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Abstract. It is well known that there is a hindrance to fusion in collisions with heavy nuclei that plays a
decisive role in synthesis of the super-heavy elements (SHE). The origin of the fusion hindrance is nowadays
qualitatively understood but there are still quantitative ambiguities on the dynamics of the fusion mechanism and
the predictions need to be assessed. In this communication, we stress the fact that dynamical effects play a crucial
role in the amplitude of the reduction of the fusion probability. We found that the fast evolution of the neck degree
of freedom affects the slow radial motion, i.e., the fusioning motion, through a dynamical coupling. We showed
that we could do a so-called adiabatic elimination of the fast variable in the coupled equation, resulting in an
effective one-dimensional equation for the radial motion with a shift of the starting point. This treatment of the
dynamical coupling leads to a larger hindrance.

1 Introduction

It is well known that there is a hindrance to fusion in col-
lisions with heavy nuclei. Since this so-called fusion hin-
drance plays a decisive role in the synthesis of the super-
heavy elements (SHE), its physical mechanism should be
understood clearly. Furthermore, the fusion probability should
be predicted systematically in a quantitative way.

The origin of the fusion hindrance is nowadays qualita-
tively understood: after crossing the Coulomb barrier, the
fusing system at contact have to overcome a second barrier
under strong dissipation. This inner barrier does not exist
for lighter systems that directly reach the compound state
after crossing the Coulomb barrier. See Fig. 1 for few ex-
amples. Such an interpretation is commonly accepted, but
there are still quantitative ambiguities on the dynamics of
the fusion mechanism and one has to find ways to assess
the various models.

The theoretical description of the fusion is then divided
into two steps: the capture process related to the crossing
of the Coulomb barrier and the formation process related
to the inner barrier. For the Coulomb barrier, one can eas-
ily extrapolate the models validated on the fusion of lighter
nuclei. Note that for this first step a so-called fusion hin-
drance at energies far below the barrier also exists. In this
paper, we will focus on the large hindrance at the barrier
energies due to the inner barrier.

The discrepancies between the various models are two-
fold. Therefore, one of the challenges is to find ways to
assess both the size of the inner barrier and the dynamical
description of the diffusion process over it. We will briefly
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Fig. 1. The relation between the contact point and the saddle
point for different reactions. The abscissa and ordinate stands for
the distance between the two touching nuclei and LDM potential
(ε = 0.1), respectively. The vertical dashed line corresponds to
the contact pointr = 1.6 for symmetric reactions. See text for
explanation of the parameters.

show our latest achievements regarding these problems in
this contribution.

One of our goals is also to obtain an analytical formula
of the fusion probability for an incident channel with an
arbitrary combination of projectile and target nuclei.
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2 Appearance of the hindrance to the
fusion

Very heavy nuclei have a large fissibility and become un-
stable if they are slightly deformed. The fission saddle point
is close to the spherical shape. This means that for the re-
verse fusion reaction, after the contact, the fusing mono-
nucleus faces an inner potential barrier that does not exist
with light nuclei. This inner barrier is responsible for the
large fusion hindrance that is observed experimentally.

To describe what happens between the touching and
the compound configurations, we describe the deformed
mononucleus using the so-called two-centre parameteri-
zation that involves three parameters that are the relative
distance between the two centres, the asymmetry and the
neck. The potential landscape is then calculated with the
Liquid Drop Model.

The inner barrier that hinders fusion depends on the
reaction pass followed by the mononucleus system on its
journey to the compound shape. Recently, we have clari-
fied that the neck degree of freedom of di-nucleus system
is quick to reach equilibrium [1]. This is due to the fact that
the potential always drives the neck towards filling the cleft
between the two nuclei. This was checked systematically
[2].

Up to now, the size of the neck was considered as an
adjustable parameter in most of the models. The neck pa-
rameter was abitrarily fixed to 1 in Ref. [3] and 0.7 in Ref.
[4]. Some other references [5] do not mention its value.
Therefore, the dynamical study showing the fast deneck-
ing process is a useful step in the assessement of the vari-
ous model. Note that this result contradicts the conclusion
of Refs. [6,7] that argue that the neck parameter is frozen
during the fusion process.

Then, we have studied systematically the appearance
of the hindrance for a configuration without neck (ε= 0.1),
for symmetric reactions [8,9] and then all reactions [2].
And a borderline was drawn between hindered and non-
hindered reactions. See Fig. 2. It is validated by the ex-
perimental observations: for example, for symmetric reac-
tions, the large hindrance phenomenon appears somewhere
between the100Mo + 100Mo and the110Pd+110Pd systems.

The knowledge of the location of the border between
hindered and non-hindered reactions is a way to constrain
the models.

3 Dynamical effects

3.1 Dissipation

The potential landscape is one of the key ingredients to
understand the appearance of the hindrance to fusion. To
evaluate the effect on the fusion probabilities or cross sec-
tions, one needs a dynamical study. Most of the models are
based on stochastic dynamics for this step because the for-
mation is due to the thermal diffusion over the inner barrier.
They use either Langevin type equations or its equivalent
Klein-Kramers one.

