ◦ πη′→η (hη′ ; pη′) = (hη ; Pη) , where Pη is given in terms of hη′ , pη′ by:
∀F ∈ F(η), Pη(F ) = pη′ ◦

[
T1 t 7→ φ−1

η′→η

(
h(0)
η′→η , h

(2)
η′→η , h

(3)
η′→η , R

(F )
η,t hη

)] .
Now, for any F ∈ F(η) , t ∈ G and e′ ∈ γ(η′) , we get, using the explicit expression for φ−1

η′→ηfrom the proof of prop. 10.24:
φ−1
η′→η

(
h(0)
η′→η , h

(2)
η′→η , h

(3)
η′→η , R

(F )
η,t hη

) (e′) = {hη′(e′) . t if χη′(e′) ∈ H(1,3)
η′→η,F

hη′(e′) else .
Therefore, ∀F ∈ F(η), Pη(F ) = ∑

F ′∈H(1,3)
η′→η,F

Pη′(F ′) . �

Proposition 10.27 Let e ∈ Ledges and let η ∈ LHF such that γ(η) ∈ Lgraphs/e (prop. 10.20). For any
m ∈ C∞(G,R) (with C∞(G,R) the set of smooth functions G → R), we define h(e,m)

η ∈ C∞(Mη , R)by:
∀(h, p) ∈Mη , h(e,m)

η (h, p) := m
(nγ(η)→e∏

k=1 [h ◦ aγ(η)→e(k)]εγ(η)→e(k)) .
Then, for any η, η′ ∈ LHF such that γ(η), γ(η′) ∈ Lgraphs/e , we have:
∀m ∈ C∞(G,R), h(e,m)

η ∼ h(e,m)
η′ ,

with the equivalence relation of eq. (2.4.1). Moreover {η ∈ LHF | γ(η) ∈ Lgraphs/e} 6= ∅, thus we canassociate to any m ∈ C∞(G,R) a well-defined observable h(e,m) ∈ O
↓(LHF,M,π) (def. 2.4).Let F ∈ Lfaces and let η ∈ LHF such that λ(η) ∈ Lprofls/F (prop. 10.21). For any u ∈ g, we defineP(F,u)

η ∈ C∞(Mη , R) by:
∀(h, p) ∈Mη , P(F,u)

η (h, p) := ∑
F ′∈Hλ(η)→F

p ◦
[
T1

(
t 7→ R (F ′)

η,t h
)] (u) .

Then, for any η, η′ ∈ LHF such that λ(η), λ(η′) ∈ Lprofls/F , we have:
∀u ∈ g, P(F,u)

η ∼ P(F,u)
η′ .

And since {η ∈ LHF ∣∣ λ(η) ∈ Lprofls/F} 6= ∅, we can associate to any u ∈ g a well-defined observ-able P(F,u) ∈ O
↓(LHF,M,π) .

Proof Let e ∈ Ledges . By chaining lemma 10.15 to 10.18, there exists (γ, λ) ∈ LHF such that {e} 4 γ(and [∅]profl 4 λ where [ · ]profl denotes the equivalence class in Lprofls), hence {η ∈ LHF | γ(η) ∈ Lgraphs/e}
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6= ∅. Let η such that γ(η) ∈ Lgraphs/e and let η′ < η. Then, γ(η′) ∈ Lgraphs/e . Moreover, we canexpress aγ(η′)→e in terms of aγ(η)→e and of the aη′→η,e′ for e′ in the image of aγ(η)→e (like we didabove in the proof of theorem 10.25). Together with eq. (10.26.1), we readily check that:
∀m ∈ C∞(G,R), h(e,m)

η ◦ πη′→η = h(e,m)
η′ .

Finally, for any η, η′ such that γ(η), γ(η′) ∈ Lgraphs/e, there exists η′′ < η, η′, hence:
∀m ∈ C∞(G,R), h(e,m)

η ◦ πη′′→η = h(e,m)
η′′ = h(e,m)

η′ ◦ πη′′→η′ ,ie. for any m ∈ C∞(G,R), h(e,m)
η ∼ h(e,m)

η′ .Let λ ∈ Lprofls , F ∈ F(λ) and F = F⊥ ◦F . Again, there exists (γ′, λ′) ∈ LHF such that λ 4 λ′ (and
∅ 4 γ′), hence {η ∈ LHF ∣∣ λ(η) ∈ Lprofls/F} 6= ∅. Let η such that λ(η) ∈ Lprofls/F and let η′ < η.Then, λ(η′) ∈ Lprofls/F and we have (through a reasoning similar to the proof for the second part ofprop. 10.23):

Hλ(η′)→F = ⋃
F ′∈Hλ(η)→F

H(1,3)
η′→η,F ′ . (10.27.1)

Combining this with eq. (10.26.2), we get:
∀u ∈ g, P(F,u)

η ◦ πη′→η = P(F,u)
η′ .

Like above, this ensures that for any η, η′ such that λ(η), λ(η′) ∈ Lprofls/F and for any u ∈ g,P(F,u)
η ∼ P(F,u)

η′ . �

Proposition 10.28 Let e be an analytical edge in Σ, S be an analytic surface in Σ, m ∈ C∞(G, R),and u ∈ g. We define:
∀ � ∈

{ ↑, ↓ } , S� := {e′ ∈ Ledges | e′ � S} & S� := S⊥� ◦ S� ∈ Lfaces(using the notations of prop. 10.21), as well as:
P(S,u) := 12 (P(S↑ , u) − P(S

↓
, u)) ,

and we have:1. if e y S , then:{P(S,u), h(e,m)} = 0 ,
where the Poisson brakets { · , · } between observables over S

↓(LHF,M, π) have been defined indef. 2.4;
2. if e = e2 ◦ e−11 with e1 , e2 � S and � ∈ { ↑, ↓ } , then:{P(S,u), h(e,m)} = 0 ;
3. if e = e2 ◦ e−11 with e1 �1 S , e2 �2 S and {�1, �2} = { ↑, ↓ } , then, defining:

γ := {e1 , e2} ∈ Lgraphs , λ := [ {S} ]∼ ∈ Lprofls , η := (γ, λ) ∈ LHF ,
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we get, for any (h, p) ∈Mη :{P(S,u)
η , h(e,m)

η
}
Mη

(h, p) = sgn(e, S) d
drm

[
h(e2). er u. h(e1)−1]∣∣∣∣

r=0 ,
where sgn(e, S) is given by:
sgn(e, S) := {+1 if (�1 , �2) = (↓, ↑)

−1 if (�1 , �2) = (↑, ↓) .
Proof Poisson brackets between holonomy and flux observables. Let η ∈ LHF and let (h, p) ∈Mη .Let P ∈ Pη such that (h, P) = Lη(h, p), where Lη : Mη → Cη×Pη has been defined in prop. 10.26.Using left-translated exponential coordinates around h ∈ Cη (cf. the proof of theorem 6.2), we canshow that the symplectic structure Ωη on Mη is given by:
∀v, v ′ ∈ Th(Cη), ∀w, w ′ ∈ TP(Pη) ≈ Pη ,

(
L−1,∗
η Ωη

)(h,P) ((v, w), (v ′, w ′)) =
= ∑

e∈γ(η)w
′(χη(e)) ◦ ` (e)

η,h−1(v)− w(χη(e)) ◦ ` (e)
η,h−1(v ′) + P

(
χη(e)) ([` (e)

η,h−1(v), ` (e)
η,h−1(v ′)]

g

) ,
(10.28.1)where, for any e ∈ γ(η):

∀h ∈ Cη , ` (e)
η,h−1 := [Th (j 7→ h(e)−1. j(e))] : ThCη → g .

Now, for any F ∈ Lfaces such that λ(η) ∈ Lprofls/F and for any u ∈ g , we define:(
V (F,u), W (F,u)) := [T(h,p)Lη] (XP(F,u)

η ,(h,p)
) ,

where XP(F,u)
η

denotes the Hamiltonian vector field of P(F,u)
η . Eq. (10.28.1) then yields:

∀e ∈ γ(η), ` (e)
η,h−1

(
V (F,u)) = Y (F,u)(e) & W (F,u)(χη(e)) = P

(
χη(e)) ([Y (F,u)(e), · ]

g

) ,
where Y (F,u) : γ(η)→ g is given by:
∀e ∈ γ(η), Y (F,u)(e) = {u if e ∈ F0 else ,

and we have used that:{
e ∈ γ(η) ∣∣ e ∈ F

} = {e ∈ γ(η) ∣∣ ∃F ′ ∈ Hλ(η)→F / χη(e) = F ′
} (10.28.2)(through a reasoning similar to the proof for the second part of prop. 10.23). Applying the map[

T1
(
t 7→ R (χη(e))

η,t h
)] : g → Th(Cη) (from prop. 10.26) on both sides of the first equation allows to

solve for V (F,u) :
V (F,u) = [T1

(
t 7→ R (F )

η,t h
)](u) ,

where R (F )
η,t h ∈ Cη is given, for any t ∈ G, by:
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∀e ∈ γ(η), R (F )
η,t h(e) := {h(e) . t if e ∈ F

h(e) else .
Thus, we get, for any e ∈ Ledges such that γ(η) ∈ Lgraphs/e , and any m ∈ C∞(G, R) :
∀(h, p) ∈Mη ,

{P(F,u)
η , h(e,m)

η

}
Mη

(h, p) = [T1

(
t 7→ h(e,m)

η
(
R (F )
η,t h, p

))](u) , (10.28.3)
where we have used that, for any (h, p) ∈Mη , h(e,m)

η (h, p) = h(e,m)
η (h, 0) = h(e,m)

η ◦ L−1
η (h, 0) .

Faces of a surface. Let S be an analytic surface in Σ and u ∈ g. From the definitions in prop. 10.9,we get:
F
(
{S}

) = {S↑ , S↓} (10.28.4)
(note that S↑ 6= ∅, as can be ascertained by choosing a representative S̆ of S and pre-composing
S̆ with a suitable rescaling of Rd to define an encharted edge; similarly S↓ 6= ∅, by pre-composingin addition with a reflection). In particular, S↑ , S↓ ∈ Lfaces .
Edge indifferent to the surface or only on one side. Let e be an analytical edge in Σ such that
e = e2 ◦ e−11 with e1 , e2 � S and �∈ {y , ↑, ↓

} (note that this includes the case e y S by writing
e = e[p,f (e)]e−1[p,b(e)] for some p ∈ r(e) \ {b(e), f (e)} and using prop. 10.6.6). Let m ∈ C∞(G, R). Fromlemma 10.15 there exists a label η ∈ LHF such that:
{e1 , e2} 4 γ(η) & [

{S}
]
∼ 4 λ(η) ,and we have (relying on the uniqueness part of prop. 10.20):

∀(h, p) ∈Mη , h(e,m)
η (h, p) := m

nγ(η)→e2∏
k=1 [h ◦ aγ(η)→e2(k)]εγ(η)→e2 (k) . 1∏

l=nγ(η)→e1
[h ◦ aγ(η)→e1(l)]−εγ(η)→e1 (l)

,
with:

aγ(η)→e1(1), aγ(η)→e2(1) �S, ∀k > 1, aγ(η)→e2(k) y S & ∀l > 1, aγ(η)→e1(l) y S .Thus, we obtain:
∀(h, p) ∈Mη , ∀t ∈ G , h(e,m)

η
(
R

(S↑)
η,t h, p

) = h(e,m)
η
(
R

(S
↓
)

η,t h, p
) = h(e,m)

η
(
h, p
) ,so that:

∀(h, p) ∈Mη ,
{P(S,u)

η , h(e,m)
η
}
Mη

(h, p) = 0 ,
and therefore {P(S,u), h(e,m)} = 0 .
Edge crossing the surface. Let e ∈ Ledges such that e = e2 ◦ e−11 with e1 �1 S , e2 �2 S and
{�1, �2} = { ↑, ↓ } . Eq. (10.28.4) then ensures that η = (γ, λ) ∈ LHF, with γ := {e1 , e2} and
λ := [ {S} ]∼ , and we have:
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∀h ∈ Cη , ∀t ∈ G,
(
R

(S↑)
η,t h(e2)) .

(
R

(S↑)
η,t h(e1))−1 = h(e2) . tsgn(e, S) . h(e1)−1 ,

as well as:
∀h ∈ Cη , ∀t ∈ G,

(
R

(S
↓
)

η,t h(e2)) .
(
R

(S
↓
)

η,t h(e1))−1 = h(e2) . t−sgn(e, S) . h(e1)−1 .
Let m ∈ C∞(G, R). We obtain:
∀(h, p) ∈Mη ,

{P(S,u)
η , h(e,m)

η
}
Mη

(h, p) = sgn(e, S) d
drm

(
h(e2) . er u . h(e1)−1)∣∣∣∣

r=0 .
�

While we successfully reproduce the Poisson brackets from prop. 9.10, the projective state space set
up in prop. 10.26 regrettably cannot be displayed as the rendering (def. 2.6) of a continuous classical
theory of connections. If we were to define projection maps πΣ→η from the infinite dimensional
phase space MΣ (def. 9.3) into the various small phase spaces Mη , these maps would not fulfill
def. 2.1:
• They would not be smooth, and in fact, they would not even be everywhere defined on MΣ .
As discussed in subsection 9.2, the holonomy, resp. flux, variables are obtained by smearing the
connection, resp. its conjugate electric field, along singular geometrical objects (respectively 1-
and (d−1)-dimensional), while a smearing by a smooth function on the d-dimensional manifoldΣ would be required to get well-defined observables on MΣ .

• They would not be surjective onto Mη . The ‘one-sided’ flux variables P(S
↓
, u) and P(S↑ , u) that

constitute independent variables in Mη have no equivalent in terms of appropriate smearings of

the electric field: only the combination P(S,u) has. Moreover, the fluxes attached to submanifolds
of dimension less than d − 2 (arising at the intersection of surfaces) should vanish according
to the continuous theory.

• They would not exactly transport the Poisson brackets (compatibility with the symplectic struc-
ture as expressed by eq. (2.1.1) does not directly make sense for non smooth maps, but it would be
desirable to at least recover its transcription at the level of the observables, aka. prop. 2.2). We
stressed when reviewing the regularization of the Poisson brackets (prop. 9.10) that it forces non-
vanishing commutators between fluxes on intersecting surfaces: this anomaly in the holonomy-
flux algebra is the price for rescuing its Jacobi identity. While the Poisson bracket of fluxes
on transversally intersecting surfaces (ie. surfaces whose intersection is of dimension d − 2 or
less) is an observable that actually vanishes on MΣ (as just underlined), in accordance with the
fluxes being commuting in the continuum theory, the non-commutation of fluxes on overlap-
ping surfaces (with an intersection of dimension d − 1) genuinely conflicts with the symplectic
structure on MΣ .

It is open to debate whether the last point, in particular, should be considered a bug (aka. disturb-
ing quantum anomaly), a feature (aka. interesting quantum-geometrical effect) or simply an artifact
(that could be eliminated by expressing the relation between the continuous and the discretized
theories in terms of more appropriate variables, see eg. [89, section 6] or [23, appendix C] ). Note
that this issue is strictly speaking one of regularization rather than quantization: the concern is
whether the two descriptions we have for the classical continuum theory (on an infinite-dimensional
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phase space vs. on a projective limit of finite-dimensional phase spaces) lead to the same physical
predictions. A way to analyze this question could be to try and reproduce, on the projective side
(along the lines of section 3), the dynamics of the original theory of connections (see sections 13
and 20 for ideas in this direction, as well as sections 15 and 16 for examples of how the dynamics
of a classical field theory can be recovered in the projective setting).
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Chapter 4 – Quantum Theory

11. Introduction

Quantizing the classical formalism set up in section 10 is a straightforward application of the
prescriptions for quantization in the position representation that were detailed in props. 6.3 and 6.4.
While the relation between this projective formalism and the continuum phase space description of
subsection 9.1 has some unclear aspects (as just discussed at the end of section 10), its relation with
the well-established Ashtekar-Lewandowski representation [6, 60] of the holonomy-flux algebra can
be understood very precisely using the general results derived in subsection 5.2.

As already mentioned, the Ashtekar-Lewandowski Hilbert space HAL is obtained as an inductive
limit of building block Hilbert spaces labeled by graphs. Vectors in HAL that happen to belong to
the small Hilbert subspace Hγ labeled by a graph γ are said to be supported on γ: in such a state,
any flux operator associated to a surface that does not intersect the graph is strictly zero, while
any holonomy along an edge that does not belong to the graph is uniformly distributed (as can
be checked from the definition of the observables on HAL , that we will recall in props. 12.8 and
12.9; see also [8] ). This is the property to which we were referring, when we pointed out, in the
main introduction, that states build on top of the Ashtekar-Lewandowski vacuum exhibit a discrete
geometry along the spatial slice (remembering from section 8 that the spatial geometry is encoded
in the electric field, which is itself measured by the flux observables), and it is closely related to the
fact that the inductive limit structure of HAL arises from a projective limit of partial configuration
spaces on the classical side [60, 92] . As we will develop below, this inductive limit construction
underlying HAL is also the reason why it only exists if the gauge group is compact.

By contrast, for the construction we will be presenting in subsection 12.1, the gauge group does
not need to be compact, nor do we have to impose any particular restriction beyond the assumption
of a finite-dimensional Lie group (should it be of any use, even countable discrete groups fall into
this category, as the 0-dimensional case). Of course, the just highlighted results concerning the
relation with HAL only apply when the latter can at all be defined, in which case they incidentally
ensure that the projective quantum state space is not empty (because it contains all quantum states
that can be defined on HAL , and even more, see prop. 12.13). The proof of non-emptiness in
the non-compact case seems less obvious, and we will come back to this concern at the end of
section 18.

The possibility of setting up quantum state spaces for theories of connections in the case of
a non-compact gauge group, although not in the focus of our interest, might find applications
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in the treatment of the complex Ashtekar variables [3, 4] , that require G = SL(2,C) (aka. the
universal cover of the Lorentz group) as gauge group and whose geometric interpretation is more
transparent (see eg. the discussion in [66] and references therein). There are hints coming from
various directions [13, 95] that a quantum gravity theory based on these variables could have nicer
physical properties than one using the real Ashtekar variables (with gauge group G = SU(2), as
described in section 8).

Note that the close ties of the state space proposed here with the Ashtekar-Lewandowski one
means that many technical tools developed for the latter can probably be imported in the former,
in particular those that operate at the building block level. Some of these techniques, such as the
use of so-called spin networks to write down gauge-invariant states [79] could be called upon to
help the resolution of the constraints in the projective setting (recall from the main introduction
and section 8 that the constraints are the means to realize gauge-invariance, general covariance
and dynamics in a canonical formulation of general relativity). On the other hand, the very
aspect that the projective formalism is meant to overcome, namely the unbalanced treatment of
configuration and momentum variables, does play a crucial part in the resolution of the Gauss
and diffeomorphism constraints over HAL , so that new ingredients will be needed, now that we
are treating these variable on equal footing. In section 13, we will outline possible paths to deal
with the specific problems that hinder an easy implementation of the constraints over the projective
quantum state space.

12. Quantum state space

Following the procedure laid out in subsection 6.1, we can quantize each partial phase space
Mη = T ∗(Cη) along its position polarization to get a partial Hilbert space Hη = L2(Cη , dµη) and the
consistency of these polarizations with the projection maps (that was shown in prop. 10.26) ensures
that these Hilbert spaces Hη can eventually be arranged into a projective system of quantum state
spaces. Equivalently, the tensor product factorizations needed for the quantum projective system
can be read out directly from the classical factorizing system (prop. 6.3). Note that the resulting
partial traces Trη′→η are reminiscent of the coarse graining maps considered in earlier works [56] .

On the other hand, we suggested in subsection 2.3 that any factorizing system of configuration
spaces yields, by forgetting about the more precise information it provides regarding the links
between the partial theories, an associated projective system of configuration spaces. If a family
of measures µη can be found on this projective system that are at the same time normalizable and
compatible with the projections (and this will be the case if the group G happens to be compact),
the small Hilbert spaces Hη can alternatively be arranged into an inductive limit: this is the
situation we considered in prop. 6.5, where we proved that we are then provided with a natural
injection, embedding the space of density matrices on the resulting inductive limit Hilbert space
into the projective state space. In the perspective of this result, the compactness of the group
G ensures that normalizable measures µη′→η can be chosen on the complementary configuration
spaces Cη′→η , which in turn allows to pick out a natural, constant, ‘reference state’ ζη′→η in each
complementary Hilbert space Hη′→η = L2(Cη′→η , dµη′→η) : these reference states assemble precisely
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into the Ashtekar-Lewandowski vacuum. Although probability measures could be constructed on
the spaces Cη′→η even in the case of a non-compact group, they would not fulfill the factorization
condition from def. 6.1.3, required for the inductive limit to be well-defined (see the discussion
around prop. 6.5, as well as complementary views on this problem in [65, 66] ).

We will make use of this device to understand how the state space we are proposing here extends
the Ashtekar-Lewandowski Hilbert space HAL (theorem 12.11, props. 12.12 and 12.13). It may at first
seem surprising that an inductive limit obtained this way can in our case be identified with HAL ,
since the former is made of building blocks labeled by edges and surfaces, while the latter use
labels which are just graphs. The trick here is that the injections defining this inductive limit
in fact do not depend on the disposition of the surfaces in the labels. This is in fact the very
observation that was spelled out before def. 2.15: projections between configuration spaces (which
are the ingredients of an inductive limit construction) are less specific than factorizations, and it
was precisely in order to distinguish between different possible factorizations corresponding to the
same projection map that we had to introduce surfaces in the labels. The injection that mounts
the Hilbert space associated to a label η into the one associated to a finer label η′ thus turns out
to only depend on the underlying graphs γ(η) and γ(η′), so that the inductive system labeled by
elements of LHF actually collapses into an inductive system simply labeled by graphs (via the same
mechanism as the one discussed at the classical level in prop. 2.8).

12.1 Quantization in the position representation

The expectation that the projective approach could allow for a more balanced treatment of the
configuration and momentum variables than the Ashtekar-Lewandowski representation is supported
by the respective classical precursors of both formalisms (in accordance with the general picture
exposed in chaps. 1 and 2): as underlined above, the inductive limit construction underlying HAL can
be seen as emerging from a projective limit of configuration spaces, while the projective quantum
state space in prop. 12.1 below will be obtained as the quantization of the projective limit of phase
spaces from prop. 10.26.

One might be worried that relying on the position representation to perform the quantization of
the individual partial theories would reintroduce an unwanted singularization of the configuration
variables. This is however not the case, because they only play a special role as far as the
quantization of the finite dimensional small phase spaces is concerned: this is therefore comparable
to the choice of a representation in quantum mechanics (in opposition to quantum field theory),
which is known to be rather innocuous [98] (viz. the thoughts in section 7 to dispense altogether
from a choice of polarization). Indeed, the small phase spaces Mη are cotangent bundles on Lie
groups, whose position representation (namely, the L2 space on the considered group) can be shown
to be unitarily equivalent to a suitably defined momentum representation [32, 11].

Thus, while working in the position representation means that we are using the same building
blocks as the ones used for the construction of HAL (which is convenient to study the relation
between the two approaches along the lines sketched above), the critical difference comes from the
alternative way of gluing them together to compose the state space of the full theory: design choices
in this regard are precisely the most likely to have irreversible consequences on the final quantum
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(field) theory.

Proposition 12.1 Let µ be a right-invariant Haar measure on G. For η ∈ LHF, we can, using thenatural identification Cη ≈ G#γ(η), define a measure µη ≈ µ#γ(η) on Cη (actually the identification
Cη ≈ G#γ(η) is not unique, since it depends on an ordering of the edges in γ(η); yet the measure µηis independent of this choice).Then, there exists a family of smooth measures µη′→η on each Cη′→η for η 4 η′ ∈ LHF, such that(LHF, (C, µ), φ)× is a factorizing system of measured manifolds (def. 6.1). Defining:1. ∀η ∈ LHF, Hη := L2(Cη, dµη) ;
2. ∀η 4 η′ ∈ LHF, Hη′→η := L2(Cη′→η, dµη′→η) and:

Φη′→η : Hη′ → Hη′→η ⊗Hη ≈ L2(Cη′→η × Cη, dµη′→η × dµη)
ψ 7→ ψ ◦ φ−1

η′→η
;

there exists a family of Hilbert spaces isomorphisms (Φη′′→η′→η
)
η4η′4η′′ such that (LHF, H, Φ)⊗ is aprojective system of quantum state spaces (def. 5.1).

Proof The right-invariant Haar measure µ comes from a smooth, right-invariant volume form on G.Hence, for any η there exists a smooth, right-invariant volume form ωη on Cη such that µη is themeasure associated to ωη (ωη is not unique, as there is a freedom in the orientation of Cη ; however,it is sufficient here to just pick an ωη for each Cη). In particular, µη is therefore a smooth measureon Cη . Defining:
Rη,h : Cη → Cη

j 7→ (e 7→ j(e) . h(e)) ,
the right-invariance of ωη can be written as:
∀h ∈ Cη, R∗η,h ωη = ωη . (12.1.1)

Let η 4 η′ ∈ LHF, dη := dimCη , dη′ := dimCη′ and dη′→η := dη′ − dη . We choose a basis
u1, . . . , udη in T1(Cη) (where 1 ∈ Cη is the map e 7→ 1 ∈ G) and we define a smooth volume form
ωη′→η on Cη′→η by:
∀q ∈ Cη′→η , ∀w1, . . . , wdη′→η ∈ Tq(Cη′→η),
ωη′→η,q(w1, . . . , wdη′→η) :=

[
φ−1,∗
η′→η ωη′

]
(q,1)
((w1, 0), . . . , (wdη′→η , 0), (0, u1), . . . , (0, udη))

ωη,1(u1, . . . , udη) .
Now, for any h ∈ Cη , we define h̃ ∈ Cη′ by:
∀e ∈ γ(η), ∀e′ ∈ H(1)

η′→η,e ∪ H
(3)
η′→η,e , h̃(e′) = h(e) ;

and ∀e′ ∈ H(0)
η′→η ∪ H

(2)
η′→η , h̃(e′) = 1 .

Using the explicit expression for φ−1
η′→η from the proof of prop. 10.24, we can check that:
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∀h ∈ Cη, Rη′,h̃ ◦ φ
−1
η′→η = φ−1

η′→η ◦
(idCη′→η × Rη,h

) .
Applying eq. (12.1.1), we thus get, for any h ∈ Cη :

ωη,1(u1, . . . , udη) = ωη,h(U1,h , . . . , Udη,h)
and ∀q ∈ Cη′→η , ∀w1, . . . , wdη′→η ∈ Tq(Cη′→η),[

φ−1,∗
η′→η ωη′

]
(q,1)
((w1, 0), . . . , (wdη′→η , 0), (0, u1), . . . , (0, udη))

= [φ−1,∗
η′→η ωη′

]
(q,h)
((w1, 0), . . . , (wdη′→η , 0), (0, U1,h), . . . , (0, Udη,h)) ,

where ∀i ∈ {1, . . . , dη} , Ui,h := [T1Rη,h] (ui) ∈ Th(Cη) . And since U1,h , . . . , Udη,h is a basis of
Th(Cη), we get:

φ−1,∗
η′→η ωη′ = ωη′→η × ωη .

Therefore, defining, for any η 4 η′, µη′→η to be the smooth measure on Cη′→η associated to thevolume form ωη′→η , we have:
∀η 4 η′ ∈ LHF, φη′→η,∗ µη′ = µη′→η × µη ,and, using the 3-spaces consistency condition eq. (2.11.1) in the factorizing system (LHF, C, φ)×,this also implies:
∀η 4 η′ 4 η′′ ∈ LHF, φη′′→η′→η,∗ µη′′→η = µη′′→η′ × µη′→η .Thus, (LHF, (C, µ), φ)× is a factorizing system of measured manifolds, from which a projective systemof quantum state spaces (LHF, H, Φ)⊗ can be constructed as described in prop. 6.3. �

Proposition 12.2 Let e ∈ Ledges and let η ∈ LHF such that γ(η) ∈ Lgraphs/e . For any m ∈ C∞(G,R),h(e,m)
η fulfills the quantization condition eq. (6.4.1) and can be quantized as a densely defined,

essentially self-adjoint operator ĥ(e,m)
η on Hη (with dense domain Dη), given by:

∀ψ ∈ Dη , ∀h ∈ Cη ,
(ĥ(e,m)

η ψ
)(h) := m

(nγ(η)→e∏
k=1 [h ◦ aγ(η)→e(k)]εγ(η)→e(k)) ψ(h) . (12.2.1)

Moreover, we have for any η, η′ ∈ LHF such that γ(η), γ(η′) ∈ Lgraphs/e :
∀m ∈ C∞(G,R), ĥ(e,m)

η ∼ ĥ(e,m)
η′ ,with the equivalence relation of eq. (5.3.2), thus we can associate to any e ∈ Ledges and any

m ∈ C∞(G,R) a well-defined observable ĥ(e,m) ∈ O⊗(LHF,H,Φ) (prop. 5.5).
Let F ∈ Lfaces and let η ∈ LHF such that λ(η) ∈ Lprofls/F . For any u ∈ g, P(F,u)

η fulfills thequantization condition and can be quantized as a densely defined, essentially self-adjoint operator
P̂(F,u)
η on Hη, given by:
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∀ψ ∈ Dη , ∀h ∈ Cη ,
(P̂(F,u)

η ψ
)(h) := i

[
T1 t 7→ ψ

(
R (F )
η,t h
)] (u) , (12.2.2)

the map R (F )
η,t h ∈ Cη being defined for t ∈ G and h ∈ Cη by:

∀e ∈ γ(η), R (F )
η,t h(e) := {h(e) . t if e ∈ F

h(e) else .
Moreover, we have for any η, η′ ∈ LHF such that λ(η), λ(η′) ∈ Lprofls/F :
∀u ∈ g, P̂(F,u)

η ∼ P̂(F,u)
η′ ,

thus we can associate to any F ∈ Lfaces and any u ∈ g a well-defined observable P̂(F,u) ∈ O⊗(LHF,H,Φ) .
Proof Hamiltonian vector field projected on Cη . Let η ∈ LHF. Let r ∈ C∞(Mη , R). For any(h, P) ∈ Cη × Pη and any w ∈ Pη , eq. (10.28.1) yields:[

dr ◦ L−1
η
](h,P) (0, w) =

= Ωη,L−1
η (h,P) (Xr,L−1

η (h,P) , [T(h,P)L−1
η
] (0, w))

= (L−1,∗
η Ωη

)
h,P

([
TL−1

η (h,P)Lη] (Xr,L−1
η (h,P)) , (0, w))

= ∑
e∈γ(η)w

(
χη(e)) ◦ ` (e)

η,h−1
([
TL−1

η (h,P)γη] (Xr,L−1
η (h,P))) , (12.2.3)

where Xr is the Hamiltonian vector field of r and γη : Mη → Cη is the bundle projection in
Mη = T ∗(Cη).Now, for any h, j ∈ Cη and any e ∈ γ(η), we have:

(
t 7→ R (χη(e))η,th) ◦ (j ′ 7→ h(e)−1 . j ′(e)) (j) = R (χη(e))η,h(e)−1 . j(e)h : e′ 7→ {

j(e′) if e′ = e
h(e′) else .

Therefore, we get for any h ∈ Cη :∑
e∈γ(η)

[
T1 t 7→ R (χη(e))η,th] ◦ ` (e)

η,h−1 = idTh(Cη) .
For any h ∈ Cη and any υ ∈ T ∗h (Cη), we define w (h)

υ ∈ Pη by:
∀F ∈ F(η), w (h)

υ (F ) := υ ◦
[
T1 t 7→ R (F )

η,t h
] ,

so that eq. (12.2.3) becomes:
∀(h, P) ∈ Cη × Pη , υ ◦

[
TL−1

η (h,P)γη] (Xr,L−1
η (h,P)) = [dr ◦ L−1

η
](h,P) (0, w (h)

υ ) .
Thus, r fulfills the quantization condition eq. (6.4.1) if and only if there exists a smooth, completevector field X r on Cη such that:

171



∀(h, P) ∈ Cη × Pη , ∀υ ∈ T ∗h (Cη), [dr ◦ L−1
η
](h,P) (0, w (h)

υ ) = υ
(
X r,h) . (12.2.4)

If this is the case, we can then define r̂ as a densely defined, essentially self-adjoint operator on
Hη by (prop. B.14):
∀ψ ∈ Dη , ∀h ∈ Cη ,

(̂rψ)(h) := (r(h, 0) + i2 divµηX r(h)) ψ(h) + i
[
dr ◦ L−1

η
](h,P) (0, w (h)

dψh) ,
where divµηX r ∈ C∞(Cη) is defined by LX rµη = (divµηX r) µη (def. B.12).
Holonomies. Let e ∈ Ledges and let η ∈ LHF such that γ(η) ∈ Lgraphs/e . For any m ∈ C∞(G,R), wehave:
∀(h, P) ∈ Cη × Pη , h(e,m)

η ◦ L−1
η (h, P) = m

(nγ(η)→e∏
k=1 [h ◦ aγ(η)→e(k)]εγ(η)→e(k)) ,

hence h(e,m)
η fulfills the quantization condition with X h(e,m)

η
:= 0. This yields the expression in

eq. (12.2.1) for ĥ(e,m)
η . Finally, for any η, η′ ∈ LHF such that γ(η), γ(η′) ∈ Lgraphs/e , we have h(e,m)

η ∼

h(e,m)
η′ (prop. 10.27), so prop. 6.4 ensures that ĥ(e,m)

η ∼ ĥ(e,m)
η′ , and therefore that an observable ĥ(e,m)

can be consistently defined on S⊗(H,LHF,Φ) .
Fluxes. Let F ∈ Lfaces and let η ∈ LHF such that λ(η) ∈ Lprofls/F . For any u ∈ g, we have:
∀(h, P) ∈ Cη × Pη , P(F,u)

η ◦ L−1
η (h, P) = ∑

F ′∈Hλ(η)→F
P(F ′)(u) ,

hence eq. (12.2.4) yields:
∀h ∈ Cη , XP(F,u)

η ,h
:= ∑

F ′∈Hλ(η)→F
[
T1 t 7→ R (F ′)

η,t h
] (u) =∑

e∈F

[
T1 t 7→ R (χη(e))

η,t h
] (u) ,

where the second equality comes from eq. (10.28.2). Therefore:
∀h ∈ Cη , XP(F,u)

η ,h = [T1 t 7→ R (F )
η,t h
] (u) ,

and in particular XP(F,u)
η

is a complete vector field on Cη . Thus, P(F,u)
η fulfills the quantization

condition, with the expression in eq. (12.2.2) for P̂(F,u)
η , since the flow τ 7→ R (F )

η,eτu of XP(F,u)
η

preservesthe right-invariant measure µη on Cη . Finally, like above, prop. 10.27 together with prop. 6.4 ensures
that the P̂(F,u)

η , defined for each η ∈ LHF such that λ(η) ∈ Lprofls/F , can be consistently assembled
into an observable P̂(F,u) on S⊗(H,LHF,Φ) . �
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12.2 Relation to the Ashtekar-Lewandowski Hilbert space

We now want to investigate in which sense the quantum projective state space from prop. 12.1
can be understood as a reasonable extension of the space of states defined over the Ashtekar-
Lewandowski Hilbert space HAL . We start by recalling the construction of HAL , in a form suitable
to make contact with section 10 and subsection 12.1, using the tools developed in subsection 5.2.
As stressed in section 11, this analysis has to to be carried out in the case of a compact group G,
since this is a prerequisite for HAL to exist.

Results similar to prop. 2.5 (for classical projective systems) or prop. 5.6 (for quantum ones) can
be formulated for inductive systems of Hilbert spaces, and, in particular, the limit of an inductive
system is not affected if one restricts its label set to some cofinal part. This is the reason why we
have so far only considered graphs with fully analytic edges (viz. the discussion before def. 9.6).
Still, the use of graphs with semi-analytic edges [92, sections II.6 and IV.20] is favored in LQG, for,
although they yields the same Hilbert space, they present it in a form more convenient for writing
the action of semi-analytic diffeomorphisms (which, unlike fully analytic ones, can be local; see
the comments in this respect at the end of subsection 9.2 and at the beginning of subsection 19.2).
Therefore, we briefly sketch below how to switch back to the semi-analytic class.

In this subsection the gauge group G is assumed to be compact, and the measure µ (introducedin prop. 12.1) is taken to be the normalized Haar measure on G.
Definition 12.3 Let k ∈ {1, 2, . . . ,∞}. We define the set L(k)edges of (k)-edges like in def. 9.6, byrequiring encharted (k)-edges to be C k-diffeomorphisms instead of analytic ones. In analogy toprops. 10.1 and 10.2, we define the range r(e), the beginning and ending points b(e) and f (e),(k)-subedges e[p,p′ ] (for p 6= p′ ∈ r(e) ), the reversed (k)-edge e−1, and the order <(e) on the rangeof a (k)-edge e, as well as the composition of (k)-composable (k)-edges. These have the sameproperties as in the analytic case, since the proofs of props. 10.1 and 10.2 did not made use of theanalyticity.An analytic encharted edge is also an encharted (k)-edge, and two analytic encharted edge areequivalent in L̆edges iff they are equivalent in L̆

(k)edges . Thus, we have a natural injection of Ledgesinto L
(k)edges . In the following, we will always identify Ledges with the image of this injection andwrite Ledges ⊂ L

(k)edges .
Proposition 12.4 We define AL-graphs as finite sets of (1)-edges γ ⊂ L

(1)edges such that:
1. ∀e ∈ γ, ∃ e1, . . . , en ∈ Ledges ⊂ L

(1)edges , (1)-composable /e = en ◦ . . . ◦ e1 ;
2. ∀e 6= e′ ∈ γ, r(e) ∩ r(e′) ⊂ {b(e), f (e)} ∩ {b(e′), f (e′)} .We denote the set of AL-graphs by LAL and we equip it with the preorder 4 defined as in def. 10.3.Then, Lgraphs ,4 is a cofinal subset of LAL ,4 , so in particular LAL ,4 is a directed preorderedset.

Proof By construction Lgraphs ⊂ LAL , and the order 4 between two elements of Lgraphs coincideswith their order as elements of LAL (indeed, if an analytic edge is the composition of (1)-composable
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analytic edges, then, by definition, these edges are composable in Ledges).Next, let γ ∈ LAL and for any e ∈ γ, choose γe = {e1 , . . . , en} ⊂ Ledges such that e = en◦. . .◦e1 .We have:
∀e ∈ γ, ∀ẽ 6= ẽ′ ∈ γe, r(ẽ) ∩ r(ẽ′) ⊂ {b(ẽ), f (ẽ)} ∩ {b(ẽ′), f (ẽ′)} ,
and ∀e 6= e′ ∈ γ, ∀ẽ ∈ γe , ∀ẽ′ ∈ γe′ ,

r(ẽ) ∩ r(ẽ′) ⊂ r(ẽ) ∩ r(ẽ′) ∩ r(e) ∩ r(e′)
⊂ r(ẽ) ∩ {b(e), f (e)} ∩ r(ẽ′) ∩ {b(e′), f (e′)}
⊂ {b(ẽ), f (ẽ)} ∩ {b(ẽ′), f (ẽ′)} ,

by definition of the composition of edges. Therefore γ′ := ⋃
e∈γ

γe ∈ Ledges , and we have γ 4 γ′ . �
We now rewrite the classical construction underlying the Ashtekar-Lewandowski Hilbert space,

namely the design of a projective limit of configuration spaces, using a presentation parallel to that
of subsection 10.3. This allows us to ascertain that the projection maps involved here match exactly
the ones induced by the projections between phase spaces considered in prop. 10.26 (modulo the
straightforward extension to semi-analytic graphs). As stressed at the beginning of the present sec-
tion, since we are not setting up an actual projective limit of symplectic manifolds, the momentum
variables do not come into play in this context, so we can directly use graphs as labels, without
having to decorate them with faces.

Proposition 12.5 Let γ 4 γ′ ∈ LAL . Then, for any e ∈ γ, there exists a unique map aγ′→γ,e :
{1, . . . , nγ′→γ,e} → γ′ (with nγ′→γ,e > 1) such that:

e = aγ′→γ,e(nγ′→γ,e)εγ′→γ,e(nγ′→γ,e) ◦ . . . ◦ aγ′→γ,e(1)εγ′→γ,e(1) ,where, for any k ∈ {1, . . . , nγ′→γ,e} , εγ′→γ,e(k) is defined from aγ′→γ,e as in eq. (10.20.2).
Proof The proof works exactly as in the analytic case (prop. 10.20). �

Proposition 12.6 For any γ ∈ LAL we define the finite-dimensional smooth configuration space
Cγ := {h : γ → G} (like in def. 10.19). And for any γ 4 γ′ ∈ LAL , we define the map πγ′→γ : Cγ′ →
Cγ by:
∀h′ ∈ Cγ′, ∀e ∈ γ, πγ′→γ(h′)(e) := (nγ′→γ,e∏

k=1 [h′ ◦ aγ′→γ,e(k)]εγ′→γ,e(k)) .
πγ′→γ is smooth, for G is a Lie group, and it is moreover surjective.In addition, for any γ 4 γ′ 4 γ′′ ∈ LAL , we have:

πγ′→γ ◦ πγ′′→γ′ = πγ′′→γ . (12.6.1)
Proof Let γ 4 γ′ and let h ∈ Cγ . For any e 6= e′ ∈ γ, we have:
∀ẽ ∈ aγ′→γ,e 〈{1, . . . , nγ′→γ,e}〉 , ∀ẽ′ ∈ aγ′→γ,e′ 〈{1, . . . , nγ′→γ,e′}〉 ,

r(ẽ) ∩ r(ẽ′) ⊂ {b(ẽ), f (ẽ)} ∩ {b(ẽ′), f (ẽ′)} ,
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as in the proof of prop. 12.4, hence aγ′→γ,e 〈{1, . . . , nγ′→γ,e}〉 ∩ aγ′→γ,e′ 〈{1, . . . , nγ′→γ,e′}〉 = ∅.Moreover, aγ′→γ,e is injective (by definition of the composition of edges), hence the map h′ ∈ Cγ′given by:
∀e ∈ γ, h′ ◦ aγ′→γ,e(1) = h(e)εγ′→γ,e(1) ,
∀e′ ∈ γ′

/
e′ /∈ {aγ′→γ,e(1)|e ∈ γ} , h′(e′) = 1 ,is well-defined and is such that πγ′→γ(h′) = h . Thus, πγ′→γ is surjective.Finally, eq. (12.6.1) follows from the uniqueness of aγ′′→γ,e as in the proof of theorem 10.25. �

As mentioned earlier, there are many projections between the phase spaces T ∗(Cγ′ ) and T ∗(Cγ)
(with γ 4 γ′) that can reproduce a given projection between the configuration spaces Cγ′ and Cγ , or,
equivalently, many ways of choosing in Cγ′ a set of variables complementary to the ones coming
from Cγ . In the proof of prop. 12.7, we choose, for each pair of graphs γ 4 γ′, a factorization
of Cγ′ as Cγ′−γ × Cγ consistent with the projection πγ′→γ defined in prop. 12.6. The injective maps
τγ′←γ between the Hilbert spaces Hγ that serve as building blocks for HAL can then be understood
as arising from the corresponding factorization Hγ′ ≈ Hγ′−γ ⊗Hγ , via the selection of a ‘reference
state’ ζγ′−γ in Hγ′−γ . Because this reference state is taken as the constant function ζγ′−γ ≡ 1 on
Cγ′−γ , the thus obtained identification of Hγ with a vector subspace of Hγ′ in the end does not
depend on which particular factorization of Cγ′ has been used, but solely on the projection πγ′→γ
from Cγ′ into Cγ . Also, as announced earlier, the need for a compact gauge group G manifests
itself in this approach as a condition for ζγ′−γ to be a normalizable element of Hγ′−γ (otherwise the
map τγ′←γ would not be well-defined).

Of course, it is not really necessary for assembling the inductive limit HAL to ever introduce
such factorization maps (a more standard path being to directly check that πγ′→γ,∗ µγ′ = µγ). Still,
it is worth looking closer at the particular family of factorizations elected below. The projections
between phase spaces to which they give rise turn out to be precisely the ones that were considered
in [89, def. 3.8] and although they do not fulfill the three-spaces consistency needed for a projective
system (expressed in def. 2.3, or, at the level of the factorization maps, in eq. (2.11.1)), this can
be quickly fixed: by somewhat tightening the ordering among graphs (requiring, in addition to
eq. (10.3.1), that the first part of an edge e ∈ γ, in its decomposition into edges of γ′, should be
oriented like e itself, ie. that ε1 = +1), we can, without voiding the directedness of LAL , rescue this
pivotal consistency condition [85] .

So why did we go through the intricacy of carefully setting up a label set with edges and
surfaces if an apparently valid projective system could readily have been built over LAL ? If we
examine carefully the structure of observables that would arise from such a projective structure
(and in particular, if we compare it to the one obtained in the previous subsection), we realize that
its momentum variables are fluxes carried by single edge germs (defining the germ of an edge e as
the equivalence class consisting of all edges sharing an initial subedge with e).

This sheds light on how a projective limit of phase spaces can at all be constructed using labels
that seems to only know about configuration variables. What makes it possible, is the availability of
a preferred pairing of conjugate variables, binding each configuration variable to its own particular
momentum variable (eg. the holonomy along an edge with the flux carried by its germ). This pairing
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is such that whenever an edge e belongs to some graph γ, its companion flux does not act on any
other edge of γ (indeed, edges in a graph cannot share a common subedge). In this way, any graph,
as it selects specific holonomy variables, selects at the same time their conjugate flux variables (and
the slight sharpening of the ordering described above ensures that if γ′ < γ the fluxes thus attached
to γ are also in γ′).

A similar mechanism underlies the projective quantum state space built in [66]. In this work,
holonomies along analytic loops were used as a complete set of independent configuration variables,
which again provides an a priori pairing of conjugate variables, since the selected configuration
variables can be thought as coordinates and mapped to their dual differential operator.

In both cases, the resulting factorizing systems leads to a theory whose basic momentum variables
have no equivalent in the continuum classical theory. The trouble is then that fluxes associated to
non-degenerate surfaces (aka. (d−1)-dimensional ones) cannot be represented on the corresponding
quantum projective state space. If we however insist on using regular holonomies and fluxes as
our primary variables (so as to implement an algebra of observables that separates the points in the
continuum classical theory), then there is no way of choosing beforehand a canonical pairing that
would, as described above, automatically provides a suitable set of canonically conjugate variables
for any arbitrary graph γ.

Proposition 12.7 For any γ ∈ LAL , we define the measure µγ ≈ µ#γ on Cγ ≈ G#γ (as in prop. 12.1)and the Hilbert space Hγ := L2(Cγ , dµγ). Next, for any γ 4 γ′ ∈ LAL , we define the map τγ′←γ by:
τγ′←γ : Hγ → Hγ′

ψ 7→ ψ ◦ πγ′→γ
.

τγ′←γ is an isometry and, for any γ 4 γ′ 4 γ′′ ∈ LAL :
τγ′′←γ′ ◦ τγ′←γ = τγ′′←γ . (12.7.1)

We define the Ashtekar-Lewandowski Hilbert space HAL as the (norm completion of) the inductivelimit of the system ((
Hγ
)
γ∈LAL ,

(
τγ′←γ

)
γ4γ′

) . For γ ∈ LAL , we will denote by τAL←γ the naturalisometric injection of Hγ in HAL .
Proof Let γ 4 γ′ ∈ LAL . We define:

γ′ − γ := γ′ \ {aγ′→γ,e(1) | e ∈ γ} ,
as well as the finite dimensional smooth manifold Cγ′−γ := {

h̃ : (γ′ − γ) → G
} . The smooth map

φγ′−γ given by:
φγ′−γ : Cγ′ → Cγ′−γ × Cγ

h′ 7→ h′|γ′−γ , πγ′→γ(h′) ,
is a diffeomorphism (as can be checked by expressing its inverse like in the proof of prop. 10.24).Moreover, defining for any h ∈ Cγ the maps T (γ)

γ′,h : Cγ′ → Cγ′ and Rγ,h : Cγ → Cγ by:
∀j ′ ∈ Cγ′ , ∀e′ ∈ γ′,
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[
T (γ)
γ′,h(j ′)] (e′) =


j ′(e′) . h(e) if ∃e ∈ γ / e′ = aγ′→γ,e(1) & εγ′→γ,e = +1
h(e)−1 . j ′(e′) if ∃e ∈ γ / e′ = aγ′→γ,e(1) & εγ′→γ,e = −1
j ′(e′) else ,

and ∀j ∈ Cγ , ∀e ∈ γ, [Rγ,h(j)] (e) = j(e) . h(e) ,
we have φγ′−γ ◦ T (γ)

γ′,h = (idCγ′−γ × Rγ,h
)
◦ φγ′−γ . Let ωγ , resp. ωγ′ , be a right invariant volumeform on Cγ , resp. Cγ′ , such that µγ , resp. µγ′ , is the corresponding measure. Because the Haarmeasure on a compact group is left-invariant as well as right-invariant, there exists a smooth map

ε : Cγ → {+1, −1} such that, for any h ∈ Cγ , T (γ),∗
γ′,h ωγ′ = ε(h)ωγ′ . Then, we can, like in the proofof prop. 12.1, construct a smooth volume form ωγ′−γ on Cγ′−γ such that [φ−1,∗

γ′−γ ωγ′
] = ωγ′−γ ×

(
εωγ

).Therefore, there exists a smooth measure µγ′−γ on Cγ′−γ such that φγ′−γ,∗ µγ′ = µγ′−γ×µγ . And from
µγ
(
Cγ
) = 1 = µγ′

(
Cγ′
), we get µγ′−γ (Cγ′−γ) = 1.Thus, for any measurable function ζ : Cγ → R+ , we have, by Fubini’s theorem:∫

Cγ

dµγ(h) ζ(h) = ∫
Cγ′

dµγ′(h′) ζ ◦ πγ′−γ(h′) ,
so that τγ′←γ is well-defined as a map Hγ → Hγ′ and is an isometry. Finally, eq. (12.7.1) followsfrom eq. (12.6.1).
Note. Denoting by γ′o the AL-graph γ′ − γ ⊂ γ′, we have µγ′−γ = µγ′o . Indeed, for any measurablefunction ζ : Cγ′−γ → R+ :∫

Cγ′−γ

dµγ′−γ(j) ζ(j) = ∫
Cγ′−γ×Cγ

dµγ′−γ(j)dµγ(h) ζ(j) (for µγ(Cγ) = 1)
= ∫

Cγ′

dµγ′(h′) ζ
(
h′|γo

)
= ∫

Cγ′o
×Cγ′1
dµγ′o(h′o)dµγ′1(h′1) ζ(h′o)

(with γ′1 := γ′ \ γ′o ∈ LAL ; γ′ = γ′o ∪ γ′1 implies (Cγ′ , dµγ′) ≈ (Cγ′o , dµγ′o)× (Cγ′1 , dµγ′1) )
= ∫

Cγ′o

dµγ′o(h′o) ζ(h′o) (for µγ′1(Cγ′1) = 1).
�

Finally, we also recall the definition of the holonomy and flux operators on HAL [8, 4, 92].
Indeed, if we want to investigate the relation between the Ashtekar-Lewandowski construction and
the just developed projective formalism, it is not enough to produce a map σ between the state
spaces: we should also check that σ is dual to the map α that transports the observables according
to their physical interpretation. Actually, the second part of prop. 12.10 shows that the map σ is
uniquely specified as soon as we require it to intertwine the implementation of holonomies and
exponentiated fluxes on both sides.
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Proposition 12.8 Let e ∈ Ledges and define:
LAL/e := {γ ∈ LAL | {e} 4 γ} .For any γ ∈ LAL/e and any m ∈ C∞(G, R), we have on Hγ a densely defined, essentially self-adjoint operator ĥ(e,m)

γ on Hγ (with dense domain Dγ) given by:
∀ψ ∈ Dγ , ∀h ∈ Cγ ,

(ĥ(e,m)
γ ψ

) (h) := m
(nγ→{e},e∏

k=1
[
h ◦ aγ→{e},e(k)]εγ→{e},e(k)) ψ(h) .

Moreover, for any γ′ < γ, we have γ′ ∈ LAL/e and:
∀ψ ∈ Dγ , τγ′←γ(ψ) ∈ Dγ′ & ĥ(e,m)

γ′ ◦ τγ′←γ(ψ) = τγ′←γ ◦ ĥ(e,m)
γ (ψ) .

Thus, the family (ĥ(e,m)
γ

)
γ∈LAL/e provides a densely defined, essentially self-adjoint operator ĥ(e,m)AL on

HAL .
Proof Let γ ∈ LAL/e and m ∈ C∞(G, R). Taking Dγ = C∞(Cγ , C) ⊂ Hγ (this matches thecompactly supported smooth functions used in prop. 12.2 since Cγ is compact), ĥ(e,m)

γ is well-definedand essentially self-adjoint (actually, it is a bounded operator). Moreover, we have:
∀h ∈ Cγ , m

(nγ→{e},e∏
k=1

[
h ◦ aγ→{e},e(k)]εγ→{e},e(k)) = m

([
πγ→{e}(h)] (e)) . (12.8.1)

Now let γ′ < γ. By transitivity of < on LAL , γ′ ∈ LAL/e . For any ψ ∈ Dγ , τγ′←γ(ψ) ∈ Dγ′ (for
πγ′→γ is smooth) and, using eq. (12.6.1):
∀h′ ∈ Cγ′ ,

[ĥ(e,m)
γ′ ◦ τγ′←γ(ψ)] (h′) = m

([
πγ′→{e}(h′)] (e)) [ψ ◦ πγ′→γ ] (h′) = [τγ′←γ ◦ ĥ(e,m)

γ (ψ)] (h′) .
LAL/e is a cofinal part of LAL (for LAL is directed), and this allows us to construct a symmetricoperator ĥ(e,m)AL on the vector subspace DAL ⊂ HAL , defined as the inductive limit of vector spaces(
Dγ
)
γ∈LAL ,

(
τγ′←γ|Dγ→Dγ′

)
γ4γ′

(without any completion). DAL is dense in HAL and ĥ(e,m)AL is bounded,hence essentially self-adjoint. �

Proposition 12.9 Let F ∈ Lfaces (prop. 10.21) and define:
LAL/F := {γ ∈ LAL ∣∣ ∀e ∈ γ, ∀p 6= p′ ∈ r(e), (e[p,p′ ] ∈ F ⇒ p ∈ {b(e), f (e)})} .

Let γ ∈ LAL/F and define, for any h ∈ Cγ and any t ∈ G, the map T (F )
γ,t h ∈ Cγ by:

∀e ∈ γ, T (F )
γ,t h(e) :=


h(e) . t if c(e, F ) = {b(e)}
t−1 . h(e) if c(e, F ) = {f (e)}
t−1 . h(e) . t if c(e, F ) = {b(e), f (e)}
h(e) if c(e, F ) = ∅

,
where c(e, F ) := {p ∈ r(e) ∣∣ ∃p′ 6= p

/
e[p,p′ ] ∈ F

}
⊂ {b(e), f (e)}. Then, for any u ∈ g, we have a
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densely defined, essentially self-adjoint operator P̂(F,u)
γ on Hγ (with dense domain Dγ) given by:

∀ψ ∈ Dγ , ∀h ∈ Cγ ,
(P̂(F,u)

γ ψ
) (h) := i

[
T1 t 7→ ψ

(
T (F )
γ,t h

)] (u) ,
and, for any t ∈ G, we have a unitary operator T̂(F,t)

γ on Hγ given by:
∀ψ ∈ Hγ , ∀h ∈ Cγ ,

(T̂(F,t)
γ ψ

) (h) := ψ
(
T (F )
γ,t h

) .
Moreover, LAL/F is a cofinal part of LAL and for any γ 4 γ′ ∈ LAL/F :
∀ψ ∈ Dγ , τγ′←γ(ψ) ∈ Dγ′ & P̂(F,u)

γ′ ◦ τγ′←γ(ψ) = τγ′←γ ◦ P̂(F,u)
γ (ψ) ,

and ∀ψ ∈ Hγ , T̂(F,t)
γ′ ◦ τγ′←γ(ψ) = τγ′←γ ◦ T̂(F,t)

γ (ψ) .
Thus, the family (P̂(F,u)

γ

)
γ∈LAL/F

provides a densely defined, essentially self-adjoint operator P̂(F,u)AL
on HAL , while the family (T̂(F,t)

γ

)
γ∈LAL/F

provides a unitary operator T̂(F,t)AL .
Proof Let γ ∈ LAL/F and u ∈ g. Taking as dense domain Dγ = C∞(Cγ , C) ⊂ Hγ , P̂(F,u)

γ iswell-defined, and, using the invariance of the measure µγ under left- and right-translations, we can
check that it is a symmetric operator with Ker(P̂(F,u)

γ

†
± i
) = {0} (like in the proof of prop. 12.2),therefore it is an essentially self-adjoint operator. The left- and right-invariance of the measurealso ensures that, for any t ∈ G, T (F )

γ,t,∗ µγ = µγ , so T̂(F,t)
γ is a well-defined unitary operator on Hγ .Now, let γ ∈ LAL and let λ ∈ Lprofls such that there exists F ∈ F(λ) with F = F⊥ ◦ F . Since

Lgraphs is cofinal in LAL (prop. 12.4), there exists γ′ ∈ Lgraphs with γ′ < γ, and by subsection 10.2,there exists (γ′′, λ′′) ∈ LHF with γ′′ < γ′ and λ′′ < λ. Next, let e′′ ∈ γ′′ and suppose that thereexists p 6= p′ ∈ r(e′′) such that e′′[p,p′ ] ∈ F . Then, using F = F⊥ ◦ F together with λ′′ < λ, thereexists p′′ ∈ r
(
e′′[p,p′ ]) \ {p, p′} ⊂ r(e′′) \ {b(e′′), f (e′′)} such that e′′[p,p′′ ] ∈ F ′′ for some F ′′ ∈ F(λ′′).But since e′′ ∈ χ(γ′′,λ′′)(e′′), this can only be the case if p = b(e) (props. 10.6.5 and 10.6.6). Therefore

γ′′ ∈ LAL/F . Thus, LAL/F is cofinal in LAL .Let e ∈ L
(1)edges such that c(e, F ) ⊂ {b(e), f (e)} and let e1 , . . . , en ∈ L

(1)edges , ε1 , . . . , εn ∈ {±1}such that e = eεnn ◦ . . . ◦ e
ε11 . Then, using:

∀ẽ ∈ F, ∀p ∈ r(ẽ) \ {b(e)} , ẽ[b(e),p] ∈ F ,we have:
b
(
eεii
)
∈ c(ei, F ) ⇔ (

i = 1 & b(e) ∈ c(e, F )) ,
f
(
eεii
)
∈ c(ei, F ) ⇔ (

i = n & f (e) ∈ c(e, F )) .
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Thus, for any γ 4 γ′ ∈ LAL/F , we can check that:
∀h′ ∈ Cγ′ , ∀t ∈ G, πγ′→γ

(
T (F )
γ′,th′

) = T (F )
γ,t
(
πγ′→γ(h′)) . (12.9.1)

Hence, for any t ∈ G, the unitary operators T̂(F,t)
γ defined on each Hγ for γ ∈ LAL/F can be

assembled into a unitary operator T̂(F,t)AL on HAL , while, for any u ∈ g, a densely defined, symmetric
operator P̂(F,u)AL can be constructed on the dense subspace DAL ⊂ HAL , defined as the inductive limitof vector spaces (Dγ

)
γ∈LAL ,

(
τγ′←γ|Dγ→Dγ′

)
γ4γ′

.
Finally, let ψ ∈ Ker(P̂(F,u)AL

†
± i
) and define, for γ ∈ LAL/F , ψγ ∈ Hγ such that τAL←γ (ψγ) is the

orthogonal projection of ψ on the closed vector subspace τAL←γ 〈Hγ〉. Then, ψγ ∈ Ker(P̂(F,u)
γ

†
±i
) =

{0}, so:
ψ ∈

 ⋃
γ∈LAL/F

τAL←γ 〈Hγ〉

⊥ =  ⋃
γ∈LAL

τAL←γ 〈Hγ〉

⊥ = {0} .
Hence, P̂(F,u)AL is essentially self-adjoint. �

Proposition 12.10 Let F ∈ Lfaces and t ∈ G. For any η ∈ LHF such that λ(η) ∈ Lprofls/F , we define
a unitary operator T̂(F,t)

η on Hη by:
∀ψ ∈ Hη , ∀h ∈ Cη ,

(T̂(F,t)
η ψ

)(h) := ψ
(
R (F )
η,t h
) ,

where R (F )
η,t : Cη → Cη was defined in prop. 12.2. Then, for any η, η′ ∈ LHF such that λ(η), λ(η′) ∈

Lprofls/F :
T̂(F,t)
η ∼ T̂(F,t)

η′ ,
so this provides an element T̂(F,t) ∈ A⊗(LHF,H,Φ) (def. 5.3).Let η ∈ LHF and denote by Iη the algebra of bounded operators on Hη generated by:{ĥ(e,m)

η

∣∣∣ m ∈ C∞(G,R) & e ∈ γ(η)} ∪{T̂(F⊥◦F,t)
η

∣∣∣∣ t ∈ G & F ∈ F(η)} .
If ρ, ρ′ are (self-adjoint) positive semi-definite, traceclass operators on Hη such that:
∀A ∈ Iη , TrHη ρ A = TrHη ρ′A ,then ρ = ρ′.

Proof Definition of T̂(F,t) . For any η ∈ LHF such that λ(η) ∈ Lprofls/F , we have R (F )
η,t,∗µη = µη (for µ

is invariant under right-translations) hence T̂(F,t)
η is a well-defined and unitary operator on Hη .
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Next, for any η such that λ(η) ∈ Lprofls/F and any η′ < η, we have λ(η′) ∈ Lprofls/F . Moreover,using eqs. (10.28.2), (10.27.1) and (10.23.2), we can check that:(idCη′→η × R
(F )
η,t

)
◦ φη′→η = φη′→η ◦ R (F )

η′,t .
Thus, we get Φη′→η ◦ T̂(F,t)

η′ = (idHη′→η × T̂(F,t)
η

)
◦Φη′→η . Therefore, the directedness of LHF ensures

that, for any η, η′ ∈ LHF such that λ(η), λ(η′) ∈ Lprofls/F , T̂(F,t)
η ∼ T̂(F,t)

η′ (with the equivalence relation
defined in eq. (5.3.2)), so we can define an element T̂(F,t) ∈ A⊗(LHF,H,Φ) .
Definition of ĥ(M)

η and T̂(j)
η . Let η ∈ LHF and M : γ(η)→ C∞(G, R). Then we can define an element

ĥ(M)
η ∈ Iη by:

ĥ(M)
η := ∏

e∈γ(η)
̂h(e,M(e))η .

The right-hand side does not depend on the ordering of the product and we have:
∀ψ ∈ Hη , ∀h ∈ Cη ,

(ĥ(M)
η ψ

) (h) =  ∏
e∈γ(η) [M(e) ◦ h] (e) ψ(h) .

Next, for any F ∈ F(η) and any t ∈ G, we have λ(η) ∈ Lprofls/F⊥◦F and, with the help of prop. 10.6:
∀h ∈ Cη , ∀e ∈ γ(η) , [R (F⊥◦F )

η,t h
] (e) := {h(e) . t if χη(e) = F

h(e) else .
Hence, for any j ∈ Cη we can define a unitary operator T̂(j)

η ∈ Iη by:
T̂(j)
η := ∏

F∈F(η)
̂T(F⊥◦F,j◦χ−1

η (F ))
η ,

and we have (the product ordering being again irrelevant):
∀ψ ∈ Hη , ∀h ∈ Cη ,

(T̂(j)
η ψ
) (h) = ψ(h.j) ,

where, for any h, h′ ∈ Cη , h . h′ denotes their pointwise multiplication as maps γ(η)→ G.
Characterization of ρ ∈ Sη by its evaluations over Iη . Let ρ, ρ′ be non-negative traceclass operatorson Hη and φ, φ′ ∈ Hη . Let ε > 0 and define εo := ε10 , as well as:

ε1 := min( εo1 + TrHη ρ
, εo1 + TrHη ρ′

, 1) > 0 .
The C-vector space generated by C∞(G,R) is dense in L2(G, dµ) (C∞(G,R) ⊂ L2(G, dµ) for G iscompact), hence the C-vector space generated by {⊗e∈γ(η)M(e) | M : γ(η)→ C∞(G,R)} is dense in⊗
e∈γ(η) L2(G, dµ) ≈ Hη (using the isometric identification provided by Fubini’s theorem). Thus, there
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exist a finite family of maps (Ml : γ(η) → C∞(G,R))16l6L and a finite family of complex numbers(µl)16l6L such that:∥∥∥∥∥φ − L∑
l=1 µl [⊗γ(η)Ml]∥∥∥∥∥

Hη

< ε11 + ‖φ′‖Hη

,
where, for any M : γ(η)→ C∞(G, R), the vector ⊗γ(η)M ∈ Hη is defined by:
∀h ∈ Cη , [⊗γ(η)M ] (h) := ∏

e∈γ(η) [M(e) ◦ h] (e) .
Similarly, there exist (M ′l′ : γ(η)→ C∞(G,R))16l′6L′ and (µ′l′)16l′6L′ (0 6 L, L′ < ∞) such that:∥∥∥∥∥φ′ − L′∑

l′=1 µ
′
l′ [⊗γ(η)M ′l′ ]∥∥∥∥∥

Hη

< ε11 + ‖φ‖Hη

.
Thus, we have:∣∣∣∣∣〈φ′ | ρ | φ〉 − L∑

l=1
L′∑
l′=1 µ

′
l′
∗µl 〈⊗γ(η)M ′l′ | ρ | ⊗γ(η)Ml〉

∣∣∣∣∣
<
ε1 ‖φ‖Hη

TrHη ρ1 + ‖φ‖Hη

+ ‖φ′‖Hη
ε1 TrHη ρ1 + ‖φ′‖Hη

+ ε21 TrHη ρ(1 + ‖φ‖Hη

) (1 + ‖φ′‖Hη

) 6 2 εo , (12.10.1)
and similarly for ρ′. We define:

ε2 := εo1 +∑L
l=1∑L′

l′=1
(
|µl| |µ′l′|

∏
e∈γ(η) ‖Ml(e)‖∞ ‖M ′l′(e)‖∞) > 0 ,

where, for any m ∈ C∞(G, R), ‖m‖∞ := sup
t∈G
|m(t)| (< ∞ for G is compact). Note that, for any

M : γ(η)→ C∞(G, R), we have the bound:∥∥∥ĥ(M)
η

∥∥∥
Aη
6
∏
e∈γ(η) ‖M(e)‖∞ ,

where ‖ · ‖Aη
denotes the operator norm on the algebra Aη of bounded operators over Hη (def. 5.3),as well as:

‖⊗γ(η)M‖Hη
6
∏
e∈γ(η) ‖M(e)‖∞

(using the fact that µη is normalized).Now, from the spectral theorem, together with the non-negative and traceclass conditions, thereexist an orthonormal family (ψ̃k)16k6K̃ in Hη (with 0 6 K̃ 6 ∞) and a family of strictly positivereals (pk )16k6K̃ such that:
ρ = K̃∑

k=1 pk
∣∣∣ ψ̃k 〉〈 ψ̃k ∣∣∣ & K̃∑

k=1 pk =: TrHη ρ < ∞ .
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Let K < ∞ such that ∣∣∣TrHη ρ −
∑K

k=1 pk
∣∣∣ < ε24 . Then, for any k 6 K , there exists ψk ∈

C∞(Cη , C) ⊂ Hη such that:∥∥∥ψ̃k − ψk∥∥∥
Hη
< min(1, ε24 TrHη ρ+ 1

) .
Thus, we have:∣∣∣∣∣ L∑

l=1
L′∑
l′=1 µ

′
l′
∗µl 〈⊗γ(η)M ′l′ | ρ | ⊗γ(η)M〉 −

K∑
k=1

L∑
l=1

L′∑
l′=1 pk µ

′
l′
∗µl 〈⊗γ(η)M ′l′ | ψk〉 〈ψk | ⊗γ(η)M〉

∣∣∣∣∣
<

L∑
l=1

L′∑
l′=1 |µ

′
l′| |µl| ‖⊗γ(η)M ′l′‖Hη

‖⊗γ(η)M‖Hη

[
ε24 + K∑

k=1 pk
3ε24 TrHη ρ+ 1

]
6 εo , (12.10.2)

and, for any j ∈ Cη :∣∣∣∣∣ L∑
l=1

L′∑
l′=1 µ

′
l′
∗µl TrHη

(
ρ ĥ(Ml)

η T̂(j)
η ĥ(M′l′ )

η

)
−

K∑
k=1

L∑
l=1

L′∑
l′=1 pk µ

′
l′
∗µl
〈
ψk
∣∣∣∣ ĥ(Ml)

η T̂(j)
η ĥ(M′l′ )

η

∣∣∣∣ ψk〉
∣∣∣∣∣

<
L∑
l=1

L′∑
l′=1 |µ

′
l′| |µl|

∥∥∥∥ĥ(Ml)
η T̂(j)

η ĥ(M′l′ )
η

∥∥∥∥
Aη

[
ε24 + K∑

k=1 pk
3 ε24 TrHη ρ+ 1

]
6 εo . (12.10.3)

Similarly, there exist a finite family (ψ′k)16k6K ′ of functions in C∞(Cη , C) (with 0 6 K ′ < ∞) anda finite family (p′k)16k6K ′ of strictly positive reals such that the equivalents of eqs. (12.10.2) and(12.10.3) are fulfilled for ρ′. We define:
ε3 := εo

1 + K∑
k=1

L∑
l=1

L′∑
l′=1 pk |µl| |µ

′
l′| ‖ψk‖∞ ‖⊗γ(η)Ml‖∞

> 0 ,
where, for any ζ ∈ C∞(Cη , C), ‖ζ‖∞ := sup

j∈Cη
|ζ(j)| . Similarly, we define ε′3 using (ψ′k)16k6K ′ and(

p′k
)16k6K ′ .Let l′ 6 L′ and k 6 K . The function ζl′,k , defined on Cη × Cη by:
∀h ∈ Cη , ∀j ∈ Cη , ζl′,k (h, j) := [⊗γ(η)M ′l′ ] (h.j)ψk (h.j) ,is smooth by construction. Hence, for any h ∈ Cη , there exists an open, measurable neighborhood

V (h)
k,l′ of 1 in Cη and an open, measurable neighborhood W (h)

k,l′ of h in Cη such that:
∀h′ ∈ W (h)

k,l′ , ∀j ∈ V (h)
k,l′ , |ζl′,k (h′, j)− ζl′,k (h, 1)| < ε32 ,

and therefore:
∀h′ ∈ W (h)

k,l′ , ∀j ∈ V (h)
k,l′ , |ζl′,k (h′, j)− ζl′,k (h′, 1)| < ε3 .

Now, since Cη is compact, there exists a finite subset Hk,l′ of Cη such that Cη ⊂ ⋃h∈Hk,l′
W (h)

k,l′ , so,defining Vk,l′ := ⋂h∈Hk,l′
V (h)
k,l′ , Vk,l′ is an open, measurable neighborhood of 1 in Cη and we have:
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∀h′ ∈ Cη , ∀j ∈ Vk,l′ , |ζl′,k (h′, j)− ζl′,k (h′, 1)| < ε3 .
Next, defining V := ⋂K

k=1⋂L′
l′=1Vk,l′ , we get, for any measurable subset Ṽ ⊂ V , any k 6 K and any

l′ 6 L′:
∀h ∈ Cη ,

∣∣∣∣(∫
Ṽ
dµη(j) [⊗γ(η)M ′l′ ] (h.j)ψk (h.j))− (µ(Ṽ ) [⊗γ(η)M ′l′ ] (h)ψk (h))∣∣∣∣ < µ(Ṽ ) ε3 .

(12.10.4)Similarly, we have an open, measurable neighborhood V ′ of 1 in Cη such that, for any measurablesubset Ṽ ⊂ V ′, any k ′ 6 K ′ and any l′ 6 L′, the equivalent of eq. (12.10.4) is fulfilled for ψ′k ′ (withrespect to ε′3 instead of ε3). We define Vo := V ∩ V ′ .For any j ∈ Cη , j . Vo is an open, measurable neighborhood of j in Cη , hence, from the compacityof Cη , there exist j1 , . . . , jM in Cη (1 6 M < ∞) such that Cη ⊂ ⋃M
m=1jm . Vo . For m 6 M wedefine:

Vm := (jm . Vo) ∩(Cη \ m−1⋃
n=1 jn . Vo

) .
Thus, (Vm)16m6M is a partition of Cη into finitely many measurable parts. Moreover, we have, forany m 6 M:

j−1
m . Vm ⊂ Vo ,so that, for any k 6 K and any l′ 6 L′ , eq. (12.10.4) yields:
∀h ∈ Cη ,

∣∣∣∣∣〈⊗γ(η)M ′l′ | ψk〉 − M∑
m=1 µ(Vm) [T̂(jm)

η ĥ(M′l′ )
η ψk

](h)∣∣∣∣∣ =
= ∣∣∣∣∣
(∫

Cη

dµη(j) [⊗γ(η)M ′l′ ] (h.j)ψk (h.j))− M∑
m=1
(
µ(Vm) [⊗γ(η)M ′l′ ] (h.jm)ψk (h.jm))∣∣∣∣∣

6
M∑
m=1
∣∣∣∣(∫

j−1
m . Vm

dµη(j) [⊗γ(η)M ′l′ ] (h.jm . j)ψk (h.jm . j))− (µ(j−1
m . Vm) [⊗γ(η)M ′l′ ] (h.jm)ψk (h.jm))∣∣∣∣

< ε3 .Therefore, for any k 6 K , any l 6 L and any l′ 6 L′, we get:∣∣∣∣∣〈ψk | ⊗γ(η)Ml〉 〈⊗γ(η)M ′l′ | ψk〉 −
M∑
m=1 µ(Vm) 〈ψk∣∣∣ĥ(Ml)

η T̂(jm)
η ĥ(M′l′ )

η

∣∣∣ψk〉∣∣∣∣∣
6

∣∣∣∣∣∫Cη dµ(h)ψ∗k (h) [⊗γ(η)Ml] (h) (〈⊗γ(η)M ′l′ | ψk〉 − M∑
m=1 µ(Vm) [T̂(jm)

η ĥ(M′l′ )
η ψk

](h))∣∣∣∣∣
< ε3 ‖ψk‖∞ ‖⊗γ(η)Ml‖∞ .Now, using eqs. (12.10.1) to (12.10.3) together with the definition of ε3 , this implies:∣∣∣∣∣〈φ′ | ρ | φ〉 − L∑

l=1
L′∑
l′=1

M∑
m=1 µ

′
l′
∗ µl µ(Vm) TrHη

(
ρ ĥ(Ml)

η T̂(jm)
η ĥ(M′l′ )

η

)∣∣∣∣∣ < 5 εo ,
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and the same holds for ρ′.Finally, if ρ, ρ′ are such that:
∀A ∈ Iη , TrHη ρ A = TrHη ρ′A ,we thus have:
∀φ, φ′ ∈ Hη , ∀ε > 0, |〈φ′ | ρ | φ〉 − 〈φ′ | ρ′ | φ〉| < ε ,and therefore ρ = ρ′. �

We can now formulate the relation between the inductive construction just reviewed and the
projective construction from section 10 and subsection 12.1, by displaying how an arbitrary state over
HAL can be unambiguously identified with a projective family of density matrices over the Hilbert
spaces Hη . Note that, as stressed above, we are not merely stating that there exists some injective
map σ between the state spaces (which would only be an assertion about the respective cardinalities,
with very little physical content): we also make sure that the mapping of the states considered here
intertwines the evaluation of observables in agreement with their physical interpretation.

