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Abstract: The research on high-order transverse modes in lasers is a subject as old as
the laser itself and has been largely abandoned. However, recently several studies have
demonstrated an interest in using, instead of the usual Gaussian beam, a radial Laguerre—
Gauss LGy beam, as, for instance, one can observe a strong improvement, for a given
power, in the longitudinal and radial forces in optical tweezers illuminated by a LG, beam
instead of the usual Gaussian beam. Since in most commercial lasers, the delivered laser
beam is Gaussian, we therefore think it opportune to consider the problems of forcing
a laser to oscillate individually on a higher-order transverse LG, mode. We propose a
comprehensive analysis of the effects of an intra-cavity phase or amplitude mask on the
fundamental mode of a plano-concave cavity. In particular, we discuss the best choice of
parameters favouring the fundamental mode of a pure radial Laguerre-Gauss LG model.

Keywords: intra-cavity beam shaping; high-order Laguerre-Gauss modes; binary amplitude
mask; binary phase mask

1. Introduction

Research on high-order transverse modes of laser cavities was mainly conducted by
early pioneers after the invention of the laser in 1960 [1-6] and was very quickly abandoned.
It should be noted, however, that a renewed interest in the study of high-order transverse
modes of lasers which can be found, without being exhaustive, in references [7-11]. The
high-order transverse modes involve Hermite (Laguerre) polynomials for rectangular
(cylindrical) coordinates. In the following text, we will emphasise radial Laguerre-Gauss
LGpo modes. The mathematical description of the high-order transverse mode is available
in the standard textbooks in photonics [12-14]. The electric field associated with a LG
beam is given by

W, 20> >
Ep.2) = Byl (i) x exp( i) 0

X exp (i(2p +1)®(z) — 2;@(2))

where p and z are the radial and longitudinal coordinates, respectively, and L, is the
Laguerre polynomial of order p [15]. The quantities W and R, are the width of the Gaussian
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mode (p = 0), and the wavefront radius of curvature, respectively, are z-dependent as well

as the Gouy phase shift ®:
2
W2(z) = W2 |1+ <Z) ] 2)
ZR
Re(z) =21+ ()] ®
‘ z
z
®(z) = Arctg() (4)
ZR
The LGpp beams are made of a central peak surrounded by p rings of light as shown
in Figure 1.
] LG,,
=
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Figure 1. Transverse intensity distribution of the 4-first radial Laguerre-Gauss LG beams.

The Gaussian LGgp beam is characterised by its beam-waist radius Wy and a Rayleigh
distance of zg = W3 /A. The beam waist plane defines the origin z = 0 of the longitudinal
coordinate. The lateral spreading of the LG, beams are described by the width W), based
on the second moment radius, and the far-field angular divergence 6, given by [16]:

Wy(z) = W(z)y/2p+1 ()
0, = 60\/2p + 1 ©6)

where 6y = A/(71W)) is the angular divergence of the Gaussian beam (p = 0). Another
important property of LGy beams is that they have the same on-axis (o = 0) intensity
whatever the mode order p. This contrasts with the usual scale law stating that beam
spreading results in a decrease in the on-axis intensity as the beam propagates [17]. Another
quantity of importance that characterises the beam quality, called the beam propagation
factor, was popularised by A.E. Siegman [18,19] and is equal to M? = (2p+1) for an LGy
beam. This enables us to introduce a fundamental quantity known as brightness, B [16]

2P

_ __ 7
YVITYEE 7)

The brightness B describes the potential of a laser beam carrying a power P and with
a beam propagation factor M? in order to realise high intensities in combination with a
large Rayleigh range. Note that a beam with a beam propagation factor of equal to one is
Gaussian but the reverse is not true [19,20]. Equation (7) allows us to understand why the
studies of higher-order transverse modes slowed after the invention of the laser, on the
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pretext that only the Gaussian LGgp mode is useful because of its higher brightness over the
higher-order LG, beam. The consequence of this rejection is that most of commercial lasers
still deliver a Gaussian beam (GB). However, recent laser studies on higher-order transverse
modes have demonstrated numerous advantages in several laser applications. Recently, a
review about the advantages and disadvantages of using structured LG,y beams for certain
applications (3D microfabrication, optical tweezers, spherical aberration mitigation) was
published [21]. In addition to this, there are numerous studies on the applications of LG
beams in the gravitational wave detectors [22-26]. First of all, let us clarify the concept
of fundamental mode of a laser cavity since it is often confused in the literature with the
Gaussian mode. The fundamental mode of a laser cavity is the mode with the lowest losses
and is thus susceptible to reaching the laser oscillation first.