Fig. 2. Borderlines of the radial fusion hindrance. Reactions lo-
cated inside the lines do not have radial fusion hindrance, while
reactions located outside the lines are hindered in the radial direc-
tion. Three reactions and the line ofβ-stability are also plotted.
The abscissa and ordinate stands for the neutron numberN and
proton numberZ of the compound nucleus, respectively.

Assuming a simple one-dimensional parabolic barrier,
the formation probability can be calculated analytically [10,
11],

P(K) =
1
2

erfc

√ B
T
−

1

x+
√

1+ x2

√
K
T

 , (1)

whereB corresponds to the barrier height,T to the tem-
perature andK to the remaining kinetic energy along the
fusion path at contact. Here,x = β/(2ω), with β the re-
duced friction andω, the angular frequency of the inverted
parabola. The kinetic energy necessary to have half of the
trajectories to pass over the barrier is easily calculated as

Kc =
(
x+
√

1+ x2
)2

B. (2)

It can be far higher thanB, the real barrier. Dissipation
appears to play an important role. As there are still am-
biguities on the strength of the dissipation parameter, this
introduces another parameter.

But when the dissipation is very large and the remain-
ing kinetic energy at contact has vanished for reactions
close to the barrier, this formula simply becomes

P(K) =
1
2

erfc

√ B
T

 , (3)

in a pure diffusive regime [11]. It does not depend onβ
anymore. This is due to the fluctuation-dissipation theo-
rem: larger friction means stronger random force.

The key parameter is therefore the size of the barrierB
that depends on the real path followed by the mononucleus
system on its journey to the compound shape. And then,
the question is how to reduce a multidimensional dynamics
into a one dimensional one?
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3.2 Adiabatical approximation

The three parameters of the two-centre shell model are
connected through the potential landscape, and the inertia
and friction tensors.

Here, for the sake of simplicity, we only consider two
degrees of freedom: the relative distance between the two
centresR and the neckε. This will limit our analysis to
symmetric reactions. The formation dynamics can be de-
scribed by the two-dimension Langevin equation

[γ]

[
ε̇
ṙ

]
= −

[
∂V/∂ε
∂V/∂r

]
+

[
ρ1(t)
ρ2(t)

]
, (4)

for which we have neglected the inertia term, in order to be
consistent with the Smoluchowski approximation that cor-
responds to a purely diffusive process. The random force
satisfies the fluctuation-dissipation theorem,

〈ρi(t)ρ j(t
′)〉 = 2Tγi jδ(t − t′). (5)

In this equation,r is a dimensionless variable defined as
r = R/R0, R0 being the radius of the compound nucleus
andε corresponds to the neck variable.ε = 1 means two
touching hard spheres andε = 0 no neck.

We will assume here that around the saddle, the friction
tensorγ is independent ofr andε. The potential map is
such as it has a U shape for the neck variable and a barrier
shape for the radial one. It is confining for the neck. Then,
during the fast evolution of the neck, the relative distance
appears to be frozen. The neck dynamics could be approx-
imately studied as follow,

ε̇ = −[γ−1]εε
∂V
∂ε
− [γ−1]rε

∂V
∂r
+ rε(t) (6)

' −[γ−1]εε
∂V
∂ε
− [γ−1]rε

∂V
∂r

∣∣∣∣∣
r=r0

+ rε(t). (7)

Once the neck has reached its asymptotic value, it does not
evolve anymore due to the large confinement potential.

The differential equation governing the evolution ofr,

γrεε̇ + γrr ṙ = −
∂V
∂r
+ ρ2(t), (8)

should be studied on two time scales: first, during the quick
evolution of the neck variable, it can be approximated by

γrεε̇ + γrr ṙ ' 0, (9)

for the average value. This means that

∆r ' −
γrε

γrr
∆ε. (10)

Then, once the neck has reached its equilibrium, ˙ε ' 0 and
one has

γrr ṙ ' −
∂V
∂r
+ ρ2(t). (11)

This equation for the evolution of the relative distance ap-
pears to be decoupled from the neck’s evolution. The effect

of the fast evolution of the neck is to shift the initial value
of the relative distance as given by Eq. (10).

This approximate dynamical evolution can be checked
on a simple test case based on a harmonic potential that is
not meant to be realistic,

V(ε, r) = Vs +
1
2
gε2 −

1
2

h(r − rs)
2, (12)

for which the coupled differential equations (4) can be ex-
actly solved [10]. With such a potential, the approximate
evolution ofr is characterized by,

〈r(t) − rs〉 =

(
(r0 − rs) +

γrε

γrr
(ε0 − ε∞)

)
exp

[
ht
γrr

]
(13)

〈δr2(t)〉 =
T
h

(
exp

[
2ht
γrr

]
− 1

)
. (14)

Fig. 3 shows the comparison of this result with the exact
solution and the uncoupled case (γrε = 0) for the average
trajectory and the fusion probability,

P(t) =
∫ rs

−∞

exp

[
−

(r − 〈r(t)〉)2

2δr2(t)

]
dr√

2πδr2(t)
(15)

=
1
2

erfc

 〈r(t)〉√
2δr2(t)

 . (16)

The approximate solution of equations (13,14,16) agrees
quite nicely with the exact solution, althoughg/h = 3 is
quite weak.

