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Lie Algebras of Univariate and Bivariate Hermite Polynomials 

and New Generating Function 

Manouchehr Amiri1, Tandis Hospital , Tehran, Iran 

Abstract  This paper presents the connections between univariate and bivariate Hermite polynomials and associated 

differential equations with specific representations of 𝔰𝔩(2, 𝑅) algebra whose Cartan sub-algebras coincide with the 

differential operators involved in these differential equations . Applying the Baker-Campbell-Hausdorff formula to 

these algebras, results in new relations and generating functions in one-variable and Bivariate Hermite polynomials. 

A general form of 𝔰𝔩(2, 𝑅) representation for other special polynomials such as Laguerre and Legendre  polynomials 

is introduced. A new generating function for Hermite polynomials is presented. 

MSC codes: 33C45 ; 16S30 ; 05A15 
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1. Introduction  
 

Hermite polynomials are among the most applicable special functions. These polynomials arise in  

diverse fields of probability, physics, numerical analysis, and signal processing. As an example, in 

quantum mechanics, eigenfunction solutions of quantum harmonic oscillators are described in 

terms of Hermite polynomials. Bivariate Hermite polynomials are useful in algebraic geometry and 

two-dimensional quantum harmonic oscillators [1-3,8]. Concerning the field of applications, 

Hermite polynomials in one variable are divided into probabilist and physicist versions. In the 

present paper, we focus on one and two-dimensional probabilist Hermite polynomials which are 

denoted as 𝐻𝑛𝑒(𝑥) and 𝐻𝑚,𝑛(𝑥, 𝑦, Λ) respectively. In sections 2,3,4 we prove that the differential 

operators which  are involved in the differential equations of Hermits polynomials, constitute 

representations for 𝔰𝔩(2, 𝑅) algebra. In sections 5,6 by introducing isomorphic Lie algebras whose 

Cartan sub-algebras are these differential operators and applying the Baker-Campbell-Hausdorff 

formula, new relations for one variable and bivariate Hermite polynomials has been presented. It 

is known that all known generating functions for Hermite polynomials contain a factorial term in 

the denominators. In section 7 we introduce a new generating function for one-variable Hermite 

polynomials without a factorial denominator.   

 

2. Lie algebra of Hermite polynomials of one variable 

Probabilistic Hermite polynomials, presented as: 

                                                       𝐻𝑛𝑒(𝑥) = 𝑒−𝐷22 𝑥𝑛                                                                  (2.1)  𝐻𝑛𝑒(𝑥) are probabilist Hermite polynomials or equivalently the solutions to Hermite differential 

equations and 𝐷 = 𝑑𝑑𝑥: 
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                                     𝔻𝐻 𝐻𝑛𝑒(𝑥) = (𝑥𝐷 − 𝐷2) 𝐻𝑛𝑒(𝑥) = 𝑛 𝐻𝑛𝑒(𝑥)                                          (2.2) 

Where 𝔻𝐻 is denoted  as 𝔻𝐻 = (𝑥𝐷 − 𝐷2) as Hermite differential operator. This is an eigenvalue 

problem with positive integer eigenvalues 𝑛. 

The equation (2.1)  is the transformation of basis (1, 𝑥, 𝑥2, 𝑥3, . . . ) under the action of operator 𝑒−𝐷22  

which is compatible with Rodrigues’ formula and results in probabilistic Hermite polynomials 𝐻𝑛𝑒(𝑥). The monomials 𝑥𝑛 expand a polynomial vector space 𝕍. The operator 𝑒−𝐷22  changes the 

basis 𝑥𝑛 into the basis  𝐻𝑛𝑒(𝑥) . Let 𝔤𝔩 (𝕍) denote the linear transformation that maps vector space 𝕍 onto itself. We present isomorphic Lie algebras of 𝔰𝔩(2, 𝑅) defined by 𝔰𝔩(2, 𝑅) modules on vector 

space 𝕍 which is a linear map 𝜙 defined by 𝜙 ∶  𝔰𝔩(2, 𝑅) →  𝔤𝔩 (𝕍) that preserves the commutator 

relations of 𝔰𝔩(2, 𝑅) [4,5]. 

                                               𝜙[𝑎, 𝑏] = [𝜙(𝑎), 𝜙(𝑏)]            𝑎, 𝑏 ∈ 𝔰𝔩(2, 𝑅)                                  (2.3) 

This representation is 𝔰𝔩(2, 𝑅) module over vector space 𝕍. 

First, we review the structure of the irreducible vector space representation of 𝔰𝔩(2, 𝑅).The 

generators of this algebra in matrix representation are as follows:                              

                                 𝐻 = 12 (1 00 −1) ,            𝑋 = (0 01 0) ,             𝑌 = (0 10 0)                           (2.4) 

The commutation relations for this representation of 𝔰𝔩(2, 𝑅) are: 

                                           [𝑋, 𝑌 ] = 2𝐻  ,   [𝐻, 𝑋 ] = −𝑋  ,  [𝐻, 𝑌 ] = 𝑌                                       (2.5) 

Let's define a representation of 𝔰𝔩(2, 𝑅) as its module over 𝕍 that preserves commutation relations 

by differential operators as its generators [4]: 

                              𝒉 = 𝑥𝐷 − 𝑛2   ,            𝒆 = 𝐷 = 𝜕𝑥  ,         𝒇 = 𝑥2𝐷 − 𝑛𝑥                                 (2.6) 

With the same commutation relations 

                                           [𝒆, 𝒇] = 2𝒉    ,    [𝒉, 𝒆] = −𝒆    , [𝒉, 𝒇] = 𝒇                                         (2.7) 

The Cartan sub-algebra 𝐻 = 𝒉 produces a decomposition of representation space:     

                                                                   𝕍 = ⨁ 𝕍𝑗                                                                       (2.8) 𝕍𝑗 are the eigenspace (eigenfunction) of generator 𝒉 as Cartan sub-algebra of 𝔰𝔩(2, 𝑅), and provides 

the solutions to the related differential equation. 

