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Abstract Electromagnetic form factors serve to explore the
intrinsic structure of nucleons and their strangeness partners.
With electron scattering at low energies the electromagnetic
moments and radii of nucleons can be deduced. The corre-
sponding experiments for hyperons are limited because of
the unstable nature of the hyperons. Only for one process
this turns to an advantage: the decay of the neutral Sigma
hyperon to a Lambda hyperon and a real or virtual photon.
Due to limited phase space the effects caused by the Sigma-
to-Lambda transition form factors compete with the QED
radiative corrections for the decay X0 — AeTe™. These
QED corrections are addressed in the present work, eval-
uated beyond the soft-photon approximation, i.e., over the
whole range of the Dalitz plot and with no restrictions on the
energy of the radiative photon.

1 Introduction

Within the Standard Model of Particle Physics the elementary
building blocks of matter have been identified as leptons and
quarks. Yet, it is still a challenge of contemporary subatomic
physics to understand even the first level of compositeness,
the structure of the nucleons as built from quarks. Histori-
cally, strangeness and electromagnetic probes provided first
clues about the intrinsic structure of nucleons and hadrons in
general. From SU(2) symmetry, i.e. isospin, alone it would
have been hardly possible to isolate quarks as members of
the fundamental multiplet. Only by including strangeness
and the approximate SU(3) flavor symmetry the emerging
multiplet structure of observed hadrons allowed to propose
the existence of the elementary quark triplet [1]. Even ear-
lier, the substantial deviation of the magnetic g-factor of the
proton from the value of 2, as proposed by Dirac’s theory,
provided another hint that the proton cannot be as elementary

4 e-mail: thusek @ific.uv.es (corresponding author)

b e-mail: stefan.leupold @physics.uu.se

Published online: 06 March 2020

as the electron [2]. Subsequently, the corresponding analysis
was extended to the scattering of electrons on nucleons to
reveal more of the intrinsic structure of the nucleon [3,4].
The nucleon spin crisis [5] and the puzzle about the charge
radius of the proton [6] demonstrate that our understanding
of the structure of the proton and the neutron is still very
limited.

In this situation a close collaboration between theory and
experiment is instrumental in making significant progress.
Concerning the electromagnetic form factors of the nucleon
we refer to the reviews [7,8] and references therein. A general
attitude, when it comes to the study of a complex system, is
to ask the question, what happens to the system if parts of
their components are slightly modified. For electromagnetic
form factors the natural modifications are a spin-flip and/or
a flavor change. This extends the form factor business from
nucleons to hyperons [9-16] and to transition form factors
between spin 1/2 and 3/2 states [17].

The present work should be seen as part of an endeavor
to motivate and assist experimental activities aiming at the
extraction of electromagnetic hyperon (transition) form fac-
tors. As already pointed out, we expect that the study of
hyperons will provide an additional angle to look at the
structure of nucleons, complementary to the elastic nucleon
form factors and the nucleon-to-Delta transition form fac-
tors. Hyperons come with additional challenges, but also
opportunities: Since hyperons are unstable, the experimental
opportunities to collide hyperons with electrons are techni-
cally very limited. This moves the focus from the space-like
to the time-like region concerning the virtuality of the pho-
ton. For elastic form factors (in a generalized sense invoking
crossing symmetry) the experimentally accessible region of
photon virtuality starts at twice the hyperon mass, i.e. one has
to study the reactions e™e™ to a hyperon—antihyperon pair.
For transition form factors, however, there is a low-energy
window that allows for access to the electromagnetic radii,
i.e. to the slopes of the form factors at vanishing photon vir-
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tuality. Such quantities enter the Dalitz decays of a hyperon
into another hyperon plus an electron—positron pair.

Transitions from the spin 3/2 decuplet states to the spin
1/2 octet members are addressed elsewhere [18]. In the
present work we will focus on the one possible electromag-
netic transition within the ground-state octet, namely the
Dalitz decay 30 — Aete~. Of course, the electric and
magnetic transition form factors enter the decay rate. How-
ever, the phase space for the lepton pair is rather limited,
Mso — Mp =~ 77MeV [19]. Consequently, even the dif-
ferential decay rate is dominated by the transition magnetic
moment, which can and has been determined from the sim-
pler two-body decay X° — Ay [19]. As can be expected and
as we will see below, the numerical impact of the form factors
themselves, i.e. essentially from the electric and magnetic
transition radii, is rather limited. As it turns out, the impact
from the hadronic structure competes with the radiative cor-
rections imposed by Quantum Electrodynamics (QED). The
transition form factors themselves are addressed in a com-
plementary work [20] while the present work is devoted to
these QED corrections.

From the experimental point of view the transition of the
>0 t0a A and a real photon has been measured [19]. The
Dalitz decay X% — Aete™ has not been observed yet. The
value for its branching ratio quoted in Ref. [19] is purely
based on a theoretical calculation [21] that neglects hadronic
structure effects and QED corrections. Nonetheless, it can be
expected that this value for the branching ratio will be fairly
accurate. To reveal deviations from leading-order QED and
from a point-like hadron structure requires differential data
for this Dalitz decay, i.e. data with high statistics and high pre-
cision. On the other hand, hyperons move more and more in
the focus of experimental activities. High-energy time-like
form factors of hyperons have recently been addressed by
BaBar [10], CLEO-c [11] and BES-III [9]. With the advent
of the planned Facility for Antiproton and Ion Research
(FAIR) [22] ahyperon factory will start to operate. Both in the
proton-antiproton collisions studied by PANDA [23] and in
the proton-proton collisions studied by HADES [24] hyper-
ons will be copiously produced and there are detectors ded-
icated to studying the hyperons and their properties [23,25].
Thus it can be expected that it will be possible in the future to
collect enough data for an experimental determination of not
only the branching ratio but also the differential Dalitz decay
width of X0 — Aete™. The present work will serve to dis-
entangle the QED-correction effects from the effects caused
by the intrinsic structure of the hyperons. In turn, information
about the intrinsic structure of the hyperons will provide a
new angle on the structure of the nucleon.

Radiative corrections to the 0 — Aete™ process were
already studied by Sidhu and Smith [26]. In that work, the
corrections to the decay rate as well as to the differential
decay width were calculated. In the latter case, the soft-
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photon approximation was used. Moreover, the one-photon-
irreducible (1yIR) contribution was not calculated, based —
apart from its apparent difficulty — on the assumption that it
was negligible. Similarly, it was argued that the correction
to the XAy vertex did not affect the measurement of the
slope of the form factor and thus was irrelevant for the scope
of Ref. [26] and further left out from the discussion.

In the present paper we decided to reinvestigate these
claims and calculate the contribution of (nearly) all the
QED diagrams at next-to-leading order (NLO) explicitly.
Most importantly, we present the bremsstrahlung contri-
bution (regarding the lepton legs) beyond the soft-photon
approximation, i.e. including the hard-photon corrections.
Our result represents the complete inclusive QED radiative
correction at NLO, leaving out only the bremsstrahlung cor-
rection related to the hyperon legs. Here, we agree with
Ref. [26] that it is safe to neglect this contribution: Firstly,
because of the significantly higher rest mass of the hyperons
compared to the mass of the electron (related to which the
bremsstrahlung indeed represents a significant contribution).
Secondly, since X and A are neutral, the magnetic moment
dominates the photon emission, which leads to an additional
suppression. In particular, no infrared (IR) divergent terms
are present to enhance the effect of this contribution.

Our motivation to calculate the 1y IR contribution explic-
itly (and for completeness also the correction to the £ Ay
vertex) is based on the fact that it already happened in the
literature that the assumption that a particular contribution
was negligible turned out to be incorrect. For instance, the
1yIR contribution to the radiative corrections for the neutral-
pion Dalitz decay 7° — ete™y was, due to inappropriate
assumptions and arguments based on Low’s theorem [27—
29], considered negligible and left out from the classical
work [30]; see also Ref. [31]. The exact calculation, in con-
trary, shows its significance [32-35]. The impact on the form
factor slope is considerable, especially in view of a precision
measurement or calculation [36]. Similarly, it can happen that
an approximate formula is derived which, however, differs
significantly from the exact calculation when carried out:
Accidental cancellations or loop enhancements might take
place. As an example, let us mention the approximate cal-
culation of the two-loop virtual radiative corrections to the
neutral-pion rare decay 70 — ete™ [37,38] and their sig-
nificant difference to the exact calculation [39], which seems
to be one of the main sources of the theory—experiment dis-
crepancy [40-42].

The rest of the paper is structured in the following way.
In Sect. 2 we fix our notation and conventions and present
the leading-order (LO) results. In the subsequent sections
we then discuss individual radiative corrections. In Sect. 3
we present the results for the virtual corrections related
to photon and lepton legs. We discuss the corresponding
bremsstrahlung correction in Sect. 4 and show a compact
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approximate (although numerically satisfactory) result there.
Additional related expressions are provided in “Appendix A”.
The 1yIR correction is treated in Sect. 5, which is further
complemented by additional four appendices. In Sect. 6 we
discuss the (virtual) QED correction to the X OAy vertex. We
conclude with results and discussion in Sect. 7.

2 Definitions and the leading order

In what follows we briefly introduce the notation. We denote
the four-momenta of the neutral Sigma baryon (of mass M x),
Lambda hyperon (of mass M ,4), electron (of mass m) and
positron by p1, p2, q1 and g, respectively. Thus it holds
p1 = p2+q1+q2, provided bremsstrahlung is not included.

As for the Lorentz structure of the X%Ay vertex we
write [20,43]

(01j*12°A) = eva(P2)G*(p1 + p2)us (p1), ()
with

qt 2 ioc*Vq,
G'(q) = [V” _AM_i|Gl - =
1 q* (@) oM

Ga(q?), (2

where we defined (for the outgoing four-momentum gq)
the Dirac and Pauli transition form factors as G| and G,
respectively. Above, we used o/’ = %[y“, '], M =
(Mx + Mp)/2 and Ay = (Mg — M p). For real photons
(q2 = 0), the transition form factors become G{(0) = 0
and G,(0) = k. Here x =~ 1.98 is related to the transition
magnetic moment [19] u = ke/ (ZM ).

In an equivalent way we introduce in the case of the e e~y
vertex (again, ¢ is outgoing)'

i
Fl(q) = y"Fi(q?) —

F(q?), 3
. 2(q%) (3)
which comes into play when virtual radiative corrections are
also considered.

The matrix element of the £° — Aete™ process (for the
one-photon-exchange topology) is then written in a simple
form

—iguy ~ 2
L TCLR P
(q1 + q2)? [=11(@1 +a2)7)]
x[(ie)u(P2)G* (p1 — p2)us (p1)]
x[(—ie)ite(q) F"(—q1 — q2)ve(q2)],

“

iAM(p2,q1,q2) =

1 Using ¢ = g1 + ¢», this notation is consistent with

1
F'q1, q2) = y"[Fi(¢?) + F2(¢%)] - 3@ = )" P (q?).

where IT (¢%) includes vacuum-polarization effects that we
will eventually include. Putting I7(g%) = —1 corresponds
to the photon propagator with no insertion. Note that due to
the conservation of the electromagnetic current, the part of
Eq. (2) proportional to Ay Gi(g?) vanishes after the con-
traction with the leptonic part in Eq. (4).

