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Abstract This paper presents the connections between univariate and bivariate Hermite polynomials and associated
differential equations with specific representations of sI(2, R) algebra whose Cartan sub-algebras coincide with the
differential operators involved in these differential equations . Applying the Baker-Campbell-Hausdorff formula to
these algebras, results in new relations and generating functions in one-variable and Bivariate Hermite polynomials.
A general form of sI(2, R) representation for other special polynomials such as Laguerre and Legendre polynomials
is introduced. A new generating function for Hermite polynomials is presented.
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1. Introduction

Hermite polynomials are among the most applicable special functions. These polynomials arise in
diverse fields of probability, physics, numerical analysis, and signal processing. As an example, in
quantum mechanics, eigenfunction solutions of quantum harmonic oscillators are described in
terms of Hermite polynomials. Bivariate Hermite polynomials are useful in algebraic geometry and
two-dimensional quantum harmonic oscillators [1-3,8]. Concerning the field of applications,
Hermite polynomials in one variable are divided into probabilist and physicist versions. In the
present paper, we focus on one and two-dimensional probabilist Hermite polynomials which are
denoted as Hy,(x) and H,, ,(x,y, A) respectively. In sections 2,3,4 we prove that the differential
operators which are involved in the differential equations of Hermits polynomials, constitute
representations for sI(2, R) algebra. In sections 5,6 by introducing isomorphic Lie algebras whose
Cartan sub-algebras are these differential operators and applying the Baker-Campbell-Hausdorff
formula, new relations for one variable and bivariate Hermite polynomials has been presented. It
is known that all known generating functions for Hermite polynomials contain a factorial term in
the denominators. In section 7 we introduce a new generating function for one-variable Hermite
polynomials without a factorial denominator.

2. Lie algebra of Hermite polynomials of one variable

Probabilistic Hermite polynomials, presented as:

—-D2

Hi(x)=e 2z x™ 2.1

Hj, (x) are probabilist Hermite polynomials or equivalently the solutions to Hermite differential

. d
equations and D = e
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Dy HE(x) = (xD — D?) H¢(x) = n HE(x) (2.2)
Where D, is denoted as Dy = (xD — D?) as Hermite differential operator. This is an eigenvalue
problem with positive integer eigenvalues n.

—-D2
The equation (2.1) is the transformation of basis (1, x, x2, x3,...) under the action of operator e z

which is compatible with Rodrigues’ formula and results in probabilistic Hermite polynomials
—-D2
H (x). The monomials x™ expand a polynomial vector space V. The operator e 2 changes the

basis x™ into the basis HE (x) . Let gl (V) denote the linear transformation that maps vector space
V onto itself. We present isomorphic Lie algebras of sI(2, R) defined by sI(2, R) modules on vector
space V which is a linear map ¢ defined by ¢ : sl(2,R) — gl (V) that preserves the commutator
relations of sl(2, R) [4,5].

¢la,b] = [¢(a), p(b)] a,b € sl(2,R) (2.3)
This representation is sI(2, R) module over vector space V.

First, we review the structure of the irreducible vector space representation of sI(2,R).The
generators of this algebra in matrix representation are as follows:

H=30 2 x=G o 7=( o @4

The commutation relations for this representation of sl(2, R) are:
[X,Y]=2H , [HX]=-X,[HY]=Y (2.5)

Let's define a representation of sI(2, R) as its module over V that preserves commutation relations
by differential operators as its generators [4]:

h=xD—§, e=D=0d,, f=x?D—nx (2.6)
With the same commutation relations
le.fl=2h ., [he]l=—e ,[hfl=f 2.7)
The Cartan sub-algebra H = h produces a decomposition of representation space:
V=eV; (2.8)

V; are the eigenspace (eigenfunction) of generator h as Cartan sub-algebra of s[(2, R), and provides
the solutions to the related differential equation.

hY; = f(j)V; 2.9)

As an example, monomials x™ are eigenfunctions or eigenspaces of generator h, realized as
eigenspace V,,. The eigenvalues f(j) in most cases equals an integer j or j(j + 1) as we observe
in Hermite, Laguerre, and Legendre differential equations.