The objective of this paper is to present a model (see Appendix A) of a laser cavity,
including a phase or amplitude mask aiming to force the fundamental mode of the laser
cavity to become a pure LGy beam. “Pure” means that the mode is a single mode, i.e., not
a mix of several transverse modes. The amplitude and phase masks impose the position
of zeros of the intensity of the desired LGpp mode. The amplitude mask takes the form
of thin annular absorbing rings with a radius which follows closely the location of the
Laguerre polynomial zeros given in Table 1 for the three first high-order LGy modes. For
convenience and clarity, we limited ourselves to p = 3, but it may be perfectly feasible
to achieve a laser oscillation on higher-order transverse modes when forced by a binary
amplitude or phase mask.

Table 1. Values of ratio p;/W such that L,(20?/W?) = 0.

p

1 0.707106

2 0.541195 1.306562

3 0.455946 1.071046 1.773407

The use of absorbing rings for forcing a LG,o mode has been already attempted [27].
For instance, Hermite-Gauss modes have been obtained by inserting straight wires inside
a laser cavity aligned along the nodes of the desired mode [28,29]. In Section 2, we
will consider the selection of a transverse LGpo mode based on the insertion of a binary
amplitude mask inside the cavity, which induced high losses in all modes except the specific
desired mode.

The second way that masks are able to force laser oscillation in LG,p mode is through
a phase mask, and more precisely, a binary phase mask, which is made up of a transparent
material etched on annular zones and introduces a phase shift equal to 0 or 7w and conse-
quently a transmittance equal to +1 or —1. The radii of the phase discontinuities are (0 to
7), and (7t to 0) corresponds to the node radii of the LG,o mode given in Table 1. In the
following text, the phase mask will be known as a binary annular phase plate (BAPP), and
it will be shown in Section 3 that, for the amplitude mask, the mechanism of transverse
mode selection differs from that mentioned above. It is important to note that, for several
decades, the selection of the fundamental mode of a laser cavity consisted of suppressing
all high-order transverse modes except the Gaussian LGy mode by inserting a circular
aperture into the resonator [1,2,4,30-34]. In this case, the selected LGgp mode is distorted by
the diffraction and is no longer Gaussian in shape, as shown theoretically and experimen-
tally [35]. Note that the selection of the fundamental LGy mode by the circular internal
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aperture is based on the hierarchy of beam divergence of the LG,y modes expressed, in
accordance with Equation (6), by the inequalities

Op <61 <6, <0B;... (8)

By adjusting the diaphragm opening, it is possible to select the mode with the smallest
divergence. In Section 3, it will be shown that the binary phase mask known as the circular
phase plate (CPP) is able to change the hierarchy divergence so that the fundamental mode
selected by the internal aperture is a high-order LGpp mode. There are some experimental
works on lasers oscillating in a high-order transverse mode selected with the help of a
binary phase mask [36-38]. For the generation of very high-order Laguerre-Gauss modes,
there is the possibility of inserting a spherical aberration inside the cavity [39-42]. The latter
will not be addressed here, and we will focus exclusively on the use of binary amplitude or
phase masks.

As mentioned above, in Sections 2 and 3, we will detail the action on a LGy beam
of two elementary components, which are the bases of the amplitude and phase masks.
These basic components are the absorbing ring and the circular phase discontinuity (0— )
known as the circular phase plate (CPP). The resulting effects of these masks on a LGy
beam are directly induced losses (for amplitude masks) and the modification of beam
divergence hierarchy of the LG base (for the phase mask). In general, we will search for
the best conditions for each mask to obtain a fundamental mode, i.e., a pure LG beam.
Appendix A illustrates the mathematical development of the numerical model which allows
the determination of the resonant field of an optical cavity, including a diaphragm and a
binary mask.

2. Single-Pass and Multi-Pass Properties of Binary Amplitude Masks

Our aim is to determine the fundamental mode of a laser cavity containing an am-
plitude or phase mask in accordance with the following methodology. The latter consists
of considering, first, the single-pass diffraction properties, for instance losses and angular
divergence, of the mask when illuminated by a LGPO beam. In the second step, we consider
the mask properties resulting from multi-pass diffraction which occur when the mask is
inserted inside a resonant cavity. The single-pass properties help us to understand the
multi-pass properties of the mask inserted inside a cavity.