It becomes convenient to introduce a dimensionless vari-
able

(q1 + q2)*
=, )
Ay

which stands for the normalized square of the total energy
of the electron—positron pair in its center-of-mass system
(CMS) (or simply of the electron—positron pair invariant
mass). We also define the following small parameter:”

My —Mp)?* _ Ay
(Ms +Mp)?  4Mm2

p (6)

Numerically, p ~ 1.1 x 1073 « 1. The second independent
variable to describe the kinematics of the 3-body decay is
chosen as

y=— 2p1 - (1 —q2) o
S ,
A2(p?, p3, (g1 + 2)?)

which has the meaning of a rescaled cosine of the angle
between the directions of the incoming (decaying) hyperon
and the (outgoing) positron in the electron—positron CMS.
The Kéillén triangle function, generally defined as

Ma,b,c) = a® +b* +c* —2ab — 2ac — 2bc, ®)

reduces in the case used in Eq. (7) to
AME, M%, A2 x) = p(1 — x)(1 — px)2M)* = A(x).
©

Finally, we introduce v = 2m /Ay and

2
ﬁzﬁ(x)z,/l—v—, (10)
X

so the limits on kinematic variables x and y are simply given
by
x e,

y € [=B. Bl (11)

Note that v &~ 1.3 x 1072 « 1 is beside p another small
parameter.

2 Note that this definition of p is different from the one used in Ref. [26].
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Next, we define the electric (Gg) and magnetic (Gy) form
factors in the following manner:

Ge(q?) =Gi(gH) + Gz(q)
: 4M

Gumg?) =Gig®) + Gag?), (12)
which in turn means

Gie(A2,x) — pxGp (A2
Gl(Ajzux)z E( Mx) pxGm( Mx)’

1 — px

GMm(A2,x) — Gp(A2

G2 (A2,x) = m( M’IC) E(Ay>) (13)

The modulus square of the matrix element, summed over the
spins of A, electron and positron, and averaged over the spins
of XY is given by

| (x, y)I* = |26 (x, y)I. (14)

2¢4(1 — x)
x2
The advantage in the use of the electric and magnetic over
the Dirac and Pauli transition form factors lies in the fact that
the quantity (14) contains no interference terms of Gg and
Gwm. Therefore also the two-fold differential decay width

d>re,y) 1

A%, 22 (x) —oon
dxdy (x, y)| (15)

T 2Ms 32(2n)3M2 -7

can be expressed in a form orthogonal in Gg(g?) and
Gm(g?). Indeed, squaring the hadronic part (corresponding
to the term in the second square brackets) of the matrix ele-
ment (4) reveals

Mgy (M )" =

L PIGMAG DI —
1 —px

[Aﬁm — 0)|Gm(AYx)Pg"

|GE(A3,0)1?

(p1+ p)H(p1+ pz)“],
(16)

where the dots stand for similar terms proportional to (p; —
p2)¥. These terms are also purely quadratic in the form fac-
tors and vanish upon contraction with the leptonic part.

For the LO contribution for the % — Aete™ process —
which means putting simply Fl(Aﬁ,Ix) =1, Fz(Ajzux) =0
and IT (A%,Ix) = —1 in Eq. (4) — the matrix element can be

written as
LO P3e? _
i = 3 [MA(pZ)VauE(pl)][Me(ql)yrve((h)]
Aqx
2 2 ot 2 PPy,
X [G](AM)C)+G2(AMX)]g — Ga(Ayx)—=1;
MM
(I7)

@ Springer

e (@)

e (q)
Eo(pl)

A(PQ)

Fig. 1 Theleading-order diagram forthe X0 — AeTe™ process in the
QED expansion. The shaded blob corresponds to the X Ay transition
form factor

see Fig. 1 for the associated Feynman diagram. Thus we
obtain

5O (x, )12 = (1 — yH)|GE(A}x)
+,0x(1+y + — )lGM(A x)[%. (18)

At this point we are ready to define our approximation
scheme. The dominant contribution to the Dalitz distribution
(15) is obtained from the LO QED process and neglecting
the intrinsic structure of the hyperons. Technically this is
achieved by neglecting the g% = A%,,x dependence of the
transition form factors, i.e. Gg(¢%) — 0 and Gy (g?) — «.
In this work we consider NLO QED corrections propor-
tional to the fine-structure constant « and corrections to the
hadronic form factors that are linear in the ratio p, defined in
Eq. (6). All this is relative to the dominant contribution. We
can write

2 "21 2
Gm(Ayx) =~k |14 px4M g(rM) ,
2 A21 2
Gg(Ayx) ~ px4M E(VE>, (19)

where we introduced the transition radii via

6 dGm(q?)
<r1%/[> = - Zq >
K dq ¢%=0
dGg(g?)
2
=6 —= . 20
(rE> dC]2 q2:0 ( )

Note that the magnetic part is multiplied by a factor of p in
Eq. (18). Thus the dominant contribution there is linear in p
and the considered corrections are ~ p>. What is neglected
are the p> contributions in Eq. (18).

To justify our approximation scheme further, we note
that hadronic radii are at most of order 1 fm. Thus (r2) <
(1fm)2 ~25GeV~2. Asa consequence of this estimate, the
combination %p[\;ﬂ (r?)in Eq. (19) is smaller than 0.03. Thus
it makes sense to keep in Eq. (19) the corrections suppressed
by p, which are numerically comparable to the considered
QED corrections. The corrections suppressed by p2, on the
other hand, can be safely ignored.
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Finally we add a theoretical estimate [20,43]. The electric
radius is much smaller than the magnetic one, | (r]%) | < (rf,[).
As a consequence of these considerations, we could com-
pletely ignore the electric transition form factor but we should
keep the magnetic one and the linearized version of its g2
dependence. In most of our calculations we stick to Eq. (19).
Whenever we neglect in addition (rl%), we will spell it out
explicitly.

We can thus simply rewrite Eq. (17) substituting G (g?)
— Gm(g%) — Ga2(¢? (from Eq. (12)) and taking only
Gz(Ajzwx) ~ GM(A%,Ix)/(l — px) (from Eq. (13)). Using
in addition px <« 1 (which consequently translates into
G (A%le) 2~ 0) and the Dirac equation, we obtain

e2 2 oT
—— Gm(Ayx) (8 -

p?lﬁ)
M'x MZ‘M

x[A(P)Vous @D ][ie(@D)yeve(@)]. (21

i'O ~

Hence we arrive at

— 5 2
TGP =~ 26 G A0 P =) )<1 g "?)
22)

for the LO matrix element squared. The two-fold differential
decay rate at LO reads (inserting Eq. (22) into Eq. (15))

d’rtO(x, y)
dxdy

242 41 2
a” Ay A2 (x) 5 (1 — )< ) v)
~ M Gy(AY, 1+y2+— ).
Tow M [Gm(Ajx)| y P

(23)

Integrating Eq. (23) over y, we find the one-fold differential
decay width

drto(x)

dx

AR () . )|2(1 086 (1L
T T lermy MM 3\ T2

(24)

Going beyond LO, it is convenient to introduce the NLO
correction § to the LO differential decay width, which allows

us to write schematically dI" = (1 + 6§ + ...)drS. m
particular, we define
derLO d2 FLO dFNLO dFLO
YN =44 /dd » o=y / dr
xdy xdy X X
(25)

Related to the work documented in Refs. [32,44], such a cor-
rection can be divided into the following parts emphasizing
the respective origin:

§ = 8V11‘t +6BS +61}/IR +8V11‘t

S (26)

Here, the superscript “virt” stands for the virtual radiative cor-
rections, 8BS for the bremsstrahlung and §'7™R for the 1y IR
contribution. In our approach, the latter is treated separately
from 8¥I" for reasons of historical development, complex-
ity and topology. The part of the virtual correction associ-
ated to the X0 Ay vertex, (Sg{} Ay is treated separately from
the corrections "™ related to photon and lepton legs. The
associated bremsstrahlung from the baryon legs is entirely
neglected throughout this work.

As a trivial consequence of previous equations, having
knowledge of §(x, y) allows for obtaining §(x) using the
following prescription:

LO Ly 2 ~LO
X _B dxdy

This immediately translates into

-1 rB 0
s = (EPWPR) [ dvsee AP,

(28)

where we defined

- B -
AP ()2 = / dy [A#EO (x, y)|?

_48

= ( 5 >{|GE(A O +2px1Gu(430) 2}

(29)

After neglecting the electric form factor relative to the mag-

netic one, we obtain
8 2 B 2

s~ | P (142 / dyse,y (1+y2+2).
3 2x _B X

(30)

In the following sections we discuss the individual contribu-
tions.

-1

3 Virtual radiative corrections
We get the virtual radiative corrections, 8Virt from the inter-

ference terms of the LO diagram shown in Fig. 1 and the
NLO one-loop diagrams of Fig. 2a, b. We recall that the LO

@ Springer
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A,
b

(a) (b)

,
&

(© (d)

EU/A ZU/A

=
A

(e) ®

(®

Fig. 2 NLO QED radiative corrections for the decay X0 — AeTe :a
lepton-loop vacuum-polarization insertion, b correction to the QED ver-
tex, ¢, d bremsstrahlung, e, f one-loop one-photon-irreducible (1yIR)
contributions, g % Ay vertex correction. In the 1y IR contribution each
diagram comes in two variants: with $° or A exchanged. Similarly,
there are four diagrams contributing to the transition-form-factor cor-
rection (g)

expression is given in Eq. (17) and the general prescription
is provided in Eq. (4). The result for this interference can be
written as

$¥M(x, y) = 2Re § —I1(A3,x) + F1(A%x)

+ Fy(A%x)

IGE(A2,0) 2 + 2px|Gm(A2,x) 2 } an
| A#EO(x, )2

@ Springer

If we take into account again that the electric form factor is
suppressed, we arrive at the expression

' 7 2F5(A3
8"(x, y) ~2Re _H(A%VIX)"‘FI(A%VIX)—{—M
1+ y2+ 5

(32)

which is exactly the form one finds in the case of the Dalitz
decay of the neutral pion [30,32] and which is numeri-
cally more than a satisfactory approximation. This finding
is further supported by the fact that compared to the size of
the effects stemming from I7(g?) and Fy(¢?), the quantity
F>(g?) is numerically negligible in the whole kinematically
allowed region of ¢g>. Moreover, if we recall the form of
I.//(%O (x)]? from Eq. (29), it is straightforward to see that
the contribution to the correction to the one-fold differential
decay width takes — of course, in both cases of Eqgs. (31)
and (32) — the form independent of the electric and magnetic
form factors:

8V (x) = 2Re { —I1(A3,x) + F1 (A% x)

Shel
2 2x
We should now evaluate these terms at NLO.
Considering the correction stemming from the diagram
in Fig. 2a, we find for the (on-shell renormalized) vacuum-

polarization insertion induced by a single leptonic loop (fla-
vor £)

_ 8 B2 B ,
(A x) = % {9 - ?Z + be (1 - ;) log[—y¢ +ze]},

-1
FZ(AIZ\,,x)} : (33)

2
(34)
with B, = Be(x) = ,/1 — vez/x, Ve = 2my/Apy and
_ _1=pex)
ve = ye(x) = TE ) (35)

In what follows, it is enough to take into account only the
electron- and muon-loop contributions,

g™ =Y Mg, (36)

tefe, u}

the latter mentioned having only a cosmetic effect on the
presented numerical results. This is due to the fact that
the exchanged invariant mass \/q>2 does not exceed Ay =~
77MeV and is thus way below the two-muon threshold. Let
us remark that independently of the considered processes,
the contribution with the lightest fermion is numerically of
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the largest importance. After summing the whole geometric
series of one-loop insertions (—I7(g%) = 1/[1 + IT(g*)]),
squaring the amplitude and subtracting the LO part, we get
for the correction connected to the vacuum polarization

1

Svirt(x’ y) — 8virt(x) — _ _
n n 11+ T (A2,0)2

37

This term can then be used (and we do so) instead of the
one-loop interference term —2 Re 1 (Aﬁ,[x) in Eq. (31) and
further on.