We search for a Lie algebra £ isomorphic to sl(2, R) algebra that its generators to be defined
—-D2
based on Hermite differential operators. Here we apply the transformation operator e z as



described in equation (2.1) for Hermite polynomials to derive similarity transformations
(conjugation) of sl(2, R) bases as follows:
_p2 p2 _p2 D2 _p2 D2
Xi=ezhez,X,=ez2eez2,X;=e2 fez (2.10)
Concerning to a theorem in Lie algebra theory, these generators constitute an isomorphic Lie
algebra to sl(2, R) with similar commutation relations. We call this algebra as “ Hermite operator
Lie algebra”. Due to the equation (2.1) that implies the change of basis x™ to Hg (x), the operator
xD with eigenfunctions, x™ corresponds to the operator Dy with eigenfunctions HE(x) and
common eigenvalues n through a similarity transformation described by

-p? D2
Dy=ez2 (xD)ez (2.11)
Therefore, we have:
_p2 D2 _p2 D2
XlzeTheT=eT(xD—§) ez =Dy (2.12)

[
=

. . d
Generator X, simply is calculated as -

Proposition 2.1 For X; we have:
X3 = (x=D)(Dy —n)

Proof: by equation (2.11) we have the identity:

_p2 D2 _p2 D2 _p2 D2 _p2 D2
Dy =e 2 (xD)ez = <eTx eT> <eTD e7> =e 2z xez2D (2.13)
_p2 D2
Thus : DyD™l=e"z xez (2.14)
_p2 p2
By equation (2.2) we have: (xD—D*)D"'=(x—-D)=¢ez xe'z (2.15)

Now for X5 from (2.10) we have:

-D? D? -D? D? -D? D? -p? D2
X;=ez2 fez =e 2z (x?D—nx)ez =e 2z (x?D)ez —ne z xez (2.16)

By equations (2.13), (2.14), and (2.15) we get

_p2 Dz] [ _p2 D2

X3 = [eTxeT eT(xD)eT] —n(x—D) =

=(x—-D)Dy —n(x—D) = (x—D)(Dy —n) 2.17)
O
and for generators of this Lie algebra, we have:

n

Xy =xD—-D*-2 =Dy —

N3

Where Dy, denotes the Hermite differential operator i.e., xD — D?. The commutation relations
coincide with the sI(2, R) algebra as follows:
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[X1 'Xz] = —X; ’ [X1 ,X3] = X3 ’ [XZ:X3] = 2X; (2.19)

Proposition 2.2 Hermite polynomials satisfy the equation:

_p2

— -1 n (D —n—-2) Lre
ez (e +x)"=e 1-¢’ Hy (x) (2.20)
proof: Due to a theorem for the BCH formula [6,7], if [X ,Y] = sY fors € R, we have:

eXe¥ = etz (2.21)

Respect to equation (2.19) for [X; , X,] , the BCH formula for X; and X, generators gives:

elxp-0?] gD — p[xD-D*- 1] (2.22)

The term — g in X; was omitted because it has no role in commutation relation [X; , X, ].
Multiplying both sides by HS (x)
D
el*0-D*| gD e (x) = el0-0*- 3% HE(x) (2.23)

For eP HE (x), by the identity DHE(x) = nHE_, (x) we obtain:

n(n-1)
2!