                                                                   𝒉𝕍𝑗 = 𝑓(𝑗)𝕍𝑗                                                                 (2.9) 

As an example, monomials 𝑥𝑛 are eigenfunctions or eigenspaces of generator 𝒉, realized as 

eigenspace 𝕍𝑛. The eigenvalues 𝑓(𝑗) in most cases equals an integer 𝑗 or 𝑗(𝑗 + 1) as we observe 

in Hermite, Laguerre, and Legendre differential equations. 

We search for a Lie algebra 𝕷𝐻 isomorphic to 𝔰𝔩(2, 𝑅) algebra that its generators to be defined 

based on Hermite differential operators. Here we apply the transformation operator 𝑒−𝐷22  as 
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described in equation (2.1) for Hermite polynomials to derive similarity transformations 

(conjugation) of  𝔰𝔩(2, 𝑅) bases as  follows: 

                               𝑋1 = 𝑒−𝐷22 𝒉 𝑒𝐷22  ,  𝑋2 = 𝑒−𝐷22 𝒆 𝑒𝐷22  ,  𝑋3 = 𝑒−𝐷22 𝒇 𝑒𝐷22                               (2.10) 

Concerning to a theorem in Lie algebra theory, these generators constitute an isomorphic Lie 

algebra to 𝔰𝔩(2, 𝑅) with similar commutation relations. We call this algebra as “ Hermite operator 
Lie algebra”. Due to the equation (2.1) that implies the change of basis 𝑥𝑛 to  𝐻𝑛𝑒(𝑥), the operator 𝑥𝐷  with eigenfunctions, 𝑥𝑛 corresponds to the operator 𝔻𝐻 with eigenfunctions 𝐻𝑛𝑒(𝑥) and 

common eigenvalues 𝑛 through a similarity transformation described by 

                                                               𝔻𝐻 = 𝑒−𝐷22 (𝑥𝐷) 𝑒𝐷22                                                          (2.11)  

 Therefore, we have:   

                                         𝑋1 = 𝑒−𝐷22 𝒉 𝑒𝐷22 = 𝑒−𝐷22 (𝑥𝐷 − 𝑛2)  𝑒𝐷22 = 𝔻𝐻 − 𝑛2                            ( 2.12)                  

Generator 𝑋2 simply is calculated as 
𝑑𝑑𝑥 = 𝐷.              

Proposition 2.1 For  𝑋3 we have: 

                                                       𝑋3 = (𝑥 − 𝐷)(𝔻𝐻 − 𝑛)      

 Proof: by equation (2.11) we have the identity: 

                         𝔻𝐻 = 𝑒−𝐷22 (𝑥𝐷)𝑒𝐷22 = (𝑒−𝐷22 𝑥 𝑒𝐷22 ) (𝑒−𝐷22 𝐷 𝑒𝐷22 ) = 𝑒−𝐷22 𝑥𝑒𝐷22 𝐷                        (2.13) 

Thus :                                              𝔻𝐻𝐷−1 = 𝑒−𝐷22 𝑥𝑒𝐷22                                                                 (2.14) 

By equation (2.2) we have:        (𝑥𝐷 − 𝐷2)𝐷−1 = (𝑥 − 𝐷) = 𝑒−𝐷22 𝑥𝑒𝐷22                                          (2.15)       

Now for 𝑋3 from (2.10) we have: 

                  𝑋3 = 𝑒−𝐷22 𝒇 𝑒𝐷22 = 𝑒−𝐷22 (𝑥2𝐷 − 𝑛𝑥) 𝑒𝐷22 = 𝑒−𝐷22 (𝑥2𝐷)𝑒𝐷22 − 𝑛𝑒−𝐷22 𝑥𝑒𝐷22                (2.16) 

By equations (2.13), (2.14), and (2.15) we get  

             𝑋3 = [𝑒−𝐷22 𝑥𝑒𝐷22 ] [𝑒−𝐷22 (𝑥𝐷)𝑒𝐷22 ] − 𝑛(𝑥 − 𝐷) =                              

                                                                      = (𝑥 − 𝐷)𝔻𝐻 − 𝑛(𝑥 − 𝐷) = (𝑥 − 𝐷)(𝔻𝐻 − 𝑛)           (2.17) 

          □ 

and for generators of this Lie algebra, we have:      

               𝑋1 = 𝑥𝐷 − 𝐷2 − 𝑛2 = 𝔻𝐻 − 𝑛2     ,   𝑋2 = 𝐷    ,     𝑋3 = (𝑥 − 𝐷)(𝔻𝐻 − 𝑛)              (2.18)   

Where 𝔻𝐻 denotes the Hermite differential operator i.e., 𝑥𝐷 − 𝐷2. The commutation relations 

coincide with the 𝔰𝔩(2, 𝑅) algebra as follows: 
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                                [𝑋1 , 𝑋2] = −𝑋2      , [𝑋1 , 𝑋3] = 𝑋3      , [𝑋2, 𝑋3] = 2𝑋1                          (2.19) 

 

Proposition 2.2  Hermite polynomials satisfy the equation:  

                                           𝑒−𝐷22 (𝑒−1+𝑥)𝑛 = 𝑒(𝔻𝐻 −𝑛− 𝐷1−𝑒) 𝐻𝑛𝑒(𝑥)                                          (2.20) 

 proof: Due to a theorem for the BCH formula [6,7], if [𝑋 , 𝑌] = 𝑠𝑌  for 𝑠 ∈ ℝ , we have:     

                                                           𝑒𝑋𝑒𝑌 = 𝑒𝑋+ 𝑠1−𝑒−𝑠𝑌
                                                          (2.21) 

 Respect to equation (2.19) for [𝑋1 , 𝑋2] , the BCH formula for 𝑋1 and 𝑋2 generators gives:     

                                                       𝑒[𝑥𝐷−𝐷2] 𝑒𝐷 = 𝑒[𝑥𝐷−𝐷2− 𝐷1−𝑒]                                              (2.22)   

The term − 𝑛2 in 𝑋1 was omitted because it has no role in commutation relation [𝑋1 , 𝑋2]. 
Multiplying both sides by 𝐻𝑛𝑒(𝑥)        

