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Abstract: Projective State Spaces for Theories of Connections

Quantum gravity aims at combining the insights of Quantum Field Theory (QFT) and General
Relativity (GR) into a consistent fundamental theory. In a non-perturbative, canonical approach
like Loop Quantum Gravity (LQG, [4, 75, 92]), one attempts to directly quantize the spacetime
geometry, while resolutely avoiding the introduction of any supporting background metric. The
price for this background independence [77] is that the technologies commonly employed in QFT to
extract physics in a computationally tractable way are not readily available. Thus, new tools need
to be developed, for example to check the semi-classical limit of the quantum theory or to rigorously
derive its cosmological [16] and astrophysical implications [83, 5, 18].

In particular, the vacuum states of Fock type used when doing QFT on Minkowski background
have no equivalent when spacetime itself is to be quantized. While the non-standard properties of
the Ashtekar-Lewandowski vacuum used in LQG [19, 8] lead to a compelling picture at Planck scale,
revealing notably a fundamental discreteness of quantum geometry [78, 7], they also contribute to
long-standing issues regarding the design of semi-classical states [90, 51, 36] and the implemen-
tation of the dynamics [88, 91]. This motivates the search for an extension of the LQG Hilbert

space, that could accommodate more general quantum states while retaining the key insights of the
original construction.

This is achieved in the present work using a projective framework [48, 66, 68], which allows
to dispense altogether from the selection of a vacuum state: instead of defining states as vectors
in one big’ Hilbert space, or more generally as density matrices thereon, one constructs them as
projective families of partial density matrices over a system of ‘small” Hilbert spaces, each of which
extracts specific degrees of freedom from the full quantum theory. This approach is physically
motivated by interpreting each small Hilbert space as the arena to describe a given experiment,
while the projections binding these partial descriptions together ensure the overall consistency of
the theory.

We will set up projective state spaces of this kind for general theories of connections: this
includes the reformulation of GR using Ashtekar variables [3, 12] that constitutes the starting point
of LQG, and could have applications to other quantum gauge theories as well. To this intend, we
will develop the projective framework beyond the context of linear configuration spaces in which
it was originally formulated, laying down fairly generic prescriptions to turn classical projective
system into quantum ones. To ascertain that the thus obtained quantum state spaces indeed extend
existing ones, we will investigate in detail their relations with various Hilbert spaces. Finally,
we will explore how this approach could help making progress on the aforementioned issues, in
particular by paving the way for the development of more satisfactory semi-classical states.



Zusammenfassung: Projektive Zustandsraume fiir Theorien von
Zusammenhangen

Ziel der Quantengravitation ist, die Erkenntnisse der Quantenfeldtheorie (QFT) mit denen der all-
gemeinen Relativitiatstheorie (ART) in einer einheitlichen grundlegenden Theorie zu verschmelzen.
Folgt man einem nichtperturbativen, kanonischen Ansatz, wie in der Schleifenquantengravitation
SQG, [4, 75, 92]), wird versucht gleich die Geometrie der Raumzeit zu quantisieren, wobei die Ein-
fithrung jeglicher unterstiitzenden Hintergrundmetrik konsequent vermieden wird. Der Preis dieser
Hintergrundunabhéngigkeit [77] ist der Verzicht auf die bewéhrten Techniken, die es in der QFT
ermoglichen, physikalische Aussage effektiv zu berechnen. Daher miissen neue Werkzeuge entwick-
elt werden, etwa um den semiklassischen Limes der Quantentheorie zu bestétigen, oder um deren
kosmologische [16] und astrophysikalische Bedeutung [83, 5, 18] rigoros abzuleiten.

Insbesondere sind die Fock-artigen Vakuumzustdnde, die in der QFT auf dem Minkowski-
Hintergrund angewendet werden, nicht mehr verfiigbar, wenn die Raumzeit selbst quantisiert
sein soll. Wahrend die einzigartigen Eigenschaften des Ashtekar-Lewandowski Vakuums [19, 8],
das der SQG zugrunde liegt, iiberzeugende, durch eine grundséitzliche Diskretheit [78, 7] auf der
Planck-Skala gekennzeichnete, Einblicke in der der Quantengeometrie liefern, tragen sie auch zu
andauernden Schwierigkeiten bei dem Aufstellen semiklassischer Zusténde [90, 51, 36] sowie bei der
Behandlung der Dynamik [88, 91] bei. Dies motiviert die Suche nach einer Erweiterung des SQG-
Hilbertraumes, die die bisher fehlenden Quantenzustinde einbeziechen konnte, ohne die Grundsétze
der urspriinglichen Konstruktion aufzugeben.

So eine Erweiterung wird in der vorliegenden Arbeit mithilfe eines projektiven Formalismus
[48, 66, 68] entwickelt, der uns von dem Aussuchen eines Vakuumzustandes befreit: statt Quanten-
zustande als Vektoren (bzw. Dichtematrizen) in einem einzigen, ‘grofen’ Hilbertraum zu beschreiben,
werden sie als projektive Familien von partiellen Dichtematrizen iiber einem System von ‘kleinen’
Hilbertraumen zusammengesetzt. Jedem dieser kleinen Hilbertraume entspricht die Auswahl bes-
timmter Freiheitsgrade aus der vollen Quantentheorie und wird physikalisch verstanden als die
Arena, wo sich ein gegebenes Experiment abspielt, wdhrend die Projektionen, die diese Raume
miteinander verbinden, dafiir sorgen, dass aus diesen partiellen Darstellungen eine konsistente
Theorie entsteht.

Wir werden projektive Zustandsraume dieser Art fiir allgemeine Theorien von Zusammenhéngen

aufbauen: dies erfasst insbesondere das Umschreiben der ART mithilfe der Ashtekar-Variablen
[3, 12], das als Ausgangspunkt der SQG dient, und konnte auch bei der Beschreibung anderer

Eichtheorien Anwendungen finden. Hierfiir werden wir den projektiven Formalismus jenseits des
Kontextes linearer Konfigurationsraume ausbauen, in dem er bislang formuliert war, und relativ
systematische Vorschriften ausarbeiten, um klassische projektive Systeme in deren Quantenver-
sion umzuwandeln. Um sicherzustellen, dass die so zusammengestellten Quantenzustandsraume
die existierenden wirklich erweitern, werden wir detailliert deren Beziehungen zu verschiedenen
Hilbertraumen untersuchen. Schlieflich werden wir erforschen, wie dieses Programm bei den oben
genannten Schwierigkeiten helfen konnte, vor allem was die Entwicklung besseren semiklassischen
Zustande betrifft.
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Introduction

Context

Projective State Spaces in Quantum Field Theory

An important step toward the quantization of a classical theory is the choice of a home for the
kinematical quantum states: typically, we look for an Hilbert space supporting a representation of
an algebra of selected kinematical observables. As long as we only deal with finitely many degrees
of freedom, a comprehensive survey of the available options might still be within reach [98]. But
the extent and implications of this initial choice tend to get dramatically more involved in the case
of a field theory, where the very large algebra of kinematical observables can give rise to an intricate
forest of representations. Unfortunately, it is hard to concisely formalize which requirements the
elected representation should satisfy to ensure that it supports the quantum states we are ultimately
interested in, eg. the states that solve the dynamics.

Given these concerns, one may wonder whether we could dispense from committing ourselves
to a definite representation, while still having at our disposal an explicit and constructive descrip-
tion of the state space, suitable for concrete calculations and further exploration of the quantum
theory. In the present work, we will investigate such an alternative way of building the space of
kinematical states, first introduced by Jerzy Kijowski in the late 70s [48] and further developed
by Andrzej Okotéw recently [66, 68, 69]. Instead of describing states as density matrices over a
single big Hilbert space, we will construct them as projective families of density matrices over small
‘building block’ Hilbert spaces (subsection 5.1). The projections are given as partial traces, so that
each small Hilbert space can be physically interpreted as selecting out specific degrees of freedom.
This formalism allows us to rely more heavily on the physical interpretation of the kinematical
observables, namely how they are measured in practice. This tends to give state spaces that are
bigger (subsection 5.2), but nevertheless technically easier to handle. In particular, we thus start
with better chances to find the states we are looking for.

Canonical Quantum Gravity

Our main motivation to study this projective framework will be its possible application to quan-
tum gravity. More specifically, we will focus on the canonical quantization of general relativity,
starting from an Hamiltonian formulation thereof. Such a formulation is provided by the ADM
formalism (introduced in [70] by Arnowitt, Deser and Misner), which relies on a phase space
describing 3-dimensional spacelike slices. The 3-geometry along the slice is parametrized by the
configuration variables, while its extrinsic curvature (controlling the shape it should have when
embedded in an ambient 4-dimensional spacetime) plays the role of the conjugate momenta.

On this ‘kinematical’ phase space, the dynamics is recovered by imposing constraints (see [105,
section 1.7] and appendix A). Like in gauge theories, these constraints not only delineate a physically
admissible region in phase space (aka. the constraint surface), their Hamiltonian flow also generates
gauge transformations along this constraint surface. A given spatial slice belongs to the constraint
surface if it can be cut out of a 4-geometry fulfilling Einstein equations, while 2 different slices



are in the same gauge orbit as soon as they can be cut out of the same Einstein geometry.
Hence, each orbit on the constraint surface can be identified with a spacetime obeying the Einstein
equations, and the group of 4-diffeomorphisms acts as the gauge group running through the orbit.
It is common to distinguish between the ‘diffeomorphism’ constraints, generating 3-diffeomorphisms
along the spatial slice, and the ‘Hamiltonian’ ones, generating deformations and displacements of
the slice (thus implementing the evolution in timelike direction).

Instead of trying to directly quantize the canonical theory in terms of the ADM variables (an
approach known as geometrodynamics [103, 104] ), Loop Quantum Gravity (LQG, [4, 92]) has been
able to push the quantization program further through the use of the Ashtekar variables [3, 12],
which provide a reformulation in a language closer to Yang-Mills theory (provided additional
‘Gauss’ constraints are imposed to handle the corresponding gauge invariance, see section 8 for
more details).

The Ashtekar-Lewandowski Hilbert Space

The Hilbert space used in LQG is built around the Ashtekar-Lewandowski vacuum [6, 19, 8],
which is an eigenstate of the spatial geometry: heuristically, the spatial slice it describes has a
degenerate 3-geometry (ie. vanishing volume) and a totally indeterminate extrinsic curvature. The
quantum states are then obtained by adding discrete quantum excitations on top of this vacuum:
namely, quanta of geometry supported on of one-dimensional ‘edges’, so that a typical state is
supported on a finite collection of edges (aka. a graph). This leads to a discrete spectrum for the
geometrical operators measuring areas or volumes along the spatial slice [78, 7], in accordance to
the physical intuition that, at Planck scale, space should no longer be smooth.

Yet, this nearly complete degeneracy of the spatial geometry, and the maximal uncertainties
attached to most components of its conjugate variable (the extrinsic curvature) in any state of the
Ashtekar-Lewandowski Hilbert space, make the study of the semi-classical regime problematic (see
[01, 36] for a discussion of this problem, together with proposals to circumvent it). We would
like to associate to any point in the classical phase space a corresponding quantum state, suitably
peaked around that point, in both configuration and momentum variables [90]. The trouble is that
an intrinsic asymmetry has been introduced in the role played by the positions versus momenta,
as the vacuum was chosen as an eigenstate of the spatial geometry [11, 23, 33]: no matter how
many discrete excitations are piled up on top of this vacuum, it will never be sufficient to mask
this initial bias.

Similar issues arise when trying to rigorously derive symmetry reduced models [16, 30, 18] out
of the full theory: an important goal here would be to obtain quantum states in the full state space
that would be almost symmetric both in configuration and momentum variables, and that we could
identify with the states of the reduced theory. Setting up such quasi-symmetric states would require
techniques akin to the construction of quasi-classical ones [27].

Note that the situation here differs crucially from the Fock representation used when doing
quantum field theory on a flat Minkowski background: while the Fock space also describe discrete
excitations on top of a vacuum state, its vacuum is a coherent state with respect to a certain set
of canonically conjugate variables (as provided by mode decomposition of the fields), so it does
not favor half of the variables to the detriment of the others. This is however not an option for
LQG, because the Ashtekar-Lewandowski vacuum is the only diffeomorphism invariant state at our
disposal [55]: using a genuinely non-diffeomorphism-invariant state as vacuum would (in much
the same way as just argued) lead to a quantum theory breaking diffeomorphism invariance, thus



ruining its background independence, which is a core design principle of the LQG approach [75, 77].

Solving the Theory

Finally, one should also consider the dynamics. Following Dirac prescription [22], the constraints
of the classical theory should be promoted to operators on the so far purely kinematical Hilbert
space: the quantum states that annihilate them are the physically admissible ones. The discrete-
ness of the spatial geometry in the Ashtekar-Lewandowski state space allows for the transparent
resolution of those constraints which act along the the spatial slice (ie. the Gauss and diffeomor-
phism ones). Although the solutions of the diffeomorphism constraints do not directly belong to the
Ashtekar-Lewandowski Hilbert space (except for the vacuum itself), but rather to its algebraic dual
[37], the Hilbert space they span can be conveniently described in terms of embeddingless graphs
(ie. graphs whose actual location within the spatial slice is left unspecified).

On the other hand, the Hamiltonian constraints mix non-trivially the position and momentum
variables, making them hard to handle on the Ashtekar-Lewandowski Hilbert space: quantum states
that were initially graph-supported are expected to spread when evolving the spatial slice. The space
of solutions has therefore to be reconstructed using sophisticated techniques [91, 36] and is not yet
fully understood. Moreover, this contributes to the limited usefulness of truncated semi-classical
states, ie. states that would be semi-classical only with respect to selected components of the spatial
geometry and extrinsic curvature: such states would span a subspace transversal to the Hamiltonian
flow (due to the so-called ‘graph-changing’ property of the Hamiltonian constraint operator [88])
and would thus immediately lose their semi-classicality under time-directed evolution.

Outline

The projective approach to quantum field theory pointed out above was originally proposed in the
context of linear configuration spaces [48, 66, 68], and could thus be applied to the quantification
of general relativity rewritten using real-valued connections (a formulation known as teleparallel
gravity, see [67, 69]). In the present work, we will develop this projective formalism at a fairly
general level, laying the stage for a similar treatment of theories of connections on arbitrary gauge
groups: this includes general relativity in the Ashtekar formulation, but could have applications
to other gauge theories as well. We will illustrate on simple toy-models how this line of research
could incorporate the dynamics and contribute to the study of the semi-classical limit.

Projective Limits of State Spaces

We will start by a detailed exposition of projective limits of phase spaces [89] (section 2), that
build the natural classical counterpart of projective quantum state spaces (section 35). This will give
us the opportunity to discuss the physical motivations for this approach. Regarding the quantization
of classical projective structures into quantum ones, we will extend previous results by Okotow [68]
to configuration spaces given by simply-connected Lie groups, and to holomorphic quantization of
complex phase spaces (section 6).



Specific difficulties arise in this context when trying to implement the dynamics (aka. to impose
the constraints, as explained above). In section 3, we will take advantage of having at our disposal
a classical precursor of the formalism to analyze this question without having to deal at the same
time with the inherent subtleties of the quantum dynamics. We will outline a suitable strategy,
with the aim of doing justice both to the deep physical meaning of the issues at hand and to their
practical significance for computations.

To support the claim that this formalism could help designing a quantum state space holding
the states we need, we will also, in subsection 5.2, inspect in detail how quantum projective state
spaces relate to some standard constructions (namely, inductive limits and infinite tensor products
of Hilbert spaces).

Projective Structure for the Holonomy-Flux Algebra

As mentioned, the description, within this projective framework, of a theory of Abelian con-
nections has been developed by Okotow in [68, section 5] and [69], an important insight being
to use building blocks’ labeled by combinations of edges and surfaces (instead of edges only as
in the case of the Ashtekar-Lewandowski Hilbert space). We will generalize this construction to
an arbitrary gauge group G (in particular, G is neither assumed to be Abelian nor compact). This
involves refining the definition of the label set, as well as deriving explicit formulas to relate the
‘small’ Hilbert spaces attached to different labels (section 10 and subsection 12.1).

If the gauge group happens to be compact, we have at our disposal the well-established Ashtekar-
Lewandowski Hilbert space. We will show that the quantum state space constructed using projective
techniques can be thought as a natural extension of the space of density matrices over the Ashtekar-
Lewandowski Hilbert space (subsection 12.2), while achieving a balanced treatment of configuration
and momentum variables, as is manifest from the classical precursors of both formalisms (projective
limits of phase spaces vs. configuration spaces).

However, for the possibilities offered by this approach to be fully exploited, one should be able to
solve the Gauss and diffeomorphism constraints within the projective framework, before eventually
turning to the Hamiltonian ones (see above). The difficulty is that the techniques developed for
the standard LQG Hilbert space [8] cannot be directly transposed, as they rely strongly on having
states characterized by discrete excitations of the spatial geometry. We will, in sections 13 and 20,
sketch paths to explore this question.

Applications and Toy-Models
In the last part, we will review some work in progress built upon the formalism set up so far.

In view of handling the dynamics of LQG, we will test in two simple toy-models the strategy to
implement constraints in the projective framework, that was proposed in section 3. The first one
(section 15) is a very basic linear model, meant as an illustration of the general procedure, and
we will only discuss it at the classical level. In the second one (section 16), we will reformulate
the Schrodinger equation, treated as a classical field theory, within this projective framework, and
proceed to its (non-relativistic) second quantization. We will then be able to reproduce the physical
content of the usual Fock quantization.

Finally, we will turn to the question of identifying semi-classical states within the state space set
up in the previous part. As we will see (section 18), treating configuration and momentum variables
on equal footing, while a prerequisite for the construction of such states, is not yet sufficient:
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further obstructions lies in the algebra of observables itself (aka. independently of our choice of
representation for this algebra). More precisely, these difficulties are tied to the fact that we are
dealing with a continuum of observables. This motivates the development presented in section 19,
where we will outline how a dense but discrete subalgebra of observables could be extracted while
preserving the universality and diffeomorphism invariance of the quantum theory.

Some very standard material is recalled in the appendices, mostly to fix notations and conventions
in a form suitable for their use in the main text. Content that is non original, but presumably less
well-known, has also been included for the shake of completeness, in particular:

» generalities about projective systems and the projective approach to quantum field theory in
subsections 2.1 and 2.2, and subsection 5.1;

» generalities about the structures underlying Loop Quantum Gravity in section 9, subsections 10.1
and 12.2;

as well as smaller items marked as such throughout the text.

Chap. 1, chap. 2, chaps. 3 and 4, and chap. 5 have been distributed as separate articles [53] through
the arXiv preprint repository (arxiv.org), respectively with the identifiers 1411.3589, 1411.3590,
1411.3592 and 1411.3591.
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Notations and conventions

Unless otherwise stated, all manifolds are smooth manifolds [54], all maps between them are
smooth, and symplectic structures on them are smooth. All submanifolds are reqular (ie. embed-
ded) submanifolds [54, chapter 5]. Where infinite dimensional manifolds are considered, these are
Banach-modeled smooth manifolds, and symplectic structures on them are assumed to be strong
symplectic structures [20, chap. VII]

Throughout the text, = will denote a finite-dimensional, analytic manifold (without boundary), d
its dimension (d > 1), G a finite-dimensional Lie group and g its Lie algebra. Where additional
restrictions on £ or G are required, they are spelled out at the beginning of the affected sections
or subsections.

Index of Notations

Symbol Description Reference
(L, M, ) projective system of phase spaces def. 2.3
(L, X, @) classical factorizing system def. 211
(L, H, )® projective system of quantum state spaces def. 5.1
(L, M, T, 0)™ elementary reduction of (£, M*", JTK'N)l def. 3.7
(L, M, 7, 8™ regularized reduction of (£, M™, 7™)* def. 3.16
A smooth connection on P def. 9.2
A(%j{’q)) algebra of operators over gi’g{ﬁ,) def. 5.3
7{8%,@ C*-algebra of operators over gfzgm) prop. 5.4
a mapping of observables dual to o prop. 2.5
B closed unit ball in R? def. 9.7
B(M) bounded functions on M def. A2
B prequantum bundle def. B.2
A, B commutators of two operators A and B def. B3
¢ configuration space def. 215
Cy space of smooth connections on P def. 9.2
C*M, R) space of smooth real-valued functions on M def. 24
D dense domain of a possibly unbounded operator def. B.3
vV covariant derivative def. BA1
DV curvature 2-form def. B.1
0 symplectic reduction M — M™ def. A1
d dimension of chap. 3
div, X divergence of a vector field X with respect to the measure def. B12

7
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Symbol Description Reference
E smooth electric field def. 9.3
€ directed set indexing a reqularization scheme def. 3.16
é encharted edge in def. 9.6
e edge, ie. element of Legges def. 9.6
b(e) starting point of an edge e def. 9.6
f(e) ending point of an edge e def. 9.6
r(e) range of an edge e def. 9.6
e reversed edge of e prop. 10.1
ep.p] subedge of an edge e prop. 10.1
€, 0 €4 composition of edges prop. 10.2
F face in a profile prop. 10.9
F(A) set of faces in a profile A prop. 10.9
o e {”Q T l} positioning of an edge with respect to a surface prop. 10.6
F~(A) set of edges indifferent to a profile A prop. 10.9
F free-standing face (ie. without reference to a profile) prop. 10.21
F+ set of edges indifferent to a face F prop. 10.21
o dynamical observable arising from the kinematical observ-  def A2
able f
f prequantization of an observable f def. B.3
o position quantization of an observable f prop. B.14
G finite-dimensional Lie group chap. 3
g P-associated vector bundle with fiber g def 92
g Lie algebra of G chap. 3
y graph def. 10.3
H Hilbert space def. 5.1
(-1 g scalar product on H def. 5.1
Hoveo prequantum Hilbert space [,(M — B) def. B.3
FHoroio Hilbert space of the holomorphic representation prop. B.6
HE Hilbert space of the position representation with measure def. B3
u
H Ashtekar-Lewandowski Hilbert space prop. 12.7
hte.sm) holonomy along e as an observable on the continuum  prop. 9.9
phase space My
hte:m holonomy along e as an observable on the classical pro- prop. 10.27
jective state space S%LH_M’”)
h@) holonomy along e as an observable on the quantum pro- prop. 12.2

jective state space S(@zw,g{@)

13



Symbol Description Reference
h?f'\m) holonomy along e as an operator on J{, prop. 12.8
n label, ie. element of £ def. 2.3
) complex structure on M def. B5
L label set, ie. preordered, directed set def. 2.3
< order on £ def. 2.3
L label set for the holonomy-flux algebra def. 1012
Ledges set of all analytical edges def. 9.6
Lgkd)ges set of all C*-differentiable edges def. 123
Litaces set of all faces prop. 10.21
L graphs set of all analytical graphs def. 10.3
Lprofts set of all profiles def. 10.10
Leurfes set of all surfaces def. 9.7
L, label set for H,, prop. 124
Llew) simplified one-dimensional version of L prop. 18.10
£ extended label set, not necessarily directed def. 194
£l label set generated by a sequence (K,)yen def. 19.7
£ Lie derivative def. B.12
(X, Y] Lie brackets of two vector fields X and Y prop. 2.10
[ Lie brackets in g theorem 6.2
A profile def. 10.10
M, N symplectic manifolds def. 2.1
Moo (possibly infinite dimensional) phase space of the contin-  def. 2.6
uum theory
Mz continuum phase space for a theory of connections def. 93
M kinematical phase space def. A1
e constraint surface def. A1
M reduced phase space def. A1
M™ gauge fixing surface in M prop. A8
m smooth function G — R to be evaluated on holonomies prop. 99
7] smooth measure def. B12
Q. push-forward measure def. 6.1
Y pullback of the 1-form v def 21
v vector determined from the 1-form v via v = Qy(v, - def. 2.1
O1ioo.C observables compatibles with the holomorphic quantization prop. B.7
Opee.c observables compatibles with the position quantization prop. B.14
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Symbol Description Reference

Oy real-valued observables compatibles with the position prop. B.14
quantization

O(l“v[ ) space of observables over S&IMJ) def. 2.4

O 5¢0) space of observables over 87 4 prop. 5.5

P momentum space def. C1

P principal fiber bundle subsection 9.1

plssu) flux through S as an observable on the continuum phase prop. 9.9
space My

pru flux through F as an observable on the classical projective prop. 10.27

- state space S(LLHMM,H)

plF) flux through F as an observable on the quantum projective prop. 12.2

- state space S(Q%HFJ{’(D)

piu) flux through F as an operator on 3{, prop. 129

3 bundle projection def. B.1

Ty —sn projection M,y — M, in a projective system of phase def. 2.3
spaces

Pry—n factorizing map X, — Xy, x X, (n < 1) in a classical def. 211
factorizing system

Oy three-spaces map Xy, = Xyoy X Xy—y (n 0/ < 0")  def. 211
in a classical factorizing system

N factorizing map H, — Hy_, @ H, (n < ') in a projective  def. 5.1
system of quantum state spaces

P three-spaces map H,—., = Hyoy @ Hyp (n 0 <177 def. 5.1
in a projective system of quantum state spaces

P density matrix, aka. (self-adjoint) positive semi-definite,  def. 5.2
traceclass operator or trace 1

ol trace norm of p lemma 5.10

L finite-dimensional, analytic manifold (spatial slice) chap. 3

S(LL,M,]T) classical projective state space def. 2.3

8(%9{’4)) quantum projective state space def. 52

g(éz’%ﬁ,) projective limit of spaces of non-negative traceclass oper-  def. 5.2
ators

szjw) space of all narrow quantum states (in the linear context) def. 185

S encharted surface in & def. 9.7

S surface, ie. element of Lgyies def. 9.7

r(S) range of a surface S def. 9.7

s (local) cross-section of P def. 95

o map between classical or quantum projective state spaces prop. 25

T (M) tangent space of M at x def. 2.1
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Symbol Description Reference

T f tangential map (aka. derivative) of f at x def. 2.1

T(M) space of smooth vector fields on M prop. B.7

Trgc trace or partial trace over 3 def. 5.2

Ty partial trace in a projective system of quantum state spaces  def. 5.2

Ir evaluation of an operator in a projective quantum state def. 5.3

Ty weakly continuous representation of the Weyl algebra def. C3

T group of transformations def. 195

I action of a group element T & T on projective quantum def. 195
states and observables

U,, Uyoy action of a group on a projective (pre)-system of quantum def. 195
state spaces

Ve e2).0.p) space of projective families of covariance matrices (in the def. 18.6
linear context)

W, Wigner characteristic function of a density matrix p prop. C.7

W space of Wigner characteristic functions prop. C.6

W(l“e ).(0.P) space of projective families of characteristic functions def. 18.2

X¢ Hamiltonian vector field of f prop. 2.10

Xt Hamiltonian vector field of f projected on the configuration prop. B.14
space

= map P — C* arising from Q in the linear context def. C1

X(s, ) generator in a weakly continuous representation of the prop. C.4
Weyl algebra

Xn matching of edges to their conjugate faces in a label n € def. 1012
Lyr

Q¢ symplectic structure on M def. 2.1

{ Poisson brackets on M prop. 2.2

w volume form theorem 6.2

Cry—n factorizing map B,y_, x B, — B, (1 < 1) in a factorizing ~ def. 6.8
system of prequantum bundles

Copraiy—n three-spaces map By, x By, = By, (00 < n")  def 6.8

in a factorizing system of prequantum bundles
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Projective Limits of State Spaces

Chapter 1 — Classical Formalism

1. Introduction

The aim of this chapter is to describe the classical structures that, while underlying the con-
structions considered in previous works [48, 66, 68], have not been explicitly analyzed so far. The
discussion of the physical interpretation will follow closely the one that has been given in these
references.

The idea of the projective framework is to assemble a complicated classical theory (typically
a field theory) from a collection of easier, smaller, truncated classical theories, by appropriately
sewing them together. The motivation for this is twofold.

From the physical point of view, even when considering a theory with an infinite number of
degrees of freedom, any given realistic experiment will involve only a finite number of observables,
since measuring an infinite number of observables would require infinite time as well as infinite
memory space (in fact, this means that any experiment can only measure a finite number of boolean
observables, but we will not be that radical here, and will satisfy us with small truncated theories
that are described by finite dimensional phase spaces). We will therefore think of the small partial
theories as spanned by a finite number of elementary degrees of freedom. By "elementary", we
mean those that can be measured in one experimental step, hence the justification for the choice

of a collection of truncations should ultimately come from a careful analysis of what concrete
experiments actually measure.

From a technical point of view, the smaller and easier theories are meant to be a convenient
arena to develop systematic ways of calculating physical predictions. Indeed, a theoretical model
will then be optimally useful if it comes with finite algorithms prescribing how to compute, at a
given precision, the outcome of any arbitrary experiment.
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Note however that the intuitive understanding just sketched has some weak points. One of them
is that, even if we are considering only finitely many observables, it might occur that the Poisson-
algebra they are generating cannot live on a finite dimensional symplectic manifold. Our viewpoint
here is that this problem should not be relevant for the kinematical observables (these are supposed
to build an easy algebra).

Another problem is related to the formulation of deterministic predictions while considering only
finitely many degrees of freedom out of a field theory. In section 3, we will therefore refine the
framework to take into account the dynamics. If the equations of motion can be solved separately
within each building block of the kinematical state space, it is straightforward to obtain their space
of solutions, aka. the dynamical state space (subsection 3.1). Yet, this typically does not hold (we
can rarely write the exact dynamics in closed form within a finite truncation of a field theory).
So, we will have to regularize these equations over the kinematical projective structure, leading us
to consider a sequence of finer and finer regularizations (subsection 3.2). The key idea will then
be to define each dynamical state as a family of successive approximations, converging to some
exact solution of the field equations. In this way, the dynamical state space will naturally acquire
a projective structure, with projections mapping spaces of solutions obtained for more accurate
approximations of the dynamics into the ones obtained for lesser approximations (such projections
are reminiscent of the coarse graining maps, which play a prominent role in covariant approaches
[591).

2. Projective limits of classical phase spaces

Having a collection of partial theories is not enough, we need to say how to connect them together
in a consistent way (ie. we do not want our physical predictions to depend on the particular partial
theory in which we computed them). To this intend we will, in subsection 2.1, set up projective limits
of classical phase spaces (aka. of symplectic manifolds), and relate them to the infinite dimensional
phase spaces of classical field theories (subsection 2.2). An important observation is that such
projective limits admit, at least locally, a preferred factorized description (prop. 2.10). Therefore,
we will look more closely at those projective systems where the factorization holds globally: not
only they are often more convenient, they also reflect the core properties of the structures we
are considering, so they are well-suited to get a first hold of complex questions. This will be in
particular comfortable when turning to the quantum formalism in chap. 2, but we will always try
to sketch some ideas on how to strengthen those of our results that make explicit use of such a
global factorization (see in particular section 7 on this point).

2.1 Projective systems of classical phase spaces

To understand how a projective system can be assembled from truncations of a classical theory,
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we first consider two partial theories M and N, where M is a more detailed description of the
physical system at hand, in the sense that all degrees of freedom that are retained by N are also
retained by M. The link between them has then two dual aspects. On the one side, we want to
associate, with any state in M, a state in N, by forgetting the details we presently do not need. On
the other side, we want to identify the observables that can be defined on N with a subalgebra of
the ones that can be defined on M.

Given a specific experiment, any partial theory big enough to describe that experiment (ie hosting
at least all the observables involved in it) should lead to the same predictions. In other words, the
two identifications mentioned above (downward identification of the states and upward identifica-
tion of the observables) should intertwine the evaluation of an observable on a state.

These considerations lead to the following formulation of how some degrees of freedom, spanning
a symplectic manifold N, can be seen as being extracted out of a bigger symplectic manifold M:
what we need is a projection 7 : M — N, and we will mount observables on N to observables
on M by taking their pullback. We impose a compatibility condition between the projection
and the symplectic structures of M and N to ensure that the Poisson bracket computed between
two observables in N is identified with the one computed between the corresponding observables
mounted in M.

Definition 2.1 A smooth, surjective map 7 : M — N between two smooth (possibly infinite
dimensional) symplectic manifolds M, Qy¢ and N, Qy is said to be compatible with the symplectic
structures iff:

Vx e M,Vv € T, y(N), v= T () (2.11)

where TJ/T(X)(N) is the topological dual of T, (N), T, is the differential of 7 at x, and v (resp. "v)
is the unique vector in T;(N) (resp. 7,(M)) such that v = Ox r(v, ) (resp. TV = Oy (T, -)).

Proposition 2.2 If 7 : M — N satisfies def. 21 and f,g : N — R are smooth maps on N, then
{f.g}yomr ={fom gom}y where {-, -} (resp. {-, -}, denotes the Poisson brackets on N (resp.
M).

Proof Eq. (2.1.1) is equivalent to:
Vx e M, Vu,v e T;(x)(N)' pv) = p(x).
Using the definition of the Poisson brackets, we therefore have:

¥x € M. {F.ghy 0 1) = gy (dfa ) = dlg o m), (dil o), ) = 17 079 0 7y ().
U

Next, the collection of partial theories, together with the projections between them, can be ar-
ranged into a structure of projective limit. Such a construction has been considered for example in
[89].

That the label set £ indexing the partial theories should be directed is manifest if we go back
to the interpretation of these small theories as the arenas to describe specific experiments: if we
want to describe an elaborate experimental protocol, combining two sub-experiments, that can be
described respectively in M, and M, we need a symplectic manifold M, containing the degrees
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Figure 2.1 - Three-spaces consistency for projective systems of phase spaces

n

of freedom in M, as well as the ones in M,, in order to model the full experiment. And the
three-spaces consistency condition (fig. 2.1) ensures that the connection between a bigger partial
theory M,» and a smaller one M, is unambiguous, namely that it coincides with the identification
we get if we perform the truncation in two successive steps, going first from M, to an intermediary
M,y and then from M, to M,,.

With this structure for the state space, the observables naturally build an inductive limit, which is
consistent with the discussion above regarding the mounting of observables and indeed corresponds
to the standard construction when looking at functions on a projective limit.

Definition 2.3 A projective system of phase spaces is a triple (L, (M”)neL , (JT,]/H,V)[HI]/) where:

1. £ is a preordered, directed set (we denote the pre-order, ie. a reflexive and transitive binary
relation, by <, its inverse by >=);

2 (M) ts a family of symplectic manifolds indexed by £;

nel

3. (JTW/H,,),KU, is a family of surjective maps ., : My — M, indexed by {n,n" € L |n<xn'}
such that m,_,, is compatible with the symplectic structures, m,_,, = idy, and Vn,n',n" €
L,n=xn 0" = mppy=Ty_p0 Ty .

Whenever possible, we will use the shortened notation (£, M, JT)l instead of (L, (Mﬂ)nez ) (]T,]/_>n)n<n/).

The projective limit of (£, M, )*, denoted by S}L,Mﬂ), is the space:

i .
Sieatn = 1 Wnlyee € |_| M, [ V<0, myonlxy) = x,
nel

On S(lL’M’ﬂ) we put the initial topology with respect to the family of projections (]Tn)n€L where:

. el
Ty - S(L,M,n) - M,

(Xip)wee = Xy = [(Xn/)n/eﬁ]n.

Definition 2.4 An observable over a projective limit of phase spaces S#L,Mﬂ) is an equivalence class

in U C*(M,, R) for the equivalence relation defined by:

nel

Vn,n' € L, ¥f, € C®M,, R), Vi, € C*(M,, R),
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/

fp~ 1ty & (3’7// eLingn'.n<sn" & fhomp., =10 7T/1”—>r1/) (24.7)

The space of observables over S#L’M'ﬁ) will be denoted by O(lL’Mﬂ). The definition of the equiv-
alence relation ensures that the evaluation f(x) = f,(x,) of an element of f = [f,]  of O(lL,M.n) on a
point x = (x,)yec N S(lL,M,Jr) is well-defined. From prop. 22 the Poisson bracket of two elements

of O(lz,m,n) is well-defined as an element of o(lL,M,er (Vn' = n. 1, o 7y, € [f,]_, hence, £ being

directed, we can find a common label to compute the Poisson bracket).
2.2 Maps between classical state spaces

A question that occurs frequently when working with the structure introduced above, is to ask
what happens if we restrict ourselves to a directed subset £’ of the label set £. It is immediate that

in the projective structure based on £ defines a state (Xn) in the one based on

a state (x;) hes

nel
L', simply by throwing away all the x, for n € £\ £’. But this map from S%L’M’ﬂ) into S(la’ﬂvt,n) will

in general neither be injective nor surjective.

The injectivity might fail because the structure based on L’ retains less observables than the
structure based on £, and states that can, thanks to these additional observables, be distinguished
in the latter may be indistinguishable in the former. That also the surjectivity might fails is more

subtle: it can occur if £ has a label i that is above an infinite number of labels in £’. Then, given

a state (x,) _, in S%L,’M,m, it may indeed not be possible to find an x, that will project correctly on

nel’
all the x,; for ' € £ with / < 1.

In the particular case of £’ being cofinal in £, we can however completely identify the two
projective structure, since we can reconstruct any thrown away x, for n € £\ £’ by projecting

down from some ' € £’ above 1.

Proposition 2.5 Let (£, M, )" be a projective system of phase spaces and let £’ be a directed
subset of £. We define the map:

.l l
0 S(L,M,n) - ‘Sw,M,n)

Xn) e ™ \Xn) pee
Then, we have a map a: O(luM,n) — O(LL’M,]T) such that:
VX € 8l aen), Y € Olerne, all)(x) = (o)), (25.1)
and:

Vf, g € Ofpae {all), alg)} = a({f, g} ). (252)

If £" is cofinal in £, we have in addition that ¢ and « are bijective maps.
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Proof It's an immediate check that ¢ is indeed valued in S(lL’,M,n)'
Then, for f =1[f,]_ . € O(lL/’M’]T), we define:
a(f) =[fy]_ ; for f, a representative of f.

We have:
vn.n' e L', v, e C*M,, R),Vf, € C*My, R), f, ~c fy = [y~ 1y,

hence a is well-defined as a map O#L,’Mﬂ) — O(lL,M,ﬂ).
Eq. (25.1) and eq. (25.2) hold because we can choose any representative we want to carry out
the evaluation or to compute the Poisson brackets.

We now suppose that £ is cofinal. Then, we can define:

~. al
0: S(L/,M,ﬂ) (£, V)

(X’l)neL/ = X”) nel

1

where for n € £, X, = my_,x,, with n € L and ' %= n. If n” is an other element of £" such that

n" = n, there exists n” € L' [0 < n” & n" < n” (L' is directed by hypothesis), hence:
]'['n/_”7 Xn/ = ]T’7/_’” JTU”/—W/ X”W = an///_>’7 Xn/// = jTr]//_>’7 ]Tn///_>n// X”W = ]'['n//_”7 Xn// .
If n € L', we can choose n = 17, so that X, = x,, therefore 0 0 0 = idy, . On the other hand, if

L/ M)
there exists an element (Y”)neﬁ € S&M,ﬂ), such that V' € L', x; = Xy, then X, = 7wy, Xy = X,

therefore 0 o 0 = idg .
(L£,M,7)

Then, for f =[f,]_ ; € Ofz ¢, We define:
a(f) =1f, o 77/7’%0L,L/'
for f, a representative of f and ' € £’ such that n’ %= n. If n” is an other element of £" such that
n" = n, there exists n” € L' [n' x " & n" < n" (L is directed by hypothesis), hence:
(f’] O ]Tn/*”]) (@] jT’ﬂ”"n’ = f’] O ]TUW‘”] = (f’] O ]Tﬂ”‘)’]) O ]TUW‘)””’
so that ](,7 O Jly—p ~yg ffl O Jlyr—p .

If f, is an other representative of f, there exists y € £ /u=n & p = k such thatf, o m,,, =

YO

fo © 7, Since L' is cofinal in £, we can choose 1/ € £ such that ¢/ %= p, and we have:

fn O Jyy—p = fn O Jly—p © Ty—y = fK O Ty © Ty = fK O Ty,

hence a is well-defined as a map O%L,Mﬂ) — O%L/,Mﬂ).

If f, is a representative of f with n € L', we can choose ' = n, so that a(f) = [f3]_ . therefore

aoa=idy . On the other hand, we have for all n € £ and all ¥ € £ with 7" = n,
(LM, )

[fy o tyonl. o =[] . therefore a o a = Ldo(lz,m,m' O

We can now rewrite in terms of the concepts we have introduced the program that has been
followed in [48, 66, 68]. When considering a field theory constructed on an infinite dimensional
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manifold M., we will first, relying on our understanding of how physical effects are measured in
practice, undertake to identify what the elementary observables should be, and try to construct a
corresponding collection of interconnected partial theories, where each partial theory M, will be
associated to a finite subset of elementary observables (those that can be defined on M,, ie. that

only depend on the degrees of freedom retained by M,). Since we have naturally a projection from

M, into each partial theory M,, we also immediately have a map from My, into S%L,M‘ )

If the set of all elementary observables separate the points of M, then this map will be injective.
Moreover, the projective limit of phase spaces will provide an extension of M, in the sense that

M, can be identified with a dense subspace of S%L’Mﬂ).

Note that choosing a collection of elementary observables is not the same as choosing preferred
coordinates on M,,, for the construction here does not require the elementary observables to be
independent, they can form an overdetermined system. This can make physically a crucial difference:
to illustrate this point, one can think at the set of elementary observables as analogous to the set of
all the linear forms on a vector space, while preferred coordinates would correspond to the choice
of a basis (compare the two examples given in chap. 5 of projective structures implemented along
these lines: the model in section 15 relies on a choice of basis, while the one in section 16 does
not). The set of all linear forms encodes nothing less but nothing more than the linear structure of
the vector space, and this structure might indeed have a deep physical relevance, while we probably
want to avoid relying on a preferred basis, in order not to break the invariance under isomorphisms.

Definition 2.6 We say that a (possibly infinite dimensional) symplectic manifold M, is rendered

by a projective system of phase spaces (£, M, )" if for all n € £ there exists an application
Toon - Moo — M, such that:

1. Vn € £, 7, is surjective and compatible with the symplectic structures;
2. vn % f]l & L, 7T00~>l7 = 7T,7/*>,7 o] 7T00~>l7/-

Hence, we have a projective system of phase spaces (£ U {oco}, M, JT)l, where we extend the
preorder of £ to £ LI {oo} by requiring ¥n € £, oo > n. From prop. 25, we have maps o :

S(lw{oo},mﬂ) — S&Mm and o' S(L{oo},M,JT) — S%Lu{oo},M,ﬁ) (since {oo} is cofinal in £ U {o0}), so

by identifying S(l{oo},Mﬂ) with M., we define:

Similarly, we have a~_ : O(LL’M,H) — O(LLU{OQ}JV[,JT) and o O(lﬁu{oo},M,JT) — O(l{oo},M’ﬂ), so by

tdentifying O(i{oo}%ﬂ) with C*°(M,, R), we define:

o =ay o a O(lL,M,JT) — M, R).

Proposition 2.7 With the notations of def. 2.6, g, (M.,) is dense in S%L‘M,ﬂ).

Proof Let (X’?)neL S S%L’Mﬂ). For n € £, we choose y" € M, such that 7_,,(y") = x, (this is

possible, since 7., is surjective). We have:
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vr] € 'Cl vﬂ/ =1, I:Ul (9’”,)]” = Tloo—n (gn/) = Jly—p © Mooy (gn/) = Jly—p (Xn/) = Xj.

Hence, the net (Ul (g”/) )U/GL converges in S%L,M’ﬁ) to (X”)neL , therefore (X,7)”€L €lmo . 0O

We close this subsection by mentioning the construction of a different kind of maps between
projective systems of phase spaces, that will be of interest when dealing with concrete examples.
Indeed, we will often encounter the situation of having a projective system that has been originally
constructed over a very large and complicated label set (in particular this can be a side-effect of
the way we will handle constraints, as exhibited in section 3), but whose structure happens to
be considerably simpler, because we can group the labels into classes partitioning £, in such a
way that the projective consistency conditions force a symplectomorphic identification between the
manifolds M, for all n belonging to the same class. Then, we probably want to define a label set
L* by quotienting £ according to those classes, and to identify the original projective system on £
with an easier one built on £°.

For example, suppose that the elements of £ are pairs (g, 8), ordered in the product order
(aka. (£,0) < (€/,0) & ex ¢

/

& 6 < 0). Now, if it turns out that M. g only depends on ¢

and 7 g)-(e,6) only on € and €', then the projective condition on the states will actually impose
X(e,8,) = X(e,6,)- Thus this projective limit is in reality just a projective limit on the set of all €.

This is a tool that we will use repeatedly in chap. 5 (and whose equivalent at the quantum level
will be instrumental in the result of theorem 12.11).

Proposition 2.8 Let £ and £° be directed preordered sets and assume that we are given:

1. a surjective map ¢ : £L — L* such that Vn < € £, €(n) < 4(n');
2. a projective system of phase spaces (£°, M*, 7°)* on £°;

3. and for all n € £, a symplectic manifold M, together with a symplectomorphism p, : M, —
Mo -
Then, defining for all n < n" € £ the projection:
Ty —n = U;1 O TTo)—e(n) © Har s (281)

(L, M, )" is a projective system of phase spaces and the map:
Y 1
K . S(L',M',]T') — S(L,M,JT)
(x' ) o (0 (e : (2.8.2)
e Hy \Xew | ),
ts bijective. Moreover, there exists a bijective map A : O}L,M,ﬂ) — O(lz-,M-,ﬁ-) such that:

VX" € 8teupenep, VT € Olp s, AF)x) = F(k(x7)). (2.83)

Proof First, we check that k is well-defined. Let (X,]) e S(l “ Mo ) and let n < € £. We

U.EL.

have ¢(n) < (/) and from eq. (2.81):
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T (1" (Xen) ) = 10" © Toysew) (Koiy) = 1y (Ko )

hence (1" (X)), e € Stcavin

nel

To prove that k is bijective, we define:

) l !
K - S(L’M,ﬂ) — S(L',M',JT‘)

(X’7 ) neLl = (X'.Y' ) n*eLe

where Vi € £°, x7. = 1, (x,) for any n such that (n) = n* (making use of the surjectivity of ),
x;. does not depend on the choice of n € 0= (n*); indeed, if £(n) = (1), there exists " € £ such
that n” = n, n’, hence:

Hy (Xa) = g © Ty (Xer) = o) © Hir ()

= o) © Ho’ (Xn”) = Hy © Jy—y (Xn”) = Hy (Xn’) -

And by construction of k, we have k o k = idg

as well as K o Kk = tdg!
(£.M,7)

(co Mo a0

Now, we define A by:
/\ X OiLL,M,JT) — O%L-'Mcrﬂo)
[fol. [fn © U;1]N
A is well-defined, for we have:

Vf], f]/ - L, f,7 ~ fn/ = (Elf]// = [7/: f]/fq O Jly—p = f/y/ o 7T17”—>/7/)
—1 . —1 ')
=1 (Hn// ? r]/r n / fl’] o luq o ﬂé(q//)ag(q) = fl7/ o :uq/ o ﬂﬁ(n’/)ﬁg(q/))

= (fyou ~Tfyou').
And by construction of A, eq. (2.8.3) is fulfilled.

Finally, to prove that A is bijective, we construct a map A by:

A Olperen = Olenn
[’(/;‘]N = [foll
where f, is defined for any n such that ¢(n) = n* by f, = 1% o p,. To check that A is well-

defined, let n,n" € £ such that there exist f,, f;,
2(n) = 0(n') = n°). Then, there exists n°” such that:

€ [f,;.]N (note that this also covers the case

')
fg(”) @) jT’.Y.//Hg(U) = fg(n/) @) ]T;.//*)g(n/),

o//

and, since ¢ is surjective, there exists n” € £ such that (") = n””. Next, using that £ is a directed

a

set, there exists n” € £ with " == n, ', n”. Therefore, we have:

f;(n) O ﬂé(n///>4)€(q) = fg(n/) O ﬂé(nm)g’g(ﬂ/)
fg.(n) ©) Ury O 77—,7///4),7 = fg(n/) O ’Un/ O jT’7W‘>f7/
ff.(r]) o /’IU ~ fg’(n/) O '[Jn/_
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And by construction of A we have X o A = 'Ldo(iLM as well as 4 o A = id O

Olce nono)
Proposition 2.9 The previous result still holds if, instead of requiring ¢ to be surjective, we simply
require (L) to be a cofinal part of £°.

Proof This follows by combining prop. 2.8 with prop. 25. 0
2.3 Factorizing systems

For technical convenience, we will often specialize to a particular class of projective systems
of phase phases, namely the situation where for any n < ', the symplectic manifold M, can be
identified with the Cartesian product of M, with a symplectic manifold M, _,, (in other words the

discarded degrees of freedom can be collected into a phase space M, _,,).

This restriction is in fact not as radical as one could first think, for given a projection 7 : M — N
as in def. 2.1, M can always be locally written as a Cartesian product of symplectic manifolds in
such a way that s correspond to the projection map on one factor of the product. Moreover, there
is only one (local) decomposition having this property.

At the level of observables, writing M as a Cartesian product N x N implies that the algebra
O’ of all observables over M is generated by O U OF, with O the subalgebra of O’ defined by the
observables over N and O by the ones over N+, And asking the symplectic structure on M to
agree with the symplectic structure on the Cartesian product moreover requires that any observable
in O Poisson-commutes with any observable in OF. This is the reason why, at least locally, the

symplectic structure on M prescribes how to choose a subalgebra Vi completing O: O has to be
the set of all observables having vanishing Poisson brackets with any observable in O.

To understand better why this factorization of M will not always hold globally, we can examine
how the proof of prop. 2.10 below is done: what we have is a foliation of M, of which each leaf is
locally diffeomorphic to N via . It is precisely when this local diffeomorphic identification fails to
be a global one, that we will not get a global factorization. This can happen at two different levels.
First, the restriction of 7 to a given leaf is not necessarily a covering map, although it is locally
diffeomorphic: there can be ‘completeness’ issues, as exemplified by the ad hoc situation where
M = {(x1,xz;p1,p2) | Ixo| < exp(x1)} C T*R? and N = {(X1,'p1)} C T*(R). Second, a covering
map need not be bijective, unless N is simply-connected: for example, if M is a symplectomorphic
multiple cover of N, it provides a projection that is compatible with the symplectic structures in the
sense of def. 2.1, but there is no corresponding factorization.

Unless otherwise stated, all manifolds considered in the present subsection will be finite dimen-
stonal manifolds.

Proposition 2.10 Let M, N be finite dimensional symplectic manifolds and suppose that there
exists 71 : M — N satisfying def. 2.1.

Then, for x € M, there exist an open neighborhood U of x in M, an open neighborhood V of 7 (x)
in N, a manifold W and a symplectic structure Qw on W such that there exists a diffeomorphism
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¢V x W — Usatisfying Vy € V,Yw € W, mo ®(y, w) = y and ®*Qye = Qn x Q.

Moreover, ® is unique in the following sense: if U' is an open subset of U, V' is a connected
open subspace of V, W' is a symplectic manifold and ¢’ : V' x W — U’ is a symplectomorphism
such thatVy € V',Vz € W', mod'(y, z) = y, then there exists a symplectomorphism ¢y : W — W”
(with W” an open subset of W) such that Yy € V',Vz € W', &'(y, z) = P(y, ¢(2)).

Proof Existence. We call D = dim(M), d = dim(N) and n = D — d. For all x € M, we define:
W, ={w e T,(M) | Tor(w) =0} and V, = {v € T,(M) | Yw € W,, Qu(v, w) = 0}.

We have Vv € T2 (N), Vw € W,, Qy (v, w) = vo T,or(w) = 0, hence Vv € T7(N), 7'v € V..

For u € T,(M), we define v, = Qx (Ti7(u), -). Using eq. (2.1.1), we get Vu € T,(M), T (7°v,)

= v, = I,(u). So we can write v € T\(M) as u = (u — 7'v,) + 7TV, with u — v, € W, and

T, € V.

Hence, we have W, + V, = T,(M), and therefore W, & V, = T,(M), since dim(V,) = dim(M) —
dim(W,). Moreover, since eq. (2.1.1) implies that 7,7 is surjective, we have dim(W,) = D — d and
dim(V,) =D — (D —d) =d.

Now we choose x € M and we consider a coordinate patch V4 on N containing s(x), with
coordinates yj, . . ., yq. We define:

Xix = 7°dY; 2y = d(y; o 7),, for all x € Uy = (V).

Xi, ... X, are vector fields on Uy such that Vx" € Uy, (X1 ., ..., Xgx) is a basis of V.. We calculate
the Lie brackets between two of these vector fields:

[X. X)) = |dyiom dyjor| = d ({yiomy;on}) = d ({yiyi}or) = 7'd ({y0.y;})

where the second equality expresses the Lie brackets of two Hamiltonian vector fields and the third

equality comes from prop. 2.2.

Therefore, we have Vx' € U, [Xi, Xj]x, € V,. From Frobenius theorem [54, theorem 14.5], there

exist an open neighborhood U, of x in U4 and coordinates xi, . . ., Xdo Xd i1y -+, xp over U such that
VX' €Uy, Oy, - 0y,x is a basis of V.. We define:

O U —N xR

X' 7(x'), (Xga (X)), ..., xp(x'))

We can now show that T,® : IL(M) — Tr(N) x R" is bijective. Indeed, let v & T, (M)
such that TXEIVD(U) = 0. Then, in particular, we have T,7(u) = 0, so v € W,. On the other
hand, we have dx; (u) =0 for k =d+1,..., D, so u is a linear combination of d, , ..., Oy, 0
hence v € V,. From W, & V, = T,(M), u = 0. Therefore TXEIVD is injective, thus bijective, for
dim (7,(M)) = dim (TH(X)(N) X ]R”).

From the inverse function theorem [54, theorem 5.11], there exists an open neighborhood Us of

U — EIVD<U3) is a diffeomorphism. Hence there exist an open connected
Us

neighborhood 'V of 7(x) in N, an open subset W of R", an open neighborhood U of x in U3 and
a diffeomorphism ® : V x W — U such that Vy € V,Vz € W, CTD(d)(y,z)) = (y,z). In particular,

x in U, such that P
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VyeV,VzeW, tod(y,z)=y.

At every point X € M and for every vector v,w € To-1(0)(V X W), To1®P(v,0) € Vi and
To-10)®(0, w) € Wy In particular, we have Qv (Tcpq(xf)q)(v,O), To-1)P(0, W)) =0.

We now consider z € W, w, w" € T,(W) and we define for all y € V,

Q%I/\?,Z(W' W/) = QM,d?(y,z)(T(g,z)q)(O, W), T(g,Z)CD(O, W/))

Let Y be a vector field on 'V, let Z, 7/ be vector fields on W such that Z =w, Z/ = w'. We define the
vector fields ¥ = &, (?,o), Z=0, (0,2) and 7' = o, (o,?) on M. From [V, Z] =[Y, 2] = 0
and dQy = 0, we have:

Y (O (2.2) =Z (O (Y. Z2) = Z' Qe (Y. 2)) + Qe ([Z2, 2], Y)
since Yy € Vy and 2y, Z,,,[Z, Z'], € Wy, we have Y (QM (Z,Z/)) = 0. Therefore the differential

of y — Q%’sz(w, w') is zero at every point y € V, and V being connected, Q%\,’Z(W, w') does not
depend on y. So, we define Oy, (w, w') = Q3 (w, w).

We now can check using eq. (2.1.1) and the definition of Qy that ®*Qy = Qn x Q. Therefore
Qyw is a symplectic structure on W and ¢ : V x W — U is a symplectomorphism.

Uniqueness. We consider symplectic manifolds V, W, and W', a connected open subset V' of V,
and an application : V' x W — W such that:
YV xW -V xW
y, 2y, dly.2)
induces a symplectomorphism V' x W' — Y (V' x W’).
ForyeV,ze W,ve T,(V),we T,(W), we then have:

0= Qvaantyr (T W10, 0) T ¥(0,w)) = Dy ( Ty, O), Tiy (0, w)).

However, for ¥ to be a diffeomorphism, T, ,¢/(0, w) should run through Ty, (W) when w runs
through T,(W). Therefore, we should have T(y,Z)JJ(v,O) = 0. Hence, V' being connected, @(g,z)

cannot depend upon y. Accordingly, we define ¢(z) = Y(y, z), and LP|V/><W/—>W(V’><W/> being a

symplectomorphism requires that (,[/|W,H¢,<W/> should be a symplectomorphism.

Note. A more concise (albeit less instructive) proof of this result can be achieved by considering
the closed 2-form ¢ = Q¢ — 7" Qx and applying a standard result of symplectic geometry [84,
§ 5.24] telling us that the kernel of o is an involutive distribution, and that o defines a symplectic
form on the quotient. O

In order to build a structure describing a collection of interconnected partial theories, where
the relation between a more detailed partial theory M, and a less detailed one M, is given by
a factorization of M, as M, _,, x M,, we also need to reformulate the three-spaces consistency
condition that we had for a projective system (fig. 2.1) in terms of a factorization requirement. For
this, we ask for the symplectic manifold M, _,,, that holds the degrees of freedom discarded when
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Figure 2.2 — Three-spaces consistency for factorizing systems

going directly from M, to M,,, to decompose as the Cartesian product of M, _,, with M, _,,, where
M, —y holds the degrees of freedom discarded when going as a first step from M, to M, and

M, —, holds the ones discarded when going as a second step from M, to M, (fig. 2.2).

Having a factorizing system defined this way then provides us immediately with a projective
system as above. Reciprocally, if we give us a projective system of phase spaces in which any
projection ,_,, can be understood as projecting on a factor of a Cartesian product (that is, if the

result of prop. 2.10 happens to hold globally and not just locally) and if moreover all the M, are

connected (which sounds physically sensible when speaking of phases spaces), we can construct a
corresponding factorizing system of phase spaces.

Definition 2.11 A factorizing system is a quintuple:

(L’ (X”)neﬁ ' (X”/H”)nsn“ ((p”g”)rmn” (('0””%”/%”)0@/4/7”)

where:
1. £ is a preordered, directed set;

2. (Xn is a family of spaces indexed by £;

)r]EE

w

(X”/—)n)n-ﬂ]’ ts a family of spaces indexed by {n,n" € £ | n < '}, such that, for all n € £, X,

has only one element;

N

A ((pr,/ﬂn)ﬁn, ts a family of bijective maps ¢y, : Xy — Xy, x X, indexed by {n,n" € £ | n < n'}

such that ¢,_,, is trivial;

o1

((Pq//ﬁn/ﬁn)ﬁn,#n,, is a family of bijective maps @y : Xy = Xy x Xy, indexed by

{n.n',n" € Lln<sn<n"}, suchthat gy ., is trivial whenever n =n" or n =n", and:
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!

V' n" € Lin<n 0" (@poy—y X idx,) 0 @poy = (dx,_, X @yop) © oy (2111)

n—n

Whenever possible, we will use the shortened notation (£, X, ¢)” instead of (L, (Xn)qEL , (Xﬂ/ﬂ”)nw ,

(('0’7/*”)1740’ ' (('0’7”_)”/_’”)17@/#'7”) '

Definition 2.12 A factorizing system of phase spaces is a factorizing system (£, M, ¢)* where:
1. for all n € £, M, is a symplectic manifold, and for all n < " € £, M, is a symplectic

manifold, except if 1 = n in which case M, is a set with just one element;

2 foralln g n €L, ¢y, is a symplectomorphism, and for all n < " < n" € £, @y, is a
symplectomorphism.

Proposition 2.13 If (£, M, ¢)* fulfills def. 212 and if, for n < ' € £, we define:

Sy My X M, — M,

(4, X) = x and Ty, = Sy_p © Py (2131)

then (£, M, )" is a projective system of phase spaces.
Accordingly, we define the space of states by 8; ) = S}L,M’ﬂ) (def. 2.3) and the space of
observables by O(; 5 ) = O(lL’Mﬂ) (def. 2.4).

Proof We need to prove that Vn < n" € £, 7y, is a surjective map compatible with the symplectic
structures, that Vn € £, m,,, = idy,, and that Vn ' < n" € L, sy = 7y © Ty,

For n € £, we have m,,, = idy, (identifying M, and its trivial Cartesian product with a
one-element set), so in particular it is a surjective map compatible with the symplectic structures.

let n < € L. M,_, + @ (as a manifold), hence s,_,, is surjective, therefore m,_,, is a

surjective map.
Let (y,x) € My, x M, and let v € T;(M,). We have:

Yw, v € TygMyoy x M),

U O [7—(y,x)5/7/—>/7] (W, V) = U(V) = QM,,,X (Qr V) = QMH/H”XM”,(y,X) ((O,Q), (W, V)),
so that s7,_,,u = (0, v), hence [Ty qSy—n] (s5_,0) = v. Therefore s, is compatible with the sym-
plectic structures, and since ¢, _,, is a symplectomorphism, 7r,,_,, is compatible with the symplectic
structures.

Let n < ' < n” € L and define:

Sy —ng—n - MU”—)U/ X Mﬂ/—w X MH — MU
(z,y,x)—x

We have:

Sp'—n'—n © (ldM VENVIRS ‘Pn/%n) = Sy—n © Py—n O Syr—p

n'—n

and 517//_”7/_)17 o ((pn//_)n/_)n X LdMn) = 5/7//_”7'
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Hence, composing eq. (2.11.1) to the right with s, gives:
5,7//*”7 O (pn//*)l7 = 5’7/‘”7 O (PU/HU O 5’7//"’7/ O (PU”HU"

so that we have ., = 7y, 0 Ty . Il

Proposition 2.14 Let (£, M, 71)" be a projective system of phase spaces and suppose that:
1. for all n € £, M, is connected;

2 forall n < " € L, there exist a symplectic manifold M,,_,, and a symplectomorphism ¢, :
My — My, x M, such that 7y, = sy, © @y

Then, we can complete this input into a factorizing system (£, M, ¢)”.

Proof For n € £, we define M,_,, to be a space with one element and ¢,_,, to be the trivial

identification.

"< 0" € L. What we need to show is that there exists a symplectomorphism

Let n < n
Oy - My = My x My, such that eq. (2.11.1) is fulfilled. If n = 1" or n = 1", we can
choose @7y, to be the trivial identification, so we now consider the case n < " < n".

We define:
. -1 : =1
WY = @rr—n © ('0/7//_”7/ e} (Ldn”ﬂﬂ, X ('0,7/4),7) : M’?//"’Y/ X Mﬂ/ﬂﬂ X M’] — MW”HU X Mﬂ‘
W is a symplectomorphism and satisfies:

V(z,y, x) € My—y x My_y xM,, sy, 0o Yz y,x)=x.

Hence, applying the uniqueness part from the proof of prop. 210 (with V = V' = M,, W =
My, and W = M,y x My, using that M, is connected, as V' must be), there exists a
symplectomorphism ¢ = My x My, — My, such that W =y x idy, . Thus we define

—1
Pryrsiysn = P O

If we have a family of finite dimensional symplectic manifolds, where each M, modeling a partial
theory can be written as a cotangent bundle on a configuration space C,, then a factorizing system
built over the family (8,7)”6 . can automatically be lifted as a factorizing system over the family
(M)
such that each projection can be understood as arising from a factorization of the underlying
configuration spaces, and if additionally all the configuration spaces are connected, then not only

can the projective system of symplectic manifolds be put into a factorizing form (as follows from
prop. 2.14), but this factorizing form goes down to a factorizing system of the configuration spaces.

el Reciprocally, if we build a projective system of symplectic manifolds over this family,

It is important to note that, at the level of configuration spaces, a factorizing system contains
much more input than a projective system does. The situation here is different than what we
have at the level of phase spaces, where projective and factorizing systems can, let aside global
considerations, be matched unambiguously. The reason for this disparity is that the symplectic
structure on the phase spaces played a crucial role in the proof of prop. 2.10: when looking at a
projection between configuration spaces, that retains only a subset of the configuration variables,
we have no additional structure that would allows us to select a preferred complementary set of
discarded variables.
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Definition 2.15 A factorizing system of smooth manifolds is a factorizing system (£, €, @)™ (def. 2.11;
in particular eq. (211.1) holds) where:

1. for all n € £, €, is a smooth manifold, and for all n < n" € £, €y, is a smooth manifold,

except if n = n in which case C,_,, is a set with just one element;

2 forall n x ' € £, ¢y, is a diffeomorphism, and for all n < " < " € £, @yyy is a
diffeomorphism.

Proposition 2.16 If (£, @, ¢)™ fulfills def. 215 and if:

1. forall n € £ (resp. all n,n" € £ with n < n'), we define M, = T7%(C,) (resp. M,_,, =
T*(Cy—,)). equipped with the canonical symplectic structure on a cotangent bundle;

2 forall n,n" € £ with n < 1’ (resp. all n, 7", n" € £ with n < n" < n"), we naturally lift ¢, :
Cp — Cyony X € (resp. @y Copmy — Cpoy X Cpyp) to @ map @y - My — My, x M,
(resp. @pr—y—n : My = Myy x My_,,) between the cotangent bundles;

3 forall n € £, we define M, to be a set with one element, and for all n € £ (resp. all
nn,n" €L withn<n <n", suchthat n=n"orn =n") we define @, (resp. Py, to
be the trivial identification;

then (£, M, )" is a factorizing system of phase spaces.

Proof We need to prove that Vi < /', ¢y, is a symplectomorphism, that Vi < ' < 1", @y is
a symplectomorphism and that eq. (2.11.1) for the maps ¢ is lifted up to the corresponding equation
for the maps ¢.

For n € £, the symplectic structure on M, = T7(C,) is defined by:
Y(x, p) € M,, Yw, w' € T (M), Qni,pp (W, W) = W, (W) — Waee (WS, (216.1)

VER HOR

where we define for w € T (M,), w,.. € T(C,) to be the horizontal projection of w, and
Wee € 1.7(C,) to be the vertical part of w defined using some local coordinate system around x
(the map w — w,,, depends on this choice of local coordinates, however the anti-symmetrization in
eq. (2.16.1) ensures that the definition of Qy, (vp) is independent of this choice).

For n < n' € L, the map @, M, — M,_,, x M, is defined by:

V(X' p') € My, @ynlx' p') = ( (fn/—m © @y(X), p’ o [T%M,,(X/)(Pfiln] (-, O)) ,

—1
Si—n © Py—nX), p' o [T%qn(x’)‘Pn%n] 0, )) ) ,
where f,_, : Cyyy x € — €y and sy, - Gy x € — €, are the projection maps of the
Cartesian product. This map is bijective, because ¢, _,, and [T%/H,](x’)(P,?L,;] are.

Let (x, p) € My, (y, q) € My, and (X, p') = @y ((y, ), (x, p)). From the definition of
@y—n we have for all w & Ty ) (My):

([TX’,p/ %un](W))m = ([Tx/ frsn © @yonl Wiee), [T Sy © ‘Pn/—m](WHOR))-
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Now, we choose local coordinates around x in €, and around y in €,_,,, so we have local
coordinates around in (y, x) in C,_,, x €, that we can transport through (p;Ln as local coordinates
around x” = <p,;Ln(g, x) in €. Using these to define (). in Ti p) (M), Tiy.q)(My—y) and T pn(My),

we have for all w &€ Ty ,n(My):

VER

([Tep @yl W), = (Weew © [Tyuepylp] (1 0) e © [Ty L, (0, 1))
Therefore:

Yw, w' € T py (M), QMnunXMm((y,X),(q,p)) ([TX’,p/ @yl (W), [T pr angn](wl)) -

=W, © [TUrX(Pr?Ln] ([TX/ fr—n © Pyl Waon), O) +

/

+ W\/ER © I:TUXQO/;L,]] (O, [Tx/ 5,]/4)17 ©) (pr]/—H]](WHOR)) — (W <~ W/)
- WV/ER © [Tyx(,o,?l)n] © {TX/()OI]/—W]](WHOR) - (W & W/)

= QM”/,(X’,P/) (W, W/) .

So @y, is a symplectomorphism, and in the same way we prove that for all n < 0" < 1", @y—y—n
is a symplectomorphism.

Let n <’ <" € L, eq. (211.1) for the maps ¢ implies:

][[7//*”7/*)[7 O ('Dn//*)”/*)n O )[n//*”7 O (Pn//*”7 = fn//*)n/ O (Pn”‘)’]/’
5,7//*”7/*)[7 O @’7”‘”7"”7 O ][,7//*”7 @) ('0,7//*”7 = Iy-np O <pl7/*>l7 O 5’7//"’7/ O (Pn//*}n/,

&  Spp © @iy =Sy O @y O Syisy O Py,

(where foy oyt Crmy X Cpyy = Cpryp and sy Crsy X Gy — Gy, are the projection
maps of the Cartesian product), and, for all z, y,x € €,y x Gy, x Cp:

[T%J s (Zy)x (PI;’LW] (-.0) o [TZrU (Pfj%n%n] (-.0)= [Tsz’f (yx) (Pr?Ln/] (-.0),

n"—n"—n ' —n

|:T<Pni/jﬂn/ﬁq(z'y)'x (pf?;l‘)ﬂ:l ( o O) © [Tz,y (Pr;/14>/7/4>[7] (O, ’ ) = [Tzw,}lm(y.x) (,0,77//14),7/] (O, : ) (¢] [Tg,x ('0,77/1),7] ( : ,O) ,

& [Twn’/L”/ﬂ(zvy)x (pﬁ—m] 0. )= [Tz,sﬂ (y.x) cp,;ﬂ_,”,] 0, )0 [Ty,x @;Ln] 0, ),

n—n

therefore eq. (2.11.1) is fulfilled for the maps ¢. O

Proposition 2.17 Let (£, M, )" be a projective system of phase spaces and suppose that:
1. Vne L, M, = T7(C,) where €, is a smooth connected manifold;

2. Vn<n' € L, there exist a smooth manifold €, ,, and a diffeomorphism ¢, : €, — €, xC,
such that 7y, = Sy, © @yoy, where Sy, o T°(Cpoy x €)= T (Cyy) x T7(€,) —
T*(€,) is the projection on the second Cartesian factor and @y, : T° (€y) — T (€ x Cy)
is the cotangent Lift of ¢,
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Then, we can complete this input into a factorizing system (£, €, ¢)~.

Proof For n € £, we define C,_,, to be a space with one element and ¢,_,, to be the trivial
tdentification.

Let n < 0" < n” € L. What we need to show is that there exists a diffeomorphism ¢, :
Cpp — Cpy X Cpyo,y such that eq. (211.1) is fulfilled. If n = 0" or i = 1", we can choose

@y —y—n to be the trivial identification, so we now consider the case n < ' < "

Let x”, p” € T*(C,) and define:

4

(v' g X' p) = @pyx”. p"),

(U, g x,p) = @yon(x'. p'),

and (z,r; x*, p%) = @yyx”, p7).
Now, from s, = 7y, © 7y, we have x = x* and p = p®, hence:

/! /!
Sy—n © Pyon O Sy © Py (XT) = Spp 0 Gpy(XT),

and p" o [Tyweply] (0, ) o [Ty, L]0, ) = p" o [Tow oyl ] (0,4,
thus, we get:

t'r///*”f*},7 O LlJ = Sr///ﬁn,
and (0,0, -)=[T¥](©, -),

— | -1 : :
where W = (ide , X @yop] © @y © @po,, and tyyoy  Cpoy x Cyoy X € — € s the

projection on the third Cartesian factor.
Finally, since €, is connected, there exists a diffeomorphism @y, : Cpsy — Cpy x Cpyyy
such that W = @y, X ide, . O

3. Constraints and reqularization

When we try to incorporate the dynamics in the formalism described in the previous section, we
quickly realize that the intuitive picture we were relying on was quite oversimplified. For, although
it should be true that we only need a finite dimensional truncation of the kinematical theory to
hold the elementary kinematical observables associated to any given real experiment, in general we
cannot write the dynamics in a closed form within such a truncation.

We will work in the context of constrained classical theories reviewed in appendix A (initially
unconstrained ones can always be rewritten in this language [105, section 1.8]: we will briefly
illustrate in subsection 16.1 how this is done). As developed in the discussion preceding def. A.2,
we take the point of view that from each kinematical observable arises a corresponding dynamical
observable and, considering a family of functionally independent kinematical observables, it might
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be possible to write functional relations connecting the associated dynamical observables: here
lies the predictive contents of the theory. However, such a functional relation can involve an
infinite number of observables, and thus get silently dropped, if we never look at more than a finite
number of observables at a time. When looking at a typical field theory, the interesting content of
the dynamics lies precisely in those functional relations that can only be written over an infinite
number of observables, and do not emerge from simpler relations within finite set of observables
(a partial differential equation is mostly useless if we only dispose of a discrete, finite set of initial
values).

On the other hand, if the the theory is to have any physically relevant predictivity, namely
if it is to be usable to formulate predictions for the output of some real experiments, it should
at least be possible to approximate the dynamics with relations over finite sets of elementary
dynamical observables (we do nothing else when elaborating numerical techniques to deal with
partial differential equations). In other words, although we may not be able to state exact predictions
for any specific realistic experiment, we can restore predictivity in a weaker sense, by describing
how to refine an experiment and the associated approximate predictions to make them better and
better.

This concept of convergence is physically useful, notwithstanding the fact that we will not perform
the infinite chain of experiments (that would again be a case of measuring an infinite number of
observables, and we already mentioned that this is excluded in practice), because we can convert
it into a notion of plausibility, by stating how to design an experimental protocol such that it will
be highly unlikely that the output lies outside some confidence domain.

The object of this section is to formulate this raw idea more precisely, in order to develop a
procedure to solve constraints in a projective system of phase spaces.

3.1 Elementary reductions

We begin by studying in detail under which conditions the dynamics actually can be formulated
straightforwardly within a projective system of phase spaces, for this will be our building block
when addressing the generic case.

Our aim here is the following: we want to write in each partial kinematical theory M a
constraint surface M**, and to reassemble the resulting reduced phase spaces M," (see appendix A)
into a new projective system of phase spaces. And we want to accomplish this in such a way that
we can glue together the maps that, for each n, associate to the kinematical observables on M;‘N the
corresponding dynamical observables on M", thus building a map from the set of all observables

on the kinematical projective system into the set of all observables on the dynamical projective
system. For this map to accurately reproduce a given dynamics, it should give rise to functional
relations between the dynamical observables that catch the full predictive power of the theory and
it should account for the correct dynamical Poisson commutation relations.

We start by looking at a symplectic manifold N**, that extracts, via a projection 7, specific
degrees of freedom out of a bigger symplectic manifold M™ (as were introduced in def. 2.1). Given
a phase space reduction on M, with reduced phase space M"", we ask whether it is possible to

35



M Here, we sketch a symplectic
manifold by a grid, each square
) of which is to be thought as a
Ve > — point in the manifold (and is
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Figure 3.1 — Phase space reductions on M and N, related by a projection 7"

write closed equations, involving only the degrees of freedom retained in N, and capturing all
what the dynamics on M has to say concerning these degrees of freedom.

More precisely, we are looking for a phase space reduction on N**, but also for a projection 7"
allowing to understand the reduced phase space N”" as a selection of dynamical degrees of freedom
out of M"™ (fig. 3.1). Indeed, if we consider an observable O on N**, we can pull it back by 7"
into an observable O™ on M*". So using the dynamics on M", we can obtain a corresponding
dynamical observable O™ on M"™. Now, if we can write the dynamics in closed form on N, we
can also map directly O™ to a dynamical observable O™ on N°". The role of the projection 7°"
is then to ensure that the dynamics we have on N is actually consistent with the one on M, by
requiring O™ to be precisely the pullback of O™ by 7.

DYN

If this is at all possible, both the reduction on N** and the projection 7°" are uniquely determined
by the dynamics we choose on M™. Indeed, the constraint surface in N** has to be the projection by
™ of the one in M (for the constraint surface can be reconstructed if we know which kinematical
observables are mapped to a vanishing dynamical observables), and we have from prop. A.6 (at least
in the finite dimensional case) that a reduction is completely determined by its constraint surface.
Then, the uniqueness of 7™ is enforced by requiring that it correctly makes the connection between
the dynamics on N** and the aforementioned map O — O (that only depends of 7 and of the

reduction on M™).

Definition 3.1 Let M™ and N** be two symplectic manifolds and 7 : M** — N* a surjective
map compatible with the symplectic structures (def. 2.1). Let (M"™, M, 0), resp. (N™™, N, y), be
phase space reductions of M, resp. N** (def. A1). We say that these reductions are related by
" if:

1 (Ve ) = N

2. there exists a surjective map 7™ : M™™ — N™™, compatible with the symplectic structures, such
that:

VX c Nsu[u’ vy/ c MDVN’ (EIX/ e M5||[LL/5(X/) _ g/ & jTK\N(X/) — X) PN (V(X) _ jTDYN(y/)) .
(3.1.1)

Proposition 3.2 With the notations of def. 3.1, if 7" and 7°™* are two surjective maps satisfying
eq. (3.1.1), then 7" = 7.
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Proof Let y' € M™. Since 0 is surjective, there exists X’ € M™* such that d(x') = y’. Hence,
]TDVN,1(y/) — y o ]TKIN(X/) — ]TDVN,Z(g/)‘ |:|

Proposition 3.3 We consider the same objects as in def. 3.1 and use the notations introduced in
def. A2. For f € B(N™), we have f o 7™ € B(M™) and:

K\NDVN_ DYN DYN
(fom™)™ = "o m™.

Proof Let " € M™™. Using eq. (3.1.1) into eq. (A.2.1), we have:
(fo jTK\N)DVN (y/) = sup {fo jTKIN(X/) ‘ X/ c 571 <y/>}

—sup {14 [ x €y (F (N} = 1 0 7).

Why do we need to require eq. (3.1.1) for 7" instead of the seemingly more natural condition

KIN

y o ™ = 1™ o 0? The physical reason behind eq. (3.1.1) is that we shall not look at the
map 0 but rather at 6 ' (), that sends a point in M™ to an orbit in M*™ (and similarly at

y~! (-) instead of y), for this is the map that is dual to the application associating a kinematical

KIN

observable to a dynamical one (in a way similar to 7" being dual to the application that sends

an observable on N into an observable on M™). And, indeed, we can rewrite eq. (3.1.1) as
ij<_> o 5_1<'>=Y_1<'> o ™.

N

That eq. (3.1.1) could fail in situations where y o 1 = 1°" o 0 does hold, can have local as well

as global causes, as illustrated by the examples below. It happens when the projection of an orbit
in M, though included in an orbit of N, does not fill it.

Proposition 3.4 If we replace in def. 3.1 the condition given by eq. (3.1.1) by the weaker assumption:
yomnm™=x"o09, (3.4.1)

then the previous result (prop. 3.3) does not hold.

Proof As a counter example, we consider the following situation:

1. M™ = (Rz)g, M = (RZ)Z, N = (]Rz)z, NN = R? (with the standard symplectic structure
on R? Qga(x,p; X, p)) = xp' — X p);

2. V(xi, pi)ieo,.. 2y € M, ((Xupi)ze{o ,,,,, 2}) = (Xi, Pi)iefoy:

3. M = {(Xi,Pz)ie{o ..... 2} } pr=0 & x = Xz} and V(x;, pi)iefo,..2p € M, 0 ((XnPi)ie{o ..... 2}) =
(Xz,Pi)ie{o,Z};

4. N = {(x;, pi)icqony | p1 =0} and Y(x;, piiciory € N, v ((xi, pilicgon}) = (X0, po);

5. V(Xi, pi)icfozy € M, ™ ((Xi,,Di)ie{o,Z}) = (X0, Po).
We can check that (M™, M, 0) is a phase space reduction of M and (N™, N> y) is a

KIN DYN

phase space reduction of N**. 7™ and 7™ are surjective maps compatible with the symplectic

structures, satisfying 7" (M) = N*"** and y o 7" = 7°" o 0.
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However, if we consider f € B(N"") defined by:

1if X1 < 0
0 else

'

V(Xirpi)ie{OJ} e N™, f((Xi:,Di)ie{O,ﬂ) = {

we have ™ o 1™ =1, but:

1LfX2<O

V(Xirpi)ie{O,Z} € M, (f o ™)™ ((X['pi)[E{O'Z}) N {O else

Requiring local conditions in addition to eq. (3.4.1) would not help either, since even if everything
works well locally, it may still goes wrong globally, as the following example shows:

6. MK\N _ (RZ)A" MDYN _ (IR,Z)Z, N — (RZ)Z, NN — RZ,

7. V(Xi, pi)ieo,.. 3y € M, ™ ((Xi:P()ze{O ,,,,, 3}) = (Xi, Pi)iefoy:

.....

9. N = {(x;, pi)icqory | p1 =0} and Y(x;, pilicjory € N, v ((x, pilicgony) = (xo. po);

10. V(Xupz)ie{oa} e M, o™ ((Xi,Pi)ie{o,s}) = (o, Po)-

We can check that (M™, M, 0) is a phase space reduction of M™ and (N™, N> y) is a
" are surjective maps compatible with the symplectic

DYN

phase space reduction of N**. 7™ and x

structures, satisfying 7" (M) = N*** and y o 7" = 7" o 0.

Moreover, eq. (3.1.1) holds at the linear level, namely:

vX/ c MSH&LL, VV c T;TKN(X’)(NSHHL), vW/ c TB(X/)(MDW\),

(3V e TV | Too(V)=w & Toa™(V)=v) & (Tonpy(v) = Towmm™(w)),
for this reduces in the present example to:
¥V, € R, Vx) € R, Vx) €R, (Elxzv/, X eR? | X =x & XY +explo)xy = X1V) :

However, if we consider the same f € B(N™") as before, we have ™ o 7™ =1, but:

1LfX3<O

V(Xirpi)i€{0,3} € W, (f o ™)™ ((X[,,D[)[e{OB}) - {O else

Asking for the dynamics on M to define a dynamics on N** in the sense above actually puts
strong restrictions (local as well as global ones) on what the constraint surface in M can be.

If we consider the special case where M and N** are symplectic vector spaces, and 7" is a
linear map, the symplectic structure provides a natural decomposition of M as P** & (?K'“)L, with

P — Ker™ and (P™)" ~ N (where the orthogonal subspace is defined with respect to the
symplectic structure; this is the linear version of prop. 2.10). What are the conditions for a vector
subspace M of M to define a (linear) dynamics that will descend well through 7*? An obvious
way of fulfilling this wish is to have a constraint surface M>*" that decomposes as M = W @ V
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where W and V are vector subsets of P and (P)* respectively: this would be a dynamics with
no interaction between the degrees of freedom in N** and the ones in P, so clearly we can write
separately the dynamics on N**. However, a closer study of what is really needed shows that we
have an additional freedom to construct admissible constraint surfaces M instead of choosing
V as a vector subset of (P™)*, it is enough for V to be included in W™, provided 7 identifies the
restriction to V' of the symplectic structure Qypv with the restriction to N = 7" (V') of Qyun.

This study of the linear case essentially translates to local necessary conditions in the generic
case. However, this holds only at the points in M where the derivative of 7" maps the tangent
space of the orbit of M going through that point into the tangent space of an orbit of N>**: for,
although eq. (3.1.1) implies that 7" should map an orbit into an orbit, this does not need to hold
at the linear level (the derivative of a surjective map does not need to be surjective; nonetheless
Sard’s theorem [81] tells us, in a specific sense, that this ‘rarely’ fails).

Proposition 3.5 Let M** and N*¥ be two finite dimensional symplectic manifolds and 7" :
M™ — N" a surjective map compatible with the symplectic structures. Let (M™, M, 0),
resp. (N™, N> y), be phase space reductions of M™, resp. N**. Assume these reductions are
related by 7%, and let X" € M™™, ¢’ := o(x') € M™, x := 7(x') € N"" and y := y(x) € N"™.
Then, 7" induces a surjective map 6~ (y') — y~' (y).

If moreover T (T (67" (y"))) = T, (v~ (y)). then there exist Vi, W, vector subspaces of
T (M) such that:
1T L™y =VeeWe & Qo (Vi, Wy) = {0};
2 VonKer Ty ={0} & W, CKerTym™;

KIN, %

3

QNK\N’X‘\/X/ - QMKIN’X/ \/X/ .

Proof Let 7" be as in def. 3.1.2. From eq. (3.1.1), we have y o 7™ = 7" o 9, hence y = 7™(y’),
and:

VzeN"™, (zey ' (y) & (viz)=7"()) & (32 €s () |n() =2

& (zem (67 (y"))),
therefore 7 (67" (y)) = vy " (y).
We now moreover assume that 77" induces a surjective linear map from Ker 7,0 = T ((5’1 <y’>)
into Ker T,y = T, (y’1 (g>) Then, there exist vector subspaces V; and W, of Ker I, such that:
WS =KerTor"NKerT,o & Kerl,0=Vid W,
and T, induces a bijection V5 — Ker T,y.

Next, we define the vector subspaces \/J/ and WJ, of T,(M"™) buy:

W) =Ker Ty & V)= (W) = {ve T, | Quy (v, W) = {01},

and since 7™ is compatible with the symplectic structures, we have T,(M™) = \/J/ &) WJ, and

DYN

being surjective, it induces a bijection \/J, — T, (N”™), such that:

Ty
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]Ty/

QNDV\’y‘\ﬂ = QMD"N,g/ \/1/ .
Y/ Y

Let WXZ/ = [Tyo]" <Wy1/>. We have Ker 7,0 C WXZ/ and from T,y o T, o™ <WXZ/> = Tym™ o
TX,5<W3> — {0} and Ker T,y = Tom™ (Ker Tu8) C T <W2> we also have T, <W3,> -
Ker Ty, hence there exists a vector subspace W3 of WXZ such that:

Woed W2 =KerTum N W2 & Wi=Voe WS W2,
and T8 (WJ) = T.o <WXZ/> = W, for T,/0 is surjective. Additionally, since 7,0 is surjective,
there exists a vector subspace V7 of T,,(M™™) such that:

TV = Ve W e Vi Ws,
with T, inducing a bijective map V2 — \/J/. So Tyy o Tyn™ = T,m"™ o Tud induce a bijective

map V5 — T, (N"") = T,y (T,(N""™)), therefore T,,m" induce a bijective map V@ V5 — T, (N*""),
such that, for all u, v € V7 @ \/XZ,:

Qe (Tt ™ (u), T ™(v)) = Oy y (Tyy o Tom™(u), Tyy o Tym™(v))
= Qo y (Ty/JTDW o Ivo(u), Tymx™ o Tx/é(v))
= Qupony (T 0(u), Two(v))

= QMKINVX/ (U, \/) .
Finally, defining Vi := VS @ V2 and W, := W3 & W2, we have:
O (Vir, Wa) = Qe (V5 W2) (for Qun (T (M), Ker T,8) = {0})

1 1 %
= QDYN,y/ (\/y/r Wg/) (for QKIN,X/|TX/(MSHELL) = 5)(/ QDVN,y/)

= {0} (for v, = (W})"),
and W, C Ker Ty, while Ker T N Vo = {0}. O

Returning to the linear case previously mentioned, we can reformulate in terms of constraints the
condition we had for M to define a closed dynamics on N** (through the straightforward duality
between the description of M™™ as a vector subspace and its description by linear constraints).

This provides a specification of M as characterized by three sets of constraints CI-T, C/-N, and
C™, where the C” only depend on the variables from P and characterize in P** the projection
Pt of M, similarly the C jN only depend on the variables from N** and characterize N in
N while the C,'j“‘LX account for possible interactions. These interactions cannot be arbitrary: the
requirements on V discussed above prescribe that the constraints C,T lx’x, obtained on P from the

CM™ by fixing some x € N, should perform a partial gauge fixing of P*** (prop. A.8).
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MK\N — A:PK\N X NKN

MSHELL — {(g’X) | X e NSHtLL’ y E A:PHX,X}

j)le,Xg
the P™ are different gauge fixings
Prxz of a common constraint surface P

:Ple,Xq

NSHELL

Figure 3.2 — A (rather broad but not exhaustive) way to construct an admissible dynamics on M™
in the factorizing case

In the generic case of a symplectic manifold M™ factorizing as M™ = P x N (such as
considered in subsection 2.3), the insight we gain from the linear case suggests a possibility,
depicted in fig. 3.2, to design dynamics on M that will project well on N**. This provides a much
broader class of admissible dynamics than the trivial ones splitting into independent dynamics on
P and N

Nevertheless, this procedure only corresponds to a sufficient condition for def. 3.1 to be fulfilled.
Note that the gap between the necessary condition at the linear level supplied by prop. 3.5 and
the characterization of M™" considered here does not solely arise from global considerations: for
M to be of this form, some additional integrability conditions (ie. requirements at the second
order) need to hold, so that we can combine the prescriptions in the tangent space of each point
into prescriptions in small open patches.

Proposition 3.6 Let M™ = P x N*, where M, P** and N** are finite dimensional symplectic
manifolds, and define:

j.[-KN :MKIN N NK\N
y,Xr—>x
Let (M™, M, 9), (P, P, 0), resp. (N™™, N y), be phase space reductions of M™, P

resp. N**. Assume that there exist a submanifold P™ of P*** and a smooth map:

L|J ::])le X NSHELL N ?SHELL X NSHELL
Yy, x—=dly, x), x

1

such that:
1. ImW = M and W s e 1S @ diffeomorphism;

2. P QJ\/[K‘\ ’T(MSHELL) = Q(PK‘N ’T(gmx) X QNK|N|T(NSHELL);

3. Vx € N, Pe= (f (P™ x {x}) defines a partial gauge fixing of (P, P>, 0) (prop. A8).
Then, (M, M, 0) and (N, N>**|y) are related by 7.
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Proof From the definition of W, we have 7" (M) = Im 7" o W = N>
Let x € N Using assumption 3.6.1 together with the definition of P™*, the map:

LL’X : iPle N iPF\x,X
y = Yly.x)

is a diffeomorphism and, by 3.6.2, it satisfies ¢/** (Qng.N|T(?W)) = Q?KW|T((PF.X).

Now, from prop. A8, (iPDVN, Pprox. 9|3m,x) is a phase space reduction of P**. Hence, defining
0" = Olps 0 Y5, (P, P, 6™) is a phase space reduction of P,
Using 3.6.2, we have for all x € N, y € P™ and for all v &€ T, (N"™), w € T,(P™):

0 = O ([T 8] 091 ) . ([T6] 9,01 0)) = Qo [ 7461 0.0, [Ty .00
However, since * is a diffeomorphism, [T,q] (w,0) runs through Ty (P™*) when w runs
through T,(P™), so [Tywm¢] (0,v) € (T (iP””))L N Ty (P7). As P defines a partial gauge
fixing of (P, P, 0), we have Ty (P"™) = Ty (P™) + Ky (P*™), hence [T(W)QZJ] 0,v)
Ky (P). Therefore, 0,0™* = 0.

Without loss of generality, we can assume that N> is connected (otherwise M is not con-
nected either and we can consider each connected part of N separately). Then, we can define
o = o™,

Using 8™, we define:

5 : MSHtLL N j)DVN X NDVN
y'X = (QF‘X X y) o (LP‘TF\XXNSHELL_)MSHELL)ill (g,X) = (Q(y), y(X))

We want to prove that (TDVN x NO™ Ve 5) is a phase space reduction of IM™".

First, we need to show that & is surjective, that its derivative is surjective at each point, and

- , , 1
transports correctly the restriction to M™* of the symplectic structure. Since (L'J|g>SmeNHuMSHm)

is a diffeomorphism and transports the symplectic structure, we need only to check the corresponding
properties of 8™ x y. Now, since 8™ and y corresponds to phase space reductions, they indeed
have the required properties, and so does 6™ x y.

Let (y,x) € P™ x N> We choose a basis (e;)i<x of K(N"") (with k := dim K, (N>*"")) and we
complete it into a basis (e;)i<, of T,(N™™) (with n := dim T,(N*"")). We also choose a basis (f});<; of
Ky (P™) (with [ := dim K, (P™)) and complete it into a basis (f;);<, of T,(P™) (with p := dim T,(P™)).
Then, we have:

Ty (V™) = Vect { ([ Tiy0w] 0, e), &) | i <n}+ Vect {([Ty¢] (£,0),0) | j<p}.

As proved above, we have Vv & T,(N*"), [T(W)gb] (0,v) € Ky (P"™). Since ¢ is a diffeo-
morphism P™ — P™* the [T(g,x)g[l] (f;,0) for j < p span Ty (P™). And since * transports the
symplectic structure, we also have Yw & T,(P™), [T(b,yx)l,[/] (w,0) € Ky (P™) & w e K, (P™).

Therefore, we have:

Ky (M) = Vect { ([ Tyy0¢] (0. ), ei) | i <k} + Vect {([Tiym¢] (£,0),0) | j < L}
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Using Ky (P™) C Ky (P), we can now check that Ty, 0 (Ko (M) = {0}. There-

fore, the leaf of the foliation K(M™") that goes through W(y, x) is included in 5! ({6™(y), v(x)})
(as leaves of foliation are by definition connected).

On the other hand, 6~ ({6™(y), y(x)}) = ¥ (6™ ({0™(y)}) x v " {({v(x)})) is connected as

image by a continuous map of a Cartesian product of connected spaces. And its tangent space at
W(y, x) is given by:

Ty W (K (P™) x K (N)) = Ky (M) (using 3.6.2).
Therefore, 0~ ({6™(y), y(x)}) is included in the leaf of the foliation K(M*") that goes through
W(y, x).
This concludes the proof that (‘P”VN X N, M 5 ) is a phase space reduction of M™. Now,

using prop. A6, there exists a symplectomorphism ® : M™™ — P x N™ such that ¢ o 0 = 5. ™
is then the projection corresponding to this factorization of M™". O

KIN

n -
reduction of MJ" for each . As announced at the beginning of this subsection, we want to

We are now ready to consider a projective system of phase spaces M:", with a phase space

examine the situation where the reduced phase spaces M)" can be arranged into a new projective
system of phase spaces, in such a way that the maps, that translate the kinematical observables
into dynamical ones for each 1, are intertwined by the projections on both sides. Thus, we can
associate to an observable on the projective limit of the M)" an observable on the projective limit

of the M". In a dual way, to each state on this dynamical projective system of phase spaces
corresponds a projective family of orbits in the constraint surfaces M;™ (another option here
would be to consider projective family of probability measures, aka. statistical states, in which

case we would map dynamical statistical states to on-shell supported, gauge invariant, kinematical
statistical states).

The previous study, examining a projection that relates the phase space reductions on two sym-
plectic manifolds, is the key element for this construction. Indeed the requirement that the dynam-
ical phase spaces should readily assemble into a new projective system can actually be enforced by

asking, for each pair of index n < ', that the reductions on M and M should be related by

KIN

T

Definition 3.7 Let (£, M™, )" be a projective system of phase spaces. An elementary reduction

of (£, M, )" is a quadruple ((M;YN) M)

DYN

et (ﬂ,]/ﬁn)nﬁn/, (5,7)”€L) such that:

nel’ (
1 (L, M, 1) is a projective system of phase spaces;

2. Vne L, (M), M, 5,) is a phase space reduction of M}";
bWl € £, (M) = M and

n'—r

Vx, € M, Yy, € MY,

n
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(Elxn/ S Msnjm [ Oylxy) =yy & ', (x, ):Xn) < (5 (x,) = 7" (Un))

n'—n 7—n
Whenever possible, we will use the shortened notation (£, M, 7, 0)"" instead of ((M;YN)

(M;HELL)UGL ! (]TTDI\;N"U)qﬁq’ ! (5’7)I7€L ) ’

Definition 3.8 We consider the same objects as in def. 3.7 and we define (in analogy to the definition

nel’

Of 8lgpn N def. 23) 8l ypn ) as:

-~

S%L’MKINJTK\N) = (Dn)ngL € |_| :P(M;IN) Vn < /7/, T <D,7/> = D’?

m—n
nel

where, for n € £, T(M;‘N) is the set of subsets of M;‘N.
Then, we define:

A S%L’MDY\J’]TDVN) — 8 MK\N TN
(Unlpee — ( <{9’n}>),765'

which is well-defined as a map S(lL,MDw,HDVN) — g(lﬁ aon vy fOr we have Vn < ' € £, Vy, €
M 0y {{alyn) ) = 7 (O Cu):

DYN

Proposition 3.9 Let (£, M™, )" be a projective system of phase spaces and let (£, M, 7, d)
be an elementary reduction of (£, M™, 7). We define (in analogy to def. 2.4) A(LAMK.N,,TK.N) as the

set of equivalence classes in U B(M,,) for the equivalence relation defined by:
nel

vn.n' € L, Vi, € BM"), Vi, € BM;),

f/] ~_KIN f/]’ <:> (3 r]// E L / I7 _\< /7//, 17/ _\< r'// & fn o ]TKI//>1 ](/ o ]TKI/V;I )

n—n n'—n
DYN

and similarly A%L’MDVN,,TDW) with the equivalence relation ~

Then, the map:

DYN l l
( : ) . lA(L’MKINJTK\N) - ‘A(L‘MDW\’”DVN)
{ffl]va'N = I:fgw]NDVN

is well-defined.

For (Dy)yec € g(lL'MK.N,]TK.N) and f =[f,]|_ € A(LL,MK.NJK‘\), we define:

[Fal Lo ((Dn)neﬁ) = sup {f,(x) | x € D,},

KIN

(the definition of the equivalence relation ~*" ensures that this is well-defined)
Then, we have for all y € 8{¢ ypn oy and all £ € Al ypn vy’

7 (y) = 1 (Aly)). (39.1)

Proof What we need to show is that for n,n" € £, f, € B(M,) and f, € B(M (fn K fn/) =
(fr~ ~1ov). Indeed if there exist n" € £, with n” = n, 0" = 1, and fy € B(Mn ) such that
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fpomy ., =fyomy ., then, from prop. 3.3:

DYN .
n'—n —

_ KIN DYN© — row DYN
- (](’7/ 9 ]Tn//*)”/) - n/ e} ]T”//‘”?/'

KIN ) DYN

DYN
f” °n (fﬂoﬂn”ﬁn

Then, we only need to check eq. (3.9.1) for a particular representative f, of f:
Fry) = 1" ga) = sup fy(x) = sup f(x) = 1(A(y)).
x€6;1<{g,7}> )(6(5D\1N(g)),7
O

Proposition 3.10 Let (£, M, 7*)* be a projective system of phase spaces. For all € £, we give
ourselves a phase space reduction (M)", M;™, 9,) of M. The following statements are equivalent:

DYN

7on) <y SUcCh that (£, M, 7, 6)"™ is an elementary

1. there exists a family of surjective maps (JT
reduction of (£, M, );
2.Yn =0, (VOX, MG, 6y) and (M), M, 5,) are related by )"

n n'=n

Proof By definition of an elementary reduction of (£, M*", ]TK'N)l, we have 3101 = 3102

DYN

n'—n

KIN

o, satisty the

To prove the other direction, we need to show that the i induced by the 7

three-spaces consistency condition:

vn # r’/ % n// E L, 7TUYN — ]_[.DVN o ]_[.D\II,N

n"—n n'—n n'—n -

For x, € M;™, y,» € M}, we have (using def 373 for n < " and ' < n"):

(517(Xn) = T, (7TDVN (Un”))) < (EIXU/ S M;'fu/én/(xn’) =g yy) & T (xy) = Xn)

=\t —n e =

& (E|X,7/ € My, Iy € MU [0 (X)) =y & i, () = Xy & T (xy) = X,7)

& (I € M O xp) =y & Ty, (10 (X)) = Xp) -

DYN
n// —n

N oo ., we

and )", W

Hence, using ", o o, = o, and applying prop. 3.2 with

n'—n n'—n

DYN - DYN DYN
have mp, = )™, o Tt 0

Recalling the discussion of subsection 2.2, regarding restrictions and extensions of the label set,
we would like to understand how elementary reductions pass through these operations. It is quite
straightforward that everything will go smoothly if we restrict the label set.

The interesting question occurs when we have an elementary reduction on a subset £ of £. In
particular, if £’ is cofinal in £, we can identify the kinematical spaces of states and observables

over the projective system restricted to £’ with the ones over the original projective system on £
(prop. 2.5), thus the transport of observables (from the kinematical to the dynamical theory) and

states (from the dynamical to the kinematical theory) arising from an elementary reduction on £’
immediately defines corresponding transport maps between the kinematical projective structure on

L and the dynamical projective structure (which is then only defined for the label set £). In other
words, we are still able to glue together the dynamical phase spaces M) (7 € L’) into a dynamical

projective structure, to inherit observables on this structure and to project back its states. However,
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in general, there will not exist an elementary reduction on £, that would reproduce the same
transport maps (modulo the identification of the thus obtained dynamical structure on £ with its

restriction to £'). This point will play a key role when moving to the regularization of a dynamics
that does not break down well on the projective structure (subsection 3.2).

What is lacking, when trying to extend to £ an elementary reduction on L', is the assurance
that there will exist phase space reductions of the M" for n € £ \ £/, and that these reductions

will be compatible with each other, as well as with the given reductions on L’: specifically, for

KIN

any pair of labels n < 1’ (one or both being in £\ £') the reductions should be related by Ty sy

(the elementary reduction on £’ already accounts for the compatibility when both labels are in £).
Prop. 3.12 shows slightly weaker hypotheses under which the extension is possible, provided the

M for n € L\ L are finite dimensional.

DYN

Proposition 3.11 Let (£, M™, 7)* be a projective system of phase spaces and (£, M, 7, 9)
be an elementary reduction of (£, M*, 7)". If £’ is a directed subset of £, (£', M, 7, 6)™" is

an elementary reduction of (L/, VY, JTK'N)l and we have:

“SKIN /
Opp © A=A oo,

-~

where o}, :g&wwﬂw) — S%L/‘MK‘\’HK.N), o e S&VMDW'HDW) — S(LL’,MDVN,JTDVN) are defined in analogy
to prop. 25, while A : S%L’MUWIHDW) — g(lLMK.NﬂKN) and A" S#L/‘MDYNJTDW) — g(lﬁ/,wwﬂm) are defined as
in def. 3.8.

