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Abstract: The research on high-order transverse modes in lasers is a subject as old as

the laser itself and has been largely abandoned. However, recently several studies have

demonstrated an interest in using, instead of the usual Gaussian beam, a radial Laguerre–

Gauss LGp0 beam, as, for instance, one can observe a strong improvement, for a given

power, in the longitudinal and radial forces in optical tweezers illuminated by a LGp0 beam

instead of the usual Gaussian beam. Since in most commercial lasers, the delivered laser

beam is Gaussian, we therefore think it opportune to consider the problems of forcing

a laser to oscillate individually on a higher-order transverse LGp0 mode. We propose a

comprehensive analysis of the effects of an intra-cavity phase or amplitude mask on the

fundamental mode of a plano-concave cavity. In particular, we discuss the best choice of

parameters favouring the fundamental mode of a pure radial Laguerre–Gauss LGp0 model.

Keywords: intra-cavity beam shaping; high-order Laguerre–Gauss modes; binary amplitude

mask; binary phase mask

1. Introduction

Research on high-order transverse modes of laser cavities was mainly conducted by

early pioneers after the invention of the laser in 1960 [1–6] and was very quickly abandoned.

It should be noted, however, that a renewed interest in the study of high-order transverse

modes of lasers which can be found, without being exhaustive, in references [7–11]. The

high-order transverse modes involve Hermite (Laguerre) polynomials for rectangular

(cylindrical) coordinates. In the following text, we will emphasise radial Laguerre–Gauss

LGp0 modes. The mathematical description of the high-order transverse mode is available

in the standard textbooks in photonics [12–14]. The electric field associated with a LGp0

beam is given by

Ep(ρ, z) = E0
W0

W(z)
Lp

(

2ρ2

W2(z)

)

× exp
(

− ρ2

W2(z)

)

× exp
(

i(2p + 1)Φ(z)− ikρ2

2Rc(z)

) (1)

where ρ and z are the radial and longitudinal coordinates, respectively, and Lp is the

Laguerre polynomial of order p [15]. The quantities W and Rc are the width of the Gaussian
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mode (p = 0), and the wavefront radius of curvature, respectively, are z-dependent as well

as the Gouy phase shift Φ:

W2(z) = W2
0

[

1 +

(

z

zR

)2
]

(2)

Rc(z) = z

[

1 +
( zR

z

)2
]

(3)

Φ(z) = Arctg

(

z

zR

)

(4)

The LGp0 beams are made of a central peak surrounded by p rings of light as shown

in Figure 1.

































)(2
)()12(exp                

)(
exp

)(
2

)(
),(

2

2

2

2

2
0

0























2

2
0

2 1)(




















2
1)(









)(

0

-3 -2 -1 0 1 2 3

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

LG30

LG20

LG10

LG00

In
te

ns
ity

 (a
.u

.)

ρ/W

0

00 0

/2
0

0

12)()(

Figure 1. Transverse intensity distribution of the 4-first radial Laguerre–Gauss LGp0 beams.

The Gaussian LG00 beam is characterised by its beam-waist radius W0 and a Rayleigh

distance of zR = πW2
0 /λ. The beam waist plane defines the origin z = 0 of the longitudinal

coordinate. The lateral spreading of the LGp0 beams are described by the width Wp, based

on the second moment radius, and the far-field angular divergence θp, given by [16]:

Wp(z) = W(z)
√

2p + 1 (5)

θp = θ0

√

2p + 1 (6)

where θ0 = λ/(πW0) is the angular divergence of the Gaussian beam (p = 0). Another

important property of LGp0 beams is that they have the same on-axis (ρ = 0) intensity

whatever the mode order p. This contrasts with the usual scale law stating that beam

spreading results in a decrease in the on-axis intensity as the beam propagates [17]. Another

quantity of importance that characterises the beam quality, called the beam propagation

factor, was popularised by A.E. Siegman [18,19] and is equal to M2 = (2p + 1) for an LGp0

beam. This enables us to introduce a fundamental quantity known as brightness, B [16]

B =
π2P

λ2(M2)2
(7)

The brightness B describes the potential of a laser beam carrying a power P and with

a beam propagation factor M2 in order to realise high intensities in combination with a

large Rayleigh range. Note that a beam with a beam propagation factor of equal to one is

Gaussian but the reverse is not true [19,20]. Equation (7) allows us to understand why the

studies of higher-order transverse modes slowed after the invention of the laser, on the
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pretext that only the Gaussian LG00 mode is useful because of its higher brightness over the

higher-order LGp0 beam. The consequence of this rejection is that most of commercial lasers

still deliver a Gaussian beam (GB). However, recent laser studies on higher-order transverse

modes have demonstrated numerous advantages in several laser applications. Recently, a

review about the advantages and disadvantages of using structured LGp0 beams for certain

applications (3D microfabrication, optical tweezers, spherical aberration mitigation) was

published [21]. In addition to this, there are numerous studies on the applications of LGp0

beams in the gravitational wave detectors [22–26]. First of all, let us clarify the concept

of fundamental mode of a laser cavity since it is often confused in the literature with the

Gaussian mode. The fundamental mode of a laser cavity is the mode with the lowest losses

and is thus susceptible to reaching the laser oscillation first.

The objective of this paper is to present a model (see Appendix A) of a laser cavity,

including a phase or amplitude mask aiming to force the fundamental mode of the laser

cavity to become a pure LGp0 beam. “Pure” means that the mode is a single mode, i.e., not

a mix of several transverse modes. The amplitude and phase masks impose the position

of zeros of the intensity of the desired LGp0 mode. The amplitude mask takes the form

of thin annular absorbing rings with a radius which follows closely the location of the

Laguerre polynomial zeros given in Table 1 for the three first high-order LGp0 modes. For

convenience and clarity, we limited ourselves to p = 3, but it may be perfectly feasible

to achieve a laser oscillation on higher-order transverse modes when forced by a binary

amplitude or phase mask.

Table 1. Values of ratio ρi/W such that Lp(2ρ2
i /W2) = 0.

p

1 0.707106
2 0.541195 1.306562
3 0.455946 1.071046 1.773407

The use of absorbing rings for forcing a LGp0 mode has been already attempted [27].

For instance, Hermite–Gauss modes have been obtained by inserting straight wires inside

a laser cavity aligned along the nodes of the desired mode [28,29]. In Section 2, we

will consider the selection of a transverse LGp0 mode based on the insertion of a binary

amplitude mask inside the cavity, which induced high losses in all modes except the specific

desired mode.

The second way that masks are able to force laser oscillation in LGp0 mode is through

a phase mask, and more precisely, a binary phase mask, which is made up of a transparent

material etched on annular zones and introduces a phase shift equal to 0 or π and conse-

quently a transmittance equal to +1 or −1. The radii of the phase discontinuities are (0 to

π), and (π to 0) corresponds to the node radii of the LGp0 mode given in Table 1. In the

following text, the phase mask will be known as a binary annular phase plate (BAPP), and

it will be shown in Section 3 that, for the amplitude mask, the mechanism of transverse

mode selection differs from that mentioned above. It is important to note that, for several

decades, the selection of the fundamental mode of a laser cavity consisted of suppressing

all high-order transverse modes except the Gaussian LG00 mode by inserting a circular

aperture into the resonator [1,2,4,30–34]. In this case, the selected LG00 mode is distorted by

the diffraction and is no longer Gaussian in shape, as shown theoretically and experimen-

tally [35]. Note that the selection of the fundamental LG00 mode by the circular internal
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aperture is based on the hierarchy of beam divergence of the LGp0 modes expressed, in

accordance with Equation (6), by the inequalities

θ0 < θ1 < θ2 < θ3 . . . (8)

By adjusting the diaphragm opening, it is possible to select the mode with the smallest

divergence. In Section 3, it will be shown that the binary phase mask known as the circular

phase plate (CPP) is able to change the hierarchy divergence so that the fundamental mode

selected by the internal aperture is a high-order LGp0 mode. There are some experimental

works on lasers oscillating in a high-order transverse mode selected with the help of a

binary phase mask [36–38]. For the generation of very high-order Laguerre–Gauss modes,

there is the possibility of inserting a spherical aberration inside the cavity [39–42]. The latter

will not be addressed here, and we will focus exclusively on the use of binary amplitude or

phase masks.