By using prop. 6.5 (which is itself a straightforward application of the more general result in
theorem 5.9), we first obtain a map from the state space of an inductive limit of Hilbert spaces built
over the label set LHF. As previously announced, the insensitivity of the injections with respect
to the faces in each label then allows to collapse this inductive system into a simpler one, built
over a subset of Lgraphs (namely those analytic graphs that are the underlying graph of some label).
Finally, since this set of graphs is cofinal in LAL (as follows from LHF being cofinal in Lgraphs×Lprofls
and Lgraphs in LAL), the corresponding inductive limit can be identified with HAL .

Theorem 12.11 There exist maps σ : SAL → S
⊗(LHF,H,Φ) and α : A

⊗(LHF,H,Φ) → AAL (where SAL isthe space of self-adjoint, positive semi-definite, traceclass operators over HAL , AAL is the space ofbounded operators on HAL , and S
⊗(LHF,H,Φ) and A

⊗(LHF,H,Φ) were defined respectively in def. 5.2 andprop. 5.4 ) such that:1. α is a C ∗-algebra morphism;
2. for any e ∈ Ledges and any m ∈ C∞(G, R), α(ĥ(e,m)) = ĥ(e,m)AL , while for any F ∈ Lfaces and any
t ∈ G, α(T̂(F,t)) = T̂(F,t)AL ;

3. for any ρ ∈ SAL and any A ∈ A
⊗(LHF,H,Φ) , TrHAL (ρ α(A)) = Tr (σ (ρ)A) ;

4. σ is an injective map;
5. σ 〈SAL〉 = {(

ρη
)
η∈LHF

∣∣∣∣∣ sup
η∈LHF inf

η′<η
TrHη′ ρη′ Θη′|η = Tr ρ = 1} , where SAL is the space of density

matrices over HAL and the bounded operator Θη′|η is defined on Hη′ by:
∀ψ ∈ Hη′ , ∀j ∈ Cη′→η , ∀h ∈ Cη ,

[Θη′|η ψ
]
◦ φ−1

η′→η(j, h) := ∫
Cη′→η

dµη′→η (̃j) ψ ◦ φ−1
η′→η (̃j, h) .
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Proof Auxiliary inductive limit of Hilbert spaces. For any η 4 η′ ∈ LHF, we define the map
τη′←η : Hη → Hη′ by:
∀ψ ∈ Hη , ∀hη′ ∈ Cη′ ,[

τη′←η(ψ)](hη′) := ψ
(
e 7→

[nη′→η,e∏
k=2 [hη′ ◦ aη′→η,e(k)]εη′→η,e(k)] . [hη′ ◦ aη′→η,e(1)]) .

As was shown in prop. 6.5, τη′←η is well-defined, and (LHF, (Hη
)
η∈LHF ,

(
τη′←η

)
η4η′

) is an inductivesystem of Hilbert spaces whose limit we denote by HÃL . For any η ∈ LHF, we call τÃL←η thenatural injection of Hη into HÃL . Also by prop. 6.5, there exist maps σ̃ : SÃL → S
⊗(LHF,H,Φ) and

α̃ : A⊗(LHF,H,Φ) → AÃL (where SÃL , resp. AÃL , denote the space of non-negative traceclass operators,resp. of bounded operators, over HÃL ) satisfying:
∀ρ ∈ SÃL , ∀A ∈ A

⊗(LHF,H,Φ) , TrHÃL
(
ρ α̃(A)) = Tr(σ̃ (ρ)A) .Moreover, σ̃ is injective and:

σ̃ 〈SÃL〉 = {(ρη)η∈LHF
∣∣∣∣∣ sup
η∈LHF inf

η′<η

∫
Cη′→η×Cη′→η
d(2)µη′→η(j, j ′) ∫

Cη

dµη(h) ρη′ (φ−1
η′→η(j, h), φ−1

η′→η(j ′, h)) = 1} ,
where SÃL is the space of density matrices over HÃL and, for any density matrix ρη over Hη , ρη ( · , · )denotes the integral kernel of ρη .To further specify α̃ , we now fetch its explicit definition from the proof of theorem 5.9. First,we can define, for any η ∈ LHF, an Hilbert space HÃL→η , and an Hilbert space isomorphismΦÃL→η : HÃL → HÃL→η⊗Hη . HÃL→η is given as an inductive limit and we have, for any κ < η ∈ LHF,a natural isometric injection τÃL←κ→η : Hκ→η → HÃL→η satisfying:(τÃL←κ→η ⊗ idHη) ◦ Φκ→η = ΦÃL→η ◦ τÃL←κ .
Then, α̃ is the C ∗-algebra morphism A

⊗(LHF,H,Φ) → AÃL such that, for any η ∈ Hη and any boundedoperator Aη on Hη :
α̃
([Aη]∼) = Φ−1ÃL→η ◦ (idHÃL→η ⊗ Aη

)
◦ ΦÃL→η ,

where [Aη]∼ denotes the equivalence class of Aη in A⊗(LHF,H,Φ) (eq. (5.3.2)). In particular, for any
κ < η , we have:

α̃
([Aη]∼) ◦ τÃL←κ = τÃL←κ ◦ Φ−1

κ→η ◦
(idHκ→η ⊗ Aη

)
◦ Φκ→η .

Identification of HÃL with HAL . For any η ∈ LHF, we define Γη→γ(η) : Hη → Hγ(η) as the identity mapon Hη = L2(Cη , dµη) = L2(Cγ(η) , dµγ(η)) = Hγ(η) . Then, for any η 4 η′ ∈ LHF, we have γ(η) 4 γ(η′)and (from props. 10.20 and 12.5):Γη′→γ(η′) ◦ τη′←η = τγ(η′)←γ(η) ◦ Γη→γ(η) .Thus, there exists an isometric injection ΓÃL→AL : HÃL → HAL satisfying:
∀η ∈ LHF, ΓÃL→AL ◦ τÃL←η = τAL←γ(η) ◦ Γη→γ(η) .
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Moreover, {γ ∈ LAL ∣∣ ∃η ∈ LHF / γ(η) = γ
} is cofinal in LAL (from subsection 10.2 and prop. 12.4),hence:⋃

η∈LHF
ΓÃL→AL ◦ τÃL←η 〈Hη〉 = ⋃

γ∈LAL
τAL←γ 〈Hγ〉 ,

is dense in HAL , and therefore ΓÃL→AL is an Hilbert space isomorphism.Now, we define, for any ρ ∈ SAL :
σ (ρ) := σ̃

(Γ−1ÃL→AL ◦ ρ ◦ ΓÃL→AL) ,
and for any A ∈ A

⊗(LHF,H,Φ) :
α(A) := ΓÃL→AL ◦ α̃(A) ◦ Γ−1ÃL→AL .The points 12.11.1, 12.11.3 and 12.11.4 follow from the corresponding properties of σ̃ and α̃ . Moreover,we have, for any η ∈ LHF and any bounded operator Aη on Hη :
α
([Aη]∼) ◦ τAL←γ(η) = τAL←γ(η) ◦ Γη→γ(η) ◦ Aη ◦ Γ−1

η→γ(η) . (12.11.1)
Let e ∈ Ledges , m ∈ C∞(G, R) and η ∈ LHF such that γ(η) ∈ Lgraphs/e . Then, γ(η) ∈ LAL/e and,using again props. 10.20 and 12.5, we can check that:

Γη→γ(η) ◦ ĥ(e,m)
η ◦ Γ−1

η→γ(η) = ĥ(e,m)
γ(η) ,hence:

α
(ĥ(e,m)) ◦ τAL←γ(η) = τAL←γ(η) ◦ ĥ(e,m)

γ(η) = ĥ(e,m)AL ◦ τAL←γ(η) .Now, α is a C ∗-algebra isomorphism, so in particular an isometry, and {γ(η) ∣∣ η ∈ LHF / γ(η) ∈ Lgraphs/e}is cofinal in LAL so that:⋃
η∈LHF / γ(η)∈Lgraphs/e

τAL←γ(η) 〈Hγ(η)〉 = ⋃
γ∈LAL

τAL←γ 〈Hγ〉

is dense in HAL . Therefore, α(ĥ(e,m)) = ĥ(e,m)AL .Next, let F ∈ Lfaces , t ∈ G and η ∈ LHF such that λ(η) ∈ Lprofls/F . From eq. (10.21.1) andprop. 10.6, we get:
∀e ∈ γ(η), ∀p 6= p′ ∈ r(e), (e[p,p′ ] ∈ F ⇔

[
p = b(e) & χη(e) ∈ Hλ(η)→F]) .Hence, γ(η) ∈ LAL/F and, using eq. (10.28.2) :

∀h ∈ Cη = Cγ(η) , T (F )
γ(η),th = R (F )

η,t h .Thus, we get:
Γη→γ(η) ◦ T̂(F,t)

η ◦ Γ−1
η→γ(η) = T̂(F,t)

γ(η) .
Like above, this ensures that α(T̂(F,t)) = T̂(F,t)AL , for {γ(η) ∣∣ η ∈ LHF / λ(η) ∈ Lprofls/F} is cofinal in
LAL .Finally, for any η 4 η′ ∈ LHF, we define ζη′→η : Cη′→η → C by:
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∀j ∈ Cη′→η , ζη′→η(j) = 1 .Observe that ‖ζη′→η‖Hη′→η
= µη′→η

(
Cη′→η

) = µη′
(
Cη′
)
/ µη
(
Cη
) = 1. Hence, the operator Θη′|η iswell-defined and bounded on Hη′ , for it is given by:

Θη′|η = Φ−1
η′→η ◦

(
|ζη′→η 〉 〈 ζη′→η| ⊗ idHη

)
◦ Φη′→η . (12.11.2)And, since for any non-negative traceclass operator ρη′ on Hη′ we have:∫

Cη′→η×Cη′→η
d(2)µη′→η(j, j ′) ∫

Cη×Cη
d(2)µη(h, h′) δµη(h, h′) ρη′ (φ−1

η′→η(j, h), φ−1
η′→η(j ′, h′)) =

= ∑
ψ∈ONBη

〈Φ−1
η′→η(ζη′→η ⊗ ψ) ∣∣ ρη′ ∣∣ Φ−1

η′→η(ζη′→η ⊗ ψ)〉 ,
(with ONBη some orthonormal basis of Hη), we get:

σ 〈SAL〉 = σ̃ 〈SÃL〉 = {(ρη)η∈LHF
∣∣∣∣∣ sup
η∈LHF inf

η′<η
TrHη′ ρη′ Θη′|η = 1} .

�

The injective map σ allows to identify the space SAL of states over HAL with a certain subset in
the space S⊗(LHF,H,Φ) of all projective states. The results below suggests that S⊗(LHF,H,Φ) can even be

thought as a closure of SAL . Indeed, S⊗(LHF,H,Φ) is complete, in the sense that a net of projective

states admits a limit as soon as it converges over each Hη , and σ 〈SAL〉 is dense in the same sense,
namely the restrictions of its elements over each Hη fill a dense subset of the associated space Sη

of density matrices (in fact, they fill all Sη). This is somewhat reminiscent of the Fell’s theorem
[29], but, while the Fell’s theorem tells us that SAL is dense in the space of all states [41, part III,

def. 2.2.8] over the C∗-algebra A
⊗(LHF,H,Φ) (prop. 5.4), with respect to the weakest topology that makes

the evaluation maps ρ 7→ Tr ρ A continuous, we show here that SAL is dense in the (presumably
smaller) set of all projective states with respect to a much stronger topology.

Proposition 12.12 For any η ∈ LHF, we define on S⊗(LHF,H,Φ) (def. 5.2) the semi-metric (aka. possiblydegenerate metric, see [25, section IX.10]) d(η) by:
∀
(
ρη′
)
η′∈LHF ,

(
ρ′η′
)
η′∈LHF ∈ S⊗(LHF,H,Φ) , d(η) [(ρη′)η′∈LHF ,

(
ρ′η′
)
η′∈LHF

] := ∥∥ρη − ρ′η∥∥1 ,
where ‖ · ‖1 denotes the trace norm on the space of traceclass operators over Hη (see lemma 5.10and/or [82]).The family of semi-metrics (d(η))

η∈LHF equips S⊗(LHF,H,Φ) with the structure of a complete uniformspace [25, sections IX.11 and XIV.9], and σ 〈SAL〉 is dense in the induced topology.
Proof For any η, the space Sη of density matrices over Hη equipped with the metric d(η)

η definedby:
∀ρη , ρη′ ∈ Sη , d(η)

η [ρη , ρη′ ] := ∥∥ρη − ρ′η∥∥1 ,
188



is complete (for the traceclass operators over Hη form, with respect to the trace norm, a Banachspace [82] in which Sη is a closed subset). Hence, ∏η∈LHFSη has a structure of complete andHausdorff uniform space as a Cartesian product of complete metric spaces [25, theorem XIV.9.4].Let η 4 η′ ∈ LHF. For any self-adjoint traceclass operator δ on Hη′ , we have, writing δ =
δ (+) − δ (−) with δ (+) and (−δ (−)) respectively the positive and negative parts of δ:
‖Trη′→η δ‖1 6 ∥∥Trη′→η δ (+)∥∥1 + ∥∥Trη′→η δ (−)∥∥1= TrHη Trη′→η δ (+) + TrHη Trη′→η δ (−)

= TrHη′ δ
(+) + TrHη′ δ

(−) = ‖δ‖1 .
Thus, Trη′→η is a continuous map between the metric spaces (Sη′ , d(η′)

η′

) and (Sη , d(η)
η
), so its graphis closed in their Cartesian product. The projective limit S⊗(LHF,H,Φ) is therefore a closed subset of∏

η∈LHFSη , hence inherits a structure of complete and Hausdorff uniform space, which is preciselythe one induced by the family of semi-metrics (d(η))
η∈LHF .

Let ρ = (ρη)η∈LHF ∈ S⊗(LHF,H,Φ) . For any η ∈ LHF, we define ρ(η) ∈ SAL by:
ρ(η) := τAL←γ(η) ◦ Γη→γ(η) ◦ ρη ◦ Γ−1

η→γ(η) ◦ τ+AL←γ(η) .From theorem 12.11.3 and eq. (12.11.1), we have:
∀Aη ∈ Aη , TrHη

([
σ (ρ(η))]η Aη) = TrHAL

(
ρ(η) α ([Aη]∼)) = TrHη

(
ρη Aη

) ,
hence [σ (ρ(η))]

η = ρη . Thus, the net (σ (ρ(κ)))
κ∈LHF converges to ρ with respect to the family ofsemimetrics (d(η))

η∈LHF (like in the proof of prop. 2.7). Therefore, σ 〈SAL〉 is dense in S⊗(LHF,H,Φ) for thecorresponding topology. �

Finally, we want to check that the projective quantum state space S⊗(,H,Φ) is not a mere rewriting
of the space of density matrices over HAL , ie. that σ , while being injective, is not surjective, and
yields a strict embedding of SAL in S⊗(,H,Φ) . To exhibit a projective state that cannot be realized as a
density matrix on HAL , we will, in line with the previous result, consider a sequence of states over
HAL, which, although it does not converge in SAL , does converge in S⊗(LHF,H,Φ) .

To this intend, we cut some analytic edge e into infinitely many pieces (with an accumulation
point at one extremity of the edge) and we denote by ψ(n) the state in HAL that assigns to the first
n pieces a given, non-trivial, sample wave-function χ . It can then be shown that the sequence[
σ
(∣∣ψ(n) 〉 〈 ψ(n)∣∣)]

η (as a sequence in n, with η held fixed) is eventually constant: indeed the

evaluations on ψ(n) of the observables covered by the label η freeze as soon as n exceeds a certain
(η-dependent) threshold nη (fig. 12.1), and we have proved in prop. 12.10 that these evaluations
completely specify a state over Hη .

Next, we need to confirm that the thus constructed projective state is not in the image of σ .
Let us look closer at the characterization of this image given in theorem 12.11.5. The orthogonal
projection Θη′|η selects in Hη′ those states that do not depend on the complementary variables
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Figure 12.1 – A few labels having 3 as the smallest possible choice for nη (the dashed line indicates
the base edge e)

η′ → η. Letting the upper label η′ become infinitely fine corresponds, in HAL , to the orthogonal
projection on the fixed-graph subspace Hγ(η) . Thus, if we now let the lower label η get finer and
finer, we will recover the state we started from, provided it was a state on HAL to begin with. By
contrast, for a state that is not realizable on HAL , chopping those parts of the state that depart from
the Ashtekar-Lewandowski vacuum over the η′ → η degrees of freedom and taking first the net
limit on η′, we loose a significant part of the state, no matter how fine η: such states are not just
excitations around the AL-vacuum, but differ from it all the way down to infinitely fine labels.

Now, for any label η and any integer M, there exists a set of labels η′ < η, which is cofinal
in LHF and such that, for each η′ in this set, the holonomies along M distinct pieces of e can be
discovered among the complementary variables η′ → η. Since the state we are considering here
attributes to each such piece a distribution χ distinct from the uniform one, its agreement with
the AL-vacuum, as far as the η′ → η degrees of freedom are concerned, can thus be bounded by an
exponentially decreasing function of M. Taking first the limit on finer and finer η′, we can then let
M goes to infinity, so that the overlap, over the degrees of freedom beyond η, between this state
and the AL-vacuum is actually zero. If it would be a state in SAL its projection on any finite-graph
subspace Hγ(η) should therefore vanish, in contradiction with the state having unit trace.

Proposition 12.13 The map σ is not surjective.
Proof A family of states in HAL . Let e ∈ Ledges and let ĕ : U → V be a representative of e. Wedefine po = b(e), p∞ = f (e) and, for any n > 1:

pn = ĕ
( n
n+ 1 , 0) .

For any n > 1, we define:
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γ(n) := {e[pk−1 , pk ] ∣∣ 1 6 k 6 n
}
∈ LAL .

Next, we choose χ ∈ L2(G, dµ) such that ‖χ‖ = 1 and ∫
G
dµ(g) |χ(g)| < 1 (for example, we

can take χ := 1/√v 1V where 1V is the indicator function of a measurable region of G with0 < v := µ(V ) < 1 ). For any n > 1, we define ψ(n)
γ(n) ∈ Hγ(n) by:

∀h ∈ Cγ(n) , ψ(n)
γ(n)(h) := n∏

k=1 [χ ◦ h] (e[pk−1 , pk ]) ,
and ψ(n) := τAL←γ(n)

(
ψ(n)
γ(n)
)
∈ HAL . We have ∥∥ψ(n)∥∥

HAL = ∥∥∥ψ(n)
γ(n)
∥∥∥
Hγ(n) = 1.

Evaluation of the η-observables is (n)-eventually-constant. Let η ∈ LHF. From prop. 10.9.4, thereexist p ∈ r(e) \ {f (e)}, ε = ±1 and F ∈ F(η) ∪ {Fy (η)} such that eε[p,f (e)] ∈ F . Let p′ ∈
r
(
e[p,f (e)]) \ {p, f (e)}. Then, p′ <(e) f (e) and, from prop. 10.6:
e[f (e),p′ ] ∈ Fy (η) or e[f (e),p′ ] ∈ F ∈ F(η) .

Moreover, for any e′ ∈ γ(η), applying lemma 10.5 to e−1 and e′ yields:
∃q ∈ r(e) \ {f (e)} / (r (e[f (e),q]) ⊂ r(e′) or r

(
e[f (e),q]) ∩ r(e′) ⊂ {f (e)}) .Thus, there exists q′ <(e) f (e) such that:

∀e′ ∈ γ(η), (r (e[f (e),q′ ]) ⊂ r(e′) or r
(
e[f (e),q′ ]) ∩ r(e′) ⊂ {f (e)}) .Therefore, there exists nη > 1 such that (fig. 12.1):

r
(
e[f (e),pnη ]

)
∩

 ⋃
e′∈γ(η) r(e′)

 ⊂ {f (e)} or ∃ e′ ∈ γ(η) / r (e[f (e),pnη ]
)
⊂ r(e′) ,

and: e[f (e),pnη ] ∈ Fy (η) or ∃F ∈ F(η) / e[f (e),pnη ] ∈ F .
Let m > n > nη . We have:
r
(
e[p∞,pn ]) ∩

 ⋃
e′∈γ(η) r(e′)

 ⊂ {p∞} or ∃ e′ ∈ γ(η) / r (e[p∞,pn ]) ⊂ r(e′) , (12.13.1)
and: e[p∞,pn ] ∈ Fy (η) or ∃F ∈ F(η) / e[p∞,pn ] ∈ F . (12.13.2)

Let γ := γ(m) ∪ {e[p∞,pm ]} ∈ LAL . For any e′ ∈ γ(η), LAL/e′ is cofinal in LAL and, for any F ∈ F(η),
LAL/F⊥◦F is cofinal in LAL , hence there exists γ′ ∈ LAL, with γ 4 γ′ , such that:
∀e′ ∈ γ(η), γ′ ∈ LAL/e′ & ∀F ∈ F(η), γ′ ∈ LAL/F⊥◦F .Next, let γ̃ := γ(n) ∪ {e[p∞,pn ]} ∈ LAL . We have γ̃ 4 γ for:
γ(n) ⊂ γ(m)

& e[p∞,pn ] = e−1[pn,pn+1 ] ◦ . . . ◦ e−1[pm−1,pm ] ◦ e[p∞,pm ] .
Thus, we can define φγ′−(m)−(n) := sγ′−(m)−(n) ◦ (idCγ′−γ × φγ−γ̃

)
◦ φγ′−γ , where φγ2−γ1 : Cγ2 →
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Cγ2−γ1×Cγ1 has been defined for any γ1 4 γ2 ∈ LAL in the proof of prop. 12.7 and sγ′−(m)−(n) is givenby:
sγ′−(m)−(n) : Cγ′−γ × Cγ−γ̃ × Cγ̃ → Cγ′−(m)−(n) × C(m)−(n)

j ′, h, j 7→ (j ′, j), h ,
with Cγ′−(m)−(n) := Cγ′−γ×Cγ̃ and C(m)−(n) := Cγ−γ̃ . Using the definition of φγ2−γ1 for γ1 4 γ2 togetherwith eq. (12.6.1), we get:
∀h′ ∈ Cγ′ , φγ′−(m)−(n)(h′) = (h′|γ′−γ , πγ′→γ̃(h′)) , πγ′→γ(h′)|γ(m)−(n) , (12.13.3)

where γ(m)−(n) := γ − γ̃ = {e[pk−1 , pk ] ∣∣ n+ 1 6 k 6 m
} .We define Hγ′−(m)−(n) := L2 (Cγ′−γ , dµγ′−γ)⊗ L2 (Cγ̃ , dµγ̃) and H(m)−(n) := L2 (Cγ−γ̃ , dµγ−γ̃) , sothat φγ′−(m)−(n) provides a unitary map Φγ′−(m)−(n) :Φγ′−(m)−(n) : Hγ′ → Hγ′−(m)−(n) ⊗H(m)−(n)

ψ 7→ ψ ◦ φ−1
γ′−(m)−(n) .

Since γ(n), γ(m) 4 γ′ , we have:
ψ(n) = τAL←γ′ ◦ τγ′←γ(n)

(
ψ(n)
γ(n)
)
& ψ(n) = τAL←γ′ ◦ τγ′←γ(m)

(
ψ(m)
γ(m)
) ,

and eq. (12.13.3) yields, for any (j ′, j) ∈ Cγ′−(m)−(n) and any h ∈ C(m)−(n) :
Φγ′−(m)−(n) ◦ τγ′←γ(n)

(
ψ(n)
γ(n)
) ((j ′, j), h) = ψ(n)

γ(n) ◦ πγ′→γ(n) ◦ φ−1
γ′−(m)−(n)((j ′, j), h)

= ψ(n)
γ(n) ◦ πγ̃→γ(n)(j) = ψ(n)

γ(n)
(
j|γ(n)

)
= n∏

k=1 [χ ◦ j ] (e[pk−1 , pk ]) ,
as well as:

Φγ′−(m)−(n) ◦ τγ′←γ(m)
(
ψ(m)
γ(m)
) ((j ′, j), h) = m∏

k=1
[
χ ◦
(
πγ′→γ(m) ◦ φ−1

γ′−(m)−(n)((j ′, j), h))] (e[pk−1 , pk ])
= n∏

k=1 [χ ◦ j ] (e[pk−1 , pk ]) m∏
k=n+1 [χ ◦ h] (e[pk−1 , pk ]) .

Thus there exist ψγ′−(m)−(n) ∈ Hγ′−(m)−(n) and ζ(m)−(n) , χ(m)−(n) ∈ H(m)−(n) such that:
ψ(n) = τAL←γ′ ◦ Φ−1

γ′−(m)−(n) (ψγ′−(m)−(n) ⊗ ζ(m)−(n)) ,
& ψ(m) = τAL←γ′ ◦ Φ−1

γ′−(m)−(n) (ψγ′−(m)−(n) ⊗ χ(m)−(n)) . (12.13.4)
In addition, ‖ζ(m)−(n)‖H(m)−(n) = ‖χ(m)−(n)‖H(m)−(n) , for ∥∥ψ(n)∥∥

HAL = 1 = ∥∥ψ(m)∥∥
HAL .

Now, let γ′′ := {e′′ ∈ γ′
∣∣ r(e′′) ⊂ r

(
e[po , pn ])} ∪ {e[p∞ , pn ]} ∈ LAL . We have γ̃ 4 γ′′ 4 γ′, hence:

∀h′ ∈ Cγ′ , φγ′′−γ̃ ◦ πγ′→γ′′(h′) = πγ′→(γ′′−γ̃)(h′) , πγ′→γ̃(h′) ,and, since (γ′′ − γ̃) ⊂ (γ′ − γ), we get, for any (j ′, j) ∈ Cγ′−(m)−(n) and any h ∈ C(m)−(n) :
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πγ′→γ′′ ◦ φ−1
γ′−(m)−(n)((j ′, j), h) = φ−1

γ′′−γ̃

(
j ′|γ′′−γ̃ , j

) . (12.13.5)
Next, for any e′ ∈ γ(η), we define:

γ′(e′) = {e′′ ∈ γ′ | r(e′′) ⊂ r(e′) & r(e′′) 6⊂ r(e)} ∪ {e′′ ∈ γ′′ | r(e′′) ⊂ r(e′)} ∈ LAL .
γ′(e′) 4 γ′ and, from eq. (12.13.1), γ′(e′) ∈ LAL/e′ , so πγ′→{e′} = πγ′(e′)→{e′} ◦ πγ′→γ′(e′) . Moreover, since
γ′(e′) ⊂ (γ′ − γ) ∪ γ′′ , we have, for any (j ′, j) ∈ Cγ′−(m)−(n) and any h ∈ C(m)−(n) :
∀e′′ ∈ γ′(e′) , [πγ′→γ′(e′) ◦ φ−1

γ′−(m)−(n)((j ′, j), h)] (e′′) =
=

[
πγ′→(γ′−γ) ◦ φ−1

γ′−(m)−(n)((j ′, j), h)] (e′′) = j ′(e′′) if e′′ ∈ (γ′ − γ)[
πγ′→γ′′ ◦ φ−1

γ′−(m)−(n)((j ′, j), h)] (e′′) = [
φ−1
γ′′−γ̃

(
j ′|γ′′−γ̃ , j

)] (e′′) if e′′ ∈ γ′′
.

Thus, πγ′→γ′(e′)◦φ−1
γ′−(m)−(n)((j ′, j), h) does not depend on h. Therefore, using eq. (12.8.1), there exists, forany m ∈ C∞(G, R), an operator A ∈ Aγ′−(m)−(n) (with Aγ′−(m)−(n) the algebra of bounded operatorson Hγ′−(m)−(n) ) such that:

ĥ(e′,m)
γ′ = Φ−1

γ′−(m)−(n) ◦ [A ⊗ idH(m)−(n)
]
◦ Φγ′−(m)−(n) .

Let F ∈ F(η). Since γ̃ 4 γ′′ 4 γ′, eq. (12.13.3) implies:
∀h′ ∈ Cγ′ , φγ′−(m)−(n)(h′) = (πγ′→(γ′−γ)(h′), πγ′′→γ̃ ◦ πγ′→γ′′(h′)) , πγ′→γ(m)−(n)(h′) .

But since γ′ ∈ LAL/F⊥◦F and e[p∞,pn ] ∈ F ′ with F ′ ∈ F(η) ∪ {Fy (η)}, we have (γ′ − γ), γ′′ &
γ(m)−(n) ∈ LAL/F⊥◦F and, moreover:
∀e′ ∈ γ(m)−(n), c(e′, F⊥ ◦ F ) = ∅ ,

so that ∀t ∈ G, ∀h ∈ C(m)−(n) , T (F⊥◦F )
γ(m)−(n),th = h . Thus, using eq. (12.9.1), we get, for any t ∈ G andany h′ ∈ Cγ′ :

φγ′−(m)−(n) (T (F⊥◦F )
γ′,t h′

) = (T (F⊥◦F )(γ′−γ),t ◦ πγ′→(γ′−γ)(h′), πγ′′→γ̃ ◦ T (F⊥◦F )
γ′′,t ◦ πγ′→γ′′(h′)) , πγ′→γ(m)−(n)(h′) .

Hence, eq. (12.13.5) yields, for any (j ′, j) ∈ Cγ′−(m)−(n) and any h ∈ C(m)−(n) :
T (F⊥◦F )
γ′,t

(
φ−1
γ′−(m)−(n) ((j ′, j), h)) = φ−1

γ′−(m)−(n) (T (F⊥◦F )(γ′−(m)−(n)),t(j ′, j), h) ,
where T (F⊥◦F )(γ′−(m)−(n)),t(j ′, j) := (T (F⊥◦F )(γ′−γ),t j ′, πγ′′→γ̃ ◦ T (F⊥◦F )

γ′′,t ◦ φ−1
γ′′→γ̃

(
j ′|γ′′−γ̃ , j

)) .
Therefore, there exists, for any t ∈ G, an operator A ∈ Aγ′−(m)−(n) such that:

T̂(F⊥◦F,t)
γ′ = Φ−1

γ′−(m)−(n) ◦ [A ⊗ idH(m)−(n)
]
◦ Φγ′−(m)−(n) .

So we have proved that for any AAL in:{ ĥ(e′,m)AL ∣∣m ∈ C∞(G, R) & e′ ∈ γ(η) } ∪ { T̂(F⊥◦F,t)AL ∣∣ t ∈ G & F ∈ F(η) } ,there exists A ∈ Aγ′−(m)−(n) such that:
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AAL ◦ τAL←γ′ = τAL←γ′ ◦ Φ−1
γ′−(m)−(n) ◦ [A ⊗ idH(m)−(n)

]
◦ Φγ′−(m)−(n) .Theorem 12.11.1 and 12.11.2 then implies that for any Aη ∈ Iη , there exists A ∈ Aγ′−(m)−(n) suchthat:

α
([Aη]∼) ◦ τAL←γ′ = τAL←γ′ ◦ Φ−1

γ′−(m)−(n) ◦ [A ⊗ idH(m)−(n)
]
◦ Φγ′−(m)−(n) ,hence, using the expression for ψ(n) and ψ(m) from eq. (12.13.4) :

∀Aη ∈ Iη ,
〈
ψ(n), α ([Aη]∼) ψ(n)〉

HAL = 〈ψ(m), α ([Aη]∼) ψ(m)〉
HAL .

Constructing a projective state from the ψ(n). For each η ∈ LHF, we choose nη as above, and wedefine:
ρη := [σ( ∣∣ψ(nη) 〉 〈 ψ(nη)∣∣ )]

η
.

Let η 4 η′ ∈ LHF and let m > nη , nη′ . From the previous point, together with theorem 12.11.3,we have, for any Aη ∈ Iη :
TrHη ρη Aη = 〈ψ(nη) ∣∣ α ([Aη]∼) ψ(nη)〉

HAL
= 〈ψ(m) ∣∣ α ([Aη]∼) ψ(m)〉

HAL = TrHη

[
σ
( ∣∣ψ(m) 〉 〈 ψ(m)∣∣ )]

η
Aη .

Hence, the second part of prop. 12.10 implies:
ρη = [σ( ∣∣ψ(m) 〉 〈 ψ(m)∣∣ )]

η
,

and similarly for ρη′ . But σ( | ψ(m) 〉〈 ψ(m) |) ∈ S
⊗(LHF,H,Φ) (def. 5.2), so we get:

Trη′→η ρη′ = Trη′→η [σ( ∣∣ψ(m) 〉 〈 ψ(m)∣∣ )]
η′

= [σ( ∣∣ψ(m) 〉 〈 ψ(m)∣∣ )]
η
= ρη ,

and therefore ρ := (ρη)η∈LHF ∈ S
⊗(LHF,H,Φ) .

ρ is not in the image of σ . Let η ∈ LHF and n = nη > 1. Let M > 1 be an odd integer and
m = n+M . By definition of nη we have, for any l such that 0 6 2l 6 M − 1 :

pn+2l+1 /∈
⋃
e′∈γ]

r(e′) ,
where γ] := γ(η) \ {e′ ∈ γ(η) ∣∣ r(e[p∞,pn ]) ⊂ r(e′)} . If there exists e′ ∈ γ(η) such that r(e[p∞,pn ]) ⊂
r(e′) (note that there can be as much one such e′ for γ(η) is a graph), we define γ[ ∈ Lgraph by:

γ[ =

{
e′[b(e′),p], e′[q,f (e′)]} if b(e′) <(e′) p <(e′) q <(e′) f (e′){
e′[b(e′),p]} if b(e′) <(e′) p <(e′) q = f (e′){
e′[q,f (e′)]} if b(e′) = p <(e′) q <(e′) f (e′)

∅ if b(e′) = p <(e′) q = f (e′)
with {p, q} = {p∞, pn} ,

otherwise we define γ[ = ∅. By construction, we have γ\γ] 4 γ[∪
{
e[p∞,pn ]} and, for any l such that
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Figure 12.2 – Construction of the auxiliary label η̃ with M = 3 for the labels of fig. 12.1 (recalled in
light gray)

0 6 2l 6 M−1 , pn+2l+1 /∈
⋃
e′′∈γ[r(e′′) . Since ⋃e′∈γ]∪γ[r(e′) is compact, ĕ−1 〈V \⋃e′∈γ]∪γ[r(e′)〉 ⊂

U is an open neighborhood of {n+ 2l+ 1
n+ 2l+ 2

∣∣∣∣ 0 6 2l 6 M − 1} × {0}d−1 in Rd so there exists
R > 0 such that, for any l in {0, . . . , (M − 1)/2} :{

n+ 2l+ 1
n+ 2l+ 2

}
× B(d−1)

R ⊂ U & ĕ
〈{

n+ 2l+ 1
n+ 2l+ 2

}
× B(d−1)

R

〉
∩

⋃
e′∈γ]∪γ[

r(e′) = ∅

(where B(d−1)
R is the closed ball of radius R and center 0 in Rd−1). Thus, this allows us to constructa label η̃ ∈ LHF such that (fig. 12.2):

γ(η̃) = γ̃ := {e[pm,pm−1 ] , e[pm,p∞ ]} ∪ ⋃
062l<M−1

{
e[pn+2l+1,pn+2l ] , e[pn+2l+1,pn+2l+2 ]}

& ∀e′ ∈ γ] ∪ γ[ ∪
{
e[po,pn ]} , e′ ∈ Fy (η̃).

We have e[p∞,pn ] = e[pn+1,pn ] ◦ e−1[pn+1,pn+2 ] ◦ . . . ◦ e[pm,pm−1 ] ◦ e−1[pm,p∞ ] , hence {e[p∞,pn ]} 4 γ̃ and:
γ̃] := γ̃ −

{
e[p∞,pn ]} = γ̃ \

{
e[pm,p∞ ]} .

Note that γ(m)−(n) = {e[pk−1,pk ] ∣∣ n+ 1 6 k 6 m
}
4 γ̃] with γ̃]−γ(m)−(n) = ∅, so that πγ̃]→γ(m)−(n) is adiffeomorphism Cγ̃] → Cγ(m)−(n) = C(m)−(n) .Next, let η′ < η, η̃. Since {e[pm,pm−1 ]} 4 γ̃ 4 γ(η′), there exists e′ ∈ γ(η′) such that r(e′) ⊂

r
(
e[pm,pm−1 ]), so n′ := nη′ has to be bigger than m. Also, since Lgraphs is directed, there exists γ′ <

γ(η′), γ(n′). So, applying the construction from subsection 10.2 to (γ′, λ(η′)) ∈ Lgraphs ×Lprofls, thereexists η′′ < η′ with γ(η′′) < γ(n′). We define a diffeomorphism φη′′→(m)−(n) : Cη′′ → Cη′′→(m)−(n)×C(m)−(n)by:
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φη′′→(m)−(n) = [̃j ′, (h̃, j̃) 7→ (̃j ′, j̃), πγ̃]→γ(m)−(n)(h̃)] ◦ (idCη′′→η̃ × φγ̃−{e[p∞,pn ]}
)
◦ φη′′→η̃ ,

with Cη′′→(m)−(n) := Cη′′→η̃ × C{e[p∞,pn ]} .
Let h′′ ∈ Cη′′ and define:
j̃ ′, h̃, j̃ = (idCη′′→η̃ × φγ̃−{e[p∞,pn ]}

)
◦ φη′′→η̃(h′′) ,

& j ′, j, h = (idCη′′→η′ × φη′→η
)
◦ φη′′→η′(h′′) .

Using eq. (2.11.1) (which was proved in theorem 10.25), we have:
j ′ = [j ′ , h′ 7→ j ′] ◦ φη′′→η′(h′′)= [j ′ , h′ 7→ j ′] ◦ φη′′→η′ ◦ φ−1

η′′→η̃ ◦ φη′′→η̃(h′′)= [j ′ , h′ 7→ j ′] ◦ (idCη′′→η′ × φ
−1
η′→η̃

)
◦
(
φη′′→η′→η̃ × idCη̃

)
◦ φη′′→η̃(h′′)

= [j ′ , j̃ ′′ , h̃′ 7→ j ′
]
◦
(
φη′′→η′→η̃ × idCη̃

)
◦ φη′′→η̃(h′′)

= [j ′ , j̃ ′′ 7→ j ′
]
◦
(
φη′′→η′→η̃

) (̃j ′) ,
and:

h = [j ′, j , h 7→ h ] ◦ (φη′′→η′→η × idCη

)
◦ φη′′→η(h′′)= [j ′′, h 7→ h ] ◦ φη′′→η(h′′)

= e′ 7→
(nη′′→η,e′∏

k=1 [h′′ ◦ aη′′→η,e′(k)]εη′′→η,e′ (k))
= πγ(η′′)→γ(η)(h′′) .

Let e′ ∈ γ] . By construction, we have, for any k ∈ {1, . . . , nη′′→η,e′} , aη′′→η,e′(k) ∈ Fy (η̃), as wellas ∀ẽ ∈ γ̃, r
(
aη′′→η,e′(k)) 6⊂ r(ẽ) (for r(e′) ∩ r (e[p∞,pn ]) ⊂ {p∞, pn}). Hence, aη′′→η,e′(k) ∈ H(0)

η′′→η̃ .Writing j̃ ′ =: (̃j ′(0), j̃ ′(2), j̃ ′(3)), we thus get:
∀k ∈ {1, . . . , nη′′→η,e′} , h′′ ◦ aη′′→η,e′(k) = j̃ ′(0) ◦ aη′′→η,e′(k).So, for any e′ ∈ γ] , [πγ(η′′)→γ(η)(h′′)] (e′) only depends on h′′ via j̃ ′(0).If there exists e′ ∈ γ(η) such that r (e[p∞,pn ]) ⊂ r(e′), then we have at the same time {e′} 4

γ(η) 4 γ(η′) and {e[p∞,pn ]} 4 γ(η̃) 4 γ(η′), so γ[ 4 γ(η′) 4 γ(η′′) must hold (we can check this bywriting both e′ and e[p∞,pn ] as compositions of edges in γ(η′), and by showing that the edges thatappears in the decomposition of e[p∞,pn ] should appear in the decomposition of e′ as well, for γ(η′) isa graph; then, the remaining edges from the decomposition of e′ build up precisely the edges in γ[).With the same argument as for γ] above, we have for any e′′ ∈ γ[ and any k ∈ {1, . . . , nγ(η′′)→e′′},
aγ(η′′)→e′′(k) ∈ H(0)

η′′→η̃ , and therefore h′′ ◦aγ(η′′)→e′′(k) = j̃ ′(0) ◦aγ(η′′)→e′′(k). On the other hand, we have
πγ(η′′)→{e[p∞,pn ]}(h′′) = πγ̃→{e[p∞,pn ]} ◦ πγ(η′′)→γ(η̃)(h′′) = j̃ . Thus, πγ(η′′)→γ[∪{e[p∞,pn ]}(h′′) only depends on
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h′′ via j̃ ′(0) and j̃ , and the same holds for [πγ(η′′)→γ(η)(h′′)] (e′) since:
[πγ(η′′)→γ(η)(h′′)] (e′) = [πγ(η′′)→{e′}(h′′)] (e′) = [πγ[∪{e[p∞,pn ]}→{e′} ◦ πγ(η′′)→γ[∪{e[p∞,pn ]}(h′′)] (e′) .

Hence, we have proved so far that there exist two maps θη′′→η′ : Cη′′→(m)−(n) → Cη′′→η′ and θη :
Cη′′→(m)−(n) → Cη such that:

j ′ = θη′′→η′
(̃
j ′, j̃
)
& h = θη

(̃
j ′, j̃
) .

Now, we define an Hilbert space isomorphism Φη′′→(m)−(n) : Hη′′ → Hη′′→(m)−(n) ⊗H(m)−(n) by:
Φη′′→(m)−(n) : Hη′′ → Hη′′→(m)−(n) ⊗H(m)−(n)

ψ 7→ ψ ◦ φ−1
η′′→(m)−(n) ,

with Hη′′→(m)−(n) := Hη′′→η̃⊗H{e[p∞,pn ]} and H(m)−(n) := Hγ(m)−(n) . Φη′′→(m)−(n) being an Hilbert spaceisomorphism follows from the note at the end of the proof of prop. 12.7 and from the fact that
πγ̃]→γ(m)−(n),∗ µγ̃] = µγ(m)−(n) (for the Haar measure on a compact group is invariant under taking theinverse). Then, we have, for any ψη′′→η′ ∈ Hη′′→η′ and any ψη ∈ Hη :

Φ−1
η′′→η′◦

(idHη′′→η′ ⊗ Φ−1
η′→η

) (
ψη′′→η′ ⊗ ζη′→η ⊗ ψη

) = Φ−1
η′′→(m)−(n) ([ψη′′→η′ ◦ θη′′→η′ ψη ◦ θη]⊗ ζ(m)−(n)) ,

where ζη′→η ≡ 1 and ζ(m)−(n) ≡ 1. Since Φη′′→(m)−(n) , Φη′′→η′ and Φη′→η are Hilbert space isomorphism,Φη′′→(m)−(n) ◦ Φ−1
η′′→η′ ◦

(idHη′′→η′ ⊗ Φ−1
η′→η

) thus induces a unitary (injective) map from:
Vect{ψη′′→η′ ⊗ ζη′→η ⊗ ψη ∣∣∣ψη′′→η′ ∈ Hη′′→η′ , ψη ∈ Hη

}
(where · denotes the completion) into Hη′′→(m)−(n) ⊗ {ζ(m)−(n)} . Therefore, we get, using thecharacterization of Θη′|η from the proof of theorem 12.11 (eq. (12.11.2) ) together with def. 5.3:TrHη′ ρη′ Θη′|η =

= TrHη′

[
σ
(∣∣∣ψ(n′) 〉 〈 ψ(n′)∣∣∣)]

η′
Θη′|η

= TrHη′′

[
σ
(∣∣∣ψ(n′) 〉 〈 ψ(n′)∣∣∣)]

η′′
Φ−1
η′′→η′

(idHη′′→η′ ⊗ Θη′|η

)Φη′′→η′

= TrHη′′

[
σ
(∣∣∣ψ(n′) 〉 〈 ψ(n′)∣∣∣)]

η′′
Φ−1
η′′→η′ ◦

(idHη′′→η′ ⊗ Φ−1
η′→η

)
(idHη′′→η′ ⊗ |ζη′→η 〉 〈 ζη′→η| ⊗ idHη

) (idHη′′→η′ ⊗ Φη′→η

)
◦ Φη′′→η′

6 TrHη′′

[
σ
(∣∣∣ψ(n′) 〉 〈 ψ(n′)∣∣∣)]

η′′
Φ−1
η′′→(m)−(n) (idHη′′→(m)−(n) ⊗ |ζ(m)−(n) 〉 〈 ζ(m)−(n)|)Φη′′→(m)−(n) .

This implies, using theorem 12.11.3 and eq. (12.11.1) :
TrHη′ ρη′ Θη′|η 6

〈Φη′′→(m)−(n) Γ−1
η′′→γ(η′′) τγ(η′′)←γ(n′) ψ(n′)

γ(n′)
∣∣∣ (idHη′′→(m)−(n) ⊗ |ζ(m)−(n) 〉 〈 ζ(m)−(n)|) ∣∣∣
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∣∣∣Φη′′→(m)−(n) Γ−1
η′′→γ(η′′) τγ(η′′)←γ(n′) ψ(n′)

γ(n′)
〉
Hη′′→(m)−(n)⊗H(m)−(n) . (12.13.6)

Let h′′ ∈ Cη′′ and ((̃j ′(0), j̃ ′(2), j̃ ′(3)) , j̃ ; h̃) := φη′′→(m)−(n)(h′′) . Let γ̃(0) := H(0)
η′′→η̃ and γ̃(2) := H(2)

η′′→η̃ .Since γ̃(0), γ̃(2) ⊂ γ(η′′) ∈ Lgraphs , we have γ̃(0), γ̃(2) ∈ Lgraphs ⊂ LAL and γ̃(0), γ̃(2) 4 γ(η′′). Moreover,the expression for φη′′→η̃ (prop. 10.24) together with the uniqueness part of prop. 12.5 yields:
j̃ ′(0) = h′′|γ̃(0) = πγ(η′′)→γ̃(0)(h′′) , j̃ ′(2) = h′′|γ̃(2) = πγ(η′′)→γ̃(2)(h′′) ,
& π−1

γ̃]→γ(m)−(n)(h̃), j̃ = φγ̃−{e[p∞,pn ]} ◦ πγ(η′′)→γ̃(h′′) .
Using eq. (12.6.1) and the expression for φγ2−γ1 from the proof of prop. 12.7, the last relation abovebecomes:

h̃ = πγ(η′′)→γ(m)−(n)(h′′) & j̃ = πγ(η′′)→{e[p∞,pn ]}(h′′) .
Next, since e[po,pn ] ∈ Fy (η̃) and ⋃ẽ∈γ̃r(ẽ) = r(e[pn,p∞ ]), we have, for any e′ ∈ γ(n) and any r ∈{1, . . . , nγ(η′′)→γ(n),e′} :

aγ(η′′)→γ(n),e′(r) ∈ Fy (η̃) & ∀ẽ ∈ γ̃, r
[
aγ(η′′)→γ(n),e′(r)] 6⊂ r(ẽ) .

Hence aγ(η′′)→γ(n),e′(r) ∈ H(0)
η′′→η̃ , so that γ(n) 4 γ̃(0). Similarly, if n′ > m + 1, e[pm,p∞ ] ∈ γ̃ implies{

e[pm+1,p∞ ]} 4 γ̃(2) (we have {e[pm+1,p∞ ]} 4 γ(η′′) for {e[pm,pm+1 ]} 4 γ(n′) 4 γ(η′′) and {e[pm,p∞ ]} 4 γ̃ 4
γ(η′′) ), as well as γ(n′)−(m+1) 4 γ̃(2) (if n′ happens to be bigger than m+ 2). Then, using repeatedlyeq. (12.6.1), we get:
∀k ∈ {1, . . . , n} , πγ(η′′)→γ(n′)(h′′) (e[pk−1,pk ]) = πγ̃(0)→γ(n) (̃j ′(0)) (e[pk−1,pk ]) ,
∀k ∈ {n+ 1, . . . , m} , πγ(η′′)→γ(n′)(h′′) (e[pk−1,pk ]) = h̃

(
e[pk−1,pk ])(note that m 6 n′ as underlined earlier),

∀k ∈ {m+ 2, . . . , n′} , πγ(η′′)→γ(n′)(h′′) (e[pk−1,pk ]) = πγ̃(2)→γ(n′)−(m+1) (̃j ′(2)) (e[pk−1,pk ])(of course, this only applies if n′ > m+ 2).If n′ > m we also need the evaluation of πγ(η′′)→γ(n′)(h′′) on e[pm,pm+1 ] . For this, we notice that{
e[p∞,pn ]} 4 γ [m,m+1] 4 γ(η′′), where γ [m,m+1] := {

e[pn,pm ] , e[pm,pm+1 ] , e[pm+1,p∞ ]}. Using the explicitexpression for πγ [m,m+1]→{e[p∞,pn ]} together with {e[pn,pm ]} 4 γ(m)−(n) and {e[pm+1,p∞ ]} 4 γ̃(2) (and againrepeatedly applying eq. (12.6.1)), we get:
j̃(e[p∞,pn ]) = πγ(η′′)→{e[p∞,pn ]}(h′′)(e[p∞,pn ])= πγ(η′′)→γ [m,m+1](h′′)(e[pn,pm ])−1 . πγ(η′′)→γ [m,m+1](h′′)(e[pm,pm+1 ])−1 . πγ(η′′)→γ [m,m+1](h′′)(e[pm+1,p∞ ])−1

= πγ(m)−(n)→{e[pn,pm ]}(h̃)(e[pn,pm ])−1 . πγ(η′′)→γ(n′)(h′′)(e[pm,pm+1 ])−1 . πγ̃(2)→{e[pm+1,p∞ ]}(̃j ′(2))(e[pm+1,p∞ ])−1

= [ m∏
k=n+1 h̃(e[pk−1,pk ])]−1

. πγ(η′′)→γ(n′)(h′′)(e[pm,pm+1 ])−1 . πγ̃(2)→{e[pm+1,p∞ ]}(̃j ′(2))(e[pm+1,p∞ ])−1 ,
so that:
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πγ(η′′)→γ(n′)(h′′)(e[pm,pm+1 ]) = [ m∏
k=n+1 h̃(e[pk−1,pk ]) . j̃(e[p∞,pn ]) . πγ̃(2)→{e[pm+1,p∞ ]}(̃j ′(2))(e[pm+1,p∞ ])]−1 .

We want to use the thus obtained relations between πγ(η′′)→γ(n′) and φη′′→(m)−(n) in order to refor-mulate eq. (12.13.6). We first consider the case n′ = m . Then, we have:
Φη′′→(m)−(n) Γ−1

η′′→γ(η′′) τγ(η′′)←γ(n′) ψ(n′)
γ(n′) = ψη′′→(m)−(n) ⊗ χ(m)−(n) ,where:

∀
(̃
j ′(0), j̃ ′(2), j̃ ′(3)) , j̃ ∈ Cη′′→(m)−(n) ,

ψη′′→(m)−(n) (̃j ′(0), j̃ ′(2), j̃ ′(3) ; j̃) := n∏
k=1
[
χ ◦ πγ̃(0)→γ(n) (̃j ′(0))] (e[pk−1,pk ])

& ∀ h̃ ∈ C(m)−(n) , χ(m)−(n)(h̃) := m∏
k=n+1

[
χ ◦ h̃

](e[pk−1,pk ]) .
Thus, eq. (12.13.6) becomes:

TrHη′ ρη′ Θη′|η 6 ‖ψη′′→(m)−(n)‖2Hη′′→(m)−(n)
∣∣∣〈ζ(m)−(n) | χ(m)−(n)〉H(m)−(n)

∣∣∣2 .
And, since ∥∥∥ψ(n′)

γ(n′)
∥∥∥
H
γ(n′)

= 1, we get:
TrHη′ ρη′ Θη′|η 6

∣∣∣〈ζ(m)−(n) | χ(m)−(n)〉H(m)−(n)
∣∣∣2

‖χ(m)−(n)‖2H(m)−(n)
= ∣∣∫

G dµ(g) χ(g)∣∣2M
‖χ‖2M 6

(∫
G
dµ(g) |χ(g)|)2M .

We now consider the case n′ > m. Here, we get:
∀
(̃
j ′, j̃
)
∈ Cη′′→(m)−(n) , ∀h̃ ∈ C(m)−(n) ,Φη′′→(m)−(n) Γ−1

η′′→γ(η′′) τγ(η′′)←γ(n′) ψ(n′)
γ(n′)
[̃
j ′, j̃ ; h̃] =

= ψη′′→η̃
(̃
j ′
)
χ(m)−(n)(h̃) χ

[
βη′′→η̃

(̃
j ′
)
. j̃(e[p∞,pn ])−1 . β(m)−(n)(h̃)] ,

where:
∀
(̃
j ′(0), j̃ ′(2), j̃ ′(3)) ∈ Cη′′→η̃ ,

ψη′′→η̃
(̃
j ′(0), j̃ ′(2), j̃ ′(3))

:= ( n∏
k=1
[
χ ◦ πγ̃(0)→γ(n) (̃j ′(0))] (e[pk−1,pk ])) ( n′∏

k=m+2
[
χ ◦ πγ̃(2)→γ(n′)−(m+1) (̃j ′(2))] (e[pk−1,pk ])) ,

βη′′→η̃
(̃
j ′(0), j̃ ′(2), j̃ ′(3)) := [πγ̃(2)→{e[pm+1,p∞ ]}(̃j ′(2))(e[pm+1,p∞ ])]−1 ,

& ∀ h̃ ∈ C(m)−(n) , β(m)−(n)(h̃) := n+1∏
k=m h̃(e[pk−1,pk ])−1 .

Thus, eq. (12.13.6) now reads:
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TrHη′ ρη′ Θη′|η 6∫
Cη′′→η̃

dµη′′→η̃ (̃j ′) ∣∣∣ψη′′→η̃(̃j ′)∣∣∣2 ∫
C(m)−(n)×C(m)−(n)dµ(2)(m)−(n)(h̃, h̃′) χ∗(m)−(n)(h̃) χ(m)−(n)(h̃′)∫

G
dµ(t) χ∗

[
βη′′→η̃

(̃
j ′
)
. t−1 . β(m)−(n)(h̃)] χ [βη′′→η̃(̃j ′) . t−1 . β(m)−(n)(h̃′)] ,

while the normalization condition ∥∥∥ψ(n′)
γ(n′)
∥∥∥
H
γ(n′)

= 1 yields:
1 = ∫

Cη′′→η̃

dµη′′→η̃ (̃j ′) ∣∣∣ψη′′→η̃(̃j ′)∣∣∣2 ∫
C(m)−(n)dµ(m)−(n)(h̃) ∣∣∣χ(m)−(n)(h̃)∣∣∣2 ∫

G
dµ(t) |χ(t)|2

(the measure µ being invariant under the transformation t 7→ t1 . t−1. t2 for any t1 , t2 ∈ G)
= ∫

Cη′′→η̃

dµη′′→η̃ (̃j ′) ∣∣∣ψη′′→η̃(̃j ′)∣∣∣2 (since ‖χ‖ = 1).
Moreover, for any t1 , t2 , t′2 ∈ G, the Cauchy-Schwarz inequality ensures that:∣∣∣∣∫

G
dµ(t) χ∗

[
t1 . t−1. t2] χ [t1 . t−1. t′2]∣∣∣∣ 6 ‖χ‖2 = 1 ,

so we again get:
TrHη′ ρη′ Θη′|η 6

∫
Cη′′→η̃

dµη′′→η̃ (̃j ′) ∣∣∣ψη′′→η̃(̃j ′)∣∣∣2 ∫
C(m)−(n)×C(m)−(n)dµ(2)(m)−(n)(h̃, h̃′) ∣∣∣χ∗(m)−(n)(h̃)∣∣∣ ∣∣∣χ(m)−(n)(h̃′)∣∣∣

= (∫
G
dµ(g) |χ(g)|)2M .

Since χ has been chosen so that ∫
G
dµ(g) |χ(g)| < 1, there exists, for any ε > 0, an odd integer

M > 1 with (∫
G
dµ(g) |χ(g)|)2M

< ε. Thus, there exists, for any η ∈ LHF and any ε > 0, η′ < η

such that:TrHη′ ρη′ Θη′|η < ε .Hence, for any η ∈ LHF, inf
η′<η

TrHη′ ρη′ Θη′|η = 0, and, therefore, sup
η∈LHF inf

η′<η
TrHη′ ρη′ Θη′|η = 0. On the

other hand theorem 12.11.5 implies:
σ
〈
SAL〉 = {ρ′ = (ρ′η)η∈LHF

∣∣∣∣∣ sup
η∈LHF inf

η′<η
TrHη′ ρ

′
η′ Θη′|η = Tr ρ′} ,

and we have Tr ρ = TrHη ρη = ∥∥ψ(nη)∥∥
HAL = 1 (for some η ∈ LHF), so ρ /∈ σ

〈
SAL〉. �

So, we have obtained a clear picture of how the projective state space set up in prop. 12.1 relates
to the more conventional Ashtekar-Lewandowski state space. Recall that our motivation for this
construction was to extend the latter, to try and cure the difficulties arising in the search for good
semi-classical states. The observation of prop. 12.13, confirming that we indeed have gained new
states in the process, is in this respect particularly important.
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The state we used to prove this result can even be seen as a first step toward the design of
satisfactory semi-classical states. Indeed, if we take as ‘pattern’ χ a coherent state (eg. a Hall
state [42], which is the generalization over a compact Lie group of a Gaussian state), we obtain
a projective state yielding a narrow distribution for infinitely many holonomies (namely the ones
along the infinitely many pieces of the base edge e), while such a state could not exist over HAL .

Still, this would not yet be a state suitable for the study of the semi-classical limit, where we
would need states presenting narrow distributions for a full set of holonomies and fluxes. There
remain in fact further obstructions to this endeavor, the understanding and overcoming of which
will be the topic of chap. 6.

13. Discussion: imposing the constraints (1/2)

An issue that will have to be addressed thoroughly before the projective formalism can provide
a serious alternative to the successful inductive one, is how to solve at least the Gauss and
diffeomorphism constraints (see the brief overview of the ADM formalism in the main introduction,
and of the Ashtekar variables in section 8), as those can be readily solved on HAL [4, 8, 92] . In
section 3 we proposed a strategy to deal with constraints in the projective context, with the help of
a suitably defined regularization scheme (this proposal was developed at the classical level, ie. in
the setting of a projective limit of symplectic manifolds, however we will display on an example, in
subsection 16.2, how a similar approach could be implemented at the quantum level).

Note that while the Gauss constraints are well-adapted to the inductive structure underlying
the Ashtekar-Lewandowski Hilbert space (ie. they leave the fixed-graph subspaces Hγ invariant,
which allows for their straightforward resolution in HAL), they are not adapted (in the sense of
subsection 3.1) to the projective structure we have introduced: while gauge transformations preserve
the algebra of holonomies attached to a graph, they do not preserve the algebra of fluxes attached
to a profile. In fact, as stressed at the end of subsection 9.2, fluxes do not at all transform nicely
under gauge transformations (except when the gauge transformation happens to be constant on the
surface supporting the considered flux). A popular method to circumvent this difficulty is to use,
instead of the standard fluxes, appropriately ‘anchored’ ones [89, def. 3.5]: by choosing, for each
face, a supporting system of paths, we can parallel transport the electric field at each point of the
face back to a common root, thus forming an observable with better transformations properties.
Fluxes of this kind have for example been used in [23] to build a projective structure of momentum
spaces. Yet, a complete solution based on this device will require some more work, because again
one needs to ensure, at the same time, that the labels we are using can be properly associated to an
algebra of observables (ie. that the observables assigned to a given label form a subset closed under
Poisson brackets), and that they build a directed preordered set (with a preorder that respects the
relations between the associated algebras of observables). Specifically, we will have to keep track, in
each label, of the system of paths used to define its anchored fluxes, thus putting the directedness
at stake (as underlined in section 7, the richer the label structure, the harder it is to arrange for
the label set to be directed). It turns out that the tools we will develop in section 19 could help
designing a suitable label set in this context, and we will come back to this point in section 20.
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Similarly, the techniques developed for the resolution of the diffeomorphism constraints in HAL
[8] cannot be directly imported into the projective formalism because they critically rely on having
states built from discrete excitations. Still, they suggest that the building blocks for the space of
solutions should be indexed by equivalence classes of labels under diffeomorphisms, in other words
that we should try to quotient out all embedding knowledge from the projective structure. However,
defining the projection between two labels is subtle, when there is no embedding telling us their
respective disposition: if one takes a small embeddingless label η and a larger one η′, it will in
general not be possible to unequivocally identify η with a sublabel of η′ (this is sidestepped in
the construction of the diffeomorphism invariant version of HAL , because distinct graphs can there
be made to label mutually orthogonal sectors, with no need to relate their respective degrees of
freedom). A prospective way out could be to position η within η′ depending on the state we happen
to have over η′. More precisely, we would like to select, among all the inequivalent sublabels of η′

that can be identified with η, the one that captures the most relevant information about this state.
We can regard a prescription of this kind as a means to give diffeomorphism-invariant meaning
to the observables attached to a given label, by deparametrizing them using as reference field the
geometric data itself. As such it is similar to the deployment of intrinsic coordinates systems that
are defined purely in terms of the geometry [57, 58] .

While the solution of the Gauss and diffeomorphism constraints on HAL is explicitly known, the
resolution of the Hamiltonian ones is less understood. These constraints can be regularized [88] to
define corresponding operators on HAL , and, with the help of the Master Constraint program [91, 36],
the existence of a Hilbert space collecting their solutions can be established, yet there remain some
computational hurdles. One can therefore speculate whether this known regularization scheme
for the Hamiltonian constraints could be combined with the strategy from section 3 in order to
arrive at a constructive description of a space of states solving the quantum dynamics of gravity.
Note that the ideas sketched above to define the diffeomorphism-invariant projective structure
would have the added benefit of pushing the most interesting information about the states down
toward the ‘coarsest’ labels: this could in turn improve the convergence properties of a subsequent
regularization of the Hamiltonian constraints, as it would make it easier to access the data we
need to correctly evolve the spatial slice.

We will continue this discussion in section 20, in the light of the developments covered in
chaps. 5 and 6.
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Applications and Toy-Models

Chapter 5 – Examples of Constraints Regulariza-
tions

14. Introduction

In section 3, we introduced a strategy to deal with dynamical constraints in a projective limit of
symplectic manifolds. After having convinced ourselves that a regularization of these constraints
will in general be necessary, since we cannot expect them to be adapted to the projective system,
we adopted the perspective that a dynamical state can be identified with the family of successive
approximations approaching an exact solution of the dynamics. On the one hand, this allows
us to put the dynamical state space into a projective form. On the other hand, it also provides a
suitable ground for a notion of convergence, that will make it possible to define meaningful physical
observables on this state space.

However, applying this procedure demands that one sets up a regularization scheme fulfilling
a number of restrictive properties (summarized in prop. 3.23), which raises the question of its
practicability. Hence, we now want to discuss two simple examples, meant as ‘proofs of concept’
that such schemes can indeed be designed.

Note that the framework in section 3 was purely classical. We have not yet undertaken to for-
mulate a general procedure regarding the resolution of dynamical constraints in projective systems
of quantum state spaces. Nevertheless, our second example will explore how analogous ideas can
be implemented at the quantum level, and will give us the opportunity to delineate an appropriate
course and to underline possible difficulties.
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15. Linear constraints on a Kähler vector space

This first example is arguably mostly artificial and does not pretend to have great physical
relevance. Our motivation here is to illustrate the concepts introduced in sections 2 and 3 in the
simplest possible setup. We consider an infinite dimensional Hilbert space H (which is nothing but
a linear Kähler manifold) and form its rendering by a projective structure of finite dimensional
Hilbert spaces (to prevent any confusion: the Hilbert spaces in discussion here are the phase spaces
of classical systems, there will be nothing quantum in the present section). This rendering is built
from an Hilbert basis of H by considering all the vector subspaces of H spanned by a finite number
of basis vectors and linking them by orthogonal projections (a more satisfactory rendering for H,
namely one that does not require the choice of a preferred basis, will be presented in section 16;
however we do not want to use it here, since the constraints we will be looking at could be directly
formulated as an elementary reduction over a cofinal part of its label set, and it would therefore
not be appropriate as an example for the regularization procedure).

Proposition 15.1 Let H, 〈 · , · 〉 be a complex Hilbert space and define:1. ∀v ∈ H, J v := i v ;
2. ∀v, w ∈ H, Ω(v, w) := 2 Im (〈v, w〉 ).Then, H, Ω, J is a Kähler manifold.

Proof The real scalar product Re 〈 · , · 〉 equips H (seen as a real vector space) with a structureof real Hilbert space, therefore, any bounded real-valued real-linear form on H can be writtenas Re 〈v, · 〉 = 2 Im 〈− i2 v, · 〉 = Ω(− i2 v, · ) for some v ∈ H. Hence, Ω is a strong symplecticstructure.Next, J is by construction a complex structure on H. We have ∀v, w ∈ H, Ω(i v, i w) = Ω(v, w),and v 7→ Ω(v, i v) = 2 Re 〈v, v〉 is positive definite.The integrability conditions for Ω and J are trivially satisfied since we actually have a Kähler
vector space. �

Proposition 15.2 Let H be a separable, infinite dimensional Hilbert space (equipped with thestrong symplectic structure Ω defined in prop. 15.1) and let (ei)i∈N be an Hilbert basis of H. Wedefine:1. L := {I ⊂ N | 0 < #I < ∞} equipped with the preorder defined by ⊂;
2. ∀I ∈ L, HI := Vect {ei | i ∈ I} equipped with the induced symplectic structure ΩI (which isalso the natural symplectic structure on HI as a finite dimensional Hilbert space);
3. ∀I ⊂ I ′ ∈ L, πI′→I := ΠI|HI′→HI

where ΠI is the orthogonal projection on HI ;
4. HN := H and ∀I ∈ L, πN→I := ΠI|H→HI

.Then, this defines a rendering (def. 2.6) of the symplectic manifold H by the projective system ofphase spaces (L, H, π)↓. We define σ↓ : H→ S
↓(L,H,π) as in def. 2.6.Additionally, defining the dense vector subspace of H, D := Vect {ei | i ∈ N} (without com-pletion, ie. the space of finite linear combinations of the ei), we have a bijective antilinear map
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ζ : D∗ → S
↓(L,H,π) such that ζ−1 ◦ σ↓ : H → D∗ is the canonical identification of H with D′ ⊂ D∗(where D∗ is the algebraical dual of D and D′ the topological one).

Proof L is a directed set, since ∀I, I ′ ∈ L, I ∪ I ′ ∈ L and I, I ′ ⊂ I ∪ I ′.Let I, I ′ ∈ L t {N} with I ⊂ I ′. πI′→I is surjective by construction. Next, since HI is closed, wehave, for any bounded real-valued real-linear form υ on HI , a vector υ ∈ HI such that:
∀v ∈ HI, υ(v) = ΩI(υ, v) = Re 〈2i υ, v〉I .Hence, since ΠI is the C-orthogonal projection on the complex vector subspace HI , it is also the

R-orthogonal projection on the real vector subspace HI , and we have:
∀v ∈ HI′, υ ◦ πI′→I(v) = Re 〈2i υ, ΠI v〉I = Re 〈2i υ, v〉I′ = ΩI′(υ, v) ,and therefore πI′→I (υ ◦ πI′→I) = πI′→I (υ) = υ.Clearly for I ∈ L, we have πI→I = idHI and for I, I ′, I ′′ ∈ Lt{N} with I ⊂ I ′ ⊂ I ′′, πI′→I ◦ πI′′→I′ =

πI′′→I .Lastly, we define:
ζ : D∗ → S

↓(L,H,π)
υ →

(
υ|HI

)
I∈L

.
where for all I ∈ L, ( · ) : H∗I → HI is the canonical identification provided by the complex Hilbertspace structure on HI (HI is finite dimensional, hence H∗I = H′I).The map ζ is well-defined, since ∀I ⊂ I ′ ∈ L, ∀v ∈ HI,

〈
πI′→I

(
υ|HI′

)
, v
〉
I
= 〈

υ|HI′
, v
〉
I′

=
υ(v) = 〈υ|HI

, v
〉
I
, hence πI′→I (υ|HI′

) = υ|HI
.

On the other hand, we define ζ̃ : S↓(L,H,π) → D∗, by:
∀ (vI)I∈L , ∀w ∈ D, ζ̃

((vI)I∈L) (w) = 〈vI, w〉I for any I ∈ L such that w ∈ HI .
The map ζ̃ is well-defined since D = ⋃

I∈L

HI and if I, I ′ ∈ L are such that w ∈ HI ∩HI′ , then there
exists I ′′ ∈ L such that I, I ′ ⊂ I ′′ and:
〈vI, w〉I = 〈πI′′→I(vI′′), w〉I = 〈vI′′, w〉I′′ = 〈vI′, w〉I′ .

Now, we have ζ̃ ◦ ζ = idD∗ , ζ ◦ ζ̃ = id
S
↓(L,H,π) and ∀v ∈ H, ∀I ∈ L, ∀w ∈ HI ⊂ D, ζ̃ ◦ σ↓(v) (w) =

〈πN→I(v), w〉I = 〈v, w〉H . �

We now present the constraint surface of interest, as a real vector subspace of H admitting
a description of a specific form (alternatively, we could characterize it by of a family of linear
holomorphic second class constraints and a family of linear first class constraints). Additionally,
we anticipate on the regularization of the constraints by providing a rendering (similar to the one
we adopted for H) for the corresponding reduced phase space.
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Proposition 15.3 We consider the same objects as in prop. 15.2. Let (fj)j∈N and (gk )k∈N be two,mutually orthogonal, orthonormal families in H. We define:
1. J := VectC {fj ∣∣ j ∈ N} (equipped with the induced symplectic structure ΩJ) and KR :=VectR {gk | k ∈ N} ;
2. δ : J⊕KR → J by δ := ΠJ|J⊕KR→J where ΠJ is the orthogonal projection on J.Then (J, J⊕KR, δ) is a phase space reduction of H (def. A.1).Additionally, we define:
3. ∀J ∈ L, JJ := VectC {fj ∣∣ j ∈ J

} equipped with the induced symplectic structure Ω′J ;
4. ∀K ∈ L, KK := VectC {gk | k ∈ K} & KK,R := VectR {gk | k ∈ K} ;
5. ∀J ⊂ J ′ ∈ L, π′J′→J := Π′J|JJ′→JJ

where Π′J is the orthogonal projection on JJ ;
6. JN := J and ∀J ∈ L, π′N→J := Π′J|J→JJ

.
As in prop. 15.2, this provides a rendering of J by (L, J, π′)↓ and we define σ ′↓ : J→ S

↓(L,J,π′) aswell as the bijective antilinear map ζ ′ : F∗ → S
↓(L,J,π′) where F := Vect {fj ∣∣ j ∈ N} .

Proof δ is a surjective linear map and for v ∈ J, we have δ−1 〈v〉 = v + KR, hence δ−1 〈v〉 isconnected. For v, w ∈ J ⊕ KR, we write v = v ′ + v ′′ and w = w ′ + w ′′ with v ′, w ′ ∈ J and
v ′′, w ′′ ∈ KR. Then, we have:Ω(v, w) = 2 Im 〈v, w〉H = 2 Im 〈v ′, w ′〉H + 2 Im 〈v ′′, w ′′〉H (since J ⊥ KR)

= 2 Im 〈v ′, w ′〉J = ΩJ(δ(v), δ(w)) (since KR is the real vector subspace generated byan orthonormal family).Hence, (J, J⊕KR, δ) is a phase space reduction of H. �

We are ready to turn to the core of the regularization procedure, namely formulating a set of
approached implementations of the constraints (indexed by a label set E), endowing E with an
appropriate preorder, and linking together the approximate dynamics by supplying projecting maps
between their reduced phase spaces.

Here we choose E to enumerate a large class of approximate solutions, ordered by comparing
how good they are at approximating the exact solution (the precise definition of E may at first seem
to arise from nowhere but will become transparent when we will actually detail the corresponding
approximate constraint surfaces). This way of composing E will make the study the convergence
mostly inexpensive: a large part of the work is actually done beforehand when checking that E

with this preorder is really a directed set.

It also has the advantage of partially getting rid of the arbitrariness inherent of working with an
approximating scheme. The philosophy is that an explicit, concretely implemented, approximating
scheme will correspond to a specific cofinal part of E, but that we have the option of considering
all such particular schemes at the same time, by arranging them into a (huge) set E, provided we
carefully tailor its preorder to our purpose.
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Besides, note that being quite broad in recruiting suitable approximate theories is, up to a certain
extent, forced upon us by the fact that we are dealing with an unphysical and not further specified
system, since, in a more realistic example, we could probably, from the physics of the system, infer
guiding principles to be more selective.

On the other hand, we could fear that such a loose label set E will leave us with a dispropor-
tionately complicated projective structure for the dynamical theory. But, in fact, this dynamical
structure (on EL) gets spontaneously quotiented down to the projective structure we had already
introduced above for the dynamical state space. The idea is that we can transparently match two
partial dynamical theories as soon as they have a common ancestor out of which they are carved
in the same way (recall this mechanism was presented at the end of subsection 2.2, and expressed
precisely in props. 2.8 and 2.9).

Definition 15.4 We consider the same objects as in prop. 15.3 and we define E as the set of allsextuples (I, I ′, J, K , φ, ε) such that:
1. I ⊂ I ′ ∈ L & J, K ∈ L;
2. φ : JJ ⊕KK → HI′ is a linear application and φ|JJ⊕KK→Imφ is a unitary map;
3. ε > 0 and ∀v ∈ JJ, ‖v − φ(v)‖ 6 ε ‖v‖;
4. ΠI 〈φ 〈KK,R〉〉 = ΠI 〈KK,R〉.On E we define a preorder 4 by (I1, I ′1, J1, K1, φ1, ε1) 4 (I2, I ′2, J2, K2, φ2, ε2) iff:
5. I1 ⊂ I2, I ′1 ⊂ I ′2, J1 ⊂ J2 & K1 ⊂ K2;6. ε2 6 ε1.

Proposition 15.5 We consider the same objects as in def. 15.4. Let I ∈ L and ε > 0. Let J, K ∈ Lsuch that:dim ΠI 〈JJ ⊕KK 〉 = dim (JJ ⊕KK ).
Then, there exist I ′ ∈ L and a linear application φ : JJ ⊕KK → HI′ such that (I, I ′, J, K , φ, ε) ∈

E.
Lemma 15.6 Let H be a Hilbert space and let F, G be two finite dimensional vector subspaces of
H, such that dim ΠG 〈F〉 = dimF , where ΠG denotes the orthogonal projection on G.Then, there exists a unique linear application φF→G : F → G satisfying:1. φF→G|F→ImφF→G is a unitary map;
2. ∫

SF
dµSF (e) ‖e − φF→G(e)‖2 is minimal, where SF is the unit sphere of F equipped with the

measure induced by the euclidean structure of F .For v ∈ F , ‖v − φF→G(v)‖ 6 2 dimF ‖v‖ sup
e∈F
‖e‖=1

‖e − ΠG(e)‖
Proof Existence and uniqueness. Let f = dimF . From dim ΠG 〈F〉 = f , ΠG induces a bijective map
F → ΠG 〈F〉, hence 〈ΠG ( · ) , ΠG ( · )〉G defines a positive definite sesquilinear map on F . Therefore,
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there exists an orthonormal basis (ei)i∈{1,...,f} such that:
∀i, j ∈ {1, . . . , f} , 〈ΠG(ei), ΠG(ej )〉 = λi δij with λi > 0 .