In addition, for any f € A(LL/,MK.N,,TK.N), we have:

(B o)™ = BEle (F™),

where BZNfVLN, : A%L,’MK,N/DW,NK,N,M) — A%L’MKW,M’NK‘\/DW) are defined in analogy to prop. 2.5, while

(. )DVN : ‘AiLL’MmN’ﬂ.KW) _ A%L’MDVNJTDVN) al’]d ( )DVN : ‘A# /'MK‘\,]TKIN) — ‘AiL /’MDYN’]TDVN) are deﬁ_ned as .Ln pr0p~ 39

Proof That (£, M, i, 5)™ is an elementary reduction of (£, M™, JTK'N)l

checked from def. 3.7.
Let (gn)UGL S5 S%}C’MDVNJTDVN)- We have:

can be immediately

5ZIN—>L’ oA ((gn)neﬁ) - 62N—>L/ ((5071 <y’7>)neﬁ) - (5;1 <y’7>)n€ﬁ/

- A/ ((gn)nEL/) = A/ © UEVL,C/ ((gﬂ)qu) :
Let f = [fU]NKIN & ‘A% 7 VIKIN J7KINY - We have:

( ZLL/(]())DW = [fl[])YN]NDYN = E‘,YLLL/( ’DY\) :

O

Proposition 3.12 Let (£, M™, 7°*)* be a projective system of phase spaces and let £ be a cofinal
subset of £. We assume:
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1. that we are given an elementary reduction (L/, M, , 5)% of (L’, VY, JTK'N)l,'

2. that for any n € £\ L', M;" is finite dimensional and we are given a phase space reduction
(M;YN' M;HELLI 5[]) Of M;w,

3. that for any n € £, and for any n € £" with ' = n, the reductions on M} and M;" are related

KIN

n—n-

by m

Then, (L/, M, , 5)DVN can be completed into an elementary reduction (£, M, 7, §)™" of (£, M*",

]TKIN)l, )

Lemma 3.13 Let M™, N** and P*" be symplectic manifolds and assume that N** and P*™ are finite
dimensional. Let o)™ : M™ — N, 5™ - N** — P and 75" : M™ — P be projections compatible

with the symplectic structures, satisfying 75" = 75" o m™. Let (WM™, M, 0), (N™, N, y) and
(P, P n) be phase space reductions of M™, N** and P*" respectively.

If the reductions on M** and N** are related by m}" and the reductions on M and P** are

KIN

related by 75", then the reductions on N** and P** are related by 75"

KIN

Proof Applying def. 3.1.1 for ™ and 73", we have:
]TEN <NSHELL> — ]TEH\ <7TTIN <MSHELL>> — jTglN <MSHELL> — ?SHELL‘

Let 7p™ - M™ — N°™ and 75" : M™ — P™ be as in def. 3.1.2. For any y, y" € M™ such that

DYN DYN

T (y) = 1 (y'), there exists z € y~' (™ (y)) € N*™ (for y is surjective from def. A.1.2) and, using
eq. (3.1.1), there exist x, x € M>* such that:

KIN

O(x) =y, 0(x") = y" and )" (x) = z = 7™ (X).

KIN KIN DYN

Therefore, 7§"(x) = m5"(z) = 7§"(x’), so using again eq. (3.1.1), we have 5"(y) = n o 7(z) =

73" (y")-

Hence, 3™ is constant on the level sets of 7}™, so there exists a map 75" : N°™ — P such that
mt =" o gt

Now, for z/ € P and w € N, there exists y € M™ such that 7"(y) = w (for 77" is
surjective) and we have:

(n(@) = 5" (w)) & (nlz) = 75"(y)) & (BxeM™ o) =y & m5"(x)=7)

S (FzeN"|yz)=w & m'(2)=7),

KIN

where the last equivalence comes from setting z = 77"(x) (for proving '=') and using eq. (3.1.1)
with y(z) = 77™(y) (for '<"). Hence, 75™ fulfills eq. (3.1.1).
In particular, we then have n o 75" = 3™ o y. Thus, since N**, N** and P are smooth finite

dimensional manifolds, n o 75" is smooth and y is surjective with surjective derivative at any point
(def. A13), the rank theorem implies [54, prop. 5.19] that 75™ is smooth.

DYN

Finally, we need to show that 73" is a surjective map compatible with the symplectic structures.
We have 5™ (N°™) = 5™ (™ (M) = 75" (M) = P> And, for any w € N, there exists
y € M with 717" (y) = w, so that for any v € T, (P™):

47



T} (v o [Tums)) =[Tums) o [Tyr] (v o [Tums] o [Tym] )

= [Tym"] (U © [Tyﬁgw]) =Y
therefore 75" fulfills eq. (2.1.1). O

Proof of prop. 3.12 Let n € £ and ' € £\ L', with i’ %= n. Since £’ is a cofinal part of £, there
exists " € L’ such that n” = ' %= n. Using lemma 3.13 (M is finite dimensional, for n" € £\ £/,

n
KIN

so M;" is finite dimensional, for n < 1), the reductions on M} and M;" are related by )", .

Hence, using prop. 3.10, there exists an elementary reduction (£, M, 7, 09)™ of (£, M™, 7,

where Vn < n" € £, 7, = my .. And by prop. 32, Vnx nf € £/, ¥, = ", which supplies

the desired result. O

In practice, we will be interested in a kinematical projective structure that is a rendering, by
a system of finite dimensional manifolds M}", of an infinite dimensional symplectic manifold
M (def. 2.6). If the phase space reduction on M7 satisfies the (admittedly very restrictive)
requirement that it projects as a closed dynamics on M for all 1, we will get an elementary

reduction of the kinematical projective structure, and the thus obtained dynamical projective system
will automatically be a rendering of the physical phase space M7 (fig. 3.3).

Moreover, the map turning observables on the kinematical projective structure into observables
on the dynamical structure coincides with the one that can be defined directly from the phase space
reduction of M) (identifying the observables on the projective structures with functions on M or
M2,
a physical theory is more than just a space of states: it is also a labeling of the observables over
this state space, that associates to the elementary observables a particular physical meaning. This
labeling is the interface that allows us to make the connection between a given concrete measure

protocol and an observable of the theory, between the experimental world and the mathematical

as described in def. 2.6). It cannot be too much emphasized that this is a crucial point, for

formalism. Hence, from a physical point of view, a rendering of the physical phase space would
be useless if we do not tell at the same time how the elementary observables of our theory are
constructed in this rendering.

As already mentioned above, we have, dual to the translation of observables, the possibility of
transporting dynamical states back to the kinematical theory (as projective families of orbits), and

again this transport reflects the map 0 (- ) that sends a point in M%) to an orbit in M. This is
probably not needed when the constraints are there to implement dynamics, since, as soon as we
have obtained the physical state space (and observables thereon!), the kinematical theory has played
its role and can be discarded. However, the same mathematical formalism of imposing constraints
can also describe the symmetry restriction of a theory. It has in this case an entirely different
physical interpretation, and we are then not only interested in the symmetry restricted theory itself,
but we also want to understand its states as special, symmetric states in the full theory (note that
the constraints describing symmetry restriction being second class, we map a state on the restricted
state to a state on the unrestricted side: orbits are in this case just single points).

Proposition 3.14 Let (£, M, 7"} be a rendering of a (possibly infinite dimensional) symplectic
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Figure 3.3 — Elementary reduction and rendering

manifold M (def. 2.6) and let (M2, M2L", 0) be a phase space reduction of MZ,. We suppose
that, for all n € £:

1. M, is finite dimensional;

2. we are given a phase space reduction (M;“N, M, 5,7) of M" that is related by ), to the

co—n
reduction of M.
Then, we have an elementary reduction (£, M, i, 0)™ of (£, M, 7)Y and a rendering of M2
by (£, M, ™) such that, for any ye, € M2

o (02 (Yos)) = A 0 07" (Yoo, (3.14.1)

“SKIN

where o™ - P (M) — g(lL,MKWJTK.N), o™ M — S%L/‘MDWJDW) are defined in analogy to def. 2.6.

Moreover, for any f € A(lL,MKW,nK'N)' we have:
(B?N (f))om _ B?YN (fovw)l (3142)

KIN/ YN \L K\N/DYN s M K\N/ YN, l
where """ A(L,Mm/uw,ﬂmwow) — B(M™") are defined in the same way as ;™™ : O(L,Mw/owﬂmmw) —

Co(MP™ R) (def. 2.6).

Proof From prop. 3.12, we can complete the phase space reduction (M7, M5", 0s) of M into an
elementary reduction (£ L {oo}, M, 7, 8)™ of (£ U {oo}, M™, 7). In particular, (£ LI {co}, M,
7”)* is a projective system of phase spaces; in other words, (£, M, 7™ is a rendering of M2

Eq. (3.14.1) and eq. (3.14.2) then follow by applying twice the corresponding results from prop. 3.11
(to go down from £ LI {oo} to both £ and {co}), together with:

owN,—1

= O¢){oo}>L © Ogu{oo}—>{oo} !

DYN

0}

“SKIN “SKIN ~xn,—1 &

0 = Ogifoo}—£ © Ogiifoo}—>{oo}

and:
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KIN kN, —1 KIN DYN ovn,— 1 DYN
B = Brljsofoo} © Biljoojes & B = Biljcopfoo} © Bilifoo}ers -

3.2 Reqularized reductions

We now turn to the general case, where, typically, the prerequisites of the previous section will
not be satisfied.

Recall that, as underlined above (prop. 3.12), these prerequisites will become milder and milder if
we look for elementary reductions only defined on smaller and smaller cofinal subsets of the label
set £: the argument is that it’s easier to write closed dynamics over truncations of the theory if
we consent to give up the coarsest truncations for lost and to only try to formulate such truncated
dynamics in partial theories retaining enough elementary observables (and being thus able to exhibit
finer properties of the states). On the other hand, for what we are interested in (namely, defining a
projective structure for the dynamical theory, constructing on it the observables inherited from the
kinematical theory, and, if need be, embedding its states in the initial projective structure), such
an elementary restriction restricted to a cofinal part of £ is all we need.

This observation motivates the following strategy: we will try to design an approximating scheme,
indexed by a directed set &, that approaches the exact constraints (unadapted to the projective
structure) by approximate constraints, projecting well on the M" at least for all n € L (where

€ € & parametrizes the level of approximation and £ is a cofinal part of £ that depends on ¢). We
expect that the label subset £° will get smaller and smaller (yet remaining cofinal), since formulating
more accurate approximations of the dynamics will require deeper and deeper knowledge of the
properties of the states (such knowledge that is only accessible in partial theories with labels at the
high end of £).

As an illustration of this idea, suppose that £ consists of all possible finite subsets of points on
the real line (ordered by inclusion), take £ to be the set of positive reals € and define L5 C £ to
select those subsets in which next neighbor points have a distance of at most €. Thus a label n € £
will only qualify for belonging to £° if, given a real function f, it can provide an approximation
fl 0 with at least a resolution of € (over the convex hull of ). As € gets smaller and smaller, we

retain less and less labels 1, yet £° will keep cofinal. Notice that in this example we would use
on € the reverse order € < € & € > £, because we think of the partial order on & in terms of
coarser lattices being included in finer ones, rather than as an ordering of the lattice parameters
(thus we will sometimes refer to the continuum limit as € = oo, in the sense of having an infinitely
fine lattice, although in the present case € = 0 would have been more intuitive).

To make it more precise what we mean by approaching the exact constraints, we want the
approximation scheme to come with an additional input, namely a family of projections, going
from the space of exact solutions of the dynamics M"™ into each space of approximate solutions
M€ it will tell us, for each level of approximation € € £, how to map the exacts orbits in M
to their approximate versions in M>““. In other words, we will associate to each orbit in the exact
constraint surface a family (indexed by &) of orbits intended to approach it, thus setting the stage
to formulate a notion of convergence (this point will be examined more closely in the second half
of the present subsection).
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Besides, it is sensible that the map from M to M"™¢ does not retain all degrees of freedom,
so that it only depends on the most distinctive properties of the dynamical states in M™: the
approximation of an exact solution should drop those finest details, that can anyway not be handled
correctly by the coarse dynamics underlying M*““. More precisely, we will require that the family
of approximated theories build on their own a projective system of phase spaces (with label set &),
and, in addition, we would like the approximating maps, bringing us from a finer approximated
dynamical theory to a coarser one, to be expressible at the level of the truncated theories M[,’;N‘E, SO
that we can assemble all M)"“ into a big projective system of phase spaces (whose label set will be

a part of &€ x £). The return of these quite restrictive requirements is that it supplies immediately
a dynamical projective structure, where we can represent the dynamical states and start doing
calculations with them, even before we have settled the question of convergence.

Clearly, we are assuming here that we are provided with some non-trivial input, that will have
to come from a precise understanding of the system under study. The examples in chap. 5, besides
demonstrating that the procedure described here can indeed be put into practice in simple systems,
also give some insights on how the needed input can be obtained, but it will require more extensive
investigations to develop systematic ways of constructing suitable approximating schemes in the
sense above.

Proposition 3.15 Let &, < and £, < be preordered, directed sets and suppose there exists for all
€ € € a cofinal part £° of £ such that:
Ve 5 €, L5 D LF.
We define EL :={(e,n) | € € €, n € L°} and equip it with the preorder:
V(e n) (€ n) e L, (en=<(en) e (ese & n=xi)
Then €L, < is directed.

Proof Let (¢,n), (€', ') € EL. Since € and L are directed, there exist €” € € and ) € £ such that
e € <€ and n,n < 7. L being cofinal in £, there exists n” € £& |7 < 1. O

Definition 3.16 Let (£, M™, 7)* be a projective system of phase spaces. A regularized reduction
of (£, M™, 7™)* is a sextuple:

(& (£5)cce (M/Uyw'g)(g,q)eec ' (M;HELL'E)(g,n)eeL ' (H?N—fnﬁg) (en) ' (5”6)(&/7)655)

<€)
such that:

1. € is a directed set indexing a family (£¢),_¢ of decreasing (Ve < £/, L5 D £F), cofinal parts of
L as in prop. 3.15;

2 Ve € €, ((M;W,e) (M;Hm,a) oW, E—E 56)HEL€) is an elementary reduction of

neLe’ neLe’ ( n'=n ),H,]/ ' ( n

(LS’ MKIN, ]TK\\)l;

YN, E ow, &' —e . L.
3. (SL, (M,, )(m)e(%, (ﬂnqn )(m) ) is a projective system of phase spaces.

<le' )
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Whenever possible, we will use the shortened notation (£, M, 7, 5)”“"8 instead of (8, (£5)cce

(M;vr\,s) ( (M;HELL,S)

DYN,E—E ( g)
eneeL’ (e.n)€€l’ n'=n (s,n)<(6/,n/)' nl(eneel |-

At that point we have written a projective structure for the dynamical theory, but as we em-
phasized in the previous subsection, constructing the space of physical states is of little use if we
do not prescribe how to define on it the observables inherited from the kinematical theory. As a
first step in this direction, we will construct maps that transport kinematical observables into the
dynamical theory at some level of approximation €: given a particular kinematical observable, the
dynamical observables constructed this way, for all possible €, should be thought of as successive
approximations of the exact dynamical version of this kinematical observable.

Moreover, we can check that these maps transform well under restriction of the label sets £
and & (provided the label subsets £’ and &' considered are such that we still have a regularized

reduction after restricting ourselves to &'L’). We will make use of this result at the end of the
present subsection, when we will consider how regularized reductions interact with renderings.

Definition 3.17 We consider the same objects as in def 3.16. For € & &, we define A® :

l ol '
S(EL,MDVN,HDYN) - S(L’MK\N’NKIN) as:

DYN

€ . kN £
A" =070 0 Ape 0 08 pe

where og7_ e - S(lEL,MDY’\,JTDVN) — S(LLS’MDVN,EJDW%) is defined as in prop. 25 (for the directed part
{(e.n) | ne L} of EL), A%: - S%LE’MDVN,SWDW,HC) — g(ng’MKW’HK.NJ is defined as in def. 3.8 (for the
elementary reduction (L%, M®, 757, 6°)* of (L&, M, 7)), and G&*, .. :/S\(lL,MK'N,JTK‘\) - g(lzs,wwnm)
is defined in analogy to prop. 25 (for the cofinal part £¢ of £).

Similarly, we define (-)° :A%LMKW’HK.N) — A(lEL’MDW,HDWJ as:
() = Btioee o ()7 0 i,
DYN . l l KIN . l l
where BELHLS . A(stmnw,a,ﬂow,sﬁs) — A(EL’MDVNJTDYN) and B£<—£5 . ‘A(LCVMK\NJTKIN) — -A(L,MKWJTKW) are
defined as in analogy to prop. 25 (for the directed part {(g,n) | n € £} of EL and the cofinal part
L€ of £) and (-)™* A(lﬁglwmﬂmg%) — A(LLEVMK.NJTKW) is defined as in prop. 3.9 (for the elementary
reduction (£, M®, 757, 59)* of (L5, M™, 1)),

We have for all y & S#EL,MDW’,TDVN) and all f € A#L,MKW’NK.N):
Fly) = FHA*(y).

o, &

Proposition 3.18 Let (£, M™, 7)* be a projective system of phase spaces and let (£, M, 7, 0)
be a regularized reduction of (£, M, 7**)*. Let £’ and & be directed subsets of £ and & respec-
tively, such that, for all e € &, £'° := L5 N L' is a cofinal part of £’

Then, (L/,M,JT,5)DWE/ is a reqularized reduction of (L’, ZI\/[K‘N,JTK'N)l and, for any € € &', we
have:
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0 0o N =N 0 02 e, (3.18.1)

~
“SKIN DYN

.l i . gl l : ;
Where O‘LHL, . S(L,MKIN,NKIN) — S(L/,MK‘NJTKIN)' O‘EL&)E’L’ . S(EL,MDY\,HDVN) — 8(€/£/,MDYN,7TDVN) are deﬁned l—n
analogy to prop. 2.5, while A® : ngﬁle\’ﬂmN) — g(lL'MKWﬂK.N) and A'“ S#E,L,MDW,HDW) — g(lﬁ,’wwﬂm)
are defined as in def. 3.17.

In addition, for any f & A%L/’MK.N ) and any € € &', we have:

]TKIN

(BE_o(N)” = Betcew (F°), (318.2)

KIN DYN

e l ) !
where Br ot Alp ypon gy = Agpgen oy and B o 0 Alergr yeom omy > Aleg ypon o are de-

fined in analogy to prop. 25, while (-)° : A&MKm ) — AfEL’MDWﬂmN) and ()" : A(LL,,MK.NJTKM —

]TKIN

A(lg/L/,MDWﬂDW) are defined as in def. 3.17.

Proof £'° being a cofinal part of £’ for all € € & ensures that def. 3.16.1 is fullfiled. Moreover, &L’
is then a directed subset of £L, hence def. 3.16.3 holds. Lastly, def 3.16.2 follows from prop. 3.11,

since, for any € € &, L'° is a directed part of £ (as a cofinal part of the directed set £').

Let e € & We have £ D L', L D L'®, hence:

“SKIN

/O‘\leﬁ)c/ﬁ O /O‘\ZJLL/ == /0‘\22*)'5/& @) O‘L%LS'

And, from £ D &'L’, L5 D L'° (identifying £ with the subset {(e,n) | n € £°} of EL and L'°
with the subset {(,n) | n € £} of &L as in def. 3.17), we also have:

DYN DYN DYN

O-QEHL’S @) Ugﬁ_)ﬁg = US/L’HL/C o UED:YLN_)S/Q/.

So, using the definition of A° and A’ from def. 3.17:

~ ~ ~
KIN ) KIN KIN,—1 DYN
o A® =

&
Opszr = 07", 0 0 pe © Npe © 02 e

“SKIN,—1 “SKIN £ DYN

=03 e O O e © Npe 0 Ogp_pe

“SKIN,—1 DYN

& .
= 05 e © Npe 0 028 pe 0 087, e (using prop. 3.11)

“SKIN,—1 DYN

1€ DYN
== OL’*)L/E O A[/& @) O_S/L/—>L/€ O O_(S[,ﬁg/[/

&
= A" o 0t e
Similarly, we have:

(1) o e = Beree © ().

Now, we would like to give a precise definition of the convergence we have been hinting at
repeatedly above. To ascertain convergence is crucial for ensuring that we will get consistent
predictions when refining the level of approximation at which we are conducting the calculations.

Our unchanged goal is to make it possible to transport kinematical observables over to the
dynamical theory, not only in an approximated fashion, but in such a way that we faithfully realize
the transport prescribed by the exact dynamics we are trying to implement (and, if the constraints
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Figure 3.4 - Convergence of a net of orbits

we are considering describe a symmetry restriction, we are also interested in the correct embedding
of the symmetric states in the full theory; as we already underlined in the previous subsection, the
map between observables and the one between states are the two dual aspects of the bond between
the initial or kinematical theory and the restricted or dynamical one). Additionally, we would like
to be able to investigate the properties of this correct dynamics (at a certain level of precision) by
making use of the approximated dynamics, where calculations will probably be more tractable.

The straightforward course is to obtain the correct transport map as the limit of the net of
approximated maps introduced previously. As illustrated in fig. 3.4, we begin by defining, given
a family of orbits in a manifold, a notion of convergence, which is adjusted to our method for
transposing kinematical observables into dynamical ones (as explained in appendix A, this method
is itself motivated by taking the indicator functions as model observables).

Definition 3.19 Let M be a finite dimensional manifold and let (N®).c¢ be a net of subsets of M.
We say that the net (N).ce converges to the subset N if:

1. VU open set C M such that N* N U + @, Je € £V =, N N U + &;

2. and YK compact set € M such that N N K = @, Je € € /Ve = ¢, NNK =2.

Proposition 3.20 Let M and (N°).c¢ be as in def 319 and let f € C;°(M, R) (the space of
compactly supported, smooth, real-valued functions on M). We define:

fer=sup{f(x) | x eNY} & ®:=sup{f(x)|xe N}
Then, lim & = f*.

cel %

Proof Let 0 > 0. We choose x € N such that f(x) > f* — 0/2. f is smooth, so there exists an
open neighborhood U of x such that Vx" € U, f(x') > f* — 3. From def. 3.19.1, there exists &; such

that Ve’ = &, N* N U + @. Hence, V&' 3= &, ¢ > f®° — 0.

Let K := {x e M | f(x) >f*+0}. Since f is compactly supported, K is compact. We have
K NN*® = @&, so, from def. 3192, there exists &, such that Ve’ = &, N NK = @ Hence,
Ve = e, 1€ <P+ 0.
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€ being directed, there exists € = €1, &,. Then, V&' = ¢, {f‘x’ — e <0. ]

For any state over the dynamical projective system, and any n € £, the framework laid at the
beginning of the present subsection allows to construct a net of approximated orbits representing
this dynamical state in MJ" (def. 3.17). Thus we can define the space R of all dynamical states such

that, for all n, the net of their approached projections on M;‘N converges in the sense above.

Hopefully, R will be dense in the space of all dynamical states, but we do not require both spaces
to coincide. It is in fact not really surprising that formulating the exact dynamics may require
to consider only states that are well-behaved enough (we can view this prescription on the same
footing as, for example, the routine requirement for fields to be smooth so that we can describe
their dynamics by partial differential equations).

Reciprocally, we can also associate to any (sufficiently regular) kinematical observable its corre-
sponding exact dynamical version, as an observable defined on R. At this point we can comment
on the issue raised in section 1, namely that even the Poisson-algebra generated by finitely many
observables could be too complicated to be represented on a finite dimensional symplectic mani-
fold. We had argued that this problem should not arise when looking at kinematical observables,
yet it might (and generically will) occur for the dynamical observables. By defining a dynamical
observable as the limit of a family of imperfect estimations, we escape this difficulty. On the one
hand, each such estimation can be expressed over a sufficiently big partial theory, while keeping the
partial theories finite dimensional, because the regularization allows us to keep under control the
algebra generated by finitely many of these approximated versions of the observables. On the other
hand, an exact dynamical observable, being a limit, is allowed to depend on the full projective state

(y;)(s,n)eé'ﬁ € R

Definition 3.21 Let (£, M, 7**)* be a projective system of finite dimensional phase spaces and

let (Y“)ece be a net in g&’w.wm). We say that the net (Y“).ce converges to the element Y™ &
<l e
S(L,MK‘NJTKIN) Lﬁ

1. Vn € L, the net (Yi)geg converges to the subset Y of M in the sense of def. 3.19.

If (£, M, 7,0 is a reqularized reduction of (L, M, ), we say that the reqularization

converges on a subset R of S%EQVMDVNVHDW) iff:

2. Yy € R, the net (A®(y)),¢ converges in g(lL,MK.N,ﬂKN).

Proposition 3.22 Let (£, M™, 7)* be a projective system of finite dimensional phase spaces. We
define:

Aty gy = {f € Algron oy | 3N E L, 3y € F1 1) € CROM, R)}.

If the net (Y).ce in g(lL,MK‘\,NK.N) converges to the element Y™ & g(lL/MK.NJTKW), then, for all f €
A&‘%MK.NWKW), the net (f(Y“)).c¢ converges to f(Y).

If (£, M, 7, 0)"™ is a regularized reduction of (L, M, )¢ such that the reqularization con-
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verges on R C S#EL,MDVNJDN, then, for all f € Afél,mwﬂwy we can define an application ™~ on R
by:
Yy € R,My) = lim F(y).

Proof Let f € A&’L’MK.N yand let n € £, f, € f such that f, € C°(M}", R). Forall € € €, we

have f(Y“) = sup f, (for we can choose any representative of f to evaluate f on Y*). Now, the net
v

7TKN

(Y, )ece converges to the subset Y of M;", hence, using prop. 3.20:

lim f(Y¢) = supf, = (V™).

IS y oo
0

Now, if y € R, we have from def. 3.21 that the net (A(y))..e converges in g(lL,MK.NﬂKW). Hence,
the net (f(A°(y))).ce converges, but we have Ve € €, f(A(y)) = f*(y) (def. 3.17). O

Finally, we want to discuss how renderings (def. 2.6) can be incorporated in this procedure,
and more specifically, how regularized reductions can be used to mirror phase space reductions
in infinite dimensional symplectic manifolds. Given a rendering of some infinite dimensional

KIN
Q2

symplectic manifold M., and a phase space reduction thereof, we will aim at constructing a
regularized reduction whose dynamical projective system renders the dynamical phase space M.

Additionally, we will require that the regularization converges (at least) on the dynamical states

DYN
o

that are identified, through this rendering, with points in M., and that, for any such state, the
family of orbits reflecting it in the kinematical structure can be identified with the corresponding

orbit in M.

Then, besides being provided with a rendering of the dynamical theory, this last point will ensure
that the maps linking the kinematical side and the dynamical one are appropriately intertwined by
the identifications arising from the renderings on both sides.

In prop. 3.24, we formulate more concise assumptions that are sufficient to bring forth this
optimal setting. As illustrated in fig. 3.5, it relies on the successive approximations of the dynamics
being formulated as phase space reductions of M.

Q2

and the thus defined dynamical phase spaces
M€ building a rendering of the exact dynamical theory (denoted by M2)*).

Proposition 3.23 Let (£, M, 7)! be a projective system of finite dimensional phase spaces and

let (£, M, 7, 8)™ be a reqularized reduction of (£, M™, 7*)*. Assume that we have a symplectic
manifold M) and a phase space reduction (M2, M5, d) of MY, such that:

1. we have a rendering of M by (£, M*™, )" and of M2 by (EL, M, s

2 for all y in M2, the net (A® o ofw(y))ge(g converges in g(lL,MK.N'ﬂKW) to 0" (0 ({y})), where
o™ M — S#EL,MWWDY\) is defined as in def 26 and 0" : P(M})) — g(lL,MK.N,,TKW) is defined in
a similar way.

DYN

Then, the regularization converges on R := Im o™ and for all y € M}, for all f € Afﬁmmﬂw),

we have:
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- /
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0*4/ > € U {oo}

Figure 3.5 — Regularized reduction and rendering

o a(y) = (B7(0)" (v).

Proof Let y € M2 and f € flfﬁ'l,wwvﬂm). We have, using prop. 3.22:

™ 0 o7(y) = lim 0 o™ (y) = lim o A" o a™(y)=f o 5" (3 ({y}))

el X cel X

= BN (05 ({yh) = sup B (N) = (B"(F)™" (y).
o ({y})

0

Proposition 3.24 Let (£, M™, 7**)* be a projective system of finite dimensional phase spaces
yielding a rendering of a symplectic manifold M. Let € be a directed preordered set and assume
that:

1. for any € € € U {oo}, we have a phase space reduction (M22¢, M€, 05) of M,
2 for any € € &, we have a cofinal subset £° of £ and an elementary reduction

( DYN,E SHELL,E DYN,E—E&

n )neﬁeu{oo} ! ( n )neﬁgu{oo} ' ( n'=n ),74/7/ ' ( ”g)neﬁgu{oo}

arising from (MZ20+<, M€, 05);

Of (Lg |_| {OO} ) MK\N’ ]TKlN)l,

3. we have a rendering of M2 by (€, M2, w2 )

oQO—00
’ ’ . . / ’
4 forany e 5 €, £ C £° and, for any n € £, we have a projection ;%7 7 My™ — M)™,
. . . / 7 / /
compatible with the symplectic structures, and such that 720 7€ o g2%¢ 2 = 0™ 7€ o r2ve 7€

o= 00—0Q n—n co—n

Then, defining £ = £ L {oo} and g=¢u {oo} (extending the preorders in such a way that co
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~ DVN,E
is a greatest element), we can complete this input to build a reqularized reduction (L, M, 7, 5)
~ l
Of (L’ MK\N’ ]TK\N)
If we moreover have:

5. forany y € M2, the net (6fN (65" (JT”VN'OO%(g»)) converges in g(zww,ﬂw) to g™ (02" (y));

oO—>0Q
ecé

then the hypotheses of prop. 3.23 are fulfilled.

Proof For any € € & we define £° == £° LI {oo} and we additionally define £ := {co}. With
this def. 3.16.1 is fulfilled.

For any € € €&, def 3162 comes from assumption 3242, and for co & &, it reduces to
(e, NS, 0%7) being a phase space reduction of M, which has been assumed in 3.24.1.

ow,'—e . _owe—eE

/ = ; O
n—n n—n

Forany e x &' € € and any n € L5 0 € £ with n < n, we define 7

DYN,E—E

n'—=n

DVN,S/—>6

oy - From assumption 3.242, 7 C MM — MM s a projection compatible with the

symplectic structures, and from assumption 3.24.4 (or 3243 if n = o0), JT,?L’C,;?E : M;V,N"g/ — M

/ /
is a projection compatible with the symplectic structures. Hence, )" ™ : M — M)™ is a

projection compatible with the symplectic structures.

Let (e,0) < (£, 1) < (€, ") € EL. We have i, " € £F, hence, using points 3.24.2 and 3.24.4:

DYN,E—E ow, & —¢€ ow, & =&’ DYN,E—E ow, &' —¢€ _ ow, & —¢€ ow, &' —¢€’ ow, & —¢&’

n//_>l7/ 17//Hn// OO_”]// - ]TOO_>H/ o jTOO*}OO - r]/ﬁf]/ n//_>l7/ OO_)H//

/ !
Since 70 ’* is surjective, we then have:

DIN,E—E ow, & —€ ow, & —€ ow, &' —¢€’
o Jr ., =7 o Jr .,

]Tn//_m/ n—=n" = sy n'—n '

hence, using once more from 3.24.2:

ow, &' —¢€ o JTDVN,E”—NS/ . ONEDE ]TDVN,€—>€ o ﬂ_nw,a’—w o ]TDVN,s”—>5’
/ v / I / /! / /! v v /!
nm—n n—n nm—n n—n n—n n—n
/ s /
DYN,E—E DYN,E —& DN, £ — & 3 24
== /7 1 Vi /7 /" ( . 1)
n—n n—n n—n

Now, using repeatedly 3.24.4, together with 3.24.3, we have:

ow, e’ —e ow, e’ —¢e’ ow,e”"—e”  _owe—e o o, & —E o o, e’ =€’
n//g)n// n//ﬂn// Ooﬂn// i jTOOHnH ]TOO_)OO 7TOO_>OO
. ]TDVN,SN—>8 o ]TDVN,S//—>6”
i n//_>n// OO_>/7//
N’6//_)8//

H DY . . .
and, swnce g LS SUI’JeCtLVGI

—n

ow, &' —e o, e’ —€’ o, e’ —e 324
n'—n' ' —n" - = ( . 2)

Combining eq. (3.24.1) and eq. (3.24.2), we get:

DYN,(S,—)(‘: DVN,E//—>£/ . DYN,E—E DVN,EN—>€ DVN,E//—nS

n/_>n 17//Hn/ - l7”—>l7 n//_)n// - 17//Hn ’

~~ b
therefore [EL, M™, ™) s a projective system of phase spaces, so def. 3.16.3 holds.
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Thus, using prop. 3.18 with assumption 3242, (£, M, 7, 5)”“"(S is a regularized reduction of
(L, IV, JTK'N)L, while (EL, M"™, JTDVN)l is a rendering of M2

We now assume that assumption 3.245 holds. Using eq. (3.18.1) for E£ C &L, we have:

G o A =Af o g
OL—)L A A OEL—)EL !

and using it for & {oo} C EL:

“SKIN e e,—1 DYN DYN
O ooy © A7 =027 () @ 05y eoay © Timt{on)

=057 () o oty

eL—{(e,00)}’
therefore:
e DYN £ DYN own,—1
o) = o g=% O 0=~
A" oo™ =A" ooz . 022 —{(c0.00)}
ASKIN ~kin,—1 e —1 DYN ovn,—1
= o~ 0o 0~ o 0Y -y o o=% o O-=
T2t © 9o} 05 () © T (oo T8z —{(c0.00)}

_ SKIN e,—1 DYN,0Q— &
=0"o00y ()om .

oO—00

Hence, for all y € M2, the net (A® o Ufw(g))geE converges in g(lL,MK.N,ﬂm) to 0" (552"1 (y)).
O

At this point, the question that remains open is how to construct a rendering of M*“* by a
net of reduced phase spaces M, arising from constraint surfaces approaching M>**°, In other
words, we are lacking systematic recipes for setting up regularization schemes in the sense of the
procedure just described.

Among the tools that are at our disposal is the gauge fixing/unfixing trick (taken from [14],
where it was however used in a completely different context), that would consist in first partially
gauge fixing (prop. A.8) the original phase space reduction, and then gauge unfixing it in a slightly
different direction: thus we would deform the orbits (in the view of improving their projectability),
and get an approximation of the dynamics that should be satisfactory in some neighborhood of
the common gauge fixing surface (this technique is the one used in section 16). Another option,
that might be in particular relevant when the gauge orbits are infinite dimensional, could be to
drastically gauge fix them, before progressively lifting the gauge fixing conditions, thus approaching
a given orbit by an increasing net of submanifolds inside it. In both cases, we get a natural
symplectomorphism between M and each M""¢, so we probably want to combine such methods
with projections from M*"* into symplectic submanifolds of it, to drop the degrees of freedom that
are disproportionately accurate at a given level of approximation.

Also, there is presumably some link between the regularization procedure we are considering and
various concepts developed eg. in the context of Loop Quantum Gravity (often within a Lagrangian
setting), exploring the interplay between discretization, coarse graining, diffeomorphism invariance,
and the continuum limit [59]. Studying more precisely how these approaches are related to the
strategy proposed here could in particular help incorporate renormalization group ideas into the
picture.
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Chapter 2 — Quantum Formalism

4. Introduction

While finite dimensional symplectic manifolds are comparatively easy to quantize, allowing the
formulation of rather systematic procedures (such as geometric quantization [105], of which a
brief account is given in appendix B), quantizing infinite dimensional ones (aka. field theories)
is substantially more involved: typically, we have to rely on some additional insight, telling us

how to break them down into a stack of finite dimensional truncations and how to afterwards
reassemble the pieces into a consistent quantum theory. The projective approach to quantum field

theory introduced in [48, 68], and reviewed in subsection 3.1 below, makes this concept central
to the formalism, by representing each truncation on a ‘small’ Hilbert space, before sewing the
thus obtained partial quantum theories together into a projective structure. Like in the classical
formalism described in the previous chapter, the labels indexing these partial theories are to be
thought as selecting finitely many degrees of freedom out of the considered infinite dimensional
theory. Whenever the degrees of freedom retained by some label i are also covered by a finer label

1, the usual rules of quantum mechanics suggest to identify the small Hilbert space 3, associated
to 1 as a tensor product factor in H, : this allows to compute partial traces of density matrices
on H, , which is how the relation between the corresponding partial quantum theories will be
formalized in def. 5.2.

We pointed out in the main introduction that this approach has the potential to deliver bigger
state spaces, as it sidesteps the need to specialize into a single representation of the algebra of
observables. To demonstrate this property, we will, in subsection 5.2, inspect how the quantum
state spaces built this way compare to those provided by other quantization methods, that are also
assembled from ‘small’ Hilbert spaces, yet sewed in a different manner (this analysis will then be
applied to the relation with the standard LQG Hilbert space in subsection 12.2, and with the Fock
space of QFT in subsection 16.2).

As stressed in section 1, there is a correspondence between projective limits of symplectic mani-
folds on the classical side and projective limits of state spaces on the quantum side. Accordingly,
one can try to formulate a quantization program to turn a classical projective system into a quan-
tum one. In [68] Andrzej Okotow established such a quantization prescription: by identifying
appropriate assumptions, he was able to set up what we would call, in the terminology of def. 2.15,
a factorizing system of linear configuration spaces, which could then be quantized in a projective
form. He subsequently used this construction to obtain the kinematical state space of a certain
theory of quantum gravity [69]. In subsection 6.1, we will extend this result to configuration spaces
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given as simply-connected Lie groups. This is meant as a preparation for a corresponding treatment
of Loop Quantum Gravity, but could probably have applications to other gauge field theories as well
(viz. chaps. 3 and 4). Additionally, holomorphic quantization will be discussed in subsection 6.2,
following the lines of geometric quantization (note that the quantum projective structure used in
subsection 16.2 could be seen as arising from such an holomorphic quantization, although we will
arrive at it from a different perspective).

Note that the heuristic picture that was presented at the beginning of subsection 2.1 as a justifi-
cation for the projective formalism becomes a bit more involved when we go over to the quantum
theory. In particular, we had justified the directedness of the label set £ by arguing that, given

any two experiments, involving observables included respectively in the labels n and ', we should

be able to describe the simultaneous realization of both experiments, hence the need for a label

n" = n,n . However, this argument obviously does not hold any more in the quantum theory, where

complementarity forbids the simultaneous measurement of non-commuting observables. As a way
out, we could simply decide to restrict the elementary observables (the ones that are accounted
for in £) to a set of mutually compatible observables, but that would force us to hard-code in the
theory which observables we intend to actually measure (and to drop those that could a priori be
measured but will not). This in turn creates severe difficulties, because we need to prescribe how
to select in advance the set of those truly measured observables without spoiling predictivity (see
eg. the concerns raised in [24]).

In the following, we bypass this discussion by assuming that we get the kinematical quantum
state space via the quantization of a nice classical projective limit, so that it will not be a problem,
for any finite set of kinematical observables to represent them on a ‘simple’ Hilbert space, whether
these kinematical observables can be simultaneously measured or not. On the other hand it is to
be expected that the algebra generated by a finite set of dynamical quantum observables will not be
easily represented: already on the classical side we had underlined that a finite set of dynamical
classical observables may generate an intricate Poisson-algebra (recall the comment before def. 3.21).
Like in the classical formalism, we must therefore expect that the exact dynamical observables will
have to be approximated by approached ones, which in particular build a tractable algebra.

5. Projective limits of quantum state spaces

The crucial insight of the projective formalism, that goes back to Jerzy Kijowski [48], is that
quantum states will be realized as projective families of density matrices, and not as families of
vector states. This is actually a repercussion of the specific viewpoint of this formalism, namely
that labels in £ stand for a selection of observables (and not eg. for a selection of states). Indeed,
in order to project a state from a more detailed partial quantum theory, represented on an Hilbert
space },;, to a coarser one, with Hilbert space }(,, we need a map that will retain from a state
only the features needed to compute expectation values of the observables on }(,: this is what the
partial trace on a tensor product factor accomplishes but it can only be defined as a map between
density matrices (the partial trace of a pure state can be a mixed state and conversely).
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While this has been previously rather seen as a weakness of the construction (see the discussion
in [68, section 6.2]), we argue that such a generalized framework will be, in practice, indistinguish-
able from a more traditional theory on a Hilbert space: given a particular experiment, we should
be able to select an 1 such that everything takes place within J(,. Moreover it seems advantageous
to start with a very large kinematical state space, thus avoiding the inherent arbitrariness of re-
stricting it a priori to some particular subspace, and to wait until there is a real need for such a
restriction, together with clear requirements on how to perform it (in the light of section 3, this
could be because we are forced to consider only the states for which the regularization scheme,
needed to implement the dynamics, converges; this intuition is supported by the toy-model studied
in section 16).

In order to clarify the claim made above, that quantum state spaces described as projective limits
tend to be ‘bigger’, we will examine precisely how they compare to those built on inductive limits of
Hilbert spaces (theorem 5.9) or on infinite tensor products (theorem 35.11): these are constructions
that incorporate ingredients somewhat similar to the projective approach, but differ notably by
seeking a global Hilbert space for the quantum theory.

5.1 Projective systems of quantum state spaces

In this subsection, we present the projective approach to quantum field theory [48, 68], formu-
lating it in a form as close as possible to the classical formalism set up in section 2. Indeed, the
projective systems of quantum state spaces described here can be seen as the direct equivalents of
the factorizing systems we had on the classical side (subsection 2.3), replacing Cartesian products
of classical phase spaces by tensor products of Hilbert spaces, in accordance to the basic principles
of quantum mechanics (in particular, the three-spaces consistency from fig. 2.1 is straightforwardly
transformed into its quantum version illustrated in fig. 5.1).

While we had convinced ourselves that the factorizing systems are quite generic among the
projective systems of classical phase spaces (see the argument laid in prop. 2.10), their quantum
counterparts seem to be even more broadly applicable (viz. section 7).

Definition 5.1 A projective system of quantum state spaces is a quintuple:

(L’ (j{”)neﬁ ' (}C”/H”)nw“ ((D”/H”)n%n” (q)”/q”/%”)n%n/%n”)

where:

1. £ is a preordered, directed set (we denote the pre-order by <, its inverse by »=);

2. (an) is a family of Hilbert spaces indexed by £;

nel

E} (J-C,,/ﬁn)nﬁ, is a family of Hilbert spaces indexed by {n, " € £ | n < n'}, such that dim(%, ) =
1 forall n € £;

4 (Pyoy)
by {n,.n" € L] n=<n} such that &, is trivial (by isomorphism of Hilbert spaces we mean a

oy s @ family of isomorphisms of Hilbert spaces &, : Jy — Hyy ® I, indexed
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Figure 5.1 — Three-spaces consistency for projective systems of quantum state spaces

(bijective) unitary map between Hilbert spaces);

5. (d)””_”7/_’”)n<n/<n” is a family of isomorphisms of Hilbert spaces &, : Hpy — Hpy @
H, -y indexed by {n,n',n" € L|n<n =<n"}, such that &, is trivial whenever n = n/

or f =n", and:

Vnsn<sn"el, (Pryrsysn ® ld?fn) 0 Py = (ids, , ® Pyp) 0 Py (5.1.1)

n'"—n

Whenever possible, we will use the shortened notation (£, H, ®)® instead of (L, (9{”)”@ ,

(:H:q/ﬂn)nﬁn/ ) ((DW/H'])U%U/ ) (q)n,/H’]/Hn)nﬁﬂ/%fI”).

Definition 5.2 Let (£, J(, ®)® be a projective system of quantum state spaces. For n € £, we
define §, the space of (self-adjoint) positive semi-definite, traceclass operators on 3, and §, the

space of density matrices:
8y =1{p, €8, | Trae, py =1}
For n<n € L, we define:

Ty, gn/ — 3,7
(d)n/_)nopn/od>*1 )

n'—n

Py = TrfJ'C/

n'—n

From eq. (5.1.1), we have:
Vnsngn" el Tryo,o Tryy =Try_,.

Hence, (L, (g”)nEL’ (Trnqn)”w) forms a projective system and we denote its projective limit

by gfzg{,d)). The maps Tr,_, being linear under conical combinations (ie. under addition and

multiplication by positive reals), gi,g{,@) forms a cone (ie. we can equip it with a notion of addition

and positive multiplication).
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Now, for all n < n" € £, Try, (8y) = 8, hence (L, (S”)/]EL’ (Tr”/_)”)n«/) also forms a

projective system. Accordingly, a state on (£, 3, ®)® is a family (pn) such that Vn € £, p, is

nel
a density matrix over K, and Yn < 1, Try—, py = p,- We denote the space of states by S‘(}%,g{,tb).

The projective structure conferred to the space of states comes with a natural inductive structure
for the observables (see [48, section 6] or [68, section 6.2] as well as [86, section 1]). Thus, we can

define a C*-algebra Z(%g{’q,) of bounded operators, as the inductive limit of the algebras A, that

. —® .
live over each 3{,. Then, the states defined above can be seen as states on A; 5 ) in the sense

of [41, part III, def. 2.2.8]. Looking at states over a C*-algebra is in a sense more fundamental
than looking at density matrices over a specific representation of this algebra. Indeed, any such
representation can be split into cyclic components, and each cyclic component arises from a state
over the algebra via the GNS construction [34]. Reciprocally, any state p over the algebra defines a
corresponding GNS representation, and the irreducible representations are precisely the ones that
arise from pure states (states that cannot be written as a non trivial convex superposition of other
states) [41, part III, theorem 2.2.17].

The states that can be represented as density matrices over the GNS representation of a state
p form the folium of p (see also prop. 5.8 on this point), and Fell's theorem [29] tells us that,
whenever p yields a faithful GNS representation, its folium will be, in a definite sense, dense in
the set of all states over the algebra. While this mitigates the universality concerns posed by the
(more or less arbitrary) choice of a representation (that we raised in the general introduction), it
does not completely eliminate them: although we could, in principle, approximate any desired state
by a family of states that belong to the chosen representation, we would still have to carefully
check the convergence properties of this family (to ensure that it provides a consistent physical
picture). On the other hand, by working at the level of the full space of states over the algebra, we
would lack any constructive description of the states. The framework presented here can thus be
seen as a middle ground: we are trying not to restrict the space of states too much (see prop. 5.12
and the discussion at the end of section 18), while providing a fairly explicit characterization for it
(especially if the label set can be made countable, as we will investigate in details in section 19).

Note that this framework is somewhat reminiscent of other approaches where one is looking at
states over an inductive limit C*-algebra, like Algebraic Quantum Field Theory [41, part III], or the
General Boundary Formulation of quantum field theory (in its positive version [63]). There are,
however, substantial differences. Notably, the building blocks of our algebra of observables will be
in practice very small algebras: each A,, instead of being meant to include all the operators needed
to interpret any arbitrary experiment taking place in some given region of spacetime, should be
thought as only containing the operators needed for the description of finitely many experiments.
More deeply, the purpose of giving the algebra of observables an inductive limit structure is in
our case not so much to encode additional physically essential information (eg. the localization
of the operators and associated causal structure) but rather to arrive at a description of the space
of states as concrete and as convenient as possible (by building it from small representations that
are well under control and suitable for calculation). Of course, we could combine both aspects, by
decorating the projective structure with this extra information: for example, we could map a region
in spacetime to the set of all n that can be seen as contained in this region.
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Definition 5.3 We consider the same objects as in def. 52. For n € £, we denote by A, the
algebra of bounded operators on H, and, for n < n" € £, we define:
byen + Ay = Ay
A, s O o ('Ldg{ng”@A,]) ody .,

n'—=n
By definition ., is injective and, from eq. (5.1.1), we have:
VN0 0" tpey O Lyey = Lyey. (5.3.1)

. <® : , : : :
Accordingly, an operator over 8, 4 ¢ is an equivalence class in U A, for the equivalence relation
nel

defined buy:

V. € L YA, € A, VA, € Ay,
Ay~Are (A" elingn" 0 xn0" & ey (A) = tyew (Ar)) (5.32)

The space of operators over gi’%@ will be denoted by .A%%q)). For A=[A)]_ € .A(%H'q)) and
P = (Pn)nee € 323{’@), we can define TrpA := Trg¢ pyA,. The definition of the equivalence relation
ensures that this is well-defined.

Proposition 5.4 For n < " € £, the map ;. is an injective C*-algebra morphism (ie. an injective,
isometric *-algebra morphism). Hence, Aa,}m) can be equipped with a normed *-algebra structure

as an inductive limit of C*-algebras. And denoting by ﬁfzgm) the completion of Afiﬂm) with

respect to the operator norm, ﬁ(ig{,q)) is a C"-algebra.

Then, for all p € S‘a%(b), Tr(p -) can be extended by continuity as a state over Zgg{,q}).

Proof That t,., is a C*-algebra morphism for any n < 1’ is ensured by ¢, _,, being a Hilbert
space isomorphism and by the properties of the tensor product of operators.

Next, let p € 87 504), and let [A)]_,[By|_ € AZ 44 Forany n” = n',nand any a,b € C, we
have:
1. Trp (GA +b B) = TI’}(”// P (G Ln//gn(Aq) +b lq//gn/(Bn/)) =aqalr (pA) +bTr (p B) ;

2. Tr(pA) = Trac, (g Ag) < (1Al = (1Al
3. Tr(p L) = Tryg, (pyidy) = 1,
4. Tr(p AT A) = Trag, (pg AT Ay) = 0.
0

Proposition 5.5 For n € £, we denote by O, the algebra of densely defined (possibly unbounded)
self-adjoint operators on H,,. For n < ' € £, the map 1., (def. 5.3) can be extended to O, — O, .
Indeed, if O, € O, is a self-adjoint operator on J{,, with dense domain D,, C J{,, then the operator

o' o (Ldg{n/ﬂ ® 0,7) o ®,_,,, defined on the dense subset ' (3, _,, ® D,) of H, (where

n'—=n n'—=n
the ® is understood as a tensor product of vector spaces, te. without any completion), is essentially
self-adjoint and we define y.,(0,) as its unique self-adjoint extension [73, section VIII.10]. An
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observable over a projective limit of quantum state spaces 8(%9{,@) is then defined as an equivalence
class in U 0, in analogy to eq. (5.3.2).
nel
The space of observables over Sfiﬂm) will be denoted by O%%q)). For O =[0,]_ € Oa,gﬁp), we
can define the spectrum ¢(O) of O as the spectrum ¢(O,) of any representative O, of O and, for W
a measurable subset of ¢(O), we can define Iy(O) as the equivalence class Iy (0,)]_ € A(%%q)) of

the spectral projector I (O,).

Hence, for a state p = (p,)4ec € S‘a,gm), we can define the probability of measuring O in W as
plO € W]:=Trply(O).

Proof ¢(O,) being independent of the choice of a representative O, comes from:

Vi = 0. ¢ (@50 (idw,, ©0,) 00y =< (0,).

n'—n

where we used [73, theorem VII1.33] together with the fact that ®,,_,, is an Hilbert space isomorphism.

That O, ~ O, implies Iy (O,) ~ Iy (O,/) comes from:

Vo' =0, Iy (CD;LU © (.Ldgfm% ® On) © (Drl’ﬁn) = CI);L” © (ld%/ Q@ Iw(0y) | 0 Py,

n'—n

as can be ascertained using the spectral theorem in its multiplication operator form [73, theorem
VIIL4]. O

5.2 Maps between quantum state spaces

In order to investigate the relations between the spaces of quantum states assembled this way and
more standard constructions, we will use the same tool as we used to make the connection between
classical projective structures and infinite dimensional symplectic manifolds, namely extensions
and restrictions of the label set. As in subsection 2.2, the strategy will be to extend the label
set by adding to it a greatest element (associated to the big’ Hilbert space to which we want to
make contact), before restricting ourselves to this greatest element alone (thus ending with a trivial
projective system that can be identified with the target Hilbert space). A bit unintuitively, the non-
trivial switch of state space occurs during the first step: this is because a greatest element forms by
definition a cofinal part, which makes the second step innocuous.

Proposition 5.6 Let (£, H, ®)® be a projective system of quantum state spaces and let £’ be a
directed subset of £. We define the map:

=® =®
0 S(L:H,q>) - S(L’,ﬂf,ﬁb)
Pl e ™ \Pn)per

o is conically linear (ie. compatible with addition and multiplication by positive scalars).

Moreover, we have a map « : ﬁfz/ﬂ{m — ﬁ(%&fxb) such that:
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5® —®
Vp € Sz sca YA € Aiacay, Tr(palA)) = Tr (a(p) A), (561)

and a is a C*-algebra morphism.

If £ is cofinal in £, we have in addition that o and « are bijective maps.

Proof The proof works in the same way as in the classical case (prop. 25). The conical linearity of
o and morphism property of a comes from their definition (with o being defined in analogy to the
classical case). Eq. (5.6.1) can be first checked for 8(%%@) and Az 5¢.0) and expanded by continuity

and conical linearity. U

Proposition 5.7 In particular, if £ admits a greatest element A, there exist bijective maps o :

ggg{m) — 8, (8) being the space of (self-adjoint) positive semi-definite, traceclass operators over

Ha) and a : Ay — Z(?gm) such that Vp € g(ig{,q)), VA € Ap, Tr(palA) = Tra (a(p) A).

Proof This is an application of prop. 56 for the cofinal part £ = {A} of £, using the obvious

If we choose a particular state in a projective limit of quantum state spaces, we can use it
as a vacuum to construct a corresponding GNS representation of the inductive limit algebra of
observables [68, section 6.2], and this representation will naturally inherit a structure of inductive
limit Hilbert space (like the Hilbert space used as starting point in LQG, see [6, 60, 8]). We
will specialize in the case where the vacuum state we are using projects as a pure state on every
H,. Whether there exists such a pure projective state of course depends on the specific projective
structure under consideration, however we will be interested in situations where the natural vacuum
turns out to be of this type (notably in prop. 6.5 and prop. 16.17). In this case, the inductive limit
Hilbert space is obtained from a collection of ‘reference states’ (,_,, € H,_,, that allows us to
see the tensor product factor H, as a vector subspace in J(,;. Any density matrix over such an
inductive limit H; can then be unambiguously mapped to a state in the projective limit, but the
converse typically does not hold, and in fact, we can formulate a handy condition to check if a
state on the projective structure has its counterpart as a density matrix on H.

Proposition 5.8 Let (£, 3, ®)® be a projective system of quantum state spaces and let p =
(pn)na € 830 Foralln e L, p, is a state over A, and we denote by J(;**, (-)* the GNS

representation constructed from this state [41, section 111.2.2].
Then, for all n < " € £, there exists an injective linear map 7., : 3(;° — J-C;:f. Ty 1S

isometric onto its image and satisfies:
GNS GNS
VA, €A, Tyey 0 AT = (tyenlAn) ™ © Tyey. (5.81)
Moreover, for all n < " < " € £, we have 1y o Ty, = Ty, hence we can define an Hilbert

space H," as (the completion of) the inductive limit of (L, (5‘(2“) ,
T et

can be identified with the GNS representation of Zi,f}m) arising from the state p (prop. 5.4).

GNS
(Tn/gn)”%n/) and 3,

If in addition there exists, for all n € £, a vector {, € X, such that p, = [, ) ( {,|, then
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3" ~ 3, and for all n < ' there exists a vector ¢y, € Hy,; such that the map 7., is given
by:

Vi € Hy tyeald) = Oyl (Grmn ® ). (582)

roof Explicit description o . Let np € L. a ing the spectral theorem to the (seli-
Proof Explicit descrip Fo," L L. By applying the sp L th h (f

adjoint) positive semi-definite, traceclass, normalized operator p,, there exist N, € IN U {co}, an

orthonormal family (¢!) _ in 3, and a family of strictly positive reals (p’), _, such that:
K | 7k k
po=)_ Py 1G]
k<N,
with Z p(nk) =1
k<N,

We define the map W, by:
W, o Ay = Hr K,
A Lo VP8 (O

where 9{; is the topological dual of 3, equipped with its natural Hilbert space structure. The map

® ‘Afm '

wp” is well-defined, for we have:

> |[Ver (@ lAg)

k<N,
Moreover, it has following properties:

2
=3P IAGI < 1A (583)

k<N,

1. W, is C-linear;
2 VA BE A, Y, (AB) = (Ld}q ®A) Y, (B);

3. VA Be A, <LPp”(A), LPpn(8)>

Hr@H,

SRRV VRS

kk'<N,

A e (Ac| Bgl)

- Z pf]k) ® <C'(7k) ‘ A+BZ’(7k)> = Trg'fn p’7A+B;

k<N,

4. W, (A,) = Vect {\/ pf;k) <Cﬁ;k)

(‘'C": by definition of W, ; ‘D" by considering operators of the form |¢ ) { ¢!"|)

_ Vet {\/pﬁ,ﬂ ("

Therefore, we can identify 30, with X, ® 3, and we have:

®|w>|k<Nn,wean}

|k < /\/,7]»@).‘){,7 =X, ® H,.
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VA € A, AN = idy, ®A.

Definition of the injections T,y.,. Let n < € L. We define a C-linear map:
U] nen p

Tyep Vect«{\/ < O Tk < ]» QH, — Vect{w/pgk,/) <Cgk) /\/,7/}> Q@ Hy
by:
Yk < N,, Y € H,, Ty, (\/ py) (9] @ |¢) )
= 3 (ot le@d) | 7)o (&)@ 95l e o v)

_Z /oCDn_)n(e®C }®’¢;1—>n(9®¢)>:

where (e) is an orthonormal basis of H,_,, and /p, is defined via spectral resolution. We have:

Ty en (\/@ <Z§k)| ® |¢>)

= (P70 L (e ) [ VA7 o 0L (e ©.1)) (9L, (¢ 0) [ 0L 00 )

2
vk < N, Y € K,

=2 {0 (e@ ) [ oy o oty (@) I

= <<r(zk) ‘ (Trn/—mpn/) C:gk)> ||L/f||2

k
— o g = H\/pw (¥

Therefore 7., is well-defined and can be extended as an injection 3, — 3{’°, which is
1 n

tsometric onto its image. For A, € A, we can check directly that eq. (5.8.1) is satisfied, using
AENS = Ldg(:p” ® An .

Next, we have:

ZTW{/PO"WHW(K ) CP) = Trae, py =1

k<N,

- e s

k<N K'SN, e

but since all pff,/) are strictly positive and Z pff//) =1, this implies:
k’g/\/”/
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2 112
VK" < Ny, Z ‘< n%n €®Z,7 )>‘ - Z1(76)‘ '
and therefore:
WK <Ny G = 3 (0L, (e@ ) | ¢} |00, (e ¢l)). (584

k<N, e
With this we can now prove:

VA, € Ay, Tyey o Yy (A) =

- T (e | ) A (e

k<N K'<N,y e

NG

K'<Ny

Lo (e®A, 7))

= L|Jpn/ O Ly (AU) . (585)

Thus, forn g n' xn" €L, tpey o 1y = Ty, follows from eq. (5.3.1) together with point
5.8.4 above.
Inductive limit Hilbert space as GNS representation of A, caco) - Let U-CGNS be (the completion of) the
Pn

inductive limit of (L (U{CNS)HEL, (T’/*”)n#n’) . Eq. (58.1) provides a representation of A7 44,

hence of Z((Xﬁ)ﬂfﬁb)' on 3", which we will denote by A+ A7 . In addition, eq. (5.85) ensures that

we can consistently assemble the family of maps (LIJpn) . nto a map ¥, :A%%q,) — ngNS, and,

by eq. (5.8.3), we can extend this map to ‘ALJ-M) Now, the properties of the individual ¥, ensure

that W, has the following properties:
5. W, is C-linear;

6. Vn.n' € LYA=[A]_, B=[B,)]. € Al g0 V0" =010,
W, (AB) = W, (IAy Byl ) = AW, (By)| =AW, (B);
7. VA, B € .Af%g{,d)), (W, (A), ¥, (B)>}CSNS =TrpA"B;
g W <Am¢>:9{g“.
Therefore, we can identify 3™ with the GNS representation of ﬁi%q)) arising from the state p.

Note. This result could be proved at a more abstract level, by directly using eq. (5.8.5) to define
Ty Here we gave the explicit expressions as a bonus.

Pure projective state. We now assume that for all n € £ N, = 0 and we define Vn € £, {, := 51(70)'
Thus Vn € £, X, = C and therefore J{EHNS ~ H,. Then, for n < 1, eq. (5.8.4) becomes:
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Cr = Z <<Df71—>n (e ® Zfi) ‘ Cn/> }ij_m (6‘ ® Zf,)>

e BON of 3/,

hence, defining ¢y, = Z (0.1, (e®G) | Cy) le) we get ¢y = &1, ((yon ® ).
e BON of H

n'—n

Inserting into the definition of 7,,., and applying the identification X, ~ C provides eq. (5.82).C]
Theorem 5.9 Let (£, H, ®)® be a projective system of quantum state spaces and suppose there
exists a family of vectors (C”/_’”):Hn/ such that:
1.V, Gy € Hyoy & [Gyon] =1
200" 0" Ppyoanl(Cyrasn) = Cyrmy ® Gy

We define an Hilbert space I, as (the completion of) the inductive limit of (L, (9{,7)”@ ) (T,7/<_,7)n<n,),
where the injective maps 7,y are defined as:

Tyey © Hy — Hy

Vn<n ecL, ! .
=1 e G bl (G ® W)

Then, there exist maps o : 8; — g((i}m) and a : 718}@) — A¢ (8¢ being the space of (self-adjoint)
positive semi-definite, traceclass operators over H; and A the algebra of bounded operators on
H¢) such that:

= —®
3. Vp €8¢, VA € A geay Trae (palA)) = Tr(a(p) A);

4. 0 is Injective;

sup ( tnf Try, (pn/ 6,7/|,7) ) =1Irp= 1} ,

nel \N'=n

5. 0<85> = {(pﬂ)neg

where 8¢ is the space of density matrices over H; and:

Oy = CDI;LU © (‘(n’ﬂnxén’%n‘ ® [dﬂf,;) o Py

We will, in the proof below, rely heavily on the so-called trace norm, which, for a positive
traceclass operator is just its trace. The reason why this is the appropriate norm for our purpose is
twofold. First, it plays nicely with the partial traces, since the trace norm of a partial trace of p is
always bounded by the trace norm of p itself (it is obviously equal in the case of a positive p, and
the bound follows by decomposing a general p into positive and negative parts, or by invoking the
next point). Second, it supports the physical interpretation of quantum states, revolving around the
evaluation of observable expectation values, since the trace norm of p is precisely the norm of the
continuous linear functional A — TrpA defined on the algebra of bounded operators (this can be
proven using the polar decomposition of p [73, theorem VI.10]). An additional advantage is that
the traceclass operators form a Banach space with respect to this norm [82].

Lemma 5.10 Let J be an Hilbert space. For any traceclass operator p on H we define its trace
norm |||, (aka. Schatten-norm with p =1 [82]) by:
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ol = Try/p* p.

Let (da), be a family of closed vector subspaces of H, forming a directed preordered set under
inclusion, and such that:

3= Ja..

Define O, to be the orthogonal projection on J,.
The following statements hold:

1. for any (self-adjoint) positive semi-definite, traceclass operator p on H, the net (©,p0,.),

converges in trace norm to p;

2. if (pq), is a net of (self-adjoint) positive semi-definite, traceclass operators on I such that:
va, a//ga C 30(/: Pa = 9(:(,001’ @a:
and if sup Trp, = [ < oo, then there exists a (self-adjoint) positive semi-definite, traceclass
operator p on H such that p, = 0, p O, and Trp = [.

Proof The trace norm is well-defined, since for any traceclass operator p on 3, p* p is a self-adjoint
positive semi-definite operator on I, so its square-root can be defined by spectral resolution, and
this square-root is traceclass (by definition of p being traceclass).

Statement 5.70.1. Let p be a (self-adjoint) positive semi-definite, traceclass operator on J. There
exist real numbers p, > 0 (k € IN) and vectors ¢ in H with ||| = 1 such that:

p=> peld) (]l & ZPk Trp>
k

Hence, we have for any a:

lp—©apOally <D pe |l 1 )yl — 100 the M Ol ||,
k

Let € > 0 and let N € N such that:
€
Zzpk < 5

Since H is the completion of the union of the g, (which are directed with respect to inclusion
subordinate to the labels a), there exists, for every k < N, an o such that || — O i < &

And since the family (dq)
o such that Jo D J,. Then, we have:

€
kSN e =0a il < ¢

o is directed under inclusion, there exists a such that | J, . Jo, C o Let

On the other hand, for any k < N, the non-zero eigenvalues of | ) ( k| — |Ow i ) { On Y|
are:
2 2

3 )
/\i=%iu 1—%WLthui= [k — Ou il
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each one with multiplicity 1. So from py < g and p <1 (|| = 1), we have:

€
10 ) (el = 18w e ) ( O ] ||, = 144 + 1] <30 < 5
Therefore,
€ €
lp =B pOully < (Zpkz t5se
k<N

Statement 5.710.2. Since the family (d,), is directed and each J, is a vector subspace of X,
J =1, d is a vector subspace of H and, by hypothesis, J is dense in K.

For any ¢, ' € g, we define:
puw =, paY’) for a such that ¢, " € J,.

Py is well-defined, since there exists ay, resp. ay, such that ¢ € dg,, resp. ¢ € J,,, hence there

exists a such that ¢, ¢ € J,; and if & is an other index such that ¢, ¢ € 3., then there exists
" with Jq, Jo C Jor, so we have:

(W, pa ) = (Oath, par Oa V') =Y, par ') = (Ou ¢, por O V') = (¢, par V).
Moreover, (), /) — py.y is a positive semi-definite, sesquilinear form on g and:

Vi @€ d ppw! < UIYI YT,

hence, there exists a positive semi-definite, self-adjoint, bounded operator p on H, such that:

Vi B €3, ppy = p ).
So, for any a and any ¢, ¢ € H, we have:

(W, 0,00 t) = (Oath, pOLY) =(Ou i, pa Oa V') = (Y, pa V'),
therefore p, = B, p O, .

Now, suppose p would not be traceclass. Then, there would exist a finite orthonormal family ¢,
ke {1, ..., N} such that:

N
Z<¢k,P¢k>>l+1,

Next, like in the proof of statement 5.10.1, we can find « satisfying:

1
k<N, Va' 3o D da, — Oy S <A T
Hence, using ||p|| < [ (where || - | is the operator norm):
N N
20 +1
< Ou k., pOu ~5
;<¢’k' p i) ; (< G, pOu thi) + NI+ )

KTrpy+1 <0+,
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which would then be contradictory.
Lastly, p being a (self-adjoint) positive semi-definite, traceclass operator on 3, the first statement

implies that the net (p,), converges in trace norm to p, hence llgn Trpe = Trp. So Trp < [ and, for
any € > 0, there exists a, such that:
Vo' [Jo D 3o, Trpe <Trp+e.
Therefore, for any a, choosing o’ such that g, U J,. C Ju, we have:
Trpe < Trpy < Trp+e.
Thus, [ < Trp, hence Trp =L U

Proof of theorem 5.9 Existence of 0 and a satisfying 5.9.3. The inductive limit defining H; is
consistent since for all n < n' < " € £ and for all ¢ € H,;

.
Ty © Tyen()) = CD;LW/ © (idﬂf,ﬂ/%r ® Cbn/ﬁn) (Cn”ﬁn/ ® (Cn/ﬁn ® QZJ))

=&y, 0 (Pyoyan® ld%n)_1 (o ® Gyn) @ )

= CD;L” (Cn”ﬁn ® QZ’) = Tyey(¥)-

Additionally, for all n € £, we call 7¢, the injective map H, — H;.
Let n € £. We define an Hilbert space H._,, as (the completion of) the inductive limit of

K,%KM), where the injective maps .., are defined

{k e L|k=n}, (HH”)KM’ (TK/HHH)
as:

TK/(—K%[] . j_CK%[] — :}_CK/HU

V' = Kk = - :
1 N (3T

/

We can prove that V" = k" = k = 1, Torew—p © Ty = Terery N @ way similar to above,

ustng:

(Ldg{ v, X q),(/ﬁkﬁ,]) o} (DK//HK/ﬁn = (CDK//HK/ﬁK X .Ldg.(xﬁn) e} q)K//ﬁKﬁn, (591)

which can be proved by acting on both sides with ( - ® Ldg{/7) o ®,»_,, and using repeatedly eq. (5.1.1).
Additionally, for all k = n, we call T¢,_,, the injective map H,_,, — Hc)p.
Then, we can combine the isomorphisms ®,_,, : H, — H,_,, ® H, defined for k = n into an

tsomorphism &, : H, — H,, ® H,, for we have, for all K’ = « = n:
Dyp O Ty = (TKrHH,7 ® ld}(”) o P,
as can be shown using eq. (5.1.1).

Similarly, we can combine the isomorphisms ®,_,,_,, : H,_, = H.y @ H,;y_,, defined for k =

=

n' %= n into an tsomorphism ®¢_ ., Heoyy — Heoy @ Hy,y, for we have, for all k" = k = 1

CDK/—)U/%I] o TK’%K*)I] = TK/HK*)I]/ ® Ldﬂ—f / o (Dxﬁq’ﬁq:

nm—=n

as can be shown using eq. (5.9.1).

Moreover, we have (again from eq. (5.1.1)):
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(CDC—”?/—’U ® ld%n) o ®r,, = (ld%gﬁ,,/ Q@ Dyy| 0 Proy.

Now, if we define £, := £ U {¢} and extend the preorder on £ to L. by requiring Vi €
L, n < ¢, we can therefore assemble these objects into a projective system of quantum state spaces

(Lo, 3¢, )%,
. %® %® —® —®
Using prop. 5.6, we then have maps o\ : 8¢ iy1¢1.900) = Sicace) and ox A sca) = Acuger e

and, using prop. 5.7, we have maps 0{1 8¢ — g(iu{g}’g{’q,) and ozg1 3“?(%{6},}(,@ — A¢. Hence, we
define:

0:20\00{1 & a:=ag1oa\.

Properties of a (5.9.4 and 5.95). For all n < ', we define:
6r7/|r7 = (D;]—m © (‘Cn/ﬂnxén%n’ ® ld%;) o by, =Ty TI;Z—I]'
which is the orthogonal projection on the image of 7,, in H,, and, for all n € £, O¢,, which is
the orthogonal projection on the image of 1, in H; and satisfy:
Ocp © Teen =Teen & V' 710, Ogy © Teey = Teey © Oy
We start by deriving a useful identity, for n < n" € £ and A a self-adjoint, traceclass operator
on H,:

+

TyenATyeny = Tr?f,/w [(Kn/%nxzn/ﬂlﬂ ® ldﬂfn) ((Dn’ﬂnA q);,Ln) (|Cn’ﬁn><cn/%n| ® Ld%q) ]

= Tr[’]/ﬂl] (en’\nA en’\n) . (592)

Let p; € 8. For k € £, we define p, = O¢w pc O¢lw. and 0, = p¢ — px. Py is a positive
semi-definite, traceclass operator, and, from lemma 5.10.1, . converges in trace norm to 0.
Moreover, for any k € £, 0, is self-adjoint, so we can write 6, = 0] — 0, where J; are

the positive and negative parts of 0, (defined by spectral resolution), hence (U(éf))n are positive

semi-definite, self-adjoint operators on H,, and from the conical linearity of o:
Yk € £, olpe) = 0B + 06)) — 9(6,) = o(p) + (),
hence:

Vk € L,Vn €L, (o(p)), = (a(px)), + (0(64))

n n-

Additionally, we have:
Try, (0(5?))” =Tr (0(5i)]l) = Try, (5Ki 0((]1)) = Try, (5Ki i.dj}fz) = Tra, O,

K

where 1 € ﬁi&m) is the equivalence class of idg,. So, we get:

Vi e L, H(a(@)),7

<|[(o39),

1 + “(0(5;))’7 1

1 = Trye, 0, + Trac, 0, = [0kl

therefore the net ((O(ﬁk))n) converges in trace norm to (U(p())n.

kel

Now, for ' &= k € £, we have:
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(@(p))y = Tremy pe = Tremy Oy pu Ogly
= T?en’ 5K Tl
= Ty« Taix P Tk T,LK
= d);/LK (’ZIWHKXZU'%A ® (th—x P¢ T(H() ) Py, (5.93)
and, for n = k' =k € L:
P (U(ﬁx/))n/ O = Ty Toc T;:—K/ P Tlei! Tk Tf-]’/_<—K
— (0B,
Hence, for all n, k € £, and for all i € £ such that 7’ %= n and n’ = «, we have:

Try—n O (U(ﬁn/))n/ Oy = (0(px)),, - (5.9.4)

On the other hand:

[ 80 (0100), €] = o5,

1

a H[Tr”g” O (O(pZ))n/ 9,7/|,<] B [Tr”'Hn@n/\x (U(ﬁn/))q/ en’lx]

’ 1

< H@fﬂk (U(PC) - O_(ﬁﬂ/))nf 917/‘“ ’

— @i (131),, €1

<oyl

as can be shown by decomposing the self-adjoint operator d,, in positive and negative parts.
Therefore, we have:

i Ty (O (9100), Byic) = (0(B),. (595)

n"=K.n

where the limit is taken in the trace norm. And we can now take the net limit on «:

lim lim Tryo, (ew (o(02),, @W) = (alpd)), (5.956)

KEL 1=K
Now, for p¢ # p; € 8¢, there should exist k € £ such that:
(T @ pc 0 Ted) # (The © 1 0 Tew).
which, from eq. (5.9.3), implies:
V=i, (o), # (0F),,

but, using eq. (5.95), (d(py)), can be computed from a(p¢), hence o(p;) # a(pz). Therefore, 0\55 is
injective, so, from the conical linearity of o, o is injective.

Then, for p; € 8¢, we have (from eq. (5.9.6)):
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lim Lim Trge, ( (olpc)),, en/m) — Trsepe =1,

nel n"=n

and, since the net (Tl”g-(n, ( (a(p)) 6,7/‘,]) ) is decreasing, while the net:

/
g n'=n

(Um Trac, ( (U(Pf)),,/ Gn’\n) ) = (Tr?fc (5'7) )qEL’

/
n'=n nes

is increasing, the limits are given respectively by the infimum and by the supremum, so:

sup ( inf Trg.(/ (pn/ @,7/‘,7) ) = 1} .
nel \N'=n !

To prove that this condition indeed characterizes o (8;), we now consider (pn)neL € 8(%3{’4)) such

that:

alpe) € ‘[(Pn)n@ < S((XL),IH,(D)

sup ( tnf Try (pn/ 9,7/‘,7) ) =1.

nel \1M=n

Let n € L. We have 0 < inf Trg, (p,,, e,,,m) = p, < 1. We consider the net (bn/ln)n where

=0 kel

Py is a positive semi-definite, traceclass operator on 3, defined by:
Pty = Try—p (@n/\n P erﬂ\n) :
For n” %= n' %= n € £, we have:

Pivin — Prrin = Tryn ( (‘n/’Hn/(@n/\n) - Gn”\n) P (‘/7’/<—n/(9n/\rz) - en”ln)) )

-1 .
and ln//Hn/(en/‘n) —_ en//ln = (‘DU”*”]/ O I:(Ldj{’wH’V/ — |Zl7”ﬁf7’><éf7”ﬁn/|) ® en/m] O q)n//*)n/,
hence pyj,—pPiy|y s also a positive semi-definite, traceclass operator on ;. lts trace is Trac , (pw ©nin)
— Trae,. (P Onin) = Trae, Pyly — Trae, Py, therefore (Trsg pyyy) . 1s decreasing and converges to
Hy-
Thus, (b”/‘”)n’m is a Cauchy net and, since the traceclass operators form a Banach space with

respect to the trace norm [82], it converges in trace norm to a positive semi-definite, traceclass
operator p, on ¥, with Trs, p, = p1,.
Moreover, for k < k" € £, we have:

+ v _ . + v
T P T = UM Ty Py Treie
=K’

= lim Py« = P« (using eq. (5.9.2)).
=K’

Hence, since sup Try, pe = 1, there exists, from lemma 5.10.2, an operator p; € 8. satisfying:
kel

Vk € L, TE:_Kﬁ( Tiew = bx-

Therefore, we have:
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Vn,k € £,V = n K, (o ((,bA;)K) )I7 = Try=n Oy Py Opix (using egs. (5.93) and (5.94)),

hence, applying for ' = k %= n € L:

(U (bf) )n - L‘LQ?]T"KHU P

= lim lim Tr Dy
o en P’k

On the other hand, we can show as above that for any k < k', p— Py« is a positive semi-definite,

traceclass operator on J,, with trace smaller than 1 — p,. Thus, p =0 (b() 0

As a corollary of the previous result, we also consider the case of infinite tensor products
[99, 93]. Given a family of Hilbert spaces (J,) seg > we can build its infinite tensor product (ITP)
Hg, which will in general be a non-separable Hilbert space. On the other hand, we can also
build a projective system of quantum state spaces where the ‘small’ Hilbert spaces are given by
tensor products of finitely many J,. In this case, we still can map density matrices on Hg to
states in the projective limit, but this mapping will no longer be injective, because we can define
considerably more observables over the infinite tensor product, and we can use them to distinguish
between states that are indistinguishable if we solely use the algebra of observables defined over the
projective system. However, if we believe that these latter observables (which can be sensible only
to correlations between finitely many d,) are the only experimentally measurable ones, additional
distinctions between states might be objectionable.

Interestingly, the ITP JHg, while being a really huge Hilbert space, still fails (except in absolutely
degenerate cases) to reproduce the full state space of the projective system: this can be traced back
to the fact that the latter allows to model states that are patently more ‘statistical’ than any state
realizable on Hg. Also, grouping the tensor product factors J, into finite tensor products before
performing the ITP construction generically gives rise to inequivalent Hilbert spaces (ie. ITP’s are
not associative, see [99, section 4.2]), while such a grouping does not affect the projective state
space (as a consequence of prop. 5.6). We will further investigate the comparison between projective
state spaces and ITP Hilbert spaces in props. 19.2 and 19.13.

Theorem 5.11 Let (J,),c4 be a family of Hilbert spaces (with dimJ, # 0 for each A € J) and
define:
1. L= {N\C TF|#A < oo} equipped with the preorder C;

2 VNe L, Hy = ,endn;
3 VACN e L, Hyop = Hapn with @5 the natural identification Hy — FHanp @ Hi .
Then, we can complete these elements into a projective system of quantum state spaces (£, 3, ®)%.
Let Hg be infinite tensor product of (J,),c4. There exist maps o : 85 — 33,%,@ and o :
ﬁiﬁm) — Ay such that:
4.Yp € 85, YA € Az g0y, Traey (p alA) = Tr (a(p) A);

5. if {A € F|dimd, > 1} is infinite, o is neither injective nor surjective.
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Proof Clearly, (£, C) is a directed set and, defining, for any A ¢ A" € A" € L, dprpp as
the natural identification Hann — Hany ® Hana, we obtain a projective system of quantum state

spaces (£, H, )%,

Existance of 0 and «a satisfying 5.11.4. The ITP Hgy arising from (J;),c4 can be written as [99,
chapter 4I:

Hy = @ H,
(1]

where the [f] are equivalence classes in ‘|i(f)\))\eg' € (I1),eq

Z }Hf)n”m — 1‘ converges } for the

reF
equivalence relation:

(Fer = (Ga)yes € Z ‘<fx, gi)g, — 1‘ converges
AET
and the Hilbert space 3 is (the completion of) the inductive limit of (£, (&),n 3A)A€L , (T/,;Q—/\)/\C/\/)r
the inductive maps T4, , being defined as:

T/’;’%/\ : (®Ae/\3A - ®)\g/\’ dx
- (®Ae/\/\/\f/\) @

for f some representative of [f] such that VA € J, |[f;]|;, = 1 (note that every equivalence class

VA C N,

admits normalized representatives: given a representative (g,),.5. there can be at most finitely
many A such that g, = 0, so, defining f, to be some normalized vector of J,, if g, = 0, and
f) == 9|g.l, otherwise, we have f, =~ g,).

Now, choosing such a normalized representative f for each equivalence class [f], we can identify

H;s with the Hilbert space H,r constructed as in theorem 5.9 for the family (Z/fv_m)/\c/\/ given by:

VA, (X_)/\ =1 & VACN, Z/Q/HA = ®A6N\/\ .

Hence, as in the proof of theorem 5.9, we can construct for all A € £ an Hilbert space Hjs_ and
an Hilbert space isomorphism ®_n : Hjsj — Hjppn ® Hp, and for all A C N, we can construct an
Hilbert space isomorphism @y @ Hion — Hipon @ Hao, satisfying:

(Pionon ® idae,) © Pyon = (id:}q,M ® q)As/\) o P
We define:

VAe L, Hg,p= @ Hion, Pgop = EB P & YNCN, gy = @ Prronon -
[f] [f] [f]

Note that Hz,x can also be identified as the ITP of (d,),c5 -
Defining £ := £ U {F} and extending the preorder on £ to £ by VA € £, A C F, we thus have

a projective system of quantum state spaces (Z, I, CD)®. As in the proof of theorem 5.9, we can

then define o and a by first using prop. 5.7 to go from Hy to (Z,IH, ¢)® and then using prop. 5.6
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to go from (Z,ﬂ-(,dD)@ to (£, 3, ®)®.

Properties of o (5.115). Let ps € 8. For A € £, we have:

(U(P?))A = Trgon pg = Trae, ., (Pgon 0 pg 0 CDELA)
_ZTW{W/\( o My o pg o T Oq)[?f_m)'

where [ : Hg — Hjy is the orthogonal projection on Hi).

Thus, o does not see the correlations between different Jj; that might be contained in pg, and
therefore o cannot be injective if there exist more than one equivalence class (as will be the case if
{A € F|dimd, > 1} is infinite, see below). Indeed, if ¢, ¢ are two normalized states in Hg with
Y€ Hy, ' € Hyg and [f] # [g], then:

( ‘d/ +J >< Y+ ¢
On the other hand, let p = (pA)res € gfz%q)) and suppose there exists ps € 85 such that

1 T .0,
el + 51| = o

p = d(py). If Trge, pr = 0, then py = 0, hence p = 0. Therefore, if p # 0, we have Trg, py > 0, and
therefore there should exist at least one [f] such that Trag, (I_I[ f1PF H*) > 0. Using theorem 5.9,

we then have:

iiﬁ Al/mt Trae, (PO ) Zigg /\L/nf Trag, (Tr}flg]w (cb[g]%, © Mg ps Mgy © q)[;]LN) GR/M)

> sup inf Tl'g{/\, (Tl’g{f‘ v (CDMH/\/ o My pgl_l o CD HA,) @;\/IA)
Aeg NOA

= Trg{m (Hm PF H[Jfr]) > 0,

with O}y = Ol o (|G A X Chn| ®idsg,) o Pan (we have used in the first line that the sum
Z[g] is absolutely convergent in trace norm, and that the argument of infya, resp. of supyc,, is
positive and decreasing with /', resp. increasing with A, see the proof of theorem 5.9).

Now, we suppose that we have a infinite part [ C J such that Vy € I, dimJ, > 1, and, for all
y €[, we choose gl and g% two normalized vectors in g, that are orthogonal with each other. We

define:
VAELINCT, V(&) €101}, gV = ®,cr 9 € Ha.

Then, we choose some (g;),cqr With VA € FN\T, g, € 3, and [g,];, = 1. We define, for any
Ne L.

v (ev)yg/\mr € {0, ”mr E (®Ae/\\r QA) ® Qﬁ\eé)r

| e
and pp = SFAAT) Z ‘9(A)><9(A)
(€)
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We can check that (pp)rcp € 32%@ and we have, for any f and any A C A\":

Tracy (paOhp) = H Trgy(1( g, Xg| +1giX gl ) 1KXA1) ] Tra, (lgaXaul 16XE)

SA\AN ASANNANT
=[] 3 (Kgl fv>‘2 +1(g;, fv>}2) |_| Try, ( ga fA>|2) :
yeN\A)NIC (NI

Thus, we get for any f and any A C A" the bound:

. D#(ANT)
Tragy (PvONp) < Saerr -

Hence,

: : f
VA € L, /\L/gl;\Trg.(/\, ( /\’eNI/\) =0 and igg /\L/gf/\Tl’g{N (PNGN\/\) =0,

0 (PA)ree € Imo, and therefore o is not surjective. O

As expressed by theorems 5.9.3 or 5.11.4, the mappings considered above rely on matching different

explicit representations of certain abstract states on the algebra zi’%q,) (def. 5.3 and prop. 5.4).
Finally, we can also characterize the space of projective states within the space of all states over
the algebra: such a characterization is easily adapted from the characterization of normal states
over a W*-algebra [87, corollary II1.3.11].

While the space of states on an algebra is never empty' (in fact, these states even separate the
points of the algebra, as follows from [87, theorem 1.9.23]), it is not quite clear whether the space
of projective states 5(82,%@ could turn out to be empty. Indeed, even a seemingly healthy projective
limit (namely, an inverse limit limit defined on a directed label set, such that all involved spaces
are non empty and all gluing maps are surjective, aka. are projection maps) can actually be empty.
An instructive example is given in [101], and we will come back to this potential issue with regard
to a concrete projective system at the end of section 18. Note that this issue cannot affect countable
label sets, which have the additional advantage of allowing for a constructive description of the
projective states. Hence, the development of section 19, aiming at restricting an uncountable label
set to a suitably selected countable subset thereof, could provide a way out if necessary.

Proposition 5.12 We consider the same objects as in prop. 54. Let Q‘(XL’,:H@) denote the space of

states over ﬁfzg{m (ie. the positive linear forms of norm 1 on ﬁi’g{’q))). Then the map:

X - Sa}m) - Qa,}f,cb)
p = Tr(p-)

!

is injective and its image is characterized by:

v €X<Sw{¢)>

1. Thanks to Alexander Stottmeister for pointing out this result to me.
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& Vne L,V (Ji),e familly of closed, mutually orthogonal vector subspaces of 3, ,

v (H ( Zm) ) = vles(M),

el el

where t_, denotes the canonical injection of A, in 7{3%‘@ and, for i € /, T'; denotes the orthgonal

projection on the closed vector subspace J; of J(,.

Proof That y is well-defined as a map 87 5.4y — Q7 50 has been discussed in prop. 5.4. Let
pE 82‘9{“)), n e L and (/) be a family of closed, mutually orthogonal vector subspaces of H,,.
Let, for any finite subset o C /, J, := @jl-, and J = @jl-. Let, for any finite subset a C |/,
ica iel
O, = Z [l; be the orthogonal projection on J,, and © := Z [; be the orthogonal projection on
€a il
d. From lemma 5.10.1 (applied to the non-negative, traceclass operator © p, © on J C J,), the net
(00 py E)a)a converges in trace norm to © p, ©, hence:

ZTr (pL — n(ﬂ,-)) = l'LmZTrg{/7 (p,, rl,-) = lim Try, (90;)” @a)

iel i€a

Ty, (0,0) = Tr (pun( Z”f)

icl
Next, let p, p" € 8 504 such that x(p) = x(¢') and n € 3(,. For any ¢, ' € I(,, we have:

(W' py) =Tra oy [0) (| =Tr (pry (10 ) (W) ) =Tr (' ey (19 (W) ) = (W Py i),
hence p, = p,. Since this holds for any n € £ and for any p,p" € S(%%q)) such that x(p) = x(p").
X s injective.

Reciprocally, let v & Qa&m) such that, for any n € £ and any familly (/;),c, of closed, mutually

orthogonal vector subspaces of 3, :

v ([Hn( ZI‘I[)) = (M) (5.121)

iel il
Let n € £ and let (e;),, be an orthonormal basis of J(,. For any finite subset a C /, we define the

operator p!“ on the finite dimensional vector subspace J, = Vect{e; | i € a} of H, by:

Viij€a (e |pye) = v(ialle) (el))
v o (_, being a positive linear form on A,, pff) is a positive (semi-definite) operator, and, J,
being finite dimensional, it is traceclass. Moreover, for any finite subsets a C o’ C |/, pff) =

Oy q ,057‘7/) Oua, With ©,_,, the orthogonal projection on the vector subspace J, in d, . And,

using eq. (5.12.1), we have:

sup Trg, oy = sup ) v (tq(lei) Ceil )} = v [ty (idse,)) = 1.

Ea
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So, from lemma 5.10.2, there exists a positive (semi-definite) traceclass operator p, on J(,, with
Trge, py = 1 and:

Vi,jel, <ej‘pnei> = U(‘<—n( ‘e[><ej‘)).

Let ¢ € H, and, for any finite subset a C /, let ¢, be the orthogonal projection of ¢y on J, .
The net (¢,), converges in norm to ¢, hence:

<¢|Pn¢>:u£n<¢’a|Pn¢’a>:uyv(‘ﬁn“wa)(‘wba”) =U(lh,7(|l,ll><dl|)),

where we have used that v is linear and bounded. Thus, for any orthogonal projection I'1 on a finite
dimensional vector subspace of J(,, we have, by linearity:

Trge, pyIT=vo z<_,7(|_|) : (5.12.2)

Now, eq. (5.12.1) holds not only for vo ., but also for Try, (p,7 : ) as was shown in the first part of

the present proof, so eq. (5.12.2) can be extended to any orthogonal projection [1 on a closed vector
subspace of JH{,. By linearity and norm-continuity, it can therefore be extended to any bounded

self-adjoint operator on H, (since the linear span of the orthogonal projections is norm-dense in
the space of bounded self-adjoint operators, as follows from the spectral theorem). But any bounded

operator A, on J{, can be written as Ag“ + [AE;) with AW, Aﬁﬂ bounded self-adjoint operators on

J,, so eq. (5.12.2) holds for any such A, as well. In other words, we have:
Trae, (py - ) =voicy, (5.12.3)

as linear forms on A,.
Finally, let n < " € £, and let p,, resp. p,y, be the positive traceclass operator thus constructed

on H,, resp. H,, . Let pff/) = Try_y,py. Forany ¢, ¢ € H,, we have:
W | oty = vty (1) (W) = vorcy(weallv) (¢]))
= Trse, (P wreal 10) (1)) = (0| £ 0).

Thus, Yn < 1, Try—npy = py, SO p = (p,])nd S S‘(@L,g{,@), and, by norm-continuity, eq. (5.123)

extends to all Ei}m) as x(p) =v. U

6. Quantization in special cases

The motivation of section 2 was to pave the way for a better understanding of how a quantum
projective structure as described in the previous section can be constructed starting from a classical
field theory. The procedure we have in mind here, is, given an infinite dimensional symplectic
manifold, to first build its rendering by a system of finite dimensional manifolds (the partial theories,
that encapsulate insights from a careful analysis of how measurements are done experimentally),
and then quantize this projective system (with the aim of getting a quantum theory assembled from
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‘small’ Hilbert spaces, on which calculations should be workable).

In this section, we will consider two basic, yet fairly generic cases, namely position and holo-
morphic representations, assuming that we have a factorizing system on the classical side (see
subsection 2.3). In both cases, the key prerequisite is that the polarizations, that endow each
symplectic manifold M, with the additional structure needed for quantization (the choice of con-
figuration variables or the complex structure, respectively), should be compatible, in an appropriate
sense, with the projections defining the projective system.

[n this section, all manifolds are assumed to be smooth finite dimensional manifolds.

6.1 Position representation

The starting point for position quantization will be a projective limit of classical phase spaces
arising from a factorizing system of configuration spaces as described in prop. 2.16. Then, there
is only one additional ingredient required, namely we need to find a family of measures on these
configuration spaces that are intertwined by the factorization maps. With this, constructing the
projective system of quantum state spaces is a straightforward generalization of [68, subsections
3.4.3 to 3.4.5], since an [)-space over a Cartesian product of measure spaces has a natural tensor
product factorization.

Surely, given an arbitrary projective system of phase spaces, it will in general not be possible
to rewrite it as arising from a factorizing system of configuration spaces. However, we consider
in theorem 6.2 an important case where we indeed get such a factorizing form automatically,
namely when each individual phase space can be identified with the cotangent bundle on a simply-
connected Lie group (assuming some appropriate compatibility conditions between the projections
and these identifications). The idea is that the group structure, together with the favorable topology,
fills exactly the gap between the local result from prop. 2.10 and the global factorization we want

to have. Also, using Haar measures, we can easily build a family of measures for this factorizing
system.

Note that this result in particular covers the situation considered in [68] (looking at R" as an
additive Lie group), the proof we will give below being in fact nothing but the non-linear version
of the procedure described in [68, section 3.4]. At the same time, it lays the ground to address the
question raised in this reference, as to whether the construction can be generalized to non-Abelian
gauge theories (this will be the endeavor of chaps. 3 and 4, but for the limitation acknowledged at
the end of section 9 regarding gauge invariance). To make the relation clearer between the objects
in [68] and the ones we are using here, let us look in more detail at the assumptions of theorem 6.2.
That each ‘small’ phase space M, is a cotangent bundle on a simply-connected Lie group, equipped
with its canonical symplectic structure, is a weaker version of assumptions 2, 3b and 4 in [68].
The most crucial assumption is that we start from a projective system of phase spaces: on the one
hand, the compatibility of the projections with the symplectic structures provides the seeds of the
desired factorizations, on the other hand its three-spaces consistency condition will turn into the
corresponding condition for the quantum projective system (eq. (5.1.1)). This is ensured in [68] by
assumptions 3a and 6. Finally, the condition 6.2.2, corresponding to the rest of assumption 6 in
[68], ensures the compatibility of the projection maps both with the configuration polarizations (so
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that the factorization of the phase spaces will descend to a factorization of the configuration spaces)
and with the group structure (otherwise we would not be able to really make use of this structure).
Note that, thanks to the compatibility of the projections with the symplectic structures, simply
assuming that the map, besides acting independently on the position and momentum variables,
is linear in the momentum variables is sufficient to ensure a full compatibility with the group
structure, as expressed by egs. (6.2.1) and (6.2.2).

Definition 6.1 A factorizing system of measured manifolds is a factorizing system of smooth, finite
dimensional, manifolds (£, C, ¢)* (def. 2.15) such that:

1. for all n € £, C, is equipped with a smooth measure p, (def. B.12);

2 forall n < n €L, €y, is equipped with a smooth measure 1y, (on €,., we will use the
counting measure);

3 forall n < n" € L, ¢y, is volume-preserving, and for all n < n" < n" € L, @yyy is
volume-preserving; in other words, we require:

VN <0’ @yona iy = Hy—n X Hy,

/ !
and V0 <0 < 0" @yryons oy = Hy—y X Hy—p.

Theorem 6.2 Let (£, M, )" be a projective system of phase spaces such that:
1. Vne L, M, = T7(C,) where C, is a simply-connected Lie group; by relying on left translations,
we thus have an identification L, : M, — €, x Lie"(C,);

2.Vn X0,y = L,f O (Py—ny X Ayspy) © Ly where py_,,isamap €y — €, and Ay, is a

linear map Lie*(C,) — Lie™(C,).

Then, there exists a factorizing system of measured manifolds (£, (C, ), @)™ such that (£, M, JT)l
arises from (£, €, @)™ (in the sense of prop. 2.16).

Proof Conditions on p,_,, and Ay_,,. Let n € £ and x € C,. There exists an open neighborhood
U of 0 in Lie(C,) such that the map:

Y, U — €
X = x.exp(X)

’

is a diffeomorphism onto its image, hence it provides a local coordinate system around x in €,. We
can lift it to a local trivialization of the cotangent bundle M, = T%(C,):

¥, : UxLie'€,) - M,
X, 0 — x.exp(X), € o [TxW,]"

Using eq. (2.16.1), we then get, for all ¢ € Lie*(€,) and for all (u,v), (u’, V') € Lie(€,) x Lie*(C,):
Oy .00 ([T(O,g)ipx] (U, V), [T@,g)fﬂx] W \/)) — V() — ().

Next, we have:
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L, oW, : UxLie'(€,) — €, x Lie*(€,)
X, 0 — x.exp(X), 0o [TxW,] " o [Ty (x. exp(X). )] =€ o —2dx

ldLle(en)*e*"dX
where we have used:

, —ad
Udiiee,) — €

ad)(

[TexP(X) (exp(—X).-)] o [Txexp] =

as follows from the Baker—Campbell-Hausdorff formula.

Therefore, for all x, ¢ € €, x Lie*(C,) and for all (u,v), (v, V') € T,(C,) x Lie*(C,), the symplectic
form on M, is given by:

(L7 o) (00, (W) =V o L) = v o L) + € ([, L] e, )

where L, == [T1 (x.-)]: Lie(€;) = T,(C,). This allows us to express the map - : T*(M,) — T(M,)
(defined from the symplectic structure as in def. 2.1) and we have for any p, k € T;(C,) x Lie(C,):

(p. k) o [TL#M Ln] = [Toly '] (Ln.x(k): 4 ([k: JLete, ) p o Lnx) .

Let n < . We can now formulate the conditions on py_,, and A,_,, for 7,_,, to be compatible
with the symplectic structures as:

[Topy—nl © Lyx o Aysy = Lop, ) (6.2.1)

n'—n
and [yl Ayl Wi,y = Ao (bt (622)

C, as a Lie subgroup of C,. my_,, being surjective, so is Ay, thus A, Lie(C;) — Lie(Cy)
is injective, and, from eq. (6.22), it is a Lie algebra morphism. Therefore, A, (Lie(C))) is a
Lie subalgebra of Lie(C,;) so there exists a unique connected Lie subgroup Gn of €, such that
T (&) =4

wn (Lie(C,)) [100, theorem 3.19] é,, ts an immersed submanifold in €, and its tangent

space at x' € €, is given by:

Ty (e ) — L0 X (Lie(C,)).

n—n
Let x;, x; € €y and define:

KX{,Xﬁ . ('3,7/ — 8,7

X' pyanX) X)L pyogbs X))

For any k € Lie(C,), we have:

[T1 Kxﬁ,xé] o A% (k) =

n'=n

= [Tpnw ( Py—n(X5)” )] [TX1 Pn%n] o Ly o Ay, (k) +

+ [Tplﬁ,,xz (Pr;ﬁn()ﬁ) (- )71)] © [TX§ Pn/ﬁn] 0 Luyx 5 © A;ﬁn(k)
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= [T (P L0+ [Ty (ron) - ()Y ] © LK)
(using eq. (6.2.1))
= [Th (x = pyonld) x x" pyg(60) 1) ] (k) = 0.

With this, we get, for any x’ € €,
[T (T () ) = [T k] © Ly 0 Ay (Lie (€))

= [T kqug] o Aoy (Lie (€0)) = {0},
thus, é,, being connected by definition, k., is constant on é,, for any x;, X, € €. In particular,
applying with x5 = 1 gives:
Vx, € Cy, YX' € €y, Pyl - X') = Py—n(Xg) - Py—nlX), (6.23)
where Wx' € Cy, Pyrn(x) = pyron(1) 7" pyn(x').
Therefore, py_,lz e is @ smooth group homomorphism, and, moreover, its derivative at 1 is a
n n

Lie algebra isomorphism, for we have using eq. (6.2.1):

~ * —1 * .
[T1 pf]/—”?} © /\n/—m = L”'pn/ﬂn(‘]) © [T1 pn/—m] © /\n/—m = LdLle(Gq)-

Hence, pn/*,n"é”*}en is a Lie group isomorphism, for C, is connected and C, is simply-connected

[100, prop. 3.26]. We will denote by Ay, : €, — C, its inverse,

Factorizing system. We define C,_,, == p,, (1). py_, has surjective derivative at each point, so
Cy -, s a smooth manifold as level set of a constant rank map [54, theorem 5.22] Next, we define
the map ¢, by:
Py + Cy = Cyopy x Cy 1
XX (/\n/<—f7 © ﬁn/ﬁn(x/)) , Py—n(X)

@y s well-defined for, using eq. (6.2.3), we have for all X € €, :
Prv—n (X/ Ny (ﬁn/—m(X/r1 )) = Pron(X) PyonX) =1
To prove that ¢, _,, is a bijective map, we define a map ¢, ., by:

Gyoy @ Cyopyx €y — Cy
g, x = g0 Ny ()

where 0 1= Ay, (py—n(1)) . Using again eq. (6.23), we can check that @y, © @y, = ide, e,

'—n*

and @y, © @y, = ide, . Since both ¢y, and @, are smooth, ¢, is a diffeomorphism.

From eq. (6.2.1), we have:

* —1
Vx € @,7, [TX/\H,HI]} = Ln/'/\l7/<—n(X) oA @) Ln,x'

n'—n

Thus, for any y, x € C,_,, x C,, the derivative of (pf_”7 satisfies:
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Vu e T(Cy), [Tyweyl,] (0 u)= Ly gt g © Ay © L= (w). (6.2.4)

n'—n n.x

So we get, for any X', p" € T*(C,):

/ N / / * —1
Ty (X' p') = (pn’ﬁn(x ), p o Lyy o Ay © Lq,p”/w(x/))

/ / —1
= (Sn’én o @y-y(X), p o [To @yyl (0, )) )
where sy, : €y, x €, — €, is the projection on the second Cartesian factor. We can now use
prop. 2.17 to build from these objects a factorizing system (£, €, ¢)* that gives rise to (£, M, )",

Volume forms. For any n € £, we choose a non-zero d,-form w, on Lie(C,) (with d, := dim C,)
and we define a right-invariant volume form w, on €, by:

Vx e €, Vuq, ..., ug, € T\(Cy), wyluq, ..., Ug,) == Wy, (Rn’j uq, ..., R,;; udn),

where R, := T1(-.x). We call p, the smooth measure arising from the volume form w;,.
Let n < 10,y € Cyoy and wy, ..., wg, € T,(Cyoy) = Ker [T, pyoy] (with dy_, =
dim€,_, = dy —d,). The map:

a Lle(@n)d” - R

~ —1 —1 '
uy, ..., Ud,] = Wy R’?/rU(W1)' cee Rﬂ/,y(wdfl/ﬂ?)' Ar]’en,g(uﬂl s An’en,y(ud”))
. -1 . . .
where Ay, = Ad oA, OAdp,,/ﬂ(U' ls a d,-form on Lie(C,), so there exists wy—, (w1, ..., wg, )
€ R such that:
alur, ..., Ug) = Wyopywa, oo W, Jwyplur, o ug,).

Now, using the expression for <p,}Ln given above, we have, for any y,x € Cy_,, x C:

Yw e T,(Cpy), R

.9

n—n

vy © [TW (P;Ln] (w,0) = Rr?L(W)
and, from eq. (6.2.4), we also have:

Yue T(C,), R,

n.e

n—n

(y.x) © [TUrX <'Dl?Lﬂ] (O’ U) = A’?/H’%U © R,?J(U),

*
n—n

where we have used that A = [1A\y—, with Ay, a group homomorphism. With this, we can

check that (pfjn Wy = Wy—p A w,. In particular, this implies that w,_,, is @ smooth volume form on

Cy—y. Thus, defining p,y_,, to be the corresponding smooth measure, we get @« Ly = Hy—y X L.

Finally, for any n < 0" < 1", @y—y, @y, and @, are volume-preserving, hence so is
@y X We, (using eq. (211.1)) and therefore ¢, itself U

Proposition 6.3 Let (£, C, )" be a factorizing system of measured manifolds. We define:
1. forne L, 7, = L,(C,, duy);

2 forn=<ne€l, Hy., =L:(Cy_,, duy_,) and:

Pyy o Hy — g'fn/—m?:}cn
b= JYog,,,
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with the natural identification of Ly(C,—,, dity—n)®L(C,, duy,) with Ly(Cypy x Cp, duy—y < diy).