As mentioned above, in Sections 2 and 3, we will detail the action on a LGp0 beam

of two elementary components, which are the bases of the amplitude and phase masks.

These basic components are the absorbing ring and the circular phase discontinuity (0→π)

known as the circular phase plate (CPP). The resulting effects of these masks on a LGp0

beam are directly induced losses (for amplitude masks) and the modification of beam

divergence hierarchy of the LGp0 base (for the phase mask). In general, we will search for

the best conditions for each mask to obtain a fundamental mode, i.e., a pure LGp0 beam.

Appendix A illustrates the mathematical development of the numerical model which allows

the determination of the resonant field of an optical cavity, including a diaphragm and a

binary mask.

2. Single-Pass and Multi-Pass Properties of Binary Amplitude Masks

Our aim is to determine the fundamental mode of a laser cavity containing an am-

plitude or phase mask in accordance with the following methodology. The latter consists

of considering, first, the single-pass diffraction properties, for instance losses and angular

divergence, of the mask when illuminated by a LGp0 beam. In the second step, we consider

the mask properties resulting from multi-pass diffraction which occur when the mask is

inserted inside a resonant cavity. The single-pass properties help us to understand the

multi-pass properties of the mask inserted inside a cavity.

2.1. Absorbing Ring: Single-Pass Properties

The geometry of the considered absorbing ring of interest is shown in Figure 2. The first

property of the opaque ring illuminated by a LGp0 beam to be considered is its transmission,

labelled as Tp, defined as the ratio of transmitted and incident powers:

Tp =

ρA
∫

0

Ip(ρ)ρdρ +
∞
∫

ρB

Ip(ρ)ρdρ

∞
∫

0

Ip(ρ)ρdρ

(9)

where Ip(ρ) =
∣

∣Ep(ρ)
∣

∣

2
is the intensity distribution of the incident LGp0 beam. The losses

introduced by the ring are equal to Lp = (1 − Tp) and are shown in Figure 3a as a function

of the normalised ring radius at ∆ = 20 µm.
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Figure 2. Absorbing ring of internal (external) radius ρA(ρB) and of width ∆.
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Figure 3. Variations in the losses Lp = (1 − Tp) introduced by an absorbing ring versus the normalised

radius YA = ρA/W. The incident light is a symmetrical Laguerre–Gauss LGp0 beam of the order p. The

lowest-order LG00 beam has a width W = 1 mm. The ring width is (a) 20 µm, (b) 50 µm, (c) 150 µm.

In Figure 3a, it can be seen that the hierarchy formed by the set of losses (L0, L1, L2,

and L3) changes as the ring diameter changes. In particular, one can observe that the losses

introduced by the ring have a minimum value very close to zero whenever the ring is

positioned on a node of intensity while the other modes suffer higher losses. This results in

interesting modal properties when the absorbing ring is inserted inside a cavity as will be
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discussed later. In order demonstrate that a thin absorbing ring positioned on a LGp0 node

results in low losses, in Table 2, we outlined the minima of Lp.

Table 2. Minimum value of losses Lp when a ring of width ∆ = 20 µm is set on the successive nodes.

Zero# 1 2 3

(L1)min in % 0.002
(L2)min in % 7.5 × 10−4 6.2 × 10−4

(L3)min in % 0.0016 9.4 × 10−4 6.7 × 10−4

Usually, the fundamental mode TEM00 (transverse electromagnetic) of the cavity is a

Laguerre–Gauss LG00 mode (cylindrical symmetry) or a Hermite–Gauss HG00 (rectangular

symmetry), i.e., a Gaussian beam. However, if an opaque ring is introduced inside the

resonator, then the fundamental mode TEM00 of the cavity could be a high-order transverse

LGp0 mode, since it is the mode with the lowest losses. This is why it is pertinent to talk

about a fundamental mode, which is a high-order transverse mode depending on the

inserted filter or mask, introducing high losses to all transverse modes except the desired

LGp0 mode, which suffers the lowest losses. Since the hierarchy of divergence given in

Equation (8) plays an important role in the transverse mode discrimination, we need to

verify if the ring is able or unable to change the hierarchy of divergence. However, we

will begin by considering the influence of the ring width ∆ on the loss hierarchy. The plots

in Figure 3b,c of losses Lp for ∆ = 50 µm (∆ = 150 µm) versus the normalised ring radius

shows that the curves exhibit similar profiles except that one obtains higher losses when

increasing the ring width ∆.

Hereafter, we will determine the fundamental mode, i.e., the mode with the lowest

losses, of a plano-concave cavity, including a circular diaphragm and an opaque ring. It

is clear that, if we aim for instance for a LG10 mode, then it would be judicious to set the

size of the ring so that YA = 0.707, which corresponds to the LG10 node, as shown by the

arrow in Figure 3a–c. However, the ring will have succeeded in overcoming the other

transverse modes, but given the losses due to the diaphragm this will not favour them.

This is why it is important to examine the variations in the far-field angular divergence θp

of the LGp0 beam diffracted by the amplitude ring. The results are shown in Figure 4a,b for

∆ = 20 µm (∆ = 150 µm). In order to determine whether the absorbing ring is able to change

the divergence hierarchy, we will calculate the angular divergence θp of the diffracted LGp0

beam upon the ring as follows:

θp =
We

D
(10)

where the effective width We, determined in the far-field at a distance D = 30 m, is based on

the second moment [43] of the diffracted intensity distribution Id(r, D) in plane z = D:

W2
e =

2
∞
∫

0

Id(r, D)r3dr

∞
∫

0

Id(r, D)rdr

(11)
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0 ff Δ

Δ /ρ

Figure 4. Variations in the LGp0 beam divergence diffracted by an opaque ring of width (a) ∆ = 20 µm

and (b) ∆ = 150 µm versus its normalised radius YA = ρA/W.

The transverse intensity distribution Id(r, D) = |Ed(r, z = D)|2 is obtained from the

diffracted electric field Ed(r, z), expressed by the well-known Fresnel–Kirchhoff integral:

Ed(r, z) =
2π

λz

∞
∫

0

τR(ρ)Ep(ρ) exp

[

−iπρ2

zλ

]

J0

[

2π

λz
r.ρ

]

ρdρ (12)

where J0 is the zero-order Bessel function of first order. r (ρ) is the radial coordinate ob the

plane z (ring). The calculation of Equation (12) is carried out with the help of a FORTRAN

code based on the numerical integrator dqdag from the International Mathematics and

Statistical Library (IMSL). The quantity τR(ρ) defines the opaque ring transmission:

τR(ρ) =







0 for ρA ≤ ρ ≤ ρB

+1 elsewhere
(13)

Figure 4a shows that the ring with a width ∆ = 20 µm does not change the hierarchy

of divergence expressed by Equation (8), but, as shown in the plot in Figure 4b, when

∆ = 150 µm, the beam divergence is highly impacted so that, for instance, θ0 and θ1 move

very close to, i.e., the node of LG10. As a consequence of the fundamental mode of the

cavity, including an opaque ring (YA = 0.707), initially desired to be a LG10 mode, could

potentially be a LG00 mode. Consequently, it would be wise to use a narrow width opaque

ring unless a cavity without a selecting diaphragm is envisaged. The single-pass properties

of the opaque ring suggest that positioning the ring inside a cavity on a node of a given

LGp0 mode would enable the laser oscillation on the chosen LGp0 mode. However, this

could occur only if the other modes are subject to higher losses, thus preventing their

oscillation. As it will be shown later, this issue of the oscillation locking onto a single high-

order transverse mode can be addressed by considering the transverse mode discrimination

expressed as the ratio of losses associated with two neighbouring modes in terms of losses.

Here, we can extent this concept to the single-pass properties of the ring by considering

the ratio of losses, such as L0/L1, L2/L1, and L3/L1 in a situation when, for instance, the

desired mode is LG10. The plots in Figure 5a show YA = 0.707 (LG10 node), where the

opaque ring efficiently identifies the undesired modes, i.e., the LG00, LG20, and LG30 modes.