For the electromagnetic form factors Fi (qz) and F» (q2)
stemming from the QED vertex correction in Fig. 2b we have
at NLO (on-shell renormalized)

1+28% ) 1+ B2
15 log(—y +ie) — 2

1 2
X [Liz(l —y)+ 1 logz(—y +ie) — T imlog(l — y)]

FNO(A2 3) = ﬁ[_l _
T

1+ 2 . m
+ |:1 + 2B log(—y + ze):| log X} (38)
and
NLO, 42 a v? .
Fy 7 (Ayx) = ;m log (—y +ie). 39)

In the above formulae, Liy stands for the dilogarithm and
A is the infrared cut-off. Note that we quote here the full
expression valid in all kinematic regimes. In order to extract
the real parts from Eqgs. (38) and (39), in the kinematically
allowed region where A%,Ix > 4m?* we use log(—y +i€) =
log(y) + im, since 0 < y < 1. It is then straightforward to
see that the real part of F INLO indeed includes the Coulomb
term proportional to —m2/2.

For completeness, our final expressions for the virtual
radiative corrections take the form

virt _ T"NLO 42
8 (x,y)—m—l+2Re{F1 (A3x)
LN g2 IGEAY D + 2pxIGu (4], 2) }
2 M — 9
| P (x, y) |2

(40)
and, using Eq. (30) or based on Eq. (33),

1
- Y—_ A 4 —1
|1+ T1(A3,x)?

I 3 1)2 -1
+2Re {F]NLO(AIZWC) +3 (1 + —) F%VLO(AI%M)} .

8virt (X) —

2x
(41)

4 Bremsstrahlung

Concerning the notation, we stick to the one provided pre-

viously in Refs. [30,32,44]. The two diagrams which con-

tribute to the bremsstrahlung of the process X0 — Aete™

are shown in Fig. 2c, d. Besides other effects, their presence

is essential to cancel the IR divergence stemming from the

virtual corrections depicted in Fig. 2b. The corresponding

invariant matrix element can be written in the form

el
(k+q1+q2)* +ie

x [ (P2)Gp(p1 — p2us (PIa(@) " v(g2)] €, (k),

(42)

i.MBs =

where

=7/lg(léJrqler) o
2k-q1+ie€

Ot(k—i_qZ_m) B
2k-qy +ie "

JEL _

(43)

Here, we use k for the four-momentum of the bremsstrahlung
photon. Inasmuch as an additional particle comes into play,
it is convenient to introduce a new kinematic variable which
stands for the invariant mass squared of the pair formed by
the photon and the A hyperon:
sy = (k+ p2)°. (44)
It is a counterpart to s = (1 + g2)* = A%, x.

The form factors G| and G are translated into Gy and

GEg via Eq. (13). They are further approximated using the
linear expansion shown in Eq. (19). This yields

1
Gm((k +q1 +q2)?) = GM(S){I + g(r§4)[2k “(q1 + qz)]},
(45)

(40)

2k -
Gk +q1 +g2)%) = GE(s>{1 + M}

In what follows we consider the above form of the form
factors to be used in the evaluation of the bremsstrahlung
correction.

The contribution of the bremsstrahlung to the NLO two-
fold differential decay width can be written as

CrROe,y) 1 2PALRR)
dxdy © 2Ms 16Q27)8M%

(5P s,

(47)

The above used operator J is defined for an arbitrary invariant
f(k, p2) of the momenta k and p; as follows:
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J{f(k, p2)}
1 d3k d3
=— P2 bk, p2) 89 (pr — g1 — g2 — pa—h).
2t ) ko pao

(48)

Being on the mass shell (k2 =0, p% = M%) and in the
reference system where py —q1 —q2 = 0(=p2+k =r),
we find

r=0) 1 @ ~
st pn = 2 [ a@ faROR) g @)

where w = /5, and @ = (s — Mﬁ)/ﬁ. We used IE(M%)
to mark the four-momentum of the particle with the mass
M 4 and with the momentum —K, i.e. when k = (kg, k), then
for the four-vector k(M ) we write

k(M3) = (\/|k|2 + M3, —k) = P2l (50)

We can come back to the invariant form through

(k+ p2)? =

ko + pao "= Sy =w (51)

or for example due to

(ko + p2,0) q1,0 =0) (k+ p2) - q1
qUo=——"—"""—"— = —— . (52)
ko + p2.0 0]

Together with x and y (kinematic variables at LO with the
same meaning also at NLO) and s,,, two more independent
kinematic variables are necessary. We define

A=k-q@ B=k-qi. E=Gk+q+q)?’ (53
where e.g. E can be expressed in terms of A and B as £ =
A%,Ix +2A+2B. Finally, the bremsstrahlung correction reads

8BS (x, y)

s
7r4 ox2

The full result for the matrix element squared of the
bremsstrahlung correction |.#gs|? is rather lengthy and it
makes not much sense to present it here. Nevertheless, all
the terms necessary to numerically evaluate 885 (x, y) are
presented in Appendix A and numerical results given later
in Table 4 of Sect. 7 correspond to using the expansions (45)
and (46). In what follows we present a very simple — how-
ever numerically satisfactory — form of |.#ps|?. Assuming
that Gg(s) == 0, Gm((k + g1 + ¢2)%) =~ Gm(s), p < 1 and
neglecting sub-leading terms in v, the (IR-)convergent part

. e | 1
|//LO(X y)|2] /Teé‘lh///BS'z]dsV'
(54

@ Springer

(to be integrated numerically over s, ) of the bremsstrahlung
matrix element squared can be written as follows:

17
7 2‘
506 [BsI|
AGMO P £+ o 283
~ I = — = — -
M E—am> METT A
(k- p2)? 1 2 |
a2 AB M aAp2

1 1
- 2./p(A% — 2k - —
+2[s+ Vo4, pz)]AE

e BM* +4M> A2 + A* + 4k - prQM* + k- p2)]
1 v ,ok P2

X —
AE — 4012 2

(A% +k- Pz)
v 4 2,2

- §[AM+P(5—A”,)

—4pk-pa(s —

V2o o2 2 2

2
A, —k- Pz)]ﬁ

} + (g1 < q2).
(55

A2(E — 4M?)

Above, we used A2 = —2p; - (g1 — g2). Note that the
dimensionless variables x and y are related to s and A2, in the
following manner: s = A%,Ix and Afn = yk% (x); see Eq. (9)
for the definition of A (x). The second half of the expression —
denoted as (g1 <> ¢g2) —is related to the sign change of y (or
A,zn) and to the change (A <> B) performed on the first half of
Eq. (55). For instance, it can be obtained when the first part is
inserted into the operator J, the expressions from Appendix
A are substituted and afterwards one uses (A2 < —A2).
The simplified result (55) does not require the knowledge of
all the basic integrals listed in “Appendix A”: Indeed, some
of them are only necessary when the exact |.#gs|? |C at NLO
is evaluated as was done to generate Table 4. The full form
of the (IR-)divergent part (to be integrated analytically) then
reads:

] —
| =4
2€6| BS| D

Vs 1 om? /1 1
X[<1_E>ZE_T<F+E)]' (0

After substituting Eqs. (A.28) and (A.29) into Eq. (56) and
further into Eq. (54), the terms proportional to In(m/A)
cancel with those in Eq. (38), i.e. 2Re FNLO(A x) +
8BS (x, y)|D is IR-finite, using (1 — ) = B4 1+ﬁ . In order
to get an approximate result of the bremsstrahlung correc-

tion, one should simply substitute for ﬁ |.#Bs|* the sum of
terms (55) and (56).

(I-x)
px?
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5 One-photon-irreducible virtual radiative corrections

The diagrams of Figs. 1 and 2a—d contain only the hadronic
form factors for the transition from the Sigma to the Lambda
hyperon. In contrast to this, the remaining diagrams of
Fig. 2e—g contain also other hadronic form factors. Strictly
speaking, what is denoted by “X%/A” in Fig. 2 could even
be other intermediate baryonic states with strangeness. Yet,
we will show in the following that the 1yIR contributions
are negligible. For this purpose, it is not required to account
in a detailed and utterly correct way for all possible hadronic
effects. A sample calculation should be sufficient. There-
fore, we restrict ourselves indeed to the diagrams shown in
Fig. 2e—g and use form factors that are sufficiently realistic.
To strengthen our statement we will explore a variety of form
factors.

For the 1y IR contribution (Fig. 2e, f), we need to calculate
four box diagrams. The matrix element can be separated into
a baryonic (By,,) and leptonic (Lyp) part

d4l gu.oz gvﬁ
iR — 8% B Log.
Qmyt MU= A —p2 P

(57

where the photon propagators are shown explicitly (for
brevity we drop the ‘+ie’ parts).
The leptonic part can be written as follows:

Lot,B = le(q1)Ya Vﬂve(qZ)

S+ Pyt —m

1
+12e((h))/ﬁl _ YaVe(q2)- (58)
2

—gp—m
The cross term is substantial to attain gauge invariance, which
manifests itself as

(= p2)*Lap = 0= (p1 — )P Lag. (59)

This can be seen when we artificially rewrite Eq. (58) with
the Dirac equation at hand,

1
Lop = —tte(q1) (Yo — ¢, +m)m)/ﬂve((h)
2 1
_ 1
+ ue(Ql)Vﬁl Py —d,—m Vo — q, — m)v.(qz),
(60)

the form of which is suited to show the first equality in
Eq. (59), or, using the energy-momentum-conservation rela-
tion p1 = p2 +q1 + g2,

Laﬁ = le(q1) Ve m (Vﬁ - qZ —m)ve(q2)

1
“T+p—d,—

YaVe(q2)
(61)

—ue(q1)(vg — ¢, +m)_l+p1 —g¢,+m

to obtain the second equality.