2
ePHS(x) = (14D + 2+ .. ) HE(x) = H(x) + nHg_y (x) + HE ,(0)+...+1

Thus ePHE(x) = ¥0_, (Z) HE . (x) (2.24)

Substituting in equation (2.23) and replacing Hermite differential operator xD — D? with Dy
gives

e X _o (1) Hii () = P T imeHg () (2.25)

D
1o (1) ePHHE () = P e HE (x) (2.26)

n _ D __b
k=0 (k) e" kHrel—k(x) =e 7 1-eHf(x)

2
n -b” o Ox
n -k n-k _ ,(Dg—n ) ye
k=0 (k)e ezx =e 1-¢’Hp (x)

—-D2

D
e Tiso () ek xnk = eI (x) (2.27)

=p? (D —n— -2
ez (e T+x)t = e H T 1= HE(x)

—D2

D
Or: e PH 1007 (67 14x)" = HE(x) (2.28)
O

It is notable to compare this equation with



—-D2

ez x" = Hj(x) (2.29)
3. Bivariate Hermite Polynomials
An ordinary definition for bivariate Hermite polynomials is as follows [4-6].
Hym(s,t,4) = (~1)me@s0/2 Lo [o=0(sn/2) G.1)

With definition ¢ (s, t) = as? + 2bst + ct? as a positive definite quadratic form and

A= [Z IZ] The equivalent equation for Hy, ,,, (s, t, A) is [4-6]:

Hyym(s,t, 4) = me (nm)( DK k! (7111) (Z) a(R)/2pkm-i0/2e (as+bt)H7en k(bs+ct) (3.2)

. 12 . . __as+bt _ bs+ct
With a, ¢ > 0, and ac — b* > 0. By changing variables x = Tz andy = 7
my (mn _ -
nm(x y,A) = me (nm)( 1)k k! (k) (k) a® k)/ZbkC(m k)/zHrel—k(x)Hren—k(y) (3.3)

These polynomials satisfy the partial differential equation [4-6]:

7] 92 a 02 b 92 =~ _ —~
[(Xa — E) + (ya - a_yz) - Zﬁm] Hm,n(x, v, /1) = (m + TL)Hm’n(X, y,/l) (34)

Let denote D as the differential operator in differential equation (3.4)

d 92 5} 92 b 9?
D= (xa—ﬁﬁ(y@‘a—yz)‘zﬁaxay (3-5)
If we denote d,, = and 0y 3’ , with the identities:
_32 —6%,
e2x" K= HE L (x) , ey R = HEL () (3.6)

Equation (3.3) changes to

—6

nm(x y,A)=e = ez me (n, m)( 1)k k! (Z) (7{1) a(n—k)/zbkc(m—k)/zxn—kym—k (3.7)
We denote the new polynomials as uy, ,, (x, ):
unm(x y) — me(n m)( 1)k k! (Z) (7{1) a(n—k)/zbkc(m—k)/zxn—kym—k (3.8)

These polynomials constitute a set of linearly independent basis, the transformation from these
bases to H,, ,, (x,y) is as follows:

-82 -0% ax+a2

Armoy, M) =€z e upym@y) =e 2 Upm(xy) (3.9)

Therefore, the corresponding differential operator with u,, ,,(x,y) as its eigenfunctions could be
derived by similarity transformation:



0%+0% 03+0%

D'=e 2z De : (3.10)

D is denoted as the differential operator given in the eigenvalue equation (3.4). Thus, we have

ax+a2 ax+a§,
D = [(xa —92) + (ya, —ay)—z - 0,0 ] (3.11)
Proposition 3.1 The reduced form of D' is:
D' = xd, +yd, —Z%axay (3.12)

Proof : Respect to equations (3.5) and (3.6) and the commutativity of 2 and 632, we get:

2 32 62

D = e2(x6 —0%)e” 2+e Z(ya —0%)e” 2—2—(e26e 2)(e zae 2) (3.13)

With respect to equations (2.2) , (2.11) to (2.15) we have:
—a2 a2

Dy(x)=e 2x6 ez

0% -0%

8% -02
ez Dyez = ez (xd, —02)e 2z =x0, (3.14)

Repeating for Dy (y) we get
= yoy (3.15)

By the identities: e =0y, e20ye 2z =0,

Then equation (3.13) reduces to:

b

®'=xax+y6y—2ﬁ

0,0y m
Therefore, the differential operator D’ satisfies the differential equation:

iD,un,m(xv y) = (Mm+ nupm(x,y) (3.16)

Its eigenvalues are the same as the differential equation (3.4), because D and D' are related by the
similarity relation (3.10).