Consequently, the ring set inside a laser cavity could force the laser oscillation onto the

LG10, since the losses for the other modes are greater than those of L1.
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0 ff Δ

Δ /

 

Figure 5. Variations in the loss ratios as a function of YA, the normalised ring radius.

The same reasoning can be applied to the LG20 mode by considering the variations in

the loss ratios L0/L2, L1/L2, and L3/L2, as functions of YA, and the normalised ring radius.

Similarly to the LG20 mode, it can be that the loss ratios L0/L2, L1/L2, and L3/L2 display

a pair of peaks when YA is varied, and results are shown in Figure 5b. These two peaks

are centred on the two LG20 nodes, i.e., YA = 0.54 and YA = 1.3. Forcing a laser cavity to

oscillate on a single-high-order transverse mode clearly results in the difficulty of averting

the risk of the oscillation of the Gaussian LG00 mode. In terms of this, when enabling the

LG20 mode, the plots in Figure 5b suggest that the ideal position of the opaque ring is on

the first node, i.e., YA = 0.54. When considering the oscillation of the LG10 mode, however,

the situation is quite the opposite, since setting the ring on the second node allows a better

discrimination against the LG10 mode. Let us now perform the same analysis concerning

the LG30 mode.

Figure 5c represents the variations in the loss ratios L0/L2, L1/L2, and L3/L2 and

logically presents three peaks centred on the three nodes of the desired LG30 mode, i.e.,

YA = 0.45, 1.07, and 1.77. It can be seen that setting the ring on the first (third) node, results

in the bad discrimination of the LG20 (LG00) mode, since the loss ratio L2/L3 (L0/L3) is low.

Finally, in order to favour the LG30 mode, the second node (YA = 1.07) seems to be the best

position for setting the opaque ring, since the undesired modes (p = 0, 1, and 2) are well

discriminated against.



Appl. Sci. 2025, 15, 3331 9 of 30

Now, it is important to check whether there is the possibility of improving the discrim-

ination of undesired transverse modes by introducing a second opaque ring in order to

favour the LG20 mode. The first step of the study is the calculation of the losses introduced

by the two rings shown in Figure 6. Figure 7 shows the variations in the losses Lp intro-

duced by the twin absorbing ring as a function of YA while maintaining the ratio YC/YA at

a value 2.41, which represents the ratio of the position of the two LG20 node positions, i.e.,

2.41 = 1.3065/0.5411.

20

/ 20

/
/)/( / /)/(

Δ

)1(

/ 0

00

10

20

10 30

Figure 6. Scheme of the twin absorbing ring characterised by four normalised radii YA = ρA/W,

YB = (ρB/W) = YA + ∆/W, YC = ρC/W, and YD = (ρD/W) = YC + ∆/W. The width of the rings

is ∆ = 50 µm.

20

/ 20

/
/)/( / /)/(

Δ

)1(

/ 0

00

10

20

10 30

Figure 7. Variations in the losses Lp = (1 − Tp) introduced by two absorbing rings versus the

normalised radius YA = ρA/W. The incident light is a symmetrical Laguerre–Gauss LGp0 beam of

order p. The lowest order LG00 beam has a width W = 1 mm.

In Figure 7, it can be seen that the LG10 beam losses are significantly increased com-

pared to the losses shown in Figure 4, and then an improvement of the discrimination is

expected. To confirm this, the loss ratio variations in Figure 8 are investigated. The first

peak corresponds to the twin ring positioned on the two nodes of the LG20 beam. It is clear

that compared to the plots in Figure 5b, the presence of the second absorbing ring greatly

improved the discrimination against the LG10 and LG30 beams. However, nothing changed

for the second peak centred on YA = 1.30 since the second absorbing ring positioned at

YC = 1.30 × 2.41 = 3.13 is outside the lateral extent of the LG20 beam.
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Figure 8. Variations in the loss ratios L0/L2, L1/L2, and L3/L2 as a function of the normalised first

ring radius. The width of the each ring is ∆ = 50 µm.

2.2. Multi-Pass Properties of Absorbing Rings

The resonator considered here is plano-concave cavity of length L and is made up of a

plane mirror and a concave mirror with a radius of the curvature as R. Figures A1 and A2

(see Appendix A) show the cavity, including an absorbing ring or a CPP or BAPP on the

concave mirror side, and a circular diaphragm on the plane mirror. The method used for

the determination of the resonant field is based on its decomposition via Laguerre–Gauss

functions (see Appendix A). Moreover, the diaphragm and the absorbing ring or the binary

phase mask can be switched. Both situations will be addressed below. On one hand, the

sensitivity of the beam width on mirrors with thermal lensing is different, and consequently,

so is the “detuning” of the targeted zero of the expected LGp0 mode. On the other hand, this

provides a verification for the method which forces the fundamental mode to be a LGp0 mode

whatever the relative position of the selecting diaphragm and the diffracting object (ring or

phase mask). Before proceeding, it is useful to note two geometric parameters of interest

which characterise the Gaussian mode of the bare cavity, i.e., without the diaphragm or other

diffracting object, namely, the Gaussian mode radius Wp (Wc) on the plane (concave) mirror:

W2
p =

λL

π

(

g

1 − g

)1/2

(14)

W2
c = W2

p/g (15)

where the cavity geometric parameter g = (1 − L/R) is kept in the stable region (0 < g < 1)

by varying R, the radius of the curvature of the concave mirror. In the case where the

amplifying medium is set in front of the concave mirror, the effect of the thermal lensing

can be accounted for through a variable effective radius of curvature. The variations in

Wp and Wc versus parameter g are shown in Figure 9a, and their derivatives are shown

in Figure 9b. Note that g = 0.5 is a remarkable value since the derivative dWc/dg is null,

and the consequence is that the best position of the diffracting object (ring or phase mask)

should be near the concave mirror so as to avoid the phenomena of the transverse mode

flip due to a variable thermal lens.
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Figure 9. (a) Gaussian mode radius Wp (Wc) on the plane (concave) mirror versus the geometric

parameter g. (b) Gaussian mode derivative radius dWp/dg (dWc/dg) versus the geometric parameter g.

Three quantities (see Appendix A) are calculated in order to characterise the fun-

damental mode of the cavity, including an absorbing ring and a diaphragm: LFM is the

fundamental mode losses, Fc is the transverse mode discrimination, and M2 is the propa-

gation factor of the output beam. The latter allows us to identify the type of LGp0 beam,

which is susceptible to oscillate, as shown in equation M2 = (2p + 1), corresponding to a

pure LGp0 beam.

Since the absorbing ring may only impose one single zero, we are interested in a

fundamental mode; specifically, a LG10 mode since it has one node. It will be shown later

that the absorbing ring inside the resonator can impose a fundamental mode, which can

be a higher-mode order (p ≥ 2). Let us first examine an important point concerning the

positioning of the ring relative to the dark ring of the desired LG10 mode. Indeed, when

the ring has a certain width ∆, it is crucial to pay attention to the overlap of the target node

which has to be at its middle. In the next section, we will use the ratio YR = (YA + YB)/2,

which is associated with the normalised radius of the central part of the absorbing ring.

In the following text, we will confirm whether a single absorbing ring is able to impose a

LGp0 mode as the fundamental mode of a cavity of length L. An absorbing ring with a fixed

radius ρR = (ρA + ρB)/2 = 180 µm is inserted inside the cavity, as shown in Figure A2.

The ratio YR = (YA + YB)/2 = ρR/Wc is varied by changing the geometrical parameter

g = (1 − L/R) by adjusting the cavity length. The ratio YR is set as equal to the first zero of

the three first LGp0 modes (p = 1, 2, and 3) and the normalised diaphragm radius noted

Yc is adjusted so that the fundamental mode loss LFM is the same for the different values

of YR, insofar as is possible. The results are shown in Table 3, which displays the cavity

length L, YR, Yc, LFM, the transverse mode discrimination Fc, and the M2 factor of the beam

emerging from the plane mirror. All these parameters are defined in the Appendix A.