Let φ be a linear application F → G such that φ|F→Imφ is a unitary map. We define Bij ∈ C for
i, j ∈ {1, . . . , f} and wi ∈ G ∩ (ΠG 〈F〉)⊥ for i ∈ {1, . . . , f} by:
∀i ∈ {1, . . . , f} , φ(ei) = 1√

λi
ΠG(ei) +∑

j
Bij

1√
λj

ΠG(ej ) + wi .
From 〈φ(ei), φ(ej )〉G = δij , we have:
∀i, j ∈ {1, . . . , f} , B∗ij + Bji +∑

k

B∗ikBjk + 〈wi, wj
〉 = 0 . (15.6.1)

With these notations, we have:∫
SF
dµSF (e) ‖e − φ(e)‖2 = ∫

SF
dµSF (e) ‖ΠG(e)− φ(e)‖2 + ‖e − ΠG(e)‖2

=∑
i,j

(∫
S
Cf

dµS
Cf

(x) x∗i xj)〈ΠG(ei)− φ(ei), ΠG(ej )− φ(ej )〉 + ∫
SF
dµSF (e) ‖e − ΠG(e)‖2

=∑
i

Vol (SCf ) [1 + λi − 2√λi Re (1 + Bii)] + ∫
SF
dµSF (e) ‖e − ΠG(e)‖2

=∑
i

Vol (SCf ) [1 + λi − 2√λi +√λi
∑
k

|Bik |2 +√λi ‖wi‖2
]+∫

SF
dµSF (e) ‖e − ΠG(e)‖2

(using eq. (15.6.1)).Hence, this expression is minimal if and only if ∀i, j ∈ {1, . . . , f} , Bij = 0 and ∀i ∈ {1, . . . , f} , wi =0. Therefore, we define φF→G by:
∀i ∈ {1, . . . , f} , φF→G(ei) = 1√

λi
ΠG(ei) .

Bound on ‖v − φF→G(v)‖. Let v = f∑
j=1 vj ej ∈ F . We have:

‖v − φF→G(v)‖ 6 f∑
j=1
∣∣vj∣∣ ∥∥ej − φF→G(ej )∥∥ 6 f ‖v‖ sup

j

∥∥ej − φF→G(ej )∥∥ .
Then, for j ∈ {1, . . . , f} , ∥∥ej − ΠG(ej )∥∥2 + λj = 1 implies:∣∣∣1−√λj

∣∣∣ = ∥∥ej − ΠG(ej )∥∥ ∥∥ej − ΠG(ej )∥∥1 +√λj
6
∥∥ej − ΠG(ej )∥∥ ,

therefore:
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∥∥ej − φF→G(ej )∥∥ 6 ∥∥ej − ΠG(ej )∥∥ + ∥∥ΠG(ej )− φF→G(ej )∥∥
= ∥∥ej − ΠG(ej )∥∥ + ∣∣∣√λj − 1∣∣∣ 6 2 ∥∥ej − ΠG(ej )∥∥ .

Hence, ‖v − φF→G(v)‖ 6 2f ‖v‖ sup
j

∥∥ej − ΠG(ej )∥∥ 6 2f ‖v‖ sup
e∈F
‖e‖=1

‖e − ΠG(e)‖ . �

Proof of prop. 15.5 Since (ei)i∈N is an orthonormal basis of H and JJ has finite dimension, wecan find I ′1 ∈ L such that:
1. sup

e∈JJ
‖e‖=1

∥∥e − ΠI′1(e)∥∥ 6 ε2 #J ;
and I ′2 such that:
2. I ′2 ∩ I = ∅ & dim ΠI′2 〈JJ〉+ dim (JJ ∩HI) = dim JJ ;
3. dimHI′2 > dim ΠI′2 〈JJ〉+ dimKK .
Let I ′ := I ∪ I ′1 ∪ I ′2 and I ′3 := I ′ \ I . We have dim ΠI′3 〈JJ〉+ dim (JJ ∩HI) = dim JJ and KK ⊥ JJ ,hence for all k ∈ K , there exists g′k ∈ ΠI′3 〈JJ〉 such that:
∀j ∈ J,

〈ΠI(fj ), ΠI(gk )〉I + 〈ΠI′3(fj ), g′k〉I′3 = 0 .
This holds because, for all families of coefficients (α j)j∈J such that ∑j α j

〈ΠI′3(fj ), · 〉I′3 = 0, we have∑
j α j∗fj ∈ HI (from point 15.5.2 above), and therefore ∑j α j

〈ΠI(fj ), ΠI(gk )〉I = 〈∑j α j∗fj , gk
〉
H

=
0 . So, for all k ∈ K , (〈ΠI(fj ), ΠI(gk )〉I )j∈J is in the image of (〈ΠI′3(fj ), · 〉I′3)j∈J .Next, using dimHI′3 > dim ΠI′3 〈JJ〉+dimKK , there exists a family of vectors g′′k ∈ HI′3∩

(ΠI′3 〈JJ〉
)⊥

for all k ∈ K such that:
∀k, l ∈ K, 〈ΠI(gk ), ΠI(gl)〉I + 〈g′k , g′l〉I′3 + 〈g′′k , g′′l 〉I′3 = 0 .

Now, we define φ : JJ ⊕KK → HI′ by:
∀j ∈ J, φ(fj ) := φJJ→HI′ (fj ) (where φJJ→HI′ is defined as in lemma 15.6),
and ∀k ∈ K, φ(gk ) := ΠI(gk ) + g′k + g′′k

‖ΠI(gk ) + g′k + g′′k‖
.

From the proof of lemma 15.6, φJJ→HI′ 〈JJ〉 = ΠI′ 〈JJ〉, hence, for all k ∈ K , we have, by con-struction of g′k and g′′k , φ(gk ) ⊥ φ 〈JJ〉. Also by construction of g′′k , we have, for all k, l ∈ K ,
〈φ(gk ), φ(gl)〉 = δkl. Therefore φ induces an Hilbert space isomorphism JJ ⊕KK → Imφ.Finally, we can check that defs. 15.4.3 and 15.4.4 are fulfilled. �

Proposition 15.7 With the notations of def. 15.4, E, 4 is a directed set.
Proof Let (I1, I ′1, J1, K1, φ1, ε1) ∈ E and (I2, I ′2, J2, K2, φ2, ε2) ∈ E. We define Ĩ = I1∪I2, J = J1∪J2,
K = K1 ∪ K2 and ε = min(ε1, ε2) > 0. Then, since (ei)i∈N is an orthonormal basis of H, we can

209



find I ∈ L such that Ĩ ⊂ I and dim ΠI 〈JJ ⊕KK 〉 = dim (JJ ⊕KK ).
From prop. 15.5, there exist Ĩ ′ ∈ L and φ̃ : JJ ⊕KK → HĨ′ such that (I, Ĩ ′, J, K , φ̃, ε) ∈ E. We

define I ′ = I ′1 ∪ I ′2 ∪ Ĩ ′ and φ : JJ ⊕KK → HI′ by:
∀v ∈ JJ ⊕KK , φ(v) := φ̃(v) .Then, (I, I ′, J, K , φ, ε) ∈ E and (I1, I ′1, J1, K1, φ1, ε1) , (I2, I ′2, J2, K2, φ2, ε2) 4 (I, I ′, J, K , φ, ε) .

�

Proposition 15.8 We consider the same objects as in def. 15.4. Let ε = (
I, I ′, J, K , φ, ε

)
∈ E.We define:1. Lε := {I ′′ ∈ L | I ′ ⊂ I ′′};

2. ∀I ′′ ∈ Lε t {N} , JεI′′ := JJ , equipped with the induced symplectic structure Ω′J ;
3. ∀I ′′ ∈ Lε t {N} , Hε

I′′ := φ 〈JJ ⊕KK,R〉 ⊂ HI′ ⊂ HI′′ ;
4. ∀I ′′ ∈ Lεt{N} , δεI′′ := (Π′J|JJ⊕KK,R→JJ

)
◦
(
φ|JJ⊕KK,R→φ〈JJ⊕KK,R〉

)−1 where Π′J is the orthogonalprojection on JJ ;
5. ∀I ′′1 , I ′′2 ∈ Lε t {N} / I ′′1 ⊂ I ′′2 , πε→εI′′2→I′′1 := idJJ .
Then, Lε is cofinal in L and ((JεI′′)I′′∈Lεt{N} , (Hε

I′′)I′′∈Lεt{N} ,(πε→εI′′2→I′′1
)
I′′1⊂I′′2 , (δεI′′)I′′∈Lεt{N}

) is an
elementary reduction (def. 3.7) of (Lε t {N} ,H, π)↓.
Proof For Ĩ ∈ L, Ĩ ∪ I ′ ∈ Lε, hence Lε is cofinal in L, so in particular it is directed (and so is
Lε t {N} since it has a greatest element).Then, it is clear from the definitions that (Lε t {N} , Jε, πε→ε) is a projective system of phasespaces.Replicating the proof of prop. 15.3, we can show that (JJ, JJ ⊕KK,R, Π′J|JJ⊕KK,R→JJ

) is a phasespace reduction of JJ ⊕ KK . But since φ|JJ⊕KK→Imφ is unitary, (JJ, Hε
I′′, δεI′′) is a phase spacereduction of Imφ, hence of HI′′ , for all I ′′ ∈ Lε t {N}.

Let I ′′1 , I ′′2 ∈ Lε t {N} such that I ′′1 ⊂ I ′′2 . We have πI′′2→I′′1
〈
Hε

I′′2
〉 = ΠI′′1

〈
Hε

I′′2
〉 = Hε

I′′1 since
Hε

I′′2 = Hε
I′′1 ⊂ HI′′1 . Lastly, for x1 ∈ Hε

I′′1 , y2 ∈ JεI′′2 = JJ , we have:(
∃ x2 ∈ Hε

I′′2 / δεI′′2 (x2) = y2 & πI′′2→I′′1 (x2) = x1) ⇔ (
∃ x2 ∈ Hε

I′′1 / δεI′′1 (x2) = y2 & x2 = x1)
⇔
(
δεI′′1 (x1) = y2) ,

therefore def. 3.7.3 is fulfilled. �

Proposition 15.9 We consider the same objects as in prop. 15.8. We define:
1. Ẽ := E t {N} (we extend the preorder by ∀ε ∈ E, ε ≺ N), ∀ε ∈ E, L̃ε := Lε t {N} , and

L̃N := {N}
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2. ∀ε = (I, I ′, J, K , φ, ε) ∈ E, ∀I ′′ ∈ L̃ε, `(ε, I ′′) := J , and `(N,N) := N;
3. JNN := JN = J, HN

N := J⊕KR and δNN := δ;
4. ∀(ε1, I ′′1 ), (ε2, I ′′2 ) ∈ ẼL̃ / ε1 4 ε2 & I ′′1 ⊂ I ′′2 , πε2→ε1

I′′2→I′′1 := π′`(ε2,I′′2 )→`(ε1,I′′1 ) (π′J′→J for J, J ′ ∈ Lt{N}with J ⊂ J ′ has been defined in defs. 15.3.5 and 15.3.6).
Then, (Ẽ,(L̃ε

)
ε∈Ẽ

, (JεI′′)(ε,I′′)∈ẼL̃ , (Hε
I′′)(ε,I′′)∈ẼL̃ ,(πε2→ε1

I′′2→I′′1
)

(ε1,I′′1 )4(ε2,I′′2 ) , (δεI′′)(ε,I′′)∈ẼL̃
) is a regularized

reduction (def. 3.16) of (L t {N} ,H, π)↓.Additionaly, we have a bijective map κ : S↓(ẼL̃,J,π) → S
↓(Lt{N},J,π′) .

Proof Ẽ is a directed set (for it has a greatest element) and (L̃ε
)
ε∈Ẽ

is a family of decreasingcofinal parts of L t {N}.Next, we have ∀(ε, I ′′) ∈ ẼL̃, JεI′′ = J`(ε,I′′) hence for (ε1, I ′′1 ) 4 (ε2, I ′′2 ) ∈ ẼL̃, πε2→ε1
I′′2→I′′1 is well-definedas a surjective map J

ε2
I′′2 → J

ε1
I′′1 and it is compatible with the symplectic structures.Moreover, for ε1 = ε2 ∈ E, this definition coincides with the map πε→εI′′2→I′′1 that has been introducedin prop. 15.8. Hence, for all ε ∈ E, we have from prop. 15.8 that (Jε,Hε, πε→ε, δε) is an elementaryreduction of (L̃ε,H, π

)↓.
And (JN,HN, πN→N, δN

) is an elementary reduction of (L̃N,H, π)↓ since LN
′ has only oneelement and (JNN,HN

N, δNN
) = (J, J⊕KR, δ) is a phase space reduction of HN = H (prop. 15.3).

Lastly, using ` : ẼL̃→ Lt{N} (` satisfies that ` 〈ẼL̃〉 is cofinal in Lt{N} since it contains N,
which is a greatest element in Lt{N}), we have by prop. 2.9 that (ẼL̃, J, π)↓ is a projective system
of phase spaces, thus (Ẽ,(L̃ε

)
ε∈Ẽ

, (JεI′′)(ε,I′′)∈ẼL̃ , (Hε
I′′)(ε,I′′)∈ẼL̃ ,(πε2→ε1

I′′2→I′′1
)

(ε1,I′′1 )4(ε2,I′′2 ) , (δεI′′)(ε,I′′)∈ẼL̃
) is

a regularized reduction of (L t {N} ,H, π)↓. And, in addition, there exists a bijective map κ :
S
↓(ẼL̃,J,π) → S

↓(Lt{N},J,π′) . �

Lastly, we can investigate the convergence and check that we are indeed in the optimal situation
discussed at the end of subsection 3.2 (more precisely in prop. 3.23). As announced above, the key
ingredient for the convergence is the auxiliary result from prop. 15.5, that we proved in the process
of establishing the directedness of E.

Theorem 15.10 We consider the same objects as in prop. 15.9. Let ψ ∈ J = JNN. For ε ∈ E, wedefine:1. ψε := (δεN)−1 〈πN→εN→N(ψ)〉 ⊂ Hε
N ⊂ HN = H ;

2. Ψε := σ̂↓ (ψε) , where σ̂↓ : P(H)→ Ŝ
↓(L,H,π) is defined as in prop. 3.23.
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Then, the net (Ψε)
ε∈E converges in Ŝ

↓(L,H,π) to σ̂↓ (δ−1 〈ψ〉) (def. 3.21).
Proof For ε = (I, I ′, J, K , φ, ε) ∈ E, we have, by putting all definitions together:

ψε = φ 〈Π′J(ψ) + KK,R〉, where Π′J is the orthogonal projection on JJ ,hence, for all Io ∈ L:[Ψε]Io = πN→Io 〈ψε〉 = ΠIo
〈
φ 〈Π′J(ψ) + KK,R〉

〉
⊂ HIo .

Let Io ∈ L and let U be an open set in HIo such that U ∩ ΠIo 〈ψ + KR〉 6= ∅. Let ψ′ ∈
U ∩ ΠIo 〈ψ + KR〉 and let ε1 > 0 such that ∀ψ′′ ∈ HIo, ‖ψ′′ − ψ′‖ 6 3 ε1 (‖ψ‖+ 1) ⇒ ψ′′ ∈ U .Next, there exits χ ∈ KR such that ψ′ = ΠIo 〈ψ + χ〉. We choose J1, K1 ∈ L and χ ′ ∈ KK1,Rsuch that ∥∥ψ − Π′J1(ψ)∥∥ 6 ε1 (‖ψ‖+ 1) and ‖χ − χ ′‖ 6 ε1 (‖ψ‖+ 1). And we can find I1 ∈ L with
I1 ⊃ Io such that dim ΠI1 〈JJ1 ⊕KK1〉 = dim (JJ1 + KK1). So, from prop. 15.5, there exist I ′1 ∈ L and
φ1 : JJ1 ⊕KK1 → HI′1 such that ε1 := (I1, I ′1, J1, K1, φ1, ε1) ∈ E.Let ε2 = (I2, I ′2, J2, K2, φ2, ε2) ∈ E with ε2 < ε1. Then, we have:∥∥ΠIo (ψ)− ΠIo ◦ φ2 ◦ Π′J2 (ψ)∥∥ 6 ∥∥ψ − φ2 ◦ Π′J2 (ψ)∥∥

6
∥∥ψ − Π′J2 (ψ)∥∥ + ∥∥Π′J2 (ψ)− φ2 ◦ Π′J2 (ψ)∥∥

6
∥∥ψ − Π′J1 (ψ)∥∥ + ε2 ∥∥Π′J2 (ψ)∥∥

6 2ε1 (‖ψ‖+ 1) .
Moreover, we have χ ′ ∈ KK1,R ⊂ KK2,R, so there exists χ ′′ ∈ KK2,R such that ΠI2 ◦ φ2(χ ′′) =ΠI2(χ ′) and we have:∥∥ΠIo (χ)− ΠIo ◦ φ2 (χ ′′)∥∥ 6 ∥∥ΠI2 (χ)− ΠI2 ◦ φ2 (χ ′′)∥∥ (since Io ⊂ I1 ⊂ I2)

6 ‖ΠI2 (χ)− ΠI2(χ ′)‖ 6 ε1 (‖ψ‖+ 1) .
Therefore, ψ′′ := ΠIo ◦ φ2 (Π′J2 (ψ) + χ ′′

)
∈ U , but since ψ′′ ∈ [Ψε2 ]Io , we have ∀ε2 < ε1, [Ψε2 ]Io ∩

U 6= ∅.Let K be a compact set in HIo such that K ∩ ΠIo 〈ψ + KR〉 = ∅. Hence, there exists ε1 > 0such that:
∀ψ′′ ∈ HIo,

(
∃ψ′ ∈ ΠIo 〈ψ + KR〉 / ‖ψ′ − ψ′′‖ 6 2ε1 (‖ψ‖+ 1) ) ⇒ (

ψ′′ /∈ K
) .

As above, we can, using prop. 15.5, construct ε1 := (
I1, I ′1, J1, K1, φ1, ε1) ∈ E with Io ⊂ I1and ∥∥ψ − Π′J1(ψ)∥∥ 6 ε1 (‖ψ‖+ 1). Let ε2 = (

I2, I ′2, J2, K2, φ2, ε2) ∈ E with ε2 < ε1 and let
ψ′′ ∈ [Ψε2 ]Io . Then, there exists χ ′′ ∈ KK2,R such that ψ′′ = ΠIo ◦ φ2 (Π′J2(ψ) + χ ′′

) and there exists
χ ′ ∈ KK2,R ⊂ KR such that ΠI2 ◦ φ2(χ ′′) = ΠI2(χ ′) . Moreover, we have again:∥∥ΠIo(ψ)− ΠIo ◦ φ2 ◦ Π′J2(ψ)∥∥ 6 2ε1 (‖ψ‖+ 1) .

We define ψ′ = ΠIo
(
ψ + χ ′

) = ΠIo (ψ) + ΠIo ◦ φ2 (χ ′′) (since Io ⊂ I1 ⊂ I2) and we have
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‖ψ′′ − ψ′‖ 6 2ε1 (‖ψ‖+ 1), hence ψ′′ /∈ K , and therefore ∀ε2 < ε1, [Ψε2 ]Io ∩ K = ∅.So, the net ([Ψε]Io)ε∈E converges in P (HIo) to ΠIo 〈ψ + KR〉 = πN→Io
〈
δ−1 〈ψ〉〉, thus, the net(Ψε)ε∈E converges in Ŝ

↓(L,H,π) to σ̂↓ (δ−1 〈ψ〉). �

16. Second quantization of the Schrödinger equation

In this section we want to apply the projective state space formalism to the second quantization
of the Schrödinger equation. In other words, we will consider the one-particle quantum mechanics
defined on an Hilbert space H as a classical field theory (looking at the wave function as a classical
field, whose evolution is described by a linear partial differential equation, namely the Schrödinger
equation), and we will discuss how this field theory can be quantized. The standard way of doing
this leads to the bosonic Fock space build on H [41, section I.3.4]. Here we want to compare this
trusted path with the strategy outlined in the first part of the present work (chaps. 1 and 2): first,
look for a rendering (def. 2.6) of the classical field theory by a collection of finite dimensional partial
theories, then come up with a regularizing procedure to implement the dynamics (subsection 3.2),
and, last but not least, take advantage of this classical insight to build a quantization of the theory
(section 6), thus obtaining a projective system of quantum state spaces (subsection 5.1). In particular,
we want to use this example to illustrate how the classical regularization of the dynamics lays the
stage for a corresponding procedure at the quantum level.

16.1 Classical theory

In section 3, we only considered dynamics specified by constraints, whereas here we have a theory
originally formulated with a ‘true’ Hamiltonian. However, this is quickly fixed, since there exists a
routine trick (discussed in [105, section 1.8] and similar to the more general procedure presented in
[52]), that can be physically interpreted as introducing an artificial time parametrization, and allows
to transform any theory on H with an non-vanishing Hamiltonian into a theory on H ×R2 with
an Hamiltonian constraint (the R2 part holds the time coordinate and its conjugate momentum,
aka. the energy variable).

Note that there is a technical subtlety arising when we try to write the theory on an infinite
dimensional symplectic manifold in the naive setup of def. A.1, and we are forced to require
the one-particle quantum Hamiltonian to be a bounded operator (we cannot simply restrict the
constraint surface so that it is included in an appropriate dense subspace, for it would then cost
the reduced phase space its strong symplectic structure, by spoiling the needed non-degeneracy
property). However, we will be able to lift this restriction without great efforts when switching to
the projective state space formalism.
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Proposition 16.1 Let H be a separable, infinite dimensional Hilbert space and H be a boundedself-adjoint operator on H. We equip MKIN := H ×R2 with the strong symplectic structure:
1. ∀(φ1, u1, v1), (φ2, u2, v2) ∈MKIN, ΩKIN(φ1, u1, v1;φ2, u2, v2) := 2 Im (〈φ1, φ2〉 ) + (u2 v1 − u1 v2).We define:2. MSHELL := {(ψ, t, E) ∈MKIN | E = 〈ψ, Hψ〉};
3. MDYN := H with symplectic structure ΩDYN := 2 Im 〈 · , · 〉;
4. δ : MSHELL → MDYN(ψ, t, E) 7→ exp (i t H) ψ .
Then, (MDYN, MSHELL, δ) is a phase space reduction of MKIN (def. A.1).

Proof From prop. 15.1, ΩKIN, resp. ΩDYN, defines a strong symplectic structure on MKIN, resp. MDYN.The map δ is surjective and, for ψo ∈MDYN, δ−1 〈ψo〉 = {(exp (−i t H) ψo, t, Eo) | t ∈ R}, where
Eo := 〈ψo, H ψo〉. So δ−1 〈ψo〉 is in particular connected.Let (ψ, t, E) ∈MSHELL. We have:

T(ψ,t,E) (MSHELL) = {(φ, u, 2 Re 〈φ, Hψ〉) | φ ∈ H, u ∈ R} ,and:
T(ψ,t,E)δ : T(ψ,t,E) (MSHELL) → TeiHtψ (MDYN)(φ, u, 2 Re 〈φ, Hψ〉) 7→ eiHt φ + iu eiHt Hψ

.
Hence, T(ψ,t,E)δ is surjective and, for (φ1, u1, 2 Re 〈φ1, Hψ〉) , (φ2, u2, 2 Re 〈φ2, Hψ〉) ∈ T(ψ,t,E) (MSHELL),we have:ΩKIN (φ1, u1, 2 Re 〈φ1, Hψ〉 ; φ2, u2, 2 Re 〈φ2, Hψ〉) =

= 2 Im 〈φ1, φ2〉+ 2u2 Im 〈φ1, iHψ〉 − 2u1 Im 〈φ2, iHψ〉+ 2u1u2 Im 〈i Hψ, i Hψ〉
= 2 Im 〈T(ψ,t,E)δ (φ1, u1, 2 Re 〈φ1, Hψ〉 ) , T(ψ,t,E)δ (φ2, u2, 2 Re 〈φ2, Hψ〉 )〉 ,therefore ΩKIN|T(ψ,t,E)(MSHELL) = [δ∗ΩDYN](ψ,t,E) . �

On H viewed as a phase space, we can define some remarkable observables (this defines the
algebra that we will latter endeavor to quantize): of interest are for us the scalar product with a
vector e ∈ H (that will give rise in the quantum theory to the corresponding creation and annihi-
lation operators) and the expectation value of an operator on H. Additionally the Heisenberg (ie.
time-dependent) operators of the first-quantized theory can be seen in a natural way as dynami-
cal observables associated (in the sense of def. A.2) to particular kinematical observables (up to a
technical artifact: we restrict the support of the considered observables to spheres in H because we
had defined the map ( · )DYN translating a kinematical observable into its dynamical version only for
bounded observables; note that, alternatively, we could just weaken this requirement, for it would
be enough to only demand the kinematical observables to be bounded on orbits of the dynamics).

Proposition 16.2 We consider the same objects as in prop. 16.1. Let e ∈ H. On H we can define
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the observables:ae : H → C

ψ 7→ 〈e, ψ〉 and a∗e : H → C

ψ 7→ 〈ψ, e〉 .
We have, for all e, f ∈ H:
{ae, af}H = 0 , {a∗e, a∗f }H = 0 , and {ae, a∗f }H = i 〈e, f〉 .

Let A be a bounded self-adjoint operator on H. We define on H the observable 〈A〉 by:
∀ψ ∈ H, 〈A〉 (ψ) := 〈ψ, Aψ〉 .We have, for all A, B bounded self-adjoint operators on H and e ∈ H:{
〈A〉 , 〈B〉

}
H

= i
〈 [A, B]H 〉 , {ae, 〈A〉}H = i aAe , and {a∗e, 〈A〉}H = −i a∗Ae .

Lastly, for A a bounded self-adjoint operator on H, N > 0 and to ∈ R, we can define on MKINthe observable:
〈A, N, to〉 : MKIN → R

(ψ, t, E) 7→ {
〈A〉 (ψ) if ‖ψ‖ = N & t = to0 else ,

and we have:
∀ψo ∈MDYN, 〈A, N, to〉DYN (ψo) := sup(ψ,t,E)∈δ−1〈ψo〉

〈A, N, to〉 (ψ, t, E)
= {〈eitoH Ae−itoH〉 (ψo) if ‖ψo‖ = N0 else . (16.2.1)

Proof In order to compute the Poisson brackets between observables of the type ae and a∗e, wehave to be careful not to mix up the complex structure on H with the complex structure coming fromae and a∗e being C-valued. Therefore, we will write J φ for the scalar multiplication of φ by i (in
H seen as a C-vector space) and Iφ for the vector (i ⊗R φ) in C ⊗R H ≈ TC(H) (for H seen asa real manifold). Extending Im 〈 · , · 〉 and Re 〈 · , · 〉 by C-bilinearity on TC(H) (because we want
{ · , · }H to be C-bilinear), we then have:Im 〈φ′, J φ〉 = −Im 〈J φ′, φ〉 = Re 〈φ′, φ〉

& Im 〈φ′, Iφ〉 = Im 〈Iφ′, φ〉 = i Im 〈φ′, φ〉 .
With this we can compute the Hamiltonian vector fields at ψ ∈ H of ae and a∗e, for e ∈ H:

[dae]ψ (φ) = 〈e, φ〉 = 2 Im 〈−J e2 + I e2 , φ
〉

& [da∗e]ψ (φ) = 〈φ, e〉 = 2 Im 〈−J e2 − I e2 , φ
〉 .

Hence, for e, f ∈ H:
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{ae, af}H,ψ = 2 Im 〈Xaf ,ψ, Xae,ψ〉 = 2 Im 〈−J f2 + I f2 , −J e2 + I e2
〉 = 0 ,

{a∗e, a∗f }H,ψ = 2 Im 〈Xa∗f ,ψ, Xa∗e,ψ〉 = 2 Im 〈−J f2 − I f2 , −J e2 − I e2
〉 = 0 ,

and {ae, a∗f }H,ψ = 2 Im 〈Xa∗f ,ψ, Xae,ψ〉 = 2 Im 〈−J f2 − I f2 , −J e2 + I e2
〉

= i (Re 〈f , e〉 − i Im 〈f , e〉) = i 〈e, f〉 .
Similarly, we have for any A bounded self-adjoint operator on H and at every ψ ∈ H:[d 〈A〉]ψ = 2 Re 〈Aψ, φ〉 = 2 Im 〈−J Aψ, φ〉 ,hence, for A, B bounded self-adjoint operators on H, e ∈ H, and ψ ∈ H:{
〈A〉 , 〈B〉

}
H,ψ = 2 Im 〈X〈B〉,ψ, X〈A〉,ψ〉 = 2 Im 〈−J B ψ, −J Aψ〉

= −i (〈B ψ, Aψ〉 − 〈Aψ, B ψ〉) = i
〈 [A, B]H 〉 (ψ) ,

{ae, 〈A〉}H,ψ = 2 Im 〈X〈A〉,ψ, Xae,ψ〉 = 2 Im 〈−J Aψ, −J e2 + I e2
〉

= i (−i Im 〈ψ, A e〉+ Re 〈ψ, A e〉) = i aAe(ψ) ,
and {a∗e, 〈A〉}H,ψ = 2 Im 〈X〈A〉,ψ, Xa∗e,ψ〉 = 2 Im 〈−J Aψ, −J e2 − I e2

〉
= −i (i Im 〈ψ, A e〉+ Re 〈ψ, A e〉) = −i a∗Ae(ψ) .

Lastly, eq. (16.2.1) comes from:
∀ψo ∈MDYN, δ−1 〈ψo〉 = {(exp (−i t H) ψo, t, 〈H〉 (ψo)) | t ∈ R} .

�

The projective system we will use here differs significantly from the one we were using in the
previous section (prop. 15.2), for we do not rely any more on the choice of a particular basis to define
a family of vector subspaces: instead, we simply take as label set the set of all finite dimensional
vector subspaces of H (this structure is of course more satisfactory from a physical point of view;
as mentioned at the beginning of section 15, we could not use it in the previous example, for our
aim was to illustrate the regularizing strategy, while this larger label set contains a cofinal family
on which the linear constraints we were considering form an elementary reduction).

Note that the space of states of this projective system can be naturally identified with the algebraic
dual on H, in such a way that the injection of H into the projective state space (in the sense of a
rendering, as introduced in def. 2.6) corresponds to the identification with its topological dual.
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Proposition 16.3 Let H be a separable, infinite dimensional Hilbert space. We define L as theset of all finite dimensional vector subspaces of H and we equip it with the preorder ⊂. We define:
1. ∀I ∈ L t {H} , MKIN

I := I × R2, equipped with the symplectic structure ΩKIN,I induced from
MKIN, ΩKIN;

2. ∀I, I′ ∈ L t {H} , with I ⊂ I′ , πKIN
I′→I := ΠI|I′→I × idR2 where ΠI is the orthogonal projectionon IThen, this defines a rendering (def. 2.6) of MKIN by the projective system of phase spaces(L, MKIN, πKIN)↓. We define σ KIN

↓ : MKIN → S
↓(L,MKIN,πKIN) as in def. 2.6.Additionally, we have a bijective map ζKIN : H∗×R2 → S

↓(L,MKIN,πKIN) such that ζKIN,−1 ◦ σ KIN
↓ : MKIN →

H∗ ×R2 corresponds to the canonical identification of H with H′ ⊂ H∗.
Proof The proof works in the same way as the proof of prop. 15.2. �

We are ready to go on to the formulation of an approximating scheme for the dynamics. The
approximation here will take place in two different directions. First, we introduce a deformation
of the constraint surface, controlled by a small parameter ε > 0, to replace the non-compact orbits
of the exact dynamics (going in time from −∞ to +∞) by compact orbits (running only through
a finite time interval): the rough idea is that instead of having a ‘free particle’ in the energy-time
variable, we put an harmonic oscillator, thus preventing the time variable to grow for ever. This
will be more comfortable when switching to the quantum theory: having compact orbits is closely
related to having well-normalized states solving the quantum constraints (heuristically, quantum
solutions of the constraints have much in common with classical statistical states, supported by the
constraint surface and constant on the gauge orbits, and these will only exist as properly normalized
probability measures if the orbits are compact).

The other aspect of the approximation is what will allow us to build, for the approximated dy-
namics, a corresponding elementary reduction on a cofinal part of the projective system introduced
previously. For this, we truncate the exact Hamiltonian H of the first-quantized theory as ΠJH ΠJ

where J is a finite vector subspace of H, such that H is bounded on J (from now on, we can
indeed relax the requirement we had above, and we allow H to be an unbounded, densely defined,
operator on H). In other words, we project the Hamiltonian flow on the symplectic submanifold
J × R2 of H × R2. Moreover, we include in the approximated dynamics additional second class
constraints, forcing the wave function ψ to belong to J (by definition of the truncated Hamiltonian
these additional constraints are preserved by the truncated evolution): the point is that it does not
make sense to keep the degrees of freedom orthogonal to the subspace J since with the truncated
Hamiltonian we would not evolve them at all and they would soon lie very far away from their
correct values (note that the degrees of freedom along J are not evolved exactly either, but at least
they are evolved approximately; the error comes from neglecting the backreaction of the degrees of
freedoms along J⊥, due to the cross-terms of the exact Hamiltonian H between J and J⊥).

The side effect of these additional second class constraints is to make the approximated reduced
phase space finite dimensional (aka. MDYN,ε

∞ , using the notations of prop. 3.24): this is not needed for
the construction (in general only the ‘partial’ reduced phase space MDYN,ε

η , arising from the constraint
surface projected on MKIN

η for some η ∈ Lε, is expected to be finite dimensional), but it will simplify
the structure of the dynamical projective system.
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Definition 16.4 We consider the same objects as in prop. 16.3. Let H be a densely defined (possiblyunbounded) self-adjoint operator on H. We define E as the set of all pairs (J, ε) such that:1. J ∈ L and ∀ψ ∈ J, ‖Hψ‖ < ∞ ;
2. ε > 0 .On E we will use the preorder:
3. (J, ε) 4 (J′, ε′) ⇔ (

J ⊂ J′ & ε > ε′
) .

Proposition 16.5 E, 4 is a directed preordered set.
Proof Let (J1, ε1), (J2, ε2) ∈ E. Then, we have J1 + J2 ∈ L, ∀ψ ∈ J1 + J2, ‖Hψ‖ < ∞ andmin (ε1, ε2) > 0. Hence, (J1 + J2, min (ε1, ε2)) ∈ E and (J1, ε1), (J2, ε2) 4 (J1 + J2, min (ε1, ε2)) . �
Proposition 16.6 We consider the same objects as in def. 16.4. Let ε = (J, ε) ∈ E. We define:1. Lε := {I ∈ L | J ⊂ I};
2. ∀I ∈ Lεt{H} , MDYN,ε

I := J equipped with the symplectic structure ΩDYN,J induced from MDYN, ΩDYN;
3. ∀I ∈ Lε t {H} , MSHELL,ε

I := {(ψ, t, E) ∈MKIN
J ⊂MKIN

I

∣∣∣ (E − 〈ψ, Hψ〉)2 + ε4 t2 = ε2};
4. ∀I ∈ Lε t {H} , ∀(ψ, t, E) ∈M

SHELL,ε
I , δεI (ψ, t, E) := exp (i tΠJH) ψ ∈ J;

5. ∀I, I′ ∈ Lε t {H} , with I ⊂ I′, πDYN,ε→ε
I′→I := idJ.

Then, Lε is cofinal in L and ((MDYN,ε
I

)
I∈Lεt{H} ,

(
M

SHELL,ε
I

)
I∈Lεt{H} ,

(
πDYN,ε→ε
I′→I

)
I⊂I′ , (δεI )I∈Lεt{H}) isan elementary reduction (def. 3.7) of (Lε t {H} ,MKIN, πKIN)↓.

Proof For I ∈ L, I + J ∈ Lε, hence Lε is cofinal in L, so in particular it is directed (and so is
Lε t {H} since it has a greatest element).Then, it is clear from the definitions that (Lε t {H} , MDYN,ε, πDYN,ε→ε) is a projective system ofphase spaces.Now, we define:
6. Mε := {(ψ, t, E) ∈MKIN

J ⊂MKIN ∣∣∣ (E − 〈ψ, Hψ〉)2 + ε4 t2 = ε2} ;
7. ∀(ψ, t, E) ∈Mε, δε(ψ, t, E) := exp (i tΠJH) ψ ∈ J ;and we want to show that (J, Mε, δε) is a phase space reduction of MKIN.ΠJH|J→J is a bounded (by definition of E), self-adjoint operator on J. Therefore, the map δεis surjective and, for ψo ∈ J, δε,−1 〈ψo〉 = {(

e− i
ε sin θΠJ H ψo, 1

ε sin θ, Eo + ε cos θ) ∣∣∣ θ ∈ [0, 2π[},where Eo := 〈ψo, H ψo〉. So δε,−1 〈ψo〉 is in particular connected.Let (ψ, t, E) ∈Mε. T(ψ,t,E) (Mε) is given by:{(φ, u, v) ∈MKIN
J

∣∣∣ φ ∈ J & 2ε √1− ε2 t2 (v − 2 Re 〈φ, Hψ〉) + 2 ε4 t u = 0} , (16.6.1)
and we have:

T(ψ,t,E) δε : T(ψ,t,E) (Mε) → J(φ, u, v) 7→ i uei tΠJ H ΠJH ψ + ei tΠJ H φ
.
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Hence, T(ψ,t,E) δε is surjective and, for (φ1, u1, v1) , (φ2, u2, v2) ∈ T(ψ,t,E) (Mε), we have:ΩKIN (φ1, u1, v1; φ2, u2, v2) =
= 2 Im 〈φ1, φ2〉+u2

(2 Re 〈φ1, Hψ〉 − ε3 t√1− ε2 t2 u1
)
−u1

(2 Re 〈φ2, Hψ〉 − ε3 t√1− ε2 t2 u2
)

(using eq. (16.6.1))
= 2 Im 〈T(ψ,t,E) δε (φ1, u1, v1) , T(ψ,t,E) δε (φ2, u2, v2)〉 (like in the proof of prop. 16.1),therefore ΩKIN|T(ψ,t,E)(Mε) = [δε,∗ΩDYN,J](ψ,t,E) .Thus, for all I ∈ Lε t {H}, (MDYN,ε

I , MSHELL,ε
I , δεI

) = (J, Mε, δε) is a phase space reduction of
MKIN, hence of MKIN

I .Let I, I′ ∈ Lε t {H} , with I ⊂ I′ . We have:
πKIN
I′→I 〈M

SHELL,ε
I′ 〉 = {(ΠI ψ, t, E) ∣∣∣ ψ ∈ J & (E − 〈ψ, Hψ〉)2 + ε4 t2 = ε2} = M

SHELL,ε
I ,

since J ⊂ I. Lastly, for (ψ, t, E) ∈M
SHELL,ε
I , ψ′o ∈M

DYN,ε
I′ = J, we get:(

∃ (ψ′, t′, E ′) ∈M
SHELL,ε
I′ / δεI′(ψ′, t′, E ′) = ψ′o & πKIN

I′→I(ψ′, t′, E ′) = (ψ, t, E)) ⇔
⇔
(
∃ (ψ′, t′, E ′) ∈M

SHELL,ε
I / δεI (ψ′, t′, E ′) = ψ′o & (ψ′, t′, E ′) = (ψ, t, E))

⇔
(
δεI (ψ, t, E) = ψ′o = πDYN,ε→ε

I′→I (ψ′o)) ,therefore def. 3.7.3 is fulfilled. �

Now, as we did in the previous section (prop. 15.3), we introduce a more concise dynamical
projective system, that we will be able to identify with the one on the label set EL using the
facility developed in prop. 2.8. This dynamical projective system could be thought of as a rendering
(def. 2.6) of the dense domain D of the operator H, except for the fact that D is actually not a
strong symplectic manifold (unless H is bounded, in which case D = H). For the same reason, the
assertion in prop. 16.8 could not be put in the form of prop. 3.24, since we are lacking a phase space
reduction at the level of the infinite dimensional manifold MKIN = H ×R2 when H is unbounded.
Instead, we collect in prop. 16.9 a set of properties imitating the framework of prop. 3.24, and we
will formulate the convergence on this substitute ground.

It is worth mentioning that here, as in the previous example, we are able to directly give a
projective system rendering the space of dynamical states, and more generally being able to find a
regularizing scheme in the sense of subsection 3.2 implies that one can construct such a dynamical
projective structure. This perhaps requires a few comments. At first it sounds as if implementing
and solving the constraints requires to already know completely the structure of the dynamical
theory. However, one should keep in mind that solving the dynamics and obtaining the dynamical
theory is not simply constructing the space of physical states: the more crucial part is to construct
the dynamical observables, not simply as a space of functions on the reduced phase space, but as a
family of non functionally independent elementary observables, each of which should be linked to
a physical meaning (aka. an experimental protocol).

This point is transparently illustrated by the toy model we are studying in the present section.
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The submanifold t = 0 is obviously a gauge fixing surface of the theory we are considering, and
this is what allows us to obtain immediately a description of the reduced phase space. But, clearly,
having realized this property of the dynamics does not mean we have solved the theory: if we want
to know how a given system will evolve we need to define dynamical observables associated to
kinematical ones with support on other constant time surfaces. Indeed, the dynamical observables
associated with time t = 0 are the only ones that can be directly defined on the reduced phase space
defined through the aforementioned gauge fixing. And, although they provide a parametrization of
the dynamical state space, they do not allow us to compute predictions for any arbitrary experiment,
since, as underlined many times in the discussion of the handling of constraints (section 3), the
predictive content of the theory is encoded in the functional relations among an overcomplete set
of dynamical observables, arising from functionally independent kinematical observables.

Note that in any theory admitting some obvious gauge fixing (which needs not to be singled out
nor preferred in any sense: in the example at hand, selecting t = 0 rather than any other time
surface is an arbitrary choice), we can use this gauge fixing surface as a starting point to design an
approximating scheme: it provides an explicit description of the reduced phase space, and we can
use it as a pivot to define projections between the successive approximated dynamical theories (for
we can relate approximated orbits depending on their intersection with the gauge fixing surface, as
we indeed do in the present example). In particular, this suggests that such approximating schemes
could be obtained without many difficulties within the so called ‘deparametrization’ framework [35].

Proposition 16.7 Under the same hypotheses as in def. 16.4, we define:1. LH := {J ∈ L | ∀ψ ∈ J, ‖Hψ‖ < ∞} with the preorder defined by ⊂;
2. ∀J ∈ LH, MDYN

J := J , equipped with the symplectic structure ΩDYN,J induced from MDYN, ΩDYN;
3. D := {ψ ∈ H | ‖Hψ‖ < ∞} (D is the dense domain of the self-adjoint possibly unboundedoperator H) and MDYN

D := D ;
4. ∀J, J′ ∈ LH , with J ⊂ J′, πDYN

J′→J := ΠJ|J′→J where ΠJ is the orthogonal projection on J;
5. ∀J ∈ LH , πDYN

D→J := ΠJ|D→J .
Then, (LH, MDYN, πDYN)↓ is a projective system of phase spaces and we can define (in analogy todef. 2.6) a map σ DYN

↓ as:
σ DYN
↓ : MDYN

D → S
↓(LH ,MDYN,πDYN)

ψ 7→
(
πDYN
D→J(ψ))

J∈LH
.

Additionally, we have a bijective antilinear map ζDYN : D∗ → S
↓(LH ,MDYN,πDYN) such that ζDYN,−1 ◦ σ DYN

↓ :
MDYN

D → D∗ is the restriction to D of the canonical identification of H with D′ ⊂ D∗.
Proof We prove that LH is directed like in the proof of prop. 16.5.For J ∈ LH , we have that πDYN

D→J is surjective (since J ⊂ D) and, for J ⊂ J′ ∈ LH , πDYN
J′→J ◦ πDYN

D→J′ =
πDYN
D→J (but speaking of compatibility with symplectic structure does not make sense for πDYN

D→J since
D is not a strong symplectic manifold).The rest of the proof works as for prop. 15.2. �

Proposition 16.8 We consider the objects introduced in props. 16.6 and 16.7. We define:
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1. ∀ε ∈ E, L′ε := Lε t {H} ;
2. ∀ε = (J, ε) ∈ E, ∀I ∈ L′

ε, `DYN(ε, I) := J ;
3. ∀(ε1, I1), (ε2, I2) ∈ EL′ / (ε1, I1) 4 (ε2, I2), πDYN,ε2→ε1

I2→I1 := πDYN
`DYN(ε2,I2)→`DYN(ε1,I1) .

Then, (E, (L′ε)ε∈E , (MDYN,ε
I

)(ε,I)∈EL′ , (MSHELL,ε
I

)(ε,I)∈EL′ , (πDYN,ε2→ε1
I2→I1

)(ε1,I1)4(ε2,I2) , (δεI )(ε,I)∈EL′) is aregularized reduction of (L t {H} , MKIN, πKIN)↓ and we have a bijective map κDYN : S↓(EL′,MDYN,πDYN) →
S
↓(LH ,MDYN,πDYN).

Proof E is a directed set (prop. 16.5) and (L′ε)ε∈E is a family of decreasing cofinal parts of Lt{H}.Next, we have ∀(ε, I) ∈ EL′, MDYN,ε
I = MDYN

`DYN(ε,I) hence for (ε1, I1) 4 (ε2, I2) ∈ EL′, πDYN,ε2→ε1
I2→I1is well-defined as a surjective map M

DYN,ε2
I2 → M

DYN,ε1
I1 and it is compatible with the symplecticstructures.Moreover, for ε1 = ε2 ∈ E, this definition coincides with the map πDYN,ε→ε

I2→I1 that has been introducedin prop. 16.6. Hence, for all ε ∈ E, we have from prop. 16.6 that (MDYN,ε, MSHELL,ε, πDYN,ε→ε, δε) is anelementary reduction of (L′ε, MKIN, πKIN)↓.
Lastly, using `DYN : EL′ → LH (with `DYN 〈EL′〉 = LH), we have by prop. 2.8 that (EL′,MDYN, πDYN)↓is a projective system of phase spaces, thus:(

E,
(
L′

ε)
ε∈E ,

(
M

DYN,ε
I

)(ε,I)∈EL′ , (MSHELL,ε
I

)(ε,I)∈EL′ , (πDYN,ε2→ε1
I2→I1

)(ε1,I1)4(ε2,I2) , (δεI )(ε,I)∈EL′)
is a regularized reduction of (L t {H} , MKIN, πKIN)↓. And, in addition, there exists a bijective map
κDYN : S↓(EL′,MDYN,πDYN) → S

↓(LH ,MDYN,πDYN). �

Proposition 16.9 We consider the same objects as in prop. 16.8 and we additionally define:
1. MDYN,D

H := MDYN
D = D ;

2. MSHELL,D
H := {(ψ, t, E) ∈MKIN

H | ψ ∈ D & E = 〈ψ, Hψ〉} ;
3. δDH : M

SHELL,D
H → M

DYN,D
H(ψ, t, E) 7→ exp (i t H) ψ ;

4. ∀(ε, I) ∈ EL′, πDYN,D→ε
H→I := πDYN

D→`DYN(ε,I) .Then, we have:
5. δDH is surjective and, for all ψo ∈M

DYN,D
H , (δDH)−1 〈ψo〉 is connected;

6. for all (ε, I) ∈ EL′ , πDYN,D→ε
H→I is surjective and, for all (ε1, I1) 4 (ε2, I2) ∈ EL′ , πDYN,ε2→ε1

I2→I1 ◦

πDYN,D→ε2
H→I2 = πDYN,D→ε1

H→I1 .
Proof Since H is self-adjoint, exp (−i t H) defines a unitary operator on H, and this operatorstabilizes D, for ∀ψ ∈ D, ‖H exp (−i t H) ψ‖ = ‖exp (−i t H) H ψ‖ = ‖H ψ‖ < ∞. Hence, for
ψo ∈M

DYN,D
H :(

δDH
)−1 〈ψo〉 = {(ψ, t, E) ∈MKIN

H | t ∈ R, ψ = exp (−i t H) ψo ∈ D & E = 〈ψo, Hψo〉 < ∞} .
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Next, the statements 16.9.6 follows from the proof of prop. 16.7 (for ∀(ε, I) ∈ EL′, MDYN,ε
I =

MDYN
`DYN(ε,I) and M

DYN,D
H = MDYN

D ). �

We close the discussion of the classical part of this toy model by proving that we indeed have
suitable convergence at least for the dynamical states corresponding to vectors in D, and, more
precisely, that the successive projective families of orbits approximating such a state on the kine-
matical side correctly converge to the family arising from its associated orbit in the pseudo phase
space reduction of MKIN (that we introduced in prop. 16.9).

Theorem 16.10 We consider the same objects as in prop. 16.9. Let ψo ∈ D. For ε ∈ E, we define:
1. ψε := (δεH)−1 〈πDYN,D→ε

H→H (ψo)〉 ⊂M
SHELL,ε
H ⊂MKIN

H = MKIN ;
2. Ψε := σ̂ KIN

↓ (ψε) , where σ̂ KIN
↓ : P (MKIN)→ Ŝ

↓(L,MKIN,πKIN) is defined as in prop. 3.23.
Then, the net (Ψε)ε∈E converges in Ŝ

↓(L,MKIN,πKIN) to σ̂ KIN
↓

((
δDH
)−1 〈ψo〉) (def. 3.21).

Proof For ε = (J, ε) ∈ E, we have, from the proof of prop. 16.6:
ψε = {(e− i

ε sin θΠJ H ΠJ(ψo), 1
ε sin θ, EJ + ε cos θ) ∣∣∣ θ ∈ [0, 2π[} ,

where EJ := 〈ΠJ(ψo), H ΠJ(ψo)〉 . Hence, for all I ∈ L:
[Ψε]I = {(ΠI e−

i
ε sin θΠJ H ΠJ(ψo), 1

ε sin θ, EJ + ε cos θ) ∣∣∣ θ ∈ [0, 2π[} .
And, from the proof of prop. 16.9:[

σ̂ KIN
↓

((
δDH
)−1 〈ψo〉)]

I
= {(ΠI e−i t H ψo, t, ED

) ∣∣ t ∈ R} where ED := 〈ψo, H ψo〉 .
Let I ∈ L and let U be an open set in MKIN

I , such that U ∩ [σ̂ KIN
↓

((
δDH
)−1 〈ψo〉)]

I
6= ∅. Let t ∈ Rsuch that:(ΠI e−i t H ψo, t, ED

)
∈ U ,and let ε1 > 0 such that:

∀ψ ∈ I, ∀E ∈ R,(∥∥ψ − ΠI e−it H ψo
∥∥ 6 ε1 (‖ψo‖+ 1) & |E − ED| 6 ε1) ⇒ ((ψ, t, E) ∈ U) .

Let ε2 = 11+|t| log (1 + ε12 ) > 0 and ε3 = min (ε1, 11+|t|
)
> 0.

By spectral resolution, we can define Hε2 := ε2 ⌊ 1
ε2 H

⌋ (where b · c denotes the floor function).Then, we have [H, Hε2 ] = 0, ‖H − Hε2‖ 6 ε2 and Hε2 has discrete spectrum included in ε2Z.Hence, there exists N ∈ N such that:∥∥∥∥∥ψo − +N∑
k=−N ψ

ε2,k
o

∥∥∥∥∥ 6 ε12 ,
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where, for k ∈ Z, ψε2,ko is the projection of ψo on the eigenspace of Hε2 with eigenvalue ε2 k(defining these eigenspace to be {0} if ε2 k is not in the spectrum of Hε2 ).We define J2 = Vect {ψε2,ko
∣∣ k ∈ {−N, . . . , N}} , J2 is finite dimensional, and ∀ψ ∈ J2, ‖Hψ‖ 6

ε2 ‖ψ‖+Nε2 ‖ψ‖ < ∞, hence J2 ∈ LH . Moreover, J2 is stabilized by Hε2 and ‖ψo − ΠJ2 ψo‖ 612 ε1 . Next, we define J3 = J2 + Vect {ψo} ∈ LH (because ψo ∈ D).Now, we consider ε = (J, ε) ∈ E, with (J, ε) < (J3, ε3). We choose θ ∈ [0, 2π[ such thatsin θ = ε t (|εt| 6 ε3 |t| 6 1) and we define:
ψ := ΠI e−

i
ε sin θΠJ H ΠJ(ψo) .We have:∥∥ψ − ΠI e−it H ψo

∥∥ 6 ∥∥e−itΠJ H ΠJ(ψo)− e−it H ψo∥∥
6
∥∥e−itΠJ (H−Hε2 ) − idJ

∥∥ ∥∥e−itΠJ Hε2 ΠJ(ψo)∥∥ + ∥∥e−itΠJ Hε2 ΠJ(ψo)− e−it Hε2 ψo∥∥ +
+∥∥e−it (H−Hε2 ) − idH

∥∥ ∥∥e−it Hε2 (ψo)∥∥
6 2 ∣∣e|t| ‖H−Hε2‖ − 1∣∣ ‖ψo‖+ ∥∥e−itΠJ Hε2 ΠJ2(ψo)− e−it Hε2 ΠJ2(ψo)∥∥ +

+∥∥e−itΠJ Hε2 (ψo − ΠJ2(ψo))− e−it Hε2 (ψo − ΠJ2(ψo))∥∥
6 2 ∣∣e|t| ε2 − 1∣∣ ‖ψo‖+ ∥∥e−it Hε2 ΠJ2(ψo)− e−it Hε2 ΠJ2(ψo)∥∥ + 2 ‖ψo − ΠJ2(ψo)‖
6 2 ε12 ‖ψo‖+ 2 ε12 6 ε1 (1 + ‖ψo‖) ,

and:
|EJ + ε cos θ − ED| 6 |〈ψo, (H − ΠJH ΠJ) ψo〉|+ ε1 = ε1 (since ψo ∈ J3 ⊂ J).

Therefore, (ψ, 1
ε sin θ, EJ + ε cos θ) ∈ U , but since (ψ, 1

ε sin θ, EJ + ε cos θ) ∈ [ψε]I , we have
∀ε = (J, ε) < (J3, ε3) , [ψε]I ∩ U 6= ∅.

Let K be a compact subset of MKIN
I , such that K ∩ [σ̂ KIN

↓

((
δDH
)−1 〈ψo〉)]

I
= ∅. Hence, there exist

T > 0 and ε1 > 0 such that:
∀ψ ∈ I, ∀t ∈ R, ∀E ∈ R,[(∥∥ψ − ΠI e−it H ψo

∥∥ 6 ε1 (‖ψo‖+ 1) & |E − ED| 6 ε1) or |t| > T
]
⇒ ((ψ, t, E) /∈ K ) .

Following the same path as above, we can define:
ε2 = 11+T log (1 + ε12 ) > 0,and construct a vector subspace J2 ∈ LH such that:
∀J ∈ LH / J ⊃ J2, ∀t ∈ R, ∥∥e−itΠJ H ΠJ(ψo)− e−it H ψo∥∥ 6 2 ∣∣e|t| ε2 − 1∣∣ ‖ψo‖+ ε1 .

Analogously, we define ε3 = ε1 and J3 = J2 + Vect {ψo} ∈ LH .Now, we consider ε = (J, ε) ∈ E, with (J, ε) < (J3, ε3) , and θ ∈ [0, 2π[. If ∣∣ 1ε sin θ∣∣ < T , then
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we have, with t = 1
ε sin θ :∥∥∥ΠI e−

i
ε sin θΠJ H ΠJ(ψo)− ΠI e−it H ψo

∥∥∥ 6 ε2 (1 + ‖ψo‖) ,
and:
|EJ + ε cos θ − ED| 6 ε1 .

Therefore, ∀ε = (J, ε) < (J3, ε3) , [ψε]I ∩ K = ∅.
So, for every I ∈ L, the net ([Ψε]I)ε∈E converges in P (MKIN

I ) to [σ̂ KIN
↓

((
δDH
)−1 〈ψo〉)]

I
, thus, the

net (Ψε)ε∈E converges in Ŝ
↓(L,MKIN,πKIN) to σ̂ KIN

↓

((
δDH
)−1 〈ψo〉) . �

16.2 Quantum theory

We now want to implement this construction at the quantum level, with the aim of using this
simple toy model to get a first hold on the implementation of constraints in projective systems of
quantum state spaces.

To fix the notations, we begin by summarizing the main properties of (bosonic) Fock spaces [41,
section I.3.4].

Definition 16.11 Let H be a separable Hilbert space. We define the Fock space Ĥ by:
Ĥ :=⊕

n∈N

H⊗n, sym where H⊗n, sym is the symmetric vector subspace of H⊗n.
For (ei)i∈I an orthonormal basis of H (I ⊂ N), we define:ΛI := {(ni)i∈I | ∀i ∈ I, ni ∈ N &

∑
i ni < ∞} ,

indexing the orthonormal basis ( |(ni)i∈I , (ei)i∈I〉)(ni)i∈I∈ΛI of Ĥ:
∀ (ni)i∈I ∈ ΛI, |(ni)i∈I , (ei)i∈I〉 := √Πi∈I(ni!)

N! ∑
k1,..., kN

∀i∈I,#{l | kl=i}=ni
|ek1〉 ⊗ . . . ⊗ |ekN〉 ,

where N =∑
i∈I

ni .
If (fj)j∈I is an other orthonormal basis of H, we have:
∀ (ni)i∈I , (mj

)
j∈I ∈ ΛI, 〈(ni)i∈I , (ei)i∈I ∣∣∣ (mj

)
j∈I ,

(
fj
)
j∈I

〉 =
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= ∑
li,j∈NI×I

∀i, ni=∑j li,j
∀j, mj=∑i li,j

∏
i∈I

(√
ni!∏
j li,j !

) ∏
j∈I

(√
mj !∏
i li,j !

) ∏
i,j

〈
ei, fj

〉li,j . (16.11.1)

Definition 16.12 We consider the same objects as in def. 16.11. Let e ∈ H, N > 1 and l ∈

{1, . . . , N}. We define the operators âN,le : H⊗N → H⊗N−1 and (âN,le

)+ : H⊗N−1 → H⊗N by:
∀φ1, . . . , φN ∈ H, âN, le φ(1)1 ⊗ . . . ⊗ φ(N)

N := 〈e, φl〉√
N

φ(1)1 ⊗ . . . ⊗ φ(l)
l ⊗ . . . ⊗ φ

(N−1)
N ,

and ∀φ1, . . . , φN−1 ∈ H,
(âN, le

)+
φ(1)1 ⊗ . . . ⊗ φ(N−1)

N−1 := 1√
N
φ(1)1 ⊗ . . . ⊗ e(l) ⊗ . . . ⊗ φ(N)

N−1 .
Then, on Ĥ we can define (unbounded) operators âe and â+

e , such that:
∀ψ ∈ H⊗N, sym, âe ψ = N∑

l=1 âN, le ψ ∈ H⊗N−1, sym ,
and ∀ψ ∈ H⊗N−1, sym, â+

e ψ = N∑
l=1
(âN, le

)+
ψ ∈ H⊗N, sym .

Let A be a bounded self-adjoint operator on H. We can define an (unbounded) essentiallyself-adjoint operator Â on Ĥ such that:
∀ψ ∈ H⊗N, sym, Â ψ = N∑

l=1 id(1)
H ⊗ . . . ⊗ A(l) ⊗ . . . ⊗ id(N)

H ψ ∈ H⊗N, sym .
For (ei)i∈I an orthonormal basis of H, we have:
Â =∑

i,j∈I

〈
ei, A ej

〉 â+
ei âej .

Lastly, let e, f ∈ H and let A, B be bounded self-adjoint operators on H. The commutatorsbetween the operators defined above are given by:[̂ae, âf ] = 0, [â+
e , â+

f
] = 0, and [âe, â+

f
] = 〈e, f〉 idĤ ,[

Â, B̂
] = [̂A, B]H , [âe, Â] = âAe , and [â+

e , Â
] = −â+

Ae .
Before going on to the quantization using projective structures, we recall the more conventional

quantization of MDYN, ΩDYN (ie. a reduced phase space quantization for the theory we are considering)
using Fock spaces techniques. The notable fact is that this direct quantization of the Schrödinger
equation (considered as a classical field theory, aka. second quantization) can be identified with
the (bosonic) Fock space describing an arbitrary number of independent, indistinguishable quantum
particles of the corresponding first quantized theory [21]. This identification is not merely a naive
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matching of the Hilbert spaces: we can check that the quantized observables correspond in a natural
way to the observables built on the Fock space (in fact, it can be understood as a holomorphic
quantization, see [105, section 9.2] ).

Proposition 16.13 We consider the objects introduced in prop. 16.2 and def. 16.12. We define theFock quantization of MDYN as M̂DYNFock := Ĥ. For A a bounded self-adjoint operator on H and e ∈ Hwe define the following quantizations for the observables on MDYN:
〈̂A〉Fock := Â , (̂ae)Fock := âe , and (̂a∗e)Fock := â+

e .
Then, we have:
∀O, O′ ∈ {ae | e ∈ H} ∪ {a∗e | e ∈ H} ∪ {〈A〉 | A bounded, self-adj on H} ,[

ÔFock, Ô′Fock] = −i ̂(
{O, O′}DYN

)Fock .
Proof This can be directly checked by comparing prop. 16.2 with def. 16.12. �

The key tool for constructing a projective system of quantum state spaces reproducing the classical
structure from prop. 16.3 is the realization that the Fock space arising from a direct orthogonal sum
of two Hilbert space can be naturally identified with the tensor product of the two corresponding
Fock spaces. This is in fact a special case of the well-known property of quantization, that translates
a Cartesian product of symplectic manifold into a tensor product of Hilbert spaces (for a direct sum
is indeed a Cartesian product).

Proposition 16.14 Let I be a separable Hilbert space. Let J be a vector subspace of I and J⊥the orthogonal complement of J in I. Let (ei)i∈J be an orthonormal basis of J and (ei)i∈I\J be anorthonormal basis of J⊥ (with I ⊃ J). Hence, (ei)i∈I is an orthonormal basis of I = J⊕ J⊥.We consider the corresponding Fock spaces Î, Ĵ & Ĵ⊥ (def. 16.11) and we define the linearapplication φ̂I→J : Î→ Ĵ⊥⊗ Ĵ by its action on the orthonormal basis (|(ni)i∈I , (ei)i∈I〉)(ni)i∈I∈ΛI of Î:
φ̂I→J |(ni)i∈I , (ei)i∈I〉 := ∣∣(ni)i∈I\J , (ei)i∈I\J〉⊗ |(ni)i∈J , (ei)i∈J〉 . (16.14.1)

Then, φ̂I→J is an Hilbert space isomorphism. Moreover, φ̂I→J does not depend on the choice ofthe bases (ei)i∈J and (ei)i∈I\J .
Proof φ̂I→J sends an orthonormal basis to an orthonormal basis, since the map:

ΛI → ΛJ\I × ΛJ(ni)i∈I 7→ (ni)i∈I\J , (ni)i∈J ,
is bijective.Then, if (fi)i∈J is an other orthonormal basis of J and (fi)i∈I\J is an other orthonormal basis of J⊥,we have, using eq. (16.11.1) for (mj

)
j ∈ I ∈ ΛI :
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φ̂I→J

∣∣∣(mj
)
j∈I ,

(
fj
)
j∈I

〉 =
= ∑

li,j∈NI×I

∀j∈I,mj=∑i li,j

∏
i∈I

(√(∑
j∈Ili,j

)!) ∏
j∈I

(√
mj !) ∏

i,j∈I

〈
ei, fj

〉li,j
li,j ! φ̂I→J

∣∣∣(∑j∈Ili,j
)
i∈I
, (ei)i∈I〉 .

Now, for i, j ∈ J × (I \ J) or (I \ J) × J , 〈ei, fj〉 = 0 since 〈J, J⊥〉 = 0. Therefore, the only non-vanishing terms in the sum above are such that li,j = 1(i,j)∈(I\J)2 ki,j +1(i,j)∈J2 pi,j with ki,j ∈ N(I\J)×(I\J)
and pi,j ∈ NJ×J . Hence, using eq. (16.14.1):

φ̂I→J

∣∣∣(mj
)
j∈I ,

(
fj
)
j∈I

〉 =
= ∑

ki,j∈N(I\J)×(I\J)
∀j∈(I\J), mj=∑i ki,j

∑
pi,j∈NJ×J

∀j∈J,mj=∑i pi,j

∏
i∈I\J

(√(∑
j∈I\Jki,j

)!) ∏
i∈J

(√(∑
j∈Jpi,j

)!) ∏
j∈I\J

(√
mj !) ×

×
∏
j∈J

(√
mj !) ∏

i,j∈I\J

〈
ei, fj

〉ki,j
ki,j ! ∏

i,j∈J

〈
ei, fj

〉pi,j
pi,j !

∣∣∣∣(∑j∈I\Jki,j
)
i∈I\J

, (ei)i∈I\J〉⊗∣∣∣(∑j∈Jpi,j
)
i∈J
, (ei)i∈J〉

= ∣∣∣(mj
)
j∈I\J ,

(
fj
)
j∈I\J

〉
⊗
∣∣∣(mj

)
j∈J ,

(
fj
)
j∈J

〉 ,
where we used again eq. (16.11.1), both in Ĵ⊥ and in Ĵ. �

Proposition 16.15 We consider the objects introduced in props. 16.3 and 16.14. We define:
1. ∀I ∈ L, M̂KIN

I := Î⊗ T where T := L2 (R, dµ) (µ being the Lebesgue measure on R);
2. ∀I ⊂ I′ ∈ L, M̂KIN

I′→I := Î⊥ ∩ I′ (with the convention that M̂KIN
I′→I = C if I′ = I);

3. ∀I ⊂ I′ ∈ L, φ̂KIN
I′→I := φ̂I′→I ⊗ idT : Î′ ⊗ T → Î⊥ ∩ I′ ⊗

(
Î⊗ T

);
4. ∀I ⊂ I′ ⊂ I′′ ∈ L, φ̂KIN

I′′→I′→I := φ̂(I⊥∩I′′)→(I⊥∩I′) : Î⊥ ∩ I′′ → ̂I′⊥ ∩ I′′ ⊗ Î⊥ ∩ I′ (note that(
I⊥ ∩ I′

)⊥ ∩ (I⊥ ∩ I′′
) = I′

⊥ ∩ I′′ since I ⊂ I′ ).(
L, M̂KIN, φ̂KIN)⊗ is a projective system of quantum state spaces (def. 5.1).

Proof L is directed since for I, I′ ∈ L, I + I′ ∈ L. And, for I ⊂ I′ ⊂ I′′ ∈ L, φ̂KIN
I′→I and φ̂KIN

I′′→I′→Iare Hilbert space isomorphisms.Let I ⊂ I′ ⊂ I′′ ∈ L. We choose an orthonormal basis (ei)i∈I of I, an orthonormal basis (ei)i∈I′\Iof I′∩I⊥ (with I ′ ⊃ I) and an orthonormal basis (ei)i∈I′′\I′ of I′′∩I′⊥ (with I ′′ ⊃ I ′). Since eq. (16.14.1)is valid for any choice of orthonormal bases, we have for (ni)i∈I′′ ∈ ΛI′′ :(id
Î′′∩I′⊥

⊗ φ̂I′→I

)
◦ φ̂I′′→I′ |(ni)i∈I′′ , (ei)i∈I′′〉 =
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= ∣∣(ni)i∈I′′\I′ , (ei)i∈I′′\I′〉⊗ ∣∣(ni)i∈I′\I , (ei)i∈I′\I〉⊗ |(ni)i∈I , (ei)i∈I〉
= (φ̂(I′′∩I⊥)→(I′∩I⊥) ⊗ idÎ

)
◦ φ̂I′′→I |(ni)i∈I′′ , (ei)i∈I′′〉 . (16.15.1)

Hence, eq. (5.1.1) is fulfilled:(idM̂KIN
I′′→I′
⊗ φ̂KIN

I′→I

)
◦ (φ̂KIN

I′′→I′) = (φ̂KIN
I′′→I′→I ⊗ idM̂KIN

I

)
◦ φ̂KIN

I′′→I .
�

Proposition 16.16 We consider the objects introduced in props. 16.7 and 16.14. We define:
1. ∀J ∈ LH, M̂DYN

J := Ĵ ;
2. ∀J ⊂ J′ ∈ LH, M̂DYN

J′→J := Ĵ⊥ ∩ J′ & φ̂DYN
J′→J := φ̂J′→J ;

3. ∀J ⊂ J′ ⊂ J′′ ∈ LH, φ̂DYN
J′′→J′→J := φ̂(J⊥∩J′′)→(J⊥∩J′) .(

LH, M̂DYN, φ̂DYN)⊗ is a projective system of quantum state spaces.
Let A be a bounded self-adjoint operator on H and suppose that (KerA)⊥ ∈ LH . For J ∈ LH suchthat (KerA)⊥ ⊂ J, we define ÂJ := ̂(A|J→J

) (def. 16.12). For J, J′ ∈ LH such that (KerA)⊥ ⊂ J, J′,we have:
ÂJ ∼ ÂJ′ (with the equivalence relation ∼ defined in eq. (5.3.2) ),

hence, we can define ÂLH := [ÂJ

]
∼
∈ O⊗(LH ,M̂DYN,φ̂DYN) (prop. 5.5).

Proof We know from prop. 16.7 that LH is a directed set. Then, we can show that (LH, M̂DYN, φ̂DYN)⊗
is a projective system of quantum state spaces exactly like in the proof of prop. 16.15.Let J ⊂ J′′ ∈ LH , (ei)i∈J be an orthonormal basis of J and (ei)i∈J′′\J (with J ′′ ⊃ J) an orthonormalbasis of J′′ ∩ J⊥. For k, l ∈ J and (ni)i∈J′′ ∈ ΛJ′′ , we have:

φ̂−1
J′′→J

(id
Ĵ′′∩J⊥ ⊗ âJ,+

ek âJ
el

)
φ̂J′′→J |(ni)i∈J′′ , (ei)i∈J′′〉 =

= √nl√nk + 1− δlk |(ni − δli + δki)i∈J′′ , (ei)i∈J′′〉
= âJ′′,+

ek âJ′′

el |(ni)i∈J′′ , (ei)i∈J′′〉 .
Let A be a bounded, self-adjoint operator on H. We have A 〈H〉 ⊂ (KerA)⊥. Now, if (KerA)⊥ ⊂

J ⊂ J′′, both J and J′′ are in particular stabilised by A. Moreover, we have J′′ ∩ J⊥ ⊂ J⊥ ⊂ KerA,therefore:̂(
A|J′′→J′′

) = ∑
k,l∈J′′

〈ek , A el〉 âJ′′,+
ek âJ′′

el

= ∑
k,l∈J

〈ek , A el〉 âJ′′,+
ek âJ′′

el
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= φ̂−1
J′′→J

id
Ĵ′′∩J⊥ ⊗

∑
k,l∈J

〈ek , A el〉 âJ,+
ek âJ

el

 φ̂J′′→J

= φ̂−1
J′′→J

[id
Ĵ′′∩J⊥ ⊗

̂(A|J→J

)]
φ̂J′′→J (16.16.1)

(using the previous result, the third equality can be checked on finite linear combinations of thebasis elements |(ni)i∈J′′ , (ei)i∈J′′〉 , (ni)i∈J′′ ∈ ΛJ′′ , which span a domain of essential self-adjointnessfor ̂(A|J′′→J′′

), so this equality holds for the unique self-adjoint extensions of both sides, see alsoprop. 5.5). Hence, ÂJ′′ = φ̂DYN,−1
J′′→J

[idM̂DYN
J′′→J

⊗ ÂJ

]
φ̂DYN
J′′→J .

Finally, if J, J′ ∈ LH are such that (KerA)⊥ ⊂ J, J′, we can find J′′ ∈ LH such that J, J′ ⊂ J′′(because LH is directed), so ÂJ ∼ ÂJ′ . �

Using the general result derived in theorem 5.9, we are able to embed the space of density matrices
on the Fock space into the larger quantum state space constructed by projective techniques, and to
precisely characterize the image of this embedding, by giving a condition for a projective state to

be representable as a density matrix on Ĥ.

Proposition 16.17 We consider the same objects as in prop. 16.16. There exists an injective map
σ̂↓ : SFock → S

⊗(LH ,M̂DYN,φ̂DYN) (where SFock is the space of (self-adjoint) positive semi-definite, traceclassoperators over M̂DYNFock and S
⊗(LH ,M̂DYN,φ̂DYN) was defined in def. 5.1) satisfying, for any bounded self-adjoint operator A on H with (KerA)⊥ ∈ LH , and any ρ ∈ SFock:

TrM̂DYNFock
[
ρ IW

(
〈̂A〉Fock

)] = Tr [σ̂↓(ρ) IW (ÂLH

)] , (16.17.1)
where W is a measurable subset in the spectrum of 〈̂A〉Fock, and IW ( · ) denotes the correspondingspectral projectors.Moreover, we have:

σ̂↓ 〈SFock〉 = {(ρJ)J∈LH ∣∣∣∣ sup
J∈LH

inf
J′⊃J

TrM̂DYN
J′

(
ρJ′ Π̂J′|J

) = Tr ρ = 1} ,
where SFock is the space of density matrices over M̂DYNFock and:
∀N ∈ N, ∀ψ ∈ J′

⊗N,sym, Π̂J′|J ψ := (ΠJ)⊗N ψ ∈ J′
⊗N,sym ,ΠJ being the orthogonal projection on J.

Proof For J ⊂ J′ ∈ LH , we define ζJ′→J ∈ M̂DYN
J′→J as the vacuum state of M̂DYN

J′→J = Ĵ′ ∩ J⊥(ie. ζJ′→J = |(O)i∈I , (ei)i∈I〉 for any basis (ei)i∈I of J′ ∩ J⊥). The family of vectors (ζJ′→J)J⊂J′ fulfillsthe hypotheses of theorem 5.9.Next, for all J ∈ LH , we define an injection τFock←J from M̂DYN
J = Ĵ into M̂DYNFock = Ĥ by:

τFock←J = φ̂−1
H→J (ζFock→J ⊗ ( · )) ,
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where ζFock→J is the vacuum state of Ĵ⊥. Using eq. (16.15.1), we can show that ∀J ⊂ J′ ∈
LH, τFock←J′ ◦ τJ′←J = τFock←J (where τJ′←J is defined from ζJ′→J as in theorem 5.9).Now, we can choose an orthonormal basis (ei)i∈N of H such that ∀i ∈ N, ‖H ei‖ < ∞ andconsider for N > 1, JN := Vect {ei | i 6 N} ∈ LH . Using eq. (16.14.1) with the orthonormal basis(ei)i6N of JN and the orthonormal basis (ei)i>N of J⊥N , we get:

τFock←JN

〈
ĴN

〉 = Vect {|(ni)i∈N, (ei)i∈N〉 ∣∣ (ni)i∈N ∈ ΛNN} ,
where ΛNN := {(ni)i∈N ∈ ΛN | ∀i > N, ni = 0}. Hence, from ΛN = ⋃N>1ΛNN , we have:

M̂DYNFock = ⋃
J∈LH

ImτFock←J .
Therefore, we can identify M̂DYNFock with the inductive limit M̂DYN

ζ introduced in theorem 5.9, so wehave an injection σ̂↓ : SFock → S
⊗(LH ,ĤDYN,φ̂DYN), satisfying:

σ̂↓ 〈SFock〉 = {(ρJ)J∈LH ∣∣∣∣ sup
J∈LH

inf
J′⊃J

TrM̂DYN
J′

(
ρJ′ Π̂J′|J

) = 1} ,
where:
∀J ⊂ J′ ∈ LH, Π̂J′|J = φ̂−1

J′→J ◦
(
|ζJ′→J 〉〈 ζJ′→J| ⊗ idĴ

)
◦ φ̂J′→J .