                                                  𝑒[𝑥𝐷−𝐷2] 𝑒𝐷𝐻𝑛𝑒(𝑥) = 𝑒[𝑥𝐷−𝐷2− 𝐷1−𝑒] 𝐻𝑛𝑒(𝑥)                             (2.23)  

For 𝑒𝐷𝐻𝑛𝑒(𝑥), by the identity 𝐷𝐻𝑛𝑒(𝑥) = 𝑛𝐻𝑛−1𝑒 (𝑥) we obtain:               

   𝑒𝐷𝐻𝑛𝑒(𝑥) = (1 + 𝐷 + 𝐷22! + . . . ) 𝐻𝑛𝑒(𝑥) = 𝐻𝑛𝑒(𝑥) + 𝑛𝐻𝑛−1𝑒 (𝑥) + 𝑛(𝑛−1)2! 𝐻𝑛−2𝑒 (𝑥)+ . . . +1  
Thus                                             𝑒𝐷𝐻𝑛𝑒(𝑥) = ∑ (𝑛𝑘) 𝐻𝑛−𝑘𝑒 (𝑥)𝑛𝑘=0                                            (2.24) 

Substituting in equation (2.23) and replacing Hermite differential operator 𝑥𝐷 − 𝐷2 with 𝔻𝐻 

gives 

                                               𝑒𝔻𝐻 ∑ (𝑛𝑘) 𝐻𝑛−𝑘𝑒 (𝑥)𝑛𝑘=0 = 𝑒𝔻𝐻 − 𝐷1−𝑒𝐻𝑛𝑒(𝑥)                                (2.25) 

                                                ∑ (𝑛𝑘) 𝑒𝔻𝐻𝐻𝑛−𝑘𝑒 (𝑥)𝑛𝑘=0 = 𝑒𝔻𝐻 − 𝐷1−𝑒𝐻𝑛𝑒(𝑥)                               (2.26) 

                                                ∑ (𝑛𝑘) 𝑒𝑛−𝑘 𝐻𝑛−𝑘𝑒 (𝑥)𝑛𝑘=0 = 𝑒𝔻𝐻 − 𝐷1−𝑒𝐻𝑛𝑒(𝑥)     

                                                ∑ (𝑛𝑘) 𝑒−𝑘 𝑒−𝐷22 𝑥𝑛−𝑘𝑛𝑘=0 = 𝑒(𝔻𝐻−𝑛 − 𝜕𝑥1−𝑒)𝐻𝑛𝑒(𝑥) 

                                                𝑒−𝐷22 ∑ (𝑛𝑘) (𝑒−1)𝑘 𝑥𝑛−𝑘𝑛𝑘=0 = 𝑒(𝔻𝐻 −𝑛− 𝐷1−𝑒)𝐻𝑛𝑒(𝑥)                 (2.27)          

                                                𝑒−𝐷22 (𝑒−1+𝑥)𝑛 = 𝑒(𝔻𝐻 −𝑛− 𝐷1−𝑒) 𝐻𝑛𝑒(𝑥) 

Or:                                           𝑒−(𝔻𝐻 −𝑛− 𝐷1−𝑒)𝑒−𝐷22 (𝑒−1+𝑥)𝑛 =  𝐻𝑛𝑒(𝑥)                                  (2.28) 

□ 

It is notable to compare this equation with  
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                                                𝑒−𝐷22 𝑥𝑛 = 𝐻𝑛𝑒(𝑥)                                                                      (2.29) 

3. Bivariate Hermite Polynomials  

An ordinary definition for bivariate Hermite polynomials is as follows [4-6]. 

                                           𝐻𝑛,𝑚(𝑠, 𝑡, 𝛬) = (−1)𝑛+𝑚𝑒𝜑(𝑠,𝑡)/2 𝜕𝑚+𝑛𝜕𝑠𝑚𝜕𝑡𝑛 [𝑒−𝜑(𝑠,𝑡)/2]                                 (3.1)       

            With definition 𝜑(𝑠, 𝑡) = 𝑎𝑠2 + 2𝑏𝑠𝑡 + 𝑐𝑡2 as a positive definite quadratic form and              

              𝛬 = [𝑎 𝑏𝑏 𝑐]. The equivalent equation for 𝐻𝑛,𝑚(𝑠, 𝑡, 𝛬) is [4-6]:               

            𝐻𝑛,𝑚(𝑠, 𝑡, 𝛬) = ∑ (−1)𝑘min (𝑛,𝑚)𝑘=0 𝑘! (𝑚𝑘 ) (𝑛𝑘) 𝑎(𝑛−𝑘) 2⁄ 𝑏𝑘𝑐(𝑚−𝑘) 2⁄ 𝐻𝑛−𝑘𝑒 (𝑎𝑠+𝑏𝑡√𝑎 )𝐻𝑚−𝑘𝑒 (𝑏𝑠+𝑐𝑡√𝑐 )   (3.2)        

With 𝑎, 𝑐 > 0, and 𝑎𝑐 − 𝑏2 > 0. By changing variables 𝑥 = 𝑎𝑠+𝑏𝑡√𝑎   and 𝑦 = 𝑏𝑠+𝑐𝑡√𝑐      𝐻̂𝑛,𝑚(𝑥, 𝑦, 𝛬) = ∑ (−1)𝑘min (𝑛,𝑚)𝑘=0 𝑘! (𝑚𝑘 ) (𝑛𝑘) 𝑎(𝑛−𝑘) 2⁄ 𝑏𝑘𝑐(𝑚−𝑘) 2⁄ 𝐻𝑛−𝑘𝑒 (𝑥)𝐻𝑚−𝑘𝑒 (𝑦)             (3.3)   

These polynomials satisfy the partial differential equation [4-6]:        

         [(𝑥 𝜕𝜕𝑥 − 𝜕2𝜕𝑥2) + (𝑦 𝜕𝜕𝑦 − 𝜕2𝜕𝑦2) − 2 𝑏√𝑎𝑐 𝜕2𝜕𝑥𝜕𝑦] 𝐻̂𝑚,𝑛(𝑥, 𝑦, 𝛬) = (𝑚 + 𝑛)𝐻̂𝑚,𝑛(𝑥, 𝑦, 𝛬)       (3.4) 