Table 3. Loss LFM of the fundamental mode, which can be LG10-, LG20-, or LG30-like in shape,

depending on YR, the normalised radius of the ring. The width of the ring is ∆ = 20 µm.

L
(mm)

g YR Yc
LFM

in %
Fc M2 Figure 10

93 0.38 0.707 3.9 0.25 5.9 3.005 a
124 0.17 0.54 4.1 0.2 10 5 b
137 0.08 0.45 3.4 0.2 3 7.008 c

The transverse intensity profiles of the cavity fundamental mode, selected with the

parameters given in Table 3, in the far-field region (z = 10 m) are shown in Figure 10 (blue

curves). The plots in red colour represent the intensity distributions of the pure LGp0 beam.
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One can note that the fundamental mode in Figure 10a is very close to the perfect LG10

mode, while it slightly moves away from a pure LGp0 beam as p increases, although not

very much.
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Figure 10. The plots in blue colour represent the transverse intensity distribution of the cavity

fundamental mode. The calculations have been made up for the parameters of Table 3 in the far-field

region at a distance z = 10 m from the cavity of Figure A2 (out#1). The plots in red colour correspond

to a pure LGp0 mode. (a) L = 93 mm, (b) L = 124 mm, and (c) L = 137 mm.

At this point, the opaque ring is set against the plane mirror and the diaphragm is

set close to the concave mirror, playing the role of output (Figure 11). This configuration

of cavity is very close to an experiment setup used to control the transverse mode of a

solid-state laser using an amplitude mask made up of concentric absorbing rings [27]. The

characteristics of the cavity are as follows: L = 260 mm; R = 300 mm; λ = 1064 nm; g = 0.133;

and Wp = 186 µm.

λ
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1

2
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Yc
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Δ 77.1 30

Figure 11. Scheme of the plano-concave cavity, including an amplitude mask on the plane mirror and a

circular diaphragm on the output concave mirror of radius of curvature, R = 300 mm. The cavity length
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is constant and equal to L = 277 mm. This cavity configuration is close to that used in the exper-

iment [27], and the parameters are as follows: L = 260 mm; R = 300 mm; λ = 1064 nm; g = 0.133;

Wp = 186 µm.

Before considering the cavity shown in Figure 11, which contains an amplitude mask

set against the plane mirror and is made up of one, two, or three absorbing rings, we

will examine the role of the presence or the absence of the diaphragm on the selection

of a LGp0 mode with one absorbing ring. For this study, we considered a cavity with

different parameters: L = 600 mm; g = 0.5; λ = 1064 nm; and Wp = 0.45 mm. Initially, we

chose this half-confocal configuration (g = 0.5) because it corresponds to the maximum of

the transverse mode discrimination [44]. In order to force the laser cavity to exhibit the

fundamental mode, i.e., an LGp0 mode, it is not sufficient to set the opaque ring on one

of the zeros of the polynomial Lp. Indeed, doing that would in principle introduce more

losses to the other modes than the desired LGp0 mode, as shown in Figure 3. However, as

is shown in Figure 4a, the hierarchy of mode divergence is not disturbed by the presence

of the absorbing thin ring. Consequently, the losses introduced by the diaphragm could

be in competition with the action of the ring so that the fundamental mode could remain

the usual Gaussian beam with M2 = 1. This is confirmed by the plot in Figure 12, which

displays a flip in the M2 factor value when the diaphragm radius is changed. Consequently,

positioning the absorbing ring on a node is not sufficient for forcing the fundamental mode

to be a high-order transverse LGp0 mode. We must be aware of any clipping effect that could

favour the Gaussian LG00 mode. On the other hand, in the absence of a diaphragm, the

selection of a particular LGp0 mode can be compromised by the phenomenon of transverse

mode jump. Indeed, in order to be concrete, let us consider an absorbing ring of width

∆ = 20 µm set against the plane mirror (Figure 11), intended to impose the first dark ring of

the LG20 mode. The cavity has a beam waist radius of Wp = 0.45 mm. As a consequence, the

normalised radius of the ring is characterised by YR = 0.54, YA = YR − ∆/(2Wp) = 0.51,

and YA = YR + ∆/(2Wp) = 0.56. In Figure 13, we observe, effectively, a fundamental

mode, i.e., an LG20 mode, confirmed by the propagation factor M2 ≈ 5 and characterised

by very a low loss LFM = 0.1%. However, if the beam waist radius Wp suffers a variation of

about 6.6% for any reason (thermal lensing, cavity length change), such that the normalised

ring radius becomes YR = 0.57 (YA = 0.546, YB = 0.593), then the selected mode is a

high-order transverse mode with p = 11, since its second zero is (ρ/Wp) = 0.57. Thus, to

avoid the phenomenon of transverse mode jump when selecting a high-order transverse

LGp0 mode, two precautions must be taken, i.e., a sufficiently small ring width ∆ and an

intra-cavity diaphragm for reducing high losses to the undesired higher-order transverse

modes. Instead of the intra-cavity diaphragm, the same result can be obtained by limiting

the radial size of the pumped region in the amplifying medium. Another possibility for

avoiding the transverse mode jumping is to use an amplitude mask made up of concentric

absorbing rings positioned on each node of the desired LGp0 mode, as shown in Figure 14.

Now, let us consider the performance of the cavity shown in Figure 11 with the

parameters L = 260 mm; R = 300 mm; λ = 1064 nm; g = 0.133; and Wp = 186 µm, as well as

an amplitude mask, as shown in Figure 14, made up of one, two, or three absorbing rings

that coincide, respectively, with the nodes of the modes LG10, LG20, and LG30. The radii of

the rings are given in Table 4.



Appl. Sci. 2025, 15, 3331 14 of 30

λ

1 2 3 4 5 6

1

2

3

4

5

6

7

LG00

LG30

M2

Yc

2

Δ 77.1 30

Figure 12. The cavity configuration is shown in Figure 10c The plot shows the variation in the output

M2 factor versus Yc, the normalised diaphragm radius, when the opaque ring of width ∆ = 20 µm is

set on the third zero (YR = 1.77) of the LG30 mode.
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Figure 13. Far-field pattern of the fundamental mode of the cavity, including the plane mirror, an

absorbing ring characterised by a normalised radius, YR.
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Figure 14. Amplitude mask made up of opaque rings coinciding with the zeros of intensity of the

desired LGp0 mode, for instance, an LG30 mode.
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Table 4. Sizes of the absorbing rings, which correlate to the amplitude masks with one (p = 1), two

(p = 2), or three rings (p = 3).

p Radius of the Rings in µm

1 131
2 100 243
3 85 199 330

In the following section, we will provide the parameters that characterise the trans-

verse mode selection (LFM, M2, and Fc) for a selecting mask made up of one, two, or three

absorbing rings with a variable width ∆. The results are given in Table 5 (one ring), Table 6

(two rings), and Table 7 (three rings).

Table 5. Amplitude mask with one absorbing ring, intended to yield the LG10 mode with a propaga-

tion factor M2 = 3.

∆

(µm)
Yc ρc (mm) M² LFM Fc

10 1.65 0.84 1.08 11.5% 1.63
10 2.5 1.3 3.018 0.25% 53
15 1.65 0.84 1.09 16.25% 1.42
15 2.5 1.3 3.02 0.4% 23.6
20 1.65 0.84 1.07 20.7% 1.34
20 2.5 1.3 3.008 0.87% 11.35
25 1.65 0.84 1.1 25% 1.14
25 2.5 1.3 3.008 1.7% 9.4

Table 6. Amplitude mask with two absorbing rings, intended to yield the LG20 mode with a

propagation factor M2 = 5.

∆

(µm)
Yc ρc (mm) M² LFM Fc

10 2 1.02 1.03 14.5% 1.9
10 3 1.53 5 0.3% 28.4
15 2 1.02 1.03 20.5% 1.15
15 3 1.53 5 0.8% 19
20 2 1.02 1.012 26.2% 1.05
20 3 1.53 5.01 1.9% 9.2
25 2 1.03 1.03 31.7% 1.15
25 3 1.53 5 3.4% 1.28

Table 7. Amplitude mask with three absorbing rings, intended to yield the LG30 mode with a

propagation factor M2 = 7.