Let J ⊂ J′ ∈ LH and let (ei)i∈J , resp. (ei)i∈J′\J be an orthonormal basis of J, resp. J′ ∩ J⊥. For(ni)i∈ J ′ ∈ ΛJ′ , we have:
Π̂J′|J |(ni)i∈J′ , (ei)i∈J′〉 = {|(ni)i∈J′ , (ei)i∈J′〉 if ∀i ∈ J ′ \ J, ni = 00 otherwise

= Π⊗∑i∈J′ ni
J |(ni)i∈J′ , (ei)i∈J′〉 ,therefore ∀N ∈ N, ∀ψ ∈ J′

⊗N,sym, Π̂J′|J ψ = (ΠJ)⊗N ψ .Lastly, let A be a bounded self-adjoint operator on H such that J := (KerA)⊥ ∈ LH . Eq. (16.17.1)is then an application of prop. 5.5, using the definition of σ̂↓ (given in the proof of theorem 5.9)together with:
〈̂A〉Fock := Â = φ̂−1

H→J

[id
Ĵ⊥
⊗ ÂJ

]
φ̂H→J ,

which can be shown like in the proof of prop. 16.16 (eq. (16.16.1) ). �

We can now implement and solve in the quantum theory the approximated constraints we had
on the classical side, and thus define a family of maps (indexed by the regularization parameter ε)
from the dynamical projective system of quantum state spaces introduced above into the kinematical
one.

Proposition 16.18 We consider the objects introduced in def. 16.4 and prop. 16.15. Let ε = (J, ε) ∈
E and let I ∈ Lε. We define the map:
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δ̂εI : Ĵ → Î⊗ T

ψ 7→
(
φ̂−1
I→J ⊗ idT

) [
ζI→J ⊗ exp (−i ̂((ΠJH ΠJ)|J→J

)
⊗ T̂

) (ψ ⊗ δε)] ,
where ζI→J is the vacuum state in Î ∩ J⊥, ΠJ is the orthogonal projection on J, T̂ is the positionoperator on T = L2(R, dµ) and δε ∈ T is defined by:
∀t ∈ R, δε(t) = √επ1/4 exp(−ε2 t22

) .
Then, we have:
δ̂εI
〈
Ĵ
〉 = {ψ ∈ I

∣∣∣ (Π̂I|J ⊗ idT

)
ψ = ψ & Ĉ ε ψ = ψ

} ,
with Ĉ ε = 1

ε2
(idÎ ⊗ Ê − ̂((ΠJH ΠJ)|I→I

)
⊗ idT

)2 + ε2 idÎ ⊗ T̂
2 ,

where Π̂I|J is defined as in prop. 16.17 and Ê is the operator i ∂t on T. Moreover, δ̂εI ∣∣∣
Ĵ→δ̂εI〈Ĵ〉

is a
unitary map.
Proof We define:

δ̂1 : Ĵ → Ĵ⊗ T

ψ 7→ ψ ⊗ δε
, δ̂2 : Ĵ⊗ T → Ĵ⊗ T

ψ 7→ exp (−iĤε
J ⊗ T̂

)
ψ with Hε := ΠJH ΠJ ,

δ̂3 : Ĵ⊗ T → Î ∩ J⊥ ⊗ Ĵ⊗ T

ψ 7→ ζI→J ⊗ ψ
, δ̂4 : Î ∩ J⊥ ⊗ Ĵ⊗ T → Î⊗ T

ψ 7→
(
φ̂−1
I→J ⊗ idT

)
ψ

.
We have δ̂1 〈Ĵ〉 = Ĵ ⊗ Vect {δε} = Ĵ ⊗

{
ψ ∈ T

∣∣∣ Ĉ1 ψ = ψ
}, where Ĉ1 := 1

ε2 Ê2 + ε2 T̂ 2, and
δ̂1∣∣∣

Ĵ→δ̂1〈Ĵ〉 is a unitary map.
δ̂2 is a unitary map, because Ĥε

J and T̂ are essentially self-adjoint (∀N ∈ N, Ĥε
J stabilize

H⊗N,sym and the restriction of Ĥε
J to H⊗N,sym is a bounded self-adjoint operator, for so is Hε|J→J,by definition of LH). And we have:

δ̂2 ◦ δ̂1 〈Ĵ〉 = {ψ ∈ Ĵ⊗ T
∣∣∣ Ĉ2 ψ = ψ

} ,
with:

Ĉ2 := δ̂2 ◦ (idĴ ⊗ Ĉ1) ◦ δ̂−12
= exp (−i [Ĥε

J ⊗ T̂ , ·
]) (idĴ ⊗ Ĉ1)

= 1
ε2
(idĴ ⊗ Ê − Ĥ

ε
J ⊗ idT

)2 + ε2 idĴ ⊗ T̂
2 .

Next, we compute:
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δ̂3 ◦ δ̂2 ◦ δ̂1 〈Ĵ〉 = {ζI→J ⊗ ψ ∈ Î ∩ J⊥ ⊗ Ĵ⊗ T
∣∣∣ Ĉ2 ψ = ψ

}
= {ψ ∈ Î ∩ J⊥ ⊗ Ĵ⊗ T

∣∣∣ id
Î∩J⊥ ⊗ Ĉ2 ψ = ψ &

(
|ζI→J 〉〈 ζI→J| ⊗ idĴ⊗T

)
ψ = ψ

} ,
and δ̂3∣∣∣

Ĵ⊗T→δ̂3〈Ĵ⊗T〉 is a unitary map.
Finally, δ̂4 is unitary (from prop. 16.14) and:
δ̂εI
〈
Ĵ
〉 = δ̂4 ◦ δ̂3 ◦ δ̂2 ◦ δ̂1 〈Ĵ〉 = {ψ ∈ Î⊗ T

∣∣∣ Ĉ4 ψ = ψ & D̂4 ψ = ψ
} ,

with:
Ĉ4 := (φ̂−1

I→J ⊗ idT

) (id
Î∩J⊥ ⊗ Ĉ2) (φ̂I→J ⊗ idT)

= 1
ε2
(idÎ ⊗ Ê −

[
φ̂−1
I→J

(id
Î∩J⊥ ⊗ Ĥ

ε
J

)
φ̂I→J

]
⊗ idT

)2 + ε2 idÎ ⊗ T̂
2

= 1
ε2
(idÎ ⊗ Ê − Ĥ

ε
I ⊗ idT

)2 + ε2 idÎ ⊗ T̂
2 (using eq. (16.16.1) ),

and:
D̂4 := (φ̂−1

I→J ⊗ idT

) (
|ζI→J 〉〈 ζI→J| ⊗ idĴ⊗T

) (φ̂I→J ⊗ idT)
= Π̂I|J ⊗ idT (as was shown in the proof of prop. 16.17).

�

Proposition 16.19 We consider the same objects as in prop. 16.18. For ε = (J, ε) ∈ E and ρJ a(self-adjoint) positive semi-definite, traceclass operator on Ĵ, we define:
∀I ∈ Lε, ∆̂ε

I (ρJ) := δ̂εI ρJ
(
δ̂εI
)+ .

Then, (∆̂ε
I (ρJ))

I∈Lε
∈ S

⊗(Lε,M̂KIN,φ̂KIN).
Hence, for ρ = (ρJ)J∈LH ∈ S

⊗(LH ,M̂DYN,φ̂DYN) (prop. 16.16), we can define:
∆̂ε (ρ) = σ̂−1 ((∆̂ε

I (ρJ))
I∈Lε

) ,
where the map σ̂ : S⊗(L,M̂KIN,φ̂KIN) → S

⊗(Lε,M̂KIN,φ̂KIN) is defined as in prop. 5.6 (and is bijective, since Lε iscofinal in L).
Proof We need to prove that ∀I, I′ ∈ Lε, with I ⊂ I′, TrI′→I∆̂ε

I′ (ρJ) = ∆̂ε
I (ρJ). We have:

∀ψ ∈ Ĵ, φ̂KIN
I′→I ◦ δ̂εI′(ψ) = ([φ̂I′→I ◦ φ̂−1

I′→J

]
⊗ idT

) [
ζI′→J ⊗ e−i Ĥ

ε
J⊗T̂ (ψ ⊗ δε)]

= ([(id
Î′∩I⊥ ⊗ φ̂

−1
I→J

)
◦
(
φ̂I′→I→J ⊗ idĴ

)]
⊗ idT

) [
ζI′→J ⊗ e−i Ĥ

ε
J⊗T̂ (ψ ⊗ δε)]
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= ((id
Î′∩I⊥ ⊗ φ̂

−1
I→J

)
⊗ idT

) [
ζI′→I ⊗ ζI→J ⊗ e−i Ĥ

ε
J⊗T̂ (ψ ⊗ δε)]

= ζI′→I ⊗ δ̂εI (ψ) ,
hence φ̂KIN

I′→I ◦ ∆̂ε
I′ (ρJ) ◦ φ̂KIN,−1

I′→I = |ζI′→I 〉〈 ζI′→I| ⊗ ∆̂ε
I (ρJ), therefore:

TrI′→I∆̂ε
I′ (ρJ) = Tr

Î′∩I⊥ |ζI′→I 〉〈 ζI′→I| ⊗ ∆̂ε
I (ρJ) = ∆̂ε

I (ρJ) .
�

As a preparation for the study of convergence, we define a subset R̂ of the space of states
over the quantum projective structure. The motivation is to implement a quantum version of the
regularity condition that was ensuring convergence on the classical side: at the classical level we
have proved the convergence for normalized states, so in analogy we consider here states with
a bounded expectation value for the total number of particles (which indeed corresponds to the
quantization of the classical observable ψ 7→ 〈ψ, ψ〉).

Note that, as we show in the following result, the regular states (the elements of R̂) can be seen
as states in the Fock space via the embedding of prop. 16.17. This is not really surprising, since we
know that the Fock space quantization is appropriate for a basic non-interacting field theory like
the Schrödinger equation.

Proposition 16.20 We consider the same objects as in prop. 16.17 and we define:
R̂ := {ρ ∈ S

⊗(LH ,M̂DYN,φ̂DYN)
∣∣∣∣ sup
J∈LH

Tr (ρ (̂ΠJ)LH) < ∞} ,
where Tr (ρ (̂ΠJ)LH) := ∑

n∈N

nTr (ρ I{n}

((̂ΠJ)LH)) and I{n} ((̂ΠJ)LH) denotes the spectral projec-
tor as in prop. 5.5.Then, R̂ ⊂ σ̂↓

〈
SFock〉 .

Proof Let ρ ∈ R̂ and N = sup
J∈LH

Tr (ρ (̂ΠJ)LH). If ρ = 0, then ρ = σ̂↓(0). Otherwise, Tr ρ = r > 0,
hence ρ = r

( 1
rρ
) with 1

rρ ∈ S⊗(LH ,M̂DYN,φ̂DYN). Let J, J′ ∈ LH with J ⊂ J′. Let (ei)i∈J be an orthonormalbasis of J and (ei)i∈J′\J (J ′ ⊃ J) be an orthonormal basis of J′ ∩ J⊥. For (ni)i∈J′ , (mi)i∈J′ ∈ ΛJ′ , wehave:〈(ni)i∈J′ , (ei)i∈J′ ∣∣∣ ̂(ΠJ′∩J⊥|J′→J′

) ∣∣∣ (mi)i∈J′ , (ei)i∈J′〉 =

∑

i∈J′\J ni if ∀i ∈ J ′, ni = mi0 else ,
and: 〈(ni)i∈J′ , (ei)i∈J′ ∣∣∣ (idĴ′ − Π̂J′|J

) ∣∣∣ (mi)i∈J′ , (ei)i∈J′〉 =
1 if ∀i ∈ J ′, ni = mi &

∑
i∈J′\J ni > 10 else ,

therefore:
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TrĴ′ (ρJ′ Π̂J′|J

)
> r −

∑
n∈N

nTrĴ′ [ρJ′ I{n} ( ̂(ΠJ′∩J⊥|J′→J′

))] =: r − TrĴ′ [ρJ′ ̂(ΠJ′∩J⊥|J′→J′

)] .
Now, TrĴ′ [ρJ′ ̂(ΠJ′∩J⊥|J′→J′

)] = ∑
n∈N

nTrĴ′ [ρJ′ I{n} ((̂ΠJ′)J′)] −∑
n∈N

nTrĴ′ [ρJ′ I{n} ((̂ΠJ)J′)] =
Tr (ρ (̂ΠJ′)LH)− Tr (ρ (̂ΠJ)LH), hence:

inf
J′⊃J

TrĴ′ (ρJ′ Π̂J′|J

)
> r − sup

J′⊃J
Tr (ρ (̂ΠJ′)LH) + Tr (ρ (̂ΠJ)LH) .

Finally, (Tr (ρ (̂ΠJ′)LH))J′∈LH is increasing, so sup
J′⊃J

Tr (ρ (̂ΠJ′)LH) = N and:
sup
J∈LH

inf
J′⊃J

TrĴ′ (ρJ′ Π̂J′|J

)
> r − N +N = r .

On the other hand, ∀J ⊂ J′ , TrĴ′ (ρJ′ Π̂J′|J

)
6 r, thus, using prop. 16.17, 1

rρ ∈ σ̂↓ 〈SFock〉, andtherefore ρ ∈ σ̂↓
〈
SFock〉. �

Finally, we prove a convergence result at the quantum level. We define here two different
notions of convergence, one stronger than the other, in both cases requiring convergence of the
expectation values for a certain class of observables. To assess how exactly the convergence should
be adjusted would require a closer study of which observables are really measured in practice, for
these constitute the class of kinematical observables that we want to be able to transport on the
dynamical side.

In addition, we need to introduce an ε-dependent normalization parameter N that accounts
for the fact that states solving the exact dynamics cannot be correctly normalized (they describe
probability distributions invariant under a transformation running along the full time line from
t = −∞ to t = +∞) so that it only makes sense to consider conditional probabilities, expressing the
probability of measuring the system in a certain state, knowing that the measurement takes place
at a certain time. So, as we lift the ε-regularization (that was making the gauge orbits compact and
the solution of the quantum constraint normalizable), the probability of measuring the system in a
certain time interval is dropping and needs to be accordingly compensated.

Theorem 16.21 We consider the same objects as in props. 16.19 and 16.20. Let I ∈ L, A be abounded operator on Î and φ, φ′ ∈ T. We additionally assume that φ, φ′ have compact support.On M̂KIN
I , we define the operator:

R I
A, φ, φ′ := A ⊗ |φ 〉〈 φ′| ,

and, for ε = (J, ε) ∈ E and ρ ∈ σ̂↓
〈
SFock〉, we define:

R I,ε
A, φ, φ′(ρ) := 1

N(ε, φ, φ′)TrM̂KIN
I

[∆̂ε
I (ρ)R I

A, φ, φ′

] ,
where N(ε, φ, φ′) = TrT |φ 〉〈 φ′| |δε 〉〈 δε| = 〈φ′, δε〉 〈δε, φ〉.
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Then, the net (R I,ε
A, φ, φ′(ρ))ε∈E converges.

For e, f ∈ I, we also define on M̂KIN
I the operator:

R I
e, f , φ, φ′ := âI,+

e âI
f ⊗ |φ 〉〈 φ′| ,and, for ε = (J, ε) ∈ E and ρ ∈ R̂, we define:

R I,ε
e, f , φ, φ′(ρ) := 1

N(ε, φ, φ′)TrM̂KIN
I

[∆̂ε
I (ρ)R I

e, f , φ, φ′

] .
Then, the net (R I,ε

e, f , φ, φ′(ρ))ε∈E converges.
Proof Bounded operator & Fock state. Let ρ ∈ σ̂↓

〈
SFock〉. For ε = (J, ε) ∈ E and I′ ∈ Lε, wehave:̂∆ε

I′ (ρ) = φ̂KIN,−1
I′→J

(
|ζI′→J 〉〈 ζI′→J| ⊗

[
e−i Ĥε

J⊗T̂ (ρJ ⊗ |δε 〉〈 δε|) ei Ĥε
J⊗T̂
])

φ̂KIN
I′→J

= φ̂KIN,−1
I′→J e

−i id
Î′∩J⊥

⊗Ĥε
J⊗T̂ (|ζI′→J 〉〈 ζI′→J| ⊗ ρJ ⊗ |δε 〉〈 δε|) ei idÎ′∩J⊥⊗Ĥε

J⊗T̂ φ̂KIN
I′→J

= e−i Ĥε
I′⊗T̂ φ̂KIN,−1

I′→J (|ζI′→J 〉〈 ζI′→J| ⊗ ρJ ⊗ |δε 〉〈 δε|) φ̂KIN
I′→J ei Ĥ

ε
I′⊗T̂ (like in eq. (16.16.1) )

= e−i Ĥε
I′⊗T̂

([
τI′←J ρJ τ+

I′←J

]
⊗ |δε 〉〈 δε|

)
ei Ĥε

I′⊗T̂ ,
where τI′←J = φ̂−1

I′→J (ζI′→J ⊗ ( · )) . Hence, for I ⊂ I′:
R I,ε
A, φ, φ′(ρ) = 1

N(ε, φ, φ′)TrM̂KIN
I

[ ∆̂ε
I (ρ)A ⊗ |φ 〉〈 φ′| ] =

= TrM̂KIN
I′

[∆̂ε
I′(ρ) (φ̂−1

I′→I

(id
Î′∩I⊥ ⊗ A

)
φ̂I′→I

)
⊗ |φ 〉〈 φ′|

]
N(ε, φ, φ′)

= TrM̂KIN
I′

[
e−i Ĥε

I′⊗T̂
([
τI′←J ρJ τ+

I′←J

]
⊗ |δε 〉〈 δε|

)
ei Ĥε

I′⊗T̂
(
φ̂−1
I′→I

(id
Î′∩I⊥ ⊗ A

)
φ̂I′→I

)
⊗ |φ 〉〈 φ′|

]
N(ε, φ, φ′)

=
∫ T

−T
dt dt′ φ(t)φ′∗(t′) δε(t′)δ∗ε (t) Z εI′(t, t′)∫ T

−T
dt dt′ φ(t)φ′∗(t′) δε(t′)δ∗ε (t) ,

where T > 0 is such that the support of φ and φ′ is included in [−T, T ], and Z ε is defined as:
Z ε(t, t′) = TrÎ′ [e−it′ Ĥε

I′
(
τI′←J ρJ τ+

I′←J

)
eit Ĥε

I′
(
φ̂−1
I′→I

(id
Î′∩I⊥ ⊗ A

)
φ̂I′→I

)]
= TrĴ ρJ

[
τ+
I′←J eit Ĥ

ε
I′
(
φ̂−1
I′→I

(id
Î′∩I⊥ ⊗ A

)
φ̂I′→I

)
e−it′ Ĥε

I′ τI′←J

]
= TrĴ ρJ

[
eit Ĥε

J τ+
I′←J

(
φ̂−1
I′→I

(id
Î′∩I⊥ ⊗ A

)
φ̂I′→I

)
τI′←J e−it

′ Ĥε
J

] ,
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for any I′ ∈ L such that I, J ⊂ I′ .
Next, √πε δε(t′)δ∗ε (t) converges uniformly to 1 for t, t′ ∈ [−T, T ], when ε → 0. Therefore, weneed to show that the net (Z ε(t, t′))ε∈E converges uniformly for t, t′ ∈ [−T, T ].Let ρFock ∈ SFock such that ρ = σ̂↓ (ρFock) . Using the definition of σ̂↓, we can show:
Z ε(t, t′) = TrĤ ρFock φ̂−1

H→J

[
1
Ĵ⊥
⊗ eit Ĥε

J τ+
I′←J

(
φ̂−1
I′→I

(id
Î′∩I⊥ ⊗ A

)
φ̂I′→I

)
τI′←J e−it

′ Ĥε
J

]
φ̂H→J

= TrĤ ρFock eit Ĥε φ̂−1
H→J

[
1
Ĵ⊥
⊗ τ+

I′←J

(
φ̂−1
I′→I

(id
Î′∩I⊥ ⊗ A

)
φ̂I′→I

)
τI′←J

]
φ̂H→J e−it

′ Ĥε

(like in eq. (16.16.1) )
= TrĴ [TrH→J e−it

′ Ĥε ρFock eit Ĥε
] [

τ+
I′←J

(
φ̂−1
I′→I

(id
Î′∩I⊥ ⊗ A

)
φ̂I′→I

)
τI′←J

]
(by definition of TrH→J )And using twice eq. (5.1.1) (for J, I ⊂ I′ ⊂ H), we have, for any ψ ∈ J:
φ̂H→I ◦ τFock←J(ψ) = φ̂H→I ◦ φ̂−1

H→J (ζFock→J ⊗ ψ)
= φ̂H→I ◦ φ̂−1

H→J ◦
(
φ̂−1
J⊥→I′∩J⊥ ⊗ 1J

) (ζFock→I′ ⊗ ζI′→J ⊗ ψ)
= φ̂H→I ◦ φ̂−1

H→I′ (ζFock→I′ ⊗ τI′←J(ψ))
= (φ̂−1

I⊥→I′∩I⊥ ⊗ idI

) (ζFock→I′ ⊗ φ̂I′→I ◦ τI′←J(ψ)) .Hence, we get:
Z ε(t, t′) = TrĴ [TrH→J e−it

′ Ĥε ρFock eit Ĥε
] [
τ+Fock←J

(
φ̂−1
H→I

(id
Î⊥
⊗ A

)
φ̂H→I

)
τFock←J

]
= TrĤ [

τFock←J

(TrH→J e−it
′ Ĥε ρFock eit Ĥε

)
τ+Fock←J

] [
φ̂−1
H→I

(id
Î⊥
⊗ A

)
φ̂H→I

]
But we have:∥∥φ̂−1

H→I

(id
Î⊥
⊗ A

)
φ̂H→I

∥∥ = ‖A‖ < ∞ ,therefore, what remains to be shown is that the net:(
τFock←J

(TrH→J e−it
′ Ĥε ρFock eit Ĥε

)
τ+Fock←J

)
ε=(J,ε)∈Econverges in trace norm (which was defined in lemma 5.10), uniformly for t, t′ ∈ [−T, T ] .Let εo > 0. We have:

Ĥ = ⊕
J∈LH ,N>1 Ĵ

N where ĴN =⊕
n6N

Ĵ⊗n, sym ,
because H = ⊕

J∈LH J. Hence, we can prove, using the spectral decomposition of the self-adjointtraceclass operator ρFock and the directed preorder on LH and N, that there exist Jo ∈ LH and
No > 1 such that:

236



‖ρFock − ρoFock‖1 6 εo6 ,
where ρoFock := Π̂Jo,No ρFock Π̂Jo,No (with Π̂Jo,No the orthogonal projection on ĴNo

o ) and ‖ · ‖1 denotesthe trace norm.Since ĴNo
o is finite dimensional, there exist vectors ψα ∈ ĴNo

o , α ∈ {1, . . . , K} (with K ∈ N) suchthat:
ρoFock = K∑

α=1 |ψα 〉〈 ψα | .We define:
ε1 := 1

No

11 + |T | log
1 + εo12K (1 + maxα ‖ψα‖2)

 > 0 ,
and Hε1 := ε1 ⌊ 1

ε1H
⌋ (as in the proof of theorem 16.10). Then, since Hε1 has discrete spectrum and

K, No < ∞, we can construct J1 ∈ LH , such that J1 is stabilized by Hε1 and:
∀α 6 K,

∥∥∥ψα − Π̂J1,No ψα
∥∥∥ 6 εo12K (1 + maxα ‖ψα‖) .

Thus, we get:∥∥∥ρFock − Π̂J1,No ρoFock Π̂J1,No

∥∥∥1 6 εo6 + K∑
α=1
∥∥∥|ψα 〉〈 ψα | − ∣∣∣Π̂J1,No ψα

〉〈 Π̂J1,No ψα
∣∣∣∥∥∥1

6
εo6 + K∑

α=1
∥∥∥ψα − Π̂J1,No ψα

∥∥∥ ‖ψα‖+ ∥∥∥Π̂J1,No ψα
∥∥∥ ∥∥∥ψα − Π̂J1,No ψα

∥∥∥ 6 εo3
Now, we consider J2 ∈ LH such that Jo + J1 ⊂ J2 . For all t, t′ ∈ [−T, T ], we have:∥∥∥∥e−it′ ̂(ΠJ2 H ΠJ2) ρFock eit ̂(ΠJ2 H ΠJ2) − e−it′ Ĥε1 Π̂J1,No ρoFock Π̂J1,No eit Ĥ

ε1∥∥∥∥1 6

6
εo3 +∥∥∥∥e−it′ ̂(ΠJ2 H ΠJ2) − e−it′ ̂(ΠJ2 Hε1 ΠJ2)∥∥∥∥ ‖ρoFock‖1+‖ρoFock‖1

∥∥∥∥eit ̂(ΠJ2 H ΠJ2) − eit ̂(ΠJ2 Hε1 ΠJ2)∥∥∥∥(since Hε1 stabilizes J1 ⊂ J2)
6
εo3 + 2 ∣∣eT No ε1 − 1∣∣ ‖ρoFock‖1 6 εo2 ,

and similarly:∥∥∥e−it′ Ĥ ρFock eit Ĥ − e−it′ Ĥε1 Π̂J1,No ρoFock Π̂J1,No eit Ĥ
ε1∥∥∥1 6 εo2 .

Next, using again that Hε1 stabilizes J1 ⊂ J2, we also have:
τFock←J2

[TrH→J2 e−it′ Ĥε1 Π̂J1,No ρoFock Π̂J1,No eit Ĥ
ε1] τ+Fock←J2 = e−it′ Ĥε1 Π̂J1,No ρoFock Π̂J1,No eit Ĥ

ε1 .
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Hence, for any ε = (J2, ε2) ∈ E such that (Jo + J1, 1) 4 ε, and any t, t′ ∈ [−T, T ] , we have:∥∥∥τFock←J2
[TrH→J2 e−it′ Ĥε ρFock eit Ĥε

]
τ+Fock←J2 − e−it′ Ĥ ρFock eit Ĥ∥∥∥1 6 εo ,

which provides the desired convergence.
Transition operator & regular state. Let ρ ∈ R̂, I ∈ L and e, f ∈ I. Since R̂ ⊂ σ̂↓

〈
SFock〉(prop. 16.20), there exists ρFock ∈ SFock such that ρ = σ̂↓(ρFock). Like above, a sufficient condition forthe convergence of the net (R I,ε

e, f , φ, φ′(ρ))ε∈E is uniform convergence for t, t′ ∈ [−T, T ] of the net:(TrĤ [
τFock←J

(TrH→J e−it
′ Ĥε ρFock eit Ĥε

)
τ+Fock←J

]
Te,f
)
ε=(J,ε)∈E ,

where we define:
Te,f := φ̂−1

H→I

(id
Î⊥
⊗ âI,+

e âI
f

)
φ̂H→I .

Choosing an orthonormal basis (ei)i∈I of I and completing it into an orthonormal basis (ei)i∈N of
I′ (I ⊂ N), we get:

Te,f =∑
i,j∈I

〈ei, e〉
〈
f , ej

〉
φ̂−1
H→I

(id
Î⊥
⊗ âI,+

ei âI
ej

)
φ̂H→I

=∑
i,j∈I

〈ei, e〉
〈
f , ej

〉 (âFock,+
ei âFock

ej

) (like in the proof of prop. 16.16)
= âFock,+

e âFock
f .

Now, from the definition of the creation and annihilation operators, we have:
Te,f = ∞∑

n=0 Π̂(n) âFock,+
e âFock

f Π̂(n) ,
where, for all n ∈ N, Π̂(n) is the orthogonal projection on the subspace H⊗n, sym of Ĥ, and:∥∥∥Π̂(n) âFock,+

e âFock
f Π̂(n)∥∥∥ 6 n ‖e‖ ‖f‖ .

On the other hand, we have, by definition of R̂, sup
J∈LH

Tr (ρ (̂ΠJ)LH) =: Ntot < ∞, so:
∞∑
n=0 nTrĤ ρFock Π̂(n) = ∑

n∈N

nTrĤ ρFock I{n} (〈̂idH〉Fock
)

= ∑
n∈N

n sup
J∈LH

TrĤ ρFock I{n} (〈̂ΠJ〉Fock
) (using lemma 5.10)

= ∑
n∈N

n sup
J∈LH

TrĴ ρJ I{n} ((̂ΠJ)J) = Ntot (from eq. (16.17.1) ).
Let εo > 0. Then, there exists No > 1 such that:
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∑
n>No

nTrĤ ρFock Π̂(n) 6 εo3 ,
and therefore, for all ε = (J, ε) ∈ E:∑

n>No

n
∥∥∥[τFock←J

(TrH→J e−it
′ Ĥε ρFock eit Ĥε

)
τ+Fock←J

] Π̂(n)∥∥∥1 =
= ∑

n>No

n
∥∥∥τFock←J

(TrH→J e−it
′ Ĥε ρFock eit Ĥε

) Π̂(n)
J τ+Fock←J

∥∥∥1
(where for all n ∈ N, Π̂(n)

J is the orthogonal projection on the subspace J⊗n, sym of Ĵ)
= ∑

n>No

n
∥∥∥(TrH→J e−it

′ Ĥε ρFock eit Ĥε
) Π̂(n)

J

∥∥∥1
= ∑

n>No

n
∥∥∥TrH→J e−it′ Ĥε ρFock eit Ĥε φ̂−1

H→J

(id
Ĵ⊥
⊗ Π̂(n)

J

)
φ̂H→J

∥∥∥1
6
∑
n>No

n
∥∥∥e−it′ Ĥε ρFock eit Ĥε φ̂−1

H→J

(id
Ĵ⊥
⊗ Π̂(n)

J

)
φ̂H→J

∥∥∥1
6
∑
n>No

∑
n′>0 n

∥∥∥e−it′ Ĥε ρFock eit Ĥε φ̂−1
H→J

(Π̂(n′)
J⊥ ⊗ Π̂(n)

J

)
φ̂H→J

∥∥∥1
6
∑
n>No

∑
n′>0(n+ n′) ∥∥∥e−it′ Ĥε ρFock eit Ĥε φ̂−1

H→J

(Π̂(n′)
J⊥ ⊗ Π̂(n)

J

)
φ̂H→J

∥∥∥1
= ∑

n>No

∑
n′>0(n+ n′) ∥∥∥e−it′ Ĥε ρFock φ̂−1

H→J

(Π̂(n′)
J⊥ ⊗ Π̂(n)

J

)
φ̂H→J eit Ĥ

ε
∥∥∥1

(for Ĥε stabilizes the subspaces [(J⊥)⊗n′ ⊗ J⊗n
]sym for all n, n′)

6
∑
n>No

∑
n′>0(n+ n′) ∥∥∥ρFock φ̂−1

H→J

(Π̂(n′)
J⊥ ⊗ Π̂(n)

J

)
φ̂H→J

∥∥∥1
= ∑

n>No

∑
n′>0(n+ n′) TrĤ ρFock φ̂−1

H→J

(Π̂(n′)
J⊥ ⊗ Π̂(n)

J

)
φ̂H→J

6
∑
n′′>No

n′′ TrĤ ρFock Π̂(n′′) 6 εo3 .
Next, from the previous point there exists εo ∈ E such that, for all ε = (J, ε) < εo:∥∥∥τFock←J

[TrH→J e−it
′ Ĥε ρFock eit Ĥε

]
τ+Fock←J − e−it

′ Ĥ ρFock eit Ĥ∥∥∥1 6 εo3No
,

thus:∣∣∣TrĤ [
τFock←J

(TrH→J e−it
′ Ĥε ρFock eit Ĥε

)
τ+Fock←J

]
Te,f − TrĤ e−it′ Ĥ ρFock eit Ĥ Te,f ∣∣∣
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6
∥∥∥[τFock←J

(TrH→J e−it
′ Ĥε ρFock eit Ĥε

)
τ+Fock←J

]
− e−it′ Ĥ ρFock eit Ĥ∥∥∥1×

×

∥∥∥∥∥∑
n6No

Π̂(n) âFock,+
e âFock

f Π̂(n)∥∥∥∥∥ + ∑
n>No

∥∥∥[τFock←J

(TrH→J e−it
′ Ĥε ρFock eit Ĥε

)
τ+Fock←J

] Π̂(n)∥∥∥1×
×
∥∥∥Π̂(n) âFock,+

e âFock
f Π̂(n)∥∥∥ + ∑

n>No

∥∥∥e−it′ Ĥ ρFock eit Ĥ Π̂(n)∥∥∥1
∥∥∥Π̂(n) âFock,+

e âFock
f Π̂(n)∥∥∥

6
εo3No

No ‖e‖ ‖f‖+ εo3 ‖e‖ ‖f‖+ ∑
n>No

∥∥∥e−it′ Ĥ ρFock Π̂(n) eit Ĥ∥∥∥1 n ‖e‖ ‖f‖
(for eit Ĥ stabilizes the subspaces H⊗n, sym for all n)

6 εo ‖e‖ ‖f‖ ,which concludes the proof. �

While it will be essential to play with more toy models (and especially with more sophisticated
ones), in order to sharpen our still rather crude proposal for dealing with constraints, we have at
least ascertained that the program of subsection 3.2 can be applied to the most simple quantum field
theory, where it satisfactorily reproduces established results. Indeed, we found that we can define
a sensible convergence at the quantum level, on a subspace of states that can either be identified
with the Fock space or with a subset of it. This is reassuring, for we know that the Fock space
is the right arena to describe interaction-free theory (since such a theory preserves the subspaces
of fixed particles number). It would be interesting to study whether more general quantum field
theories can be translated in this language too.

In addition, we might be able to gain a deeper understanding of the formalism considered here
by studying its relations to approaches that incorporate similar ingredients, like lattice quantum
field theory. This could help shed light on issues that are shared with these approaches, notably the
problem of ‘universality’: in other words, the concern about how to ensure that the results we are
getting are robust, and do not depend critically on some arbitrary choices entering the definition
of the regularization scheme.

We have displayed in section 15 a trick to circumvent this pitfall: by assembling all reasonable
approximations into a huge label set E, and ordering them by their respective quality, we can view
a specific regularization prescription as simply selecting a cofinal subset in E. However, it is not
clear whether this could still be done for less trivial systems, because it could become difficult
to arrange for E to be directed. It would be interesting to investigate whether this idea could
be combined with the techniques we will develop in section 19, which aim precisely at extracting
universal (countable, directed) subsets from (uncountable, possibly non-directed) label sets, although
in a different context.
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Chapter 6 – Searching for Semi-Classical States

17. Introduction

Recall that our motivation to set up a projective state space for the holonomy-flux algebra was to
obtain better semi-classical states. As argued in the introduction of the present work, the Ashtekar-
Lewandowski Hilbert space, being built out of a vacuum which is a momentum eigenstate (with
vanishing fluxes), cannot accommodate states in which the quantum fluctuations would balanced
between position and momentum variables. However, now that we could overcome this limitation,
we uncover a deeper issue, which has its root not in the restriction to a particular representation
of the algebra of observables, but in the algebra itself.

As underlined in subsection 12.2 the holonomy and flux variables do not come in independent,
canonically conjugate pairs. In fact, any given flux observable has non trivial commutators with
infinitely, uncountably many holonomies. As we will demonstrate below in the G = R case, the
sheer amount of Heisenberg uncertainty relations arising from these non-vanishing commutators
forces the quantum fluctuations to blow up uncontrollably as more and more degrees of freedom are
taken into account: in the end, it is not even possible to keep the variance of all elementary variables
finite, let alone small. Note that obstructions to the design of states with specific properties on the
holonomy-flux algebra have been pointed out in earlier works [80] : in particular, the Ashtekar-
Lewandowski vacuum turns out to be the only diffeomorphism-invariant state [55] , which notably
forbids the design of a diffeomorphism-invariant coherent state.

These issues can be traced back to the fact that holonomy-flux algebra along analytical (or
semi-analytical) edges and surfaces is generated by uncountably many elementary observables,
which motivates the construction we will present in section 19: we will explore a strategy to
drastically reduce the algebra of observables, while keeping intact the physical content of the
theory. Such a reduction allows the systematic construction of projective states, in particular
semi-classical ones (subsection 19.1). After laying out a general framework in subsection 19.2, we
will, in subsection 19.3, explain how it can be implemented in the case of a (slightly simplified)
one-dimensional version of the holonomy-flux algebra. The generalization to higher dimensions,
especially the physically relevant d = 3 case, is currently a work in progress.

Once the label set is trimmed down to countable cardinality, a corresponding inductive limit
(constructed along the lines of theorem 5.9) will automatically be separable (assuming all ‘building
block’ Hilbert spaces are), rather that non-separable like eg. the Ashtekar-Lewandowski Hilbert
space. Hence, constructing states will get easier on the inductive limit side too: besides lifting the
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technical issues plaguing non-separable Hilbert spaces [28] , it will allow states to include all basis
vectors at once (by contrast, non-separable Hilbert spaces tend, paradoxically, to be ’too small’, as
their orthonormal basis are uncountable while linear combinations can only be at most countable).
Nevertheless, the advantages of the projective formalism over an inductive limit Hilbert space
remains: as we will check in prop. 19.2, the semi-classical quantum states that one can construct
within projective state spaces on countable label sets typically do not belong to corresponding
inductive limit Hilbert space arising from vacuum states that are far from semi-classical. In other
words, the argument put forward in the main introduction, that discrete quantum excitations cannot
mask the core properties of the vacuum, still holds in the case of a countable label set.

When the label set is countable, one can also, in the spirit of theorem 5.11, produce from the
projective system associated infinite tensor products (ITP, see [99, 93] ), and the states we will be
considering often do belong to these ITP Hilbert spaces (see again prop. 19.2). In fact, the whole
construction of section 19 is very closely connected with Algebraïc Quantum Gravity (AQG, see
[36] ): the idea of AQG is to choose an infinitely extended graph and to write a state space for
quantum gravity as the infinite tensor product of the L2(G) Hilbert spaces carried by the individual
edges. Like in the present development, this switch to discrete degrees of freedom in AQG is
motivated by the search for better semi-classical states. We will comment where appropriate on
the similarities and differences between the two approaches, and delineate some advantages of
the projective formulation (namely a lesser dependence on arbitrary choices and an improved
diffeomorphism invariance).

Finally, the benefits of simplifying the structure of the theory reach beyond the sole semi-classical
analysis. In section 20, we will contemplate how it could help solving the constraints of LQG
(continuing the discussion started in section 7).

18. Obstructions to the construction of narrow states

We will, in subsection 18.1, work in the context of a general linear projective system (L, M, π) :
namely, a projective system such that all small phase spaces Mη are linear and across which
the distinction between configuration and momentum variables can be defined consistently (ie. all
projections preserve this distinction). Note that this is precisely the setup of [68] and we recalled in
subsection 6.1 how to quantize such a classical projective limit into a projective system of quantum
state space in the position representation.

In projective quantum state spaces of this kind, we can systematically study the construction
of narrow states, namely states in which the measurement probabilities of all configuration and
momentum variables have finite variance. In particular, we will spell out the conditions, arising
from the Heisenberg uncertainty relations, for a certain assignment of variances to be realizable in
a quantum state. Of special interest for the construction of semi-classical states are the Gaussian
states, and, in fact, we will see that there exists, for any narrow state, a Gaussian state with the
same variances.

In subsection 18.2, we will apply this study to the projective quantum state space set up in
section 12, in the special case G = R (where it constitutes a linear projective system in the sense
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above, as will be shown in prop. 18.13). We will then be able to prove (prop. 18.14) that there are
not any narrow states in this state space: in other words, all states therein have infinite variance
for at least some of the variables, and thus are not good candidates as semi-classical states. We
will also formulate some weaker notions of semi-classicality that are excluded as well (props. 18.15
and 18.16).

Note that, while the argument cannot be easily generalized beyond the G = R case (because
the systematic study of narrow states in subsection 18.1 makes heavy use of the linearity, viz. the
discussion preceding prop. 18.9), we will take it as a hint that the construction of semi-classical
states should be altogether attacked differently. On the one hand, the negative result of subsec-
tion 18.2 casts serious doubts on the possibility to design admissible semi-classical states even in
the compact group case: although diverging variances are of course excluded in this case (at least
for the configuration variables), we expect that, if states very peaked around the group identity
could be designed, the group structure should not matter much to them (heuristically, the portion
of the configuration space seen by such states would be nearly linear). On the other hand, the
approach we will develop in section 19 to go around the obstruction will simplify the construction
of projective states to the point that keeping G arbitrary will become effortless.

18.1 Projective families of characteristic functions

The central tool of the present subsection will be Wigner characteristic functions (see [102, 47]
and the review in appendix C): any quantum state can be represented by a function defined on
the dual of the classical phase space, and this alternative representation is strictly equivalent to its
representation as a density matrix ρ. This is the quantum version of characteristic distributions
in classical statistical physics, in the sense that the moments of the probability distributions gov-
erning quantum measurements can be recovered from the derivatives of the characteristic function
(prop. C.8). However, the positivity requirement for quantum characteristic functions (eq. (C.6.1),
ensuring the positivity of ρ) differs from its classical counterpart (that would ensure positivity of the
corresponding probability distribution), as it encodes the non-commutation of quantum observables
(see the discussion preceding prop. C.6).

Unsurprisingly, the characteristic functions of the partial density matrices composing a projec-
tive state combine again into a projective family (the dual spaces M∗η form naturally an inductive
structure, with injections given by the pullback under the projections πη′→η , so functions on them ar-
range themselves in a projective structure, see also the discussion at the beginning of appendix C.2).
This is the advantage of working with Wigner characteristic functions rather than Wigner quasi-
probabilities, which would be in analogy to classical probability distributions (the computation of
partial traces, or, at the classical level, of marginal probability distribution, is translated into a
simple restriction when working with characteristic functions).

Proposition 18.1 Let (L, M, π)↓ be a projective system of phase spaces such that:1. ∀η ∈ L, there exists two finite-dimensional real vector spaces Cη , Pη, an invertible linear mapΞη : Pη → C∗η (where C∗η denotes the dual of Cη) and a symplectomorphism Lη : Mη → Cη ×Pη ,with respect to the symplectic structure Ωη defined on Cη × Pη by:
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∀(u, v), (u′, v ′) ∈ Cη × Pη , Ωη(u, v ; u′, v ′) := Ξη(v ′)(u)− Ξη(v)(u′) ;
2. ∀η 4 η′ ∈ L, πη′→η = L−1

η ◦ (Qη′→η×Pη′→η)◦Lη′ with Qη′→η , resp. Pη′→η , a linear map Cη′ → Cη ,resp. Pη′ → Pη .We choose, for any η ∈ L, a Lebesgue measure µη on Cη . For any η 4 η′ ∈ L, we define:3. Cη′→η := KerQη′→η ;
4. φη′→η : Cη′ → Cη′→η × Cη

x ′ 7→ Rη′→η(x ′), Qη′→η(x ′) , with Rη′→η : Cη′ → Cη′→η the projection on Cη′→η parallel
to (Ξη ◦ Pη′→η ◦ Ξ−1

η′
)∗ 〈Cη〉 (where ( · )∗ denotes the dual map).Then, we can complete these elements into a factorizing system of measured manifolds (def. 6.1)(L, (C, µ), φ)×, from which a projective system of quantum state spaces (L, H, Φ)⊗ can be con-structed as described in prop. 6.3.

Proof Since a finite-dimensional vector space is in particular an additive simply-connected Liegroup, this is a special case of theorem 6.2. The explicit expressions for Cη′→η and φη′→η areobtained by adapting the ones from the proof of theorem 6.2 to the slightly different notations weare using here. �

Definition 18.2 We consider the same objects as in prop. 18.1. A projective family of characteristicfunctions is a family (Wη
)
η∈L such that:

1. for any η ∈ L, Wη is a continuous function C∗η × P∗η → C;
2. for any η ∈ L, any N ∈ N, any (s1, t1), . . . , (sN, tN) ∈ C∗η × P∗η and any z1, . . . , zN ∈ C:

N∑
i,j=1 zj zi e

i ξij Wη(si − sj , ti − tj ) > 0 , (18.2.1)
where ξij := 12 (ti(Ξ−1

η (sj ))− tj(Ξ−1
η (si))) ;

3. for any η 4 η′ ∈ L, Wη = Wη′ ◦
(
Q∗η′→η × P∗η′→η

) .
We denote by W

↓(L,(C,P),(Q,P)) the space of all projective families of characteristic functions.
Proposition 18.3 We consider the same objects as in prop. 18.1. Let η ∈ L. On Hη = L2(Cη , dµη)we define, for any (s, t) ∈ C∗η × P∗η, a unitary operator Tη(s, t) on Hη by:
∀ψ ∈ Hη , ∀x ∈ Cη , [Tη(s, t)ψ] (x) = exp (i s(x) + i2 t (Ξ−1

η (s))) ψ (x + Ξ∗,−1
η (t)) ,as well as a densely defined, essentially self-adjoint operator Xη(s, t) with dense domain Dη :=

C∞o (Cη, C) (the space of smooth, compactly supported, complex-valued functions on Cη) by:
∀ψ ∈ Dη , ∀x ∈ Cη , [Xη(s, t)ψ] (x) = s(x)ψ(x)− i [Txψ] (Ξ∗,−1

η (t))
(where Txψ denotes the differential of ψ at x and Ξ∗,−1

η = (Ξ∗η)−1 = (Ξ−1
η
)∗).For any η 4 η′ ∈ L and any (s, t) ∈ C∗η × P∗η, we have:
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Tη′(s′, t′) = Φ−1
η′→η ◦

(idHη′→η ⊗ Tη(s, t)) ◦ Φη′→η ,
& Xη′(s′, t′) = Φ−1

η′→η ◦
(idHη′→η ⊗ Xη(s, t)) ◦ Φη′→η , (18.3.1)

where (s′, t′) := (Q∗η′→η(s), P∗η′→η(t)).
Proof Let η ∈ L. For any (s, t) ∈ C∗η×P∗η, it has been proven in prop. C.5, that Tη(s, t), resp. Xη(s, t),is well-defined and is unitary, resp. essentially self-adjoint.Let η 4 η′ ∈ L and (s, t) ∈ C∗η × P∗η. Let (s′, t′) := (

Q∗η′→η(s), P∗η′→η(t)). For any ψη ∈ Hη andany ψη′→η ∈ Hη′→η = L2(Cη′→η , dµη′→η), we have, using the expression for Φη′→η from prop. 6.3:
∀(y, x) ∈ Cη′→η × Cη,

[Φη′→η Tη′(s′, t′) Φ−1
η′→η (ψη′→η ⊗ ψη)](y, x) =

= [Tη′(s′, t′) Φ−1
η′→η (ψη′→η ⊗ ψη)] ◦ φ−1

η′→η(y, x)
= exp (i s′ ◦φ−1

η′→η(y, x)+ i2 t′ (Ξ−1
η′ (s′)) ) Φ−1

η′→η(ψη′→η⊗ψη)(φ−1
η′→η(y, x)+Ξ∗,−1

η′ (t′))
= exp (i s(x) + i2 t (Ξ−1

η (s)) )ψη′→η(y)ψη (x + Ξ∗,−1
η (t))

= ψη′→η(y) [Tη(s, t)ψη](x) ,where we have used:
∀(y, x) ∈ Cη′→η × Cη,

Qη′→η ◦ φ−1
η′→η(y, x) = x ,

& φη′→η
(
φ−1
η′→η(y, x) + Ξ∗,−1

η′ ◦ P∗η′→η(t)) = (y, x + Qη′→η ◦ Ξ∗,−1
η′ ◦ P∗η′→η(t))(from the definition of φη′→η in prop. 18.1) as well as:

Qη′→η ◦ Ξ∗,−1
η′ ◦ P∗η′→η = Ξ∗,−1

η ,
as follows from the compatibility of L−1

η ◦
(
Qη′→η × Pη′→η

)
◦ Lη′ with the symplectic structures Ωη′and Ωη (see def. 2.1 and eq. (6.2.1) ). Thus, we get:

∀ψη ∈ Hη , ∀ψη′→η ∈ Hη′→η , Φη′→η Tη′(s′, t′) Φ−1
η′→η (ψη′→η ⊗ ψη) = ψη′→η ⊗

[Tη(s, t)ψη] ,and therefore:Tη′(s′, t′) = Φ−1
η′→η ◦

(idHη′→η ⊗ Tη(s, t)) ◦ Φη′→η .
Similarly, we have, for any ψη ∈ Dη and any ψη′→η ∈ Dη′→η := C∞o (Cη′→η, C) , Φ−1

η′→η (ψη′→η ⊗
ψη) ∈ Dη′ and:

Φη′→η Xη′(s′, t′) Φ−1
η′→η (ψη′→η ⊗ ψη) = ψη′→η ⊗

[Xη(s, t)ψη] ,using:
∀(y, x) ∈ Cη′→η × Cη ,[

Tφ−1
η′→η(y,x) Φ−1

η′→η
(
ψη′→η ⊗ ψη

)] = ψη(x) [Tyψη′→η] ◦ Rη′→η + ψη′→η(y) [Tx ψη] ◦ Qη′→η .
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Moreover, Dη′→η⊗Dη (understood as a tensor product of vector spaces, ie. without any completion)is a dense subspace of Φη′→η 〈Dη′〉 and (Φη′→η Xη′(s′, t′) Φ−1
η′→η
) ∣∣∣

Dη′→η⊗Dη
= idHη′→η

∣∣∣
Dη′→η

⊗Xη(s, t) is
essentially self-adjoint (as a tensor product of essentially self-adjoint operators, see [73, theoremVIII.33] ), hence the unique self-adjoint extensions of Φη′→η Xη′(s′, t′) Φ−1

η′→η and idHη′→η ⊗ Xη(s, t)coincide. �

Proposition 18.4 We consider the same objects as in def. 18.2 and prop. 18.3. For any η ∈ L andany ρη ∈ Sη (with Sη the space of non-negative, traceclass operators on Hη), we define Wρη by:
Wρη : C∗η × P∗η → C(s, t) 7→ TrHη ρη Tη(s, t) .

The map W : (ρη)η∈L 7→ (
Wρη
)
η∈L is a bijection S

⊗(L,H,Φ) →W
↓(L, (C,P), (Q,P)) (where S

⊗(L,H,Φ) has beendefined in def. 5.2 ).
Proof For any η ∈ L, we denote by Wη the space of all continuous functions of positive type on
C∗η × P∗η (prop. C.6). From props. C.7 and C.10, the map Wη : ρη 7→ Wρη is a bijection Sη → Wη .Moreover, we have:

S
⊗(L,H,Φ) = {(ρη)η∈L ∣∣∣ ∀η, ρη ∈ Sη & ∀η 4 η′, ρη = TrHη′→η

(Φη′→η ρη′ Φ−1
η′→η
)} ,

and:
W
↓(L, (C,P), (Q,P)) = {(Wη

)
η∈L

∣∣∣ ∀η, Wη ∈Wη & ∀η 4 η′, Wη = Wη′ ◦
(
Q∗η′→η × P∗η′→η

)} .
Now, from eq. (18.3.1), we have, for any η 4 η′ and any ρη′ ∈ Sη′ :

Wη

(TrHη′→η

(Φη′→η ρη′ Φ−1
η′→η
)) = Wη′(ρη′) ◦ (Q∗η′→η × P∗η′→η) .

Thus, W is well-defined as a map S
⊗(L,H,Φ) →W

↓(L, (C,P), (Q,P)) and is bijective. �

Asking for a state to have finite variances in all position and configuration variables is expressed
at the level of its Wigner characteristic function by asking the latter to be twice differentiable at0, and the corresponding covariance matrix can be obtained from the Hessian of the character-
istic function (prop. C.8). In particular, the positivity requirement for the characteristic function
(eq. (C.6.1) ) gives rise to inequalities that have to be satisfied by the covariance matrix (def. 18.6.2):
these are nothing but the Heisenberg uncertainty relations (as is manifest from the rewriting in
prop. 18.7.2 or 18.7.3, since Vη(s, s) = ∆X2

η(s, 0) and Uη(t, t) = ∆X2
η(0, t) ). These inequalities will play

a crucial role for the result of the next subsection.

Moreover, the projective structure binding the partial characteristic functions of a projective state
together goes down to its covariance matrices on the various labels η, which arrange naturally into
their own projective structure.

Definition 18.5 Let ρ = (
ρη
)
η∈L ∈ S

⊗(L,H,Φ) and let (Wη
)
η∈L := W (ρ). We say that ρ is a narrow
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state if there exist, for any η ∈ L, a linear form W (1)
η and a symmetric bilinear form W (2)

η on C∗η×P∗ηsuch that:
∀(s, t) ∈ C∗η × P∗η , Wη(τs, τt) = 1 + i τ W (1)

η (s, t)− τ22 W (2)
η (s, t; s, t) + o(τ2) . (18.5.1)

From props. C.5 and C.8, we then have, for any η ∈ L :1. TrHη ρη = 1 (so that ρη is a density matrix on Hη);
2. ∀(s, t) ∈ C∗η × P∗η, TrHη ρη Xη(s, t) = W (1)

η (s, t) ;
3. ∀(s, t), (s′, t′) ∈ C∗η × P∗η, TrHη

Xη(s, t) ρη Xη(s′, t′) + Xη(s′, t′) ρη Xη(s, t)2 = W (2)
η (s, t; s′, t′) .

We denote the space of all narrow states by Ŝ⊗(L,H,Φ) .
Definition 18.6 We consider the same objects as in prop. 18.1. A projective family of variances isa family (Vη , Uη)η∈L such that:
1. for any η ∈ L, Vη , resp. Uη , is a strictly positive symmetric bilinear form on C∗η , resp. P∗η ;
2. for any η ∈ L and any (s, t) ∈ C∗η × P∗η , Vη(s, s) + Uη(t, t)− t(Ξ−1

η (s)) > 0;
3. for any η 4 η′ ∈ L, Vη = Vη′ ◦ (Q∗η′→η ×Q∗η′→η) & Uη = Uη′ ◦ (P∗η′→η × P∗η′→η) .
We denote by V

↓(L, (C,P), (Q,P)) the space of all projective families of variances.
Proposition 18.7 Let η ∈ L and let Vη , resp. Uη , be a strictly positive symmetric bilinear form on
C∗η , resp. P∗η . Let V−1

η , resp. U−1
η , be the strictly positive symmetric bilinear form on Cη , resp. Pη ,characterized by:

∀s, s′ ∈ C∗η , V−1
η
(
Vη(s, · ), Vη(s′, · )) = Vη(s, s′) ,resp. ∀t, t′ ∈ P∗η , U−1

η
(
Uη(t, · ), Uη(t′, · )) = Uη(t, t′) ,with the canonical identification C∗∗η ≈ Cη , resp. P∗∗η ≈ Pη .Then, the three following conditions are equivalent:

1. ∀(s, t) ∈ C∗η × P∗η , Vη(s, s) + Uη(t, t)− t(Ξ−1
η (s)) > 0;

2. ∀s ∈ C∗η , 2Vη(s, s)− 12 U−1
η
(Ξ−1

η (s), Ξ−1
η (s)) > 0;

3. ∀t ∈ P∗η , 2Uη(t, t)− 12 V−1
η
(Ξ∗,−1

η (t), Ξ∗,−1
η (t)) > 0.

Proof Let Ṽη be the linear map C∗η → Cη defined by:
∀s ∈ C∗η, Ṽη(s) = Vη(s, · ) ∈ C∗∗η ≈ Cη .

For any s 6= 0, we have s(Ṽη(s)) = Vη(s, s) > 0 (for Vη is strictly positive), hence Ṽη(s) 6= 0. Thus,
Ṽη is injective, and therefore bijective, since C∗η and Cη are finite-dimensional vector spaces of thesame dimension. V−1

η is then defined by:
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∀x, x ′ ∈ Cη , V−1
η (x, x ′) := Vη

(
Ṽ−1
η (x), Ṽ−1

η (x ′)) ,
and is therefore a strictly positive symmetric bilinear form on Cη. We have similarly Ũη : P∗η → Pηand U−1

η : Pη × Pη → R.
18.7.1 ⇒ 18.7.2 & 18.7.1 ⇒ 18.7.3 . We assume that 18.7.1 holds. Applying with (s, t) =(
s, 12 Ũ−1

η ◦ Ξ−1
η (s)) for some s ∈ C∗η yields:

Vη(s, s) + 14U−1
η
(Ξ−1

η (s), Ξ−1
η (s))− 12U−1

η
(Ξ−1

η (s), Ξ−1
η (s)) > 0 ,

where we have used:
∀p, p′ ∈ Pη ,

(
Ũ−1
η (p))(p′) = Uη

(
Ũ−1
η (p), Ũ−1

η (p′)) = U−1
η (p, p′) .Thus, we obtain the condition 18.7.2 . Similarly, we can prove that 18.7.1 implies 18.7.3 .

18.7.2 ⇒ 18.7.1 & 18.7.3 ⇒ 18.7.1 . We assume that 18.7.2 holds. Vη provides a scalar producton C∗η, so the strictly positive symmetric bilinear form U−1
η
(Ξ−1

η ( · ), Ξ−1
η ( · )) can be diagonalized ina Vη -orthonormal basis (fi)i∈{1,...,n} (with n := dimCη), ie. we have:

∀i, j ∈ {1, . . . , n} , Vη(fi , fj ) = δij & U−1
η
(Ξ−1

η (fi), Ξ−1
η (fj )) = λ(i) δij ,with ∀i ∈ {1, . . . , n} , λ(i) > 0. Next, the condition 18.7.2 can be rewritten:

∀i ∈ {1, . . . , n} , λ(i) 6 4 .Moreover, defining, for any i ∈ {1, . . . , n}, gi = Ξ∗η(ei) with (ei)i∈{1,...,n} the basis in Cη dual to(fi)i∈{1,...,n} , we have:
∀i, j ∈ {1, . . . , n} , λ(i) δij = U−1

η
(Ξ−1

η (fi), Ξ−1
η (fj )) = Uη

(
λ(i) gi, λ(j) gj)

where we have used that, for any i ∈ {1, . . . , n}, Ũ−1
η ◦ Ξ−1

η (fi) = λ(i) gi . Hence, we get:
∀i, j ∈ {1, . . . , n} , Uη(gi, gj) = δij

λ(j) .
Let s = si fi ∈ C∗η and t = tj gj ∈ P∗η (with implicit summation). We have:

Vη(s, s) + Uη(t, t)− t(Ξ−1
η (s)) = sisi + tjtj

λ(j) − si ti .Now, for any σ, τ ∈ R, and any λ ∈ ]0, 4], we have:
σ 2 + τ2

λ − στ > 0 ,
so 18.7.1 is fulfilled. Similarly, we can prove that 18.7.3 implies 18.7.1 . �

Proposition 18.8 Let ρ = (ρη)η∈L ∈ Ŝ⊗(L,H,Φ) and let (Wη
)
η∈L := W (ρ). For any η ∈ L, we define:

∀(s, s′) ∈ C∗η , Vη(s, s′) := W (2)
η (s, 0; s′, 0)−W (1)

η (s, 0)W (1)
η (s′, 0) ,

& ∀(t, t′) ∈ P∗η , Uη(t, t′) := W (2)
η (0, t; 0, t′)−W (1)

η (0, t)W (1)
η (0, t′) ,
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with W (1)
η and W (2)

η as in def. 18.5.Then, (Vη , Uη)η∈L ∈ V
↓(L, (C,P), (Q,P)) . Accordingly, we define the map V as:

V : Ŝ⊗(L,H,Φ) → V
↓(L, (C,P), (Q,P))

ρ 7→
(
Vη , Uη

)
η∈L

.
Proof Let η ∈ L , (s, t) ∈ C∗η×P∗η , and τ ∈ R. Applying eq. (18.2.1) for the points (0, 0), (τs, 0), (0, τt)with respective coefficients −(1 + i), e−iτ W (1)

η (s,0), i e−iτ W (1)
η (0,t) yields:

4 + 2 Re[(i − 1) e−iτ W (1)
η (s,0)Wη(τs, 0)− (1 + i) e−iτ W (1)

η (0,t)Wη(0, τt) +
+ i e−iτ W

(1)
η (−s,t) ei τ22 t◦Ξ−1

η (s)Wη(−τs, τt)] > 0 ,
where we have used that Wη(0, 0) = 1 and that, for any (s′, t′) ∈ C∗η × P∗η , Wη(−s′, −t′) = W (s′, t′)(prop. C.6; note that this in particular accounts for the reality of W (1)

η and W (2)
η ). Now, for any(s′, t′) ∈ C∗η × P∗η , we have the expansion:

e−iτ W
(1)
η (s′,t′)Wη(τs′, τt′) = 1− τ22 W (2)

η (s′, t′; s′, t′) + τ22 [
W (1)

η (s′, t′)]2 + o(τ2) .
Inserting in the previous inequality, we get:

4 + 2 [−2 + τ22 Vη(s, s) + τ22 Uη(t, t)− τ22 t ◦ Ξ−1
η (s) + o(τ2)] > 0 .

Hence, we have, for any (s, t) ∈ C∗η × P∗η :
Vη(s, s) + Uη(t, t)− t ◦ Ξ−1

η (s) > 0 . (18.8.1)
Let s ∈ C∗η with s 6= 0. We have Ξ−1

η (s) 6= 0, so there exists ts ∈ P∗η such that ts ◦ Ξ−1
η (s) = 1.Applying eq. (18.8.1) with (0, ts) yields u := Uη(ts, ts) > 0, allowing us to define t := 11+u ts .Applying again eq. (18.8.1), now with (s, t), we get:

Vη(s, s)− 1(1 + u)2 > 0 ,
so Vη(s, s) > 0. Similarly, we have, for any t ∈ P∗η , t 6= 0 ⇒ Uη(t, t) > 0. Thus, def. 18.6.1 and18.6.2 are fulfilled (actually, we have shown that 18.6.1 is implied by 18.6.2).Let η 4 η′ ∈ L. From Wη = Wη′ ◦ (Q∗η′→η × P∗η′→η) together with eq. (18.5.1) implies, for any(s, t) ∈ C∗η × P∗η :

W (1)
η (s, t) = W (1)

η′ (s′, t′) & W (2)
η (s, t; s, t) = W (2)

η′ (s′, t′; s′, t′) ,
with (s′, t′) := (Q∗η′→η(s), P∗η′→η(t)). Hence, def. 18.6.3 holds. �

The Heisenberg uncertainty relations that a projective family of covariance matrices need to
satisfy if there exists a narrow quantum state with these covariances turn out to also be a sufficient
condition for the existence of such a state. Indeed, we can construct a Gaussian operator combining
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the covariance matrix for the configuration variables with the one for the momentum variables,
and the uncertainty relations are precisely what is required for this operator to be a positive semi-
definite operator of unit trace, ie. a density matrix. Moreover, the projective conditions between
the covariance matrices ensure that these Gaussian operators assemble into a projective quantum
state. Although this is remarkably easy to check at the level of the characteristic functions (where
the projections are simply restrictions so that the compatibility of the Gaussian states on various
labels can be directly read out from the expression of their characteristic functions), it is instructive
to understand how taking the partial trace of Gaussian states works, in particular how the form
of factorization Cη′ ≈ Cη′→η × Cη conspires with the expression for the Gaussian states so that
the correct projections get respectively applied on the covariance matrices for the positions and
momenta (in accordance with the projection Mη′ →Mη ).

Note that this is the point where it is critical to be working on linear configuration spaces. While
the Wigner transform machinery could be adapted, for example, to the case of a compact group
G [1] , the nice projection property of Gaussian distributions is what makes the construction of
projective coherent states in the linear case much easier than in the L2 (GN) case: even in the
easiest – G = U(1) – case, the equivalent of Gaussian states, namely Hall states [42] , do not have
such a nice behavior under partial trace.

Proposition 18.9 Let (Vη , Uη)η∈L ∈ V
↓(L, (C,P), (Q,P)) . Then, there exists ρ ∈ Ŝ⊗(L,H,Φ) such that

V (ρ) = (
Vη , Uη

)
η∈L , with V the map introduced in prop. 18.8. In other words, the map V issurjective.

Proof Let η ∈ L. Let (ei)i∈{1,...,n} , (fi)i∈{1,...,n} and (λ(i))i∈{1,...,n} be as in the proof of prop. 18.7. Forany k1, . . . , kn ∈ N, we define ψk1,...,kn as:
∀x = xi ei ∈ Cη , ψk1,...,kn(x) := 1

√αη

n∏
i=1

1
π1/4 λ1/8(i) √ki! 2ki e−

(xi)22√λ(i) Hki

(
xi

λ1/4(i)
) ,

where for any k ∈ N, Hk is the k-th Hermite polynomial:
∀t ∈ R, Hk (t) := (−1)k et2 dkdtk e−t2 ,

and αη is such that dµη(xi ei) = αη dx1 . . . dxn . Then, for any k1, . . . , kn ∈ N, ψk1,...,kn ∈ Hη =
L2(Cη , dµη) with ‖ψk1,...,kn‖Hη

= 1. Next, we define:
ρη := ∞∑

k1,...,kn=0
 n∏
i=1

2√λ(i)2 +√λ(i)
(2−√λ(i)2 +√λ(i)

)ki
 |ψk1,...,kn 〉 〈 ψk1,...,kn| .

Using that ∀i ∈ {1, . . . , n} , λ(i) ∈ ]0, 4] (from the proof of prop. 18.7), ρη is a non-negative operatoron Hη and we have:
‖ρη‖1 6

∞∑
k1,...,kn=0

∣∣∣∣∣∣
n∏
i=1

2√λ(i)2 +√λ(i)
(2−√λ(i)2 +√λ(i)

)ki
∣∣∣∣∣∣ ‖ψk1,...,kn‖2Hη

= 1 ,
where ‖ · ‖1 denotes the trace norm [73, theorem VI.20]. Hence, ρ is a (self-adjoint), positive semi-
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definite, traceclass operator on Hη . Using Mehler formula [61], its kernel is given by:
∀x = xi ei , y = yi ei ∈ Cη ,

ρη(x;y) := ∞∑
k1,...,kn=0

 n∏
i=1

2√λ(i)2 +√λ(i)
(2−√λ(i)2 +√λ(i)

)ki
 ψk1,...,kn(x)ψk1,...,kn(y)

= 1
αη (2π)n/2 exp [− n∑

i=1
12
(
xi + yi2

)2 + 12 λ(i) (xi − yi)2
]

= 1
αη (2π)n/2 exp [−12 V−1

η

(x + y2 , x + y2 )
− 12 Uη (Ξ∗η(x − y) , Ξ∗η(x − y))] .

Thus, for any (s, t) ∈ C∗η × P∗η, we get, using the expression for Tη(s, t) from prop. 18.3:
Wρη(s, t) := TrHη ρη Tη(s, t)

= 1
αη (2π)n/2

∫
dµη(x) exp [i s(x) + i2 t (Ξ−1

η (s))+
−12 V−1

η

(
x + Ξ∗,−1

η (t)2 , x + Ξ∗,−1
η (t)2

)
− 12 Uη (t, t) ]

= exp [−12 Vη(s, s)− 12 Uη(t, t)
] .

From 18.6.3, we have, for any η 4 η′ ∈ L, Wρη = Wρη′ ◦
(
Q∗η′→η × P∗η′→η

), hence, from theproof of prop. 18.4, ρη = TrHη′→η

(Φη′→η ρη′ Φ−1
η′→η
). So ρ := (

ρη
)
η∈L ∈ S

⊗(L,H,Φ) , and we have(
Wρη
)
η∈L = W (ρ). Moreover, for any η ∈ L, we get the expansion:
∀(s, t) ∈ C∗η × P∗η, Wρη(τs, τt) = 1− τ22 Vη(s, s)− τ22 Uη(t, t) + o(τ2) .

Therefore, ρ ∈ Ŝ⊗(L,H,Φ) with:
∀η ∈ L, W (1)

η (s, t) = 0 & W (2)
η (s, t; s, t) = Vη(s, s) + Uη(t, t) .

In particular, this implies V (ρ) = (Vη , Uη)η∈L .
Note. One can also check directly that, for any η 4 η′ ∈ L, ρη = TrHη′→η

(Φη′→η ρη′ Φ−1
η′→η
). Indeed,denoting by ρ(η′)

η the integral kernel of TrHη′→η

(Φη′→η ρη′ Φ−1
η′→η
), we have:

∀x, y ∈ Cη , ρ(η′)
η (x; y) = ∫ dµη′→η(z) ρη′(φ−1

η′→η(z, x); φ−1
η′→η(z, y)) .

Now, for any x, y ∈ Cη and any z ∈ Cη′→η , the definition of φη′→η together with Qη′→η ◦ Ξ∗,−1
η′ ◦

P∗η′→η = Ξ∗,−1
η (from the proof of prop. 18.3) yields:

φ−1
η′→η(z, x) = Kη′→η(z) + Jη′→η(x) ,

with Jη′→η := Ξ∗,−1
η′ ◦ P∗η′→η ◦ Ξ∗η and Kη′→η the canonical injection of Cη′→η = KerQη′→η in Cη′ . So
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we get:
Uη′
(Ξ∗η′ [φ−1

η′→η(z, x)− φ−1
η′→η(z, y)] , Ξ∗η′ [φ−1

η′→η(z, x)− φ−1
η′→η(z, y)]) == Uη′

(
P∗η′→η ◦ Ξ∗η(x − y) , P∗η′→η ◦ Ξ∗η(x − y))= Uη
(Ξ∗η(x − y) , Ξ∗η(x − y)) ,as well as:

V−1
η′

(
φ−1
η′→η(z, x) + φ−1

η′→η(z, y)2 ,
φ−1
η′→η(z, x) + φ−1

η′→η(z, y)2
) =

= [Z̃ (η′)
η (z)] (z) + 2 [X̃ (η′)

η

(x + y2 )] (z) + [Ỹ (η′)
η

(x + y2 )] (x + y2 ) ,
with:

X̃ (η′)
η := K ∗η′→η ◦ Ṽ−1

η′ ◦ Jη′→η , Ỹ (η′)
η := J∗η′→η ◦ Ṽ−1

η′ ◦ Jη′→η & Z̃ (η′)
η := K ∗η′→η ◦ Ṽ−1

η′ ◦ Kη′→η ,
where Ṽη′ is defined as in the proof of prop. 18.7. For any z ∈ Cη′→η \ {0} , def. 18.6.1 implies:[

Z̃ (η′)
η (z)] (z) = Vη′

(
Ṽ−1
η′ ◦ Kη′→η(z), Ṽ−1

η′ ◦ Kη′→η(z)) > 0,
hence Z̃ (η′)

η : Cη′→η → C∗η′→η is invertible, and the above equation becomes:
V−1
η′

(
φ−1
η′→η(z, x) + φ−1

η′→η(z, y)2 ,
φ−1
η′→η(z, x) + φ−1

η′→η(z, y)2
) =

= [Z̃ (η′)
η

(
z + (Z̃ (η′)

η )−1 ◦ X̃ (η′)
η

(x + y2 ))](
z + (Z̃ (η′)

η )−1 ◦ X̃ (η′)
η

(x + y2 ))+
+[(Ỹ (η′)

η − (X̃ (η′)
η )∗ ◦ (Z̃ (η′)

η )−1 ◦ X̃ (η′)
η

)(x + y2 )] (x + y2 ) .
On the other hand, using:

Kη′→η ◦ Rη′→η + Jη′→η ◦ Qη′→η = idCη′ , Qη′→η ◦ Kη′→η = 0 & Qη′→η ◦ Jη′→η = idCη

(as follows from the expressions for φη′→η and φ−1
η′→η), together with Ṽη = Qη′→η ◦ Ṽη′ ◦ Q∗η′→η, wecan check that:

Ṽη
(
Ỹ (η′)
η − (X̃ (η′)

η )∗ ◦ (Z̃ (η′)
η )−1 ◦ X̃ (η′)

η

) = idCη (18.9.1)
(noting that Ṽη is the lower right block of (Rη′→η , Qη′→η

)
◦ Ṽη′ ◦

(
R∗η′→η , Q∗η′→η

) , which is theinverse of (K ∗η′→η , J∗η′→η) ◦ Ṽ−1
η′ ◦

(
Kη′→η , Jη′→η

) , eq. (18.9.1) can be visualized by performing ablockwise matrix inversion of the latter). Putting everything together and carrying out the Gaussianintegration over z, we get:
∀x, y ∈ Cη , ρ(η′)

η (x; y) ∝ exp [−12 V−1
η

(x + y2 , x + y2 )
− 12 Uη (Ξ∗η(x − y), Ξ∗η(x − y))] ,

so TrHη′→η

(Φη′→η ρη′ Φ−1
η′→η
)
∝ ρη , the proportionality factor being determined to be 1 from:
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TrHη TrHη′→η

(Φη′→η ρη′ Φ−1
η′→η
) = TrHη′ ρη′ = 1 = TrHη ρη .

�

18.2 A no-go result in the G = R case

To prove the advertised no-go result in the case of the holonomy-flux algebra with G = R (using
the projective system set up in sections 10 and 12), it will be enough to concentrate on a certain
(uncountable) subset of observables out of this algebra. So, we will choose an edge, that we will
identify with the line segment [0, 1] , and a continuous stack of surfaces intersecting this edge, one
for each point in ] 0, 1] (see fig. 18.1). We will keep, for each surface, only its face looking at 0.
Moreover, for all holonomies included in the selected edge to have finite variance, it would be
sufficient that all holonomies ending at 0 would have finite variance, since the holonomy between
e and e′ can be expressed as a composition of the one between e and 0 and the one between e′

and 0 (hence would have finite variance if those two had).

Thus, we will attach, to each point e in ] 0, 1], the holonomy starting at e (and ending at 0),
as well as the flux that acts at the onset of this holonomy. It is manifest from the symplectic
structure in prop. 18.10 that these pairs of variables attached to the various points in ] 0, 1] are not
independent canonically conjugate pairs: instead, the flux at some point e acts on all holonomies
that start at or above e. As announced in section 17, these uncountably many non-zero commutators
will play a decisive role in the proof.

Now, suppose that it would be possible to construct a quantum state in which all those holonomies
and fluxes would have finite variances. Then, the points in ] 0, 1] could be organized into countably
many (overlapping) classes: a point would belong to the class indexed by some A ∈ N if the variance
of both the holonomy and flux attached to this point would be less than A. The assumption of all
those variances being finite would ensure that each point belongs at least to one of those classes,
so, as there are uncountably many points in ] 0, 1] , there should exist some A whose class K would
be uncountable, hence infinite.

Finally given n points in this infinite set K, we will, in the proof of lemma 18.12, combine
the variances of the holonomies and fluxes attached to these points into a quadratic expression,
that should, if all these variances were bounded by a constant A, be bounded independently of
n. However, we will show that, by virtue of the Heisenberg uncertainty relations, this quadratic
expression can be bounded below by a diverging expression of n.

Proposition 18.10 We define the label set L(aux) as the set of all finite subsets of points in ] 0, 1 ] :
L(aux) := {κ ⊂ ] 0, 1 ] | #κ < ∞} .We equip L(aux) with the partial order ⊂ (set inclusion). For any κ = (e1, . . . , en) ∈ L(aux), with

e1 < . . . < en , we define:
C(aux)
κ := {h : κ → R} & P(aux)

κ := {P : κ → R} ,as well as the linear map Ξ(aux)
κ : P(aux)

κ → C(aux),∗
κ given by:
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∀P ∈ P(aux)
κ , ∀h ∈ C(aux)

κ , Ξ(aux)
κ (P)(h) := n∑

k=1 P(ek )h(ek )− n−1∑
k=1 P(ek+1)h(ek ) .

Ξ(aux)
κ is invertible, with Ξ(aux),−1

κ such that:
∀s ∈ C(aux),∗

κ , ∀e ∈ κ,
[Ξ(aux),−1

κ (s)] (e) = s
(
e′ 7→

{1 if e 6 e′0 else ) .
We equip M(aux)

κ := C(aux)
κ × P(aux)

κ with the symplectic structure Ω(aux)
κ defined from Ξ(aux)

κ as inprop. 18.1.For any κ ⊂ κ ′ ∈ L(aux), we define:
Q(aux)
κ′→κ : C

(aux)
κ′ → C

(aux)
κ

h 7→ h|κ
&

P (aux)
κ′→κ : P

(aux)
κ′ → P

(aux)
κ

P 7→ P|κ
,

and π(aux)
κ′→κ = Q(aux)

κ′→κ×P
(aux)
κ′→κ . Then, (L(aux), M(aux), π(aux))↓ is a projective system of phase spaces andfulfills prop. 18.1.1 and 18.1.2. We denote by (L(aux), H(aux), Φ(aux))⊗ the corresponding projectivesystem of quantum state spaces.