Regarding the baryonic part, for the purpose of treating the
one-loop diagrams we should consider to generalize some of
the previous definitions. Instead of Eq. (2) we will now use

(Y1julX) = ety (p2)G}" (p1 — p2)ux(p1). (62)
where X, Y € {A, Z‘O}, and

7 v
i0,vq

GXY (42).
My 1 My 2 g

¥ (q) = [n = Z—’gq]Gi‘Y(q% -
63)

We can see that this definition of baryonic electromagnetic
form factors is manifestly gauge invariant, which now holds
also off-shell. On-shell it reduces to Eq. (2). In other words

q"GY" (q) =0. (64)

The baryonic part can then be understood as a sum of two
contributions

0 0y0 y0
B;LU — BE'UA,AA +BE XU XA (65)

Qv ’
where we introduced
B 20X, xA
Ay

GZ'X(py — Duz(py).
(66)

= ia(®)G) (= p2)j— i

Looking at previous equations one can easily check that the

baryonic part is gauge invariant

(I = p)"Buy = 0= (p1 — "By, (67)

which already holds for the separate contributions in Eq. (65).
Having the conservation of the electromagnetic cur-

rent (59) in mind, we can somewhat simplify the baryonic

part By, of the matrix element. Exploiting the operator iden-
tity 2AB = [A, B] + {A, B} we can write

" py = Nus@DLw =2y" Mz — Dus (1) Ly (68)

and
APy, I = pylLpy =2iA(P2)(Ma — )y Ly (69)
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Above, we used the Dirac equation and the fact that the anti-
commutator part {A, B} disappears due to Eq. (59). Effec-
tively, we can thus take only

(V- 4]

XY 2

G (@) =G @Dy +

instead of the full form (63) inside of Eq. (66), or even more
explicitly and using Eqgs. (68)—(69), we write

~ w0 _
By, XX = uA(pz){G{“(a — p2)?)

(I_—MA) XA 2
- MX+MAG2 ((l_p2) )}
/+M
XY T2 M’;{ VU{GFOX((z —p)?)
BT (@=pv )}ME(PI). (71)

We see, that the off-shell redefinition (63) of Eq. (2) does
not affect, at the end of the day, the result (71) due to the
conservation laws specified above.

The LO amplitude of the X% — Aete™ decay (17) can
be written in the following way:

23 2
i = i a(p2)yous 1) [de (@) yeve(@)]
Ayx
<G AZ oT __ 2 p(lypé
M(A30) 877 — Ga(Ah0) L2 H (72)
MsM

Its interference with the 1y IR amplitude represented by the
box diagrams can be obtained by separately treating the lep-
tonic and baryonic parts. For the leptonic part we can write
(summing over the final-state degrees of freedom)

D Lapliie(@)veve(@)]" = Lapr (@1, 42) — Lapr (2, q1),
spins

(73)
where

I:aﬁr (q1,92) = Z Zaﬁ (q1, 42)[ﬁe(Q1)Vrve(Q2)]*

spins
_ 1
(=p2—q)*—m

B {26]1an{((11 + m)V,B(qz - m)yr}

— (I = p)’Tr{(¢; +m)vav,vpd, —m)yr}}- (74)

Above we used Zaﬁ (q1, q2) for the first term of Lyg as seenin
Eq. (58). The validity of Eq. (73) can be technically checked
exploiting

Tr{va¥p - VoVo} = Tt{Vo Vo ... V8Va)- (75)

@ Springer

For the treatment of the loop integral, it will be convenient to
explicitly extract the loop momentum in the following way:

Trbﬂf(m, q2) lKTTEKﬂ,(Qh q2)
(I=pr—q)?>—m?> (—pr—q1)>—m?
(76)

Zaﬂr g1, 92) =

The traces in the numerators are then simply defined as

Tigs, (q1.92) = Tr{(g) +m)2q1a + Yap2)Vp(d, — m)¥2 ),
(77)

Teh 50 (@1, 42) = Tr{ (g, +m)YaVivp(dy — m)ye ). (78)

Similarly, one of the two contributions (in the sense of
Eq. (65) and defined in Eq. (71)) to the baryonic part can
be written in the following form:

BY., =Y BE XX ias(p)yous ()]

spins

8
1 .
= 12 — M2 ZﬂlXTr{(pZ +MA)T;1\;(]171 +M):)VU}7
X i=1

(79)

with the coefficients ﬂiX and matrices T;iv listed in Appendix
B. It is also convenient to define the trace

TrE,_U,o’ = Tr{(ﬁ)z + MA)V/L..U(pl + ME)VO’}? (80)

where we used the short-hand notation for a product of y-
matrices:

Ypo..t = VpVo .- V- 8D

A contribution of the box diagrams to the NLO matrix
element squared of the X9 — AeTe™ decay can then be
expressed as the interference

— T OINIOD 1
~//LO+NLO 2} —9R 2 IR L0x
| ! 1yIR ¢ Z 2

spins

i66 papz
—Re {E[G&(Aﬁwx)g“ - G;(Aﬁ,,x)Ml AZJ
M X
y a (BZ, + B (LM @1 g2) — L5 (q2. q) }
(2m)* (= pp2 — p2)? '

(82)

It is apparent that the contribution of the four terms arising
in the numerator of the integrand above can be reconstructed
from a single common term

a1 BX L' (1. q0)

TrBLX = :
o L) = | T T o = po)?

(83)
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Here itis important to stress that the baryonic part is invariant
under the q; <> ¢» exchange. The whole contribution then
reads

|///LO+NLO|2‘
1yIR
: 6
ie PP
=Re | —— |G (A}x) g7 — G5(A3, 12}
{A%Wx[ m(Ayx) g 2 (Ayx) 7
x Y TrBLX(ql,qz)—(qleqz)}. (84)

Xe{A,x0)

The correction is then simply given as
SRy y) = |///LO+NLO|2‘1 IR/l'///LO(x’ VE (85)
Y

If the form factors G{¥ (¢%) and G¥¥ (¢?) appearing in
the loop were considered to be independent of the trans-
ferred momentum, it might have been sufficient to take into
account the expansion in the sense of “Appendix B”. How-
ever, it is convenient here to involve in the calculation the
more sophisticated form factors discussed in “Appendix C”,
which requires a different redistribution of the terms based on
the different behavior of Gf Y (qz) and G%‘ Y(qZ). The result
for a particular model is then obtained by means of inserting
the model-dependent linear combination

LY (g = 3 zz{ XA X g,

i,j=1k=11=1
xTrEL DX (M2 M2 2 g1, 612)} (86)

into the prescrlptlon (84). The building block TrBL(lJ »X

(Mfk, j’ /341, q2) is calculated in Appendix D. The pairs
of coefficients o; = ai,k(émz) and M; ; = M,-,k((Sm2) are,
in the case of the model discussed in “Appendix C”, given
by the following expansions:

q2M4 Z o, K (8m?)
(q* M2)3 szeo q% — M? (5m?)
M 2
= lim 14 -
Sm2—0 2(8m2)2 q2 — M‘z,

1 1
+ + , 87
g% — (M} +6m?) ¢ — (M}, — 6m2)} &7

and

6 N
M$ 1 . 2

§ 2
2 23 2 s Z 2062,k(2m)2
(g=— M)’ q 8m2—>0k:1 q sz,k(sz )

L M 2
— 4+ lim —
g% sm>—020m2)? | ¢q2 — M?
2
My
M2 +8m?) [¢g% — (M3
( y T om ) lg ( v

+ (6m? — —5m2)}.
(88)

+8m?)]

The final result is then a lengthy linear combination of tenso-
rial integrals defined in “Appendix E”. Note that for the con-
stant form factors Gg and G we would put simply Ny = 1,
a1 =1, M1 =Myand Ny =2, 021 = 1,22 = —1,
My =My, M, =0.

6 Correction to the XAy vertex

In this section we would like to see if there are any significant
electromagnetic corrections to the X% Ay vertex. Due to its
Lorentz structure we can write (cf. Eq. (1))

LAEANT = ()i A () T (pr, p2us (P, (89)

where I', now incorporates all the contributions in the QED
expansion with the LO contribution fixed as

0
rop1. p2) = G “(p1 — p2). (90)

At NLO, the correction is represented by four diagrams
shown in Fig. 2g:

:ZFXY

XY

NLO 304 3050 AA AX0
FM F + FM + FM + FM .

O

The building blocks FMXY (with X, Y € {A, %)) can then
be written as (for brevity we drop the ‘+ie’ parts of the
propagators)

X (p1, p2)
s, [ A GIAOHXT(. pr. p)GE X (—1)gef
= —1¢€

Qm* [121[A + p1)? = MR + p2)* —

92)

where

HXY (1, p1.p2) = (L + py+ My)GLY (p1 — p2)( + py + Mx).
(93)

The off-shell form factors G are defined in Eq. (63).

The magnetic-moment nature of the £ Ay interaction (its
structure together with the fact that G (/ 2) ~ 2whenl? > 0
and that G, (1%) comes with [?) prevents the appearance of
the IR divergence, which could arise for {X, Y} = {X°, A}.
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On the other hand, due to the (loop-momenta-)power count-
ing, I'N-0 is divergent in the UV domain (for the contribu-
tion proportional to G%(l 2y), if the constant form factors (see
Eq. (C.54)) are used. That is why it is necessary to use a
model with a stronger UV suppression, e.g. (C.55).
Considering the loop integral (92), within the above
mentioned model (C.55), GLA (1) and G§ X (~I) combine

together through their components G lX Y ((£1)?) into the sixth
power of the vector-meson propagator, which can be written
as a fifth derivative with respect to the vector-meson mass:

(M3)"

1 n
m (v)

i [ ! ] 04)
IMS L2 —M |

This is particularly useful when one tries to obtain an ana-
lytic result. For the purely numerical purpose, the approach
described at the end of Sect. 5 is more suitable.

Numerically, the correction arising from the diagrams
from Fig. 2g is, as expected, negligible, and we show the
results only for completeness. It is probably interesting to see
how this correction directly affects the form factor parame-
ters and how stable are these in view of extraction from the
experiment with respect to the QED corrections to the 0 Ay
vertex. We present the complete numerical results and also
the analytic ones for the NLO corrections to G2 (g2) as well
as to G1(g?) in the limit My = M = My (ie. p = 0) and
for small ¢2 (it is sufficient to work with a linear expansion
in ¢2). Using the ratio

M .
iy &)

we find for the Pauli form factor

o 0
G O¢H =~ Y Z G (@7 e X e 03y (@ ).
X,Ye{A,x0) i,j=1

(96)

where the functions Q( J )(a p) can be decomposed in their
real and imaginary parts separating the o and p dependence
in the following way:

00, p) = 0 (o) +i0%) (p). 97)

The real parts can be further decomposed as

0"(0)
2+i+j g5 ii ii

(98)

@ Springer

Note that for simplicity the terms vanishing after the deriva-
tives are performed are not shown and that in our nota-

tion Gy = GLO0 = GI\E,IOA = Gl()lzo. For the polynomials
pk(’f)(g) = Pk(”)(o) it holds:
1
PV o) = ~0(3—40). P}'V(0) = ;0(3~80), (99)
1
PP 0)=-02-30), P 0)= 701 —60), (100
1
PP (0)=2—-50 +40%, P{P(0) = —5(1 =30+ 46?).

(101)

In Eq. (96) we also neglected the contribution of the electric
form factor Gg(¢2) and terms like Gy (0) g2/M2. The con-
tributions to the imaginary part of GIZ\ILO(O) arise only for
the combinations {X, Y} = {A, Y} and, of course, need to
be evaluated outside the p — 0 limit where they are non-
vanishing. Since the expressions are particularly simple, we
show them here:

(22) _ 1+p _atanh(ﬁ)}
044 (p) = f)[ = )2 NG ,
(102)
0T(0) ==Z(1+p)
2
o /] _1+P10g<M).
a+vp)? 2p 1+p
(103)

Numerically, 037 (p) = —2.255 x 1073 and Q77 (p) =

—1.055 x 1073. Other numerical results are compared in
Table 2. We see how the numbers for respective contribu-
tions Q( 7 (o, p) oscillate around the common approximate
analytic result 0 (o).