∆ (µm) Yc ρc (mm) M² LFM Fc

10 2 1.02 1.016 17% 1.23
10 3.5 1.78 7 0.4% 23.6
15 2 1.02 1.016 24% 1.12
15 3.5 1.78 7 1.5% 10
20 2 1.02 1.016 31% 1.08
20 3.5 1.78 7 3.2% 5.6
25 2 1.02 1.016 37.5% 1.05
25 3.5 1.78 7 5.7% 1.08
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The following aspects can be extracted from Tables 5–7:

• The selection of a pure high-order transverse LGp0 mode by an amplitude mask made

up of p absorbing rings positioned on the nodes of the desired mode works well

provided that the diaphragm is sufficiently open. Otherwise, the fundamental mode

becomes the Gaussian mode with M2 = 1.

• The losses of the fundamental mode LGp0 increase with the width ∆ of the absorbing rings.

• The transverse mode discrimination of the cavity decreases with the increase in ∆.

The main conclusion is that it is preferable to use absorbing rings with a small width

in order to ensure low losses and a high transverse mode discrimination and to prevent the

overlapping of several nodes, leading to a mixing of high-order transverse modes. Note

that the intra-cavity generation of selected Laguerre–Gaussian modes of variable radial

order, from 0 to 5, has been demonstrated experimentally [27]. The major disadvantage of

this method of transverse mode selection is that the selecting mask is enables loss and is

questionable for use in a high-power laser, even though the rings are set in beam regions

where the intensity is relatively weak. As a consequence, in the next section, a binary

phase mask, which is fundamentally transparent and does not possess Fresnel reflections,

is used to reach the same objectives. For high-power solid-state laser systems operating on

a fundamental mode, a high-order transverse mode imposed by an intra-cavity amplitude

or a phase mask, one of the major problems is the thermal effects, which could introduce

a certain instability in the mode order through a change in the beam size with pumping

power. However, there are several solutions for compensating the thermally induced lens,

and these are described in detail in the literature [45–50].

3. Single-Pass and Multi-Pass Properties of a Binary Phase Mask

3.1. Single-Pass Properties of a Binary Phase Mask

As mentioned previously, it is possible to force the laser cavity into the fundamental

mode, which is an LGp0 mode, by imposing the zeros of intensity by inserting a binary

phase mask made up of a transparent material on which is etched a relied, as this gives rise

to annular zones which introduce a phase shift equal to 0 or π and create a transmittance

equal to +1 or −1. The radii of phase discontinuities (0→π) and (π→0) correspond to the

node radii of the desired LGp0 mode, as shown in Table 1. At the position of these phase

discontinuities, the electric field passes from a positive to a negative value, and thus, it is

necessarily zero at that position. Note that the binary diffractive optical elements constitute

a family of diffractive devices, which are the simplest diffractive components to fabricate

since they require only one level of etching. Binary diffractive optics have been used very

extensively for beam shaping in various wavelength fields (terahertz, infrared, visible,

and X-rays) for a very long time [51–58]. Following a methodology similar to the one

used for the amplitude mask, it will be shown below that the mechanism of transverse

mode selection differs from that mentioned above for the binary amplitude mask. The

annular phase mask (BAPP) described above is made up of several “elementary bricks”.

This elementary brick consists of a CPP made up of a circular phase discontinuity of radius

RPI described by Equation (A14). Obviously, the CPP does not attenuate the incident LGp0

beam since it is transparent. However, the hierarchy of divergence associated with each

LGp0 beam is no longer described by the inequality given by Equation (8). In fact, we will

use the same method implemented for the absorbing ring when calculating the angular

divergence of the beam passing through the CPP not once, but twice, as shown in Figure 14

The reasons justifying this double-pass are given in the Appendix A.

Figure 15 shows the set-up considered for determining the variations of the LGp0 beam

passing twice through the CPP. The results are shown in Figure 16, which illustrates the

variations in the divergence of the LGp0 versus the normalised CPP radius YPI = RPI/W0,
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where W0 is the width of the incident Gaussian term. It can be seen in Figure 16 that the

beam has the smallest divergence (indicated by arrows A, B, and C) and can be either the

LG30, LG20, or LG10 beam, depending on RPI the CPP radius. A closer look shows that

these minima occur when RPI corresponds to the first zero of intensity of the incident LGp0

beam. More generally, the divergence is also minimum when the CPP radius corresponds

to any zero of the LGp0 beam.
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Figure 15. Apparatus allowing to determine the diffracting properties of the cascade of two circular

phase plates (CPP) separated by a distance 2D = 10 mm. The diffracted field is determined in the

far-field at a distance z = 30 m by using Equation (12).
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Figure 16. Variations in the divergence θe = We/z, calculated by using Equations (11) and (12), of

the diffracted LG00, LG10, LG20, and LG30 beams passing twice through the CPPs versus YPI , the

normalised CPP radius. The arrows A, B, and C indicate the smallest divergence of the LG10, LG20,

LG30, respectively.

If we combine the CPP with a diaphragm set in its far-field, as shown in Figure 15, then

it would be possible to install a hierarchy of losses susceptible to favouring the transmission

of any LGp0 beam for adequate RPI and diaphragm radius RD. For convenience, we

introduce the normalised diaphragm radius YD = RD/Wz, where Wz would be the width

of the LG00 beam in the diaphragm plane, i.e., at a distance of z = 30 m. The variations

in the losses introduced by the diaphragm versus YPI were determined for two values of

the normalised diaphragm radius, YD = 3.5 (Figure 17a) and YD = 6.5 (Figure 17b). It

can be seen in Figure 17a that a diaphragm that is not open enough does not allow the

instigation of the fundamental mode in a cavity, as shown in Figure A2, but could result
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in a high-order transverse mode by setting the phase discontinuity of the CPP on the first

node of the desired LGp0 mode. However, for a diaphragm that is wide open (YD = 6.5),

as is seen in Figure 17b, a hierarchy of losses takes place which is similar to that shown in

Figure 16. The latter allows the possible oscillation of a LGp0 mode, provided the value of

YPI is adjusted for minimizing the losses. It has been demonstrated experimentally [59]

that a CPP set inside a solid-state laser cavity is able to impose the fundamental mode,

which is an LGp0 mode (p = 1, 2, 3).
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Figure 17. Variations in the losses of the diaphragm set at a distance of z = 30 m versus YPI = RPI/W

for (a) YD = 3.5 and (b) YD = 6.5. The beam incident on the cascade of the CPP is a LGp0 beam whose

Gaussian term has a width of W0 = 1 mm.

The discrimination property of the CPP is related to the value of the divergence of

the other modes rather than the one targeted by the phase circle discontinuity of the

CPP. Table 8 shows that the greater the divergence difference, the more discrimination

is expected.

Table 8. Particular values of the divergence of diffracted LGp0 (p = 0, 1, 2, and 3) beams passing twice

through the CPP shown in Figure 15. The circle phase discontinuity is set on the first node of the

incident LGp0 beam. The minimum divergence is indicated in red.

YPI θ0 (rad) θ1 (rad) θ2 (rad) θ3 (rad)

0.707 22.6 × 10−4 6.1 × 10−4 12.4 × 10−4 16.4 × 10−4

0.541 23.5 × 10−4 10.9 × 10−4 7.5 × 10−4 11 × 10−4

0.455 23 × 10−4 14.6 × 10−4 10 × 10−4 8.9 × 10−4

It is also interesting to estimate the expected transverse mode discrimination by

considering the losses introduced by a diaphragm with a normalised radius equal to

YD = 6.5 and located at a distance z = 30m from the cascade of the two CPP. The results are

shown in Table 9, which also contains the discrimination factor Fc, defined as the inverse

ratio of the two first losses. In the next section, we will confirm whether the use of a BAPP,

setting a phase circle discontinuity on all nodes of the desired LGp0 mode, improves or

does not improve the transverse mode discrimination factor Fc.