2.1. Absorbing Ring: Single-Pass Properties

The geometry of the considered absorbing ring of interest is shown in Figure 2. The first
property of the opaque ring illuminated by a LG, beam to be considered is its transmission,
labelled as T}, defined as the ratio of transmitted and incident powers:

PA 0
[ Ip(p)odo + [ I;(0)pdpo
Tp _ 0 _ OB (9)
Of I, (p)pdp

where I, (p) = |Ep(p) |2 is the intensity distribution of the incident LG,y beam. The losses
introduced by the ring are equal to L, = (1 — T,) and are shown in Figure 3a as a function
of the normalised ring radius at A = 20 um.
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Figure 2. Absorbing ring of internal (external) radius p4(pp) and of width A.

Loss (in %)
Losses (in %)

Losses (in %)

40

Figure 3. Variations in the losses L, = (1 — T,) introduced by an absorbing ring versus the normalised
radius Y4 = p4/W. The incident light is a symmetrical Laguerre-Gauss LGy beam of the order p. The
lowest-order LGy beam has a width W = 1 mm. The ring width is (a) 20 um, (b) 50 um, (c) 150 pum.

In Figure 3a, it can be seen that the hierarchy formed by the set of losses (Lo, L1, Ly,
and L3) changes as the ring diameter changes. In particular, one can observe that the losses
introduced by the ring have a minimum value very close to zero whenever the ring is
positioned on a node of intensity while the other modes suffer higher losses. This results in
interesting modal properties when the absorbing ring is inserted inside a cavity as will be
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discussed later. In order demonstrate that a thin absorbing ring positioned on a LGy node
results in low losses, in Table 2, we outlined the minima of L.

Table 2. Minimum value of losses L, when a ring of width A = 20 pum is set on the successive nodes.

Zero# 1 2 3
(L1)min in % 0.002
(L2)min in % 7.5 x 10~* 6.2 x 10*
(L3)min in % 0.0016 9.4 x 1074 6.7 x 107*

Usually, the fundamental mode TE My (transverse electromagnetic) of the cavity is a
Laguerre-Gauss LGgp mode (cylindrical symmetry) or a Hermite-Gauss HGoy (rectangular
symmetry), i.e., a Gaussian beam. However, if an opaque ring is introduced inside the
resonator, then the fundamental mode TE My of the cavity could be a high-order transverse
LGy mode, since it is the mode with the lowest losses. This is why it is pertinent to talk
about a fundamental mode, which is a high-order transverse mode depending on the
inserted filter or mask, introducing high losses to all transverse modes except the desired
LGpo mode, which suffers the lowest losses. Since the hierarchy of divergence given in
Equation (8) plays an important role in the transverse mode discrimination, we need to
verify if the ring is able or unable to change the hierarchy of divergence. However, we
will begin by considering the influence of the ring width A on the loss hierarchy. The plots
in Figure 3b,c of losses L, for A = 50 um (A = 150 um) versus the normalised ring radius
shows that the curves exhibit similar profiles except that one obtains higher losses when
increasing the ring width A.

Hereafter, we will determine the fundamental mode, i.e., the mode with the lowest
losses, of a plano-concave cavity, including a circular diaphragm and an opaque ring. It
is clear that, if we aim for instance for a LG1p mode, then it would be judicious to set the
size of the ring so that Y4 = 0.707, which corresponds to the LGy node, as shown by the
arrow in Figure 3a—c. However, the ring will have succeeded in overcoming the other
transverse modes, but given the losses due to the diaphragm this will not favour them.
This is why it is important to examine the variations in the far-field angular divergence 6,
of the LGy beam diffracted by the amplitude ring. The results are shown in Figure 4a,b for
A =20 pm (A =150 pm). In order to determine whether the absorbing ring is able to change
the divergence hierarchy, we will calculate the angular divergence 6, of the diffracted LG
beam upon the ring as follows:

o e

7D
where the effective width W,, determined in the far-field at a distance D = 30 m, is based on
the second moment [43] of the diffracted intensity distribution I;(r, D) in plane z = D:

(10)

[e9)

2 1;(r, D)r%dr
W7 = 20— (11)

[ Ii(r, D)rdr
0
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Figure 4. Variations in the LGy beam divergence diffracted by an opaque ring of width (a) A = 20 pm
and (b) A =150 um versus its normalised radius Y4 = p4/W.