Then, we can complete these objects to build a projective system of quantum state spaces
(L, H, d)°.

Proof We define:
3. forn<n<n"e€cL,

CDH”HU/HU . g‘cn//*)n — j‘cnﬁﬂnf ®j_(:’7/4”7
—1
LLI = LLI © (pq/’ﬂn’%/)

with the natural identification of Ly(Cp—sy, dity—y) @ Lo(Cpyyy, duy—y) with Ly(Cpsy % €y,
At~y X dy ),

4 forne L, H,, = C and we define ®,_,, to be the natural isomorphic identification between
H, and C @ H,;

5. for n < n' € £, we define &,,,,, (resp. ®,__,,) to be the natural isomorphic identification
between H,_,, and H,_,, ® C (resp. C ® H ).

That &,,_,, for n < 1 defines an Hilbert space isomorphism comes from the volume-preserving
property of ¢y, and from the fact that L,(C, du) ® L,(C’, di') can be unitarily identified with
L5(€ x €, du x d') (thanks to Fubini's theorem). Similarly, &, for n < n" < n" is an Hilbert
space isomorphism.

We now just need to check the three-spaces consistency condition eq. (5.1.1). We consider
n<n" <n" (since the condition is trivially satisfied whenever n=n" or ' = n’"):

Yy € I, (q)r}”—m’—m ® Ldf}CI;) o bpry(yY) =
- (LL’ © (pf;Ln) © (@,?Ln/ﬁ,, ® id@n)
= (Yog,ly)o (‘tdeqw ® <p;Ln) (using eq. (211.1))

= (Ldg{ , o ® q>/7/—>l7) 0 Doy ().

0" —n

To argue that the quantum projective system composed above actually provides a quantization
of the classical one (as specified by the factorizing system of configuration spaces we started
from), we need to say how classical observables on the latter are turned to quantum observables
on the former. For this, we import the prescriptions of geometric quantization (summarized in
appendix B.3, especially in prop. B.14, and rewritten here more explicitly using the benefit of
working in a phase space given as a cotangent bundle). Thus, for each n, we can formulate the
quantization condition (the choice of preferred configuration variables is tied to a selection of which
observables can be directly quantized) as well as the definition of the quantized observables. The
key statement is that the compatibility conditions imposed on the family of measures is sufficient

to ensure that these prescriptions, supplied separately for each n, will fit readily into a coherent
picture.
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Proposition 6.4 We consider the same objects as in prop. 6.3. Let (£, M, ¢)" be the factorizing
system of phase spaces constructed from (£, €, ¢)* as in prop. 216 and let f = [f,]. € Oy
(prop. 2.13).

If there exists a representative f, of f such that:
Elyf,7 complete vector field on €,/ Y(x,p) € M,, [Txp) Vil (Xf”’(xlp)) = yfmx, (6.4.1)

where y, : M, = T7(C,) — C, is the bundle projection, then this condition is satisfied by all
representatives of f. Accordingly, we define:

O(Xﬁpéip ; {f € Oy ‘ 31, € f satisfying eq. (6.4.1) }

Forf,ef e OXLPG“QD we can define ?,’71" as a densely defined, essentially self-adjoint operator on
I, (with dense domain D, C J,) by:

Vg € Dy, Vx € €y TN = ) Folx, 0) + d [d], (X ) + éwm (divi, Xy,) (),

where div,, X}, is defined by Ly, = (divy, X1,) wy (def. B.12).
Then, the application:
Oy — Oace

ol = 7]

is well-defined (OLf}(d) has been defined in prop. 55).

Proof Quantization condition. For n < ' € £, we define -, : Cy — C,, Ay, : Cy — Cpyy,

and 7y, My = M, ,)VW_)” : M,y — M,_,,, such that:
VX' € Cyp, pyonlx) = ()Wﬁn(xl)r ﬁn’ﬁn(X/))

& VX', p') € My, @yyX',p') = ()kn/%n(x/,p/), Ty—n(X's p')
From prop. 2.16, we then have:
vr] < ’7/ e L, Vn © ﬁq/ﬁn = Jly—n © Vy & Vi —n © AI]/HH = AI]/HF/ C Vy-

Let f, € C®(M,, R) satisfying eq. (6.4.1) and let n” %= n. Using the previous identity, we have:

V(X' p') € My, [T -] © [T(X P Vn} (Xf O Ty X P/)) =

Tﬁnun(X’,p/) Vn_ 0 [Tiw ) iy —n] ( [ Ty dF, ] )

= _TJNTF/’H/](X/VPI) yﬂ_ ([dfn]]?n/‘w(x"p/)) (USLng eq (211))

- T’ﬁ”,_”](x/,p/) yn (an,%”/_)n()(/,p,)) = Xfllrﬂn/—»q(x/) !
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and:

V(X' p') € My, [T Ayy] 0 [7—(X’,p/) Vir (Xf O Ty X! P/)) =

n'—n’

= [T;n/ﬂn(x/'p/) yn/ﬁn:l o I:T(X/"D/) )\n/*)”:l ([ UH’? df] )
=0,

since [N,] "

~ 1 ~
df, ] (Ker [7_(X/,p/) jTU/—’U]) = Ker I:T(X,'p/) ){[7/_)nd .
Therefore, [Ty p) V] (X,r oy, (X/,p/)) only depends on x’. If we now define:

VX' € Cy, Xp oz, v =Ty Vn}(Xfon/ (xo)),

n HI] n—n

we have anoﬁn,% e T%(C,) (the space of smooth vector fields on C;) and:

V(X/.P/) € M/y/r [TX P )//7} (Xf 0T (X p/)) = y/,7077/ X

n-n'

Moreover, we have:

WX € Co, [To @) (Xf . ) — (o, X . (X/)). (6.42)

n ~>I] ntn"—n

In particular, the completeness of Y,r” implies that Xf”oﬁ”,% ts complete as well, so f, o 71, fulfills
eq. (6.4.1).

On the other hand, for f, € C®(M,, R), if there exists n = n such that f, o 7,_, satisfy
eq. (6.4.1), then, in the same way as above:

V(X/’p/) E MI7” I:Tﬁn/ ”(X P )/,7] (X[ JT/ ,](X/,p’)) = [TX/ jTﬂ/—W] (yfnoﬁ-/ ,X/) .

nty —

Now, the right-hand side does not depend on p’, and we have, for any x’ € Cy:

{(ﬂn—w HPET }—{ﬁn—mXP | p € Tu(Cy)}.
So, my_, being surjective, there exists a smooth vector field X; on €, such that V(x,p) €

My, [T Val (Xf ) = Yfmx, and we again have eq. (6.4.2). Therefore, f, also satisfy eq. (6.4.1).

X ,Pos

Quantized observable. Letf, € f € O/ ¢, From prop. B.14, f, can be quantized into an essentially
self-adjoint operator f,, on H, and one can check that both definitions coincides. We now want to

determine ty.,(f)") for if %= n. We start by deriving an identity for div,, Xj, :

(dLVH/Xf O,,H]) Hy =L, . Hy

n'—n

= (pr;lm* £ —1% (7

<pq/ -0

) Pry—nx Un’]

ey s

—1
- (p ' —sn % »S —1*x [
g n B <Pf//‘>’7 (Xf” nf]/*)f]

)un/_”7 X un] (using def. 6.13)
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= @yl [2(0,%,,) Uiy —sn X u,,] (using eq. (6.4.2))
= (pl;Ln,* I:/Jn/ﬁr] X (2}[{] ,Lln):l

- [(dw/’rz yfn) © ﬂnlﬂn] Hi -
Hence, it follows:

divy, Xp,o7, ., = (divy, X1,) © 7y (6.43)

Now, let ¢ € <D,;L,7 (Hy—n ® D,y (Where D, is the domain of ?ﬁ” and the ® is to be understood

as a tensor product of vector spaces, that is without any completion in contrast to a tensor product
of Hilbert spaces). Then, we have:

n'—n

V(. x) € €y X €y, (idse,, &) © Gyosn(i)y.x) =
= " fo(x,0)+i [0 m X : " div,, X
- Lﬁo(pn/—m(y'x) H(X' )+[ [ X¢ © ('0’7/_”7](g,x) ( f,7,x)+§ QZJOQDU/_)U(Q’,X) ( Wun f,]) (X)

= ¢ © @;LU(U'X) fl7 © JA%,]/H”((P,;L”(QI,X),O) + [d¢]¢n7l/7(y’x) (yr‘”o'frn/ﬁn,qa’,1 (g,x)) +

nm—=n

{ _ R v _ ,
+§ Y o @n,Ln(g,x) (dtvu”, anoﬁn/%) o (p,],Ln(g,x) (using eqgs. (6.4.2) and (6.4.3))

_ ( o 7

= Hiy
Dy 0 fy 0 Ty | (Y. Y] -

Therefore, Vf,, fy € F € OFls,, " ~ 1. O

We close this subsection with an application of theorem 5.9: under the additional hypothesis that
the measures are normalized to unity, we can construct an inductive limit of Hilbert spaces from
the 3, whose space of states is naturally embedded in the one of the projective structure developed
above. As long as all €, have finite volume (hence in particular if they are compact), it is always
possible to consistently normalize the measures to unity. Note however that, depending on the
projective structure under consideration, it may not be possible to equip all C, with normalizable
measures fulfilling the factorization requirement def. 6.1.3 (see eg. the models considered in [65, 66],
in particular the discussion in [65, section 1.1]).

As realized recently by Bianca Dittrich and Marc Geiller [23, section V.D], the natural classical
precursor of an inductive limit of Hilbert spaces is a hybrid projective/injective limit of phase spaces,
where the space attached to a coarser label 1) is obtained from the one attached to a finer label r’
via symplectic reduction (aka. imposing constraints, see see [105, section 1.7] or def. A.1). Calling
M,y the constraint surface (with respect to which this symplectic reduction takes place), we have a
projection from M, ., into M, (to quotient out the gauge orbits), while M, ., is naturally embedded
in M,y (as a submanifold), hence the hybrid character of the construction. At the quantum level, the
identification of J}, with the subspace Vect((,y—,) ® H, of H,_,®IH, =~ H, (theorem 5.9) can then
be seen as reflecting the imposition of these constraints. In the special case we are considering here,
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(y—n Will be the uniform wave-function in H,_,, = [>(Cy,, duy—,): the corresponding constraints
set all impulsion variables in M, _,, to zero, thus making the configuration variables in C,_,, pure
gauge. The inductive limit of Hilbert spaces therefore corresponds in this case to a projective limit
of configuration spaces (as expressed by the formula for 7,_, in Prop. 6.5 below, n is extracted

from 1/ through the projection on the second Cartesian factor in Cy ~ Cy_,, x C,). As we will see
in subsection 12.2, this result allows to make contact with the Ashtekar-Lewandowski Hilbert space

of LQG [19, 8], which is indeed known to arise from of a projective limit of configuration spaces
[60, 92].

Proposition 6.5 We consider the same objects as in prop. 6.3, and we now additionally assume:

V€ L, py(C,) = 1.

Then, we can also construct an Hilbert space Hg as (the completion of) the inductive limit of

(L, (%'7)1765 , (Tn/gn)nw), where the injective maps 7., are defined as:

Ty Hy = Iy
Yr— Yo Si/—n © Qy—n

Cyop x €, —C,
X y)—y -

Vn<nekL, Cwith 27

There exist maps 0 : 8¢ — gfzﬂm) and a : Z(QZH,Q)) — Ag (8e being the space of (self-adjoint)
positive semi-definite, traceclass operators over Hg and Ag the algebra of bounded operators on
Hg) such that:

1. Vp € 85, YA € Az gap, Troc, (p alA) = Tr (a(p) A);

2. 0 s injective;

sup int [ avax' [ dy pnf(so,,Ln<x,y>:<pn/Ln(xéy>)=Trp=1}

nelL MFEn xC,, e,

n'—n n'—n

3.0 (8g) = ‘[(pn)neg

where 8¢ is the space of density matrices over Hg and p, (-; -) is the integral kernel of p,,.

Proof This is an application of theorem 5.9, where for n < n" € £, we define:

Cron=1€Hyy,

/

We have Vin < ', [|Cy—ll = 1. since py—y(Cyoy) = by(Cy)/uy(C) = 1, and Vn < 1 <
[7//’ CDW//_”]/_”](Z’]U_)W/) = 1 = (n//_)n/ ® Cf]/—H]' |:|

Finally, note that, as far as the construction of the quantum projective state space and observables
thereof is concerned, we can actually dispense from having a factorizing system of measures.

Indeed, if we just have families (un)[76 . and (U”’_’”)n < of smooth measures, which do not satisfy
the compatibility conditions from def. 6.1.3, we can rely on the canonical identification introduced
in prop. B.15 to relate the position representation built on the measure (,; with the one built on
the measure (p;Ln,*(un/_,,, X ). Provided this conversion is incorporated in the definition of the

quantum projective structure, one can check that the three-spaces consistency condition still holds.
In contrast, the consistency of the measures is essential for the inductive construction of prop. 6.5,
where it ensures the necessary compatibility of the reference states (;_,,.
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6.2 Holomorphic representation

We now turn to the holomorphic representation. In order to get the scalar product right, we
cannot spare, when doing holomorphic quantization, a formulation using a prequantum bundle B,
(see [105, section 8] and appendix B, def. B.2) constructed over M, (this differs from the previous
subsection, for when dealing with configuration representation, the relevant part of the bundle
structure is flat and, as a result, the prequantum bundle only needs to be taken into account
if a unified context for describing various representations is demanded). Therefore, we begin by
examining how to arrange prequantum bundles built on the M, into a form of factorizing structure

suitable for quantization. More precisely, we are looking for a way to connect the B, bundles that

will provide the required tensor product factorizations of the corresponding [,-spaces of bundle
cross-sections (the prequantum Hilbert spaces, see [1035, section 8] and def. B.3).

To address this question, we go back to the basics underlying the tensor product decomposition of
the [>-space of complex-valued functions over a Cartesian product N x N': there, the tensor product

of a function on N with a function on N’ is obtained as their pointwise product. Accordingly, what
we need in the hermitian line bundle case is an operation to make the ‘product’ of a point in the

bundle above N with a point in the one above N, and we want this operation to be valued in the

bundle we happen to have above N x N'.

Definition 6.6 Let M, N and N be three smooth, finite dimensional, manifolds, and let ¢ : M —
N’ x N be a diffeomorphism. Let By, By and By be hermitian line bundles (def. B.1), respectively
with base M, N" and N. We call a smooth map { : By x By — By a factorization of By
compatible with ¢ iff:

1. ¢ o g, 0 ( = g, X wp,, where wg,, g, and wg, are the bundles projections of By,

By and By respectively;
2. V7 € By, Vz € By, (7, 2)]=|7]|7];

3 V7 € By, Yz € By, YN, AEC, (N7, \2) = NA((Z, 2).

Proposition 6.7 We consider the same objects as in def. 6.6. Moreover, we assume that N" and
N are equipped with smooth measures pn and py, and we equip M with the smooth measure

e = @, (1 % ). Then, there exists a unique Hilbert space isomorphism:
Pc L (M — B, duve) = Lo (N = By, diw) ® L (N — By, du),
such that:

Vs € Lo (N = By, dit) Vs € L (N = By, din), @c ({5 5)) =5 @,
where VX', x € N x N, {(s', s) o ¢ (¥, x) := ¢ (s'(x), s(x)).

Proof We define Hy := L, (M — By, duny), and similarly Hy and Hy.

We first want to prove that Vect {Z(s’, s) ) sSseHy & se J{N} is dense in Hy. It is well-

defined as a vector subspace of Hye for Vs € Hy, Vs € Hy, {(s', s) is a cross-section of
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By (from def. 6.6.1) and HZ(S/, S)HM = |s"ll Islly (from def. 6.6.2 and Fubini's theorem), hence

{(s', s) € Hy
The cross-sections with compact support are dense in Hy,, and, by partition of the unity, they
are linear combinations of cross-sections with compact support of the form W := ¢~ ' (V' x V),

where V' is a trivialization patch for By and V' a trivialization patch for By. Given a non-zero

cross-section s, resp. s, of By|,,, resp. Bx|,, we define a non-zero cross-section s” of By, by:

VX', x € V' xV,s" o g x):=C(sX) s(x)).
Thus, using the trivialization defined by s, resp. s, s”, to identify the vector subspace of Hay,
resp. Hy, Hy, of cross-sections with compact support in V/, resp. V, W, with [, (\//, duN/|V/),
resp. L, (\/, d/JN|V), L (W, duN|W), the restriction ZW ofz to these vector subspaces is given by:

Cw(f's’, fs)= (& f)o(@ly_ vy s” (from def 6.63).

Hence, its image is dense in L (W, duN\W) =1 (\//, dih V,) ® L (W, duN]W) (which equality
follows from def. 6.6.2 and Fubini's theorem).

Now, the application:

Z D Hyy x Hy — E-CM
(s’,s) — C(s, s)

is a bilinear map (from def. 6.6.3) and satisfies (from def. 6.6.2 and Fubini’s theorem):

Vs’ t' € Hy, Vs, t € Hy, <Z(5’, s), C(t', t)>M = (5", ')y (5, )y

Hence, there exists a unique Hilbert space isomorphism <Dg1 CHy @ Hy — \/ectImZ = Hyy,

such that Vs € Hyv, Vs € Hy, (s’ ®s) = (s, s). O

With this, we can now present the announced factorizing structure for prequantum bundles. As
usual, we need to require an appropriate ‘three-spaces consistency’ that will support the correspond-
ing consistency of the projective limits we are ultimately interested in (fig. 6.1 looks slightly different
from what we had for factorizing system of phase spaces in fig. 2.2, because we are forced to define
the maps ¢ in the direction opposite to our standard convention for factorizing maps). Note that
we also have a compatibility condition involving the connection of the prequantum bundles, that
will come into play when (pre-)quantizing observables and expressing the holomorphic condition.

Definition 6.8 Let (£, M, @) be a factorizing system of finite dimensional phase spaces (def. 2.12).
A factorizing system of prequantum bundles for (£, M, ¢)” is a quadruple:

( (BI]: VH)UEL ' (Bn/ﬂn, v[]’*)[])n%n/ ' (Cn/ﬁn)n_\«f ' (Zﬂ”*}[],*}f})n#n/#,]ﬂ)

such that:
1. Vne L, (B”, V,,) is a prequantum bundle for M, (def. B.2);
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B 0’

Cn”ﬁn’
CU”HU
By x B,
5/7/—>sz
—— ——
By_yx By, x B, By_,x B,
N

ZHN*)[]/*)I]

Figure 6.1 — Three-spaces consistency for factorizing systems of prequantum bundles

2Yn =<0 €L, (Byoy Vi) is a prequantum bundle for M, (except for the case n = "

M-, has only one element and B,_,, = C);
3Vnxn ek, {y,: By, x B, — B, is a factorization of B,; compatible with ¢, _,, : M, —
My x My

4. Yn<n el YyeB, ., Vze B,

n—=n

[Ty,z Cn/ﬂn] <H0ry(Bn/ﬂn' Vi) % Hor,(B,, vn)> = Hor¢, 4By, Vy), (6.8.1)

where Hor,(B,, V,) is defined as the V,-horizontal subspace of 7,(B,) for z € B,, and
Hory(By—, Viy-,) is defined similarly for y € B, _,,;

5Yn<n <0 €L, {yyy: Byoyx By, — By, is a smooth map such that:

617//"’7 ¢} ((U//‘)n/ﬁ” X .LdB,]) = 5’7//"’7/ o) (LdB ” X Z’I/‘)’Y)' (682)

0 —n

Def. 6.8 seems to require a lot, so it is reassuring that, at least in the topologically trivial case,
we can construct such a structure for any factorizing system of phase spaces satisfying nothing
but the quantization rule [105, section 8.3], which is anyhow mandatory to ensure the existence of
prequantum bundles for the M,.

Theorem 6.9 Let (£, M, @)™ be a factorizing system of finite dimensional phase spaces such that:

1. Vn e £, M, is simply-connected;

2.Vn e £, VS a closed oriented 2-surface in M,, Q, € 217, where Q, is the symplectic
5
structure of M,,.

Then there exists a factorizing system of prequantum bundles for (£, M, ¢)”.
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Proof For n < ' € £, we have that M,,_,, is simply-connected, otherwise M, ~ M, _,, x M,
would not be simply-connected.

Besides, for any oriented 2-surface S,y in M, we have:

—1,%
/ Qf?' = / (P/]/ﬁn Qﬂ/
n P/ —n © 517’
/<p

where S,_,,, resp. S, is the projection on M, _,,, resp. M, of ¢y, o Sy (which is an oriented

Qo % Q) = / Qo + / Q,, (6.9.1)

n n'—n S 1

S

W —n ©

2-surface in M,y _,, x M,). In particular, if S,_,, is a closed oriented 2-surface in M,,_,,, applying

eq. (6.9.1) to Sy = ¢, o (Sy—y x {X,}), where x, is any point in M, gives:

/ Qn/ﬁn = /S 0’7/ c2n7.

n'—n n

Let (X,‘;)WGL € Sz and let n € L. The construction in [105, section 8.3] tells us that, thanks
to the conditions 6.9.1 and 6.92, we can construct a prequantum bundle (B,, V,) for M, in such a
way that B, can be identified with the equivalence classes in:

{ (%0, 2y, v) ‘ X, €M, z, € C, y, is a piecewise smooth path from x? to x,},
for the equivalence relation:

/
X; = X,

~ ! / /
((X/],an )/;7) - (XU'ZW' yn) ) < ZI/7 = Zn eXp (_l qu(Vr;vV[/]) Q”) |

where L,(y,, y,;) is any oriented 2-surface in M, such that dZ,(y,, v,) = y,/f1 .¥n. Moreover, the
V,-parallel transport along some path y, in M, is then given by:

P ([0 20wl ) = [0,z vy vl

Since we proved above that, for all n < 1/, M, _, also fulfills these conditions, we can make
the same construction to obtain a prequantum bundle (B, V,_,), using as origin the point
7y € My, defined by @, ,(x7) = (x

n—n

Now, for n < " € £, we define ¢, : B, x B, — B, by:

X7).

0
X n—n'"n

Coyn ([Xn/ﬁn'zn/ﬁn' Vit—nl~ » [Xn: 2y, Vn]g) = [‘P;Lq(xn/ﬂnr X)) Zy—nZp, @;L,,(Vn/ﬁn, Vn)]w~

This is a well-defined map, for we have, using eq. (6.9.1):

exp | —i / Qy
Zn/ ((p”_/lw(yn’ﬂq' Vl7)r @ ! Y, ' yl/y))

/z/ﬂn( n'—n

=exp | —i / Qup
Ly (Vn/anryl/]/‘)”)

n'—n

exp | —i / Q,
Zo(va. vi)
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Moreover, we can check that it fulfills defs. 6.6.1 to 6.6.3.

Let x;, € M,y and (Xy—, X;) = @y_s(xy). Let y, and y,_, be piecewise smooth paths from

0 0 ; ; ;
x; to x,, and x;,_ to x;,,, respectively. We can choose local coordinates around x, ., in M,

_ . . . dy, ,
and around x, in M,. Hence, we have diffeomorphisms ¢y, : [=1,1]""" — Uy, resp. ¢, :

[—1,1]" = U,, where d,_, = dimM,_,, resp. d, := dimM,, and U,_,, resp. U, is an open
neighborhood of x,_,, in M,_,, resp. of x, in M,. This provides us local trivializations of the
bundles B,, B, _,, and B,, by:

VI’”/HH - [—1, ll]d"/ﬁ” , VZU/HU cC,

Woonlry—n, Zyon) = [wn’ﬁn("n/—m)rZn/—ﬂer,]g,] : Vn/—m]

Vr, e [-1,1", vz, € C,
Wolry, zy) = [¢n(rn)'zr7ern : Vn]:'

Vryan 1o € [=1,171 x [=1,1]", ¥z, € C,

1 —1
Wolry—n ry Zy) = [90,7/%/7 (Lﬁ’n/%n(rrﬂ%n)f QL’n(rn)) v Py (Xrng” “Yn'—nr Xry - Vn)] )

where ;T Yy, (Trys,) and x, T YT r).
nm—=n n

And we have:

Vryn, 1o € [=1, 170 x [=1, 1) Y2y, 2, € C,

-1
LIJn/ o (¢ (qun(f,;qn, Ziyn), Walry, Zn)) = (Fy—n, Tyy Zy—nZy),
Therefore, ¢;y_,, is smooth.
Then, for y;,_,, a path in M, _,, and y; a path in M,, we have:

Y
P

o0,

W, Vh) 0 Qo ([V;’Hn(o)rzn’—w: Vn/—w)]zr [V;;(O):an Vr]]z ) =

=0

= [on Ly Vyma Mo va) s 2gsn 200 03 Ly (Vi - Vi V- i) ).

Vo, v

= Zn/ﬁn (PV,;/;,IU ([y;/ﬂn(O)IZn/ﬁl]l V,,r%q]:) ,Py,/]” ([y;}(O),ZU, yn]:) ) ,
hence P " 0 {yy=Cyp o (P77 PYT) . Therefore, eq. (6.81) is fulfilled
njln( 1/7/%:7’%) T A y;l/w} o) » €9. (0.6 :

Lastly, for n < ' < " € £, we can in a similar way define a map {y—y—y - Bywy x By, and
we have:

s © (Grsy—sn X dB,) ([Xn”ﬂn’r Zysit Vil o Xosns Zy s Virsale o (X 2, vl ) =
—1 —1 —1 -1
= | Py—y (,0,7//_,,,/_>,,(X,7qu/,ann), Xn) o Zo'—n Zn—nZnr Py <Pn//—>n/—>n(yn”4n“ Vir—n) Vi -

-1 1 1 1
= [<pf7”*>ﬂ/ (Xr/”ﬁn/r (Pq/an(xn’ﬁnfxn)) v L=y Ly —nZn Py (Vn”ﬁn/r Oy V- Vn))]z

98



(using eq. (211.1))

= (yyo (i, X 5/7’—>n) ([Xn”—w)" Zyrsys Vo le s o Zysi Yirsale s [Xns Zo0 Vol ) '

0’ —n’

therefore eq. (6.8.2) holds. O

The last ingredient we need in order to perform prequantization are measures on the M, and
My, and they should be compatible, like we asked when setting up the configuration repre-
sentation. But this is in fact something we can get automatically and in a very straightforward
way from the structure (£, M, @)™, since a symplectic form gives us a natural volume form and

the compatibility of the symplectic forms is enough to ensure the compatibility of their associated
volume form.

Proposition 6.10 Let (£, M, @) be a factorizing system of finite dimensional phase spaces. We
define:

1 1
1. for n € £, the volume form w, = mﬁn AN.oNQ, = ng\dn/Z on M, (where d, =
n : n :
dimM,) and the corresponding smooth measure i, on M, ;
1 1 Ny _,l2
2 for n < n' € L, the volume form wy_,, = mﬂnq,} AN NQyoy = mﬁngn

on M,_,, (where d,_,, = dimM,_,,) and the corresponding smooth measure p,_,, on M, _,,.
Then, this equips (£, M, @)™ with a structure of factorizing system of measured manifolds (def. 6.1).

Proof That w,, resp. wy_,, is a nowhere-vanishing top-dimensional form on M,, resp. M,,_,,,, can
be checked in local Darboux coordinates.

What is left to prove is the compatibility of these definitions of the volume forms with the maps
@y—y and @y, (def. 6.13). For n < 1, we have:

e

R Ndy |2
('Dr//%ﬂ Wy = m ((p’?/*’U QU’)

1 Ny 2
= m (Qn/—m X Qr])

(since @y, is a symplectomorphism)

= 1 Ad 12
Q,/ n—=n
(dn/—m/z)! (d,7/2)| ( 1 ”)

Ad,[2

A ()

= Wy—p N\ Wy,
hence @y g« Ly = Hy—n X Uy, and similarly, for n < n" < n"

()0,7//_”]/_”7’* ,ul7//—>I] = ,L]n//_)n/ X luf]/—”?‘

On the grounds of the preliminaries developed so far, the prequantization of a factorizing system
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of prequantum bundles is actually very similar to what we did for the position quantization, and,
again, the link connecting the classical structure and the (pre-)quantum one is demonstrated by
exposing the correspondence between observables.

Proposition 6.11 Let (£, M, ¢)* be a factorizing system of finite dimensional phase spaces,
equipped with a structure of factorizing system of measured manifolds according to prop. 6.10, and

let ((Bn, V,,)neﬁ, (By—n, Vn/_)n)ﬁn/, (C,,/ﬁn)nw/, (C”//_”’/_’”)nwsn”) be a factorizing system of

prequantum bundles for (£, M, ¢)*.

We define:
1. forne L, ) = LM, — B, du,);

preQ

2. forn=<n €L, o,

preQ
.

= LMy, — By, duy_,), and &7° = d;

n'—n =i

. J{;TQ - H ®

n'—n

Then, we can complete these elements into a projective system of quantum state spaces (£, H"*,
),

Proof The proof works like the one for prop. 6.3, using prop. 6.7 and:

Vn<n <n" V" e H)2 Vs e )P Vs € HP,

n’'—n n—n'

-1 . —1 1" / =z "z /
CDC,WW, © (Ld%PIfQ ® CDZ”/H,]) (" ®s ®s) = (yoy (5 . Cynls' 9)
" —n

=y (Z”ungn(s”,s’), s) (from eq. (6.82) and eq. (211.1))

= CD_1 O ((D_1 &® ldHBreQ) (5// (%) S/ X 5) .

- (,7//%,7 (/7//4»/7’~>l7

O

Proposition 6.12 We consider the same objects as in prop. 6.11. Let f, € C*(M,, R) such that
Xj, is a complete vector field on M,,. Let f, € C*(M,;, R), such that f, ~ f, (the equivalence

relation is defined in eq. (24.1), where we use s,_,, from eq. (213.1)). Then, X;, is a complete

vector fleld on M,,. Defining the prequantization 1?” of f,, resp. ﬁ/ of fy, as a densely defined,

essentially self-adjoint, operator on J(™", resp. fH,”fQ (def. B.3 and prop. B.4), we moreover have

fn ~ ﬁ/ (with the equivalence relation defined in eq. (5.3.2)).

Hence, defining:
Oivee =1 € Oay | 3fs €1/ X, is complete }
(where Oz ) has been introduced in prop. 2.13), we can map a classical observable f = [fn]N e

O&:’f’;&p) to a prequantum observable Fo= [E]N = O?L,}CPWQ,(DPWQ) (prop. 5.5).

Proof Let f, € C®°(M,, R) and let ' %= n. Using the definition of ., in terms of the symplec-

tomorphism ¢, _,,, we have X, = T(p,;lm (O, an). Hence, X; is a complete vector field iff

n'—n
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Xf oty (s.

n—n

n'=n n'=n

Now, let s € < <5—Cpr°o ® DP”*Q> (where D*® C Ji* is the dense domain of f, and the ®

is to be understood as a tensor product of vector spaces). We define:

preQ A a a . a reQ
Ol (s)—.Zt ® s*, with Va, s* € Dy,

n—n
Then, we have:

V(y, x) € My, x M, [¢f7rein1 o (Ld pe0 @ f,]) o &7 (s ’)] o <pniln(g,x) =

n'—=n
n—n

=Y G 19 (1005760 + 19, 5% |

=Y fa 0 Ty © Bplaly¥) [Gron 59| 0 gL ly. x) +

+i Z[ y T(pqgnoxm)z,w(ta, 5")] o @,'.(y,x) (using eq. (6.8.1) and def. 6.63)

= |:(f’7 % an/‘)I]) S/ + l' VII/’XMO]TW/"/7 S/:| o <pl]7’1>[]<y'x)
|00 7 ()] © 0 ly ).

—

Therefore, we have Vf, € C*(M,, R), Vn' = n, /2?,7 ~fy 0 Ty,
Hence, for any n,n € £ and any f, € C*(M,, R), fy € C*(M,;, R) such that f, ~ £, X; is

complete iff Xy, is, and we have T ~/f\,/. O
17 n 1

Finally, we obtain the advertised holomorphic representation for a choice of Kahler structure on
the symplectic manifolds M,. Requiring the factorizing maps to be holomorphic is enough to ensure
that the holomorphic subspaces of the prequantum Hilbert spaces H, set up above will correctly
decompose over the already arranged tensor product factorizations, as can be shown by proving the
corresponding factorizing properties of the orthogonal projections on these (closed) vector subspaces.

Definition 6.13 A factorizing system of Kahler manifolds is a factorizing system of phase spaces
(L, M, @) (def 2.12) such that:

1. for all n € £, M, is equipped with a complex structure J, such that (M,, Q,, J,) is a Kahler
manifold (def. B.5);

2 foralln <’ € £, M, _, is equipped with a complex structure J,_,, such that (Mngn, Qy i, j,yqn)
is a Kahler manifold;

3. forall n<n" €L, ¢y, is holomorphic, and for all n < " < " € L, ¢y, is holomorphic.

Proposition 6.14 We consider the same objects as in prop. 6.11, but we now moreover assume that
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(L, M, ¢)" is a factorizing system of Kahler manifolds. We define:
1. for n € L, H,™ == H** N Holo (M, — B,) (prop. B.H);

— j_(:preO _ (D )

n—n

2 for n < n/ c L, Holo  .__ g_cbreQ N HO[O (MU/H’Y — BU,‘)f]) and for n c ,E’ j_CHoto

n—=n " < Fn'—n n—n "
Then, for all n < n, 02 (F°) = Hp°, @ H,™ and for all n < 0" < 0", P2, (H0e,,) =
e @ HI - Hence, defining:

n"—n n—n-

3 fornsn e L, o, = befgn

U
Holo Holo Hol
3ol ol @getiols

n'—n

4. and for n< [7/ < n” e L, Holo o q)pr;'Q

n'—n'—n - n'—n'—n

!
Holo Holo Holo
gl el @t

(L, 30, d™°)® is a projective system of quantum state spaces.

Proof First, for every n € £, we can define a complex structure on B, in the following way: for
z € By, with x = 7, (z), we have T, (B,) = Hor, (B,, V,) ® T, (wgl(z)), where Hor, (B,, V,)
can be identified 7,(M,), and thus equipped with the lift of the complex structure J,,, while on
T, (wgl(z)), the multiplication by i provide a natural complex structure. With this, a cross-section
of B, is holomorphic if and only if it is holomorphic as a map M, — B,,.

Similarly, for every n < n" € £, we have a complex structure on B,y_,,. Eq. (6.8.1), together
with defs. 6.6.1, 6.6.3 and the holomorphicity of ¢, _,,, ensures that (,_,, is holomorphic as a map
By, xB,— B,.

For n € £, ®° s a trivial identification, hence the desired result holds. Thus, we consider

n—n

n<n €L We first want to prove that ®/ o ¥ o q>;’f§;1 = 17", ® I, where 17" -

H* — H° is the orthogonal projection on the closed vector subspace H}?® in H°, and [T,

Holo
n'—n

Let t € J'CZTS),], s e J'CZ’E’Q and define t = I_It',?int and 5 = I_Ig"“’ s. By definition of CDpnrfin, we have:

are defined analogously.

Vy.x € My x My, 21 (F@5) 0 gL, (0.%) = Gyolfly), 5()).

n'=n
But, as a composition of holomorphic maps, (y, x) — (y—,(t(y), S(x)) is holomorphic. Hence, ¢, -,

being holomorphic, ¢! (T®@3) € I

n'—n

Let s" € J(7". Using the volume-preserving property of ¢, _.,, we compute:

<5’, M o oot ®5)>

n'—n

(5. Tyt )

Hy Hy

= [ dugate) [ ) (50 0Ly 0) Gl s,

n
' —n n

For y,x € M, x M, we define u?(x) € B; such that:

Vu' € By, (s 0 gLy, x), Cyaltly), “/)>B,, = (u(x), U)g, .,

102



u?(x) is well-defined, since the left-hand side is a C-linear function of u” (from def. 6.6.3).
Since s” € J(;7°, the map x - s’ o (pf_m(g, x) is holomorphic, and for any (local) anti-holomorphic

cross-section u’ of B, the map:
/ / —1
X = <Zﬂ’ﬂﬂ(t(g)' u )' s o (Pq’an(ylx)>3”/'

is holomorphic (for the connection is a U(1)-connection, so the parallel transport preserve the scalar
product). Therefore, the cross-section u? is holomorphic. Moreover, using def. 6.6.2:

Vx € My, [u?(x)] < |s" o @, (y. )] [ty)].

thus, by Fubini theorem, for almost every y in (M, duy—,), u¥ € F™.

Hence, for almost every y € M,

X "o @] X ' L s(x = (X I(x), s(x
/| ) {0 07 Lly 0. Groalte) s, /| ) {00, s,

= (U, Sy, = (", Ts),, = / din(x) (5" 0 gy, ). Cyoanltly), S0 5

n
n

And we can prove in a similar way that, for almost every x € M,,_,:

[ Aitynly) (5" 0 g7y x), Cyoaltly). S, =

n
nm—=n

[ dirale) (50 @l Grmaffl) 00

Therefore, we arrive at:

(s Mo or t@s)) = (s, o (f03)
H, H,

Since this holds for all s" € ;7" and we have already proved that cb;ffij (f®3) € H", we have:

Mo o0 Nt @s) = o0 (f®3),

n'—n n'—n

which gives us the announced result:

preQ Holo PrG‘Q,_1 _ Holo Holo
¢ ol o® =[1 ® I,

n'—n n—n n—n

n'—n ] n'—n n'—n n'—n

—1
Hence, 7%, (30) = &7, o My 0 @y (307°, @30 ) = My, @ My (367, @ 3G ) =

preQ

n"'—=n'—n

von ® 3 And the relation involving & can be proved in a similar way. O

n—n

Note that in an holomorphic representation, the evaluation of the holomorphic wave-function at
a given point in phase space is a bounded linear form (via an argument similar to the proof of
prop. B.6), hence is dual to a vector in the Hilbert space: this defines the coherent state centered
around this classical point. Now, if we choose an element in the projective family of symplectic

manifolds we started from, ie. a projective family of points (Xn) we can form a projective family

nel’
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of quantum states, by considering, in each f]-(;“'“ , the coherent state centered around x,. This family

of states will moreover be of the form considered in theorem 3.9, so we can apply this result to get
a corresponding inductive limit Hilbert space and characterize its range in the quantum projective
state space (for example, the Fock representation we will consider in prop. 16.17 can be obtained in
this manner).

Here, the classical precursor for this inductive limit of Hilbert spaces (in the spirit of the the
discussion preceding prop. 6.3) is an inductive limit of phase spaces: the restriction to the subspace
Vect(Cy—n) @H, of Hy—,,@H, = H, can be seen as the quantum implementation of the second class
constraints selecting {xy—,} x M, in My, ® M, = M, (with x;_,, defined through (x,_,, x,) ==

ry—n(Xy))-

7. Discussion: toward a systematic quantization framework

While the quantization schemes laid out in section 6 cover the most common use cases and,
indeed, will be sufficient for the rest of the present work, it appears likely that they could be further
developed. The goal would be to have general quantization prescriptions, building upon geometric
quantization [105], to quantize any projective system of classical phase spaces, as soon as we give
us a consistent family of polarizations thereon.

In particular, it should be possible to relax the requirement of having a global factorization.
Recall that in our discussion of the local factorization result (prop. 2.10), we had identified two
different kinds of obstructions that could prevent it from holding globally. In both cases, we can
sketch a route for proceeding to quantization nevertheless.

The first kind of obstruction is realized when M, cannot be written as a Cartesian product, but

at least can be seen as an open subset of a bigger manifold M, := M, _,, x M,. This suggests to

deal with this situation by a slight generalization of def. 5.1, allowing JH, to be a closed vector
subspace in a bigger Hilbert space UN{U/ = Hy, ® H,. Then, the density matrices over H, could
be seen as density matrices over f]ffn/, with support restricted to J(,;. Thus, it would still be possible

define a map Try_,, : 8§y — 8, by first embedding 8, in §, and then tracing over H,_,,. While
such a map could no longer be seen as a partial trace over a tensor factor in H,_,,, it should still

retain the properties that we really need for the formalism to make sense (in particular, appropriate
compatibility with the evaluation of expectation values).

The other obstacle for a global factorization is illustrated by taking M, as a covering space of
M,: in this case we still have the option of writing M, ~ M, _,, x M, with a discrete space M, _,,,
but we have to accept that the identification will not be everywhere smooth: there will be cuts,
and the disposition of these cuts will, when going over to the quantum theory, be imprinted in the
precise interpretation of the observables. For example if M,, = U(1) = M, (aka. circles), and the
projection 7y, wraps M, n times around M,, so that the length of M, is ¢ while the length

of M,y is n ¢, a suitable factorization of H, := [,(M,) can be written in terms of the respective
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momentum eigenbasis as |27KJne) = [r),, ® [27Kle) , where k' = n k + r (Euclidean division).

It might even be possible to go further and relax the need to choose consistent polarizations on
the classical projective system. For example, if the small phase spaces M, are linear (or affine),
different choices of linear complex structures on M, (making M, into a complex vector or affine
space) yield unitarily equivalent holomorphic quantizations (see [1035, sections 9.5 and 10.4] as
well as [49]): one could then, when trying to relate a finer label n° and a coarser one 1, use
these identifications to switch to compatible choices of complexes structures on M,, and M, (in a
way similar to the option, outlined at the end of subsection 6.1, to dispense from the choice of a
consistent family of measures in the context of position quantization).

The bottom line is that quantizing a classical projective system will often be a fairly automatic
procedure, and, in practice, most of the work goes into setting up this classical system in the first
place. This is markedly illustrated by the next part, devoted to the design of projective quantum
state spaces for a certain class of classical theories: while it will require appropriate forethought
to arrange the classical factorizing system and check its validity (section 10), the quantization step
(subsection 12.1) will be a straightforward application of subsection 6.1.

In particular, there tends to be a conflict, when preparing a projective or factorizing system along
the lines of section 2, between the three-spaces consistency condition (fig. 2.1) and the requirement
for the label set to be directed:

» when the three-spaces consistency fails, it is generally a sign that some information is miss-
ing from the labels: if we cannot unambiguously attach a precise physical meaning to each
label (in the form of a specific sub-algebra of observables), we cannot guarantee that a given
coarser/smaller label will always be extracted identically from a finer/bigger one, no matter in
how many successive steps this extraction is done;

» on the other hand, the richer the structure of the labels is, the harder it gets to order them in
a way that do full justice to the information they carry, while ensuring directedness.

These opposing considerations will play a prominent role in section 10, as we will have to carefully
select a suitable label set (subsection 10.1), balancing the implications of directedness (subsec-
tion 10.2) with the need for the labels to fully specify the subset of observables to which they refer
(subsection 10.3).

Finally, while we have discussed extensively how the classical structures presented in section 2
can be converted into their quantum analogues, we have not yet formalized how to infer from
the strategy exposed in section 3 a program for dealing with constraints at the quantum level.
Nevertheless, an example will be considered in subsection 16.2, suggesting how such a program
could look like.
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Projective Structure for the
Holonomy-Flux Algebra

Chapter 3 — Classical Theory

8. Introduction

Theories of connections are field theories in which the field (aka. configuration variable) is
a connection in a principal bundle [50, section 1.5] (whose base is the spatial slice and whose
structure group is the gauge group of the theory), like eg. the electromagnetic potential (with gauge

group GG = U(1)). The corresponding conjugate variable is then analogous to the electric field of
electrodynamics.

Our interest in such theories stems from the reformulation of General Relativity (GR) in terms
of the Ashtekar variables [3, 4, 12]. Recall from the introduction of the present work, that the
canonical version of GR (aka. the ADM formalism) provided us with a phase space using the
3-metric on a spatial slice as configuration variable and the extrinsic curvature of this slice as
momentum variable. The key step is then to express the 3-metric on the spatial slice in terms
of a triad field, that maps, at each point, an internal 3-dimensional Euclidean space into the
tangent space. This introduces an additional gauge invariance, since rotations within this internal
space do not affect the reconstructed metric. Therefore, we will have, besides the diffeomorphism
and Hamiltonian constraints already mentioned in the main introduction, additional constraints
implementing this gauge invariance, referred to as ‘Gauss’ constraints, owing to their analogy with
the Gauss law of electromagnetism.

To reconstruct a connection in this context, we start from the parallel transport prescribed by the
3-metric on the tangent bundle of the spatial slice (as determined by its Christoffel symbols), convert
it into a parallel transport between the internal spaces (using the triad that solders, at each point, the
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internal space to the tangent space), and add to the thus obtained connection a term proportional
to the extrinsic curvature of the slice: this yields an object that still transforms as a connection
under gauge transformation (because the connections form an affine space, see def. 9.2), while
being canonically conjugate with the triad field (because the metric and the extrinsic curvature
were canonically conjugate). This allows the triad field (more precisely, its densitized version,
obtained through renormalization by the volume element) to play the role of the ‘electric field’ in
the resulting theory of connections. This works because, in dimension d = 3, the Lie algebra
su(2) of the group of rotations (in whose dual the electric field should be valued) can be identified
with the 3-dimensional Euclidean space (on which the triad is indexed). Generalizations of this
construction to higher dimensions [15] require the addition of extra constraints to compensate for

the mismatch of dimensions between the defining and adjoint representations of the corresponding
rotation group.

Beware that, following the prevalent usage in the LQG literature, we will, from now on, refer
to the connection as the position variable, and to the electric field as its conjugate momentum
variable. This is reasonable in the context of usual gauge theory, where the connection is the gauge
field, but somewhat at odds with the physical interpretation of the Ashtekar variables sketched
above, since the intrinsic geometry along the spatial slice is encoded by the electric field while its

extrinsic curvature enters the definition of the connection. The reason for this convention is that
the quantum theory (section 12) is more easily formulated in the ‘connection representation’, which

we will think of as a position representation.

To arrive at this quantum theory, we first have to decide what our elementary observables will
be (recall the discussion in section 1). Smearing the (densitized) triad along 2-dimensional surfaces
yields ‘flux’ observables, taking value in the dual of su(2), while the parallel transport prescribed
by the Ashtekar connection along 1-dimensional edges gives rise to SU(2)-valued ‘holonomies’ (see
[92, sections I1.6.2 and 11.6.3] or prop. 9.9 below). Those flux and holonomy observables have the
advantage of being defined purely in terms of geometric objects (namely surfaces and edges), without
having to refer to any fixed background metric: this makes them particularly suitable as the basic
ingredients of a diffeomorphism invariant quantum theory. Still, their Poisson-brackets are finite
(see [92, section 11.6.4] or prop. 9.10 below) and the ‘holonomy-flux algebra’ they generate is simple
enough to allow a representation as operators on an Hilbert space (the Ashtekar-Lewandowski
Hilbert space [19, 8] to which we will come back in subsection 12.2).

As we will see, a projective quantum state space can also be build from this algebra. Inspired by
previous works (in [68, section 5] and [69], achieving the application of the projective framework
to models involving real-valued connections), we will, once equipped with an appropriate label set
(theorem 10.14), proceed, in theorem 10.25, to set up a factorizing system of configuration spaces:
as argued in subsection 6.1, and in particular in theorem 6.2, this is a fairly generic way of writing
down a projective limit of phase spaces, provided that a family of real polarizations can be chosen
consistently across all partial phase spaces, and it paves the way for its quantization in the position
representation, that we will perform in subsection 12.1.

107



9. Theories of connections

The aim of this section is to briefly recall the canonical formulation of classical theories of
connections, as well as the derivation of the holonomy-flux algebra mentioned above, to set the
stage for the construction of a projective description thereof (in section 10). The material we will
be reviewing is very standard, as it constitutes the foundation of LQG [4, 8], and a comprehensive
exposition thereof can be found in [92, sections 1.6 and 1V.33].

9.1 Phase space

To make the classical theory well-defined, we extend the space of smooth connections into a
reflexive Banach space (this will ensure the non-degeneracy of the symplectic structure on the
corresponding phase space). This is achieved using a Sobolev space (with p = 2, kK = 0) of bundle
cross-sections [96, 72]: in contrast to the usual (p = 2) Sobolev spaces of functions on R", it does
not carry a canonical Hilbert structure, but (partial) scalar products can be defined locally using
coordinates patches, and, in the case of a compact spatial slice L, the topologies induced by these
coordinate-dependent scalar products fit together. In this way, we get a configuration space having
the topology of an Hilbert space, and this is all what we will need.

Note that the restriction to a compact spatial slice is physically somewhat artificial: we make
this assumption in the present section for mathematical convenience, to avoid having to carefully
impose suitable boundary conditions. We will anyway be able to drop this restriction as soon as we
will turn to the construction of a projective state space for this theory. In addition, we also require
L to be oriented. This is again for convenience, and we could dispense from this assumption by
working below with densities instead of volume forms: the former always exist and they can be
integrated without reference to an overall orientation of ¥ [31, section 11.4].

Let (P, G, <) be a smooth principal fiber bundle over L [50, section 1.5]. In this whole section 9,
we assume that ¥ is compact and oriented.

Definition 9.1 Let V be a vector bundle on L. The Sobolev space H,(X — V) on V can be

defined intrinsically (ie. without any choice of coordinates or bundle trivialization) with the following

properties [96]:

1. It has the topology of a Hilbert space, hence it is in particular an (infinite-dimensional) smooth
manifold modeled on a reflexive Banach space [20, chapter VII].

2. The space of C*(X — V) of smooth cross-sections of V is dense in H,(X — V).

3. The topological dual of H,(X — V) is canonically identified with H, (Z — /\dT*(Z)®V*),
where AYT*(Z) denotes the volume form bundle on ¥ and ® the vector bundle tensor product.
More generally, for any k € {0, ..., d}, the topological dual of Hy(£ — A*T*(X)®V) is canoni-
cally identified with H, (Z — ANETHD) ® V*) and we have, forany Q € C* (L — ANTHI) ® V)
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and any F € C® (L 5> N7 THE) @ V')

F(Q)i=/ZQAF,

where A : (/\kT*(Z) ®V) X (/\[T*(Z) ®V*) — AIT#(X) denotes the contraction of a V-
valued k-form with a V*-valued (-form (note that this expression fixes our sign convention for
the identification AYT*(Z) @ AKT(X) =~ AT KT*(L)).

The space of smooth connections on P is an affine space, the linear part of which consists —
modulo the choice of a local cross-section — of g-valued 1-forms. The corresponding momentum
space thus consists — again up to (local) gauge choice — of g*-valued (d — 1)-forms (or more precisely
densitized vector fields, which, in the case of an oriented slice ¥, can be converted into (d—1)-forms).
We are careful here to formulate the definitions in a gauge- and coordinate-independent language,
so it does come as a surprise that automorphisms of the bundle give raise to symplectomorphisms
on the thus defined phase space (these automorphisms are combinations of diffeomorphisms and
gauge transformations; a split between pure diffeomorphisms vs. pure gauge shifts can be made
with respect to a reference cross-section).

Definition 9.2 Let G be the P-associated vector bundle arising from the adjoint action of G on g
[50, section 1.5, that is the quotient of PP x g by the equivalence relation:
(pu)~(p ) & geCG/p =p<dg & u' =adgu).

A smooth connection on P [50, section I1.1] is a smooth g-valued 1-form A on P satisfying:
1. VpeP, Ao[lipa-]=idq

(where [Ty p<t -] denotes the tangent map at 1 of the map G — P, g — p<g);
2VpeP,Vge G, Agoll, <g]=ad;10A,

(where [T, - <1g] denotes the tangent map at p of the map P — P, p’ — p'<g).

Given a smooth connection A and a smooth section Q of 7T%(X) ® G, there is a unique smooth
connection A" =: A + O such that:

Vp e P, Vve l,(P), Oxp ol[l,m(v) = [(p A;(v) —Ap(v))] )

where 7 denotes the bundle projection of P.

The space of smooth connections on (P, G, <) is thus an affine space over C* (L — T7(X) ® G).
It can then be extended into an affine space Cy over 7C;y :=H, (Z — T7(X) ® G), in which it forms
a dense subspace.

Definition 9.3 Let My := T'(Cz) = Cs x Pr, where Pr 1= H, (Z — N\ "y e g*) and let Oy,
be the canonical symplectic structure on My, which can be defined through (see [20, section VII.2
but beware that we are using an opposite sign convention here, to match eq. (2.16.1)):

V(A, E) e Ms, VQ, Q/ & TA(ez) = JCs, VF, F' e TE(:Pz) = J)Z ~ (Te[)/,
Oty (a6 ((Q.F), (Q,F)) = F'(Q) = F(Q),

where we have used the identification provided by def. 91.3. Since €y is a smooth manifold
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modeled on a reflexive Banach space, Qy, is a strong symplectic structure (ie. for each (A, E) €
M): , (Q, F) = QMZ,(A,E) ((Q, F), : ) (s an lsomorphlsm T(A,E)(MZ) — T(/A,E)(MZ) )

Definition 9.4 Let ® be a smooth bundle automorphism of P, namely a smooth diffeomorphism
P — P satisfying:

1. there exists a smooth diffeomorphism ¢ : = — ¥ such that o ® = ¢por;

2 Vge G, (-<g)od=>do(-«q).

® induces a diffeomorphism ®g on G such that:

Vp € P, Vu € g g ([(p, u)l.) =[(®(p), u)l..

For any smooth connections A, A" and any Q € C®(Z — T*(Z)®§G) such that A" = A+ Q (def. 9.2),
we have @ TA = &* A4 T Q, where ®* ' A (resp. d*~' A) denotes the pullback of the
1-form A (resp. A') by &' and T®*~" Q is defined by:

¥x € L, (To" 1), = dg o Oyipy o [T ']

Ny resp. Td*~" can be extended by continuity to an affine bijective map ®¢; on Cg, resp. to
a linear isomorphism T®¢, on TCyr. Finally, it can be lifted to a map ®y, on Mx:

V(A E) € My = Cs x (TCx)", &y, (A E) = ((Dez(A), Eo TCDEQ) ,

and, by construction, ®y; is a symplectomorphism (ie. ®y Qe = Oy, ).

The evaluation of the connection or electric field at a given point of ¥ is not a well-defined
observable on this phase space (it would be only densely defined on the Sobolev space we are
considering). To get smooth observables we need to smear the basic variables in all d dimensions.
This is the reason why the Poisson algebra of the holonomies and fluxes, that we will introduce
in the next subsection as smearing on lower dimensional geometrical objects, will have to be
regularized.

Definition 9.5 Let U, s be a smooth local cross-section of P and let f, resp. g, be a smooth,
g"-valued, (d — 1)-form, resp. a smooth, g-valued, 1-form, on L, with supp f, suppg C U. For any

smooth connection A on P and any £ € C®(X — A" 'T*(I) ® G*), we define:

—~

X s(A, E) :=/AS/\f & Pg.(A E) :=/q/\ES,
U U

where:

Vx €L, Asx =Asnolls] & Ef-,..., )= [(s(x), Egul-. ..., ))]N

§<f,3 and ﬁq,s can be extended by continuity to R-valued smooth affine maps on My, and we

have:

/|35,>A<3} = f
{ s s /Uq/\

Moreover, for any smooth bundle automorphism ¢ of P, we have:
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§<f,s o q)M): = §<¢*f,®—1oso¢> & /F-)\q,s o CDM): = §¢*q,¢—woso¢~
9.2 Holonomy-flux algebra

To fix our notations and definitions, we begin by writing down what we mean precisely by the
edges and surfaces, that will label the elementary observables of the holonomy-flux algebra. An
important precision is that these geometric objects will be required to be analytic. While this is
not needed for the definition of the holonomies and fluxes themselves, it comes into play for the
regularization of their Poisson brackets (see the comments preceding prop. 9.10 below), and it will be
crucial for the construction of an associated projective system, where it will ensure the directedness
of the label set (lemmas 10.5 and 10.8). For similar reasons, analyticity is also required for the
construction of the Ashtekar-Lewandowski representation of the holonomy-flux algebra [4, 8].

On the other hand, the class of edges and surfaces we will be using here is actually more
restrictive than strictly necessary: we are considering only fully analytic edges and fully analytic,
disc-shaped surfaces, embedded in a single analytic coordinate patch, in contrast to the class
of semi-analytic edges and surfaces commonly used in LQG [92, section IV.20]. This is purely
for convenience, and as far as the construction of the quantum state space is concerned, it has
absolutely no incidence: the label set we will build from these restricted classes of edges and
surfaces (def. 10.12) is a cofinal part of the one we could build from a broader, semi-analytic class,
so prop. 3.6 allows to identify the corresponding projective state spaces (and a similar result holds
at the level of the inductive limit construction underlying the Ashtekar-Lewandowski Hilbert space,
see subsection 12.2 and in particular the proof of theorem 12.11 for more details).

Definition 9.6 An analytic, encharted edge in L is an analytic diffeomorphism é : U — V, where
U is an open neighborhood of [0,1] x {0}7"" in RY and V is an open subset of L. We call L edges

the set of all encharted edges, and for é € iedges we define its starting point b(é) := &(0,0), its
ending point f(é) := é(1,0) and its range r(é) .= é <[O 1] x {O}d_1>A
We say that é,, &, ﬁedges are equivalent, and we write é; ~ &, iff:
r(é)) =r(é) & b(&)=0b(&).

This defines an equivalence relation on ﬁedgey Its set of equivalence classes will be denoted by
Ledges: An element e € Leogges Is called an edge, and we can define its starting point b(e), its
ending point f(e) and its range r(e), since these are the same for any representative of e.

Note. If d =1, R*" = {0}, and [0, 1] x {0}" " =~ [0,1] C R.

Definition 9.7 An analytic, encharted surface in £ is an analytic diffeomorphism S : U — V, where
U is an open neighborhood of {0} x BV in R’ (B~ being the closed unit ball of R""), and
V' is an open subset of L. We call Esurfcs the set of all encharted surfaces, and for S € leurfcs we

define its range r(S) := S ({0} x B).

We say that §1 U — Vv, éz U= Ve ,ﬁsurfcs are equivalent, and we write §1 ~ §2, iff:
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r(§1) :r(§2) & §1<U1/ﬂ(]R+de71)>=§2<Uém(R+XRd—1)>I

where U] (resp. U5) is an open neighborhood of {0} x B“~" in U (resp. in U), and R, is the set

of non-negative reals. This defines an equivalence relation on Zsurfcs. Its set of equivalence classes
will be denoted by Lqyies. An element S € L is called a surface, and we can define its range
r(S), since it is the same for any representative of S.

Note. If d =1, R = {0}, and {0} x B“"" = {0} Cc R.

As hinted above, the holonomy and flux observables are not smooth functions on the continuum,
infinite dimensional phase space of def. 9.3 (in fact, they are not even everywhere defined). On the
other hand, by smearing the connection, which is a 1-form, on a 1-dimensional object, respectively
the electric field, which is (d — 1)-form, on a (d — 1)-dimensional object, we ensure that these
observables are diffeomorphism-covariant: they can be expressed in the language of coordinates-
free differential geometry and depend only on the geometric objects indexing them. This purely
geometric dependence is also the guarantee that their Poisson brackets can be regularized in an
intrinsic way (see [4], [92, section I1.6.4] or prop. 9.10 below), ie. without having to depend on any
auxiliary supporting structure (such as a particular choice of coordinates or a background, fiducial
metric).

As a technical side note, the concept of orientation that matters for the definition of a flux
operator is the orientation of the normal of its supporting surface: what we are really doing is to
integrate on the unoriented surface the density obtained by contracting its oriented normal (which
is a 1-form) with the electric field (which, properly, is a densitized vector field). Although this aspect
is somewhat obscured as we take the shortcut to rely on a bulk orientation on X (converting an
orientation of the normal into an orientation of the surface itself, and densitized vector fields into
(d — 1)-forms), this is the reason for the precise definition of the equivalence relation in def. 9.7.

Definition 9.8 Let (7;)1<i<x (with k := dim G) be a basis of g and (7')1<i<x be the corresponding
dual basis in g*. Let (0.)es0 be a smooth reqularization of the d-distribution in R ie. a familly of

smooth maps 0, : RY — R.. such that, for any € > 0:
1. /dX1...C/Xd 5€(X1 ..... Xd)z’],

2. supp 0, C B (where B is the closed ball of radius € and center 0 in RY).
For any x € RY, we define d., : X' +— 0.(x' — x).
Let V, s be a smooth local cross-section of P and let é : U; — V4 C V be an encharted edge in

Y. Since Uj is an open neighborhood of the compact subset [0, 1] x {0}7" of RY, there exists ¢
such that:

vt €[0,1], BY o C U

(where B'%) denotes the closed ball of center x and radius € in RY). For any e €10, [, t €[0, 1]

€,x

and i € {1,...,k}, we define:
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fé'[ _ é_1'* (Sgn(é) 5€,<t,0> dXZ VANPERAN dXd) T[
ot 0 outside of V4 '

where sgn(é) := +1 if é is orientation-preserving, —1 if it is orientation-reversing (with respect to

the canonical orientation on U; € R? and to the chosen orientation on V4 C ¥). We can then, for
any smooth map m : G — R and any € € |0, & [, define:

hesm - My — R
AE) = m | Poxp (g dt X (A E)n) |

where we implicitly sum over i € {1,..., k} and Pexp denotes the G-valued, path-ordered (with
respect to t), exponential.

Similarly, let S: U, — V5, C V be an encharted surface in £ and let ¢ such that:
d—1 (d)
Vg E B( ), BGZ,(OVH) C UZ

Forany e €10, e[,y € B Vandic{1,.. ., k}, we define:

g |5 By da)
€yl 0 outside of V) .

We can then, for any v € g and any € € |0, e[, define:

P(f's'”) . My — R
(A E) = fgondy P J(AE)T(u)

ey,ir

Proposition 9.9 We consider the same objects as in def. 9.8 and we fix a smooth connection A on
P as well as a smooth G*-valued (d — 1)-form E. For any smooth map m : G — R, we have:

hesm(A F) — lim hEsm(A ) = m [Texp (f(; y;,sA)] :

where ys 4 :[0,1] = R, t — s0&(t,0). Note that h®*™(A E) only depends on the equivalence
class e of é.
Similarly, for any v € g, we have:

e—0

PS94 E) = lim P4, E) = / (CE)(us),
7(S)

where #(S) = S <{O} X é(d’1)> (with B~ the open ball of center 0 and radius 1 in RY™"), ¢ is
the canonical injection 7(S) — X, F(S) is oriented so that:

Yy € HS), Yo e NTITHE), tv>0 & ST (dx)Av >0,
and ug € C*(V — G) is defined by:

Vx eV, us(x) = [(s(x), u)]

Again, P®*% only depends on the equivalence class S of S.

Proof Putting all definitions together, we have, for any smooth map m : G — R and any € € |0, ¢ [:
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>A<fz=,[ S(A, E) = / 56(&0) Zlg, s VAN dX2 VANRIIAN dXd,
€t U1 !

where U; carries the canonical orientation of R and Z‘es the 1-form is defined by:

Vx € Uy, Al

8,8,x TiOAsog.(X)O[TXSOé],

This can be rewritten as the following unoriented integral:
Xpei (A E) = / dxi . dxg Oegi)(x) Al 4(0y).
, U

Since A‘es is a smooth 1-form on U; and U B, (t0) is @ compact subset of U; C RY, we have,
t€[0,1]
uniformly in t:

, d
im Xy (A E) = ALy 0(0) = T' 0 Ascsen (—s o 8(t',0)

e—0 fei. dt’

) =T 0 A0 (Vis(t)).

t'=t

Thus, we get:

lim h**")(A, E) = m [Texp (/1 dt Ay (Vislt ))H —m [Pexp (f; v |
0

e—0

Similarly, for any v € g and any € € |0, &:

—

P WA E)T () = / dxi...dxg Se0y(X) Esy,(¥)
[ UZ
where Eé,s,u is the smooth map U, — R defined by:

Vx € Uy, Ex, () = sqn(3) Eg, ([Txé](aXZ), . ,[Txé](axd)) ([(soé(x), u)]N) .

Thus, we get:

e—0

lim P (58] - /B(dw)dgz R dé/d Eﬁ,s,u(o’ g)

We now switch back to an oriented integral, taking care of the orientation:

lePSSL’ 2/ sqn(S) (So7)* Es,,
Bld-1)

e—0

where T denotes the canonical injection 8%V ~ {0} x B — R? and the (d — 1)-form Ee,,is
defined by:

Orienting 7(S) so that sgn(é o) = sgn(S), we obtain the final expression:

Ltn?)PSS” :/ Egs,U:/ (CE)(us).
- HS) S)

Note that this orientation on 7(S) does not depend on the choice of the representative S of S thanks
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+1 ‘ +1 ‘ ‘ +12

( | 12
No/ | — e/

We represent edges by arrows (going from b(e) to f(e)) and surfaces by double lines.

The plane S <{0} X RM> is represented by a dashed line when its disposition is relevant,
and all surfaces are assumed to be oriented upward.

Figure 9.1 — Sign factors for generic intersections and our conventions for non-generic ones

to the way the equivalence class was defined in def. 9.7. U

We now come to the regularization of the Poisson Poisson brackets between the holonomy and
flux observables. Thanks to the analyticity, this computation can be broken down to a few elemen-
tary cases: indeed, given an edge and a surface, we can cut the edge into parts having a simple
intersection with the surface, and express the holonomy along the full edge as the composition of
the holonomies along these parts (see [92, section 11.6.4] or the slight reformulation of this result,
in a form suitable for the projective construction, in prop. 10.7 and fig. 10.2).

In the two generic cases — an edge part that either passes cleanly through the surface or does not
intersect it, the regularization give an unambiguous prescription for the Poisson brackets. There
are also a few non-generic cases: edge parts that are entirely included in the surface, cross the
boundary of the surface or start/end on the surface (note that the case of an edge hitting the
surface tangentially is rescued by the analyticity and can be treated among the generic cases). A
well-defined regularization for those can only be obtained by fine-tunning how the limit in prop. 9.10
should be taken and/or by imposing additional conditions on the o0-regularization from def. 9.8.
We will not detail these considerations here, and simply accept the resulting Poisson brackets as
a matter of conventions: the prescriptions we will adopt in the following are the ones commonly
used in LQG, and are summarized in fig. 9.1.

Finally, we need to fix the remaining commutation relations to get the advertised holonomy-flux
algebra. While the Poisson brackets of the holonomies with each others can be set to zero, in
accordance with the fact that they all only depend on the connection, the same does not hold for
the fluxes (unless the gauge group G is Abelian). Although the latter were obtained in prop. 9.9 as
limits of mutually Poisson-commuting functions on the phase space, their Poisson brackets with
the holonomies enforce non-vanishing commutators, in order to get a valid algebra of observables,
namely an algebra satisfying the Jacobi identity. More precisely, the Poisson bracket of two fluxes,
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supported by intersecting surfaces S and S’, and indexed by two vectors u, u’ € g, should be
a flux-like observable (in terms its commutation relations with the holonomies), supported on the

intersection SNS’ and indexed by the Lie bracket [u, u/]g . This non-commutation of the fluxes will

play quite an important role throughout the development of the next section and we will discuss it
in more depth in the light of prop. 10.28.

Proposition 9.10 We consider the same objects as in prop. 9.9. For any smooth map m : G - R
and any u € g, we define:

€

(S.s.u) p(e.s.m) T (S,s,u) 1.(2,.s,m)
[Pl }um(A,E).—LL_rpO{Pe h }MX(A,E),

whenever the limit on the right hand side exists and is independent of the d-reqularization (9.

We have:
1. if r(e) N r(S) = @, then:

{P(S,S,IJ)’ h(e,s,m)} A, E) _ O,

lim (

2. i rie)Nnr(S)={é(c,0)} with c €0, 1[ and é(c,0) € #(S), then:

{PEsu) plEesmt (A E) = sgn(e, S) %m [?exp (f! ygf,SA) e Pexp (focy;SA)]

r=0
where sgn(e, S) = +1 if there exists € € |0, €] such that:

e(lc.c+elx{0})CS(Uha) & &([c—ex{0})CS(Us),
(with U+ == U N (Ri X ]Rd_1)) and sgn(e, S) = 0 otherwise (note that this sign does not
depend on the choice of the representatives & of e, resp. S of S).

Proof Poisson brackets at finite €. Let € € |0, min(ey, €)[. For any ¢ € C*([0, 1] x [—1,1], g), we

have:

%m lﬂ)exp (/01 dt (t, r))] y
_[gn 4 1 o) ( i H
_/o dm drm [ﬂ)exp (/m dt LL/(t,O)) .e . Pexp /o dt (t,0) »
= /1 dm lﬂ m [fPexp (/1 dt gU(t,O)) .. Pexp (/m dt g[/(t,O))” (argb(m,O)).
0 m 0

Let Q € Hy(L — TH(L)®G) and F € H, (L —» A 'T*(L) ® G*). Applying this general formula to

Pt r) =X JA+TQ, E+rF)7 yields:

et

1
[7—<A’E)h(€é,s,m)] (O, F) = / dm HI (t;) [7—(AVE)Xf§‘;§,,s] (Q,F)
0 .

where, for any m €10, 1], H" € g* is defined by:

1 m
H = [ﬂ m [Texp (/ dt X (A E) rl.) - Pexp (/ dt X (A E) T)”
m et O et
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Also, by the dominated convergence theorem, we have, for any Q € Hy,(X — T7(X) ® G) and any
FeH(EZ AT ®G):

—

[T(AE ssu](Q F) — /deg (u) [T(A,E)qu (A E)] (0, F).

€Y.’

Together with the Poisson bracket expression from def. 9.5, this implies:

{P(gé,s,u}’ h(é,s,m)} (A, E) _
Mg

€

1
— / dy / dm H™u) [ S (eioqdxi) A 87 (sGN(B) Oc oy dxa A ... A dxy)
Bld=1 0 Vo

1
:/ dg/ dm Hg(u)/ Seimoy (5710 8) (Bei0dxi) Adxa A A dxg
d=1) 0 U,

v

1
/ dy [ dm H(u /dx bein ) (57 0 20) [(57 08 | (0.), (9101)
Bld=1 0 U, X

where V, ==V, NV, and U, .= &~ (V,) (oriented as subsets of L, resp. Rd).

Limit in the case r(e) N r(S) = @. If rle) N r(S) = @, then, by compacity, there exists ¢, &
10, min(er, €)[ such that:

v d &
mel0,1] yeBld-1

Hence, for any € < ¢, {p(é,s,u)’ h(é,s,m)} (A, E) = 0. Therefore, {P(S’S’u), h(e,s,m)} (A, E) -0
€ My lim

€

Limit in the case r(e)Nr(S) = {&(c,0)}. We now assume that there exist ¢ € |0, 1[and b € B
such that r(e) = {é(c,0)} = { (0,b)}. We define a: U, » R and B: U, —» R”' by:

Vx € Uy, ST o 8(x) = (alx), Bx)).
Inserting this definition in eq. (9.10.1) and reordering the integrals yields:

{P(Ssu) h(esm)} (A, E)

/dx1 dx/ dmdy H(u) 0c(xi — m, X) 0 (a(x1,X), Blx1, X) — y) 9y, alx1, X).
0,

1)x B0

Next, performing the change of variables (m, y) — (y1, §) == (x1 — m, B(x1,X) —y) , we get:

{P(SSL” h<”"7> M (A E) = /dx1 dx/dg1 dy  H ' (u) 0y, X) Oc (alx1, %), §) Oy, alx1, X).
T [x1

(d—1
1x1><B1BX)X
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(9.10.2)

U, is an open neighborhood of (c,0) in R”. Let €3 € |0, min(c, 1 — ¢, 1 — ||b]|) [ such that:
1—1b]
3

In particular, for any x; € ¢ — €3, ¢ + €[, (x1,0) € U, and ||B(x1,0)|| < 1. On the other hand, we
have:

[ €00.1]] (%,0) € Uy, alr,0) =0 & [B(x,0)] < 1} = {(0, )}

Bg)(c,O) cClU, & Vxe Bg,)(c,ow 1B(x) — (0, b)] <

Therefore, for any x1 € |c — €3, c + 6], a(x1,0) =0 & x; = ¢. Since a is analytic, there exists
N > 1 such that:

dyalc,0) +0.
Hence, there exists e € |0, €3] such that:
V(x,X) € By, Onalxi,X) +0
Let 7 > 0 and let &5 € |0, €[ such that:
m efc—es c+es], Ve €]0, e[, || HI() = Hylw)]| < <.

where Hj € g is defined by:
HE = [T1m [iPexp (f;dt ygrsA) - Pexp ([, dt yg‘ysA)] ] :

Finally, & ([0, c —es/3] U [c + e5/3,1]) and r(S) are compact subsets of Z and do not intersect,
hence, there exists €5 € |0, min(ey, €,)] such that:

o (
me[0,c—es/3]U[c+es/3.1] yeBl-1)

Note that this in particular implies €5 < €5/3 and we have, for any € € ]0, €5]:
Vixi, x) € Us \ ([C — 26s5/3, ¢ + 2es/3] x ng”) '
- ~ d
Vm €0,1], Yy € B, (x, %) € B, = S0, %) & BY -

Moreover, for any (x1, X) € [c — 2€5/3, ¢ + 2e5/3] x B(;;/g”, we have (xq, X) € B o) C B€ ) C

Bg?(ao), and, by definition of e3:
[—es/3, es/3] x BYS I =1, 0] x B

For € € ]0, €[, we can thus rewrite eq. (9.10.2) as

{P(SSU) h(esm)} (A, E)

c+2¢5/3
:/ dx1/d1dx/ dyy G HY ' (0) 8.(y1,7) 8 (a(x, %), §) 0. 0fx, )

2¢e5/3 55/3 €513, €5/3] ><B€ /3
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e5/3 c+2e5/3
=/( dx dy, 5e(g1,Y)/ dx1 0y, a(x1, X) H?‘Nu)/ dy 5€(a(X1,Y),g).
B c B

d—1) (d—1)
&3 —esl3 —2e5/3 S

Since {x1 € [c — 265/3, ¢ + 2e5/3] | a(x1,0) = 0} = {c}, we have:
alc —2e/3,0) <0 & alc+2es/3,0)>0 if sgn(e,S) = +1

0
alc —265/3,0) >0 & afc+2e/3,0)<0 if sgn(e, S) =
alc +265/3,0) >0 or alc+2e/3,0) <0 if sgn(e,S)=0

Let e, € ]0, €] such that:

‘a(c + 2es5/3, O)‘
5 ,
and let € = min (€7, 3|a(c + 2e5/3, 0)|, 3|alc — 2e5/3, 0)|). Then, for any € € ]0, €[ and any

Vx € B(e‘j’” , ‘a(c + 2e5/3, X) — a(c £ 2e5/3, O)‘ <

X € B9V we get:
c+2es/3 a(c+2¢5/3,X)
/ dx 6X10((X1,3?)/ dg Oc(a(x, %), 7) :/ da / dy o.(a,g) =sgn(e, S),
c—2es/3 e/g alc—2es/3, %) Bg,g”

by performing a change of variable in the oriented integral and using the properties of o..

Therefore, for any € € ]0, €,[, we have:

€

prsr“), e} (A E) = sgn(e, S) Hy(u)
T

e5/3 c+2¢65/3
g/( dx dy1 Se(yr, m/ dxi |0 ala, %) [HE ()~ HE(u \/ 7 o (a.%).9)
B c

d—1)
€513 2e5/3

6‘5/3
<—/ / dyy 0y, x)/ axq axwa)ﬂ ‘/ dg 5 alxq, x )g)
—e5/3 [c—265/3, c+2e5/3]

To perform the change of variable x; — a(xq, X) in the unoriented integral over x;, we need to
decompose its domain [c — 2€5/3, ¢ + 2es5/3] into pieces over which a(-, X) is injective. Since, for

any x € ng”, 620{( -, X) is non-zero over this domain (by definition of €4), d,,a( -, X) changes its

sign at most N — 1 times. Hence, we need at most N such pieces. Therefore, we get:
Ve €10, 6] , HP(f'S'“’, hf'&m)}M (A, E) — sgn(e, S) H(u)| < .
¥

As T was arbitrary, this concludes the proof. O

The claim made many times above that the holonomy-flux algebra is particularly suitable for the
description of a diffeomorphism-invariant theory of connections can be substantiated by observing
that diffecomorphisms act on holonomies and fluxes simply by shifting the supporting edges and
surfaces. More precisely, keeping in mind that we need to preserve analyticity, what we have is
an action of the semi-analytic diffeomorphisms [92, section IV.20] on the algebra generated by the
holonomy and flux observables (regardless of whether fully analytic or semi-analytic edges and
surfaces are used, because, as hinted above, the generated algebra is the same in both cases, see
subsection 12.2). This is sufficient to implement diffeomorphism invariance because arbitrary diffeo-
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morphisms can be approximated by semi-analytic ones (by contrast, fully analytic diffeomorphisms,
that can be completely characterized by their restriction to any small open subset of ¥, do not form
a dense subgroup of the group of all diffeomorphisms; see the extended discussion in section 19
exploring what is needed for a satisfactory implementation of diffeomorphism invariance).

Actually ', one could argue that the algebra generated by the linear smearings introduced in
def. 9.5 (say compactly supported ones if we want to switch back to a possibly non-compact slice ¥)
also carry an action of the group of diffeomorphisms: the observable labeled by a certain (d — 1)-
or 1-form is transformed into the observable labeled by the pullback of this form. In addition, a
projective state space could be easily derived for this algebra: the configuration spaces spanned
by finitely many smearings of the connection are affine spaces, so we would be in the context of
[68] (that we covered in theorem 6.2 and that we will reexamine from a different perspective in
subsection 18.1). However, the behavior of these linear observables under gauge transformation is
not very convenient: in particular, if we want to express the transformation of a smearing of the
connection in terms of a smearing in the same reference cross-section s, we need to include an
extra contribution (because connections only transform as cross-sections of G up to an additional
constant, coming from the derivative of the gauge transformation under consideration). By contrast,
the transformation of an holonomy is perfectly transparent, as it only depends on the gauge shifts
at the beginning and at the end of the edge.

On the other hand, fluxes in a fixed cross-section s do not transform well under gauge trans-
formation: unless the considered gauge transformation is constant (with respect to s) along the
surface supporting a flux observable, the transformation of this observable will not be of the flux
type (at least not relative to this cross-section 8). Instead, it will be a weighted flux, obtained by
integrating the electric field weighted by a (g-valued) function on the surface (so that the non-
constant gauge transformation can be absorbed into the weight function). This is not a problem in
the context of the Ashtekar-Lewandowski Hilbert space J, because, as stressed in the main in-
troduction, the nature of the Ashtekar-Lewandowski vacuum enforces discreteness of the geometry
along the slice (which is encoded by the electric field): more precisely, the flux operator through a
surface S, when evaluated on states in H, , is effectively supported on discrete points of S. Thus,
the full algebra generated by holonomies and weighted fluxes can be represented on I, without
overhead. Unfortunately, weighted fluxes cannot be incorporated in the projective structure we will
setup in the subsequent sections (basically because, as argued above, fluxes on intersecting surfaces
do not Poisson-commute, so that the algebra generated by two different weighted fluxes supported
on the same surface could be infinite-dimensional, which would prevent us from assembling the
continuum theory out of small, finite-dimensional phase spaces).

Because of this, the projective state space we will construct will not be gauge-invariant. In
particular, we will, from now on, assume that a global cross-section s can be chosen in P (dropping
from the notations the explicit s-labeling of all observables): both the algebra of observables and
the state space will depend on this choice. This is a severe shortcoming of the construction, and
we will sketch in sections 13 and 20 a path to overcome it.

1. Thanks to Jerzy Lewandowski for drawing my attention to this possibility.

120



10. Factorizing system

The construction employed in LQG to obtain the Ashtekar-Lewandowski representation of the
holonomy-flux algebra uses an inductive limit of ‘small” Hilbert spaces, with building blocks labeled
by graphs (see [60, 8], [92, section 11.8.2] or subsection 12.2). Equivalently, it can be understood
as relying on a projective limit of finite dimensional configuration spaces (recall that we have
underlined the correspondence around prop. 6.5). Each graph corresponds to a selection of position
variables, namely the holonomies along its edges: it thus defines a small configuration space, that

can be identified with G" (one group variable per edge).

In principle, we could associate to any such graph a corresponding phase space, as the cotangent
bundle on its configuration space. However, if we now consider a big graph y’ and a subgraph y of
Y/, there is no preferred way of defining a projection from the phase space M, thus associated to
Y’ into the phase space M, associated to y. In order to define unambiguously such a projection, we
would indeed have to specify how the impulsion variables described by M, should be transported
to M,/ (having in mind that a downward projection between the phase spaces is dual to an upward
injection between the algebras of observables). We pointed out in prop. 2.10 that a projection
between the phase spaces encapsulates, at least locally, the same information as a factorization of
M, into a Cartesian product of M, times a complementary phase space M, _,, (remember that the
complementary degrees of freedom were characterized by their vanishing Poisson brackets with the
retained ones). In addition, if the projection we are considering is compatible with the splitting
of the phase spaces into position and momentum variables (like in the setup we considered in
theorem 6.2), this factorization of M,  should go down to a factorization €, = C,_,, x C, of the
underlying configuration spaces.

As stressed before def. 2.15, it is essential to get such a preferred choice of complementary
configuration variables (spanning C,_,, ) that we specify not only which configuration variables are
to be retained by y, but also which momentum variables: if we are only provided with a projection
between configuration spaces, we cannot single out suitable complementary variables within C,.
These considerations suggest that the desired projective structure should rely on labels that are
made not only of edges but also of surfaces, whose role will be, for each label n, to select which
fluxes are to be the momentum variables associated to . Besides, such mixed labels clearly sounds
promising in view of giving the holonomies and fluxes a more symmetric status (in support of the
goal, put forward in the main introduction, to help study of the semi-classical regime of the theory).

The need to include surfaces in the labels was already recognized by Okotow in [68, 69]. The label
set he was using is however not immediately applicable to the non-Abelian case, which requires,
as we will see, to impose more restrictive conditions on the relative disposition of the edges and
surfaces. The reason why complications emerge in the non-Abelian case is the following. As
mentioned above, a projection from the phase spaces associated to a finer label ' into the one
associated to a coarser label n is dual to an embedding of the algebra of observables selected by
n into the algebra of observables selected by . Moreover, this embedding is linear and preserves
the Poisson brackets (prop. 2.2), ie. it is an injective algebra morphism. But this requires that the
vector space generated by the observables associated to n, within the algebra of 1/, should be closed
under Poisson brackets, and that the algebra structure thus induced by 1’ should match the one
seen from n.

121



This is a rather harmless requirement in the Abelian case, for there the Poisson bracket of a
flux variable with an holonomy variable is just a constant (possibly 0 depending on the intersection
of the corresponding edge and surface) and the flux operators commute with each other (see the
comment preceding prop. 9.10), so the set of observables associated to a collection of edges and
surfaces will automatically be closed under Poisson brackets. The aim of the present section will
therefore be to determine which collections of edges and surfaces are admissible when the gauge

group is arbitrary, and to check that the label set they are forming, although much reduced, is still
directed.

Actually there do exist possibilities to write the state space of a theory of connection in projective
form while using labels made of edges only: two such models have been for example proposed in
[66] and, at the classical level, in [89]. In subsection 12.2, we will discuss in more details how a
non ambiguous choice of complementary variables is achieved in these proposals without explicitly
referring to the momentum variables in the definition of the labels, and why the thus obtained
projective structures would altogether not fit our purpose.

10.1 Definition of the label set

We begin by recalling a few elementary properties on the subject of edges and surfaces [92,
section II.6], that we will use again and again in the following.

Subedges, and in particular the splitting of an edge into parts, will play an important role in
the construction, because the holonomy along a composed edge is just the composition of the
holonomies on its parts.

Proposition 10.1 Let e € Loq4qes and let p # p’ be two distinct points in r(e). Then, there exists a
unique edge e, ] € Legges SUch that:

r(e[P.M) Crle), b (e[p,p/]) =p & f(e[p.p/}) =p. (10.1.1)

We denote by e~ the reversed edge e = e(re).b(e) - We also define a strict, total order on the

points of r(e) by:
Vp € rle), ble) < p & ble) #p
& Wp.p'ere)\{ble)}, p<ip & rlepen) & rlepen) (101.2)

For any p1 # ps € r(e) and any p; # p3 € 1 (e[p, p,)), we have:

. . 1\ 1 _ —
1 (Q[P«Pd)[pz,p}} = €[p,ps], SO LN particular (e 1) =& (9 1)[p1,p4] = €[pyps) aNd (e[P«PM) ' =

€ lpap1]:

2 Flepp) = {{P € r(e) [ p1 <) P iy pat 1 p1 <iey pa
: p1.pal] — .
{per(e)|ps<ip < pr} i p1 > pa

P2 <ie) p3 U p1 <(e) P4

3. p2 <ie pP3 < i
(lp1.pa)) {pz >(e) P3 if P >(e) P4
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Proof Existence and uniqueness. Let p # p" € r(e) and let é : U — V be a representative of e.
Let t # t" €0, 1] such that &(t,0) = p and é(t',0) = p’. The map ¢, defined by:
(I U—)Rd%IR,XRd_1
(T, x) = (t+T(t'—1), x)
ts an analytic diffeomorphism onto its image W, := ¢ (U), with ¢;(0,0) = (¢,0), ¢1(1,0) = (¢, 0)
and ¢4 <[O,1] X {O}d_1> — [t,#] x {0}"". Next, U is an open neighborhood of [0,1] x {0}*"" in
RY thus also of [t, ] x {0}, Hence, Uy := ¢;' (U) is an open neighborhood of [0,1] x {0}

in R?. Defining W, = ¢ (U;) and V; 1= 8 (W), &; := &y, © @1y, 1s an encharted edge,

with b(&;) = p, f(&1) = p’ and r(&;) = & <[t, ] x {0}‘“> )

Let & : U, — V5 be an encharted edge such that b(é,) = p, f(&2) = p’ and r(é,) C r(8). Since V
is an open neighborhood of r(8) in £, W, := (&,)"' (V) is an open neighborhood of [0, 1] x {0}/
in RY and ¢, = (é”) o (é2|W2) : Wy — U is an analytic diffeomorphism onto its image. Moreover,

we have ¢,(0,0) = (t,0), ¢2(1,0) = (¢, 0) and ¢, <[o,1] X {0}‘“> c [0,1] x {0}’ So, by the

intermediate value theorem, ¢, <[0 1] x {O}d_1> —[t, ]x{0}"" and therefore r(&/) = r(&,). Since
we also have b(é;) = p = b(é1), &1 and &, are two representative of the same edge e, .

Prop. 10.1.1 then follows immediately from eq. (10.1.1).

Order on r(e). That eq. (10.1.2) unambiguously defines is a strict order on r(e) (ie. an irreflexive and
transitive relation) can be checked directly. Moreover, if é is a representative of e and t,t" € [0, 1]

are such that é(t,0) = p and é&(t’,0) = p’, we have, from the previous point:
p<pp & t<t.
In particular, <(¢ is therefore a total order.
Let p1 # ps € r(e) and p, #+ p3 € r(e[p1,p4]). Using the explicit expression above for a

representative of e, »,), there exist t; # t, € [0, 1]and t, # t3 € [t1, t4] such that Vi < 4, é(t;, 0) = p;
and we have:

bHh—1t 3 —t
ty — t th—t |

r(eppt) =& (It ] x {0} ) and pa <o, p3 &

which yields props. 10.1.2 and 10.1.3. O

Proposition 10.2 We say that eq, . .., en € Ledges are composable iff there exist an edge e € Leyges

and points pg, p1, ..., pn in r(e) such that:
b(e) = Do <(e) P <(e) S <(e) Pn—1 <(e) pn = f(e) & Vie {1 ..... n}, e = €p_ypl- (1021)

Then e is uniquely determined by ey, .. ., e, and we write e = e, 0...0e1. Moreover, the following
properties holds:

1. e, ..., e; " are composable and e =e;'o. . oce,';

2 Vi<je{1, ..., nt,e,..., e; are composable and elble) fle)] = €jO ... 08
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3. if for all i € {1,...,n}, there exist composable edges e;1,...,e;m € Ledges such that e; =

eimO...oe;q, theneiq, ..., €1m,...,...,€n1,..., €5, are composable and:
€=€ym©...06,10...0...061n,0...0617.
Proof Let e, ..., e, € Legges and let e € Legges and po, p1, ..., pn € r(e) be as in eq. (10.2.1). Let
é be a representative of e and ty, t1, ..., t, €[0,1] such that &(t;,0) = p; for all i < n. Then, using

auxiliary results from the proof of prop. 10.1, eq. (10.2.1) can be rewritten as:

O=to<ti <. ... <t <t,=1

and Vie {1,..., n},é<[t,-,1,ti}x{0}"*“>=r(e,-) & 8(t,1,0) = be).

Thus, r(e) = U r(e;) and b(e) = b(e4), and therefore e is uniquely determined by ey, .. ., éen.
i=1

Then, props. 10.2.1 to 10.23 can be checked using props. 10.1.1 to 10.1.3. U

Definition 10.3 A graph is a finite set of edges y C Ledqes such that:
Ve #e €y, rle)nr(e') C {ble), fle)} n{b(e’), f(e")}.
We denote the set of graphs by Lg.phs and we equip it with the preorder (reflexive and transitive
relation):

V)/, )// S Lqraphs:

y<vy & (Yeey Jey,..., e, €y, Je, ..., € €E {1} Je=eTo...0e]).
(1031)

(The transitivity of < follows from props. 10.2.1 and 10.23.)

As a warming up for the more difficult proof of directedness that we will carry out in subsec-
tion 10.2 (where we will be dealing with labels that are made of edges and surfaces), we recall
here why the set of analytic graphs Lguqphs is directed [60, 92]. Note that it is only in lemma 10.5
(and in its analogue for the intersection of an edge with a surface, viz. lemma 10.8) that the ana-
lyticity actually plays a role. Hence, any class of edges (and surfaces) that could provide such an
intersection property would do as well for the whole construction [10].

Proposition 10.4 Let y be a finite set of edges. Then, there exists y € Lgpns such that Ve &
V. {e} v
In particular, L4rapns, < is a directed preordered set.

Lemma 10.5 Let e, e’ € Legqes such that:
Wp < rle)\ {ble)}. 3p' € rle) | ble) < p <wp & pEre). (1051
Then, there exists p € r(e) \ {b(e)} such that r (eye),) C r(e’).

Proof Let & : U — V, resp. ' : U’ — V' be a representative of e, resp. e’. Eq. (105.1) can be
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rewritten:

vi €0, 1), 3¢ €0, t] / &(t.0) € r(e). (105.2)

U being an open neighborhood of [0, 1] x {0}7" in R? there exists € €0, 1] such that |—¢, ¢ x
{0}7"" c U. Now, the map t' — &(t,0) is continuous from |—e, €] into ¥ and r(e’) is compact, so
b(e) = é(0,0) € r(e’) C V'. Hence, since V' is an open subset of L, there exists €' €]0, €] such that

é(]—¢, €[x c V.
o <] / /[ {O}d—1> V/
Thus, we can define a map ¢ ;] — €/, €[— R’™" by:
¢l : ]_ 6/, E/[ N Rd—1
t > so(&) og(t,0)

where s : R ® R x R”" — R’ is the projection map on the second Cartesian factor.  is
analytic as a composition of analytic maps and, from eq. (10.5.2), 0 is an accumulation point of

=" (0), hence ¢ = 0.
Next, we define the map ¢' :] — €', €[— R by:
Yoo ]—€,¢] - R
t — po (5/)71 0 &(t,0)
where p - R =~ R x R™" — R is the projection map on the first Cartesian factor. ¢/ is a
continuous, injective map (combining ¢y = 0 with the bijectivity of & and €’), ¢/(0) € [0, 1], and from
eq. (105.2) there exists €” €]0, €] such that ¢/(¢”) € [0, 1], hence by the intermediate value theorem

' (0, €"]) € [0,1]. In other words, defining p := (0, €”) € r(e)\{b(e)}, we have r (e[pe) ) C r(€’).
[

Proof of prop. 10.4 Intersection of 2 edges. Let eq, €; € Legges . We define:
Cler, e2) = {e3 € Leuges | r(e3) C rler) Nr(el)},
and:

cler, e2) == {p € r(er) N r(ey) } Ves € Cler, e2), p €rles) = p € {bles), f(es)}}.

Then, for any p € r(e1)\ {b(e1)} we have, by applying lemma 10.5 to e = ey, p(e,), € = €2 and
using prop. 10.1:

3p" <enp [ (" Erlen). p' <@y p” <eyp=p" &rled)) or rerp) Crlea),
and therefore:
p' <y p [ Vp" € rler). P <oy P <ienp = p" & cler, ).
Similarly, for any p € r(e1) \ {f(e1)}, applying lemma 10.5 to e = eq |y se,), €' = €2 yields:
3p" >y p [ VP Erlen), p <iey p” <ey p' = p" & clen, €3).

Hence, choosing a representative of e; and using the explicit form of <, from the proof of
prop. 10.1, we can, for any p € r(eq), construct an open neighborhood V), of p in r(e) such that

c(er, e2) NV, C {p}. Since r(eq) is compact, we thus have that c(eq, e;) is finite.
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Let p € r(e1) Nr(ez) \ c(eq, e2). Using prop. 10.1.2 together with the definition of c(ey, e;), there
exists p’ € r(eq) such that:

p' <y p and r(eq ) C rles).
Thus, using again the explicit form of <(,) in terms of some representative of e, we can define
Pinf & f(€1) bg
Pinf = g]f) {p" € r(eq) } p<enp & rlenpp) Crie)},
eq
and pi € r(ez) (for r(eq) N r(es) is closed in r(eq)). Moreover, for any p” € r(eq) with piy <o)
p” <(e, p. there exists p" & r(e4) such that:
P <ien P’ <@y p and r(eq ) Crlea),
therefore p” € r(e;). Hence, r (e1y[pmf,p]) C r(ez). On the other hand, if there exists e5 € C(eq, €3)
with pis € r(es), then es = €4 (e s(ey), thus there exists p” & {b(es), f(e3)} such that:
p" ey Pint <(enp P and (e prp) C rlea),
so pini = p”. Therefore, piy € c(e, ;). Similarly, we can construct py,, € c(eq, e;) such that
P <iey) Psup and 1 (e1pp.,1) C r(ez). To summarize, we have proved:
Vp € r(er) Nr(el) \ cler, ez),
Ipint, Psup € cler, €2) /p'mf <(er) P <(e1) Psup & r (e1y[pim,psup]) C r(ey). (10.5.3)

Intersection of 3 edges. Let ey, e;,e3 € Ledges and consider p € r(eq) N r(ez) N r(es) with p &
c(er, e3) U c(e, e3). Then, for i = 1,2, there exist p!, p/ € r(es) such that:
Pl <iey P <tesy P and (€5 ) C rlen).

Hence, defining p" := max (p}, p5) and p” := min (p, p5), we have:
<le3) <e3)

" and e3 € Cler, €2).

P <ies) P <(ey) P
Thus, p & c(eq, e2). In other words, we get:

cler, ex) Nr(es) C cleq, e3) Ucley, e3).

Directedness of Lgraphs - Let y be a finite subset of Legges, and define:
cly) = U cler, ez).
e1,e2€y
Let e; € y. From the previous point, we have:
cler, y):=cly)Nr(e)) = U cleq, e2),
8267

and since all c(eq, e;) are finite, so is c(eq, y). Moreover, {b(e1), f(e1)} = c(er, e1) C c(eq, V), so

there exist ne, =1 and pg', ..., pﬁ; € r(eq) such that:
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bler) = po" <iey PY' <o) -+ ey Pit, = flen) and cler, y) = {Po,---rﬁ;}

Hence, e = €1,p,, O...0€11, where eq; == €1 1p1, pl

Leteq, e; € yand i € {1,..., ne }. Suppose that there exists p € r(e1,)\ {p;", pi'} such that
p € r(e;). By definition of eq;, we then have p € r(eq) N r(ez) \ c(ey, e3), so from eq. (105.3),

Jk<i—1,3K >0 /| r ( e”) C rles).

Thus, we have in particular r(ey;) C r(e;). Moreover, r(ey;) N c(ez, ¥) = r(er) Nc(y) = r(er) N

cler, y) = {p:"y, pi'}. Hence, there exist j € {1,..., ne,} such that:

(pfh =pl & pil= pfz) or (pfl1 =p;" & pi=p 1)
In other words, we have proved:
Vei,eo €y, Yie{l, ..., n,},
(rler) Nr(ex) € {pity, pi'}) or (Fj€{1...., ne,},de==1/ey; = egj).
Moreover, we have from prop. 10.1.2:
Vei ey, Vi+je{1 ..., net, rler:)Nrler;) C {pi’y. pi'},
so we get:
Ver,e;ey, Yie{l,...,ne,}, Vje{l, ..., net,
(rler) Nr(es)) € {pity, pi'}) or (Fe==%1/e = egj). (10.5.4)
Finally, we define the finite subset y’ 1= {e“ ! ey, ie{l ..., ne1}} C Ledges and we can
construct y C y/, such that:
Veecy, Jle==x1/e€y.
From eq. (10.5.4), we then have:
Ve, e' €y, (rle)nr(e’) C {ble), f(e)}) or (e=¢).
Therefore y € Lyaphs and, by construction, Vey € y, {e1} < y.
In particular, for any y, y" € Lyraphs, there exists ¥y € Lyuaphs, such that Ve € yU Y, {e} <V’

4

hence v,y < V" O

We now bring the surfaces into play. In accordance with prop. 9.10 (and the conventions
summarized on fig. 9.1), the symplectic structure of the ‘small’ phase spaces spanned by finitely
many holonomies and fluxes (and therefore, on the quantum side, the action of the flux operators
in the position representation) will be specified by the relative positioning of the corresponding
edges and surfaces.

It will make the construction in subsection 10.3 appreciably simpler to consider ‘one-sided’ fluxes,
that only interact with the edges reaching the surface from one side (flux associated to a surface
in the ‘continuum’ picture of def. 9.8 will then be recovered as the half-difference of the one-sided
fluxes on both sides of this surface, see prop. 10.28). Also, we will impose that all edges having a
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Figure 10.1 — Examples of edges above (on the left, assuming the surface is oriented upward) and
indifferent to a surface (on the right)

non-trivial interaction with a given surface should start from that surface (reorienting them if need
be), so that flux operators always act at the beginning of edges. Thus, we classify the edges adapted
to a surface as being above, below or indifferent to it (instead of the slightly different classification
as outside/inside/up/down [92, section 11.6.4]).

Since the surfaces we are considering are closed, one might be worried that an edge hitting some
surface precisely on its boundary would have an unclear positioning: this is however not the case,
for our surfaces have been defined in def. 9.7 as being embedded within an open analytic plane,
which extends beyond the surface itself and allows to distinguish between above and below in its
neighborhood. In particular, an edge intersecting the boundary of a surface can only be indifferent
to that surface if it runs along the same analytic plane.

Examples of well-positioned edges are shown in fig. 10.1. Note that all figures will be drawn
in the case d = 2 (where both edges and surfaces are one-dimensional), as this is sufficient to
illustrate most aspects of the construction (we will comment on subtleties arising in the physically
more relevant case d = 3 when appropriate).

Proposition 10.6 Let e € Logges and S € Lris. We say that:

1. e is indifferent to S, and we write e ) S, if there exist a representative S: U — V of S and
€1, ..., e, € Legges SUch that:

e=e,o...oep & Vie{l . . ., nt, rle)Nr(S)=a or rle)) C S(U,),
where U, == Un ({0} x R“");

2 e is above S, and we write e T S, if there exist a representative S:U - VofS and
e1, €2 € Ledges Such that:

e=ey0e;, ,70S, rle)Nr(S)={ble)} & r(er)\{ble)} C SU\U,),
where U, .= UnN (IR+ X IR‘M);

3. e is below 5, and we write e | S, if there exist a representative S:U — Vof Sand

e1, €2 € Ledges Such that:
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m The points in
| J | c(e, S) are marked

by crosses.

Figure 10.2 - Adapting an edge to a given surface

e=e0eq, e270S, rle])Nr(S)={ble)} & r(er)\{ble)} C S(U_\U,),

where U_:=UnN (]R, X ]Rd’1) and R_ is the set of non-positive reals.
We have the following properties:

4. these 3 cases are mutually disjoint;

5 fe)S thene ') S;

6. if e1, e € Legges are such that e = e; o ey, then, for any ¢ € {’Q,T, l} :
eoS & eSS & eNS.

Proof Assertion 10.6.4 follows from the definition of the equivalence relation in def. 9.7, assertions
10.6.5 and 10.6.6 from the properties of subedges (prop. 10.1) and edge compositions (prop. 10.2).J

Given some surface, we mentioned in the comments preceding prop. 9.10 that any edge can be
subdivided into parts adapted to that surface [92, section 11.6.4]. As announced, this is the second
place where the requirement for analyticity plays a critical role: it ensures that an edge cannot
cross the plane of the surface more than finitely many times (fig. 10.2). Thus, we can cut this edge
at each intersection point, and, splitting again each section in two parts, we can reorient these
parts so that they start from the surface.

Proposition 10.7 For any e € Legges and any S € Ly, there exist eq, ..., e, € Ledges and
€1,..., 6, € {+1} such that:

e=elo...oef & Vie{l, . ...,n}, e oS with oiE{Q,T,l}.

Lemma 10.8 Let e € Logges and S € Lagyies. Then, there exists p &€ r(e) \ {b(e)} such that
€b(e).p] © S with ¢ € {/Q , T, \L} .
Proof If b(e) & r(S), then there exists an open neighborhood of b(e) in r(e) that does not intersects

r(S), for r(S) is compact. Hence, choosing some representative of & and using the explicit expression
for the range of a subedge (from the proof of prop. 10.1), there exists p € r(e) \ {b(e)} such that

r (€ppie)p1) N 1(S) = D, 50 €pey ) VLS.

We now assume b(e) € r(S) and we pick out representatives é : U — V of e and S:U -V
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of S. U is an open neighborhood of [0,1] x {0}~ in R, V' an open neighborhood of r(S) in
L, and é(0,0) € r(S). Hence, as in the proof of lemma 105, there exists € €]0,1] such that

é <]—e, el x {O}d71> C V" and we can define an analytic map ¢ ;] — €, e[— R by:

Y o |—e€ — R
g\ 1 )
t - po (5) o &(t,0)
where p - R’ ~ R x R*™" — R is the projection map on the first Cartesian factor.
If there exists €' € |0, €] such that Vt € 10, €[, ¢(t) > 0 (resp. < 0), we can take p = &(¢”,0),
with some €” € [0, €, and we have e e) | Ts (resp. | S). Hence, there only remains to consider:
Ve' e, ¢, It €0, €] /() =0 & y(t) <0,
The intermediate value theorem yields:
Ve' €0, e[, 3t €10, €]/ ¢(t) =0.