Proof L(aux) is a directed set, since any two finite subsets of ] 0, 1 ] are included in their union andthis union is finite. Let κ = (e1, . . . , en) ∈ L(aux) with e1 < . . . < en . Ξ(aux)
κ being invertible can bechecked from the expression given for Ξ(aux),−1

κ and this ensures that Ω(aux)
κ is indeed a symplecticform (aka. an anti-symmetric, non-degenerate form).For any κ ⊂ κ ′ ∈ L(aux), π(aux)

κ′→κ is a surjective map Mκ′ → Mκ and is compatible with thesymplectic structures, for we have:
Ξ(aux),−1
κ = P (aux)

κ′→κ ◦ Ξ(aux),−1
κ′ ◦ Q(aux),∗

κ′→κ .
Moreover, for any κ ⊂ κ ′ ⊂ κ ′′ ∈ L(aux), π(aux)

κ′′→κ = π(aux)
κ′→κ ◦ π

(aux)
κ′′→κ′ . Therefore, (L(aux), M(aux), π(aux))is a projective system of phase spaces. Prop. 18.1.1 and 18.1.2 are fulfilled by construction with

∀κ ∈ L(aux), Lκ = idMκ . �

Theorem 18.11 With the notations of def. 18.6 and prop. 18.10, V↓(aux) := V
↓(L(aux), (C(aux),P(aux)), (Q(aux),P(aux))) =

∅. Hence, prop. 18.8 implies that Ŝ⊗(aux) := Ŝ⊗(L(aux),H(aux),Φ(aux)) = ∅.
Lemma 18.12 Let K be a countably infinite subset of ] 0, 1 ] and let A > 0. We define:

V
↓(K,A) := {(Vκ, Uκ)κ ∈ V

↓(aux)
∣∣∣ ∀κ ⊂ K, ∀e ∈ κ, Vκ(h[e]

κ , h[e]
κ ) 6 A & Uκ(P[e]

κ , P[e]
κ ) 6 A

} ,
with ∀κ ∈ L(aux), ∀e ∈ κ, h[e]

κ := (h 7→ h(e)) & P[e]
κ := (P 7→ P(e)) . Then, V↓(K,A) = ∅.

Proof Proceeding by contradiction, we suppose that there exists (Vκ, Uκ)κ ∈ V
↓(K,A) . Let n ∈ N.Since K is infinite, there exist κ = (e1, . . . , en) ⊂ K with e1 < . . . < en . Then, we have:

1
n

n∑
k=1 Vκ

(h[ek ]
κ , h[ek ]

κ

) + Uκ
(P[ek ]

κ , P[ek ]
κ

)
6 2A .
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We define the n by n matrix M (n) by:
∀k, l ∈ {1, . . . , n} , M (n)

kl := P[ek ]
κ

(Ξ(aux),−1
κ

(h[el ]
κ
)) = {1 if k 6 l0 else .

Performing a singular value decomposition of M (n) there exist two n by n orthogonal matrices O(n)and O′(n), and a diagonal matrix ∆(n) with non-negative real entries, such that:
M (n) = O′(n)> ∆(n)O(n) ,where ( · )> denotes the transpose matrix. Defining, for any k ∈ {1, . . . , n}, sk ∈ C(aux),∗

κ and
tk ∈ P(aux),∗

κ by:
sk := n∑

l=1 O
(n)
kl h[el ]

κ & tk := n∑
l=1 O

′(n)
kl P[el ]

κ ,
we get:

1
n

n∑
k=1 Vκ (sk , sk ) + Uκ (tk , tk ) = 1

n

n∑
l=1 Vκ

(h[el ]
κ , h[el ]

κ

) + Uκ
(P[el ]

κ , P[el ]
κ

)
6 2A .

On the other hand, from def. 18.6.2, we have:1
n

n∑
k=1 Vκ (sk , sk ) + Uκ (tk , tk ) > 1

n

n∑
k=1 tk

(Ξ(aux),−1
κ (sk ))

= 1
nTr [O′(n)M (n)O(n)>] = 1

nTr ∆(n) = 1
nTr√M (n)>M (n) .

Now, N(n) := 1
n2 M (n)>M (n) is given by:

∀k, l ∈ {1, . . . , n} , N(n)
kl = 1

n2
n∑

m=1M
(n)
mk M

(n)
ml = 1

n2
min(k,l)∑
m=1 1 = 1

n min(kn, ln
) ,

and the previous inequalities requires Tr√N(n) 6 2A.On the complex Hilbert space J := L2 ([0, 1] , dµ[0,1]) (with dµ[0,1] the usual, normalized measureon [0, 1] ), we define, for any n ∈ N, a bounded operator N [n] by:
∀ζ ∈ J, ∀x ∈ [0, 1] , [N [n]ζ] (x) := n∑

l=1 min([x ]n , ln
)∫ l

n

l−1
n

dy ζ(y)
= ∫ 1

0 dy min ([x ]n , [y]n) ζ(y) ,
with [x ]n := 1

ndn xe and d · e the ceiling function. For any m ∈ {1, . . . , n}, we define u[n]
m ∈ J by:

∀x ∈ [0, 1] , u[n]
m (x) := √nO(n)

mdnxe .
We have 〈u[n]

m

∣∣∣ u[n]
m′

〉
J
= δmm′ and, using N(n) = O(n)> (∆(n)

n

)2
O(n) :
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N [n] = n∑
m=1
(∆(n)

mm

n

)2 ∣∣u[n]
m
〉 〈

u[n]
m
∣∣ .

Now, we define a bounded operator N [∞] on J by:
∀ζ ∈ J, ∀x ∈ [0, 1] , [N [∞]ζ] (x) = ∫ 1

0 dy min (x, y) ζ(y)
= ∫ x

0 dy y ζ(y) + x
∫ 1
x
dy ζ(y) ,

and, for any m ∈ N \ {0}, we define u[∞]
m ∈ J by:

∀x ∈ [0, 1] , u[∞]
m (x) := √2 sin [(m− 12

)
π x
] .

We have 〈u[∞]
m

∣∣∣ u[∞]
m′

〉
J
= δmm′ and:

N [∞]u[∞]
m = 4

π2 (2m− 1)2 u[∞]
m .

Since ∞∑
m=1

2
π (2m− 1) =∞, there exists M ∈ N \ {0} such that:

M∑
m=1

2
π (2m− 1) > 2A+ 1 .

Let n ∈ N such that n > 8π2M3 and complete (u[n]
m
)
m∈{1,...,n} into an orthonormal basis (u[n]

m
)
m∈N\{0}of J. For any m ∈ {1, . . . ,M} , we have:∥∥N [∞] u[∞]

m −N [n] u[∞]
m
∥∥ 6 ∥∥N [∞] −N [n]∥∥ ∥∥u[∞]

m
∥∥ 6 1

n .
But we also have:∥∥N [∞] u[∞]

m −N [n] u[∞]
m
∥∥2 = 1

n4
∞∑

m′=1
∣∣∣∣(∆(∞)

mm
)2 − (∆(n)

m′m′

)2∣∣∣∣2 ∣∣∣∣〈u[n]
m′

∣∣∣ u[∞]
m

〉
J

∣∣∣∣2
where ∆(∞)

mm := 2n
π (2m− 1) and, for any m′ > n, ∆(n)

m′m′ := 0. Thus, we get:
1
n4
[ inf
m′∈N\{0}

∣∣∣∣(∆(∞)
mm
)2 − (∆(n)

m′m′

)2∣∣∣∣]2 ∞∑
m′=1

∣∣∣∣〈u[n]
m′

∣∣∣ u[∞]
m

〉
J

∣∣∣∣2 6 1
n2 ,

and therefore:
inf

m′∈N\{0}
∣∣∣∣(∆(∞)

mm
)2 − (∆(n)

m′m′

)2∣∣∣∣ 6 n .
Hence, for any m ∈ {1, . . . ,M} , there exists m̃ ∈ N \ {0}, such that:
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∣∣∣∣∣∣ 4
π2 (2m− 1)2 −

(∆(n)
m̃m̃
n

)2∣∣∣∣∣∣ 6 2
n .

Using ∆(n)
m̃m̃ > 0 and n > 8π2M3 , this implies:∣∣∣∣∣ 2

π (2m− 1) − ∆(n)
m̃m̃
n

∣∣∣∣∣ =
∣∣∣∣∣∣ 4
π2 (2m− 1)2 −

(∆(n)
m̃m̃
n

)2∣∣∣∣∣∣
∣∣∣∣∣ 2
π (2m− 1) + ∆(n)

m̃m̃
n

∣∣∣∣∣
−1
6

14πM2 .
On the other hand, for any m′ > n, we have:∣∣∣∣∣ 2

π (2m− 1) − ∆(n)
m′m′

n

∣∣∣∣∣ > 1
πM >

1
πM2 ,

so m̃ 6 n. Next, for any m 6= m′ ∈ {1, . . . ,M}, the inequality:∣∣∣∣ 2
π (2m− 1) − 2

π (2m′ − 1)
∣∣∣∣ > 1

πM2
holds, so m̃ 6= m̃′. Therefore, we obtain:

n∑
m̃=1

∆(n)
m̃m̃
n >

M∑
m=1

∆(n)
m̃m̃
n >

M∑
m=1

2
π (2m− 1) − 14πM > 2A ,

in contradiction with 1
n Tr ∆(n) 6 2A , whence the initial assumption on the existence of (Vκ, Uκ)κ ∈

V
↓(K,A) is proven wrong. �

Proof of theorem 18.11 Again, we proceed by contradiction and we suppose that there exists(Vκ , Uκ)κ ∈ V
↓(aux) . For any e ∈ ] 0, 1 ] , we define V [e] := Vκ

(h[e]
κ , h[e]

κ

) and U [e] := Uκ
(P[e]

κ , P[e]
κ

)
for some κ ∈ L(aux) such that e ∈ κ . If κ ′ ∈ L(aux) is such that e ∈ κ ′, then κ, κ ′ ⊂ κ ∪ κ ′ ∈ L(aux)and:

Vκ′
(h[e]

κ′ , h[e]
κ′

) = Vκ∪κ′
(
Q(aux),∗
κ∪κ′→κ′

(h[e]
κ′
)
, Q(aux),∗

κ∪κ′→κ′
(h[e]

κ′
)) = Vκ∪κ′

(h[e]
κ∪κ′, h[e]

κ∪κ′

)
= Vκ

(h[e]
κ , h[e]

κ

) = V [e] .
Similarly, Uκ′ (P[e]

κ′ , P[e]
κ′

) = U [e] . Now, we have:
] 0, 1 ] = ∞⋃

A=1
{
e ∈ ] 0, 1 ] ∣∣ V [e] 6 A & U [e] 6 A

} ,
and since ] 0, 1 ] is uncountably infinite, there exists A ∈ N \ {0} such that:{

e ∈ ] 0, 1 ] ∣∣ V [e] 6 A & U [e] 6 A
}

is infinite, hence contains some countably infinite subset K. Then, we have (Vκ , Uκ)κ ∈ V
↓(K,A) , butthis is impossible since V

↓(K,A) = ∅ from the previous lemma. �

Proposition 18.13 Let LHF be the directed label set defined in def. 10.12. For any η ∈ LHF, let
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CRη := {h : γ(η)→ R}, PRη := {P : F(η)→ R} (with γ(η) and F(η) as in def. 10.12 ), MR
η := T ∗(CRη )and, for any η 4 η′ ∈ LHF, let πRη′→η : MR

η′ → MR
η be defined as in prop. 10.26 in the specialcase G = (R, +). Then, (LHF, MR, πRη′→η

)↓ is a projective system of phase spaces fulfilling thehypotheses of prop. 18.1, with:
1. ∀η ∈ LHF, ∀P ∈ PRη , ΞRη (P) : h 7→ ∑

e∈γ(η)P ◦ χη(e) h(e) (with χη as in def. 10.12 );
2. ∀η ∈ LHF, ∀(h, p) ∈ MR

η , LRη (h, p) := (
h, F 7→ p

(
δχ−1

η (F ))) (with, for any F ∈ F(η) and any
e ∈ γ(η), δχ−1

η (F )(e) = 1 if χη(e) = F , and 0 otherwise);
3. ∀η 4 η′ ∈ LHF, ∀hη′ ∈ CRη′ , QRη′→η(hη′) : e 7→ nη′→η,e∑

k=1 εη′→η,e(k) hη′ ◦ aη′→η,e(k) (with the notations
of prop. 10.23);

4. ∀η 4 η′ ∈ LHF, ∀Pη′ ∈ PRη′ , PRη′→η(Pη′) : F 7→ ∑
F ′∈H(1,3)

η′→η,F

Pη′(F ′) (with H(1,3)
η′→η,F also from

prop. 10.23).The projective system of quantum state spaces (LHF, HR, ΦR)⊗ provided by prop. 12.1 (in thespecial case G = (R, +) ) can be identified with the one provided by prop. 18.1. Moreover, for any
η ∈ LHF and any (s, t) ∈ CR,∗η × PR,∗η ,

XRη (s, t) = ∑
e∈γ(η) s(δe) ĥ(e,idR)

η −
∑
F∈F(η) t(δF ) P̂(F,1)

η ,
using the densely defined, essentially self-adjoint operators introduced in eqs. (12.2.1) and (12.2.2)(the minus sign is the result of conflicting conventions in props. B.14 and C.5).
Proof Assertions 18.1.1 and 18.1.2. Let η ∈ LHF. ΞRη is an invertible linear map Pη → C∗η with:
∀p ∈ C∗η, ΞR,−1

η (p) : F 7→ p
(
δχ−1

η (F )) .
Next, LRη is an invertible linear map MR

η → CRη × PRη , with:
∀(h, P) ∈ CRη × PRη , LR,−1

η (h, P) = (h, h′ 7→ ∑
e∈γ(η)P ◦ χη(e) h′(e)) .

Let ΩRη be the symplectic structure on CRη × PRη defined by:
∀h, h′ ∈ Cη , ∀P, P ′ ∈ Pη , ΩRη (h, P; h′, P ′) := ΞRη (P ′)(h)− ΞRη (P)(h′) .We have:
∀(h, p), (h′, p′) ∈MR

η ,
(
LR,∗η ΩRη )(h, p; h′, p′) = p′(h)− p(h′) .

Hence, LRη is a symplectomorphism (with respect to the canonical symplectic structure on MR
η =

T ∗(CRη ), see eq. (2.16.1) ). Moreover, it coincides with the map defined in prop. 10.26 in the case
G = (R, +).
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Let η 4 η′ ∈ LHF . Using prop. 10.26 we have, for any hη′ , Pη′ ∈ CRη′ × PRη′ :
LRη ◦ πRη′→η ◦ L

R,−1
η′ (hη′ , Pη′) = (QRη′→η(hη′), PRη′→η(Pη′)) .

Projective of quantum state spaces. For any η 4 η′ ∈ LHF, let CRη′→η and φRη′→η , resp. Cη′→η and
φη′→η , be defined as in prop. 10.24 (with G = (R,+) ), resp. as in prop. 18.1. It follows from theuniqueness part of prop. 2.10 and from the connectedness of Mη′ that the tangential lifts of the maps
φRη′→η and φη′→η must coincide modulo a suitable symplectomorphic identification of the cotangentbundles T ∗(CRη′→η) and T ∗(Cη′→η). Hence, the maps φRη′→η and φη′→η themselves coincide modulo adiffeomorphic identification of the manifolds CRη′→η and Cη′→η . Therefore, the associated projectivesystems of quantum state spaces coincide modulo a unitary identification of the Hilbert spaces
HR

η′→η := L2(CRη′→η) and Hη′→η := L2(Cη′→η) .
Observables. Let (s, t) ∈ CR,∗η × PR,∗η and ψ ∈ DR

η := C∞o (CRη , C) . For any h ∈ CRη , we have:[XRη (s, t)ψ] (h) := s(h)ψ(h)− i [Thψ] (ΞR,∗,−1
η (t))

= ∑
e∈γ(η) s(δe)h(e)ψ(h)− ∑

F∈F(η) i t(δF ) [Thψ] (δχ−1
η (F )) ,

where we have used that, for any F ∈ F(η), ΞR,∗,−1
η (t)(χ−1

η (F )) = t(δF ) . Now, specializing thedefinitions from prop. 12.2 to the case G = (R,+), this can be rewritten as:[XRη (s, t)ψ] (h) = ∑
e∈γ(η) s(δe) [ĥ(e,idR)

η ψ
](h)− ∑

F∈F(η) t(δF ) [P̂(F,1)
η ψ

](h) .
�

Proposition 18.14 With the notations of def. 18.5 and prop. 18.13, Ŝ⊗(LHF,HR,ΦR) = ∅.
Proof Directed pre-order on LHF t L(aux). Let Ψ : U → V be an analytical coordinate patch on Σ,with U an open neighborhood of 0 in Rd (recall that d := dim(Σ) > 1). Let ε such that B(d)

ε ⊂ U .For any τ 6= τ ′ ∈ [0, 2] we define:
ĕτ,τ ′ : Uτ,τ ′ ⊂ Rd ≈ R×Rd−1 → V(x, y) 7→ Ψ( ε2(τ + x (τ ′ − τ)), ε2 y) ,

where Uτ,τ ′ = {(x, y) ∈ Rd ≈ R×Rd−1 ∣∣∣∣ (τ + x (τ ′ − τ), y) ∈ 2
ε U
} is an open neighborhood of

[0, 1] × {0}d−1 in Rd. We denote by eτ,τ ′ be the corresponding edge. Next, for any τ ∈ [0, 1] wedefine S̆τ ≡ ĕτ,2 and we note that Uτ,2 is an open neighborhood of {0} × B(d−1) in Rd. We denoteby Sτ the corresponding surface.Let κ = (τ1, . . . , τn) ∈ L(aux), with 0 < τ1 < . . . < τn 6 1 . We define (fig. 18.1):
γκ := {eτi , τi−1/2

∣∣ i ∈ {1, . . . , n}} ∪ {eτi , τi+1/2
∣∣ i ∈ {1, . . . , n}} ∈ Lgraphs ,

where τ1/2 := 0, τn+1/2 := 2 and, for any i ∈ {1, . . . , n − 1}, τi+1/2 := 12 (τi + τi+1) . We also define:
259



Ψ〈B(d)
ε

〉

τ1
τ3/2

τ2
τ5/2

τ3 20 1

Figure 18.1 – Constructing ηκ

λκ := [ {Sτ | τ ∈ κ}
]
∼
∈ Lprofls ,

where ∼ denotes the equivalence relation from def. 10.10. Since, for any τ 6= τ ′, r(Sτ)∩r(Sτ ′) = ∅,we have:
F(λκ) = {F τ

� (κ) ∣∣∣ τ ∈ κ, � ∈
{ ↑, ↓ }} ,

where, for any τ ∈ κ and any � ∈ { ↑, ↓ } :
F τ
� (κ) := {e ∈ Ledges | e � Sτ & ∀τ ′ ∈ κ \ {τ} , e y Sτ ′} .Thus, ηκ := (γκ , λκ) ∈ LHF with:
∀i ∈ {1, . . . , n} , χηκ (eτi , τi−1/2) = F τi

↓ (κ) & χηκ (eτi , τi+1/2) = F τi
↑ (κ) .Moreover, for any i ∈ {1, . . . , n} , we have:

eτi , 0 = eτ1 , τ1/2 ◦ e−1
τ1 , τ3/2 ◦ . . . ◦ eτi , τi−1/2 ,

and F τi
↓ (κ) = F τi ∈ Lfaces , with F τi := {e ∈ Ledges ∣∣∣ e ↓ Sτi} ,

where, for F ⊂ Ledges, F⊥ and F := F⊥ ◦ F are defined as in prop. 10.21, and the equality
F τi
↓ (κ) = F τi can be proved using prop. 10.9.4.Now, let L := LHF t L(aux) and extend the pre-orders on LHF and L(aux) with:
∀η = (γ, λ) ∈ LHF, ∀κ ∈ L(aux),

κ 4 η ⇔
(
∀τ ∈ κ, γ ∈ Lgraphs/eτ,0 & λ ∈ Lprofls/Fτ) ,

where Lgraphs/e for e ∈ Ledges , resp. Lprofls/F for F ∈ Lfaces , has been defined in prop. 10.20, resp. inprop. 10.21. To check that this defines a pre-order L, we note that:
∀e ∈ Ledges, ∀γ 4 γ′ ∈ Lgraphs , γ ∈ Lgraphs/e ⇒ γ′ ∈ Lgraphs/e ,
∀F ∈ Lfaces, ∀λ 4 λ′ ∈ Lprofls , λ ∈ Lprofls/F ⇒ λ′ ∈ Lprofls/F .
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Since, for any κ ∈ L(aux), κ 4 ηκ with ηκ the label constructed above, LHF is cofinal in L and, inparticular, L is directed.
Projective system on L. For any κ ∈ L(aux) and any η = (γ, λ) ∈ LHF such that κ 4 η, we define:

Qη→κ : CRη → C
(aux)
κ

h 7→
[
τ 7→

∑nγ→eτ,0
k=1 εγ→eτ,0(k) h ◦ aγ→eτ,0(k)] ,

as well as:
Pη→κ : PRη → P

(aux)
κ

P 7→
[
τ 7→

∑
F ′∈Hλ→Fτ

P(F ′)] ,
where nγ→eτ,0 , εγ→eτ,0 and aγ→eτ,0 have been defined in prop. 10.20, and Hλ→Fτ in prop. 10.21.Defining, for any κ ∈ L(aux) and any η ∈ LHF, πη→κ : MR

η →M(aux)
κ as:

πη→κ = (Qη→κ × Pη→κ
)
◦ LRη ,and specializing the definitions from prop. 10.27 to the case G = (R,+), we have:

∀(h, p) ∈MR
η , πη→κ(h, p) = (τ 7→ h(eτ,0 , idR)

η (h, p), τ 7→ P(Fτ ,1)
η (h, p)) .

For any κ 4 κ ′ ∈ L(aux) and any η ∈ LHF with κ ′ 4 η, we thus have, using the definition of π(aux)
κ′→κfrom prop. 18.10:

πη→κ = π(aux)
κ′→κ ◦ πη→κ′ .Moreover, for any κ ∈ L(aux) and any η 4 η′ ∈ LHF, with κ 4 η, we have shown in prop. 10.27 that:

∀τ ∈ κ, h(eτ,0 , idR)
η ◦ πRη′→η = h(eτ,0 , idR)

η′ & P(Fτ ,1)
η ◦ πRη′→η = P(Fτ ,1)

η′ ,therefore, we also have:
πη′→κ = πη→κ ◦ πRη′→η .

Let κ = (τ1 , . . . , τn) ∈ L(aux) with 0 < τ1 < . . . < τn 6 1 and let ηκ = (γκ , λκ) be constructedas above. We have:
∀h ∈ CRηκ , ∀τj ∈ κ,

[
Qηκ→κ(h)](τj ) = j∑

i=1 h(eτi,τi−1/2)− j−1∑
i=1 h(eτi,τi+1/2) ,

as well as:
∀P ∈ PRηκ , ∀τi ∈ κ,

[
Pηκ→κ(P)](τi) = P

(
F τi
↓ (κ)) .

Inserting the expression for ΞR,−1
ηκ from the proof of prop. 18.13, we get, for any s ∈ C(aux),∗

κ :
Pηκ→κ ◦ ΞR,−1

ηκ ◦ Q∗ηκ→κ(s) : τi 7→ s ◦ Qηκ→κ

(
δ
χ−1
ηκ

(
Fτi↓ (κ))) = s

(
τj 7→

j∑
k=1 δik

) .
Thus, Pηκ→κ ◦ ΞR,−1

ηκ ◦ Q∗ηκ→κ = Ξ(aux),−1
κ , in other words πηκ→κ is a projection compatible with thesymplectic structures. Then, for any η ∈ LHF such that η < κ , there exists η′ < η, ηκ such that
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πη→κ ◦ πRη′→η = πη′→κ = πηκ→κ ◦ πRη′→ηκ , so πη→κ is a projection compatible with the symplecticstructures.Thus, we can combine (L(aux), M(aux), π(aux))↓ and (LHF, MR, πR
)↓ into a projective system ofphase spaces on L, fulfilling prop. 18.1.1 and 18.1.2. We denote by (L, H, Φ)⊗ the correspondingprojective system of quantum state spaces.

Mapping narrow states on LHF to narrow states on L(aux). Applying prop. 5.6 twice, to go from LHFto L (using that LHF is cofinal in L) and from L to L(aux), there exist a map σ : S⊗(LHF,HR,ΦR) →
S
⊗(L(aux),H(aux),Φ(aux)) and a map α : A⊗(L(aux),H(aux),Φ(aux)) → A

⊗(LHF,HR,ΦR) such that:
∀ρ ∈ S

⊗(LHF,HR,ΦR) , ∀A ∈ A
⊗(L(aux),H(aux), Φ(aux)) , Tr(ρ α(A)) = Tr(σ (ρ)A) .

Moreover, for any κ ∈ L(aux) and any (s, t) ∈ C(aux),∗
κ × P(aux),∗

κ , we have from eq. (18.3.1):
α
([T(aux)

κ (s, t)]∼,L(aux)
) = [Φ−1

ηκ→κ ◦
(idHηκ→κ ⊗ T(aux)

κ (s, t)) ◦ Φηκ→κ

]
∼,LHF= [TRηκ (s ◦ Qηκ→κ , t ◦ Pηκ→κ

) ]
∼,LHF .

Thus, for any ρ ∈ S
⊗(LHF,HR,ΦR) and any κ ∈ L(aux), we get:

∀(s, t) ∈ C(aux),∗
κ × P(aux),∗

κ , Wσ (ρ)κ (s, t) = Wρηκ
(
s ◦ Qηκ→κ , t ◦ Pηκ→κ

) ,
hence σ 〈Ŝ⊗(LHF,HR,ΦR)

〉
⊂ Ŝ⊗(L(aux),H(aux),Φ(aux)) = ∅. �

If we cannot have Gaussian states, the next best thing would be to have some quantum analogue
of the classical probability distributions whose characteristic function takes the form:〈

e−is(X )〉
X = exp [ia(s)− (b(s))α/2] ,

with α ∈ ] 0, 2] , a a linear form and b a (symmetric) non-negative bilinear form on the dual space.
These distributions have the nice property that their marginal probabilities (the classical equivalent
of the partial trace of a quantum state) are again of the same form, with the same α (this is manifest
by recalling that the characteristic function for a marginal probability is the restriction of the full
characteristic function to the corresponding vector subspace of the dual space, in complete analogy
to def. 18.2.3). For α = 2 the distribution is Gaussian, while for α < 2 it is heavy-tailed (aka. has
infinite variance), and these distributions generalize the Gaussian distribution in the sense that
they appear as attractors in heavy-tailed generalizations of the central limit theorem [38].

However, as prop. 18.15 below shows, the previous arguments excludes in the same stroke a large
class of states.

Proposition 18.15 We consider the same objects as in prop. 18.4 and we suppose that there existsa state ρ ∈ S⊗(L,H,Φ) , integers m, n ∈ N, and reals ε1 , . . . , εm+n > 0 such that:
1. for any η ∈ L there exists m linear forms a(1)

η , . . . , a(m)
η and n (symmetric) non-negative bilinearforms b(1)

η , . . . , b(n)
η on C∗η × P∗η ;
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2. for any η 4 η′ ∈ L:
∀k ∈ {1, . . . , m} , a(k)

η = a(k)
η′ ◦ (Q∗η′→η × P∗η′→η)

& ∀l ∈ {1, . . . , n} , b(l)
η = b(l)

η′ ◦
((Q∗η′→η × P∗η′→η)× (Q∗η′→η × P∗η′→η)) ;

3. for any η ∈ L and any (s, t) ∈ C∗η × P∗η :(
∀k ∈ {1, . . . , m} , ∣∣a(k)

η (s, t)∣∣2 < εk & ∀l ∈ {1, . . . , n} , b(l)
η (s, t; s, t) < εm+l)

⇒
∣∣Wρη(s, t)− 1∣∣ < 12 .

Then, Ŝ⊗(L,H,Φ) 6= ∅.
Proof For any η ∈ L we define:
∀(s, t), (s′, t′) ∈ C∗η × P∗η ,

Bη(s, t; s′, t′) := 14π min(ε1 , . . . , εm+n)
( m∑

k=1 a
(k)
η (s, t)a(k)

η (s′, t′) + n∑
l=1 b

(l)
η (s, t; s′, t′)) ,

as well as:
∀s, s′ ∈ C∗η , Vη(s, s′) := Bη(s, 0; s′, 0) & ∀t, t′ ∈ P∗η , Uη(t, t′) := Bη(0, t; 0, t′) .

Vη , resp. Uη , is a (symmetric) non-negative bilinear form on C∗η , resp. P∗η , and for any η 4 η′ ∈ L,we have:
Vη = Vη′ ◦ (Q∗η′→η ×Q∗η′→η) & Uη = Uη′ ◦ (P∗η′→η × P∗η′→η) .

Let η ∈ L. Reasoning by contradiction, we suppose that there exists (s′, t′) ∈ C∗η×P∗η such that:
Vη(s′, s′) + Uη(t′, t′) < t′

(Ξ−1
η (s′)) .

In particular, this implies ε := t′
(Ξ−1

η (s′)) > 0 . We define s := √ 2π
ε s
′ and t := √ 2π

ε t
′ , so that:

Vη(s, s) + Uη(t, t) < 2π & t
(Ξ−1

η (s)) = 2π .Then, we have:
Bη(s, 0; s, 0) = Vη(s, s) < 4π & Bη(0, t; 0, t) = Uη(t, t) < 4π ,as well as:
Bη(−s, t; −s, t) 6 Bη(−s, t; −s, t) + Bη(s, t; s, t) = 2 (Vη(s, s) + Uη(t, t)) < 4π .Thus, we get:∣∣Wρη(s, 0)− 1∣∣ < 12 , ∣∣Wρη(0, t)− 1∣∣ < 12 &

∣∣Wρη(−s, t)− 1∣∣ < 12 . (18.15.1)
Now, the positivity condition eq. (18.2.1) applied to the points (0, 0), (s, 0) and (0, t) can berewritten as:
∀zo , z1 , z2 ∈ C,
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|zo|2 + |z1|2 + |z2|2 + 2 Re (zo z1Wρη(s, 0) + zo z2Wρη(0, t)− z1z2Wρη(−s, t)) > 0 (18.15.2)
where we have used t

(Ξ−1
η (s)) = 2π and Wρη(0, 0) = 1 (for ρ ∈ S⊗(L,H,Φ) , hence TrHη ρη = 1).Applying eq. (18.15.2) with zo = 1 and z1 = z2 = −1 yields:0 6 3− Re (2Wρη(s, 0)− 2Wρη(0, t)− 2Wρη(−s, t))

6 2 ∣∣1−Wρη(s, 0)∣∣ + 2 ∣∣1−Wρη(0, t)∣∣− 1− 2 Re (Wρη(−s, t))
< Re (1−Wρη(−s, t))− Re (Wρη(−s, t)) .

Thus, −Re(1 − Wρη(−s, t)) < Re(Wρη(−s, t)) < Re(1 − Wρη(−s, t)), and since we also haveIm(Wρη(−s, t)) = −Im(1−Wρη(−s, t)), this implies ∣∣Wρη(−s, t)∣∣ < ∣∣1−Wρη(−s, t)∣∣ < 12 < 1.Next, we apply eq. (18.15.2) with:
zo = 1− ∣∣Wρη(−s, t)∣∣2 ,

z1 = −Wρη(s, 0)−Wρη(0, t)Wρη(−s, t) & z2 = −Wρη(0, t)−Wρη(s, 0)Wρη(−s, t)(these values arise by optimizing on z1 , z2 , keeping zo fixed). After simplifications, we get:
0 6 z2

o − zo
[∣∣Wρη(s, 0)∣∣2 + ∣∣Wρη(0, t)∣∣2]− 2 zo Re (Wρη(s, 0)Wρη(0, t)Wρη(−s, t)) .

Since ∣∣Wρη(−s, t)∣∣ < 1, zo > 0, so this leads to:∣∣Wρη(−s, t)∣∣2 + ∣∣Wρη(s, 0)∣∣2 + ∣∣Wρη(0, t)∣∣2 + 2 Re (Wρη(s, 0)Wρη(0, t)Wρη(−s, t)) 6 1 .Finally, we rewrite this inequality in terms of wo := Wρη(−s, t) − 1, w1 := Wρη(s, 0) − 1 and
w2 := Wρη(0, t)− 1 :

0 > 4 + 4Re (wo + w1 + w2) + |wo + w1 + w2|2 + 2 Re (wow1w2)
> 4− 4 |wo + w1 + w2|+ |wo + w1 + w2|2 − 2 |wow1w2| .However, this contradicts eq. (18.15.1) which requires |wo + w1 + w2| < 3/2 and |wow1w2| < 1/8,since (x 7→ x2 − 4 x) 〈 [0, 3/2 [ 〉 = ]−15/4, 0] .Thus, we have proven that:

∀(s, t) ∈ C∗η × P∗η, Vη(s, s) + Uη(t, t)− t (Ξ−1
η (s)) > 0 .In particular, for any s 6= 0 ∈ C∗η, there exists x ∈ Cη such that s(x) 6= 0, so defining t :=

Ξ∗η( x
s(x)

)
∈ P∗η , we have:

∀λ ∈ R, λ2 Vη(s, s) + Uη(t, t)− λ > 0 ,hence the symmetric bilinear form Vη is strictly positive. Similarly, Uη is also strictly positive.Therefore, (Vη , Uη)η∈L ∈ V
↓(L,(C,P),(Q,P)) , so by prop. 18.9, Ŝ⊗(L,H,Φ) 6= ∅. �

The previous result can also be seen as excluding a different notion of state confinement, focus-
ing on quantiles rather than moments (in other words, working with the cumulative distribution
function rather than with the characteristic or moment-generating one).
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Proposition 18.16 We consider the same objects a in prop. 18.4. Let C∗cyl , resp. P∗cyl , be the inductivelimit (without any completion) of the inductive system ((
C∗η
)
η∈L ,

(
Q∗η′→η

)
η4η′

) , resp. ((P∗η)η∈L ,(
P∗η′→η

)
η4η′

) . For any η ∈ L, let Q∗cyl→η , resp. P∗cyl→η , be the canonical injection of C∗η in C∗cyl ,resp. of P∗η in P∗cyl .We suppose that there exists a state ρ ∈ S⊗(L,H,Φ) , a real p > 3/4 and a non-negative (symmetric)bilinear form Bcyl on C∗cyl × P∗cyl such that, for any η ∈ L and any (s, t) ∈ C∗η × P∗η :
TrHη

[
ρη Πη(s, t)] > p ,

where Πη(s, t), is the spectral projector of Xη(s, t) on [− A, A] with:
A = √Bcyl(Q∗cyl→η(s), P∗cyl→η(t); Q∗cyl→η(s), P∗cyl→η(t)) .

Then, Ŝ⊗(L,H,Φ) 6= ∅.
Proof For any η ∈ L, we define:
∀(s, t), (s′, t′) ∈ L, b(1)

η (s, t; s′, t′) := Bcyl(Q∗cyl→η(s), P∗cyl→η(t); Q∗cyl→η(s′), P∗cyl→η(t′)) .
By construction, (b(1)

η
)
η∈L fulfills prop. 18.15.1 and 18.15.2.

Let ε1 := (2 p − 32)2 > 0. For any η ∈ L and any (s, t) ∈ C∗η × P∗η such that b(1)
η (s, t; s, t) < ε1 ,we have:∥∥Πη(s, t) (Tη(s, t)− idHη

)∥∥ 6 sup
x∈
[
−
√
b(1)
η (s,t; s,t),√b(1)

η (s,t; s,t)]
∣∣ei x − 1∣∣

= 2 sin
√
b(1)
η (s, t; s, t)2

 < 2 p − 32 ,
as well as:∥∥Tη(s, t)− idHη

∥∥ 6 ‖Tη(s, t)‖+ ∥∥idHη

∥∥ = 2 .Thus, we get:∣∣Wρη(s, t)− 1∣∣ = ∣∣TrHη ρη
(Tη(s, t)− idHη

)∣∣
< 2 p − 32 + 2TrHη ρη

(idHη − Πη(s, t)) < 12 .
Hence, prop. 18.15 implies Ŝ⊗(L,H,Φ) 6= ∅. �

Any state on the algebra A
⊗(L,H,Φ) (aka. positive linear form of norm 1, see [41, part III, def. 2.2.8]

and prop. 5.4) yields a C-valued function on the inductive limit C∗cyl×P∗cyl , which satisfies suitable
positivity requirements (in accordance with def. 18.2.2). Since the space of states on a C∗-algebra
is never empty [87, theorem I.9.18] , we are assured that there do exist such functions of positive
type on C∗cyl×P∗cyl . However, a function of positive type comes from a projective state in S⊗(L,H,Φ) if
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and only if it is continuous with respect to the inductive limit topology on C∗cyl × P∗cyl (this reflects
the characterization from prop. 5.12). What we have established above is that, in the case of the
projective structure constructed as in sections 10 and 12 for the holonomy-flux algebra with G = R:
• there do not exist any function of positive type twice-differentiable at 0 with respect to the
inductive limit topology;

• given some scalar product on C∗cyl × P∗cyl , there do not exist any function of positive type
continuous at 0 with respect to the corresponding (strong) topology.

This still leaves a fairly large window for projective quantum states to be found, however, it would
be reassuring to have an actual proof of their existence, and, even better, constructive techniques
to obtain them.

On the other hand, the first of these two points demonstrates that the failure to find admissible
semi-classical states would not be solved by looking for an even larger state space: if there would
exist such states on the algebra they would be twice-differentiable, hence continuous, at 0, and
they would automatically belong to the projective state space (thanks to the positivity condition,
continuity at zero implies continuity everywhere). As announced in section 17, the problem we
uncovered here has its roots in the holonomy-flux algebra itself. Therefore, the resolution we will
propose in the next section will act directly on the structure of this algebra. At the same time,
it will bypass the concerns just raised about the projective state space being possibly empty, since
it will provide us with a systematic procedure to construct arbitrary projective quantum states, no
matter whether the gauge group is compact or not (subsection 19.1).

19. Quasi-cofinal sequences

The fact that LHF is uncountable plays a crucial role in the negative result of prop. 18.14. As we
will see in subsection 19.1, constructing projective quantum states is significantly easier when the
label set is countable, since, in this case, all projective states can be constructed recursively in a
systematic way. In particular, there is no risk for a projective limit on a countable label set to be
empty, and, more generally, for any label η, and any density matrix ρη on Hη , it will always be
possible to find a projective state whose restriction to the label η coincides with ρη .

To benefit of these advantages, our goal will therefore be to restrict LHF to a carefully chosen
countable subset. However, we have to be cautious of the dangerous side-effects such an endeavor
could have:
• we do not want to introduce any objectionable arbitrariness in the theory: recall that we put
forward in the introduction of the present work the improved universality of the projective
approach compared to the choice of a particular representation of the algebra of observables;

• in addition, going over to discrete structures carries a serious risk of breaking diffeomorphism
invariance [74] , something we want to avoid at any cost in view of applications to background
independant quantum gravity [75, 77] .

In subsection 19.2, we will therefore spell out, in a general setting, the properties that a label subset
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should satisfy to ensure that restricting the projective system to this subset will preserve suitable
notions of both universality and diffeomorphism invariance (or, more generally, invariance under
whatever the group of symmetries is for the particular theory under consideration). This strategy
will be put to practice on a simple 1-dimensional toy model in subsection 19.3, while the proof
that there indeed exist countable subsets in LHF satisfying the requirements of subsection 19.2 is
currently under progress for d > 1.

Note that, from a physical point of view, it seems in fact very reasonable to expect the elemen-
tary observables of a theory (in the sense discussed in section 1) to form a countable set: these
observables are meant to be in one-to-one correspondence with the experimental protocols describ-
ing their measurement, and such protocols should indeed form a countable set (since they can be
encoded eg. as finite sequences of chars). To say it differently, if there would be uncountably many
elementary observables, we would not even be able to accurately tell which one we are measuring
in a given experiment.

One could at first think that such an argument should be made at the level of the physical
observables, since those are often thought of as the only ‘real’ ones. However, in the spirit of
appendix A (viz. the extended discussions in section 3), we adopt the interpretation that the kine-
matical observables are not just byproducts of the construction of the final, physical theory, to be
discarded as soon as the latter has been obtained, but that they instead play a prominent role to
formulate the interface between the mathematical theory and the experimental reality: they are
used to label with physical meaning the dynamical observables to which they give rise (as stressed
in the discussion preceding def. A.2, the redundancy of this labeling is deliberate: it reflects the
predictive power of the theory). So, in this perspective, we indeed expect countability already at the
level of the kinematical elementary observables.

19.1 Factorized states on cofinal sequences

As underlined in prop. 5.6, restricting the label set to a cofinal part does not affect the projective
quantum state space, so, rather than considering a countable label set, it is sufficient to look at
a label set admitting a countable cofinal subset. This weaker condition is of course equivalent if
the part of the label set that is below any given label is countable, like in LHF (as the labels in
LHF are finite collections of edges and faces, they actually have only finitely many sublabels, see
prop. 19.3). But, for example, in the label set considered in prop. 16.3, which consists of finite
dimensional vector subspaces, most labels (namely the vector subspaces of dimension greater than
2) are above uncountably many others (while the label set L of prop. 16.3 itself does not admit a
countable cofinal subset, one could easily construct an uncountable part of L that does).

If we do have a countable cofinal part, then we can construct recursively an increasing cofinal
sequence from it, and, along this sequence, we can use the fact that the partial traces Trηn+1→ηn are
surjective to construct a projective quantum state, by recursively choosing a density matrix ρηn+1 in
the preimage of ρηn . Clearly, all projective states can be constructed in this way. The ‘factorized
pure states’, satisfying ρηn+1 ≈ |ψn+1 〉〈 ψn+1|⊗ρηn for some vector ψn+1 ∈ Hηn+1→ηn , are particularly
simple, and their convex closure is dense in the projective state space (with respect to a topology
defined like in prop. 12.12).
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Proposition 19.1 Let (L,H,Φ)⊗ be a projective system of quantum state spaces (def. 5.1) andsuppose that L admits a countable cofinal subset L̃seq . Then, there exists an increasing sequence(ηn)n∈N such that {ηn | n ∈ N} is cofinal in L̃seq , hence in L. We choose such an increasingsequence, and we define Lseq := {ηn | n ∈ N} as well as:
Jo := Hηo & ∀n > 0, Jn := Hηn→ηn−1 .

Then, for any sequence ψ = (ψn)n∈N such that:
∀n ∈ N, ψn ∈ Jn & ‖ψn‖Jn = 1 , (19.1.1)

there exists a unique state ρ[ψ] ∈ S⊗(L,H,Φ) such that:
ρηo [ψ] = |ψo 〉 〈 ψo| & ∀n > 0, ρηn [ψ] = Φ−1

ηn→ηn−1 ◦
(
|ψn 〉 〈 ψn|⊗ρηn−1 [ψ])◦Φηn→ηn−1 .(19.1.2)

Proof Auxiliary projective system on N. Since L̃seq is countable, there exists a sequence (η̃n)n∈Nsuch that L̃seq = {η̃n∣∣n ∈ N} (if L̃seq happens to be finite, we can simply choose the sequence tobe eventually constant). Next, L being directed and L̃seq being cofinal in L, there exists, for any
n, n′ ∈ N, N ∈ N such that:

η̃n , η̃n′ 4 η̃N .Hence, we can define recursively a sequence (Nn)n∈N via:
No = 0 & ∀n > 0, Nn := min {N ∈ N | η̃n , η̃Nn−1 4 η̃N} .By construction, the sequence (ηn := η̃Nn

)
n∈N is increasing and Lseq := {ηn | n ∈ N} is cofinal in

L̃seq .
We define recursively a family of unitary isomorphisms (Φ̃n : Hηn → Jn ⊗ . . . ⊗ Jo

)
n∈N

via:
Φ̃o := idJo & ∀n > 0, Φ̃n := (idJn ⊗ Φ̃n−1) ◦ Φηn→ηn−1 .

Next, for any n ∈ N, we define recursively a family of unitary isomorphisms (Φ̃n′→n : Hηn′→ηn →

Jn′ ⊗ . . . ⊗ Jn+1)
n′>n

via:
Φ̃(n+1)→n := idJn+1 & ∀n′ > n+ 1, Φ̃n′→n := (idJn′ ⊗ Φ̃(n′−1)→n) ◦ Φηn′→ηn′−1→ηn .Thus, we get, for any n < n′ ∈ N:(Φ̃n′→n ⊗ Φ̃n

)
◦ Φηn′→ηn ◦ Φ̃−1

n′ = idJn′⊗...⊗Jn+1⊗Jn⊗...⊗Jo , (19.1.3)as can be shown by recursion over n′ − n, using the definitions above together with eq. (5.1.1).Let σL→Lseq : S
⊗
L,H,Φ → S

⊗(Lseq ,H,Φ) and αL←Lseq : A
⊗
Lseq ,H,Φ → A

⊗(L,H,Φ) be the bijective mapsconstructed as in prop. 5.6. We define, for any n ∈ N :
Kn := Jn ⊗ . . . ⊗ Jo & Kn→n := C ,and for any n < n′ ∈ N :
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Kn′→n := Jn′ ⊗ . . . ⊗ Jn+1 .Moreover, we define, for any n 6 n′ ∈ N , Ψn′→n to be the natural identification Kn′ ≈ Kn′→n⊗Knand, for any n 6 n′ 6 n′′ ∈ N , Ψn′′→n′→n to be the natural identification Kn′′→n ≈ Kn′′→n′⊗Kn′→n .Thus, (N, K, Ψ)⊗ is a projective system of quantum state spaces. Now, we define:
σLseq→N : S

⊗(Lseq ,H,Φ) → S
⊗(N,K,Ψ)(

ρη
)
η∈Lseq 7→

(Φ̃n ◦ ρηn ◦ Φ̃−1
n

)
n∈N

.
Let ρ ∈ S

⊗(Lseq ,H,Φ) . For any n ∈ N, we have:
Trn→nΦ̃n ◦ ρηn ◦ Φ̃−1

n = Φ̃n ◦ ρηn ◦ Φ̃−1
n ,and for any n < n′ ∈ N , eq. (19.1.3) yields:

Trn′→nΦ̃n′ ◦ ρηn′ ◦ Φ̃−1
n′ = Φ̃n ◦

[TrHηn′→ηn
Φηn′→ηn ◦ ρηn′ ◦ Φ−1

ηn′→ηn

]
◦ Φ̃−1

n

= Φ̃n ◦ ρηn ◦ Φ̃−1
n .

Therefore, σLseq→N is well-defined as a map S
⊗(Lseq ,H,Φ) → S

⊗(N,K,Ψ) . In addition, σLseq→N is injective,since Lseq = {ηn | n ∈ N}.We now want to prove that σLseq→N is surjective as well. Let ρ̃ ∈ S
⊗(N,K,Ψ) . Let n, n′ ∈ N suchthat ηn 4 ηn′ . If n < n′, we have, in a way similar to above:

Trηn′→ηnΦ̃−1
n′ ◦ ρ̃n′ ◦ Φ̃n′ = Φ̃−1

n ◦ ρ̃n ◦ Φ̃n . (19.1.4)Clearly, eq. (19.1.4) also holds if n = n′. Finally, if n > n′, ηn < ηn′ < ηn , hence applying eq. (5.1.1)implies Trηn′→ηn = (Trηn→ηn′)−1. Making use of the first case for n′, n then yields eq. (19.1.4) in thiscase too. In particular, if ηn = ηn′ , we get:
Φ̃−1
n′ ◦ ρ̃n′ ◦ Φ̃n′ = Φ̃−1

n ◦ ρ̃n ◦ Φ̃n .
Therefore, there exists ρ = (

ρη
)
η∈Lseq ∈ S

⊗(Lseq ,H,Φ) such that ∀n ∈ N, ρηn = Φ̃−1
n ◦ ρ̃n ◦ Φ̃n ,ie. σLseq→N(ρ) = ρ̃ .Next, for any n, n′ ∈ N, and any Aηn ∈ Aηn , Aηn′ ∈ Aηn′ , we have:(

∃ η′′ ∈ Lseq / η′′ < ηn , ηn′ &

Φ−1
η′′→ηn ◦ (idHη′′→ηn

⊗ Aηn) ◦ Φη′′→ηn = Φ−1
η′′→ηn′ ◦ (idHη′′→ηn′

⊗ Aηn′ ) ◦ Φη′′→ηn′

)
⇔

⇔
(
∃n′′ > n, n′

/ idKn′′→n ⊗ (Φ̃n ◦ Aηn ◦ Φ̃−1
n ) = idKn′′→n′ ⊗ (Φ̃n′ ◦ Aηn′ ◦ Φ̃−1

n′ ))
(the direction ‘⇒’ can be shown by choosing ñ such that η′′ = ηñ and n′′ > n, n′, ñ). Thus, we candefine the algebra isomorphism:

αLseq←N : A⊗N,K,Ψ → A⊗Lseq ,H,Φ[
An
]
∼
7→

[Φ̃−1
n ◦ An ◦ Φ̃n

]
∼

,
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and extends it by continuity into a C ∗-algebra isomorphism αLseq←N : A⊗N,K,Ψ → A
⊗
Lseq ,H,Φ . Finally,we define the bijective maps σ := σLseq→N ◦σL→Lseq : S⊗(L,H,Φ) → S

⊗(N,K,Ψ) and α := αL←Lseq ◦αLseq←N :
A
⊗(N,K,Ψ) → A

⊗(L,H,Φ) .
Existence and uniqueness of ρ[ψ]. Let ψ = (ψn)n∈N be a sequence satisfying eq. (19.1.1). We define
ρ̃[ψ] ∈ S⊗(N,K,Ψ) via:
∀n ∈ N, ρ̃n := |ψn ⊗ . . . ⊗ ψo 〉 〈 ψn ⊗ . . . ⊗ ψo| .Then, ρ[ψ] := σ−1(ρ̃[ψ]) ∈ S⊗(L,H,Φ) fulfills eq. (19.1.2). Reciprocally, if ρ ∈ S⊗(L,H,Φ) fulfills eq. (19.1.2),then σ (ρ) = ρ̃[ψ] (this can be checked recursively on n), hence ρ = ρ[ψ] . �

Supposing that the projective system of quantum state spaces under consideration has been
obtained through the quantization of a factorizing system of symplectic manifolds (eg. along the
lines of section 6), and that the latter forms a rendering (def. 2.6) of some classical, continuum phase
space M∞ , we can use this technique to construct a semi-classical state centered on a classical
point x∞ ∈ M∞ . To this intend, the vector ψn+1 ∈ Hηn+1→ηn should be chosen as a semi-classical
state centered around the point xηn+1→ηn ∈ Mηn+1→ηn , computed from x∞ via

(
xηn+1→ηn , xηn

) :=
φηn+1→ηn

(
xηn+1

) := φηn+1→ηn ◦ π∞→ηn+1 (x∞) .
For small n, we can think of the coarse labels ηn as describing some collective, macroscopic

degrees of freedom, so that the prescription above offers a concrete implementation of the approach
advocated in [71] : namely, we start by forming states having good peaking properties at macroscopic
scales, and, going down step by step toward smaller and smaller scales, we impose, at each step,
as much semi-classicality as the Heisenberg uncertainty relations will allow (taking heed of the
already fixed behavior at larger scales). This is readily achieved here because the largest part of
the work was done beforehand while setting up the factorizing system, by identifying the degrees
of freedom in ηn+1 that commute with the ones from ηn (recall the discussion before prop. 2.10):
those are precisely the variables on which semi-classicality can be imposed independently of the
already chosen state on ηn .

We can then ask whether a semi-classical state constructed this way would belong to the induc-
tive limit Hilbert space arising from a choice of vacuum state (prop. 5.8). Assuming this vacuum
is itself a factorized pure state, the characterization given in theorem 5.9 can be reformulated into
the condition 19.2.3 below. In particular, if the vacuum state is a momentum eigenstate, like the
Ashtekar-Lewandowski vacuum, a factorized semi-classical state could only be made an element
of the corresponding inductive limit by deteriorating the semi-classicality of ψn : eg. if ψn is taken
as a coherent state, controlled by a semi-classicality parameter that determines the repartition of
the quantum uncertainties between position and momentum variables, this parameter will have
to be shifted fast enough, as n grows, toward maximally peaked momenta and maximally spread
positions. By contrast, if the vacuum state is itself a coherent state, like the Fock vacuum, the
condition 19.2.3 can be interpreted as delimiting a domain in the classical projective limit (def. 2.3)
such that, for x∞ belonging to this domain, the factorized semi-classical state centered around x∞
will belong to the corresponding inductive limit: assuming the vacuum is centered around 0, this
requires that xηn+1→ηn tends to 0 fast enough. The question will then be whether the image of M∞
in the projective limit (prop. 2.7) happens to be contained in this admissible domain.
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Finally, we also notice that the tensor product factors Hηn+1→ηn can be arranged into an infinite
tensor product (ITP, see [99, 93] and theorem 5.11), and, not surprisingly, all factorized states do
belong to this ITP. Still, as we will argue below, working with a projective state space instead of
an ITP Hilbert space allows to overcome certain limitations of the ITP construction, in particular
with respect to universality (prop. 19.13).

To comment on the relation with the Algebraic Quantum Gravity framework (AQG, see [36] and
the brief explanation in section 17), note that, while a primary motivation for introducing an ITP
Hilbert space in AQG was the availability of factorized coherent states very similar to the one
discussed above, an important difference lies in the type of tensor product factors we are using:
the building blocs of the ITP in AQG describe individual, microscopic degrees of freedom, meant
to represent the smallest atoms of a quantum geometry (presumably at Plank scale), instead of
holding complementary degrees of freedom added step by step as we refine our description from
macroscopic to microscopic scales.

Proposition 19.2 We consider the same objects as in prop. 19.1. We denote by Hseq the infinitetensor product of (Jn)n∈N (see [99] and theorem 5.11). There exist a map σseq : Sseq → S
⊗(L,H,Φ)and an algebra morphism αseq : A⊗(L,H,Φ) → Aseq (Sseq , resp. Aseq , being the space of non-negativetraceclass operators, resp. the algebra of bounded operators, on Hseq) such that:

∀ρ ∈ Sseq , ∀A ∈ A
⊗(L,H,Φ) , TrHseq ρ αseq(A) = Tr σseq(ρ)A .

Similarly, for any sequence ψ satisfying eq. (19.1.1), we denote by H[ψ] the GNS representationof A⊗(L,H,Φ) arising from the state ρ[ψ] (see props. 5.4 and 5.8). There exist an injective map σ[ψ] :
S[ψ] → S

⊗(L,H,Φ) and an algebra morphism α[ψ] : A⊗(L,H,Φ) → A[ψ] (S[ψ] , resp. A[ψ] , being the space ofnon-negative traceclass operators, resp. the algebra of bounded operators, on H[ψ]) such that:
∀ρ ∈ S[ψ] , ∀A ∈ A

⊗(L,H,Φ) , TrH[ψ] ρ α[ψ](A) = Tr σ[ψ](ρ)A .
Moreover, ρ[ψ] ∈ σ[ψ] 〈S[ψ]〉 and σ[ψ] 〈S[ψ]〉 ⊂ σseq 〈Sseq〉 (with S[ψ] , resp. Sseq , the space of densitymatrices on H[ψ] , resp. Hseq).Let ψ, ψ′ be two sequences satisfying eq. (19.1.1). The following statements are equivalents:
1. ρ[ψ′] ∈ σ[ψ] 〈S[ψ]〉 ;
2. σ[ψ′ ] 〈S[ψ′ ]〉 = σ[ψ] 〈S[ψ]〉 ;
3. ∞∑

n=0
(1− ∣∣ 〈ψn | ψ′n〉Jn ∣∣) < ∞ .

Proof Construction of H[ψ] , σ[ψ] and α[ψ] . We define:
Z⊗(N,J) := {(ψn)n∈N ∣∣ ∀n ∈ N, ψn ∈ Jn & ‖ψn‖Jn = 1} .

Let ψ ∈ Z⊗(N,J) and let ρ̃[ψ] ∈ S⊗(N,K,Ψ) be defined as in the proof of prop. 19.1. Let H[ψ] be the GNSrepresentation of A⊗(N,K,Ψ) arising from the state ρ̃[ψ] . From prop. 5.8 and theorem 5.9, there existan injective map σ̃[ψ] : S[ψ] → S
⊗(N,K,Ψ) and a C ∗-algebra morphism α̃[ψ] : A⊗(N,K,Ψ) → A[ψ] , such that
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TrH[ψ]
(
· α̃[ψ]( · )) = Tr (σ̃[ψ]( · ) · ) . Moreover, we have:

σ̃[ψ] 〈S[ψ]〉 := {(ρ̃n)n∈N ∈ S⊗(N,K,Ψ)
∣∣∣∣ sup
n∈N

inf
n′>n

〈
ζn′→n

∣∣∣ (TrKn ρ̃n′
)
ζn′→n

〉 = Tr ρ̃ = 1} ,
where ∀n < n′ ∈ N, ζn′→n := ψn′ ⊗ . . . ⊗ ψn+1 ∈ Kn′→n .Using the Tr-intertwined bijective maps σ and α defined in the proof of prop. 19.1, we can identify
H[ψ] with the GNS representation of A⊗(L,H,Φ) arising from the state ρ[ψ] , and define the injective map
σ[ψ] := σ−1◦σ̃[ψ] : S[ψ] → S

⊗(L,H,Φ) , as well as the algebra morphism α[ψ] := α̃[ψ]◦α−1 : A⊗(L,H,Φ) → A[ψ] .We then have TrH[ψ]
(
· α[ψ]( · )) = Tr (σ[ψ]( · ) · ) , and:

σ[ψ] 〈S[ψ]〉 := {(ρη)η∈L ∈ S⊗(L,H,Φ)
∣∣∣∣ sup
n∈N

inf
n′>n

〈
ζn′→n

∣∣∣ (TrKn Φ̃n′ ◦ ρηn′ ◦ Φ̃−1
n′

)
ζn′→n

〉 = Tr ρ = 1} .
(19.2.1)In particular, ρ[ψ] ∈ σ[ψ] 〈S[ψ]〉.

Comparing σ[ψ] 〈S[ψ]〉 and σ[ψ′ ] 〈S[ψ′ ]〉. Let ψ, ψ′ ∈ Z⊗(N,J) . Since ρ[ψ′] ∈ σ[ψ′ ] 〈S[ψ′ ]〉, statement 19.2.2implies statement 19.2.1. We suppose that statement 19.2.1 holds. Then, the characterization aboveimplies:
1 = sup

n∈N
inf
n′>n

∣∣∣〈ψn′ ⊗ . . . ⊗ ψn+1∣∣ψ′n′ ⊗ . . . ⊗ ψ′n+1〉∣∣∣2
= sup

n∈N
inf
n′>n

n′∏
k=n+1

∣∣∣ 〈ψk | ψ′k〉Jk ∣∣∣2 .
This can only holds if there exists N ∈ N such that ∀k > N, 〈ψk | ψ′k〉Jk 6= 0. Then, for any k > N ,0 < ∣∣∣ 〈ψk | ψ′k〉Jk ∣∣∣ 6 ‖ψk‖Jk ‖ψ′k‖Jk = 1, so that 0 6 − log ∣∣∣ 〈ψk | ψ′k〉Jk ∣∣∣ < ∞. Hence, we get:

0 = inf
n>N

∞∑
k=n+1

(
− log ∣∣∣ 〈ψk | ψ′k〉Jk ∣∣∣) ,

in other words ∞∑
n=N+1

(
− log ∣∣∣ 〈ψn | ψ′n〉Jn ∣∣∣) converges. Then, using that log x 6 x − 1 for x ∈

] 0, ∞ [ , this implies that:
∞∑

n=N+1
(1− ∣∣∣ 〈ψn | ψ′n〉Jn ∣∣∣)

converges, hence statement 19.2.3 holds.Reciprocally, we now suppose that 19.2.3 holds. Let ρ ∈ σ[ψ] 〈S[ψ]〉 and let ε > 0. Then, thereexists N ∈ N such that:
∀n′ > N, 1− ε 6 〈ψn′ ⊗ . . . ⊗ ψN+1∣∣∣ (TrKN Φ̃n′ ◦ ρηn′ ◦ Φ̃−1

n′

)
ψn′ ⊗ . . . ⊗ ψN+1〉 .

Thus, for any n > N and any n′ > n, we have:
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1− ε 6 〈ψn′ ⊗ . . . ⊗ ψN+1∣∣∣ (TrKN Φ̃n′ ◦ ρηn′ ◦ Φ̃−1
n′

)
ψn′ ⊗ . . . ⊗ ψN+1〉

= 〈ψn′⊗. . .⊗ψn+1⊗. . .⊗ψN+1∣∣∣ (TrKN Φ̃n′ ◦ρηn′ ◦Φ̃−1
n′

)
ψn′⊗. . .⊗ψn+1⊗. . .⊗ψN+1〉

6
〈
ψn′ ⊗ . . . ⊗ ψn+1∣∣∣ TrKn→N

(TrKN Φ̃n′ ◦ ρηn′ ◦ Φ̃−1
n′

)
ψn′ ⊗ . . . ⊗ ψn+1〉

= 〈ψn′ ⊗ . . . ⊗ ψn+1∣∣∣ (TrKn Φ̃n′ ◦ ρηn′ ◦ Φ̃−1
n′

)
ψn′ ⊗ . . . ⊗ ψn+1〉 .

Let n > N , n′ > n, ζn′→n := ψn′ ⊗ . . . ⊗ ψn+1 , ζ ′n′→n := ψ′n′ ⊗ . . . ⊗ ψ′n+1 and ρn′→n := TrKn

(Φ̃n′ ◦

ρηn′ ◦ Φ̃−1
n′
) . We have:

1− 〈ζ ′n′→n∣∣ρn′→n ζ ′n′→n〉 =
= 1− 〈ζn′→n∣∣ρn′→n ζn′→n〉 + TrKn′→n ρn′→n

(∣∣ζn′→n〉〈ζn′→n∣∣− ∣∣ζ ′n′→n〉〈ζ ′n′→n∣∣)
6 ε + ∥∥∥∣∣ζn′→n〉〈ζn′→n∣∣− ∣∣ζ ′n′→n〉〈ζ ′n′→n∣∣∥∥∥

An′→n

, (19.2.2)
where ‖ · ‖An′→n

denotes the operator norm on Kn′→n and we have used that ρn′→n is a densitymatrix on Kn′→n (as ρ ∈ σ[ψ] 〈S[ψ]〉 ⊂ S⊗(L,H,Φ) ). Now, ‖ζn′→n‖Kn′→n
= ‖ζ ′n′→n‖Kn′→n

= 1, so:∥∥∥∣∣ζn′→n〉〈ζn′→n∣∣− ∣∣ζ ′n′→n〉〈ζ ′n′→n∣∣∥∥∥
An′→n

= inf
θ∈[0,2π[

∥∥∥∣∣ζn′→n〉〈ζn′→n∣∣− ∣∣eiθ ζ ′n′→n〉〈eiθ ζ ′n′→n∣∣∥∥∥
An′→n

6 2 inf
θ∈[0,2π[

∥∥ζn′→n − eiθ ζ ′n′→n∥∥Kn′→n

= 2√2√1− ∣∣ 〈ζn′→n | ζ ′n′→n〉Kn′→n

∣∣ . (19.2.3)
Let ε1 := min(ε, 2) > 0 and ε2 := − log(1− ε218

)
> 0. Making use of statement 19.2.3, let

N ′ > N such that:∑
k= N ′ + 1∞(1− ∣∣ 〈ψk | ψ′k〉Jk ∣∣) 6 ε22 .

In particular, this implies:
∀k > N ′,

∣∣ 〈ψk | ψ′k〉Jk ∣∣ ∈ [1− log 22 , 1] ⊂ [12 , 1] .
Using that log′ x = 1/x 6 2 for any x ∈ [1/2, 1] , we thus get:
∀k > N ′, − log ∣∣ 〈ψk | ψ′k〉Jk ∣∣ 6 2 (1− ∣∣ 〈ψk | ψ′k〉Jk ∣∣) .

Therefore, we have, for any n′ > N ′:
− log ∣∣ 〈ζn′→N′ | ζ ′n′→N′〉Kn′→N′

∣∣ 6 −∑
k= N ′ + 1∞ log ∣∣ 〈ψk | ψ′k〉Jk ∣∣ 6 ε2 ,

and, using the definition of ε2 :
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1− ∣∣ 〈ζn′→N′ | ζ ′n′→N′〉Kn′→N′

∣∣ 6 ε28 . (19.2.4)
Finally, for n′ > N ′, combining eqs. (19.2.2), (19.2.3) and (19.2.4) yields:

1− 〈ζ ′n′→N′∣∣ρn′→N′ ζ ′n′→N′〉 6 ε + 2√2√1− ∣∣ 〈ζn′→N′ | ζ ′n′→N′〉Kn′→N′

∣∣ 6 2 ε .
Hence, we get:sup

n∈N
inf
n′>n

〈
ζ ′n′→n

∣∣ρn′→n ζ ′n′→n〉 > 1− 2 ε .
Since this holds for any ε > 0 and the right hand side is bounded above by 1 (for Tr ρ = 1),
ρ ∈ σ[ψ′ ] 〈S[ψ′ ]〉 . Thus, we have proved that σ[ψ] 〈S[ψ]〉 ⊂ σ[ψ′ ] 〈S[ψ′ ]〉, and, statement 19.2.3 beingsymmetric in ψ, ψ′ , we can prove as well σ[ψ′ ] 〈S[ψ′ ]〉 ⊂ σ[ψ] 〈S[ψ]〉, ie. statement 19.2.2 holds.
Construction of Hseq , σseq and αseq . Like in the proof of theorem 5.11, the ITP Hseq of (Jn)n∈N canbe written as:

Hseq =⊕[|ψ |] H[|ψ |] ,
where the [|ψ |] are the equivalence classes in Z⊗(N,J) for the equivalence relation:

(ψn)n∈N ' (ψ′n)n∈N ⇔ ∑
n∈N

∣∣1− 〈ψ′n , ψn〉Jn ∣∣ < ∞ ,
and the Hilbert space H[|ψ |] can be identified with H[ψ] for some representative ψ of [|ψ |] (to checkthat the inductive limit mentioned in the proof of theorem 5.11 coincides with the one defining H[ψ] ,as described in prop. 5.8, we notice that the subsets of N of the form {0, . . . , n} for some n ∈ Nconstitute a cofinal part, with respect to the inclusion order, in the set of all finite subsets of N).We choose such a representative ψ for each equivalence class [|ψ |] and we define:

σseq : Sseq → S
⊗(L,H,Φ)

ρ 7→
∑[|ψ |] σ[ψ](Π[|ψ |] ρΠ[|ψ |]) ,

where, for any equivalence class [|ψ |] , Π[|ψ |] denotes the orthogonal projection on H[|ψ |] ≈ H[ψ] .Note that the sum over [|ψ |] is absolutely convergent in trace-norm, since, for each [|ψ |] , Π[|ψ |] ρΠ[|ψ |]is a non-negative traceclass operator and we have ∑[|ψ |]TrH[ψ]
(Π[|ψ |] ρΠ[|ψ |]) = TrHseq ρ < ∞. Wealso define:

αseq : A
⊗(L,H,Φ) → Aseq

A 7→
∑[|ψ |] Π[|ψ |] α[ψ](A)Π[|ψ |] .

Again, the sum involved converges, because the projections Π[|ψ |] are mutually orthogonal. We have,for any ρ ∈ Sseq and any A ∈ A
⊗(L,H,Φ) :TrHseq

(
ρ αseq(A)) = Tr (σseq(ρ)A) ,as follows from the corresponding property fulfilled by each pair σ[ψ] , α[ψ] .Now, let ψ′ ∈ Z⊗(N,J) and let ψ be the representative chosen in [|ψ′ |] . The definition of ' implies
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that statement 19.2.3 holds for ψ, ψ′ , hence:
σ[ψ′ ] 〈S[ψ′ ]〉 = σ[ψ] 〈S[ψ]〉 ⊂ σseq 〈Sseq〉 .

Note. The detailed description of the mapping from the state space of the ITP into the projectivestate space obtained for this proof, in particular the characterization of which super-selection sectorsof the ITP are sent onto identical images (owing to the equivalence relation from statement 19.2.3being strictly coarser than the relation ' , as the latter is sensible to the relative phase of thefactors ψn , while the former is not), could be easily generalized to the situation considered intheorem 5.11 (with possibly uncountably many tensor product factors). �

The non-existence of narrow states in the G = R case (prop. 18.14) indirectly proves that LHF
does not admit a countable cofinal subset (otherwise, such states could be constructed as described
above): indeed, this can be checked directly.

Proposition 19.3 Let LHF be the directed label set defined in def. 10.12. LHF is uncountable andfor any η′ ∈ LHF:
LHF[η′] := {η ∈ LHF | η 4 η′}is finite. Hence, LHF does not admit any countable cofinal subset.

Proof LHF is uncountable. Let Ψ : U → V be an analytical coordinate patch on Σ, with U an openneighborhood of 0 in Rd, ε > 0 such that B(d)
ε ⊂ U , and, for any τ 6= τ ′ ∈ [0, 2] , ĕτ,τ ′ be definedas in the proof of prop. 18.14. For any τ ∈ ] 0, 1 [, let e−τ , resp. e+

τ , be the edge corresponding to
ĕτ,0 , resp. ĕτ,1 , and Sτ be the surface corresponding to S̆τ ≡ ĕτ,2 . We have, for any τ ∈ ] 0, 1 [ :

r(e−τ ) ∩ r(e+
τ ) = {Ψ( ετ2 , 0)} = {b(e−τ )} = {b(e+

τ )} , e−τ ↓ Sτ & e+
τ
↑ Sτ ,hence ητ := (γτ , λτ) ∈ LHF, with:

γτ := {e−τ , e+
τ } ∈ Lgraphs & λτ := [ {Sτ} ]∼ ∈ Lprofls .

Moreover, for any (τ, s), (τ ′, s′) ∈ ] 0, 1 [× {0, 1} , we have:
ĕτ,s ∼ ĕτ ′,s′ ⇒ r(ĕτ,s) = r(ĕτ ′,s′) ⇒ [ ετ2 , εs2 ] = [ ετ ′2 , εs′2

]
⇒ (τ, s) = (τ ′, s′) ,

hence ητ = ητ ′ ⇔ τ = τ ′. Since ] 0, 1 [ is uncountable, so is LHF.
The part below any label η′ is finite. Let γ′ ∈ Lgraphs and let N = #γ′. For any γ 4 γ′, we define:

Aγ′(γ) := {((
aγ′→e(1), εγ′→e(1)), . . . , (aγ′→e(nγ′→e), εγ′→e(nγ′→e))) ∣∣∣ e ∈ γ

}
⊂

⋃
16n6N

(
γ′ ×

{±1} )n ,where, for any e ∈ γ, aγ′→e , εγ′→e and nγ′→e have been defined in prop. 10.20, and nγ′→e 6 N for
aγ′→e is injective {1, . . . , nγ′→e} → γ′. We have:

γ = {(e′n)ε′n ◦ . . . ◦ (e′1)ε′1 ∣∣∣ ((e′1 , ε′1), . . . , (e′n , ε′n)) ∈ Aγ′(γ)} ,
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hence Aγ′ is injective from Lgraphs[γ′] := {γ ∈ Lgraphs | γ 4 γ′} into the set of parts of ⋃16n6N(γ′ ×
{±1})n , so:

#Lgraphs[γ′] 6 2 (2N)N+1−2N2N−1 < ∞ .
Next, let λ′ ∈ Lprofls and let N ′ = #F(λ′). For any λ 4 λ′, we define:

Hλ′(λ) := {Hλ′→F
∣∣ F = F⊥ ◦ F, F ∈ F(λ)} ⊂ P(F(λ′)) ,

where, for any F ∈ F(λ), F⊥, F and Hλ′→F have been defined in prop. 10.21, and P(F(λ′)) denotesthe set of parts of F(λ′). Let F ∈ F(λ). Since λ 4 λ′, there exist F ′1 , . . . , F ′m ∈ F(λ′) (m > 1) suchthat:
F = Fy (λ) ◦ m⋃

i=1 F
′
i ,

and for any i ∈ {1, . . . , m} , F ′i ∈ Hλ′→F (see the proof of prop. 10.21). Moreover, for any F ′ ∈
Hλ′→F ⊂ F(λ′) , there exists, by definition of F(λ′) (prop. 10.9), e ∈ F ′, and there exists, by definitionof Hλ′→F , i ∈ {1, . . . , m} such that e = e′′ ◦ e′ with e′ ∈ F ′i . Thus, using props. 10.6.6 and 10.9.1,
F ′i = F ′. Hence, {F ′1 , . . . , F ′m} = Hλ′→F , in other words:

F = Fy (λ) ◦ ⋃
F ′∈Hλ′→F

F ′ . (19.3.1)
Now, using props. 10.9.2 and 10.9.3, we get:

Fy (λ) = Fy (λ) ◦ ⋃
H∈Hλ′ (λ)

⋃
F ′∈H

F ′
⊥ =  ⋃

H∈Hλ′ (λ)
⋃
F ′∈H

F ′
⊥ .

Together with eq. (19.3.1) and def. 10.10, this ensures that Hλ′ is injective from Lprofls[λ′] := {λ ∈
Lprofls | λ 4 λ′} into the set of parts of P(F(λ′)), hence:

#Lprofls[λ′] 6 22N′ < ∞ .
Finally, for any η′ = (γ′, λ′) ∈ LHF, LHF[η′] ⊂ Lgraphs[γ′]× Lprofls[λ′], so:

#LHF[η′] 6 22N+ (2N)N+1−2N2N−1 < ∞,where N := #γ′ = #F(λ). In particular, if L′ is a cofinal subset of LHF, we have:
LHF = ⋃

η′∈L′
LHF[η′],

so L′ must be uncountable. �

The problem with the label set LHF is basically that the slightest deformation or displacement of
an edge (or surface) yields an observable, which, according to the structure set up in section 10, is
completely independent of the original one. As argued at the beginning of the present section, this
is physically not justifiable and the task of the next subsection will therefore be to formalize the idea
that, whenever two edges (or surfaces) are related to each other by an infinitesimal deformation,
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they should be considered indistinguishable. This will allow us to cut down the algebra to a
countable cardinal, while preserving both universality and diffeomorphism-invariance.

Note that the kind of result we are aiming at should not be confused with various results
in the context of LQG displaying how countable cardinality or universality can be obtained or
restored after quotienting out the diffeomorphisms [10, 28] : since we do not yet fully understand
how this quotienting should be done in the projective formalism, we have to simplify the algebra
of observables already at the diffeomorphism-covariant level, rather than at the diffeomorphism-
invariant one (where those designations refer to the individual quantum states, not to the invariance
of the overall state space). In fact, such an upfront simplification of algebra could make the strategy
exposed in section 13 easier to implement in practice, thus helping to solve the diffeomorphism
constraints.

19.2 Quasi-cofinal sequences: definition and properties

This subsection intends to clarify, in a general setting, which requirements should an increasing
sequence of labels satisfy to ensure that it captures the whole algebra of observables, up to small
deformations. To give a precise meaning to this notion of ‘small deformations’, closeness of
observables will be defined with respect to a (topological) group a transformations acting on the
algebra. Our definition for the action of a group on a projective system (def. 19.5) is inspired by
[66, section 3.5] .