The transverse intensity distribution I;(r, D) = |E;(r,z = D) |2 is obtained from the
diffracted electric field E;(r, z), expressed by the well-known Fresnel-Kirchhoff integral:

2 T —ime?] . [2
Eitr2) = 2 [ me(E(e) exp| - fo| oo e (12
0

where Jj is the zero-order Bessel function of first order. r (p) is the radial coordinate ob the
plane z (ring). The calculation of Equation (12) is carried out with the help of a FORTRAN
code based on the numerical integrator dgdag from the International Mathematics and
Statistical Library (IMSL). The quantity Tz (p) defines the opaque ring transmission:

0 forpp<p<
w®(p) = PA =P =P8 (13)

+1 elsewhere

Figure 4a shows that the ring with a width A = 20 pm does not change the hierarchy
of divergence expressed by Equation (8), but, as shown in the plot in Figure 4b, when
A =150 um, the beam divergence is highly impacted so that, for instance, 6y and 6; move
very close to, i.e., the node of LG1p. As a consequence of the fundamental mode of the
cavity, including an opaque ring (Y4 = 0.707), initially desired to be a LG9 mode, could
potentially be a LGgp mode. Consequently, it would be wise to use a narrow width opaque
ring unless a cavity without a selecting diaphragm is envisaged. The single-pass properties
of the opaque ring suggest that positioning the ring inside a cavity on a node of a given
LGpo mode would enable the laser oscillation on the chosen LGy mode. However, this
could occur only if the other modes are subject to higher losses, thus preventing their
oscillation. As it will be shown later, this issue of the oscillation locking onto a single high-
order transverse mode can be addressed by considering the transverse mode discrimination
expressed as the ratio of losses associated with two neighbouring modes in terms of losses.
Here, we can extent this concept to the single-pass properties of the ring by considering
the ratio of losses, such as Ly/L1, Lo /L1, and L3 /L4 in a situation when, for instance, the
desired mode is LGyg. The plots in Figure 5a show Y, = 0.707 (LG1p node), where the
opaque ring efficiently identifies the undesired modes, i.e., the LGgg, LG9, and LG3p modes.
Consequently, the ring set inside a laser cavity could force the laser oscillation onto the
LGjy, since the losses for the other modes are greater than those of L.
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Figure 5. Variations in the loss ratios as a function of Y4, the normalised ring radius.

The same reasoning can be applied to the LGy mode by considering the variations in
the loss ratios Lo/ Ly, L1/ Ly, and L3/ Ly, as functions of Y4, and the normalised ring radius.
Similarly to the LGy mode, it can be that the loss ratios Lo/ Ly, L1/ Ly, and L3/ L, display
a pair of peaks when Y, is varied, and results are shown in Figure 5b. These two peaks
are centred on the two LGy nodes, i.e., Y4 = 0.54 and Y4 = 1.3. Forcing a laser cavity to
oscillate on a single-high-order transverse mode clearly results in the difficulty of averting
the risk of the oscillation of the Gaussian LGy mode. In terms of this, when enabling the
LGyp mode, the plots in Figure 5b suggest that the ideal position of the opaque ring is on
the first node, i.e., Y4 = 0.54. When considering the oscillation of the LG9 mode, however,
the situation is quite the opposite, since setting the ring on the second node allows a better
discrimination against the LGjp mode. Let us now perform the same analysis concerning
the LGzp mode.

Figure 5c represents the variations in the loss ratios Lo/ Ly, L1/Ly, and L3/Ly and
logically presents three peaks centred on the three nodes of the desired LG3y mode, i.e.,
Y, = 0.45,1.07, and 1.77. It can be seen that setting the ring on the first (third) node, results
in the bad discrimination of the LGyg (LGgy) mode, since the loss ratio L,/ Lz (Lo/L3) is low.
Finally, in order to favour the LG3p mode, the second node (Y4 = 1.07) seems to be the best
position for setting the opaque ring, since the undesired modes (p = 0, 1, and 2) are well
discriminated against.



Appl. Sci. 2025, 15, 3331

9 of 30

Now, it is important to check whether there is the possibility of improving the discrim-
ination of undesired transverse modes by introducing a second opaque ring in order to
favour the LGy mode. The first step of the study is the calculation of the losses introduced
by the two rings shown in Figure 6. Figure 7 shows the variations in the losses L, intro-
duced by the twin absorbing ring as a function of Y4 while maintaining the ratio Y /Y4 at
a value 2.41, which represents the ratio of the position of the two LGy node positions, i.e.,
2.41 = 1.3065/0.5411.