Therefore, 0 is an accumulation point of y~' (0), so ¢y = 0. Defining p = &(¢’, 0) for some €’ € |0, €],
we thus get eppe) ) 2 S. O

Proof of prop. 10.7 Transversal crossings c(e, S). Let e € Ledges and S € Lyries. We define:
cle, S) = {p € r(e) ‘ 3p" € rle)\ {p} / epp TSor e | S]». (10.8.1)

Let p € r(e) \ {b(e)}. Applying lemma 10.8 to ey, s and S, there exists p’ <) p such that
epp] Op S with o, € {’),T, l}' Let g € r(e) such that p’ <(e) 9 <(¢e) p and assume that there

exists ¢" € r(e)\ {q} such that ey 41 04 S with o, € {’) T l}‘ Since g € r(ep,) \ {p. p'}. there
exists ¢” € (r(ejgq) \{g.9'}) N (r(epyn) \ {p.p'}). From prop. 1066, eq 47 ¢4 S. On the other

hand, we have either e}, ) = el © €(g41 0 €jpq) (I " () q) OF €lp ) = €(g] O €[g7,q1 © Ep g7 (if
q" > @), so using twice prop. 10.66 (together with prop. 10.65), we get ejq 4 ) S. Therefore,
prop. 10.64 yields o,=").

Thus, for any p € r(e) \ {b(e)}, there exists p’ <) p such that:
Vger(e) p'<eq<ep = qé&cleS).
Similarly, for any p € r(e) \ {f(e)}, there exists p" > p such that:
Vg erle) p<@eq<ep = q&cle )
As in the proof of prop. 10.4, this ensures that c(e, S) is finite.

Subedges with no transversal crossing are indifferent. Let p # p’ € r(e) such that r(e’)Nc(e, S) =
@, with e’ := e}, . Applying lemma 10.8 to e’ and recalling the definition of c(e, S), there exists
p” € r(e’)\ {p} such that ey, ,, ) S. This allows to define py,, € r(e’)\ {p} by:

Psup -= SUp {P// = I’(G/) \ {P} ‘ €p.p”| B S} :

<(e/)
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Applying lemma 108 to e|,, o), there exists p” such that:

p g(e/) P” <(e/) Psup and e[Psup,p”] ) S.

On the other hand, by definition of py,,, there exists p” such that:

"

'D// <(6/) p <(e’) pSUp and e[P,PW] f) S
Combining props. 10.65 and 10.66, we thus get ey, ,,.1 ) S.

Let p” € r(e’)\ {p. p'} such that ej, ,; 2 S. Applying lemma 10.8 to ey, ), there exists p” such
that:

,D// <(e/) ‘DW g(e/) p/ and e[P”,PW] /) 5,

/

hence e, 7 1) S (using again prop. 10.6.6), and therefore p” <) psyp. So we have pg, = p’.
Together with the previous point, this implies:

Vp+p' erle), repp)Ncle,S)=2 = eppyS. (10.8.2)

Well-positioned subedges. lLet p # p’ € r(e) such that r (e[p,p/]) Ncle, S) C {p}. Applying
lemma 10.8 to ey, there exists p” € r (e ,n) \ {p} such that ep, 1 o S with o € {’),T, l}'

If p” = p’, then ep,, o S. Otherwise, we have r (ej ) N cle, S) = &, so from eq. (10.8.2),
epp) ) S, and therefore ey, 1 © S (using ey, ) = eppr ) © €)p 7 together with prop. 10.6.6). Thus,
we have proved:

Vp 7/: ,U/ & r(e), r (e[p,p/]) N c(e, 5) C {p} = €pp| S with o e {’),T, l} (1083)

Decomposition of e adapted to S. Since c(e, S) is finite there exists n > 1, « € {0,1} and
po. P1, - ., pn € r(e) such that:

ble) = po <ie) p1 <(e) - - - <(e) Pn—1 <(e) Pn = f(€),

and:

cle, S) = {paxsc | k €N, 2k + k < n}. (10.8.4)
Forie {1, ..., n}, we define:

|+ i+ ks odd

| =1 fi+kiseven
and e; = efp"%pl_]. From egs. (10.8.3) and (10.8.4), there exists ©; € {’Q,T, l} such that e; ¢; S.
Moreover, we have e = e o...0ef oef . O

As argued at the beginning of the present section, a satisfactory projective limit of phase spaces
for conjugate holonomy and flux variables requires labels containing not only edges but also sur-
faces. The difficulty is that we cannot prevent the surfaces in a label to intersect wildly, for this
would void the hopes for directedness: if a surface S; belongs to some label, and a surface S;
belongs to some other label, there has to be, in a directed label set, a label containing both S; and
S, at the same time. On the other hand, the set of variables described by a label should be closed
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under Poisson brackets: as already stressed, the algebra of observables associated to some label n

will be mounted by pullback into the algebra of any finer label  in a way that preserves the Pois-
son brackets (prop. 2.2), so the brackets between two variables should be correct all the way down
from the very first label in which these two variables appear. Since we know from subsection 9.2
that fluxes associated to intersecting surfaces do not commute (at least as soon as the gauge group
G is non-Abelian), the additional variables arising as their Poisson brackets should therefore be
included as soon as these surfaces are considered.

Thus, whenever the surfaces in a label n intersect, the flux variables supported on their inter-
section are naturally among the observables selected by n. Accordingly, the momentum variables
assigned to this label are not attached to the individual surfaces in n, but rather to so called ‘faces’,
which enumerate all possible non trivial ways of positioning an edge with respect to these surfaces.
It might be that different collections of surfaces actually result in the same set of momentum vari-
ables, which motivates the equivalence relation introduced in def. 10.10. Also, the ordering of the
corresponding equivalence classes is prescribed by the comparison of their associated algebras of
momentum variables (as will become clear in prop. 10.26).

This also means that the flux operators we are retaining as observables (prop. 10.27) are not just
the ones supported on the ‘round’ surfaces described in def. 9.7, but also on all finite intersections
and differences thereof. This is the reason why we could afford to start form a fairly limited class
of surfaces (although relaxing our definition, eg. by cutting an arbitrary compact piece out of an
analytic plane, instead of only considering disk-shaped surfaces, would be relatively harmless).

Proposition 10.9 Let A be a finite set of surfaces. For o1 A — {’) ) T, l} . S 05, we define:

F.0) = {e € Logges

vsdﬂeoss}.

In particular (abusing notations by writing 7) for the constant map S +—7)), we have the set of all

edges that are indifferent to every surface in A

F’lu) = {6‘ € Ledges

VSEX,eqs}.

The set of faces in A is defined as:
F0) = {FQ(X) ) SURR {’Q,T, l} /| FN+2 & ogéq},
(where ¢ %= ) stands for {S | o5+ } # &). In addition, we define:

Fag) = [ ) F.

FeFM)
and, for F, F' C Ledges :
F'oF :={e;oei|e;€F, e, eF', and ey, e, are composable}.

We have the following properties:

1. the elements of F(A) are disjoints;

2 for any F € F() U {Fq(I)}, Fs0) o F=F,
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3. Fq(//i) = {@ € Ledges

Vp+p €rle) epy & /janu(}")};

4. for any e € Legqes there exist eq, ..., ey € Ledges and ey, ..., €, € {1} such that:

e=eyo...0oe] and Yie {1,.. ., n}, e € Fany(A) U FA(A).

n

Proof Assertions 10.9.1 and 10.9.2 follow from prop. 10.6.4 and 10.6.6 respectively.

Assertion 10.9.3. From prop. 10.6, we have:

Wp +p' € rle). epp & Fan) |

) C {e € Ledges

We now want to prove the reverse inclusion.
Let e € Legges such that for any p # p’ € r(e), ep | & /—:my(i). Let S, € A and p F po € r(e)
such that e, ) ©o S, with o, € {”Q,T, l}' Choose an ordering of the finitely many remaining

surfaces A\ S = {S;, ..., Sn} and define p; and o; for i € {1,.. ., n} such that:

pier (e[P'P1—1]) \{P]’ and €lp.pi] i S,
by applying inductively lemma 108 to e, , , and S;. From prop. 1066, ey, € FO(X) where

o1 A — {’Q,T, l} is defined by Vi € {0, ..., m}, os:=0;. Since ey, .1 & Fany(A), ©=7), therefore

Se=").
Hence, c(e, S,) = @ (where c(e, S,) has been defined in eq. (10.8.1)). So, using eq. (10.8.2) with
p = b(e) and p’ =f(e), e 1 S,. As this holds for any S, € Aec FQ(X).

Assertion 10.9.4. Let e € Ledges. We define:

c(e, I) = U cle, S).

Sei
c(e, X) is finite, for A is finite and each c(e, S) is finite. Moreover, eq. (10.8.3) becomes:
Wp 4 p' erle), rlepp,) Ncle, A) C {p} = epp) € Fany(A) U FA(A).

Thus we can form a decomposition of e adapted to A exactly like in the last step of the proof of
prop. 10.7. U
Definition 10.10 We define on the set of finite subsets of L an equivalence relation by:

A~ s F) =F0N).

Its set of equivalence classes will be denoted by Lp415. An element A € L, is called a profile,
and we can define its set of faces J(A) and the corresponding set of indifferent edges F~(A), since

these are the same for any representative of A (thanks to prop. 10.9.3).
Proposition 10.11 We equip £,.ons with the binary relation:
V)\: /V € Lprofls,
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A X e |VFeFW, 3R, Fae W) F=FWol JF
i=1

For any two finite sets of surfaces X ;/, we have:

Y BNV
[/\]profl < [)t U4 ]profl’
where [ ] 4 denotes the equivalence class in Lpos -

In particular, Lo, <X is a directed preordered set.

Proof Let X X be two finite sets of surfaces and F & ?(X). There exists ¢: A — {’Q , T, l}' with

©=£7), such that £ = F,(A). We define:

FO X, o) = {FQ/(I ux)

FoAUX) € FOUX) & of|; :o}.

Let e € F (F # @ by definition of 3’“(;)). By applying inductively lemma 10.8 to the surfaces in N
and using prop. 10.6.6 (as in the proof of prop. 10.9.3), there exists p € r(e)\{b(e)} and an extension
o AUN = {’),T, l} of o such that ey, € Fo(AUX). Let p’ € r (eperp)) \ {b(e), p}. From
prop. 10.6.6, we have epe) ] € Fo(AUX) and e fe) € /—}(X). Therefore, e € /—}(X) o Fu(XUN).

In particular, Fo/(AUX) # @ and, since o=, we also have o'#7). Thus, Fo(AUX) € F(A, X, o).
So F(A, X, o) + @ and there exists F1, . . ., Fn € F(AUX) such that:

FA X, o) ={F, ... Fn}.

Now, let e, e; be composable edges such that e; € F; for some i € {1,..., m} and e; € F+(A).

By definition of 3’“(1, X, ©), e; € F, hence, by 1092, e, 0 ey € F. Therefore, Fq(;) o UF,- C F.
i=1

So, we have [X]pmﬂ < [IUK’]

profl *
To prove that L5, < is a directed preordered set, only the transitivity of < remains to be

checked. Let A, A, A" € Lo with A A" and A < A", Using the definition of < on L together
with prop. 10.9.3, we have:

FA(X) € FR(X) € FA(A).
Then, for any F € F(A”), we can use prop. 10.9.2 to write:
F’)()\)OF’)(A//)OF:F’)()\)OF:F’)(A)OF’)(A)OF,

so we get:
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Figure 10.3 — Examples of valid labels

Fallyo FX)o F = Fo(A) o F, (10.11.1)

and therefore A < A”. d

Finally, we are ready to describe what our labels should be, keeping in mind that each label is
meant to be associated with a small, finite dimensional phase space, on which the observables it
selects can be represented. As underlined many times, this phase space should be big enough for
their Poisson algebra to be correctly reproduced. Yet it should not be too big either, otherwise

the projection between the phase spaces corresponding to two labels n < " would not be uniquely

characterized by the sole prescription of how its pullback should mount the observables from n to
/

n.

These considerations reveal that edges and faces should comes in conjugate pairs. In particular, if
the label contains intersecting surfaces, it should also contain edges that will probe the intersection
from every side, so that the additional momentum variables promoted above are supplied with
suitable conjugate configuration variables (fig. 10.3).

Definition 10.12 We define the label set £, by:
Lo = {(v, ) € Lgraphs X Lprots | Ix = v — F(A) bijective /Ve €y, e € x(e)}.

For n = (v, A) we define its underlying graph y(n) := y and profile A(n) := A, its set of faces
F(n) := F(A) and its set of indifferent edges F~(n) := F~(A), as well as the unique bijective map
Xn : V(n) = JF(n) such that Ve € y(n), e € x,(e) (uniqueness follows from the fact that the faces in
JF(n) are disjoints, see prop. 10.9.1).

We equip £, with the product preorder, defined by:

Vo € Ly n<n & (vin) < v(n) & Aln) < A(N)).
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10.2 Directedness

It is of critical importance for the intended construction of a projective state space that the label
set L,r should be directed (eg. the pivotal ‘three-spaces consistency’ condition gets truly useful
in combination with the directedness of the label set). Since both Lgraphs and Lons are directed
on their own, so is Lgaphs X Lprofts, thus it is sufficient to show that L. is a cofinal part of

Lgraphs X Lprofls - In other words, given some arbitrary graph y and profile A, we want to construct

a finer graph y’ and a finer profile A’ that are adapted to each other in the sense of def. 10.12.

For this, we will proceed in successive steps. First we will subdivide the edges of y to adapt them
to A in the sense of prop. 10.7. Next we will add a bunch of small surfaces to ensure there is never
more than one edge belonging to a given face, and we will add a few small edges to populate the
faces that do not yet contain one edge. Finally we will add a few more small surfaces so that every
edge has its fellow face. Note that the order of these steps is important, for we have to ensure that
what has been achieved at a given point will be preserved by the subsequent steps. Also, we should
take care that the whole procedure only requires a finite sequence of operations: graphs have been
defined as finite sets of edges, while profiles arise from finite sets of surfaces, thus adding infinitely
many edges or surfaces, or subdividing an edge into infinitely many parts, would not lead to a
valid label.

Definition 10.13 For any y € Lyaphs and any A € L5, we define:
1My = {x oy = FAU{FW} | Ve € v, e € xle)}

2 M((i.)A) = 'FX = M((:,)/\) VE € F(A), Ve,e' € x " (F), e = e/};

3 My = {x € Mpy | YE € 00, (F) # 2

4. /\/I((S,)A) =1x€ /\/I((j)ﬂ x (FL() = @} = {x v = F(A) | x bijective & Ve € y,e € x(e)}.

Theorem 10.14 £,;, < is a directed preordered set.

Lemma 10.15 Let y € Lyaphs and A € L. Then, there exists = Lgraphs » such that y < y' and
M
M(V/VA) % g.

Proof This follows from prop. 10.9.4 and the definition of < on Lgraphs (def. 10.3). O

The next step is to deal with the faces that contain more than one edge of the graph. The key
idea here is to add some small surfaces with respect to which these edges have distinct positionings:
thus, they will not belong to the same face any more. If they have different starting points, we
can simply add, for each of them, a small surface going through its starting point, with respect to
witch it is, say, above (as we do for the edge on the right in fig. 10.4). If many edges start from the
same point of the face, we will add, for each e among these, a small surface arranged so that e is
indifferent to it, while all other edges starting from that point are either above or below it: this is
another way of ensuring that two different edges will have a distinct positioning with respect to at
least one of the added surfaces (see the two edges on the left in fig. 10.4).
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Figure 10.4 — Adding surfaces to separate the edges into different faces

Figure 10.5 - Only a transversal surface can separate an edge from its analytic continuation

Given an edge e and a bunch of other edges {e’} starting from the same point, we therefore want

to construct a surface that contains an initial subedge of e and intersect each e’ transversally at
the common starting point b(e) = b(e’): in two dimensions, where "surfaces" are one-dimensional,
we can cut such a surface out of the very analytic curve that provides e; in higher dimension, the
family of surfaces that contains e is parametrized by continuous parameters, so we just need to
pick out one that passes in between the finitely many edges starting from b(e). However, if the
analytic extension of e beyond b(e) is among the edges {e/}, it will automatically be in the analytic
plane of any surface containing an initial subedge of e, and thus indifferent to that surface, as
illustrated on fig. 10.5. Note that it may seems at first a very unlucky special case, that precisely
the analytic extension of e also belongs to the graph, but we should keep in mind that this very
situation is produced in great numbers when we subdivides the edges of y to adapt them to the
given A (fig. 10.2). To deal with this case we need to also include an additional small surface with
respect to which e is of the "above" type, because its analytic continuation will then be of the
"below" type: this will ensure that these two edges do not belong to the same face at the end. To
avoid laborious case distinctions in the proof, we add surfaces quite liberally, and, for any initial
face  containing more than one edge, and any edge e belonging to F, we will systematically add
two small surfaces, one along e and the other transverse to e. Proceeding this way we probably
end up with much more faces that would have been strictly necessary to separate the edges into
distinct faces: we generate a lot of new faces that do not contain any edge at all. On the other
hand, we will have to deal with such faces in a latter step anyway, so it does not cost us more to
add more of those in the present step.

It is by contrast crucial that we preserve what has been achieved in the previous step, namely
that all edges of the graph are adapted to the new profile. When adding a surface for an edge e,
we can make it as small as we want around b(e) without prejudice to the requirements above. In
particular, we can ensure that it does not intersect any edge of the graph that does not go through
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Figure 10.6 — Dealing with an edge that ends precisely where surfaces will have to be added

b(e). Moreover, for any edge e’ that start at b(e), the analyticity of edges and surfaces will ensure
that, provided the surface is chosen small enough around b(e), e’ will either be above or below it or
indifferent to it. The only edges e’ that might be problematic here are therefore those that contains
b(e) but not as starting point. Since e and e’ are edges of a graph, b(e) should then be f(e’), and
we deal preventively with this potential source of difficulties by subdividing e’ and reorienting the

second part so that it now starts from b(e) (see fig. 10.6). Note that, by doing so, we admittedly
increase the number of edges, but not the number of those for which we will then need to add

small surfaces, for the first part of e’ takes the place of e’ in x(e’), while its second part is in
F~(A). Thus this does not cause infinite recursion, and the total number of surfaces added during

the present step is finite, as it should.

Lemma 10.16 Let y € Lyqphs and A € Lo such that /\/I % @. Then, there exists y' € Lgraphs
and A" € Lpps, such that y <y, A < A" and /\/I(W/) + .

Proof One-dimensional case. We first consider the case d = 1. Let y € /\/I((;)A), F € F(A), and
e, e’ € x~'(F). By definition of F(A), there exists S € Ly and o € { T l } such that e, e’ o S.

By reversing the orientation of S if necessary, we can assume that o= T LetS:U—> Vbea
representative of S. Then, b(e) = S(0) = b(e') (for r(S) = {5 } when d = 1) and there exists
p € r(e)\ {ble)}, resp. p’ € r(e’)\ {b(e)}, such that r (e[b(e),p]) T (efb(e) ) c S(UNR.).

Let &, resp. ¢/, be a representative of e, resp. e/, and let t, resp. ', such that p = &(t), resp. p’ =
e'(t'). The map ¢ :[0,1] = U, 1+ S7o é(tt) is injective as a composition of injective maps. It is
everywhere postive and ¢(0) = 0, so there exists s > 0 such that ¢(1) = s and ¢([0,1]) = [0, 5],
te. 1 (€pe)p)) = §<[05]> with S(s) = p. Similarly, there exists s" > 0 such that r (efb(e/)’p/]) =
S{[0,5]), with S(s') = p’. Lets” €10, min(s, s')[. We have S(s”) € r(e)nr(e’)\{b(e), f(e), f(e')},
hence e = e’ (from def. 10.3). Thus, ¥ € /\/I((%), and in particular M((f?/\) + & . For the rest of this

proof, we will therefore assume d > 1.
Construction of y'. Let y € /\/I((;’)A). We define:

Vilx) = {6’ ey ’ Je' + e/)((e) =xl(e) € CTr()‘)}:
and:
B (Vi) = {ble) | e € vuu}-

Llet e € y. Since y is a graph, r(e) N B( 1)() C {b(e), f(e)}. If fle) & r(e) N B(V(1,x))'
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we define y, := {e}. Otherwise, we choose some point p € r(e) \ {b(e), f(e)} and we define
Ve = { el ererni}-

V' i= e, Ve is @ graph such that y < y" and, from prop. 106, there exists x' € /\/l((:/)j), satisfying
B (V1)) = B (Vi1,9) - Moreover, we now have for any e € ¥/, r(e) N B () C {b(e)}.

(1x)
Construction of X'. Let e € V(/lx/) and define:
Yy =16 € V' | ble) € r(e')} = {e" € V' | ble) = b(e)}.
We choose a representative é : U — V of e and a real € > 0 such that BYY) ¢ U (where B! is
the closed ball of radius € and center 0 in RY). We define:

Sie - U. >V

x — é(ex)

with U, = {XE]Rd}exEU}.

Since {0} x BN B < U, ég,yg is an analytic, encharted surface in £. We denote by S;  the

corresponding surface (def 9.7). We also define, for any 8 € S“~? (with S“~? the unit sphere in
R

Ry : RxR" — R xR’
(ty) — (—0y, y+(t—06.y)0)

Ry is an analytic diffeomorphism RY — RY and:
Ro ({0} x B € Ry (B!) = B C U, .

Hence, ééyeyg defined by é@yE’Q = ég,ye o Ry : R9’1 (Uc) — V is an analytic, encharted surface in L.
We denote by Si ¢ the corresponding surface.

Let e’ € v, \ {e}. We define:
Keey={6€ 572 | Ip € r(e’)\ {b(e)} /efb(e,),p] 7 Sieolt-

Since b(e') = b(e) = 8(0) € r (Ss.ce) for any 6 € S°2), we have from prop. 10.6 (together with
the definition of the equivalence relation in def. 9.7):

V0 € Kooy, 30" € rle)\ AN} /1 (€fyerp1) € E(UNR ({0} x RTT)),
where we have used:
Seco (R (U N ({0} x RYT)) = 6 (UNRe ({0} x R 1)),

Suppose now that there exist d — 1 vectors 6, .. ., 041 € S, linearly independent in R,
such that Vi < d — 1, 6; € Koo Then, there exists p” & r(e’) \ {b(e’)} such that:

r(€lpen ) C & <U N OR@ ({0} x Rd1>> =&(Un (Rx{0})).

Since b(e’) = &(0) and r(e) N r(e’) C {b(e), f(e)} (for e + e" and both belong to the graph y'), we

have, by the intermediate value theorem, r (efb(e/)’p,,]) = ¢ ([—a,0] x {0}) for some a > 0. Thus,
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Elbiepr) | See
Accordingly, we define:

Vo == (e} U{ e’ € viy | 3p" € re)\ 16} / eformn | S}

and Ve 1) == V() \ Ven- 1hen, for any e’ € y[, 1), Kiee) has measure zero in S92 (for example with
respect to the standard measure on S“"? if d > 3, and with respect to the counting measure if
d = 2). Hence, there exists 6; € S9=2) such that Ve’ € y(/m), 01 & Keeer -

Now, from lemma 10.8 and prop. 1066, there exist, for any e’ € y,, per € r(e) \ {b(e)} and

Oere,00 Ce e € ‘{/—Q, T, l:|’ such that:

/

/
e[b(e/)'po/} 09,,@,0 Sé,e and e[b(e/) 0@/’3,1 Sé,€,91 .

'pp/]
By construction, we have:
Ve' € Vg \{e} 0ee0=] and Ve €y, 0we1F ).
On the other hand, we can check from the definition of S; . and S; o, that:
Oe,e-,O:T and 06,9,123-

Thus, we get Ve’ € y(/e) \ {e}, (<>e/,er0, <>e/,e,1) -+ (<>e,e,0, <>e,e,1) .

Next, using def. 9.7 and prop. 10.6, there exists pl, € r (efb(e/),pe,]) \ {b(€'), per} such that:

r (efme/),p;,]) \ {b(e")} C Sic <Ue ND,, ., N Re <D<>P/,F,1>> , (10.16.1)
where D~ := {0} x R" Dy := (R, \ {0}) x R*"" and D = (R- \ {0}) x R?™". Since:
J reru U (efp;/,f(e/n)
SV eV,

is a compact set of L that does not contain b(e), there exists an open neighborhood W of b(e) in
V' such that:

Ve' € V' \ v rle) "W =2 and Ve’ €y, r (efp;/’f(e,”) nNW=g.

8" (W) is an open neighborhood of 0 in RY, hence there exists € €0, €] such that B(j) cée (W)
We define:

Se,O = Sé,y and 58'1 = Sé,e/,91 .
For k € {0,1}, we have r (S.x) C W, therefore:

Ve' € y'\ y(’e), e’ ) Sex and Ve' € y(’e), e[’p;/,f(e,)] 2 Sex.
In addition, we get from eq. (10.16.1):

Ve' € v, efb(e/),p;,] Ot ek Dbk

thus, using prop. 10.6.6:
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Figure 10.7 — Adding a small edge to populate a face that was empty

/

Ve/ & y(e), E‘/ el ek Sé,k'

To summarize, we have proven that, for any e € y; , there exist a finite set of surfaces X/é, =
{Se0, Seqt and amap x.:y — ?(I;) U /—}(X’e) such that:
Ve ey el exule) & Vel ey \{e} xule) # xele).

Finally, we choose AC Loufes such that A = [}]pmﬂ and we define a profile A’ by:

No=|Au U Ao

(1x) profl

Then, A < A" (prop. 10.11) and the map x” :y' — F(X) U {F+(X)}, given by:

ecy

Ve' ey, x"(e) = x'(e) n () xile).

/
(1.x)

belongs to /\/I((i/)w) . O

We will now turn to populating faces that do not contain any edge yet. The basic idea is to pick
some edge in the concerned face and to add it to our graph (remember that faces have been defined
as non empty set of edges in prop. 10.9). Since the edge we add is chosen in a face of A, the result
of the first step is preserved, and since we add a single edge per face, and only for those faces that
do not already contain an edge of the graph, there is no problem with the second step either. The
only precaution required here is therefore to make sure that the added edges, together with the
already present ones, form a graph, ie. intersects only at their extremities. Now, if we have picked
some edge e in a face f, any initial subedge of edge of e will also be in F, and will do just as
well for our purpose. This way, if e intersects another edge e’ (either an edge of the graph, or one
of the to-be-added edges), and if this intersection takes place away from b(e), we can simply make
e shorter to avoid it (fig. 10.7 shows an edge being added to a face that were initially empty: we
make the added edge small enough so that it stays away from any preexisting edges). Moreover, it
cannot be that e has a common initial subedge with another edge e’ for this would mean that e’
belongs to F, in contradiction with the preserved validity of step two (eg. the fact that we do not
get more that one edge per face, as underlined above).

The only kind of intersection that cannot be fixed by shortening e is therefore the situation in
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Figure 10.8 — An edge that runs along a surface (or an intersection of surfaces) may need to be
subdivided when populating the corresponding faces

which ene’ = {b(e)}. As illustrated in fig. 10.8, it might not be possible to prevent this by a careful
choice of e, because b(e) has to belong to every surface involved in the face F (this is indeed
a necessary condition for e to belongs to F): it might force b(e) to be in the interior of some
edge e’. Not that this concern is not an artifact of the dimension two: even when the surfaces
have dimension d — 1 > 1, there are faces that arises at the intersection of surfaces, and this
intersection could be one-dimensional, with an edge running along it. Thus, the present step might
require, besides the addition of new edges, also the subdivision of preexisting edges of the graph.
Such a subdivision does not, however, threaten the two previous steps, nor does it lead to infinite

recursion in the present step, for the first part of the subdivided edge e’ will belong to x(e’), and
every subsequent parts will be of the [~(A) type.

Lemma 10.17 Let y € Lgaphs and A € L1 such that /\/I % @. Then, there exists v € Lgraphs ,
such that y <y and M(vCA) + .

Proof Auxiliary result: Intersection of edges belonging to different faces. Let e € Legges and
F € F(A) such that e € F. Suppose that there exists p # g € r(e) and F" € F(A) U {F4(A)} such
that the subedge e, 4 € F’. Then, from prop. 10.66, there exists g' € r (e, ) \ {p. g} such that

ep.q] € F’'. Since q" & {b(e), f(e)}, we are in one of the following situations:

e = €[¢f(e) © Elp.q| i ble) =p < (e)
€ = €[g'f(e)] © Elp.q/ © Elbie)p) - ble) < p < o f(e)
e= (%m)i1 elble)q! i ble) <) ¢’ < P = f(e)
e = epe)° (ep. ) i ble) <@ g’ <) o f(e)

Hence, from props. 10.6.5 and 10.6.6, we have either F' = F (if p = b(e)) or F' = F+(A) (otherwise).
Let e1, e € Ledges and F4, Fo € F(A) such that e; € Fq, e, € F, and:

Vp € r(en)\ {ble)}, 3p' € rler) [ blen) <y p' ey p & pErler).

Then, from lemma 105, there exists ¢ € r(ey) \ {b(e1)} such that r (eq peq) C r(e2), hence
€2 [bler).q] = €1.[bler).ql- DtNCe €1 [per).q) € F1 F FA(A) (by definition of F(A)), the previous argument
applied to the subedge €2, [b(e1).q] of e, together with prop. 10.9.1, implies that F1 = F,.

Thus, we have proven that, for any ey, 2 € Legges and any Fy #+ [, € F(A) such that e € F;
and e, € F>, there exists p € r(eq)\ {b(e4)} such that r (e1 Ibler), ]) Nr(es) C {b(e1), p}. Hence,
there exists p’ € r (e1,jpep)) \ {b (e1)} such that r (e1 pey 1) N r(e2) C {b(e1)}.

Construction of y'. Let xy € /\/I(%) and define:
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FonW) = {F € FW) | x ' (F) = &}
For any - € Fp,4(A), we choose an edge er € F, and we define:
Yoy = {er | F € FpnA}
Let e € yp,) and F € JFp,y(A) such that e € F. Forany e € y, e € F with F = y(8) €
(A\ T2 (A). And for any e € v, \{e}, there exists Fe Fo,(A)\{F} such thate € F. Hence,

for any & € y Uy, \ {e}, there exists p.s € r(e)\ {b(e)} such that r (ep(e)p..)) N r(€) C {b(e)}.
Since y U yp, \ {e} is a finite set, there exists p, such that:

V/E'VE)/U)/(QVX)\{@},I’( ble).p })ﬂl’ C{b }

We define v, == {epep.} and x. - v. = FAU{FA}, epe)p.— F. Then, for any e’ € y., we
have r(e') C r(e), e € x.(e’) and:

V’éEyUy(z,X)\{e},r )ﬁr C{b )}

Let e € y. The set {b(e)| e € yp,y & b(e) & r(e)} is finite, hence there exist n, > 1 and
composable edges ey, .. ., en, € Ledges such that e = e, o ... 0eq and:

{b(e) | e € voy & b(E)er(e)} | J{ble). fle)}
i=1

We define y, = {eq, ..., en,}. We also define the map . : v, — F(A) U {F(A)} by:

Xelen) = x(e) & Vke{2,... nc}, xled) = Fy(A).

Then, for any e” € y., we have r(e’) C r(e), e" € x.(e’) (combining e € x(e) with props. 10.6.6 and
10.2.3) and:

Ve € y\{e}, re'ynr(e) C r(e’yn{b(e), fe)} C {b(e'), f(e')},

where we have used that y € Lgphs. For any e € yp,), we have by definition of y, and y;:
Ve €y, V& € yL, rle)nr(@ mU{b , fle))} c {b(e), f(e')}.

Additionaly, we have from props. 10.2 and 10.1:
Ve' + e ey, rle')ynr(e”) C {b(e), f(e')}.

/

Finally, we construct a finite set of edges y' as y = UeeyUy y., and we define a map

X vV —=FANU {Fq(/\)} by:

Ve € y Uvypy), Ve € v.. x'(e) == x.(e)

(2.x)

(x" is well-defined since the y, for different e are disjoints by construction). By putting together
what we have proven above, we get:

Ve' £¢e €V, rle')ynr(e) C {b(e) f(e")},
thus y" € Lypns . and, by definition of y; fore € y, y < y. We also have Ye' € Y/, e’ € x/(¢)

and:
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Figure 10.9 - Adding a small surface through the middle of a still unpaired edge

- N
v 2 v

Figure 10.10 — Accidental extra faces need to be populated

VEex(y). x "(Fy={ei|ecx (A} & YFeTu,W x " (F) =V, .

Hence, using F(A) = T (A U (x (v)\ {F~(N)}) and x € M), we obtain that x € M), . O

Finally, we want to consider those edges that do not yet belong to any face. If e is such an edge,
we will let a small surface cut it through the middle, subdivide e accordingly, and reorient the
parts so that they start from the added surface (fig. 10.9): thus one part will be above the surface,
and the other below. Since this surface goes through an interior point p. of e, we can ensure,
by making it small enough, that it does not cross any other edges of the graph (by definition of a
graph, p. can not belong to any other edge). Thus, the results of the first two steps are preserved.

However, if e lies inside some preexisting surface, the achievement of the third step might have
to be restored at this point: besides the two faces now populated by the two parts of e, there
might be additional new faces corresponding to intersections of the added small surface with the
preexisting ones. If this occurs, we will need to add a few edges to populate those faces (fig. 10.10),
but we can make sure that all added edges, together with the two parts of e, intersects at most at
their starting points. Also, by making the added edges shorter if required, we can prevent them to
intersect any other edge of the graph. Thus, there is no need for further subdivision of the edges
(in contrast to the situation depicted in fig. 10.8 that could arise in the previous step), and we have
achieved the goal announced at the beginning of the present subsection.

Lemma 10.18 Let y € Lyaphs and A € L5 such that /VIS?M + @. Then, there exists V' € Lgraphs
and A" € Lpfis, such that y <y, A< A" and /\/I((j/)w) + .

Proof Let A C Lourfes such that A = [ﬂpmﬂ and x € M((i?A). We define:

Vo =1e €v|xle)=FN} & vi=v\vsy-

Thus, x {y) € F(A) and, by definition of /\/I(%) , X0 = X|v{ﬁ?(ﬂ) is bijective.

Foreach e € y3,), we choose a representative é : U, — V, of e and define p. := €(0.5,0). Since,
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forany e € yi3,), Upey (o) 7€) s @ compact set that does not contain p. (for pe € r(e)\{b(e), f(e)}

and y € Lgraphs), there exists an open neighborhood W, of p. in V, such that:
Vel e y\{e}, r(e)nW, =2.
Next, {pe | e € v} is finite and I is Hausdorff, hence there exists a family (W)

of disjoint
GEV(B,X /

open subsets of ¥ such that, for any e & y;3,), W, is an open neighborhood of p. in W, . Thus, we
have:

Ve € va Win | |J rehu | W] =2 (10.18.1)
e'ev\{e} e'€ypy\{e}
Let e € yp,. There exists € > 0 such that {0.5} x BY"Y c &' (W.) and we define:

v

Se 0 U, — V,

ith U, .= {{(t, t+0.5, e U.}.
Ly o Bt 405, ey I Ve {(t,y) [ (t+05, ey) }

Since {0} x B ¢ U., S, is an analytic, encharted surface in L. We denote by S. the
corresponding surface. We can check from the definition of S. that r(Se) € W. and:

er = €p.se)) € Fer & ey = ep, b)) € Fel.
where F,q 1= {e/ e F(A) ‘ e 1 Se} and F, | = {e’ e F+(A) ) e’ | Se} (using e € x(e) = F+(A)
together with props. 10.6.5 and 10.6.6). Defining v, := {e;, e;}, we moreover have:
Ve' €y, r(e)N{b(e), fle)} C {f(e')}, (10.18.2)
and Ve' # ¢ € y.o r(e')nr(&) c {ble)} = {bE)}. (10.18.3)
Next, we define:
For(A) = {F e F(\) ‘ JereF /el se} & Foplh) = {F e F(\) ‘ Je'eF /e se}.
For each F € Fo1)(A) (resp. F € Fe)(A)), we define:
Fersi= {e/ eFr ‘ el 56.]» (resp. Fer | = {e/ eFr ‘ e’ | Se} ),
and we choose an edge e.r1 € Fery (resp. ecr | € For ). We also define:
Veo = {eerr | F € Fenl} U{ecry | F €Ty}
The sets {Feor, Feyt, {Fert | F € FepA)} and {Fer) | F € Fey(A)} are disjoints subsets
of F (IU {59}) . Hence, defining:

Fle) (XU {Se}) = {Fer, Fe s} U{Fert | F € FenW I U{Fery | F € Ty},

Fle) (IU {Se}) cF (;U {Se}) and there exists a bijective map e : VaogUVer = Fie) (XU {SQ})

such that, for any e’ € v, U v,,, e € xes(e').
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Let e € y.,. There exists F' := x..(e') € F (XU {Se}) such that e € F’. Moreover, for any
T V.U, \{e'}, there exists F' = y,(@) € F (Iu {59}) \ {F'} such that & € F". Thus,
using the auxiliary result from the proof of lemma 10.17, there exists, for any €' € y, Uy, \ {e'},
a point gz € r(e’) \ {b(e')} such that r (e[’b(e,)
ge € r(e’)\ {b(e’)} such that:

]) N r(e’) C {b(e")}. Hence, there exists

e 5
Ve' € yegUvio \{e}h r (e[/b(e/),qe/]) nr(e’) c {b(e')}.
Since W. is an open subset of L containing b(e’) (for b(e’) € r(S.) C W.), there exists gL €

r (efb(e/),qe,]) \ {b(e")} such that r (e[’b(e/)vq;/}) C W.. Also, we have r (efb(e,)vq;/}) C r(e’) and, from

prop. 10.6.6, €[04 € I
Defining y, ; == {e[’b(e/),q//] ) S yéyz} and y, :== v, o Uy, ,, there exists therefore a bijective map

Xe Ve = Fo) (IU {Se}) such that, for any e’ € y., e’ € xe(€').
In addition, we have:

Ve' € v,y r(e') Crle) & Ve evy.q, r(e)C W,, (10.18.4)

and Ve’ ey, Ve' ey, \{e'}, rle)nr(e’) C {b(e')}. (10.185)

But, since for any e’ € y, 1, b(e’) € r(S.), and for any e’ € y., r(e’)Nr(S.) C {b(e')}, eq. (10.185)
together with eq. (10.18.3) implies:

Ve' £¢e ey, rle)nr(e) c {ble")}. (10.18.6)
Now, we define:

Y =y, U U (v.) & V=X U U {S.}.

e€Y3.x eEY3.x)

The fact that y is a graph, together with eqs. (10.18.1), (10.18.2), (10.18.4) and (10.18.6), ensures that
y' is again a graph. Moreover, by definition of y,, for e € yz,), v < v, and, from prop. 10.11,

A=< X where X = [X/]pmﬂ. Next, we define:
Fol) = {F 0D | F e g},
and, for any e € yp,, Tl = {F NFL (A (AU {S.}) ( FeFoitu {59})}.

Since, for any e € y,), 1(Se) € W, we have:

{ E‘/ € Ledges

do, € {T, i} /E‘/ e Se} C {6‘/ = Ledges | b(e/) S f(Se)}

C {e € Logges | b(e)) € W} (10.18.7)

Therefore, for any e #+ e € y,), we get, using W, N W = &
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{ E‘/ € Ledges

J 0,0 € {T, l} /e/<>e S, & € oz Sg} =0
This, together with the definition of ?(e)(IU {Se}) for e € yp,), implies:

s < |J Fem.
E‘E{O}UV@X)

In addition, we can define for any e € {0} U y;3, a bijective map x. : v, — F)(X) by:

Ve' € v, xo(e) = xole) N RN\ A) & Ve € v, xi(e)) == xele) N FL (A \ (AU {Se})).
For any e € {0} Ul y3,), x. satisfies:

Ve' ey, e’ € xi(e),
as follows from the corresponding property of x. together with egs. (10.18.1), (10.18.4) and (10.18.7).

In particular, we thus have:

Ve € {O} U Y@y VF € 3.(6)()\,)’ F % g,

so, we obtain:

g = | FaW).

ec {O}I_ly(gvx)

Since the domains of the bijective maps x. for e € {0} Uy, are disjoints, as well as their images,

they can be combined into a well-defined bijective map x': y" — F(A'). Hence, M((j’),/\’J +o. O

Proof of theorem 10.14 Let (y, A), (Y, A) € £,-. Since Lgraphs, < and L1, < are directed sets
(props. 10.4 and 10.11), there exists (y1, A1) € Lgraphs X Lprofis such that y,y" <y and A, A" < Ay
By chaining lemmas 10.15 to 10.18 and using the transitivity of < on Lgaphs and Lprofis , there exists

(V' A") € Laraphs X Lprotis such that yi < v, Ay < A" and M), # @. Thus, (v, X") € Ly and
(y,A), (y/,/\/) < (y//,/\//). D

10.3 Factorization maps

The labels introduced in subsection 10.1 are meant to identify corresponding small algebras of
observables, and the ordering has been chosen such that, whenever n < 1, there is a natural
injection of the algebra labeled by 1 into the one labeled by 1. By carefully adjusting under which
conditions a collection of edges and surfaces can be turned into a label, we have ensured that
these algebras of observables can be represented on small phase spaces M, and M, respectively,
and that the identification between observables on M, and M, unambiguously prescribes a suitable

projection from M, into M, .

Moreover, this projection is compatible with the symplectic structures (def. 2.1), and is actually
of the form that was considered in theorem 6.2 (as will be shown in prop. 10.26). Thus, we expect
from this theorem that the obtained projective system of symplectic manifolds goes down to a
factorizing system on the underlying configuration spaces (def. 2.15). Indeed, we will prove that it
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is the case by giving the explicit expressions for the factorization maps (with the added benefit that
no further restriction need to be imposed on the finite-dimensional Lie group G, while theorem 6.2
have been derived in the case of simply-connected groups). Once we have such a factorizing system
of configuration spaces, it will be straightforward to quantize it into a projective quantum state
space (along the lines of [68] and subsection 6.1), as we will do in subsection 12.1.

We start by attaching to each label n a configuration space C,: €, is nothing but the configuration
space routinely associated in LQG to the graph y(n), with one group var per edge (corresponding
to the value of the holonomy along this edge). We also attach to n a momentum space P,: as
announced in subsection 10.1, momentum variables are assigned to the faces of the label (eventually,
we will, in prop. 10.26, rely on left translations to identify the cotangent bundle 7*(G) with G x g7,
and thus 77(C,) with C, x P, , using the pairing y, between edges and their conjugate faces provided
by def. 10.12).

Also, we introduce a few notations to discuss how the holonomy along an edge, or the flux
through a face, can be related to the variables in C, and P, (provided 1 is fine enough to describe
the desired observable). Since we want to deduce the correct projective structure from the interpre-
tation of the labels in terms of observables, it is particularly important that the relation between
these observables and the variables in the small phase spaces should be unambiguous. This will
ensure that the factorization maps are well-defined, and will be essential for proving three-spaces
consistency in the resulting factorizing system (eq. (2.11.1) and fig. 2.2): as stressed many times
above, this consistency condition, combined with the directedness of £,,, indeed expresses the
concern for an unequivocal meaning of the variables attached to a label.

For a clean labeling of the flux observables we formulate in prop. 10.21 a notion of ‘free-standing’
faces. In prop. 10.9 the different faces corresponding to a certain collection of surfaces {S} have
been defined as particular sets of edges, and each such face F can only contain edges that are
adapted to every surface in {S}. In particular, an edge can be prevented from belonging to F
simply because it crosses transversally some surface of the collection, even this surface is in reality
unrelated to the face F. Thus, a given flux operator is described in different profiles by different set
of edges, and its characterization by a more intrinsic set is only obtained after compensating this
effect.

Definition 10.19 For any n € £,, we define its associated configuration space:
€, = {h:yln) — G} = G™V,

where #y(n) < oo denotes the number of edges in y(n). Since G is a finite-dimensional Lie group,
C, is a finite-dimensional smooth manifold.

Similarly, we define the corresponding momentum space:
Pyi={P:Fn) - g’} = (@),
which is a finite-dimensional real vector space.
Proposition 10.20 Let e € Logqes. We define:
Loraphste = {V & Loraphs | {€} < v}

For any y € Lgraphsje  there exists a unique map ay—. : {1,..., 0,0} — v (with n,. > 1) such
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that:

e = ayﬁe(nyﬂe)gﬁ“”ﬁe) o...0 ayﬁe(1)ewm, (10.20.1)
where, for any k € {1,..., Nye}:
1 tb(a, .k o fla,_elk
e k)= T D (0relR)) <o 7 (0yelk)) (10.20.2)
-1 ifb (ay%e(k)) > () f(ayﬂe(k))
Moreover, a,_. then induces a bijection {1, ..., Nyset — Hy_o, where:

Hy . :={e €y|r(e) Crle)}. (10.20.3)
Proof Let y € Lgraphsje . Since {e} <y, there exist n,,. > 1and a map a,—.: {1...., Nysel =y
such that:

e=a,..(n, )70  oa, (1),

where, for any k € {1,..., Nyset, €-e(k) is defined as in eq. (10.20.2). By definition of the
composition of edges (prop. 10.2), a,_. is injective and for any k € {1, ..., Nyset, Gye(k) € Hy e

Next, let ' € H,_., and let p € r(e’) \ {b(€'), f(e')}. Since p € r(e), there exits k €
... nye} such that p € a,_.(k), so, y being a graph, el = ay_el(k). Thus, a,_. induces
a bijection {1,..., Ny—e} — Hy_e. In particular, n,_. = #H, ..

Finally, defining the map 1 : H,—,. — r(e) by:

b(e’) if b(e') < f(e)

Ve' € H,_., ule') = ,
e y /J(e) {f(e/) if b(e/) >(e) f(e/)

prop. 10.2 implies that p o a,_. is strictly increasing (using < on {1,..., Ny—e} and <) on r(e)),
hence the uniqueness. 0
Proposition 10.21 For any - C Ledges, We define:

ti={e € Leges | Vp £ p E1(e), epp & F}
and we will denote by Ly,ces the set:

Lfaces:: U {FLOF‘FEg()\)}

/\eﬁprofls
In addition, we define for any F € Lices :

Lootisfr = {A € Lyots | TSN, IF € FN) /F =FroF}.
Then, for any F € Li,es and any ' € Lo We have:

) £ (10.21.1)

F'eH, ¢
where H,_r={F € FW) | F' C F}.

Proof Let A € L5, F € F(A), F:=F'oFand X € Lprofts such that A »= A From props. 10.6.5
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and 10.6.6, we have:

FreFloF" & F =(FroF) =F".
Hence, for any F' € H,_¢:

F'oFfCF oF=F‘oFtoF =F,
therefore £ o Uren, ' C F.

Now, by definition of the preorder < on Lyons (prop. 10.11), there exist £, ..., F, € F(X)
(m > 1) such that:

F=FWol JF.
i=1

Foranyic {1,...,m}, Fy(A)o F/ C F implies F/ C F C F (using again props. 1065 and 10.6.6),
so F/ € H, £ And from prop. 1093, F~(}) C F*, therefore:

FcFolJRcFo |J F

i=1 F/EH/\/Hf

Props. 10.20 and 10.21 make it possible to unambiguously attach a physical interpretation to the
variables in €, and P, and are therefore at the root of the relation between the variables assigned
to a label  and the ones assigned to a finer label /. Although we will directly give an analytic
expression for the factorization map ¢, : Cy — Cy_,; x C,; and we will not explicitly make use
of theorem 6.2, the proof we gave for this result (following ideas from [68, section 3.4]) provides
the right hints regarding why such a factorization map does exist, and how it should be defined so
that it leads to the desired projection between the phase spaces.

The key idea is that the momentum variables assigned to the label n can be mounted into the
phase space associated to 1/, and therefore correspond to certain vector fields on Cy . Each orbit
under the finite transformations generated by these vector fields can then be naturally identified
with €, (for the relation between the configuration variables in C, and €, yields a projection from
Cy into €, which intertwines the action of these transformations). The complementary space C,_,,
can thus be taken as the corresponding quotient space, which itself can be identified with the
preimage of some point in €, (eg. the function mapping every edge in y(n) to the identity element
in () under the projection C; — C,.

This prescription can equivalently be expressed as the realization that the space C,_,,, together
with the projection from €, into €, _,,, can be completely specified by identifying a maximal set of
variables in C, which are not acted upon by the fluxes retained in the label n. On the other hand,
the projection from €, into €, is obtained by writing down the edges in n as compositions of edges
in . Thus, the first step toward the determination of the factorization map is to state precisely

how the edges and faces of the label i lie within n'. For this, we will classify the edges of 1’ into
various categories depending on whether they belong to some face and/or are part of some edge of

n. Note that no edge in y(n') can be a subedge of two different edges in y(n), nor can it belong to
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K)

Figure 10.11 — Classification of the edges in ' = n: a tag ) denotes an edge belonging to H,(WH,7
(prop. 10.22)

two different faces in F(n), nor can a subedge of an edge e € y(n) belongs to any face in J(n) but
x(e). So we are left with the 4 options listed in prop. 10.22 and depicted in fig. 10.11.

Clearly, the group variables corresponding to edges of n’ of type ‘0’ or 2’ (those that do not belong
to any face among F(n)) qualify as complementary variables (they are not acted upon by the fluxes
retained in ). Also, knowing the holonomy along some edge of ), as well as the holonomies along

all edges of 1’ that compose it except the first one, the holonomy along this first part (which is of
type 1) can be reconstructed. Hence, the group variables corresponding to edges of type 1’ can be
safely droped when extracting C,_,, (fig. 10.12).

Dealing with the group variables corresponding to edges of type 3’ is slightly more subtle. Such
an edge e’ € y(n) belongs to some face F € F(n) without being the initial part of the conjugate edge
e € y(n). To build a group variable invariant under the flux corresponding to f, we will compose
the holonomy along e (which ends in F) followed by the holonomy along e’ (which starts in F).
In this way the action of the flux through F cancel out, while the variable in €, that corresponds
to the considered edge e’ can still be reconstructed from the variables in C,_,, and €, (fig. 10.13).

Note that we could equally well take the composition of the holonomy along ef followed by the

holonomy along e’, with e the first part of e (in its decomposition into edges of n'). These two
alternatives only differ by a function of the group variables attached to the remaining parts of e,
which already belongs to C,_,, (these remaining parts being edges of type 2’ as outlined above),

so it is nothing but a change of coordinates on C,_,,, and therefore of no consequences for the
construction.

Proposition 10.22 Let n < ' € L. We define:
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n
/\V [7/_>/7

Figure 10.12 - Complementary variables related to edges of type ‘0’ or 2’, edges of type 1" do not
demand any extra complementary variable

M
3)
(3)
L
&

Figure 10.13 — Complementary variables related to edges of type ‘3’
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1HY =1 evn) [ Veeyn), rle)¢rle) & e & xle)};
and, for any e € y(n):
2 HY e ={e evin) | re) Crle) & e € xyle)};

n'—n,e

3 HY =1 ey rle) Crie) & € & xle)};

n—n,e

4, HffL,Le ={e ey |re) ¢ rie) & e yxle)};
Then,
0) M (2) (3)
{Hn/ﬂn} U U {Hn%n.e' Hn@n.e' Hn/%n.e}
e€y(n)
is a partition of y(n).
Additionally, we define:
Vic e {1,2,3}, HY! = U H

ecy(n

Proof For any e € y(n), {/—/(1) HY) HY ]» is a partition of:

n—n.e’ n—n.e’ n—ne

HY = O U HY g HY ={e" e y() | r(e') Cr(e) or e € x,le)}.

n—n.e n—n.e n—n.e n—n.e

Since we have:

HYL, = e’ € vin)

), e HL L

there only remains to prove that the HY  fore e y(n) are mutually disjoint.

n'—n,e
Let e € y(n) and let e’ € y(n) such that r(e) C r(e). There exists p e r(e)\{b(e’), f(e’)}. From
prop. 10.1, we get p GE {b (e)}, thus Ye € y(n)\ {e}, p & r(e), for y(n) is a graph Therefore,

Ve e yin)\ {e}. r ) Moreover e € x,le) and for any e € y(n) \ {e}. x,(€) #+ x,(e), s
using the auxrltarg result at the beginning of the proof of lemma 10.17, " & x,(e). Hence, we have
proved:

Ve # &€ y(n), Ye' € y(i), (r(e)) Crle) = e & HY

Now let e € y(n ) and let ' € y(ny) such that e’ € x,(e). Then, from the previous point, we get

Ve e y(in)\{e}. r ) And, since the elements of F(n) are disjoints and ¥, is bijective, we
also have Ve € y(n \{e} ") & x,(e). Therefore, we obtain the desired result:
Ve +2 € y(n), Hﬁwemr/ -
U

Proposition 10.23 let n < ' € L, and e € y(n). We have {e} < y(r), and making use of
prop. 10.20, we define:

Ny—ne = My)—e Ayone = Ayip)e & Eype = Eyiy)e-

We then have:
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epone()=+1, HYL  ={ayoneM} & HY .= {ayopek) | k> 1}, (10.23.1)

nm—ne

therefore ny_,. = #H,7 %ne—H and a,y_,,. induces a bijection {1,.. ., Ny—ne} — H,7 %neUHn ne

Also, for any F € F(n), we have, using the notations of prop. 1021 with F = FX o F, A7) €
Lproﬂs/? and:

Higyor = Hy e = IF € F0) | ) (F) € F} = {xle) | € € HEL, o U HY

n'—n

n'=n.xy (F)} ’
(10.23.2)

n'—nx; ' (F)

Proof Let e € y(n). From eq. (10.20.3) @,y . induces a bijection into its image:

Hye = HOL, U HY

n'—n.e n—n.e:

and from eq. (10.20.1) together with props. 10.6.5 and 10.6.6:
ayone() 71V € xp(e) & Yk >, ayyelk) & xyle):

Then, writing a,y,e(1) 1<) = ey, ,n, there exists p” € r (epp1) \{p. p'} C r(e)\{b(e), f(e)} such
that e, .1 € x,(e). This can only hold if p = b(e), te. €y_,.(1) = +1. Thus, we get:

ay—ne(l) € I—/,7 Lne

& Yk >1, aynelk) € H?

n—n.e

Let £ € F(n) and F = F-oF. Forany F' € H,,.r, we have x,'(F') € F' C F, hence
there exist e; € F and e, € F such that X,771(F/) = e, 0 eq. But from prop. 10.6.6 together with
F~(n') C F+(n) (as in the proof of prop. 10.11), we have e, € F+ (i) C F~(n), so x, ' (F') € F. Thus,

we get H,,\ 7 C HY Reciprocally, let F' € F(i') such that x,;'(F') € F C F. Then, from

n —>/7F

eq. (10.21.1), there exist e; € F”, for some F” € H,,, ;7 and e; € F such that Xy (F')=esoey.

And since x,;'(F') € F', we also have ey € F’, therefore F' = F" € H,y—F (for the elements of
(1.3)

F C H)L(U/)_)f’ hence HA(’/)_’f - H / . |:|

n'—nF

F(n') are disjoint from prop. 10.9.1). This proves H.

ﬂﬂf/

Proposition 10.24 Let n < ' € L, and define:

€y i= 10O HEL, = GE s n® L S GE a6

n n'=n
Like C,, €,_, is a finite-dimensional smooth manifold.
To any hy € €, we associate maps h, : y(n) — G, hn%n ; H,(??Ln — G, thn ;
he  HY = G by:

1. Ve e HY W% (e') = hy(e));

n—=n' "n—n

2. Ve € y(n), hyle) = ( |_| [hy o a,,f%n,e(k)]sn/%ew) CJhyoaysge(l)
k=2

with the convention that products of group elements are ordered from right to left:
Vg, ...gn € G| gk =gs .. g1
k=1
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3. Ve e HY hi (€)= hyle));

n'=n

4. Ye € y(n), Ve' € HY . h (&)= hy(e'). (hy(e)) ™" (with hy(e) from 1024.2).

n—ne’ n—n

Then, the map @y, : hy — hn—>n h(nz/)_)n, h(n%)—m; h, is a diffeomorphism €, — C,_,, x C,.

Proof ¢, _,, is smooth for G is a Lie group. Next, for any j, € C, and any ( O w0 ) e

jf]/ﬁl]' /I]/‘N]’ /[]/*)17

Cy_, we define a map j, by:

5. Ve € HY . jle)) =y,

- j’7/H'7

—e J(k)

2
6. Ve € y(n), Ve’ Hrz—>ne Jw(e') = |_| [j,g)_)noan/ﬁn,e(k)] e

k=n17/~>/7,9

-Jnle);

7. Ve' e Hnﬂn, j/]( /) = (%) (6‘/);

= Iy—n

B. Ve € yln), Ve’ € HyL, .. jye) == i, (¢) afe).
Having a partition of y(1') (prop. 10.22) ensures that j, is well-defined and, again because G is a

Lie group, the map @, ., :j,goln j,gzln Jiysn Ja = Jy is @ smooth map €., x €, — €. We can

check that @y, © @y, = ide, and @y, 0 @y = ide,  xe,, thus @y, is a diffeomorphism. [

In order for the previously defined factorization maps to provide a valid factorizing system,
they should fulfill the three-spaces consistency condition (eq. (2.11.1) and fig. 2.2). As detailed in
subsection 2.3, we need a map @y, identifying C,_,, with €, x Cy_,,, in agreement with

/

the factorization maps @, @y—y and @y_,: given three labels n < ' < 1’

, the variables
discarded when going down in one step from 1’ to n should be the same as the ones discarded
when going, in two successive steps, first from n” to n and then from ' to n. This will ensure that
there is no ambiguity as to how the variables associated to the label n are to be extracted from the

phase space corresponding to n”.

To ascertain that this is indeed the case, we have to distinguish the different ways, for an edge
e” of n”, to be positioned with respect to the edges and faces of ' and n: this yields 13 inequivalent
possibilities, as depicted in fig. 10.14. Only one of them is compatible with e” being of type ‘1’ for
transition n” — n, while, in the 12 others case, the group variable attached to e” contributes to
the variables of C,_,,, in terms of which ¢, _,,_,, then needs to be appropriately specified (see the
points 10.25.5 to 10.25.10 of the proof below).

Note that we could have made use of prop. 2.17 to obtain the three-spaces consistency of the
factorization maps from a similar condition formulated at the level of the projections between the
small phase spaces def. 2.3 and fig. 2.1: that these projections fulfills such a condition can indeed
be read out from their expression (that will be given in prop. 10.26). Yet, using this result would
require ; to be connected: a restriction that appears quite artificial when the factorization map
@y, in prop. 10.24 has been expressed solely in terms of the group operations (multiplication and
inverse). Preferably, the three-spaces consistency can be obtained in full generality directly at the
level of the factorization maps: once the correct explicit expression for ¢,_,,_,, has been deduced
from the one for ¢,_,,, it is a straightforward (albeit rather fastidious) check that eq. (2.11.1) holds.
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Figure 10.14 — Three-spaces consistency: in the illustration of n’, a tag (KK denotes an edge
belonging to /—/,(77)_”’/,6 for some e in /—/,(;f)_),7 and a tag ¥ denotes an edge belonging to H" _, (for

r]//_)n/
better readability we have tagged only one edge of each type)
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Theorem 10.25 let n < ' <X " € L. There exists a diffeomorphism @y, : Cpy —
Cpoy x €y such that:

(‘Pn”%n/ﬁn X Lde,y) O Py—n = (Ld@nu%n X Qyon | © Py (aka. eq. (211.1)).
This provides a factorizing system of smooth manifolds (£, C, ¢)* (def. 2.15).

Proof Let n < ' < n" € L. Let e € y(n) and, for any k € {1, ..., Ny—ne + 1}, define:

>~

-1
K N
n'—n'—ne " n'—n G,]/H”e(r)'

r=1

Using prop 10.2 together with the uniqueness of a,_,. (prop. 10.20), we then get ny ;. =
0 and forany k € {1,.. ., Ny—pe} and angle{ v +1, ..., s ]»:

n 4)/7(’
n'—n—n,e r] '—n'—n,e n"—n—n,e

k .
I — Aoy ok (L S(n”)—m/en,e) tFk="1oreyopelk) = +1
anell) = a ert) +1—1] otherwi
n'—n U,/Hne(k) n'—n'—ne tse
k :
€ (l) €=y A elk) (l a 557//)HI7 —>f79) itk ="1or 6’7/_”%9(/() = +1
n'—n,e = )
— €t 0y oK) (sf;ftjr)/_m’e +1— l) otherwise

Next, for any F & F(n), we have:

13 _
Hn”ﬁnf B U Hn =i

/
F EHU —n,F

(the proof is similar to the one for the second part of prop. 10.23).
In particular, using eqs. (10.23.1) and (10.23.2), we then get, for any e € y(n):

1. Hn”%n - Hn”%n’ J U Hn”%n e U U Hn”ﬂn e U U Hn '—n' e

eEH eEH(2 eEH
174)/7 I]‘?/] /7‘?[7
2. I_/f]//_>’79 = U Il_/I7 (N
eEH
n—n.e
1
3 HD, = U HA .U U (H o UHS )
eEH eEH
f]"ﬂé‘ 17~>l7e
1
4. HU//"WG - U /_/// / o U U (Hg//) /el U HU//‘)W,Q/) ’
eeH eEH
0 —n.e n—n.e

Now, for any (h(q/) he b ) € Cy,, we define:

nont tintont Tt =0

' p/ e
. 6!1//~>n/,9/(k) 0
5. Ve & Il_/[7 N j’(7/ ( |_| |: 10 (@] Gﬂ//ﬁﬂ/rel(k):l ) . I:hgﬂ)‘”] O an”—>/7/,e/(1)]

(well-defined since H,;u,;/



nl] —n e
(2) .(2) . 2) 6/7”%17/,9/“() 2
6. Ve/ (- Hr}’-m ' //7/—>[7(€/) = ( |_| [hn”—m (©] Un//*)n/,e/(k):l . hn//_m o G”//*}n/’e/(/l)

k=2
(2) 2 .
(well-defined since Hn”wz o UH e C /—/,]Ln),
' p el
7 Ve E H ( ( |_| |:h( o Q. (k):lfq//*)n/,e/(k)) I:h(3) oduw , /(1)]
: n—n' fn Hr7 ’ n'—n n"—n' e ’ n'—n n'—n'e
=2
0 2
(well-defined since H')) ., c H) and HY UHS . c HE );
(0 . (0
g Ve’ € HY . ji.(e") :=hD (e")
(well-defined since /—/,]Mn/ C /—/,7//%,7)
0) ; 0)
9 Ve’ € HY jo ) = hyrg(e”) e e Hy
. AN s = ( . (2
wn e Wl e") e’ e HY
) 2 .
(well-defined since Hn”Hn/ C H g U H ),
3
10 Ve € y(n), Ve" e /—/nLn/ve/,
- 1
0) 0)
(e ( /H(e/)) ife'eHY
1
(0) ” +(2) /
0 e ] o (e, ( 2 (e )) ife'eHY
j’7”‘>”/ T (3) /" Ny sne [ +(2) ewﬂnve(k) 1
hor (€)1 iyl © Gy —nel(K) if e’ Hn,/_me (with e € y(n))
B o (B (on)
\hn//_m(e ). |y, (€) if e € Hn”—>n

(using jg/))_,n j?_)n and j,(f)_)n from 10.25.5 to 10.25.7; well-defined since Hn”—w/.e/ C /—/f;,)/)_m in the

first two cases, and /—l,]//ﬁn o C /—/S,Ln in the last two cases).

Then, the map @y - B9 AE B 0 @ B 0 e
n'—n-n - /! % ,

wn o My Ny o S s Jyrsi s Jpsn s Jyn v Jysy 1S SMOOtH

e’?”*”? — e']”*”?’ X GU/HW'

Let h,» € €, and define:

n—=n nm—n n—n

0 2 3
11 (h(//) /oy h(//) /oy h(//) /; hn/) = (pn//_>,7/ (hn//) E en//_>,7/ X en/;

(0) (2)
12. (hn/an: hn/an' 7%/7' h”) - 90/7—>n ) < 6’7_”7 X e”’

0 2

n'—n' n-n - (100//—”7 //) = 617”—”7 X e’7"

(0) (2) 3 .0 (2) 3) o (0) (2) (3)
14. (jﬂl/"n/ , jﬂ//"n/ , j””"’7/'j’7/"’7' jnlg)n , jﬂ"’ﬂ) = (pf]//_’n/—’”/ (hﬂﬁ‘)ﬂ' hn”%n’ hf?”"’?

Using the definitions of ¢, _,, (from prop. 10.24) and ¢, , we can check that:

(0) (2) 3 .0 (2) 3.
(/n”—u]/ ' /17”—>/7/ , /n”—uy/' //7/—>r7' /n/—>l7’ /n/—>l7 ! /’7) =

e R e R R B R e R Y]

(h‘o,/ Y v P v B L ) ;hn).

In other words, eq. (2.11.1) is fulfilled. But this also ensures that ¢, _,, is a diffeomorphism for
@y s Py—n, and @, are diffeomorphisms (prop. 10.24). Together with the directedness of L
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proved in theorem 10.14, this yields the desired factorizing system (def. 2.15). O

Finally, we wrap up the classical side of the construction by writing down the symplectic manifold
M, attached to a label n, the projection from M, into M, (as prescribed by the factorization ¢, _,,,

for n < 1), and the expression of the holonomy and flux observables over M,. These explicit
formulas allow to check (prop. 10.28) that we indeed reproduce the holonomy-flux algebra that was
derived in prop. 9.10 in the context of the infinite phase space description of a theory of connections,
thus validating a posteriori the intuitive arguments that were repeatedly asserted above (on account
of the underlying physical interpretation of the labels).

Note that, as announced at the beginning of the present section, the projections M, — M,
are of the form that was considered in theorem 6.2 (making C, into a Lie group via pointwise
multiplication and inverse).

Proposition 10.26 To any n € £, we associate the symplectic manifold M, := T7(C,) (with its
canonical symplectic structure as a cotangent bundle), which we identify with €, x P, (def. 10.19)
via:
L, - M, - C,xP,
hp — h, (Fl—>po [T1 (t|—> R,(,?h)])

the map R!h € €, being defined for F € F(n), t € G, and h € €, by:

(F) | hle).t if x,le)=F

Ve € y(n), R,/hle) := {h(e) olee :
For any n < n" € Ly, we define my_, : My — M, as my, = Sy_p © @yoy, Where S,
THCroy x Cp) = THCyy) x TH(C,) — T7(C,) is the projection on the second Cartesian factor and
@yn TH(Cy) — T(Cy, x C,) is the cotangent lift of ¢, ,. Then, (L., M, )" is a projective
system of phase spaces (props. 2.16 and 2.13).

Moreover, we have:
L,omy_,o0 Llf  Cyx Py — €, x P,
h,;/,Pn/th,an ’

where h, and P, are given in terms of h, and P, by:

Ve € y(n), hyle) = I_I [hy o an’%n,e(k)]en/ﬂe(k) Nhy o ay—ne(1)], (10.26.1)
k=2
and VF € F(n), P(F)= Y  PylF). (10.26.2)
FreH!”

n'—n,F

Proof For any n, L, is a diffeomorphism M, — €, x P, by definition of y, (def. 10.12).
Let (hy, py) € My and (hy, Py) = Ly(hy, py). We have:
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~ . (0) (2) &) . ~1
Prr—n (hﬂ/' Pn/) - (hngn' s Dy s pyy 0 |:T<Pn/ﬂn(hr/’)(p/7/—>f7:|) '

with hnen hf,LU, hS,Ln, h, constructed from h, as in prop. 10.24 (in particular, h, is given by

eq. (10.26.1)). Thus:
_ 0 2 3
Ty —n (hn’? Pn’) = (hn? Py © [Thn(pn’lw (h(n/)—w' h(n/)—ﬂw h(n/)—m' ' )]) '
and finally L, o sy, (hy; py) = (hy; P,), where P, is given in terms of hy, p, by:

VE € F(n), Py(F) = py o [n tes rl, (h‘“) h? RO R(F)hn)].

n—=n' n—=n n—n 0t

Now, for any F € F(n), t € G and e’ € y(1), we get, using the explicit expression for (,0,;1_)”
from the proof of prop. 10.24:

. 3)
1 ) ) 3) (F) 0 [hate) i (e € HYY
(,0”/_)/7 hnfﬂn ) hnfﬂn , hn/%n , Rﬂ,t hf]) (@ ) - {h;/(e/) elsen ronk ’
Therefore, VF & F(n), Z P O
FreHy?

Proposition 10.27 Let e € Leqqes and let n € L, such that y(n) € Lgraphsje (prop. 10.20). For any
m € C®(G, R) (with C*(G, R) the set of smooth functions G — R), we define h(ne’m) e C*M,, R)
by:

Ny(n)—e

V(h,p) € M,, h*"(h,p):=m [h 0 @y e(k) ot
k=1

Then, for any n, n" € Ly, such that y(n), v(i') € Lgraphsie , We have:

¥m € C*(G, R), h™™ ~ his™
with the equivalence relation of eq. (24.1). Moreover {n € L | v(n) € Lgraphs/e} #+ &, thus we can
associate to any m € C°(G, R) a well-defined observable h'®™ & OL v (def. 24).

Let F € Liaes and let n € L, such that A(n) € Loonsie (Prop. 10.21). For any u € g, we define
P e C*(M,, R) by;

Wh.p) €My, PIhp) = Y po[Ti(tm R ().

FreHu-F

Then, for any n, " € L, such that A(n), A(7) € £, 17, We have:

profls/
Yo & g, PFA ~ P,

And since {n € Ly ‘ Aln) € meﬂs/f} + @, we can associate to any u € g a well-defined observ-

able P") € O, .

Proof Let e € Ledqes . By chaining lemma 10.15 to 10.18, there exists (y, A) € L, such that {e} <y

(and [@] 4 < Awhere[- ] o denotes the equivalence class in Lpon5), hence {n € Ly | v(n) € Lgraphs/e }

proﬂ
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+ @. Let n such that y(n) € Lgaphsje and let n = n Then, y() € Lgraphsje - Moreover, we can
exXpress dy(yj—e N terms of a,,—e and of the a,_, . for e’ in the image of ay(;—. (like we did
above in the proof of theorem 10.25). Together with eq. (10.26.1), we readily check that:

¥m & C=(G,R), h®™ oy, = hE™.

n

Finally, for any n, n" such that y(n), v(') € Lgraphsre, there exists n” = n, 1, hence:

Vm € C(G,R), ho™ oy, = hE™ = hE™ o 1y,

te. for any m € C*(G, R), h!™ ~ hl5™.

Let A € Lponis, F € F(A) and F = FXoF. Again, there exists (y/,A') € L, such that A < A’ (and
@ < V), hence {n€ Ly | Aln) € Lyor} #+ @. Let n such that A(n) € £
Then, A() € £
prop. 10.23):

1.3
Hipor = | HYZ e (10.27.1)

F/EH)\(I])‘}F

profls/F and let /7/ =N

oroflsfF @Nd we have (through a reasoning similar to the proof for the second part of

Combining this with eq. (10.26.2), we get:
pU

Vu e g, Pff'“) oMy, =Py

Like above, this ensures that for any n,n" such that A(n), A(n) € £ 7 and for any v € g,

profls/
pira . pl) 0

n

Proposition 10.28 Let e be an analytical edge in &, S be an analytic surface in &, m € C*(G, R),
and v € g. We define:

Voe{T,l}, Sei={e" € Legges | €' 0 S} & S, =505, € Lises

(using the notations of prop. 10.21), as well as:

pisu . 1 (p@%”) _ P(gl,u))
2 1

and we have:
1. ife) S, then:

{p(SrU)’ h(@,m)} =0,

where the Poisson brakets { -, -} between observables over S&HF‘M,”) have been defined in
def. 2.4;

2. ’Lfe=e2091_1 with e, e ¢ Sand ¢ € { T, l },then:
{P(S,u)’ h(e,m)} _ 0,
3 ife=e0e; ! withe; o1 S, €0, S and {01, o} = { T, ! }. then, defining:

y = {61 , 92} - Lgraphs: A= [{S}]N S5 Lproﬂs: n:= (Vr /\) S LHF'
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we get, for any (h, p) € M,,:

u e,m d ru -
{Py hi ) (hp) = san(e, S) —-m [h(e2).e™ h{e1)”'] .

where sgn(e, S) is given by:

+1 i (o1, o) = (], )

sgn(e, S) == {_1 flor o= )

Proof Poisson brackets between holonomy and flux observables. Let n € L, and let (h, p) € M,,.
Let P € P, such that (h, P) = L,(h, p), where L, : M, — €, x P, has been defined in prop. 10.26.
Using left-translated exponential coordinates around h € €, (cf. the proof of theorem 6.2), we can

show that the symplectic structure (3, on M, is given by:
Vv,V € Ty(@C,), Vw,w' € Tp(P,) = P,, (L;“*Qn)(hvp) ((v,w), (V',w)) =

= > W xale)) o £¥) (V) = w(xsle) 0 € (V') + Pxale)) ([eﬁf}ﬂ(v), @fj,%(v/)]g) ,

eey(n)

where, for any e € y(n):

vhee,, & = [Th (j— h(e)_1.j(e))] The, — g.

Now, for any F € Ly such that A(n) € LonsF @nd for any u € g, we define:

y(Fu W(F”)) = [Tinp)Ls] (Xp‘f'”,(h,p)) '

where X . denotes the Hamiltontan vector field of P(f'“). Eq. (10.28.1) then yields:

Ve e vn), € (V7) = YTe) & WIIge) = Plxe)) ([W'“)(e), ])

where Y0 . y(n) — g is given by:

= u feeF
Ve € y(n), Y"¥(e) = {0 olse ,

and we have used that:

{fecvin|ecF}={ecvyn)|3F €Hyyr/xle)=F'} (10.28.2)
(through a reasoning similar to the proof for the second part of prop. 10.23). Applying the map
[71 (t - R,(]),([’(e)) h)] : g — T4(C,) (from prop. 10.26) on both sides of the first equation allows to

solve for V¥
VI~ [Tyt R h) (o).
where Rﬁh € C, is given, for any t € G, by:
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_ hie).t ifeeF
V ’ R(F)h = :
ecyn), R, hle) {h(e) else

Thus, we get, for any e € Legqes such that y(n) € Lgaphsfe, and any m € C(G, R):
Y(h,p) €M, {P(f'”), h‘;"m)}M (h, p) = [ﬂ (tl—> h(ne'm)(/?,(]i)h,p))](u), (10283)

where we have used that, for any (h, p) € M,, hi*"(h, p) = hi*"(h,0) = h'*" o L, '(h,0).

Faces of a surface. Let S be an analytic surface in & and v € g. From the definitions in prop. 10.9,
we get:

F({S}) = {ST, sl} (1028.4)

(note that Sy # @, as can be ascertained by choosing a representative S of S and pre-composing
S with a suitable rescaling of R? to define an encharted edge; similarly Sl + @, by pre-composing

in addition with a reflection). In particular, §T , §l € Liaces -

Edge indifferent to the surface or only on one side. Let e be an analytical edge in ¥ such that

e=e0 91_1 with e;, e2 ¢ S and o€ {”Q ) T, l} (note that this includes the case e 1) S by writing

e = e[p,f(e)]e[;jb(e)] for some p € r(e)\ {b(e), f(e)} and using prop. 10.66). Let m € C*(G, R). From
lemma 10.15 there exists a label n € £, such that:

{er, e} < vin) & [{S}]. <A,

and we have (relying on the uniqueness part of prop. 10.20):

Ny(n)—ey 1
. . n—es (K —€y(n)—eq (l
V(h,p) = Mq, h(ne n7)(h’p) =m |_| [h o ay(/])_}@(k)]ﬂ/(?) 2( ) . |_| [h o ay(n)—ﬂ?q“)] €y(n) W()
k=1 [=ny(,,)ﬂe1

with:

Ay—er (1), Aym—e,(1) 05, Yk > 1, aypoe (k) VS & VIS, aype () VS
Thus, we obtain:
Ryx' h.p) = W™ (R, b p) = He (. p).

Y(h,p)eM,, ¥Vt G, hiem \
so that:

vih.p) € My, [P WM (hp) =

n

and therefore {P(S'“), h(e’m)} =0.

Edge crossing the surface. Let e € Logges such that e = e; 0 9{1 with e 01 S, e ¢ S and
{o1, 02} = { T ! }. Eq. (10.284) then ensures that n = (y,A) € Ly, with y = {eq, e;} and
A= [{S}]_. and we have:
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nt

— — -1
S S
vhee, vVteG, (R( “h(ez)) | (R( T)h(ew)) — h(ey) . £ heq)
as well as:
5) 5) -
vYhe e, vted, (Rml h(ez)) . (an h(e1)) = h(ey). t7°9"e>) h(ey)".
Let m € C*(G, R). We obtain:

u e,m d ru —
V(h,p) € M,, {PDY, hl* >}MU (h, p) = sgn(e, S) Em(h(ez).e che)™)

n
r=0

While we successfully reproduce the Poisson brackets from prop. 9.10, the projective state space set
up in prop. 10.26 regrettably cannot be displayed as the rendering (def. 2.6) of a continuous classical
theory of connections. If we were to define projection maps 7y, from the infinite dimensional
phase space My (def. 9.3) into the various small phase spaces M, , these maps would not fulfill
def. 2.1:

» They would not be smooth, and in fact, they would not even be everywhere defined on M;y.
As discussed in subsection 9.2, the holonomy, resp. flux, variables are obtained by smearing the
connection, resp. its conjugate electric field, along singular geometrical objects (respectively 1-
and (d—1)-dimensional), while a smearing by a smooth function on the d-dimensional manifold
X would be required to get well-defined observables on My .

519 that

constitute independent variables in M, have no equivalent in terms of appropriate smearings of

« They would not be surjective onto M,,. The ‘one-sided’ flux variables P and P!

the electric field: only the combination P> has. Moreover, the fluxes attached to submanifolds
of dimension less than d — 2 (arising at the intersection of surfaces) should vanish according
to the continuous theory.

» They would not exactly transport the Poisson brackets (compatibility with the symplectic struc-
ture as expressed by eq. (2.1.1) does not directly make sense for non smooth maps, but it would be
desirable to at least recover its transcription at the level of the observables, aka. prop. 2.2). We
stressed when reviewing the regularization of the Poisson brackets (prop. 9.10) that it forces non-
vanishing commutators between fluxes on intersecting surfaces: this anomaly in the holonomy-
flux algebra is the price for rescuing its Jacobi identity. While the Poisson bracket of fluxes
on transversally intersecting surfaces (ie. surfaces whose intersection is of dimension d — 2 or
less) is an observable that actually vanishes on My (as just underlined), in accordance with the
fluxes being commuting in the continuum theory, the non-commutation of fluxes on overlap-
ping surfaces (with an intersection of dimension d — 1) genuinely conflicts with the symplectic
structure on My .

It is open to debate whether the last point, in particular, should be considered a bug (aka. disturb-
ing quantum anomaly), a feature (aka. interesting quantum-geometrical effect) or simply an artifact
(that could be eliminated by expressing the relation between the continuous and the discretized
theories in terms of more appropriate variables, see eg. [89, section 6] or [23, appendix C]). Note
that this issue is strictly speaking one of regularization rather than quantization: the concern is
whether the two descriptions we have for the classical continuum theory (on an infinite-dimensional
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phase space vs. on a projective limit of finite-dimensional phase spaces) lead to the same physical
predictions. A way to analyze this question could be to try and reproduce, on the projective side
(along the lines of section 3), the dynamics of the original theory of connections (see sections 13
and 20 for ideas in this direction, as well as sections 15 and 16 for examples of how the dynamics
of a classical field theory can be recovered in the projective setting).
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Chapter 4 — Quantum Theory

11. Introduction

Quantizing the classical formalism set up in section 10 is a straightforward application of the
prescriptions for quantization in the position representation that were detailed in props. 6.3 and 6.4.
While the relation between this projective formalism and the continuum phase space description of
subsection 9.1 has some unclear aspects (as just discussed at the end of section 10), its relation with
the well-established Ashtekar-Lewandowski representation [6, 60] of the holonomy-flux algebra can
be understood very precisely using the general results derived in subsection 5.2.

As already mentioned, the Ashtekar-Lewandowski Hilbert space J{, is obtained as an inductive
limit of building block Hilbert spaces labeled by graphs. Vectors in J, that happen to belong to
the small Hilbert subspace J{, labeled by a graph y are said to be supported on y: in such a state,
any flux operator associated to a surface that does not intersect the graph is strictly zero, while
any holonomy along an edge that does not belong to the graph is uniformly distributed (as can
be checked from the definition of the observables on J, , that we will recall in props. 12.8 and
12.9; see also [8]). This is the property to which we were referring, when we pointed out, in the
main introduction, that states build on top of the Ashtekar-Lewandowski vacuum exhibit a discrete
geometry along the spatial slice (remembering from section 8 that the spatial geometry is encoded
in the electric field, which is itself measured by the flux observables), and it is closely related to the
fact that the inductive limit structure of J{, arises from a projective limit of partial configuration
spaces on the classical side [60, 92]. As we will develop below, this inductive limit construction
underlying I, is also the reason why it only exists if the gauge group is compact.

By contrast, for the construction we will be presenting in subsection 12.1, the gauge group does
not need to be compact, nor do we have to impose any particular restriction beyond the assumption
of a finite-dimensional Lie group (should it be of any use, even countable discrete groups fall into
this category, as the O-dimensional case). Of course, the just highlighted results concerning the
relation with 3, only apply when the latter can at all be defined, in which case they incidentally
ensure that the projective quantum state space is not empty (because it contains all quantum states
that can be defined on J{, , and even more, see prop. 12.13). The proof of non-emptiness in
the non-compact case seems less obvious, and we will come back to this concern at the end of
section 18.

The possibility of setting up quantum state spaces for theories of connections in the case of
a non-compact gauge group, although not in the focus of our interest, might find applications
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in the treatment of the complex Ashtekar variables [3, 4], that require G = 8L£(2, C) (aka. the
universal cover of the Lorentz group) as gauge group and whose geometric interpretation is more
transparent (see eg. the discussion in [66] and references therein). There are hints coming from
various directions [13, 93] that a quantum gravity theory based on these variables could have nicer
physical properties than one using the real Ashtekar variables (with gauge group G = SU(2), as
described in section 8).

Note that the close ties of the state space proposed here with the Ashtekar-Lewandowski one
means that many technical tools developed for the latter can probably be imported in the former,
in particular those that operate at the building block level. Some of these techniques, such as the
use of so-called spin networks to write down gauge-invariant states [79] could be called upon to
help the resolution of the constraints in the projective setting (recall from the main introduction
and section 8 that the constraints are the means to realize gauge-invariance, general covariance
and dynamics in a canonical formulation of general relativity). On the other hand, the very
aspect that the projective formalism is meant to overcome, namely the unbalanced treatment of
configuration and momentum variables, does play a crucial part in the resolution of the Gauss
and diffeomorphism constraints over J{, , so that new ingredients will be needed, now that we
are treating these variable on equal footing. In section 13, we will outline possible paths to deal
with the specific problems that hinder an easy implementation of the constraints over the projective
quantum state space.

12. Quantum state space

Following the procedure laid out in subsection 6.1, we can quantize each partial phase space
M, = T7(C,) along its position polarization to get a partial Hilbert space H, = L,(C,, du,) and the
consistency of these polarizations with the projection maps (that was shown in prop. 10.26) ensures
that these Hilbert spaces J, can eventually be arranged into a projective system of quantum state
spaces. Equivalently, the tensor product factorizations needed for the quantum projective system
can be read out directly from the classical factorizing system (prop. 6.3). Note that the resulting
partial traces Ir,_,, are reminiscent of the coarse graining maps considered in earlier works [56].

On the other hand, we suggested in subsection 2.3 that any factorizing system of configuration
spaces yields, by forgetting about the more precise information it provides regarding the links
between the partial theories, an associated projective system of configuration spaces. If a family
of measures p, can be found on this projective system that are at the same time normalizable and
compatible with the projections (and this will be the case if the group G happens to be compact),
the small Hilbert spaces J(, can alternatively be arranged into an inductive limit: this is the
situation we considered in prop. 6.5, where we proved that we are then provided with a natural
injection, embedding the space of density matrices on the resulting inductive limit Hilbert space
into the projective state space. In the perspective of this result, the compactness of the group
G ensures that normalizable measures p,_,, can be chosen on the complementary configuration
spaces C,_,, which in turn allows to pick out a natural, constant, ‘reference state’ (,;_,, in each

complementary Hilbert space H,_, = [>(Cy_,, duy—,): these reference states assemble precisely
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into the Ashtekar-Lewandowski vacuum. Although probability measures could be constructed on
the spaces C,_,, even in the case of a non-compact group, they would not fulfill the factorization
condition from def. 6.1.3, required for the inductive limit to be well-defined (see the discussion
around prop. 6.5, as well as complementary views on this problem in [65, 66]).

We will make use of this device to understand how the state space we are proposing here extends
the Ashtekar-Lewandowski Hilbert space I, (theorem 12.11, props. 12.12 and 12.13). It may at first
seem surprising that an inductive limit obtained this way can in our case be identified with I, ,
since the former is made of building blocks labeled by edges and surfaces, while the latter use
labels which are just graphs. The trick here is that the injections defining this inductive limit
in fact do not depend on the disposition of the surfaces in the labels. This is in fact the very
observation that was spelled out before def. 2.15: projections between configuration spaces (which
are the ingredients of an inductive limit construction) are less specific than factorizations, and it
was precisely in order to distinguish between different possible factorizations corresponding to the
same projection map that we had to introduce surfaces in the labels. The injection that mounts
the Hilbert space associated to a label 1 into the one associated to a finer label ' thus turns out
to only depend on the underlying graphs y(n) and y('), so that the inductive system labeled by

elements of £, actually collapses into an inductive system simply labeled by graphs (via the same
mechanism as the one discussed at the classical level in prop. 2.8).

12.1 Quantization in the position representation

The expectation that the projective approach could allow for a more balanced treatment of the
configuration and momentum variables than the Ashtekar-Lewandowski representation is supported
by the respective classical precursors of both formalisms (in accordance with the general picture
exposed in chaps. 1 and 2): as underlined above, the inductive limit construction underlying 3, can
be seen as emerging from a projective limit of configuration spaces, while the projective quantum
state space in prop. 12.1 below will be obtained as the quantization of the projective limit of phase
spaces from prop. 10.26.

One might be worried that relying on the position representation to perform the quantization of
the individual partial theories would reintroduce an unwanted singularization of the configuration
variables. This is however not the case, because they only play a special role as far as the
quantization of the finite dimensional small phase spaces is concerned: this is therefore comparable
to the choice of a representation in quantum mechanics (in opposition to quantum field theory),
which is known to be rather innocuous [98] (viz. the thoughts in section 7 to dispense altogether
from a choice of polarization). Indeed, the small phase spaces M, are cotangent bundles on Lie

groups, whose position representation (namely, the [, space on the considered group) can be shown
to be unitarily equivalent to a suitably defined momentum representation [32, 11].

Thus, while working in the position representation means that we are using the same building
blocks as the ones used for the construction of J, (which is convenient to study the relation
between the two approaches along the lines sketched above), the critical difference comes from the
alternative way of gluing them together to compose the state space of the full theory: design choices
in this regard are precisely the most likely to have irreversible consequences on the final quantum
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(field) theory.

Proposition 12.1 Let p be a right-invariant Haar measure on G. For n € £,, we can, using the
natural identification @, = G™ define a measure p, ~ " on @, (actually the identification
€, = G™ is not unique, since it depends on an ordering of the edges in y(n); yet the measure i,
is independent of this choice).

Then, there exists a family of smooth measures ., on each C,_,, for n < ' € L, such that
(Lye, (C ), )" is a factorizing system of measured manifolds (def. 6.1). Defining:
1.Vn € Ly, H, = L(Cy, duy);

2.Vn=xn e Ly, Hyoy = La(Cyy, duy—,) and:

Py - Hy — Hyoy @ H, = L(Cpy x €, dpty—y x dup)
g = dogl

’

there exists a family of Hilbert spaces isomorphisms (<1>,7~%,7q,,)n< , such that (£, I, )® is a

n'=sn
projective system of quantum state spaces (def. 5.1).

Proof The right-invariant Haar measure p comes from a smooth, right-invariant volume form on G.
Hence, for any n there exists a smooth, right-invariant volume form w, on €, such that p, is the
measure associated to w, (w, is not unique, as there is a freedom in the orientation of C,; however,
it is sufficient here to just pick an w, for each €,). In particular, y, is therefore a smooth measure
on C,. Defining:

Ron @ € — €
j = (e jle).h(e)
the right-invariance of w, can be written as:
VheC, Ryw,=w,. (12.1.1)
Let n < ' € Ly, d, = dimC,, dy == dimC, and d,_, = dy — d,. We choose a basis

ur, ..., Ug, in T1(C,) (where 1 € C, is the map e — 1 € () and we define a smooth volume form

Wy—p on Gy, buy:

Vg € Cyy, YW, . Wy, € To(Cys),

Wy—npgWi, ..., Wy, )=

Now, for any h € C,, we define he Cy buy:

Ve € y(n), Ye' € HYY, _UHY,  hie) = h(e);

n—n.e n—n.e

and Ve’ € HY

n'—n

UHS hle) =1.

Using the explicit expression for go,;Ln from the proof of prop. 10.24, we can check that:
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Vhel, R, o cpf_,,] = (pf_)n o lide, X Rpn).

Applying eq. (12.1.1), we thus get, for any h € C,;:

woalug, .. ug) = wpn(Urn, oo, Ug,n)

and Vg € Cy_y, Ywy, ..., wy, € T4(Cyroy),

_ [Wjﬂ w,,](q‘h) ((m, 0) ...\ (wa, . 0), (0, Urs), ... (0, Udn,,,)),

where Vi € {1,..., dy}, Upp = [ThiRys](ui) € Ty(Cy). And since Uy, ..., Uy, p is a basis of
Th(Cp), we get:

—1,%
Pry—sp Wy = Wy—p X Wy

Therefore, defining, for any n < 1, py—, to be the smooth measure on €, _,, associated to the
volume form w,_,,, we have:

Vn<n € L, Py —nx Hy = Hy—n X Hp,

and, using the 3-spaces consistency condition eq. (2.11.1) in the factorizing system (L, C, ¢)~,
this also implies:

V0" 0" € Lue, Quroiyosn sy = Hiyrosy X Hiy—y

Thus, (L, (C, 1), @) is a factorizing system of measured manifolds, from which a projective system

of quantum state spaces (L., 3, ®)® can be constructed as described in prop. 6.3. O

Proposition 12.2 Let e € Legqes and let n € L such that y(n) € Lgaphsie - Forany m € C(G, R),

hﬁf"”) fulfills the quantization condition eq. (6.4.1) and can be quantized as a densely defined,

essentially self-adjoint operator hff"") on 3, (with dense domain D,), given by:

_ My(o) e

Yy € Dy, Vhe € (hEg)(h)i=m | [ ] [hoaygoeK]" | gih). (12.21)
k=1
Moreover, we have for any 1, € L, such that y(n), y(n') € Laraphsfe :

¥m € C*(G, R), hi"™ ~ his™,

1

with the equivalence relation of eq. (5.32), thus we can associate to any e & Leqqes and any

m € C*(G, R) a well-defined observable h!*™ & Oz, 54) (Prop. 55).
Let F € Lies and let n € L, such that A(n) € Loonsr- Forany u € g, Pf“) fulfills the

quantization condition and can be quantized as a densely defined, essentially self-adjoint operator

—

P(f“) on H,, given by:
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—

Yy € D,, Vh e €y, (PEg)(h) =i [71 to (Rﬁh)] (), (1222)
the map F\’,@h € C, being defined for t € G and h € €, by:

hie).t ifeeF

Ve € y(n), Rﬁh(e) - {h(e) else

Moreover, we have for any n,n" € Ly such that A(n), A(n) € L. :

e~

(F.u) (F.u)
VU E g, Pn ~ Pn/ ,

—

thus we can associate to any F € Lisees and any u € g a well-defined observable Py ng,&m) .

Proof Hamiltonian vector field projected on C,. Let n € L. Letr € C*(M,, R). For any
(h,P)e C, x P, and any w € P,, eq. (10.28.1) yields:

[dro L;1](h,P) 0, w) =
= Qphp) (Xr,L;Wh,Pw [Tl '] O, W))
= (L;L*Qn)h’/g ([TL;WLP)LU] (Xr,L;W(h,P)) ' (O' W))

= > wxle)) o ([TL;Wh,P)Vn] (Xr.L;Wh.P)) ) (12.23)

ecy(n)

where X; is the Hamiltonian vector field of r and y, : M, — €, is the bundle projection in
M, = T7(€,).
Now, for any h,j € C, and any e € y(n), we have:

e -/ - -/ . e / (e/)
(£ R, k) o (j = hie) ™" j'(e) (j) = RY)y pey1 jioph € = {2

Therefore, we get for any h € C,:

S [T tes R, h] 08 = tdyye,.

ecy(n)

Forany h € €, and any v € T;(C,), we define w!" € P, by:
vE € F(n), w(F) = vo Ty e RYI],
so that eq. (12.2.3) becomes:

O, W(h)

V(h, ID) & Gf] X :PU' U O [TL;W(h,P)Vn] (Xr,L,ﬂ(h,P)) = [dro L;1:|(hP)( v )

Thus, r fulfills the quantization condition eq. (6.4.1) if and only if there exists a smooth, complete
vector field X, on @, such that:
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V(h,P) € €, x P, Yv e Ti(C,), [drol,'] , 0 w)=uv(X.,). (12.2.4)

(h,P) 0w,

If this is the case, we can then define T as a densely defined, essentially self-adjoint operator on
I, by (prop. B.14):

Vg e D, Vh e, (?¢)(h) = (r(h, 0) + édlvunyr(h)) Y(h) + i [dro L;1](17,P) o, Wi,@h),

where div, X, € C*(€,) is defined by £ p, = (div,, X;) u, (def. B.12).

Holonomies. Let e € Legqes and let n € L, such that y(n) € Lgraphsie - For any m € C2(G, R), we
have:

My(n)—e
V(h ID)EG XPU hemOL hP_m(l_I hoa ]ey(q)ﬂe(k))’
k=1
hence hff"") fulfills the quantization condition with yh%e,m) = 0. This yields the expression in

eq. (12.2.1) for h(”e"”). Finally, for any n,n" € L, such that y(n), y(n') € Lgraphsie , We have he’"

(e,m) (e,m) (e,m) e,m)
h,™" (prop. 10.27), so prop. 6.4 ensures that h;"™ ~ h ", and therefore that an observable h!

can be consistently defined on S%{’LHF’(D).
Fluxes. Let F € Lies and let n € L, such that Aln) € meﬂs,f. For any u € g, we have:

V(h,P) € €, x P,, Pl - ) PIF

F/EH)\()

hence eq. (12.24) yields:

vhe e, Xy, =y [Tt R h] ()

FreHygr

Z[ﬂ s RUC )h]( ),
f

where the second equality comes from eq. (10.28.2). Therefore:
h e €y, Xyra, = [71 o Rﬁ,?h] (),

and in particular YP@, ts a complete vector field on €,. Thus, Pf“) fulfills the quantization
n

/>
FLu)

condition, with the expression in eq. (12.2.2) for P(,] , since the flow 7+ F\’ en, of XP(”) preserves

the right-invariant measure p, on C,. Finally, like above, prop. 10.27 together with prop. 6.4 ensures

that the P(f'“), defined for each n € Ly such that A(n) € £, 57, can be consistently assembled
into an observable P on 8¢.0.) - O
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12.2 Relation to the Ashtekar-Lewandowski Hilbert space

We now want to investigate in which sense the quantum projective state space from prop. 12.1
can be understood as a reasonable extension of the space of states defined over the Ashtekar-
Lewandowski Hilbert space H, . We start by recalling the construction of J, , in a form suitable
to make contact with section 10 and subsection 12.1, using the tools developed in subsection 3.2.
As stressed in section 11, this analysis has to to be carried out in the case of a compact group G,
since this is a prerequisite for J, to exist.

Results similar to prop. 2.5 (for classical projective systems) or prop. 3.6 (for quantum ones) can
be formulated for inductive systems of Hilbert spaces, and, in particular, the limit of an inductive
system is not affected if one restricts its label set to some cofinal part. This is the reason why we
have so far only considered graphs with fully analytic edges (viz. the discussion before def. 9.6).
Still, the use of graphs with semi-analytic edges [92, sections I1.6 and IV.20] is favored in LQG, for,
although they yields the same Hilbert space, they present it in a form more convenient for writing
the action of semi-analytic diffeomorphisms (which, unlike fully analytic ones, can be local; see
the comments in this respect at the end of subsection 9.2 and at the beginning of subsection 19.2).
Therefore, we briefly sketch below how to switch back to the semi-analytic class.

In this subsection the gauge group G is assumed to be compact, and the measure 1 (introduced
in prop. 12.1) is taken to be the normalized Haar measure on G.

Definition 12.3 Let k € {1,2,...,00}. We define the set £ of (k)-edges like in def. 96, by

edges
requiring encharted (k)-edges to be C*-diffeomorphisms instead of analytic ones. In analogy to
props. 10.1 and 10.2, we define the range r(e), the beginning and ending points b(e) and f(e),
(k)-subedges ey, , (for p # p" € r(e)), the reversed (k)-edge e”', and the order <(e) on the range
of a (k)-edge e, as well as the composition of (k)-composable (k)-edges. These have the same
properties as in the analytic case, since the proofs of props. 10.1 and 10.2 did not made use of the
analyticity.

An analytic encharted edge is also an encharted (k)-edge, and two analytic encharted edge are

equivalent in iedges iff they are equivalent in ﬁfﬂges. Thus, we have a natural injection of Legges
into L(Qges. In the following, we will always identify Leqges With the image of this injection and

(k)

Wrtte Ledges C Ledges‘

Proposition 12.4 We define AL-graphs as finite sets of (1)-edges y C ngges such that:

(1)

edges '

1. Ve ey, deq, ..., e, € Legges C L (1)-composable /e =e,0...0€1;

2. Ve#e €y, rle)nr(e’) C {ble), f(e)} N {b(e'), f(e')}.
We denote the set of AL-graphs by £, and we equip it with the preorder < defined as in def. 10.3.

Then, Lgraphs » < 1s a cofinal subset of £, , <, so in particular £, , < is a directed preordered
set.

Proof By construction Lgrapns C L4, and the order < between two elements of Lgpns coincides
with their order as elements of £, (indeed, if an analytic edge is the composition of (1)-composable
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analytic edges, then, by definition, these edges are composable in Legges)-

Next, let y € £, andforany e € y, choose y. = {e1, ..., e,} C Legges such thate = e o. . .ce;.
We have:

Ve €y, Ve £ & € ve, r(8) N r(@) C {b(e), F(&)} N {b(&), F(&)},

and Ve#e' €y, Ve ey, Ve €y,
reynr(e’) C rie)ynr(e)nre)Nr(e)
C r(e)n{ble), f(e)} N r(e’) N {b(e), f(e)}

C {b(e). f(e)} n{b(e), f(&},

by definition of the composition of edges. Therefore y’ .= U Ve € Ledges, and we have y < y'. O
ecy

We now rewrite the classical construction underlying the Ashtekar-Lewandowski Hilbert space,
namely the design of a projective limit of configuration spaces, using a presentation parallel to that
of subsection 10.3. This allows us to ascertain that the projection maps involved here match exactly
the ones induced by the projections between phase spaces considered in prop. 10.26 (modulo the
straightforward extension to semi-analytic graphs). As stressed at the beginning of the present sec-
tion, since we are not setting up an actual projective limit of symplectic manifolds, the momentum
variables do not come into play in this context, so we can directly use graphs as labels, without
having to decorate them with faces.

Proposition 12.5 Let y < y' € £,. Then, for any e € vy, there exists a unique map a, e :
{1, ... nyyet = ¥ (with ny,, . > 1) such that:

e = ay/_)y’e(ny/ﬁy'e)ev/ﬂy.e(”v’ﬂv,e) O...0 ay/_)y’e(/l)gv’ﬂv,em’

where, for any k € {1, ..., nyye}, €yoye(k) is defined from a, . as in eq. (10.20.2).
Proof The proof works exactly as in the analytic case (prop. 10.20). U

Proposition 12.6 For any y € £, we define the finite-dimensional smooth configuration space
C, = {h:y — G} (like in def. 10.19). And for any y < V' € L, , we define the map 7,,,, : C, —
C, by:

ny/ﬂm

' € €y, Ve €y, myy(h)e) = | [ ] W oay (k)]

k=1
7T,y is smooth, for G is a Lie group, and it is moreover surjective.
In addition, for any y <y < y" € L,., we have:

]TY/HV O ]T)///HV/ = jTV//"V . (1261)

Proof Let y <y and let h € €,. For any e # e" € y, we have:

Ve € ay e ({1, .. nyoyel) V' €ayy o ({1, .. nyyer}),
rie)nr(e’) c {b(e), f(e)} n{b(e"), f(e")},
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as in the proof of prop. 124, hence ay ., ({1, ..., nyyef) Nay e ({1, ..., Nyye}t) = @.
Moreover, a, . is injective (by definition of the composition of edges), hence the map h' € €,
given by:

Vecy, hoa,.,,.1) = h(e)v-r

ve' € y/)e & {ay e € v}, W) =1,

ts well-defined and is such that ., (h") = h. Thus, 7, _,, is surjective.
Finally, eq. (12.6.1) follows from the uniqueness of a, _,,. as in the proof of theorem 10.25. U

As mentioned earlier, there are many projections between the phase spaces 7*(C,) and T7(C))
(with y < V') that can reproduce a given projection between the configuration spaces €, and C,, or,
equivalently, many ways of choosing in €, a set of variables complementary to the ones coming
from C,. In the proof of prop. 12.7, we choose, for each pair of graphs y < V', a factorization
of €, as C,_, x C, consistent with the projection i, _,, defined in prop. 12.6. The injective maps
Ty, between the Hilbert spaces H, that serve as building blocks for J, can then be understood
as arising from the corresponding factorization H, ~ H,_, ® H, , via the selection of a ‘reference
state’ (,—, in H,_,. Because this reference state is taken as the constant function {,,—, = 1 on
C,_y, the thus obtained identification of H, with a vector subspace of H, in the end does not
depend on which particular factorization of C, has been used, but solely on the projection m,_,,
from C, into €,. Also, as announced earlier, the need for a compact gauge group G manifests
itself in this approach as a condition for (,._, to be a normalizable element of J(,_, (otherwise the
map T,., would not be well-defined).