The full result based on Eq. (96) and values from
Table 1 numerically reads Re GY0(¢?) = £(—0.36(16) —

Table 1 Values of the form-factor parameters used in the numerical
evaluations. Parameters k = Gy (0) are related to magnetic moments of
particles of mass M via u = k 55;; for the 30 A transition we put M =

M. The magnetic moments j —taken from Ref. [43] —are expree%ed with

respect to the nuclear magneton un. Consequently, k = “—N Vp The

radii ("1%4) and (ré) are calculated based on the values from Ref. [43] and
using 1fm = (1/0.197327) GeV~!. Coefficients cX¥
using Eq. (C.57) with My = M,

are calculated

2 2

(rip) (rg)
XY ll{iN e = _Céﬂl Gc:\]\;[‘2 Gc\[;‘2 Ci{Y
07 1.61(1) 1.98(1) 18.5(2.6) 0.77(26) 2.2(6)
>0 0.649 0.825 11.6(2.1) —0.77(26) 1.5(2)
A —0.613 —0.729 12.3(2.3) 2.8(5) —1.3(2)
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Table 2 Analytic result QU7 (o) compared to the numerical result for
) gé]y) (o, p) evaluated beyond the p — 0 limit, where, of course, the real
part gains the dependence on X and Y. The values are to be multiplied

by 1073

X Y @) =0y 12 21 (22)

0 (o) —24.8 —0.507 —0.507 —8.80

0 A —24.8 —0.551 —0.468 —8.82

30 50 —20.9 -0.368 —0.410 —6.21

A A —30.2 —0.642 —0.709 —13.9 —2.26i
A 0 —253 —0.517 —0.517 —9.81 — 1.06i

0.95(44) GZi/Z ). This is negligible in the global context, but is
of the same order as Schwinger’s correction to the magnetic
moment of the electron [45].

Considering the numerical values, k4 ~ —kyo and

(rf/[) 0 A (rf,[) A; cf. Table 1. Consequently, in the

model (C.55), ¢Z*%" ~ —cf4 and ¢4 ~ —cZ'%’. Also,
more generally and less precisely, c; & —c,. These consid-
erations lead to the fact that Eq. (96) can be put into a form
in which the form-factor parameters decouple:

Re GYO(¢?)

2
@ 0 L .
~—— ) G @SN D).
X.Ye(4,2% ij=1

(104)

Note that since | Q) (0)| < |Q)(o)|, i # j (see Table 2)
the second sum in Eq. (104) reduces simply to QD (o) +
0@ (o). Finally, note that 0 () has a nonzero limit as
o — 0 (coming from the coefficient of the linear term of
P} (o) times (—3)/5)): QUD(0) = —3/80 = —0.0375.
From this fact one could infer that the contribution from
01 (o) will be the most important one, as one can see
indeed in Table 2.

Along similar lines, one can calculate the corrections to the
Dirac form factor. In this case, the electric form factor should
not be neglected from the beginning, since the contribution
proportional to it is possibly of a similar size as the one
stemming from the magnetic form factor. We find

2
o 0 A (i
GY0¢%) = — 37 Y TH(¢P) Y e e 0y (0. p).
I XY i,j=1

(105)
with I € {E, M},
HEY (45 = GE¥Y (¢?), (106)
2
HYY (¢%) = LG (42, (107)
M 9 AN M 9

and, analogically to Eq. (97),

0 Ry (0. p) =01 (@) +i 0%y (0. (108)

The real parts Q?j ) (o) can be decomposed in terms of poly-
nomials Pl(fli)(a) = PI(]k’ ) () in the same way as it is shown
in Eq. (98), with (for brevity we drop denoting explicitly the

o dependence of the polynomials)

PV = —30(1+20 —40?), P} =0[l+20(5—60)]

(109)
Py = %a(l —802), PyY = —%aB +80(1 —30)],

(110)
P? = 36(4-50), PYY =0(10-1l0), (111)
Py = 30(3— 100), Py = —20(9—220), (112)

P = 302 -0 —20?),

2D = PyY = —6+ 190 — 1402, (113)

1
20%). B3 = 5(1-120 + 1407).

(114)

@) _ 3
Py =50 -20 ~

Once more, for completeness, we also show the analytic
forms of the contributions to the imaginary part of GII\ILo (g?):

o 27p
(1—p)(1+p)°

00 =7 [1_3” # (3= 7 ) ann (ﬁ)} ,

(115)

L+ )
(116)
22) _ l—Vp—pr P (H'«/ﬁ)2
Of yxo(P) =7p |:(l+ﬁ)2 +7 log <1+p i
(117)
Q(zz) ( )_Z 1+3p 2+5p)/p
M, AX0 p)= 2 (1+ﬁ)3 1+ﬁ
2
(L4 +5p) log((l—’_ﬁ) )} 118)
N 1+p

Numerically, Q) ,(p) = 6.548 x 1073, Q7" (o) =

2.325x1073, Q](;z/izo (o) = 3.161x 10~ and Qﬁ’zjwo (p) =

0.8489 x 1073, Other numerical results are compared in
Table 3. For the full correction based on Eq. (105) and values

from Table 1 we find Re G0 (¢2) = %0.040(38)GZ—;.
Similarly as we derived Eq. (104), we can find an approx-

imate formula for Re GII\"‘O(qz), which is obtained from
Eq. (104) using the substitution QU/)(s) — Ql(\ilj)(o)
q*/(4M?).

Let us now see how the corrections to the Dirac and Pauli
form factors translate into the NLO corrections AX = XN-O
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Table 3 Analytic result QI(\';[j ) (o) and ng ) (o) compared to the numer-
ical result evaluated beyond the p — O limit. The values are to be

multiplied by 10~3

X Y @j)=0an (12) (2D (22)

o (0) 28.3 7.65 7.65 437
204 283 7.85 749 437

30 30 25.0 6.47 6.31 1.84

A A 32.6 9.51 926  9.56+2.33i
A 0 29.0 7.83 7.83  4.78 +0.849i
0¥ (o) 215 —6.88  —688 260
04 -215 —6.96  —6.82 26.1

0 50 ~185 -575  —5.68 189

A A -25.6 ~853  —8.42 39.9+6.55i
A 0 —22.0 —7.03  —7.03  29.0 +3.16i

to the parameters X"C of the electric and magnetic form

factors in the linear expansions of Eq. (19). We find

Ak = AGM(0) = GYFO(0), (119)
dGNLO 2 GNLO 0
Ay =6| —L 1~ 2(q A w O (120)
dq q2:o 4M2
6 dGN©(q* A
oy = 290 @) Ak (121)
Kk  dg? p2=0 K

with GS[LO (q%) = Gll\ILo (g>)+ GgLO (¢%). Note that strictly
speaking, in our notation, all the parameters here could wear
the X9 A superscripts. Numerically, the relative corrections
dx = Re AX/ X arenegligible: based on values from Table 1,
S = —0.042(19) %, §,2) = —(0.05075}) % and B2y =
0.00711'32 %; the numerical cancellations among the terms
in Eq. (121) are responsible for the smallness of the last
correction. Finally, the correction to the differential decay
width takes the form

L NL
| 0N (x, y) 2

|5 (x, y)I?

83 4, (ry) =

-1

(122)

A 1 5 5
~2Rey— + EA(’”M)XAM .
K

Above, |//l(1;‘0(x,y)|2 was defined in Eq. (18) and

| A (I;‘O+NLO (x, ¥)|2 is its equivalent with form factors taken
up to NLO in the view of this section (with the parameters
corrected according to Egs. (119)—(121)). Up to the linear
order in x, there is no y-dependence. On top of that, the
x-dependence is very weak due to the numerical insignifi-
cance of the linear term (%A%VI Re A <"1%/[> ~ 10__6) within the
kinematically allowed region. Consequently, 6;{{ Ay (x,y) ~

svirt , = 28, = —0.084(38) %. The total correction due to

04
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the QED NLO effects on the XAy vertex thus does not
effect the measurement of the slope parameters (the electric
and magnetic radii) and has only a tiny effect on the magnetic
moment k and thereupon on the decay rate.

7 Results and discussion

With all the calculations at hand, we can now answer the
following questions:

1. Suppose one measures the differential decay width for
»0 — (Aete 4+ arbitrary many photons). How large
are the radiative corrections which relate this measure-
ment to the QED leading-order calculation for X0 —
Aete 7In particular, which aspects of the hadronic tran-
sition form factors can be extracted from such measure-
ments and how can they be extracted?

2. Can one safely neglect those radiative corrections that
involve other hadronic form factors, i.e. the diagrams
depicted in Fig. 2e—g?

3. What are the differences between the calculations pre-
sented here and the ones in Ref. [26]?

We first provide a quick overview of the first two questions
and then discuss the results in detail. Finally we will come
back to the third question.

The short answer to the second question is yes. To
answer the first question comprehensively, we distinguish
the twofold differential, one-fold differential and integrated
decay rate. Following the definitions of Eq. (25) we pro-
vide the relative changes for the differential distributions.
The corresponding results are shown in Table 4 and Fig. 3,
respectively.

Concerning the integrated width for the X0 — Aete~
decay, it can be meaningful to normalize to the LO inte-
grated decay width or to the rate of the real-photon decay of
»0 — Ay. In the latter case one can simplify and system-
ize the result by neglecting the electric transition form factor
and linearizing the magnetic one according to the discussion
around Eq. (19). Then the ratio

2% — Aete)

R
0= Ay)

(123)

is independent of Gy(0) and depends only on one hadronic
quantity, the magnetic transition radius. Consequently, one
can write

R = Ry +aR, + 0@a? (124)
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Table 4 The NLO correction §(x, y) — SR (x| y) (i.e. excluding the
1y IR contribution) given in percent for arange of values x and y (i.e. the
Dalitz-plot corrections) for the process X° — Aete™. It is sufficient
to show the results for positive values of y only since these corrections

are symmetric under y — —y. The larger values at the edge of the
kinematically allowed region (as x — 1) are naturally present due to
the fact that the correction itself is defined as a ratio of the NLO and
LO decay widths which both vanish for x — 1