We call such sequences quasi-cofinal, to underline their affinity with cofinal sequences, which,
as recalled in the previous subsection, capture the whole algebra exactly. Indeed, as we will show
below, a rather innocent-looking condition (def. 19.7.3), which can be understood as ‘cofinality up
to small deformations’, is sufficient to prove two strong results:
• the projective system of quantum state spaces obtained by restricting the label set to a quasi-
cofinal sequence is universal: it only depends on the original projective system and on the
action of the group of transformations (theorem 19.8);

• and any transformation in this group can be approximated by a transformation acting on the
restricted projective system (prop. 19.9).

Since the initial label set will eventually be restricted to a part admitting an increasing cofinal
sequence (and thus automatically directed, for N, 6 is directed), we can afford to start from a
very large, ‘extended’ label set L(ext), which will not even be required to be directed: as stressed in
section 7, there can sometimes be a tension between ensuring the pivotal three-spaces consistency
condition (eq. (5.1.1) and fig. 5.1), and preserving the directedness of the label set, so that it might
prove convenient to initially relax this requirement (we will discuss how this added flexibility could
be exploited at the end of the present section and in section 20).

To make the abstract construction of the present subsection clearer, it will be sufficient for now
to imagine L(ext) to be the semi-analytical version of LHF and the group of transformations T to
consist of all semi-analytic diffeomorphisms (see [92, section IV.20] , as well as the beginning of
subsection 12.2). In contrast to fully analytic diffeomorphisms, semi-analytic ones can be local, so
are usable as small deformations, and while the group of semi-analytic diffeomorphisms do act on
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the algebra generated by LHF (since, as underlined many times above, this algebra is identical to the
one generated by semi-analytical labels), its action is easier to write down if we use semi-analytical
labels: in particular, it can then be put in the convenient form described in def. 19.5.

Definition 19.4 A projective pre-system of quantum state spaces is a quintuple:(
L(ext), (Hη

)
η∈L(ext) , (Hη′→η

)
η4η′ ,

(Φη′→η
)
η4η′ ,

(Φη′′→η′→η
)
η4η′4η′′

)
where L(ext) is a pre-ordered set (not necessarily directed) and defs. 5.1.2 to 5.1.5 hold. When-ever possible, we will use the shortened notation /L(ext),H,Φ/⊗ instead of (L(ext), (Hη

)
η∈L(ext) ,(

Hη′→η
)
η4η′ ,

(Φη′→η
)
η4η′ ,

(Φη′′→η′→η
)
η4η′4η′′

).
For any η 4 η′ ∈ L(ext), we define Trη′→η : Sη′ → Sη and ιη′←η : Aη → Aη′ as in defs. 5.2 and 5.3.From eq. (5.1.1), we have, for any η 4 η′ 4 η′′ :Trη′′→η = Trη′→η ◦ Trη′′→η′ & ιη′′←η = ιη′′←η′ ◦ ιη′←η .

Definition 19.5 Let /L(ext),H,Φ/⊗ be a projective pre-system of quantum state spaces and let Tbe a group. An action of T on /L(ext),H,Φ/⊗ is an action T , η 7→ Tη of T on L(ext) together withfamilies (Uη
)
η∈L(ext) and (Uη′→η

)
η4η′ such that:

1. ∀T ∈ T, ∀η ∈ L(ext), Uη(T ) is an isomorphism of Hilbert spaces Hη → HTη ;
2. ∀T ∈ T, ∀η 4 η′ ∈ L(ext), Tη 4 Tη′ and Uη′→η(T ) is an isomorphism of Hilbert spaces

Hη′→η → HTη′→Tη , such that:
ΦTη′→Tη ◦ Uη′(T ) = (Uη′→η(T )⊗ Uη(T )) ◦ Φη′→η ;

3. for any η ∈ L(ext),
∀T , T ′ ∈ T, UTη(T−1) = Uη(T )−1

& UTη(T ′) ◦ Uη(T ) = Uη(T ′.T ) ,
and for any η 4 η′ ∈ L(ext) :
∀T , T ′ ∈ T, UTη′→Tη(T−1) = Uη′→η(T )−1

& UTη′→Tη(T ′) ◦ Uη′→η(T ) = Uη′→η(T ′.T ) .
In particular, for any η ∈ L(ext), Uη(1) = idHη and, for any η 4 η′ ∈ L(ext), Uη′→η(1) = idHη′→η .For any η ∈ L(ext) and any T ∈ T, we define T. : Sη → STη , resp. Aη → ATη , via:
∀ρη ∈ Sη , T.ρη := Uη(T ) ρη Uη(T )−1 , resp. ∀Aη ∈ Aη , T.Aη := Uη(T )Aη Uη(T )−1 .

From assumption 19.5.3, . is a group action of T on ⊔
η∈L(ext)

Aη , and, from assumption 19.5.2, we have,
for any η 4 η′ ∈ L(ext) and any T ∈ T :TrTη′→Tη (T. · ) = T.

(Trη′→η ( · )) & ιTη′←Tη
(
T. ·

) = T.
(
ιη′←η( · )) . (19.5.1)

Proposition 19.6 Let /L(ext),H,Φ/⊗ be a projective pre-system of quantum state spaces and let
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T be a topological group acting on /L(ext),H,Φ/⊗. We denote by At/L(ext),H,Φ/ the set of all subsetsin ⊔
η∈L(ext)

Aη , and we define, for any open neighborhood V of 1 in T :
UV := {(Y , Y ′) ∈ At/L(ext),H,Φ/ ×At/L(ext),H,Φ/

∣∣∣ Y ′ ⊂ V.Y & Y ⊂ V−1.Y ′} ,
where V−1 := {T−1 ∣∣ T ∈ V

} and, for any Y ∈ At/L(ext),H,Φ/ , V.Y := {T.A | T ∈ V , A ∈ Y} .The set {U ∣∣ ∃V open neighborhood of 1 in T
/
UV ⊂ U

} is a uniform structure on tη∈L(ext)Aη[25, def. IX.11.1]. For any Y , Y ′ ∈ At/L(ext),H,Φ/ , we say that Y ′ is V -close to Y if (Y , Y ′) ∈ UV .
Proof To prove that {U ∣∣ ∃V open neighborhood of 1 in T

/
UV ⊂ U

} is a uniform structure, weneed to prove that:
1. for any open neighborhood V of 1 in T, {(Y , Y ) ∣∣∣ Y ∈ At/L(ext),H,Φ/

}
⊂ UV ;

2. for any open neighborhoods V1 , V2 of 1 in T, there exists an open neighborhood W of 1 in Tsuch that UW ⊂ UV1 ∩ UV2 ;
3. for any open neighborhood V of 1 in T, there exists an open neighborhood W of 1 in T suchthat:{(Y , Y ′) ∈ At/L(ext),H,Φ/ ×At/L(ext),H,Φ/

∣∣∣ ∃Y ′′ ∈ At/L(ext),H,Φ/ / (Y , Y ′′), (Y ′, Y ′′) ∈ UW

}
⊂ UV ,

which can be rewritten as:{(Y , Y ′) ∈ At/L(ext),H,Φ/ ×At/L(ext),H,Φ/
∣∣∣ (Y ∪ Y ′) ⊂ W−1. (W.Y ∩ W.Y ′)} ⊂ UV .

Def. 19.5.3 ensures that for any A ∈
⊔

η∈L(ext)
Aη , 1.A = A, so statement 19.6.1 holds. Next, for any

open neighborhoods V1 , V2 of 1 in T, W := V1 ∩ V2 is an open neighborhood of 1 in T and wehave W−1 = V−11 ∩ V−12 , so UW ⊂ UV1 ∩ UV2 , hence statement 19.6.2 holds.Let V be an open neighborhood of 1 in T. Since V is a topological group T , T ′ 7→ (T ′)−1 . T iscontinuous, hence:
W̃ := {(T , T ′) ∈ T × T

∣∣ (T ′)−1 . T ∈ V
}

is an open neighborhood of (1, 1) in T × T. Then, there exists open neighborhoods W ′,W ′′ of 1 in
T such that W ′ ×W ′′ ⊂ W̃ . Defining W := W ′ ∩W ′′, W is also an open neighborhood of 1 in T,and we have:
∀Y ∈ At/L(ext),H,Φ/ , W−1. (W.Y ) ⊂ (V ∩ V−1).Y .

Thus, for any Y , Y ′ ∈ At/L(ext),H,Φ/ , we get:
W−1. (W.Y ∩ W.Y ′) ⊂ (W−1. (W.Y )) ∩ (W−1. (W.Y ′)) ⊂ (V.Y ) ∩ (V−1.Y ′) ,which proves statement 19.6.3. �

A first idea to express the notion of an increasing sequence (κn)n being ‘cofinal up to small
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We symbolically represent the quasi-cofinal sequence by finer and finer grids (in black)
and the label to be approximated by thick line segments (in gray)

Figure 19.1 – Deforming the quasi-cofinal sequence to adapt it to an arbitrary label, while preserving
all parts that are already in place

deformations’ would be to require that, for any label η′ ∈ L(ext), an arbitrarily small deformation of
the sequence (κn)n should be sufficient to make η′ a sublabel of some sufficiently fine κn . However, it
turns out that a slighly stronger ‘quasi-cofinality’ condition (def. 19.7.3) can be much more powerful,
leading to the advertised results regarding universality of the restricted projective system and
approximation of the transformations in T. The key adjustment, that will be crucial to prove these
results, is to require that, whenever η′ have some parts that are already adapted to the quasi-cofinal
sequence, the small deformation mentioned above should leave these parts untouched (fig. 19.1).

Definition 19.7 Let /L(ext),H,Φ/⊗ be a projective pre-system of quantum state spaces and let Tbe a topological group acting on /L(ext),H,Φ/⊗. A quasi-cofinal sequence in L(ext) with respect tothis action is a sequence (κn)n∈N in L(ext) such that:
1. κo is a least element in L(ext), ie. ∀η ∈ L(ext), κo 4 η ;
2. (κn)n∈N is increasing, ie. ∀n 6 n′ ∈ N, κn 4 κn′ ;
3. for any open neighborhood V of 1 in T, any n ∈ N and any η′ < η ∈ L(ext) such that η 4 κn ,there exists n′ > n and T ∈ V such that:

Tη = η , Uη(T ) = idHη & η′ 4 Tκn′ .For any quasi-cofinal sequence κ = (κn)n∈N , we define:
L[κ ] := {η ∈ L(ext) ∣∣ ∃n ∈ N/ η 4 κn

} .
L[κ ] is a directed set (for N is), so that (L[κ ],H,Φ) is a projective system of quantum state spaces.By construction, {κn | n ∈ N} is cofinal in L[κ ].

While the choice of a quasi-cofinal sequence is far from unique (if only because omitting terms
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will not void the requirements of def. 19.7), we now want to show that the resulting projective system
does not depend on this choice. More precisely, the projective systems defined from two different
quasi-cofinal sequences (κn)n and (λm)m can be matched through an arbitrarily small deformation.
The idea of the proof is to interlace the two sequences, by applying small deformations to both(κn)n and (λm)m : we will then be able to identify their associated projective systems using the same
extension/restriction routine that we used repeatedly, eg. in subsection 5.2. Here is the reason why
we insisted, in the formulation of the quasi-cofinality property 19.7.3, to protect against deformation
any part of the quasi-cofinal sequence that happens to be already adapted to the target label: this
allows us to recursively construct the required deformations of (κn)n and (λm)m , by alternately
adapting (κn)n to a certain λm , and, in the next step, (λm)m to a certain κn .

Theorem 19.8 Let /L(ext),H,Φ/⊗ be a projective pre-system of quantum state spaces and let T be atopological group acting on /L(ext),H,Φ/⊗. Let κ = (κn)n∈N and λ = (λm)m∈N be two quasi-cofinalsequences in L(ext) with respect to this action. Then, there exist, for any open neighborhood V of 1 in
T, a bijective map σ : S⊗(L[κ ],H,Φ) → S

⊗(L[λ],H,Φ) and a C ∗-algebra isomorphism α : A⊗(L[λ],H,Φ) → A
⊗(L[κ ],H,Φ)such that:

1. for any ρ ∈ S
⊗(L[κ ],H,Φ) and any A ∈ A

⊗(L[λ],H,Φ) , Tr ρ α(A) = Tr σ (ρ)A ;
2. α 〈A⊗(L[λ],H,Φ)

〉 = A⊗(L[κ ],H,Φ) and for any A ∈ A⊗(L[λ],H,Φ), α(A) is V -close to A (note that A⊗(L[κ ],H,Φ) ,
A⊗(L[λ],H,Φ) ⊂ At/L(ext),H,Φ/ ).

Proof Sequences of deformations (Tk )k∈N , (Sk )k∈N . We define recursively families (Vk )k∈N ,(Wk )k∈N of open neighborhoods of 1 in T as follows:3. Vo and Wo are chosen (in a way similar to the proof of prop. 19.6) so that:
∀(T , S) ∈ Vo ×Wo , T−1 . S ∈ V ;

4. for any k > 1, Vk and Wk are chosen (again in a similar way) so that:
∀T , T ′ ∈ Vk , T . T ′ ∈ Vk−1 & ∀S, S′ ∈ Wk , S . S′ ∈ Wk−1 .Next, we define recursively families (nk )k∈N , (mk )k∈N of integers, and families (Tk )k∈N , (Sk )k∈N ofelements in T, in the following way:5. no := 0, mo := 0, To := 1 and So := 1 .

6. For any k > 1, we have κnk−1 4
(
T−1
k−1 . Sk−1)λmk−1 (as follows from either point 19.8.5 if k = 1or from point 19.8.7 for the step k − 1 if k > 1) and κnk−1 4 κnk−1+1 (from def. 19.7.2). Usingdef. 19.7.3 for the cofinal family (κn)n∈N , we choose nk > nk−1 + 1 and T̃k ∈ Vk such that:

T̃kκnk−1 = κnk−1 , Uκnk−1 (T̃k ) = idHκnk−1 &
(
T−1
k−1 . Sk−1)λmk−1 4 T̃kκnk ,

and, defining Tk := Tk−1 . T̃k , we have:
Tkκnk−1 = Tk−1κnk−1 , Uκnk−1 (Tk ) = Uκnk−1 (Tk−1) & Sk−1λmk−1 4 Tkκnk .

7. For any k > 1, we have λmk−1 4
(
S−1
k−1 . Tk)κnk (as follows from point 19.8.6) and λmk−1 4 λmk−1+1
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(from def. 19.7.2). Using def. 19.7.3 for the cofinal family (λm)m∈N , we choose mk > mk−1 +1 and
S̃k ∈ Wk such that:

S̃kλmk−1 = λmk−1 , Uλmk−1 (S̃k ) = idHλmk−1 &
(
S−1
k−1 . Tk)κnk 4 S̃kλmk ,

and, defining Sk := Sk−1 . S̃k , we have:
Skλmk−1 = Sk−1λmk−1 , Uλmk−1 (Sk ) = Uλmk−1 (Sk−1) & Tkκnk 4 Skλmk .

For any k ∈ N, we introduce the notations Kk := κnk & Lk := λmk , so that we have:
TkKk 4 SkLk 4 Tk+1Kk+1 ,as well as:
Tk+1Kk = TkKk , UKk (Tk+1) = UKk (Tk ) & Sk+1Lk = SkLk , ULk (Sk+1) = ULk (Sk ) .We also define, for any k ∈ N, Rk := S−1

k . Tk .Using the definitions of the sequences (Vk )k∈N , (Wk )k∈N and (Tk )k∈N , (Sk )k∈N , we can proverecursively that:
∀k ∈ N, ∀T ∈ Vk , Tk . T ∈ Vo & ∀S ∈ Wk , Sk . S ∈ Wo .Thus, for any k ∈ N, (Tk , Sk ) ∈ Vo ×Wo (since 1 ∈ Vk ∩Wk ), so R−1

k ∈ V and Rk ∈ V−1.In addition, for any k > 1, we have nk > nk−1 , resp. mk > mk−1 , so the sequence (nk )k∈N ,resp. (mk )k∈N , is strictly increasing, and K := {Kk | k ∈ N} , resp. L := {Lk | k ∈ N} , is cofinalin L[κ ] , resp. L[λ] . Thus, from prop. 5.6, there exist a bijective map σK : S
⊗(L[κ ],H,Φ) → S

⊗(K,H,Φ) ,resp. σL : S⊗(L[λ],H,Φ) → S
⊗(L,H,Φ) , and a C ∗-algebra isomorphism αK : A⊗(K,H,Φ) → A

⊗(L[κ ],H,Φ) , resp. αL :
A
⊗(L,H,Φ) → A

⊗(L[λ],H,Φ) , such that σK and αK , resp. σL and αL , are Tr-intertwined.
Mapping states. Let ρ ∈ S

⊗(K ,H,Φ) . For any k ∈ N, we have SkLk 4 Tk+1Kk+1 , so we can define anon-negative traceclass operator ρ̃k on HLk via:
ρ̃k := S−1

k .
(TrTk+1Kk+1→SkLk (Tk+1.ρKk+1)) . (19.8.1)Using SkLk = Sk+1Lk and ULk (Sk ) = ULk (Sk+1) together with eq. (19.5.1) yields:

ρ̃k = TrRk+1Kk+1→Lk
(
Rk+1.ρKk+1

) . (19.8.2)Moreover, from eqs. (19.5.1) and (19.8.1), we get:TrLk+1→Lk ρ̃k+1 = S−1
k .

(TrTk+2Kk+2→SkLk Tk+2.ρKk+2
)

= S−1
k .

[TrTk+1Kk+1→SkLk
(TrTk+2Kk+2→Tk+1Kk+1 Tk+2.ρKk+2

)]
= S−1

k .
(TrTk+1Kk+1→SkLk (Tk+1. ρKk+1)) = ρ̃k ,

where we have used Lk 4 Lk+1 , Sk+1Lk = SkLk and ULk (Sk+1) = ULk (Sk ) in the first line,
SkLk 4 Tk+1Kk+1 = Tk+2Kk+1 4 Tk+2Kk+2 in the second, and UKk+1(Tk+2) = UKk+1(Tk+1) andTrKk+2→Kk+1 ρKk+2 = ρKk+1 in the third.Now, for any k 6 k ′ ∈ N, this allows to prove recursively:
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TrLk′→Lk ρ̃k ′ = ρ̃k , (19.8.3)so for any k, k ′ ∈ N, such that Lk 4 Lk ′ , either k 6 k ′, in which case eq. (19.8.3) holds, or k > k ′,in which case Lk 4 Lk ′ 4 Lk , so TrLk′→Lk = (TrLk→Lk′)−1 and eq. (19.8.3) follows from the equalityfor k ′ 6 k . In particular, if Lk = Lk ′ , ρ̃k ′ = ρ̃k . Thus, the map:
σK→L : S

⊗(K,H,Φ) → S
⊗(L,H,Φ)(

ρKk
)
Kk∈K

7→
(TrRk+1Kk+1→Lk (Rk+1.ρKk+1))Lk∈L ,

is well-defined as a map S
⊗(K,H,Φ) → S

⊗(L,H,Φ) .
Mapping observables. Let ALk ∈ ALk . Since Sk+1Lk = SkLk 4 Tk+1Kk+1 and ULk (Sk+1) = ULk (Sk ),we have, using eq. (19.5.1) :

(̃ALk )k+1 := ιKk+1←R−1
k+1Lk

(
R−1
k+1.ALk) = T−1

k+1. (ιTk+1Kk+1←SkLk (Sk.ALk )) ∈ AKk+1 .
Next, let ALk+1 = ιLk+1←Lk (ALk ) ∈ ALk+1 . In a way similar to the computation of TrLk+1→Lk ρ̃k+1 above,we have:̃(ALk+1)k+2 = T−1

k+2. (ιTk+2Kk+2←Tk+1Kk+1 ◦ ιTk+1Kk+1←SkLk (Sk.ALk ))
∼K T−1

k+1. (ιTk+1Kk+1←SkLk (Sk.ALk )) = (̃ALk )k+1 ,
with ∼K defined as in eq. (5.3.2) for the projective system (K, H, Φ)⊗.We can then prove recursively that for any k 6 k ′ and any ALk ∈ ALk , ALk′ := ιLk′←Lk (ALk ) ∈ ALk′ :(̃ALk )k+1 ∼K (̃ALk′ )k ′+1 .
Now, for any k, k ′ ∈ N and any ALk ∈ ALk , ALk′ ∈ ALk′ such that ALk ∼L ALk′ (with ∼L defined asin eq. (5.3.2) for the projective system (L, H, Φ)⊗ ), there exists k̃ ∈ N such that Lk̃ < Lk , Lk ′ and
ιLk̃←Lk (ALk ) = ιLk̃←Lk′ (ALk′ ) . Hence, there exists k ′′ > k, k ′, k̃ , such that ιLk′′←Lk (ALk ) = ιLk′′←Lk′ (ALk′ ) =:
ALk′′ , and:

(̃ALk )k+1 ∼K (̃ALk′′ )k ′′+1 ∼K (̃ALk′ )k ′+1 .Thus, the map:
αL→K : A⊗(L,H,Φ) → A⊗(K,H,Φ)[

ALk
]
∼L
7→

[
ιKk+1←R−1

k+1Lk (R−1
k+1.ALk )]∼K

,
is well-defined as an isometric ∗-algebra morphism A⊗(L,H,Φ) → A⊗(K,H,Φ) , and it can be extendedby continuity into a C ∗-algebra morphism A

⊗(L,H,Φ) → A
⊗(K,H,Φ) . Moreover, αL→K and the previouslydefined map σK→L are Tr-intertwined.

Inverse mapping. In a similar fashion, we can define the maps:
σL→K : S

⊗(L,H,Φ) → S
⊗(K,H,Φ)(

ρLk
)
Lk∈L

7→
(TrR−1

k Lk→Kk (R−1
k .ρLk ))Kk∈K ,

and:
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αK→L : A⊗(K,H,Φ) → A⊗(L,H,Φ)[
AKk
]
∼K
7→

[
ιLk←RkKk (Rk.AKk )]∼L

.
We have σK→L ◦ σL→K = id

S
⊗(L,H,Φ) and σL→K ◦ σK→L = id

S
⊗(K,H,Φ) , hence σK→L is bijective with

σ−1
K→L = σL→K . Similarly, αL→K ◦ αK→L = id

A
⊗(K,H,Φ) and αK→L ◦ αL→K = id

A
⊗(L,H,Φ) , hence αL→K isbijective with α−1

L→K = αK→L .
Closeness. We define the bijective map σ := σ−1

L ◦ σK→L ◦ σK : S⊗(L[κ ],H,Φ) → S
⊗(L[λ],H,Φ) , and the

C ∗-algebra isomorphism α := αK ◦ αL→K ◦ α−1
L : A⊗(L[λ],H,Φ) → A

⊗(L[κ ],H,Φ) . Let A ∈ A⊗(L[λ],H,Φ) and
Ã := α(A) ∈ A

⊗(L[κ ],H,Φ) .Let η ∈ L[λ] and Aη ∈ Aη , such that Aη ∈ A. Let n ∈ N such that η 4 λn and k ∈ Nsuch that n 6 mk . Let Ak := ιLk←η(Aη) ∈ ALk and Ãk+1 := ιKk+1←R−1
k+1Lk (R−1

k+1.ALk ) ∈ AKk+1 . Wehave Ã = [
Ãk+1]∼

L[κ ] . In particular, Ã ∈ A⊗(L[κ ],H,Φ) . Moreover, Ãk+1 = ιKk+1←R−1
k+1η(R−1

k+1.Aη) and
R−1
k+1η 4 R−1

k+1Lk 4 Kk+1 , so R−1
k+1η ∈ L[κ ] and R−1

k+1.Aη ∈ Ã . Since Rk+1 ∈ V−1, Aη ∈ V−1.Ã.Therefore, A ⊂ V−1.Ã.Similarly, for any Ã ∈ A⊗(L[κ ],H,Φ) , A := α−1(Ã) ∈ A⊗(L[λ],H,Φ) and Ã ⊂ V.A, which proves statement19.8.2. �

It is an immediate corollary of the just proven universality result that any transformation T ∈ T

can be approximated, at an arbitrary precision, by a transformation that stabilizes the restricted
projective system over a quasi-cofinal sequence (κn)n : indeed, T maps (κn)n to a new quasi-cofinal
sequence (λm)m , and the projective system over (λm)m can then, by universality, be deformed back
into the one over (κn)n .
Proposition 19.9 Let /L(ext),H,Φ/⊗ be a projective pre-system of quantum state spaces and let Tbe a topological group acting on /L(ext),H,Φ/⊗. Let κ = (κn)n∈N be a quasi-cofinal sequence in
L(ext) with respect to this action. Then, there exist, for any T ∈ T and any open neighborhood Vof 1 in T, a bijective map σ : S⊗(L[κ ],H,Φ) → S

⊗(L[κ ],H,Φ) and a C ∗-algebra isomorphism α : A⊗(L[κ ],H,Φ) →
A
⊗(L[κ ],H,Φ) such that:

1. for any ρ ∈ S
⊗(L[κ ],H,Φ) and any A ∈ A

⊗(L[κ ],H,Φ) , Tr ρ A = Tr σ (ρ) α(A) ;
2. α 〈A⊗(L[κ ],H,Φ)

〉 = A⊗(L[κ ],H,Φ) and for any A ∈ A⊗(L[κ ],H,Φ), α(A) is V -close to T.A := {T.A• | A• ∈ A}.
Proof Let T ∈ T and let V be an open neighborhood of 1 in T. For any n ∈ N, we define
κn := Tκn . For any η ∈ L(ext), κo 4 T−1η , hence κo 4 η, and, for any n 6 n′ ∈ N, κn 4 κn′ ,hence κn 4 κn′ . Let W be an open neighborhood of 1 in T, n ∈ N and η′ < η ∈ L(ext) such that
η 4 κn . Then, W := {S ∈ T

∣∣T . S . T−1 ∈ W
} is an open neighborhood of 1 in T, T−1η′ < T−1ηand T−1η 4 κn . Thus, there exists n′ > n and S ∈ W such that:
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S(T−1η) = T−1η , UT−1η(S) = idHT−1η & T−1η′ 4 Sκn′ .
Defining S := T . S . T−1 ∈ W , this can be rewritten as:

Sη = η , Uη(S) = idHη & η′ 4 S κn′ .
Therefore, (κn)n∈N is a quasi-cofinal sequence in L(ext). Moreover, L[κ ] = {η ∣∣∣ T−1η ∈ L[κ ]} .Now, we define:

σ : S
⊗(L[κ ],H,Φ) → S

⊗(L[κ ],H,Φ)(
ρη
)
η∈L[κ ] 7→ (

T.ρT−1η)η∈L[κ ] ,
as well as:

α : A⊗(L[κ ],H,Φ) → A⊗(L[κ ],H,Φ)[
Aη
]
∼

L[κ ] 7→
[
T−1.Aη]∼

L[κ ]
.

Def. 19.5 ensures that σ is well-defined as a bijective map S
⊗(L[κ ],H,Φ) → S

⊗(L[κ ],H,Φ) , that α is well-defined as an isometric ∗-algebra isomorphism A⊗(L[κ ],H,Φ) → A⊗(L[κ ],H,Φ) and can be extended bycontinuity into a C ∗-algebra isomorphism A
⊗(L[κ ],H,Φ) → A

⊗(L[κ ],H,Φ) , that σ and α are Tr-intertwined,and that, for any A ∈ A⊗(L[κ ],H,Φ), α(A) = T−1.A.
Next, V−1 is an open neighborhood of 1 in T and, from theorem 19.8, there exists a bijective map

σ̃ : S⊗(L[κ ],H,Φ) → S
⊗(L[κ ],H,Φ) and a C ∗-algebra isomorphism α̃ : A⊗(L[κ ],H,Φ) → A

⊗(L[κ ],H,Φ) , such that σ̃ and
α̃ are Tr-intertwined, α̃〈A⊗(L[κ ],H,Φ)

〉 = A⊗(L[κ ],H,Φ) and:
∀A ∈ A⊗(L[κ ],H,Φ) , α̃(A) is V−1-close to A .

Thus, σ := σ̃ ◦ σ is a bijective map S
⊗(L[κ ],H,Φ) → S

⊗(L[κ ],H,Φ) , α := α̃−1 ◦ α−1 is a C ∗-algebraisomorphism A
⊗(L[κ ],H,Φ) → A

⊗(L[κ ],H,Φ) and statements 19.9.1 and 19.9.2 are fulfilled. �

Taking T to be the group of diffeomorphisms, and assuming the existence of a quasi-cofinal
sequence for the projective system under consideration (see the next subsection for a d = 1 example;
the existence proof in higher dimensions is currently under study), the previous result would allow
to define a discretized theory, while preserving a notion of diffeomorphism invariance: such a
theory would only have countably many observables, instead of a continuum thereof, but it would
have enough automorphisms to approximate the full group of diffeomorphisms.

Restoring diffeomorphism invariance is indeed a serious concern when discretizing a background-
independent theory [59, 74] : for example, a fixed lattice does not have enough automorphisms to
appropriately account for diffeomorphism invariance. It would be tempting to bypass this issue
altogether, by declaring such a lattice to be ‘non-embedded’, in the hope that one would thus
quotient out any coordinate dependency. This strategy is however known to give the wrong answer,
as it fails to remove enough degrees of freedom from the theory. The intuitive reason for this failure
is that the lattice itself effectively provides a coordinate system: the disposition of the fields with
respect to the lattice should therefore also be quotiented out when going diffeomorphism-invariant.
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In the context of AQG, these difficulties are in particular the reason why diffeomorphisms have to be
treated through the so-called ‘Extended Master Constraint’ approach [91] , which can accommodate
the absence of an action of the diffeomorphism group on the ITP Hilbert space of AQG.

19.3 One-dimensional toy-model

To illustrate the abstract framework laid in the previous subsection, we now want to work
out a concrete example. The projective system we are considering here can be though as a one-
dimensional version of LHF. To further simplify the argument below, we take Σ to be the line
segment ] 0, 1] , and for each surface (which, in dimension d = 1, is pointlike), we only keep its
downward face (ie. the face oriented toward 0): these additional simplifications are purely for
convenience, and could be easily lifted. The resulting projective system is precisely the one we set
up in subsection 18.2 on the label set L(aux) (see in particular prop. 18.10 and the proof of prop. 18.14),
except that we will, in the following, keep the gauge group G arbitrary. As group of transformations
T we will use the homeomorphisms of ] 0, 1] , which act on this projective system in a transparent
way, mapping a label (which is a finite set of points in ] 0, 1] ) to its image, and identifying the
associated Hilbert spaces accordingly (this is similar to [66, section 3.5] ).

Proposition 19.10 Let L(aux) be defined as in prop. 18.10, G be a finite-dimensional Lie-group and
µ be a right-invariant Haar measure on G. For any κ ∈ L(aux) = (e1, . . . , en) with 0 < e1 < . . . <
en 6 1, we define Cκ := {h : κ → G} and:

Eκ : Cκ → G#κ
h 7→

(
h(−1)(ek )−1.h(ek ))k∈{1,...,n} ,

where for any h ∈ Cκ , h(−1) is given by:
h(−1)(e1) = 1 & ∀k ∈ {2, . . . , n} , h(−1)(ek ) = h(ek−1) .

Eκ is a diffeomorphism Cκ → G#κ and we equip Cκ with the push-forward measure µκ := E−1
κ,∗ µn.Next, for any κ ⊂ κ ′, we define Cκ′→κ := Cκ′\κ as well as:

φκ′→κ : Cκ′ → Cκ′→κ × Cκ

h′ 7→
((h′(−1))−1.h′)∣∣∣

κ′\κ
, h′|κ

,
Then, these objects can be completed into a factorizing system of measured manifolds (L(aux), (C, µ), φ)×(def. 6.1) and we denote by (L(aux), H, Φ)⊗ the corresponding projective system of quantum statespaces (prop. 6.3).Let T be the group of homeomorphism ] 0, 1]→] 0, 1] equipped with the metric:
∀T , T ′ ∈ T, d(T , T ′) := sup

x∈] 0, 1] |T (x)− T ′(x)| .
For any T ∈ T and any κ ∈ L(aux), we define Tκ := T 〈κ〉 and:
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Uκ(T ) : Hκ → HTκ

ψ 7→ ψ
(
· ◦ T |κ

) .
Then, these objects can be completed into an action of T on (L(aux), H, Φ)⊗ (which, being aprojective system of quantum state spaces, is a fortiori a projective pre-system of quantum statespaces).
Proof Let κ ⊂ κ ′ ∈ L(aux) with κ ′ = (e′1 , . . . , e′n′) (0 < e′1 < . . . < e′n′ 6 1). G being a Lie group,
φκ′→κ is smooth Cκ′ → Cκ′→κ×Cκ . Next, for any (j, h) ∈ Cκ′→κ×Cκ , we define h̃′ ∈ Cκ′ recursivelyvia:

h̃′(e′1) = {h(e′1) if e′1 ∈ κ
j(e′1) if e′1 /∈ κ

& ∀k ∈ {2, . . . , n′} , h̃′(e′k ) = {h(e′k ) if e′k ∈ κ
h̃′(e′k−1).j(e′k ) if e′k /∈ κ ,

and we define φ̃κ′→κ : Cκ′→κ×Cκ → Cκ′ , (j, h)→ h̃′ . φ̃κ′→κ is smooth and we have φ̃κ′→κ ◦φκ′→κ =idCκ′ as well as φκ′→κ ◦ φ̃κ′→κ = idCκ′→κ × idCκ , so φκ′→κ is a diffeomorphism. In particular, for any
κ ∈ L(aux), Eκ = φκ→∅ : Cκ → Cκ′→∅ × C∅ ≈ G#κ is a diffeomorphism.Next, for any κ ⊂ κ ′ ∈ L(aux) with κ = (e1 , . . . , en) (0 < e1 < . . . < en 6 1) and κ ′ =(e′1 , . . . , e′n′) (0 < e′1 < . . . < e′n′ 6 1), we define an action of Gn (equipped with a Lie groupstructure using pointwise operations) on Cκ′ as:
∀g ∈ Gn, ∀h′ ∈ Cκ′ , R (κ,g)

κ′ (h′) := E−1
κ′
(
Eκ′(h′) . g′) ,where:

∀g ∈ Gn, ∀l ∈ {1, . . . , n′} , g′l := {gk if e′l = ek
1 if e′l /∈ κ

.
Also, for any κ ′ ⊂ κ ′′, with κ ′ = (e′1 , . . . , e′n′) (0 < e′1 < . . . < e′n′ 6 1) and κ ′′ = (e′′1 , . . . , e′′n′′)(0 < e′′1 < . . . < e′′n′′ 6 1), we have:(idCκ′′→κ′ × Eκ′

)
◦ φκ′′→κ′ ◦E−1

κ′′ (j ′′) = (j ′′m)m∈{1,...,n′′}\{ml | 16l6n′} , (j ′′ml−1+1 . . . . . j ′′ml

)
l∈{1,...,n′} ,(19.10.1)where (ml)l∈{0,...,n′} is defined via:

mo := 0 & ∀l ∈ {1, . . . , n′} , e′′ml
= e′l .and we have identified Cκ′′→κ′ ≈ Gn′′−n′ . Hence, for any κ ⊂ κ ′ ⊂ κ ′′, we obtain:

∀g ∈ G#κ, φκ′′→κ′ ◦ R (κ,g)
κ′′ = (idCκ′′→κ′ × R

(κ,g)
κ′ ) ◦ φκ′′→κ′ . (19.10.2)

Applying eq. (19.10.2) repeatedly yields, for any κ ⊂ κ ′ ⊂ κ ′′ and any g ∈ G#κ :(idCκ′′→κ′ × φκ′→κ
)
◦ φκ′′→κ′ ◦ φ−1

κ′′→κ ◦
(idCκ′′→κ × R

(κ,g)
κ
) == (idCκ′′→κ′ × idCκ′→κ × R

(κ,g)
κ
)
◦
(idCκ′′→κ′ × φκ′→κ

)
◦ φκ′′→κ′ ◦ φ−1

κ′′→κ .Now, there exists a map φκ′′→κ′→κ : Cκ′′→κ → Cκ′′→κ′ × Cκ′→κ such that:
∀j ′′ ∈ Cκ′′→κ ,

(idCκ′′→κ′ × φκ′→κ
)
◦ φκ′′→κ′ ◦ φ−1

κ′′→κ(j ′′, 1κ) = (φκ′′→κ′→κ(j ′′), 1κ
) ,
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with 1κ : κ → G, e 7→ 1, so using:
∀h ∈ Cκ , h = R (κ,Eκ (h))

κ (1κ) ,we get:(idCκ′′→κ′ × φκ′→κ
)
◦ φκ′′→κ′ = (φκ′′→κ′→κ × idCκ ) ◦ φκ′′→κ . (19.10.3)In particular, this requires that φκ′′→κ′→κ is a diffeomorphism Cκ′′→κ → Cκ′′→κ′ × Cκ′→κ . Therefore,(

L(aux), C, φ) is a factorizing system of smooth, finite dimensional manifolds.Moreover, for any κ ⊂ κ ′ ∈ L(aux) and any g ∈ G#κ , we have:
R (κ,g)
κ′,∗ µκ′ = µκ′ ,for µ is invariant under right-translations on G. Eq. (19.10.2) then yields, for any g ∈ G#κ :
φκ′→κ,∗ µκ′ = (idCκ′→κ × R

(κ,g)
κ )∗ [φκ′→κ,∗ µκ′ ]Using the uniqueness up to a global positive factor of the right-invariant Haar measure on G#κ ,we conclude that there exists a smooth measure µκ′→κ on Cκ′→κ such that:

φκ′→κ,∗µκ′ = µκ′→κ × µκ .Finally, from eq. (19.10.3), this also implies:
φκ′′→κ′→κ,∗µκ′′→κ = µκ′′→κ′ × µκ′→κ .

Action of T. Let T be an homeomorphism ] 0, 1] → ] 0, 1] . From the intermediate value theorem,
T is strictly monotonous. If T would be decreasing, we would have T 〈 ] 0, 1] 〉 ⊂ [T (1), 1] with
T (1) > 0, which would contradict the surjectivity of T , so T has to be strictly increasing. T canthen be extended into an homeomorphism T̃ : [0, 1]→ [0, 1] with T̃ (0) := 0, and, in particular, T isuniformly continuous. Therefore, for any ε > 0 there exists τ > 0 such that:
∀x, y ∈ ] 0, 1] , |x − y| 6 τ ⇒ |T (x)− T (y)| 6 ε/2 ,so, for any T ′ ∈ T:
∀S, S′ ∈ T,

(
d(S, T ) 6 ε/2 & d(S′, T ′) 6 τ

)
⇒ d(S ◦ S′, T ◦ T ′) 6 d(S ◦ S′, T ◦ S′) + d(T ◦ S′, T ◦ T ′) 6 ε .Similarly, there exists τ ′ > 0 such that:

∀S ∈ T, d(S, T ) 6 τ ′ ⇒ d
(
T−1 ◦ S, id] 0, 1]) = d

(
T−1, S−1) 6 ε .Thus, the metric d makes T into a topological group.For any κ ∈ L(aux), we have id] 0, 1] 〈κ〉 = κ , ∀T , T 〈κ〉 ∈ L(aux) and ∀T , T ′ ∈ T, (T ◦ T ′) 〈κ〉 =

T
〈
T ′ 〈κ〉

〉, hence κ 7→ Tκ is a group action of T on L(aux). Next, for any T ∈ T, T is strictlyincreasing, as mentioned above, so:
∀h ∈ CTκ , Eκ

(
h ◦ T |κ

) = ETκ(h) .Therefore, h 7→ h ◦ T |κ is a volume-preserving diffeomorphism (CTκ , µTκ)→ (Cκ , µκ), so Uκ(T ) isa unitary isomorphism from Hκ = L2 (Cκ , dµκ) into HTκ = L2 (CTκ , dµTκ). Moreover, we have:
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∀h ∈ Cκ , h ◦ id] 0, 1]∣∣κ = h & ∀T , T ′ ∈ T, ∀h ∈ C(T ′◦T )κ , h ◦ (T ′ ◦ T )|κ = (h ◦ T ′|Tκ) ◦ T |κ ,so that:Uκ
(id] 0, 1]) = idHκ & ∀T , T ′ ∈ T, UTκ(T ′) ◦ Uκ(T ) = Uκ(T ′ ◦ T ) , (19.10.4)which, in addition, implies:

∀T ∈ T, UTκ(T−1) = Uκ(T )−1 . (19.10.5)
Let κ ⊂ κ ′ ∈ L(aux) and T ∈ T. We then have T 〈κ〉 ⊂ T 〈κ ′〉 as well as T 〈κ ′ \ κ〉 = T 〈κ ′〉\T 〈κ〉(for T is bijective), and, T being strictly increasing:
∀h′ ∈ CTκ′ ,

(
h′ ◦ T |κ′

)(−1) = h′(−1) ◦ T |κ′ .Thus, defining:
Uκ′→κ(T ) : Hκ′→κ → HTκ′→Tκ

ψ 7→ ψ
(
· ◦ T |κ′\κ

) ,
we get:Uκ′(T ) ◦ Φ−1

κ′→κ = Φ−1
Tκ′→Tκ ◦ (Uκ′→κ(T )⊗ Uκ(T )) . (19.10.6)Therefore, Uκ′→κ(T ) is a unitary isomorphism Hκ′→κ → HTκ′→Tκ satisfying def. 19.5.2.Finally, let κ ⊂ κ ′ ∈ L(aux) and let T , T ′ ∈ T. Using eqs. (19.10.5) and (19.10.6), we have:UTκ′→Tκ(T−1)⊗ UTκ(T−1) = Φκ′→κ ◦ UTκ′(T−1) ◦ Φ−1

Tκ′→Tκ= [ΦTκ′→Tκ ◦ Uκ′(T ) ◦ Φ−1
κ′→κ

]−1
= Uκ′→κ(T )−1 ⊗ Uκ(T )−1 ,hence UTκ′→Tκ(T−1) = Uκ′→κ(T )−1, and, similarly, using eqs. (19.10.4) and (19.10.6), UTκ′→Tκ(T ′) ◦Uκ′→κ(T ) = Uκ′→κ(T ′ ◦ T ). �

A simple quasi-cofinal sequence for this system is obtained by taking the set K of all points
of the form k/2n (as will become clear in the course of the present subsection, it in fact does not
really matter how these points are layered on finer and finer levels of the quasi-cofinal sequence).
To prove that the quasi-cofinality property 19.7.3 holds, we will consider a set of points κ ′ (to be
approximated), of which a subset κ already belong to K . For any two successive points e, e′ in
κ, we simply need to approximate the points in κ ′ ∩

]
e, e′

[
by points in K ∩

]
e, e′

[
, and to find

a deformation of
]
e, e′

[
mapping one set of points into the other: we can, for example, use the

corresponding piecewise-linear mapping.

Proposition 19.11 We consider the same objects as in prop. 19.10. Then, there exists a quasi-cofinalsequence in L(aux) with respect to the action of T on (L(aux), H, Φ)⊗.
Proof We define κo := ∅ ∈ L(aux) and, for any n > 1:

κn := { k2n
∣∣∣∣ k ∈ {1, . . . , 2n}} ∈ L(aux) .
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We have, for any κ ∈ L(aux), κo ⊂ κ , and, for any n 6 n′, κn ⊂ κn′ .Let V be an open neighborhood of 1 in T, n ∈ N and κ ⊂ κ ′ ∈ L(aux) with κ ⊂ κn . Let ε > 0such that Bε ⊂ V (where Bε denotes the closed ball of radius ε and center id] 0,1] in T) and let
ε′ > 0 be given by:

ε′ = min
e,e′∈κ′
e6=e′
|e − e′| .

Let n′ > n such that 12n′ < 12 min(ε, ε′) . For any k ′ ∈ {1, . . . , 2n′ − 1}, we define Ik ′ ⊂ ] 0, 1] via:
I1 := ] 0, 32n′+1

]
, I2n′−1 := ] 1− 32n′+1 , 1[

& ∀k ′ ∈
{2, . . . , 2n′ − 2} , Ik ′ := ] 2k ′ − 12n′+1 , 2k ′ + 12n′+1

] .
The family (Ik ′)k ′∈{1,...,2n′−1} is then a partition of ] 0, 1 [ , and, for each k ′ ∈

{1, . . . , 2n′ − 1}, Ik ′
contains at most one element of κ ′. For k ′ ∈ {0, . . . , 2n′}, we define e′k ′ via:

e′o := 0, e′2n′ := 1 & ∀k ′ ∈
{1, . . . , 2n′ − 1} , e′k ′ = {e′ if Ik ′ ∩ κ ′ = {e′}

k ′2n′ else .
For any k ′ ∈ {1, . . . , 2n′ − 1}, e′k ′ ∈ Ik ′ , thus the family (ek ′)k ′∈{0,...,2n′} is strictly increasing. Next,we define a piecewise linear homeomorphism T : ] 0, 1]→ ] 0, 1] , via:
∀k ′ ∈

{1, . . . , 2n′} , ∀x ∈ ] k ′ − 12n′ , k
′2n′
]
, T (x) := (k ′ − 2n′ x) ek ′−1 + (1− k ′ + 2n′ x) ek ′ .

For any x ∈ ] 0, 1] , we have |T (x)− x| 6 22n′ < ε , so T ∈ V .
Let e′ ∈ κ ′. If e′ = 1, then e′ = T (1) = T ( 2n′2n′ ) . Otherwise, k ′ ∈ ] 0, 1 [ , hence there exists

k ′ ∈
{1, . . . , 2n′ − 1} such that e′ ∈ Ik ′ , so e′ = e′k ′ = T ( k ′2n′ ) . Therefore, κ ′ ⊂ Tκn′ . Finally, for

any k ′ ∈ {1, . . . , 2n′} such that k ′2n′ ∈ κ ′, we have e′k ′ = k ′2n′ , so T ( k ′2n′ ) = k ′2n′ . Thus, T |κ′∩κn′ = idκ′∩κn′and, in particular, T |κ = idκ (for κ ⊂ κ ′ ∩ κn ⊂ κ ′ ∩ κn′ ), yielding Tκ = κ and Uκ(T ) = idHκ . �

In theorem 19.8, we stated that, given two quasi-cofinal sequences (κn)n and (λm)m , the restricted
projective system over (κn)n can be deformed into the one over (λm)m . However, the deformation
maps, acting at the level of the quantum states and observables, that we constructed when proving
this result a priori do not arise from an element of T: instead, while their action on any given label
κn coincides with the action of an element Tn ∈ T, this element could be n-dependent. In prop. 19.12
below, we show that in the particular example we are now considering, the deformation actually
does arise from an homeomorphism of ] 0, 1] , in other words that Tn can be made independent
of n. An important ingredient of the proof is to realize that a bijection from ] 0, 1] into itself is
an homeomorphism if, and only if, it is strictly increasing (basically because the topology of R is
closely related to its order).
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In particular, this result allows to derive a stronger version of prop. 19.9: not only can any
element in T be approximated by an automorphism of the restricted projective system, but the set
of automorphisms that arise in this way moreover forms a group (in fact, it is a subgroup of T).
This property could be relevant when turning to the imposition of the ‘diffeomorphism’ constraints
(aka. the homeomorphism invariance in the present context).

Proposition 19.12 We consider the same objects as in prop. 19.10 and we assume that G isnon-trivial (ie. it is not reduced to {1} ). Let κ and λ be quasi-cofinal sequences in L(aux) andlet ε > 0. For any C ∗-algebra isomorphism α : A⊗(L[λ],H,Φ) → A
⊗(L[κ ],H,Φ) fulfilling statement 19.8.2with respect to V := Bε (the closed ball of radius ε and center id] 0,1] in T) and any bijectivemap σ : S⊗(L[κ ],H,Φ) → S

⊗(L[λ],H,Φ) such that σ, α are Tr-intertwined, there exists T ∈ Bε such that
L[λ] = {Tη ∣∣ η ∈ L[κ ]} and:
∀A ∈ A⊗(L[λ],H,Φ) , α(A) = T−1.A ,
∀ρ ∈ S

⊗(L[κ ],H,Φ) , σ (ρ) = (T.ρT−1η)η∈L[λ] .
In particular, for any quasi-cofinal sequence κ = (κn)n∈N , the group:
T [κ ] := {T ∈ T | T 〈K〉 = K} , with K := ⋃

n∈N

κn ,
acts on the projective system (L[κ ], H, Φ)⊗ and is dense in T.
Proof Determination of T ∈ Bε . Let κ = (κn)n∈N , λ = (λm)m∈N be two quasi-cofinal sequencesin L(aux) with respect to the action of T on (L(aux), H, Φ)⊗, and let V := Bε for some ε > 0. Let
α : A⊗(L[λ],H,Φ) → A

⊗(L[κ ],H,Φ) be a C ∗-algebra isomorphism fulfilling statement 19.8.2 with respect to Vand let σ : S⊗(L[κ ],H,Φ) → S
⊗(L[λ],H,Φ) be a bijective map such that σ, α are Tr-intertwined.For any bounded measurable function m : G → C, any e ∈ ] 0, 1] and any η ∈ L(aux) such that

e ∈ η, we define an operator ĥ(e,m)
η ∈ Aη via:

∀ψ ∈ Hη , ∀h ∈ Cη ,
[ĥ(e,m)

η ψ
](h) := m

(
h(e))ψ(h) .

For any η, η′ ∈ L(aux) such that e ∈ η ∩ η′, we have, from the definition of φη′→η in prop. 19.10:
ĥ(e,m)
η ∼ ĥ(e,m)

η′ .
We denote by ĥ(e,m) the corresponding element of A⊗(L(aux),H,Φ) . Next, for any e ∈ L := ⋃

m∈Nλm ,
we define ĥ(e,m)[λ] := ĥ(e,m) ∩ ⊔η∈L[λ]Aη 6= ∅ . Since L[λ] is cofinal in L(aux), ĥ(e,m)[λ] ∈ A⊗(L[λ],H,Φ) . By
assumption, α(ĥ(e,m)[λ] ) is then V -close to ĥ(e,m)[λ] , so there exists S(e,m) ∈ V such that:

S−1(e,m).ĥ(e,m)
{e} ∈ α

(ĥ(e,m)[λ] ) .
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This implies S−1(e,m) {e} = {S−1(e,m)(e)} ∈ L[κ ], ie. S−1(e,m)(e) ∈ K := ⋃n∈Nκn , and:
α
(ĥ(e,m)[λ] ) = [S−1(e,m).ĥ(e,m)

{e}

]
∼

L[κ ] = [ ̂h(S−1(e,m)(e),m)
{S−1(e,m)(e)}

]
∼

L[κ ]
= ̂h(S−1(e,m)(e),m)[κ ] ,

where the second equality comes from the definition of the action of T on (L(aux), H, Φ) (prop. 19.10).We choose a non-constant, smooth, compactly supported map mo : G → C (thanks to G beingnon-trivial), and for any e ∈ L, we define t̃(e) := S−1(e,mo)(e). Since S(e,mo) ∈ V = Bε , we have∣∣̃t(e)− e∣∣ 6 ε .Next, we consider e, e′ ∈ L such that e < e′. From the assumptions on α , we get that:
α
(ĥ(e,mo)[λ] − ĥ(e′,mo)[λ] ) = ĥ(̃t(e),mo)[κ ] − ĥ(̃t(e′),mo)[κ ]

is V -close to ĥ(e,mo)[λ] − ĥ(e′,mo)[λ] . Hence, there exists S ∈ V such that:
S−1.(ĥ(e,mo)

{e,e′} − ĥ(e′,mo)
{e,e′}

)
∈ ĥ(̃t(e),mo)[κ ] − ĥ(̃t(e′),mo)[κ ] ,

which can be rewritten, in a way similar to above, as:
̂h(S−1(e),mo)
η′ − ̂h(S−1(e′),mo)

η′ ∼ ĥ(̃t(e),mo)
η − ĥ(̃t(e′),mo)

η ,
where η := {t̃(e), t̃(e′)} and η′ := {S−1(e), S−1(e′)}. Let η′′ := η ∪ η′. For any ψ ∈ Hη′′ , we thenhave:
∀h ∈ Cη′′ ,

[
mo ◦ h

(
S−1(e))−mo ◦ h

(
S−1(e′))]ψ(h) = [mo ◦ h

(
t̃(e))−mo ◦ h

(
t̃(e′))]ψ(h) .

Since this holds for any ψ, this implies:
∀h ∈ Cη′′ , mo ◦ h

(
S−1(e))−mo ◦ h

(
S−1(e′)) = mo ◦ h

(
t̃(e))−mo ◦ h

(
t̃(e′)) ,

and therefore, mo being non-constant, S−1(e) = t̃(e) and S−1(e′) = t̃(e′) (this can be check bydistinguishing cases and plugging specific values of h in the equality above). Now, S−1 ∈ T, ie. itis an homeomorphism ] 0, 1]→] 0, 1] , so, by the intermediate value theorem, it is strictly increasing.Thus, t̃(e) < t̃(e′) .To summarize, we have proved that there exists a strictly increasing map t̃ : L → K such that:
∀e ∈ L, α

(ĥ(e,mo)[λ] ) = ĥ(̃t(e),mo)[κ ] &
∣∣̃t(e)− e∣∣ 6 ε .

Applying the same reasoning to the C ∗-algebra isomorphism α−1 : A⊗(L[κ ],H,Φ) → A
⊗(L[λ],H,Φ) , whichsatisfies statement 19.8.2 with respect to V−1 = Bε = V , yields that t̃ is actually bijective L → K(for, mo being non-constant, we have ĥ(e,mo) = ĥ(e′,mo) ⇒ e = e′). Now, let x ∈ ] 0, 1] and let ε′ > 0.We have ∅ ⊂ {x} ∈ L(aux) and ∅ ⊂ λo, so, from 19.7.3, there exists S ∈ Bε′ and m ∈ N such that

{x} ⊂ Sλm , ie. there exists y := S−1(x) ∈ L such that |x − y| 6 ε′ . In other words, L is dense in] 0, 1] , and, similarly, so is K . Then the topology on L (as a subspace of ] 0, 1] ), coincides with itsorder topology, ie. it is generated by the base:
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{ ] e, e′ [ ∩ L∣∣e, e′ ∈ L
}
∪
{ ] 0, e [ ∩ L∣∣e ∈ L

}
∪
{ ] e, 1 ] ∩ L∣∣e ∈ L

} .
The same holds for K and t̃, being bijective and strictly increasing, is thus an homeomorphism
L → K . Then, we can extend t̃ into a continuous function T̃ : ] 0, 1] → [0, 1] . Let x ∈ ] 0, 1]. Lbeing dense, there exists e ∈ ] 0, x [ ∩ L, and, for any e′ ∈ ] e, x ] ∩ L, T̃ (e′) = t̃(e′) > t̃(e). Bycontinuity, this implies T̃ (x) > t̃(e) > 0. So T̃ is actually valued in ] 0, 1] . Similarly, t̃−1 can beextended into a continuous function T : ] 0, 1] → [0, 1] , and we have T ◦ T̃

∣∣∣
L→L

= idL , as well as
T̃ ◦ T

∣∣∣
K→K

= idK . Therefore, T is an homeomorphism ] 0, 1] → ] 0, 1] with T−1 = T̃ . Moreover,for any e ∈ K , |T (e)− e| = ∣∣̃t−1(e)− t̃(t̃−1(e))∣∣ 6 ε, so by continuity T ∈ Bε .Since L(aux) consists of finite subsets of ] 0, 1] and the sequence (λm)m∈N is increasing, we have:
L[λ] := {η ∈ L(aux) ∣∣ ∃m ∈ N/ η ⊂ λm

} = {η ∈ L(aux) ∣∣ η ⊂ L
} ,

and, similarly, L[κ ] = {
η ∈ L(aux) ∣∣ η ⊂ K

} . Thus, T 〈K〉 = L yields L[λ] = {
Tη
∣∣ η ∈ L[κ ]} . Likein the proof of prop. 19.9, we can then define an isometric ∗-algebra isomorphism α̃ via:

α̃ : A⊗(L[λ],H,Φ) → A⊗(L[κ ],H,Φ)
A 7→ T−1.A ,

and extend it into a C ∗-algebra isomorphism α̃ : A⊗(L[λ],H,Φ) → A
⊗(L[κ ],H,Φ) . We now want to prove that

α = α̃ .
α and σ come from T . Let e ∈ L and let m : G → C be a bounded measurable function. Likeabove, there exists S ∈ V such that:

S−1.(ĥ(e,m)
{e} − ĥ(e,mo)

{e}
)
∈

̂h(S−1(e,m)(e),mo)[κ ] − ̂h(T−1(e),mo)[κ ] ,
and, defining η′ := {S−1(e), S−1(e,m)(e), T−1(e)} , we get:
∀h ∈ Cη′ , m ◦ h

(
S−1(e))−mo ◦ h

(
S−1(e)) = m ◦ h

(
S−1(e,m)(e))−mo ◦ h

(
T−1(e)) .

This requires either S−1(e,m)(e) = T−1(e), orm being constant. In the latter case, ĥ(e′,m)[κ ] = m(1) [idH∅

]
∼

L[κ ]for any e′ ∈ K , so in both cases:
α
(ĥ(e,m)[λ] ) = ̂h(T−1(e),m)[κ ] = α̃

(ĥ(e,m)[λ] ) .
Next, let e ∈ L and A{e} ∈ A{e} . Again, there exists S ∈ V such that:
S−1.A{e} ∈ α

([
A{e}

]
L[λ]) .

Defining η := {S−1(e)} and η′ := {T−1(e), S−1(e)} , we get, for any bounded measurable function
m : G → C:[

ιη′←η
(
S−1.A{e}), ̂h(T−1(e),m)

η′

]
∈ α

([
A(e,m)
{e}

]
L[λ]
) ,

where A(e,m)
{e} := [A{e} , ĥ(e,m)

{e}

] .
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If we suppose T−1(e) < S−1(e), we have, from the definition of φη′→{S−1(e)} :
̂h(T−1(e),m)
η′ = Φ−1

η′→η ◦
( ̂h(T−1(e),m)

η′→η ⊗ idHη

)
◦ Φη′→η ,

where:
∀ψ ∈ Hη′→η , ∀j ∈ Cη′→η ,

[ ̂h(T−1(e),m)
η′→η ψ

](j) = m ◦ j
(
T−1(e))ψ(j) .

Thus, we get α ([A(e,m)
{e}

]
L[λ]
) = 0. α being a C ∗-algebra isomorphism, this implies that, for any

bounded measurable function m, A{e} commutes with ĥ(e,m)
{e} . Now, let ψo be a smooth, nowhere-vanishing, square-integrable function on C{e} (eg. using a partition of unity [54, lemma 2.16 andtheorem 2.18] with suitable dumping factors). For any smooth, compactly supported function ψ on

C{e} , mψ := ψ/ψo is a bounded measurable function on C{e} ≈ G and we have:
ĥ(e,mψ )
{e} ψo = ψ .

We then get:
∀h ∈ C{e} ,

[
A{e} ψ

](h) = [ĥ(e,mψ )
{e} A{e} ψo

](h) = [
A{e} ψo

] (h)
ψo(h) ψ(h) .

Since this holds for any smooth compactly supported ψ, m := [
A{e} ψo

] /
ψo is almost everywhere

bounded by the operator norm ∥∥A{e}∥∥A{e} of A{e} , and, by density, A{e} = ĥ(e,m)
{e} .

Therefore, we either have α ([A{e}]L[λ]) = α̃
([
A{e}

]
L[λ]) or S−1(e) 6 T−1(e). In the latter case,the same reasoning applied to α−1 yields S−1(e) = T−1(e), thus S−1∣∣

{e} = T−1∣∣
{e} , so that, in thiscase too, α ([A{e}]L[λ]) = α̃

([
A{e}

]
L[λ]) .We want to prove:

∀η ∈ L[λ], ∀Aη ∈ Aη , α
([Aη]L[λ]) = α̃

([Aη]L[λ]) . (19.12.1)We proceed by recursion on #η. The case #η = 1 has been treated above and it implies the case#η = 0. We now suppose that eq. (19.12.1) holds up to #η = N > 1. Let η = (e1 , . . . , eN+1) ∈ L[λ](with 0 < e1 < . . . < eN+1 6 1). Let η1 := {e1} and η2 := η \ {e1} . Using eq. (19.10.1), we have:
∀j ∈ GN+1, (idCη→η1 × Eη1

)
◦ φη→η1 ◦ E−1

η (j) = (j2 , . . . , jN+1 ; j1) ,
&

(idCη→η2 × Eη2
)
◦ φη→η2 ◦ E−1

η (j) = (j1 ; (j1 . j2) , j3 , . . . , jN+1) .
We define, for any η′ ∈ L(aux), the unitary isomorphism Φη′ : Hη′ → H⊗#η′, ψ 7→ ψ ◦ E−1

η , where
H := L2(G, dµ). We then have, for any bounded operator A1 on H:
∀ψ ∈ Hη , ∀j ∈ GN+1, [Φη ◦ ιη←η1

(Φ−1
η1 A1 Φη1

)(ψ)](j) =
= [A1(Φη(ψ)( · , j2 , . . . , jN+1))](j1) = (A1 ⊗ id⊗NH ) (Φη(ψ))(j) ,
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and, for any bounded operator A2 on H⊗N :
∀ψ ∈ Hη , ∀j ∈ GN+1, [Φη ◦ ιη←η2

(Φ−1
η2 A2 Φη2

)(ψ)](j) =
= [A2 (Φη(ψ)(j1 , (j−11 . · ), · , . . . , · ))]((j1 . j2), j3 , . . . , jN+1)
= (idH ⊗

(L−1(j1) A2 L(j1))) (Φη(ψ))(j) ,
where, for any u ∈ G:

L(u) : H⊗N → H⊗N

ψ 7→
[(j2 , . . . , jN+1) 7→ ψ

((u−1 . j2), j3 , . . . , jN+1)] .
Chaining these expressions we get:
∀ψ ∈ Hη , ∀j ∈ GN+1, [Φη ◦ ιη←η2

(Φ−1
η2 A2 Φη2

)
◦ ιη←η1

(Φ−1
η1 A1 Φη1

)(ψ)](j) =
= (A1 ⊗ (L−1(j1) A2 L(j1)))(Φη(ψ))(j) . (19.12.2)

For any bounded operator A1 on H, resp. A2 on H⊗N , we define a bounded operator I(A1 , A2)on H⊗(N+1) via:
∀ψ ∈ H⊗(N+1), ∀j ∈ GN+1, (I(A1 , A2)ψ)(j) := [(A1 ⊗ (L−1(j1) A2 L(j1)))(ψ)](j)

(note that it follows in particular from the previous expression that this indeed defines a boundedoperator on H⊗(N+1)). We denote by I the vector subspace spanned by these operators in the spaceof bounded operators on H⊗(N+1):
I := Vect {I(A1 , A2) ∣∣ A1 bounded operator on H, A2 on H⊗N

}
(without any completion, ie. considering only finite linear combinations). The recursion hypothesis,together with eq. (19.12.2) and the fact that both α and α̃ are C ∗-algebra isomorphisms, then ensures:
∀A ∈ I, α

([Φ−1
η ◦ A ◦ Φη

]
∼

L[λ]
) = α̃

([Φ−1
η ◦ A ◦ Φη

]
∼

L[λ]
) .

Let and ε > 0. For any u ∈ G, (u · )∗ µ is a right-invariant Haar measure, so there exists ∆u < ∞such that (u . · )∗ µ = ∆u µ . Defining, for any ψ ∈ H and any u ∈ G, ψ(u) ∈ H via:
∀j ∈ G, ψ(u)(j) := ψ(u . j) ,

we then have ∥∥ψ(u)∥∥
H

= √∆u ‖ψ‖H (which in particular ensures that ψ(u) is indeed in H).Moreover, u 7→ ∆u is a smooth character on G (aka. modular function of G, see [43, appendix C.4] ).Hence, there exists an open neighborhood D of 1 in G such that:
∀u ∈ D, |1− ∆u| 6

min(1, ε)2 .
We now choose an orthonormal basis (φi)i∈N in H and an integer M ∈ N. For any i 6 M , thereexists a smooth, compactly supported function φ̃i on G (with support Ci ⊂ G) such that:
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∥∥∥φi − φ̃i∥∥∥
H
6
ε2 .

We define the compact C := ⋃i6MCi ⊂ G. For any i 6 M , φ̃i is in particular uniformly continuous,so there exists an open neighborhood Vi of 1 in G such that:
∀u ∈ Vi ,

∥∥φ̃i − φ̃(u)
i
∥∥
∞ 6

ε4√µ(C ) .
In particular, we thus have:
∀u ∈ Vi ,

∥∥φi − φ(u)
i
∥∥
H
6
∥∥φi − φ̃i∥∥H + ∥∥φ̃i − φ̃(u)

i
∥∥
H

+ ∥∥φ̃(u)
i − φ

(u)
i
∥∥
H

6
ε2 (1 +√∆u

) + ε4
√
µ(Ci ∪ u−1 . Ci)

µ(C )
6
ε2
(1 +√∆u + √1 + ∆u2

) .
We define V := D ∩

⋂
i6MVi , so that V is an open neighborhood of 1 in G. Let (uk )k6r with

r < ∞ be a finite family of points in C such that C ⊂ ⋃
k6rV[uk ] , where ∀u ∈ G, V[u] :=

{v . u | v ∈ V} ∩ {u . v ′ | v ′ ∈ V} . For any k 6 r, we define:
Fk := (V[uk ] ∩ C

)
\
(⋃

l<kV[uk ]) .Since Fk ⊂ C , µ(Fk ) < ∞, and we define R := {k | k 6 r & µ(Fk ) > 0} . For any k ∈ R , wedefine χk ∈ H as χk := 1/√µ(Fk ) 1Fk , where 1Fk denotes the indicator function of Fk . (χk )k∈R isthen an orthonormal family and we have, for any i 6 M:∥∥∥∥∥φ̃i −∑
k∈R

〈
χk
∣∣∣ φ̃i〉 χk∥∥∥∥∥

2
H

=∑
l∈R

∫
Fl
dµ(u) ∣∣∣∣φ̃i(u)− 1

µ(Fl)
∫
Fl
dµ(v) φ̃i(v)∣∣∣∣2

6
∑
l∈R

∫
Fl
dµ(u) (∣∣∣φ̃i(u)− φ̃i(ul)∣∣∣ + 1

µ(Fl)
∫
Fl
dµ(v) ∣∣∣φ̃i(ul)− φ̃i(v)∣∣∣)2

6
ε24 ,

so that ∥∥∥φi −∑k∈R

〈
χk
∣∣∣ φ̃i〉 χk∥∥∥

H
6 ε . Since ∑k∈R |χk 〉 〈 χk | is an orthogonal projection, thisimplies ∥∥φi −∑k∈R 〈χk | φi〉 χk

∥∥
H
6 ε .Let (ip)p , (jp)p ∈ {0, . . . ,M}N+1. For any k ∈ R , we define:

Ak1 := 〈χk | φi1〉 ∣∣χk 〉 〈 φj1∣∣
& Ak2 := ∆uk

∣∣∣φ(u−1
k )

i2 ⊗ φi3 ⊗ . . . ⊗ φiN+1
〉 〈

φ(u−1
k )

j2 ⊗ φj3 ⊗ . . . ⊗ φjN+1
∣∣∣ ,

so that A(ip)p (jp)p := ∑k∈R I(Ak1 , Ak2) ∈ I . Then, for any ψ ∈ H⊗(N+1), we have:
∀h ∈ GN+1, [A(ip)p (jp)p ψ] (h) =∑

k∈R

〈χk | φi1〉 χk (h1)φ(u−1
k . h1)

i2 (h2)×
×φ(3... )(ip)p (h3 , . . . , hN+1) ∆h−11 . uk

〈
φj1 ⊗ φ(u−1

k . h1)
j2 ⊗ φ(3... )(jp)p

∣∣∣ ψ〉 ,
where, for any (i′p)p ∈ {0, . . . ,M}N+1, φ(3... )(i′p)p ∈ H⊗(N−1) is defined by:
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φ(3... )(i′p)p := φi′3 ⊗ . . . ⊗ φi′N+1 .
Using ∥∥φi1 −∑k∈R 〈χk | φi1〉 χk

∥∥
H
6 ε , this yields:∥∥∥A(ip)p (jp)p ψ − ∣∣∣φi1 ⊗ φi2 ⊗ φ(3... )(ip)p
〉 〈

φj1 ⊗ φj2 ⊗ φ(3... )(jp)p
∣∣∣ ψ〉∥∥∥

H⊗(N+1)

6 ε ‖ψ‖H⊗(N+1) + ∥∥∥∥∥∑
k∈R

〈χk | φi1〉 βk ⊗ φ(3... )(ip)p
∥∥∥∥∥
H⊗(N+1)

,
where, for any k ∈ R , βk ∈ H⊗2 is defined by:
∀h1 , h2 ∈ G, βk (h1, h2) := χk (h1) [φ(u−1

k . h1)
i2 (h2) ∆h−11 . uk

〈
φj1 ⊗ φ(u−1

k . h1)
j2 ⊗ φ(3... )(jp)p

∣∣∣ ψ〉−
−φi2(h2) 〈φj1 ⊗ φj2 ⊗ φ(3... )(jp)p

∣∣∣ ψ〉] .
Next, for any k ∈ R , and any h1 ∈ Fk , we have u−1

k . h1 ∈ V , so that:
‖βk‖2H⊗2 = ∫

Fk

dµ(h1)
µ(Fk ) ∥∥∥φ(u−1

k . h1)
i2 ∆h−11 . uk

〈
φj1 ⊗ φ(u−1

k . h1)
j2 ⊗ φ(3... )(jp)p

∣∣∣ ψ〉−
−φi2

〈
φj1 ⊗ φj2 ⊗ φ(3... )(jp)p

∣∣∣ ψ〉∥∥∥2
H

6
∫
Fk

dµ(h1)
µ(Fk )

(∆u−1
k . h1

∣∣∣∣∣ 1∆u−1
k . h1

− 1∣∣∣∣∣ +√∆u−1
k . h1

∥∥∥φ(u−1
k . h1)

i2 − φi2
∥∥∥
H

+
+∥∥∥φ(u−1

k . h1)
j2 − φj2

∥∥∥
H

)2
‖ψ‖2H⊗(N+1)

6

(5 ε ‖ψ‖H⊗(N+1)
)2 .

Moreover, for any k 6= l, we have 〈βk | βl〉H⊗2 = 0, so we get:∥∥∥∥A(ip)p (jp)p − ∣∣∣φi1 ⊗ φi2 ⊗ φ(3... )(ip)p
〉 〈

φj1 ⊗ φj2 ⊗ φ(3... )(jp)p
∣∣∣ ∥∥∥∥

A⊗(N+1) 6 6 ε ,
where ‖ · ‖A⊗(N+1) denotes the operator norm on H⊗(N+1) .

Let Aη ∈ Aη and let η′ ∈ L[κ ] such that α ([Aη]∼
L[λ]
) = [

A′η′
]
∼

L[κ ] for some A′η′ ∈ Aη′ (thanks to
statement 19.8.2). Let η′′ := η′ ∪ T−1η ∈ L[κ ] and let ρη′′ be a non-negative traceclass operatoron Hη′′ . Let n′′ ∈ N such that η′′ ⊂ κn′′ , choose τn′′ ∈ Hκn′′→η′′ and, for any n > n′′, choose
τn ∈ Hκn→κn−1 . In a way similar to prop. 19.1, there exists ρ′ ∈ S⊗(L[κ ],H,Φ) such that:

Φκn′′→η′′ ρ
′
κn′′ Φ−1

κn′′→η′′ = |τn′′ 〉〈τn′′|⊗ρη′′ & ∀n > n′′, Φκn→κn−1 ρ′κn Φ−1
κn→κn−1 = |τn 〉〈τn|⊗ρ′κn−1 .

In particular, we then have ρ′η′′ = ρη′′ . Let ρ := [σ (ρ′)]η and ρ̃ := UT−1η(T ) (Trη′′→T−1η ρη′′)Uη(T−1) .Next, for any M ∈ N, we define a finite-dimensional vector subspace JM ⊂ Hη as:
JM := Vect {Φ−1

η |φi1 ⊗ . . . ⊗ φiN+1〉
∣∣∣ (ip)p ∈ {0, . . . ,M}N+1} .
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Let ε > 0. Applying lemma 5.10.1 to the family (JM)M∈N and the non-negative traceclass operators
ρ and ρ̃, there exists M ∈ N such that:∥∥ ρ − ΠM ρΠM

∥∥1 6 ε4 &
∥∥ ρ̃ − ΠM ρ̃ΠM

∥∥1 6 ε4 ,
where ‖ · ‖1 denotes the trace-norm and ΠM is the orthogonal projection on JM . Now, from theprevious step (with M ∈ N and ε/24 (M+1)2 > 0), there exists, for any (ip)p , (jp)p ∈ {0, . . . ,M}N+1,
A(ip)p (jp)p ∈ I such that:∥∥∥Φ−1

η
∣∣φi1 ⊗ . . . ⊗ φiN+1

〉 〈
φj1 ⊗ . . . ⊗ φjN+1

∣∣ Φη − Φ−1
η A(ip)p (jp)p Φη

∥∥∥
Aη
6

ε4 (M + 1)2 ,
where ‖ · ‖Aη

denotes the operator norm on Hη . Thus, defining a bounded operator Ã on Hη as:
Ã := ∑

(ip)p , (jp)p∈{0,...,M}N+1
〈
φi1 ⊗ . . . ⊗ φiN+1

∣∣ Φη Aη Φ−1
η φj1 ⊗ . . . ⊗ φjN+1

〉 Φ−1
η A(ip)p (jp)p Φη ,

we have Φη ÃΦ−1
η ∈ I and ∥∥∥Ã − ΠM Aη ΠM

∥∥∥ 6 ε4 ‖Aη‖Aη
. Putting everything together, we obtain:∣∣∣TrHη′′ ρη′′

(
ιη′′←η′(A′η′)− ιη′′←T−1η(T−1.Aη))∣∣∣ = ∣∣∣TrHη

(
ρ − ρ̃

)
Aη
∣∣∣

6 ε ‖Aη‖Aη
+ ∣∣∣TrHη

(
ρ − ρ̃

)
Ã
∣∣∣

= ε ‖Aη‖Aη
+ ∣∣∣∣Tr ρ′(α([Ã]∼

L[λ]
)
− α̃

([
Ã
]
∼

L[λ]
))∣∣∣∣ = ε ‖Aη‖Aη

.
Since this holds for any density matrix ρη′′ on Hη′′ and any ε > 0, it follows that ιη′′←η′(A′η′) =
ιη′′←T−1η(T−1.Aη), ie. α ([Aη]∼

L[λ]
) = α̃

([Aη]∼
L[λ]
), which concludes the recursive proof of eq. (19.12.1).From eq. (19.12.1), we have:

∀A ∈ A⊗(L[λ],H,Φ) , α(A) = α̃(A) ,
hence, by continuity, α = α̃ . Finally, like in the proof of prop. 19.9, we can then define a bijectivemap σ̃ : S⊗(L[κ ],H,Φ) → S

⊗(L[κ ],H,Φ) via:
σ̃ : S

⊗(L[κ ],H,Φ) → S
⊗(L[λ],H,Φ)(

ρη
)
η∈L[κ ] 7→ (

T.ρT−1η)η∈L[λ] ,
σ̃ and α̃ = α are Tr-intertwined by construction, as are σ and α . Thus, for any ρ ∈ S

⊗(L[κ ],H,Φ) , any
η ∈ L[λ] and any Aη ∈ Aη , we have:

TrHη

[
σ (ρ)]η Aη = Tr ρ α ([Aη]

∼
L[λ]
) = TrHη

[
σ̃ (ρ)]η Aη ,

which ensures that σ = σ̃ .
Approximation of T by T [κ ]. T [κ ] is stable under composition and inverse, hence it forms a subgroupof T. Moreover, using the characterization L[κ ] = {

η ∈ L(aux) ∣∣ η ⊂ K
} , we have, for any T ∈ T [κ ]
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and any η ∈ L(aux), η ∈ L[κ ] ⇔ Tη ∈ L[κ ] . Thus, the group action of T on the projective system(
L(aux), H, Φ)⊗ induces a group action of T [κ ] on the projective system (L[κ ], H, Φ)⊗.Next, let T ∈ T and let V be an open neighborhood of T in T. Let ε > 0 such that Bε . T :=
{T ′.T | T ′ ∈ Bε} ⊂ V . Let σ : S

⊗(L[κ ],H,Φ) → S
⊗(L[κ ],H,Φ) and α : A

⊗(L[κ ],H,Φ) → A
⊗(L[κ ],H,Φ) be as inprop. 19.9 with respect to the transformation T ∈ T and the open neighborhood Bε of id] 0, 1] in

T. Define σ : S⊗(L[κ ],H,Φ) → S
⊗(L[κ ],H,Φ) and α : A⊗(L[κ ],H,Φ) → A⊗(L[κ ],H,Φ) like in the proof of prop. 19.9,with κ the quasi-cofinal sequence κ := (Tκn)n∈N . Then, σ ◦ σ−1 : S

⊗(L[κ ],H,Φ) → S
⊗(L[κ ],H,Φ) and

α ◦ α : A⊗(L[κ ],H,Φ) → A
⊗(L[κ ],H,Φ) fulfills the hypotheses of the first part of the present proof, hencethere exists T ′ ∈ Bε such that:{

Tη
∣∣ η ∈ L[κ ]} = L[κ ] = {T ′η ∣∣ η ∈ L[κ ]}
& ∀A ∈ A⊗(L[κ ],H,Φ) , α(A) = T ′ −1.α−1(A) = (T ′ −1 . T ).A .