Of course, it is not really necessary for assembling the inductive limit J{, to ever introduce
such factorization maps (a more standard path being to directly check that . 1, = ). Still,
it is worth looking closer at the particular family of factorizations elected below. The projections
between phase spaces to which they give rise turn out to be precisely the ones that were considered
in [89, def. 3.8] and although they do not fulfill the three-spaces consistency needed for a projective
system (expressed in def. 2.3, or, at the level of the factorization maps, in eq. (2.11.1)), this can
be quickly fixed: by somewhat tightening the ordering among graphs (requiring, in addition to
eq. (10.3.1), that the first part of an edge e € y, in its decomposition into edges of y’, should be
oriented like e itself, ie. that e, = +1), we can, without voiding the directedness of £, , rescue this
pivotal consistency condition [83].

So why did we go through the intricacy of carefully setting up a label set with edges and
surfaces if an apparently valid projective system could readily have been built over £, ? If we
examine carefully the structure of observables that would arise from such a projective structure
(and in particular, if we compare it to the one obtained in the previous subsection), we realize that
its momentum variables are fluxes carried by single edge germs (defining the germ of an edge e as
the equivalence class consisting of all edges sharing an initial subedge with e).

This sheds light on how a projective limit of phase spaces can at all be constructed using labels
that seems to only know about configuration variables. What makes it possible, is the availability of
a preferred pairing of conjugate variables, binding each configuration variable to its own particular
momentum variable (eg. the holonomy along an edge with the flux carried by its germ). This pairing
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is such that whenever an edge e belongs to some graph y, its companion flux does not act on any
other edge of y (indeed, edges in a graph cannot share a common subedge). In this way, any graph,
as it selects specific holonomy variables, selects at the same time their conjugate flux variables (and

the slight sharpening of the ordering described above ensures that if ' = y the fluxes thus attached

to y are also in y).

A similar mechanism underlies the projective quantum state space built in [66]. In this work,
holonomies along analytic loops were used as a complete set of independent configuration variables,
which again provides an a priori pairing of conjugate variables, since the selected configuration
variables can be thought as coordinates and mapped to their dual differential operator.

In both cases, the resulting factorizing systems leads to a theory whose basic momentum variables
have no equivalent in the continuum classical theory. The trouble is then that fluxes associated to
non-degenerate surfaces (aka. (d —1)-dimensional ones) cannot be represented on the corresponding
quantum projective state space. If we however insist on using regular holonomies and fluxes as
our primary variables (so as to implement an algebra of observables that separates the points in the
continuum classical theory), then there is no way of choosing beforehand a canonical pairing that
would, as described above, automatically provides a suitable set of canonically conjugate variables
for any arbitrary graph y.

Proposition 12.7 For any y € £,,, we define the measure p1, ~ ¥ on €, ~ G (as in prop. 12.1)
and the Hilbert space H, := [,(C,, du,). Next, for any y <y’ € £L,,, we define the map 7., by:

Tyey - J‘Cy — g‘fy/
g gomy,
T, is an isometry and, for any y xy' < V" € Ly
Lyrey O Tyery = Tyrey - (12.7)
We define the Ashtekar-Lewandowski Hilbert space ,, as the (norm completion of) the inductive
limit of the system ((}Cy)ye% , (TV/H)HV,) . For y € £, we will denote by T,., the natural
tsometric injection of J, in H, .
Proof Let y <y € £, . We define:
V =y =¥V \{ay1) | e €V},
as well as the finite dimensional smooth manifold €, _, := {E (Y —y) > G}. The smooth map
@,y given by:

y—y Gy — €y, xC,
h' — h/‘y/—y ' ]TV/*)Y(h/)

is a diffeomorphism (as can be checked by expressing its inverse like in the proof of prop. 10.24).

Moreover, defining for any h € €, the maps Ty(y)h €y —Cyand R, : €, = C, by:

vj/ee, veey,
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J'(€) . h(e) fdeeyle =a,,,.1) & €/ =+1
[T €)= 1 hle) ™ fe) it Fe € yie' = aypell) & e =1
) else

and Vj €€, Ve ey, [Rul)lle) = jle). hle),

M _ b
we have @y, o T = (ide, X Ryp|oq@.,. Letw,, resp. w,, be a right invariant volume

form on €, resp. €, , such that p,, resp. y,/, is the corresponding measure. Because the Haar
measure on a compact group is left-invartant as well as right-invariant, there exists a smooth map

€:C, —» {+1, =1} such that, for any h € C,, Ty(y,)h’*wy/ = g(h) wy . Then, we can, like in the proof
of prop. 12.1, construct a smooth volume form w,_, on €,/_, such that [q&lj wy/] = wy_y X (Ewy).
Therefore, there exists a smooth measure ,,_, on C,_, such that ¢, _, . p,, = py—, x p,. And from
Ly (Gv) =1=up, (Gy/), we get p,_, (Gy/,y) =1

Thus, for any measurable function ¢ : €, — R, we have, by Fubini's theorem:

/duy(h)f(h):/ dpy(h') Comy—y(I),

e, e,

so that 7., is well-defined as a map H, — H, and is an isometry. Finally, eq. (12.7.1) follows
from eq. (12.6.1).

Note. Denoting by y, the aL-graph y' —y C y/, we have p,_, = 1, . Indeed, for any measurable
function ¢ : €, — Ry :

/ Aty —y(j) 5(/’)=/ duy—y(j) duy(h) C(j)  (for 1,(€)) = 1)
(4 (¢

y><(3y
)

dpy, (ho) dpy; () (%)

X
Yo evﬁ

(with yj ==y \ v, € L..; ¥ =y, Uy; implies (Gy/, duy/) ~ (Gyé, duyé) X (Gyg , duﬁ))

Y-y =

|
o

duy () ¢ (1

V/

|
P

duy,(ho) C(hg)  (for py(Cy;) = 1),

Yo

|
e

Finally, we also recall the definition of the holonomy and flux operators on I, [8, 4, 92].
Indeed, if we want to investigate the relation between the Ashtekar-Lewandowski construction and
the just developed projective formalism, it is not enough to produce a map o between the state
spaces: we should also check that o is dual to the map a that transports the observables according
to their physical interpretation. Actually, the second part of prop. 12.10 shows that the map o is
uniquely specified as soon as we require it to intertwine the implementation of holonomies and
exponentiated fluxes on both sides.
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Proposition 12.8 Let e € L.4qes and define:

LAL/E‘ = {V € LAL | {E‘} =< )/}

For any y € L, and any m € C*(G, R), we have on I, a densely defined, essentially self-

-~

adjoint operator h(f'"’) on ¥, (with dense domain D,) given by:

o My—{e}e
W € Dy, Vh € €, (RS (h) = m ( (] [hoayierel)]” | win).

k=1

Moreover, for any y’ = y, we have y' € £, . and:

V€D, Ty, () €Dy & h™ oty (i) = Ty 0 W)

o~ —

Thus, the family (h(ye'm)) provides a densely defined, essentially self-adjoint operator h{®"”

)
on
AL
yELAL/P
Ha

Proof Let y € £, and m € C™(G, R). Taking D, = C*(C,, C) C H, (this matches the

—

compactly supported smooth functions used in prop. 12.2 since €, is compact), hg,e"") is well-defined

and essentially self-adjoint (actually, it is @ bounded operator). Moreover, we have:

y—{el.e

Vhee, m ( ] [ho ayé{e},e(k)]%{"“‘“) = m ([myope(M)] (). (12.8.1)

k=1

Now let y" %= y. By transitivity of %= on Ly, ¥y € Luje. Forany ¢ € D,, 7, () € D, (for
7T,y is smooth) and, using eq. (12.6.1):

—

v € ey, [h@ 0 rmw)] (1) = m ([ (0] (@) [0 1y ) (0) = [Ty 0 07 (8] ().

Lae s a cofinal part of £, (for £, is directed), and this allows us to construct a symmetric

operator hfj"’) on the vector subspace D, C H, , defined as the inductive limit of vector spaces

—

(Dy)ydAL , ( TV/(_V|DV_)DV/))/-<V’ (without any completion). D, is dense in H, and h!®™ is bounded,

hence essentially self-adjoint. O
Proposition 12.9 Let F € Ly, (prop. 1021) and define:
Lor={vely|Vecy Yp+p crle) (epy €F = pe{ble) fle)})}.

Let y € £, 7 and define, for any h € €, and any t € G, the map Ty@h € €, by:

hie).t if cle, F) = {b(e)}
B |t hle)  ifcle, F) ={f(e)}
Veecy, I,/hle):= 1 “h(e).t if c(e, F) = {b(e), f(e)}
he) if cle, F)=0o

where c(e, F):={p er(e) | 3"+ p/epy, € F} C {ble), f(e)}. Then, for any u € g, we have a
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—

densely defined, essentially self-adjoint operator P(f'”) on H, (with dense domain D,) given by:

vyeD,, Vhee,, (F>/<f'\“)¢) (h) ::[[ﬂ tng(Tﬁ)h)](u),

—

and, for any t € G, we have a unitary operator T(f't) on X, given by:

—

Vg € H,, Vhe@,, (TW%) (h) == (Ty@h) .

14

Moreover, £, 7 is a cofinal part of £, and for any y <y € £, =

— —

VY ED,, ) €Dy & PUY ot () =1y, 0 P,

— e~

and Vg e, T ot () = 1y o V().

—

Thus, the family (P(F'“)

—

y provides a densely defined, essentially self-adjoint operator Pf”)

) VELAl/f
—_—

on :H:AL, while the famL[[:J (T(’Et)

—

g provides a unitary operator Tff’t).

) yELAL/f

—_—

Proof Let y € £, 7 and u € g Taking as dense domain D, = C*(€C,, C) C H,, P(f’”) is

well-defined, and, using the invariance of the measure p, under left- and right-translations, we can
—7

check that it is a symmetric operator with Ker(Pf“) + i) = {0} (like in the proof of prop. 12.2),

therefore it is an essentially self-adjoint operator. The left- and right-invariance of the measure

—

also ensures that, for any t € G, Tﬁ* Uy =y, SO Tf”) is a well-defined unitary operator on I, .

Now, let y € L, and let A € L5 such that there exists £ € F(A) with F = FYoF. Since
Lgraphs 1s cofinal in L, (prop. 12.4), there exists v € Lypns With ' = y, and by subsection 10.2,
there exists (y”,A") € Ly with y" =y and A" = A Next, let ¢’ € y” and suppose that there
exists p # p" € r(e”) such that e[, ,, € F. Then, using F = F* o F together with A” = A, there
exists p” € r (e}, ) \ {p. p'} C r(e")\ {b(e"), f(e")} such that e, ,, € F" for some F" & F(\").
But since e” € x(,».n(e”), this can only be the case if p = b(e) (props. 10.65 and 10.6.6). Therefore

y" € L, 7. Thus, £, is cofinal in £, .

Let e € Lgcfges such that c(e, F) C {b(e),f(e)} and let ey, ..., e, € Lgd)ges, €, ..., 6 € {£1}

such that e = e{" o... 0 e} Then, using:
ve e F, ¥p € r(@)\ {b(e)}, Cpe)p) € F.
we have:

b(ef') ecle, F) & (i=1 & ble) € cle, F)),

f(ef) €cle, F) & (i=n & fle) € cle, F)).
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Thus, for any y <y € £, 7, we can check that:

Wh €€y, Ve G, mey (TIN) =T

Y.t

(71 (1)) (12.9.1)

—

Hence, for any t € G, the unitary operators T(VF'” defined on each H, for y € £, 7 can be

—

assembled into a unitary operator Tff’” on 3, , while, for any v € g, a densely defined, symmetric

—

operator Pf“) can be constructed on the dense subspace D, C K, , defined as the inductive limit

of vector spaces (Dy)ye% , (T”/“V|Dv—>®y/)y<y/'
B

—7
Finally, let ¢ € Ker(PE\f'“) + [) and define, for y € £, 7, ¢, € H, such that 1, (¢,) is the

—f

orthogonal projection of ¢ on the closed vector subspace 7y, (H,). Then, ¢, € Ker(P(f'”) ii) =
{0}, so:

1 1
VRS U Tuey (FG)) = U Ty (Hy) = {0}.
VELAL/f yeLa
Hence, Pff'“) is essentially self-adjoint. O

Proposition 12.10 Let F € Ly, and t € G. For any n € £, such that A(n) € Lorofis/F + We define

a unitary operator Tf’) on K, by:

—

vy € 3¢, h € €, (TI) (h) = (RI/h).

where R,(ﬁ) €, — €, was defined in prop. 12.2. Then, for any n, " € L, such that A(n), A(n) €

Lproﬂs/? :
Y
T Ty

so this provides an element TF0 € A(@L’Hﬂm) (def. 5.3).

Let n € £, and denote by J, the algebra of bounded operators on I, generated by:

Tem)
G

If p, p’ are (self-adjoint) positive semi-definite, traceclass operators on K, such that:

n

meC®GR) & ec y(n)} U {TWOF'”

te G & Feff(n)}.

VA€ T, Tra, pA=Try, p'A,

then p = p'.

—

Proof Definition of T". For any n € L, such that A(n) € £

—

ts tnvariant under right-translations) hence Tf” is a well-defined and unitary operator on J(, .

F
profls/F + W€ have Rf(].t?*yn = Uy (for u
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Next, for any n such that A(n) € £, .7 and any i’ = n, we have A(n) € L, 7. Moreover,
using egs. (10.28.2), (10.27.1) and (10.23.2), we can check that:

; (F) _ (F
e, , X Rye ) © Pyn = @yono Ry

(k) _
Thus, we get @, 0T, " =

idge, x T

. " o®,_,,. Therefore, the directedness of £, ensures

P (oo

—_—

that, for any n, n" € Ly such that A(n), A(n) € L7 T(f”) ~ Tff’t) (with the equivalence relation

o~

defined in eq. (5.3.2)), so we can define an element T € Af%%%q)).

Definition ofhf]M) and T(nf), Let n € Ly and M @ y(n) — C*(G, R). Then we can define an element

h(nM) € J, by:

M) (eMeh
h(q ) |_| hle (6’))17.

ecy(n)

The right-hand side does not depend on the ordering of the product and we have:

—

v € 3, vh e €, (Ng) () = | [] M(e)ohlte) | win).

ecy(n)
Next, for any F € F(n) and any t € G, we have A(n) € Lpons/ror and, with the help of prop. 10.6:

h(e).t if x,(e) =F

vh € €y, Ve € yin). [RYy " h](e) = {h(e) else

nt

—~

Hence, for any j € €, we can define a unitary operator T(”” e J, by:

il (FLOF jox: ()
=] T
FeJ(n)

and we have (the product ordering being again irrelevant):
v € 3, vh e €, (TVg) (h) = gih ).
where, for any h, h" € €,, h . h’ denotes their pointwise multiplication as maps y(n) — G.

Characterization of p € 8, by its evaluations overJ,. Let p, p’ be non-negative traceclass operators

on 3, and @, ¢' € H,. Let € > 0 and define ¢, := 5, as well as:

€

W) 1
€o €

T+ Tra, p " 1+ Trgg, pf

e1:=mm( ,1)>0.

The C-vector space generated by C*™(G, R) is dense in Ly(G, dy) (C™(G, R) C Ly(G, dy) for G is
compact), hence the C-vector space generated by {®ccyyM(e) | M : y(n) — C=(G, R)} is dense in

® Ly(G, dy) = H, (using the isometric identification provided by Fubini's theorem). Thus, there

eey(n)
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exist a finite family of maps (/\/l[ cv(n) — COO(G,]R)) and a finite family of complex numbers

1<ILL

(L1)1<1<; Such that:

L
Y — Z Hi [®yiM]

(=1

< il
1 M
. + ¢ N4,

n

where, for any M : y(n) — C*(G, R), the vector ®,;M € H, is defined by:
vh € €. [®uMI(h) = [ | [Mle)ohle).
ecy(n)
Similarly, there exist (M : y(n) = C*(G,R)),_,_,, and (1), ,,, (0 < L, L' < o0) such that:

!’

¢ - Z H [®yMy]

=1

€1

< — .
T+ ll@llse,

n

Thus, we have:

L I
(o Lol oy=2 ) wmi@uM | pl ®v<n>Ml>'
=1 U'=1
e Trye, Nlac. €1 Trag, e Tr
1/|I|<P||ﬂ-(” 5, P ||<P1||ﬂ{n 1/ s p+ 1.5, P <26, (12104)
ol 10 (14 ol ) (11071, )

and similarly for p’. We define:

60
1 X 0 (I 8] Ty 1M 1ML )

where, for any m € C*(G, R), |m]|,, = sup|m(t)] (< oo for G is compact). Note that, for any
teG

M y(n) — C=(G, R), we have the bound:
1W< 7 Imeell...
" eevin)

hi)
where || - ||, denotes the operator norm on the algebra A, of bounded operators over H, (def. 5.3),

€ . >O,

(
n

as well as:

1®ymMlly, < IM(e)]l.
(n)

ecy

(using the fact that p, is normalized).

Now, from the spectral theorem, together with the non-negative and traceclass conditions, there

exist an orthonormal family (@k) in 3, (with 0 < K < o0) and a family of strictly positive

1<k<K

reals (pr)i< < such that:

pzipk ‘Jlk >< Jlk‘ & ipk =1 Trge, p < 00.
k=1 k=1
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Let K < oo such that ’Tr;(n,o—zk/(:1 pk‘ < % Then, for any k < K, there exists ¢ &
Cc=(C,, €C) C H, such that:

< min 1 L
AT p+1)

T

n

Thus, we have:

K L L’
ZZW @My | p | @y >—ZZZPkNw He (@M | i) <¢k|®v(n)/\/’>‘

=1 V= k=1 (=1 1=1

L

<Zj]mwmmmMmﬁmmMml4+Z}wﬂ%ﬂH]<w(uma
(=1 U'=1 n

and, forany j € C,:

L 1’ — K L L
r SV T0) M) / * v
>3 o (phwhw ) =533 pestan (| TN | >\
1 = k=1 1=1 I'=1
/ My & e 12103
<;NZ|M||U1 n n An[4+;pk4—l—r}fnp+1]\60. (12103)

Similarly, there exist a finite family (y;) of functions in C*=(C,, C) (with 0 < K’ < c0) and

1<k<K’

a finite family (p@) of strictly positive reals such that the equivalents of eqgs. (12.10.2) and

1<k<K!

(12.103) are fulfilled for p’. We define:
60
&= K L U >0,
14 5 > pelil ] el I8ymMil,
k=1 (=1 =1
where, for any ¢ € C*(C,, C), ||5|| = sup|C(j)|. Similarly, we define €} using (¢2)1<k<l</ and
jee, <k<

(Pk)1 ks

Let ' < " and k < K. The function {y, defined on €, x €, by:
Vhe €y, VjeCy, Glh j) = &mMidl(h.j)dlhj),
ts smooth by construction. Hence, for any h € C,, there exists an open, measurable neighborhood

\/k(h,), of 1 in €, and an open, measurable neighborhood Wk(f],), of h in €, such that:

h . h
v e W, vie V),

Cok(h'j) = Cri(h 1)] < 7
and therefore:
vh' e W, wie VI 1Gadh ) = Goalh', 1) < es.
h)

Now, since C, is compact, there exists a finite subset Hy ; of €, such that €, C UherU Wk(’,/, so,

defining Vj y = ﬂher,/ \/k(hz)/ Vir s an open, measurable neighborhood of 1 in €, and we have:
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Vh' € e”, Vj e Vir, ’Q/,k( ) Cz/ | < €3.
Next, defining V := ﬂ,’f:1ﬂf//:1 Vir, we get, for any measurable subset Vv, any k < K and any
<l

Vh e en' ' (/Vdun(f) [®V(H)Ml//](h~f) Qbk(hl)) - (U(V) [®V(D)Ml//](h) Qbk(h)) ‘ < U(V) €3.
(12.10.4)

Similarly, we have an open, measurable neighborhood V' of 1 in €, such that, for any measurable

subset V C V/, any k' < K’ and any " < L, the equivalent of eq. (12.10.4) is fulfilled for ¥}, (with
respect to €} instead of €3). We define V, ==V n V.

Foranyj € C,, j.V, is an open, measurable neighborhood of j in €,, hence, from the compacity

of C,, there exist j;, ..., ju in G, (1 < M < o0) such that €, C U/n\f=1j,n Vo Form < M we
define:

m—1
Vi = (- Vo) N (en\ U,’n.\/a) .

n=1

Thus, (Vin)i<mens is @ partition of €, into finitely many measurable parts. Moreover, we have, for

any m < M:
jn:1 . \/m C \/OI
so that, for any k < K and any ' < L', eq. (12.10.4) yields:

Vh e e,,
m=1

<€3.

M —
/ ) M)
(@M | ) =Y V) [ T 0™ ] 1)

m=1

m=1

M
/e din(j) [®yaM;] -] wh/) D (V) (@M () il m))‘

I\/Ii

( [l @il b wk(h./m.ﬁ) — (" Va) [®y<n>M;/J(h./m>euk(h.fm))‘
J m

m'

Therefore, for any k < K, any [ < [ and any ' < I/, we get:

/\/’ —
/ i M//
‘wk | @) (@M | ) = Y p(Va) (e [BM T ™| wk>|

m=1

M /\

(@M | 96) =2 V) [T “wk](h))'

< / dp(h) G (h) [y Mi] (h)
€y

<& [l I®vmMill
Now, using eqs. (12.10.1) to (12.10.3) together with the definition of €3, this implies:

L M

(9" [pleo)— ZZZU} pp(Vin) Tra, (phn TU i )

=1 U'=1 m=1

<be,,
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and the same holds for p".

Finally, if p, p" are such that:
VA€ T, Tra, pA = Try, p'A,
we thus have:
Vo, o' € H, Ve>0, (¢ | pl o) = (@' [ o' [ 9)| <e
and therefore p = p'. O

We can now formulate the relation between the inductive construction just reviewed and the
projective construction from section 10 and subsection 12.1, by displaying how an arbitrary state over
H, can be unambiguously identified with a projective family of density matrices over the Hilbert
spaces . Note that, as stressed above, we are not merely stating that there exists some injective
map o between the state spaces (which would only be an assertion about the respective cardinalities,
with very little physical content): we also make sure that the mapping of the states considered here
intertwines the evaluation of observables in agreement with their physical interpretation.

By using prop. 6.5 (which is itself a straightforward application of the more general result in
theorem 5.9), we first obtain a map from the state space of an inductive limit of Hilbert spaces built
over the label set £,.. As previously announced, the insensitivity of the injections with respect
to the faces in each label then allows to collapse this inductive system into a simpler one, built
over a subset of Lgphs (namely those analytic graphs that are the underlying graph of some label).
Finally, since this set of graphs is cofinal in £, (as follows from £, being cofinal in Lgaphs X Lprofls

and Lgaphs in £,), the corresponding inductive limit can be identified with H,, .

Theorem 12.11 There exist maps o : S, — giw’%@) and a : ﬁi”r,%‘q)) — A, (where S 1S

the space of self-adjoint, positive semi-definite, traceclass operators over 3, , A, is the space of
bounded operators on H, , and giwﬁf@) and ﬁfi%%@ were defined respectively in def. 5.2 and
prop. 54 ) such that:

1. a is a C"-algebra morphism;

2 forany e € Legges and any m € C7(G, R), a(h(e'm)) = hff[""), while for any F € Lies and any

e~ -~

te G a(TH) =18,

3. forany p € 8, and any A € ﬁi“_%q)), Trae, (p a(A)) = Tr(o(p) A);

4. 0 1s an injective map;

sup inf Tryg, py Oy = Trp = ’I} , where 8, is the space of density

neLlye nzn

5. U<8AL> = {(p”)neﬁ.r

matrices over H, and the bounded operator O, is defined on H, by:

V€ Hy Vi€ Cpoy, Vh € €y, [Byp ] 0L, h) = / diy-n(j) Yo @y, h).

' —n
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Proof Auxiliary inductive limit of Hilbert spaces. For any n < ' € L, we define the map
Tyen @ H,y — H,y buy:

Ve H,, Yhy € Cy,
17”/‘),%8

[Tn/gn(w)](hn/) = (e — [ |_| [hy o 0,7/4,7,9(k)}@;uu,o(k)] Ay o C’n’%n.e(’l)]) ‘

k=2

As was shown in prop. 6.5, 7., is well-defined, and (LHF, (5, ) {s an inductive

n€lyr ' (T”/F”)IHH/
system of Hilbert spaces whose limit we denote by Hz. For any n € Ly, we call 75, the
natural injection of 3, into 35 . Also by prop. 6.5, there exist maps 7 : 8z — giw,g{@) and
a: T{imﬁp) — Az (where 85, resp. Az, denote the space of non-negative traceclass operators,

resp. of bounded operators, over Hy ) satisfying:
p— —® o~ ~
Vp € 8u, VAE Ay, 5a) Trgcﬂ(p O((A)) = Tr(a(p)A) :

Moreover, 0 is injective and:

sup inf / A9y, /) f duy(h) (950l h), @t h)) =1 }

n€Llye N /X Cpy

n'—n n'—n n

5<8A~L> = {(p”)HELHF

where 85 is the space of density matrices over H5 and, for any density matrix p, over I, p, (-, -)

denotes the integral kernel of p,.

To further specify a, we now fetch its explicit definition from the proof of theorem 59. First,
we can define, for any n € L, an Hilbert space H5_,,, and an Hilbert space isomorphism
Cap  Hay — Haoy @I, . Hi, is given as an inductive limit and we have, for any k 7= n € Ly,

a natural isometric injection 5., @ Hisy — Hi, satisfying:
(T/’K’U—K—)I] ® ldﬂ—(,,) o CDK%F/ = q),ﬁ—m O Tale« -

Then, @ is the C*-algebra morphism ﬁi%%@) — Ag such that, for any n € I, and any bounded

operator A, on 3, :

(A)) = 5, o (idse,

AL—1) AL—=1)

®A,7) OCDANL%UI

where [A,]_ denotes the equivalence class of A, in Aawﬂf,dﬂ (eg. (5.32)). In particular, for any

K »=n, we have:

a ([AIIL) O Tat—k = TAL—x © CD71 o (.LdJ-C,H,I ® Aﬂ) o CDK—”I'

K—1

Identification of g with H, . For any n € L, we define [, : H, — FH,(, as the identity map
on I, = Ly(C,, duy) = Lo(Cyy .+ dliy() = Hy- Then, for any n < " € Ly, we have y(n) < (1)
and (from props. 10.20 and 125):

sy © Tyen = Tyyevin © I novin) -
Thus, there exists an isometric injection [ 5 : Hy — H, satisfying:

vr] € LHF: l—/f\I—>AL O Tal—n = Tar—y(n) © l—ryay(n) .
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Moreover, {y e L ’ dne Ly / y(n) = y} is cofinal in £, (from subsection 10.2 and prop. 12.4),
hence:

U |—A~L—>AL O Talenp <J-Cn> = U Tate—y <J_CV> ,

neLlye yeELn
is dense in 3, , and therefore [ 5., is an Hilbert space isomorphism.

Now, we define, for any p € SuL:
O(p) =0 (l—A:LLAL opo |—A~L—>AL) )
and for any A € ﬁi%%@:

a(A) = Mg 0 a(A) o %!

AL—AL *

The points 12.11.1, 12.11.3 and 12.11.4 follow from the corresponding properties of & and a. Moreover,
we have, for any n € £+ and any bounded operator A, on I, :

(12.11.1)

-1
a ([AU]~) O Tyiy(n) = Tarey(n) © [ 4oy © Ay © rnﬂy(n) :
Let e € Legges, m € C(G, R) and n € Ly such that y(n) € Lgraphsie - Then, y(n) € Lo and,
using again props. 10.20 and 125, we can check that:
Tem —1 Tem)
[y © hfye o v = hvinm '

hence:

— e

a(h(e,m)) O Tary(n) = Tarey(n) © h(yé(]n[;) = h/(;i'm) O Tare—y(n) -

Now, a is a C*-algebra isomorphism, so in particular an isometry, and {y(n) ‘ ne Ly / y(n) € Lgraphs/e}

is coftnal in £, so that:

U Tyl (Hym) = U Ty (Hy)

n€Lyr /y(n)eLgraphs/e yELw

—

is dense in 3, . Therefore, a(h(e'm)) — hlem
Next, let F € Lpee, t € G and n € L, such that Aln) € Lproﬂs/f. From eq. (10.21.1) and
prop. 10.6, we get:
Ve ey(n), Vp+p' erle) (epp €F & [p=0ble) & xile) € Hy,-r])

Hence, y(n) € £, 7 and, using eq. (10.28.2) :

AL/

(F (F)
Thus, we get:
/(F?) —1 _ ﬁ)
Cpmym o Ty Vol m = Tv(n) :

Like above, this ensures that O((T(Ft)) = T/(f"), for {y(n) ‘ ne Ly [An) € Lproﬂs/f} is cofinal in
L.
Finally, for any n < ' € Ly, we define ¢, : C,_, — C by:
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Vi€ Cpun, Qronli) =1
Observe that | Cyopllse, = Hyon (Cyon) = by (Cy) 11, (€,) = 1. Hence, the operator ©,, is
well-defined and bounded on I, for it is given by:

Oy = (D;Ln © (|Zl7/—>n ) Gyl ® ldﬂf,7) oby . (1211.2)

And, since for any non-negative traceclass operator p, on 3, we have:

/ A tya(). 1) / Ayl b) 8, (0, 1) oy (01007, ), @07 ) =

xC %€

n'—n n'—n

= 3 {0 G ® ) | oy | O (G @ W),

YEONB,

(with onB, some orthonormal basis of J(,), we get:

nELy: =0

o <8AL> = 5<8/§'L> = ‘[(pn)nezw Sup [nf Trg.(:f]/ pn/ en/m = 1 :|> .

The injective map o allows to identify the space S, of states over H, with a certain subset in
the space S(G%H;Jf.cb) of all projective states. The results below suggests that S(%Hnﬂf,@ can even be
thought as a closure of 8, . Indeed, Sf%%%’q)) is complete, in the sense that a net of projective

states admits a limit as soon as it converges over each },, and o <SAL> is dense in the same sense,
namely the restrictions of its elements over each }{(, fill a dense subset of the associated space §,
of density matrices (in fact, they fill all 8,). This is somewhat reminiscent of the Fell’s theorem
[29], but, while the Fell’s theorem tells us that 8, is dense in the space of all states [41, part III,
def. 2.2.8] over the C*-algebra TQEHF,%@ (prop. 5.4), with respect to the weakest topology that makes

the evaluation maps p — IrpA continuous, we show here that 8, is dense in the (presumably
smaller) set of all projective states with respect to a much stronger topology.

Proposition 12.12 For any n € Ly, we define on S(’i%%@ (def. 5.2) the semi-metric (aka. possibly
degenerate metric, see [25, section 1X.10]) d" by:

®

v (pn/)n/ELur ' (p;/)ﬂ/ELH; = S(LHF'}C.CD)V d(n) I:(pf]/)ﬂ/eﬁnr ' (pl/7/)f]/€LHF:| = Hpn _p;]H'l !
where || - ||; denotes the trace norm on the space of traceclass operators over 3, (see lemma 5.10
and/or [82)).

The family of semi-metrics (d(”)) o €quips Sa%g{@) with the structure of a complete uniform

ne

space [25, sections IX.11 and XIV.9] and o0 (8,,) is dense in the induced topology.

Proof For any 1, the space 8, of density matrices over 3, equipped with the metric d%”) defined
by:

Von, py €8y, d(nn) [Pnr /On/] = Hpﬂ _p;HV
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is complete (for the traceclass operators over J(, form, with respect to the trace norm, a Banach

space [82] in which 8, is a closed subset). Hence, [] 8, has a structure of complete and

nELye
Hausdorff uniform space as a Cartesian product of complete metric spaces [25, theorem XIV.9.4|.
Let n < n € L. For any self-adjoint traceclass operator 0 on H,, we have, writing 0 =

o — 0™ with 6 and (—0'7)) respectively the positive and negative parts of o
I Tryon Ol < || Trymsn 0|, + || Trysn 67
= Trag, Try—y 07 + Trag, Tryy, 0©)

= Try, ot + Trac, o) = 16];-

Thus, Try_,, is a continuous map between the metric spaces (S,7r, df]'z/)) and (8, d), so its graph

is closed in their Cartesian product. The projective limit Sawm@) is therefore a closed subset of

ﬂneLHFSn, hence inherits a structure of complete and Hausdorff uniform space, which is precisely

the one induced by the family of semi-metrics (d(”))neﬁ .

Let p = (py),cr, € Sty sc0)- FOrany n € Ly, we define o e 8, by:

-1 +

= Tayln) © [ nosyn) © Py © rrz—w(n) O Turey(n) -

p
From theorem 12.11.3 and eq. (12.11.1), we have:

WAy € Ay Trsg, ([010™)], Ar) = Troe, (0 @ ([A])) = Trae, (20 As).

hence [O (pm))]” = p,. Thus, the net (0 (p(K))) converges to p with respect to the family of

KELyr

semimetrics (d(”)) (like in the proof of prop. 2.7). Therefore, 0 (8, ) is dense in Sf‘%%g{’(b) for the

nELlyr
corresponding topology. U

Finally, we want to check that the projective quantum state space 8%{@) is not a mere rewriting
of the space of density matrices over 3, , ie. that o, while being injective, is not surjective, and
yields a strict embedding of &, in S(?H’(D). To exhibit a projective state that cannot be realized as a
density matrix on H, , we will, in line with the previous result, consider a sequence of states over

H,a, which, although it does not converge in 8, , does converge in ng.ﬁ}fm'

To this intend, we cut some analytic edge e into infinitely many pieces (with an accumulation

point at one extremity of the edge) and we denote by gZJ(”) the state in J(, that assigns to the first
n pieces a given, non-trivial, sample wave-function x. It can then be shown that the sequence

[U (‘g[/(”) > < QZJ(”){)]” (as a sequence in n, with n held fixed) is eventually constant: indeed the

evaluations on g[/(”) of the observables covered by the label i freeze as soon as n exceeds a certain
(n-dependent) threshold n, (fig. 12.1), and we have proved in prop. 12.10 that these evaluations

completely specify a state over H,.

Next, we need to confirm that the thus constructed projective state is not in the image of o.
Let us look closer at the characterization of this image given in theorem 12.11.5. The orthogonal
projection O, selects in J}, those states that do not depend on the complementary variables
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Figure 12.1 — A few labels having 3 as the smallest possible choice for n, (the dashed line indicates
the base edge e)

n — n. Letting the upper label " become infinitely fine corresponds, in H, , to the orthogonal
projection on the fixed-graph subspace H,(,. Thus, if we now let the lower label n get finer and
finer, we will recover the state we started from, provided it was a state on J, to begin with. By
contrast, for a state that is not realizable on J{, , chopping those parts of the state that depart from
the Ashtekar-Lewandowski vacuum over the ' — n degrees of freedom and taking first the net

limit on 1/, we loose a significant part of the state, no matter how fine n: such states are not just
excitations around the AL-vacuum, but differ from it all the way down to infinitely fine labels.

Now, for any label n and any integer M, there exists a set of labels ' %= 1, which is cofinal
in £,; and such that, for each 1/ in this set, the holonomies along M distinct pieces of e can be

discovered among the complementary variables ' — 1. Since the state we are considering here
attributes to each such piece a distribution y distinct from the uniform one, its agreement with
the AL-vacuum, as far as the ' — n degrees of freedom are concerned, can thus be bounded by an
exponentially decreasing function of M. Taking first the limit on finer and finer i, we can then let
M goes to infinity, so that the overlap, over the degrees of freedom beyond 1, between this state
and the AL-vacuum is actually zero. If it would be a state in 8, its projection on any finite-graph
subspace },(; should therefore vanish, in contradiction with the state having unit trace.

Proposition 12.13 The map o is not surjective.

Proof A family of states in H, . Let e € Logges and let € : U — V' be a representative of e. We
define p, = b(e), poo = f(e) and, for any n > 1:

p”:é(n:TO)'

For any n > 1, we define:
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y(n) = {e[Pk—1rPk] ‘ T<k< n} € L

Next, we choose x € L,(G, dy) such that |x|| = 1 and /du(g) Ix(g)] < 1 (for example, we
G

can take y := 1/3/v1, where 1y is the indicator function of a measurable region of G with

0<v:i=pV)<1) Forany n =1, we define QZJLIZ,,)) € H,w by:

VhEGn, i) |_|b(0h Pkwpk)’

l
_

and Y = o () € F. We have (|9 = |y,
)

Evaluation of the n-observables is (n)-eventually-constant. Let n € L. From prop. 10.9.4, there
exist p € r(e)\ {fle)}, e = £1 and F € F(n) U {F(n)} such that e, ;. € F. Let p' €

r(epsen) \ {p. f(e)}. Then, p" < f(e) and, from prop. 10.6:
elrte1p) € Fan) or epep € F € F(0n).
Moreover, for any e’ € y(n), applying lemma 105 to e~" and e’ yields:
dg € r(e)\ {f(e)} / (r (eperq) Crle) or r(eyeq) Nr(e) C {fle)}).
Thus, there exists g" <) f(e) such that:
Ve € y(n), (r(ewenq)) Crle’) or r(epenq) Nre’) C {fle)}).
Therefore, there exists n, > 1 such that (fig. 12.1):

r (@[f(e)’pn”]) N U rie"y | c {f(e)} or Je' € y(n) / r (e[f(e),pm]]) C r(e’,

e’ey(n)

and: ejfe)p,) € F~(n) or IF € F(n) / €if(e)pn,) € I

Let m > n > n,. We have:

r(epup.)) N U r(e) | C{p} or Fe €vy(n)/r(ep.p) Crle), (12.131)
e’ey(n)
and: ey p € Fo(n) or IF € F(n)/ep.p €F. (12132)

Let y = y!™ U {epm pm]} € L,. Forany e’ € y(n), Lye is cofinal in £, and, for any F € F(n),

Larior is cofinal in £, , hence there exists y' € £, with y <y, such that:
Ve' € y(n), vV € Luje & VFE € TF(n), vV € Luyrior.

Next, let y := y" U {e[pw,p”]} € L, . We have y < y for:

—1

—1
y(”) C y(m) & e[pDOva] = e[men+1] ©...0 e[meme] © e[Poo,,Dm] :

Thus, we can define @y _(m)—n) = Sy—(m—(n) © ld@yuy X ¢y—y| © @y—y, where @, = €, —
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Cy,—y, x C,, has been defined for any y; < y> € £, in the proof of prop. 12.7 and s,/ m)—(n) is given
by:
Sy—m—m) = Cyoy X Cyy X G5 = Cy—im—(n) X Clm—n)
Jiohij o= (L)) h
with € _(m)—(n) := Cy—, x Cy and C()—(n) = C,—y. Using the definition of ¢,,_,, for y; < v, together
with eq. (12.6.1), we get:

vh' e €y, ‘Pv/*(m)f(n)(h/) = (h/|y/—y ' ”v’a?(h/)) ' ”v’ﬁv(h/”v(m)—(n)' (12133)

where Y"1 =y —y = {ej, 0 | n+1<k<m}.

We define 3,0 = L2 (€y—y . dy—y) @ L (€5, duy) and Himy-n) := L (€y5. dhiy—5) . 50
that @, (m—(n) provides a unitary map ® /) :

Pym—m = Hy = Hy(my—m) ®9f(m>—(>
("Z] — L'ZIO(p Iﬂ

Since Yy, Y™ <y, we have:
Lﬂ(”) = Tarey’ O Ty yin) (LLILIZ”))) & ¢,(”) = Tarey' O Tyryim (Lﬂ%?)) )
and eq. (12.133) ytelds, for any (/. j) € Cy—m—(n) and any h € Cy_(n
1 g
Py oty © Ty (W00 ) (710, 1) = Wl © Ty sy © 0L i (7 1), 1)

(n) ; (n
= wyr(lﬂ) % 7T‘)7~>y(”) (j) = LLIYTn) (/ y(n) )
n

= |_|[X0j] (e[Pk—1vpk]) '

k=1

as well as:

Py m)—(n) © Tyremytm (Llf(ﬂ?)) (). by = 1 Dx o (mmpm 0 @il 1), )] (epis pul)

k=1

b(of} Clo. Pk |_| [)(Oh Clo-. Pk])

=1 k=n+1

Thus there exist ¢/ m—@m € Hy—m—mn) and {my—n) » Xim—(n) € Hm)—n) such that:
P = 1y 0 ®LL L (D) ® o))
& P =1y oLl o (W) @ Xim-n)) - (1213.4)
R

Now, let y" == {e” €/ ‘ r(e”) C r(ep, p)) F U {epe pi} € Lu. We have ¥ < y” < ¥/, hence:

>

=

- ||X(m)—(n)||9{ for [|¢)]

—(n) - (m)—(n)

In addition, ||C(m)_(n)||% Hy

Vh' € Cy, @yr—y o mmyy(h') =y oy ('), my5(h),

and, since (y" =) C (Y —y), we get, for any (', j) € Cp_(m—(m and any h € Cpmy—(n) :
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Ty © B ) ) = @55 (s ) (12135)
Next, for any e’ € y(n), we define:
={e" ey |re")Cre) & r") ¢ rie) U {e" ey |re")Cre)} e L.
y(/e/) < y’ and, from eq. (12.13.1), V[o) € Luyer, SO Ty fery = Ty, ~{e'} © Ty—y., Moreover, since
Viey C (V= ¥)UY", we have, for any (f, j) € Cym)—(s) and any h € Cp)—()

ve" € Yoy [y, 0 0 il ). ] (€)=

[ﬂyu(yuv) o () h)] (e”) = j'(e”) ife” € (y —v)
[nw ST (1091) h)] (&) [q)y,_v ( il s )] (") e ey

Thus, Ty, o<p;l _m((/, j), h) does not depend on h. Therefore, using eq. (12.8.1), there exists, for

any m € COO(G R), an operator A € Ay (m—(n) (With Ay (- the algebra of bounded operators
on H, _(m)—n ) such that:

—
/

h<;: "= o]

v L=y © [A® g, ] © Py -
Let F € F(n). Since y < V' <V, eq. (1213.3) implies:
= C?y/, (py/,(m),(n)(h/) = (ﬂy/é(y/,y)(h/), Ty 5 © JTyrHyu(h/)) , JTV/_)),(m)f(n)(h/).

But since v € Luyjrior and e, € F' with F' € F(n) U {F4(n)}, we have (Y —y), ¥ &
(m)—(

14 ) € L. rior and, moreover:

Vel €y cle!, FroF) =2
J‘O .
so that Vi € G, Vh € Cpy—(n) Ty((,Fn),(”F))th = h. Thus, using eq. (12.9.1), we get, for any t € G and
any h" € €,
T(FLOF)h/ o T(FLOF) K 7— FLOF) I R
(py/f(m)f(n) Yot - (y'—y).t o ]Ty’a(y’fy)( ): 7Ty”~>y o e 9 jTy/ﬂy”( ) ’ jTy/—>y(/77)*(”)( ) .

Hence, eq. (12.1355) yields, for any (', j) € €y—(m—n and any h € Cim—n)
(FRoF) ()1 1 (Fiop)
Ty’,t ((py ((/ j) h) ) (py/—(m)—(n) T(y/ (j j) h)

ofF)

(F- VN P LoF
Whel’e 77()//—("7)—(”)),1(//’/) = (T(V V fj ]TVH‘)V o T// )

O<p;/14>')7(j|y7')7' ))

Therefore, there exists, for any t € G, an operator A € A,_()—(n such that:

TP _ g

y'=(m)—(n)

© [A ® .Ldg{(m)f(n)] © cD)’/—(m)—(”) :
So we have proved that for any A, in:

{hem‘mecw(c R) & e €yn }U{TFiom‘teG & Fedn},

there exists A € A, _(m)—(n such that:
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1 .
Ay © Tare—y’ = Taey’ © (Dyf,(m),m) % [A oY Ld%(m),(n)] % (Dy/,(m),(n).

Theorem 12111 and 12.11.2 then implies that for any A, € J,, there exists A € A,/_ () such
that:

1 .
a ([AUL) O Tare—y! = Tare—y’ © q)y/,(m),(n) o [A & Ldﬂ-f(m),(n)] o cby/—(m)—(n)y
hence, using the expression for /") and '™ from eq. (12.13.4):

VA, € Ty, (W, a ([ALL) @)y = (0 a ([A]L) ™)y, -

Constructing a projective state from the ™). For each n € L., we choose n, as above, and we

define:
- [0( [l ) (o] )] _

Llet n < " € Ly and let m = n,, ny. From the previous point, together with theorem 12113,
we have, for any A, € J,:

Trge, py Ay = <¢'(n”) a ([A”L) w(n”)%ﬂw

= (7 ) ) =T o) (4] 4

n

Hence, the second part of prop. 12.10 implies:

- [g( |y (gt )] ,

n

°®

and similarly for p, . But o [ ) (" |) € 8¢, 504 (def. 5.2), so we get:

g =T o 10 ) (0] )| = [0} ()| =

n
_ =®
and therefore p := ('O”)neLHF € 8e,, 30 -

n/

p s not in the image of 0. Let n € Ly and n = n, > 1. Let M > 1 be an odd integer and
m = n 4+ M. By definition of n, we have, for any { such that 0 <2l <M —1:

Pri2ie & U r(e

e/eyn

where v == y(n) \ {e/ € y(n) | r(€pep.) C r(e’)}. If there exists e” & y(n) such that r(ep. ) C

r(e) (note that there can be as much one such e’ for y(n) is a graph), we define y, € Lgapn by:

{e[/b(e/),p]' e[/q,f(e’)]} i b(e) < ) G <) f(€)
el if ble’) <(e = f(e’ _
Y = { [/b(E),P]} ]( b( /) - f( /) WLth {p’ q} _ {poo’pn}’
{efqrent i ble)=p < (e')
i ble') =p < q—ﬂM

otherwise we define y, = @. By construction, we have y\ y; < ybU{epoo ool } and, for any [ such that

194



P S Poo 4
Pe Po ——— Po ——=——
Ps pPs N Ps N
P4 P4 —=—— P4 —==——
p3 = pP3 + p3 Y
\
! 1
—1 P2 P2 ‘— = 2
; : -
| i i
P1 % P % P %
i i i
\ \ i
\ \ i
i i i
Po -+ Po - Po -+

Figure 12.2 — Construction of the auxiliary label 1 with M = 3 for the labels of fig. 12.1 (recalled in
light gray)

0<20<M=1, priaiet & Uarey,r(e”). Since Uy, r(e’) is compact, g <\/ \ Ue/@tu),br(e/)> C

n—+2l+1
n—+2l+2
R > 0 such that, for any ( in {0, ..., (M —1)/2}:

n+20+1 B 420+ 1 B ,
s xecu e ({5 e ) n U re-o

U is an open neighborhood of { ‘O <20 < /\/1—1]» X {O}d*1 in R? so there exists

e’'EysUy

(where ng) is the closed ball of radius R and center 0 in R?~"). Thus, this allows us to construct
a label n € Ly such that (fig. 12.2):

V(U) =Yy = {Q[vapmfw]' e[Pm,Pw]} U U {e[Pn+zz+1 Posat] e[Pn+21+1,Pn+21+2]}
0<2l<M—1

& Ye'eyUwpU {e[pa,pn]} , e € Fo(n).

_ —1 —1 S nd-
We have e p,] = €110 © €y pnia] © -+ © Elpmpni] © €]y, po]+ NENCE {e[pm,pn}} <y and:

Ve =V = {epunt} = V\{eppl}-
Note that y™~" = {e[pk%pk] { n+1<k< m} < Vg with vy — yM=) — & 5o that T3, —sylm~) 1S a
diffeomorphism Cy, — Cym-n = Cimy—(n) -
Next, let n' = n,7. Since {ep,p. 1} <V < (), there exists e’ € y(n) such that r(e’) C
r (€pnpui1). 50 N == ny has to be bigger than m. Also, since Lgppns is directed, there exists y' =
y(i7), ¥"). So, applying the construction from subsection 102 to (y/, A(1Y)) € Lgraphs X Lprofis, there

exists n” %= " with y(i”) = y"). We define a diffeomorphism oy —(m—n) - Corr = Cop () X Clm—n)
by:
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(pn//_>(m)_(n) — |:7/’ (h’ 7) > (7/: 7)’ ]Tv'tﬁy(m)—(n)(h):l (@] ([de " X (p~ { poopn]]’ (@] ('Dn//_)ﬁl
with en//ﬁ( = 8,7//ﬁ,7 X (3{ €hoorp }

Let h" € €, and define:
7= (e 0oyt
& b= (ide, ., % o) 0 @yp(h’).

Using eq. (2.11.1) (which was proved in theorem 10.25), we have:
J =000 o @y (h)

0= 0 Qs © @5 0 @rpii(h)
=, h'— []o ('lde”//%/ X (P;Lﬁ) © ((Pn”an/%ﬁ X Ld@ﬁ) o @yz(h")

=17 B ] o (@ X idey) 0 pyralh”)

= [jf , 7” — jf] o (‘sz”—m’—ﬁ) (),
and:

h=1[j, j, h-+ h]o ((Pn”%n’én X Lden) o @yrp(h")
=[j", h.+=> hJo @y ,(h")

(-
— e/ > ( |_| [h// O Gn//_)n'e/(k)]SOHHTIP (k) )

k=1
= ”v(n”)—w(n)(h”) .

Let e’ € yx. By construction, we have, for any k € {1,..., Ny—spe b Qyone(k) € F5(1), as well
as Ve €y, r(ay—ne (k) ¢ r(@) (for r(e") N r(ep.py) C {Poss pa}). Hence, aypye(k) € /—/,(7(/))_)5
Writing | =: (7(0), 79, 7’(3)), we thus get:

Vke{1,..., ”n”%n,e/} , h"o ay—pe(k) = 7(0) O Ayrosper(K).

So, for any e’ € vy, [,y (h”)] (€') only depends on h” via ¥

If there exists e’ € y(n) such that r (e, ,,) C r(e’), then we have at the same time {e'} <
v(n) < v(n) and {ep.pit < V() < v(0) so v < () < v(n") must hold (we can check this by
writing both e’ and e},_ | as compOSLtLons of edges in y(7), and by showing that the edges that
appears in the decomposition of e, _ , | should appear in the decomposition of e as well, for y(n') is

a graph; then, the remaining edges from the decomposition of e’ build up precisely the edges in ).

With the same argument as for y4 above, we have for any e” € y, and any k € {1, ..., Ny()—er },
0yyoer (k) € HY -, and therefore h” o @y er(k) = ' 0 ayy—er(k). On the other hand, we have

n'—n'

ﬂy(,7//)_,{e[pw”]}(h ") = T3 e} © )10 )(h") — . Thus, 7 /7”—>va{e[pw,pn]}(h ) only depends on
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h” via J' and j, and the same holds for [, (h")] (€/) since:

[ﬂy(n//)ﬁy(n)(h//)] (e/) = []TV(W//)_’{e/]’(h//)] (e/) - I:jTVbU{e[Pooan]}_){e/} © ﬂy(”//)ﬁybu{e[f)oorpn]}(h//)] (e/).

Hence, we have proved so far that there exist two maps O,y @ Cpm—mn — Cpoy and 6,
en//ﬁ(m),(n) — 8,7 such that:

J = Oy (7 7) & h=6, (7 7) :
Now, we define an Hilbert space isomorphism ®_m—(n) : Hypr — Fopim—(n) @ Him—(n) by:

(Dn//*)(m)i(n) . j‘{:nu —> j‘cn//g) ®j‘(
Y= o ‘Pnu(mHn)
with Hy L m—n) = g{n”ﬁﬁ@’:}{{e[pwﬂl} and Hm—(n) = Hym-m . Pym—(n being an Hilbert space

tsomorphism follows from the note at the end of the proof of prop. 127 and from the fact that
T05, sy« Hy, = My (for the Haar measure on a compact group is invariant under taking the
inverse). Then, we have, for any ¢,y € H,—,y and any ¢, € H,;:

-1 - -1
bry© (‘d%,w ® by en) (s ® Gy ® i) = Py oy ([ © By i © 0] @ i)
where ., =1 and (- = 1. Since @ m)—ny, Py and @, are Hilbert space isomorphism,

Py (m)—(m) © 613,7//_,,7 (ldg{n// ® b, _),7) thus induces a unitary (injective) map from:

ved{%”ﬂn’ ® Cy—y ® Yy

%”Hn/ S j{n”ﬂn’r Lpn € :Hn}

(where - denotes the completion) into Hy—m—(n) ® {{m—(n}. Therefore, we get, using the
characterization of ©,, from the proof of theorem 12.11 (eq. (12.11.2)) together with def. 5.3:
Ter,,/ Pr en/\n =

e [o )

e o () (4] 5 [ 00

i o) o
(idses ., @ 1Gyoon ) ( Goonl @ i, (Ldgf”,,ﬂ,®q>,,ﬁn) 0Py

"=

< Trae,, [U (1w("’> > < 91/(”/)‘)]0,, Pyt (Ldﬂfnu i @ 1Ctm=o ) € C(m),(n)|) Py m)—o)
This implies, using theorem 12113 and eq. (12.11.1):

1 .
], 820 (i 002

—1 (n/)
Trj-(n/ pn/ 9’7/"7 < <q)’7//ﬁ(m)7(”) rf]”ﬁy(l]”) Ty(n”)<—)/(”/) w ()

yﬂ

(Ld”fnbm 0 ® |Cm- ><C<m)f<n)|) ‘
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-1 (n')
‘(Dn”—%m)—(n) |—I7//_>)’(f]”) TY(’]”)‘*V(H/) pr(”/) >j—( , . (1 21 36)

" —(m)— (n)®g{(’")*(”)
Let h” € @, and ( (7«0), 7@, 7@) T F) = Qum—m(h"). Let ¥ = HO) _and Y@ == HY) .
Since Y9, Y9 c y(n") Lgraphs » We have YO Y e Lgraphs C L and YO Y < y(n"). Moreover,
the expression for ¢, (prop. 10.24) together with the uniqueness part of prop. 125 yields:

79 = 1o = Tygnogolh”), 7@ = 0"l = 5@ (h"),
—1 N
& jTyu—Wm) (h) j - (py { oo, p”]} © jTV(W//)HV(h )

Using eq. (12.6.1) and the expression for ¢,,_,, from the proof of prop. 12.7, the last relation above
becomes:

h = Ty () & ] =, fopn} (0.

[Poc.Pn

Next, since ey, ,,] € F~(n) and (Jzyr(€) = r(ep, ), we have, for any e’ & v and any r €

Ayyy—yne(r) € FA(N) & Yeey, r [ay(nwby(n),e/(r)] ¢ r(e).

Hence ay(y)oym o (r) € HY . so that y" < Y

n'—n'

(el p} <V (we have {ep,n+1 st} S v for {ep, i} <V V(") and {ep, o} SV <

y(n")), as well as y"="*1) < 5@ (if n” happens to be bigger than m + 2). Then, using repeatedly
eq. (12.6.1), we get:

. Similarly, if 0" = m +1, ep, p) €V implies

-7(0
V(fl”)—W(”/’(h”) (e[qu vpk]) = T00 ) (//( )) (e[qu.Pk]) )

Vke{n+1,..., m}, ﬂv(n”)*v(”/)(h//) (e[Pk—LPk]) =h (e[Pk—LPk])

(note that m < n” as underlined earlier),

vk {m+ 20"}, 7y (M) (€ p) = Tym-men () (€ pa)
(of course, this only applies if n" = m + 2).

If n” > m we also need the evaluation of m, ,,m(h") on ey, .. For this, we notice that

m+1] . i Lci
mm+] - {e[anPm]' e[pm Pm+1] pm+1 pOO]} USLng the eXp[LCLt

(m)—

{e[pm pn]} Y < y(n”), where )

expression for Tlymm s { } together with {e[pmpln}} < Y= and {epmM pm]} (and again

€lpoo.pn]

repeatedly applying eq. (12.6.1)), we get:

j(e[pompﬂ]) = ﬂy(”//)ﬁ{e[/?ooﬁn]}(h//)(e[poo,pn])

—1 —1 —1

: ﬂv(n”)*v“"’"*”(h//)(e[pm,pw]) : ﬂv(n”)*ﬂ’”"“*”(h//)(e[P,n+w ,poo])

—1

= ﬂy(n//)ﬁv[m,nwﬂ (h//)(e[pn ,Pm])

= ]Ty(m)—(n)*) { €lpn.pml } (h ) (e[Pn ,Pm])

K

—1 /(2 —1
! ]TV(”//)_’)/(”/)(h//)(e[vaPmH]) : 7T7(2>H{epm”pm]} (// ))(Q[PIUH ,Poo])

_
m
—1 (2 —1
- [ |_| e[pk i Pk] ] : jTY(U”)—WW)(h//)(e[PmerM]) ) ﬂv(z)é{elpnwﬂ Poo‘} (j/( ))(e[pm-H "DOO])

so that:
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m -1

(2
]TY(U”)‘)V(H/)(hN)( ,Dm ,Dm+1] [ |_| h Pk 1 Pk (e[poo Pn]) . TI—?(Z)—w[e[p/_nJr1 ,Poo\} (j/( ))(G[Pln+1npoo])

k=n+1

We want to use the thus obtained relations between TT )=yt and @y (m—(n) in order to refor-

mulate eq. (12.13.6). We first consider the case n" = m. Then, we have:
-1
Pyt Tt oyt Tytres Yooy = By (n) ® Xim)— 1)

where:

(70,7079 7€ €

n

L/]I]”ﬁ(m)*(”) (//( )' f/( )’ //( )' /) = [X © Tyt (j/( )):| (e[pkq/pk])
k=1

& VF & @(m),(n) , X(m}f(n)(//;) = |_| [X OF](Q[Pk—1ka])'

k=n+1
Thus, eq. (12.13.6) becomes:
2
Trsey P Oty < Nbymtallne, o |G-t L )|
And, since H¢ ) =1, we get:
Hom
(G-t | b | 2
(m)—() | Xim)=(0) 3¢, [ du(g) x(9) M
Tr}(,]/ Pr 9/7/\/7 < > el = } s M | < (/ d,U(g) |X(g)‘) :
Dol Ixl ¢

We now consider the case n” > m. Here, we get:
V(7.7) € Cosim-tn . ¥h € Cinyio
Pyesonr—to1 Tty Tty Wi [/ Ji h]
— %Mﬁ(?) X(m)—(n (h) X [Bn”ﬁn( ') ~'(e[poo o) 'B(m)*(n)(g)]'
where:

v (7/(0)’ 7/(2>, 7/(3)) € Cyoy,

~0) T(2) T3
G ( 70, 7 i >)

k=1 k=lﬂ+2
_ _ _ - -1
/9,7//%77' (j/(O)’ j/(2)' /’/(3)) = []TV(Z)H{E[me/Joo]}(/‘/ 2))(9[%“‘%0])] '
B _ n+1
& Y h & e(m)f(n) , lg(m)f(n)(h) = |_| h(e[Pk71.Pk])71
k=m

Thus, eq. (12.13.6) now reads:
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Tr}(,)/ pn/ 617/\/7 <

, o ~ _
/dunun ‘% i ‘ /e im0 1) Xty (1) Xm0 (')

n"—=n (m)—(n) Xe(m)—(n)

[ autt - [BroalF) 17" B ialB)] x

= 1 yields:

)

2 ~ ~ 12
1= /du,7//_>,7 ‘QU/]”—NI ‘ /edu(m)—(n)(h) ‘X(m)—(n)(h)’ /Gdu(t) |X(t)|2
5 (

m)—=(n)

|

Bya(f) . B(m)_(n)(ﬁ’)],

while the normalization condition HMVT?)

n’"—n

(the measure p being invariant under the transformation t — t; . t~' t, for any t1, t, € G)

/ dUn”%n ‘ L/’n”%n
/!

n’—n

2
(since [lx[ = 1).

Moreover, for any t;, t,, t, € G, the Cauchy-Schwarz inequality ensures that:

/cdﬁ’(f) X[ the] x [t )]

so we again get:

2
< lxl” =

Trﬂfn/ Py 91]/\17 < /d/J/]”ﬁn )L/jl]//*)n

0’ —n

2M
= (/du(g) |X(9)|) :
G

Since y has been chosen so that / du(g) |x(g)| <1, there exists, for any € > 0, an odd integer
G

2 -
/ d'u((lzn))f(n)(h' h/) )X(tn (n) ‘ ‘X h/)
Clm)—(n)

—(n) X Cm)—(n)

2M
M > 1 with (/ du(g) ])((g)]) < €. Thus, there exists, for any n € £ and any € > 0, ' = n
G

such that:
Tl”g-(”/ Pr @,7/‘,7 < €.

Hence, for any n € Lye, Inf Trye, py ©p)y = 0, and, therefore, sup inf Ty, py Oy = 0. On the
=N !

nELye 1 "

other hand theorem 12115 implies:

O<SAL> = ‘[P/ = (pl/7)nELHF

sup inf Trac, Py Oy = TF,O/}> :

NELur n'=n

and we have Trp = Try, p, = Hg[/ a ! =1 (forsomene& L), sop & o <gAL>. U

So, we have obtained a clear picture of how the projective state space set up in prop. 12.1 relates
to the more conventional Ashtekar-Lewandowski state space. Recall that our motivation for this
construction was to extend the latter, to try and cure the difficulties arising in the search for good
semi-classical states. The observation of prop. 12.13, confirming that we indeed have gained new
states in the process, is in this respect particularly important.
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The state we used to prove this result can even be seen as a first step toward the design of
satisfactory semi-classical states. Indeed, if we take as ‘pattern’ ¥ a coherent state (eg. a Hall
state [42], which is the generalization over a compact Lie group of a Gaussian state), we obtain
a projective state yielding a narrow distribution for infinitely many holonomies (namely the ones
along the infinitely many pieces of the base edge e), while such a state could not exist over H,, .

Still, this would not yet be a state suitable for the study of the semi-classical limit, where we
would need states presenting narrow distributions for a full set of holonomies and fluxes. There
remain in fact further obstructions to this endeavor, the understanding and overcoming of which
will be the topic of chap. 6.

13. Discussion: imposing the constraints (1/2)

An issue that will have to be addressed thoroughly before the projective formalism can provide
a serious alternative to the successful inductive one, is how to solve at least the Gauss and
diffeomorphism constraints (see the brief overview of the ADM formalism in the main introduction,
and of the Ashtekar variables in section 8), as those can be readily solved on J(, [4, 8, 92]. In
section 3 we proposed a strategy to deal with constraints in the projective context, with the help of
a suitably defined regularization scheme (this proposal was developed at the classical level, ie. in
the setting of a projective limit of symplectic manifolds, however we will display on an example, in
subsection 16.2, how a similar approach could be implemented at the quantum level).

Note that while the Gauss constraints are well-adapted to the inductive structure underlying
the Ashtekar-Lewandowski Hilbert space (ie. they leave the fixed-graph subspaces H, invariant,
which allows for their straightforward resolution in J, ), they are not adapted (in the sense of
subsection 3.1) to the projective structure we have introduced: while gauge transformations preserve
the algebra of holonomies attached to a graph, they do not preserve the algebra of fluxes attached
to a profile. In fact, as stressed at the end of subsection 9.2, fluxes do not at all transform nicely
under gauge transformations (except when the gauge transformation happens to be constant on the
surface supporting the considered flux). A popular method to circumvent this difficulty is to use,
instead of the standard fluxes, appropriately ‘anchored’ ones [89, def. 3.5]: by choosing, for each
face, a supporting system of paths, we can parallel transport the electric field at each point of the
face back to a common root, thus forming an observable with better transformations properties.
Fluxes of this kind have for example been used in [23] to build a projective structure of momentum
spaces. Yet, a complete solution based on this device will require some more work, because again
one needs to ensure, at the same time, that the labels we are using can be properly associated to an
algebra of observables (ie. that the observables assigned to a given label form a subset closed under
Poisson brackets), and that they build a directed preordered set (with a preorder that respects the
relations between the associated algebras of observables). Specifically, we will have to keep track, in
each label, of the system of paths used to define its anchored fluxes, thus putting the directedness
at stake (as underlined in section 7, the richer the label structure, the harder it is to arrange for
the label set to be directed). It turns out that the tools we will develop in section 19 could help
designing a suitable label set in this context, and we will come back to this point in section 20.
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Similarly, the techniques developed for the resolution of the diffeomorphism constraints in J,,
[8] cannot be directly imported into the projective formalism because they critically rely on having
states built from discrete excitations. Still, they suggest that the building blocks for the space of
solutions should be indexed by equivalence classes of labels under diffeomorphisms, in other words
that we should try to quotient out all embedding knowledge from the projective structure. However,
defining the projection between two labels is subtle, when there is no embedding telling us their
respective disposition: if one takes a small embeddingless label  and a larger one 1, it will in
general not be possible to unequivocally identify n with a sublabel of 1’ (this is sidestepped in
the construction of the diffeomorphism invariant version of J, , because distinct graphs can there
be made to label mutually orthogonal sectors, with no need to relate their respective degrees of
freedom). A prospective way out could be to position n within ' depending on the state we happen
to have over /. More precisely, we would like to select, among all the inequivalent sublabels of n
that can be identified with n, the one that captures the most relevant information about this state.
We can regard a prescription of this kind as a means to give diffeomorphism-invariant meaning
to the observables attached to a given label, by deparametrizing them using as reference field the
geometric data itself. As such it is similar to the deployment of intrinsic coordinates systems that
are defined purely in terms of the geometry [57, 58].

While the solution of the Gauss and diffeomorphism constraints on H, is explicitly known, the
resolution of the Hamiltonian ones is less understood. These constraints can be regularized [88] to
define corresponding operators on J, , and, with the help of the Master Constraint program [91, 36],
the existence of a Hilbert space collecting their solutions can be established, yet there remain some
computational hurdles. One can therefore speculate whether this known regularization scheme
for the Hamiltonian constraints could be combined with the strategy from section 3 in order to
arrive at a constructive description of a space of states solving the quantum dynamics of gravity.
Note that the ideas sketched above to define the diffeomorphism-invariant projective structure
would have the added benefit of pushing the most interesting information about the states down
toward the ‘coarsest’ labels: this could in turn improve the convergence properties of a subsequent
regularization of the Hamiltonian constraints, as it would make it easier to access the data we
need to correctly evolve the spatial slice.

We will continue this discussion in section 20, in the light of the developments covered in
chaps. 5 and 6.
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Applications and Toy-Models

Chapter 5 — Examples of Constraints Requlariza-
tions

14. Introduction

In section 3, we introduced a strategy to deal with dynamical constraints in a projective limit of
symplectic manifolds. After having convinced ourselves that a regularization of these constraints
will in general be necessary, since we cannot expect them to be adapted to the projective system,
we adopted the perspective that a dynamical state can be identified with the family of successive
approximations approaching an exact solution of the dynamics. On the one hand, this allows
us to put the dynamical state space into a projective form. On the other hand, it also provides a
suitable ground for a notion of convergence, that will make it possible to define meaningful physical
observables on this state space.

However, applying this procedure demands that one sets up a regularization scheme fulfilling
a number of restrictive properties (summarized in prop. 3.23), which raises the question of its
practicability. Hence, we now want to discuss two simple examples, meant as ‘proofs of concept’
that such schemes can indeed be designed.

Note that the framework in section 3 was purely classical. We have not yet undertaken to for-
mulate a general procedure regarding the resolution of dynamical constraints in projective systems
of quantum state spaces. Nevertheless, our second example will explore how analogous ideas can
be implemented at the quantum level, and will give us the opportunity to delineate an appropriate
course and to underline possible difficulties.
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15. Linear constraints on a Kahler vector space

This first example is arguably mostly artificial and does not pretend to have great physical
relevance. Our motivation here is to illustrate the concepts introduced in sections 2 and 3 in the
simplest possible setup. We consider an infinite dimensional Hilbert space JH (which is nothing but
a linear Kahler manifold) and form its rendering by a projective structure of finite dimensional
Hilbert spaces (to prevent any confusion: the Hilbert spaces in discussion here are the phase spaces
of classical systems, there will be nothing quantum in the present section). This rendering is built
from an Hilbert basis of J{ by considering all the vector subspaces of J spanned by a finite number
of basis vectors and linking them by orthogonal projections (a more satisfactory rendering for I,
namely one that does not require the choice of a preferred basis, will be presented in section 16;
however we do not want to use it here, since the constraints we will be looking at could be directly
formulated as an elementary reduction over a cofinal part of its label set, and it would therefore
not be appropriate as an example for the regularization procedure).

Proposition 15.1 Let 3, (-, - ) be a complex Hilbert space and define:
1.VYWwve X Jvi=iv;

2 Vv,weXH, Qv, w):=2Im ((v w) )
Then, H, Q, J is a Kéhler manifold.

Proof The real scalar product Re (-, -) equips H (seen as a real vector space) with a structure
of real Hilbert space, therefore, any bounded real-valued real-linear form on 3 can be written
as Re (v, ) = 2Im (=5v, -) = Q(—=5v, -) for some v € H. Hence, Q is a strong symplectic
structure.

Next, / is by construction a complex structure on J. We have Vv, w € I, Q(iv, iw) = Q(v, w),
and v— Q(v, iv) = 2Re (v, v) is positive definite.

The integrability conditions for Q) and J are trivially satisfied since we actually have a Kahler
vector space. U

Proposition 15.2 Let J{ be a separable, infinite dimensional Hilbert space (equipped with the
strong symplectic structure () defined in prop. 15.1) and let (e;),cy be an Hilbert basis of J{. We
define:

1. L:={I CIN| 0 < #/ < oo} equipped with the preorder defined by C;

2.Vl € L, H; == Vect{e; | i € I} equipped with the induced symplectic structure Q; (which is
also the natural symplectic structure on H; as a finite dimensional Hilbert space);

3 Viclel, mp = H/’%/H% where [1; is the orthogonal projection on 3{;
4 Hy =HandVlie L, iy = |_|/|9-C—>9-C,'

Then, this defines a rendering (def. 2.6) of the symplectic manifold I by the projective system of
phase spaces (£, H, x1)*. We define o :H— S%L,%,ﬂ) as in def. 26.

Additionally, defining the dense vector subspace of H, D := Vect{e; | i € N} (without com-
pletion, ie. the space of finite linear combinations of the e;), we have a bijective antilinear map
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(. D" — 8(2%”) such that 7' o 0, : H — D" is the canonical identification of H with D" C D*
(where D* is the algebraical dual of D and D’ the topological one).

Proof £ is a directed set, since V/, /'€ £, /Ul e Land [,/ C U/,

Let /,/" € LU {IN} with I C I". 7ty is surjective by construction. Next, since 3, is closed, we
have, for any bounded real-valued real-linear form v on H,, a vector v € H, such that:

Yv e H;, v(v) = Qu, v) = Re (2iv, v),.

Hence, since [1; is the C-orthogonal projection on the complex vector subspace J{,, it is also the
R-orthogonal projection on the real vector subspace J{;, and we have:

Vv € Hy, v o mpy(v) =Re (2iv, Mv), =Re iv, v), = Qv v),
and therefore 7y, (U ° JT//H/) = 7y (V) = v.

Clearly for I € £, we have 7, = idg, and for [, I', 1" € LU{IN} with I C ' C 1", 7ty 0 prp =
Trpr— ).

Lastly, we define:

where forall / € £, () : H; — J, is the canonical identification provided by the complex Hilbert
(

space structure on 3, (H; is finite dimensional, hence H; = ).

The map ( is well-defined, since V/ C I' € £, Vv € H;, <7T,/ﬁ/ (U|}Cﬂ) , v>/ = <U|9{//, \/>/, =

v(v) = <u|%, v>/, hence my_,, (U|%//) = u|%.
On the other hand, we define Z : S(lw{ﬂ) — D*, by:
YV (V)ee, Yw e D, Z((v/),eﬁ) (w) = (v;, w), for any | € £ such that w € H,.

The map Z is well-defined since D = U H,;and if /, /" € L are such that w € F;NH, then there
el

exists I” € £ such that /,/' C I” and:

(vi, w), = (mtpi(vr), w), = (v, W) = (v, w),.

Now, we haveZoC = idp-, COZ = Lds(iw( )and YVweH, VIiel, YweXH CD, Zoal(v)(w) =

(i (V) Wy = (v, wge. H

We now present the constraint surface of interest, as a real vector subspace of H admitting
a description of a specific form (alternatively, we could characterize it by of a family of linear
holomorphic second class constraints and a family of linear first class constraints). Additionally,
we anticipate on the regularization of the constraints by providing a rendering (similar to the one
we adopted for H) for the corresponding reduced phase space.
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Proposition 15.3 We consider the same objects as in prop. 15.2. Let (fj)j. and (gx)een be two,

eN
mutually orthogonal, orthonormal families in 3. We define:

1. = Vecte {f; ’ j € N} (equipped with the induced symplectic structure Q) and Kp =
Vectg {gx | kK € N};

2.0:J®XKr — J by 0 := Nyl|seq, .5 Where Iy is the orthogonal projection on g.

Then (3, d ® KR, 0) is a phase space reduction of J (def. A1).
Additionally, we define:

3. Ve XL, d, = Vecte {f, ‘ j € j} equipped with the induced symplectic structure Q);
4 YK € L, Kg = Vectc{gr | k € K} & Kggr:=Vectg {gx | k € K};

3,3, Where [} is the orthogonal projection on Jj;
6. In:=Jdand V) € L, my_,; =My,

As in prop. 152, this provides a rendering of g by (£, 4, JT/)l and we define 0/ : J — S(imvﬂ/) as

well as the bijective antilinear map (' : F* — S(lmﬂ/) where J := Vect {f/- } J € ]N}.

Proof 6 is a surjective linear map and for v € J, we have 6 ' (v) = v + Kg, hence 6" (v) is
connected. For v,w € J @ Kp, we write v. =V +v" and w = w' + w” with v, w' € J and
v/, w” € Kr. Then, we have:

Q(v, w) =21Im (v, w)ge = 21Im (V/, w')ge 4+ 2Im V", "), (since J L Kg)

= 2Im (v', w'); = Qq(0(v), 0(w)) (since K is the real vector subspace generated by

an orthonormal family).

Hence, (J, d ® Kr, 0) is a phase space reduction of K. O

We are ready to turn to the core of the regularization procedure, namely formulating a set of
approached implementations of the constraints (indexed by a label set &£), endowing & with an
appropriate preorder, and linking together the approximate dynamics by supplying projecting maps
between their reduced phase spaces.

Here we choose & to enumerate a large class of approximate solutions, ordered by comparing
how good they are at approximating the exact solution (the precise definition of & may at first seem
to arise from nowhere but will become transparent when we will actually detail the corresponding
approximate constraint surfaces). This way of composing £ will make the study the convergence
mostly inexpensive: a large part of the work is actually done beforehand when checking that &
with this preorder is really a directed set.

It also has the advantage of partially getting rid of the arbitrariness inherent of working with an
approximating scheme. The philosophy is that an explicit, concretely implemented, approximating
scheme will correspond to a specific cofinal part of &, but that we have the option of considering
all such particular schemes at the same time, by arranging them into a (huge) set &, provided we
carefully tailor its preorder to our purpose.
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Besides, note that being quite broad in recruiting suitable approximate theories is, up to a certain
extent, forced upon us by the fact that we are dealing with an unphysical and not further specified
system, since, in a more realistic example, we could probably, from the physics of the system, infer
guiding principles to be more selective.

On the other hand, we could fear that such a loose label set & will leave us with a dispropor-
tionately complicated projective structure for the dynamical theory. But, in fact, this dynamical
structure (on L) gets spontaneously quotiented down to the projective structure we had already
introduced above for the dynamical state space. The idea is that we can transparently match two
partial dynamical theories as soon as they have a common ancestor out of which they are carved
in the same way (recall this mechanism was presented at the end of subsection 2.2, and expressed
precisely in props. 2.8 and 2.9).

Definition 15.4 We consider the same objects as in prop. 15.3 and we define € as the set of all
sextuples (/, I 1, K, o, 6) such that:

1lclel & J, Kedk;
2 ¢:dy® Kk — Hy is a linear application and 90‘31@5(/(—””"0 {s a unitary map;
3€e>0and Vv el |v—oW)| <e v
4 M (Ker)) =M (K r).

On & we define a preorder < by (/1, I, h, Ky, e, 61) < (/2, b, b, Ko, o, 62) iff:
s hchlhichhch & K CK;
6. & < €.

Proposition 15.5 We consider the same objects as in def. 154. let /€ L and e > 0. Let /, K € £
such that:

dim |_|/ <3/ (&) j</<> = dim (3] @ fKK)

Then, there exist I” € £ and a linear application ¢ : J; ® K — Hy such that (/, I ], K, ¢, 6) €
E.

Lemma 15.6 Let I{ be a Hilbert space and let F, G be two finite dimensional vector subspaces of
H, such that dim g (F) = dimF, where [ denotes the orthogonal projection on G.

Then, there exists a unique linear application ¢r_ : F — G satisfying:
1 @r—clring._. s @ unitary map;
2 / dus, (e) |le — @rc(e)||” is minimal, where Sr is the unit sphere of F equipped with the
Sr

measure induced by the euclidean structure of F.

Forve F, |lv—orcv)| <2dimF ||v|| sup |le —Tg(e)]|
eckF

llefl=1

Proof Existence and uniqueness. Let f = dim F. From dim g (F) = f, 5 induces a bijective map
F — g (F), hence (I (-), Mg (-)) defines a positive definite sesquilinear map on F. Therefore,
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vief{1,..., f}, ole;) = ¢_ +ZBU cle)) + wi.

From <<p(el), cp(ej-)>G = 0;j, we have:

Vi je{1,....f}, B+ Bi+) BiBu+(w,w)=0. (15.6.1)
k

With these notations, we have:

/ duis,(e) lle — gle)|* = / duss.(€) [Male) — gle)] + fle — Nele)]?
Sk Sk

g

/ dpise, (%) X, X/) (Maled) — led), Male)) — gle))) +/S dus;(e) lle —Mafe)*

= Z\/Ol(scf) :1 + A = 2/ARe (1 4 Bu‘)] +/ dus(e) [le = Ng(e)|*

Sr

=Y Vol (Ser) [1+ A —2/A +V/A Y |Bul’ + /A ||w[||2]+/ dus, (e) le — Male)|’
- | B Sk

(using eq. (15.6.1)).

Hence, this expression is minimal if and only if Vi, j € {1, ..., f}, By=0andVie {1,..., f}, w =
0. Therefore, we define ¢r_,¢ by:

Bound on ||v — @fF_c(v)|. Letv = Z vie; € F. We have:
j=1
f
Iv = rclv) Z‘VJ‘ le; = @r—clepl] < £ vl sup [le; = ge-cle)].
J

Then, for j € {1,..., 1}, |[e; = Male))|| + 4 = 1 implies:

e; —[g(e))
‘1 _f‘ = |[e; = Mg(e))| | /1 +\;_/ H < [lej = Male))].

therefore:
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le; — or—cle < lle; ~ Netep]| + [Mete) — or—ofe,]

= ey = Rate)l] + ‘\/)Tf_w <2 [le; = Maley)|| -

Hence, v — pe—alv)| < 2/ [v] sup e, Mefe)| < 27 v]| sup e —Mfe)]. O
J ec
[[ef="

Proof of prop. 15.5 Since (e;),y is an orthonormal basis of H and J, has finite dimension, we
can find /{ € £ such that:

€

1. sup |le =Ty (e)|| < ——:

665 H /w( )H 2#)
[[el|=1

and /; such that:

2. /é Nl=o & dim l_llé <3]> + dim (H/ N j‘f/) =dimd,;
3. dim3(;, > dim T, (d;) + dimXK.

Let I":= U U I/ and /5 := 1"\ I. We have dim [, (d)) + dim (3, N H,) = dimd, and K¢ L 7,
hence for all k € K, there exists g € I_I,é (d;) such that:

vj € 1, {TW(h). Tgu)), + (Mylh). i), = 0.

This holds because, for all families of coefficients (af)jej such that Zj al <ﬂ/§(fj), : > = 0, we have

s
>_;o/*f; € 3 (from point 155.2 above), and therefore ) o/ (Ny(f;), Mi(ge)), = <Z/ a*t;, gk>% =

0. So, for all k € K, ((I‘I,(f/), I_I/(gk)>/) is in the image of ((H,é(fj), ->,,)
3

j jEJ.

Next, using dim3, > dim [y, () +dimXKy, there exists a family of vectors g{ € H; N (1, (2],))l
for all k € K such that:

vk, L€ K, (TWg). Tg0), + (9. g1); + (94 gi), = 0.

Now, we define ¢ : J; & Kx — JH; by:
Vi€ J, o(f;) == @390, (1)) (Where @y, .3, is defined as in lemma 15.6),

i(gs) + g + g
dVk € K, = .
o #g4) IMi(gx) + gi + gl

From the proof of lemma 15.6, ¢33, (d;) = Iy (dy). hence, for all k € K, we have, by con-
struction of g, and ¢}, ¢(gx) L ¢(d,). Also by construction of g}, we have, for all k,[ € K,
(o(gx), ®(g1)) = Ok Therefore @ induces an Hilbert space isomorphism g, & K¢ — Img.

Finally, we can check that defs. 15.4.3 and 15.4.4 are fulfilled. O

Proposition 15.7 With the notations of def. 154, €, < is a directed set.

Proof Let (11, I, /i, Ki, @1, &) € Eand (b, 5, b, Ky, @2, &) € €. We define | = UbL, J = /iU,

K = KiUK; and € = min(ey, &) > 0. Then, since (e;),cy is an orthonormal basis of H, we can
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find / € £ such that [ C [ and dim 1, (g, & Kx) = dim (3, ® K).
From prop. 155, there exist /' € £ and ¢ : §, ® Kk — H; such that (/, I K, 6) e & We
define /' = /UL UT and ¢ : ;& Kx — H, by:
Ve d e Ke, glv) = alv).

Then, (I, I, J, K, ¢, €) € €and (h, K, i, Ki, 1, &), (b b b Koo &) < (L1, K, @, €).
U

Proposition 15.8 We consider the same objects as in def. 15.4. Let € = (/, I, J, K, o, 6) e &
We define:
1 Lo ={l"el|l'cl}

2 ¥I"e LU {N}, gy =3, equipped with the induced symplectic structure Q;
3. V1" e LEu {]N} , J’ff// = (p<3j ) JC/(']R> CHy CHyp;

=
4 VI"e LEU{N}, o = ( H”HJ@SKK,]R*)&) o (<p|3j@j</<,]R"<P<3JEBJ<KJR>) where I1 is the orthogonal
projection on J;

5.0, 1 € LEUANY [ C Iy, i = idy,

Then, £° is cofinal in £ and ((H,&N),//Eﬁgu{w} (H) pregerng - (JT,SPS ) (0p)pegenpwy | LS an

elementary reduction (def. 3.7) of (£ U {IN} , K, ).

Proof For / € £, IU /' € L%, hence £° is cofinal in £, so in particular it is directed (and so is

L U {IN} since it has a greatest element).

Then, it is clear from the definitions that (£° U {IN}, %, 7°7¢) is a projective system of phase
spaces.

Replicating the proof of prop. 15.3, we can show that (H], d)® Kk R, H”a,@xmﬁa,) is a phase

space reduction of §; ® K. But since @[y g, i, is unitary, (d;, 3, 05) is a phase space

reduction of Img, hence of Hy», for all /" € £ LI {IN}.
Let If, 1y € L£° U {IN} such that I C /Y. We have my_ <.’H,2/> = [y <f]-(,2/> = 3, since

,2/ = J—C,? C Hy. Lastly, for x; € 5—(,?, yr € 32/ = J,, we have:

3 € HGI0500) = vz & my_pla) = x1) s (ax2 €TI0 =y & x= x1)

& (85bx) = y2).
therefore def. 3.7.3 is fulfilled. 0]

Proposition 15.9 We consider the same objects as in prop. 15.8. We define:

1.&:=¢8U {IN} (we extend the preorder by Ve € &, ¢ < N), Ve € &, L° = LU {IN}, and
LN = (N}
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2 ¥e= (11,1, K @ ¢)€&VI"eL el =], and ¢(N, N) = N;
30N =dn =39 Hy =39 @ Kg and o = 0;

19 ) (e By EELler< e & I C B A = Ty e (T for J,J € LU{N}

[

with J C J has been defined in defs. 15.35 and 15.3.6).

Then, (8, (2°) @) mesz - O emese - (7750

o , (5,5,,)(&,//)6;@5) is a reqularized

)(81,”)#(62,/&’)
reduction (def. 3.16) of (£ U {IN}, %, )",

" S ol 1
Additionaly, we have a bijective map « : S(EZ,H,JT) — 8Ly g

Proof € is a directed set (for it has a greatest element) and (Zg) : is a family of decreasing
e

cofinal parts of £ LI {IN}.

Next, we have (e, ") € L, §5 = Joe.rny hence for (e, 1) < (€2, 15) € EL, 775 is well-defined

=1
as a surjective map 3‘,23 — 32} and it is compatible with the symplectic structures.

e—e
4 u
=1

Moreover, for 1 = €, € &, this definition coincides with the map 7 that has been introduced

in prop. 15.8. Hence, for all € € &, we have from prop. 15.8 that (¢, H®, 757, 0°) is an elementary

~ l
reduction of (Ls,}f,ﬂ) )

~ ! ,
And (HN,%N,JT]N”]N,é]N) is an elementary reduction of (L]N,ﬂ-f,ﬂ) since L™ has only one

element and (JN, HN, 0N ) = (3,d ® K, 0) is a phase space reduction of Hy = H (prop. 15.3).

Lastly, using ¢ : €L — LU{IN} (€ satisfies that ¢ <§E> ts cofinal in LU{IN} since it contains IN,

~~ d
which is a greatest element in LL{IN}), we have by prop. 2.9 that (EL, d, 7T) is a projective system

€ =&

- @) emees (i) e pmezz (”/ga/q/

of phase spaces, thus (g (55) - 0P e mezz | 1S
e '

)(8«/4/)#(62,/5)
a regularized reduction of (L U {IN}, X, 7). And, in addition, there exists a bijective map « :

1 l
S(Ez,g,m - S<Lu{1N},3,n'> : [

Lastly, we can investigate the convergence and check that we are indeed in the optimal situation
discussed at the end of subsection 3.2 (more precisely in prop. 3.23). As announced above, the key
ingredient for the convergence is the auxiliary result from prop. 15.5, that we proved in the process
of establishing the directedness of &.

Theorem 15.10 We consider the same objects as in prop. 15.9. Let y € § = JN. For € € &, we
define:

1= (0r) ™ (Non(Y)) © Iy © Fow = €

2. W& =70 (), where 7; : P(H) — g(iﬁrg{ﬂ) is defined as in prop. 3.23.
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Then, the net (W¢)__. converges in g(lﬁmﬂ) to g (07" () (def. 321).

ect
Proof For e = (/,/',/,K, ¢, €) € & we have, by putting all definitions together:
Y = @ (IM)(Y) + Kk r), where 1) is the orthogonal projection on J;,
hence, for all /, € £:
(We],, = v, (@) = M, (@ (M) + K ) ) € I,

Let [, € £ and let U be an open set in H,, such that U N 1M, (¢ + Kgr) + @. let ¢ €
Un M, {y+XKgr)and let e, > 0 such that V" € H,,, |[¢" — || <3e (¢l +1) = ¢" € U

Next, there exits y € Kg such that ' = I, (¢ + x). We choose /;,K; € £ and ¥’ € Kk, r
such that || — 1) (Y)|| < & (|l + 1) and [[x — x| < e (]| +1). And we can find /; € £ with
I O 1, such that dim[1, (d), ® Kg,) = dim (J), + Kx,). So, from prop. 15.5, there exist /; € £ and
@1 :d), ® Ky, = Hy such that &1 .= (h, I}, 1, Ki, @1, €1) € E.

Let &, = (/2, 5, b, Ko, o, 62) e & with & = €1. Then, we have:

1M, () =T, 0 @ 0 T, ()] < || — 92 0 T, ()]
<l =10, @) + ||, () — @2 0 1T, ()
<l =10, @) + e ||, )|

< e ([l +1).

Moreover, we have x' € Kg, r C K, r, so there exists x” € K, r such that I, o @,(x") =
M,(x") and we have:

1M, 00 =, 0 @ (x")|| < 1[Ny 00 =My, 0 @ (x”)]] (since f, C 1y C 1)

<1 O) = P00 < e (gl + 1)

Therefore, ¢/ :=T1;, o ¢, (1), () + x") € U, but since " € [We],, we have Ve, 3= &, [W¥], N
U+ .

Let K be a compact set in 3, such that K N I, (¢ + Kg) = &. Hence, there exists e; > 0
such that:

Ve 3, (I eN, (Y+Xe) [ ¢ —¢"] <26 (gl +1)) = (¥ ¢K).

As above, we can, using prop. 15.5, construct & = (/1, I h, Ky, e, 61) e & with [, C /
and [ =T ()| < & (IWll +1). Let & = (b, b, b, Ko, @2, €) € € with & = & and let
J" € [W=], . Then, there exists x” € Ky, g such that " =1, o @, (IM},() + x”) and there exists
X € K, C Kg such that M, o @o(x”) =I,(x’). Moreover, we have again:

1M, () — T, 0 @2 o M ()| < 260 (4] +1).

We define ' = T, (¢ +x') = T, () + 11, o @ (x") (since [, C 1 C L) and we have
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|¢" = ¢'|| < 2e (| +1), hence " & K, and therefore Ve, 3= &1, [W9], NK = @.
So, the net ([Wg],o)geg converges in P (3(,) to I, (Y + Kg) = mw_y, (6" (¢)), thus, the net

(W9).ce converges in g(zg{,ﬂ) to 0} (5’1 <¢/>) d

16. Second quantization of the Schrodinger equation

In this section we want to apply the projective state space formalism to the second quantization
of the Schrodinger equation. In other words, we will consider the one-particle quantum mechanics
defined on an Hilbert space H as a classical field theory (looking at the wave function as a classical
field, whose evolution is described by a linear partial differential equation, namely the Schrodinger
equation), and we will discuss how this field theory can be quantized. The standard way of doing
this leads to the bosonic Fock space build on H [41, section 1.3.4]. Here we want to compare this
trusted path with the strategy outlined in the first part of the present work (chaps. 1 and 2): first,
look for a rendering (def. 2.6) of the classical field theory by a collection of finite dimensional partial
theories, then come up with a regularizing procedure to implement the dynamics (subsection 3.2),
and, last but not least, take advantage of this classical insight to build a quantization of the theory
(section 6), thus obtaining a projective system of quantum state spaces (subsection 3.1). In particular,
we want to use this example to illustrate how the classical regularization of the dynamics lays the
stage for a corresponding procedure at the quantum level.

16.1 Classical theory

In section 3, we only considered dynamics specified by constraints, whereas here we have a theory
originally formulated with a ‘true’ Hamiltonian. However, this is quickly fixed, since there exists a
routine trick (discussed in [105, section 1.8] and similar to the more general procedure presented in
[52]), that can be physically interpreted as introducing an artificial time parametrization, and allows

to transform any theory on H with an non-vanishing Hamiltonian into a theory on H x R? with

an Hamiltonian constraint (the R’ part holds the time coordinate and its conjugate momentum,
aka. the energy variable).

Note that there is a technical subtlety arising when we try to write the theory on an infinite
dimensional symplectic manifold in the naive setup of def. A.l, and we are forced to require
the one-particle quantum Hamiltonian to be a bounded operator (we cannot simply restrict the
constraint surface so that it is included in an appropriate dense subspace, for it would then cost
the reduced phase space its strong symplectic structure, by spoiling the needed non-degeneracy
property). However, we will be able to lift this restriction without great efforts when switching to
the projective state space formalism.
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Proposition 16.1 Let { be a separable, infinite dimensional Hilbert space and H be a bounded

self-adjoint operator on 3. We equip M := FH x R? with the strong symplectic structure:

1 V(@1 ur,v), (@2, uz,va) € M, Quiler, un, vis @2, Uz, vo) = 21m ({1, ¢2) ) + (U2 vy — ug va).
We define:

2. M= {(, t, E) e M | E = (¢, HY) L

3. M = JH with symplectic structure Q,, :=2Im{-, - );

6 : MSHELL N MDVN

4 (U, t, E) v expl(itH) ¢

Then, (M"™, M, 9) is a phase space reduction of M (def. A.1).

Proof From prop. 15.1, Q,, resp. Q),,, defines a strong symplectic structure on M™, resp. M"™.
The map 0 is surjective and, for s, € M™, 57" ((h,) = {(exp (=it H) ¢, t, E,) | t € R}, where
E, = (o, H,). So 67" () is in particular connected.
Let (¢, t, E) € M™™. We have:

Tgoe) VC™) = {(@, u, 2Re (@, HY)) [ o € H, u € R},
and:

T(z,b,r,E)CS . T(z,b,t,E) (MSHELL) N eiflty) (MDVN)
(¢, u, 2Re (@, HP)) = e+ iue Hy

Hence, Tiy1.6)0 is surjective and, for (g1, uy, 2Re (@1, HY)), (@2, u2, 2Re (@2, HY)) € Ty (M),
we have:

Qo (@1, ur, 2Re (@1, HP) @2, 2, 2Re (@, H)) =
=21Im (@1, @) + 2uxIm (@, iHY) —2uyIm (@, iHY) + 2uquz Im (i HY, i HY)

= 2Im <T(wyt£)5 ((p1, uq, 2Re <(,01, H¢> ) , T(L/,,tyg)é ((pz, uy, 2Re <(p2, /_/QZ/> )>,

therefore QK|N|T(¢JVE)(MSHELL) = [5* QDVN](‘#J,E) . |:|

On J{ viewed as a phase space, we can define some remarkable observables (this defines the
algebra that we will latter endeavor to quantize): of interest are for us the scalar product with a
vector e € H (that will give rise in the quantum theory to the corresponding creation and annihi-
lation operators) and the expectation value of an operator on JH. Additionally the Heisenberg (ie.
time-dependent) operators of the first-quantized theory can be seen in a natural way as dynami-
cal observables associated (in the sense of def. A.2) to particular kinematical observables (up to a
technical artifact: we restrict the support of the considered observables to spheres in J{ because we
had defined the map (-)™ translating a kinematical observable into its dynamical version only for
bounded observables; note that, alternatively, we could just weaken this requirement, for it would
be enough to only demand the kinematical observables to be bounded on orbits of the dynamics).

Proposition 16.2 We consider the same objects as in prop. 16.1. Let e € . On HH we can define
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the observables:
ae : H — C andai:%_)C
g = (e, ¢) g (g e)
We have, for all e, f € J:
{ae, ar}tyc =0, {a}, a7 }4, =0, and {a., aj}4c =i (e, ).
Let A be a bounded self-adjoint operator on H. We define on 3 the observable (A) by:
Vg e H, (A) () = (¢, Ag).
We have, for all A, B bounded self-adjoint operators on H and e € J:
{(A). (B) }5 = i ([A Bl ). {ac. (A) }5o = iane, and {a, (A) }, = —ial,.

Lastly, for A a bounded self-adjoint operator on 7, N > 0 and t, € R, we can define on M™"
the observable:

(A, N, to) M — R
A if =N t=t, ,
G L [T =N e
0 else
and we have:
Vg, € M, (A, N, )™ (W) = sup (A N, t,) (Y, t, E)
(.t E)eo ()

= (16.2.1)
0 else

_ {<enoHAe—zt0H>(%) ([l = N |

Proof In order to compute the Poisson brackets between observables of the type a. and a;, we
have to be careful not to mix up the complex structure on I with the complex structure coming from
a. and a; being C-valued. Therefore, we will write /¢ for the scalar multiplication of ¢ by i (in
H seen as a C-vector space) and 1¢ for the vector (i ®g ¢) in C @r H =~ Te(H) (for H seen as
a real manifold). Extending Im (-, -) and Re (-, ) by C-bilinearity on Tg(H) (because we want
{-, - }4 to be C-bilinear), we then have:

Im (¢, Jop) = —Im (J¢', @) = Re (¢, )

& Im (¢’ 19) =Im (19, ) = iIm (¢, @).
With this we can compute the Hamiltonian vector fields at ¢ € I of a, and a, for e € H:

[dac], (@) = (e, ¢) = 2Im <—j7e + '79 <p>

& ldaily o) = (peh = 2m (=5~ 0).

Hence, for e, f € H:
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Jf f  Je e
{aer af}{}{#} = 2|m <Xa[,gljy Xapldj> = Zlm <—7 —+ ?’ —7 =+ 7>

and {a, a?}gf,lgj = 2lm <Xa;,¢u Xap,zp> =2Im <—— -, ——=+

=i (Re (f, e) —ilm (f, e)) =i (e, f).
Similarly, we have for any A bounded self-adjoint operator on H and at every ¢y € H:

[d (M), = 2Re (A, @) =2Im (=JAY, @),

hence, for A, B bounded self-adjoint operators on H, e € H, and ¢ € H:

{ (A (B) by = 2Im (Xigpun Xpaju) = 2Im (=) By, —J AY)

= —i ((BY, Ad) —(Ag. BY) =i (A By ) (4),
J
{ae (A baey = 2Im (Xiapgo Xopw) = 21m <—JA b =5+ '§>

=i (—ilm (Y, Ae)+Re (Y, Ae)) = ian(y),
and {a%, (A) Lo, = 2Im (Xt Xagg) = 21Im <—jA ¢, _179 - '§>

=—i(ilm (Y, Ae)+Re (Y, Ae)) = —iaj.(y).
Lastly, eq. (16.2.1) comes from:
Vi € M, 07" (o) = {(exp (=it H) o, t, (H) (o)) | t € R}

The projective system we will use here differs significantly from the one we were using in the
previous section (prop. 15.2), for we do not rely any more on the choice of a particular basis to define
a family of vector subspaces: instead, we simply take as label set the set of all finite dimensional
vector subspaces of JH (this structure is of course more satisfactory from a physical point of view;
as mentioned at the beginning of section 15, we could not use it in the previous example, for our
aim was to illustrate the regularizing strategy, while this larger label set contains a cofinal family
on which the linear constraints we were considering form an elementary reduction).

Note that the space of states of this projective system can be naturally identified with the algebraic
dual on H, in such a way that the injection of H into the projective state space (inh the sense of a
rendering, as introduced in def. 2.6) corresponds to the identification with its topological dual.
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Proposition 16.3 Let J{ be a separable, infinite dimensional Hilbert space. We define £ as the
set of all finite dimensional vector subspaces of JH{ and we equip it with the preorder C. We define:

1.VJ € LU {H}, My = T x R?, equipped with the symplectic structure Qs induced from
MK‘NV QKIN;

23,7 € LU{H}, withT C T, w5,y := Ty|, 5 x idg2 where Ty is the orthogonal projection
onJ

Then, this defines a rendering (def. 2.6) of M by the projective system of phase spaces
(£, M, )1 We define o} : M™ — 8{; yqun vy @5 in def. 26,

]TKIN

Additionally, we have a bijective map {** : H* x R* — S&MW ) such that ¢ oot M —

H* x R? corresponds to the canonical identification of J with H' C FH*.

Proof The proof works in the same way as the proof of prop. 15.2. O

We are ready to go on to the formulation of an approximating scheme for the dynamics. The
approximation here will take place in two different directions. First, we introduce a deformation
of the constraint surface, controlled by a small parameter € > 0, to replace the non-compact orbits
of the exact dynamics (going in time from —oo to +00) by compact orbits (running only through
a finite time interval): the rough idea is that instead of having a ‘free particle’ in the energy-time
variable, we put an harmonic oscillator, thus preventing the time variable to grow for ever. This
will be more comfortable when switching to the quantum theory: having compact orbits is closely
related to having well-normalized states solving the quantum constraints (heuristically, quantum
solutions of the constraints have much in common with classical statistical states, supported by the
constraint surface and constant on the gauge orbits, and these will only exist as properly normalized
probability measures if the orbits are compact).

The other aspect of the approximation is what will allow us to build, for the approximated dy-
namics, a corresponding elementary reduction on a cofinal part of the projective system introduced
previously. For this, we truncate the exact Hamiltonian H of the first-quantized theory as [15 H [
where J is a finite vector subspace of H, such that H is bounded on J (from now on, we can
indeed relax the requirement we had above, and we allow H to be an unbounded, densely defined,
operator on H). In other words, we project the Hamiltonian flow on the symplectic submanifold
J x R? of H x R” Moreover, we include in the approximated dynamics additional second class
constraints, forcing the wave function ¢/ to belong to J (by definition of the truncated Hamiltonian
these additional constraints are preserved by the truncated evolution): the point is that it does not
make sense to keep the degrees of freedom orthogonal to the subspace J since with the truncated
Hamiltonian we would not evolve them at all and they would soon lie very far away from their
correct values (note that the degrees of freedom along J are not evolved exactly either, but at least
they are evolved approximately; the error comes from neglecting the backreaction of the degrees of

freedoms along J+, due to the cross-terms of the exact Hamiltonian H between J and HL).

The side effect of these additional second class constraints is to make the approximated reduced
phase space finite dimensional (aka. M2, using the notations of prop. 3.24): this is not needed for
the construction (in general only the ‘partial’ reduced phase space M;YN'S, arising from the constraint
surface projected on M;" for some 1) € L¢, is expected to be finite dimensional), but it will simplify

the structure of the dynamical projective system.
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Definition 16.4 We consider the same objects as in prop. 16.3. Let H be a densely defined (possibly
unbounded) self-adjoint operator on . We define € as the set of all pairs (J, €) such that:

1.de€Land VY €7, |HY| < oo;
2.€>0.

On &€ we will use the preorder:

3,7, €) & (HCH/ & 626/).
Proposition 16.5 €, < is a directed preordered set.

Proof Let (J1, €), (2, €2) € & Then, we have J1 + 3> € £, V¢ € J1 + 3o, |[HY| < oo and
min (1, €2) > 0. Hence, (1 + 2, min(ey, €)) € € and (J4, &), (d2, €) < (J1 + 2, min (e, €)). O

Proposition 16.6 We consider the same objects as in def. 16.4. Let € = (J, €) € €. We define:
1. L9 ={JeL|dcCT}
2 VI e LT}, M3™ = J equipped with the symplectic structure Q,,, 5 induced from M™, Q,.;

08}

VI E LU {HY, M = {(¢, t, E) € My € M

(E = (. HY) + €' ¢ = &}
VI e LEU{HY, V(Y t, E) € MG, 85, 1, E) = exp (i tTy H) Y € 3
5. V9,7 € L5U {H}, with I C T, m57¢ = idy.

i

DYN,E—E

Then, £¢ is cofinal in £ and ((M;YN’S)jeuu{}c} (VG ) segenpp - (957 )gey (5§)jeuu{g{}) is

an elementary reduction (def. 3.7) of (£ U {3}, M, ;TK'N)l.

Proof For J € £, J+J € LF, hence £ is cofinal in £, so in particular it is directed (and so is
LU {H} since it has a greatest element).