Let denote 𝔇 as the differential operator in differential equation (3.4)                                    

                                            𝔇 = (𝑥 𝜕𝜕𝑥 − 𝜕2𝜕𝑥2) + (𝑦 𝜕𝜕𝑦 − 𝜕2𝜕𝑦2) − 2 𝑏√𝑎𝑐 𝜕2𝜕𝑥𝜕𝑦                              (3.5)   

If we denote 𝜕𝑥 = 𝜕𝜕𝑥 and 𝜕𝑦 = 𝜕𝜕𝑦 , with the identities: 

                                        𝑒−𝜕𝑥22 𝑥𝑚−𝑘 = 𝐻𝑚−𝑘𝑒 (𝑥)   ,     𝑒−𝜕𝑦22 𝑦𝑛−𝑘 = 𝐻𝑛−𝑘𝑒 (𝑦)                                    (3,6)                                 

Equation (3.3) changes to 

             𝐻̂𝑛,𝑚(𝑥, 𝑦, 𝛬) = 𝑒−𝜕𝑥22 𝑒−𝜕𝑦22 ∑ (−1)𝑘min (𝑛,𝑚)𝑘=0 𝑘! (𝑛𝑘) (𝑚𝑘 ) 𝑎(𝑛−𝑘) 2⁄ 𝑏𝑘𝑐(𝑚−𝑘) 2⁄ 𝑥𝑛−𝑘𝑦𝑚−𝑘         (3.7) 

We denote the new polynomials as 𝑢𝑚,𝑛(𝑥, 𝑦): 
                     𝑢𝑛,𝑚(𝑥, 𝑦) = ∑ (−1)𝑘min(𝑛,𝑚)𝑘=0 𝑘! (𝑛𝑘) (𝑚𝑘 ) 𝑎(𝑛−𝑘) 2⁄ 𝑏𝑘𝑐(𝑚−𝑘) 2⁄ 𝑥𝑛−𝑘𝑦𝑚−𝑘        (3.8) 

These polynomials constitute a set of linearly independent basis, the transformation from these 

bases to 𝐻𝑛,𝑚(𝑥, 𝑦) is as follows: 

                               𝐻̂𝑛,𝑚(𝑥, 𝑦, 𝛬) = 𝑒−𝜕𝑥22 𝑒−𝜕𝑦22 𝑢𝑛,𝑚(𝑥, 𝑦) = 𝑒− 𝜕𝑥2+𝜕𝑦22 𝑢𝑛,𝑚(𝑥, 𝑦)                        (3.9)              

Therefore, the corresponding differential operator with 𝑢𝑛,𝑚(𝑥, 𝑦) as its eigenfunctions could be 

derived by similarity transformation:                                
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                                                             𝔇′ = 𝑒  𝜕𝑥2+𝜕𝑦22  𝔇 𝑒− 𝜕𝑥2+𝜕𝑦22                                                (3.10)                           

 𝔇 is denoted as the differential operator given in the eigenvalue equation (3.4). Thus, we have 

                                𝔇′ = 𝑒  𝜕𝑥2+𝜕𝑦22 [(𝑥𝜕𝑥 − 𝜕𝑥2) + (𝑦𝜕𝑦 − 𝜕𝑦2) − 2 𝑏√𝑎𝑐 𝜕𝑥𝜕𝑦] 𝑒− 𝜕𝑥2+𝜕𝑦22              (3.11) 

Proposition 3.1 The reduced form of 𝔇′ is: 

                                                    𝔇′ = 𝑥𝜕𝑥 + 𝑦𝜕𝑦 − 2 𝑏√𝑎𝑐 𝜕𝑥𝜕𝑦                                              (3.12) 

             Proof : Respect to equations (3.5) and (3.6) and the commutativity of 𝜕𝑥2 and 𝜕𝑦2 we get:                   

                𝔇′ = [𝑒  𝜕𝑥22 (𝑥𝜕𝑥 − 𝜕𝑥2)𝑒− 𝜕𝑥22 + 𝑒  𝜕𝑦22 (𝑦𝜕𝑦 − 𝜕𝑦2)𝑒− 𝜕𝑦22 − 2 𝑏√𝑎𝑐 (𝑒  𝜕𝑥22 𝜕𝑥𝑒− 𝜕𝑥22 )(𝑒  𝜕𝑦22 𝜕𝑦𝑒− 𝜕𝑦22 )]  (3.13) 

With respect to equations (2.2) , (2.11) to (2.15) we have: 

                                                       𝔻𝐻(𝑥) = 𝑒−𝜕𝑥22 𝑥𝜕𝑥 𝑒𝜕𝑥22                   

                                            𝑒𝜕𝑥22  𝔻𝐻 𝑒−𝜕𝑥22 =  𝑒𝜕𝑥22 (𝑥𝜕𝑥 − 𝜕𝑥2)𝑒−𝜕𝑥22 = 𝑥𝜕𝑥                                  (3.14) 

Repeating for 𝔻𝐻(𝑦) we get 

                                                            𝑒𝜕𝑦22  𝔻𝐻 𝑒−𝜕𝑦22 = 𝑦𝜕𝑦                                                       (3.15) 

 By the identities :      𝑒  𝜕𝑥22  𝜕𝑥 𝑒− 𝜕𝑥22 =  𝜕𝑥  ,   𝑒  𝜕𝑦22  𝜕𝑦 𝑒− 𝜕𝑦22 =  𝜕𝑦    

 Then equation (3.13) reduces to: 

                                                    𝔇′ = 𝑥𝜕𝑥 + 𝑦𝜕𝑦 − 2 𝑏√𝑎𝑐 𝜕𝑥𝜕𝑦                                                   □                                             

Therefore, the differential operator 𝔇′ satisfies the differential equation:       

                                                     𝔇′𝑢𝑛,𝑚(𝑥, 𝑦) = (𝑚 + 𝑛)𝑢𝑛,𝑚(𝑥, 𝑦)                                    (3.16) 

Its eigenvalues are the same as the differential equation (3.4), because 𝔇 and 𝔇′ are related by the 

similarity relation (3.10).                                                                                 

4. Bivariate Hermite Polynomials as 𝖘𝖑(𝟐, 𝑹) Modules           
 

In this section we introduce an associated Lie algebra of bivariate Hermite differential operator. 