4. Bivariate Hermite Polynomials as sI(2, R) Modules

In this section we introduce an associated Lie algebra of bivariate Hermite differential operator.
First, we search for the compatible sI(2, R) algebra in terms of differential operators of two
variables. with respect to equations (2.6) and (2.7) the Cartan sub-algebra of sI(2, R) can be taken
as:

h == (x0 + ydy, + 1) + ad,0, (4.1)
The additional term ad,.d,, has been chosen to satisfy the required commutation relations. The
other generators are proposed as



e = a 0,0, , f= ixy + % (xax + yay) +% 050y (4.2)

These generators satisfy the commutation relations of sI(2, R) as described in (2.7):

[h,e] = —e , [h,fl=f , le,fl =2h 4.3)
By substituting a = % and respect to equations (3.12) and (3.16) and (4.1), the Cartan sub-

algebra h satisfies the differential equation:
1 2b
hu, ,(x,y) = > [(xax +yod, + 1) — ﬁaxay] Upm (X, ¥)

= %[(m + MUy (4, Y) + U (6, ¥)] = %(m +n+ Dy m(x,y) 4.4)

Thus u, ., (x, y) are eigenfunctions or weight vectors of h as Cartan sub-algebra of sI(2, R).
According to the equation

_ 9543y
e 2 un,m(x' y) = Hn,m(x; y) 4.5)
With respect to equations (2.11),(2.12) and (2.15), the similarity transformation of generators h,
03+0%
e, and f by operator e~ 2 yields:
1 b
h' = E (]D)H(X) + ]D)H(y) + 1) - ﬁaxay (46)
r— __b
e' = Maxay

f= =G = 00(y = 0,) +3 [Py () + Dy O] — 1 220:0,

The bivariate Hermite polynomials H,, ,,, (x, y) are eigenfunctions of h’ with eigenvalues % (m+

n+1).
The lowering operator in this algebra is given by:
b

- [___
A" =e = NET

9,0, .7

h’ represents the Cartan subalgebra of related Lie algebra. One of the commutator relations:

A= pm = 2
[h',A7]=-A4" = maxay (4.8)
A~ = €' is applicable in BCH formula. This operator acts on Hy, ,, (x,y) as lowering operator.

5. BCH Formula and sI(2, R) Generators of Bivariate Hermite
Polynomial

Proposition 5.1 If in equation (3.3), b be replaced by 2b(1 — e), the resultant bivariate
Hermite polynomial I:I\n,m (x,y, A") satisfies the equation :
e®Hyp (x,y, 4") = a™/2c™/% ™ HE () HE () (5.1

Proof. Due to a theorem for the BCH formula [6,7], if [X,Y] = sY and s € R, then we have:

N
eXe¥ = et



we choose X and Y in such a way that the BCH formula is simplified to equations that gives rise
to new relations of bivariate Hermite polynomials. Let assume X and Y in a modified form of bases
introduced in equations (4.6)

-2(1-e)b

N

b
X =D=Dyx)+Dy(y) —%axay , Y= 0,0, (5.2)

Where we used equation (3.14) and identities:
2% 0% % %
Dy(x) =e 2 (xdy)ez =x0, — 07 and Dy(y) =e 2z (yd))ez =yd, —0;
With respect to the commutation relation

2(1-e)b

[X,Y]=-Y= N 050y (5.3)
Then, we have: expXexpY =exp (X - —) = exp (X + ra d ) (5.4)
2(1 e)b

exp[ Dy (x) + Dy (v) — =0,y Jexp ( 0,9,) = exp (Dy (%) + Dy (¥))

—2b(1-e)

exp X exp ( 0x0y) = exp (Dy(x) + Dy (y)) (5.5)
Multiplying both sides of (5.5) by Hj (x)Hs, (y) , yields:
2b —2b(1-¢)
e[DH(x)‘HD)H(y) maxay] e( Jac axay)Hﬁ(x)Hren(y) — e(DH(xHDH(y))Hfl(x)Hﬁl(y) (5.6)