Then, it is clear from the definitions that (£° U {H}, M™™ ¢, 777¢) is a projective system of
phase spaces.

Now, we define:
6 M = {w, fE)E M €M™ | (E— (i, HP) + €' 2 = 62};

7. VW, t, E) e M, o0°(¢, t, E):=exp(itllyH) Yy e,
and we want to show that (J, M, 0°) is a phase space reduction of M.

My H|,_4 is a bounded (by definition of €), self-adjoint operator on J. Therefore, the map 0°
is surjective and, for ¢, € 3, 05" () = {(e_ﬁ 0Ty, Lsin®, E, + € cos 9) ‘ RS [O,ZJT[]»,
where E, := (1, H,). So 057" {(,) is in particular connected.

Let (¢, t, E) € M®. Ty (M) is given by:

{lpu ey |ped & 20VT= (v—2Re (o HY)) + 26 tu =0}, (1661)
and we have:

.5y 0% 0 Tigre) (M) — 3
(@, u, v) — iuelMH Ny Hy+eltMat g
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Hence, T(yr) 0 is surjective and, for (@1, uq, vi), (@2, U2, v2) € Tiyr.r) (M), we have:

QKIN ((p1r U1I V1; (PZr UZI VZ) =

et

V1 —€2t?

et

=21Im <(,01, (,02>+U2 2Re <(p1, H¢/> — \/’I_—W

(using eq. (16.6.1))

uy

Uy ) — Uy (ZRe (2, HY) —

= 2Im (Tiy,e6)0° (@1, ur, v1), Tiwer) 0 (@2, Uz, v2)) (like in the proof of prop. 16.1),
therefore QKW]TWE)(MS) =[0"" Qonaliyip)-

Thus, for all I € £° U {H}, (M7, MF™*, 67) = (J, M*, 6°) is a phase space reduction of
M, hence of M5".

Let 3,7 € £° U {H}, with I C I'. We have:

—J

JT;/V <M§7m,€> — {(Hj le t, E) ‘ ¢ [ 8 & (E _ <¢,’ /_/¢>)2 + 64 t2 _ 62} _ M;HELL,EV
since J C J. Lastly, for (¢, t, E) € M55, Y, € M5 =, we get:
(3((7[//, t/, E/) E M;»;ELL,E/&;;/(L//’ t/, E/) — (7[’(/) & ﬂ;\/:g(w/’ t/, E/) — (170, t, E)) @

e (AW, E)eM T o L E) =1, & (WLt E) =t E))

& (05, t, E) = i, = w57 C ()
therefore def. 3.7.3 is fulfilled. O

Now, as we did in the previous section (prop. 15.3), we introduce a more concise dynamical
projective system, that we will be able to identify with the one on the label set EL using the
facility developed in prop. 2.8. This dynamical projective system could be thought of as a rendering
(def. 2.6) of the dense domain D of the operator H, except for the fact that D is actually not a
strong symplectic manifold (unless H is bounded, in which case D = H). For the same reason, the
assertion in prop. 16.8 could not be put in the form of prop. 3.24, since we are lacking a phase space
reduction at the level of the infinite dimensional manifold M** = H x R? when H is unbounded.
Instead, we collect in prop. 16.9 a set of properties imitating the framework of prop. 3.24, and we
will formulate the convergence on this substitute ground.

It is worth mentioning that here, as in the previous example, we are able to directly give a
projective system rendering the space of dynamical states, and more generally being able to find a
regularizing scheme in the sense of subsection 3.2 implies that one can construct such a dynamical
projective structure. This perhaps requires a few comments. At first it sounds as if implementing
and solving the constraints requires to already know completely the structure of the dynamical
theory. However, one should keep in mind that solving the dynamics and obtaining the dynamical
theory is not simply constructing the space of physical states: the more crucial part is to construct
the dynamical observables, not simply as a space of functions on the reduced phase space, but as a
family of non functionally independent elementary observables, each of which should be linked to
a physical meaning (aka. an experimental protocol).

This point is transparently illustrated by the toy model we are studying in the present section.
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The submanifold t = 0 is obviously a gauge fixing surface of the theory we are considering, and
this is what allows us to obtain immediately a description of the reduced phase space. But, clearly,
having realized this property of the dynamics does not mean we have solved the theory: if we want
to know how a given system will evolve we need to define dynamical observables associated to
kinematical ones with support on other constant time surfaces. Indeed, the dynamical observables
associated with time t = O are the only ones that can be directly defined on the reduced phase space
defined through the aforementioned gauge fixing. And, although they provide a parametrization of
the dynamical state space, they do not allow us to compute predictions for any arbitrary experiment,
since, as underlined many times in the discussion of the handling of constraints (section 3), the
predictive content of the theory is encoded in the functional relations among an overcomplete set
of dynamical observables, arising from functionally independent kinematical observables.

Note that in any theory admitting some obvious gauge fixing (which needs not to be singled out
nor preferred in any sense: in the example at hand, selecting t = O rather than any other time
surface is an arbitrary choice), we can use this gauge fixing surface as a starting point to design an
approximating scheme: it provides an explicit description of the reduced phase space, and we can
use it as a pivot to define projections between the successive approximated dynamical theories (for
we can relate approximated orbits depending on their intersection with the gauge fixing surface, as
we indeed do in the present example). In particular, this suggests that such approximating schemes
could be obtained without many difficulties within the so called ‘deparametrization’ framework [33].

Proposition 16.7 Under the same hypotheses as in def 16.4, we define:
1. Ly ={d € L|VY el |[HY| < oo} with the preorder defined by C;

2. Vg € Ly, My~ := 7, equipped with the symplectic structure Qg g induced from M™, Q,;

08}

D ={yeH||HY|| < oo} (D is the dense domain of the self-adjoint possibly unbounded
operator H) and M3 :=D;

4.Y9, 3" € Ly, with g C J', 3”5 = Tgl,_; where Ty is the orthogonal projection on J;
5.9 € Ly, 735 = Mylp_g.

Then, (£y, M, )" is a projective system of phase spaces and we can define (in analogy to
def. 26) a map o)™ as:

DYN . DYN ~l/
Ol . D S(LH’MDVN'TI—DYN) .
Y= () s,

DYN .

Additionally, we have a bijective antilinear map (" : D* — S%LH’MDYNWDW) such that (™" o o

M3 — D* is the restriction to D of the canonical identification of H with D’ C D*.

Proof We prove that £ is directed like in the proof of prop. 16.5.
Ford € Ly, we have that 7" 4 is surjective (since § C D) and, for J C J e Ly, TG, O p g =

DYN DYN

7,4 (but speaking of compatibility with symplectic structure does not make sense for 3" 4 since

D is not a strong symplectic manifold).

The rest of the proof works as for prop. 15.2. O

Proposition 16.8 We consider the objects introduced in props. 16.6 and 16.7. We define:
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1. Ve€ &, L =L U{H};
2 Ve=(J, e) €&, VI L’ 0™e 0):=7;
3.V(er, Jh), (€2, Jo) € EL (&1, T) < (€2, o)y 713557 1= Ty ) tomie 1) -

DYN,E2—& >

DYN,E
(MJ )(s,J)eSL/’ (”Jzﬂﬂw )(51,31)4(52,52)' (53)(&5)680

Then, (&, (£") (Ve s a

eel’ )(8,3)686’ !

regularized reduction of (£ U {H}, M™, 7™ and we have a bijective map k™ : S%SL/,MDYN’,,DVN) —
!
S(LH,MDW\,]TDVN).

Proof € is a directed set (prop. 16.5) and (L/S)668 is a family of decreasing cofinal parts of LUL{F}.

Next, we have V(g,J) € €L, MJ™* = Mipw .5 hence for (g1, 71) < (€2, 72) € €L/, my ™
is well-defined as a surjective map Mj™ — Mg"“" and it is compatible with the symplectic
structures.

Moreover, for €1 = &, € &, this definition coincides with the map ;""" that has been introduced

Jr—T4

in prop. 16.6. Hence, for all € € &€, we have from prop. 16.6 that (M€, M€, 7™¢7¢ §%) is an

elementary reduction of (£, M™, JTK‘N)l,

Lastly, using € : EL" — Ly (with €7 (EL") = L), we have by prop. 2.8 that (€L, M, JT'“N)l

is a projective system of phase spaces, thus:

&, (£")

DYN,E2— &1 £

DYN, &
(MJ (ed)eeLl’’ ( J2—=0 )(51,31)4(52,32)' (53)(5,3)68L’)

M;HELL,S)

eel’ )(g,J)ESL/ ! (

is a reqularized reduction of (£ U {FH}, M™, ]TK'N)l. And, in addition, there exists a bijective map
KDVN S&LEL/'MDVN’JTDVN) — SiLLH,MDYN,ﬂDYN>' D
Proposition 16.9 We consider the same objects as in prop. 16.8 and we additionally define:
1M =My =D,

2 MG = {( t, EyeMy [y eD & E=( HY)};

D . shewe, D ow,D
R Y s, ¥ o

3 (Wt E) — explitH) ¢

DVN,D*’E . DYN
4. Ve J)e &L, myly " = T oom(e,3) -
Then, we have:

5. 63 is surjective and, for all ¢, € M, (592)71 (o) is connected;

6. for all (e, 9) € &L/, m D7 is surjective and, for all (g1, J1) < (g2, J) € &L, T o

DVN,'D—>62 DVN,D—>€1

]Tg‘f*)jz - ]T}fﬁfh

Proof Since H is self-adjoint, exp (—it H) defines a unitary operator on JH, and this operator
stabilizes D, for YViy € D, ||H exp (—itH) || = |lexp(—itH) HY|| = |H Y| < oo. Hence, for

DYN,®.
Yo € My ™

(62) " (o) = (. t, E) €M [t ER, = exp(—itH) o €D & E = (h, Hi) < c0}.
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Next, the statements 16.9.6 follows from the proof of prop. 16.7 (for ¥(e, J) € €L, M;™* =
Mg and Mg = MPY). O

We close the discussion of the classical part of this toy model by proving that we indeed have
suitable convergence at least for the dynamical states corresponding to vectors in D, and, more
precisely, that the successive projective families of orbits approximating such a state on the kine-
matical side correctly converge to the family arising from its associated orbit in the pseudo phase
space reduction of M™ (that we introduced in prop. 16.9).

Theorem 16.10 We consider the same objects as in prop. 16.9. Let ), € D. For € € &, we define:
1= (00 (W) ) © MG C MG = M
2. W= 0" (JF), where o™ : P (M) — /S\é(L,MK'N,JTKN) is defined as in prop. 3.23.
Then, the net (W¢)... converges in g(iL’MKW,HK.N) to o}" ((533)_1 <¢’o>) (def. 3.21).
Proof For ¢ = (7, €) € €, we have, from the proof of prop. 16.6:
Yo = {(e*é O 1M (4,), 1sin 6, Ej + € cos 9) ’ 0 e [O,ZJT[},
where E5 := ([y(¢,), HTy(,)). Hence, for all J € L:
e, = {(ﬂg e~ =0t (), L sin 0, Ey + ecose) ‘ 6o, 2n[}.

And, from the proof of prop. 16.9:

[EfN ((533)*1 <¢o>)]j — {(Mye "y, t, En) | t € R} where Ep == (¢, H ).

Let J € £ and let U be an open set in Mj", such that UN [8fN ((533)71 (ngo))]j +o. letteR
such that:
(Mye """y, t, Ep) € U,
and let ¢; > 0 such that:

Vg €J, VE € R,
(o =M™ | <er (Il +1) & |E-Ep[<e) = (@t E)eU).

Lot ey g (14 5) > 0 and & min (e, 737) >0

By spectral resolution, we can define H® = ¢, [2—2 I—/J (where | - | denotes the floor function).

Then, we have [H, H?] = 0, |H— H%|| < €, and H® has discrete spectrum included in €, Z.
Hence, there exists N € IN such that:

+N
M—Zw*
k=—N

€1
g?!
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where, for k € Z, y* is the projection of ¢, on the eigenspace of H? with eigenvalue e k
(defining these eigenspace to be {0} if €; k is not in the spectrum of H).

We define g, = Vect {¢* | k € {—=N, ..., N}}, 3 isfinite dimensional, and Vi € 35, [|[Hy| <
& Y| + Nex ||| < oo, hence J, € L. Moreover, g, is stabilized by H? and |, — My, Yo <
3 €1. Next, we define g5 = g, + Vect {¢,} € Ly (because ¢, € D).

Now, we consider € = (d, €) € &, with (J, €) = (J5, €3). We choose 6 & [0, 2] such that
sinf = et (let] < e5]t| < 1) and we define:

Q[J — Hj efé sinflg H I_IH(LL’O)'
We have:
HLL, o |_|f] e—[tH lyljoH < He—itl_lgH Hﬂ(wo) o e—itH LLIOH

< [l Mo i | e My | + [le T Mg(o) — e | +
- [|e T = idae | [l (o)

< 2 [elIH=HT | [l || + [Je ™™ Mg, (o) — =7 Mg, ()| +
{7 MM by — Mg, (o)) — 77 (ty — Mg, (o))

< 2 [l =] o]l + [le™ " Mg, (o) — e Mg, (o) || + 2 (b — Mg, (1)

€1

€
< 251 s || —1-27 <er (T+ [[gol),

and:

|Eg + € cos O — Ep| < [(y, (H—=T13Hy) &) + €1 = € (since ¢, € 35 C J).

Therefore, (¢, 1 sin8, E5 + ecos6) € U, but since (¢, 1 sin6, E5 + e cos 0) € [¢°];, we have
Ve=1(J, €)= (03 &), [YhnU+ @

Let K be a compact subset of M", such that K N [8{“ ((533)_1 <¢’a>)] = . Hence, there exist
9
T >0 and ¢ > 0 such that:
Vel Vte R, VE € R,

(¢ =T || < el +1) & |E=Enl<e) or [=T| = (Wt E)&K).

Following the same path as above, we can define:
& =r7log(1+%) >0,
and construct a vector subspace J, € £ such that:

VI ELyldDd VieR, [le M My(gy) —e || <2 ] =1 [lo] + &1

Analogously, we define €3 = ¢ and g5 = J, + Vect {¢,} € Lyy.
Now, we consider € = (7, €) € &, with (7, €) = (J5, €5), and 6 € [0, 2x]. If [1sin 6] < T, then
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we have, with t = %sln 0:

[P em e ) = My e | < 2 (04 ),

and:

|Eg+ € cosO— Ep| < &
Therefore, Ve = (J, €) = (J3, &), [y, N K = @.

So, for every J € £, the net ([LIJg]J)Ee(S converges in P (Mj") to [AK‘N ((5}’%)71 (LL@)]J thus, the

net (W¢)..e converges in g(lLVMK‘\JK.N) to 0" ((533)71 <¢o>) : 0
16.2 Quantum theory

We now want to implement this construction at the quantum level, with the aim of using this

simple toy model to get a first hold on the implementation of constraints in projective systems of
quantum state spaces.

To fix the notations, we begin by summarizing the main properties of (bosonic) Fock spaces [41,
section 1.3.4].

Definition 16.11 Let J{ be a separable Hilbert space. We define the Fock space H by:

H = EBJ—@MW where H®"*9™ is the symmetric vector subspace of H®".
nelN

For (e;);c; an orthonormal basis of J (/ C IN), we define:
Noi={(n)g | Viel,npe N & ) .n < oo},

indexing the orthonormal basis ( [(n)).c; . (e; [E,>) oen Of H:
lLE/

l
16/ S /\/ ’ LE/ 6‘ LE/ Le ‘ek1> ®... ® |ekN>'

VLE/,#{K | k[:L}:nl
where N = > n;.
iel

[f (f/)/e/ is an other orthonormal basis of H, we have:

(m3) ey (6),) =

Vinder o (m) o € A {(ier (e
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= 2 ] (\/ ) I_l( ﬂmé'|) [ ] (e )" (16.11.1)
i ,eN> el J jel i bij: i

Vi, ”z*Z/ li
Vj, m/':Zl [[/

Definition 16.12 We consider the same objects as in def. 16.11. Lete € H, N > 1 and [ &
... N}. We define the operators a2 : H®N — HEN-T and ( NZ) CHENT s N by

Yor, ..., eH, 'l e @l = <e'(p> oo . 2",
P PN 2 PN \/N SPM (P/\/

+ B 1 N
and Vor,...,on €H, (5/\/'[) (1)®...® Wf”:z—(1)®...®6‘U)®...® (l.
P PN-1 e P PN-1 \/N% PN-1
Then, on H we can define (unbounded) operators @. and a,, such that:

N
VL/J c g_c@N,sgm’ /a\e 4] _ Z/a\/e\/lL/J = 9{@/\/—1,5ng
(=1

N
+
and VQL/ - }C®N_1'ng, /a\: (T/j = Z (/a\/;/[) LL’ c H@N,sgm.
=

Let A be a bounded self-adjoint operator on 3. We can define an (unbounded) essentially

self-adjoint operator A on H such that:
R N
Ve HEN Ay =Y ide.. @Al .. ey ¢ e HEV,

For (e;);; an orthonormal basis of J, we have:
n PNRSN
A= E (ei, Aej) a. a., .
ijel

Lastly, let e, f € I and let A, B be bounded self-adjoint operators on J{. The commutators
between the operators defined above are given by:

[@e, ] =0, [a;,a/] =0 and [a., a7 | = (e, ) idg

e

[E, B] — (A, Bl [ae, E] — 35, and [gj, E] S

Before going on to the quantization using projective structures, we recall the more conventional
quantization of M, Q. (ie. a reduced phase space quantization for the theory we are considering)
using Fock spaces techniques. The notable fact is that this direct quantization of the Schrodinger
equation (considered as a classical field theory, aka. second quantization) can be identified with
the (bosonic) Fock space describing an arbitrary number of independent, indistinguishable quantum
particles of the corresponding first quantized theory [21]. This identification is not merely a naive
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matching of the Hilbert spaces: we can check that the quantized observables correspond in a natural
way to the observables built on the Fock space (in fact, it can be understood as a holomorphic
quantization, see [105, section 9.2]).

Proposition 16.13 We consider the objects introduced in prop. 16.2 and def. 16.12. We define the
Fock quantization of M™ as M

Fock

‘= H. For A a bounded self-adjoint operator on H and e € H
we define the following quantizations for the observables on M™™:

—~~ o~ —
~+

<A>Fock = A' (aé’)Fock = gé" and (az)Fock = a,.

Then, we have:

VO, O € {a. | e e H} U {a. | e € H} U {(A) | A bounded, self-adj on K},
I:aFOCk' aI/:0C|<:| = —I ({O’ O/}DVN)FOCk'

Proof This can be directly checked by comparing prop. 16.2 with def. 16.12. O

The key tool for constructing a projective system of quantum state spaces reproducing the classical
structure from prop. 16.3 is the realization that the Fock space arising from a direct orthogonal sum
of two Hilbert space can be naturally identified with the tensor product of the two corresponding
Fock spaces. This is in fact a special case of the well-known property of quantization, that translates
a Cartesian product of symplectic manifold into a tensor product of Hilbert spaces (for a direct sum
is indeed a Cartesian product).

Proposition 16.14 Let J be a separable Hilbert space. Let J be a vector subspace of J and J*
the orthogonal complement of g in J. Let (e;),, be an orthonormal basis of J and (e;);cp, be an

orthonormal basis of J* (with / O J). Hence, (e,),, is an orthonormal basis of J = g & g*.

We consider the corresponding Fock spaces 7,9 & 51 (def. 16.11) and we define the linear

application @g_4 T3 ®] by its action on the orthonormal basis (|(n);c; . (ei)[€,>)(n L en, of J:

Prog [(n)ier (€)ier) = [(0)icny+ (€)ieny) @ [(0i)iey . (€)ie) - (16.14.9)
Then, @54 is an Hilbert space isomorphism. Moreover, @5 5 does not depend on the choice of
the bases (e:);c; and (e);cp .
Proof @55 sends an orthonormal basis to an orthonormal basis, since the map:
/\/ — /\/\/ X /\j
(n)iey = (nidieny (01)ies
is bijective.
Then, if (f;),c, s an other orthonormal basis of g and (f[)[e,\j is an other orthonormal basis of J*,

we have, using eq. (16.11.1) for (mj)j elel:
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P1-g ‘(mf),-e/' (f/)j€/> B

AN
sy ﬂ( bt ))m(ﬂ ﬂ<[_f>¢;(zl)()>
Vje/:m,:Zil,,/

Now, for i,j € J x (I\J) or (I\J) x J, {e;, f;) = 0 since (g, 3") = 0. Therefore, the only non-
vanishing terms in the sum above are such that {;; = 1 e kij + L jep piy with & € INVVIX(V)
and p;; € IN*/. Hence, using eq. (16.14.1):

P1-g ‘(m/')/el’ (f/)j€/> B

- © o nees| 0(Vized) 0 -

ki, €N (V) pieN< el el jeN
Vie(N), mj=)_; ki Vi€l mi=3 ;i pi,

() T e e i

jel ijens L ijel

(Zfe’\/ki'/)ie/\/' (e[)[€’\1>®‘ (Zf@p['j)ie/' (e')161>

=) ense () ens) @ [(m3) oy (5),)
where we used again eq. (16.11.1), both in 51 and in J. O
Proposition 16.15 We consider the objects introduced in props. 16.3 and 16.14. We define:
1. Vie L, JT/E?]'N =7® T where T:= L, (R, du) (¢ being the Lebesgue measure on R);

2 VICT L, My, = Ny (with the convention that Mg, = C if 7' = J);

3VICT EL, G yi=grg®ids: 70T -9 N7 ® (5@7);

—

AVICT CI €L Gy = )i L T-NT = IENT @IENT (note that
(I NT) N (75 NT") =7 NI since I C T).

~ ®
(L, M-, @K'N) is a projective system of quantum state spaces (def. 5.1).

Proof £ is directed since for 3,7 € £, I+ 3 € L. And, for 3 C 3" C J" € L, 95,5 and @5 94
are Hilbert space isomorphisms.

Let J CJ"C 3" € L. We choose an orthonormal basis (e),c, of J, an orthonormal basis (e;);c,

of I'NJ* (with /" 5 /) and an orthonormal basis (&), of 7'NT" (with I” O I'). Since eq. (16.14.1)

ts valid for any choice of orthonormal bases, we have for (n;),c,, € A\

Ldj//mj/L ® /(ﬁj/g’j © /(lbj,/g’j/ ‘(n[)[E/N’ (ei)lel//> =
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= |(n; Jiemp (el)ze/”\// ® |(n; diery (el)LE/’\/> ® [(ni)ics . (€)ier)

- (@(ﬂ”ﬂﬂ)ﬂ(ﬂmi) ® Ldi) © @y [(Ndicrr (€d)ier)- (16.15.1)
Hence, eq. (5.1.1) is fulfilled:

KIN “SKIN

H KIN “SKIN . ]
(Ldjﬁ;w » ® (pj/ﬁj) o (Py_g) = (‘PJ"HJ/HJ ® Ldmgw O Py

Proposition 16.16 We consider the objects introduced in props. 16.7 and 16.14. We define:

-~

1.V € Ly, M =4,
2 VI Cd €Ly, My, =303 & Q= Gyog

3. vg C 3 C 3// & Ll—/ <P5W‘>3/*>3 @(HLma//)*}(HLma/) .

~ ®
Ly, MO @™ | s a projective system of quantum state spaces.

Let A be a bounded self-adjoint operator on H and suppose that (KerA)™ € L. For d € £y such

that (KerA)" C g, we define 23 = (Al;_s) (def. 16.12). For g, 3" € Ly such that (KerA)- c 4.7
we have:

23 ~ 23/ (with the equivalence relation ~ defined in eq. (53.2)),

hence, we can define /KLH = [23] € O® (prop. 5.5).

MDYN DVN

~ ®
Proof We know from prop. 16.7 that £, is a directed set. Then, we can show that [ £, M™, @™
is a projective system of quantum state spaces exactly like in the proof of prop. 16.15.

Let 3 € J” € Ly, (ei)ies be an orthonormal basis of J and (e;)icyny (with /” O J) an orthonormal
basis of §” N J*. For k,l € J and (n:);c;» € Ay, we have:

~_1 ~d, 3
Py~ (de ® de ) Py-g|(ndieyr . (ed)icy) =
= \/_Vnk +1— 51/< ‘ - 521 + 5/« 16]”' (ei)iej”>
/\3// /\3//

= Qg dg |(ni)iej”l (ei)zej”>'

Let A be a bounded, self-adjoint operator on J. We have A(H) C (KerA)". Now, if (KerA)*

J c 3" both § and J” are in particular stabilised by A. Moreover, we have J" N J* C J* C KerA,
therefore:

—

(Algrsge) = > (ew, Aepyal "al

k,le)”

= Z <6‘k A€[> Ag// /8\2;,

k.le)
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~_1 . ~J,+ ~J ~
= Qg |y ® Z (ex, Aey) ag g | | @3

kel
= Pplg [‘tdm ® (A|H)] Py (16.16.1)

(using the previous result, the third equality can be checked on finite linear combinations of the
basis elements |(n:);c;r, (€i)icjr) . (Ni)icyr € Ny, which span a domain of essential self-adjointness

for (A 3,,%,,), so this equality holds for the unique self-adjoint extensions of both sides, see also

“SDYN,—1

prop. 5.5). Hence, 23// = Py g [Ldﬁzﬁlg ® 23] O3y

Finally, if §, 3 € £y are such that (KerA)"™ € ,d, we can find §” € Ly such that 3,9 c "
(because Ly is directed), so 23 ~ 23/. 0

Using the general result derived in theorem 5.9, we are able to embed the space of density matrices
on the Fock space into the larger quantum state space constructed by projective techniques, and to
precisely characterize the image of this embedding, by giving a condition for a projective state to

be representable as a density matrix on K.

Proposition 16.17 We consider the same objects as in prop. 16.16. There exists an injective map

0, ¢ Skock — g(?”,ﬁ[nw@mm) (where 8o is the space of (self-adjoint) positive semi-definite, traceclass

DYN

operators over AFOCk and SEHMDW@M) was defined in def. 5.1) satisfying, for any bounded self-

adjoint operator A on H with (KerA)* € £, and any p € Sroq:

Trjﬁgggk [P L (@Fock)] =Tr [AL(P) Ly (ELH)] (16.17.9)

—~

where W' is a measurable subset in the spectrum of (A). ., and L,y (-) denotes the corresponding
spectral projectors.

Moreover, we have:

sup inf TrﬁSV/N (pgf ﬁg/‘g) =Trp= 1]»,

JeLy 928

0] (SFock) = ‘[(Pﬁ)geLH

DYN

where Sp, is the space of density matrices over AFOCk and:
VYN € N, VLL’ c 3/®/\/,59an ﬁg/‘g Lﬂ = (H3)®N L,/J c 3/®N,ng ’

[y being the orthogonal projection on J.

Proof For J € §' € Ly, we define {5 4 € J\A/Egﬁg as the vacuum state of JQ[;“/LH = HW
(ie. Cyog = (). (e1)ie)) for any basis (e;);c, of ' N JH). The family of vectors (Cy—g)y-q fulfills
the hypotheses of theorem 5.9.

Next, for all § € £y, we define an injection Trokeg from JV[;VN = 5 into A?gck T by:

Trockeg = Prcog (Crockog @ (),
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where (rokg is the vacuum state of - Using eq. (16.15.1), we can show that Vg C 7' €
L, Trockeg © Tyeg = Trockeg (Where Ty 5 is defined from {y_.4 as in theorem 5.9).

Now, we can choose an orthonormal basis (e;),cy of H such that Vi € N, [|[He;| < oo and
consider for N > 1, gy := Vect{e; | i < N} € L. Using eq. (16.14.1) with the orthonormal basis

(e:)i<n of dn and the orthonormal basis (e;). of dx, we get:

TFrock—Jn <§E> Vect {| n; lE]N (ei)[E]N> ‘ (ni)ielN = A%},

where /\11% = {(n)ie;w € A\ | Vi > N, n; = 0}. Hence, from Ay = UN>1 N We have:
M2y = U IM Trockeg -
dely

DYN

Therefore, we can identify JV[FOCk with the inductive limit JV[?N introduced in theorem 5.9, so we

A= ) .
have an injection 0 : Spock = S, from gow), Satisfying:

824

8~L <8F0Ck> = {(pg)ﬂeﬁu

sup inf TrMmN (,03/ ﬁg/‘g) = 1} ,
de
where:
Vd Cd €Ly, Ny =955 0 ([G—g X {ygl ®idj) © Gy

let J Cc J € Ly and let (ei)ic). resp. (91)161/\1 be an orthonormal basis of J, resp. J' N J+. For
(ni);.c ) € Ny, we have:

(7)iey . (@diey) U VI E S\ S ni =0
HH/‘3| lEf/' (ei)iE]/> = {|() < E/> O‘[herW.LSe\
N )y (o).

therefore YN € IN, V¢ € g, ﬁa/\a g = (My)*" .

Lastly, let A be a bounded self-adjoint operator on 3 such that J := (KerA)* € £y Eq. (16.17.1)
ts then an application of prop. 55, using the definition of @ (given in the proof of theorem 5.9)
together with:

<A>Focl< =A= @;{LH |:Ld51 ® Ag] @}C—)H,

which can be shown like in the proof of prop. 16.16 (eq. (16.16.1)). O

We can now implement and solve in the quantum theory the approximated constraints we had
on the classical side, and thus define a family of maps (indexed by the regularization parameter ¢)

from the dynamical projective system of quantum state spaces introduced above into the kinematical
one.

Proposition 16.18 We consider the objects introduced in def. 16.4 and prop. 16.15. Let € = (, €) €
€ and let J € £°. We define the map:
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& .4 - deT
b= (9 @id) |Gy @ e (i (M HM)|,,) @ T) e a)]

—

where {5 .4 is the vacuum state in I N g+, Iy is the orthogonal projection on g, T is the position
operator on T = [,(R, dy) and o, € T is defined by:

21'2
Vvt € R, 5€(t)=§eXp(—€7)_

Then, we have:

5§<§>={¢:eﬂ‘ (ﬁﬂg@idg) V=g & 66¢=¢},

P R — N L=
with € = — (Ldg@E— (T ®Ld7) +elid; @ T2,

where /I_\lj‘g is defined as in prop. 16.17 and E is the operator i d; on J. Moreover, 535 35503) is a
3—055(3

unttary map.

Proof We define:

S F 5 J®T - JoT
0 0 d > I®T ’ g ~ = with H == T3 H 1y,
Y- U0, g exp(—tl-/§®7) m
5 d®T - TN eieT 5 INIeIieT - IeT |
Y= Gog®yY ' Y — (/(,5{_1,3®'Ld7) 0]

~ N N . . 1 ~ .
We have o, <3> —JeVect{3) =d® {Lpetr) C1¢:¢}, where Ci == — E2 4 € T7, and

(S a unitary map.

s.s (@)

o is a unitary map, because /flg and T are essentially self-adjoint (VN & N, /flg stabilize

FHENU" and the restriction of /;/35 to H®N*U" is a bounded self-adjoint operator, for so is H|,_,,

by definition of £4). And we have:

5 06(d)={vedeT| G-yl
with:
Co=0, 0 (ldg@ a) o Af

= exp (—i[Agg@?, ]) (’Ldg@ G)

1 PN 2 ~
— 5 (G @F - Feid) +eig0 T

Next, we compute:
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5500, 00 <§>={Q~3®¢'EW®5®‘T’@¢'=¢]‘

—{veTnd @deT|dmeGy=u & (1G5 Gl ®idy,) w=u},

and 33

s a unitary map.

3®‘T%53<3®‘T>

Finally, 0, is unitary (from prop. 16.14) and:
S;<§> — 300,008 00 <§> - {Lpei@ﬂ Cu=y¢ & 54¢=¢},
with:

Cyi= (91 @ idr) (idzz ® C) (@5 @ i)

1 1 E D i Az‘,‘ -~ . 2 . ~

! 1 T 1je : 2 . s .
=2 (lda® E—H® Ldj) + €’id; ® T* (using eq. (16.16.1)),

and:

~

Dy = (¢35 ® idy) (1G5 X Grogl @ idgeq) (@15 ® idy)

= ﬁj‘g ® idg (as was shown in the proof of prop. 16.17).
O

Proposition 16.19 We consider the same objects as in prop. 16.18. For € = (4, €) € € and pj a

(self-adjoint) positive semi-definite, traceclass operator on J, we define:
~ ~ ~ \+
v9 € £, B (og) = 5 py (35)

°®

Then, (&? (,03)) € S(ge Fpen gron)-

JelLe
Hence, for p = (pg)yes,, € gSH,J;[m@DVN) (prop. 16.16), we can define:

~

A (o) =57 (B en)), ).

where the map 7 : g(iw.ww) — g(%m.wm) is defined as in prop. 5.6 (and is bijective, since £° is
cofinal in £).

Proof We need to prove that ¥J, 3 € £°, with I C 7', Try_sA% (pg) = A (pg). We have:

W 4, @iy 0 35 = ([@r- 0 Bl @) [Grg @ e T (@ 6|

= ([('Ldj,/m\L ® a;lg) o (Proing ® idg)] ® idir) [qu ® e ifiel (Y ® 56)]
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= ( (ldﬁ ® 97711_—1>3) ® id‘I) [(T—ﬂ ® (15 ® e HieT (Y ® 5e)]

= g ® 55 (i),
hence @,y o A% (pg) © O3y = 1Cy—g X ool ® NS (pg), therefore:

TryalN (pg) = Trsr |Gy X Qrmal © B (pg) = A5 (pg).

As a preparation for the study of convergence, we define a subset R of the space of states
over the quantum projective structure. The motivation is to implement a quantum version of the
regularity condition that was ensuring convergence on the classical side: at the classical level we
have proved the convergence for normalized states, so in analogy we consider here states with
a bounded expectation value for the total number of particles (which indeed corresponds to the
quantization of the classical observable () — (¢, ).

Note that, as we show in the following result, the regular states (the elements of fJAQ) can be seen
as states in the Fock space via the embedding of prop. 16.17. This is not really surprising, since we
know that the Fock space quantization is appropriate for a basic non-interacting field theory like
the Schrodinger equation.

Proposition 16.20 We consider the same objects as in prop. 16.17 and we define:

~

5 ®
R = {p & S(LHJV[DVN’¢DVN)

sup Tr (p(l_l/;)LH) < oo]»,

dely

—

where Tr (p (I_I/;)LH) = Z nTr (,o L0y ((l_lg)LH) ) and Iy, ((I_I/;)LH) denotes the spectral projec-

neN
tor as in prop. 5.5.

Then, ﬁi C 8l <gFock>~

Proof Let p € R and N = sup TIr (p (l/_l\H)LH)' If p =0, then p = 5(0). Otherwise, Trp =r >0,

Jely

hence p = r (1p) with 1p € SiH Fon o) Letd, ' € Ly withJ C J'. Let (e)),, be an orthonormal

basis of J and (e);c;n, (/' D J) be an orthonormal basis of "N J+. For (n)icy . (mi)icy € A, we

have:
— Z[ NRLE LfVlEJ/, ng = m;
<(ni)iej/' (e[)iej/ ) (Ha/maib/ﬁg/) ) (mi)iej/' (ez)ze//> = <V '
0 else
and:
' B E fvie/, ni=m & Y 0 =1
<(ni)iej/l (€)iey ) (Ld;? - Ha/\a) ‘ (mi)icy (e[)ieﬂ> =7 N
0 else
therefore:
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— —

Ty (po M) ==Y 0Ty oo ooy ( (Mo ly) )| =7 = T3 [ (Maraclyg) |

nelN

—

Now, Try [pa/ (|_|;J'm3L gqg')] = Z n Trg, [PH/ Iny ((ﬁ;)g')] - Z n Trg [Pa/ ! ((H/;)a)] -

nelN nelN

-

Tr (p (Hg/)LH) T (p (M), ) hence:

gt,gngrg/ (Pa' Ha/\a) r— ;uDgTr (p(ﬁ;)@) +Tr (p mLH) :

Finally, (Tr (p(ﬁ;)LH) )EJ/eLH is increasing, so jugTr (p(ﬁg\/)LH) = N and:
>

sup inf Trg, (pg/ I_I3/|3) r—=N+N=r.
deLyd™

On the other hand, Vg C 7', Try, (,og/ ﬁa/w) < r, thus, using prop. 16.17, 1;,0 € 0, (Sroek), and
therefore p € 0 <SFOC|<>. d

Finally, we prove a convergence result at the quantum level. We define here two different
notions of convergence, one stronger than the other, in both cases requiring convergence of the
expectation values for a certain class of observables. To assess how exactly the convergence should
be adjusted would require a closer study of which observables are really measured in practice, for

these constitute the class of kinematical observables that we want to be able to transport on the
dynamical side.

In addition, we need to introduce an e-dependent normalization parameter N that accounts
for the fact that states solving the exact dynamics cannot be correctly normalized (they describe
probability distributions invariant under a transformation running along the full time line from
t = —oo to t = 400) so that it only makes sense to consider conditional probabilities, expressing the
probability of measuring the system in a certain state, knowing that the measurement takes place
at a certain time. So, as we lift the e-regularization (that was making the gauge orbits compact and
the solution of the quantum constraint normalizable), the probability of measuring the system in a
certain time interval is dropping and needs to be accordingly compensated.

Theorem 16.21 We consider the same objects as in props. 16.19 and 16.20. Let J € £, A be a
bounded operator on 7 and @, ¢ € T. We additionally assume that ¢, ¢’ have compact support.

On M5", we define the operator:

RA¢¢/::A®|(P><(P/|,

and, for e = (3, ¢) € € and p € 7, <gpock>, we define:
J,e . 1 Ne J
R )= e g o [0 R |

where N(e, ¢, ¢) = Try @ )X @'[ [0c )X 0c| = (¢, 0c) (0c, ¢).
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Then, the net (Rz\‘; (p/(p)) converges.

eeé

For e, f € J, we also define on J\A/[g‘“ the operator:

~J,+ ~J
Rg,f,(p,qa/ = aeJr ar ® |(P >< (p/|'

and, fore = (J, e) € € and p € R, we define:

1

RJ,S
N(e, ¢, ¢')

Y plP) = Trsege [ D500 R 1 4|

Then, the net (Rgff,% q),(p)) converges.

eel

Proof Bounded operator & Fock state. Let p € 0, <§Fock>. Fore=(J,¢) e &andJ € L we
have:

B (o) = G5 (1600 X Gl @ [ 787 (o @10, X 3.y @757 | ) Gy

ildm@H;@T

“SKIN,—1

- id— @H5@T ~
= @y g€ (ICr—g X Crogl @ pg @ [0 ) Oc|) @ o0t 77" @5

= e TG (g X Gt © pa ® 16 ) 86l) 9575 0% (like in eq. (16.16.1))

= e 0T [y g py T g] © 100 X 8] ) P,

where T35 = @55 (73 ® (+)). Hence, for I C J"

€ 1 Ne /
Ry o (0) = Wﬂﬁ[gw [AJ(P)A@@ [ X ¢ |] =

Trser [B500) (959 (i @A) Gos) @10 X 0]
N(e, ¢, ¢')

Trsep |07 ([rreg paig] @18 X 6) e ™5%7 (@5 (i ® A) Br) @ Lo X @]
Nie, ¢ ¢)

/ dtdr ol () 605 Zit. 1)
-7

i
/ dedt gl (1) 30030

where T > 0 is such that the support of ¢ and ¢ is included in [—T, T}, and Z¢ is defined as:

_ /ﬁ/a, . H&, g . N
2t t) = Trg [e T (g pyTiog) €T (%gj (Ldm@)/\) <Pﬂ’ﬁj)]
+ itHe, [ ~—1 ; -~ —it' He,
=15 g [TJ/<—3 et (%/—>J (Ldg//mt ®A) (pj/ﬂj) e " Tj'eg]
it e ~ ) N i e
= Tré\ pg |:e” J T;Hg ((pj/*)g (Ldm ®A) (pj/—>j) Tj/<_3€ it 3] )
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forany 7 € L such thatJ, J C 7.
VT

Next, o 0c(t')0.(t) converges uniformly to 1 for t,t" € [T, T| when € — 0. Therefore, we

need to show that the net (Zg(t, t/))g converges uniformly for t,t" € [T, T]|.

cé

Let prock € Srock such that p = G| (pro). Using the definition of G, we can show:
Zg(t, t/) = Trf?( PFock @ilg I:]lgl ® e[fH§ Tj—i/_eg (@5_/1{] (Ld{]’/mj\i ®A) @j’_{]) Ty g e—[t Hg] /()5%_)3

it He ~—1 ~1 | ~ ~ —it' He

(like in eq. (16.16.1))

= Tr; [Tr_mg e " proc e””g] [T:La (%Lg (idm ®A) @Jsﬂ) Twa]
(by definition of Trgcg)
And using twice eq. (5.1.1) (for §,J C I C H), we have, for any ¢ € J:

P1c-7 © Trockeg(th) = P33 © Pty (Crockosg ® )
= aﬂfﬁj © @;(L;] © (/(,5511%3/(-131_ X ]13) ((Fockaj’ ® ZJ’HH ® QZJ)
= 0359 © Prcs (Crockosy ® Trg(y))

= (@1 309: ® 1dg) (Crodoy ® Py © Tyy(th)).

Hence, we get:
Zg(t, t/) _ Tl’g [TI’}(_>3 e—[ﬂ HeE pFock eitHS] [Tg_od«—ﬂ (Q/E)JTCLJ (Ldﬁ (029 A) /gl\)g{_g) TFod«_g]

it' H

= Trg [TFOCI«—g (Tl’{]—f—>3 e it PFock E‘HHE) réockga] [@;{Lj ('Ldjj ®A) @g{_)g]

But we have:

@5 (idgz @ A) Pacal| = Al < oo,

therefore, what remains to be shown is that the net:

it

—it' H* itH ) .+
(TFock<—3 (TF:H—>3@ PFock € ) TFockeg)

e=(J.e)eE

converges in trace norm (which was defined in lemma 5.10), uniformly for ¢, t' € [T, T|.
Let ¢, > 0. We have:

H = W where gN = @gé?)”ﬁym’

el ,N>1 n<N

because 3 = Py, d. Hence, we can prove, using the spectral decomposition of the self-adjoint

traceclass operator pro and the directed preorder on £ and IN, that there exist J, € £y and
N, > 1 such that:
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€
||pFock _pgock||1 < EO'

where pf 4 = ﬁgor% PFock ﬁ30,N0 (with ﬁHO.NO the orthogonal projection on goN”) and |- ||, denotes
the trace norm.

Since EON is finite dimensional, there exist vectors (), € ﬁoN ae{1,...,K} (with K € N) such
that:

K
pgock = Z |L/J0f >< ¢’<7|'
a=1

We define:
1 1 €o
€ = — log [ 1+ >0,
Ny T+1T] 12K (1 + maxg [’

and H® = ¢ F—WHJ (as in the proof of theorem 16.10). Then, since H' has discrete spectrum and
K, N, < oo, we can construct J; € Ly, such that g4 is stabilized by H' and:

Koo = g,

€o

12/( (1 + max, || Yal)

Thus, we get:

K
~ RN €, ~ ~
HPFock = Mg, Proc Marna || < £ F § H|% X Yol — ‘H&.Na e >< MgiN, Ya
a=1

€o

a HHLND ‘»L’a

o = P, | 1ol + || Tl v,

Now, we consider J, € Ly such that J, + J1 C d>. Forall t,t' € [T, T], we have:

it (M, HI it (Mg 1O —it Ha 5 o O it He1
=0 (Mo 11110,) e ett (M2 H1ay) g g1 Ny Plock arn, € <

1

— —

it (Mg, HMNg,) _ eit(ﬂgz He Mg,)

—

<224 ef[t/(l_lngl_Igz) e (Haz He Mg,)

\np%¢m+wpm¢m

(since H' stabilizes 1 C J»)

€ €
<242 | el < 2

and similarly:
€o

< —.
702

H —it'H itH it Hel

—it H & o 0O
Prok e’ —e Mg, N, Pock Mg, €

Next, using again that H®' stabilizes J; C d,, we also have:

—it B9 5 = it Hel + _ifHA G o 0O it He
TFocke—3; [Trf}cﬁaz e g, N, PPock Mg N, € ] Trocke g, = € Mgy N, PPock Mgy n, €777
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Hence, for any € = (J,, &) € &€ such that (J, +J1, 1) < €, and any t,t' € [T, T|, we have:

itH

—it' He itHe |+ —it' H
H TFock—J, [Trf}-c%gz e PFock € :| TFockegz —e€ PFock € ’1 < €0,

which provides the desired convergence.

Transition operator & reqular state. Let p € .'JAQ Je Land e, f €37 Since R C o, <§F0Ck>
(prop. 16.20), there exists procc € Srock Such that p = G| (pred). Like above, a sufficient condition for

the convergence of the net (Rggf o0 (,o)) is uniform convergence for t,t" € [T, T] of the net:
eel

_'//f{E 'Hfle
(Trfc [TFock<—3 (Tr%—n';@ T proc €' ) TELom_g] Te,f)
e=(d,e)ek

where we define:

~J,+ J ~
P37 -

Tor = @;{Lg (Ld ® a,

Choosing an orthonormal basis (e;);, of J and completing it into an orthonormal basis (e;);c of
J" (I € IN), we get:

Tor=y (e e (f.e)) dily (idr @ aL7a ) G

i,jel

= Z ei, e) (f, ej) (ﬁFOCk’+§F°Ck) (like in the proof of prop. 16.16)

e; e;
_ é\Eock,+ é\fFOCk,
Now, from the definition of the creation and annihilation operators, we have:
o
Te,f _ Z ﬁ(n) /a\gock,Jr /a\fFock /l—\l(n)
n=0
where, for all n € IN, [ is the orthogonal projection on the subspace H®" " of H, and:

n-flell Il

A(n) aFock,+ ~Fock (n)
HI_I a, a; 1

On the other hand, we have, by definition of R, sup TIr (p (I_I/;)LH) =: Njot < 00, s0:

Jeln
> nTrg proc [ = > Trge proc Lin (<Ld9f>Fock)
n=0 neN

- Z n sup Trg prock Liny ((I/_G}Fock) (using lemma 5.10)
nelN aely

= Z n sup Trz pg L{ny ((I_I/;)g) = Nt (from eq. (16.17.1)).

neN  I€LH

Let ¢, > 0. Then, there exists N, > 1 such that:
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=~ €
Z n TrgA{ PFock |—|(n) < go’

n>N,

and therefore, for all € = (J, €) € &:

—it' He it He A3
Y n H[TFMH (Trgfﬁge I prog € ) Téockgg] [

n>N,

1

—it' e itHe\ Si(n
TFockeg (Trﬂ{ﬂaé‘ I ok e ) H;)T;ockhgw

:Z”

n>N,

(where for all n € NN, ﬁ(gn) is the orthogonal projection on the subspace "™ of 5)

_ Z n (Trg{% o H ooy eith ) I_I(B")

n>N,

1

—it' HE it HE ~—1 . pa ~
= Z n Trj}-[_)g e i PFock 6’” Pycg (Ldgl &® H(Hn)) (pg{_>3H1
n>N,

< Z nlle ™M prog et @;CLH ('LdgAL ® H;”’) @J{ﬁgw

n>N,

e e a5 (00 ) ],

n>N, n’>0

< Z Z(n +n’)

n>N, n’>0

= Z Z(n +n')

n>N, n’>0

(for H¢ stabilizes the subspaces [(Hi)w/ ® 3®”]ng for all n, n')

N

‘97”/ " PFock eitH€ @(;{Lg (I_]gl) ® I_l(gn) ) aﬂfﬂa’h

AN I

)9_[”45 PFock 97’9_{13 (Hgni) ® H(an)) Preg e

< Z Z(n + n’) HpFock (?)JTCLH (I_Igl) R I_I(Hh)) 93%%3”1

n>N, n'>0

= Y >0+ 1) Trgeproa G (M5 @ 1) Gocg

n>N, n’>0
Y -~ n// 60
< ) 0" Trsproac N K?
n”>N,

Next, from the previous point there exists €, € € such that, for all € = (d, €) = &,:

/

€o

3N,

it

H‘<
]

—it' He ithHe |+ —it'H it
HTFOCM [Trﬂ-fﬁﬂe PFock € ] Trockeg — € PFock €

thus:

"H itH
PFock € Te,f

P4l

Tra [TFockea (Trﬂfﬁg e

it

He itHe |+ -
PFock € ) TFockeg:l Te,f - Trgff e
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it He it He + —it'H itH
PFock € ) TFock<—3] —€ PFock €

< H [TFOCI«—B (Trﬂ-f—>3 e ] X

X Z ﬁ(”)QEOCk’+ arek || 4 Z H[TFOCI«—H (Trﬂ-f—>3 e " PFock E’img) Tgoclg_g] e
n<N, n>N, !
v Hﬁ(n)/a\gock,Jr /a\fFock /l—\l(n) 4 Z ’e,it//f/ Dok eit/f/ ﬁ(n) Hﬁ(n) /G\EOCk'Jr /a\Eock ﬁ(n)
n>Ny !
€ €, i s P
<N el 17+ 2 el I+ 3 [|e ™ proac 7 A e )f]
0 n>N,

(for ei*" stabilizes the subspaces H®™ %™ for all n)

<& el 11

which concludes the proof. U

While it will be essential to play with more toy models (and especially with more sophisticated
ones), in order to sharpen our still rather crude proposal for dealing with constraints, we have at
least ascertained that the program of subsection 3.2 can be applied to the most simple quantum field
theory, where it satisfactorily reproduces established results. Indeed, we found that we can define
a sensible convergence at the quantum level, on a subspace of states that can either be identified
with the Fock space or with a subset of it. This is reassuring, for we know that the Fock space
is the right arena to describe interaction-free theory (since such a theory preserves the subspaces
of fixed particles number). It would be interesting to study whether more general quantum field
theories can be translated in this language too.

In addition, we might be able to gain a deeper understanding of the formalism considered here
by studying its relations to approaches that incorporate similar ingredients, like lattice quantum
field theory. This could help shed light on issues that are shared with these approaches, notably the
problem of ‘universality in other words, the concern about how to ensure that the results we are
getting are robust, and do not depend critically on some arbitrary choices entering the definition
of the regularization scheme.

We have displayed in section 15 a trick to circumvent this pitfall: by assembling all reasonable
approximations into a huge label set &, and ordering them by their respective quality, we can view
a specific regularization prescription as simply selecting a cofinal subset in £. However, it is not
clear whether this could still be done for less trivial systems, because it could become difficult
to arrange for € to be directed. It would be interesting to investigate whether this idea could
be combined with the techniques we will develop in section 19, which aim precisely at extracting
universal (countable, directed) subsets from (uncountable, possibly non-directed) label sets, although
in a different context.
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Chapter 6 — Searching for Semi-Classical States

17. Introduction

Recall that our motivation to set up a projective state space for the holonomy-flux algebra was to
obtain better semi-classical states. As argued in the introduction of the present work, the Ashtekar-
Lewandowski Hilbert space, being built out of a vacuum which is a momentum eigenstate (with
vanishing fluxes), cannot accommodate states in which the quantum fluctuations would balanced
between position and momentum variables. However, now that we could overcome this limitation,
we uncover a deeper issue, which has its root not in the restriction to a particular representation
of the algebra of observables, but in the algebra itself.

As underlined in subsection 12.2 the holonomy and flux variables do not come in independent,
canonically conjugate pairs. In fact, any given flux observable has non trivial commutators with
infinitely, uncountably many holonomies. As we will demonstrate below in the G = R case, the
sheer amount of Heisenberg uncertainty relations arising from these non-vanishing commutators
forces the quantum fluctuations to blow up uncontrollably as more and more degrees of freedom are
taken into account: in the end, it is not even possible to keep the variance of all elementary variables
finite, let alone small. Note that obstructions to the design of states with specific properties on the
holonomy-flux algebra have been pointed out in earlier works [80]: in particular, the Ashtekar-
Lewandowski vacuum turns out to be the only diffeomorphism-invariant state [533], which notably
forbids the design of a diffeomorphism-invariant coherent state.

These issues can be traced back to the fact that holonomy-flux algebra along analytical (or
semi-analytical) edges and surfaces is generated by uncountably many elementary observables,
which motivates the construction we will present in section 19: we will explore a strategy to
drastically reduce the algebra of observables, while keeping intact the physical content of the
theory. Such a reduction allows the systematic construction of projective states, in particular
semi-classical ones (subsection 19.1). After laying out a general framework in subsection 19.2, we
will, in subsection 19.3, explain how it can be implemented in the case of a (slightly simplified)
one-dimensional version of the holonomy-flux algebra. The generalization to higher dimensions,
especially the physically relevant d = 3 case, is currently a work in progress.

Once the label set is trimmed down to countable cardinality, a corresponding inductive limit
(constructed along the lines of theorem 5.9) will automatically be separable (assuming all building
block’ Hilbert spaces are), rather that non-separable like eg. the Ashtekar-Lewandowski Hilbert
space. Hence, constructing states will get easier on the inductive limit side too: besides lifting the
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technical issues plaguing non-separable Hilbert spaces [28], it will allow states to include all basis
vectors at once (by contrast, non-separable Hilbert spaces tend, paradoxically, to be ‘too small’, as
their orthonormal basis are uncountable while linear combinations can only be at most countable).
Nevertheless, the advantages of the projective formalism over an inductive limit Hilbert space
remains: as we will check in prop. 19.2, the semi-classical quantum states that one can construct
within projective state spaces on countable label sets typically do not belong to corresponding
inductive limit Hilbert space arising from vacuum states that are far from semi-classical. In other
words, the argument put forward in the main introduction, that discrete quantum excitations cannot
mask the core properties of the vacuum, still holds in the case of a countable label set.

When the label set is countable, one can also, in the spirit of theorem 5.11, produce from the
projective system associated infinite tensor products (ITP, see [99, 93]), and the states we will be
considering often do belong to these ITP Hilbert spaces (see again prop. 19.2). In fact, the whole
construction of section 19 is very closely connected with Algebraic Quantum Gravity (AQG, see
[36]): the idea of AQG is to choose an infinitely extended graph and to write a state space for
quantum gravity as the infinite tensor product of the [,(G) Hilbert spaces carried by the individual
edges. Like in the present development, this switch to discrete degrees of freedom in AQG is
motivated by the search for better semi-classical states. We will comment where appropriate on
the similarities and differences between the two approaches, and delineate some advantages of
the projective formulation (namely a lesser dependence on arbitrary choices and an improved
diffeomorphism invariance).

Finally, the benefits of simplifying the structure of the theory reach beyond the sole semi-classical
analysis. In section 20, we will contemplate how it could help solving the constraints of LQG
(continuing the discussion started in section 7).

18. Obstructions to the construction of narrow states

We will, in subsection 18.1, work in the context of a general linear projective system (£, M, n):
namely, a projective system such that all small phase spaces M, are linear and across which
the distinction between configuration and momentum variables can be defined consistently (ie. all
projections preserve this distinction). Note that this is precisely the setup of [68] and we recalled in
subsection 6.1 how to quantize such a classical projective limit into a projective system of quantum
state space in the position representation.

In projective quantum state spaces of this kind, we can systematically study the construction
of narrow states, namely states in which the measurement probabilities of all configuration and
momentum variables have finite variance. In particular, we will spell out the conditions, arising
from the Heisenberg uncertainty relations, for a certain assignment of variances to be realizable in
a quantum state. Of special interest for the construction of semi-classical states are the Gaussian

states, and, in fact, we will see that there exists, for any narrow state, a Gaussian state with the
same variances.

In subsection 18.2, we will apply this study to the projective quantum state space set up in
section 12, in the special case G = R (where it constitutes a linear projective system in the sense

242



above, as will be shown in prop. 18.13). We will then be able to prove (prop. 18.14) that there are
not any narrow states in this state space: in other words, all states therein have infinite variance
for at least some of the variables, and thus are not good candidates as semi-classical states. We
will also formulate some weaker notions of semi-classicality that are excluded as well (props. 18.15
and 18.16).

Note that, while the argument cannot be easily generalized beyond the G = R case (because
the systematic study of narrow states in subsection 18.1 makes heavy use of the linearity, viz. the
discussion preceding prop. 18.9), we will take it as a hint that the construction of semi-classical
states should be altogether attacked differently. On the one hand, the negative result of subsec-
tion 18.2 casts serious doubts on the possibility to design admissible semi-classical states even in
the compact group case: although diverging variances are of course excluded in this case (at least
for the configuration variables), we expect that, if states very peaked around the group identity
could be designed, the group structure should not matter much to them (heuristically, the portion
of the configuration space seen by such states would be nearly linear). On the other hand, the
approach we will develop in section 19 to go around the obstruction will simplify the construction
of projective states to the point that keeping G arbitrary will become effortless.

18.1 Projective families of characteristic functions

The central tool of the present subsection will be Wigner characteristic functions (see [102, 47]
and the review in appendix C): any quantum state can be represented by a function defined on
the dual of the classical phase space, and this alternative representation is strictly equivalent to its
representation as a density matrix p. This is the quantum version of characteristic distributions
in classical statistical physics, in the sense that the moments of the probability distributions gov-
erning quantum measurements can be recovered from the derivatives of the characteristic function
(prop. C.8). However, the positivity requirement for quantum characteristic functions (eq. (C.6.1),
ensuring the positivity of p) differs from its classical counterpart (that would ensure positivity of the
corresponding probability distribution), as it encodes the non-commutation of quantum observables
(see the discussion preceding prop. C.6).

Unsurprisingly, the characteristic functions of the partial density matrices composing a projec-
tive state combine again into a projective family (the dual spaces M; form naturally an inductive
structure, with injections given by the pullback under the projections i1, , so functions on them ar-
range themselves in a projective structure, see also the discussion at the beginning of appendix C.2).
This is the advantage of working with Wigner characteristic functions rather than Wigner quasi-
probabilities, which would be in analogy to classical probability distributions (the computation of
partial traces, or, at the classical level, of marginal probability distribution, is translated into a
simple restriction when working with characteristic functions).

Proposition 18.1 Let (£, M, 1) be a projective system of phase spaces such that:

1. Vn € L, there exists two finite-dimensional real vector spaces C,, P,, an invertible linear map
=, P, — € (where € denotes the dual of C,) and a symplectomorphism [, : M, — €, x P,

with respect to the symplectic structure Q, defined on €, x P, by:
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Y(u,v), (U, V)€ Cyx Py, Quu,v; u',V)=Z,(V)(u) — =,(v)(t);
2900 €L, my_y =L, 0(Qyyx Pyy)oly with Qy_,,, resp. Py, a linear map €, — €,
resp. Py — P,.
We choose, for any n € £, a Lebesque measure y, on C,. For any n < n' € £, we define:
3 Cpyopi=KerQy_y;
4 Oy—n - Cy — Cyoy xCy
X' = Ryoq(x'), Qpop(X')

to (S0 Pyoyo E?yk (C,) (where (-)* denotes the dual map).

, with Ry, : €y — C,_, the projection on C,_,, parallel

Then, we can complete these elements into a factorizing system of measured manifolds (def. 6.1)

(L, (C, 1), @)*, from which a projective system of quantum state spaces (£, 3, ®)® can be con-
structed as described in prop. 6.3.

Proof Since a finite-dimensional vector space is in particular an additive simply-connected Lie
group, this is a special case of theorem 6.2. The explicit expressions for C,_, and ¢,_,, are
obtained by adapting the ones from the proof of theorem 6.2 to the slightly different notations we
are using here. O

Definition 18.2 We consider the same objects as in prop. 18.1. A projective family of characteristic

functions is a family (W;) _, such that:
1. for any n € £, W, is a continuous function €, x P, — C;

2 foranyne L, any Ne N, any (s1,t1), ..., (SN,tN)EG“;foZ and any z¢, ..., zy € C:

Zz_/-z[ el i W, (s; — sj, ti—t) =0, (18.21)
=
where ¢; =3 (t:(=,"(s))) — (=,"(s)))
3 foranyn=xn €L, Wy=Wyo(Qh,, xPi_,).

n'=n

We denote by W z.e.).(0p) the space of all projective families of characteristic functions.

Proposition 18.3 We consider the same objects as in prop. 18.1. Let n € £. On I, = L,(C,, du,)
we define, for any (s, t) € €, x P}, a unitary operator T,(s, t) on 3, by:

Vi € Iy, Vx € Cy, [Tys, )] (x) = exp (is(x) + £t (Z,"(5)) ¢ (x+=57"(0),

as well as a densely defined, essentially self-adjoint operator X, (s, t) with dense domain D, :=
C2(C,, €) (the space of smooth, compactly supported, complex-valued functions on €,) by:

Vi€ Dy, Vx € €y, [Xyls, ) Y] (x) = sx) ix) — L [Tp] (=57(1))
(where T, denotes the differential of ¢ at x and E;A = (E;)f1 = (571)*).

Forany n<n"€ £ and any (s, t) € €, x P;, we have:
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nm—=n

Ty(s, ) = 0,1, 0 (idse,, @ Tyls, 1)) 0 By,

& Xy, t) =" o (’Ld}(n,% ® X, (s, t)) 0Py, (1831)

nm—=n

where (s', ') := (O}, (s), Pi_,(t)).

Proof Let n € £. Forany (s, t) € € x P}, it has been proven in prop. C5, that T,(s, t), resp. X,(s, t),

is well-defined and is unitary, resp. essentially self-adjoint.

let n < n € L and (s, t) € € x Py Let (s, 1) := (Qn_m( ), Pr (t )) For any ¢, € H, and

n'=n
any Yy, € Hyy = Lo(Cyy, duy—y), we have, using the expression for ®,_,, from prop. 6.3:

V(g X) € €y x Cor [ Dy Tyls' )01, (g ® )| (. ) =
= [Tots'. ) 0L (g @ )| 0 04 %)
—exp (150,04 X) + 5 (5,1() ) @0 @) (0 ly. 0+ 257 (F)
— exp (i) + 5 £(2,"15)) ) yaly) o (x + =57 (1)
= Groanly) [Tols. 1 4] ().

where we have used:
V(y, x) € Cyy x €y,
Qs 9yl %) = X,
& @y, (p,f_)n(g,x) + *;7 o Pyt )) = (g, X+ Qy_,o0 En o Py (1)
(from the definition of ¢, _,, in prop. 18.1) as well as:
Qyono=y o Py, ==,

as follows from the compatibility of L, ' o (Qy—, x Py_,) o Ly with the symplectic structures (),
and Q, (see def. 2.1 and eq. (6.2.1)). Thus, we get:

Vi € My, Yy € Hypsy o P Ty(s', 1) @ n —>n (Prysn @ ) = Yy ® [T,,(S, f) Q[’n] '

and therefore:

Tols' 1) = &, o (idse, . @T,s. t)) oDy,

nm—=n

Similarly, we have, for any ¢, € D, and any Yy, € Dy = C°(Cypy, C), D11 (Yyy ®
Y, € Dy and:

Py Xyp(s', 1) ® I7~>l7 (Gy—n @ ) = Py ® [Xn(s, t) ‘%] )
ustng:

Viy, x) € Cyoy x €y,
I:T(p”/L”(y X) ;/Ln (Lﬂngn ® Lpn)] = n(x) [TyLL’n/Hn] o Ry—n + Yyonly) [Tx ol o Oy
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Moreover, D,y_,, ® D, (understood as a tensor product of vector spaces, te. without any completion)

s a dense subspace of @, (D) and (P, Xy (s, t') D1, )

n'=n

= idy, ® X,(s, t) is
D, ®®,7 D

nm—n n —n

essentially self-adjoint (as a tensor product of essentially self-adjoint operators, see [73, theorem
VII1.33]), hence the unique self-adjoint extensions of &, _,, X, (s, t') & Ln and idy,, =~ ® X,(s, t)
coincide. U
Proposition 18.4 We consider the same objects as in def. 18.2 and prop. 18.3. For any n € £ and

any p, € 8, (with 8, the space of non-neqative, traceclass operators on J,), we define W, by:

W, : € xP — C
(s, t) = Trac, py Tols, t)

The map W' : (pn)n€L = (W

. S o® l o®
Pn)neL ls a bijection 8z 5c0) = Wiz (.9 (0,p) (Where 8 504) has been
defined in def. 5.2).

Proof For any n € £, we denote by W, the space of all continuous functions of positive type on
€, x P, (prop. C6). From props. C.7 and C10, the map W, : p, — W, is a bijection S, = W,.
Moreover, we have:

_® —
S(Lf}fq) {(pn neLl ‘ vr] pn S 8 & vr] [7 p’7 - Tf]{”/‘)/] ((D/?’—W /On/ q)n/l)q) }'

and:

Wi coniom = 1 (Walyeo | V0 Wa €Wy & W<, Wo= Wy o (Qpoy x Piy) |

n'=n

Now, from eq. (18.3.1), we have, for any n < ' and any p, € 8,

W (TF}C - (q)n/—w Pr q)I;LU)) = M//V(pll/) © (Qn /o X 'D:; H17)

nm—=n

Thus, W is well-defined as a map SL}W — W ‘e, (0.p) and is bijective. O

Asking for a state to have finite variances in all position and configuration variables is expressed
at the level of its Wigner characteristic function by asking the latter to be twice differentiable at
0, and the corresponding covariance matrix can be obtained from the Hessian of the character-
istic function (prop. C.8). In particular, the positivity requirement for the characteristic function
(eq. (C.6.1)) gives rise to inequalities that have to be satisfied by the covariance matrix (def. 18.6.2):
these are nothing but the Heisenberg uncertainty relations (as is manifest from the rewriting in

prop. 18.7.2 or 18.7.3, since V) (s,s) = AX%(S, 0) and U,(t, t) = AX%(O, t)). These inequalities will play
a crucial role for the result of the next subsection.
Moreover, the projective structure binding the partial characteristic functions of a projective state

together goes down to its covariance matrices on the various labels 1, which arrange naturally into
their own projective structure.

Definition 18.5 Let p = (pn)na S gagﬂ,) and let (W,]) = W(p). We say that p is a narrow

nel -’
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state if there exist, for any n € £, a linear form W,g” and a symmetric bilinear form W{gz) on € x P

such that:
2
V(s.t) € C, x P, Wy(ts, tt) =1+t \/\/,51)(5, t) — % W,gz)(s, t; s, t) 4+ o(T?). (18.5.1)
From props. C5 and C8, we then have, for any n € £
1. Trg, py =1 (so that p, is a density matrix on J(,);
2 (s, t) € € x Pr, Trae, py Xyls, t) = Wil(s, t);

Xo(s, 1) py Xy(s', 1) + X (8", ') py Xy (s, 1)
2

3. V(s 1), (s t') € C x Py, Tryg, = WW(s, t; s, t).

We denote the space of all narrow states by 8§ (£.56.0) -

Definition 18.6 We consider the same objects as in prop. 18.1. A projective family of variances is

a family (V,, U”)nEL such that:

1. forany n e L, V,, resp. U,, is a strictly positive symmetric bilinear form on GZ, resp. ﬂ)’,;;

2. forany n € £ and any (s, t) € € x Pr, Vy(s, s) + Uy(t, t) — t(= ;1(5)) >0

3foranynsn el V,=Vyo(Q,, x0Q.) & Uy=Uyo(P,.,, xPy.).

n'=n n'=n

We denote by \7 ‘e, (0.p) the space of all projective families of variances.

Proposition 18.7 Let n € £ and let V,, resp. U,, be a strictly positive symmetric bilinear form on
* * —1 -1 . s . 1
C,, resp. P, . Let V"', resp. U, ", be the strictly positive symmetric bilinear form on €, resp. P,

characterized by:

Vs, s' €€, Vo (Vyls, o), Vols' +)) = Vils, s),

nr Vn
resp. Vi, t' € P5, U (Uylt, ), Ut ) = Uyt 1),
with the canonical identification C;* ~ C,, resp. P" = P,.
Then, the three following conditions are equivalent:

1 V(s t) € € x Pr, Vi(s, s) + Uylt, ) — t(Z,(s)) =0

1 _ —
2. ¥s €€, 2V,(s, s) — 5 U, (Z(s), 5, (s)) = 0;
* 1 —x, —%,—
3.Vt e Pr, 20t t)—iv "=, =) =0

Proof Let V, be the linear map C; — €, defined by:
Vs € @, Vy(s) = Vs, -) €€ =€,

For any s =+ 0, we have S(Vn(s)) = V,(s, s) > 0 (for V, is strictly positive), hence Vn(s) #+ 0. Thus,

V,, s injective, and therefore bijective, since @j; and C, are finite-dimensional vector spaces of the

same dimension. \/,]’1 is then defined by:
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Vx,x' €€y, Vil(x, X) =V, (V ' (x), V(X))

and is therefore a strictly positive symmetric bilinear form on €,. We have similarly LNJ,7 P, =P,
and U,f Py x P, = R

1871 = 1872 & 1871 = 18/3. We assume that 18.7.1 holds. Applying with (s, t) =

(s, 1 U " 0 =."(s)) for some s € € yields:

Vs, s) + %un1 (=), = 's) — = U, 1 (Z(s), =, (s)) = 0,

-n
where we have used:
vp.p € Py, (U, (p))(0) = Uy (U, (p), Uy (P1)) = Uy (pa p)
Thus, we obtain the condition 18.7.2. Similarly, we can prove that 18.7.1 implies 18.7.3.

1872 = 1871 & 1873 = 187.1. We assume that 18.7.2 holds. V, provides a scalar product

——1

on €, so the strictly positive symmetric bilinear form U,f (_,]

(), Ef( : )) can be diagonalized in

vije{l..onb Vil ) =0y & U'(E(R), () = Ag oy,

-n

,,,,,

where we have used that, for any i € {1,..., n}, Uo :_1(1‘[) = A gi. Hence, we get:

- 0ij
Vi,je {1, ..., n}., Uplgi g) :#'
)
Let s =s'f; € € and t = t/ g; € P}, (with implicit summation). We have:
_ o HY o
Vs, s) + Up(t, t) — t(Z,(s)) = s's" + y sttt
()
Now, for any g, 7 € R, and any A € |0, 4], we have:

2

a’ + TT —or >0,
so 18.7.1 is fulfilled. Similarly, we can prove that 18.7.3 implies 18.7.1. 0

Proposition 18.8 Let p = (p,) _, € 8% 54, and let (W), == W(p). Forany n € £, we define:

ne

V(s,s') € C, Vy(s, s') == W(s,0; s",0) — W(s,0) W(s', 0),

n
& Yt t)e P, Uyt t') = W0, 0,t)— WO, ) wiho,t),
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with W,g” and Wn(z) as in def. 185.

Then, (V,, U,7)neﬁ S WL,(@,?),(Q,P))- Accordingly, we define the map V' as:

. Q d
Vo Sacor = Visien.op)
p = (\/’7’ U”)UEL
Proof Letn € £, (s, t) € €;xP,,and T € R. Applying eq. (18.21) for the points (0, 0), (s, 0), (0, t¢)

—it Wi"(s,0) —ir w0,

with respective coefficients —(1+ i), e ,le ) yields:

; (1) ; M
442 Re[(i — 1) e "W W (15,0) — (14 i) e ™M OO W, (0, Tt) +
. 2
Fie T s gl 0=76) W, (—1s, Tt)] >0,

where we have used that W, (0,0) = 1 and that, for any (s, t') € € x P, Wy (—s', —t') = W(s', t')
(prop. C.6; note that this in particular accounts for the reality of W,g” and W,gz)). Now, for any
(s'.t) € €, x P, we have the expansion:

(1) T2 2

. L T
e T W (18 Tt = 1 — 7Wn(2)(5/' t', s’ t') + > [W,g”(s’, t/)]2 + o(7?).

Inserting in the previous inequality, we get:

2 2 2

V(s 8)+ =Uy(t, t) — = to=,"(s) + o(rz)] >0.

442|-2
+[+2 2 2

Hence, we have, for any (s, t) € Gn X an:

Vi(s, s) + U,(t, t) —to="(s) = 0. (18.8.1)

—n
Let s € € with s # 0. We have Ef(s) + 0, so there exists t; € P, such that £, o Ef(s) =1
Applying eq. (188.1) with (0, t,) yields u = U,(t, t.) = 0, allowing us to define t := ——t,.
Applying again eq. (18.8.1), now with (s, t), we get:

Vi(s, s) — (1:—u)2 >
so V,(s, s) > 0. Similarly, we have, for any t € T;, t + 0= U, t) > 0. Thus, def 18.6.1 and
18.6.2 are fulfilled (actually, we have shown that 18.6.1 is implied by 18.6.2).

let n < € L. From W, = W, o (Q},_,, x P,

o ) together with eq. (18.5.1) implies, for any
(s.t) € C, x P
Wills, t) = W' ) & Wt s, ) = WSt 8, ),

with (s', t') = (Q;/ﬁn(s), P (t)). Hence, def. 18.6.3 holds. U

n'—n

The Heisenberg uncertainty relations that a projective family of covariance matrices need to
satisfy if there exists a narrow quantum state with these covariances turn out to also be a sufficient
condition for the existence of such a state. Indeed, we can construct a Gaussian operator combining
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the covariance matrix for the configuration variables with the one for the momentum variables,
and the uncertainty relations are precisely what is required for this operator to be a positive semi-
definite operator of unit trace, ie. a density matrix. Moreover, the projective conditions between
the covariance matrices ensure that these Gaussian operators assemble into a projective quantum
state. Although this is remarkably easy to check at the level of the characteristic functions (where
the projections are simply restrictions so that the compatibility of the Gaussian states on various
labels can be directly read out from the expression of their characteristic functions), it is instructive
to understand how taking the partial trace of Gaussian states works, in particular how the form
of factorization C; =~ C,_, x €, conspires with the expression for the Gaussian states so that
the correct projections get respectively applied on the covariance matrices for the positions and
momenta (in accordance with the projection M, — M,).

Note that this is the point where it is critical to be working on linear configuration spaces. While
the Wigner transform machinery could be adapted, for example, to the case of a compact group
G [1], the nice projection property of Gaussian distributions is what makes the construction of

projective coherent states in the linear case much easier than in the [, (GN ) case: even in the

easiest — G = U(1) - case, the equivalent of Gaussian states, namely Hall states [42], do not have
such a nice behavior under partial trace.

Proposition 18.9 Let (V,, U,) S V(lﬁy(e’ﬂ,)v(oyp)). Then, there exists p & Sa’%(b) such that

nel

Vip) = (Vi U”)UEL' with V' the map introduced in prop. 188. In other words, the map V' is