It appears clearly that the fast evolution of the neck
variable allows studying the evolution of the other degrees
of freedom separately. In the previous sections, we showed
that the potential map is very sensitive to the value of the
neck. Here, we find that the dynamical coupling through
the dissipation tensor shifts the effective initial value of the
relative distance. See Eq. (10). After this transient regime,
the fusion will then follow the path that minimizes the po-
tential with respect to the neck and we can do an adiabatic
approximation.

With this simple model, the shift is of the order of few
femtometers, which is large enough to have an influence on
the hindrance to the fusion. It explains the large difference
between the fusion probabilities of the uncoupled case and
the approximate or exact coupled case that can be observed
on Fig. 3. The shift of the initial value of the relative dis-
tance is always positive in this model and enlarges the size
of the barrier that has to be crossed to reach the compound
shape. The fusion is then more reduced.

The effect of the shift of the effective injection point on
the long time limit of the fusion probability,

P(t→ ∞) =
1
2

erfc


√

V(ε∞, rs) − V(ε∞, r0 − rs + ∆r)
T

 ,
(17)

is the larger the heavier the system. For systems close to
the hindrance border like the110Pd+110Pd,r0 is close to the
saddle and the potential is quite flat. For heavier systems,
the potential has a steeper slope near the contact point.
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Fig. 3. Average trajectory (top) and fusion probability (down) as
a function of time for a parabolic potential. The solid blue line
represents the exact solution. The green dotted-dashed one rep-
resents the uncoupled one (γrε = 0). The dashed red curve rep-
resents the approximate solution. See text. Hereγεε/γrr = 0.6,
γrε/γrr = 0.5,g/h = 3 andT/h = 0.2. The time unit isγrr /h.

Therefore, the shift∆r will cause a larger change of the
potential barrier for heavier systems.

Of course, the model here is crude: the potential land-
scape is simple, we neglected the inertia and we assumed
that the friction tensor is constant. It confirms the adiabatic
approximation that is usually done in the various models,
but it shows that the dynamical coupling between the neck
and radial degrees of freedom induces a shift of the effec-
tive initial value of the relative distance. We will publish a
full paper with a more comprehensive study on its magni-
tude.

Actually, in their so-called “fusion by diffusion” model,
Świa̧tecki and his collaborators [12] introduced an initial
shift of the injection point considered to be an adjustable
parameter ranging from 0 to 3 fm. Here, we propose a
justification to it. To our knowledge, all the other mod-
els that do not explicitely include the neck dynamics do
not take into account such an initial schift. In a very recent
paper [13] Liu et al explore numerically the effect of the
non-diagonal term of the friction tensor on the injection
point. They conclude that the average injection point is not
shifted. This is in contradiction with our results.

4 Conclusion

In this article, we have stressed the importance of the neck
parameter that can change the fusion cross sections by or-

ders of magnitude. We have shown that the neck degree of
freedom evolves faster than the relative distance between
the two fusing nuclei. Then the approximation of using an
asymptotic value of the neck is justified.

The rapid evolution of the neck parameter changes the
potential landscape seen by the other collective variables.
The experimental appearance of the hindrance of the fu-
sion for reactions with heavy nuclei confirms this conclu-
sion. This rapid evolution of the neck also changes the ini-
tial value of the other collective variables through a dy-
namical coupling. For the relative distance, the shift is not
negligible and should be included in the models. Our anal-
ysis gives a theoretical justification to the adjustable shift
introduced byŚwia̧tecki et al [12] in order to reproduce
the data. Finally, it is important to note that both effects
enlarge the hindrance of the fusion.

This analysis of the influence of the neck dynamics on
the fusion of heavy nuclei is mainly based on simplified
analytical models and is therefore limited to symmetric
reactions. The asymmetry degree of freedom complicates
the analysis that cannot be simply handled with analytical
toy models. Therefore, a more complete study will be pub-
lished elsewhere.

Eventually, it should be noted that we have used a Marko-
vian dynamics in this study although the characteristic time
of the fusion process is such that it might not be correct
[14]. This is another dynamical effect that has to be taken
into account in the study of the fusion hindrance.
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Wilczyński, Phys. Rev. C 71, 014602 (2005)
13. Zu-Hua Liu and Jing-Dong Bao, Phys. Rev. C83

(2011) 044613
14. David Boilley and Yoann Lallouet, J. Stat. Phys. 125

(2006) 477

10001-p.4