= e™ M HE () HR (v) (5.7)

e D-(m+m) ymin (m) (Z) (71?) (=1)* (Zb\(;l_ze))k e x(OHE_ (y) = HE()HE(Y) (5.8)

Where D is defined in equation (3.5). Comparing this with equation (3.3) shows the change b —
b' = 2b(1 — e) yields a new bivariate Hermite polynomial H,, ,, (x,y, A'):

min (n,m)
—~ my\ m _ -
BamCoy, )= > (08K () () /2650 21 () HE ()
k=0
min(n,m)
~ , m
AamCey 4y =a2em2 S 04i () (1) (o= r)" L COHE ()
k=0

(5.9
Where b’ = 2b(1 — e) . Substitution of equation (5.8) into (5.9) gives:
a 2cTm/2 MM L (x,y, AT) = HE(OHE () (5.10)

Or: e®Hy p(x,y,A") = a™2c™/2 ™ HE (x)HE, (¥)

6. The general form of differential operator representation of sI(2, R)
and BCH formula



Rodrigues’ formula for some orthogonal polynomials such as Hermite, Laguerre and Legendre
polynomials are defined by the action of specific differential operators on the n-th integer power
of some function B(x) , withn € N:

1 4"

B(x) = 5 (x2 = )" (6.1)
1d" ,.d

Ln(X) = ;m E — 1)"x" (62)

The B(x) in these equations is B(x) = x? — 1 and B(x) = x respectively.

Let B(x) and its integers exponents form a set {1, B(x), B?(x), ... , B™(x)} of independent basis
in polynomial space. One can interpret these formulas as transformations from polynomial space
basis {1,B(x), B?(x),.. ,B™(x)} to new basis i.e., Legendre, and Laguerre polynomials. The
definition of B(x) in Rodrigues’ formula limited to a polynomial with degree at most 2. However,
in this section we use B(x) with no limitation and as any kind of smooth functions with real
variable.

Proposition 6.1 The Lie algebra generators defined by differential operators that represents an
isomorphic algebra to sl (2, R), are represented as

B n D
h=—p-2, e=—,
Br 2 Br

BZ
f = ED —nB (63)
Where B' = B'(x) is the derivative of B = B(x).

Proof. 1t is straightforward to prove that these bases satisfy the commutation relations of sl(2, R)
in (2.7).

The polynomials B™(x) are eigenfunctions of the operator h as Cartan sub-algebra with integer
eigenvalues. As the author proved [9], similarity transformation of h with operators defined in
equations (6.1) and (6.2) yields the Legendre and Laguerre differential operators and equations
respectively. Solutions of these differential equations are the corresponding eigenfunctions.

We apply the specific case of the BCH formula that has been introduced in equation (2.21) [6,7]:

sXo
X1+—=%5
eXieX2 = "1 1S (6.4)

When the generators X; and X, satisfy the commutation relation
[X1,X; ] = sX; (6.5)

With s € R. Due to the commutation relation of sl(2, R), we obtain:

[h,e] =—e (6.6)
With s = —1, and e’ = (1 — e)e The commutation relation becomes:
[h,e']=(1—-¢e)[h,e]=—e"=—(1—-¢e)e (6.7)
BCH formula reads as:
exphexp e’ = exp (h - 1e—,e) =exp(h—e) (6.8)



Blp_Z4ie 6.9)

. ) D
If h is written as: h = — =
B’ B’ 2

n
-+
Br 2

Then we have:

o (0-D)ew(a-02) =on (50

exp (2D )exp((1-e)z) = exp(%7D) (6.10)
the inverse of both sides yields:

exp ((e — 1) o) exp(22D) = exp (=2 D) 6.11)
Example :

For the algebra of Laguerre differential equation and related differential operators D;, the
equivalent generators to h and e’ are [9]:

lehzi)’L—% , Y,=e' =(1-e)D, —xD) (6.12)

Where D; is called the Laguerre differential operator whose eigenfunctions are Laguerre
polynomials as is defined by:

Dj=—(xD? —xD + D) (6.13)
commutation relation reads as:
[Y1 , Yz] =-Y, (6.14)
Thus, for BCH formula we have:
exp (D}, — 2) exp(D}, — xD) = exp (D}, — > — D} +xD)

exp(Dy) exp[(1 — e) (D}, — xD)] = exp (xD) (6.16)

This is an exponential operational equation for D;, .