Now, it remains for us to study the single-pass properties of the binary annular phase

plate (BAPP) with geometry described by Equation (A15) and by Figure 18, which repre-

sents the transmittance profile τDOE(ρ) of the considered BAPP. The phase discontinuities

circles of the BAPP correspond to the zeros of intensity given in Table 1.
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Table 9. Variations in losses induced by the diaphragm of normalised radius YD = 6.5 set at a distance

z = 30 m from the cascade of the two CPP. Fc is the discrimination factor defined as the inverse ratio

of the two first losses. The minimum in the loss value is indicated in red.

YPI Loss for p = 0 Loss for p = 1 Loss for p = 2 Loss for p = 3 Fc

0.707 7.7% 0.19% 2.13% 3.95% 11.2
0.541 9.38% 1.64% 0.26% 1.2% 4.6
0.455 8.9% 3.33% 0.95% 0.35% 2.7

tt 0
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tt )(

tt 0
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5.6

Figure 18. Transmittance profile (field ratio) of the BAPP#p intended to select a LGp0 when inserted

in the cavity shown in Figure A1.

As performed previously for the CPP, we will consider the properties of the BAPP#p

given in Figure 18 through the losses (Table 10) induced on a LGp0 beam passing through a

cascade of two BAPP#p, as a result of a diaphragm set in the far-field at a distance z = 30 m.

Table 10. Variations in losses induced by the diaphragm of normalised radius YD = 6.5 set at a

distance z = 30 m from the cascade of the two BAPP. Fc is the discrimination factor defined as the

inverse ratio of the two first losses. The minimum in the loss value is indicated in red.

BAPP Loss for p = 0 Loss for p = 1 Loss for p = 2 Loss for p = 3 Fc

#1 7.7% 0.19% 2.13% 3.95% 11.2
#2 10.67% 10.74% 0.48% 4.92% 10.25
#3 15.2% 10.98% 11% 0.65% 16.9

A comparison between Tables 9 and 10 indicates a transverse mode discrimination

improvement forthe BAPP compared to the CPP. The question of high-transverse mode

discrimination is very important from a practical point of view, since it allows the laser to

oscillate on a single high-order transverse mode with a large range of pumping power. In

the next section, we will consider the fundamental mode of a laser cavity in which a CPP

or a BAPP is inserted.

3.2. Multi-Pass Properties of a Binary Phase Mask

First, we will consider the fundamental mode of the cavity previously shown in

Figure A1, with the parameters given in Table 3, in which a CPP with its phase discontinuity
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positioned on the first node of LGp0 modes (p = 1, 2, and 3) is inserted. The results are

summarised in Table 11. The fundamental mode can be either a LG00, LG10, or LG20 mode,

but with a low transverse mode discrimination. These results are in a good agreement

with a previous experiment [59]. It is worth mentioning that the opening or closing of the

diaphragm does not allow any transverse mode jumps, as shown above in Figures 12 and 13.

Indeed, whatever the diaphragm opening, it is the mode with the smallest divergence

which undergoes the lowest losses. The hierarchy of losses is imposed by the hierarchy

of divergences, as shown in Figure 16, and remains independent from the diaphragm

opening. In order to illustrate this property, we extracted the values of LGp0 divergences

when YPI is equal to (0.707, 0.541, and 0.455) from Figure 16, and the results are given in

Table 8. The values in red colour in Table 8 represent the minimum values of LGp0 beam

divergence, and the minimum of losses are shown in Table 9. It now remains to be seen

whether the characteristics of the fundamental mode of a plano-concave cavity, including a

binary annular phase plate, simultaneously impose the p nodes of the fundamental mode,

thus taking the form of LGp0 mode. The key parameter will mainly be the transverse mode

discrimination, TMD, which is expected to be improved in comparison with the TMD

obtained using a CPP (Table 11).

Table 11. Loss LFM of the fundamental mode of the cavity shown in Figure A1, in which a CPP is

inserted at a distance D = 5 mm from the concave mirror of radius of curvature R = 150 mm, and the

diaphragm is located against the plane mirror. The fundamental mode is an LGp0 (p = 1, 2, and 3)

depending on the normalised radius YPI of the CPP. The beam emerging from the plane mirror is

characterised by its M2 factor.

L
(mm)

g YPI Yc
LFM

in %
FC M2

93 0.38 0.707 3.1 3 2.84 2.97
124 0.17 0.54 4.5 1.7 1.85 5.15
137 0.08 0.45 5 2.3 1.19 7.008

Now, let us consider the cavity shown in Figure A1 with the same parameters used

in Section 2.2 when considering the multi-pass properties of absorbing rings: L = 260 mm;

R = 300 mm; λ = 1064 nm; g = 0.133; Wp = 186 µm; Wc = 260 µm. The results are shown in

Table 12. It can be seen that the selection of a LGp0 mode, as the fundamental mode with

low losses, LFM, is effectively carried out by inserting a BAPP#p since the M2 factor is very

close to (2p + 1). It cannot be said that using a BAPP in place of a CPP inside a laser cavity

significantly improves the transverse mode discrimination Fc.

Table 12. Loss LFM of the fundamental mode of the cavity shown in Figure A1, in which a BAPP

(see Figure 18) is inserted at a distance D = 5 mm from the concave mirror of radius of curvature

R = 150 mm, and a diaphragm is located against the plane mirror. The cavity length is L = 260 mm.

The fundamental mode is a LGp0 (p = 1, 2, and 3), depending on the BAPP inserted. The beam

emerging from the plane mirror is characterised by its M2 factor.

Yc LFM Fc M2

BAPP#1 6.5 0.30% 2.49 3
BAPP#2 6.5 0.74% 2.88 4.98
BAPP#3 6.5 1.28% 1.59 6.97

It is important to point out that the far-field of the two cavity outputs shown in

Figure A1 are characterised by distinct intensity profiles. For instance, Figure 19 displays

the far-field intensity distributions, calculated in the focal plane of a converging lens, from
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Out#1 and Out#2 when the BAPP#3 is inserted inside the resonator. The focused beam

emerging from Out#1 is a shaped like an LG30, while it is quasi-Gaussian in shape from

Out#2. The latter is in fact a rectified LG30 beam with the same M2 factor as the LG30

beam emerging from Out#1, in accordance with A.E. Siegman [60], who has demonstrated

that a binary diffractive optical element is not able to improve the M2 factor when the

phase discontinuities of the BAPP correspond to the node of the incident LGp0 beam. In

contrast, the M2 factor is degraded if the phase discontinuities of the BAPP are shifted from

the nodes of the LGp0 beam. This property is illustrated by the plots in Figure 20, which

displays the variations in the M2 factor of LGp0 beams passing through a CPP. Every time

the phase discontinuity is set on a node, the M2 factor is either unchanged or is increased.

We note that the rectification of a LGp0 beam involves a phase object set on its path aiming

to convert the alternately out-of-phase rings into a unified phase. This function is fulfilled

by the BAPP#p. The rectified LGp0 beams have interesting properties which can be found

in [21] and the references therein.
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Figure 19. Intensity profile of the focused beam emerging from Out#1 and Out#2 of the cavity,

including a BAPP#3. The focused beam from output Out#1 (Out#2) is an LG30 (quasi-Gaussian

distribution).
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Figure 20. Variations in the M2 factor of LGp0 beams (p = 0, 1, 2, and 3) passing through a CPP versus YPI .

4. Discussion

In this paper, we considered the use of binary amplitude or phase masks as intra-cavity

filters for forcing the fundamental mode of a laser to be a single high-order radial Laguerre–

Gauss LGp0 mode. The intra-cavity binary mask aims to impose the zeros of intensity of

the oscillating laser beam. As soon as the nodes of the oscillating mode are imposed by the
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mask, according to the positions of the zeros of the Laguerre polynomial, then the oscillating

mode undergoes the lowest loss: this is a LGp0 mode given by Equation (1). For convenience

and clarity, we limited ourselves to p = 3, but it may be perfectly feasible to obtain laser

oscillation on higher-order transverse modes forced by a binary amplitude or phase mask.