x y
0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.99
0.01 2.50 2.44 2.31 2.17 2.03 1.87 1.65 1.33 0.83 —0.20 —8.26
0.02 2.67 2.61 2.49 2.34 2.18 2.00 1.75 1.40 0.84 —0.26 —5.84
0.03 2.71 2.66 2.55 2.41 2.24 2.04 1.78 1.41 0.83 —0.33 —5.75
0.04 2.71 2.67 2.56 2.42 2.26 2.06 1.79 1.41 0.80 —0.40 —5.84
0.05 2.69 2.65 2.55 242 2.26 2.05 1.78 1.39 0.77 —0.47 —-5.98
0.06 2.66 2.62 2.53 2.40 2.24 2.04 1.76 1.37 0.73 —0.53 —6.13
0.07 2.61 2.58 2.49 2.37 2.21 2.01 1.74 1.34 0.69 —0.60 —6.29
0.08 2.56 2.53 2.45 2.33 2.18 1.98 1.71 1.30 0.65 —0.66 —6.44
0.09 2.51 2.48 241 2.29 2.15 1.95 1.67 1.27 0.60 —-0.73 —6.60
0.10 2.45 2.43 2.36 2.25 2.11 1.91 1.64 1.23 0.56 —-0.79 —6.75
0.15 2.14 2.12 2.07 1.99 1.87 1.69 1.42 1.01 0.31 —1.12 —7.47
0.20 1.79 1.78 1.75 1.69 1.59 1.43 1.17 0.75 0.04 —1.46 —8.14
0.25 1.43 1.42 1.40 1.36 1.28 1.14 0.89 0.48 —0.26 —1.81 —8.78
0.30 1.05 1.05 1.04 1.01 0.95 0.82 0.59 0.17 —0.57 —2.18 -9.40
0.35 0.65 0.65 0.65 0.64 0.59 0.48 0.26 —0.15 —-0.91 —2.57 —10.0
0.40 0.23 0.23 0.24 0.24 0.21 0.11 —0.10 —0.51 —1.28 —-2.99 —10.6
0.45 —-0.22 —-0.22 —0.20 —0.18 —0.20 —-0.29 —0.49 —0.89 —1.68 —3.43 —11.2
0.50 —-0.71 —0.70 —0.67 —0.64 —0.65 —-0.72 —0.91 —1.31 —2.11 —-3.91 —11.9
0.55 —1.23 —-1.22 —1.18 —1.15 —1.14 —1.20 —1.38 —1.78 —2.59 —4.43 —12.6
0.60 —1.81 —-1.79 —1.75 —1.70 —1.68 —1.73 —1.90 —2.30 -3.12 —5.01 —13.3
0.65 —2.45 —2.44 —2.38 —2.32 —-2.29 —2.32 —2.49 —-2.89 —-3.72 —5.65 —14.1
0.70 -3.19 -3.16 -3.10 —3.03 —2.98 —3.01 —3.17 —-3.56 —4.41 —6.38 —14.9
0.75 —4.04 —4.01 —-3.94 —3.86 —3.80 —3.81 -3.96 —4.36 —5.22 —7.23 —15.9
0.80 —5.06 —5.03 —4.96 —4.86 —4.79 —4.79 —4.93 —5.33 —6.21 —8.26 —17.0
0.85 —6.36 —6.33 —6.24 —6.14 —6.05 —6.04 —6.18 —6.58 —7.47 —9.56 —18.4
0.90 —8.16 —8.12 —8.03 —7.91 —7.81 —7.79 —-7.92 —8.32 —9.24 —11.4 —20.3
0.95 —11.2 —11.1 —11.0 —10.9 —10.8 —10.8 —10.9 —11.3 —12.2 —14.4 —23.4
0.99 —18.0 —18.0 —17.9 —17.7 —17.6 —17.6 —17.7 —18.1 —19.0 -21.2 -30.3
with Considering the virtual corrections related to the pho-
ton and lepton lines and discussed in Sect. 3, the correc-
a= é( re) A2, (125)  tion to the one-fold differential decay width 8V (x) from

Results are provided in Table 5. After this brief summary we
turn to the details.

In the previous sections, we discussed the main parts of the
radiative corrections as we referred to them in Eq. (26), i.e. the
virtual corrections in Sect. 3 together with the related correc-
tion to the X9 Ay vertex in Sect. 6, the bremsstrahlung from
the lepton legs evaluated beyond the soft-photon approxima-
tion in Sect. 4 and the 1y IR correction in Sect. 5. In order to
get the final correction, one then simply sums over the partial
results found to be non-negligible: Eqs. (40) and (54). Let us
now comment on these contributions in detail.

Eq. (41) is model-independent. To a very large extent this
is also true for the correction to the twofold differential
decay width 8™ (x, y) from Eq. (40): Firstly, the electric
form factor can be safely neglected here, which makes the
magnetic part cancel out. Secondly, the numerical contribu-
tion of the F2NLO (¢?) part (also containing the model depen-
dence) is negligible compared to the rest of the expression.
The form factor F %\ILO(A%/,)C) then contains the IR-divergent
piece which cancels with the corresponding term stemming
from the bremsstrahlung contribution, as shown at the end of
Sect. 4.

@ Springer



218 Page 16 of 24

Eur. Phys. J. C (2020) 80:218

= 10 !

5(z) [%]

—20

0 0.2 0.4 0.6 0.8 1
xT

Fig. 3 The total NLO correction §(x) for the decay 30 5 Aeter
(solid line) in comparison to its constituents. The virtual correction
sVt (x) is depicted as a dotted line. The bremsstrahlung correction
8BS (x) is shown as a dashed line. The divergent behavior of §(x) near
x = v2 ~ 0 has the origin in the electromagnetic form factor Fj(x)
and is connected to the Coulomb self-interaction of the dilepton at the
threshold. This divergence is integrable

Table 5 Radiative corrections based on their origin and their respective
contributions to the ratio (124) and to the total correction § to the decay
rate. The first column shows R at LO. The subscripts ‘C” and ‘D’ at the
BS correction correspond to the (IR-)convergent and divergent parts,
respectively. The values of R; are to be multiplied by 10~3

LO virt BS|c BSIp total
Ro 5484  —0.0167  —0.06443  0.1302  5.533
Ry 0.619  —0.0201 0.00010  0.0287  0.628
s[%l - —0.310 —-1.17 2.38 0.896

Similarly, the bremsstrahlung contribution (54) discussed
in Sect. 4 can be considered to be model-independent. Firstly,
it is evident that the divergent part of the bremsstrahlung
matrix element squared (56) leads to the model-independent
correction; besides, this is governed by gauge invariance.
Secondly, after the electric form factor is neglected, the
expansion (45) allows for the cancellation of the magnetic
form factor with the one appearing in the LO expression,
leaving only terms dependent on its slope value in the final
result for 8BS (x, y). All the necessary definitions are then
listed in “Appendix A”.

Finally, for the model-dependent 1y IR contribution (85),
as presented in Sect. 5, we used the model discussed in
“Appendix C”. Let us again stress at this point that we used a
rather general approach applicable to a wide family of ratio-
nal models. The final result within a particular model can then
be related to an appropriate linear combination (86) of the
building blocks (D.72) defined in “Appendix D”’. We observe,
which is soothing, that different models would lead to com-
patible values in the numerical results: We explicitly checked
this using the two models (C.54) and (C.55) discussed in
“Appendix C”. The numerical results for the 1yIR correc-
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tion 87 IR (x, y) within the model (C.55) and using the values
from Table 1 are shown in Table 6. We can see that this cor-
rection is negligible and would only make cosmetic changes
if included in Table 4; note the overall relative factor of 0.01
between the values presented in Tables 4 and 6. Moreover,
what is important is the antisymmetric nature of this correc-
tion with respect to the electron—positron exchange, i.e. with
respect to the sign change of the kinematic variable y. This
means that the correction §'7™R(x) is necessarily vanishing
and has thus no effect on the measurement of the form-factor
slope or the total decay rate. Note that this is also consistent
with the fact that the interference of the §'V1R (x) diagrams
(Fig. 2e, f) with the LO diagram from Fig. 1 gives a con-
tribution to the imaginary part of a two-loop diagram van-
ishing due to Furry’s theorem; see also Ref. [46]. Therefore,
after the phase-space integral is performed, this interference
should indeed vanish accordingly.

For sample values of x and y, the total radiative correc-
tion §(x, y) is evaluated in Table 4. The numbers here stem
from the virtual and bremsstrahlung correction discussed in
Sects. 3 and 4, respectively. Note that the correction to the
30 Ay vertex (sziff Ay (x, y) is not included here and will be
discussed further. The total radiative correction to the one-
fold differential decay width §(x) is shown in Fig. 3. While
the contribution of the virtual corrections is negative nearly
throughout the whole region of electron—positron invariant
mass, the bremsstrahlung is mainly positive (up to the region
x 2 0.75). The overall correction is then above zero only
for x < 0.25, which is enough to make the correction to
the decay rate positive: § = 0.896; see also Table 5. This
is caused by the fact that the biggest contribution to the
rate I'(X% — Aete™) comes from the small-x region of
dl"(x)/dx.

Integrating the differential decay width over the whole
Dalitz plot and normalizing to the 9 — Ay decay rate,
we can obtain the ratio (123). Neglecting the effects of the
electric form factor, we can write the result in terms of the
linear expansion (124). At LO, taking into account the small-
ness of parameters p and v2, one can obtain simple analytic
expressions which read

2 4 13 »p V2
RO~ 21 (2) 2L 13 . (126
L n[3og<v> : 15+4<+p)} (126)
4
RO~ X2 2 127
1 n[lS Y (127)

Note that the terms linear in p and v are numerically insignif-
icant given the precision we use in Table 5. Hence we can
simply write

2 2A 13 4
RMO ~ hl [—log (TM> - —+—aj|.

128
w3 9 15 (128)
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Table 6 The 1yIR correction §'™R(x, y) at NLO for the process
30 — Aete~ to be multiplied by 10~*. It is sufficient to show the
results for positive values of y only since these corrections are antisym-

metric under y — —y (and thus s17IR(x 0) = 0). Note that instead of
values for y = 0, the first column shows SR 0.05)

x y
0.05 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.99

0.01 —0.00  —0.00  —0.00  —0.01 —0.01 —0.01 —0.01 —0.01 —0.01 —0.01 —0.00
002  —0.00  —0.01 —0.01 —0.01 —0.02 —0.02 —0.02 —0.02 —0.02 —0.01 —0.01
003  —000  —0.01 —0.01 —0.02 —0.02 —0.03 —0.03 —0.03 —0.02 —0.02 —0.01
0.04  —0.01 —0.01 —0.02  —0.03 —0.03 —0.03 —0.03 —0.03 —0.03 —0.03 —0.02
005  —0.01 —0.01 —0.02  —0.03 —0.04 —0.04 —0.04 —0.04 —0.04 —0.03 —0.03
006  —0.01 —0.01 —0.03  —0.04 —0.05 —0.05 —0.05 —0.05 —0.05 —0.04 —0.04
007  —0.01 —0.02  -0.03  —0.05 —0.05 —0.06 —0.06 —0.06 —0.06 —0.05 —0.04
0.08  —0.01 —0.02  -0.04  —0.05 —0.06 —0.07 —0.07 —0.07 —0.07 —0.06 —0.05
0.09  —0.01 —0.02  -0.04  —0.06 —0.07 —0.08 —0.08 —0.08 —0.08 —0.07 —0.06
010  —0.01 —0.02  -005  —0.07 —0.08 —0.09 —0.09 —0.09 —0.09 —0.08 —0.07
015  —002 -004 —007  —0.10 —0.13 —0.14 —0.15 —0.15 —0.14 —0.13 —0.12
020 —003 —005 —0.10 —0.14 —0.18 —0.20 —0.21 —0.21 —0.21 —0.20 —0.18
025  -0.04 —007 -0.13  —0.19 —0.23 —0.26 —0.28 —0.29 —0.28 —0.27 —0.25
030  —004  —009 —0.17  —0.24 —0.29 —0.33 —0.36 —0.37 —0.36 —0.35 —0.33
035  —0.05  —0.11 —0.21 —0.29 —0.36 —0.41 —0.44 —0.46 —0.46 —0.44 —0.42
040  —007 —013  —025  —0.36 —0.44 —0.50 —0.54 —0.56 —0.56 —0.55 —0.53
045  —008  —0.15  —030  —042 —0.52 —0.60 —0.65 —0.67 —0.68 —0.67 —0.65
050  —009  —018  —035  —0.50 —0.62 —0.71 —0.77 —0.80 —0.81 —0.81 —0.78
055  —0.11 —022  -042  —0.59 —0.73 —0.84 —0.91 —0.95 —-0.97 —0.96 —0.94
060  —013  —025  —049  —0.69 —0.86 —0.99 —-1.08 —-1.13 ~1.15 —1.15 -1.13
065 —015  —030 —057  —0.82 —1.01 —1.17 —1.27 —~1.34 —-1.37 —-1.37 -135
070  —0.18  —035  —067  —0.96 —-1.20 —~1.38 -1.51 —-1.59 —-1.63 —1.64 -1.62
075  —0.21 —0.41 —0.80  —1.14 —1.43 —1.65 —1.80 ~1.90 —~1.96 -1.97 ~1.96
080  -025 —050 —097  —1.38 -1.73 —2.00 —2.19 —2.32 —2.39 —2.41 —2.40
085  —031 —062  -120 -1.72 —2.15 —2.49 —2.73 —2.89 —2.99 -3.03 —-3.02
090  —0.41 -0.82  —158  —226 —2.83 —3.27 —3.60 —-3.82 —~3.96 —4.02 —4.02
095  —062  —123  -239  —342 —4.28 —4.96 —5.46 —5.81 —6.02 —6.13 —6.15
099 —146  —290  -562  —8.05  —10.1 —11.7 —~12.9 -13.7 —14.2 145 —14.6