First, we search for the compatible 𝔰𝔩(2, 𝑅) algebra in terms of differential operators of two 

variables. with respect to equations (2.6) and (2.7) the Cartan sub-algebra of 𝔰𝔩(2, 𝑅) can be taken 

as: 

                                                         𝒉 = 12 (𝑥𝜕𝑥 + 𝑦𝜕𝑦 + 1) + 𝛼𝜕𝑥𝜕𝑦                                       (4.1) 

 The additional term 𝛼𝜕𝑥𝜕𝑦 has been chosen to satisfy the required commutation relations. The 

other generators are proposed as 
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                                  𝒆 = 𝛼 𝜕𝑥𝜕𝑦          ,             𝒇 = 12𝛼 𝑥𝑦 + 12 (𝑥𝜕𝑥 + 𝑦𝜕𝑦) + 𝛼4  𝜕𝑥𝜕𝑦           (4.2) 

 These generators satisfy the commutation relations of 𝔰𝔩(2, 𝑅) as described in (2.7): 

                       [𝒉 , 𝒆] = −𝒆           ,      [𝒉 , 𝒇] = 𝒇         ,          [𝒆 , 𝒇] = 𝟐𝒉                              (4.3) 

 By substituting 𝛼 = −𝑏√𝑎𝑐  and  respect  to equations (3.12) and (3.16) and (4.1), the Cartan sub-

algebra 𝒉 satisfies the differential equation:                     

                                                𝒉 𝑢𝑛,𝑚(𝑥, 𝑦) =  12 [(𝑥𝜕𝑥 + 𝑦𝜕𝑦 + 1) − 2𝑏√𝑎𝑐 𝜕𝑥𝜕𝑦] 𝑢𝑛,𝑚(𝑥, 𝑦) 

                    =  12 [(𝑚 + 𝑛)𝑢𝑛,𝑚(𝑥, 𝑦) + 𝑢𝑛,𝑚(𝑥, 𝑦)] = 12 (𝑚 + 𝑛 + 1)𝑢𝑛,𝑚(𝑥, 𝑦)                                 (4.4) 

Thus 𝑢𝑛,𝑚(𝑥, 𝑦) are eigenfunctions or weight vectors of 𝒉 as Cartan sub-algebra of 𝔰𝔩(2, 𝑅). 

According to the equation   

                                                 𝑒− 𝜕𝑥2+𝜕𝑦22 𝑢𝑛,𝑚(𝑥, 𝑦) = 𝐻𝑛,𝑚(𝑥, 𝑦)                                               (4.5)   

With respect to equations (2.11),(2.12) and (2.15), the similarity transformation of generators 𝒉, 𝒆, and 𝒇 by operator 𝑒− 𝜕𝑥2+𝜕𝑦22  yields: 

                                            𝒉′ = 12 (𝔻𝐻(𝑥) + 𝔻𝐻(𝑦) + 1) − 𝑏√𝑎𝑐 𝜕𝑥𝜕𝑦                                     (4.6) 

                                            𝒆′ =  − 𝑏√𝑎𝑐 𝜕𝑥𝜕𝑦      

                                            𝒇′ = − √𝑎𝑐2𝑏 (𝑥 − 𝜕𝑥)(𝑦 − 𝜕𝑦) + 12 [𝔻𝐻(𝑥) + 𝔻𝐻(𝑦)] − 𝑏4√𝑎𝑐 𝜕𝑥𝜕𝑦 

The bivariate Hermite polynomials 𝐻𝑛,𝑚(𝑥, 𝑦) are eigenfunctions of 𝒉′ with eigenvalues 
12 (𝑚 +𝑛 + 1).                                    

The lowering operator in this algebra is given by: 

                                                             𝐴− = 𝒆′ = − 𝑏√𝑎𝑐  𝜕𝑥𝜕𝑦                                                   (4.7) 𝒉′ represents the Cartan subalgebra of related Lie algebra. One of the commutator relations: 

                                                             [𝒉′ , 𝐴−] = −𝐴− = 𝑏√𝑎𝑐 𝜕𝑥𝜕𝑦                                          (4.8) 

 𝐴− = 𝒆′ is applicable in BCH formula. This operator  acts on 𝐻𝑛,𝑚(𝑥, 𝑦) as lowering operator.                        

 

5. BCH Formula and 𝖘𝖑(𝟐, 𝑹) Generators of Bivariate Hermite 

Polynomial 
 

Proposition  5.1 If in equation (3.3), 𝑏  be replaced by 2𝑏(1 − 𝑒), the resultant bivariate  

Hermite polynomial 𝐻̂𝑛,𝑚(𝑥, 𝑦, 𝛬′) satisfies the equation : 

                                𝑒𝔇𝐻̂𝑛,𝑚(𝑥, 𝑦, 𝛬′) = 𝑎𝑛 2⁄ 𝑐𝑚 2 ⁄ 𝑒𝑚+𝑛𝐻𝑛𝑒(𝑥)𝐻𝑚𝑒 (𝑦)                              (5.1) 

            Proof. Due to a theorem for the BCH formula [6,7], if  [𝑋 , 𝑌] = 𝑠𝑌 and 𝑠 ∈ ℝ, then we have: 

                                                                      𝑒𝑋𝑒𝑌 = 𝑒𝑋+ 𝑠1−𝑒−𝑠𝑌
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 we choose 𝑋 and 𝑌 in such a way that the BCH formula is simplified to equations that gives rise 

to new relations of bivariate Hermite polynomials. Let assume 𝑋 and 𝑌 in a modified form of  bases 

introduced in equations (4.6)      