Y,

Ps ,UAT W Pc

D,
AR

Figure 6. Scheme of the twin absorbing ring characterised by four normalised radii Y4 = pa/W,
Y = (pg/W) =Y4 +A/W, Ye = pc/W, and Yp = (op/W) = Yc + A/W. The width of the rings
is A =50 um.

10
—p=0
] o
~ 8- -
S P=2
c —p=3
= 6
8 Two rings
% 4 A=50 pm
o]
|

Figure 7. Variations in the losses L, = (1 — T}) introduced by two absorbing rings versus the
normalised radius Y4 = p4/W. The incident light is a symmetrical Laguerre-Gauss LGy beam of
order p. The lowest order LGpy beam has a width W =1 mm.

In Figure 7, it can be seen that the LGy beam losses are significantly increased com-
pared to the losses shown in Figure 4, and then an improvement of the discrimination is
expected. To confirm this, the loss ratio variations in Figure 8 are investigated. The first
peak corresponds to the twin ring positioned on the two nodes of the LGy beam. It is clear
that compared to the plots in Figure 5b, the presence of the second absorbing ring greatly
improved the discrimination against the LG9 and LGsy beams. However, nothing changed
for the second peak centred on Y4 = 1.30 since the second absorbing ring positioned at
Y = 1.30 x 2.41 = 3.13 is outside the lateral extent of the LGy beam.
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Figure 8. Variations in the loss ratios Lo/ Ly, L1 /Ly, and L3 /L, as a function of the normalised first
ring radius. The width of the each ring is A = 50 um.

2.2. Multi-Pass Properties of Absorbing Rings

The resonator considered here is plano-concave cavity of length L and is made up of a
plane mirror and a concave mirror with a radius of the curvature as R. Figures A1 and A2
(see Appendix A) show the cavity, including an absorbing ring or a CPP or BAPP on the
concave mirror side, and a circular diaphragm on the plane mirror. The method used for
the determination of the resonant field is based on its decomposition via Laguerre-Gauss
functions (see Appendix A). Moreover, the diaphragm and the absorbing ring or the binary
phase mask can be switched. Both situations will be addressed below. On one hand, the
sensitivity of the beam width on mirrors with thermal lensing is different, and consequently,
so is the “detuning” of the targeted zero of the expected LGpp mode. On the other hand, this
provides a verification for the method which forces the fundamental mode to be a LG,,0 mode
whatever the relative position of the selecting diaphragm and the diffracting object (ring or
phase mask). Before proceeding, it is useful to note two geometric parameters of interest
which characterise the Gaussian mode of the bare cavity, i.e., without the diaphragm or other
diffracting object, namely, the Gaussian mode radius W), (W) on the plane (concave) mirror:

- & g 1/2
Wo=7 i (14)
W2 =W;/g (15)

where the cavity geometric parameter ¢ = (1 — L/R) is kept in the stable region (0 < g < 1)
by varying R, the radius of the curvature of the concave mirror. In the case where the
amplifying medium is set in front of the concave mirror, the effect of the thermal lensing
can be accounted for through a variable effective radius of curvature. The variations in
W, and W, versus parameter g are shown in Figure 9a, and their derivatives are shown
in Figure 9b. Note that g = 0.5 is a remarkable value since the derivative dW,/dg is null,
and the consequence is that the best position of the diffracting object (ring or phase mask)
should be near the concave mirror so as to avoid the phenomena of the transverse mode
flip due to a variable thermal lens.
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Figure 9. (a) Gaussian mode radius W, (W) on the plane (concave) mirror versus the geometric
parameter g. (b) Gaussian mode derivative radius dW, /dg (dW,/dg) versus the geometric parameter g.

Three quantities (see Appendix A) are calculated in order to characterise the fun-
damental mode of the cavity, including an absorbing ring and a diaphragm: Lry; is the
fundamental mode losses, F. is the transverse mode discrimination, and M? is the propa-
gation factor of the output beam. The latter allows us to identify the type of LGy beam,
which is susceptible to oscillate, as shown in equation M? = (2p + 1), corresponding to a
pure LGyo beam.