Numerically, at NLO and taking into account 8" and §B5
(i.e. consistently with corrections from Table 4 or Fig. 3)
reveals R = 5.544(2) x 1073, Neglecting the effects of the
electric form factor, we can again express the result in terms
of the linear expansion in a. This is consistent with Ref. [26]

and allows us to isolate the form-factor effects:

R = (5.533 4 0.628a) x 1073, (129)

This should be — and perfectly is — consistent with the NLO
result for the rate given in Ref. [26], which was obtained
using a different method:

Rsgs = (5.532 +0.627a) x 1072, (130)

We recall that a is related to the slope of the magnetic form
factor as GM(A%Wx) = Gm(0)(1 4+ ax) or in other words,
we have the relation (125). On top of that, it is interesting to
see how the respective corrections at NLO contribute to this
result for R. This is shown in Table 5. Note that numerically
a = 0.0183(26).

The situation changes only slightly if we take into account
the QED corrections to the X9 Ay vertex. As discussed at the
end of Sect. 6, its most significant contribution is related to
the correction to the magnetic moment: 8‘2{} A, X 20
—0.084(38) %. This might be of a small effect when calcu-
lating the decay widths of the Dalitz decay X0 — Aete™
or of the radiative decay X% — Ay . In this case, the pre-
viously specified correction can be used together with a
theoretical prediction for the purely hadronic form-factor
parameters. Building the ratio R or, equivalently, extracting
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the “measured” magnetic moment from the measurement of
3% — Ay and using it in £ — Aete™ requires no need
for this correction. This is only necessary if one would like
to disentangle the hadronic from the QED effects based on a
future high-precision measurement. For the measurement of
the magnetic-form-factor slope, on the other hand, it is impor-
tant to know how much the corrections to the %Ay vertex
affect the magnetic radius. We find § > 2y = = 0.0071 +gg %, and
thus they are very tiny. Note that due {0 5 r2) the value for the
ratio R is modified only negligibly via 1ts]\f1near dependence
on the corrected slope a.

Now, we also should take into account that we decided
to completely neglect the contribution of the bremsstrahlung
related to the baryon legs. Moreover, we can also consider the
unknown next-to-next-to-leading order (NNLO) QED cor-
rection as a source of additional uncertainty to our calcula-
tion. After inspecting Table 5, we see that even though the
overall NLO correction § is below 1 %, the contribution of
BS|p itself is significantly bigger. Suppose we assume that
the NNLO correction could be of the same size with respect
to NLO as 6850 is as compared to LO. This means & 2.5 %,
and ~ 5 % for the slope. We take the squares of these relative
uncertainties to conservatively estimate an upper bound for
the uncertainty of our final result:

=[5.533(3) + 0.628(2)a] x 1073, (131)
Here, the uncertainty based on neglecting the higher-order
calculations is bigger than the correction to the slope stem-
ming from the QED corrections to the X% Ay vertex.

From the requirement that the branching ratios should sum
uptol,

B0 > A+ B(E° > Aete )+ B(EC—> Ayy) ~ 1,

(132)

our knowledge of R can be translated to the respective
branching ratios. We follow Ref. [47] and assume A(X 0
Ayy) ~ 1077, Then this part is irrelevant. In view of our
estimate on the uncertainty of R, we have

1 R
B> Ay)~ ——, B > Aete ) ——.
1+ R 1+R

(133)

This becomes Z(X° — Ay)=[99.4498(3)—0.0621(2)a]%,

B(E0 - Aete™) =[0.5502(3) + 0.0621(2)a]%. Taking
into account the value for the magnetic radius from Table 1,
ABE0 — Ay) = 99.4486(5)%, B(X° — Aete™) =
0.5514(5)%. Being even more conservative, let us assume
100% uncertainty on the theoretical prediction of the mag-
netic radius of the % — Ay transition and consequently
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a = 0.02(2). We find (2% — Ay) = 99.449(2)%,
B0 > Aete™) = 0.551(2)%. These results are very
reliable: They are dominated by the QED calculation, assum-
ing little about the size of the magnetic-form-factor slope, and
can be further improved by future experimental knowledge
of this parameter.

We now find ourselves in a position to summarize the con-
tent of this paper, emphasizing the differences with respect
to Ref. [26]. That work was devoted to calculating both the
corrections to the Dalitz plot and the virtual-photon spec-
trum, i.e. to the twofold and onefold differential decay widths,
respectively, as well as to the decay rate.

In the former case, the soft-photon approximation was
used together with an energy cut-off, which then comes in
as a parameter when integrating over the degrees of freedom
of the bremsstrahlung photon. The presented expression is
valid only for x > v2. It covers neither the hard-photon cor-
rections nor the low-x soft-photon corrections. As pointed
out by the authors of Ref. [26], due to this fact the resulting
corrections were negative all over the Dalitz plot, in contrast
to the fact that the total correction to the decay rate was found
to be positive. Indeed, the low-x region is most important to
correctly obtain the correction to the decay rate after the inte-
gral is performed. In contrast, our calculation is valid over the
whole Dalitz plot and includes the hard-photon corrections,
simply because we performed the exact calculation without
putting any extra limits on the photon energies. Such inclu-
sive radiative corrections are to be used in experiments when
photons in the final state are ignored completely.

On the other hand, the correction to the decay rate obtained
in Ref. [26] contains the hard-photon corrections and that
is why, when the corrections found in our work are inte-
grated over the Dalitz plot, our result (129) is consistent with
Eq. (130). This suits us as a neat cross-check of our cal-
culation; the slight difference is caused by distinct inputs
for masses and fine-structure constant. Note that we also
use muon loops as part of the virtual corrections and sum
the whole geometric series of the vacuum-polarization inser-
tions, though these effects tend to cancel each other to a very
large extent.

To summarize, the (numerically) most significant differ-
ence between the previous work [26] and our present cal-
culation is stemming from the way how the bremsstrahlung
correction is treated in the case of the corrections to the dif-
ferential decay width. Yet, a second difference is that we also
decided to explicitly calculate the contributions of additional
loop diagrams which were omitted in Ref. [26]: the two-
photon-exchange (1yIR) contribution and the correction to
the X9 Ay vertex. What we found by our explicit calculations
can be split up into general findings and numerical results.
In Ref. [26] it was claimed that the radiative correction to
the EOA)/ vertex does not influence, by its nature, a deter-
mination of the slope of the form factor. In contrast, we find
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that, in principle, both the normalization of the decay and
the form factor slope (i.e. the radius) are influenced. Numer-
ically, however, as one can only see after the calculation is
performed, all the effects are found to be very small. Both
the X0 Ay-vertex correction and the 1yIR contribution can
thus be neglected in the evaluation of the NLO radiative cor-
rections.

Finally, from Fig. 3 we can estimate the size of the cor-
rection to the (magnetic) form-factor slope. By taking half of
the slope of the curve in the low-x region, however farther
from the threshold:

1dé(x)
Aa = —a~ - 134
4 = d4(+QED) — @ = 5= . (134)
1d5(x)

with 12 « x¢ < 1. Since Rl N ~ —3.5 %, this cor-
rection is bigger than the estimate on a itself (a =~ 1.8(3) %).
What would this imply if one tried to extract a magnetic
radius from experiment without considering the radiative cor-
rections explicitly? One would obtain a measured value of
a(+Qep) that implicitly contains the QED radiative correc-
tions. Thus one should then subtract from the measured value
a(+QED) the correction Aa in order to get an estimate on the
hadronic parameter a, i.e. on the magnetic radius on account
of Eq. (125). With the above assumed values, one would thus
expect the “measured” radius to be negative, in case the radia-
tive corrections would not be used explicitly in the analysis:
(ré) (+QED) = (rgp) + %Aa, with %Aa ~ —35Ge V2.
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Appendix A: Bremsstrahlung: basic integrals

For the purpose of this appendix, it is useful to define the
following function:

1 Ja? —b
L(a,b,c) = log | FA T Ve ’ (A1)
a’?—b c+a—+~a>—b

It is also convenient to write explicitly the energies of the
leptons in the Lambda—y CMS in the invariant form,

—0 1
wgro0 "= (k+p2)-q1 = y <M§ —S5 =5y —Aﬁl>,
(A.2)
—0 1
®q2,0 (r=)(k+172)'42 = Z(M%; _S_SV+A%n);
(A3)

see the text after Eq. (55) for the relation between the dimen-
sionless variables x and y and the variables s and A2,. The
first set of basic integrals can be written as

=2 (A4)
w
~2
W™ wql .0
JIA|l = — —, A5
1] 2 2
J 1= L(wg,0, o*m~,0), (A.6)
1: 1 ) W
J| = |=zL|w(g1,0+g20),w"s, =5, (A7)
E|l 2 1)

Jl_ 8L(420) (A.8)
— | = —0L(s,4m"s, 0), .
AB| oo

17 4

J—=|= ——, A9
I:AZ_ m2ow (A9)

J|: 1] 1 dw (A.10)
E2] s [owM% — M%) +sM2] '

For the other set, it is useful to introduce additional vari-
ables,

10}
VI = 0g2,0—, (A.11)
w
o
V2 =w611,05 + s, (A.12)
wo = m’&?, (A.13)
2y ~2 ~ @
wy = (s —2m~)o” 4 25wq2,0—, (A.14)
w
wy = m2&* + 5% + 2§a)q1,09, (A.15)
w
and their following combinations:
0 = 2w+ wi, (A.16)
0 =2ws + wy, (A.17)
¢ = wi — 4wow, (A.18)
w = wo + w; + wa, (A.19)
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7| = 120 — V10, (A.20)
T = viw; — 2v2wo, (A.21)
T = vlzwz + v%wo. (A.22)
The remaining basic integrals are then given as
J|-L Z—L(Z +wr, 4wo(wo + wy + w2), 0)
AE wo + wi, 4wp(wo + w1 + w2
201 e [“I], (A23)
o T tle=ye
! 2 2w 1 1
J AEZ] E{”f* QJ[AE}} (A24)
! 4 20 1 1
—— —{n—— A2
J_AZE] g{ S J[AE]} (A.25)
R 20 (v1 + v2)2
MR ey
6
§(t_v1v2w1)i| |:—2v1vg+vl
+2 (r0 = 20102m00) (A.26)
c TO — ZV1 VW00 AE .
and
1 1
J|— | =J|— , (A.27)
X(E —4M?) XE J5 s _arp

with X € {1, A, Az}. In the previous expressions, whenever
s is not substituted, in the end we put s — s. In the limit
Mp — O (and consequently ® — w) and My — M_ o,
the results from Ref. [32] are recovered. Note that J [ ye E]
[m] and J [ ye E2] contain divergent parts ;J [ﬁ]
L_J [ A2] and lzJ [ ] respectively: For instance, in

s—4M?