                        𝑋 = 𝔇 = 𝔻𝐻(𝑥) + 𝔻𝐻(𝑦) − 2𝑏√𝑎𝑐 𝜕𝑥𝜕𝑦       ,         𝑌 = −2(1−𝑒)𝑏√𝑎𝑐 𝜕𝑥𝜕𝑦               (5.2) 

Where we used equation (3.14) and identities:   

                𝔻𝐻(𝑥) = 𝑒− 𝜕𝑥22 (𝑥𝜕𝑥)𝑒𝜕𝑥22 = 𝑥𝜕𝑥 − 𝜕𝑥2  and    𝔻𝐻(𝑦) = 𝑒− 𝜕𝑦22 (𝑦𝜕𝑦)𝑒𝜕𝑦22 = 𝑦𝜕𝑦 − 𝜕𝑦2     

 With respect to the commutation relation 

                                                     [𝑋 , 𝑌] = −𝑌 = 2(1−𝑒)𝑏√𝑎𝑐 𝜕𝑥𝜕𝑦                                                  (5.3)                    

Then, we have:              exp 𝑋 exp 𝑌 = exp (𝑋 − 𝑌1−𝑒) = exp (𝑋 + 2𝑏√𝑎𝑐 𝜕𝑥𝜕𝑦)                         (5.4)                            

               exp[ 𝔻𝐻(𝑥) + 𝔻𝐻(𝑦) − 2𝑏√𝑎𝑐 𝜕𝑥𝜕𝑦]exp (−2(1−𝑒)𝑏√𝑎𝑐 𝜕𝑥𝜕𝑦) = exp (𝔻𝐻(𝑥) + 𝔻𝐻(𝑦))     
                                         exp 𝑋 exp (−2𝑏(1−𝑒)√𝑎𝑐 𝜕𝑥𝜕𝑦) = exp (𝔻𝐻(𝑥) + 𝔻𝐻(𝑦))                       (5.5)    

Multiplying both sides of (5.5) by 𝐻𝑛𝑒(𝑥)𝐻𝑚𝑒 (𝑦) , yields: 

                  𝑒[𝔻𝐻(𝑥)+𝔻𝐻(𝑦)− 2𝑏√𝑎𝑐𝜕𝑥𝜕𝑦] 𝑒(−2𝑏(1−𝑒)√𝑎𝑐 𝜕𝑥𝜕𝑦)𝐻𝑛𝑒(𝑥)𝐻𝑚𝑒 (𝑦) = 𝑒(𝔻𝐻(𝑥)+𝔻𝐻(𝑦))𝐻𝑛𝑒(𝑥)𝐻𝑚𝑒 (𝑦)         (5.6) 

                                                                                             = 𝑒𝑚+𝑛𝐻𝑛𝑒(𝑥)𝐻𝑚𝑒 (𝑦)                    (5.7)          𝑒𝔇−(𝑚+𝑛) ∑ 𝑘! (𝑛𝑘) (𝑚𝑘 ) (−1)𝑘 (2𝑏(1−𝑒)√𝑎𝑐 )𝑘 𝐻𝑛−𝑘𝑒 (𝑥)𝐻𝑚−𝑘𝑒 (𝑦) = 𝐻𝑛𝑒(𝑥)𝐻𝑚𝑒 (𝑦)min (𝑚,𝑛)𝑘=0   (5.8)  

 Where 𝔇 is defined in equation (3.5). Comparing this with equation (3.3) shows the change 𝑏 →𝑏′ = 2𝑏(1 − 𝑒) yields a new bivariate Hermite polynomial 𝐻̂𝑛,𝑚(𝑥, 𝑦, 𝛬′): 

𝐻̂𝑛,𝑚(𝑥, 𝑦, 𝛬) = ∑ (−1)𝑘min (𝑛,𝑚)
𝑘=0 𝑘! (𝑚𝑘 ) (𝑛𝑘) 𝑎(𝑛−𝑘) 2⁄ 𝑏𝑘𝑐(𝑚−𝑘) 2⁄ 𝐻𝑛−𝑘𝑒 (𝑥)𝐻𝑚−𝑘𝑒 (𝑦) 

𝐻̂𝑛,𝑚(𝑥, 𝑦, 𝛬′) = 𝑎𝑛 2⁄ 𝑐𝑚 2 ⁄ ∑ (−1)𝑘min(𝑛,𝑚)
𝑘=0 𝑘! (𝑚𝑘 ) (𝑛𝑘) ( 𝑏′√𝑎𝑐)𝑘  𝐻𝑛−𝑘𝑒 (𝑥)𝐻𝑚−𝑘𝑒 (𝑦) 

(5.9) 

Where  𝑏′ = 2𝑏(1 − 𝑒) . Substitution of equation (5.8) into (5.9) gives: 

                                   𝑎−𝑛 2⁄ 𝑐−𝑚 2 ⁄ 𝑒𝔇−(𝑚+𝑛)𝐻̂𝑛,𝑚(𝑥, 𝑦, 𝛬′) = 𝐻𝑛𝑒(𝑥)𝐻𝑚𝑒 (𝑦)                         (5.10) 

 Or:                              𝑒𝔇𝐻̂𝑛,𝑚(𝑥, 𝑦, 𝛬′) = 𝑎𝑛 2⁄ 𝑐𝑚 2 ⁄ 𝑒𝑚+𝑛𝐻𝑛𝑒(𝑥)𝐻𝑚𝑒 (𝑦)                                           

 

6. The general form of differential operator representation of 𝖘𝖑(𝟐, 𝑹) 

and BCH formula 
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Rodrigues’ formula for some orthogonal polynomials such as Hermite, Laguerre and Legendre 

polynomials are defined by the action of specific differential operators on the n-th integer power 

of some function 𝐵(𝑥) , with 𝑛 ∈ ℕ: 

 

                                                        𝑃𝑛(𝑥) = 12𝑛𝑛! 𝑑𝑛𝑑𝑥𝑛 (𝑥2 − 1)𝑛                                          (6.1)    

                                                        𝐿𝑛(𝑥) = 1𝑛! 𝑑𝑛𝑑𝑥𝑛 ( 𝑑𝑑𝑥 − 1)𝑛𝑥𝑛                                         (6.2) 

             The 𝐵(𝑥) in these equations is 𝐵(𝑥) = 𝑥2 − 1 and 𝐵(𝑥) = 𝑥 respectively.                              