surjective.
Proof Let n € L. Let (ei)icpr, oy (fi)ier, ny and ()&(,-))[.6{1 ) be as in the proof of prop. 18.7. For
any ki, ..., k, € N, we define (), 4, as:
: 1 2 1 _ 2 X
Vx =x‘e; € 6,7, ¢’k1 k (X) = |_| ] e Hy —) ,
~~~~~ n /8 i 1/4
Van Ay V126 Ay

where for any k € IN, Hy is the k-th Hermite polynomial:

o dv
ar’

t2

Vt € R, H(t) = (—Nre

and a, is such that du,(x'e;) = a,dx" ... dx".

L2(€/7r duﬂ) thh ||ka1 ----- kn

Then, for any &, ..., k, € N, Yy,

5, = 1. Next, we define:

k.
— | 2V 2—\/*(1'))[
Py =
n /q,%:O |:|2+\/A(i> 2+ /Ay

Using that Vi € {1, ..., n}, Ay €10, 4] (from the proof of prop. 18.7), p, is a non-negative operator

|17Z/k1 ..... kn > < Lp/q ..... knl -

on H, and we have:

&

S T VAT 2
sl < I ll5e =1,
. k..., kn=0i=1 2+m 2+\/m ! J—(/]

where || - ||, denotes the trace norm [73, theorem VI.20]. Hence, p is a (self-adjoint), positive semi-
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definite, traceclass operator on H,. Using Mehler formula [61} its kernel is given by:

Vx=x'e,y=y'e €€,

i 24 /Ay 2—~/Aw
PalX; y) =
7 k1,§—0 D 2+ V A(l’) 2+ V )‘(i)

B 1 X+ y 1T . o
= o e P Z ( ) T g)]

1
“ e L

7 )

1., . /x+y x+vy 1 . .
E Vf71 ( ) ' 2 ) - Uﬂ (:n(X_y)' :n(x_y))

Thus, for any (s, t) € € x P}, we get, using the expression for T,(s, t) from prop. 18.3:

an(s’ t) = Trg{r] p'] Tﬂ(s’ t)

B W /d””(x) exp ["S(X) +ét(5n1(5)) +

1 1
= exp [—§ Vi(s, s) — 5 U,(t, t)] :
From 1863, we have, for any n < ' € £, Wp,7 = Wp”/ o (ann X P;;—m) hence, from the
proof of prop. 184, p, = Trs, (P o CD;L,]). So p = (p’7)ne£ € S(L'g{'q)), and we have

(qu)neL = W (p). Moreover, for any n € £, we get the expansion:

2 TZ

V(s t) € €1 x P1, W, (15, Tt) = 1— = Vi(s, s) — >

5 U,(t, t) + o(T%).

Therefore, p € 339{,@ with:
Vne L, Wiis,t) =0 & WPs, t;s,t)= Vs, s)+ Ut 1).

In particular, this implies V(p) = (V,, U,)

nel”

Note. One can also check directly that, for any n < n" € £, p, = Try, (CD,HW py ®, _,,7) Indeed,

n—n

denoting by p,({’/) the integral kernel of Trg, (P oy CDH,LH), we have:

Vx,y € €y, piM(x; y) = /dﬂn/ﬁn(z)pn’(q);fln(zrx)? oLz ).

—x,—1

Now, for ang x,y € €, and any z € €, the definition of ¢, together with Qy—, 0 =" o
Py, == ! (from the proof of prop. 18.3) yields:

(P;Ln(zr X) = Ky-nl2) + Jy-plx),

with Jy_,, = E*; oP, o=, and K,_, the canonical injection of C,_,, = Ker O, in Cy. So
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Uy (S5 [ogln(z.x) = op 0z 9)] ) S5 [ophnlz x) — opl,(z,9)]) =
= Uy (PWHHO_U( —y). P:Hn E;(X_y))
= Uy (S5x—y). Silx—y)).

as well as:

S ( OulalzX) + oy (29) @20 + 9l (2. y)
" 2 ' 2

-2 [0 [543 (59)

with:
X = K5 o Viloy,, Y=

n n'=n n'—=n

o) Vn71 oj”/_)n & Elgﬂ — K* o A\?n71 o Kn/_)n,

n'—=n

where Vn/ is defined as in the proof of prop. 18.7. For any z € €, \ {0}, def. 18.6.1 implies:

[2(”/>(z>] 2) = Vi (Vi o Kyal2), Vi 0 Kyal2) ] >0

n n n

hence Z VoG, — €, is invertible, and the above equation becomes:

-0

n

S ( PulalzX) + oyl (29) @20 + el (2. y) ) -

=[2n<"/> (z+(Zn<”’)) o X (X;g))] (z+(§gﬂ/>)1o)~<ﬁ>(x;y))+
ez (254 (429

On the other hand, using:

Kiy—n© Ry—n 4 Jy—p 0 Qyoy = ide v OQponoKysy =0 & Opopoly,=ide,

(as follows from the expressions for ¢, and ¢, ﬁn) together with \/ = Qy_y0 \// o Q. we

can check that:

v, (W) — (X" o (Zi)! oxm) — ide, (1891)

n

(noting that V, is the lower right block of (Ry_,, Oy_,) © Vy o (R, O5_,), which is the
j*

n—=nrIny—n
blockwise matrix inversion of the latter). Putting everything together and carrying out the Gaussian

inverse of (K ) o \7,771 o (Ky—n, Jy—y). €q. (189.1) can be visualized by performing a

integration over z, we get:

1 71(x+y x+g)_1 —

Vx,y € C,, pg”)(X; y) o exp l—z V, > 5 5 U, (:n(x —y), = (x — g))

so Tra, (P o CD?_,H) o p,, the proportionality factor being determined to be 1 from:
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1y 1 _
Tr?fn Trf}fng,] (Cbn’ﬁn Pr Cbnfﬁq) = Tr?f”/ py=1= Trﬂfn Pn -

18.2 A no-go result in the &G = R case

To prove the advertised no-go result in the case of the holonomy-flux algebra with G = R (using
the projective system set up in sections 10 and 12), it will be enough to concentrate on a certain
(uncountable) subset of observables out of this algebra. So, we will choose an edge, that we will
identify with the line segment [0, 1], and a continuous stack of surfaces intersecting this edge, one
for each point in |0, 1] (see fig. 18.1). We will keep, for each surface, only its face looking at 0.
Moreover, for all holonomies included in the selected edge to have finite variance, it would be
sufficient that all holonomies ending at 0 would have finite variance, since the holonomy between
e and e’ can be expressed as a composition of the one between e and 0 and the one between e’
and 0 (hence would have finite variance if those two had).

Thus, we will attach, to each point e in ]O, 1], the holonomy starting at e (and ending at 0),
as well as the flux that acts at the onset of this holonomy. It is manifest from the symplectic
structure in prop. 18.10 that these pairs of variables attached to the various points in |0, 1] are not
independent canonically conjugate pairs: instead, the flux at some point e acts on all holonomies
that start at or above e. As announced in section 17, these uncountably many non-zero commutators
will play a decisive role in the proof.

Now, suppose that it would be possible to construct a quantum state in which all those holonomies
and fluxes would have finite variances. Then, the points in |0, 1] could be organized into countably
many (overlapping) classes: a point would belong to the class indexed by some A € IN if the variance
of both the holonomy and flux attached to this point would be less than A. The assumption of all
those variances being finite would ensure that each point belongs at least to one of those classes,
so, as there are uncountably many points in ]O, 1] , there should exist some A whose class X would
be uncountable, hence infinite.

Finally given n points in this infinite set X, we will, in the proof of lemma 18.12, combine
the variances of the holonomies and fluxes attached to these points into a quadratic expression,
that should, if all these variances were bounded by a constant A, be bounded independently of
n. However, we will show that, by virtue of the Heisenberg uncertainty relations, this quadratic
expression can be bounded below by a diverging expression of n.

Proposition 18.10 We define the label set £ as the set of all finite subsets of points in |0, 1]:

L= L €10, 1] | #x < oo} .

aux)

We equip £ with the partial order C (set inclusion). For any k = (eq, ..., e,) € £, with

e1 < ... < e,, we define:
e =1h:k - R} & P :={P: xR},
as well as the linear map = . Plew) _, CE™* given by:

—K
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n n—1

VP e P vh e elw - =lw) = Plex)hler) =) Plex) hiex).
k=1 k=1

—(aux)
—K

is invertible, with = a”X) " such that:

Vs € eE{auX)r*’ Ve € k. [E(aux),f1(s)] (@) — s (9/ R {1 ife<e ) '

K 0 else
We equip MW = @l » Pl with the symplectic structure Q) defined from =) as in
prop. 18.1.
For any k C k¥ € £ we define:
b e e P g L g
h — hi, P — Pl

and 715 = QB 5 P Then, (L£09, velew | grlews )l is a projective system of phase spaces and

K'—K K'—K "

fulfills prop. 18.1.1 and 18.1.2. We denote by (£, Fl, CDa”X) the corresponding projective
system of quantum state spaces.

Proof £ is a directed set, since any two finite subsets of |0, 1] are included in their union and

this union is finite. Let k = (e, ..., e,) € L(a“X) with ey < ... < e,. =law being invertible can be

aux)

" and this ensures that Q%

checked from the expression given for = p

is indeed a symplectic
form (aka. an anti-symmetric, non—degenerate form).

(aux)
T -k

For any k C ¥ € Lt 7
symplectic structures, for we have:

is a surjective map M, — M, and is compatible with the

—(aux),—1 _ P(aux) o —(aux),—1 o Q,(jﬁ);

—K K'—Kk = K

Moreover, for any k € k' C k" € £, 75 = 75 o 75 | Therefore, (£E%), Mo, slew)
is a projective system of phase spaces. Prop. 18.1.1 and 18.1.2 are fulfilled by construction with
Vi € L) [, =idy, . O

Theorem 18.11 With the notations of def. 18.6 and prop. 18.10, Vaux = \7% o o) o) Qi) Pl =

@. Hence, prop. 18.8 implies that S® = 88 =0

au>< L(aux aux)’q)(aux))

Lemma 18.12 Let K be a countably infinite subset of |0, 1] and let A > 0. We define:

V(lfKA {(V U) EVlau><

Vi € K, Ve € k, Vi (¥, heh <A & U (P, Py < A},
with Vi € L™, Ve € k, he = (h he)) & P = (P Ple)). Then, Vi, = @.

Proof Proceeding by contradiction, we suppose that there exists (V,, U,), € V(le). Let n € IN.

Since X is infinite, there exist k = (e, ..., e,) C K with ey < ... < e,. Then, we have:

_Z\/ ( Ekl) + UL (P[f'k P[j‘k]) <2A.
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We define the n by n matrix M) by:

n e —(aux),— e 1 fkgl
k(e {1, .n}, M — pled (-( =1 (H ,])) _ {0 étse .

Performing a singular value decomposition of M there exist two n by n orthogonal matrices O

and O, and a diagonal matrix A with non-negative real entries, such that:
MIn) = )T AlB) o)
where (-)" denotes the transpose matrix. Defining, for any k € {1,.. . n}, sp € C™* and

te € Plewd* py:

n

n
S = Z O hlel & = Z o pled.
=1

(=1

we get:

1i\/,<(sk si) + U (t Zv (hed HET) o+ o (P PET) <24

n
k=1

On the other hand, from def. 18.6.2, we have:

n

1 1 _
E Z VK (Sk , Sk) + UK (tk, l'k) 2 E Z ty (:fux)f1 (Sk))

k=1 k=1

- lTr [O/(n) M) O(n)T] = 1Tr A — 1Tr M()T AMn)
n n n

1
Now, N := F/\/I(”)T M) is given by:
IR I L I L B L
vkl {10} N == ) MIM=— ) 1=—min|— —],
m=1 m=1

and the previous inequalities requires Tr VNI < 2 A
On the complex Hilbert space g := L, ([O 1], du[oﬂ]) (with dpyoq) the usual, normalized measure
on [0, 1]), we define, for any n € IN, a bounded operator NI"! by:

L

e el 1 N0 = mi (1) [ a

_ /0 dy min (ix], . [y,) <(y).

1
with [x], = ;[n x| and [ -] the ceiling function. For any m € {1,..., n}, we define u”) € J by:

Wx €10, 1], ulilx) == Vo O)) -

m m

(n) \ 2
We have <u[”} u[n]/> = Opy and, using N = o7 (A ) o -
d
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2
mm

N= 9 S ) ) o)

Now, we define a bounded operator Nl on g by:

1
vCed i el0 ], [N 00 = [ dy mintx, o) <y

- /Oxdg yly) +x fdg C(y).

and, for any m € IN\ {0}, we define u> € g by;
1
¥x €0, 1], u®(x) z\/zs'ml(m—z) JT)(:|.
We have <u[‘x’} ‘ u[o?]> = O, and:
d

4
Nl — 4 e
Un ™= 22 om —qp Im

Since Z > _1 = 00, there exists M € IN'\ {0} such that:

2A4+1.
7T2m—1 - +

Mi

m=1

Let n € IN such that n > 8.1° M? and complete (u ( [”]) into an orthonormal basis (u[,g])

me{l,..n} meIN\{0}

of . Forany m € {1, ..., M}, we have:
H/\/[OO] u[,io] — NI U[/;.O]H < H/\/[OOJ — /\/[H}H H“[r?o]H < l
n

But we also have:

o] 2 2
joo] | o] _ il ool 2 — N2 _ (Al ) o] | oo
HN U N Up H - n4 Ig (Amm) (Am’m/) um/ Un g
where A = Z—n and, for any m’ > n, A -~ 0. Thus, we get:
mm _]T(Zm_»l) U mm/' . ' g :

7 [ inf
n m’eIN\{0}

[o0] >
u ,
m g FIZ

and therefore:

inf
m’ €N\ {0}

(A59))? (A(”) )2' <n.

mm m'm

Hence, for any m € {1,..., M}, there exists m € IN'\ {0}, such that:
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A\

mm
n

4

2
- < =
a2 (2m —1)? S

Using AVL > 0 and n > 872 M?, this implies:

mm

n (n \? (n)
2 AL 4 AL 2 AL 1
_ Tmm | _ o mim 4 —min < .
a(2m —1) n 7 (2m — 1)? n T (2m — 1) n 4 71 M?
On the other hand, for any m" > n, we have:
2 A [
a(2m —1) n |~ aM” aM
som < n. Next, foranym#m' e {1,..., M}, the inequality:
2 _ 2 S 1
a@2m—1)  a@2m —=1)| " aM?

holds, so m # m’. Therefore, we obtain:

n n M (n) M
AL AVL 2 1
mm > mm > _ > ZA’
Z n /Z n /ZJT(Zm—1) 47 M
m=1 m=1 m=1
1
in contradiction with — TrA” < 2A, whence the initial assumption on the existence of (V, U,), €
n
V(le) {s proven wrong. O

Proof of theorem 18.11 Again, we proceed by contradiction and we suppose that there exists

Ve, U, € W ). Forany e € ]0, 1], we define Viel.— v, (h[f], h[,f]) and U = U, (P[,fJ, P[,f])

(aux

for some k € £ such that e € k. If K € £ is such that e € K, then k, K’ C kK U K" & £™
and:

Vie (2 0T} = Vi (O (). QL2 (W) ) = Viw (WL L)
— v, (h[,f], h[f]) — VI,

Similarly, Uy (PM, P[;‘J) — U Now, we have:

10, 17={J{e€]0 1] V<A & UI<A},
A=1
and since |0, 1] is uncountably infinite, there exists A € IN'\ {0} such that:

fe€]0, 1] VFI<A & U<A}

is infinite, hence contains some countably infinite subset K. Then, we have (V. , U,), € V(igm), but

this is impossible since V%K’A) = & from the previous lemma. 0

Proposition 18.13 Let £, be the directed label set defined in def. 10.12. For any n € L, let
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€= {h:y(n) - R}, P¥ = {P:F(n) - R} (with y(n) and F(n) as in def. 10.12), M := T*(€)

and, for any n < ' € L, let 71X M}? — M];R be defined as in prop. 10.26 in the special

n—n
case G = (R, +). Then, (LHF MR,
hypotheses of prop. 18.1, with:

1.Yn € Lye, VP € P, ZHP)  h Z P o x,(e) h(e) (with x, as in def. 10.12);

-n

n_,n)l is a projective system of phase spaces fulfilling the

e€y(n)

2.Vne Ly, Yh p) e M,;R, L,;R(h, p) = (h, F P(5x;1(F))) (with, for any F € J(n) and any
e € y(n) 0.1 (e) =11 x,(e) = F, and O otherwise);

[]*}I]E‘

3.Vnxn € Ly, Yhy € C’R of e Z €y—nelk) hy oay_,e(k) (with the notations

n ‘”7

of prop. 10.23);

4.0 € Ly, VPy EiPR PR

n'=n

(Py) : F — Z P,(F') (with H ~ also from

’7—”7
(13)

/
F qu o

prop. 10.23).
The projective system of quantum state spaces (LHF, HE, CIDR)@ provided by prop. 121 (in the

special case G = (R, +)) can be identified with the one provided by prop. 18.1. Moreover, for any
ne XLy and any (s, t) € GJ,]R'* X iP]nR'*,

o~

XB(s,t) = Y s(0e) hr — Y #(op) P,

e€y(n) Fegm)
using the densely defined, essentially self-adjoint operators introduced in egs. (12.2.1) and (12.2.2)

(the minus sign is the result of conflicting conventions in props. B.14 and C5).

Proof Assertions 18.1.1 and 1812 Let n € L. = _,7 is an invertible linear map P, — G* with:
Vp € € =7 (p)  F o p(00)
Next, L}? is an invertible linear map J\/[,;R — Gg‘ X ﬂ’g{, with:
V(h, P) € CF x PR, LR (h, P)= (h, h' ZPOXH (e)) .
eey(n
Let Q,;R be the symplectic structure on GIHR X inR defined by:

Vhh' €€, VP, P P, OF(h P; ', P):==R(P)h) —=XP)(h).

f7 -n
We have:
Y(h, p). (0, p') € ME, (LR (h, pi I, p) = p/(h) — p(h').
R - - - - R
Hence, [ is a symplectomorphism (with respect to the canonical symplectic structure on M;* =

T*(GE{), see eq. (216.1)). Moreover, it coincides with the map defined in prop. 10.26 in the case
G = (R, +)

258



Let n < n" € L. Using prop. 10.26 we have, for any h,, P, € G]UP/” X iP]nP/“:

LRonl oLl (hy, Py) = (QF, (hy) PE. (Py)).

n'—n n—n

R
n'—n

@y—n, be defined as in prop. 10.24 (with &G = (R, +)), resp. as in prop. 18.1. It follows from the

Projective of quantum state spaces. For any n < ' € Ly, let € and (,0,15_,,7, resp. C,_, and
uniqueness part of prop. 2.10 and from the connectedness of M, that the tangential lifts of the maps

(ngn and ¢,_,, must coincide modulo a suitable symplectomorphic identification of the cotangent

bundles T*((?,;lln) and 77(C,_,). Hence, the maps @,]5% and ¢, _,, themselves coincide modulo a
R

n'—n
systems of quantum state spaces coincide modulo a unitary identification of the Hilbert spaces

FHEB = (ER ) and Fyoy = Lo(Cyon)

n—n " n—n

diffeomorphic identification of the manifolds € and C,_,,. Therefore, the associated projective

Observables. Let (s, t) € C}'* x P1** and ¢ € Dy¥ = C°(€}Y, C). For any h € €}, we have:
DX (s, )] (h) = s(h) th) = L [Twd] (Z71(1)
= > s(@e) hle)pth) = > it(6e) [Tath (0,

eey(n) FeF(n)

where we have used that, for any F € F(n), E,;R'*'_1(t)()(n_1(/—_)) = t(0F). Now, specializing the

definitions from prop. 12.2 to the case G = (R, +), this can be rewritten as:

DXR(s ) @] (h) = > s(@e) [\ g(h) = > t(@r) [P ¢](h).
e€y(n) Fesn)
O
Proposition 18.14 With the notations of def. 185 and prop. 18.13, S((XL)HF,%R,W) = .

Proof Directed pre-order on L, LI L™ Let W : U — V be an analytical coordinate patch on L,
with U an open neighborhood of 0 in RY (recall that d := dim(X) > 1). Let e such that B ¢ U.
For any 7 #+ ' €0, 2] we define:

vt Uy CRIR xR — V
(iy) = W(5(t+x(=1).5y) "

2
where U, v = {(x, y) e R =R x R (T +x (' — 1), y) € - U]» is an open neighborhood of

0, 1] x {0}~ in R?. We denote by e, be the corresponding edge. Next, for any T & [0, 1] we

define S, = &,, and we note that U, is an open neighborhood of {0} x B“~" in RY. We denote
by S; the corresponding surface.

letk = (14, ..., T,) €L with0 < 7y < ... < 1, < 1. We define (fig. 18.1):

Ve = {eT_TH/Z ‘ ie{1, ..., n}} U {en,m”z ‘ ie{1,..., n}} € Lgraphs ,
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T ¥ LE] \

0 B2 52 1 2

Figure 18.1 — Constructing 1,

A 1= [{ST |7 € K}]N € Loprofls

where ~ denotes the equivalence relation from def. 10.10. Since, for any t # ', r(S;)Nr(Sy) = &,
we have:

T = {Frw) ‘ rexoe{T 1}
where, for any 7 € k and any o€ { T, L}
Fo(k):={e € Ledges | €0 S; & VT ek \{t}, e Sr}.
Thus, ne = (Ve , A) € Ly with:
vie{l,. .. n}o e o) = FHK) &y ler o) = F(K).
Moreover, for any i € {1,..., n}, we have:
-

eTi.O:eT1,T1/ZOe O...OE‘T[.

T, 132 s T2

and FLT((K) = H S LfaCGSr with F7 = {6‘ S Ledges

e ST[},
where, for F C Ledges, FY and F := F' o F are defined as in prop. 1021, and the equality

Ff’(K) = F7 can be proved using prop. 10.9.4.
Now, let £ := L, UL and extend the pre-orders on £, and L) with:
Vn=(y,A) € Ly, Vk € Lo,
K '\< f] @ (VT E K, y E Lgraphs/eno & /\ E Lproﬂs/ﬁ)'
where Lgaphsje for e € Legqes , resp. Llproﬂs/f for F € Liyee, has been defined in prop. 10.20, resp. in
prop. 10.21. To check that this defines a pre-order £, we note that:
Ve € Ledges: V)/ < )// c LgraphSr y € Lgraphs/e = )// € Lgraphs/e:

VF € LfaCGSr VA < Ne Lproﬂs . AE Lproﬂs/f = A€ Lproﬂs/f'

260



Since, for any k € L e < n. with n, the label constructed above, £, is cofinal in £ and, in
particular, £ is dLrected.

Projective system on £. For any k € £ and any n = (y, A) € £, such that k < n, we define:

Qpoe = CR —
b [T 5 €ennlk) hoay (k)]

as well as:

e

n

P — [THZPEH

o P
where n,_. ;, €,e,, and a,_. , have been defined in prop. 10.20, and H,_= in prop. 10.21.

Defining, for any « € £ and any n € Lye, Ty M,;R — Mff“x

TMhok = (Qnﬁx X Pnﬁx) o L]”R,

and specializing the definitions from prop. 10.27 to the case G = (R, +), we have:

Vih, p) € M, mylh, p) = (7> WO (h, p), 7 P, p)

au><
K'—K

For any k < K € £ and any n € £, with k¥’ < n, we thus have, using the definition of .,
from prop. 18.10:

(aux)
K'—K

Tpoix =TT, O Tk -

Moreover, for any k € £ and any n < n € Ly, with k < 1, we have shown in prop. 10.27 that:

(ero.idR) R (er0.idR) (FT.1) R _ plFT)
V1 €k, hy oy, =h, & Py Vomy,, =P,

therefore, we also have:
R
Ty =i = Tk © Ty sy

letk = (14, ..., 1, € LY with0< oy < ... <1, <1and let n, = (Vi , Ac) be constructed
as above. We have:

J j=1
R _
Vh e GW, VTJ €K, [QWHK T/ - z h eTirTz—W/Z E h eTz T[+1/z
i=1 i=1

as well as:

VP e {P],IZ VT €K, [Pn,(—w(’D)](Ti) = P(FEI(K))

Inserting the expression for E]P:'_1 from the proof of prop. 18.13, we get, for any s € @™

J
FT’(K))) =S (le—>;5[k) .

PUK"K © :f7;<’ © Q;KHK(S) “ =50 Q’]K‘)K (5)(1(

l

Nk

Thus, P, .o —15 1o Qo = =@~ "in other words m, ., is a projection compatible with the

symplectic structures. Then, for any n € L, such that n = «, there exists n’ 3= n, n, such that
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Tk © JTE/{_)H = Tk = Tk O JTE/{_W, S0 7T, is a projection compatible with the symplectic

structures.
Thus, we can combine (L(a“X), Ml JT(GUX))l and (LHF, ME, JTR)

phase spaces on £, fulfilling prop. 18.1.1 and 18.1.2. We denote by (£, 3, ®)® the corresponding
projective system of quantum state spaces.

" into a projective system of

aux

Mapping narrow states on L to narrow states on £°. Applying prop. 5.6 twice, to go from L,

to £ (using that L, is cofinal in £) and from £ to £ there exist a map o : gi%%[{’q}ﬁ) —

o —® —®
S(L(aux)’g{(aux)’q;(aux)) and a map a .A(L(aux)’g{(aux)’q;(aux)) — .A(LHF’%]R,CD]R) SLICh that:

Vp € S, gen om0 VA € Algom ggom, ), Tr(pa(A)) = Tr(a(p) A) .

Moreover, for any k € £ and any (s, t) € Cl™* x P™* "we have from eq. (183.1):

o ([TE95, 0] g ) = [@50 0 (1, . @ TEs, 1)) 0 0y, ]

~,Lye

[ e tom)

~,Lye

aux)

Thus, for any p € gi%%ﬁ'(bm,) and any k € £, we get:

V(S, t) € Gf”x)’* X ‘:PE?UX)'* , Wd(p)K(SI t) = Wp,,K (5 o QUKHKI to PI]KHK) '

3® 3® _
hence o <S(LHF/%]R/¢]R)> C S(L(aux)vj{(aux),q;(aux)) - @ |:|

If we cannot have Gaussian states, the next best thing would be to have some quantum analogue
of the classical probability distributions whose characteristic function takes the form:

(), = exp ia(s) — (b(s)) "]

with a € ]0, 2|, a a linear form and b a (symmetric) non-negative bilinear form on the dual space.
These distributions have the nice property that their marginal probabilities (the classical equivalent
of the partial trace of a quantum state) are again of the same form, with the same « (this is manifest
by recalling that the characteristic function for a marginal probability is the restriction of the full
characteristic function to the corresponding vector subspace of the dual space, in complete analogy
to def. 18.2.3). For a = 2 the distribution is Gaussian, while for a < 2 it is heavy-tailed (aka. has
infinite variance), and these distributions generalize the Gaussian distribution in the sense that
they appear as attractors in heavy-tailed generalizations of the central limit theorem [38].

However, as prop. 18.15 below shows, the previous arguments excludes in the same stroke a large
class of states.

Proposition 18.15 We consider the same objects as in prop. 18.4 and we suppose that there exists

a state p € Sfi‘g{’q)), integers m,n € N, and reals €1, ..., €,4, > 0 such that:
1. for any n € £ there exists m linear forms a(n” e 057’”) and n (symmetric) non-negative bilinear
1) (n) o D
forms by, ..., by on € x P ;
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2. foranyn<xn € L:

= ‘an(s,t)—1}<%.

Then, S(%H’(D) + .

Proof For any n € £ we define:
V(s, 1), (s, t') € € x Py,

>

,I m
By(s, t; s’ t') == dor min( ] a®(s, t)a¥(s' ') + bU(s, t; ', t) ],
T min(er, ..., €pen

as well as:

Vs, s' € €L, Vy(s,s') = By(s,0;5,0) & Yt,i' € P, Uyt, ) :=B,(0, £ 0,1).

Vi, resp. Uy, is a (symmetric) non-negative bilinear form on €}, resp. P, and for any n < ' € £,
we have:
\/,7 = \/f]/ @) (QI);/—H7 X Q;/—H’]) & U/] = Un/ @) (P;/ﬁ” X P;/—W)'

Let n € £. Reasoning by contradiction, we suppose that there exists (s', t') € €; x P, such that:

Vo(s',s') + Uyt ) < t'(Z,(5) -

€

In particular, this implies € == ¢'(Z,'(s")) > 0. We define s :==1/Zs" and t := /2’ so that:

Vo(s,s) + Uylt, t) < 2 & t(Z,(s)) = 2.

-n
Then, we have:
By(s,0;5,0) = V,(s,s) <4m & B,(0,t; 0,t) = U,(t, t) < 4,
as well as:
By(—s, t; —=s, t) < By(—s, t; =s, t) + By(s. t; s, t) =2 (\/,7(5, s) + U,(t, t)) < Ar.

Thus, we get:
W, (5.0) = 1] < % |W,,(0,1) = 1] < % & W, (=s.t)—1] < % (18.15.1)

Now, the positivity condition eq. (18.2.1) applied to the points (0,0), (s,0) and (0, t) can be
rewritten as:

VZOvZ1rZZGCI
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1Zo)" + |21]" + |22)" + 2Re (Zo 21 W, (5, 0) + Z5 22 W, (0, t) — Z12o W, (—s, 1)) = 0 (18.15.2)
where we have used t(Ef(s)) = 21 and W, (0,0) = 1 (for p € S%%‘q,), hence Trg, p, = 1).
Applying eq. (18.15.2) with z, = 1 and z; = z, = —1 yields:
0<3—Re(2W, (5,00 =2 W, (0,t) =2 W, (—s,t))
<2 ‘1 — an(s,O)‘ +2 ‘1 - W,,(0, t)‘ —1—2Re (W, (—s, 1))
< Re (1 — W, (s, t)) — Re (an(—s, t)) :
Thus, —Re(1 — W, (s, t)) < Re(an(—s, t)) < Re(1 — Wp”(—s,t)), and since we also have
Im(W,,(—s, t)) = —Im(1 = W, (—s, 1)), this implies |W,, (=s,t)| < |1 =W, (—s, )] <1 < 1.
Next, we apply eq. (18.15.2) with:

7y =1—|W, (=5, )

7= W, (5.0) = W, (0.0 W, (—s.1) & z,=—W,(0,1)— W, (5.0 W, (—s1)

(these values arise by optimizing on z;, z», keeping z, fixed). After simplifications, we get:
0< 22—z [y W, (s,0)|" + |W,, (0, t)ﬂ —22,Re (W, (5,0)W,.(0, 1) W, (—s, 1))

Since ‘an(—s, t)‘ <1, 2, >0, so this leads to:

(W, (=5, O] + [ W, (5.0)|" + [W,, (0. 0)]" + 2Re (W,,(s,0) W, (0, ) W, (—s, 1)) < 1.

Pn
Finally, we rewrite this inequality in terms of w, = W, (=s,t) =1, wy == W, (s,0) =1 and
wy =W, (0,t) —1:

0> 4+ 4Re (o + wi + W) + [wy + wi + Wal’ + 2 Re (wowi2)

>4—4|w, + wi + W] + |wo + Wi 4+ Wa|" — 2 |wows W) .

However, this contradicts eq. (18.15.1) which requires |w, + wy + Ww;| < 3/2 and |w,wyw;| < 1/8,
since (x = x” —4x) ([0, 3/2[ ) =]—15/4, 0].

Thus, we have proven that:
V(s t) € € x Py, Vy(s,s) + Uyt t) —t (Erf(s)) >0.
In particular, for any s #+ 0 € €], there exists x € €, such that s(x) # 0, so defining ¢ =
= X
T sx)

VAER, AV(s,s)+ Uyt t) — A >0,

S T;, we have:

hence the symmetric bilinear form V; is strictly positive. Similarly, U, is also strictly positive.

Therefore, (V},, Uﬂ)nez S V(LL,(G,TP),(O,P))' so by prop. 189, S(‘%g{m) + 0. O

The previous result can also be seen as excluding a different notion of state confinement, focus-
ing on quantiles rather than moments (in other words, working with the cumulative distribution
function rather than with the characteristic or moment-generating one).
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eyl »

*

Proposition 18.16 We consider the same objects a in prop. 18.4. Let C o1 be the inductive

resp. P

limit (without any completion) of the inductive system ((G;)nez' (Q;/—’”)n«ﬂ) , resp. ((ﬂ’j‘))neﬁ,

*

(P: )ﬁn’) . Forany n € £, let O, resp. P, be the canonical injection of € in €,

n'—n
k

resp. of P in P

We suppose that there exists a state p € Sa%@, a real p > 3/4 and a non-negative (symmetric)

bilinear form By on C;y x P, such that, for any n € £ and any (s, t) € €, x P

Tra, [ Mals, )] = p,

where [1,(s, t), is the spectral projector of X,(s, t) on [— A, A] with:

A= By (O (5). Pyt Qiyyfs). Piy,(0))
Then, S(%}m) + .
Proof For any n € £, we define:
Vis, 1), (5, £) € £, B)(s, 15 8/, ) = By (Qlyyls), Plyyl0): Oyl Piynlt).

By construction, (b“))neﬁ fulfills prop. 18.15.1 and 18.15.2.

n

Let ¢ := (2p — %)2 > 0. Forany n € £ and any (s, t) € €, x P, such that bg)(s, t; s, t) < e,

we have:
Hl_ln(Srt) (Tuls, t)_ld:}cn)H < sup ’eix_”
xe[f\/bg)(s,t;s,t), \/bg)(s,t;s,t)J
b(1) tosit
= Zsin # <2p—%,
as well as:

[ To(s, £) — tdag, || < [ Tols, &) + [[ida, || = 2.
Thus, we get:
‘WPU(S' l’) — 1‘ = ‘TF}(” Pn (TU(S, t) — Ld}(”H

<2p— % +2 Try, py (ldg{n — [T,(s, t)) <

N —

Hence, prop. 18.15 implies Sa%d)) + o O

Any state on the algebra Ziﬂf.dﬂ (aka. positive linear form of norm 1, see [41, part 111, def. 2.2.8]

*

and prop. 5.4) yields a C-valued function on the inductive limit C;y x P¢, , which satisfies suitable

positivity requirements (in accordance with def. 18.2.2). Since the space of states on a C*-algebra
is never empty [87, theorem 1.9.18], we are assured that there do exist such functions of positive

type on Cqy x P, . However, a function of positive type comes from a projective state in S%g{m if
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and only if it is continuous with respect to the inductive limit topology on Ggl X iP’C‘gl (this reflects

the characterization from prop. 5.12). What we have established above is that, in the case of the

projective structure constructed as in sections 10 and 12 for the holonomy-flux algebra with G = R:

« there do not exist any function of positive type twice-differentiable at 0 with respect to the
inductive limit topology;

*

« given some scalar product on Cgy x Py,

there do not exist any function of positive type
continuous at 0 with respect to the corresponding (strong) topology.

This still leaves a fairly large window for projective quantum states to be found, however, it would
be reassuring to have an actual proof of their existence, and, even better, constructive techniques
to obtain them.

On the other hand, the first of these two points demonstrates that the failure to find admissible
semi-classical states would not be solved by looking for an even larger state space: if there would
exist such states on the algebra they would be twice-differentiable, hence continuous, at 0, and
they would automatically belong to the projective state space (thanks to the positivity condition,
continuity at zero implies continuity everywhere). As announced in section 17, the problem we
uncovered here has its roots in the holonomy-flux algebra itself. Therefore, the resolution we will
propose in the next section will act directly on the structure of this algebra. At the same time,
it will bypass the concerns just raised about the projective state space being possibly empty, since
it will provide us with a systematic procedure to construct arbitrary projective quantum states, no
matter whether the gauge group is compact or not (subsection 19.1).

19. Quasi-cofinal sequences

The fact that £, is uncountable plays a crucial role in the negative result of prop. 18.14. As we
will see in subsection 19.1, constructing projective quantum states is significantly easier when the
label set is countable, since, in this case, all projective states can be constructed recursively in a
systematic way. In particular, there is no risk for a projective limit on a countable label set to be
empty, and, more generally, for any label n, and any density matrix p, on J,, it will always be
possible to find a projective state whose restriction to the label 1 coincides with p,.

To benefit of these advantages, our goal will therefore be to restrict £, to a carefully chosen
countable subset. However, we have to be cautious of the dangerous side-effects such an endeavor
could have:

» we do not want to introduce any objectionable arbitrariness in the theory: recall that we put

forward in the introduction of the present work the improved universality of the projective
approach compared to the choice of a particular representation of the algebra of observables;

« in addition, going over to discrete structures carries a serious risk of breaking diffeomorphism
invariance [74], something we want to avoid at any cost in view of applications to background
independant quantum gravity [75, 77] .

In subsection 19.2, we will therefore spell out, in a general setting, the properties that a label subset
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should satisfy to ensure that restricting the projective system to this subset will preserve suitable
notions of both universality and diffeomorphism invariance (or, more generally, invariance under
whatever the group of symmetries is for the particular theory under consideration). This strategy
will be put to practice on a simple 1-dimensional toy model in subsection 19.3, while the proof
that there indeed exist countable subsets in £, satisfying the requirements of subsection 19.2 is
currently under progress for d > 1.

Note that, from a physical point of view, it seems in fact very reasonable to expect the elemen-
tary observables of a theory (in the sense discussed in section 1) to form a countable set: these
observables are meant to be in one-to-one correspondence with the experimental protocols describ-
ing their measurement, and such protocols should indeed form a countable set (since they can be
encoded eg. as finite sequences of chars). To say it differently, if there would be uncountably many

elementary observables, we would not even be able to accurately tell which one we are measuring
in a given experiment.

One could at first think that such an argument should be made at the level of the physical
observables, since those are often thought of as the only real” ones. However, in the spirit of
appendix A (viz. the extended discussions in section 3), we adopt the interpretation that the kine-
matical observables are not just byproducts of the construction of the final, physical theory, to be
discarded as soon as the latter has been obtained, but that they instead play a prominent role to
formulate the interface between the mathematical theory and the experimental reality: they are
used to label with physical meaning the dynamical observables to which they give rise (as stressed
in the discussion preceding def. A.2, the redundancy of this labeling is deliberate: it reflects the
predictive power of the theory). So, in this perspective, we indeed expect countability already at the
level of the kinematical elementary observables.

19.1 Factorized states on cofinal sequences

As underlined in prop. 5.6, restricting the label set to a cofinal part does not affect the projective
quantum state space, so, rather than considering a countable label set, it is sufficient to look at
a label set admitting a countable cofinal subset. This weaker condition is of course equivalent if
the part of the label set that is below any given label is countable, like in £, (as the labels in
L, are finite collections of edges and faces, they actually have only finitely many sublabels, see
prop. 19.3). But, for example, in the label set considered in prop. 16.3, which consists of finite
dimensional vector subspaces, most labels (namely the vector subspaces of dimension greater than
2) are above uncountably many others (while the label set £ of prop. 16.3 itself does not admit a
countable cofinal subset, one could easily construct an uncountable part of £ that does).

If we do have a countable cofinal part, then we can construct recursively an increasing cofinal
sequence from it, and, along this sequence, we can use the fact that the partial traces Tr, ., are
surjective to construct a projective quantum state, by recursively choosing a density matrix p, ., in
the preimage of p, . Clearly, all projective states can be constructed in this way. The ‘factorized
pure states’, satisfying p, ., = |Un1 X Yni1|® py, for some vector Y1 € H,, -, , are particularly

simple, and their convex closure is dense in the projective state space (with respect to a topology
defined like in prop. 12.12).
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Proposition 19.1 Let (£, H, ®)® be a projective system of quantum state spaces (def. 5.1) and
suppose that £ admits a countable cofinal subset Zseq. Then, there exists an increasing sequence
(Mn),en such that {n, | n € IN} is cofinal in Zseq, hence in £. We choose such an increasing
sequence, and we define Lqoq := {n, | n € IN} as well as:
Jo=H, & Yn>0,3,=%H, ., .
Then, for any sequence ¢ = (), such that:
vneN, ¢,€d, & |l =1, (19.1.1)

there exists a unique state p[Y)] € 8 5 such that:

P L] = o ) (Wl & ¥n >0, p,[¢] = q)/;71—>/7”,1 ol [ty ) Ynl ®Pn”4[¢]) ody ny-
(19.1.2)

Proof Auxiliary projective system on IN. Since Zseq is countable, there exists a sequence (ﬁn)nE]N

such that Zseq = {ﬁn‘n S ]N} (if Eseq happens to be finite, we can simply choose the sequence to

be eventually constant). Next, £ being directed and Zseq being cofinal in £, there exists, for any
n,n"€ N, N € N such that:

ﬁn ' ﬁn’ % ﬁ/\/ .
Hence, we can define recursively a sequence (N,),c Via:
No=0 & Vn>0 N, =min{NeN|n,, nn,_, <7~}

By construction, the sequence (/7,, = ﬁNﬂ)nE is increasing and Lqeq := {n, | n € IN} is cofinal in

N

Leq -

We define recursively a family of unitary isomorphisms (EDH X, 0. ® 30) N via:
ne

Elv)o = Ldgu & Vn > Or 5I7 = (LdHN ® a/)ﬂ*/l) © q)ﬂn‘)nn—1 .

Next, for any n € IN, we define recursively a family of unitary isomorphisms (CD,,/H,, CH, o

Hn'®...®3n+1) via:

n'>n

q)(nJr’])*)n = .Ldan#ﬂ & vn/ > n + 1' (Dn/%n = (.Ldgn/ ® (D(n/i/l)ﬂn) © ann/A)nn/f‘\Hnﬂ .
Thus, we get, for any n < n" € IN:

~ ~ ~_ )
(q)n/‘)n ® q)”) © q)nn/‘)nn © q)l’l/ = Ldgn/®---®3n+1®3n®---®30 ' (1913)

as can be shown by recursion over n” — n, using the definitions above together with eq. (5.1.1).

—®

<® <® —® N
Let Octey * Seaco = Singae and doer, @ A, aco = Aprsce be the bijective maps

seq

constructed as in prop. 5.6. We define, for any n € IN:
Kn::3n®~--®go & g{nﬁn::C,
and for any n < n’ € IN:
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:Kn/ﬂn = 3n’ Q... ® 3n+1 -

Moreover, we define, for any n < n" € IN, W,,_,, to be the natural identification X, ~ K, ., ® K,
and, forany n < n" <n” € N, W,»,,,, to be the natural identification K+, ~ K, @ Ky, .
Thus, (N, X, W)® is a projective system of quantum state spaces. Now, we define:

.35 S
OLeq—>IN © DL Ho) 7 OINKW)

e Y n

Let p € giseq ey Forany n € N, we have:

Y O ey e
Trpsn®pop, 0o®, =, 0p, 0od, 7,

and for any n < n" € IN, eq. (19.1.3) yields:

Ny —1n

b b1 — B -1 BT
Trn/ﬁnq)n/ © pf?,,/ © CDHI - (Dn © I:Trg{r]n/ann cbnn/_)nn o pn”/ o (D :| o (Dn
S B
- CD” © p/7n © q>I7 .

. , =® =® i, o
Therefore, g, is well-defined as a map 8¢ 34y = Svacw)- In addition, oc,, i is injective,

since Lseq = {nn | n € N}

We now want to prove that gz . is surjective as well. Let p € gg\],x%. Let n,n" € IN such

seq

that n, < n. . If n < n’, we have, in a way similar to above:

]~ e e
Trﬂn/—qu) r o pn/ % q)n/ = q>

n

0By ob,. (19.1.4)
Clearly, eq. (19.1.4) also holds if n = n". Finally, if n > n’, n, %= ny = n,, hence applying eq. (5.1.1)

tmplies Tr, ., = (Trnﬁ,,n/)q. Making use of the first case for n’, n then yields eq. (19.1.4) in this
case too. In particular, if n, = n,, we get:

o op, o CTD,,/ — b

n n

L =
op,oP,.

Therefore, there exists p = (p,) giseq,}(m such that Vn € N, p, = 5;1 oppo®,,

S
UELseq

Le ULseq‘)]N(p) = p

Next, for any n,n" € N, and any A,, € A, , A, € A, ,, we have:
(317” S Lseq/n// 7 Moy Ny &

® Ann) o q)n/lﬁnn = q>_1 o (Ldi}( /!

/"
=1y n=n,r

-1 .
(Dn//_’”n O (Ldg—( "

n—nn

® A, )0 CDWN—’U”/) <
& (30" =00 [ide,, ® (@0 A, 00)) = idx, , ® @y oA, 0B,

(the direction ‘=" can be shown by choosing 1 such that n” = nz and n” > n,n’, ). Thus, we can
define the algebra isomorphism:

. ® ®
AgeqeN - ‘A]N,JC,W - Azseq H,D

[A”]N — [&3;1 oA, oélgn]
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. N , , —® —® :
and extends it by continuity into a C*-algebra isomorphism ac . : Anxw = A, 30 Finally,

, N ® =®
we define the bijective maps 0 := 0g,,-N© Ocs., * Sicace) = Svw) aNd @ 1= Uge g, 0 ALy
—® —®
A(]N,ﬂc,w) - ‘A(L,f}{,fb)'

Existence and uniqueness of p[iy]. Let ¢y = (), be a sequence satisfying eq. (19.1.1). We define
ALYl € Siy xw) Via:

Vn €N, pr = ®...0 Y ) (Yn ®...® .

Then, ply] == o' (plyY]) € 8% 90 fulfills eq. (19.12). Reciprocally, if p € 87 4 o, fulfills eq. (19.1.2),
then o(p) = p[¢] (this can be checked recursively on n), hence p = p[y]. O

Supposing that the projective system of quantum state spaces under consideration has been
obtained through the quantization of a factorizing system of symplectic manifolds (eg. along the
lines of section 6), and that the latter forms a rendering (def. 2.6) of some classical, continuum phase
space M., we can use this technique to construct a semi-classical state centered on a classical
point Xoo € Mo, . To this intend, the vector .1 € H, ., should be chosen as a semi-classical

state centered around the point x, ., € M, -, , computed from x. via (leﬁnn , x”n) =
cpﬁnﬂ‘)’]n (X’MM) = (pflnﬂ‘)Un o jTOO‘)”nM (XOO) .

For small n, we can think of the coarse labels n, as describing some collective, macroscopic
degrees of freedom, so that the prescription above offers a concrete implementation of the approach
advocated in [71]: namely, we start by forming states having good peaking properties at macroscopic
scales, and, going down step by step toward smaller and smaller scales, we impose, at each step,
as much semi-classicality as the Heisenberg uncertainty relations will allow (taking heed of the
already fixed behavior at larger scales). This is readily achieved here because the largest part of
the work was done beforehand while setting up the factorizing system, by identifying the degrees
of freedom in n,.q1 that commute with the ones from n, (recall the discussion before prop. 2.10):
those are precisely the variables on which semi-classicality can be imposed independently of the
already chosen state on 1, .

We can then ask whether a semi-classical state constructed this way would belong to the induc-
tive limit Hilbert space arising from a choice of vacuum state (prop. 5.8). Assuming this vacuum
is itself a factorized pure state, the characterization given in theorem 5.9 can be reformulated into
the condition 19.2.3 below. In particular, if the vacuum state is a momentum eigenstate, like the
Ashtekar-Lewandowski vacuum, a factorized semi-classical state could only be made an element
of the corresponding inductive limit by deteriorating the semi-classicality of ¢, : eg. if ), is taken
as a coherent state, controlled by a semi-classicality parameter that determines the repartition of
the quantum uncertainties between position and momentum variables, this parameter will have
to be shifted fast enough, as n grows, toward maximally peaked momenta and maximally spread
positions. By contrast, if the vacuum state is itself a coherent state, like the Fock vacuum, the
condition 19.2.3 can be interpreted as delimiting a domain in the classical projective limit (def. 2.3)
such that, for x,, belonging to this domain, the factorized semi-classical state centered around x.,
will belong to the corresponding inductive limit: assuming the vacuum is centered around 0, this
requires that x, ., tends to O fast enough. The question will then be whether the image of M.,
in the projective limit (prop. 2.7) happens to be contained in this admissible domain.
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Finally, we also notice that the tensor product factors 3, ., can be arranged into an infinite
tensor product (ITP, see [99, 93] and theorem 5.11), and, not surprisingly, all factorized states do
belong to this ITP. Still, as we will argue below, working with a projective state space instead of
an ITP Hilbert space allows to overcome certain limitations of the ITP construction, in particular
with respect to universality (prop. 19.13).

To comment on the relation with the Algebraic Quantum Gravity framework (AQG, see [36] and
the brief explanation in section 17), note that, while a primary motivation for introducing an ITP
Hilbert space in AQG was the availability of factorized coherent states very similar to the one
discussed above, an important difference lies in the type of tensor product factors we are using:
the building blocs of the ITP in AQG describe individual, microscopic degrees of freedom, meant
to represent the smallest atoms of a quantum geometry (presumably at Plank scale), instead of
holding complementary degrees of freedom added step by step as we refine our description from
macroscopic to microscopic scales.

Proposition 19.2 We consider the same objects as in prop. 19.1. We denote by Hse, the infinite
tensor product of (J,),. (see [99] and theorem 5.11). There exist @ map Oweq @ Seeq — gig{m)
and an algebra morphism asq :Zi’g{@) — Aseq (gseq, resp. Aceq. being the space of non-negative
traceclass operators, resp. the algebra of bounded operators, on Hs.q) such that:

Vp € Seeq s VA E Al seay Tt P GeeqlA) = Tr Oieglp) A.

Similarly, for any sequence ¢ satisfying eq. (19.1.1), we denote by Hy the GNS representation
of ﬁi%@ arising from the state p[(] (see props. 5.4 and 5.8). There exist an injective map oy
S[L/, — Sﬁf}(q) and an algebra morphism q : Amm) — Ay (SM, resp. Ay, being the space of
non-negative traceclass operators, resp. the algebra of bounded operators, on Hy) such that:

= —®
Vp € 8y, VAE Agcay Trag, paylA) = Troy(p) A.

Moreover, plih] € 0y (Sjy)) and 0y (Siy)) C Tseq (Sseq) (With Sy, resp. Seeq, the space of density

matrices on Hjy, resp. Heeq).

Let ¢, ' be two sequences satisfying eq. (19.1.1). The following statements are equivalents:

1. plY] € oy (S

2. 0y (Sw) = qw) (Sy))

3. i ( ‘% | ¢’n>g,,

n=0

) <o

Proof Construction of Hyy, oy and o). We define:
Z(%ﬂ) = {(gbn)nE]N } VneN, ¢, €d, & |l¢gnl, = 1}.
Let ) € Ziy 4 and let pli] € 8 « ) be defined as in the proof of prop. 19.1. Let 3 be the GNS

representation of Zﬁ\l,x y) arising from the state p[¢)]. From prop. 58 and theorem 59, there exist

an injective map dyy : 8y — S]NKLP and a C"-algebra morphism i Amscw — Ay, such that
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Trag,, ( - agy( - )) =1TIr (5[¢]( -)-). Moreover, we have:

sup inf <C,,/_,,,

nelNn'>n

9 (S)) = ‘[(5”),7611\1 € Sinxw (TrK,, 5/7/) Cn/—>n> =Trp= 1]»,

where Vn<n" €N, {yop =Yy ® ... Q Yp1 € Ky .

Using the Tr-intertwined bijective maps o and a defined in the proof of prop. 19.1, we can identify
Hjy) with the GNS representation of ﬁi,%q,) arising from the state p[¢], and define the injective map
Oy = o' o0y gw] — gamq,), as well as the algebra morphism ajy) := aw]ooﬂ : Zag{’q}) — Ay

We then have Try, ( -~ ay(- )) =1Tr (OM( -)-), and:

sup inf <(n/_>,,

nelN ’>n

(Trx” ®, 0 Pn,, © 5;1) Cn/—>n> =Trp= 1]’ :
(1921)

ay) (Sw) = {(pn)qeﬁ € Sz 30.0)

In particular, p[Y] € 0y (Sy))-

Comparing ) {Syy) and diy (Sy). Let Y, ' € Zing - Since p[¢/] € gy (81)), statement 19.22

implies statement 19.2.1. We suppose that statement 19.2.1 holds. Then, the characterization above
implies:

2
1 = sup inf ’<L{Jn/®...®%+1‘%/®~-®L/fﬂ+1>’

nelN n'>n

2

= sup inf |_| ‘<¢’k | ¢/l<>3k

n’>n
neN k=n+1

This can only holds if there exists N € IN such that Vk > N, (i | W), # 0. Then, for any k > N,
0.< | (] iy,

< g, lIgnlly, = 1. so that 0 < —log ) (Wi | i), ) < 00. Hence, we get:

)

0=l 3 (- tog]twn 1
k=n+1

n=N
in other words Z ( — log ‘ (W | )y, )) converges. Then, using that logx < x — 1 for x €
n=N+1

]0, oo, this implies that:

i (1 —‘W/n KU

n=N-+1

|

converges, hence statement 19.2.3 holds.

Reciprocally, we now suppose that 19.23 holds. Let p € gy <SM> and let € > 0. Then, there
exists NV € IN such that:

' >N, 1= e < (U ®. 8 iy

(TerN $n/ © Pn, © 551) Wy @ ... @ Yni > :

Thus, for any n > N and any n’ > n, we have:
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1—e< (@ . ®un

(TVKN by 0 Pu, © 591) Uy @ ... @ ¢N+1>

= <¢’n/®- . ~®¢’n+1 .. -®¢’/\/+1 (Trﬂ(f,\/ asn/opl7n/oglv)r7/1) ¢ﬂ/®' : '®¢In+1®' : '®L/j/\/+1>

< <¢ln/ ... & ¢n+1 TriK,HN (TerN EIV)n’ o pn”/ o 5;1) wn’ &...® ¢/7+1>

= <¢n/ ... ®¢ln+1 (Tl’g(n E]v)n/opnn, OE]V)I:J) ¢’n/ ®... ®¢In+1>-

Letn =N, 0" >n Cuop =0y Q... Q Yny1, (e =Yl ®...Q Y,y and py, = Ty, (Cbn/ o
Pn,, © CTJ;J) . We have:
11— <(r/7/ﬁn‘pn/ﬂﬂ CI/V*)H> =

=1- <Cn’ﬂn },On’ﬂn Cn’%n> + Trﬂ( i Pr’—n ( ‘Zn/ﬁn ><Cn/ﬁn‘ - !C;/Hn >< (,/7/%,7 ‘ )

n’—n

< €+ H ‘Cn/ﬂn ><Zn’ﬂn ‘ - |C,/7/Hn >< (,/7/%,7 ‘ (1 922)

‘An’~>n

where |||, denotes the operator norm on X, and we have used that p,.,, is a density

matrix on K, (as p € dyj (8yy)) C 8(z.5c0) ) Now, 1Co—nllac, = 1Conlls, =1, 50

e [ T C [ty A2 B o C 8 |
<2, =Gl
—2V2 \/ 1= (Coon | G, | (1923)
2
Let ¢ == min(e, 2) > 0 and & := —log ( — %1) > 0. Making use of statement 19.2.3, let

N’ > N such that:

ZN/+1°°(1 —‘<¢k|¢l/<>3k‘) <%
k=

In particular, this implies:

, , log 2 1
Vk >N, [(ne [ i)y | € [1— g ,1] C [5,1}
Using that log’x = 1/x < 2 for any x € [1/2, 1], we thus get:

Wk > N —log | (4 | iy, | <2 (1= (e | iy, |-

Therefore, we have, for any n” > N":

<—) N+1%log| (¢ | Yp)y, | < e,
k—

- I’Og } <C’7/‘>Nl 61/7/—>/\//>9<”/‘>N/

and, using the definition of €
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2
y €
=[G | ool | < 5 (19.2.4)

=N/

Finally, for n” > N, combining eqs. (19.22), (19.23) and (19.2.4) yields:

Pr'—N/ (I/Vﬁ/\//> Se+? \/E\/1 - ‘ <(n’ﬁN/ | (ﬁ/—w)x < Ze.

1= (G

Hence, we get:

n/ >N/

sup inf (| pwosn () 21— 2.

nelN n’>n
Since this holds for any € > 0 and the right hand side is bounded above by 1 (for Trp = 1),
p € OW]<S[¢/]>. Thus, we have proved that UM<SM> C Oy <SW]>' and, statement 19.2.3 being
symmetric in ¢, ', we can prove as well gy, <SW]> C ay <S[¢]>' ie. statement 19.2.2 holds.

Construction of Haeq, Oseq aNd Qseq. Like in the proof of theorem 511, the ITP H.q of (J,),cn can

be written as:

Hseq = D Hy),
1]

where the [ (/] are the equivalence classes in Z{y 4 for the equivalence relation:
(olnews = (Whnex & )1 = (W), gy, | <00,
nelN

and the Hilbert space Iy can be identified with JHy for some representative ¢ of | /|| (to check
that the inductive limit mentioned in the proof of theorem 5.11 coincides with the one defining Hj,

as described in prop. 5.8, we notice that the subsets of IN of the form {0, ..., n} for some n € IN
constitute a cofinal part, with respect to the inclusion order, in the set of all finite subsets of IN).
We choose such a representative ¢ for each equivalence class [|¢/]] and we define:

- =®
Oseq * Sseq = Sic a0
P = Yy %l (Mwp o M)

where, for any equivalence class |||, [y denotes the orthogonal projection on Hjy = Hiy.
Note that the sum over [| (/|| is absolutely convergent in trace-norm, since, for each [| ||, [y o My
{s a non-negative traceclass operator and we have Z[w”Tr%M(H[WHPH[Iw\]) = Trg,, p < 00, We

also define:

—Q
Gseq = Aoy = Aseq .
A= Y Mg aw(A) Mgy

Again, the sum involved converges, because the projections [}, are mutually orthogonal. We have,

for any p € gseq and any A € Za’g{’q)):

Trj-(seq (,o aseq(A)) =Tr (Useq(p) A) ,

as follows from the corresponding property fulfilled by each pair gy, oy
Now, let ¢/ € Ziy 4 and let i be the representative chosen in [|¢/[]. The definition of ~ implies
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that statement 19.2.3 holds for ¢, ¢/, hence:

T (81) = 0] (8191) C Treq (Sseq) -

Note. The detailed description of the mapping from the state space of the ITP into the projective
state space obtained for this proof, in particular the characterization of which super-selection sectors
of the ITP are sent onto identical images (owing to the equivalence relation from statement 19.2.3
being strictly coarser than the relation =, as the latter is sensible to the relative phase of the
factors ,, while the former is not), could be easily generalized to the situation considered in
theorem 5.11 (with possibly uncountably many tensor product factors). 0

The non-existence of narrow states in the G = R case (prop. 18.14) indirectly proves that £,
does not admit a countable cofinal subset (otherwise, such states could be constructed as described
above): indeed, this can be checked directly.

Proposition 19.3 Let £, be the directed label set defined in def. 10.12. £ is uncountable and
for any " € Ly

LHFM/] = {’7 € LHF ‘ n=< ’7/]’
ts finite. Hence, £, does not admit any countable cofinal subset.

Proof £, is uncountable. Let W : U — V be an analytical coordinate patch on X, with U an open
neighborhood of 0 in RY € > 0 such that B c U, and, for any 7 # v € [0, 2|, &, be defined

as in the proof of prop. 18.14. For any 7 € ]0, 1], let e, resp. e, be the edge corresponding to

é:0, resp. é-1, and S; be the surface corresponding to §T = é,,. We have, for any T € |0, 1]:
rler)Nr(ef) = {W(5, 0} = {ble))} = {ble])} . e, | Se & ef TS,

hence n; := (y:, A;) € Ly, with:
vri={ec, e} € Lyaphs & Ari=[{S}] € Lprons.

Moreover, for any (t,s), (/,s') €10, 1] x {0, 1}, we have:

brs ~ Epy = r(érs) =r(éry) = [% %] - [%/ 675/] = (T.5) = (T, 5),

hence n, = ny & © = 1. Since |0, 1] is uncountable, so is L.

The part below any label ' is finite. Let y' € Lgraphs and let N = #y". For any y < ¥/, we define:
AV’(V) = {((GV/HE'(/I)’GY/HE’(/l))’ ] (aylﬂé‘(ny/ﬂe)' Ey/ae(nv’%e))) ‘ e c V]’ C U (V/ X

1<n<N
[£1})",
where, for any e € y, a, ., €, and n,_,. have been defined in prop. 10.20, and n, . < N for
ay_e is injective {1,..., Ny—e} — y. We have:

7

v ={lel) oo (e

(€5, ). . (), ) € A |,
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hence A, is injective from Lypns|V'] := {¥ € Lgraphs | ¥ < V'} into the set of parts of UKngN(y’ X
{+=1H)", so:

(ZN)N_H N

#Lgraphs[y/] < 2 N < 0.

Next, let A" € Ly and let N = #F(X). For any A < A, we define:
Hy(A) = {Hor | F=F"oF, F € FX} C PFN)),

where, for any F € F(A), F*, F and H,_7 have been defined in prop. 10.21, and P(F(X)) denotes
the set of parts of F(X). Let F € F(A). Since A < A, there exist F{, ..., F, € F(X) (m > 1) such
that:

F=FWol JF.
i=1

and for any i € {1,..., m}, Fl € H,_7 (see the proof of prop. 10.21). Moreover, for any F’ €
H, 7 C F(X), there exists, by definition of F(A') (prop. 10.9), e € F’, and there exists, by definition
of Hy_ 7, i € {1,...,m} such that e = e” o e’ with e’ € F/. Thus, using props. 10.6.6 and 10.9.1,

F! = F' Hence, {F], ..., F/} = H, £, in other words:
F=FWo |J F. (19.31)
F/EHA/‘)?

Now, using props. 10.9.2 and 10.93, we get:

L L

Fa=Rue ) UF) =1 U UF

HeH () FreH HeH (A) FreH
Together with eq. (19.3.1) and def. 10.10, this ensures that H, is injective from Lo [A] := {A €
Lorofis | A < A’} into the set of parts of P(F(X')), hence:
#L oo A'] < 2" < 0.

Finally, for any n = (v, ') € Ly, Lue['] T Laraphs V'] % Lprois A, s0:

N, NN N

#L, ] < 22T T < oo,

where N 1= #y = #F(A). In particular, if £ is a cofinal subset of £, we have:

LHF = U LHF[U/]I
U/EL/
so £ must be uncountable. O

The problem with the label set £ is basically that the slightest deformation or displacement of
an edge (or surface) yields an observable, which, according to the structure set up in section 10, is
completely independent of the original one. As argued at the beginning of the present section, this
is physically not justifiable and the task of the next subsection will therefore be to formalize the idea
that, whenever two edges (or surfaces) are related to each other by an infinitesimal deformation,
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they should be considered indistinguishable. This will allow us to cut down the algebra to a
countable cardinal, while preserving both universality and diffeomorphism-invariance.

Note that the kind of result we are aiming at should not be confused with various results
in the context of LQG displaying how countable cardinality or universality can be obtained or
restored after quotienting out the diffefomorphisms [10, 28]: since we do not yet fully understand
how this quotienting should be done in the projective formalism, we have to simplify the algebra
of observables already at the diffeomorphism-covariant level, rather than at the diffeomorphism-
invariant one (Where those designations refer to the individual quantum states, not to the invariance
of the overall state space). In fact, such an upfront simplification of algebra could make the strategy
exposed in section 13 easier to implement in practice, thus helping to solve the diffeomorphism
constraints.

19.2 Quasi-cofinal sequences: definition and properties

This subsection intends to clarify, in a general setting, which requirements should an increasing
sequence of labels satisfy to ensure that it captures the whole algebra of observables, up to small
deformations. To give a precise meaning to this notion of ‘small deformations’, closeness of
observables will be defined with respect to a (topological) group a transformations acting on the
algebra. Our definition for the action of a group on a projective system (def. 19.5) is inspired by
[66, section 3.5].

We call such sequences quasi-cofinal, to underline their affinity with cofinal sequences, which,
as recalled in the previous subsection, capture the whole algebra exactly. Indeed, as we will show
below, a rather innocent-looking condition (def. 19.7.3), which can be understood as ‘cofinality up
to small deformations’, is sufficient to prove two strong results:

» the projective system of quantum state spaces obtained by restricting the label set to a quasi-
cofinal sequence is universal: it only depends on the original projective system and on the
action of the group of transformations (theorem 19.8);

» and any transformation in this group can be approximated by a transformation acting on the
restricted projective system (prop. 19.9).

Since the initial label set will eventually be restricted to a part admitting an increasing cofinal
sequence (and thus automatically directed, for IN, < is directed), we can afford to start from a

very large, ‘extended’ label set £©Y

, which will not even be required to be directed: as stressed in
section 7, there can sometimes be a tension between ensuring the pivotal three-spaces consistency
condition (eq. (5.1.1) and fig. 5.1), and preserving the directedness of the label set, so that it might
prove convenient to initially relax this requirement (we will discuss how this added flexibility could

be exploited at the end of the present section and in section 20).

To make the abstract construction of the present subsection clearer, it will be sufficient for now

to imagine £ to be the semi-analytical version of L, and the group of transformations 7T to

consist of all semi-analytic diffeomorphisms (see [92, section 1V.20], as well as the beginning of
subsection 12.2). In contrast to fully analytic diffeomorphisms, semi-analytic ones can be local, so
are usable as small deformations, and while the group of semi-analytic diffecomorphisms do act on
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the algebra generated by £, (since, as underlined many times above, this algebra is identical to the
one generated by semi-analytical labels), its action is easier to write down if we use semi-analytical
labels: in particular, it can then be put in the convenient form described in def. 19.5.

Definition 19.4 A projective pre-system of quantum state spaces is a quintuple:

(L(ext)’ (9{0) J{n’én) ' (CDU’H/?) (q)””””q”)

neLex) ( n=n’ n=<n'"’ nﬁn%n”)

ext)

where £V is a pre-ordered set (not necessarily directed) and defs. 51.2 to 5.15 hold. When-

ever possible, we will use the shortened notation /L(eXt),f}C,dD/@ instead of (L(QX”, (3{,7)%@(%,

Tn) s () (O] |
( =) n=n ! T=0) n=n P=0=0) ngy'<n”

Forany n < € £©Y, we define Tr,, : 8y — 8, and 1, : A, — A, as in defs. 52 and 5.3.

/!

From eq. (5.1.1), we have, forany n < n' < n":

Trnu,, = Tl’n/_,n O Trﬂ”—>/7/ & lyen = bye—y O lyep.

Definition 19.5 Let /L(EX”,J{, <D/® be a projective pre-system of quantum state spaces and let T

be a group. An action of T on /L(eXt),fH, CD/® is an action T,n > Tn of T on £ together with

families (Uﬂ)qeuw) and (U,,/_>n)”<n, such that:

1. VT €T, Vn e £ U, (T) is an isomorphism of Hilbert spaces I, — Hr,;

2T € T,Vp < € £°, Tn < Tn' and U,_,(T) is an isomorphism of Hilbert spaces
Hyoy = Hyyo1y, such that:

Dryry 0 Up(T) = (Uyon(T) @ Uyp(T)) 0 Gy
3. for any n € £,
VI, T"€T, Ung(T ) =UyT)™" & Ury(T') o Uy(T) = Uy(T".T),
and for any n < € £V
VI, T €T, Urporg(T ) =Uyg(T)" & Uryorg(T) o Uyy(T) = Uy (T T).
In particular, for any n € £, U, (1) = idg, and, for any n < n' € L Uy, (1) = idg,
Forany n € £ and any T € T, we define T : 8, — 87, resp. A, — Ar,, via:
Vp, €8, Top, = U, (T)p,U,(T)", resp. VA, € A,, TeA, = U, (T)A, U, (T)".

From assumption 19.5.3, > is a group action of T on I_I A,, and, from assumption 19.5.2, we have,

neL(exT)

foranyn<n € £ andany T € T
Tergory (To - ) = To(Tryon () & trgery(To - ) = To(tyen(-)). (1951)

Proposition 19.6 Let /UEXU,J{, CI>/® be a projective pre-system of quantum state spaces and let
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T be a topological group acting on /L(‘m), I, CD/®. We denote by Aj . 4 o, the set of all subsets
in u A,, and we define, for any open neighborhood V of 1 in T:

HEL(C“)
uV = {(Y, Y/) < A/Uﬁ(ext)'j}f’q;/ X *A\/J[l(ext)’g{’q)/ ) Y/ C \/‘>Y & Y C \/_1[>Y/]’:

where V71 = {T’1 ‘ T e \/} and, for any Y € A/“Uext)’%q)/, VoY ={TpA| T eV, AcY}.

The set {U ‘ 3V open neighborhood of 1 in ‘J'/u\/ C U} is a uniform structure on U,ccea Ay,
25, def. IX11.1]. For any Y, Y" € Aj e 5 ). We say that Y is V-close to Y if (Y, Y’) € Uy .
Proof To prove that {U ‘ 3V open neighborhood of 1 in ‘J'/U\/ - U} is a uniform structure, we

need to prove that:

1. for any open neighborhood V of 1 in 7, {(Y, Y) ‘ Y € A/uﬁ(ext)'%q,/} C Uy;

2. for any open neighborhoods V4, V, of 1 in T, there exists an open neighborhood W of 1 in T
such that Uy, C uV1 N u\/z;

3. for any open neighborhood V' of 1 in T, there exists an open neighborhood W of 1 in T such
that:

{1V, Y) € Al o ¥ Albonscor | 3V € Atiwnsiar [V, V) (YY) €U} € Uy,

which can be rewritten as:

{1V, ) € Al oy ¥ Ao | (Y UY) W o (Woy 0 We)} cuy.

Def. 19.5.3 ensures that for any A & |_| A, TbA = A, so statement 19.6.1 holds. Next, for any
f]EL(eXI)

open neighborhoods Vi, V5, of 1in T, W := V4, NV, is an open neighborhood of 1 in T and we
have W~ = \/1_1 N \/2_1, so Uy C Uy, NUy,, hence statement 19.6.2 holds.

Let V be an open neighborhood of 1 in T. Since V is a topological group 7, 7'+ (T')" . T is
continuous, hence:

We={(T.T)eTxT|(T)".TeV]

is an open neighborhood of (1,1) in T x T. Then, there exists open neighborhoods W', W” of 1 in

T such that W’ x W ¢ W. Defining W := W' nW”, W is also an open neighborhood of 1 in 7,
and we have:

VY € Al gee, W B (WeY)C(VNAVT )Y,
Thus, for any Y, V' € A e 50/, We get:
Wols (WeY N WeY') C (W s (WeY)) n (W s (WeY')) C (VeY)n(VsY)),

which proves statement 19.6.3. U

A first idea to express the notion of an increasing sequence (k,), being ‘cofinal up to small
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We symbolically represent the quasi-cofinal sequence by finer and finer grids (in black)
and the label to be approximated by thick line segments (in gray)

Figure 19.1 - Deforming the quasi-cofinal sequence to adapt it to an arbitrary label, while preserving
all parts that are already in place

ext)

deformations’ would be to require that, for any label n e Ll , an arbitrarily small deformation of

the sequence (k,), should be sufficient to make " a sublabel of some sufficiently fine «, . However, it
turns out that a slighly stronger ‘quasi-cofinality’ condition (def. 19.7.3) can be much more powerful,
leading to the advertised results regarding universality of the restricted projective system and
approximation of the transformations in J. The key adjustment, that will be crucial to prove these

results, is to require that, whenever i’ have some parts that are already adapted to the quasi-cofinal
sequence, the small deformation mentioned above should leave these parts untouched (fig. 19.1).

Definition 19.7 Let /L(E“),J{, <D/® be a projective pre-system of quantum state spaces and let T

ext

be a topological group acting on /L( )9, CD/®. A quasi-cofinal sequence in £ with respect to

this action is a sequence (k,)pew in £V such that:

1. K, is a least element in L&Y, ie. Vn e £, k, < n;
2. (Kp)nen s increasing, ie. Vn < n" € N, k, < Ky ;

3. for any open neighborhood V of 1 in T, any n € N and any 1 = n € £V such that n < «,,
there exists n” > n and T € V such that:

Tn=n, UyT)=lidy, & n' < Tky.
For any quasi-cofinal sequence k = (k,),en, we define:
={nett¥3neN/n<gx}.

L is a directed set (for N is), so that (L[“], X, <D) is a projective system of quantum state spaces.

By construction, {k, | n € N} is cofinal in £

While the choice of a quasi-cofinal sequence is far from unique (if only because omitting terms
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will not void the requirements of def. 19.7), we now want to show that the resulting projective system
does not depend on this choice. More precisely, the projective systems defined from two different
and (A;)
The idea of the proof is to interlace the two sequences, by applying small deformations to both

quasi-cofinal sequences (k) can be matched through an arbitrarily small deformation.

n m

(kn), and (An), : we will then be able to identify their associated projective systems using the same
extension/restriction routine that we used repeatedly, eg. in subsection 5.2. Here is the reason why
we insisted, in the formulation of the quasi-cofinality property 19.7.3, to protect against deformation
any part of the quasi-cofinal sequence that happens to be already adapted to the target label: this
allows us to recursively construct the required deformations of (k,), and (A,),, by alternately

adapting (k,), to a certain A, , and, in the next step, (4,), to a certain «, .

m

Theorem 19.8 Let /L(em, I, <D/® be a projective pre-system of quantum state spaces and let T be a
topological group acting on /Ue“), H, <D/®. Let kK = (Ky)new and A = (A,)men be two quasi-cofinal
sequences in £ with respect to this action. Then, there exist, for any open neighborhood V of 1 in

7, a bijective map o : 8 40 = 8 4.3¢0) @nd a C"-algebra isomorphism a Au 19¢.0) A 4.9¢,)
such that:

1. foranngS 4,3¢.) and angAEA o) TpafA) = Tro(p)A;
2 «a <A‘§A 1300) > = Al 3.0 @nd for any A € A%Mm)' a(A) is V-close to A (note that A%, o, .

®
Amg{¢ - A/Le*t o)

Proof Sequences of deformations (Ti)cn. (Sk)ew- We define recursively families (Vi)ien
(Wi)rew of open neighborhoods of 1 in T as follows:

3. V, and W, are chosen (in a way similar to the proof of prop. 19.6) so that:
VT,S) eV, xW,, T'.SeV;

4 for any kK > 1, Vi and W; are chosen (again in a similar way) so that:
VI, T77eV,, T.T"e V.4 & VS, SeW,,S.5eW._;.

Next, we define recursively families (1) (Mi)ren of integers, and families (7y)en . (Sk)en Of
elements in 7T, in the following way:

5n, =0 m, =0T, =1Tand S, . =1.

6. For any kK > 1, we have k,, , < (T,:J1 ‘Sk_1)AmH (as follows from either point 19.85 if k =1
or from point 19.87 for the step k — 1 if Kk > 1) and «,,_, < Kky,_,+1 (from def. 19.7.2). Using

def. 19.7.3 for the cofinal family (k,),cn . we choose ny > ny_1 + 1 and Tk € V) such that:

7—/<Knk,1 = Kne_q UKnk71 (7—/<) ldﬂ{ & (Tk__11 -Sk—1 )/\mk,1 =< 7—I<Knkr

and, defining Ty = Ty_q .?k, we have:
Tk = Ticakn o U, (Te) = Uy, (Ti1) & Siidny < Tiki, -

7. Forany k > 1, we have 4, _, < (S,:J1 , Tk)Knk (as follows from point 19.8.6) and Ay, < Ap,_ 41
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(from def. 19.7.2). Using def. 19.7.3 for the cofinal family (), e, we choose my = m;_1 41 and
gk € W such that:
Sihme s = Ame 11 Uy

me_q me_y (Sk) = Ld?ﬁmkq & (S/:j1 . Tk)Knk < SkAmk,

and, defining Sy 1= S¢_4 .gk, we have:
Sk/\mk_1 = 5/<71/\mk_1 ' U)( Sk) = U)""k—1 (Sk,']) & TkKﬂk % Sk/\mk-

o |

For any k € IN, we introduce the notations Ky :=k,, & Ly = A, , so that we have:
NeKe < Skl < T Ky

as well as:

TeiKe = TeKe s U (Tisn) = Uk (Te) & Sepalie = Sicli, U (Sein) = Up (S -
We also define, for any k € N, Ry := 5[1 T

Using the definitions of the sequences (Vi)iew . (Wiiew and (Ti)ien . (Sk)eenw . We can prove

recursively that:
VkeN, vVIieV,, I,.TeV, & vYSeW,, S.SeW,.
Thus, for any k € N, (T, S¢) € V, x W, (since 1 € Vi N W), so Rk_1 eVand R, e V7.

In addition, for any kK > 1, we have ny > ny_y, resp. my > my_4, so the sequence (ng)icn .

resp. (my)en . ts strictly increasing, and K := {K, | k € N}, resp. £ := {L; | k € IN}, is cofinal
in £, resp. LW Thus, from prop. 5.6, there exist a bijective map ox : giiklﬁyq)) — g%{’g{/q)):
resp. 0g 333“1&6,@ — Sag{,@), and a C*-algebra isomorphism ax :7{%%@ — f_law%q,), resp. ag :

ﬁi’%@) — ﬁiw,%m' such that ox and agx, resp. oz and ag, are Tr-intertwined.
Mapping states. Let p € 3%9{,@. For any kK € IN, we have S¢ly < T 1Kkyq, so we can define a
non-negative traceclass operator py on 3, via:

ﬁk = S/:1I> (TerHKkMﬁSkLk (Tk+1‘>pl<k+1)) . (1981)
Using Sely = Sksily and Uy (Sk) = U, (Sk4) together with eq. (19.5.1) yields:

ﬁk = TrRk-M Kir1—Lk (Rk+1[>p/<k+w) : (1982)
Moreover, from egs. (19.5.1) and (19.8.1), we get:

~ |
TrLkH"Lk Pk+1 = Sk > (TerJrZKkJrZ"SkLk Tk+2'>/O/<k+z)

|
- Sk > |:TrT/<+1Kk+1"5kLk (Ter+ZK/<+Z‘>Tk+1Kk+1 Tk+2DpKk+z)]

_ <1 _ =
= Sk > TerHKkH‘)SkLk (Tk+1[>p/<k+1)) = Pk,

where we have used Ly < Lit1, Serile = Sile and Up (Ser1) = U (Sk) in the first line,
SkLk < Tk+1/</<+1 = Tk+2/</<+1 < Tk+2/</<+2 in the SGCOI’]d, and UKk+1(Tk+2) = UKkM(TkJA) and
Tk K1 Py = Pk, 0 the third.

Now, for any k < k" € IN, this allows to prove recursively:
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T, 1, pr = P, (19.8.3)
so for any k, k" € IN, such that [, < Ly, either kK < K/, in which case eq. (19.8.3) holds, or k > K/,
in which case [y < Ly < Li, 50 Trp, oy, = (TrLﬁLk/)f1 and eq. (19.8.3) follows from the equality
for k" < k. In particular, if Ly = Ly, prr = pr. Thus, the map:

=® )
Ox—t - S(ﬂc,r}f,qa) - S(L,f}f,m

(pKk)Kkeﬂc = (TrRkHKkM‘)Lk (Rk‘HDpKkM))LkEL ,
: , %® %®
is well-defined as a map 8x 300 = Sz 3¢0) -

Mapping observables. Let A;, € A, . Since Sgply = Sely X T Kirr and Uy, (Sks1) = Up, (Sk),
we have, using eq. (195.1):

A . —1 —1
(Alk)kH = R (Rk+1l>ALk) = l> ([Tk+1Kk+1‘_SkLk(Sk[>ALk)) € Ak -

Next, let A, ., = t,.,1,(A,) € Ai,,, - In a way similar to the computation of Tr;, ., /, pri1 above,

we have:
—_— N

—1
(Alk+1)/<+2 = Tk+2l> (lTk+2Kk+Z<*Tk+W K1 © [Tk+1Kk+1F5kLk(Sk[>ALk))
1 A
~K 7—/<+1> (LTk+1Kk+1<_SkLk(Sk‘>ALk)) = (ALk)k+1 '

with ~g defined as in eq. (5.3.2) for the projective system (X, 3, $)®.
We can then prove recursively that for any k < k" and any A, € A, , A = (Ay) € Ay,

— —_~—

(AL/(')k+1 ~K (ALk’)k/+1 .
Now, for any k, k" € N and any A, € A, , AL, € Ay, such that A;, ~g¢ Ap,, (with ~; defined as
in eq. (5.3.2) for the projective system (£, F, ®)%), there exists k € N such that L7 %= Ly, Ly and

e, (AL) = e, (Ar,) . Hence, there exists K" > k. k', k, such that Ut (AL) = e (A) =
AL, and:

— —_~— —~—

(ALk)k+1 ~K (ALk”)k”—H ~K (ALk/)k/+1'

Thus, the map:

L) ®
Ar-x - ‘A(L,U{,d)) - A(ﬂwm)
1
[Aik]% = [lKkHFR@Lk(RkﬁDALk)]NX
is well-defined as an isometric x-algebra morphism A((gw{,@) — A 3, and it can be extended
by continuity into a C*-algebra morphism ﬁi’j{m) — ﬁa,%@. Moreover, a;_,x and the previously

defined map ox_,; are Tr-intertwined.

Inverse mapping. In a similar fashion, we can define the maps:

—® —Q
Op—% - S(mf,cp) - S(Jc,ﬂf,cb)
-1 !
(ka)LkEL = (TrR[WLkHKk (Rk Dka))KkEUC

and:
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axoe 0 Afcse) = ALsce
A, = [wer (ReAG)]

We have ox_ o 0g.x = idge el and 0% 0 Ox_p = Ldggcm), hence ox_. is bijective with
L/ XK, H,

1 - . . .
. =0 . Similarly, « o = {d-e and o oa = id-e hence a is
[ LK Y, Qr-x © Ox—L A a0 K—L O ALk Al 5.0y LK

bijective with O(LH% Qg -

Closeness. We define the bijective map 0 := g;' o 0Ox_z © O : S 4300 SUM{Q, and the
1 9 —®

C"-algebra isomorphism a = ax o agx © ag : Agugee — A(L[«J,:}m)- Let A € Afiw,ﬂm) and

A= alA) € Ay

Let n € £ and A, € A,, such that A, € A Let n € N such that n < A, and kK € IN
such that n < my. Let Ay = 1, (A, € A, and Apsq = Uy R, Lk(RkJr'IDALk) € Ax,.,. We
Moreover, Ak+1 = Rc!>A,) and

< .3,0) - U yeRit

have A = [ka]N . In particular, A e A®
LK
R < Rl < Kigr, so Rihn € £¥ and RpA, € A. Since Ry € V1, A, € VTTbA
Therefore, A C V™ 'bA.
Similarly, for any A € A® Tgee A=A "(A) e ‘ALW}M

19.8.2. U

and A C VA, which proves statement

It is an immediate corollary of the just proven universality result that any transformation I € T
can be approximated, at an arbitrary precision, by a transformation that stabilizes the restricted
projective system over a quasi-cofinal sequence (k,),: indeed, T maps (k,), to a new quasi-cofinal
and the projective system over (A,)

sequence (A) can then, by universality, be deformed back

m? m

into the one over (k,), .

Proposition 19.9 Let /L(eXt), H, CD/® be a projective pre-system of quantum state spaces and let T
be a topological group acting on /L(e“) I, CD/® Let kK = (k,)nen be a quasi-cofinal sequence in
LY with respect to this action. Then, there exist, for any T € T and any open neighborhood V/

of 1 in T, a bijective map o : 8 4.900) = S 4 gce) and a C'-algebra isomorphism « : A 4.960) =

ﬁﬁw 5¢,9) such that:

1. foranngS 4,3¢.) and angAEA o) TPA=Tra(p)a(A);

2. a <Ag,¢,%,¢)> = A%Klﬂw) and forany A € A%Kl’ alA) i

K, )

Proof Let 7 € T and let V' be an open neighborhood of 1 in 7. For any n € IN, we define
K, = Tk,. Foranyn € L0 e < T_1Q, hence k, < n, and, for any n < neN, k, < Ky,
hence k, < k, . Let W be an open neighborhood of 1in T, n € Nand /3= n € LY such that
n=< K, Then, W= {S S ‘J"T.S. T'e ﬂ} is an open neighborhood of 1 in 7, T_1Q/ =T

and T7'n < k,. Thus, there exists n’ > n and S € W such that:
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S(T ') =T "0, Upy(S) =ide,, & T7'n' < Sk,

Defining S:=T7.S.T7T~' € W, this can be rewritten as:
i’? =1n, Un(i) = Ld?fﬂ & Q/ < §Kn/'

Therefore, (k,),ew is a quasi-cofinal sequence in £V, Moreover, £ = {17 ‘ T-'ne LM}.

Now, we define:

o® o®
O 0 Sigkgiey = Sk sie)

(Prz)nem = (Tepr, )nngK]

!

as well as:
a - Aa[ﬁ:}{ o Ak
A, = [TRALL
Def. 195 ensures that ¢ is well-defined as a bijective map S 43 S , that a is well-
defined as an isometric *-algebra isomorphism AUK 130 ‘A(LMJ—CG)) and can be extended by

continuity into a C*-algebra isomorphism A(Lﬁ]’%q)) — A(L[K],g{,q,), that g and a are Tr-intertwined,

and that, for any A € A%, 4 o, alA) = T 'pA

H,b)!

Next, V=" is an open neighborhood of 1 in T and, from theorem 19.8, there exists a bijective map

[ gi[ﬁ-ﬂm — giiklﬁm and a C*-algebra isomorphism a : 7{ 4300 A < 9. Such that o and

a are Tr-intertwined, 5<A%KW¢ > A%K 136.0) and:

VAE Al geg) . alA) is V' close to A.
Thus, 0 := 0 o g is a bijective map S dgce) giy],g{,@}, a = a ' oa'isa C'algebra
isomorphism A 4.300) A 4g¢e) and statements 19.9.1 and 19.9.2 are fulfilled. O

Taking T to be the group of diffeomorphisms, and assuming the existence of a quasi-cofinal
sequence for the projective system under consideration (see the next subsection for a d = 1 example;
the existence proof in higher dimensions is currently under study), the previous result would allow
to define a discretized theory, while preserving a notion of diffeomorphism invariance: such a
theory would only have countably many observables, instead of a continuum thereof, but it would
have enough automorphisms to approximate the full group of diffeomorphisms.

Restoring diffeomorphism invariance is indeed a serious concern when discretizing a background-
independent theory [59, 74]: for example, a fixed lattice does not have enough automorphisms to
appropriately account for diffeomorphism invariance. It would be tempting to bypass this issue
altogether, by declaring such a lattice to be ‘non-embedded’, in the hope that one would thus
quotient out any coordinate dependency. This strategy is however known to give the wrong answer,
as it fails to remove enough degrees of freedom from the theory. The intuitive reason for this failure
is that the lattice itself effectively provides a coordinate system: the disposition of the fields with
respect to the lattice should therefore also be quotiented out when going diffeomorphism-invariant.

285



In the context of AQG, these difficulties are in particular the reason why diffeomorphisms have to be
treated through the so-called ‘Extended Master Constraint’ approach [91], which can accommodate
the absence of an action of the diffeomorphism group on the ITP Hilbert space of AQG.

19.3 One-dimensional toy-model

To illustrate the abstract framework laid in the previous subsection, we now want to work
out a concrete example. The projective system we are considering here can be though as a one-
dimensional version of L,.. To further simplify the argument below, we take L to be the line
segment |0, 1], and for each surface (which, in dimension d = 1, is pointlike), we only keep its
downward face (ie. the face oriented toward 0): these additional simplifications are purely for
convenience, and could be easily lifted. The resulting projective system is precisely the one we set

aux

up in subsection 18.2 on the label set £ (see in particular prop. 18.10 and the proof of prop. 18.14),

except that we will, in the following, keep the gauge group G arbitrary. As group of transformations
T we will use the homeomorphisms of |0, 1], which act on this projective system in a transparent
way, mapping a label (which is a finite set of points in |0, 1]) to its image, and identifying the
associated Hilbert spaces accordingly (this is similar to [66, section 3.3]).

Proposition 19.10 Let £® be defined as in prop. 18.10, G be a finite-dimensional Lie-group and

u be a right-invariant Haar measure on G. For any k € L) — (e1,..., e with0 < ey < ... <
e, < 1, we define €, := {h: k — G} and:

E. : C — G¥
h — (h(_1)(€k)71.h(6‘k))

hiyler) =1 & Vke{2 . .., nt, hi—y(ex) = hlex-1).

E. is a diffeomorphism €, — G and we equip €, with the push-forward measure p, == E_| u".

K%

Next, for any k C k', we define C,_,, := Cink as well as:

D' -k - GK’ e GK/%K X GK
h' = (b))

h'|
K'\K ' K

Then, these objects can be completed into a factorizing system of measured manifolds (L(aux), (C, p), (p) g

(def. 6.1) and we denote by (L(a”x), I, CD)® the corresponding projective system of quantum state
spaces (prop. 6.3).
Let T be the group of homeomorphism |0, 1] —]0, 1] equipped with the metric:

VT, T"eT, d(T, T):= sup |T(x)—T'(x)|.
x€]0,1]

Forany 7 € T and any k € £, we define Tk := T (k) and:
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U(T) @ He — Hyp
g - ¢(~o T|K) .

Then, these objects can be completed into an action of T on (L(aux), I, <D)® (which, being a
projective system of quantum state spaces, is a fortiori a projective pre-system of quantum state
spaces).

/

Proof Let kK C k' € £ with k' = (e}, ..., e/) (0< ej < ... <el, <1). G being a Lie group,

@i s smooth Cv — C, X €. Next, for any (j, h) € Cp X €, we define = G, recursively
via:

~ h(e}) if e} €« ~ h(ey) if e, €k
h(e}) = 1 ! & Vkeli2..., n’,h’e/={~/k, ok ,
e {/‘(eﬁ) if 7 & « { J (e h(el_).jle)) if el &
and we define @ - Coy X € — Cpr, (j, h) — h. Py 1s smooth and we have @, 0@, =
tde, as well as @, 0 D = ide, X ide,, SO @ is a diffeomorphism. In particular, for any
ke LW F o= Puse Cp = Cpg X Cy = G™ is a diffeomorphism.
Next, for any k C ¥ € L with k = (e7, ..., e,) (0 < e < ... < e, < 1) and ¥ =
(eh,....e) (0 <€) < ... <el, <1), we define an action of G" (equipped with a Lie group
structure using pointwise operations) on €, as:

Vg e G", Vh' e Cr, REVN) = EL (Eu(h).g'),

K’ K

where:

T
VQEG”IV[eﬂ ..... n/}’ g; — {gk i e, e |

1 e ¢«

Also, for any k" C k", with K" = (e}, ..., el ) (0 < e < ...<e, <1)and K" = (e], ..., el
0<el<...<en <1), we have:

. 1 .

(Ldek//ﬁw X EK/) O Py -k’ © EK” (j//) = (jf/lg)meﬂ ..... n"PN\{m | 1<l<n’} ! (/f/7;[—1“‘1 o '/T/T/H)[e{1 ,,,,, n'}’

(19.10.1)

where (my)icqo,. 1y is defined via:

m, =0 & VYie{l ..., n'} e, =el.
and we have identified G, =~ G"" " Hence, for any Kk C k" C k", we obtain:

Vg € G™, @u_w 0 Rf;ﬁ’g) = (ide,, , x Ri’f’g)) O Py (19.10.2)

Applying eq. (19.10.2) repeatedly yields, for any k C ¥’ C ¥” and any g € G™:
(ide,s s X @) © P © @l 0 (ide,, , x RET) =
= ('Ldex,,%, X ide, X% Rff'g)) o ('Ldek,/w, X (pK/HK) O Qi s © (p;/LK.
Now, there exists a map @i @ Corse = Corr X Cpry such that:

Vj" € Cork, (Ldexnﬁk/ X ‘PK’HK) O Pure © Pl (i) = (‘/’K”Hk/ﬂx(/’//)r 1K)r
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with 1,k = G, e+— 1, so using:
VYh e @, h=RWKEM (1,
we get:
(ide, v X Purc) © Gurr = (P X 1de,) © Py (19.103)

In particular, this requires that ¢, is a diffeomorphism C,»_, — C v X C,.. Therefore,
(L(aux), G, <p) is a factorizing system of smooth, finite dimensional manifolds.

aux)

Moreover, for any k C k¥ € £ and any g € G, we have:

R(K,g) Lo = e,

for i is invariant under right-translations on G. Eq. (19.10.2) then yields, for any g € G™*:
O =i x He = (.ldCK/HK X R‘(<Kg))* [(pK/HK,* )UK/]

Using the uniqueness up to a global positive factor of the right-invariant Haar measure on G™*,
we conclude that there exists a smooth measure p,_,, on C,_, such that:

O sk = Hir—ie X Hy -
Finally, from eq. (19.10.3), this also implies:

P i =i M- = M-t X M i -

Action of T. Let T be an homeomorphism |0, 1] — ]0, 1]. From the intermediate value theorem,
T is strictly monotonous. If T would be decreasing, we would have T (]0, 1]) C [T(1), 1] with
T'(1) > 0, which would contradict the surjectivity of 7, so T has to be strictly increasing. T can

then be extended into an homeomorphism T [0, 1] = [0, 1] with ?(0) =0, and, in particular, T is
uniformly continuous. Therefore, for any € > 0 there exists 7 > 0 such that:

Vx,y €101, [x—yl <= T - Tly) < el2,
so, forany 7' € T:

VS, S'eT, (dS. T)<el2 & d(S,T)<)

= dSoS, ToT)<d(SoS , ToS)+d(ToS, Tol)<e.

Similarly, there exists " > 0 such that:

VSEeT, d(S, T)<T = d(T oS, idpy) =d(T ", S") <e.
Thus, the metric d makes T into a topological group.

For any k € £, we have idjo 1 (k) = «, VT, T (k) € L2 and VT, T € T, (T o T') (k) =

T{T' (k) ), hence k — Tk is a group action of T on £ Next, for any T € T, T is strictly

increasing, as mentioned above, so:
Vh € Cr., Ei (h o T\K) = Eq.(h).

Therefore, h — h o T|, is a volume-preserving diffeomorphism (Cr,, tirc) = (Cx, ti), s0 Up(T) is
a unitary isomorphism from H, = L, (C,, du,) into Hr = L, (Cry, dury). Moreover, we have:
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Vh €€y, hoidigy| =h & VT, T €T, Yh € Crorw, ho(T'oT)[,=(hoT|;)oTl|,,
so that:
Ui (idio, 1)) = idye, & VT, T €T, Ur(T) o U(T) = U(T' o T), (19.10.4)
which, in addition, implies:
VT €T, Ur(T ) =U(T)". (19.10.5)
letk C k' € L and T € T. We then have T (k) C T (k') aswellas T (k' \ k) = T (K')\T (k)
(for T is bijective), and, T being strictly increasing:
Vh' € Crp, (ho T|K/)(_1) =hi_yo T|..
Thus, defining:
UeonlT) = Hoe — Hrwor
b g (o Tl
we get:
Ue(T) o 01, = D7)y, © (Ul T) ® U(T)). (19.106)
Therefore, U, (T) is a unitary isomorphism H,/_,, — Hrw_ 7, satisfying def. 1952,
Finally, let k € k¥ € £ and let T, T/ € T. Using eqs. (19.105) and (19.106), we have:
Ureord T @ Urd T = Dy 0 Up( T ) 0 &7,
— [Prenre 0 Ue(T) oy, ]
= Ueo )T @ U(T)

hence Ut 7(T™") = Up(T)™", and, similarly, using eqgs. (19.10.4) and (19.106), Ure_7.(T") o
UgelT) = Up o T 0 7).

A simple quasi-cofinal sequence for this system is obtained by taking the set K of all points
of the form k2» (as will become clear in the course of the present subsection, it in fact does not
really matter how these points are layered on finer and finer levels of the quasi-cofinal sequence).

To prove that the quasi-cofinality property 19.7.3 holds, we will consider a set of points " (to be
approximated), of which a subset k already belong to K. For any two successive points e, e’ in
K, we simply need to approximate the points in k' N | e, e[ by points in KN ]e, [, and to find

a deformation of ] e, e/[ mapping one set of points into the other: we can, for example, use the
corresponding piecewise-linear mapping.

Proposition 19.11 We consider the same objects as in prop. 19.10. Then, there exists a quasi-cofinal
sequence in £ with respect to the action of T on (L(aux), H, CD)®.

Proof We define «, := @ € £ and, for any n > 1

ke {1, . 2q}ezwﬁ
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We have, for any k € L™ ek, and, for any n < n', k, C Ky .

Let V be an open neighborhood of 1in T, n € N and k C k' € £ with k C k,. Let € > 0
such that B, C V' (where B, denotes the closed ball of radius € and center idjpq in T) and let
¢ > 0 be given by:

€= min |e—e.

e ek’

ese’

1 1 /
Let n" > n such that 57 <5 min(e, €'). For any k" € {1 ..... 2" —1}, we define /px C 10, 1] via:

3 3
/1 :=:|O, W] ' /2”/71 ::|/I_W'/I|:

2k" =1 Zk/+1]

ol T o

& Vk/e{2,‘..,2”/—2},&/::]

contains at most one element of k" For k" € {O, o 2”/}, we define e}, via:

' it nk = {e
e, =0, e, =1 & Vk/€{1,...,2”—1},92,:{? il i’ = {e'} .
o else

we define a piecewise linear homeomorphism 7 :]0, 1] = |0, 1], via:

K—1 K , ,
—/] , T(X) = (K =2"X)ep1+ (1=K +2"x) ey .

VK {1 ..... 2”/},\1 =
S YE |5 5

2
For any x € ]0, 1], we have |T(x) — x| < 5 <e,so T eV

let e € k. If e =1, then e’ = T(1) = T(g—#) Otherwise, k' € 10, 1[, hence there exists

= {1, 2" —1} such that ' € ly, so e’ = e}, = T(ZkT//). Therefore, k" C Tk, . Finally, for

any k" € {1, . .,2”/} such that Zk—,// € ', we have e, = £ so T(£) = £ Thus, T|

T 57) = 5w = idwni,

/
K'NOK

and, in particular, T|, = id, (for k C K’ Nk, C k' Ny ), yielding Tk = k and U, (T) = idg,. O

In theorem 19.8, we stated that, given two quasi-cofinal sequences (k,), and (A,),, , the restricted

m>

projective system over (k,), can be deformed into the one over (A,), . However, the deformation

n m*

maps, acting at the level of the quantum states and observables, that we constructed when proving
this result a priori do not arise from an element of J: instead, while their action on any given label
K, coincides with the action of an element 7, € T, this element could be n-dependent. In prop. 19.12
below, we show that in the particular example we are now considering, the deformation actually
does arise from an homeomorphism of |0, 1], in other words that 7, can be made independent
of n. An important ingredient of the proof is to realize that a bijection from |0, 1] into itself is
an homeomorphism if, and only if, it is strictly increasing (basically because the topology of R is
closely related to its order).
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In particular, this result allows to derive a stronger version of prop. 19.9: not only can any
element in J be approximated by an automorphism of the restricted projective system, but the set
of automorphisms that arise in this way moreover forms a group (in fact, it is a subgroup of 7).
This property could be relevant when turning to the imposition of the ‘diffeomorphism’ constraints
(aka. the homeomorphism invariance in the present context).

Proposition 19.12 We consider the same objects as in prop. 19.10 and we assume that G is

non-trivial (ie. it is not reduced to {1}). Let k and X be quasi-cofinal sequences in £ and

let € > 0. For any C*-algebra isomorphism «a A Waea) = .AUK 19¢) fulfilling statement 19.8.2

with respect to V := B, (the closed ball of radtus e and center idjgq in TJ) and any bijective
map o : giw — 8 igce) SUch that o, a are Tr-intertwined, there exists T € B, such that

={Tn| nEL[K} and:

VA € Al g0 @A) = T DA,

S®
Vp € S(UKJJ{,(D) ' U(/O) = (TD/OT*WE)QGLW‘

In particular, for any quasi-cofinal sequence k = (k,),cn , the group:

=T e T|T(K) =K}, with K= | J xn,

nelN

acts on the projective system (£, 3¢, <D)® and is dense in T

Proof Determination of T € B.. Let k = (Kp),en . A = (An)nenw be two quasi-cofinal sequences
in £ with respect to the action of T on (L aw) g, CD) , and let V := B for some € > 0. Let
a: ﬁi[]g{q) — A <300 De @ C'-algebra isomorphism fulfilling statement 19.8.2 with respect to V'

and let o : 8 4300) 8 i.3¢0) De a bijective map such that o, a are Tr-intertwined.

For any bounded measurable function m : G — C, any e € |0, 1] and any n € £ such that

—

e € n, we define an operator h(,]e’"’) e A, via:

Vg € K, Yh € €,, [h™y](h) = m(h(e)) Y(h).

n

For any n,n’ € £ such that e € n N 17, we have, from the definition of ¢, in prop. 19.10:

—

(e,m) (e.m)

hn ~ hn/ .
We denote by h!®™ the corresponding element of A® Lo g Next, forany e € L= UpenAn
we define hem = he'" N ey # @. Since £ is cofinal in L™, h[j]'" = A(in%q)). By

— —

assumption, a(h[(f]’m)) is then V-close to h[(j]’m}, so there exists Se ) € V such that:
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This implies S}, {e} = {Si(e)} € £, te. Sl (e) € K == U, ek, and:

¥ L e Selnel) (Site1m)
ah(’):[51>h(’)] =|:h((') ] — h\tem ’
( ] ) (e.m)” e} ~ {s:hye} e (]
where the second equality comes from the definition of the action of T on (L(aux), H, CD) (prop. 19.10).
We choose a non-constant, smooth, compactly supported map m, : G — C (thanks to G being
non-trivial), and for any e € L, we define t(e) = 5(;,1:170

|f(e) —e| <.

)(e). Since Siem,) € V = B¢, we have

Next, we consider e, e’ € L such that e < e’. From the assumptions on a, we get that:

e~ e

(esmo) . (ehimo)y _p (Ele).mo) o (E(e"),mo)
a(hy™ = hy ™) = by g
is V-close to h[(j]’m”) — h[(j]/’m”). Hence, there exists S € V such that:
L1 em) | emly (@ elm) (e)m)
STle(heey — higet') € hyg™ ™ = by,

which can be rewritten, in a way similar to above, as:

G ehmo) (5 ehmo)  Hermy) e
el _ g pffelme) _ pitehm).

where n:= {i(e), {(e')} and ' == {S "(e), S7'(e)}. Let n” == U 1. For any ¢ € H,, we then

have:

Yh e €y, [mo oh(Se)) — m, o h(5—1(e’))]¢(h) — [mo o h(ie)) — m, o h(?(e/))]gb(h).
Since this holds for any ¢, this implies:

Vh e Cp, myoh(S7'(e)) —myoh(ST'(e)) = m,oh(i(e)) —m,oh(i(e)),

and therefore, m, being non-constant, S~'(e) = #(e) and S~'(e’) = f(e’) (this can be check by
distinguishing cases and plugging specific values of h in the equality above). Now, S™' € T, ie. it
ts an homeomorphism |0, 1] —]0, 1], so, by the intermediate value theorem, it is strictly increasing.
Thus, (e) < f(e').

To summarize, we have proved that there exists a strictly increasing map ¢ : [ — K such that:

—

Ve € L, a(h[(f}’m”) = h[(i(]e)’m”) & ile)—e| <e.

Applying the same reasoning to the C*-algebra isomorphism o' : ﬁi[x]’%q)) — Zi[}]’j{’q)), which

satisfies statement 19.8.2 with respect to V™' = B, = V, yields that  is actually bijective L — K

—

(for, m, being non-constant, we have h®™) — K&™) — o — ¢’) Now, let x €]0, 1] and let ¢ > 0.
We have @ C {x} € £ and @ C A,, so, from 19.7.3, there exists S € Bo and m € N such that

{x} C SA,, ie. there exists y := S™'(x) € L such that |[x — y| < €. In other words, L is dense in
10, 1], and, similarly, so is K. Then the topology on L (as a subspace of |0, 1]), coincides with its
order topology, ie. it is generated by the base:
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{le,e'[niLle, e e} u{]o e[nLlec L} u{]e 1]nLeeL}.

The same holds for K and 7, being bijective and strictly increasing, is thus an homeomorphism
L — K. Then, we can extend  into a continuous function T : 0, 1] — [0, 1]. Let x € ]0, 1]. L
being dense, there exists e € ]0, x[ N L, and, for any e’ € Je, x]N L, T(e') = i(e') > i(e). By
continuity, this implies 7(x) > f(e) > 0. So T is actually valued in ]0, 1]. Similarly, I can be

extended into a continuous function T :]0, 1] — [0, 1], and we have T o T = id;, as well as
[—L

To T’K = idg . Therefore, T is an homeomorphism |0, 1] — ]0, 1] with T =T. Moreover,

forany e € K, [T(e) —e| = |i7"(e) — {(F'(e))| < €, so by continuity T € B..
Since £ consists of finite subsets of ]0, 1] and the sequence (), iS increasing, we have:
L= {ne Lt |dmeN/ncr}t=1{ne LW |nc L},

and, similarly, £ = {n € £ | nc K}. Thus, T(K) = L yields £ = {Tn | n e LW} Like

in the proof of prop. 19.9, we can then define an isometric *-algebra isomorphism @ via:

~ . 4® ®
a A(M,ﬂ{,@) - ‘A(L[KI,U{,¢)

A— T A

and extend it into a C*-algebra isomorphism « : ﬁfimmq)) — ﬁfi[@,ﬂﬂcb)- We now want to prove that

a=a.

a and o come from T. Let e € [ and let m : G — C be a bounded measurable function. Like
above, there exists S € V such that:

L em Cema) (Sellelmel (T eme)
Se (i’ = hiy™) € hy = hyg :
and, defining " := {S7'(e), S.\y(e), T~ '(e)}, we get:

VheCp, moh(S'(e)) —mooh(S7'(e)) = moh(Sg,(e)) —mooh(T '(e)).

(e,m

—

em(e) = T7'(e), or m being constant. In the latter case, h[(i]/‘m) = m(1) [ids, ]

(e,m

This requires either S

for any e’ € K, so in both cases:

Tem (T-ehm) _ ~(p(em
abyy™) =hig " =a(n").

Next, let e € L and Afe} € Afe}. Again, there exists S € V such that:
STAR) € a([Are] )

Defining n := {5_1(9)} and n' = {T_1(e), 5_1(6)}, we get, for any bounded measurable function
m:G— C:

. (T (ehm) (em)
[ln’%ﬂ(s DA{E‘})' hyy ] ca ([A{@} ]LW) '

—

(e.m) . (e,m)
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If we suppose T~ '(e) < S~'(e), we have, from the definition of Prfse)}

T ehm) T @m) o
h! — ;!0 (hw ® Ldg{”) ody .,
where:

Vi € Hyg, Vi € Gy [ DI 0] () = mo (T (e)) ).

Thus, we get a ([Af{eef)] w) = 0. @ being a C*-algebra isomorphism, this implies that, for any
L

)

bounded measurable function m, Af,; commutes with h({i'}ﬂ . Now, let ¢, be a smooth, nowhere-

vanishing, square-integrable function on €.} (eg. using a partition of unity [54, lemma 2.16 and

theorem 2.18] with suitable dumping factors). For any smooth, compactly supported function ¢ on
Ciep, my = Yy, is a bounded measurable function on €.} = G and we have:

lemg)
hiep ™ Yo = 4
We then get:

o Ajer o) (B
Vh € G{e}' [A{e} Q['](h) = [h({@l} . A{e} ¢0](h) - %

Since this holds for any smooth compactly supported ), m := [A{e} g/Jo] /L//o is almost everywhere

e~

p(h).

bounded by the operator norm HA{Q}HA{ : of Aoy, and, by density, A,y = h({zf’>.

Therefore, we either have a ([A{e}]m) =a ([A{e}]m) or S7'(e) < T '(e). In the latter case,

the same reasoning applied to o' yields S~'(e) = T '(e), thus S ‘{e} =7 ‘{e}, so that, in this
case 100, @ ([Afe}] gu) = @ ([Arey] ) -
We want to prove:
Ve LY VA, € Ay, a ([Ad) =@ ([Adgn) - (19.12.1)

We proceed by recursion on #n. The case #n = 1 has been treated above and it implies the case

#n = 0. We now suppose that eq. (19.12.1) holds up to #n = N > 1. Let n = (e, ..., en+1) € LV
(with0 < ey < ... <eny1 <) Let ny:={e1} and . :=n\ {e1}. Using eq. (19.10.1), we have:

Vje aN*, (.[den‘?/ﬁ X Em) © Pnom © En_1(f) = (/.2' e N j1)'

& (ide,ﬁqz X Ef?z) O @pony © ESNN = (i Grofo) s far - jnen)

We define, for any i/ € £, the unitary isomorphism &, : 3, — HE*', > o £, where
H = L,(G, dy). We then have, for any bounded operator Ay on J:

VeI, Vje GN, [q)n O lpemy (cb;ﬂ A %)(Lﬂ)](]) =

= (e ) |6 = (@15 (@401) 0.
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and, for any bounded operator A, on FH®N:

Ve X, Vje G [q)n © ‘m—nz(q);; A ¢nz)(¢)](l) =
= lAz (d),](gb)(ﬁ, Gr'o)n '))]((/ﬁ ) 3 iNe)

= (idﬂf ® (Lj) A2 L(h))) (@a(4)) ().
where, for any v € G:
L(u) . 9{®N — J‘C®N
e [V N I (Tl S AP ) | I
Chaining these expressions we get:
Vi eH, Vje G [qDH B ‘n<—nz(¢:721 A q)nz) O lpemy ((b;j Ay q)m)(‘al’)](f) =
- (A1 ® (L) Ay L(m)) (D(e0)) (7). (1912.2)

For any bounded operator A; on I, resp. A, on H®", we define a bounded operator /(A;, A)

on HENH yia:
i € HEN e N (IA A) o)) = [(A1 ® (L) A Lm))(iﬂ)](f)

(note that it follows in particular from the previous expression that this indeed defines a bounded

N*t1)We denote by J the vector subspace spanned by these operators in the space

N-+1)

operator on J*!

of bounded operators on FHEN*1;

J = Vect {/(A1 , Ad) ‘ Ay bounded operator on 3, A, on J—C®N}

(without any completion, ie. considering only finite linear combinations). The recursion hypothesis,
together with eq. (19.12.2) and the fact that both a and @ are C*-algebra isomorphisms, then ensures:

VAET a|[d, 0o Ao d,] w) :a([@n1 o Ao d
L

~ W
Letand € > 0. Forany u € G, (u ), p is a right-invariant Haar measure, so there exists A, < co
such that (u .- ),y = A, p. Defining, for any ¢y € H and any v € G, ¢ € K via:
Vi€ G, i) = dlu ),
we then have HQLI(U)H}( = /A, |¢]ls (which in particular ensures that ¢ is indeed in ).

Moreover, u +— A, is a smooth character on G (aka. modular function of G, see [43, appendix C4]).
Hence, there exists an open neighborhood D of 1 in G such that:

min(1, €)
2

We now choose an orthonormal basis (¢;),c in J and an integer M € IN. For any i < M, there

YueD 1—A, <

exists a smooth, compactly supported function q~b,~ on G (with support C; C G) such that:
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¢~ ¢

We define the compact C = J,,Ci C G. Foranyi <M, % is in particular uniformly continuous,

€
<5

so there exists an open neighborhood V; of 1 in G such that:

vue Vi, [lé— o

€
< .
= 43/il0)

In particular, we thus have:

W € Vi 1= 08 < = Bl =3+ 3 =

€ p(G U u. )
Z(H\/_) \/ 1(C)
<§(1+f+v1+A)

We define V' := D N (,.\,Vi, so that V is an open neighborhood of 1 in G. Let (ug),., with
r < oo be a finite family of points in C such that C C ngr\/[w]r where Yu € G, V) =
{viulveVin{u. v |v eV} Forany k <r, we define:

Fk = (\/[uk] N C) \ (Ul<k\/[uk]) )

Since Fr C C, p(Fy) < oo, and we define R := {k |k <r & u(F¢) > 0}. Forany k € R, we
define yu € H as xx = "\/uFo 1r,, where 1, denotes the indicator function of Fy. (xi)iep is
then an orthonormal fam't[g and we have, for any i < M:

-3 / o) B0) ~ = [ A h)

- 1 ~ ~
<> / dulu ( ) = Bl + [F ) [0~ )

¢ — <Xk ‘ b Xk

keR

2 62
g ZI

so that qu, — ) ier <Xk ‘ E>[> Xng{ < €. Since ), glxk ) { x«| is an orthogonal projection, this

implies || — Y cp (i | 1) xillye < €
Let (i), (p)p € {0, .., M}N' For any k € R, we define:

At = Ol du) }Xk > { &5
=
& Aé =0, lz ® b, @ ... ® iy, > < j’zk ! ® ¢y @ ... ® Pl

so that Ak Ul =5 _ J(AF, AS) € J. Then, for any ¢ € H®N*, we have:

vhoe GN [AWR W g (1) = S O | ) i) W )

keR

v),

3. u, . h) B
XQl0 (s ) By, (85 @ 6" @ )

where, for any (i}), € {0, .. ., MM, qbi)p) e HEN is defined by:
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o) .
Py =Py ® @ by
Using || — Y rer (Xk | @i Xi||5 < € this yields:

; ) 3. 3.
HA(p)p Up)p Q/J_ d)h ® ¢i2 by ¢zip)p) > < ¢/1 ® Cz)fz ® d)((fp)l’)

al

FON+1)

<€ ([P llgcomn +

> Ol du) Bi® ¢y,

keR

FHR(N+T)

where, for any k € R, B, € H®* is defined by:

v)-

~¢u(h2) (¢ ® ¢, ® 9

(p)p

o (ug' - ha) _ (ug" . hr) (3...)
Vhi, ho € G, Bi(hi, h2) == xi(h1) i (hZ)Ah;Tuk d)/w ® ¢j2 ® ¢

o) |

Next, for any k € R, and any hy € F;, we have uy' . hy € V, so that:

du(hy) (Wit h) (" h) _

2 1 3.

”B/<H9{®2 = /F /J(Fk) H¢[zk 1 Ahﬁ-uk <¢f1 ® ¢/2k 1 ® ¢E/p)p)
k

w)-

3.
—¢0, (¢ ® ¢, ® ¢f)})
/ (ue' - ha)
+ ALI/<71.ILI1 H¢[2A v— ¢[2

(W' hy)
+H¢j2k 1 _(bjz

o)l

1

—1
Auﬂ . hq

du(hn) (
< ALI’1
/Fk p(Fi) ko

+
H

2
2
) 1B

2
< (5e - ) |

Moreover, for any k = (, we have (B¢ | Bi)g2 = 0, so we get:

< be,

ASN+T)

. 3. 3.
HA(P)p Up)p — )‘f’n ® ¢, ® (bEiP)P) > < Pn ® b, ® ¢E/'p)p)

where || - || jovs1) denotes the operator norm on H®N*1.

Let A, € A, and let n € £ such that a ([A,]]N w) = (A} ] | for some A}, € A, (thanks to
£

~ ol
statement 19.82). Let n” := U T 'n € L and let py be a non-negative traceclass operator
on H, . Let n” € IN such that " C k,», choose t,» € H, ,,, and, for any n > n”, choose

T, € Hy, i, - In a way similar to prop. 19.1, there exists p’ € 8% ) such that:

<9,
/ -1 _ " / -1 _ /
CDKH//_’”// pK”// CDKN//—>U” - |Tn// >< Tn//| ®p’7// & vn > n ' cl)Kn —Kp—1 pK” (DK,]—>KN,1 - |Tn >< Tn | ®pK”,1 :

In particular, we then have p}, = p,r. Let p = [a(,o/)]” and p i= Ur—1,(T) (Try =1, o) Up(T 7).

Next, for any M € IN, we define a finite-dimensional vector subspace Jy C H, as:

Jui=Vect {0, |9, ® . ® ¢i,..) ( (ip), € {0..... MM}
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Let € > 0. Applying lemma 5.10.1 to the family (Jp)ye @nd the non-negative traceclass operators
p and p, there exists M € IN such that:

| o= Mwp M|, <% & ||p—TwpMu| é%,

where || - ||, denotes the trace-norm and [y is the orthogonal projection on Jy. Now, from the

previous step (with M & IN and ¢24m+1)2 > 0), there exists, for any ([p)p ) (jp)p e {0, ..., /\/I}NH,

A([")P (j”)ﬂ € J such that:
€

o7 16y @ @ 6 ) (0 © - gy B - AL Db g | <

where |- ||, denotes the operator norm on J(,. Thus, defining a bounded operator A on H, as:

/Z = Z <¢i1 ® ... & d)ifww ‘ CDUAII CD# ¢j1 ®. .. ® ¢1N+1> ¢;1 A(ip)p (jp)p (DU'
(i), (p), €10, My

we have ¢”Zq>;1 € Jand HZ — Ty A, HMH < % ||A,,HA”. Putting everything together, we obtain:

‘Trf}'fn// pn// (lﬂ//HU,(A;f) — lr]”<—T*117(T71 DAU))‘ —

Trg{” (p — A[j) A,]

<€ WAy, + [Trse, (0 —5) A

Irp (a([A]NLw) a a([A]Naw) ) ‘ = € il
Since this holds for any density matrix p,» on H,» and any e > 0, it follows that 1y (A},) =

) =@ ([

— ¢ A, +

t,,,/Han(T”DAn), ie. a ([AnL ) which concludes the recursive proof of eq. (19.12.1).

W ol

From eq. (19.12.1), we have:

®
VA € A(Mﬂw) ,

hence, by continuity, a = a. Finally, like in the proof of prop. 19.9, we can then define a bijective
~ 3® ® ,
map 0 : S(LM’%Q,) — S(LM,J{,@) via:

~ —=® =®
g S(LM,S}{,CD) - S(Ll*l,ﬂm)

(p”)neL[K] = (TDPT”Q)Q@W '

~ ~ . . . <®
0 and a = a are Tr-intertwined by construction, as are o and a. Thus, for any p € 81 4 4), aNy

ne £ and any Ay € A, we have:

Trsg, [o(p)], Ay = Trp @ ( [AQ]N ) ) — Trag, [(6)],, An.

which ensures that 0 = &.

Approximation of T by T*. Tl is stable under composition and inverse, hence it forms a subgroup

of T. Moreover, using the characterization £ = {5 € L | n € K}, we have, for any T € 7%
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and any n € L ne LM o Tne L. Thus, the group action of T on the projective system
(L ) g, CD) induces a group action of T on the projective system (L , I, CD) :

Next, let T € T and let V' be an open neighborhood of 7 in T. Let € > 0 such that B.. T :=
{r"'T|T"eB} Cc V. Let 0 : gimmq)) o gfiqu)) and a : ﬁi[W)) — ﬁi[m{,@) be as in
prop. 199 with respect to the transformation 7 &€ T and the open neighborhood B, of idjg 1) in

T. Define ¢ : SUK L960) SUK 19ca) and A® o A%Kkﬂ{m) like in the proof of prop. 19.9,

L3, )
with k the quasi-cofinal sequence x := (Tk,),.x- Then, g o o ' : gi[”ﬂfﬁ) — gi[ﬁ],ﬂq)) and
@oga A® K 3, )
there exists T’ € B, such that:
{Tn|neth} = ={T"n|ne L}

& VAEAS, . alA) =T Toa™ (A) = (T TpA.

— J_I%K,v%vq,) fulfills the hypotheses of the first part of the present proof, hence

In particular, T:=T"".T€Tn V. Therefore, T* is dense in 7. O

As announced in the discussion preceding prop. 19.2, neither the universality of the restricted
projective systems built from quasi-cofinal sequences, nor the possibility of approximating transfor-