In particular, T̃ := T ′ −1 . T ∈ Tκ ∩ V . Therefore, Tκ is dense in T. �

As announced in the discussion preceding prop. 19.2, neither the universality of the restricted
projective systems built from quasi-cofinal sequences, nor the possibility of approximating transfor-
mations (that directly follows from it), extend to the infinite tensor products that one can assemble
from these sequences. In prop. 19.13 below, we construct an example of a deformation that provides
an identification at the level of the projective systems, but fails to provide a unitary mapping of the
corresponding ITP’s. The proof is somewhat similar to the one of theorem 5.11, and relies on the
fact that grouping the tensor product factors pairwise yields an inequivalent ITP [99, section 4.2] .

Proposition 19.13 We consider the same objects as in prop. 19.10 and we assume that G isnon-trivial. For any quasi-cofinal sequence κ = (κn)n∈N in L(aux), we define H[κ ]seq and σ [κ ]seq as inprop. 19.2 with respect to the projective system (L[κ ], H, Φ) and the increasing sequence (κn)n∈N .There exists quasi-cofinal sequences κ , λ and an homeomorphism T ∈ T such that:
L[λ] = {Tη ∣∣ η ∈ L[κ ]}

& σ [λ]seq 〈S[λ]seq〉 6= {(T.ρT−1η
)
η∈L[λ]

∣∣∣∣ ρ ∈ σ [κ ]seq 〈S[κ ]seq〉}
(where S

[κ ]seq , resp. S[λ]seq , denotes the space of non-negative traceclass operators on H[κ ]seq , resp. H[λ]seq ).In particular, this means that there does not exist any isomorphism of Hilbert spaces U : H[κ ]seq →
H[λ]seq such that:
∀ρ ∈ S

[κ ]seq , σ [λ]seq(U ρU−1) = (T.[σ [κ ]seq(ρ)]T−1η
)
η∈L[λ] . (19.13.1)

Proof Let κ = (κn)n∈N be a strictly increasing quasi-cofinal sequence (eg. the one we constructedin the proof of prop. 19.11) and let λ := (λm)m∈N , with ∀m ∈ N, λm := κ2m . Then, one cancheck that λ is also a quasi-cofinal sequence and, setting T := id] 0, 1] ∈ T, we have L[λ] = L[κ ] ={
Tη
∣∣ η ∈ L[κ ]} .
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We define Jo = J′o := Hκo = Hλo = H∅ , as well as, for any n > 0, Jn := Hκn→κn−1 , andfor any m > 0, J′m := Hλm→λm−1 . Then, for any m > 0, Φκ2m→κ2m−1→κ2m−2 is an isomorphism
J′m → J2m ⊗ J2m−1 . We choose a normalized vector ψo ∈ Jo . For any n > 0, we have κn−1 ( κn ,hence, G being non-trivial, dim Jn > 2, so we can choose two normalized, mutually orthogonalvectors ψ(1)

n , ψ(2)
n ∈ Jn . Then, we define:

φo := ψo ∈ J′o & ∀m > 0, φm := Φ−1
κ2m→κ2m−1→κ2m−2

(
ψ(1)2m ⊗ ψ(1)2m−1 + ψ(2)2m ⊗ ψ(2)2m−1√2

)
∈ J′m ,

and, by prop. 19.1, we construct ρ[φ] ∈ S⊗(L[λ],H,Φ) such that:
ρλo [φ] = |φo 〉 〈 φo| & ∀m > 0, ρλm [φ] = Φ−1

λm→λm−1 ◦
(
|φm 〉 〈 φm| ⊗ ρλm−1 [φ]) ◦ Φλm→λm−1 .

From prop. 19.2, we have ρ[φ] ∈ σ [λ]seq 〈S[λ]seq〉 ⊂ σ [λ]seq 〈S[λ]seq〉.
Reasoning by contradiction we suppose that there exists a non-negative traceclass operator ρ̃on H[κ ]seq such that:
∀η ∈ L[λ] = L[κ ], ρη[φ] = T.

[
σ [κ ]seq(ρ̃)]T−1η ,

ie. ρ[φ] = σ [κ ]seq(ρ̃) . Using the same notations as in the proofs of props. 19.1 and 19.2, we have:
ρ[φ] = σ [κ ]seq(ρ̃) =∑[|ψ′ |] σ [κ ][ψ′ ](Π[|ψ′ |] ρ̃Π[|ψ′ |]) ,

as well as:1 = Tr ρ[φ] = Tr
H

[κ ]seq
[
ρ̃
] =∑[|ψ′ |] Tr

H
[κ ][ψ′ ]
[Π[|ψ′ |] ρ̃Π[|ψ′ |]] .

Hence, there should exist ψ′ = (ψ′n)n∈N ∈ Z⊗(N,J) such that Tr
H

[κ ][ψ′ ]
[Π[|ψ′ |] ρ̃Π[|ψ′ |]] > 0, and eq. (19.2.1)then yields:

sup
n∈N

inf
n′>n

〈
ζ ′n′→n

∣∣∣ (TrKn Φ̃n′ ρ[φ]κn′ Φ̃−1
n′

)
ζ ′n′→n

〉 =
= ∑[|ψ′′ |] sup

n∈N
inf
n′>n

〈
ζ ′n′→n

∣∣∣∣ (TrKn Φ̃n′
[
σ [κ ][ψ′′ ](Π[|ψ′′ |] ρ̃Π[|ψ′′ |])]

κn′
Φ̃−1
n′

)
ζ ′n′→n

〉
> sup

n∈N
inf
n′>n

〈
ζ ′n′→n

∣∣∣∣ (TrKn Φ̃n′
[
σ [κ ][ψ′ ](Π[|ψ′ |] ρ̃Π[|ψ′ |])]

κn′
Φ̃−1
n′

)
ζ ′n′→n

〉
= Tr

H
[κ ][ψ′ ]
[Π[|ψ′ |] ρ̃Π[|ψ′ |]] > 0 ,

with ∀n < n′ ∈ N, ζ ′n′→n := ψ′n′ ⊗ . . . ⊗ ψ′n+1 ∈ Kn′→n (we have used that the sum ∑[|ψ′′ |] isabsolutely convergent in trace norm, and that the argument of infn′>n , resp. of supn∈N , is positiveand decreasing with n′, resp. increasing with n).From the definition of Φ̃n and ρ[φ], we have Φ̃o ρ[φ]κo Φ̃−1
o = |φo 〉 〈 φo| , as well as, for any m > 0:

Φ̃2m ρ[φ]κ2m Φ̃−12m = 12 ∣∣∣ψ(1)2m ⊗ ψ(1)2m−1 + ψ(2)2m ⊗ ψ(2)2m−1
〉 〈

ψ(1)2m ⊗ ψ(1)2m−1 + ψ(2)2m ⊗ ψ(2)2m−1
∣∣∣ ⊗
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⊗
(Φ̃2m−2 ρκ2m−2 [φ] Φ̃−12m−2) .Hence, we get, for any m > 0:

Φ̃2m ρ[φ]κ2m Φ̃−12m = 12m ∣∣∣ψ(1)2m ⊗ ψ(1)2m−1 + ψ(2)2m ⊗ ψ(2)2m−1
〉 〈

ψ(1)2m ⊗ ψ(1)2m−1 + ψ(2)2m ⊗ ψ(2)2m−1
∣∣∣ ⊗

⊗ . . . ⊗
∣∣∣ψ(1)2 ⊗ ψ(1)1 + ψ(2)2 ⊗ ψ(2)1

〉 〈
ψ(1)2 ⊗ ψ(1)1 + ψ(2)2 ⊗ ψ(2)1

∣∣∣ ⊗ |φo 〉 〈 φo| .
Let n ∈ N and let m > n/2 . If n = 2p, we have p < m and:〈

ζ ′2m→n
∣∣∣ (TrKn Φ̃2m ρ[φ]κ2m Φ̃−12m) ζ ′2m→n〉 = m∏

k=p+1 ξk ,
where, for any k > 0, ξk := 12

∣∣∣〈ψ′2k ⊗ ψ′2k−1
∣∣∣ ψ(1)2k ⊗ ψ(1)2k−1 + ψ(2)2k ⊗ ψ(2)2k−1

〉∣∣∣2 . If n = 2p + 1, wealso have p < m and:〈
ζ ′2m→n

∣∣∣ (TrKn Φ̃2m ρ[φ]κ2m Φ̃−12m) ζ ′2m→n〉 = ξ̃p+1
m∏

k=p+2 ξk ,
where ξ̃p+1 := 12

∣∣∣〈ψ′2p+2
∣∣∣ ψ(1)2p+2

〉∣∣∣2 + 12
∣∣∣〈ψ′2p+2

∣∣∣ ψ(2)2p+2
〉∣∣∣2 . Now, for any k > 0, we have:

ξk = 12
∣∣∣∣∣ 2∑
ε=1
〈
ψ′2k

∣∣∣ ψ(ε)2k
〉 〈

ψ′2k−1
∣∣∣ ψ(ε)2k−1

〉∣∣∣∣∣
2

6
12
( 2∑

ε=1
∣∣∣〈ψ′2k ∣∣∣ ψ(ε)2k

〉∣∣∣2)( 2∑
ε=1
∣∣∣〈ψ′2k−1

∣∣∣ ψ(ε)2k−1
〉∣∣∣2)

6
12 ‖ψ′2k‖2 ‖ψ′2k−1‖2 = 12.

Thus, we get:〈
ζ ′2m→n

∣∣∣ (TrKn Φ̃2m ρ[φ]κ2m Φ̃−12m) ζ ′2m→n〉 6 12m − b(n+ 1)/2c ,
where b · c denotes the floor function. This yields, for any n ∈ N:

inf
n′>n

〈
ζ ′n′→n

∣∣∣ (TrKn Φ̃n′ ρ[φ]κn′ Φ̃−1
n′

)
ζ ′n′→n

〉 = 0,
and therefore:sup

n∈N
inf
n′>n

〈
ζ ′n′→n

∣∣∣ (TrKn Φ̃n′ ρ[φ]κn′ Φ̃−1
n′

)
ζ ′n′→n

〉 = 0,
which provides the desired contradiction. Hence, ρ[φ] /∈ {(T.ρT−1η)η∈L[λ]

∣∣∣ ρ ∈ σ [κ ]seq 〈S[κ ]seq〉} , so:
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σ [λ]seq 〈S[λ]seq〉 6= {(T.ρT−1η)η∈L[λ]
∣∣∣ ρ ∈ σ [κ ]seq 〈S[κ ]seq〉} .

�

To exhibit a quasi-cofinal sequence for LHF in the physically more interesting d = 3 case, the
idea would be to construct a discrete but dense, fractal-like structure made of edges and surfaces:
note that the sequence constructed above for our one-dimensional toy-model can also be seen as a
fractal in ] 0, 1] . The proof that such a structure can be designed that satisfies the quasi-cofinality
property 19.7.3 is however significantly more involved than in the one-dimensional case, and is not
yet finished.

An interesting use of the possibility to start from a non-directed, extended label set L(ext) would
be that we could drop the somewhat ad-oc (semi-)analyticity requirement for edges and surfaces:
recall that analyticity was used solely in lemmas 10.5 and 10.8, with the aim of proving the
directedness of LHF. Also, we could take advantage of this possibility to eliminate the unphysical
(in the sense of having no equivalent in the classical continuum phase space from subsection 9.1),
degenerated fluxes. These fluxes supported on geometrical objects of dimension strictly less that
d − 1 had to be included in LHF because they arose from the commutators of non-degenerate,(d− 1)-supported fluxes: we could not exclude a priori that an edge, hitting the intersection, would
see the non-vanishing commutator. In contrast, in the context of a fractal-structure, where a
discrete set of admissible edges and surfaces is chosen beforehand, we can effectively forbid that
an edge will ever go through the intersection of any two surfaces, and simply set the commutator
of degenerately intersecting fluxes to zero (this would not, however completely solve the problem
of the ‘non-commuting fluxes’, since, as stressed at the end of section 10, the core of this problem
concerns the non-degenerately intersecting fluxes).

Another consideration that will enter the definition of L(ext) is that it seems necessary to allow for
piecewise smooth edges and surfaces, and for the group of transformations to consist of piecewise
diffeomorphisms. This is the price we pay to satisfy an improved quasi-cofinality condition, that
respects any already adapted sublabel, and it is already apparent in fig. 19.1: to adapt the grid to
the target label in this schematic example, we had to deform it in a way that flattened some right
angles (see eg. the diagonal edge in the bottom left quadrant). This complication can for example
occur if there are two vertices b and f already at their final position (ie. they belong to the sublabel
η of η′ that we are no longer allowed to deform): there might be, in η′, a straight edge e joining
b to f , while there is no straight line available in the quasi-cofinal sequence to connect these two
particular vertices: we will then have to approximate e by a zig-zag line along the fractal fabric of
our quasi-cofinal sequence.

Switching to piecewise diffeomorphisms is presumably harmless anyway. In the context of quan-
tum gravity, in particular, it has been argued that geometrical knowledge, including angles, should
ultimately come from the gravitational degrees of freedom themselves (see eg. [28] ). And while
admitting only strict diffeomorphisms is enforced in LQG for the benefit of the regularization of
the volume operator [7] , and therefore of the Hamiltonian constraint that depends on it [88] , the
additional, fractal-like structure provided by a quasi-cofinal sequence could probably serve as a
drop-in replacement for the differentiable structure used in these calculations.
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20. Discussion: imposing the constraints (2/2)

Recall that we put forward in section 13 the need to ‘anchor’ the fluxes, in order to improve
their transformation properties under gauge transformations. The problem was then to build a
directed label set while keeping track of the auxiliary systems of paths entering the definition of
these anchored fluxes. Remarkably, a fractal-like structure as sketched above could provide these
anchoring paths automatically. Indeed, considering a given face, with a conjugate edge starting
from it, the refinement taking place as we go deeper and deeper in the quasi-cofinal sequence would
require to simultaneously subdivide the original face and ramify the original edge. In this way, we
would recursively construct a dense tree reaching this face, that one could use for anchoring the
corresponding flux.

Going over to the diffeomorphism constraints, one could imagine to simply declare the labels of
the quasi-cofinal sequence to be non-embedded, and to keep the relations between them as they
are: this would be a way to ignore the difficulty described in section 13 regarding the proper way of
relating non-embedded labels. However, as we explained at the end of subsection 19.2, this would
not actually make the states diffeomorphism invariant, as the fractal structure would just take over
the role of a coordinate system. Instead, we should follow the strategy outlined in section 13 and,
for every single state at a certain level κn , we should reposition κn−1 within κn to capture the best
picture of this particular state.

Note that obtaining the diffeomorphism-invariant state space in this way could, incidentally, be
beneficial for the semi-classical limit. This is because the factorized coherent states constructed
along the lines of subsection 19.1 are not immune against the so-called ‘staircase problem’ (see
[92, subsection 11.2.5] ). The variables added at each step of the quasi-cofinal sequence (aka. the
variables from the spaces Hκn+1→κn) are the most semi-classical ones in such a state. Thus, while the
elementary variables of the first few elements of the sequence will have very peaked distributions,
other variables only slightly different may be very spread, due to their complicated dependence in
terms of these preferred directions of the factorized state. The problem is less severe than in the case
of fixed-graph coherent states [90] (in which the variables on the graph are perfectly semi-classical,
while variables only slightly different, that are not supported by the graph, are not semi-classical at
all), but it would be further mitigated by adapting the imposition of the diffeomorphism constraints
to the quasi-cofinal sequence. Indeed, the collective, large-scale variables that compose the coarsest
elements of the quasi-cofinal sequence, and are thus prioritized in the semi-classical approximation,
would then be interpreted as reflecting the most prominent features of the state.

Finally, it would also be natural to perform the regularization of the Hamiltonian constraints
along the quasi-cofinal sequence, eg. by adapting the approximation scheme developed in [88] , and
doing so could potentially help the dynamical stability of the factorized semi-classical states (recall
the discussion in the general introduction: an important limitation of fixed-graph coherent states is
that they are not well adapted to graph-changing Hamiltonian constraints). Interestingly, the need
for fractal constructions also emerges from this perspective [92, subsection II.12.2.5].
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Conclusion

Summary

We have taken the first steps toward a reformulation of Loop Quantum Gravity withing the
projective framework proposed by Kijowski [48] , with the hope of shedding new light on its semi-
classical regime, and perhaps also on its dynamics. Along the way, we obtained the following main
results:

Extension of the projective formalism. We have investigated the formalism in detail, on
the classical side (section 2), as well as on the quantum side (section 5). This allowed us to
formulate fairly systematic quantization prescriptions, along the lines of geometric quantization
(position quantization, in particular on simply connected Lie groups, in subsection 6.1; holomorphic
quantization in subsection 6.2).

Application to the holonomy-flux algebra. We were able to show that the construction developed
in [68] can be generalized from the linear case to an arbitrary gauge group G. The key ingredient is
still the same, namely the use of labels defined as collections of edges and surfaces. However, the
somewhat involved algebra built by the holonomies and fluxes in the case of a non-Abelian group
requires to be more restrictive as to which such collections qualify as labels (subsections 10.1 and
10.2). The factorization maps, which are the central objects of the formalism, can then be expressed
explicitly in terms of the group operations (subsections 10.3 and 12.1), so that no further restrictions
on the Lie group G are needed. In particular, the case G = SL(2,C) could have application to
the treatment of the complex Ashtekar variables (see section 11), which cannot be handled by the
standard LQG methods.

Relation with standard constructions. We exhibited mappings from the spaces of density matri-
ces on Hilbert spaces constructed as inductive limits or infinite tensor products, into corresponding
projective state spaces, and we were able to precisely characterize the image of these mappings
(subsection 5.2). This allowed us to prove, in subsection 12.2, that the projective state space we had
set up for the holonomy-flux algebra extends the well-established Ashtekar-Lewandowski one (in
the compact group case, where the latter is defined).

Proposal for dealing with constraints. We identified the need for regularizing the dynamics
in order to implement it in the projective framework, and proposed to describe dynamical states
as (projective) families of kinematical ones, that converge to exact solutions of the constraints
(section 3). It is via this connection with the kinematical state space that the degrees of freedom
on the dynamical side acquire their physical meaning. This proposal was put to the proof on
simple toy-models in sections 15 and 16. In particular, the study of the second quantization of the
Schrödinger equation (aka. non-relativistic quantum field theory) provides interesting insight on
how considerations of convergence when implementing the dynamics could help select a subset of
well-behaved states in the (typically very large) projective state space: this is how the Fock space
reemerges in this approach.

Procedure for simplifying the algebra of observables. We have analyzed the remaining ob-
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structions to the existence of satisfactory semi-classical states (section 18), and devised a strategy
to go around this problem, by trimming the label set down to countable cardinality, without de-
naturing the physical content of the algebra of observables, its universality, nor its symmetries
(subsection 19.2, with a one-dimensional proof of principle in subsection 19.3). This paves the way
for the construction of states whose semi-classicality is enforced step by step, starting from col-
lective, macroscopic degrees of freedom and going down progressively toward smaller and smaller
scales (subsection 19.1).

Outlook

The program started in the present work is still far from complete and has uncovered many open
questions. Directions for further research include:

Systematic quantization prescriptions. As discussed in section 7, it should be possible to gen-
eralize the quantization procedure outlined in section 6. Given an arbitrary projective system of
classical phase spaces, one would like to immediately obtain a corresponding projective quantum
state space from a consistent choice of polarizations (in the sense of geometric quantization [105] )
on the small, partial phase spaces. As these partial phase spaces are meant to be finite dimensional,
different choices of polarization can often be related through unitary identification of the resulting
quantized partial theories and this could allow to weaken the consistency conditions (by demand-
ing consistency only up to unitary equivalence). This could have applications to the description of
quantum fields on arbitrary spacetimes (eg. in the spirit of [64] ).

Proof of non-emptyness. Projective systems built on countable label sets are guaranteed to
yield non-empty quantum state spaces, as projective states are easily constructed in this case
(subsection 19.1). The situation is less clear in the case of uncountable labels sets (see prop. 5.12
and the discussion at the end of section 18) and it would be helpful to delineate sufficient conditions
for projective state spaces to be non-empty. In particular, we would like to construct projective states
on the holonomy-flux algebra in the non-compact group case.

Refining the implementation of the dynamics. We need to develop the tools to deal with
constraints in the projective framework, expanding the strategy proposed in section 3. On the
classical side, we would like to formulate systematic recipes to generate the input needed for the
regularization of the constraints. On the quantum side, we still have to provide a rigorous procedure,
including rules for defining an effective and physically meaningful notion of convergence (see the
discussion surrounding theorem 16.21). As a general guiding principle, we should strive to reflect
the concrete experimental implementation of the observables. In particular, when considering a
theory of gravity, it might prove legitimate to define the convergence in a way that completely
ignores the gravitational degrees of freedom: indeed, geometry is only probed by matter, and never
measured directly.

Solving the constraints of LQG. The implementation of the Gauss and diffeomorphism constraints
on the projective quantum state space set up in section 12 would be a good opportunity to further
refine these tools, before eventually turning to the Hamiltonian constraints [88, 91] . In sections 13
and 20, we explored how these constraints could be regularized, notably by making use of the
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fractal structure introduced in section 19. Note that the analysis of this regularization at the
classical level could already be interesting on its own, to investigate how the correct dynamics
can be recovered in a formulation build on the holonomy and flux variables (instead of a more
conventional formulation using a Sobolev-like space of regular connections and electrical fields,
see subsection 9.1): in particular, it could clarify the impact of having non-commuting fluxes (see
[92, section II.6.1] and the discussion at the end of section 10).

Relation with covariant approaches. By giving a central role to truncations and refinement in
the construction of the quantum state space, the projective formalism appears well suited to import
into the canonical setting some strengths of the path-integral formulation of quantum field theory,
such as approximation schemes and renormalization. In the context of quantum gravity, taking
advantage of the techniques developed in covariant approaches (eg. Spin Foams [9, 76] or Causal
Dynamical Triangulations [2] ) could in particular help computing solutions of the Hamiltonian
constraints of LQG [94] .

Semi-classical states and applications. Finally, we shall complete the construction of semi-
classical states begun in section 19, in particular by extending the one-dimensional results of
subsection 19.3 to the d = 3 case. The thus obtained states could then be applied to the study of the
semi-classical limit [90, 36] and to the derivation of symmetry reduced models [16, 30, 27, 18] (as
hinted in the introduction). A first target in this direction would be to recover the photon states of
usual quantum electrodynamics out of a theory quantized in terms of holonomies and fluxes (with
gauge group G = U(1), see [97] ).
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Appendix

A. Classical constrained systems

To fix the notations and definitions, we summarize here some facts about constrained classical
systems. We recall how a reduced phase space arises from a constraint surface in a symplectic
manifold [105, section 1.7], we introduce a notion of transport of observables to translate kinematical
observables into dynamical ones (this facility is the main object of the physical discussion in
section 3), and give a very brief account of partial gauge fixing [62].

When considering a constraint surface MSHELL in a symplectic manifold MKIN the pullback of the
symplectic structure ΩKIN does not, in general, define a symplectic structure on MSHELL: there might
be directions in the tangent space of MSHELL on which this pullback vanishes. These directions
correspond to the gauge flow generated by first class constraints, and the gauge orbits need to
be quotiented out in order to get a reduced phase space MDYN with a non-degenerate symplectic
structure ΩDYN.

Except for the first few definitions (which are tailored to match the needs of some results in
section 3), this appendix focuses on finite dimensional manifolds: this is anyway the point of the
formalism presented in the main text that we aim at describing a field theory in such a way that
we can work mostly within the context of finite dimensional manifolds.

Definition A.1 Let MKIN be a (possibly infinite dimensional) smooth symplectic manifold (withsymplectic structure ΩKIN). A phase space reduction of MKIN is a triple (MDYN,MSHELL, δ) such that:1. MSHELL is a submanifold of MKIN and MDYN is a symplectic manifold (with symplectic structure ΩDYN);
2. δ : MSHELL →MDYN is a surjective map and, for all y ∈MDYN, δ−1 〈y〉 is connected;
3. for all x ∈MSHELL, Im(Txδ) = Tδ(x)(MDYN) & ΩKIN,x|Tx (MSHELL) = [δ∗ΩDYN]x .
For any bounded real-valued function f on MKIN, we define a corresponding dynamical observable

on MDYN by mapping to a point y in the reduced phase space the supremum of f on the corresponding
orbit δ−1 〈y〉. The motivation for this definition is that we regard indicator functions as the most
fundamental observables: with the transport of observables defined this way, the indicator function
of some region in MKIN is mapped into the indicator function on the space of orbits that characterize
whether a given orbit crosses this region or not. In other words, the dynamical observable related
to the indicator function of some region of MKIN will tell us whether the dynamical state of the
system allows it to be measured in that region.

Note that there can be relations between the dynamical observables f DYN1 , . . . , f DYN
k arising from

functionally independent kinematical observables f1, . . . , fk , or to state this more precisely we can
have dependencies:
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Im (f DYN1 × . . . × f DYN
k ) 6= (Im f DYN1 )× . . . × (Im f DYN

k ) ,
although the corresponding kinematical observables were independent:Im (f1 × . . . × fk ) = (Im f1)× . . . × (Im fk ) .
This is a crucial observation, since, indeed, the dynamical content of theory lies in such functional
relations emerging between observables that were kinematically independent.

Definition A.2 Let (MDYN,MSHELL, δ) be a phase space reduction of MKIN. We denote by B(MKIN) thespace of bounded, real-valued, functions on MKIN. For all f ∈ B(MKIN), we define f DYN ∈ B(MDYN) by:
∀y ∈MDYN, f DYN(y) := sup {f (x) ∣∣ x ∈ δ−1 〈y〉}. (A.2.1)

As explained above, a phase space reduction is entirely specified by its constraint surface and,
provided we exclude any pathology that could occur regarding the rank of pullback (pointA.3.2)
or the quotienting under gauge (pointsA.3.3 and A.3.4), we can reconstruct the elements listed
in def. A.1 from the constraint surface MSHELL. The degenerate directions of the pullback of the
symplectic form on MSHELL naturally generate a foliation [54, chapter 14] (the required integrability
condition follows from ΩKIN being closed, see [105, section 1.7] ), and quotienting along this foliation
ensures that we recover a non-degenerate symplectic structure on MDYN.

For the rest of this appendix all manifolds will be finite dimensional manifolds.
Definition A.3 Let MKIN be a smooth, finite dimensional, symplectic manifold (with symplecticstructure ΩKIN). A pre-reduction of MKIN is a triple (MDYN,MSHELL, δ) such that:1. MSHELL is a submanifold of MKIN and MDYN is a manifold;
2. the restriction of ΩKIN to T (MSHELL) is of constant rank, thus defining a foliation K (MSHELL) by
∀x ∈MSHELL, Kx(MSHELL) := {v ∈ Tx(MSHELL) ∣∣∣ ΩKIN,x(v, · )|Tx (MSHELL) = 0} ⊂ Tx(MSHELL);

3. δ : MSHELL →MDYN is a surjective map and ∀x ∈MSHELL, Im(Txδ) = Tδ(x)(MDYN) ;
4. ∀y ∈MDYN, δ−1 〈y〉 is a leaf of the foliation K (MSHELL).

Proposition A.4 Let MKIN be a smooth, finite dimensional, symplectic manifold (with symplecticstructure ΩKIN) and let (MDYN,MSHELL, δ) be a phase space reduction of MKIN. Then, (MDYN,MSHELL, δ) isa pre-reduction of MKIN and we have:
∀x ∈MSHELL, Kx(MSHELL) = KerTxδ = Tx

(
δ−1 〈δ(x)〉) . (A.4.1)

Proof Defs. A.3.1 and A.3.3 are directly implied by def. A.1.Let y ∈ MDYN and x ∈ δ−1 〈y〉. Since δ has surjective derivative at each point, we have asan implication of the rank theorem [54, theorem 5.22] that δ−1 〈y〉 is a submanifold of MSHELL withtangent space KerTxδ ⊂ Tx(MSHELL) at x . Now, from def. A.1.3, together with the non-degeneracy ofΩDYN (for MDYN is a symplectic manifold), we have:
∀x ′ ∈ δ−1 〈y〉 , KerTx′δ = Kx′(MSHELL) .
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Hence, K (MSHELL) has constant dimension, so def. A.3.2 is fulfilled.Additionaly, by maximality of the leaves, the connected submanifold δ−1 〈y〉 is included in theleaf of the foliation K (MSHELL) that goes through x . Reciprocally, since the leaf that goes through xis connected, and has tangent space Kx′(MSHELL) = KerTx′δ at any point, δ is constant on it, henceit is included in δ−1 〈y〉. Thus, def. A.3.4 is fulfilled. �

Proposition A.5 Let MKIN be a smooth, finite dimensional, symplectic manifold and let (MDYN,MSHELL, δ)be a pre-reduction of MKIN. Then, there exists a symplectic structure ΩDYN on MDYN such that(MDYN,MSHELL, δ) is a phase space reduction of MKIN.
Proof What we need to prove is that there exists a symplectic structure ΩDYN on MDYN such that:
∀x ∈MSHELL, ΩKIN,x|Tx (MSHELL) = [δ∗ΩDYN]x .

The others points in def. A.1 are immediately fulfilled (in particular, for any y ∈ MDYN, δ−1 〈y〉 isconnected as a leaf of a foliation).Let x ∈ MSHELL and let y := δ(x). Since δ has surjective derivative at each point, there exist bythe rank theorem [54, theorem 5.13] open neighborhoods U of x in MSHELL, V of y in MDYN and W of 0in Rs−d (with s := dimMSHELL and d := dimMDYN), and a diffeomorphism φ : V ×W → U such that:
∀y′ ∈ V , ∀z′ ∈ W, δ ◦ φ(y′, z′) = y′ .

For any y′, z′ ∈ V ×W , we define Ωφ,z′DYN,y′ by:
∀v, v ′ ∈ Ty′(MDYN), Ωφ,z′DYN,y′

(
v, v ′

) = ΩKIN,φ(y′,z′) (Ty′,z′ φ(v, 0), Ty′,z′ φ(v ′, 0)) .
Then, setting x ′ := φ(y′, z′), Ωφ,z′DYN,y′ satisfies:
∀u, u′ ∈ Tx′(MSHELL), ΩKIN,x′ (u, u′) = Ωφ,z′DYN,y′

(
Tx′δ(u), Tx′δ(u′)) ,for we have from def. A.3.4:{

Ty′,z′ φ(0, w) | w ∈ Tz′(W )} = Tx′
(
δ−1 〈y′〉) = Kx′ (MSHELL) . (A.5.1)

Let Ỹ , Ỹ ′ be vector fields on V and Z̃ be a vector field on W . Defining Y := φ∗
(
Ỹ , 0),

Y ′ := φ∗
(
Ỹ ′, 0), and Z := φ∗

(0, Z̃), we have [Y , Z ] = [Y ′, Z ] = 0 and, from eq. (A.5.1):
ΩKIN(Z, · )|T (MSHELL) = 0 .

Hence, we get, for any y′, z′ ∈ V ×W :
dΩKIN (Y , Y ′, Z)φ(y′,z′) = 0 (by definition of a symplectic form)

= Z
(ΩKIN(Y , Y ′))φ(y′,z′)

= Z̃z′
(
z′′ 7→ Ωφ,z′′DYN,y′

(
Ỹy′, Ỹ ′y′

)) .
Now, for any x ∈MSHELL, we define ΩxDYN : Tδ(x)(MDYN)× Tδ(x)(MDYN)→ R by:
∀v, w ∈ Tx(MSHELL), ΩxDYN (Txδ(v), Txδ(w)) = ΩKIN,x(v, w) .
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That such an ΩxDYN exists is established by the previous discussion and, since ImTxδ = Tδ(x)(MDYN),it is moreover unique. Thus, ΩxDYN is well-defined.The previous argument also shows that, for any vector fields Y , Y ′ on MDYN, x 7→ ΩxDYN
(
Yδ(x), Y ′δ(x))is smooth and satisfies:

∀x ∈MSHELL, ∀w ∈ Tx
(
δ−1 〈δ(x)〉) , Tx

(
x ′ 7→ Ωx′DYN

(
Yδ(x′), Y ′δ(x′))) (w) = 0 .

The level sets of δ being connected, as underlined above, this allows us to define a smoothdifferential 2-form ΩDYN satisfying:
∀x ∈MSHELL, ΩKIN,x|Tx (MSHELL) = [δ∗ΩDYN]x .

Lastly, for any x ∈MSHELL, we also have:[δ∗ dΩDYN]x = dΩKIN,x|Tx (MSHELL) = 0 ,
and, from eq. (A.5.1):KerTxδ = Kx(MSHELL) .Thus, Txδ being surjective, ΩDYN is closed and non-degenerate, so it is indeed a symplectic form on
MDYN. �

Proposition A.6 Let MKIN be a smooth, finite dimensional, symplectic manifold and let (MDYN,1,MSHELL, δ1)and (MDYN,2,MSHELL, δ2) be two phase space reductions of MKIN arising from the same submanifold MSHELLof MKIN. Then there exists a unique map ψ : MDYN,1 →MDYN,2 such that δ2 = ψ ◦ δ1. Moreover, ψ is asymplectomorphism.
Proof From def. A.3.4 δ2 is constant on the level sets of δ1 and reciprocally, hence, as a consequence[54, prop. 5.21] of the rank theorem (using that both δ1 and δ2 are surjective and have surjectivederivative at each point, from def. A.3.3), there exists a unique diffeomorphism ψ : MDYN,1 → MDYN,2such that δ2 = ψ ◦ δ1.In particular, for x ∈MSHELL (with y := δ1(x)), we have Txδ2 = Tyψ ◦ Txδ1, so that, using def. A.1.3:[δ∗1 ΩDYN,1]x = ΩKIN,x|Tx (MSHELL) = [δ∗1 ψ∗ΩDYN,2]x .Since Txδ1 and δ1 are surjective, ψ is a symplectomorphism. �

The subalgebra of kinematical observables whose Hamiltonian flow stabilizes the constraint sur-
face (and are therefore constant on the gauge orbits) is mapped into the algebra of dynamical
observables in a way that preserves the Poisson brackets. Equivalently, these compatible kinemati-
cal observables can be characterized as the one having vanishing commutators with the constraints
(at least on shell). This property is closely related to the possibility of solving mutually commuting
sets of constraints successively, rather than simultaneously.

Proposition A.7 Let MKIN be a smooth, finite dimensional, symplectic manifold and let (MDYN,MSHELL, δ)be a phase space reduction of MKIN. Let f , g and {f , g}KIN ∈ C∞(MKIN, R)∩B(MKIN), and assume that:
∀x ∈MSHELL, Xf ,x, Xg,x ∈ Tx(MSHELL) ,where the Hamiltonian vector field Xf := df is defined by ΩKIN(Xf , · ) = df .
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Then f DYN, gDYN ∈ C∞(MDYN, R) and {f DYN, gDYN}DYN = ({f , g}KIN
)DYN.

Proof For all x ∈ MSHELL, Xf ,x ∈ Tx(MSHELL), hence dfx 〈Kx(MSHELL)〉 = ΩKIN,x (Xf ,x, Kx(MSHELL)) ⊂ΩKIN,x (Tx(MSHELL), Kx(MSHELL)) = {0}. The same holds for g. Therefore, f and g are constant onthe leaves of the foliation K (MSHELL) on MSHELL. As a consequence [54, prop. 5.20] of the rank theorem(using defs. A.3.3 and A.3.4), there exist smooth maps f̃ and g̃ : MDYN → R such that f |MSHELL = f̃ ◦ δand g|MSHELL = g̃ ◦ δ . Hence, f DYN = f̃ and gDYN = g̃.In addition, we have for any x ∈MSHELL (with y := δ(x)):[δ∗ df DYN]x = dfx|Tx (MSHELL)
= ΩKIN,x|Tx (MSHELL) (Xf ,x ; · ) (using Xf ,x ∈ Tx(MSHELL))
= ΩDYN,y (Txδ (Xf ,x) ; Txδ ( · )) (using def. A.1.3 ).

Thus, Txδ being surjective, XfDYN,y = Txδ
(
Xf ,x
) and, similarly XgDYN,y = Txδ

(
Xg,x
) .Hence, we have:

{f DYN, gDYN}DYN,y = ΩDYN,y (XgDYN,y, XfDYN,y)
= ΩDYN,y (Txδ (Xg,x) , Txδ (Xf ,x))
= ΩKIN,x (Xg,x, Xf ,x) (using def. A.1.3 and Xf ,x, Xg,x ∈ Tx(MSHELL))
= {f , g}KIN,x .

Since this holds for all x ∈ δ−1 〈y〉, this implies in particular that {f , g}KIN is constant on δ−1 〈y〉.Therefore ({f , g}KIN
)DYN (y) = {f , g}KIN,x = {f DYN, gDYN}DYN,y. �

Finally, we briefly recall the idea of partial gauge fixing: imposing additional constraints, in such
a way that the resulting constraint surface cuts transversally through each gauge orbit, yields the
same reduced phase space. However, the dynamical observable associated to a given kinematical
observable according to the gauge-fixed dynamics does not coincides with the one associated ac-
cording to the original dynamics: while the reduced phase space is not affected by gauge fixing, its
relation to the kinematical phase space is (and, as stressed above, this relation is where the physical
interpretation of the reduced phase space comes from). At least, the gauge-fixed dynamics does re-
produce the correct dynamical observable whenever the kinematical observable under consideration
is compatible with original set of constraints (because it is then constant on gauge orbits).

Proposition A.8 Let (MDYN,MSHELL, δ) be a phase space reduction of MKIN and MFIX a submanifold of
MSHELL such that:1. for all x ∈MFIX, Tx(MSHELL) = Tx(MFIX) + Kx(MSHELL);
2. the intersection of a leaf of the foliation K (MSHELL) with MFIX is not void and is connected;We define δFIX : MFIX →MDYN by δFIX := δ|MFIX . Then, (MDYN,MFIX, δFIX) is a phase space reduction of
MKIN.
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Moreover, if f ∈ C∞(MKIN, R) ∩ B(MKIN) and ∀x ∈ MSHELL, Xf ,x ∈ Tx(MSHELL), we have f DYN = f FIXwhere:
∀y ∈MDYN, f DYN(y) := sup {f (x) ∣∣ x ∈ δ−1 〈y〉} (def. A.2)
and f FIX(y) := sup {f (x) ∣∣ x ∈ δFIX,−1 〈y〉}.

Proof Statements A.1.1 & A.1.2. MFIX is a submanifold of MSHELL, and MSHELL is a submanifold of MKIN,hence MFIX is a submanifold of MKIN. MDYN is a symplectic manifold.The level sets of δFIX are the intersection with MFIX of the leaves of the foliation K (MSHELL) (usingdef. A.3.4), hence from assumption A.8.2, δFIX is surjective and its level sets are connected.
Statement A.1.3. Let x ∈MFIX. We have TxδFIX = Txδ|Tx (MFIX), hence:

TxδFIX 〈Tx(MFIX)〉 = Txδ 〈Tx(MFIX)〉 = Txδ 〈Tx(MFIX) + KerTxδ〉
= Txδ 〈Tx(MFIX) + Kx(MSHELL)〉 = Txδ 〈Tx(MSHELL)〉 = TδFIX(x) (MDYN) (using assump-tion A.8.1, eq. (A.4.1) and def. A.1.3 for the phase space reduction (MDYN,MSHELL, δ) ).

Next, we have:ΩKIN,x|Tx (MFIX) = [δ∗ΩDYN]x|Tx (MFIX) (using def. A.1.3 for the phase space reduction (MDYN,MSHELL, δ)and Tx(MFIX) ⊂ Tx(MSHELL))
= [(δ|MFIX)∗ ΩDYN]x
= [δFIX,∗ΩDYN]x .

Observables. Let f ∈ C∞(MKIN, R) ∩ B(MKIN) with ∀x ∈ MSHELL, Xf ,x ∈ Tx(MSHELL). From the proof ofprop. A.7, f is then constant on the leaves of the foliation K (MSHELL) on MSHELL. Therefore, f DYN = f FIX.
�

B. Geometric quantization

The aim of this appendix is to import a few definitions and properties from geometric quantiza-
tion, that are needed in particular for section 6. We try here to give a short self-contained intro-
duction, leading rapidly to the definition of the holomorphic representation on a Kähler manifold
[105, sections 8.4 & 9.2], and of the position representation arising from a choice of configuration
variables on a symplectic manifold [105, sections 4.5 & 9.3]. Accordingly, we skip advanced aspects,
including underlying insights and technical subtleties.

In this appendix all manifolds are assumed to be smooth, finite dimensional manifolds.
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B.1 Prequantization

Definition B.1 An hermitian line bundle is a vector bundle (B, πB, M) associated to a U(1)-principal bundle on a smooth manifold M via the standard action of U(1) on C. Since the C-linearstructure and the Hermitian product 〈 · , · 〉 : z, z′ 7→ z∗ z′ on C is preserved under the action of U(1),each fiber of B can be equipped with a natural hermitian structure.Any connection in the U(1)-principal bundle defines a covariant derivative ∇ on B, and we canassociate to its curvature a Lie(U(1)) ≈ R-valued 2-form D∇ on M, such that for any cross-section
s of B and any vector fields X, Y on M:[∇X , ∇Y ] (s) =∇[X,Y ] (s) + i D∇(X, Y ) s . (B.1.1)
Definition B.2 Let M be a symplectic manifold (with symplectic structure Ω). A prequantumbundle (B,∇) on M is an hermitian line bundle B, with base M, equipped with a connection, withcorresponding covariant derivative ∇ and such that:

D∇ = −Ω .
On M, we define the symplectic volume form ω := 1

p! Ω∧ . . . ∧Ω = 1
p! Ω∧p (where p := dimM/2)and the corresponding measure µω.

Definition B.3 Considering the same objects as in def. B.2, we define the prequantum Hilbert space
HpreQ as the space L2(M → B, dµω) of (equivalence classes up to almost-everywhere equality of)cross-sections of B whose norm, defined using the hermitian structure on B, is square-integrablewith respect to µω.For f ∈ C∞(M, C), we define the prequantization f̂ of f as a (densely defined) operator on HpreQby:
∀s ∈ Df ⊂ HpreQ, f̂ s := fs+ i∇Xf s ,where ∇Xf :=∇XRe(f ) + i∇XIm(f ) .

Proposition B.4 Let f , g ∈ C∞(M, C). Then:[
f̂ , ĝ

] = i {̂f , g} .
and:
∀s, s′ ∈ Df ,

〈
f̂ ∗ (s), s′〉 = 〈s, f̂ (s′)〉 .

If f is real-valued and if, moreover, Xf is a complete vector field on M [54, chap. 12], then f̂ is anessentially self-adjoint operator on HpreQ .
Proof Let s ∈ Df ,g (defining the common domain Df ,g such that both f̂ ĝ s and ĝ f̂ s are well-defined; since Df ,g contains at least the compactly supported smooth cross-sections, it is dense in
HpreQ). Using eq. (B.1.1) we have:[

f̂ , ĝ
] (s) = − [∇Xf , ∇Xg

] (s) + i dXf (g) s − i dXg (f ) s
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= −∇[Xf , Xg ] (s) + iΩ(Xf , Xg) s+ iΩ(Xg, Xf) s − iΩ(Xf , Xg) s
= −∇X{f , g} (s) + i {f , g} s = i {̂f , g} (s) .

Let s, s′ ∈ Df . We have for all X vector field on M:
∀x ∈M, dX 〈s, s′〉 (x) = 〈∇X (s)(x), s′(x)〉+ 〈s(x), ∇X (s′)(x)〉 , (B.4.1)for ∇ comes from a U(1)-connection. Hence, we get:〈
f̂ ∗ (s), s′〉 = ∫ dµω(x) 〈i∇X∗f (s)(x), s′(x)〉 +∫ dµω(x) 〈f ∗ s(x), s′(x)〉

= − ∫ dµω(x) i dXf 〈s, s′〉 (x) +∫ dµω(x) 〈s(x), i∇Xf (s′)(x)〉 +∫ dµω(x) 〈s(x), f s′(x)〉
= ∫ i 〈s, s′〉 (LXfω) +∫ dµω(x) 〈s(x), f̂ (s′)(x)〉(using Stokes theorem [54, theorem 10.23]; M is assumed to be without boundary, and Df isrequired to ensure suitable fall-off conditions)
= ∫ dµω(x) 〈s(x), f̂ (s′)(x)〉 = 〈s, f̂ (s′)〉(for Xf generates symplectomorphisms, thus preserving the symplectic volume form ω).

We now assume that f is real-valued. From the previous point, f̂ is a symmetric operator ona dense domain containing at least the compactly supported smooth cross-sections. We moreoverassume that the Hamiltonian vector field Xf of f is a complete vector field on M, ie. there exists asmooth map θ : R×M→M such that [54, lemma 12.7] :
1. θ(0, · ) = idM & ∀t, t′ ∈ R, θ(t, · ) ◦ θ(t′, · ) = θ(t + t′, · ) ;
2. ∀x ∈M, Xf ,x = d

dτ θ(τ, x)∣∣∣∣
τ=0 ;

3. and, for any t ∈ R, θ(t, · ) is a symplectomorphism of M [54, prop. 13.23].Using ∇-parallel transport [50, section II.3], we can lift θ to a flow Θ on B, such that, for any
t ∈ R, Θ(t, · ) is a bundle automorphism of B. We then have, for any smooth cross-section s:

d
dτ s(τ)(x)∣∣∣∣

τ=t = − (∇Xfs(t)) (x) ,
where ∀t ∈ R, s(t) := Θ(t, · ) ◦ s ◦ θ(−t, · ) .

Next, let s ∈ Ker (f̂† ± i) ⊂ HpreQ . This requires:
∀s′ ∈ Df ,

〈
f̂ (s′) ∣∣∣ s〉 = ∓i 〈s′ | s〉 .

For any smooth, compactly supported cross-section s′ ∈ Df , and any t ∈ R, we have s′(t) ∈ Df ,so we get, using the dominated convergence theorem:
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0 = ∫ dµω(x) 〈 (f ◦ θ(t, x)∓ i) s′(x)∣∣s(−t)(x)〉− i d
dτ

∫
dµω(x) 〈s′(x)∣∣s(−τ)(x)〉∣∣∣∣

τ=t ,where we have used that for any τ ∈ R, θ(τ, · ) preserves µω (as a symplectomorphism on M)and Θ(τ, · ) preserves 〈 · , · 〉 (as a line bundle automorphism). Defining, for any smooth, compactlysupported cross-section s′ ∈ Df , and any t ∈ R :
I(s′, t) := ∫ dµω(x) 〈s′(t)(x) ∣∣ s(x)〉 = ∫ dµω(x) 〈s′(x) | s(−t)(x)〉 ,

this can be rewritten as:
d
dτ I(s′, τ)

∣∣∣∣
τ=t = I

((
i f ◦ θ(t, · )± 1) s′, t) . (B.4.2)

Defining, for any t ∈ R and any x ∈M:
F (t, x) := exp(∓t − i ∫ t

0 dτ f ◦ θ(τ, x)) ,
we obtain, for any smooth, compactly supported cross-section s′ ∈ Df :
∀t ∈ R, d

dτ I
(
F (τ, · ) s′, τ) ∣∣∣∣

τ=t = 0 .
hence, for any t ∈ R, and almost everywhere in (M, µω), s = F (t, · ) s(−t). In particular, we thenhave:
∀t ∈ R,

∣∣s∣∣ = e∓t
∣∣s ◦ θ(t, · )∣∣ a.e. in (M, µω) .Since s ∈ L2(M→ B, dµω) and θ(t, · ) preserves µω for any t ∈ R, this requires s = 0. Thus, weobtain Ker (f̂† ± i) = {0} , which ensures that f̂ is essentially self-adjoint [73, theorem VIII.3]. �

The prequantization of M leads to a faithful representation of the full Poisson-algebra C∞(M, C).
However, this representation is typically much too big (as is to be expected from the Groenewold-
Van-Hove theorem [40] and generalizations thereof [39]), so the next step will be to implement
additional prescriptions yielding a physically admissible Hilbert space (at the cost of restricting
which observables can be quantized).

B.2 Holomorphic representation

To discuss holomorphic quantization we need to equip M with an almost complex structure J
(def. B.5.1), which is required to be integrable (def. B.5.2, ensuring the existence of local holomorphic
coordinates, thus making J into a complex structure for M) and compatible with the symplectic
structure Ω (def. B.5.3). An additional positivity requirement (def. B.5.4) allows to define fromΩ and J a Riemannian metric on M (the so-called Kähler metric) and makes M into a Kähler
manifold [50, section IX.4].
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Definition B.5 A Kähler manifold (M, Ω, J) is a symplectic manifold (M, Ω) equipped with asmooth field J satisfying:
1. ∀x ∈M, Jx is an endomorphism of Tx(M) such that J2x = −idTx (M) ;
2. ∀X, Y ∈ T∞(M), [JX, JY ]− J [X, JY ]− J [JX, Y ]− [X, Y ] = 0 (where T∞(M) is the space ofsmooth vector fields on M);
3. ∀x ∈M, ∀v, w ∈ Tx(M), Ωx(Jxv, Jxw) = Ω(v, w) ;
4. ∀x ∈M, ∀v 6= 0 ∈ Tx(M), Ωx(v, Jxv) > 0 .

Proposition B.6 Let M be a Kähler manifold and (B,∇) be a prequantum bundle on M. We definethe holomorphic quantization HHolo of M to be HHolo := HpreQ∩Holo(M→ B), where Holo(M→ B)is the space of holomorphic cross-sections of B:Holo(M→ B) := {s ∈ C∞(M→ B) | ∀x ∈M, ∀v ∈ Tx(M), ∇Jvs = i∇vs} .
HHolo is a closed vector subspace of HpreQ, hence is itself an Hilbert space.
Proof Let (sα)α∈A be a net in HHolo that converges (for the norm ‖ · ‖preQ) to s ∈ HpreQ.Let x ∈ M. There exist a neighborhood U of x in M, holomorphic coordinates z1, . . . , zp(2p := dimM) on U and a real valued function K (z, z∗) on U such that [105, section 5.4]:
∀x ′ ∈ U, Ωx′ = i ∂2K

∂zj ∂zl,∗ (x ′)dzj ∧ dzl,∗ ,
and from B.5.4 ∂2K

∂zj ∂zl,∗ has to be a positive definite hermitian matrix at every point in U . Thesymplectic measure is then given over U by:
µω := β µ(p)

C = 2p det( ∂2K
∂z ∂z∗

)
µ(p)
C (where µ(p)

C is the standard measure on Cp).
We choose t ∈ π−1

B 〈x〉 (the fiber of B above x), with |t| = e−K (x)/2, and we define the cross-section
r of B|U by:

r(x) = t & ∀x ′ ∈ U, ∀v ∈ Tx′(M), ∇v r(x ′) = −(∂K∂zj (x ′) [dzj]x′ (v)
)
r(x ′) .

We can check using eq. (B.1.1) that this characterizes a well-defined cross-section of B|U and wehave moreover:
∀x ′ ∈ U, ∀v ∈ Tx′(M), ∇Jv r(x ′) = i∇v r(x ′) ,

and [d 〈r, r〉]x′ (v) = −dKx′(v) 〈r, r〉 (x ′) ,
so r is an holomorphic cross-section of B|U and ∀x ′ ∈ U, |r(x ′)| = e−K (x′)/2 .Next, for all α ∈ A we can define fα as the holomorphic function fα : U → C such that
∀x ′ ∈ U, sα(x ′) = fα(x ′) r(x ′). Similarly, we define f : U → C such that ∀x ′ ∈ U, s(x ′) = f (x ′) r(x ′).Let ε > 0 and let U1 be a closed ball (with respect to the coordinates z1, . . . , zp) of center x andradius r > 0 such that U1 ⊂ U and ∀x ′ ∈ U1, β(x ′) e−K (x′) > ε. Let U2 be the closed ball of center
x and radius r/2. For all x ′ ∈ U2 we call Ux′2 the closed ball of center x ′ and radius r/2. Hence,
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Ux′2 ⊂ U1 . For g an holomorphic function on U1 → C, we have:
∀x ′ ∈ U2, g(x ′) = 8p

r2p
[ p∏
k=1
∫ r/2

0 qk dqk
]
g(x ′)

= 4p
πp r2p

[ p∏
k=1
∫ r/2

0 dqk
∫ 2π

0 qk dθk
]

g
(
x ′ + (

q1 eiθ1, . . . , qp eiθp
)) ,

hence:
∀x ′ ∈ U2, |g(x ′)|2 6 ( 4

π r2
)2p [∫

Ux′2
dµ(p)

C (z) |g(z)|]2

6

( 4
π r2

)2p πp r2p4p
∫
Ux′2
dµ(p)

C (z) |g(z)|2 (by convexity of x 7→ x2)
6

4
π r2

∫
U1 dµ

(p)
C (z) |g(z)|2 .

Therefore, for all α, α ′ ∈ A:
∀x ′ ∈ U2, |fα(x ′)− fα ′(x ′)|2 6 4

π r2
∫
U1 dµ

(p)
C (z) |fα(z)− fα ′(z)|2

6
1
ε

4
π r2

∫
U1 dµω(z) |fα(z)− fα ′(z)|2 |r|2

6
4

ε π r2 ‖sα − sα ′‖2preQ ,
hence the net ( fα |U2

)
α∈A converges uniformly to a function f ′ : U2 → C. Cauchy’s integral formulaimplies that f ′ is holomorphic on the interior of U2. On the other hand, the net ( fα |U2

)
α∈A convergesin L2-norm to f |U2 (for ∀α ∈ A,

∥∥ fα |U2 − f|U2
∥∥2 6 1√

ε ‖sα − s‖preQ), hence f ′ = f |U2 (µω-almost-everywhere). Therefore, s ∈ HHolo. �

Since we restrict the quantum Hilbert space to HHolo, we should also restrict the admissible
observables to be the ones that stabilize HHolo (note that we do not discuss here whether the
intersection of HHolo with the dense domain of such an observable will also be dense in HHolo; this
is a non-trivial question, for the usual tools based on bump functions are not available in the
holomorphic class).

Proposition B.7 We consider the same objects as in prop. B.6. We define:
OHolo,C := {f ∈ C∞(M, C) | ∀Y ∈ T∞(M), ∃ Z ∈ T∞(M) / [Y + i JY , Xf ] = Z + i JZ} ,where T∞(M) is the space of smooth vector fields on M.Then, for all f ∈ OHolo,C, f̂ stabilizes HHolo.
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Proof Let f ∈ OHolo,C and s ∈ Df ∩HHolo. Let x ∈M and v ∈ Tx(M). Then, there exists Y ∈ T∞(M)such that Yx = v (we can construct such a vector field using local smooth coordinates around xand an appropriate bump function). Since f ∈ OHolo,C, there also exists Z ∈ T∞(M) such that[Y + i JY , Xf ] = Z + i JZ . Hence:
∇Jv, x f̂ s = (∇JY f̂ s

) (x)
= (f (∇JY s)) (x) + (Ω (Xf , JY ) s) (x) + i (∇JY∇Xf s) (x)
= (f (∇JY s)) (x)− i (∇[Xf , J Y ] s) (x) + i (∇Xf∇JY s) (x) (using eq. (B.1.1))
= (f (∇JY s)) (x) + (∇Z+i JZ s) (x) + (∇[Xf , Y ] s) (x) + i (∇Xf∇JY s) (x)
= i

(
f (∇Y s)) (x) + (∇[Xf , Y ] s) (x)− (∇Xf∇Y s) (x) (using s ∈ HHolo )

= i∇Y

(
f̂ s
) (x) = i∇v, x f̂ s ,

therefore f̂ s ∈ HHolo . �

Proposition B.8 We consider the same objects as in prop. B.7. Let r be a nowhere-vanishingcross-section of B such that r ∈ HHolo and let µr be the measure on M defined by µr = 〈r, r〉 µω .Then, the map:
Φr : L2(M, dµr) ∩ Holo(M) → HHolo

ψ 7→ ψ r
,

is an Hilbert space isomorphism.If f ∈ OHolo,C and ψ ∈ Φ−1
r 〈Df〉, we have:

f̂ r ψ := (Φ−1
r f̂ Φr

)
ψ = f ψ + i (dXfψ) + i2 X r

f ψ , (B.8.1)
where X r

f is defined by 2∇Xf r = X r
f r .

Proof Let s ∈ HHolo. Since r is a nowhere-vanishing holomorphic cross-section there exists aunique smooth function ψ : M→ C such that s = ψ r. Moreover, for all x ∈M and all v ∈ Tx(M):
i (dvψ) r = i∇v s − i ψ∇v r =∇Jv s − ψ∇Jv r = (dJvψ) r ,hence ψ ∈ Holo(M). Moreover:
‖s‖2Holo = ∫

M

dµω(x) 〈ψ(x) r(x), ψ(x) r(x)〉 = ∫
M

dµr(x)ψ∗(x)ψ(x) = ‖ψ‖22,µr .
Therefore, ψ ∈ L2(M, dµr). But since we have Φr(ψ) = s and ‖s‖Holo = ‖ψ‖2,µr , Φr is an Hilbertspace isomorphism.Eq. (B.8.1) can be checked from the definition of (̂ · ) (def. B.3). �

318



B.3 Position representation

We now turn to the position representation. We describe a choice of configuration variables as
a map γ from the phase space into the configuration space. The typical example occurs when M is
given as a cotangent bundle (with its canonical symplectic structure) in which case γ is simply the
projection on the base manifold.

Definition B.9 Let M be a symplectic manifold. A configuration space for M is a manifold C anda surjective map γ : M→ C such that:1. ∀x ∈M, Im(Txγ) = Tγ(x)(C);
2. ∀x ∈M, Ker(Txγ) = (Ker(Txγ))⊥ := {v ∈ Tx(M) | ∀w ∈ Ker(Txγ), ΩM,x(v, w) = 0}.
3. ∀y ∈ C, γ−1 〈{y}〉 is connected.

Definition B.10 Let M be a symplectic manifold, (C, γ) be a configuration space for M and (B,∇)be a prequantum bundle on M. A configuration quantum bundle on C is an hermitian line bundle
BC, with base C, and a smooth map Γ : B → BC such that:1. ∀z ∈ B, πBC

◦ Γ(z) = γ ◦ πB(z) (where πB and πBC
are the bundle projections);

2. ∀z ∈ B, ∀λ ∈ C, Γ(λ z) = λΓ(z) ;
3. ∀z ∈ B, |Γ(z)| = |z| ;
4. ∀z ∈ B, KerTzΓ ⊂ Horz(B, ∇) (where Horz(B, ∇) is defined as the ∇-horizontal subspaceof Tz(B) ).

Proposition B.11 Let M be a symplectic manifold, (C, γ) be a configuration space for M and(B,∇) be a prequantum bundle on M. If, for all y ∈ C, γ−1 〈{y}〉 is simply-connected, then thereexists a configuration quantum bundle (BC, Γ) on C.
Proof Definition of BC. Let y ∈ C and let x ∈ γ−1 〈y〉. Since the derivative of γ is surjective atany point in M (def. B.9.1), we have, by the rank theorem [54, theorem 5.13], Tx (γ−1 〈y〉) = KerTxγ.So, using def. B.9.2, Tx (γ−1 〈y〉) = Tx

(
γ−1 〈y〉)⊥, hence Ωx|Tx(γ−1〈y〉) = 0. Therefore, if we call(

By, ∇y
) the restriction of (B,∇) over γ−1 〈y〉, the connection ∇y is flat.Therefore, z 7→ Horz (B,∇)∩Ker [Tz (γ ◦ πB)] is a smooth involutive tangent distribution on B,so by the global Frobenius theorem [54, theorem 14.13], it defines a foliation of B. Moreover, ifΛ is a leaf of this foliation, there exists y ∈ C such that πB 〈Λ〉 = γ−1 〈y〉 and πB|Λ→γ−1〈y〉 is adiffeomorphism. Indeed, the leaf Λ being connected by definition, γ ◦ πB is constant on Λ, so thereexists y ∈ C such that πB 〈Λ〉 ⊂ γ−1 〈y〉, ie. Λ ⊂ By, and, γ−1 〈y〉 being simply-connected, Λ isjust a global horizontal cross-section of (By, ∇y

) [50, corollary II.9.2].We define BC as the set of all leaves and Γ : B → BC as the quotient map. Since γ ◦ πB isconstant on a leaf, we can define a map πBC
on BC such that γ ◦ πB = πBC

◦ Γ. Moreover, forany leaf Λ and any λ ∈ C, λ.Λ is also a leaf, therefore, we can define an action of C on BC such
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that ∀z ∈ B, ∀λ ∈ C, Γ(λ z) = λΓ(z). And since ∇ is a U(1) connection, the norm | · | on B isconstant on each leaf, so we also can define a norm on BC such that ∀z ∈ B, |Γ(z)| = |z|.
Local description of the quotient. Let x ∈ M and let y = γ(x). Let U1 be an open neighborhoodof x in M and φ1 : U1 × C → B a local trivialization of the bundle B. Since Tγ is surjective atany point in M, there exist, by the rank theorem, open neighborhoods V2 of y in C, W2 of 0 in Rp(p := dimM / 2 = dimC), and U2 of x in U1, and a diffeomorphism φ2 : V2 ×W2 → U2 such that
γ ◦ φ2 is the first projection map V2 ×W2 → V2.Next, by definition of a foliation, there exist a neighborhood T2 of φ1(x, 0) in φ1 〈U2 × C〉, neigh-borhoods Q2 and R2 of 0 in Rp+2 and Rp respectively and a diffeomorphism ψ1 : Q2 × R2 → T2such that for any u ∈ BC there exists a (possibly empty) countable subset Qu ⊂ Q2 with:Γ−1 〈u〉 ∩ T2 = ψ1 〈Qu × R2〉 . (B.11.1)

Let V3, W3 and S3 be neighborhoods of y in V2, 0 in W2 and 0 in C respectively, such that
φ1 〈φ2 〈V3 ×W3〉 × S3〉 ⊂ T2, and define:

ψ2 : V3 × S3 → Q2
v, λ 7→ πQ2 ◦ ψ−11 ◦ φ1(φ2(v, 0), λ) ,

where πQ2 : Q2 × R2 → Q2 is the first projection map. Since we have:[T(0,0) ψ1] 〈{0} × T0(R2)〉 = Horφ1(x,0) (B,∇) ∩ Ker [Tφ1(x,0) (γ ◦ πB)]
and [T(x,0) φ1] 〈[Ty,0 dφ2] 〈Ty(V3)× {0}〉× C〉∩Horφ1(x,0) (B,∇)∩Ker [Tφ1(x,0) (γ ◦ πB)] = {0} ,[

Ty,0 ψ2] is surjective, thus invertible, so by the inverse function theorem [54, theorem 5.11], wecan narrow W3 and S3 so that there exists a neighborhood Q3 of 0 in Q2 with ψ2 inducing adiffeomorphism V3 × S3 → Q3.Now, we define T3 := ψ1 〈Q3 × R2〉 ∩ φ1 〈φ2 〈V3 ×W3〉 × C〉 and:
φ3 : T3 → V3 × S3 ×W3

z 7→ ψ−12 ◦ πQ3 ◦ ψ−11 (z), πW3 ◦ φ−12 ◦ πB(z) .
Precomposing φ3 by φ1 ◦ (φ2 × idC), we can check that [Tφ1(x,0) φ3] is injective, thus invertible, sousing again the inverse function theorem, there exist neighborhoods T , V , W and S of φ1(x, 0) in
B, y in C, 0 in Rp and 0 in C respectively, and a diffeomorphism φ : V ×W × S → T satisfying,for all v, λ ∈ V × S:
∃u ∈ BC / Γ−1 〈u〉 ∩ Imφ = φ 〈{v} ×W × {λ}〉 & πBC

(u) = v (B.11.2)(using eq. (B.11.1) and the injectivity of the restriction of πB to the leaf Γ−1 〈u〉, together with
φ 〈{v} ×W × {λ}〉 = ψ1 〈{ψ2(v, λ)} × R2〉 ∩ Imφ) and for all v, w, λ ∈ V ×W × S:
∀µ ∈ C / µλ ∈ S, φ(v, w, µλ) = µ φ(v, w, λ) (B.11.3)(we can first check this for w = 0, and then use the previous point, since for all u ∈ BC and all

µ ∈ C, Γ−1 〈µ.u〉 = µ .Γ−1 〈u〉).Finally, using eq. (B.11.3), we can extend S to be all C while still satisfying eqs. (B.11.2) and(B.11.3).
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Compatibility of the local descriptions. Let x0, x1 ∈ M such that γ(x0) = γ(x1) =: y. There existsa path κ : [0, 1] → γ−1 〈y〉 such that γ(0) = x0 and γ(1) = x1 (simple connectedness implies pathconnectedness).Using the preceding point, for all t ∈ [0, 1] there exist open neighborhoods Vt of y in C, Wt of 0in Rp and Ut of κ(t) in M, and a diffeomorphism φt : Vt×Wt×C→ π−1
B 〈Ut〉 satisfying eq. (B.11.2)and eq. (B.11.3). For any t ∈ [0, 1], we call πt the projection map πt : Vt ×Wt × C→ Vt × C andwe define the smooth map Γt := πt ◦ φ−1

t : π−1
B 〈Ut〉 → Vt × C.Next, there exist t1, . . . , tN−1 (1 6 N < ∞) such that (Uti)06i6N is an open cover of κ 〈[0, 1]〉(where we set t0 = 0 and tN = 1), and ∀i 6 N − 1, κ−1 〈Uti ∩ Uti+1〉 6= ∅.We define V = ⋂

06i6N−1 γ 〈Uti ∩ Uti+1〉. γ is an open map (for Tγ is surjective at any point),
therefore V is an open subset of C, and for any i 6 N − 1, there exists t ∈ [0, 1] such that
κ(t) ∈ Uti ∩ Uti+1 , hence y = γ ◦ κ(t) ∈ Uti ∩ Uti+1 . Thus, V is an open neighborhood of y in C.Let i 6 N−1. The maps Γti|π−1

B 〈Uti∩Uti+1∩γ−1〈V 〉〉→V×C and Γti+1|π−1
B 〈Uti∩Uti+1∩γ−1〈V 〉〉→V×C are smooth,surjective, their derivatives are surjective at each point and they are constant on each other levelsets (using eq. (B.11.2) ), therefore the rank theorem implies [54, prop. 5.21] the existence of adiffeomorphism Φi : V × C→ V × C such that:

∀x ∈ π−1
B
〈
Uti ∩ Uti+1 ∩ γ−1 〈V 〉〉 , Γti(x) = Φi ◦ Γti+1(x) .Thus, eq. (B.11.2) leads to:

∀v ∈ V , ∀λ ∈ C, ∃u ∈ BC /

Γ−1 〈u〉 ∩ Imφti = φti 〈{v} ×Wti × {λ}〉

& Γ−1 〈u〉 ∩ Imφti+1 = φti+1 ◦ Φ̃−1
i 〈{v} ×Wti+1 × {λ}〉 ,where Φ̃i is defined naturally from Φi as a map Φ̃i : V ×Wti+1 × C→ V ×Wti+1 × C.Defining Φ := Φ0 ◦ . . . ◦ ΦN−1 : V × C → V × C and Φ̃ : V × WtN × C → V ×WtN × C, wehave:

∀v ∈ V , ∀λ ∈ C, ∀w0 ∈ W0, ∀w1 ∈ W1,Γ ◦ φ0 (v, w0, λ) = Γ ◦ φ1 ◦ Φ̃−1 (v, w1, λ) .
This way we have proved that for any x0, x1 ∈ M such that γ(x0) = γ(x1) =: y, there existopen neighborhoods V of y in C, W0 and W1 of 0 in Rp, Ũ0 of x0 in M and Ũ1 of x1 in M,diffeomorphisms φ̃0 : V ×W0×C→ π−1

B

〈
Ũ0〉 and φ̃1 : V ×W1×C→ π−1

B

〈
Ũ1〉, and an injectivemap ψ : V × C→ BC, such that:

∀v ∈ V , ∀λ ∈ C, ∀w ∈ W0/1, ψ(v, λ) = Γ ◦ φ̃0/1 (v, w, λ〉
∀v ∈ V , ∀λ ∈ C, πBC

◦ ψ(v, λ) = v

and ∀v, w ∈ V ×W0/1, ∀λ ∈ C, φ̃0/1(v, w, λ · ) = λ φ̃0/1(v, w, · ) .
Topological, differentiable and bundle structures on BC. We equip BC with the final topology
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induced by Γ (so that U ⊂ BC is open iff Γ−1 〈U〉 is open in B). The previous point, together with
γ ◦ πB = πBC

◦ Γ, ensures that Γ is an open map for this topology (because the preimage of theimage of an open subset of B is an open subset of B), and that we can use the local descriptions ofthe quotient to define a bundle structure on BC, with respect to which Γ will be a smooth surjectivemap with surjective derivative at each point. We can check that this structure is then compatiblewith the projection πBC
and the action of C on BC defined above. �

Since the cross-sections of B that are ∇-horizontal over the level sets of γ are typically non-
normalizable, we need to introduce a measure on C. In general, there is however no preferred
choice for this measure, hence we will associate to any smooth measure [31, section 11.4] on C

a corresponding Hilbert space and we will restore the independence with respect to the choice of
measure by providing identifications between these different Hilbert spaces.

Definition B.12 Let C be a smooth manifold. A smooth measure µ on C is a Borel measure on Csuch that, for any smooth coordinate chart φ : U → Rp (p := dimC) on an open subset U of C,there exists a smooth, nowhere vanishing, strictly positive function αφ : U → R satisfying:
µ|U = αφ

[
φ−1
∗ µ

(p)
R

] ,
where µ(p)

R is the Lebesgue measure on Rp.In particular, the measure µω associated to a nowhere vanishing volume form ω on C is a smoothmeasure on C.For any smooth vector field X on C we define its divergence with respect to µ as the smoothfunction divµ X on C satisfying:
LXµ = (divµX ) µ .

Finally, for any two smooth measures µ, µ′ on C there exists a unique strictly positive smoothfunction α on C such that µ′ = α µ.
Definition B.13 We consider the same objects as in def. B.10. Let µ be a smooth measure on
C. The position representation with measure µ is the Hilbert space HµPos := L2 (C→ BC, dµ) ofcross-sections of BC with square-integrable norm with respect to µ.

As underlined above, trimming the prequantum representation down to a physically pertinent size
comes at the price of restricting the algebra of observables that can be quantized. In the position
representation, this quantization condition requires that the Hamiltonian flow of an admissible
observable should send level sets of γ onto level sets of γ. In the case of a cotangent bundle,
the quantizable functions are therefore the ones that depend at most linearly on the momentum
variables.

Proposition B.14 We consider the same objects as in def. B.13. We define:
OPos := {f ∈ C∞(M, R) ∣∣ ∃X f ∈ T∞(C), ∀x ∈M, Txγ

(
Xf ,x
) = X f ,γ(x)} ,where T∞(C) is the space of smooth vector fields on C, and:
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OPos,C := {f ∈ C∞(M, C) | Re f , Im f ∈ OPos}.
Then, for f ∈ OPos, we can define the quantization f̂ µ of f as a densely defined operator on HµPosby:
∀s ∈ D

µ
f , ∀y ∈ C,

(
f̂ µ s
) (y) := f (x) s(y) + iΓ (∇Xf ,x s̃(x)) + i2 (divµX f

) (y) s(y) ,
where x is any point in γ−1 〈y〉, s̃ is the cross-section of B such that Γ ◦ s̃ = s ◦ γ, anddivµX f ∈ C∞(C, R) is such that LX fµ = (divµX f

)
µ . For f ∈ OPos,C, we define f̂ µ := R̂e(f )µ+ ̂Im(f )µ .Moreover, we have for all f , g ∈ OPos,C:

{f , g}M ∈ OPos,C , [
f̂ µ, ĝµ

] = i {̂f , g}
µ ,

and ∀s, s′ ∈ D
µ
f ,
〈
s′, f̂ µ(s)〉 = 〈 f̂ ∗ µ(s′), s〉 .

If f ∈ OPos and X f is a complete vector field on C [54, chap. 12], f̂ µ is essentially self-adjoint.
Proof Let f ∈ OPos and s ∈ D

µ
f . The cross-section s̃ such that Γ ◦ s̃ = s ◦ γ is well-defined, sincefor any y ∈ C, x ∈ γ−1 〈y〉 and w ∈ π−1

BC
〈y〉, there is a unique z ∈ π−1

B 〈x〉 such that Γ(z) = w(this follows from def. B.10.2). We now want to prove that f (x) s(y)+ iΓ (∇Xf ,x s̃(x)) does not dependon the choice of x in γ−1 〈y〉.Let V be any smooth vector field on M such that ∀x ∈ M, Vx ∈ KerTxγ. We have ∇V s̃ = 0(since ∀x ∈M, dV s̃(x) ∈ KerTs(x) Γ ⊂ Hors(x) (B, ∇) using def. B.10.4), therefore:
∀x ∈M, ∇Vx ∇Xf ,x s̃(x) = [∇Vx , ∇Xf ,x

]
s̃(x)

=∇[Vx , Xf ,x ] s̃(x)− iΩM,x
(
Vx, Xf ,x

)
s̃(x) ,

and Tγ
( [V , Xf ] ) = 0 (using ∀x ∈ M, Vx ∈ KerTxγ and Txγ

(
Xf ,x
) = X f ,γ(x)), hence ∀x ∈

M, ∇Vx ∇Xf ,x s̃(x) = i (dVx f ) s̃(x). Therefore:
∀x ∈M, ∇Vx

[
f (x) s̃(x) + i∇Xf ,x s̃(x)] = 0 . (B.14.1)

Let z ∈ B and let V HOR be the ∇-horizontal lift on B of the vector field V on M. Using
Tγ(V ) = 0 together with def. B.10.1, we have [TΓ(z) πBC

] ◦ [TzΓ] (V HOR
z ) = 0, so there exists u ∈ Csuch that TzΓ (V HOR

z ) = [T1 ( ·Γ(z))] (u) = TzΓ ◦ [T1 ( · z)] (u) (where we used def. B.10.2 to get thesecond equality). Thus, using def. B.10.4, V HOR
z − [T1 ( · z)] (u) ∈ Horz (B, ∇), therefore u = 0, and

TzΓ (V HOR
z ) = 0.Hence, eq. (B.14.1) becomes:[
T
(
x 7→ Γ [f (x) s̃(x) + i∇Xf ,x s̃(x)])] (V ) = 0 ,

so Γ [f s̃+ i∇Xf s̃] = f (s ◦ γ) + iΓ (∇Xf s̃) is constant on the level sets of γ. This ensures that f̂ µ sis well-defined as a cross-section of BC.Let f , g ∈ OPos (since ·̂ µ is C-linear, and [ · , · ] , { · , · } are C-bilinear, it is enough to consider
R-valued functions to prove the commutator relations). Using the characterization of OPos, we have:
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∀x ∈M, Txγ
(
X{f , g},x

) = Txγ
([
Xf , Xg

]
x

) = [X f , Xg
]
γ(x) ,hence {f , g} ∈ OPos with X {f , g} = [X f , Xg

].Let s ∈ D
µ
f ,g (where, as in the proof of prop. B.4, the common domain D

µ
f ,g, such that both f̂ µ ĝµ sand ĝµ f̂ µ s are well-defined, is dense in HµPos). Like in the proof of prop. B.4, we have:[

f + i∇Xf , g+ i∇Xg
]
s̃ = i {f , g} s̃ − ∇X{f , g} s̃ .