It is important to note that the actions of the phase and amplitude masks are very different.

The binary amplitude masks made up of absorbing rings induces high losses for all modes

except the specific desired LGp0 mode. The cavity does not necessitate any supplementary

clipping induced by a circular diaphragm. In this case, it was found that the transverse mode

discrimination is high, provided that the rings thickness is small (10–20 µm).

The phase mask is made of a transparent material, glass for instance, on which is

etched a relief which results in annular zones that introduce a phase shift equal to 0 or π,

giving rise to a transmittance equal to +1 or −1. The radius of phase discontinuities (0→π)

and (π→0) coincide with the zeros of intensity of the desired LGp0 mode. The action of

the binary phase mask is the change in the divergence hierarchy of the LGp0 basis so that

the fundamental mode selected by a diaphragm set on the other side of cavity is a single

high-order LGp0 mode. It was found that the transverse mode discrimination obtained

using the binary phase mask was lower than that obtained using a binary amplitude mask.

It could be added that the fabrication of a binary phase mask is more difficult than a binary

amplitude mask because of the need to control the etched quantity of glass which defines

the phase shift discontinuity (0→π).

As was mentioned in the introduction, the LGp0 beams and the redressed LGp0 beams

are characterised by a beam propagation factor M2 = (2p + 1), which disqualifies them

for laser applications needing a high brightness. However, such laser beams have certain

qualities which the Gaussian beam does not have [16]. In particular, a rectified LGp0 beam

is particularly useful for improving the spatial resolution in 3D-laser prototyping [61] or

the longitudinal force of optical tweezers [62]. In this context, it may be noted that the

setup shown in Figure A1 has the advantage of enabling the perfect self-alignment of the

binary phase mask to achieve beam rectification. This would not be the case if the beam

rectification was achieved outside the laser cavity. By contrast, it is useful to note that

the output Out#2 through the opaque rings (Figure A1) is a undeformed LGp0 beam if

the intracavity beam is a LGp0 beam because we are dealing with zero-field occluding or

non-diffracting occluding since the absorbing rings are positioned on nodes.

Since, even today, most commercial lasers utilise a Gaussian beam, there is no alter-

native but to build our own home laser able to deliver a LGp0 beam. For that, there is an

important feature to consider which concerns the lateral size of the gain region in the laser

medium. Indeed, this point appears when the pumping of a solid-state laser is longitudinal,

since focusing the pump beam only shortly leads to an insufficient lateral extent, which

is unable to sustain the laser oscillation on a high-order transverse mode with a width

proportional to the mode order p.

The last point concerns power extraction, which is increased when forcing laser

oscillation on a high-order transverse mode, as observed experimentally [27,38]. The

interpretation of this effect is that the laser beam power is particularly proportional to the

mode volume inside the cavity, which is proportional to the mode order p [27].

In this paper, we explored in detail how to force the oscillation of a laser to be present

on a high-order, but single, LGp0, by using a diffractive technique which consists of inserting

an amplitude or a phase mask inside the resonator. It is worth noting that the use of

an interferometric method is possible as a result of the pioneering experimental work

accomplished by P.W. Smith [63] which was also recently modelled [64].

In the interest of completeness, the role of the active medium in the selection of

the oscillating transverse mode should also be considered. In absolute terms, both the
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amplifying medium and the resonator each have a contribution in transverse mode selection.

However, the action of the “cold cavity”, i.e., without the active medium, can be considered

preponderant in cases where the pumped region of the amplifying medium is transversely

much larger than the expected high-order transverse mode. This has been experimentally

observed in solid-state lasers [27,36–38], and this justifies our study, which is exclusively

based on the transverse properties of a “cold cavity”, including binary amplitude or phase

masks. Otherwise, it would be necessary to take into account the nonlinear response of

the active medium, which would make the numerical determination of the transverse

properties of the laser resonant field difficult.
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Appendix A

We consider a plano-concave cavity made up of a plane mirror on which is set a

selecting diaphragm (circular aperture) and a concave mirror, in front of which a diffractive

optical element (DOE), or an absorbing ring, is placed. The DOE can be a circular phase

plate (CPP) or a binary annular phase plate (BAPP). The determination of the resonator

transverse mode parameters (intensity distribution, mode volume, width, etc.) is of key

importance in the design of a laser system. For instance, the knowledge of the fundamental

mode characteristics (M2 factor, losses, transverse mode discrimination, etc.) are the

quantities to be evaluated. For a long time, the method used for the determination of

the resonant field of cavities was the so-called Fox and Li method [1] and other more or

less sophisticated procedures based on integral equation solving, the solution of which is

very sensitive to the initial conditions, thus giving rise to a certain amount of numerical

instabilities. This is why we prefer the matrix method proposed by G. Stéphan and M.

Trumper in 1983 [65], which involves, as will be shown below, a matrix operator which

holds the information about amplitude and phase clipping undergone by the resonant field

after insertion inside the cavity. The types of cavities that are considered in the following

section are shown in Figures A1 and A2 when a phase DOE (an absorbing ring) is inserted.

Note that the binary DOE in Figure A1 is displaced from the concave mirror by a

distance D, and the reason for that can be found in [35]. To understand the necessity of

displacing the DOE from the mirror Mc by a distance D < < L, we have to remember that

if we consider, for instance, a DOE in form of a single-phase discontinuity or a binary

annular phase plate, then the emerging beam is reshaped, since it suffers a partial or a total

rectification [21]. Note that the word rectification means that the negative parts of the beam

are rendered positive so that the far-field intensity distribution is no longer identical to the

incident intensity distribution. If we want a LGp0 as the fundamental mode imposed by

the binary DOE, it is important that the beam incident on the DOE, and the reflected beam

by the ensemble (DOE + Mc) are together a LGp0 beam. For this, the reshaping effect of the
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DOE, as mentioned above, must be prevented by passing the mode twice through the DOE.

It is important that the distance D should be very short compared to distance L in order

for the phase change introduced by the first passage to be prevented by the return passage

through the DOE. In other words, if the distance D is sufficiently short then the DOE is

consequently set in its own near field after reflection on the concave mirror, and as a result,

the field distribution does not change.

ff

2

ff

Figure A1. Description of the plano-cavity made up of a plane mirror Mp on which a diaphragm is

set and a binary diffractive optical element (DOE) is inserted, which could be a CPP or a BAPP, set at

a distance D = 5 mm from the concave mirror Mc with a radius of curvature R.

ff

0

0

ff

ffi

)(

1 2

Figure A2. Apparatus showing the plano-concave cavity made up of a diaphragmed plane mirror

Mp and an absorbing ring set against the concave mirror Mc.

The resonant field determination of the cavities shown in Figures A1 and A2 involves

its decomposition into its two progressive waves: a forward (and backward) beam propa-

gating in the positive (and negative) Z direction. The plane mirror position corresponds to

the origin Z = 0 of the axial coordinate. The circular diaphragm set against the plane mirror

has a radius labelled as ρC. The phase DOE (Figure A1), set at a distance D = 5 mm from

the concave mirror, is characterised by its complex transmission, labelled as τDOE(ρ). The

concave mirror has a radius of curvature of R = 150 mm. In Figure A2, the absorbing ring is

assumed to be set against the concave mirror. The reflectivity (intensity ratio) of the plane

(concave) mirror is labelled as R1(R2).
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The determination of the resonant field is carried out numerically and involves its

decomposition on the basis of the eigenfunctions (eigenmodes) of the bare cavity, i.e., made

up of only mirrors, Mp and Mc. Thereafter, a perfect axial symmetry is assumed for the

cavity. The above mentioned eigenfunctions are formed by 80 Laguerre–Gauss functions

playing the role of orthonormalised bases which, for the forward beam, are

G f p(ρ, z) =
√

2
π

1
W(z)

Lp

(

2ρ2

W(z)2

)

exp

(

− ρ2

W(z)2

)

× exp
{

+i
[

kρ2

2Rc(z)
− (2p + 1)Φ(z)

]}

,
(A1)

and for the backward beam are

Gbp(ρ, z) =
√

2
π

1
W(z)

Lp

(

2ρ2

W(z)2

)

exp

(

− ρ2

W(z)2

)

× exp
{

−i
[

kρ2

2Rc(z)
− (2p + 1)Φ(z)

]}

,
(A2)

where k = 2π/λ. The forward and backward quantities are distinguished by the subscripts

f and b, respectively. The quantities W(z), Rc(z), and Φ(z) are defined by Equations (2)–(4).