Let 𝐵(𝑥) and its integers exponents form a set {1 , 𝐵(𝑥),  𝐵2(𝑥) , … , 𝐵𝑛(𝑥)} of independent basis 

in polynomial space. One can interpret these formulas as transformations from polynomial space 

basis {1 , 𝐵(𝑥),  𝐵2(𝑥) , … , 𝐵𝑛(𝑥)}  to new basis i.e., Legendre, and Laguerre polynomials. The 

definition of 𝐵(𝑥) in Rodrigues’ formula limited to a polynomial with degree at most 2. However, 

in this section we use 𝐵(𝑥) with no limitation and as any kind of smooth functions with real 

variable.  

Proposition 6.1 The Lie algebra generators defined by differential operators that represents an 

isomorphic algebra to sl (2, R), are represented as 

                               𝒉 = 𝐵𝐵′ 𝐷 − 𝑛2  ,             𝒆 = 𝐷𝐵′  ,            𝒇 = 𝐵2𝐵′ 𝐷 − 𝑛𝐵                               (6.3) 

 Where 𝐵′ = 𝐵′(𝑥) is the derivative of 𝐵 = 𝐵(𝑥).  

Proof. It is straightforward to prove that these bases satisfy the commutation relations of 𝔰𝔩(2, 𝑅) 

in (2.7).             

The polynomials 𝐵𝑛(𝑥) are eigenfunctions of the operator 𝒉 as Cartan sub-algebra with integer 

eigenvalues. As the author proved [9], similarity transformation of 𝒉 with operators defined in 

equations (6.1) and (6.2) yields the Legendre and Laguerre differential operators and equations 

respectively. Solutions of these differential equations are the corresponding eigenfunctions.  

We apply the specific case of the BCH formula that has been introduced in equation (2.21)  [6,7]: 

                                                              𝑒𝑋1𝑒𝑋2 = 𝑒𝑋1+ 𝑠𝑋21−𝑒−𝑠                                                       (6.4) 

 When the generators 𝑋1 and 𝑋2 satisfy the commutation relation 

                                                              [𝑋1 , 𝑋2 ] = 𝑠𝑋2                                                             (6.5) 

 With 𝑠 ∈ ℝ. Due to the commutation relation of 𝔰𝔩(2, 𝑅), we obtain: 

                                                              [𝒉 , 𝒆] = −𝒆                                                                   (6.6) 

With 𝑠 = −1, and 𝒆′ = (1 − 𝑒)𝒆 The commutation relation becomes: 

                                                              [𝒉 , 𝒆′] = (1 − 𝑒)[𝒉 , 𝒆] = −𝒆′ = −(1 − 𝑒)𝒆              (6.7) 

BCH formula reads as: 

                                   exp𝒉 exp 𝒆′ = exp (𝒉 − 𝒆′1−𝑒) = exp(𝒉 − 𝒆)                                          (6.8)     
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If 𝒉 is written as:                   𝒉 = 𝐵−1𝐵′ 𝐷 − 𝑛2 + 𝐷𝐵′ = 𝐵−1𝐵′ 𝐷 − 𝑛2 + 𝒆                                          (6.9) 

Then we have: 

                          exp ( 𝐵𝐵′ 𝐷 − 𝑛2) exp ((1 − 𝑒) 𝐷𝐵′) = exp (𝐵−1𝐵′ 𝐷 − 𝑛2)         

                          exp ( 𝐵𝐵′ 𝐷) exp ((1 − 𝑒) 𝐷𝐵′) = exp (𝐵−1𝐵′ 𝐷)                                                   (6.10) 

the inverse of both sides yields: 

                          exp ((𝑒 − 1) 𝐷𝐵′) exp (−𝐵𝐵′ 𝐷) = exp (1−𝐵𝐵′ 𝐷)                                                  (6.11) 

Example : 

For the algebra of Laguerre differential equation and related differential operators 𝔇𝐿′ , the 

equivalent generators to 𝒉 and 𝒆′ are [9]: 

                            𝑌1 = 𝒉 = 𝔇𝐿′ − 𝑛2    ,     𝑌2 = 𝒆′ = (1 − 𝑒)(𝔇𝐿′ − 𝑥𝐷)                                 (6.12) 

Where 𝔇𝐿′  is called the Laguerre differential operator  whose eigenfunctions are Laguerre 

polynomials as is defined by: 

                                                    𝔇𝐿′ = −(𝑥𝐷2 − 𝑥𝐷 + 𝐷)                                                        (6.13) 

 commutation relation reads as: 

                                                           [𝑌1 , 𝑌2] = −𝑌2                                                                (6.14) 

 Thus, for BCH formula we have: 

                                           exp (𝔇𝐿′ − 𝑛2) exp(𝔇𝐿′ − 𝑥𝐷) = exp (𝔇𝐿′ − 𝑛2 − 𝔇𝐿′ + 𝑥𝐷)     

                                           exp(𝔇𝐿′ ) exp[(1 − 𝑒)(𝔇𝐿′ − 𝑥𝐷)] = exp ( 𝑥𝐷)                            (6.16) 

This is an exponential operational equation for 𝔇𝐿′  . 

                

7. A new generating function for Hermite polynomials 

A search on all types of generating functions for Hermite polynomials, reveals that all known 

generating functions contain a factorial term in the denominators. In this section we present a new 

generating function without factorial term in denominators of the related sum.  