On the other hand, we can rewrite the definition of f̂ µ as:(̃
f̂ µ s
) = (f + i∇Xf + i2 (divµX f

)
◦ γ
)
s̃ (B.14.2)

thus:
˜([
f̂ µ, ĝµ

]
s
) = (i {f , g} − ∇X{f , g} + 12 (dXg (divµX f

)
◦ γ − dXf

(divµXg
)
◦ γ
))

s̃ .
Next, we have:
dXg
(divµX f

)
◦ γ − dXf

(divµXg
)
◦ γ = (dXg (divµX f

)
− dX f

(divµXg
))
◦ γ ,

and LXg

(
LX fµ

) = (dXg (divµX f
))

µ + (divµXg
) (divµX f

)
µ, therefore, using X {f , g} = [X f , Xg

]:
dXg
(divµX f

)
◦ γ − dXf

(divµXg
)
◦ γ = − (divµX {f , g}) ◦ γ .

Hence, using eq. (B.14.2) for {̂f , g}µ:[
f̂ µ, ĝµ

]
s = i {̂f , g}

µ
s .

Lastly, let f ∈ OPos,C and s, s′ ∈ D
µ
f . Using def. B.10.3, we have ∀x ∈ M, 〈s̃′(x), s̃(x)〉 =

〈s′ ◦ γ(x), s ◦ γ(x)〉 and combining eq. (B.14.2) with eq. (B.4.1) :
∀x ∈M,

〈
s̃′, ˜̂f µs〉 (x) = i

(divµX f
)
◦ γ(x) 〈s̃′, s̃〉 (x) + i dXf ,x 〈s̃′, s̃〉 (x) + 〈˜̂f ∗µs′, s̃〉 (x) ,

therefore:
∀y ∈ C,

〈
s′, f̂ µs

〉 (y) = i
(divµX f

) (y) 〈s′, s〉 (y) + i dX f ,y 〈s
′, s〉 (y) + 〈f̂ ∗µs′, s〉 (y) .

Now, using Stokes theorem [17, theorem 7.7] (C is assumed to be without boundary, and D
µ
f isrequired to ensure suitable fall-off conditions) and the definition of X f , we have:∫

C

dµ(y) (divµX f
) (y) 〈s′, s〉 (y) + dX f ,y 〈s

′, s〉 (y) = ∫
C

LX
[
〈s′, s〉 dµ

] = 0 ,
thus 〈s′, f̂ µs〉 = 〈f̂ ∗µs′, s〉 .

Checking that f̂ µ is essentially self-adjoint, as soon as f is real-valued and X f is complete, canbe done in a way similar to the proof of prop. B.4. �

Proposition B.15 We consider the same objects as in def. B.10. Let µ and µ′ be two smooth
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measures on C and let HµPos and Hµ′Pos be the corresponding position representations. Then thereexists a Hilbert space isomorphism Φµ→µ′ : HµPos → Hµ′Pos such that:
∀f ∈ OPos,C, f̂ µ′ = Φµ→µ′ ◦ f̂ µ ◦ Φ−1

µ→µ′ . (B.15.1)
Moreover, we can define these maps in such a way that for any three smooth measures µ, µ′,and µ′′, on C, Φµ→µ′′ = Φµ′→µ′′ ◦ Φµ→µ′ . Thus, this family of maps provides a position representation

HPos, that can be consistently identified with HµPos for any µ.
Proof Let µ and µ′ be two smooth measures on C. Then, there exists a unique α ∈ C∞(C,R∗+) suchthat µ′ = α µ (def. B.12). We define Φµ→µ′ by:

Φµ→µ′ : H
µPos → H

µ′Pos
s 7→ 1√

α s
.

The factor 1√
α

ensures that Φµ→µ′ is a unitary map and we can check that for any three smooth
measures µ, µ′, and µ′′, Φµ→µ′′ = Φµ′→µ′′ ◦ Φµ→µ′ . In particular, Φµ→µ′ is then invertible, hence it isa Hilbert space isomorphism.Lastly, eq. (B.15.1) follows from:
∀f ∈ OPos, 2√α (dX f 1√

α

)+ (divµ′X f
) = (divµX f

) .
�

C. Wigner characteristic functions

In this appendix, we give a brief overview of the Wigner-Weyl transform [102] , that allows
to represent quantum density matrices as functions on the phase space, mimicking the probability
distributions of classical statistical physics. The presentation below follows very closely [47] , merely
adapting of the notations and definitions to the ones we will be using in section 18.

Note that, in view of applying this tool to projective systems of quantum state spaces (subsec-
tion 18.1), we will be doing only ‘half’ of the Wigner transform: going from the density matrix
to the Wigner characteristic function. The second half would be to perform a Fourier transform
yielding the Wigner quasi-probability distribution, in analogy to the reconstruction of a classical
probability distribution from its characteristic function. However, Wigner characteristic functions
are more convenient when working with partial traces of the underlying density matrices, exactly
like classical characteristic functions are convenient for computing marginal probabilities.
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C.1 Weakly continuous representations of the Weyl algebra

We begin by recalling basic facts regarding the Weyl algebra and weakly continuous represen-
tations thereof. These representation-theoretic considerations will come into play to prove that the
Wigner transform is surjective onto a suitably defined space of functions.

Definition C.1 Let C, P be two finite-dimensional real vector spaces and let Ξ : P → C∗ be aninvertible linear map (with C∗ the dual of C). We equip C×P with the symplectic form Ω given by:
∀u, u′ ∈ C, ∀v, v ′ ∈ P, Ω(u, v ; u′, v ′) := Ξ(v ′)(u)− Ξ(v)(u′) .The map M := idC × Ξ is then a symplectomorphism C × P → T ∗(C) (T ∗(C) being equipped withits canonical symplectic structure, see eg. eq. (2.16.1) ).

Proposition C.2 Let I be the complex vector space of functions C∗ × P∗ → C with support onfinitely many points, ie:
∀ι ∈ I, # {(s, t) ∈ C∗ × P∗ | ι(s, t) 6= 0} < ∞.In particular, for any (s, t) ∈ C∗ × P∗, we define δ(s,t) ∈ I by:
∀(s′, t′) ∈ C∗ × P∗, δ(s,t)(s′, t′) := {1 if (s′, t′) = (s, t)0 else .

For ι1 , ι2 ∈ I, we define their product ι1 ? ι2 ∈ I by:
∀(s, t) ∈ C∗ × P∗, (ι1 ? ι2) (s, t) := ∑

(s1,t1),(s2,t2)∈C∗×P∗
s=s1+s2, t=t1+t2

eiξ(s1,t1;s2,t2) ι1(s1, t1) ι2(s2, t2) ,
where, for any (s1, t1), (s2, t2) ∈ C∗ × P∗:

ξ(s1, t1; s2, t2) := t1(Ξ−1(s2))− t2(Ξ−1(s1))2 .
We also define, for any ι ∈ I, its conjugate ι∗ by:
∀(s, t) ∈ C∗ × P∗, ι∗(s, t) := ι(−s,−t) ,where · stands for complex conjugation.

I, ?, ∗ is a ∗-algebra [41, section III.2.2] , with unit δ(0,0) .
Proof Let ι1 , ι2 ∈ I. Since ι1 and ι2 are supported on finitely many points, the sum defining ι1 ? ι2is finite and ι1 ? ι2 is again supported on finitely many points, ie. it is in I. The operation ? isbilinear, and, for any ι1 , ι2 , ι3 ∈ I, we have:
∀(s, t) ∈ C∗ × P∗,

(
ι1 ? (ι2 ? ι3))(s, t) =

= ∑
s=s1+s′1
t=t1+t′1

ei ξ(s1,t1;s′1,t′1) ι1(s1 , t1) ∑
s′1=s2+s3
t′1=t2+t3

ei ξ(s2,t2;s3,t3) ι2(s2 , t2) ι3(s3 , t3)
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= ∑
s=s1+s2+s3
t=t1+t2+t3

ei ξ(s1,t1;s2,t2)+i ξ(s1,t1;s3,t3)+i ξ(s2,t2;s3,t3) ι1(s1 , t1) ι2(s2 , t2) ι3(s3 , t3)
= ((ι1 ? ι2) ? ι3)(s, t) ,so it is associative as well. We can check that δ(0,0) is a unit for I, ?. Finally, the operation ( · )∗ isan antilinear involution by construction, and, for any ι1 , ι2 ∈ I, we have:

∀(s, t) ∈ C∗ × P∗, (ι1 ? ι2)∗(s, t) = ∑
s=s1+s2
t=t1+t2

e−i ξ(s1,t1;s2,t2) ι∗1(s1 , t1) ι∗2(s2 , t2) = (ι∗2 ? ι∗1)(s, t) .
�

Note that the elementary observables Xκ(s, t) in a representation κ are labeled by elements of the
dual space C∗ × P∗ of the phase space M ≈ C× P, because they are actually labeled by the linear
observables of which they are the quantization (in the spirit of def. B.3, up to a difference in sign
convention). Therefore, the unitary operators Tκ(s, t), which are obtained by exponentiating these
observables, are labeled by elements of the dual as well. This observation will be important for the
development of subsection 18.1.

Definition C.3 Let Hκ be a complex Hilbert space. A weakly continuous, unitary representation of
C∗ × P∗ on Hκ is a map Tκ : C∗ × P∗ → Aκ (where Aκ is the algebra of bounded linear operatorsover Hκ), satisfying the following properties:1. ∀(s, t) ∈ C∗ × P∗, Tκ(s, t) is a unitary operator on Hκ ;
2. ∀(s1, t1), (s2, t2) ∈ C∗ × P∗, Tκ(s1, t1) Tκ(s2, t2) = eiξ(s1,t1;s2,t2) Tκ(s1 + s2, t1 + t2) ;
3. Tκ(0, 0) = idHκ ;
4. ∀φ, φ′ ∈ Hκ , the map (s, t) 7→ 〈φ′ | Tκ(s, t)φ〉 is a continuous function C∗ × P∗ → C.This provides a representation of the ∗-algebra I on Hκ :
∀ι ∈ I, Tκ {ι} := ∑

(s,t)∈C∗×P∗ι(s, t) Tκ(s, t)
(using in particular that points C.3.1 to C.3.3 imply ∀(s, t) ∈ C∗ × P∗, Tκ(−s,−t) = Tκ(s, t)−1 =Tκ(s, t)† ).
Proposition C.4 Let Hκ , Tκ be as in def. C.3. Then, there exists, for any (s, t) ∈ C∗×P∗ a denselydefined (possibly unbounded), self-adjoint operator Xκ(s, t) on Hκ such that:
∀τ ∈ R, Tκ(τs, τt) = exp(i τ Xκ(s, t))(the exponential being defined via spectral resolution [73, theorem VIII.5] ).Moreover, there exists a dense vector subspace Dκ ⊂ Hκ such that:

1. for each (s, t) ∈ C∗ × P∗, Dκ ⊂ Dom(Xκ(s, t)) (where Dom(Xκ(s, t)) denotes the dense domainof Xκ(s, t)) and Xκ(s, t)|Dκ
is essentially self-adjoint;

2. ∀(s, t) ∈ C∗ × P∗, Xκ(s, t) 〈Dκ〉 ⊂ Dκ ;
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3. ∀(s, t), (s′, t′) ∈ C∗×P∗, ∀τ, τ ′ ∈ R, Xκ(τs+ τ ′s′, τt + τ ′t′)|Dκ
= τ Xκ(s, t)|Dκ

+τ ′ Xκ(s′, t′)|Dκ
.

Proof Let (s, t) ∈ C∗ × P∗. For any τ ∈ R, Tκ(τs, τt) is unitary (def. C.3.1), and Tκ(0, 0) = idHκ(def. C.3.3). Moreover, using def. C.3.2, we have, for any τ1, τ2 ∈ R :Tκ(τ1s, τ1t) Tκ(τ2s, τ2t) = Tκ((τ1 + τ2)s, (τ1 + τ2)t) , (C.4.1)since ξ(τ1s, τ1t; τ2s, τ2t) = τ1 τ2 ξ(s, t; s, t) = 0.Let φ ∈ Hκ , (s′, t′) ∈ C∗ × P∗ and ε > 0. Let φ′ := Tκ(s′, t′)φ. From def. C.3.4, there exists anopen neighborhood U of (s′, t′) in C∗ × P∗, such that:
∀(s′′, t′′) ∈ U,

∣∣∣〈φ′ | Tκ(s′′, t′′)φ〉 − ‖φ′‖2∣∣∣ < ε2 .
Hence, thanks to the unitarity of Tκ(s′′, t′′) for any (s′′, t′′) ∈ C∗ × P∗, we get:
∀(s′′, t′′) ∈ U, ‖Tκ(s′′, t′′)φ − Tκ(s′, t′)φ‖2 6 2 ∣∣∣〈φ′ | Tκ(s′′, t′′)φ〉 − ‖φ′‖2∣∣∣ < ε . (C.4.2)

Let φ ∈ Hκ , τo ∈ R and ε > 0. Applying the previous point with (s′, t′) = (τos, τot), there exists
ε′ > 0 such that:
∀τ ∈ ]τo−ε′, τo+ε′ [ , ‖Tκ(τs, τt)φ − Tκ(τos, τot)φ‖2 < ε .Thus, τ 7→ Tκ(τs, τt) is a strongly continuous one-parameter unitary group, so, by Stone’s theorem[73, theorem VIII.8], there exists a densely defined, self-adjoint operator Xκ(s, t) on Hκ such that,for any τ ∈ R, Tκ(τs, τt) = exp (i τ Xκ(s, t)).Let µ̃ be a Lebesgue measure on the finite-dimensional real vector space C∗ × P∗. For any

f ∈ C∞o (C∗×P∗, C) (where C∞o (C∗×P∗, C) denotes the space of smooth, complex valued, compactlysupported functions on C∗ × P∗), and any φ ∈ Hκ , we define φ {f} ∈ Hκ as:
φ {f} := ∫

C∗×P∗
dµ̃(s′, t′) f (s′, t′) Tκ(s′, t′)φ .

As shown above (s′, t′) 7→ Tκ(s′, t′)φ is a continuous map C∗×P∗ → Hκ , so (s′, t′) 7→ f (s′, t′) Tκ(s′, t′)φis a continuous, compactly supported map C∗×P∗ → Hκ , hence it is integrable on C∗×P∗, µ̃ [45,section III.1]. Therefore, φ {f} is well-defined as an element of Hκ .We define the vector subspace Dκ ⊂ Hκ as:
Dκ := Vect {φ {f} | f ∈ C∞o (C∗ × P∗, C), φ ∈ Hκ} .Let φ ∈ Hκ and ε > 0. From def. C.3.3 and eq. (C.4.2), there exists an open neighborhood U of(0, 0) in C∗ × P∗ such that:
∀(s′, t′) ∈ U, ‖Tκ(s′, t′)φ − φ‖2 < ε .Let f ∈ C∞o (C∗ × P∗, C) be a bump function with:
f > 0, supp(f ) ⊂ U &

∫
C∗×P∗

dµ̃ f = 1 ,
where supp(f ) denotes the support of f . Then, we have:
‖φ − φ {f}‖ 6

∫
C∗×P∗

dµ̃(s′, t′) f (s′, t′) ‖φ − Tκ(s′, t′)φ‖ < ε .
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Thus, Dκ is a dense subspace of Hκ .Let φ ∈ Hκ , f ∈ C∞o (C∗ × P∗, C) and (s, t) ∈ C∗ × P∗. We have, for any τ ∈ R:
Tκ(τs, τt)φ {f} = ∫

C∗×P∗
dµ̃(s′, t′) f (s′, t′) Tκ(τs, τt) Tκ(s′, t′)φ

= ∫
C∗×P∗

dµ̃(s′′, t′′) f (s′′ − τs, t′′ − τt) eiτ ξ(s,t;s′′,t′′) Tκ(s′′, t′′)φ ,
where we have used the translation invariance of the Lebesgue measure and the fact that ∀(s′′, t′′) ∈
C∗ × P∗, ξ(τs, τt; s′′ − τs, t′′ − τt) = τ ξ(s, t; s′′, t′′). Defining f (τ)(s,t) ∈ C∞o (C∗ × P∗, C) by:
∀(s′, t′) ∈ C∗ × P∗, f (τ)(s,t)(s′, t′) := eiτ ξ(s,t;s′,t′) f (s′ − τs, t′ − τt) ,

we thus get Tκ(τs, τt)φ {f} = φ
{
f (τ)(s,t)
} .

We now define, for any τ ∈ R, f 1,(τ)(s,t) , f 2,(τ)(s,t) ∈ C∞o (C∗ × P∗, C) by:
∀(s′, t′) ∈ C∗ × P∗, f 1,(τ)(s,t) (s′, t′) := d

dτ ′ f
(τ ′)(s,t)(s′, t′)∣∣∣∣

τ ′=τ & f 2,(τ)(s,t) (s′, t′) := d
dτ ′ f

1,(τ ′)(s,t) (s′, t′)∣∣∣∣
τ ′=τ .

Then, we have:
∀τ ∈ R, ∀(s′, t′) ∈ C∗ × P∗,

g(τ)(s,t)(s′, t′) := f (τ)(s,t)(s′, t′)− f (s′, t′)
τ − f 1,(0)(s,t) (s′, t′) = 1

τ

∫ τ

0 dτ ′
∫ τ ′

0 dτ ′′ f 2,(τ ′′)(s,t) (s′, t′) .
Let K := {(s′ + τs, t′ + τt) | (s′, t′) ∈ supp(f ), τ ∈ [−1, 1]}. K is compact as the continuous imageof the compact supp(f )× [−1, 1] and we have:
∀τ ∈ [−1, 1] , ∀(s′, t′) /∈ K, g(τ)(s,t)(s′, t′) = 0 .

Moreover, the map s′, t′; τ ′′ 7→ f 2,(τ ′′)(s,t) (s′, t′) is continuous on C∗×P∗×R, hence bounded on K×[−1, 1],so there exists M > 0 such that:
∀τ ∈ [−1, 1] , ∀(s′, t′) ∈ C∗ × P∗,

∣∣∣g(τ)(s,t)(s′, t′)∣∣∣ 6 M 1K (s′, t′) ,
where 1K denotes the indicator function of K . So, the dominated convergence theorem yields:

lim
τ→0
∫
C∗×P∗

dµ̃(s′, t′) ∥∥∥g(τ)(s,t)(s′, t′) Tκ(s′, t′)φ∥∥∥ = 0 ,
and therefore:

lim
τ→0
∥∥∥∥Tκ(τs, τt)φ {f} − φ {f}

τ − φ {f(s,t)}
∥∥∥∥ = 0 ,

where:
∀(s′, t′) ∈ C∗ × P∗, f(s,t)(s′, t′) := f 1,(0)(s,t) (s′, t′) = i ξ(s, t; s′, t′) f (s′, t′)− [T(s′,t′)f ] (s, t)(with T(s′,t′)f the differential of f at (s′, t′) ).By definition of Xκ(s, t), this implies [73, theorem VIII.7]:
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φ {f} ∈ Dom(Xκ(s, t)) & Xκ(s, t)φ {f} = −iφ {f(s,t)} .
Hence, Dκ ⊂ Dom(Xκ(s, t)), and, since f(s,t) ∈ C∞o (C∗ × P∗, C) for any f ∈ C∞o (C∗ × P∗, C),Xκ(s, t) 〈Dκ〉 ⊂ Dκ . Next, Xκ(s, t)|Dκ

is symmetric (as the restriction of a self-adjoint operator), andwe have, for φ′ ∈ Dκ :
Xκ(s, t)|Dκ

φ′ = −i lim
τ→0 Tκ(τs, τt)φ′ − φ′

τ ,
so:

φ ∈ Ker ([Xκ(s, t)|Dκ

]† ± i) ⇔
⇔ ∀φ′ ∈ Dκ , −i lim

τ→0 〈φ | Tκ(τs, τt)φ′〉 − 〈φ | φ′〉τ ∓ i 〈φ | φ′〉 = 0
⇔ ∀φ′ ∈ Dκ ,

d
dτ 〈φ | Tκ(τs, τt)φ′〉

∣∣∣∣
τ=0 = ∓〈φ | φ′〉

⇔ ∀φ′ ∈ Dκ , ∀τ ∈ R ,
d
dτ ′ 〈φ | Tκ(τ ′s, τ ′t)φ′〉

∣∣∣∣
τ ′=τ = ∓〈φ | Tκ(τs, τt)φ′〉

(using Tκ(τs, τt) 〈Dκ〉 ⊂ Dκ and eq. (C.4.1) )
⇔ ∀φ′ ∈ Dκ , ∀τ ∈ R , 〈φ | Tκ(τs, τt)φ′〉 = e∓τ 〈φ | φ′〉
⇔ ∀φ′ ∈ Dκ , 〈φ | φ′〉 = 0(since, for each φ′ ∈ Dκ , τ 7→ 〈φ | Tκ(τs, τt)φ′〉 is bounded, Tκ(τs, τt) being unitary for any

τ ∈ R).
Thus, Ker ([Xκ(s, t)|Dκ

]† ± i) = D⊥κ = {0} (for Dκ is dense in Hκ), and therefore Xκ(s, t)|Dκ
isessentially self-adjoint [73, theorem VIII.3].Finally, for any f ∈ C∞o (C∗ × P∗, C), (s, t), (s′, t′) ∈ C∗ × P∗ and τ, τ ′ ∈ R, we have:

f(τs+τ ′s′,τt+τ ′t′) = τ f(s,t) + τ ′ f(s′,t′) ,which proves point C.4.3. �

Of course, the usual Schrödinger representation is such a weakly continuous representation
of the Weyl algebra, and, in fact, the Stone-von Neumann theorem [98] , which we will recall
below (prop. C.10, following the proof given in [47, theorem 15a] ), tells us that it is the only one
(more precisely, it is the only irreducible one: an arbitrary weakly continuous representation thus
decomposes as a direct sum of independent copies of the Schrödinger representation).

Proposition C.5 Let Ho := L2(C, dµ) with µ a Lebesgue measure on the finite-dimensional realvector space C. For any (s, t) ∈ C∗ × P∗, we define a unitary operator To(s, t) by:
∀φ ∈ Ho, ∀x ∈ C, [To(s, t)φ] (x) := ei s(x)+ i2 t(Ξ−1(s)) φ (x + Ξ∗,−1(t)) ,

where Ξ∗ : C→ P∗ is the dual of the map Ξ and Ξ∗,−1 = (Ξ∗)−1 = (Ξ−1)∗.To is a weakly continuous, unitary representation of C∗ × P∗.
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Let Do be the space of smooth, compactly supported, complex-valued functions on C. Do is adense vector subspace in Ho, and, for any (s, t) ∈ C∗ × P∗, the linear operator Xo(s, t) defined on
Do by:
∀φ ∈ Do, ∀x ∈ C,

[Xo(s, t)φ] (x) := s(x)φ(x)− i [Txφ] (Ξ∗,−1(t)) ,
is essentially self-adjoint (with Txφ the differential of φ at x). Moreover, we have:
∀(s, t) ∈ C∗ × P∗, Do ⊂ Dom(Xo(s, t)) & Xo(s, t) = Xo(s, t)|Do

,
where, for any (s, t) ∈ C∗ × P∗, Xo(s, t) is the self-adjoint generator introduced in prop. C.4.
Proof Let φ ∈ Ho and (s, t) ∈ C∗ × P∗. Let φ′ be given by:
∀x ∈ C, φ′(x) := ei s(x)+ i2 t(Ξ−1(s)) φ (x + Ξ∗,−1(t)) .Using the translation invariance of the Lebesgue measure, we have:∫
C

dµ(x) |φ′(x)|2 = ∫
C

dµ(x ′) ∣∣φ (x ′)∣∣2 = ‖φ‖2 ,
hence To(s, t) is well-defined as a linear operator Ho → Ho and is isometric.Moreover, we have To(0, 0) = idHo and, for any (s1, t1), (s2, t2) ∈ C∗ × P∗:
∀φ ∈ Ho, ∀x ∈ C,[To(s1, t1) To(s2, t2)φ] (x) = ei s1(x)+ i2 t1(Ξ−1(s1)) [To(s2, t2)φ] (x + Ξ∗,−1(t1))= ei (s1+s2)(x)+ i2 [(t1+t2)(Ξ−1(s1+s2))−t2(Ξ−1(s1))+t1(Ξ−1(s2))] φ (x + Ξ∗,−1(t1 + t2))= ei ξ(s1,t1; s2 ,t2) [To(s1 + s2, t1 + t2)φ] (x) ,where we have used s2 (Ξ∗,−1(t1)) = t1 (Ξ−1(s2)). In particular, we thus have, for any (s, t) ∈ C∗×P∗,To(s, t) To(−s,−t) = To(−s,−t) To(s, t) = idHo , so To(s, t) is invertible, and, being isometric, it isa unitary operator on Ho .Let φ ∈ Do, (s, t) ∈ C∗×P∗ and ε > 0. In particular, φ is bounded and has compact support, so:
M := ∫

C

dµ(x) |φ(x)| < ∞ .
Moreover, φ is also absolutely continuous, so there exists an open neighborhood U1 of 0 in C suchthat:
∀x ∈ C, ∀x ′ ∈ U1, |φ(x + x ′)− φ(x)| < ε4M + 1 .

The map Ξ∗,−1 being linear on the finite-dimensional vector space P∗, it is continuous, therefore
U2 := Ξ∗ 〈U1〉 is an open neighborhood of 0 in P∗.Next, the map z : C× C∗ × P∗ → C, defined by:
∀x ∈ C, ∀(s′, t′) ∈ C∗ × P∗, z(x; s′, t′) := e−iξ(s,t; s′,t′)+i s′(x)+ i2 t′(Ξ−1(s′)) ,is continuous, so, for any x ∈ C, there exists an open neighborhood Vx of x in C and an openneighborhood U (x)3 of (0, 0) in C∗ × P∗ such that:
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∀x ∈ Vx, ∀(s′, t′) ∈ U (x)3 , |z(x; s′, t′)− 1| < ε4 ‖φ‖2 + 1 .
Since the support supp(φ) of φ is compact, there exist n ∈ N and x1, . . . , xn ∈ C such thatsupp(φ) ⊂ ⋃n

i=1 Vxi . Thus, defining U3 := ⋂n
i=1 U (xi)3 , U3 is an open neighborhood of (0, 0) in

C∗ × P∗, and:
∀x ∈ supp(φ), ∀(s′, t′) ∈ U3, |z(x; s′, t′)− 1| < ε4 ‖φ‖2 + 1 .

Then, U4 := (C∗ × U2)∩U3 is an open neighborhood of (0, 0) in C∗×P∗, and, for any (s′, t′) ∈ U4:
‖To(s+ s′, t + t′)φ − To(s, t)φ‖2= 2 ‖φ‖2 − 2 Re〈φ ∣∣∣ e−iξ(s,t; s′,t′) To(s′, t′)φ〉
(where we have used To(s+s′, t+t′) = e−iξ(s,t; s′,t′) To(s, t) To(s′, t′) and the fact that both To(s, t)and To(s′, t′) are unitary)

6 2 ∣∣∣〈φ ∣∣∣ e−iξ(s,t; s′,t′) To(s′, t′)φ〉− ‖φ‖2∣∣∣
6 2 ∫

C

dµ(x) |φ(x)| ∣∣z(x; s′, t′)φ (x + Ξ∗,−1(t′))− φ(x)∣∣
6 2 ∫

C

dµ(x) |φ(x)| ∣∣φ (x + Ξ∗,−1(t′))− φ(x)∣∣+2 ∫supp(φ) dµ(x) |φ(x)|2 |z(x; s′, t′)− 1|
(for ∀x ∈ C, |z(x; s′, t′)| = 1)

< ε .Hence, for any φ ∈ Do , the map (s, t) 7→ To(s, t)φ is continuous C∗ × P∗ → Ho .Now, the smooth, compactly supported functions are dense in Ho , so for any φ, φ′ ∈ Ho , andany ε > 0, there exist φ̃ ∈ Do such that:
‖φ − φ̃‖ < ε3 ‖φ′‖+ 1 .

Next, for any (s, t) ∈ C∗xP∗, there exists an open neighborhood U5 of (s, t) in C∗xP∗ such that:
∀s′′, t′′ ∈ U5, ‖To(s′′, t′′) φ̃ − To(s, t) φ̃‖ < ε3 ‖φ′‖+ 1 .

Thus, for any s′′, t′′ ∈ U5 ,
|〈φ′ | To(s′′, t′′)φ〉 − 〈φ′ | To(s, t)φ〉| 6 ‖φ′‖ [2 ‖φ − φ̃‖+ ‖To(s′′, t′′) φ̃ − To(s, t) φ̃‖ ] < ε(since To(s, t) and To(s′′, t′′) are both unitary), which proves def. C.3.4.Let φ ∈ Do and (s, t) ∈ C∗ × P∗. For any τ ∈ R, we have [To(τs, τt)φ] = φ(τ)(s,t) ∈ Do, where:
∀x ∈ C, φ(τ)(s,t)(x) := ei τ s(x)+ i2 τ2 t(Ξ−1(s)) φ (x + τ Ξ∗,−1(t)) ,

and Xo(s, t)φ = −iφ(s,t) ∈ Do, where:
∀x ∈ C, φ(s,t)(x) := d

dτφ
(τ)(s,t)(x)∣∣∣∣

τ=0 .
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In particular, Xo(s, t)φ belongs to Ho , thus Xo(s, t) is well-defined as a linear operator on Do .Moreover, like in the proof of prop. C.4, the dominated convergence theorem yields:
lim
τ→0
∫
C

dµ(x) ∣∣∣∣∣φ(τ)(s,t)(x)− φ(x)
τ − φ(s,t)(x)∣∣∣∣∣

2 = 0 ,
and therefore:

lim
τ→0
∥∥∥∥To(τs, τt)φ − φ

τ − iXo(s, t)φ∥∥∥∥ = 0 .
Hence, we have [73, theorem VIII.7]:

φ ∈ Dom (Xo(s, t)) & Xo(s, t)φ = Xo(s, t)φ ,
so Do ⊂ Dom (Xo(s, t)) and Xo(s, t) = Xo(s, t)|Do

.Finally, using: �

∀φ ∈ Do, Xo(s, t)φ = −i lim
τ→0 To(τs, τt)φ − φ

τ ,
together with ∀τ ∈ R, To(τs, τt) 〈Do

〉
⊂ Do and the density of Do in Ho , we get, via the same

argument as in the proof of prop. C.4, that Xo is essentially self-adjoint.
C.2 The Wigner-Weyl transform

We now come to the Wigner transform itself. The Wigner characteristic function associated to
a quantum state maps to a point (s, t) the expectation value of Tκ(s, t) in this state. In particular,
it is defined as a function on the dual space C∗ × P∗, since, as underlined above, the operatorsTκ(s, t) are labeled by elements of the dual. Note that if we would complete the Wigner transform,
by Fourier-transforming this characteristic function, we would pass to the dual again and obtain a
quasi-probability defined on the phase space, in correct analogy with the probability distributions
considered in classical statistical physics.

Insisting on a strict distinction between M and its dual, may seems an unnecessary care in the
case of a linear space, since we could simply choose some identification between the two. However,
it allows us to keep track of the nature of the objects we are considering, and in particular of the
natural direction of their transformations under morphisms. Probability measures are naturally
push-forwarded along a projection, while functions on M should be pull-backed, but functions on
the dual, being pull-backed by the dual map, effectively flow in the same direction as probability
measures (viz. def. 18.2): thus, defining characteristic functions as a functions on the dual is
consistent with the fact that they encode the same information as probability measures.

We begin by characterizing the image of the (first half of) the Wigner transform. The positivity
condition eq. (C.6.1) reflects the requirement for density matrices to be non-negative operators and it
manifests the truly quantum nature of the Wigner quasi-probability: a similar equation for a clas-
sical characteristic function, reflecting the positivity of its associated probability distribution, would
not have the twisting phase eiξ(s,t;s′,t′). In other words, eq. (C.6.1) captures the non-commutation
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of the position and momentum variables (viz. prop. C.2), and it will play a central role in the
derivation of the negative result in subsection 18.2. Finally, the continuity of the Wigner char-
acteristic function expresses the fact that it comes from a density matrix on a weakly continuous
representation (this is closely related to the characterization of normal states on a W ∗-algebra, see
[87, corollary III.3.11] and prop. 5.12)

Proposition C.6 A continuous function W : C∗ × P∗ → C is said of positive type if, for any ι ∈ I:∑
(s,t),(s′,t′)∈C∗×P∗ι(s′, t′) ι(s, t) eiξ(s,t;s′,t′)W (s − s′, t − t′) > 0. (C.6.1)

In particular, this implies:
∀(s, t) ∈ C∗ × P∗, W (−s,−t) = W (s, t) & |W (s, t)| 6 W (0, 0) .

We denote by W the space of all continuous functions of positive type.
Proof Let (s, t) ∈ C∗ × P∗ and let λ ∈ C. Applying eq. (C.6.1) to δ(0,0) + λ δ(s,t) ∈ I yields:(1 + |λ|2) W (0, 0) + λW (s, t) + λW (−s,−t) > 0 ,
where we have used ξ(0, 0; 0, 0) = ξ(s, t; 0, 0) = ξ(0, 0; s, t) = ξ(s, t; s, t) = 0. In particular, W (0, 0)is real positive (as follows from setting λ = 0). Thus, λW (s, t)+ λW (−s,−t) is real for any λ ∈ C,so W (s, t) = W (−s,−t). Now, (1 + |λ|2) W (0, 0) + 2 Re [λW (s, t)] is positive for any λ ∈ C,hence |W (s, t)| 6 W (0, 0). �

Proposition C.7 Let Hκ, Tκ be as in def. C.3 and let ρ be a traceclass, (self-adjoint) positivesemi-definite operator on Hκ . The map Wρ : C∗ × P∗ → C, defined by:
∀(s, t) ∈ C∗ × P∗, Wρ(s, t) := TrHκ

[
ρ Tκ(s, t)] ,is a continuous function of positive type.

Proof For any (s, t) ∈ C∗×P∗, Tκ(s, t) is a bounded operator, hence ρ Tκ(s, t) is traceclass, therefore
Wρ is well-defined. From the spectral theorem, there exist N ∈ N ∪ {∞}, an orthonormal family(φk )k6N in Hκ and a family of non-negative reals (pk )k6N such that:

ρ =∑
k6N

pk |φk 〉 〈 φk | &
∑
k6N

pk = TrHκ ρ.
Let (s, t) ∈ C∗ × P∗ and ε > 0. Let K ∈ N with K 6 N such that:∑

K<k6N

pk <
ε3 .

From def. C.3.4, the map (s, t) 7→ 〈φk | Tκ(s, t)φk〉 is continuous for every k 6 K . Hence, for each
k 6 K , there exists an open neighborhood Uk of (s, t) in C∗ × P∗ such that:
∀(s′, t′) ∈ Uk ,

∣∣ 〈φk | Tκ(s′, t′)φk〉 − 〈φk | Tκ(s, t)φk〉 ∣∣ < ε3 TrHκ ρ+ 1 .
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Since K is finite, U := ⋂
k6K

Uk is an open neighborhood of (s, t) in C∗×P∗ and, for any (s′, t′) ∈ U ,
we have:
|Wρ(s′, t′)−Wρ(s, t)| 6∑

k6N

pk
∣∣ 〈φk | Tκ(s′, t′)φk〉 − 〈φk | Tκ(s, t)φk〉 ∣∣

6 2 ∑
K<k6N

pk +∑
k6K

pk
∣∣ 〈φk | Tκ(s′, t′)φk〉 − 〈φk | Tκ(s, t)φk〉 ∣∣

< 2 ε3 +∑
k6K

pk
ε3 TrHκ ρ+ 1 6 ε ,

where we have used that Tκ(s, t) and Tκ(s′, t′) are unitary operators and each φk for k 6 N isa normalized vector, hence |〈φk | Tκ(s, t)φk〉| 6 1 and |〈φk | Tκ(s′, t′)φk〉| 6 1. Thus, Wρ is acontinuous function C∗ × P∗ → C.Let ι ∈ I. We have:∑
(s,t),(s′,t′)∈C∗×P∗ι(s′, t′) ι(s, t) eiξ(s,t;s′,t′)Wρ(s − s′, t − t′) = ∑

(s′′,t′′)∈C∗×P∗[ι∗ ? ι] (s′′, t′′)Wρ(s′′, t′′)
=TrHκ [ρ Tκ {ι∗ ? ι}](where Tκ {ι′} has been defined for ι′ ∈ I in def. C.3, as a finite linear combination of unitaryoperators belonging to Tκ 〈C∗ × P∗〉 )
=∑

k6N

pk
〈
φk
∣∣∣ Tκ {ι}† Tκ {ι} φk〉 > 0.

Therefore, Wρ fulfills eq. (C.6.1). �

Like its classical analogue, the Wigner characteristic function is related to the moment-generating
function (precisely, the latter, when it exists, is the restriction to the complex axis of the analytical
expansion of the former). In particular, a quantum state exhibits finite variances for the elementary
observables Xκ(s, t) if its characteristic function is twice-differentiable at 0, and the covariance
matrix can then be recovered from the corresponding Hessian.

Proposition C.8 Let Hκ, Tκ, ρ and Wρ be as in prop. C.7. We moreover assume that there exist alinear form W (1)
ρ and a symmetric bilinear form W (2)

ρ on C∗ × P∗ such that:
∀(s, t) ∈ C∗ × P∗, Wρ(τs, τt) = Wρ(0, 0) + i τ W (1)

ρ (s, t)− τ22 W (2)
ρ (s, t; s, t) + o(τ2) . (C.8.1)

Then, for any (s, t), (s′, t′) ∈ C∗×P∗, the operators ρXκ(s, t) (densely defined on Dom(Xκ(s, t)))and Xκ (s,t) ρXκ (s′,t′)+Xκ (s′,t′) ρXκ (s,t)2 (which can be defined at least as a sesquilinear form on the densesubset Dκ ⊂ Hκ ) admit a traceclass extension on Hκ , with:
TrHκ ρXκ(s, t) = W (1)

ρ (s, t) & TrHκ

Xκ(s, t) ρXκ(s′, t′) + Xκ(s′, t′) ρXκ(s, t)2 = W (2)
ρ (s, t; s′, t′) .

Proof Let (s, t) ∈ C∗ × P∗. For any τ 6= 0, we define:
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Y(τ)
κ (s, t) := 2 idHκ − Tκ(τs, τt)− Tκ(τs, τt)†

τ2 .
Since Tκ(τs, τt) is a unitary operator, Y(τ)

κ (s, t) is a bounded, (self-adjoint) positive semi-definiteoperator on Hκ . Using Tκ(0, 0) = idHκ and Tκ(τs, τt)† = Tκ(−τs,−τt), we get:
TrHκ ρ Y(τ)

κ (s, t) = 2Wρ(0, 0)−Wρ(τs, τt)−Wρ(−τs,−τt)
τ2 .

Hence, eq. (C.8.1) implies:lim
τ→0 TrHκ ρ Y(τ)

κ (s, t) = W (2)
ρ (s, t; s, t) .

Let τ1 > 0 such that:
∀τ ∈ ]0, τ1[ , TrHκ ρ Y(τ)

κ (s, t) 6 W (2)
ρ (s, t; s, t) + 1 =: A .

Applying the spectral theorem to the self-adjoint operator Xκ(s, t), we denote by dΠκ(s, t) itsprojection-valued measure, with:
Xκ(s, t) = ∫ +∞

−∞
σ dΠκ(s, t)[σ ] .

Then, for any τ 6= 0, we have, using Tκ(τs, τt) = exp (i τ Xκ(s, t)) :
Y(τ)
κ (s, t) := 2

τ2
∫ +∞
−∞

[1− cos(τσ )] dΠκ(s, t)[σ ] .
There exists ε > 0 such that:
∀x ∈ ]−ε, ε[ , 1− cos(x) > x24 ,

hence, for any τ 6= 0, the operator:
Y(τ)
κ (s, t)− 2

τ2
∫ ε/τ

−ε/τ

(τσ )24 dΠκ(s, t)[σ ] ,
is a bounded, (self-adjoint) positive semi-definite operator on Hκ . Defining, for any B 6 B′ ∈ R,the spectral projector Π[B,B′ ]

κ (s, t) := ∫ B′B dΠκ(s, t)[σ ] , we thus have:
∀B > ε

τ1 , TrHκ ρΠ[−B,B]
κ (s, t) Xκ(s, t)2 Π[−B,B]

κ (s, t) 6 2A . (C.8.2)
Now, from the spectral theorem, there exist N ∈ N∪ {∞}, an orthonormal family (φk )k6N in Hκand a family of strictly positive reals (pk )k6N such that:
ρ =∑

k6N

pk |φk 〉 〈 φk | &
∑
k6N

pk = TrHκ ρ .
For each k 6 N and each B > 0, we have:〈

φk
∣∣ Π[−B,B]

κ (s, t) Xκ(s, t)2 Π[−B,B]
κ (s, t)φk〉 = ∥∥Xκ(s, t) Π[−B,B]

κ (s, t)φk∥∥2
> 0,so, for any B > ε/τ1 and any k 6 N ,
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∥∥Xκ(s, t) Π[−B,B]
κ (s, t)φk∥∥2

6
2A
pk

.
Therefore, φk ∈ Dom(Xκ(s, t)). Moreover, we have [73, theorem VIII.7]:

lim
τ→0 Tκ(τs, τt)φk − φk

τ = iXκ(s, t)φk ,
hence, we get:

lim
τ→0
〈
φk
∣∣ Y(τ)

κ (s, t)φk〉 = lim
τ→0
∥∥∥∥Tκ(τs, τt)φk − φk

τ

∥∥∥∥2 = ‖Xκ(s, t)φk‖2 .
Fatou’s lemma then yields:∑

k6N

pk ‖Xκ(s, t)φk‖2 6 lim inf
τ→0

∑
k6N

pk
〈
φk
∣∣ Y(τ)

κ (s, t)φk〉 = W (2)
ρ (s, t; s, t) .

Next, this provides the bound:∑
k6N

pk ‖φk‖ ‖Xκ(s, t)φk‖ 6√W (2)
ρ (s, t; s, t) TrHκ ρ ,

where we have used ‖φk‖ = 1 and the Cauchy–Schwarz inequality (with ∑k6N pk = TrHκ ρ).Hence, we can define a bounded operator {ρXκ(s, t)} on Hκ by:
{ρXκ(s, t)} :=∑

k6N

pk |φk 〉 〈 Xκ(s, t)φk | ,
and this operator coincides with ρXκ(s, t) on Dom(Xκ(s, t)), since Xκ(s, t) is self-adjoint. In addition,we have:∥∥ {ρXκ(s, t)}∥∥1 6∑

k6N

pk
∥∥ |φk 〉 〈 Xκ(s, t)φk |∥∥1 =∑

k6N

pk ‖φk‖ ‖Xκ(s, t)φk‖ < ∞ ,
where ‖ · ‖1 denotes the trace norm [73, theorem VI.20], so {ρXκ(s, t)} is traceclass. Its trace isgiven by:

TrHκ {ρXκ(s, t)} =∑
k6N

pk 〈Xκ(s, t)φk | φk〉 =∑
k6N

pk 〈φk | Xκ(s, t)φk〉 .
Now, from:
∀x ∈ R,

∣∣eix − 1∣∣ 6 |x| ,together with the spectral decomposition of Xκ(s, t), we get, for any τ 6= 0:∥∥∥∥Tκ(τs, τt)φk − φk
τ

∥∥∥∥ 6 ‖Xκ(s, t)φk‖ .
Thus, the dominated convergence theorem yields:

i
∑
k6N

pk 〈φk | Xκ(s, t)φk〉 =∑
k6N

pk lim
τ→0
〈
φk
∣∣∣∣ Tκ(τs, τt)φk − φk

τ

〉
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= lim
τ→0

∑
k6N

pk
〈
φk
∣∣∣∣ Tκ(τs, τt)φk − φk

τ

〉 ,
which can be rewritten, using eq. (C.8.1), as:TrHκ {ρXκ(s, t)} = W (1)

ρ (s, t) .(note that Wρ(0, 0) = TrHκ ρ for Tκ(0, 0) = idHκ ).Similarily, the inequality:∑
k6N

pk ‖Xκ(s, t)φk‖2 6 W (2)
ρ (s, t; s, t) < ∞ ,

ensures that we can define a traceclass operator {Xκ(s, t) ρXκ(s, t)} on Hκ by:
{Xκ(s, t) ρXκ(s, t)} :=∑

k6N

pk |Xκ(s, t)φk 〉 〈 Xκ(s, t)φk | ,
and we have:
∀φ′, φ′′ ∈ Dom(Xκ(s, t)), 〈φ′′ | {Xκ(s, t) ρXκ(s, t)} φ′〉 = 〈Xκ(s, t)φ′′ | ρXκ(s, t)φ′〉 .Moreover, using again the dominated convergence theorem, with:
∀τ 6= 0, 〈φk ∣∣ Y(τ)

κ (s, t)φk〉 = ∥∥∥∥Tκ(τs, τt)φk − φk
τ

∥∥∥∥2
6 ‖Xκ(s, t)φk‖2 ,

we get:TrHκ {Xκ(s, t) ρXκ(s, t)} = lim
τ→0 TrHκ ρ Y(τ)

κ (s, t) = W (2)
ρ (s, t; s, t) .

Finally, for any (s, t), (s′, t′) ∈ C∗ × P∗, we have, thanks to prop. C.4.3:
∀φ, φ′ ∈ Dκ , 〈Xκ(s, t)φ′′ | ρXκ(s′, t′)φ′〉+ 〈Xκ(s′, t′)φ′′ | ρXκ(s, t)φ′〉 == 〈φ′′ | {Xκ(s+ s′, t + t′) ρXκ(s+ s′, t + t′)} φ′〉+

−〈φ′′ | {Xκ(s, t) ρXκ(s, t)} φ′〉 − 〈φ′′ | {Xκ(s′, t′) ρXκ(s′, t′)} φ′〉 .Hence, {Xκ (s+s′,t+t′) ρXκ (s+s′,t+t′)}−{Xκ (s,t) ρXκ (s,t)}−{Xκ (s′,t′) ρXκ (s′,t′)}2 provides a traceclass extension of thesesquilinear form Xκ (s,t) ρXκ (s′,t′)+Xκ (s′,t′) ρXκ (s,t)2 on Dκ and its trace is given by:
TrHκ

{Xκ (s+s′,t+t′) ρXκ (s+s′,t+t′)}−{Xκ (s,t) ρXκ (s,t)}−{Xκ (s′,t′) ρXκ (s′,t′)}2 = W (2)
ρ (s, t; s′, t′) .

�

As a first step toward recovering the density matrix from its Wigner characteristic function, we
observe that the positivity condition eq. (C.6.1) is exactly what we need to turn a function on C∗×P∗
into a state (aka. a normalized positive linear functional, see [41, part III, def. 2.2.8] ) on the Weyl
algebra. Then, from any state we can reconstruct a representation of the algebra, via the GNS
construction [34] , and the continuity of the characteristic function ensures that this representation
will be weakly continuous.

Proposition C.9 Let W ∈ W. Then, there exist a weakly continuous, unitary representation
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HW , TW of C∗ × P∗ and a vector ζW ∈ HW such that:
1. HW = Vect {TW (s, t) ζW | (s, t) ∈ C∗ × P∗} (ie. ζW is a cyclic vector for HW , TW );
2. ∀(s, t) ∈ C∗ × P∗, W (s, t) = 〈ζW | TW (s, t) ζW 〉HW

.
Proof Let ι1, ι2 ∈ I . We define:
〈ι1 | ι2〉W := ∑

(s,t)∈C∗×P∗(ι∗1 ? ι2)(s, t)W (s, t) .
This is well defined, for the sum has only finitely many non-zero contributions (ι∗1 ? ι2 ∈ I),and eq. (C.6.1) ensures that 〈 · | · 〉W provides an Hermitian, positive semi-definite sesquilinearform on the complex vector space I (the hermiticiy comes from (ι∗1 ? ι2)∗ = ι∗2 ? ι1 together with
∀(s, t) ∈ C∗ × P∗, W (−s,−t) = W (s, t), as was proven in prop. C.6).Let NW := {υ ∈ I | 〈υ | υ〉W = 0}. For any ι ∈ I and any υ ∈ NW , we have:
∀λ ∈ C, 〈ι | ι〉+ 2 Re[λ 〈ι | υ〉 ] = 〈ι+ λ υ | ι+ λ υ〉W > 0 ,therefore 〈ι | υ〉 = 0. Hence, for any ι1, ι2 ∈ I and any υ1, υ2 ∈ NW :
〈ι1 + υ1 | ι2 + υ2〉W = 〈ι1 | ι2〉W ,so 〈 · | · 〉W induces an inner product on the quotient I/NW . We denote by HW the completion of

I/NW with respect to the corresponding norm.Let (s, t) ∈ C∗ × P∗. For any ι1, ι2 ∈ I , we have:
〈δ(s,t) ? ι1 | δ(s,t) ? ι2〉W = 〈ι1 | ι2〉W(for (δ(s,t) ? ι1)∗ ? (δ(s,t) ? ι2) = ι∗1 ? (δ(−s,−t) ? δ(s,t)) ? ι2 = ι∗1 ? ι2 ), so in particular [δ(s,t) ? · ] 〈NW 〉 ⊂ NW ,and δ(s,t) ? · induces a unitary operator TW (s, t) on HW . Then, def. C.3.2 and C.3.3 come from:
∀(s1, t1), (s2, t2) ∈ C∗ × P∗, δ(s1,t1) ? δ(s2,t2) = eiξ(s1,t1;s2 ,t2) δ(s1+s2, t1+t2) ,and from the fact that δ(0,0) is the unit of the ∗-algebra I.Let ι1 , ι2 ∈ I. For any (s, t) ∈ C∗ × P∗, we have:
〈ι1 | δ(s,t) ? ι2〉W = ∑

(s1,t1),(s2,t2)
∈C∗×P∗

eiξ(s2,t2;s1,t1)+iξ(s,t;s1+s2,t1+t2) ι1(s1, t1) ι2(s2, t2)W (s+ s2 − s1, t + t2 − t1) .
Thus, the map (s, t) 7→ 〈ι1 | δ(s,t) ? ι2〉W is a finite linear combination of translations of W , and thoseare continuous by definition of W. So, for any ι̃1, ι̃2 ∈ I/NW , the map (s, t) 7→ 〈ι̃1 | TW (s, t) ι̃2〉HWis continuous. Now, I/NW being dense in HW , there exist, for any φ1, φ2 ∈ HW and any ε > 0,
ι̃1, ι̃2 ∈ I/NW such that:
‖φ1 − ι̃1‖HW

< ε6 ‖φ2‖HW
+√6ε & ‖φ2 − ι̃2‖HW

< ε6 ‖φ1‖HW
+√6ε .

Next, for any (s, t) ∈ C∗ × P∗, there exists an open neighborhood U of (s, t) in C∗ × P∗ such that:
∀(s′, t′) ∈ U,

∣∣〈ι̃1 | TW (s′, t′) ι̃2〉HW
− 〈ι̃1 | TW (s, t) ι̃2〉HW

∣∣ < ε3 .
Hence, for any (s′, t′) ∈ U , we have:
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|〈φ1 | TW (s′, t′)φ2〉 − 〈φ1 | TW (s, t)φ2〉| < ε ,where we have used that TW (s, t) and TW (s′, t′) are unitary. This proves def. C.3.4.Finally, we define ζW to be the equivalence class of δ(0,0) in I/NW . For any (s, t) ∈ C∗ × P∗,we have δ(s,t) ? δ(0,0) = δ(s,t), so TW (s, t) ζW is the equivalence class of δ(s,t) in I/NW . But since
I = Vect {δ(s,t) | (s, t) ∈ C∗ × P∗}, we have:

I/NW = Vect {TW (s, t) ζW | (s, t) ∈ C∗ × P∗} ,which proves point C.9.1. Moreover, we also have:
〈ζW | TW (s, t) ζW 〉HW

= 〈δ(0,0) | δ(s,t)〉W = W (s, t) ,which proves point C.9.2. �

Finally, the invertibility of Wigner transform can be seen as a consequence of the Stone-von Neu-
mann theorem [98] (which we implicitly prove below, following closely [47, theorem 15a] ). Indeed,
the Schrödinger representation being the unique irreducible, weakly continuous representation of
the Weyl algebra, the Hilbert space HW constructed from W above can be written as a direct sum
of independent copies of Ho . Projecting the vector ζW representing W in HW on each of these
copies, we obtain a collection of vectors in Ho , and we can reconstruct a density matrix on Ho
as the statistical superposition of the corresponding pure states (this is consistent with the general
result that a state is pure if and only if its GNS representation is irreducible, see [41, part III,
theorem 2.2.17] ).

Proposition C.10 Let W ∈ W. Then, there exists a unique traceclass, (self-adjoint) positivesemi-definite operator ρ on Ho such that W = Wρ (with Wρ defined as in prop. C.7).
Lemma C.11 Let ( · | · ) be a real inner product on C. Using the resulting identification of C∗ with
C and identifying P∗ with C through the dual map Ξ∗, we are provided with a corresponding realinner product on C∗ × P∗, which we will denote by ( · , · | · , · ). Let µ̃ be the Lebesgue measureon C∗ × P∗ normalized with respect to this Euclidean structure. We define a map Ψ on C∗ × P∗through:
∀(s, t) ∈ C∗ × P∗, Ψ(s, t) := 1

α exp(− (s, t | s, t)4
) ,

where α := ∫
C∗×P∗dµ̃(s, t) exp (− (s,t | s,t)2

) .Let W be a bounded, continuous function on C∗ × P∗ such that:
∀(so, to), (s1, t1) ∈ C∗ × P∗,

∫
C∗×P∗

dµ̃(s, t) Ψ(s, t) ei ξ(s,t;s1,t1)W (so + s, to + t) = 0 . (C.11.1)
Then, W ≡ 0.
Proof Let (ei)i∈{1,...,p} be an orthonormal basis of C, ( · , · ) , let (fi)i∈{1,...,p} be the corresponding dualbasis in C∗ and let (gi)i∈{1,...,p} be the basis in P∗ given by:
∀i ∈ {1, . . . , p} , gi := Ξ∗(ei) .
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For any (s, t) ∈ C∗ × P∗, we will write s =: si fi and t =: ti gi (with implicit summation). Inparticular, we then have:
∀(s, t), (s′, t′) ∈ C∗ × P∗, ξ(s, t; s′, t′) = ti s′ i − si t′ i2 &

(
s, t | s′, t′

) = si s′ i + ti t′ i ,
as well as dµ̃(s, t) = ds1 . . . dsp dt1 . . . dtp . Therefore, α = (2π)p.Now, for any β > 0 and any (so, to) ∈ C∗ × P∗, we have:∫

C∗×P∗
dµ̃(s1, t1) ∫

C∗×P∗
dµ̃(s, t) ∣∣∣Ψ(βs1, βt1) Ψ(s, t) eiξ(s,t;s1,t1)W (so + s, to + t) ∣∣∣
6

[ 2
β

]2p
‖W‖∞ < ∞ ,

where ‖W‖∞ is the sup norm of the bounded function W . Thus, Fubini’s theorem, together witheq. (C.11.1) yields:
0 = ∫

C∗×P∗
dµ̃(s, t) Ψ(s, t)W (so + s, to + t) ∫

C∗×P∗
dµ̃(s1, t1)Ψ(βs1, βt1) eiξ(s,t;s1,t1) .

Performing the Gaussian integration, we get:
0 = ∫

C∗×P∗
dµ̃(s, t) [γ2 − 1

π

]p exp(−γ24 (s, t | s, t)) W (so + s, to + t) ,
where γ := √1 + 1/β2 .Let ε > 0. There exists A > 0 such that:∫ ∞

A
duu2p−1 e− u24 < ε4 ‖W‖∞ + 1

∫ ∞
0 duu2p−1 e− u24 .

W being continuous, there also exists δ ∈ ] 0, A [ such that:
∀(s, t) ∈ C∗ × P∗

/ (s, t | s, t) 6 δ2, |W (so + s, to + t)−W (so, to)| < ε2 .
Hence, applying the previous equality with β = δ√

A2 − δ2 , we have:
|W (so, to)| ∫

C∗×P∗
dµ̃(s, t) e− γ24 (s,t | s,t) =

= ∣∣∣∣∫
C∗×P∗

dµ̃(s, t) e− γ24 (s,t | s,t) [W (so + s, to + t)−W (so, to)]∣∣∣∣
< ε2

∫
(s,t | s,t)6δ2dµ̃(s, t) e− γ24 (s,t | s,t) + 2 ‖W‖∞ ∫(s,t | s,t)>δ2dµ̃(s, t) e− γ24 (s,t | s,t) .

Changing to spherical coordinates and dropping an overall constant, this can be rewritten as:
|W (so, to)| ∫ ∞0 duu2p−1 e− u24 < ε2

∫ γδ

0 duu2p−1 e− u24 + 2 ‖W‖∞ ∫ ∞
γδ
duu2p−1 e− u24

< ε
∫ ∞

0 duu2p−1 e− u24 .
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where we have used that γδ = A. Thus, we have, for any (so, to) ∈ C∗ × P∗ and any ε > 0,
|W (so, to)| < ε, and therefore W ≡ 0. �

Proof of prop. C.10 Existence. Let W ∈ W and let HW , TW be the weakly continuous, unitaryrepresentation introduced in prop. C.9, with cyclic vector ζW . For any φ, φ′ ∈ HW , the map(s, t) 7→ Ψ(s, t) 〈φ′ | TW (s, t)φ〉HW
is continuous, hence measurable, and we have:∫

C∗×P∗
dµ̃(s, t) ∣∣Ψ(s, t) 〈φ′ | TW (s, t)φ〉HW

∣∣ 6 2p ‖φ′‖HW
‖φ‖HW

< ∞ .
Hence, there exists a bounded operator TW {Ψ} on HW such that, for any φ, φ′ ∈ HW :
〈φ′ | TW {Ψ} φ〉HW

:= ∫
C∗×P∗

dµ̃(s, t) Ψ(s, t) 〈φ′ | TW (s, t)φ〉HW
.

In particular, TW {Ψ} is symmetric (since, for any (s, t) ∈ C∗ × P∗, Ψ(s, t) = Ψ(s, t) = Ψ(−s,−t)and TW (s, t)† = TW (−s,−t)). Being bounded, it is therefore self-adjoint.Now, for any (s1, t1) ∈ C∗ × P∗ and any φ, φ′ ∈ HW , we have:〈
φ′
∣∣ [TW {Ψ} TW (s1, t1)]φ〉HW

= 〈φ′ ∣∣ TW {Ψ} [TW (s1, t1)φ]〉HW= ∫
C∗×P∗

dµ̃(s, t) Ψ(s, t) 〈φ′ | TW (s, t) TW (s1, t1)φ〉HW

= ∫
C∗×P∗

dµ̃(s, t) Ψ(s, t) eiξ(s,t;s1,t1) 〈φ′ | TW (s+ s1, t + t1)φ〉HW

= ∫
C∗×P∗

dµ̃(s, t) Ψ(s − s1, t − t1) eiξ(s,t;s1,t1) 〈φ′ | TW (s, t)φ〉HW
,

where we have used def. C.3.2 and ∀(s, t) ∈ C∗ × P∗, ξ(s − s1, t − t1; s1, t1) = ξ(s, t; s1, t1). SinceTW {Ψ}† = TW {Ψ} and TW (s1, t1)† = TW (−s1, −t1), we also have:〈
φ′
∣∣ [TW (s1, t1) TW {Ψ} ]φ〉HW

= ∫
C∗×P∗

dµ̃(s, t) Ψ(s−s1, t−t1) e−iξ(s,t;s1,t1) 〈φ′ | TW (s, t)φ〉HW
.

Applying these two formulas successively, we get, for any (s1, t1) ∈ C∗×P∗ and any φ, φ′ ∈ HW :〈
φ′
∣∣ [TW {Ψ} TW (s1, t1) TW {Ψ} ]φ〉 == 〈φ′ ∣∣ TW {Ψ} TW (s1, t1) [TW {Ψ} φ]〉

= ∫
C∗×P∗

dµ̃(s, t) Ψ(s − s1, t − t1) eiξ(s,t;s1,t1) 〈φ′ | TW (s, t) TW {Ψ} φ〉HW

= ∫
C∗×P∗

dµ̃(s, t) ∫
C∗×P∗

dµ̃(s′, t′) Ψ(s−s1, t−t1) Ψ(s′−s, t′−t) eiξ(s,t;s1+s′,t1+t′) 〈φ′ | TW (s′, t′)φ〉HW
.

Invoking Fubini’s theorem and performing the Gaussian integration, like in the proof of lemma C.11,we obtain:〈
φ′
∣∣ [TW {Ψ} TW (s1, t1) TW {Ψ} ]φ〉 =

= ∫
C∗×P∗

dµ̃(s′, t′) exp(− (s1, t1 | s1, t1)4
) Ψ(s′, t′) 〈φ′ | TW (s′, t′)φ〉HW
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= exp(− (s1, t1 | s1, t1)4
)
〈φ′ | TW {Ψ} φ〉HW

.
Since this holds for any φ, φ′ ∈ HW , we have:
∀(s, t) ∈ C∗ × P∗, TW {Ψ} TW (s, t) TW {Ψ} = exp(− (s, t | s, t)4

) TW {Ψ} . (C.10.1)
In particular, applying with (s, t) = (0, 0), and using that TW (0, 0) = idHW , this implies:TW {Ψ} TW {Ψ} = TW {Ψ} .TW {Ψ} being idempotent and self-adjoint, it is an orthogonal projection.Next, we define ψo ∈ Ho by:
∀x ∈ C, ψo(x) = 1

πp/4 exp(− (x | x)2
)

(choosing the Lebesgue measure µ, entering the definition of Ho in prop. C.5, to be normalizedwith respect to the scalar product ( · | · ) on C; this normalization can be chosen without lossof generality since the Hilbert spaces obtained using different normalizations of µ are unitarilyidentified in a natural way through a corresponding renormalization of the wave-functions). Wecan check that, for any (s, t) ∈ C∗ × P∗:
〈ψo | To(s, t)ψo〉Ho

= exp(− (s, t | s, t)4
) . (C.10.2)

Let (ψ(a)
W

)
a

be an orthonormal basis of the image of TW {Ψ}. Then, for any a, b and any(s, t), (s′, t′) ∈ C∗ × P∗, we have, using the hermiticity and idempotence of TW {Ψ} together withthe properties of the representations TW and To :〈TW (s′, t′)ψ(b)
W

∣∣∣ TW (s, t)ψ(a)
W

〉
HW

=
= 〈TW {Ψ} ψ(b)

W

∣∣∣ TW (−s′, −t′) TW (s, t) TW {Ψ} ψ(a)
W

〉
HW= eiξ(s,t;s′,t′) 〈ψ(b)

W

∣∣∣ TW {Ψ} TW (s − s′, t − t′) TW {Ψ} ψ(a)
W

〉
HW= eiξ(s,t;s′,t′) 〈ψo | To(s − s′, t − t′)ψo〉Ho

〈
ψ(b)
W

∣∣∣ TW {Ψ} ψ(a)
W

〉
HW(combining eqs. (C.10.1) and (C.10.2))= δab 〈To(s′, t′)ψo | To(s, t)ψo〉Ho

.
For any a, we define H

(a)
W := Vect {TW (s, t)ψ(a)

W

∣∣∣ (s, t) ∈ C∗ × P∗
}. Each H

(a)
W is thus stable

under TW 〈C∗ × P∗〉. The previous computation shows that the H
(a)
W are mutually orthogonal andthat there exists, for each a, an isometric injection I(a) : H(a)

W → Ho such that:
∀ι ∈ I, I(a) [TW {ι} ψ(a)

W

] = To {ι} ψo .
Then, using that:
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∀ι1, ι2 ∈ I, TW {ι1} TW {ι2} = TW {ι1 ? ι2} & To {ι1} To {ι2} = To {ι1 ? ι2} ,
together with the density of {TW {ι} ψ(a)

W

∣∣∣ ι ∈ I
} = Vect {TW (s, t)ψ(a)

W

∣∣∣ (s, t) ∈ C∗ × P∗
} in H

(a)
W ,we get:

∀ι ∈ I, I(a) TW {ι} = To {ι} I(a) .
Now, we define:
Hrest

W := (⊕
a

H
(a)
W

)⊥ ,
so that:

HW = Hrest
W ⊕

⊕
a

H
(a)
W

(as can be seen as a consequence of Riesz lemma). Since each H
(a)
W is stable under TW 〈C∗ × P∗〉,so is Hrest

W . Next, we write:
ζW = ζ rest

W +(∑
a
ζ (a)
W

) ,
with ζ rest

W ∈ Hrest
W and ∀a, ζ (a)

W ∈ H
(a)
W . In particular, we have:

‖ζW‖2 = ∥∥ζ rest
W
∥∥2 +∑

a

∥∥∥ζ (a)
W

∥∥∥2 ,
so there can be only countably many non-zero ζ (a)

W (actually, the cyclicity of ζW together with thestability of each H
(a)
W requires all ζ (a)

W to be non-zero, so this even implies that a takes value in acountable set). Using prop. C.9.2, we have:
∀(s, t) ∈ C∗ × P∗, W (s, t) = 〈ζW | TW (s, t) ζW 〉HW= 〈ζ rest

W
∣∣ TW (s, t) ζ rest

W
〉
HW

+∑
a

〈
ζ (a)
W

∣∣∣ TW (s, t) ζ (a)
W

〉
HW

.
Thus, defining ζ (a)

o := I(a) ζ (a)
W ∈ Ho for each a, the isometric and intertwining properties of I(a)yield:

∀(s, t) ∈ C∗ × P∗, W (s, t) = 〈ζ rest
W
∣∣ TW (s, t) ζ rest

W
〉
HW

+∑
a

〈
ζ (a)
o
∣∣ To(s, t) ζ (a)

o
〉
Ho

.
The bound:∑

a

∥∥ζ (a)
o
∥∥2
Ho

=∑
a

∥∥∥ζ (a)
W

∥∥∥2
HW
6 ‖ζW‖2 < ∞ ,

allows us to define a traceclass, (self-adjoint) positive semi-definite operator ρ on Ho by:
ρ :=∑

a

∣∣ζ (a)
o
〉 〈

ζ (a)
o
∣∣ .

Then, we get:
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∀(s, t) ∈ C∗ × P∗, W (s, t) = W rest(s, t) + TrHo [ρ To(s, t)] = W rest(s, t) +Wρ(s, t) ,
where, for any (s, t) ∈ C∗ × P∗, W rest(s, t) := 〈ζ rest

W
∣∣ TW (s, t) ζ rest

W
〉
HW

.TW being a weakly continuous, unitary representation of C∗ × P∗ on HW , the function W rest
is continuous C∗ × P∗ → C and it is bounded by ∥∥ζ rest

W
∥∥2
HW

. Now, for any (s′, t′) ∈ C∗ × P∗,TW (s′, t′) ζ rest
W ∈ Hrest

W , so it is in particular orthogonal to each ψ(a)
W , as ψ(a)

W ∈ H
(a)
W . But since(

ψ(a)
W

)
a

is an orthonormal basis of the image of the orthogonal projection TW {Ψ} , this implies:
∀(s′, t′) ∈ C∗ × P∗, TW {Ψ} TW (s′, t′) ζ rest

W = 0 ,and therefore:
∀(s′, t′), (s′′, t′′) ∈ C∗ × P∗,

〈TW (s′′, t′′) ζ rest
W
∣∣ TW {Ψ} TW (s′, t′) ζ rest

W
〉
HW

= 0 .
On the other hand, we have, for any φ′, φ′′ ∈ HW :
∀(s′, t′), (s′′, t′′) ∈ C∗ × P∗, 〈TW (s′′, t′′)φ′′ | TW {Ψ} TW (s′, t′)φ′〉HW

=
= ∫

C∗×P∗
dµ̃(s, t) Ψ(s, t) 〈TW (s′′, t′′)φ′′ | TW (s, t) TW (s′, t′)φ′〉HW

= ∫
C∗×P∗

dµ̃(s, t) Ψ(s, t) e−iξ(s′′,t′′;s,t) eiξ(s−s′′,t−t′′;s′,t′) 〈φ′′ | TW (s+ s′ − s′′, t + t′ − t′′)φ′〉HW

= e−iξ(s′′,t′′;s′,t′) ∫
C∗×P∗

dµ̃(s, t) Ψ(s, t) eiξ(s,t;s′+s′′,t′+t′′) 〈φ′′ | TW (s+ s′ − s′′, t + t′ − t′′)φ′〉HW
.

Thus, we have:
∀(so, to), (s1, t1) ∈ C∗ × P∗,

∫
C∗×P∗

dµ̃(s, t) Ψ(s, t) eiξ(s,t;s1,t1)W rest(s+ so, t + to) = 0 ,
so, from lemma C.11, W rest ≡ 0, hence W = Wρ .
Uniqueness. Let ρ1 , ρ2 be two traceclass, (self-adjoint) positive semi-definite operators on Ho suchthat Wρ1 = Wρ2 . Like above, we define a bounded linear operator To {Ψ} on Ho satisfying, forany φ1, φ2 ∈ Ho:
〈φ1 | To {Ψ} φ2〉Ho

:= ∫
C∗×P∗

dµ̃(s, t) Ψ(s, t) 〈φ1 | To(s, t)φ2〉Ho
.

Using the bases introduced in the proof of lemma C.11 together with the expression for To(s, t) fromprop. C.5, this can be rewritten as:
〈φ1 | To {Ψ} φ2〉Ho

=
= 1(2π)p

∫
ds1 . . . dsp dt1 . . . dtp ∫ dx11 . . . dxp1 φ1(xi1 ei)φ2((xi1 + ti) ei)×

× exp(−si si + ti ti4
) exp(i si xi1 + i2 ti si

)
= 1(2π)p

∫
dx11 . . . dxp1 dt1 . . . dtp φ1(xi1 ei)φ2((xi1 + ti) ei) exp(−ti ti4

)
×
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×
∫
ds1 . . . dsp exp(−si si4 + i si xi1 + i2 ti si

)
(using Fubini’s theorem as the integral is absolutely convergent)

= 1
√
πp
∫
dx11 . . . dxp1 dt1 . . . dtp φ1(xi1 ei)φ2((xi1 + ti) ei) exp(−ti ti4

)
×

× exp(− (2xi1 + ti) (2xi1 + ti)4
)

= 1
√
πp
∫
dx11 . . . dxp1 dx12 . . . dxp2 φ1(xi1 ei)φ2(xi2 ei) exp(−xi1 xi1 + xi2 xi22

)
(with the change of variables xi2 := xi1 + ti)= 〈φ1 | ψo〉Ho

〈ψo | φ2〉Ho
.Since this holds for any φ1, φ2 ∈ Ho , we have To {Ψ} = |ψo 〉 〈 ψo| .Now, from the spectral theorem, there exist N1 ∈ N∪ {∞}, an orthonormal family (φ(1)

k

)
k<N1 in

Ho and a family of strictly positive reals (p(1)
k

)
k<N1 such that:

ρ1 = ∑
k<N1

p(1)
k

∣∣∣φ(1)
k

〉 〈
φ(1)
k

∣∣∣ & ∑
k<N1

p(1)
k = TrHo ρ1 .

Thus, we get, for any (s1, t1), (s2, t2) ∈ C∗ × P∗:
〈To(s1, t1)ψo | ρ1 To(s2, t2)ψo〉Ho

=
= ∑

k<N1
p(1)
k

〈To(s1, t1)ψo ∣∣∣ φ(1)
k

〉 〈
φ(1)
k

∣∣∣ To(s2, t2)ψo〉
Ho

= ∑
k<N1

p(1)
k

〈
φ(1)
k

∣∣∣ To(s2, t2) To {Ψ} To(−s1, −t1)φ(1)
k

〉
Ho

= ∑
k<N1

p(1)
k

∫
C∗×P∗

dµ̃(s, t) Ψ(s, t) e−iξ(s,t; s1+s2,t1+t2)+iξ(s1,t1; s2,t2) 〈φ(1)
k

∣∣∣ To(s+ s2−s1, t + t2−t1)φ(1)
k

〉
Ho

= ∫
C∗×P∗

dµ̃(s, t) Ψ(s, t) e−iξ(s,t; s1+s2,t1+t2)+iξ(s1,t1; s2,t2) ∑
k<N1

p(1)
k

〈
φ(1)
k

∣∣∣ To(s+ s2−s1, t + t2−t1)φ(1)
k

〉
Ho(using Fubini’s theorem with the discrete measure on {k < N})

= ∫
C∗×P∗

dµ̃(s, t) Ψ(s, t) e−iξ(s,t; s1+s2,t1+t2)+iξ(s1,t1; s2,t2) TrHo [ρ1 To(s+ s2−s1, t + t2−t1)]
= eiξ(s1,t1; s2,t2) ∫

C∗×P∗
dµ̃(s, t) Ψ(s, t) e−iξ(s,t; s1+s2,t1+t2)Wρ1(s+ s2−s1, t + t2−t1) .

As the same holds for ρ2, Wρ1 = Wρ2 implies:
∀φ, φ′ ∈ H(0)

o , 〈φ′ | ρ1 φ〉Ho
= 〈φ′ | ρ2 φ〉Ho

,
where H(0)

o := Vect {To(s, t)ψo | (s, t) ∈ C∗ × P∗} .Finally, let φ ∈ [H(0)
o
]⊥. Like above, we then have, for any (s′, t′), (s′′, t′′) ∈ C∗ × P∗:
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0 = 〈To(s′′, t′′)ψo | φ〉Ho
〈φ | To(s′, t′)ψo〉Ho= e−iξ(s′,t′; s′′,t′′) ∫

C∗×P∗
dµ̃(s, t) Ψ(s, t) e−iξ(s,t; s′+s′′,t′+t′′) 〈φ | To(s+ s′ − s′′, t + t′ − t′′)φ〉Ho

,
so applying lemma C.11 to the bounded, continuous function (s, t) 7→ 〈φ | To(s, t)φ〉Ho

yields:
∀(s, t) ∈ C∗ × P∗, 〈φ | To(s, t)φ〉Ho

= 0,
and in particular ‖φ‖2 = 〈φ | To(0, 0)φ〉Ho

= 0, so φ = 0. Hence, H(0)
o = Ho and, therefore,

ρ1 = ρ2 . �
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