Since the absorbing ring may only impose one single zero, we are interested in a
fundamental mode; specifically, a LG9 mode since it has one node. It will be shown later
that the absorbing ring inside the resonator can impose a fundamental mode, which can
be a higher-mode order (p > 2). Let us first examine an important point concerning the
positioning of the ring relative to the dark ring of the desired LGy mode. Indeed, when
the ring has a certain width A, it is crucial to pay attention to the overlap of the target node
which has to be at its middle. In the next section, we will use the ratio Yg = (Y4 + Y5)/2,
which is associated with the normalised radius of the central part of the absorbing ring.
In the following text, we will confirm whether a single absorbing ring is able to impose a
LGy mode as the fundamental mode of a cavity of length L. An absorbing ring with a fixed
radius pr = (pa + pp)/2 = 180 um is inserted inside the cavity, as shown in Figure A2.
The ratio Yr = (YA + Yg)/2 = pr/W, is varied by changing the geometrical parameter
¢ = (1 —L/R) by adjusting the cavity length. The ratio Yy is set as equal to the first zero of
the three first LGy modes (p = 1, 2, and 3) and the normalised diaphragm radius noted
Y, is adjusted so that the fundamental mode loss Ly, is the same for the different values
of Yg, insofar as is possible. The results are shown in Table 3, which displays the cavity
length L, YR, Y;, Lrym, the transverse mode discrimination F;, and the M? factor of the beam
emerging from the plane mirror. All these parameters are defined in the Appendix A.

Table 3. Loss Lrp of the fundamental mode, which can be LGyp-, LGyg-, or LG3p-like in shape,
depending on Yy, the normalised radius of the ring. The width of the ring is A = 20 um.

L Lrm
(mm) g Yk Ye in %

93 0.38 0.707 3.9 0.25 59 3.005 a
124 0.17 0.54 4.1 0.2 10 5
137 0.08 0.45 34 0.2 3 7.008 C

E, M? Figure 10

The transverse intensity profiles of the cavity fundamental mode, selected with the
parameters given in Table 3, in the far-field region (z = 10 m) are shown in Figure 10 (blue
curves). The plots in red colour represent the intensity distributions of the pure LG, beam.
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One can note that the fundamental mode in Figure 10a is very close to the perfect LGyg
mode, while it slightly moves away from a pure LGy beam as p increases, although not
very much.
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Figure 10. The plots in blue colour represent the transverse intensity distribution of the cavity
fundamental mode. The calculations have been made up for the parameters of Table 3 in the far-field
region at a distance z = 10 m from the cavity of Figure A2 (out#1). The plots in red colour correspond
to a pure LGpp mode. (a) L =93 mm, (b) L = 124 mm, and (c) L = 137 mm.

At this point, the opaque ring is set against the plane mirror and the diaphragm is
set close to the concave mirror, playing the role of output (Figure 11). This configuration
of cavity is very close to an experiment setup used to control the transverse mode of a
solid-state laser using an amplitude mask made up of concentric absorbing rings [27]. The
characteristics of the cavity are as follows: L =260 mm; R = 300 mm; A = 1064 nm; g = 0.133;
and W), = 186 pum.

Z ‘

- /

Absorbing ring Diaphragm

-

0 L

A\ 4

Figure 11. Scheme of the plano-concave cavity, including an amplitude mask on the plane mirror and a
circular diaphragm on the output concave mirror of radius of curvature, R = 300 mm. The cavity length
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is constant and equal to L = 277 mm. This cavity configuration is close to that used in the exper-
iment [27], and the parameters are as follows: L = 260 mm; R = 300 mm; A = 1064 nm; g = 0.133;
Wp =186 pm.