mations (that directly follows from it), extend to the infinite tensor products that one can assemble
from these sequences. In prop. 19.13 below, we construct an example of a deformation that provides
an identification at the level of the projective systems, but fails to provide a unitary mapping of the
corresponding ITP’s. The proof is somewhat similar to the one of theorem 5.11, and relies on the
fact that grouping the tensor product factors pairwise yields an inequivalent ITP [99, section 4.2].

Proposition 19.13 We consider the same objects as in prop. 19.10 and we assume that G is
non-trivial. For any quasi-cofinal sequence k = (k)< in £, we define }Cs‘ﬁq and as[‘éq as in

prop. 19.2 with respect to the projective system (LM, X, CD) and the increasing sequence (Kp),cp -

There exists quasi-cofinal sequences «, A and an homeomorphism 7 & T such that:

B= et} & (5 4 [[rora) ot ()]

g{/\

seq  denotes the space of non-negative traceclass operators on ﬂ-(seq resp. J—CW ).

(where Sseq resp.
In particular, this means that there does not exist any isomorphism of Hilbert spaces U : J—(Seq

K such that:

seq

Vp € iy, o (UpUT") = (T»[ai:qm)]w) . (19.134)

qe[,m

Proof Let k = (k,),c be a strictly increasing quasi-cofinal sequence (eg. the one we constructed
in the proof of prop. 19.11) and let A = (A;),en, With Vm € N, A, = k2. Then, one can

check that A is also a quasi-cofinal sequence and, setting T := idjo 1 € T, we have L= ghd —
{Tn|ne Lk},
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We define g, = 3, = H,, = H,, = Hy, as well as, for any n > 0, J, =
for any m > 0, ', == H,,~s,,. Then, for any m > 0, &, iy i, IS an isomorphism
3w — Jom ® Jom—1. We choose a normalized vector ¢, € J,. For any n > 0, we have «, 1 C k,,
hence, G being non-trivial, dimd, > 2, so we can choose two normalized, mutually orthogonal
vectors Y\, P € g, Then, we define:

:}CKN —Kn-1 1 an d

(1) (1) (2) (2)
W ® Yo 4 + 3, @ U5 4

=, ed, & Ym>0, ¢, ="
¢ 1 J m ¢ \/E

Kom = Kom—1—"K2m—2

E glm ’

and, by prop. 19.1, we construct p[¢] € S® 3¢ SUCh that:

Prll =10 ) (Gl & Ym >0, p[¢) =30, o (o ) ( Gul ® o, [8]) ©

From prop. 19.2, we have p[¢] € o/ <SW ) C o) <SW >

seq seq seq seq

Reasoning by contradiction we suppose that there exists a non-negative traceclass operator p
on steq such that:

vn e LW = g, pal Pl = TD[Ugjq(ﬁ)]

T-'n

te. pl¢] = osigg(ﬁ) . Using the same notations as in the proofs of props. 19.1 and 19.2, we have:

plo] = ok, (p) Z % (Mg 2 M)
1w
as well as:
1=Trplg] = Tryg [P] = ) Traes, [N Myun]-
1]

Hence, there should exist /' = (1), . € Z{ 4 such that Trg{M [Myg 12 Myery] > 0, and eq. (19.2.1)
then yields:

sup inf <Cn .

nelN " '>n

=) sup inf <5n = (T% by [(’[@/Jmnwuﬁ”WH)L ‘W) Céqn>

H o H n€N >n n’

(Trs, o plle, @' ) ) =

> sup inf <Cn on (Tr-%n B [0l (M1 5 M) | q)?) fé/ﬁn>

nelN " '>n

= Tr}qj,] [y 2 Mygry] >0,

with Vn <n" € N, ¢, ==, ® ... ® Yy € Ky (we have used that the sum ) . is
absolutely convergent in trace norm, and that the argument of inf, -, resp. of sup,_ . is positive

and decreasing with n’, resp. increasing with n).

From the definition of ®, and p[@], we have ®, p[d].. P> = [¢, ) { @], as well as, for any m > 0:

~ ~ 4 T 1 2 2 1 1 2 2
Pan ARl 20 = 5 Wi @ Wl + 0 @ Yl ) < Wi @ wl_ + vl @l
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® (62/77—2 pszfzkm EjSZ_nl—Z) .

Hence, we get, for any m > 0:

CTDZm PPl 52717 =

m (1) 2 2 M M (2) (2)
27 ¢2m ® ¢2m—1 + ¢2m ® ¢2n)—1 > < LpZm ® L/J2m—1 + LL’Zm ® me—1 ®

1 1 2 2 1 1 2 2
@ [ @y’ +ul el ) (W' @y’ +ul @ ul?| © 19, ) ( ¢l

Let n € IN and let m > 2. If n = 2p, we have p < m and:

(Tr%n b2 Pl B, ‘55,3) fﬁ,,Hn> = ﬁ &

k=p-+1

(Gl

2
where, for any k > 0, & = %K%k ® s ) @ )+l e ¢§2k)71>‘ fn=2p+1, we

also have p < m and:

(Trxn Do Pl Bl 52*”1) Cﬁan> ~I., ﬁ ‘.

k=p+2

/
< ZZIT]‘)FI

2
¢§?+2>) . Now, for any kK > 0, we have:

2
1
where EpH = % ‘<L/Iép+2 ¢£p)+2>‘ + % ‘<¢I§p+2

2
&=2 > (0 | ) (e | 081)
e=1
,I 2 5 2 >
SaTA (z)% o)
=1 =1
AR
Thus, we get:
(G | (T, B 101 B3] o) < o]

where | - | denotes the floor function. This yields, for any n € IN:

inf <Cn 'n (TrKn CT)H/ p[¢]xﬂ/ 6;/1) ({ﬂ%n> =0,

n’>n

and therefore:

sup inf <Cn .

nelN n'>n

(Trs, B plle, @) Chrm) =0

which provides the desired contradiction. Hence, p[¢] & {(TDqun)

ped (8] 5o

ne Ll
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= « /oKl
Os[g]q <Sseq> % { (TDpTJfI)ngLW P e Us[/e]q <85‘9Q>} ’

To exhibit a quasi-cofinal sequence for L, in the physically more interesting d = 3 case, the
idea would be to construct a discrete but dense, fractal-like structure made of edges and surfaces:
note that the sequence constructed above for our one-dimensional toy-model can also be seen as a
fractal in |0, 1]. The proof that such a structure can be designed that satisfies the quasi-cofinality
property 19.7.3 is however significantly more involved than in the one-dimensional case, and is not
yet finished.

&) would

An interesting use of the possibility to start from a non-directed, extended label set £l
be that we could drop the somewhat ad-oc (semi-)analyticity requirement for edges and surfaces:
recall that analyticity was used solely in lemmas 10.5 and 10.8, with the aim of proving the
directedness of L. Also, we could take advantage of this possibility to eliminate the unphysical
(in the sense of having no equivalent in the classical continuum phase space from subsection 9.1),
degenerated fluxes. These fluxes supported on geometrical objects of dimension strictly less that
d — 1 had to be included in L, because they arose from the commutators of non-degenerate,
(d — 1)-supported fluxes: we could not exclude a priori that an edge, hitting the intersection, would
see the non-vanishing commutator. In contrast, in the context of a fractal-structure, where a
discrete set of admissible edges and surfaces is chosen beforehand, we can effectively forbid that
an edge will ever go through the intersection of any two surfaces, and simply set the commutator
of degenerately intersecting fluxes to zero (this would not, however completely solve the problem
of the non-commuting fluxes’, since, as stressed at the end of section 10, the core of this problem
concerns the non-degenerately intersecting fluxes).

Another consideration that will enter the definition of £V

is that it seems necessary to allow for
piecewise smooth edges and surfaces, and for the group of transformations to consist of piecewise
diffeomorphisms. This is the price we pay to satisfy an improved quasi-cofinality condition, that
respects any already adapted sublabel, and it is already apparent in fig. 19.1: to adapt the grid to
the target label in this schematic example, we had to deform it in a way that flattened some right
angles (see eg. the diagonal edge in the bottom left quadrant). This complication can for example

occur if there are two vertices b and f already at their final position (ie. they belong to the sublabel
n of ' that we are no longer allowed to deform): there might be, in ', a straight edge e joining
b to f, while there is no straight line available in the quasi-cofinal sequence to connect these two
particular vertices: we will then have to approximate e by a zig-zag line along the fractal fabric of
our quasi-cofinal sequence.

Switching to piecewise diffeomorphisms is presumably harmless anyway. In the context of quan-
tum gravity, in particular, it has been argued that geometrical knowledge, including angles, should
ultimately come from the gravitational degrees of freedom themselves (see eg. [28]). And while
admitting only strict diffeomorphisms is enforced in LQG for the benefit of the regularization of
the volume operator [7], and therefore of the Hamiltonian constraint that depends on it [88], the
additional, fractal-like structure provided by a quasi-cofinal sequence could probably serve as a
drop-in replacement for the differentiable structure used in these calculations.
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20. Discussion: imposing the constraints (2/2)

Recall that we put forward in section 13 the need to ‘anchor’ the fluxes, in order to improve
their transformation properties under gauge transformations. The problem was then to build a
directed label set while keeping track of the auxiliary systems of paths entering the definition of
these anchored fluxes. Remarkably, a fractal-like structure as sketched above could provide these
anchoring paths automatically. Indeed, considering a given face, with a conjugate edge starting
from it, the refinement taking place as we go deeper and deeper in the quasi-cofinal sequence would
require to simultaneously subdivide the original face and ramify the original edge. In this way, we
would recursively construct a dense tree reaching this face, that one could use for anchoring the
corresponding flux.

Going over to the diffeomorphism constraints, one could imagine to simply declare the labels of
the quasi-cofinal sequence to be non-embedded, and to keep the relations between them as they
are: this would be a way to ignore the difficulty described in section 13 regarding the proper way of
relating non-embedded labels. However, as we explained at the end of subsection 19.2, this would
not actually make the states diffeomorphism invariant, as the fractal structure would just take over
the role of a coordinate system. Instead, we should follow the strategy outlined in section 13 and,
for every single state at a certain level «,, we should reposition «,_1 within k, to capture the best
picture of this particular state.

Note that obtaining the diffeomorphism-invariant state space in this way could, incidentally, be

beneficial for the semi-classical limit. This is because the factorized coherent states constructed
along the lines of subsection 19.1 are not immune against the so-called ‘staircase problem’ (see

[92, subsection 11.2.5]). The variables added at each step of the quasi-cofinal sequence (aka. the
variables from the spaces }{,,.,_.«,) are the most semi-classical ones in such a state. Thus, while the
elementary variables of the first few elements of the sequence will have very peaked distributions,
other variables only slightly different may be very spread, due to their complicated dependence in
terms of these preferred directions of the factorized state. The problem is less severe than in the case
of fixed-graph coherent states [90] (in which the variables on the graph are perfectly semi-classical,
while variables only slightly different, that are not supported by the graph, are not semi-classical at
all), but it would be further mitigated by adapting the imposition of the diffeomorphism constraints
to the quasi-cofinal sequence. Indeed, the collective, large-scale variables that compose the coarsest
elements of the quasi-cofinal sequence, and are thus prioritized in the semi-classical approximation,
would then be interpreted as reflecting the most prominent features of the state.

Finally, it would also be natural to perform the regularization of the Hamiltonian constraints
along the quasi-cofinal sequence, eg. by adapting the approximation scheme developed in [88], and
doing so could potentially help the dynamical stability of the factorized semi-classical states (recall
the discussion in the general introduction: an important limitation of fixed-graph coherent states is
that they are not well adapted to graph-changing Hamiltonian constraints). Interestingly, the need
for fractal constructions also emerges from this perspective [92, subsection 11.12.2.5].
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Conclusion

Summary

We have taken the first steps toward a reformulation of Loop Quantum Gravity withing the
projective framework proposed by Kijowski [48], with the hope of shedding new light on its semi-

classical regime, and perhaps also on its dynamics. Along the way, we obtained the following main
results:

Extension of the projective formalism. We have investigated the formalism in detail, on
the classical side (section 2), as well as on the quantum side (section 5). This allowed us to
formulate fairly systematic quantization prescriptions, along the lines of geometric quantization
(position quantization, in particular on simply connected Lie groups, in subsection 6.1; holomorphic
quantization in subsection 6.2).

Application to the holonomy-flux algebra. We were able to show that the construction developed
in [68] can be generalized from the linear case to an arbitrary gauge group (.. The key ingredient is
still the same, namely the use of labels defined as collections of edges and surfaces. However, the
somewhat involved algebra built by the holonomies and fluxes in the case of a non-Abelian group
requires to be more restrictive as to which such collections qualify as labels (subsections 10.1 and
10.2). The factorization maps, which are the central objects of the formalism, can then be expressed
explicitly in terms of the group operations (subsections 10.3 and 12.1), so that no further restrictions
on the Lie group G are needed. In particular, the case G = 8L(2, C) could have application to
the treatment of the complex Ashtekar variables (see section 11), which cannot be handled by the
standard LQG methods.

Relation with standard constructions. We exhibited mappings from the spaces of density matri-
ces on Hilbert spaces constructed as inductive limits or infinite tensor products, into corresponding
projective state spaces, and we were able to precisely characterize the image of these mappings
(subsection 5.2). This allowed us to prove, in subsection 12.2, that the projective state space we had
set up for the holonomy-flux algebra extends the well-established Ashtekar-Lewandowski one (in
the compact group case, where the latter is defined).

Proposal for dealing with constraints. We identified the need for regularizing the dynamics
in order to implement it in the projective framework, and proposed to describe dynamical states
as (projective) families of kinematical ones, that converge to exact solutions of the constraints
(section 3). It is via this connection with the kinematical state space that the degrees of freedom
on the dynamical side acquire their physical meaning. This proposal was put to the proof on
simple toy-models in sections 15 and 16. In particular, the study of the second quantization of the
Schrodinger equation (aka. non-relativistic quantum field theory) provides interesting insight on
how considerations of convergence when implementing the dynamics could help select a subset of
well-behaved states in the (typically very large) projective state space: this is how the Fock space
reemerges in this approach.

Procedure for simplifying the algebra of observables. We have analyzed the remaining ob-
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structions to the existence of satisfactory semi-classical states (section 18), and devised a strategy
to go around this problem, by trimming the label set down to countable cardinality, without de-
naturing the physical content of the algebra of observables, its universality, nor its symmetries
(subsection 19.2, with a one-dimensional proof of principle in subsection 19.3). This paves the way
for the construction of states whose semi-classicality is enforced step by step, starting from col-
lective, macroscopic degrees of freedom and going down progressively toward smaller and smaller
scales (subsection 19.1).

Outlook

The program started in the present work is still far from complete and has uncovered many open
questions. Directions for further research include:

Systematic quantization prescriptions. As discussed in section 7, it should be possible to gen-
eralize the quantization procedure outlined in section 6. Given an arbitrary projective system of
classical phase spaces, one would like to immediately obtain a corresponding projective quantum
state space from a consistent choice of polarizations (in the sense of geometric quantization [103])
on the small, partial phase spaces. As these partial phase spaces are meant to be finite dimensional,
different choices of polarization can often be related through unitary identification of the resulting
quantized partial theories and this could allow to weaken the consistency conditions (by demand-
ing consistency only up to unitary equivalence). This could have applications to the description of
quantum fields on arbitrary spacetimes (eg. in the spirit of [64]).

Proof of non-emptyness. Projective systems built on countable label sets are guaranteed to
yield non-empty quantum state spaces, as projective states are easily constructed in this case
(subsection 19.1). The situation is less clear in the case of uncountable labels sets (see prop. 5.12
and the discussion at the end of section 18) and it would be helpful to delineate sufficient conditions
for projective state spaces to be non-empty. In particular, we would like to construct projective states
on the holonomy-flux algebra in the non-compact group case.

Refining the implementation of the dynamics. We need to develop the tools to deal with
constraints in the projective framework, expanding the strategy proposed in section 3. On the
classical side, we would like to formulate systematic recipes to generate the input needed for the
regularization of the constraints. On the quantum side, we still have to provide a rigorous procedure,
including rules for defining an effective and physically meaningful notion of convergence (see the
discussion surrounding theorem 16.21). As a general guiding principle, we should strive to reflect
the concrete experimental implementation of the observables. In particular, when considering a
theory of gravity, it might prove legitimate to define the convergence in a way that completely

ignores the gravitational degrees of freedom: indeed, geometry is only probed by matter, and never
measured directly.

Solving the constraints of LQG. The implementation of the Gauss and diffeomorphism constraints
on the projective quantum state space set up in section 12 would be a good opportunity to further
refine these tools, before eventually turning to the Hamiltonian constraints [88, 91]. In sections 13
and 20, we explored how these constraints could be regularized, notably by making use of the
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fractal structure introduced in section 19. Note that the analysis of this regularization at the
classical level could already be interesting on its own, to investigate how the correct dynamics
can be recovered in a formulation build on the holonomy and flux variables (instead of a more
conventional formulation using a Sobolev-like space of regular connections and electrical fields,
see subsection 9.1): in particular, it could clarify the impact of having non-commuting fluxes (see
[92, section I1.6.1] and the discussion at the end of section 10).

Relation with covariant approaches. By giving a central role to truncations and refinement in
the construction of the quantum state space, the projective formalism appears well suited to import
into the canonical setting some strengths of the path-integral formulation of quantum field theory,
such as approximation schemes and renormalization. In the context of quantum gravity, taking
advantage of the techniques developed in covariant approaches (eg. Spin Foams [9, 76] or Causal
Dynamical Triangulations [2]) could in particular help computing solutions of the Hamiltonian
constraints of LQG [94].

Semi-classical states and applications. Finally, we shall complete the construction of semi-
classical states begun in section 19, in particular by extending the one-dimensional results of
subsection 19.3 to the d = 3 case. The thus obtained states could then be applied to the study of the
semi-classical limit [90, 36] and to the derivation of symmetry reduced models [16, 30, 27, 18] (as
hinted in the introduction). A first target in this direction would be to recover the photon states of
usual quantum electrodynamics out of a theory quantized in terms of holonomies and fluxes (with
gauge group G = U(1), see [97]).
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Appendix

A. Classical constrained systems

To fix the notations and definitions, we summarize here some facts about constrained classical
systems. We recall how a reduced phase space arises from a constraint surface in a symplectic
manifold [105, section 1.7], we introduce a notion of transport of observables to translate kinematical
observables into dynamical ones (this facility is the main object of the physical discussion in
section 3), and give a very brief account of partial gauge fixing [62].

When considering a constraint surface M in a symplectic manifold M the pullback of the
symplectic structure (), does not, in general, define a symplectic structure on M™": there might
be directions in the tangent space of M on which this pullback vanishes. These directions
correspond to the gauge flow generated by first class constraints, and the gauge orbits need to
be quotiented out in order to get a reduced phase space M"™ with a non-degenerate symplectic
structure (),,..

Except for the first few definitions (which are tailored to match the needs of some results in
section 3), this appendix focuses on finite dimensional manifolds: this is anyway the point of the
formalism presented in the main text that we aim at describing a field theory in such a way that
we can work mostly within the context of finite dimensional manifolds.

Definition A.1 Let M™ be a (possibly infinite dimensional) smooth symplectic manifold (with
symplectic structure €),,). A phase space reduction of M™ is a triple (M"™, M*™*, 0) such that:

1. M is a submanifold of M™ and M™ is a symplectic manifold (with symplectic structure ,,.);

2.0 : M — M™ is a surjective map and, for all y € M™, 6" (y) is connected;
3. for all x € M, Im(T,0) = Typ(M™) & QKW,X|TX(MSHM) = [0" Q.-

For any bounded real-valued function f on M, we define a corresponding dynamical observable
on M™ by mapping to a point y in the reduced phase space the supremum of f on the corresponding

orbit 0 (y). The motivation for this definition is that we regard indicator functions as the most
fundamental observables: with the transport of observables defined this way, the indicator function
of some region in M"" is mapped into the indicator function on the space of orbits that characterize
whether a given orbit crosses this region or not. In other words, the dynamical observable related
to the indicator function of some region of M will tell us whether the dynamical state of the
system allows it to be measured in that region.

Note that there can be relations between the dynamical observables ™, ..., fi" arising from
functionally independent kinematical observables f1, ..., f¢, or to state this more precisely we can
have dependencies:
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Im (™ x ..o x £ F (Im ™) x oo x (Im ),
although the corresponding kinematical observables were independent:
Im (f1 X ... X fk) =(Imf1) X ... X (|mf/<)

This is a crucial observation, since, indeed, the dynamical content of theory lies in such functional
relations emerging between observables that were kinematically independent.

Definition A.2 Let (M™™, M, d) be a phase space reduction of M. We denote by B(M*) the
space of bounded, real-valued, functions on M*". For all f € B(M™), we define ™ & B(M"™") by:

Yy € M, (y) == sup {f(x) | x € 6 (y)}. (A2.1)

As explained above, a phase space reduction is entirely specified by its constraint surface and,
provided we exclude any pathology that could occur regarding the rank of pullback (pointA.3.2)
or the quotienting under gauge (pointsA.3.3 and A.3.4), we can reconstruct the elements listed
in def. A.l from the constraint surface M**". The degenerate directions of the pullback of the
symplectic form on M™™ naturally generate a foliation [54, chapter 14] (the required integrability
condition follows from (), being closed, see [105, section 1.7]), and quotienting along this foliation
ensures that we recover a non-degenerate symplectic structure on M™".

For the rest of this appendix all manifolds will be finite dimensional manifolds.

Definition A.3 Let M™ be a smooth, finite dimensional, symplectic manifold (with symplectic
structure Q). A pre-reduction of M™ is a triple (IM™, M, 0) such that:

1. M is a submanifold of M™ and M™ is a manifold;
2. the restriction of Q. to T(M™™) is of constant rank, thus defining a foliation K(M™") by

VX E M?HFH’ KX(MSHFH) :: {\/ E TX(M§HFH) QKlN'X(V’ . )|TX(MSHELL) — O} C TX(MSHFH);
3.0 : M — M™ is a surjective map and Vx € M™", Im(7,0) = T (M™);
4. Yy € M, 6~ (y) is a leaf of the foliation K (M),

Proposition A.4 Let M be a smooth, finite dimensional, symplectic manifold (with symplectic
structure Q) and let (M™, M, 0) be a phase space reduction of M. Then, (M, M>"", 9) is
a pre-reduction of M* and we have:

Vx € M, K (M) = Ker T,0 = T, (67 ((x))) . (A4.1)

Proof Defs. A3.1 and A.3.3 are directly implied by def. A1.

let y € M™ and x € 6 ' (y). Since 0 has surjective derivative at each point, we have as

an implication of the rank theorem [54, theorem 522] that 6~ ' (y) is a submanifold of M*™ with
tangent space Ker I,0 C T,(M™™") at x. Now, from def. A.1.3, together with the non-degeneracy of
Q. (for M is a symplectic manifold), we have:

VX' €0 {y), KerT, 0 = Kg(M"™).
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Hence, K(M™™") has constant dimension, so def. A.3.2 is fulfilled.

Additionaly, by maximality of the leaves, the connected submanifold 6~' (y) is included in the
leaf of the foliation K(M™") that goes through x. Reciprocally, since the leaf that goes through x
is connected, and has tangent space K, (M) = Ker 7,70 at any point, 0 is constant on it, hence

it is included in 07" (y). Thus, def A34 is fulfilled. O

Proposition A.5 Let M*" be a smooth, finite dimensional, symplectic manifold and let (IM"™, M, 9)
be a pre-reduction of M™. Then, there exists a symplectic structure Q,, on M"™ such that
(V™, V", 9) is a phase space reduction of M.

Proof What we need to prove is that there exists a symplectic structure Q,,, on M such that:

VX © MSHELL, QK|N1X|TX(MSHELL) = [5* QDVN]x‘

The others points in def. A1 are immediately fulfilled (in particular, for any y € M™, 0~ (y) is
connected as a leaf of a foliation).

Let x € M™™ and let y := d(x). Since 0 has surjective derivative at each point, there exist by
the rank theorem [54, theorem 5.13] open neighborhoods U of x in M, V of y in M™™ and W of 0

in R°7 (with s := dimM** and d := dim M), and a diffeomorphism ¢ : V' x W — U such that:
Vy e V,YZ e W, 00 9y, 7)=y".

Forany y’,Z € V x W, we define Q%* , by;

ow, Yy’

Vv, v e T, (M™), 0% (v, V') = Quuptyn Ty @(v, 0), Ty (V' 0)) .

DVN,y/
Then, setting x" := ¢(y’, Z'), waz; satisfies:

Yu,u' € T(M™), Qv (u, u') = Q%

o, Yy’

(Two(u), Too(u)),
for we have from def. A3.4:
{Tyr 00 w)[we W)} =T (67 {y)) = Ko (M), (A5.1)
Let ? Y’ be vector fields on V and Z be a vector field on W. Defining Y = o, ()70)
ey (?/,o), and Z = ¢, (02), we have [Y, Z] = [V', Z] = 0 and, from eq. (A5.1):
QK,N(Z, : )|T(M5“ELL) =0.

Hence, we get, for any ',z € V x W:

dQ,. (v, Y, Z)<p(y/,z/) =0 (by definition of a symplectic form)

— 7 (Qu(Y.Y))

oly’.2)
= 1 0" (v W
- ZZ/ (Z —> QDVN,g/ ( Yy/, Yy/) ) .

Now, for any x € M, we define Q) : T5(M™) X T5,»(M™) — R by:

Vv, w e T, (M), QF (T.0(v), T,0(w)) = Quux(v, w).

DYN
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DYN

That such an ()] = exists is established by the previous discussion and, since Im 7,0 = T (M™),

X
DYN

it is moreover unique. Thus, Q¥ is well-defined.

DYN

The previous argument also shows that, for any vector fields Y, Y" on M™, x — QF (Yg(x), ng)

is smooth and satisfies:

Vx € M Yw e T, (67 (3(x))), T, (X/ > QY (Yo, Yg(x,))) (w) = 0.

DYN

The level sets of 0 being connected, as underlined above, this allows us to define a smooth
differential 2-form Q,,, satisfying:

VX - MSHELL, QKW,X’TX(MSHELL) = [5* QDVN]X .

Lastly, for any x € M™™", we also have:

[5* dQDVN]X = dQK\N,X|TX(MSHELL) = O:

and, from eq. (A5.1):
Ker 7,0 = K (M)

Thus, 7,0 being surjective, Q,,, is closed and non-degenerate, so it is indeed a symplectic form on
M O

Proposition A.6 Let M be a smooth, finite dimensional, symplectic manifold and let (M, M>*, 57)
and (M2, M, ;) be two phase space reductions of M** arising from the same submanifold M
of M*". Then there exists a unique map ¢y : M*™" — M"* such that 6, = s 0 ;. Moreover, ¢ is a
symplectomorphism.

Proof From def. A.3.4 0, is constant on the level sets of 0, and reciprocally, hence, as a consequence
[54, prop. 5.21] of the rank theorem (using that both 0, and 0, are surjective and have surjective
derivative at each point, from def. A33), there exists a unique diffeomorphism ¢ : M™™" — M"™*
such that 9, = o 9.

In particular, for x € M™* (with y := d(x)), we have 7,0, = T (o 1,04, so that, using def. A.1.3:
[51* QDVN,1]X = QK\N,X|TX(MSHELL) = [51* w* QDYN,z]X'

Since 7,01 and 0y are surjective, ¢ is a symplectomorphism. U

The subalgebra of kinematical observables whose Hamiltonian flow stabilizes the constraint sur-
face (and are therefore constant on the gauge orbits) is mapped into the algebra of dynamical
observables in a way that preserves the Poisson brackets. Equivalently, these compatible kinemati-
cal observables can be characterized as the one having vanishing commutators with the constraints
(at least on shell). This property is closely related to the possibility of solving mutually commuting
sets of constraints successively, rather than simultaneously.

Proposition A.7 Let M be a smooth, finite dimensional, symplectic manifold and let (M"™™, M, 0)

be a phase space reduction of M. Let f, g and {f, g} & C*®(M*, R)NB(M™), and assume that:
VX E MSHELLI vaX’ Xg’X E TX(MSHELL)I

where the Hamiltonian vector field X; := df is defined by Q. (X}, -) = df.

KIN
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Then fDVN,gDVN E COO(MDYN’ ]R) and {fDYN’gDYN}DYN _ ({f,g}KIN)DVN.

Proof For all x € M™™, X;, € T,(M*"), hence df, (K (M) = Q... (Xin, KMM™)) C
Qe (To(VE), K (M) = {0}. The same holds for g. Therefore, f and g are constant on

the leaves of the foliation K(M™™) on M. As a consequence [54, prop. 5.20] of the rank theorem
(using defs. A.3.3 and A3.4), there exist smooth maps f and g : M™ — R such that f|ye = fos

and g|ysew = g © 0. Hence, ™ — 7 and g™ =7
In addition, we have for any x € M™™ (with y := 0(x)):

[6* deVN]X == de|TX(M5HELL>

- QKN,X

rovee (Xiwi +) (using Xy, € T(M™))

= Quy (100 (Xix); TL0(+)) (using def. A13).
Thus, 7,6 being surjective, Xpon , = 7,0 (vax) and, similarly Xgon , = 7,0 (Xg,X) .

Hence, we have:

{fDVN’ gDVN}DVva = QDVN'L/ (XgDVN’y, Xf[m\,y)
= Quuy (10 (Xgn) . 700 (X))

= QKW,X ( g.x1 Xf,X) (US.Lng def. A13 and vaX'Xg,X e TX(MSHELL))

= {f' g}Kw,x :
Since this holds for all x € 0~ (y), this implies in particular that {f, g}, is constant on o (y).
Therefore ({f, g}..)" (y) = {f. g}... = {" ¢""}..... U

Finally, we briefly recall the idea of partial gauge fixing: imposing additional constraints, in such
a way that the resulting constraint surface cuts transversally through each gauge orbit, yields the
same reduced phase space. However, the dynamical observable associated to a given kinematical
observable according to the gauge-fixed dynamics does not coincides with the one associated ac-
cording to the original dynamics: while the reduced phase space is not affected by gauge fixing, its
relation to the kinematical phase space is (and, as stressed above, this relation is where the physical
interpretation of the reduced phase space comes from). At least, the gauge-fixed dynamics does re-
produce the correct dynamical observable whenever the kinematical observable under consideration
is compatible with original set of constraints (because it is then constant on gauge orbits).

Proposition A.8 Let (M™™, M, 0) be a phase space reduction of M** and M™ a submanifold of
M such that:
,I' for a[[ X E MI’\X, TX(MSH[LL) — TX(MFIX) + KX(MSH[LL);

2. the intersection of a leaf of the foliation K(M™") with M™ is not void and is connected;

We define 0™ : M™ — M by 0™ := 0. Then, (M™, M™, 0™) is a phase space reduction of
MK\\.
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Moreover, if f € C®(M™ R) N B(M™) and Vx € M, Xy, € T,(M™™), we have ™ = f™
where:

Vy € M, ™(y) ==sup {f(x) | x € 67" (y)} (def A2)
and 1"™(y) == sup {7(x) | x € 0™ (y)}.

Proof Statements A.1.1 & A.1.2 M™ is a submanifold of M, and M is a submanifold of M*",
hence M™ is a submanifold of M. M"™ is a symplectic manifold.

The level sets of 0™ are the intersection with M™ of the leaves of the foliation K (M) (using
def. A.3.4), hence from assumption A.8.2, 0™ is surjective and its level sets are connected.

Statement A.1.3. Let x € M™. We have T,0™ = TX5|TX(MHX), hence:

8™ (T(M™)) = T, (T,(M™)) = T,8 (T,(M™) + Ker T,)

= 1,0 (T(M™) + K (M) = T8 (T,(V"™)) = T (M) (using assump-
tion A8.1, eq. (A4.1) and def. A13 for the phase space reduction (M™™, M>"™, 9)).

Next, we have:

QK,N,X\TX(MHX) = [0 QDVN]X’TX(MF‘X) (using def. A13 for the phase space reduction (M"™, M, 0)
and T,(M™) C T,(M"))

= [(8hen)” Qun],

— [5FIX,* QDYN]X )

Observables. Let f € CZ(M™ R) N B(M™) with Vx € M, X;, € T,(M™). From the proof of

prop. A7, f is then constant on the leaves of the foliation K(M™*") on M. Therefore, ™ = ™.
O

B. Geometric quantization

The aim of this appendix is to import a few definitions and properties from geometric quantiza-
tion, that are needed in particular for section 6. We try here to give a short self-contained intro-
duction, leading rapidly to the definition of the holomorphic representation on a Kahler manifold
[105, sections 8.4 & 9.2], and of the position representation arising from a choice of configuration
variables on a symplectic manifold [105, sections 4.5 & 9.3]. Accordingly, we skip advanced aspects,
including underlying insights and technical subtleties.

In this appendix all manifolds are assumed to be smooth, finite dimensional manifolds.

312



B.1 Prequantization

Definition B.1 An hermitian line bundle is a vector bundle (B, ws, M) associated to a U(1)-
principal bundle on a smooth manifold M via the standard action of U(1) on C. Since the C-linear

structure and the Hermitian product (-, - ) : 7,7/ +— 7*? on C is preserved under the action of U(1),
each fiber of B can be equipped with a natural hermitian structure.

Any connection in the U(1)-principal bundle defines a covariant derivative ¥ on B, and we can

associate to its curvature a Lie(U(1)) = R-valued 2-form DYV on M, such that for any cross-section
s of B and any vector fields X, ¥ on M:

[Vx, Vyl(s) = Vixy(s) + i DV(X, ¥)s. (B.1.1)

Definition B.2 Let M be a symplectic manifold (with symplectic structure Q). A prequantum
bundle (B, V) on M is an hermitian line bundle B, with base M, equipped with a connection, with
corresponding covariant derivative ¥V and such that:

DV = -Q.

1 1
On M, we define the symplectic volume form w .= — QA ... AQ = — Q" (where p := dim M/2)

p! p!
and the corresponding measure p,,.

Definition B.3 Considering the same objects as in def. B.2, we define the prequantum Hilbert space
H,.o as the space LL,(M — B, du,) of (equivalence classes up to almost-everywhere equality of)
cross-sections of B whose norm, defined using the hermitian structure on B, is square-integrable
with respect to p,.

For f € C*(M, C), we define the prequantization foffasa (densely defined) operator on .,
by:

Vs € Dy C Hyuo, fs:=1fs+iVyxs,
where Vy, = VXRe(/) + i Vx‘m(,)-

Proposition B.4 Let f,g € C*(M, C). Then:
7. 9] = iff a1

and:
Vs,s" € Dy, <7‘;(5) s/> = <5, ?(5/)>.

If f is real-valued and if, moreover, X; is a complete vector field on M [54, chap. 12], then fis an
essentially self-adjoint operator on H,.o .

Proof Let s € Dy, (defining the common domain Dy, such that both ?@s and §/f\s are well-
defined; since Dy, contains at least the compactly supported smooth cross-sections, it is dense in
H,.0). Using eq. (B.1.1) we have:

. 3] (51 = = [V Vi 1) + i g)s — i, (1)
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= —V[X,')(g](S) +i0 (X{, Xg) s+ iQ (Xg, Xf) s—iQ) (Xf, Xg) S

= V() + i g} s=i{7. g} (s).

Let s, s € D;. We have for all X vector field on M:
Vx €M, dx (s, s') (x) = (Vx(s)(x), s'(x)) + (s(x), Vx(s')(x)), (B.41)

for V comes from a U(1)-connection. Hence, we get:

(Fs). s) = / dpa(x) (i Vi (s)(x), s'(x)) + / dpalx) (" s(x), s'(x)
- / dunolx) idy (s, 5') (x) + / dunlx) (sx), iV () + / dinlx) (sx), £5(x)

. / i (s, s (Sxw) + / dpra () <5(X),?(5/)(X)>

(using Stokes theorem [54, theorem 10.23]; M is assumed to be without boundary, and Dy is
required to ensure suitable fall-off conditions)

= /d,uw(x) <5(x), ?(5/)(X)> = <5, ?(5/)>

(for X; generates symplectomorphisms, thus preserving the symplectic volume form w).

We now assume that f is real-valued. From the previous point, fisa symmetric operator on
a dense domain containing at least the compactly supported smooth cross-sections. We moreover
assume that the Hamiltonian vector field X; of f is a complete vector field on M, ie. there exists a
smooth map 6 : R x M — M such that [54, lemma 12.7]:

1000, )=idy & V.t €R, O(t, )o O, -)=0(t+t,-);

2. WxeM, Xi= %Q(T,X)

=0
3. and, forany t € R, O(t, -) is a symplectomorphism of M [54, prop. 13.23].

Using V-parallel transport [50, section I1.3], we can lift 8 to a flow © on B, such that, for any
t € R, O(t, ) is a bundle automorphism of B. We then have, for any smooth cross-section s:

= —(Vxsu) (%),

T=t

where Vt € R, s :=0O(t, 1) o s 0 O(—t, -).

Next, let s € Ker (?f + [) C H,eo . This requires:

Vs' € Dy, <?(s’)

5> =Fi(s'|s).

For any smooth, compactly supported cross-section s" € Dy, and any t € R, we have s;; € Dy,

so we get, using the dominated convergence theorem:
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0=1/mmv)<U0ﬂtﬂ?”)ﬂﬂbeﬂﬂ>—i5%/}wdﬂ<§WM%ﬂUD .

T=t
where we have used that for any 7 € R, O(t, -) preserves 1, (as a symplectomorphism on M)
and O(t, -) preserves (-, -) (as a line bundle automorphism). Defining, for any smooth, compactly

supported cross-section s € Dy, and any t € R:

15,0 = [ dua) (sle) [ 00) = [ o) (50 | s

this can be rewritten as:

% I(s', 7)

=/(([f09(t,-)i’|)5/, t). (B4.2)

T=t

Defining, for any t € R and any x € M:

t
?t—i/dr fOQ(T,X)),
0

we obtain, for any smooth, compactly supported cross-section s" € Dy :

F(t, x) :=exp

d )
Vt e R, E/(F(T, )s’, T) -~ =0.
hence, for any t € R, and almost everywhere in (M, p,), s = F(t, -)S—y. In particular, we then

have:

VteR, [s|=eT[so 6t )| ae in (M, p).
Since s € LL(M — B, du,) and 6(t, -) preserves p, for any t € R, this requires s = 0. Thus, we
obtain Ker (?T + i) = {0}, which ensures that fis essentially self-adjoint [73, theorem VIII.3] O

The prequantization of M leads to a faithful representation of the full Poisson-algebra C*°(M, C).
However, this representation is typically much too big (as is to be expected from the Groenewold-
Van-Hove theorem [40] and generalizations thereof [39]), so the next step will be to implement
additional prescriptions yielding a physically admissible Hilbert space (at the cost of restricting
which observables can be quantized).

B.2 Holomorphic representation

To discuss holomorphic quantization we need to equip M with an almost complex structure J
(def. B.5.1), which is required to be integrable (def. B.5.2, ensuring the existence of local holomorphic
coordinates, thus making / into a complex structure for M) and compatible with the symplectic
structure Q) (def. B.5.3). An additional positivity requirement (def. B.5.4) allows to define from

() and J a Riemannian metric on M (the so-called Kéhler metric) and makes M into a Kéhler
manifold [50, section 1X.4].
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Definition B.5 A Kahler manifold (M, Q, J) is a symplectic manifold (M, Q) equipped with a
smooth field / satisfying:

1. Yx € M, J, is an endomorphism of T,(M) such that /2 = —idry, g ;

2.VX, Y e T°M), [JX, JY]—=J X, JY]—=1[UX, Y]—=[X, Y] =0 (where T®(M) is the space of
smooth vector fields on M);

3:VxeM, Vv,w e T,(M), Q. (v, Lw)=Qv, w);

4. Yx eM, Vv +0e T,(M), Qv, Lv)>0.

Proposition B.6 Let M be a Kahler manifold and (B, V) be a prequantum bundle on M. We define
the holomorphic quantization X, of M to be H,,,, ;= H,..o N Holo(M — B), where Holo(M — B)

preQ
is the space of holomorphic cross-sections of B:

HoloM — B) == {s € C®*°(M — B) | VxeM, Vv € T,(M), V)s=iV,s}.

H,w, s a closed vector subspace of H, .o, hence is itself an Hilbert space.

preQr
Proof Let (s,),c4 be a net in H,,, that converges (for the norm || - ||preo) to s € H,.o-
Let x € M. There exist a neighborhood U of x in M, holomorphic coordinates z', . .., zP

(2p := dimM) on U and a real valued function K (z, z") on U such that [105, section 5.4]:

’K

Vx' e U, QX/ = [aZ/ azlr*

(x')dz' A dZ"*,

2

0z/ 0zt
symplectic measure is then given over U by:

and from B54 has to be a positive definite hermitian matrix at every point in U. The

2

K
by = Bul =2 det( s

) ufg) (where 11 is the standard measure on C).

0z 0z*

We choose t € 75 (x) (the fiber of B above x), with |t| = e ™2 and we define the cross-section
r of B|, by:

oK

rx)=t & Wel VveTlsM), V,rix)=-— =

(x) [dzf]x, (V)] r(x).

We can check using eq. (B.1.1) that this characterizes a well-defined cross-section of B[, and we
have moreover:

VX' € U, Vv € TyM), Yy r(x) = i V, r(x),

and [d(r, )], (v) = —dKu(v) {r, r) (),

so r is an holomorphic cross-section of B, and ¥Yx' € U, |r(x)| = e X2,

Next, for all @ € A we can define f, as the holomorphic function f, : U — C such that
VX" € U, so(x') = fo(x) r(x’). Similarly, we define f: U — C such that Vx" € U, s(x') = f(x) r(x).
Let € > 0 and let U; be a closed ball (with respect to the coordinates z', .. ., 7P) of center x and
radius r > 0 such that U; € U and VX' € Uy, B(x/) e KW) > ¢ Let U, be the closed ball of center

x and radius r/2. For all x' € U, we call U3 the closed ball of center x" and radius r/2. Hence,
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UZX/ C Uy . For g an holomorphic function on Uy — C, we have:

g [ 7 r/Zk .
e o) =[] o | gtv)

/ / / 4
vXewwmn—qu<—3/d£w>mm—mmf
Jr Uy
1 4 50
Sl RO
4 )
S €r? HSO{_SO{I preQ !

hence the net (fa|U2)a€A

tmplies that 1 is holomorphic on the interior of Us. On the other hand, the net (fa| )
U] aeA

converges uniformly to a function f": U, — C. Cauchy's integral formula

in Lo-norm to f|,, (for Va € A, HI‘C(|U2 — 1‘|UZH2 < \lﬁ ISa = 5|,.0) hence f" = f[, (u,-almost-

everywhere). Therefore, s € J,,,.

Since we restrict the quantum Hilbert space to H,,,, we should also restrict the admissible
observables to be the ones that stabilize H,,,, (nhote that we do not discuss here whether the
intersection of J,,, with the dense domain of such an observable will also be dense in H,,,; this
is a non-trivial question, for the usual tools based on bump functions are not available in the

holomorphic class).

Proposition B.7 We consider the same objects as in prop. B.6. We define:

Opc = {f € COMM, C) | VY € T°(M), 3Z € T°(M) | [Y +iJY, Xf|=Z +iJZ},

where T°°(M) is the space of smooth vector fields on M.

Then, for all f € O,0c, ¥ stabilizes Hioo:
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Proof Let f € O,c and s € DrNIH,,,. Let x € M and v € T,(M). Then, there exists Y € T(M)
such that Y, = v (we can construct such a vector field using local smooth coordinates around x
and an appropriate bump function). Since f € O, there also exists Z € T®(M) such that
Y+ iJY, X)) =Z+iJZ. Hence:

V), fs = (vjy?s) (%)
= (1 (Vyys)) () + (QXr, 1Y) s) (x) + i (Viy Vi, s) (x)
= (M (Vyys)) () =i (Vixsvs) (X) + 0 (Vx, Vv s) (x)  (using eq. (B.1.1))
= (F (V)ys)) (¥) + (Vzsi25) (X) + (Vix. v 5) () + 0 (Vi Vi s) (x)
=L (F (Vys) () + (Vix. v 5) () = (Vi Vy s) (x) (using s € Fy,)
— vy (?s) () =iV, 7s,

therefore f s € N I O

Proposition B.8 We consider the same objects as in prop. B.7. Let r be a nowhere-vanishing
cross-section of B such that r € H,,,, and let y, be the measure on M defined by p, = (r, r) y,.
Then, the map:

& o LM, du,) NHolo(M) — Fyy,
o= Pr
is an Hilbert space isomorphism.
Iff € O and Y € CD,’1 (Dy), we have:

[

= (cb;@cb,) b= 1g+i(ded)+5X ¢, (B.8.1)
where X; is defined by 2V, r = X/ r.

Proof Let s € H,,,. Since r is a nowhere-vanishing holomorphic cross-section there exists a
unique smooth function s : M — C such that s = (s r. Moreover, for all x € M and all v € T,(M):

i(d)r=iNVys—iyN,r=Nys—yN,r=(dur,
hence ¢y € Holo(M). Moreover:

Is

2 = / dp(x) (Y(x) r(x), Y(x) r(x)) = / dur () " () Ylx) = [Y1I3,,.
M

M

Therefore, ¢ € L,(M, dy,). But since we have ®,(¢)) = s and ||s

space isomorphism.

Eq. (B.8.1) can be checked from the definition of (/\) (def. B.3). OJ

= ||yl @ is an Hilbert

Holo
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B.3 Position representation

We now turn to the position representation. We describe a choice of configuration variables as
a map y from the phase space into the configuration space. The typical example occurs when M is
given as a cotangent bundle (with its canonical symplectic structure) in which case y is simply the
projection on the base manifold.

Definition B.9 Let M be a symplectic manifold. A configuration space for M is a manifold € and
a surjective map y : M — € such that:

1. Vx € M, Im(Ty) = T,(C);
2. ¥x €M, Ker(T,y) = (|<er(TXy))L ={ve (M) | Vw e Ker(T,y), Qnxlv, w) = 0}.
3. Yy €€, y ' {{y}) is connected.

Definition B.10 Let M be a symplectic manifold, (C, y) be a configuration space for M and (B, V)
be a prequantum bundle on M. A configuration quantum bundle on € is an hermitian line bundle
Be, with base €, and a smooth map [ : B — Be such that:

1.Vz€ B, wg, o [ (z) =y o wp(z) (where g and mg, are the bundle projections);
2 Vze B, VAeC, T(Az) =Al(2);
3. Vze B, |I'(2)| =|z];

4 Vz € B, Ker I,I' C Hor,(B, V) (where Hor,(B, V) is defined as the V-horizontal subspace
of 7,(B)).

Proposition B.11 Let M be a symplectic manifold, (€, y) be a configuration space for M and
(B, V) be a prequantum bundle on M. If, for all y € €, y~'({y}) is simply-connected, then there
exists a configuration quantum bundle (Bg, ') on C.

Proof Definition of Be. Let y € € and let x € y~' (y). Since the derivative of y is surjective at
any point in M (def. B.9.1), we have, by the rank theorem [54, theorem 5.13}, T, (v~ (y)) = Ker T,y.

So, using def. B92, T, (y ' {y)) = T, (v (g))L, hence QX|TX(V*1<y>) = 0. Therefore, if we call
(By, Vy) the restriction of (B, V) over y~' (y), the connection V, is flat.

Therefore, z+ Hor, (B, V)N Ker [T, (y o 7g)] is a smooth involutive tangent distribution on 1B,
so by the global Frobenius theorem [54, theorem 14.13], it defines a foliation of B. Moreover, if
Ais a leaf of this foliation, there exists y € € such that w5 (A) = y~' (y) and 7gl, 1, is a
diffeomorphism. Indeed, the leaf A being connected by definition, y o 7 is constant on A, so there
exists y € € such that wg (\) C v~ ' (y), ie. A C B,, and, y~' (y) being simply-connected, A is
just a global horizontal cross-section of (BU, Vg) 50, corollary 11.9.2].

We define Be as the set of all leaves and [ : B — Bg as the quotient map. Since y o w5 is
constant on a leaf, we can define a map mg, on Be such that y o mg = g, o [. Moreover, for
any leaf A and any A € C, A A is also a leaf, therefore, we can define an action of C on Be such
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that Vz € B, VA € C, ['(Az) = AT (2). And since V is a U(1) connection, the norm || on B is
constant on each leaf, so we also can define a norm on Be such that ¥z € B, |[[(2)| = |7].

Local description of the quotient. Let x € M and let y = y(x). Let U; be an open neighborhood
of x in M and ¢, : Uy x C — B a local trivialization of the bundle B. Since Ty is surjective at
any point in M, there exist, by the rank theorem, open neighborhoods V5 of ¢y in €, W, of 0 in R”
(p :=dimM /2 = dimC), and U, of x in U, and a diffeomorphism ¢, : V, x W, — U, such that
y © @ is the first projection map Vo x W, — V5.

Next, by definition of a foliation, there exist a neighborhood T, of ¢1(x, 0) in ¢ (U, x C), neigh-
borhoods Q> and R, of 0 in R”*? and R” respectively and a diffeomorphism ¢ : O, x R, — T,
such that for any u € Be there exists a (possibly empty) countable subset Q, C O, with:

N T =y (Q, x R) . (B11.1)

Let V5, W5 and S3 be neighborhoods of y in V5, 0 in W5 and 0 in C respectively, such that
@1 {@2 (V5 x W5) x S3) C T, and define:

Y o V3x S — O
v, A g, 0 Yt o @i(ga(v, 0), 4)
where g, : Q; x Ry, — O, is the first projection map. Since we have:

[Ti0.0 1] ({0} x To(Ry)) = Horg,xo) (B, V) N Ker [Ty, 0 (v © 5)]

and [7—(X,O) (,01]<[Ty’0 d(pz] <Ty(\/3) X {0}> X C>ﬂHor¢w(X,0) (B, V)ﬂKer [T(,Dq(X,O) ()/ e} 71'3)] = {O},

[Typ LLQ] is surjective, thus invertible, so by the inverse function theorem [54, theorem 5.11], we
can narrow W3 and Ss so that there exists a neighborhood Qs of O in Q, with ¢» inducing a
diffeomorphism V5 x S3 — Os.

Now, we define T5 1= (5 (O3 X Ry) N ¢y (@2 (V5 x W5) x C) and:
o3 - T3 > Vux S3x W
z = 5" o7, 0 Yi'(2), ws © @y 0 TB(2)
Precomposing ¢3 by @1 o (¢, x idg), we can check that [T, 0 @3] is injective, thus invertible, so
using again the inverse function theorem, there exist neighborhoods 7, V, W and S of ¢1(x,0) in

B, yinC 0in R and 0 in C respectively, and a diffeomorphism ¢ : V- x W x S — T satisfying,
forallv,Ae V x S:

Ju e BT {u)NIimp =@ ({v} x W x {A}) & mp.(u)=v (B11.2)

(using eq. (B.11.1) and the injectivity of the restriction of 75 to the leaf ' (u), together with
@ ({v} x W x {A}) = {a(v, )} x R) NImg) and for all v,w, A € V x W x S:

VueClure S, o(v,w,pA) = pe(v, w, A (B11.3)
(we can first check this for w = 0, and then use the previous point, since for all v € Be and all
peC T pu)=up. T {u))

Finally, using eq. (B.11.3), we can extend S to be all C while still satisfying egs. (B.11.2) and
(B113).
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Compatibility of the local descriptions. Let xg, x1 € M such that y(xo) = y(x1) =: y. There exists
a path k :[0,1] = y~"(y) such that y(0) = xo and y(1) = x; (simple connectedness implies path
connectedness).

Using the preceding point, for all t € [0, 1] there exist open neighborhoods V; of y in €, W, of O
in R” and U, of k(t) in M, and a diffeomorphism ¢; : V; x W; x C — w5 (U;) satisfying eq. (B.112)
and eq. (B.113). For any t € [0, 1], we call s; the projection map 7, : Vi x W; x C — V; x C and
we define the smooth map I, := 71, o ¢, : 71',’31 (Uy) = Vi x C.

Next, there exist ty, ..., tv—1 (1 < N < o0) such that (U)o s @an open cover of « ([0, 1])
(where we set tg =0 and ty = 1), and Vi < N —1, ' (U, N U,,) + @.

We define V = m y (U, N U,,). v is an open map (for Ty is surjective at any point),
0<i<N—1
therefore V' is an open subset of €, and for any i < N — 1, there exists t € [0,1] such that
k(t) € U, NU,,, hence y =y o k(t) € U, NU,,,. Thus, V is an open neighborhood of y in €.

Let i < N—1. The maps l—tt|7rg1<U[[ﬂU,H1ﬂy’1<\/>>—>\/><C and I, |7r;<U,[OU(E+1OV*1<\/>>H\/><C are smooth,
surjective, their derivatives are surjective at each point and they are constant on each other level

sets (using eq. (B.11.2)), therefore the rank theorem implies [54, prop. 521] the existence of a
diffeomorphism ®; : V- x €C — V x C such that:

Vx € mg (Uy N Uy, Ny (V) Thlx) =P 0 Ty (%)
Thus, eq. (B.11.2) leads to:
Yve V,VAieC, due Be/

M= {u) nim g, = @y ({v} x Wy x {A})
& T (u)nimgy, =@, o &7 ({v} x Wi, x {A]),

where CTD[ is defined naturally from ®; as a map CTD[ VW, xC—-VxW,., xC

Deﬁntngcbzzcboo...odDN,1:\/><C—>\/xCandaD:\/thNx(D—M/xWtNx(D,we
have:

Vv eV, VAEC, Ywy € Wo, Yy € Wi, T o go(v, wo, A) =T 0 @1 0 d' (v, wy, A).

This way we have proved that for any xp, x; € M such that y(xo) = y(x1) =: y, there exist
open neighborhoods V of y in €, Wy and W, of 0 in R, L~/o of xp in M and 01 of x4 in M,

diffeomorphisms ¢y : V x Wy x C — 71',@;1 <L~Jo> and @1 : Vx Wy xC — 71',§1 <U1> and an injective
map ¢ : V x C — Beg, such that:
Yve V,VAie C, Vw e Wo/q, ll/(V,)\) =[ o ,(,730/1 (\/, w, )(>

VWeV, VaelC, g, o Y(v,.A)=v
and Vv,w €& V x W0/1, VA e C, ’(,50/1(V, w, )\) =A¢0/1(V, w, )

Topological, differentiable and bundle structures on Be. We equip Be with the final topology
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induced by I (so that U C Be is open iff [~ (U) is open in B). The previous point, together with
y ot = g, o I, ensures that [ is an open map for this topology (because the preimage of the
image of an open subset of B is an open subset of B), and that we can use the local descriptions of
the quotient to define a bundle structure on Be, with respect to which [ will be a smooth surjective
map with surjective derivative at each point. We can check that this structure is then compatible
with the projection g, and the action of C on B¢ defined above. O

Since the cross-sections of B that are V-horizontal over the level sets of y are typically non-
normalizable, we need to introduce a measure on C. In general, there is however no preferred
choice for this measure, hence we will associate to any smooth measure [31, section 11.4] on C
a corresponding Hilbert space and we will restore the independence with respect to the choice of
measure by providing identifications between these different Hilbert spaces.

Definition B.12 Let C be a smooth manifold. A smooth measure p on € is a Borel measure on €
such that, for any smooth coordinate chart ¢ : U — R” (p := dimC) on an open subset U of C,
there exists a smooth, nowhere vanishing, strictly positive function a, : U — R satisfying:

,U|U = Uy [90*_1/11(15)] )

where ug) is the Lebesgue measure on R”.

In particular, the measure (1, associated to a nowhere vanishing volume form w on € is a smooth
measure on C.

For any smooth vector field X on € we define its divergence with respect to p as the smooth
function div, X on € satisfying:

Lxp = (div,X) p.

Finally, for any two smooth measures p, ¢/ on € there exists a unique strictly positive smooth

function a on € such that ¢/ = ap.

Definition B.13 We consider the same objects as in def. B.10. Let p be a smooth measure on
C. The position representation with measure p is the Hilbert space Ht = [, (C — Be, du) of

Pos

cross-sections of Be with square-integrable norm with respect to .

As underlined above, trimming the prequantum representation down to a physically pertinent size
comes at the price of restricting the algebra of observables that can be quantized. In the position
representation, this quantization condition requires that the Hamiltonian flow of an admissible
observable should send level sets of y onto level sets of y. In the case of a cotangent bundle,
the quantizable functions are therefore the ones that depend at most linearly on the momentum
variables.

Proposition B.14 We consider the same objects as in def. B.13. We define:
Op, == {f € C®(M, R) ‘ IX; € T=C), Vx € M, T,y (Xiv) = Yf’y(x)},

where T°°(€) is the space of smooth vector fields on €, and:

322



Opoc = {f € C°M, C) | Ref, Imf € Oy, }.

Then, for f € Op,, we can define the quantization 7 of f as a densely defined operator on H%
by:

Vs e D! vy € €, (?us) (y) == F(x) s{y) + i T (V. 30)) + % (div, Xy ) (y) s(y).

where x is any point in y~'(y), 5 is the cross-section of B such that [ oS = s o y, and
div,X; € C®(C, R) is such that £y p = (div,X/) y. For f € Op,.¢, we define * .= Re(f) +Im(f)"

Moreover, we have for all f, g € Op, ¢:
~ e . — U
{f.ghc € One. [P g =ilf. g},

and Vs,s" € Df, <5/, ?“(s)> = <7‘?u(5’), 5>‘

If f € Op,. and X/ is a complete vector field on @ [54, chap. 12 s essentially self-adjoint.

Proof Let f € Op,, and s € DY. The cross-section s such that ' o s = s o y is well-defined, since
forany y € € x € y'(y) and w € mg! (y), there is a unique z € mg' (x) such that ['(z) = w
(this follows from def. B.10.2). We now want to prove that f(x)s(y)+ il (VXLX’SV(X)) does not depend
on the choice of x in y~' (y).

Let V' be any smooth vector field on M such that Vx € M, V, € Ker T,y. We have Vs =0
(since Vx € M, dys(x) € Ker T[T C Horgy (B, V) using def. B.10.4), therefore:

Vx € M, V\/X VXM,SV(X) = [V\/X, va,x]g(X)

= V[VX,XM}E(X) — [QM,X (VX, Xf,x) E(X)'

and Ty( v, Xf]) = 0 (using Vx € M, V, € Ker/,y and TXy(Xf,X) = yw(x)), hence Vx €
M, Yy, Vx, S(x) =i (dvy,f) s(x). Therefore:

vx € M, Vi, [f(X)3(x) +{ V. 3(x)] = 0. (B.14.1)

Let z € B and let V"™ be the V-horizontal lift on B of the vector field V' on M. Using
Ty(V) = 0 together with def. B.10.1, we have [Tt 7g,] o [T.I'](V,*") = 0, so there exists u € C
such that T,I" (V)) = [T1 (- T(2)|(u) = T,I" o [T1 (- 2)](u) (where we used def B.10.2 to get the
second equality). Thus, using def. B.104, V2 — [T, (- 2)|(u) € Hor, (B, V), therefore u = 0, and
T, (Vi) =0.

Hence, eq. (B.14.1) becomes:

|7 (0 T [F)300 + 9, 300]) | (v) = 0,

so[[fs+iVxs|="1(soy)+il (Vx5)is constant on the level sets of y. This ensures that s
is well-defined as a cross-section of Be.

Let f,g € Op, (since ~* is C-linear, and [+, -], {-, - } are C-bilinear, it is enough to consider
RR-valued functions to prove the commutator relations). Using the characterization of O, we have:
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Vx eM, Ty (X{f,g},X) =Ty ([Xf' Xg]x) - [Yf' yg]v(x)’

hence {f, g} € Op,. with Xy1 g} = [X7, X,].

Let s € Dy, (where, as in the proof of prop. B4, the common domain D, such that both s
and §“?“5 are well-defined, is dense in H% ). Like in the proof of prop. B.4, we have:
[f+ iVX[, g+ [VXQ]EZ { {f, g} 5 — VX“Q}E.
On the other hand, we can rewrite the definition of f* as:
@ﬂ:b+mwﬁmwmoy§ (B142)

thus:

—_——

~ ) 1 o e _
([fﬂ, gﬂ] 5) = (t {f. 9} = Vi, + 5 (dx, (div,Xr) o y —dx, (div,Xy) o y)) S.
Next, we have:
dy, (div,Xs) o v — dy, (div,X,) o y = (dyg (div, X;) — dx, (dmg)) oy,
and £yg (Syfy) = (dyg (dlvuyf)) U+ (divuyg) (leuYf) u, therefore, using Y{f,g} = [Yf, Yg]:
dx, (dlvuyf) oy—dy (dlvuyg) oy=— (dlvﬁ,y{ﬂg}) ovy.
—u
Hence, using eq. (B.14.2) for {f, g} :
[?“, ﬁ“] s = i@ﬂs.

Lastly, let f € Op.c and s,s" € DY Using def. B.103, we have Vx € M, (5'(x), 5(x)) =
(s" o y(x), s o y(x)) and combining eq. (B.14.2) with eq. (B.4.1):

Vx e M, <§’, ?U5> (x) =i (div,Xs) o v(x) (5, 5) (x) + idx, (5, 3) (x) + <f:*7;/ §> (x),
therefore:
Yy € C, <5/, ?“s> (y) =i (dlvuyf) (y) (s, s)(y) +i dyw (s', s)(y) + <laus/, 5> (y).

Now, using Stokes theorem [17, theorem 7.7] (€ is assumed to be without boundary, and DY is

required to ensure suitable fall-off conditions) and the definition of X;, we have:

/ww(Mﬁww&$w+@Ji$M=f&W%NM=Q

e e
thus <5’, ?“5> = <)au5,’ s>.

Checking that s essentially self-adjoint, as soon as f is real-valued and X; is complete, can
be done in a way similar to the proof of prop. B.4. O

Proposition B.15 We consider the same objects as in def. B.10. Let y and ¢/ be two smooth
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measures on C and let #* and H*

B r.. be the corresponding position representations. Then there

exists a Hilbert space isomorphism ®,_,,, : H“ — H¥ such that:

Pos

VEE Oug, I =, 0 " o &

u—p -

(B.15.1)

Moreover, we can define these maps in such a way that for any three smooth measures p, 1/,
and i/”, on €, &, =Py, 0 d,,,. Thus, this family of maps provides a position representation
Js.., that can be consistently identified with H%  for any p.

Proof Let 1/ and ¢/ be two smooth measures on €. Then, there exists a unique a € C*(C, R?) such
that ' = a p (def. B.12). We define ¢, by:

.ok o
(Duﬁﬂl . j—CPos - j_CF’os

s > s’

7a

1
The factor —= ensures that ®,_,, is a unitary map and we can check that for any three smooth

Va
measures y, ¢, and ¢, &, = ®y, 0 &, In particular, ¢, is then invertible, hence it is
a Hilbert space isomorphism.

Lastly, eq. (B.15.1) follows from:

W € 0., 2a ( ) £ (di, X)) = (i, X))

1
dyfﬁ

C. Wigner characteristic functions

In this appendix, we give a brief overview of the Wigner-Weyl transform [102], that allows
to represent quantum density matrices as functions on the phase space, mimicking the probability
distributions of classical statistical physics. The presentation below follows very closely [47], merely
adapting of the notations and definitions to the ones we will be using in section 18.

Note that, in view of applying this tool to projective systems of quantum state spaces (subsec-
tion 18.1), we will be doing only ‘half’ of the Wigner transform: going from the density matrix
to the Wigner characteristic function. The second half would be to perform a Fourier transform
yielding the Wigner quasi-probability distribution, in analogy to the reconstruction of a classical
probability distribution from its characteristic function. However, Wigner characteristic functions
are more convenient when working with partial traces of the underlying density matrices, exactly
like classical characteristic functions are convenient for computing marginal probabilities.
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C.1 Weakly continuous representations of the Weyl algebra

We begin by recalling basic facts regarding the Weyl algebra and weakly continuous represen-
tations thereof. These representation-theoretic considerations will come into play to prove that the
Wigner transform is surjective onto a suitably defined space of functions.

Definition C.1 Let C, P be two finite-dimensional real vector spaces and let = : P — C* be an
invertible linear map (with C* the dual of €). We equip € x P with the symplectic form Q given by:

Vu,u" € € Vv,V € P, Qu,v; u',V) = =(V)(u) — Z(v)(v).
The map M := ide x = is then a symplectomorphism € x P — T*(C) (T7(C) being equipped with

its canonical symplectic structure, see eg. eq. (2.16.1)).

Proposition C.2 Let J be the complex vector space of functions €* x P* — C with support on
finitely many points, ie:

Vied, #{(s,t)eC xP"|s,t)#0} < oo
In particular, for any (s, t) € C* x P*, we define d;y € J by:

14 (s, ) = (s, )

V(s', 1) € € X PT, O (s’ ) = {0 else

For i1, b € J, we define their product 4 x 1, € J by:

V(S, t) & e* X ‘:P*’ ([1 * [2) (5’ Z’) — Z ei5(51,t1;52,t2) 0 (51’ t1) l2(52, l’2),
(s1,t1),(52,62)EC* x P*

S=s51+5y, t=H+6
where, for any (s, t1), (52, £) € C* x P*

t(=7"(s2)) — 2(="(s1))
. |

We also define, for any ¢ € J, its conjugate * by:

$(s1, ty;52, 1) =

V(s, t) € C" x P*, (s, t) := t(—s, —t),
where = stands for complex conjugation.

J,*, " is a "-algebra [41, section [I1.2.2], with unit 0.

Proof Let ;, » € J. Since ; and , are supported on finitely many points, the sum defining ; x 1
is finite and ; x i, is again supported on finitely many points, ie. it is in J. The operation * is
bilinear, and, for any ¢, ©», 13 € J, we have:

V(s, t) € € x P*, (1 * (u*u))(s, 1) =
= Z eis(STvﬁ;S%vH) 1 (51 , t,l) Z 6[5(52,t2§53,t3) 12(52 , tZ) l3(53 , t3)

5=51+5] si=s52+53
t=ti+t ti=t)+t3
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i &(s1,t1;52,6)+0 &(s1,t1;53,t3)+0 &(s2,t2;53, ¢
_ § pls(s1tis2 ) +ig(s1.tis3,b5) ‘(2233)[1(51,t1)[2(52,t2)l3(53,t3)
S=S1+S2+53
t=t1+t)+1t3

= ((u * 1) * 13)(5, t),

so it is associative as well. We can check that 9 is a unit for J, . Finally, the operation (-)" is
an antilinear involution by construction, and, for any ¢;, 1, € J, we have:

s, t) € C x P, (1% L) (s, 1) = Z e SN0 o 1) sy, b)) = (G C)(s, f).
S=S1+S2
t=t1+t;

Note that the elementary observables X, (s, t) in a representation x are labeled by elements of the
dual space € x P* of the phase space M ~ € x P, because they are actually labeled by the linear
observables of which they are the quantization (in the spirit of def. B.3, up to a difference in sign
convention). Therefore, the unitary operators T,(s, t), which are obtained by exponentiating these
observables, are labeled by elements of the dual as well. This observation will be important for the
development of subsection 18.1.

Definition C.3 Let I, be a complex Hilbert space. A weakly continuous, unitary representation of
C*x P onHyisamap T,:C" x P — A, (where A, is the algebra of bounded linear operators
over H,), satisfying the following properties:

1. V(s, t) € € x P*, T,(s, t) is a unitary operator on H, ;

2. V(s1, 1), (52, 2) € € x P*, Ti(s1, ) Te(s2, 1) = e CVIS20T (s) 4 55, 11 + 1) ;

3. T,(0,0) = idg, ;

4 Yo, ¢ € H,, the map (s, t)— (¢" | Ti(s, t) @) is a continuous function €* x P* — C.

This provides a representation of the *-algebra J on J,:

Vied Tl = > s ) Tuls, 1)

(5,6)EC* x P*
(using in particular that points C3.1 to C33 imply ¥(s, t) € C* x P*, T(—s, —t) = T(s, )" =
Te(s, t)7).
Proposition C.4 Let H{,, T, be as in def. C.3. Then, there exists, for any (s, t) € C* x P* a densely
defined (possibly unbounded), self-adjoint operator X,(s, t) on I, such that:

VT e R, Ty (ts, tt) = exp(i T Xi(s, 1))
(the exponential being defined via spectral resolution [73, theorem VIII.5]).

Moreover, there exists a dense vector subspace D, C H, such that:

1. for each (s, t) € C" x P*, D, C Dom(X(s, t)) (where Dom(X,(s, t)) denotes the dense domain

of X(s, 1)) and X, (s, t)|q,_is essentially self-adjoint;

2 ¥(s, 1) € C" x P, Xu(s, 1) (D,) € D,
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3.V(s, 1), (s t) € € xP VT, T € R, X (15 + 15", tt + T') | =T Xu(s, t)]p +T" Xi(s", V), -

Proof Let (s,t) € € x P*. For any 7 € R, T,(ts, tt) is unitary (def. C.3.1), and T,(0,0) = idy,
(def. C.33). Moreover, using def. C.3.2, we have, for any 7y, » € R:

Te(ts, ) Te(ws, t) = T (T + w)s, (T + T)t), (C41)

since &(Tys, it; s, t) = 11 (s, ¢ s, t) = 0.
Let o € H,, (s, t) € C* x P and € > 0. Let ¢’ :=T,(s', ') ¢. From def. C.34, there exists an
open neighborhood U of (s, t') in € x P*, such that:

a 7 / 17 1 / €
W', ) € U, [ | Tuls". ) ) = 9] < 5.

/!

Hence, thanks to the unitarity of T,(s”, ") for any (s”,t") € C* x P*, we get:
a a ’og 2 / 7 7112
WIS, 1) € U, [Tds", 1)~ Tuls' ) ol < 2 [t | Tuls” ) 9) 91| < c. (C42)

Let ¢ € H,, 7, € R and € > 0. Applying the previous point with (s',t) = (7,5, T,t), there exists
€ > 0 such that:
VT € [T, Tore|, | Telts, Tt) @ — To(Tos, Tot) @] < €.

Thus, T+ T,(ts, Tt) is a strongly continuous one-parameter unitary group, so, by Stone’s theorem
[73, theorem VII1.8], there exists a densely defined, self-adjoint operator X, (s, t) on H, such that,

forany T € R, T.(ts, tt) = exp (i T X, (s, t)).

Let 7 be a Lebesgue measure on the finite-dimensional real vector space €* x P*. For any
fe e xP, C) (where C°(C* x P*, C) denotes the space of smooth, complex valued, compactly
supported functions on €* x P*), and any ¢ € H,, we define ¢ {f} € H, as:

p{f} = / du(s’, ) (s’ )Y T(s", ) .
C* x P*

As shown above (s, t') — T,(s, t') ¢ is a continuous map C*xP* — H,,so (s', t') — F(s', ) T (s, t') @
is a continuous, compactly supported map €* x P* — H,, hence it is integrable on C* x P*, 11 [45,
section Il1.1]. Therefore, ¢ {f} is well-defined as an element of H, .

We define the vector subspace D, C H, as:
D= Vect{p{f} |f € C1C" x P, C), p € H,}.

Let ¢ € H, and € > 0. From def. C33 and eq. (C4.2), there exists an open neighborhood U of
(0,0) in €* x P such that:

V(s t) e U, |[Tu(s. ) o — o < €
Let f € C°(C* x P*, C) be a bump function with:

f>0, supp(f)Cc U & du =1,
CHxP*

where supp(f) denotes the support of . Then, we have:

lo— o {1} < /e LSS 6) =T D)l <
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Thus, D, is a dense subspace of H, .
Let p € H,, f € C°(C" x P*, C) and (s, t) € C* x P*. We have, for any 7 € R:

Te(ts, tt)p {f} = / du(s’, ) (', )Y Te(ts, TH) To(s', ') @
CrxP*

'’
/1 t//

_ / dﬁ(S//, t//) f(s// — 75 l_// o Tt) e[rcf(s,t;s , )TK(S//, l_//) v,
C*x P*

where we have used the translation invariance of the Lebesque measure and the fact that V(s”, t”) €
C* x P*, &(ts, tt;s" — 15, t" — tt) = 1 (s, t; 5", t"). Defining f ) € C(C" x P, C) by:

V(' 1) € € x P, (s, ) 1= e (s — 1S, — 1),
we thus get T (ts, tt)p {f} = ¢ { ]»

We now define, for any 7 € R, f ,f ) e CP(C" x P*, C) by:

2, . d (7
& Al ) = s )

T=T T=T

(s t) € € x P, (LS t) = (s )

dr !
Then, we have:

VteR, Vs, t) e x P

f(T) St — (st 1t T/ )
gEsT,)t)(S/' t/) — (Svf)( ) ( ) . f(Lv,(g)(S/’ t/) _ ; / dr’ / dt’ f(ZSV,(J )(5/, t/).
0 0

T

Let K :={(s"+ s, t' + t) | (s', t') € supp(f), T € [—1,1]}. K is compact as the continuous image
of the compact supp(f) x [—1,1] and we have:

VT e [=1,1], (s, ) & K, gi7y(s', ) = 0.

Moreover, the map s, t; 7" +— f(zs'y(:/)(s/, t') is continuous on C*x P*x R, hence bounded on K x[—1,1]

so there exists M > 0 such that:

Vre[-1,1], V(s t') € € x P*,

Dols’ )| <

/\/’1/<(5/, t/) ,

where 1¢ denotes the indicator function of K. So, the dominated convergence theorem yields:

l'Lm/ du(s’, t)
—0 ©* x P*

and therefore:

(s ) Tuls', ) goH ~0,

o W TelTs, Tt fl —olf
I LR T UETU AR Y
—0 T

where:

V(' 1) € € X P, fiun(s', t) = FL(s ) = i &(s, 65/, ) F(S', t) — [Tiw (s, t)
(with Tsf the differential of f at (s', t)).
By definition of X,(s, t), this implies [73, theorem VIII.7]:
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¢ {f} € Dom(X(s. 1)) & Xils, )@ {f} =—ig{fn}.
Hence, D, € Dom(Xc(s, t)), and, since f,y € C°(C" x P*, C) for any f € C°(C* x P*, C),

Xi(s,t)(Ds) C Di.. Next, X, (s, t)]q,_is symmetric (as the restriction of a self-adjoint operator), and

we have, for ¢ € D, :

Te(ts, Tt) " — ¢’

X.ls, O], ¢/ =~ lim i
SO:
¢ € Ker ([xK(s, )], ]+ i) s

(p| Telts, tt) ') — (@ | @) _

(z)V(p’EDK,—iUr% . Filp|¢)=0
/ d / R /
& Vo EQK,EWITK(T&TUW =F(¢|¢)
=0

d
& Vo' e D, VT eR, o (| Te(t's, T't) ¢")

(using T (ts, Tt) (D,) C D, and eq. (C4.1))
s Vo eD,,VTeR, (¢]| Tu(ts, tt)¢") =e™ (@] ¢')

= F (@ | Tulrs, t1) ¢')

=1

© Vo' €Dy, (@|¢)=0
(since, for each ¢" € D, T— (@ | Tu(ts, tt) ¢') is bounded, T, (s, tt) being unitary for any
T € R).
Thus, Ker ([XK(S, t)\DK]T + i) = D, = {0} (for D, is dense in H,), and therefore X,(s, t)|, is
essentially self-adjoint [73, theorem VIII.3]
Finally, for any f € C°(C* x P*, C), (s, t),(s', ') € €* x P" and 7, 7" € R, we have:
f(rerT’s’,TtJrT’r’) =T f(s,t) + T f(s’,t/):

which proves point C4.3. O

Of course, the usual Schrodinger representation is such a weakly continuous representation
of the Weyl algebra, and, in fact, the Stone-von Neumann theorem [98], which we will recall
below (prop. C.10, following the proof given in [47, theorem 15a]), tells us that it is the only one
(more precisely, it is the only irreducible one: an arbitrary weakly continuous representation thus
decomposes as a direct sum of independent copies of the Schrodinger representation).

Proposition C.5 Let 3, := L,(C, du) with y a Lebesgue measure on the finite-dimensional real
vector space C. For any (s, t) € € x P*, we define a unitary operator T,(s, t) by:

Vo € H,, Vx € C, [To(s, t) ¢ (x) 1= e W= (x+=""(1),

where = : €@ — P* is the dual of the map = and ="' = (=)' = (571)*.

T, is a weakly continuous, unitary representation of C* x P*.
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Let D, be the space of smooth, compactly supported, complex-valued functions on €. D, is a

dense vector subspace in 3,, and, for any (s, t) € €* x P*, the linear operator X (s, t) defined on
D, by:

Vg € D, Wx € €, [Xifs, 0] (x) = slx) ) — E [T (Z7(1)
is essentially self-adjoint (with 7,¢ the differential of ¢ at x). Moreover, we have:

(s, t) € € x P*, D, C Dom(X,(s,t)) & X(s,t) = Xo(s, t)|®;'
where, for any (s, t) € €* x P*, X,(s, t) is the self-adjoint generator introduced in prop. CA4.
Proof Let ¢ € 3, and (s, t) € € x P*. Let ¢’ be given by:

Vx € €, ¢/(x) = eWFEET) g (x 4 =27 (1))

Using the translation invariance of the Lebesgue measure, we have:

] dutx) 1@ = [ dut) o () = ol
C C

hence T,(s, t) is well-defined as a linear operator H, — H, and is isometric.

Moreover, we have T,(0,0) = idy, and, for any (s1, t1), (s2, &) € €* x P*
Vo € H,, Vx € C,
[To(s1, 1) To(s2, ) @] (x) = e 150 T (55, 1) ] (x + =7 (1))
_ ez(sﬁsz)(x)ﬁ[(m+r2)(z4(s1+sz))—rz(;4(51))+m(E*W(sz))] ¢ (x + E*,A(ﬁ + l‘z))
= el D T (s 4 55, 1 + 1) @] (X)),

where we have used s, (E*"1(t1)) =t (5_1(52)). In particular, we thus have, for any (s, t) € € xP”,
To(s, t) To(—s, —t) = To(—s, —t) To(s, t) = tdg, , so T,(s, t) is invertible, and, being isometric, it is
a unitary operator on I, .

Let g € D,, (s,t) € € x P* and € > 0. In particular, ¢ is bounded and has compact support, so:

M:meww<m.

Moreover, ¢ is also absolutely continuous, so there exists an open neighborhood U; of 0 in € such
that:

€
M+

Vx € €, V¥ € Uy, |o(x + x') — o(x)| <

The map ="' being linear on the finite-dimensional vector space P, it is continuous, therefore
U, := =" (U,) is an open neighborhood of 0 in P*.
Next, the map z: € x €* x P* — C, defined by:
Vx € C, V(s t) € € x P, z(x; 5/, t') 1= e Sl IH W5 £(E710)
is continuous, so, for any x € €, there exists an open neighborhood V, of x in € and an open
neighborhood UV of (0,0) in € x P* such that:
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€

Vx eV, V(s 1) e UV |z(x s/ 1) = 1] < —————
4] +1

Since the support supp(¢) of ¢ is compact, there exist n € IN and xq,..., x, € C such that
supp(e) € U, Vi . Thus, defining Us = (), U, Us is an open neighborhood of (0,0) in
C* x P*, and:

€

Vx € supp(e), V(' t') € Us, |z(x; s', 1)) = 1| < ———.
4ol +1

Then, Uy == (C* x U;)N U5 is an open neighborhood of (0, 0) in €* x P*, and, for any (s, t') € Ua:
ITols + 5" t+ )@ — Tols, t) |
= 2[lglf = 2Re (¢ [ T (s ) )

(where we have used To(s+5', t+t') = e LT (s 1) T,(s', ') and the fact that both T,(s, t)
and T,(s, t') are unitary)

<o o015, 10) - ok

<2 /G dulx) [o(x)| [206 s 1) @ (x +=71()) — ()|

<;menwnw¢w+?*ww—¢mh2/ du(x) ol |20 s, ¢) = 1]

supp(¢)
(for Vx € C, |z(x; s', t')| = 1)
<E€.
Hence, for any ¢ € D, , the map (s, t) — T,(s, t) ¢ is continuous C* x P* — H,.
Now, the smooth, compactly supported functions are dense in H,, so for any ¢, ¢" € H,, and

any € > 0, there exist ¢ € D, such that:
- €
lo — ol < o1
Next, for any (s, t) € C*xP", there exists an open neighborhood Us of (s, t) in C*xP* such that:

€
VS//, t// E U5, ||T0(5//, t//)’(;’) o TO(S, t) @H < /—
3¢ +1

Thus, for any s”, t" € Us,
(@ [ To(s",t") ) = (@ [ Tols, ) @) < @] [2 i =@l + [ To(s", ") @ — Tols, 1) @Il | <€
(since To(s, t) and T,(s”, t") are both unitary), which proves def. C3.4.
Let p € D, and (s, t) € C* x P*. For any T € R, we have [T,(ts, tt) ¢] = @f;,)t) € D,, where:
T iTs(X)+5 2 (= V(s —x, —
Ux € €, gl (x) = el T ETE) g (x4 o= g)),

and X(s, t) ¢ = —i @iy € D, where:

d
Vx € €, gglx) i= —@l ()|
dt 0 =0
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In particular, X (s, t) ¢ belongs to 3, , thus X (s, t) is well-defined as a linear operator on D, .
Moreover, like in the proof of prop. C4, the dominated convergence theorem yields:

(1) 2

. @5 (X) — @(x)
iy [duto) | 25 | o0,
T— e
and therefore:
To(ts, Tt) @ — o
lim (“Iyw ¢—l&@ﬁ¢uzo

Hence, we have [73, theorem VIII.7]:
@ € Dom (X,(s, 1)) & X)(s.t)p = X,(s,t) @,
so D C Dom (X,(s, t)) and X (s, t) = X,(s, t)’@;'
Finally, using: U
Vo €D Xi(s. t) g — —i lim 12T TN ¢

7—0 T

together with VT € R, T,(ts, tt) <DO> C D, and the density of D, in H,, we get, via the same

argument as in the proof of prop. C4, that X_ is essentially self-adjoint.
C.2 The Wigner-Weyl transform

We now come to the Wigner transform itself. The Wigner characteristic function associated to
a quantum state maps to a point (s, t) the expectation value of T,(s,t) in this state. In particular,
it is defined as a function on the dual space C* x P*, since, as underlined above, the operators
T«(s, t) are labeled by elements of the dual. Note that if we would complete the Wigner transform,
by Fourier-transforming this characteristic function, we would pass to the dual again and obtain a
quasi-probability defined on the phase space, in correct analogy with the probability distributions
considered in classical statistical physics.

Insisting on a strict distinction between M and its dual, may seems an unnecessary care in the
case of a linear space, since we could simply choose some identification between the two. However,
it allows us to keep track of the nature of the objects we are considering, and in particular of the
natural direction of their transformations under morphisms. Probability measures are naturally
push-forwarded along a projection, while functions on M should be pull-backed, but functions on
the dual, being pull-backed by the dual map, effectively flow in the same direction as probability
measures (viz. def. 18.2): thus, defining characteristic functions as a functions on the dual is
consistent with the fact that they encode the same information as probability measures.

We begin by characterizing the image of the (first half of) the Wigner transform. The positivity
condition eq. (C.6.1) reflects the requirement for density matrices to be non-negative operators and it
manifests the truly quantum nature of the Wigner quasi-probability: a similar equation for a clas-
sical characteristic function, reflecting the positivity of its associated probability distribution, would
s,t;s',t)

not have the twisting phase e's In other words, eq. (C.6.1) captures the non-commutation
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of the position and momentum variables (viz. prop. C.2), and it will play a central role in the
derivation of the negative result in subsection 18.2. Finally, the continuity of the Wigner char-
acteristic function expresses the fact that it comes from a density matrix on a weakly continuous
representation (this is closely related to the characterization of normal states on a W/ *-algebra, see
[87, corollary II1.3.11] and prop. 5.12)

Proposition C.6 A continuous function W : €* x P* — C is said of positive type if, for any ¢ € J:

Y s s, 1) eI W (s — 't — 1) 2 0, (C6.1)

(5.).(" t')EC* x P*
In particular, this implies:
V(s, t) € C" x P*, W(—s, —t)= W(s,t) & |W(s, t)] < W(0,0).
We denote by W the space of all continuous functions of positive type.

Proof Let (s, ) € C* x P" and let A € C. Applying eq. (C.6.1) to d9,0) + A 0s,y € J yields:
(1 n |A|2) W(0,0) + A W(s, t) + A W(—s, —t) > 0,

where we have used ¢(0,0;0,0) = &(s, t;0,0) = &(0,0;s,t) = (s, t; s, t) = 0. In particular, W(0, 0)
is real positive (as follows from setting A = 0). Thus, A W(s, t) + A W(—s, —t) is real for any A € C,
so W(s, t) = W(—s,—t). Now, (1 + |)&|2) W(0,0) + 2Re [AW(s, t)] is positive for any A € C,
hence |W(s, t)] < W(0,0). O
Proposition C.7 Let H,, T, be as in def. C.3 and let p be a traceclass, (self-adjoint) positive
semi-definite operator on J,. The map W, : € x P* — C, defined by:

(s, t) € € x P*, Wy(s, t) = Tra, [pTuls, 1)],
is a continuous function of positive type.
Proof For any (s, t) € C*xP*, T,(s, t) is a bounded operator, hence p T,(s, t) is traceclass, therefore

W, is well-defined. From the spectral theorem, there exist N € N U {0}, an orthonormal family

(¢r)<n in H, and a family of non-negative reals (py), <y such that:
p=> pilo) (ol & ) pi=Trgp
k<N k<N
Let (s,t) € € x P" and € > 0. Let K € IN with K < N such that:

> pk<§

K<k<N
From def. C3.4, the map (s, t) — (@ | Te(s, t) @x) is continuous for every k < K. Hence, for each
k < K, there exists an open neighborhood Uy of (s, t) in €* x P* such that:

€

V(s ) € Ui [on [ Tels' ) 00) = (o | Tuls o | < 35— =
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Since K is finite, U := ﬂ Ux 1s an open neighborhood of (s, t) in €* x P* and, for any (s', ') € U,

k<K
we have:
(W' t) = Wols, 0] <> pic| (@ | Tuls' ) @) — (@ | Tuls, 1) i) |
k<N
<2 ) pet ) pel o | Tels' ) o) — (o | Tuls, 1) i) |
K<k<N k<K
€
<2-+ Pk )
3 /;( 3TF(}{K P +1

where we have used that T,(s, t) and T,(s, t') are unitary operators and each ¢, for k < N is
a normalized vector, hence (@ | Ti(s, t) )| < 1 and [(@c | Te(s", t) @c)] < 1. Thus, W, is a
continuous function €* x P* — C.

Let ¢ € J. We have:

Y S O us, ) eI W s — st 1) = Y [C (s ) Wl 1)
(5,8),(s",t')€C* x P* (s” t")EC* x P*
=Trgc [p T {0 *t}]

(where T, {('} has been defined for (' € J in def. C3, as a finite linear combination of unitary
operators belonging to T, (€* x P*))
=Y pln ‘ T Te{th o) >0

k<N

Therefore, W, fulfills eq. (C.6.1). O

Like its classical analogue, the Wigner characteristic function is related to the moment-generating
function (precisely, the latter, when it exists, is the restriction to the complex axis of the analytical
expansion of the former). In particular, a quantum state exhibits finite variances for the elementary
observables X,(s, t) if its characteristic function is twice-differentiable at 0, and the covariance
matrix can then be recovered from the corresponding Hessian.

Proposition C.8 Let },, T,, p and W, be as in prop. C.7. We moreover assume that there exist a

linear form Wff) and a symmetric bilinear form ch(,z) on €" x P* such that:

2
(s, t) € € x P, Wy(ts, tt) = W,(0,0) 4 i T W(s, t) — % Wi(s, t;s, 1) + o(17). (C.8.1)

Then, for any (s, t), (s',t') € €" x P*, the operators p X, (s, t) (densely defined on Dom(XK(s, t)))

and X“(S't)pX“(S/’t/)gx“(s/’t/)px“(s‘t) (which can be defined at least as a sesquilinear form on the dense

subset D, C H, ) admit a traceclass extension on H, , with:

Xi(s, t) p X (s ) + Xe(s', V') p XS, t)

Trae pXls, t) = Wil(s, 1) & Try, 5

2 RSV
= W(s, 15", t).
Proof Let (s, t) € C" x P*. For any 7 # 0, we define:
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2idge, — T (ts, Tt) — To(T5, TH)T

2

YW(s, t) =

K

Since T,(ts, tt) is a unitary operator, Yff)(s, t) is a bounded, (self-adjoint) positive semi-definite
operator on 3. Using T,(0,0) = ids and T.(ts, Tt)7 = T,(—T1s, —t), we get:

2W,(0,0) — W,(ts, Tt) — W,(—T1s, —Tt)

Trae, p Y05, 1) = =

Hence, eq. (C.8.1) implies:

Lim Trye, p V(s t) = W(s, t;s, 1).

Let 7y > O such that:
VT e 0, o, Trae, pY (s, 1) S W(s, s, 1) + 1 =1 A,

Applying the spectral theorem to the self-adjoint operator X,(s, t), we denote by dll.(s, t) its
projection-valued measure, with:

X, (s, t) = /m o d(s, t)o].

(0.9]

Then, for any t # 0, we have, using T,(7s, Tt) = exp (i T Xk(s, t)):

Y(s, t) = 2 /+OO [1 — cos(ta)] dl,(s, t)o].

™ )

There exists € > 0 such that:
32

Vx € |—€, ¢, 1 —cos(x) > e

hence, for any 7 # 0, the operator:

e/t 2
Y(T)(s,t)——/ (TZ) (s, t)o],

is a bounded, (se[f—adjolnt) pos'Lt'Lve semi-definite operator on 3, . Defining, for any B < B’ € R,
the spectral projector 1% fB dl.(s, t)[o], we thus have:

VB > Ti Trae pTZBBI(s, 1) X (s, )2 BB, 1) < 2A. (C.82)
1

Now, from the spectral theorem, there exist N € INU {oo}, an orthonormal family (¢x)<n in H,

and a family of strictly positive reals (p),<y such that:

P:Z,Dk|(,0k> o] & ZPk Trye. p

k<N k<N

For each kK < N and each B > 0, we have:
(o | BB, 6) Xe(s, ) BB, 1) ) = [[Xels, 6) ME2E)s, 1) m\z >0

so, for any B > €/t and any k < N,
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[X.ts. 055, g < 22
Pk

Therefore, ¢ € Dom(XK(s, t)). Moreover, we have [73, theorem VIII.7]:

lim Te(Ts, Tt) o — @x _
7—0 T

[ Xe(s, t) o,

hence, we get:

2
= [Xuls. ) u”.

(t

tim (@ | Y(s ) i) = lim

Te(Ts, Tt) o — @k
T

Fatou's lemma then yields:

> pic IXuls )l < timinf Y pu (i [ V(s 0) ) = W(s, i s, 1)

k<N k<N

Next, this provides the bound:

S pi Nl 1Xls. ) @ull < VWs. £ 5. 6) Trac, .

k<N

where we have used ||| = 1 and the Cauchy-Schwarz inequality (with ), px = Tra p).
Hence, we can define a bounded operator {p X,(s, t)} on H, by:

{pXcls, 0} = pic e ) { Xuls, 1) il

k<N

and this operator coincides with p X, (s, t) on Dom(XK(s, t)), since X, (s, t) is self-adjoint. In addition,

we have:

[{oXcls, O], <O el loe ) {Xels, @il [, = > e el Xl 1) il| < o0,
k<N k<N

where || -||; denotes the trace norm [73, theorem VI.20], so {pX,(s, t)} is traceclass. lIts trace is

given by:

Troe, {pXu(s, 0} =) pe (Xels, ) @e | @) = Y pe (n | Xuls, 1) i)
k<N k<N

Now, from:
Vx € R, |e™ 1] < |x],

together with the spectral decomposition of X.(s, t), we get, for any 7 # 0:

Thus, the dominated convergence theorem yields:

{ ZPk (@ | Xels, t) i) = Zpk &{% <<pk

k<N k<N

To(ts, rtT) P Ol < X5, ) i

T

Te(Ts, Tt) o — @ >
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Y p (e

k<N

Te(Ts, Tt) op — @i >

T

which can be rewritten, using eq. (C.8.1), as:
Tra, {pXuls, 1)} = WiU(s, t).
(note that W,(0,0) = Trg, p for T,(0,0) = ids,).
Similarily, the inequality:
D P IXdls )l < W, 15, 1) < oo,
k<N
ensures that we can define a traceclass operator {X.(s, t) p X.(s, t)} on H, by:
DXuls, ) pXals, 00} 1= ) pe IXuls, ) i ) { Xels, ) ]
k<N
and we have:
Vo', ¢ € Dom(X(s, 1)), {@" | {Xuls, t) pX(s, )} @) = (Xuls, 1) ¢ | pXols. 1) ).
Moreover, using again the dominated convergence theorem, with:

2
< Xuls, 8 el

Te(Ts, Tt) o — o
T

VT £0, (@ | Y(s, t) i) = '

we get:

Trse, {Xe(s, t) pXe(s, t)} = lln?)Trg{KpYEf)(s, t) = WP(s, t; s, 1).

Finally, for any (s, t), (s’,t') € € x P*, we have, thanks to prop. C4.3:
Vo, 9" € Dic, (Xils, 1) @" | pXils", 1) @) + (Xuls" 1) " | pXils 1) @) =
= (¢ [ {Xls + 5" t+ ) pXils + 5" t+ 1)} @) +
—(@" [ {Xuls, ) p Xl )} @) = (@" [{Xls, ) pXils" 1)} @)

{Xi(s+s" t+t") pXie(s+5' t4+t') F—={Xi(s,t) p Xic(s,8) }={Xi(s".t') p X (5", 1) }
2

Hence, provides a traceclass extension of the

Xie(5.8) p Xie (s, )+ X[, ) p Xies,t
2

sesquilinear form l on D, and its trace is given by:

Trae, {Xx(s+sct+r/>pxx<s+s',rm}f{X§<s,t>pxx(s,r)}f{wﬂpxx(scm} = W(s, t; s 1)

As a first step toward recovering the density matrix from its Wigner characteristic function, we
observe that the positivity condition eq. (C.6.1) is exactly what we need to turn a function on C* x P*
into a state (aka. a normalized positive linear functional, see [41, part III, def. 2.2.8]) on the Weyl
algebra. Then, from any state we can reconstruct a representation of the algebra, via the GNS
construction [34], and the continuity of the characteristic function ensures that this representation
will be weakly continuous.

Proposition C.9 Let W & W. Then, there exist a weakly continuous, unitary representation
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Hy, Tw of € x P* and a vector {y € Hy such that:

1. Hy = Vect {Tw(s, t)Cw | (s, t) € C* x P} (ie. {w is a cyclic vector for Hy, Ty );
2 ¥(s, 1) € € x P, W(s, t) = (Cuw | Tuls, £) Qwag,, -
Proof Let 11,50 € J. We define:
(b | )y = Z (G *6)(s, t) W(s, t).
(s,1)EC* xP*

This is well defined, for the sum has only finitely many non-zero contributions (;j x b € J),
and eq. (C.6.1) ensures that (- | -),, provides an Hermitian, positive semi-definite sesquilinear
form on the complex vector space J (the hermiticiy comes from (7 x )" = ; % (4 together with

V(s, t) € C" x P*, W(—s, —t) = W(s, t), as was proven in prop. C.0).
Let Ny ={veT|(v|v), =0} Forany & Jandany v e Ny, we have:

VA C, (t|)+2Re[A (V)] =(t+Av]|i+Av), =0,
therefore (¢ | v) = 0. Hence, for any t;, o € J and any vy, v; € Ny
(h+uv |+ Uz>W = (4 | lz>W,

so (- | -), induces an inner product on the quotient J/Ny, . We denote by Hy, the completion of
JINy with respect to the corresponding norm.

Let (s,t) € € x P*. For any 14, o € I, we have:
<5(s,t) * 1 | O(s.1) *12>W =(u | 2)y

(for (O(s,) * t1)" * (Os.6) * ) = % (O(—s,—) * O(s,)) * L2 = {3 * 1), S0 in particular [0 g * -] (Nw) C Nw,
and O 5 * - induces a unitary operator Ty (s, t) on Hy . Then, def. C32 and C.3.3 come from:

V(s1, t1), (52, 1) € € X P*, b5, 11) * Opsrty) = eler it Ofsi 52, 11+1)

and from the fact that 0y is the unit of the *-algebra J.
Let 4y, L € 7. Forany (s, t) € C* x P*, we have:

<l1 | 5(5,[) * L2>W = Z ei{(sz,tz;Sq,tq)+if(s,t;s1+sz,t1+tz) 11(51, tq) 12(52, l'z) W(S + S>— 51, t+ tz — l'1) .
(s1.t1).(s2.12)

eC* xP*

Thus, the map (s, t) — (1 | 09 * 12),, is a finite linear combination of translations of W, and those

w
are continuous by definition of W. So, for any 1,5 € I/Ny,, the map (s, t) — (7 | Tw(s, t)@HW
is continuous. Now, J/Ny, being dense in Hy,, there exist, for any ¢, ¢, € Hy and any € > 0,

1,5 € J/Ny such that:

~ € ~ €
lpr = tillse,, < & 2=l < :
"6 g2y, + Ve " 6oy, + Voe

Next, for any (s, t) € C* x P*, there exists an open neighborhood U of (s, t) in €* x P* such that:
€

Vs ) € U, [0 | Tw(s' £) By, — (7 | Twls, ) )y, | < 3

Hence, for any (s', ') € U, we have:
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{1 | Tw(s', t) @2) = (@1 | Tw(s, 1) g2)| < e,
where we have used that Ty (s, t) and Ty/(s’, t') are unitary. This proves def. C.3.4.

Finally, we define (v to be the equivalence class of 0 in J/Ny . For any (s, t) € C* x P,
we have O * 000 = Ois.ey, S0 Tw(s, t) Cw is the equivalence class of Oy in J/Ny. But since
J=Vect{0sy | (s, t) € € x P}, we have:

INw = Vect {Tw(s, t){w | (s, t) € € x P*},
which proves point C9.1. Moreover, we also have:
(Cw | Twls, t) Cw)ge,, = (B0.0) | sy = W(s, 1),

which proves point C.9.2. O

Finally, the invertibility of Wigner transform can be seen as a consequence of the Stone-von Neu-
mann theorem [98] (which we implicitly prove below, following closely [47, theorem 15a]). Indeed,
the Schrodinger representation being the unique irreducible, weakly continuous representation of
the Weyl algebra, the Hilbert space Hyy constructed from W above can be written as a direct sum
of independent copies of H{,. Projecting the vector {yy representing W in Hy on each of these
copies, we obtain a collection of vectors in J,, and we can reconstruct a density matrix on H,
as the statistical superposition of the corresponding pure states (this is consistent with the general
result that a state is pure if and only if its GNS representation is irreducible, see [41, part III,
theorem 2.2.17]).

Proposition C.10 Let W & W. Then, there exists a unique traceclass, (self-adjoint) positive
semi-definite operator p on }, such that W = W, (with W, defined as in prop. C.7).

Lemma C.11 Let (- | ) be a real inner product on €. Using the resulting identification of €* with
C and identifying P* with C through the dual map =", we are provided with a corresponding real
tinner product on €* x P, which we will denote by (-, - | -, -). Let i be the Lebesgue measure
on C* x P* normalized with respect to this Euclidean structure. We define a map W on €* x P*
through:

4

(s.t]s,t)

where a = [, 5. di(s, t) exp (_T) .

Let W be a bounded, continuous function on €* x P* such that:

V(so, to), (51, 1) € C* x P¥, / dii(s, t) W(s, t) et Wis, + s, t, 4+ 1) = 0. (C11.1)
C*x P

Then, W = 0.

»} be the corresponding dual
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For any (s, t) € C* x P* we will write s =: s'f; and t =: t'g; (with implicit summation). In
particular, we then have:
gl ol
2
as well as dfi(s, t) = ds' ... ds” dt'...dt". Therefore, a = (27)’.
Now, for any 8 > 0 and any (s,, t,) € C* x P*, we have:

V(s,t), (s, 1) € C" x P &(s, t;' 1) = & (s t|s t)=s's"+1t1",

/ dﬁ(51,t1)/ dii(s. 1) (w(351,3n)w(s,t)efﬂsv':wW(so+s, t0+t))
C* x P* C* x P*

217
<[5 Ml <o

where [|W/]|_, is the sup norm of the bounded function W. Thus, Fubini's theorem, together with
eq. (C.11.1) yields:

0=/ du(s, t) (s, t) W (s, + s, to—i—t)/ dii(s1, t)W(Bsy, Bty) eIttt
C*x P* e

* 5 P

Performing the Gaussian integration, we get:

B y2_1 P VZ
02/ dy(s,t)[ ] exp (—— (5,t|5,t)) Wis,+s, t, + 1),
0 P T 4

where y == /1 + 1/g2.

Let € > 0. There exists A > 0 such that:

e Ll2 6 e LI2
/ duu? e T < —— / duu? Ve 7.
A 4 Wl +1 Jo

W being continuous, there also exists 0 € |0, Al such that:

Vs, 1) € € x P/ (s, t |5, 1) < &% [W(so +5, to + 1) — W(s,, t,)] < g

Hence, applying the previous equality with B = ——, we have:

N/

2
(W (s, to)] dii(s, t) e~ TS0 =
C* x P*

Z
/ dii(s, t) e TS0 W (s, + 5, ty + t) — W (s,, to)]
C*x P*

€ . 2 Z
<S[ @t 2w, [ s getern
2 (s.t]s,6)<82 (5.t | 5,t)=02

Changing to spherical coordinates and dropping an overall constant, this can be rewritten as:

o0 UZ 6 )/6 UZ o0 1/2
W (s,, t,)] / duu® e T < 5 / duu®e” T + 2||W|, / duu®"e "
0 0 yo

(ee] uz
<€ / duu? Ve 7T
0
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where we have used that yo = A. Thus, we have, for any (s,, t,) € €* x P* and any € > 0,
|W(so, t,)| < €, and therefore W = 0. O

Proof of prop. C.10 Existence. Let W € W and let H{yy, T\ be the weakly continuous, unitary
representation introduced in prop. C9, with cyclic vector (. For any ¢, ¢’ € 3y, the map

(s, t) = W(s, t) (@" | Tw(s, t) @)g, is continuous, hence measurable, and we have:

[ dmts. ) [¥05,0 (6| T 010, | <20 19D, T, < o0

Hence, there exists a bounded operator Ty, {W} on Hy, such that, for any ¢, ¢ € Hyy -

@ 1T} b, o= [ dlls, 0 Wlsi) (9| Tuls. 010,

In particular, Ty {W} is symmetric (since, for any (s, t) € € x P*, W(s, t) = W(s, t) = WY(—s, —1)
and Ty(s, t)7 = Ty(—s, —t)). Being bounded, it is therefore self-adjoint.
Now, for any (s1, t4) € € x P* and any ¢, ¢’ € Hy, we have:

(@' | [Tw AW} Twlst, t)] @)y, = (@ | Tw {¥} [Twlst. t1) @] )y

w w

- / di(s, ) W(s, 1) (@ [ Twls, ) Tw(sr, t1) @)y,
C*x P*

_ / dii(s, t) W(s, t) e“E= (" | Ty(s + 51t + ) @)y,
Cx x P

:/ dlifs, t) W(s — s, t — t7) e“F1 0 (g [ Tyy(s, 1) @y,
Crx P+

where we have used def. C32 and V(s,t) € C" x P*, &(s — s1,t — t1;51, 1) = &(s, t; 51, t1). Since
Ty {W} = Ty {W} and Tw(s1, 1) = Ty(—s1, —t1), we also have:

(¢ | [TW(51,t1)TW{LIJ}]<p>%W = /e 9)c/ﬁ(s,t)L|J(s—s1,t—n)e—fﬂs'f;w} (@ | Tw(s, t) @)y, -

Applying these two formulas successively, we get, for any (s1, t;) € €*x P* and any ¢, ¢’ € Hyy :
(@ | [Tw {¥} Tw(si, ) Tw {¥} ] @) =
= (@ | Tw {¥} Tw(sr, t) [Tw {¥} o))

:f diifs, t)W(s — sy, t — t1) €51 (" | Ty(s, ) Tw {9} @)ag,
Cxx P

= / dii(s, t) / di(s’, t) W(s—sy, t—ty) W(s'—s, '—1) X000 (ol [ Tyy(s), ) )y,
CrxP* CrxP*

Invoking Fubini's theorem and performing the Gaussian integration, like in the proof of lemma C.11,
we obtain:

(@ | [Tw {¥} Twlsi, t) Tw {¥} ] @) =

-, S1, b | st Py , ;o
=/e ?du(s,t)exp(—w) W, ) (¢f | Tuls's ) @,
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= op (=) G T (9] g

Since this holds for any ¢, ¢" € Hy , we have:

(s.t]s,t)

V(s t) € € x P, Tw {W} Tw(s, ) Tw {V} =exp (_ 4

) Tw {W}. (C.10.1)

In particular, applying with (s, t) = (0, 0), and using that T\/(0,0) = idy, , this implies:
Tw {¥} Tw {¥} =Tw {¥}.
Tw {W} being idempotent and self-adjoint, it is an orthogonal projection.
Next, we define ¢, € I, by:

Vx € C, Yp(x) = ﬁ exp (_(xix))

(choosing the Lebesgue measure p, entering the definition of I, in prop. C5, to be normalized
with respect to the scalar product (- | -) on €; this normalization can be chosen without loss
of generality since the Hilbert spaces obtained using different normalizations of p are unitarily
identified in a natural way through a corresponding renormalization of the wave-functions). We
can check that, for any (s, t) € C* x P*:

(o | Tols, 1) tho)ge, = exp (—W) . (C102)

Let (gbffé))a be an orthonormal basis of the image of Ty {¥}. Then, for any a,b and any

(s, ), (s, t') € € x P*, we have, using the hermiticity and idempotence of Ty, {W} together with
the properties of the representations Ty, and T,:

<TW(5’, ¢) ‘ Tu(s, 1) ¢<V”V>>%W _

= (Tw AW}l | Twl=s', =) Tuls, O Tw 19} ¢4 )

Hw

_ e[&(s,t;s’,t’) <LM/?/) ) Tw {L]J} TW(S — 5/, t— t/)TW {LIJ} ‘M/?/)>

Hw
_ e[‘z(s't;s/,f’) <L/J0 | TO(S —s - t/) ¢0>U{D <LM/[\)/) ‘ Tw {LP} LM/?/)>
(combining egs. (C.10.1) and (C.10.2))
= Oab <T0(5/, t/) Wo | Tols, ) ¢’0>:}(0 :

Hy

For any a, we define J—C(fy = Vect {Tw(s, t) Q/JW ‘ (s,t) € G x ?*}. Each J—C(V(f/) is thus stable

under Ty (€" x P*). The previous computation shows that the U-Cﬁ/av) are mutually orthogonal and

that there exists, for each a, an isometric injection /' : ﬂ-C(VGV) — X, such that:

Vied, [ [TW n! W] =T, {1} ¢,

Then, using that:
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Vo, o €, Tw{u} Twiet =Tw{u*w} & T, {u} To{w}=T,{u*w},

together with the density of {TW {1} gb(v‘;)

e J} — Vect {TW(S, ) o) ‘ (5.t) € C* x zP*} in 37
we get:

Vied, 19Ty {i} =T, {} 1

Now, we define:

1
= (@9{&3)

so that:

Hy = Hi' & (P

(as can be seen as a consequence of Riesz lemma). Since each J{ﬂ) is stable under Ty (€* x P*),

so is ;" Next, we write:
e

with (&' € HIS and Va, ¢l € H!7 In particular, we have:

CW — rest

”CWH _ H(restH _|_ZH({;) 2

so there can be only countably many non-zero C(Vﬁ) (actually, the cyclicity of ¢y together with the

stability of each f}C(ﬂ) requires all C\(f&) to be non-zero, so this even implies that a takes value in a
countable set). Using prop. C.9.2, we have:

Vs, t) € € x P, W(s, t) = (Cw | Tw(s, t) CW>}(W
:< rest ‘ TWS t) rest %W+Z<({/\a/)

s 0¢),

Thus, defining ¢\ := /(@ C‘(/‘;) € X, for each a, the isometric and intertwining properties of /”
yield:
V(s t) € C°x P, W(s, 1) = (G | Twls, ) G5y, +Z )| Tols, ) ¢, -
The bound:

<[ Gwll* < oo,

a 2 a 2
> l12 5, = X |||,
allows us to define a traceclass, (self-adjoint) positive semi-definite operator p on 3, by:

p=p_lam) (e

Then, we get:
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V(s, t) € € x P, W(s, t) = W™'(s, t) + Trae, [p To(s, )] = W™'(s, t) + W,(s, 1),
where, for any (s, t) € € x P, W™!(s, t) == (i7" | Twl(s, t) reSt>9{W.
Tw being a weakly continuous, unitary representation of C* x P* on Hy, the function W™
is continuous C* x P* — C and it is bounded by HCFG“HJ{W. Now, for any (s, t') € €C* x P,
Tw(s', )¢5t € H' so it is in particular orthogonal to each Q[IE/?/), as t#/w € ﬂ-(E/GV). But since
(

(Ll'vi)) is an orthonormal basis of the image of the orthogonal projection Ty, {W}, this implies:

V(s t)e C x P Ty {W} Tw(s', t) ' =
and therefore:

V(S/, t/), ( //) c C* x fP* < ( /" // CreSt | TW{LP} TW 5 t) rest>g{ =0.

w

On the other hand, we have, for any ¢', ¢” € Hy:
V(S/, t/), (5//’ t//) E e* < :P*, <TW(S//, t//) (p// | TW {LP]’ TW(S/, t/) (p/> —

Hw

I
)

di(s, ) W(s, ) (Tw(s" ) " | Tw(s, ) Tw(s' t') ¢')ge,
C* x P*

:/ di(s, t) W(s, t) e B0 (@  Tyy(s 45" — 5"t £ — 1) @)y,
C*x P*

_ e—i%(s”,t”;s’,t/) / C/ﬁ(S, t) LP(S, t) e[f(s,t;s’—&-s”,t’—&-t”) <(p// | TV\/(S + S/ . S//, t+ t/ . t//) (,0/>3{W~
C* x P*
Thus, we have:

Y(so, to), (51, 1) € CF x P*, / dli(s, t) W(s, t) ettt yrests 45t 4+ t) =0,
G*Xﬂj*

so, from lemma C.11, W™ =0, hence W = W, .

Uniqueness. Let py, p, be two traceclass, (self-adjoint) positive semi-definite operators on 3, such
that W, = W,,. Like above, we define a bounded linear operator T, {¥} on X, satisfying, for
any @1, ¢ € Hy:

(0 1T AW gad o= [ B 0915, 1) (1 | Tl 01

Using the bases introduced in the proof of lemma C.11 together with the expression for T,(s, t) from
prop. C.5, this can be rewritten as:

(o1 | To {W} @2)q, =

= /ds“...dspdﬂ...dtp /de...dxf @i(x) e) @a((x) + t) ei) x

" sS4t L [+[t[i
exp 1 exp [1s'x) + 5t's
! | P At P i a P tt!
= Gy dxj ...dxydt' . dt? @i(xie) @a((x] + ') e) exp —— )
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X /ds1 ...ds” exp (—% +is'xi+ %tisi)
(us'mg Fubini's theorem as the integral is absolutely convergent)
_— X . tl tl
\/_p /dx1 cdxydt o d (X e) go((x) 4 ) er) exp (_T) X

(2x + 1) (2x) + 1) )

X exp (— 7
1 WP i X x4 xb x4
= W /d)q1 o dxﬁJ dxg o dxg ©1(x; e:) pa(x5 e) exp (_%22)

(with the change of variables x} := x| + t')
= (@1 | Wo)ge, (o | @2)s,-
Since this holds for any ¢1, @, € H,, we have T, {W} = [ ) ( ol.

Now, from the spectral theorem, there exist Ny € INU {oo}, an orthonormal family (cpf)) in
k</\/1

J, and a family of strictly positive reals (pf))k N such that:
<M

1 1 1 1
pr=3 ol ol ) (ol & D =Trepn.

k<N, k<N
Thus, we get, for any (s1, t1), (s2, ) € C* x P*:
(To(s1, t1) o | p1To(s52, 02) o)y, =

-5 i ) (00

=3 ol (ol | Tols2 ) To {9 Tl —ti) o)

k<Nq

0

0

_ Z ,D/< / d/,l S t) L|"(S, t) efif(S,t;S1+52.t1+t2)+i5(51,MISz,tz) <(P/(<1) ) TO(S + S s t+ tZ—ﬁ) (P/(<1)>g{

k<Ni Crpr

= / dii(s, t) W(s, t) e bortontith) il s ) Z py <90(k1) ) Tols + 5o, t + toy,) ()0/(<1)>
Crx P*

k<N4

(using Fubini's theorem with the discrete measure on {k < N})
_ / dﬁ(s, t)W(s, t) oS5, tis1 52, b+ ) +ig(s1, 11 52,12) Try, [m Tols + 526, t+ fzfn)]
CrxP
— plolsutiisab) / dﬁ(s, t) W(s, t) e ls(stisitsati+t) pr (54 Sos,, t+ toy).
C*xP

As the same holds for p,, W, = W,, implies:

Vo, ¢ € HY, (@' | pr@)s, = (¢ | p29)se,

where HO = Vect {T,(s, t) i, | (s, t) € C* x P},
Finally, let ¢ € [J—COO] . Like above, we then have, for any (s, t), (s”,t") € €* x P*
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0= (Tols" t") o | Plag, (@ [ Tols", 1) o)se,
= S [, Wls, (e Tyl 5 = )l
so applying lemma C.11 to the bounded, continuous function (s, t) = (¢ | T,(s, t) )4 yields:
V(s, t) € C" x P, (@ | To(s, t) @)y, =0,

and in particular [[¢||” = (¢ | T,(0,0) @)y, = 0,50 ¢ = 0. Hence, HO = 3, and, therefore,
p1=p2. O
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