Eq. (A.25), 2 wo = ‘][A2] and (272 - %) J[ﬁ] then leads
to a convergent integral. Needless to mention, the divergences
have to be subtracted before the numerical integration is
performed and treated separately: The corresponding diver-
gent integrals have to be integrated over s,, analytically. The

results can be written in a simple form:

[

4 [rog™ 4 1og 287~ MY A28
—m["gﬂ"gw Mz_s+Az] (A28
/J Llds, = 2 (22108

AB |V T g T8y

m 25 - M3 1

log & 4 log —F A7 “yog(1 — g2

X[ogAJrogM%_Mi_ 5 log( ﬂ)}

A2
_m A2
K('B’ M%—Mﬁ—s)}’ (A4.29)
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where

K(B.y) = 2log(y) log (yzﬁﬁ)
y—28

vy —=8) .
—Lip| 22 L A.30
12[ v+ B }+ l[wy ﬁJ (A30)

and with

ST — ML 45— \/4st + —(A )2. (A31)

)/ 132

To list the last missing basic integrals, we define the fol-
lowing variables:

bi=T0 g = Jg2y —m (A.32)
lq; | '
_ 2
@@, 1e=2m) (A33)
IQ1||CI2| 2 |qillqz|
and functions:
01(8) = b1 00(§) — 101 (), (A.34)
02(6) = ( +b2> 00(£)
—2b1n01(§) + (n - —) 02(8), (A.35)

where Q,,(£) are the Legendre functions of second kind,
with Qg (&) redefined for & > 1:

_ b (5T

Qo) = > log <E — 1>, (A.36)

016) =§00(8) — 1, (A37)

1 3
02(6) = 5(352 — Do) — 3¢ (A38)
The integrals then read
B
J[Z = —MQI(IU) (A.39)
1 olq]
[ B 2 lqi| d01(8)

Jl == 280 , A.40
| A2 ] olgl?  dE E=by ( )
'BZ‘ 2

Il == w_MQ (by), (A.41)
| A ] o |q2]

(B2 &lqi1?d02(®)

J=|=—""2 ) A42

| A2 | wlql? d& E=by ( )
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Appendix B: 1yIR contribution: the baryonic part

For further convenience, let us define the product of two form
factors appearing in the 1yIR amplitude (see Eq. (71)):

g = GXA (U= p?) GFX (U - p1)?). (B.43)

then the coefficients and matrices in Eq. (79) take the form

12
822 37y (ME v

T;Alv = lpylwv’ ﬂl

Z gl],

(B.44)
2 _
TMU = Yuvs
B = MxB + (1> — M3)
( 812 821 + 82 ) (B.45)
Mx+Ms My+My 2Myx)’
X X
3 x _ &t
T/w = ZZVIpJ/up, By = —m, (B.46)
X X
4 x _  8nt8&n
I, = 20,0 ypy, By = —m, (B.47)
T3, = pX = MypX L My
o =2 B3 = MBS = 80 g Ty
(B.48)
T6 =21 BX = MypX 12— M}
o =2t P = Mxbi —n G TS
(B.49)
1
T! =4l,0,0y, B =gXk , (B.50
v whl®vp, BT =85 My (Ms + Ma) (B.50)
TS, =4l BE = Mxpy, (B.51)

where we used for simplicity the short-hand notation (81) for
aproduct of y-matrices. We also extracted the loop momenta
out of the expressions. Now, due to the conservation law of
the electromagnetic current (59), the loop momenta with the
Lorentz indices n and v can be substituted in the following
manner:
" — p4, 1" — py. (B.52)
Loop momenta carrying index p then enter the tensorial one-
loop integrals defined in “Appendix E”.

Appendix C: A model for the X — Ay transition form
factor

Having a particular model for the form factors is essential
in the case of the 1yIR contribution and the correction to

the XAy vertex. There the form factors enter loop inte-
grals and therefore a low-energy expansion like in Eq. (19)
is insufficient.

In the context of the whole box diagram in the case of
the 1y IR contribution, the terms proportional to G»(g?) are
potentially responsible for the UV-divergent behavior due to
the loop-momenta-power counting; cf. Eq. (71). Following
Eq. (12) we get

7*GY (@®) — (Mx + My)*GEY (%)
g2 — (Mx + My)?

(Mx + My)*(GE¥ (¢») — G (4P)
g% — (Mx + My)?

3

G g* =

G3Y(¢H) = , (C.53)

and we see that for g> — oo and constant GXY (¢*) and
G (@), G1Y (@) = G (g% and |G (¢P)] ~ 1/4>.
Hence, regarding the 1y IR contribution, the UV convergence
is achieved even in this simplest case when constant form
factors are assumed. Taking G}{:{Y(qz) = Gé(Y(O) = 0 and
Gf\(,[Y(qz) = GﬁY(O) = kXY one arrives at

ny(qz) — XY 612
1 _ M‘Z/ ’
M2
GXV(g*) = =XV —Y . (C.54)
q* — My,

It could be then sufficient to show that if one uses this simple
prescription, then the 1y IR contribution is negligible. Such
a conclusion should then carry over to the cases of more
sophisticated models.

To explore also a second possibility, we use an ansatz
exhibiting a stronger suppression in the UV region of the
form

M}

GX7 (%) = X7 ’
(q> — M3})?

6
Gy" (¢*) = c§Y2M—V23, (C.55)
(q - Mv)
which satisfies the Brodsky—Lepage scaling rules [48,49] and
— for nontrivial c{{ ¥ and cé‘ ¥ _ the conditions Gg Y0)=0
and Gf\(/IY (0) = «XY. After inserting these expressions in
Eq. (12) we find cé‘y = —«XY and

M? 1

XY XY \4 2\ XY 342
s =k —m—— — —{(r, M, C.56
LE (Mx + My)? g\E)T My (€.56)
1
¥ =X <3 - g(r§4>XYM3> : (C.57)

depending on if we match the linear expansions in ¢ to
GXY(qz) or GXY(qz); see Eq. (19). In the present work we

Xy _ e
take ¢’ " = M-
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Appendix D: Loop structure in the 1y IR contribution

In this appendix we write the contribution of the box dia-
gram to the matrix element squared at NLO in terms of
tensorial one-loop integrals, taking into account the model
introduced in “Appendix C”. The terms having a nontrivial
loop-momentum dependence, listed by the source, are the
leptonic part contributing with

) (D.58)
(= p2—q1)? - '
the baryonic part giving
P - M3

- Mx

photon propagators

! (D.60)
(= p)2 = p)?’ '
and form factors

1= p)*Hd — p2)?
{{ = p)"HUT — p2)7} D.61)

[ = pD)? = My ) 1'[0 = P2 {=M{go 1"
Note that terms in curly brackets appear only in part of the
terms. This means we have tensorial integrals of the triangle
(C) and box (D) type. The rank of these tensors ranges up
to 2.

In what follows, we want to regroup the terms listed in
Appendix B based on gi)j(. and associate them with the tenso-
rial integrals of a given type. It is convenient to introduce the
loop-momenta-independent traces

B(11),X __
Tty ppe = Tru{p}v o (D.62)
2
B(12),X _ T B Plv__ B
Tt =Tutove = 371 a1y Dilo)o (D.63)
2
B2D.X _ T B P
Tuowo = Tatowo = 371 a1, oo (D.64)
TB@).X _ B 4p2up1v B
ulpiv,o = “ufpiv.o 2Mx(Ms + My) {p}.o
2piy B 2pou B
- Tr {o}o — {p}v,o>
My + My P My + My WiV
(D.65)

which then combine (so far with general masses M| and M»)
with the box integrals as

B(ij), X 2 2y 2 X
DTr{K}l,]Mv,U(Ml ’ M2) {/(}(M ’ MZ)Tr,E;)lﬁ)d
+D{, (MT, M3 T D)X My
(D.66)
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Similarly, let us define

Tt D-X (2 M2y = o,

{c},uv,0

(D.67)

CTrB(12) X 2, M2) = Ciy(M3?, M3 T8

{k},uv,o My + Mx nv,o
(D.68)
1
B(21),X 2 2N
CTr (i} v, U(M s M2) = m C{K}(Ml , Mz)Ter o
(D.69)
1
B(22), X 2 2N
CTr My, M5) =
v M1 M2 = o M + M)
x [ 0L M MITES,,  + Clo (M7, M3)
x (Mg + My + Mx)Tr,
—2p T, = 2p, TS, | (D.70)

to gain the triangle-type contributions arising due to the can-
cellation of one of the denominators, as shown in (D.59).
The overall generic sum of the products of the tensorial loop
integrals and traces of the baryonic part is then

B(ij). X
{r}uv,o

B(ij), X
{c},uv,0

B@j),X
{c},uv,o°

LTr = CTr + DTr D.71)
A subsequent contraction with the leptonic part (in terms of

Eq. (76)) then yields

TeBLEDX (M2 M2 g1, q2)
= LTBDX (M2 MDT . (g1, q2)

SV, 0
— LTB0D-X (M7, MT (g1, q2). (D.72)

which serves as the desired building block.

Appendix E: Tensorial one-loop integrals

We use the tensorial one-loop integrals as defined below.
In what follows we use for Feynman denominators Dy =
(1> —m2+ieland D; = D(p;, m?) = [( — p;)> —m> +ie]
fori > 1.

3 s o o A e, ET3
K..,o(l’pmo,ml)= 2n)* DoD;’ (E.73)
d*t Il
CK..p(P127(P2_Pl)zsP%§m%,m%,m%) E/wﬁ,
(E.74)
De.p(pl. (p2 — p0*. (p3 — p2)%, 3. p3. (p3 — 1™
s 2 2 o a4 Le.. 1,
mg, mi, my, m3) = (E.75)

(2m)* DoDD2D3’

During the calculation of the 1yIR contribution stem-
ming from the box diagrams, it is only necessary to
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take into account the integrals C,. ‘p(M(ZX A) ( 20 X)) and
(M(XA), EOX)) defined as
2 2
Cie.p(Mix 1) Mis0y,))
= Cy. p((QI +q2) m? m M(EOX)’M(ZXA)’mZ)
d* Le.. 1y
(27t)4 D(Ph (on))D(Pz, (XA))D(P2 +5117 2)
(E.76)
(M(XA)a M(EOX))
= De.p (M3, (q1 + q2)*. m?, (p2 + q1)*, M5, m*;
2 2 2
MX’ M(EOX)’ M(XA)’m )
d4 { 1
@m)* | DO, M%)
le..1,
D(plv (EOX))D([)Z» (XA))D(PZ +l11, )
(E.77)
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