Before considering the cavity shown in Figure 11, which contains an amplitude mask
set against the plane mirror and is made up of one, two, or three absorbing rings, we
will examine the role of the presence or the absence of the diaphragm on the selection
of a LGy mode with one absorbing ring. For this study, we considered a cavity with
different parameters: L = 600 mm; ¢ = 0.5; A = 1064 nm; and W, = 0.45 mm. Initially, we
chose this half-confocal configuration (g = 0.5) because it corresponds to the maximum of
the transverse mode discrimination [44]. In order to force the laser cavity to exhibit the
fundamental mode, i.e., an LG,o mode, it is not sufficient to set the opaque ring on one
of the zeros of the polynomial L,. Indeed, doing that would in principle introduce more
losses to the other modes than the desired LGy mode, as shown in Figure 3. However, as
is shown in Figure 4a, the hierarchy of mode divergence is not disturbed by the presence
of the absorbing thin ring. Consequently, the losses introduced by the diaphragm could
be in competition with the action of the ring so that the fundamental mode could remain
the usual Gaussian beam with M? = 1. This is confirmed by the plot in Figure 12, which
displays a flip in the M? factor value when the diaphragm radius is changed. Consequently,
positioning the absorbing ring on a node is not sufficient for forcing the fundamental mode
to be a high-order transverse LGy mode. We must be aware of any clipping effect that could
favour the Gaussian LGgg mode. On the other hand, in the absence of a diaphragm, the
selection of a particular LGpp mode can be compromised by the phenomenon of transverse
mode jump. Indeed, in order to be concrete, let us consider an absorbing ring of width
A =20 pm set against the plane mirror (Figure 11), intended to impose the first dark ring of
the LGyp mode. The cavity has a beam waist radius of Wp =0.45 mm. As a consequence, the
normalised radius of the ring is characterised by Yg = 0.54, Y4 = Yr — A/ (ZWP) = 0.51,
and Y4 = Yr + A/ (2Wp) = 0.56. In Figure 13, we observe, effectively, a fundamental
mode, i.e., an LGy mode, confirmed by the propagation factor M? ~ 5 and characterised
by very a low loss Lpp1 = 0.1%. However, if the beam waist radius W), suffers a variation of
about 6.6% for any reason (thermal lensing, cavity length change), such that the normalised
ring radius becomes Yg = 0.57 (Y4 = 0.546, Yp = 0.593), then the selected mode is a
high-order transverse mode with p = 11, since its second zero is (0/W,) = 0.57. Thus, to
avoid the phenomenon of transverse mode jump when selecting a high-order transverse
LGyo mode, two precautions must be taken, i.e., a sufficiently small ring width A and an
intra-cavity diaphragm for reducing high losses to the undesired higher-order transverse
modes. Instead of the intra-cavity diaphragm, the same result can be obtained by limiting
the radial size of the pumped region in the amplifying medium. Another possibility for
avoiding the transverse mode jumping is to use an amplitude mask made up of concentric
absorbing rings positioned on each node of the desired LGy mode, as shown in Figure 14.

Now, let us consider the performance of the cavity shown in Figure 11 with the
parameters L = 260 mm; R = 300 mm; A = 1064 nm; g = 0.133; and W), = 186 um, as well as
an amplitude mask, as shown in Figure 14, made up of one, two, or three absorbing rings
that coincide, respectively, with the nodes of the modes LGy, LGy, and LGsg. The radii of
the rings are given in Table 4.
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Figure 12. The cavity configuration is shown in Figure 10c The plot shows the variation in the output
M?Z factor versus Y,, the normalised diaphragm radius, when the opaque ring of width A =20 um is
set on the third zero (Yg = 1.77) of the LG3p mode.

Y.=0.57 a=20 pm
L,=023% M=23.07

] YR:[}.Sd A=20 pm
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Figure 13. Far-field pattern of the fundamental mode of the cavity, including the plane mirror, an
absorbing ring characterised by a normalised radius, Yg.

Figure 14. Amplitude mask made up of opaque rings coinciding with the zeros of intensity of the
desired LGy mode, for instance, an LGz mode.



Appl. Sci. 2025, 15, 3331

15 of 30

Table 4. Sizes of the absorbing rings, which correlate to the amplitude masks with one (p = 1), two
(p = 2), or three rings (p = 3).

p Radius of the Rings in pm

1 131

2 100 243

3 85 199 330

In the following section, we will provide the parameters that characterise the trans-
verse mode selection (Lrypy, M?, and F.) for a selecting mask made up of one, two, or three
absorbing rings with a variable width A. The results are given in Table 5 (one ring), Table 6
(two rings), and Table 7 (three rings).

Table 5. Amplitude mask with one absorbing ring, intended to yield the LGy mode with a propaga-
tion factor M? = 3.

(p.?n) YC Pc (mm) M? Lem F,
10 1.65 0.84 1.08 11.5% 1.63
10 25 1.3 3.018 0.25% 53
15 1.65 0.84 1.09 16.25% 1.42
15 25 1.3 3.02 0.4% 23.6
20 1.65 0.84 1.07 20.7% 1.34
20 25 1.3 3.008 0.87% 11.35
25 1.65 0.84 1.1 25% 1.14
25 25 1.3 3.008 1.7% 94

Table 6. Amplitude mask with two absorbing rings, intended to yield the LGyy mode with a
propagation factor M? = 5.

(p.?n) Y. Pc (mm) M? Lem F,
10 2 1.02 1.03 14.5% 1.9
10 3 1.53 5 0.3% 28.4
15 2 1.02 1.03 20.5% 1.15
15 3 1.53 5 0.8% 19
20 2 1.02 1.012 26.2% 1.05
20 3 1.53 5.01 1.9% 9.2
25 2 1.03 1.03 31.7% 1.15
25 3 1.53 5 3.4% 1.28

Table 7. Amplitude mask with three absorbing rings, intended to yield the LG3p mode with a
propagation factor M? = 7.