Proposition 7.1   A generating function for Hermite polynomials is: 

                                           𝑔(𝑥, 𝑡) = ∑ 𝑡𝑛𝐻𝑛𝑒(𝑥)∞𝑛=0 = 1√2𝑡 𝑒  (1−𝑥𝑡)22𝑡2 Γ( 12   , (1−𝑥𝑡)22𝑡2 )                    (7.1) 

Proof : Acting operator 𝑂 = 𝑒−𝜕𝑥22  on the series ∑ 𝑡𝑛𝑥𝑛∞𝑛=0 = 11−𝑥𝑡 due to equation (2.1) yields a 

generating function for Hermite polynomials: 



11 

 

                                                        𝑔(𝑥, 𝑡) = 𝑒−𝜕𝑥22 ∑ 𝑡𝑛𝑥𝑛∞𝑛=0 = ∑ 𝑡𝑛𝐻𝑛𝑒∞𝑛=0 (𝑥) = 𝑒−𝜕𝑥22 ( 11−𝑥𝑡)           (7.2) 

              Expanding the right side obtains: 

                                                 𝑔(𝑥, 𝑡) = ∑ (−1)𝑗 𝑡2𝑗(1−𝑥𝑡)−2𝑗−1(2𝑗)!2𝑗𝑗!∞𝑛=0                                     (7.3) 

With respect to the identity 

                                                                 
(2𝑗)!2𝑗𝑗! = √𝜋 (−2)𝑗Γ(𝑗−12)                                                             (7.4) 

and denoting 𝑦 = 𝑡−1(1 − 𝑥𝑡) we have: 

                                                 𝑔(𝑥, 𝑡) = √𝜋1−𝑥𝑡 ∑ (𝑦22 )−𝑗∞𝑛=0 Γ(𝑗 − 12)−1                                     (7.5)          

               

By the identity for n-th derivative of 𝑧𝑠 while 𝑛 ∈ ℕ and 𝑠 ∈ ℝ 

                                                             
𝑑𝑛𝑑𝑧𝑛 𝑧𝑠 = Γ(𝑠+1)Γ(𝑠+1−𝑛) 𝑧𝑠−𝑛                                                   (7.6) 

For 𝑠 = − 12  we have:                                                                                        

                                                             
𝑑𝑛𝑑𝑧𝑛 𝑧− 12 = Γ(12)Γ(12−𝑛) 𝑧− 12−𝑛

                                                 (7.7) 

 

                                                         ∑ 𝑑𝑛𝑑𝑧𝑛 𝑧− 12 =∞𝑛=1 Γ(12)𝑧− 12 ∑ 𝑧−𝑛Γ(12−𝑛)∞𝑛=1                                 (7.8) 

The strict condition for convergence of this formal series is 𝑧 ≠ 0. By rewriting equation (7.8) 

with 𝑗 = 𝑛 on the right side, we obtain: 

                                                           𝑧− 12 + ∑ 𝑑𝑛𝑑𝑧𝑛 𝑧− 12 =∞𝑛=1 Γ (12) 𝑧− 12 ∑ 𝑧−𝑗Γ(12−𝑗)∞𝑗=0                             (7.9) 

Comparing right side of this equation with (7.5) and changing variable  
𝑦22 = 𝑧 and by the identity Γ (12) = √𝜋 , equation (7.5) becomes: 

                                                       √2𝑡𝑔(𝑥, 𝑡) = 𝑧− 12 + ∑ 𝑑𝑛𝑑𝑧𝑛 𝑧− 12∞𝑛=1                                                (7.10) 

The right side of equation (7.10) can be calculated as follows: 

                                      𝑧− 12 + ∑ 𝑑𝑛𝑑𝑧𝑛 𝑧− 12 =∞𝑛=1 ∑ 𝑑𝑛𝑑𝑧𝑛 𝑧− 12 =∞𝑛=0 11− 𝑑𝑑𝑧 (𝑧− 12)                           (7.11) 

Then by the integral identity 
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11− 𝑑𝑑𝑧 (𝑧− 12) = −𝑒𝑧 ∫ 𝑒−𝑧  𝑧− 12 𝑑𝑧 = 𝑒𝑧Γ(12  , 𝑧)                             (7.12) 

And Calculation of the integral, the equation (7.10) becomes: 

                                                         𝑔(𝑥, 𝑡) = 1√2𝑡 𝑒𝑧Γ( 12  , 𝑧)                                                  (7.13) 

Or:                                 𝑔(𝑥, 𝑡) = ∑ 𝑡𝑛𝐻𝑛𝑒∞𝑛=0 (𝑥) = 1√2𝑡 𝑒  (1−𝑥𝑡)22𝑡2 Γ( 12   , (1−𝑥𝑡)22𝑡2 )                      (7.14) 

□ 

This is a new generating function for Hermite polynomials. As a test for validation of equation 

(7.14), By knowing the limit: 

                                                lim𝑡→0 𝑔(𝑥, 𝑡) = lim𝑡→0 ∑ 𝑡𝑛𝐻𝑛𝑒(𝑥)∞𝑛=0 = 1                                      (7.15) 

We find the limit of the right side of equation (7.14) when 𝑡 → 0 : 

                 lim𝑡→0 𝑔(𝑥, 𝑡) = lim𝑡→0 ∑ 𝑡𝑛𝐻𝑛𝑒(𝑥)∞𝑛=0 = lim𝑡→0 1√2𝑡 𝑒  (1−𝑥𝑡)22𝑡2 Γ ( 12   , (1−𝑥𝑡)22𝑡2 ) = 1                 (7.16) 

For validation of equation (7.16), we calculated the lim𝑡→0 𝑔(𝑥, 𝑡) by online calculator keisan. 

Calculations of equation (7.13) for  𝑧 = 1200 and 𝑧 = 2000 while 𝑡 is small, result in 0.994 and 

0.997 for 𝑔(𝑥, 𝑡) respectively. This verifies the limit in equation (7.16) as expected. 

 

Conclusion  

By introducing a method for representation of 𝔰𝔩(2, 𝑅) algebra with differential operators that are  

involved in Hermite’s univariate and bivariate differential equations, a set of new relations for 

Hermite polynomials are derived. The general form of this method could be applied for other 

special polynomials like Laguerre and Legendre polynomials.  Based on this method, a new 

generating function for Hermite polynomial without the factorial terms in the denominators is 

introduced.  
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