7. A new generating function for Hermite polynomials

A search on all types of generating functions for Hermite polynomials, reveals that all known
generating functions contain a factorial term in the denominators. In this section we present a new
generating function without factorial term in denominators of the related sum.

Proposition 7.1 A generating function for Hermite polynomials is:

- = (1-xt)?
g(x,t)=2n=0t"Hﬁ(x)=ﬁe @ T3 e )

(7.1)
-%% 1
Proof : Acting operator O = e z on the series Yy t"x™ = T due to equation (2.1) yields a

generating function for Hermite polynomials:
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_32 _az 1
gt =ee SRt =S HE () = e () (72)

1-xt
Expanding the right side obtains:

jtHa-x)~H1@2))!

g0 t) = Znzo(=1) o7 (7.3)
With respect to the identity
@) _ Vm (-2
2]']-! - l"(]—%) (74)
and denoting y = t~1(1 — xt) we have:
y? =J .1
gt =23, (X)) TG-9 (1.5)
By the identity for n-th derivative of z° whilen € N and s € R
dn o T(s+D) _sop
azn? T T(s+1-n) (7.6)
For s = —% we have:
L NI (7.7)
dz"” T TrG-m) '
d _1 —n
PR ldz”Z z _F( )z ZZn 1.1~ (7.8)

1"( -n)

The strict condition for convergence of this formal series is z # 0. By rewriting equation (7.8)
with j = n on the right side, we obtain:

n 1 1 —j
D ld—z‘E—rG)z‘Ez;‘;OF(Zl]) (7.9)

2
Comparing right side of this equation with (7.5) and changing variable y? = z and by the identity

r G) =+, equation (7.5) becomes:

1

V2tg(x,t) =z 2 +Zn 152 2 (7.10)

The right side of equation (7.10) can be calculated as follows:
n 1

L _t w dr -1 1 _1
z 2+ Yg- 1dznz Cz=YnionZ 2=—d(z z) (7.11)

dzmn 1-2

Then by the integral identity

11



Y
2)
3)
4)

5)

-2 z -z -1 zprl
—di(z 2)=—e feZz 2dz=e G, z) (7.12)
And Calculation of the integral, the equation (7.10) becomes:
g(x,t) = —eZF(% ) (7.13)

2
Or: gl t) = XX o t™HE (x) = —e T2tz F(l ,(1;:202) (7.14)

O

This is a new generating function for Hermite polynomials. As a test for validation of equation
(7.14), By knowing the limit:

limg(x,t) = limXn=ot"Hy(x) = 1 (7.15)

We find the limit of the right side of equation (7.14) when t — 0 :

a-x02 1 (1 xp)?
llmg(x t) = llmzn ot"HE(x) = llrr[}re 2t2 F(E ,( 2:2) ) =1 (7.16)

For validation of equation (7.16), we calculated the ltirr(% g(x,t) by online calculator keisan.

Calculations of equation (7.13) for z = 1200 and z = 2000 while t is small, result in 0.994 and
0.997 for g(x, t) respectively. This verifies the limit in equation (7.16) as expected.

Conclusion

By introducing a method for representation of sl(2, R) algebra with differential operators that are
involved in Hermite’s univariate and bivariate differential equations, a set of new relations for
Hermite polynomials are derived. The general form of this method could be applied for other
special polynomials like Laguerre and Legendre polynomials. Based on this method, a new
generating function for Hermite polynomial without the factorial terms in the denominators is
introduced.
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