Lp(X) is the Laguerre polynomial of order p. Note that the field distribution in the bare

cavity made up of mirrors Mp and Mc and is identical for the forward and backward

beams. However, it has been demonstrated theoretically [66] and experimentally [35] that

if there are any diffraction effects inside the resonator, then the longitudinal and transversal

intensity distributions associated with the forward and backward waves are different. To

facilitate the use of the following model for the determination of the resonant field of

a cavity with diffracting objects, the reader may wish to refer for details to a previous

work [67] on cavities with a super-Gaussian aperture or a binary circular phase plate.

(a) Cavity with a diaphragm and a binary phase mask (Figure A1):

The forward and backward fields are assumed to be linearly polarised and are ex-

pressed as linear combinations of the basic functions on both sides of the DOE:

E f j(ρ, z) = exp[i(kz − ωt)]∑
p

f jpG f p(ρ, z), (A3)

Ebj(ρ, z) = exp{i[k(2L − z)− ωt]}∑
p

bjpGbp(ρ, z). (A4)

The index j is equal to 1 in the region 1 (by 0 < z < zDOE) and equal to 2 in the region 2

(zDOE < z < L), where zDOE = (L − D) is the position of the DOE. We study the stationary

field for t = 0 and then exp(−iωt) = 1.

The functions of the basis satisfy the orthonormalisation condition given by:

2π

∞
∫

0

G f p(ρ, z)G∗
f m(ρ, z)ρ dρ = δpm (A5)

2π

∞
∫

0

Gbp(ρ, z)G∗
bm(ρ, z)ρ dρ = δpm (A6)

where the symbol * is used to describe the complex conjugate of the quantity. The knowl-

edge of the forward and backward fields involves the determination of the four (ρ and z,

independently) coefficients, f1p, f2p, b1p and b2p, of the field expansion for 0 < zDOE < L.
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The boundary conditions at the DOE and aperture planes impose a relation between

the different coefficients, and their determination involves the matrix M, known as the

round-trip operator and expresses the change in the forward coefficients after a round-trip

in the apertured cavity:

f ′jp = ∑
m

Mpm f jm (A7)

The matrix M is defined by its typical element Mlq given by

Mlq = (R1R2)
1/2 exp[−i2φD]∑

p

CA
qp∑

n

CD
l nCA

np exp[−i4p(ΦD − ΦA)] exp[−i(n + q)ΦA]

(A8)

where

ΦD = Arc tan

(

λL

πW2
0

)

(A9)

ΦA = Arc tan

(

λzDOE

πW2
0

)

(A10)

CA
pm =

∞
∫

0

τDOE(X) exp(−X)Lp(X)Lm(X)dX (A11)

CD
pn =

2Y2
C

∫

0

exp(−Y)Lp(Y)Lm(Y)dY (A12)

with

X =
2ρ2

W2(zDOE)
, Y =

2ρ2

W0
2

, YC =
ρC

W0
(A13)

The complex transmittance τDOE(ρ) associated with the binary circular phase plate,

annular phase plate, and spherical aberration takes the following form:

For the circular phase plate of the radius:

RPI : → τDOE(ρ) =







−1 forρ ≤ RPI

+1 forρ > RPI

(A14)

For the binary annular phase plate:

The binary annular DOE is made up of annular zones introducing a phase shift equal

to 0 or π, giving rise to a transmittance given by Equation (A15):

τDOE(ρ) =















−1 for 0 < ρ ≤ ρ1

(−1)i+1 for ρi < ρ ≤ ρi+1 and (i + 1) < p

(−1)p+1 for ρ > ρp

(A15)

The position of the phase jumps from 0 to π or π to 0, exactly following the zeros of

the Laguerre polynomial Lp given in Table 1, where ρi′s are the p radial positions for which

the intensity of the desired LGp0 mode is zero.

It is important to note that the round-trip operator M contains the information about

reflection at the mirrors and about amplitude (phase) clipping at the edge of the diaphragm

(DOE). The resonance condition is expressed by the relation f ′jp = Γ f jp which holds for all
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p after a round-trip. This allows us to consider the eigenmodes of the phase/amplitude

apertured cavity as the eigenvectors u of the matrix M, defined as

Mu = Γu. (A16)

where Γ is the complex eigenvalue associated with the eigenvector u. A remarkable

eigenvector is that which has the largest eigenvalue, labelled |ΓFM|, thus defining the

fundamental mode of the cavity whose power loss per round-trip is given by

LFM = 1 − |ΓFM|2 (A17)

The second eigenvector of M has the second greatest eigenvalue, labelled as |ΓSEC|,

and is the second transverse mode whose power loss per round-trip is given by

LSEC = 1 − |ΓSEC|
2 (A18)

From a practical point of view, the cavity with an amplifying medium constitutes a

laser which, at the threshold, will oscillate first on the above-mentioned fundamental mode

since it has the lowest losses. From this step, increasing the pumping action will lead to the

emergence of a second transverse mode.

In order for the laser to be able to oscillate on the desired fundamental mode, which

could be a high-order transverse LGp0 mode before the second transverse mode begins

the oscillation, the difference between LFM and LSEC must be as large as possible. This

possibility of a cavity to contain a second transverse mode can be described by a transverse

mode discrimination factor, defined as

Fc = LSEC/LFM (A19)

(b) Cavity with a diaphragm and an absorbing ring (Figure A2):

In this case, as shown in Figure A2, the determination of the resonant field requires

knowledge of only two coefficients, fp′s and bp′s. As previously, the change in the forward

coefficients after a round-trip in a cavity with a diaphragm on the plane mirror, and an

absorbing ring can be described by Equation (A7), but the typical element Mpm is given by

Mpm = (R1R2)
1/2

∑
n

CD
pn.CR

nm exp[−2i(n + m + 1)ΦD] (A20)

where

CR
nm =

2Y2
A

∫

0

exp(−G)Lp(G)Lm(G)dG +

∞
∫

2Y2
B

exp(−G)Lp(G)Lm(G)dG (A21)

and

G =
2ρ2

W2(L)
, YA =

ρA

W(L)
, YB =

ρB

W(L)
. (A22)

The numerical computation of overlapping integrals CA
pm, CD

pn, and CR
nm is carried

out using a double precision FORTRAN 77 routine based on the integration subroutine

DQDAG from IMSL. The numerical calculation of the eigenvectors and eigenvalues of the

complex matrix M is carried out using the double precision routine DEVCCG. The compiler

used is from the ABSOFT company.

(c) Output beam
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The cavities shown in Figures A1 and A2 have two outputs whose intensity profiles

are not necessarily identical, especially in the case of Figure A1, considering the ability of

the phase DOE to achieve a beam reshaping [21]. Like the forward and backward fields,

the field E1(ρ, z)(E2(ρ, z)), associated with the beam emerging from the output#1 (#2), is

developed on the basis of the Laguerre–Gauss functions:

E1(ρ, z) = ∑
p

D1,pGbp(ρ, z) (A23)

E2(ρ, z) = ∑
p

D2,pG f p(ρ, z) (A24)

The coefficients of expansion D1,p (D2,p) of the laser output field E1(ρ, z)(E2(ρ, z))

emerging from the output#1 (output#2) can be expressed as a function of the internal

coefficients bp or b1p ( f2p), according to the method already used in [67]. If one knows the

coefficients of Dp, labelled as D1,p and D2,p, it is easy to deduce the M2 factor of the beam

emerging from output #1 or #2 as follows [68]:

M2 =





{

∑
p

(2p + 1)
∣

∣Dp

∣

∣

2

}2

− 4

{

∑
p

∑
q

p(D∗
pDq)

rδp,q+1

}2




1/2

(A25)

where the superscript r is used to describe the real part of the quantity.
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