A (um) Y. Pc (mm) M? Lpym F,
10 2 1.02 1.016 17% 1.23
10 35 1.78 7 0.4% 23.6
15 2 1.02 1.016 24% 1.12
15 35 1.78 7 1.5% 10
20 2 1.02 1.016 31% 1.08
20 35 1.78 7 3.2% 5.6
25 2 1.02 1.016 37.5% 1.05

25 35 1.78 7 5.7% 1.08
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The following aspects can be extracted from Tables 5-7:

e  The selection of a pure high-order transverse LG,y mode by an amplitude mask made
up of p absorbing rings positioned on the nodes of the desired mode works well
provided that the diaphragm is sufficiently open. Otherwise, the fundamental mode
becomes the Gaussian mode with M? = 1.

e  Thelosses of the fundamental mode LGy increase with the width A of the absorbing rings.

e  The transverse mode discrimination of the cavity decreases with the increase in A.

The main conclusion is that it is preferable to use absorbing rings with a small width
in order to ensure low losses and a high transverse mode discrimination and to prevent the
overlapping of several nodes, leading to a mixing of high-order transverse modes. Note
that the intra-cavity generation of selected Laguerre-Gaussian modes of variable radial
order, from 0 to 5, has been demonstrated experimentally [27]. The major disadvantage of
this method of transverse mode selection is that the selecting mask is enables loss and is
questionable for use in a high-power laser, even though the rings are set in beam regions
where the intensity is relatively weak. As a consequence, in the next section, a binary
phase mask, which is fundamentally transparent and does not possess Fresnel reflections,
is used to reach the same objectives. For high-power solid-state laser systems operating on
a fundamental mode, a high-order transverse mode imposed by an intra-cavity amplitude
or a phase mask, one of the major problems is the thermal effects, which could introduce
a certain instability in the mode order through a change in the beam size with pumping
power. However, there are several solutions for compensating the thermally induced lens,
and these are described in detail in the literature [45-50].

3. Single-Pass and Multi-Pass Properties of a Binary Phase Mask
3.1. Single-Pass Properties of a Binary Phase Mask

As mentioned previously, it is possible to force the laser cavity into the fundamental
mode, which is an LG,p mode, by imposing the zeros of intensity by inserting a binary
phase mask made up of a transparent material on which is etched a relied, as this gives rise
to annular zones which introduce a phase shift equal to 0 or 7t and create a transmittance
equal to +1 or —1. The radii of phase discontinuities (0—7) and (m—0) correspond to the
node radii of the desired LGpp mode, as shown in Table 1. At the position of these phase
discontinuities, the electric field passes from a positive to a negative value, and thus, it is
necessarily zero at that position. Note that the binary diffractive optical elements constitute
a family of diffractive devices, which are the simplest diffractive components to fabricate
since they require only one level of etching. Binary diffractive optics have been used very
extensively for beam shaping in various wavelength fields (terahertz, infrared, visible,
and X-rays) for a very long time [51-58]. Following a methodology similar to the one
used for the amplitude mask, it will be shown below that the mechanism of transverse
mode selection differs from that mentioned above for the binary amplitude mask. The
annular phase mask (BAPP) described above is made up of several “elementary bricks”.
This elementary brick consists of a CPP made up of a circular phase discontinuity of radius
Rpr described by Equation (A14). Obviously, the CPP does not attenuate the incident LGy
beam since it is transparent. However, the hierarchy of divergence associated with each
LGpo beam is no longer described by the inequality given by Equation (8). In fact, we will
use the same method implemented for the absorbing ring when calculating the angular
divergence of the beam passing through the CPP not once, but twice, as shown in Figure 14
The reasons justifying this double-pass are given in the Appendix A.

Figure 15 shows the set-up considered for determining the variations of the LGyo beam
passing twice through the CPP. The results are shown in Figure 16, which illustrates the
variations in the divergence of the LG, versus the normalised CPP radius Yp; = Rp;/ Wy,
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where W) is the width of the incident Gaussian term. It can be seen in Figure 16 that the
beam has the smallest divergence (indicated by arrows A, B, and C) and can be either the
LGz, LGy, or LGyp beam, depending on Rp; the CPP radius. A closer look shows that
these minima occur when Rp; corresponds to the first zero of intensity of the incident LGy
beam. More generally, the divergence is also minimum when the CPP radius corresponds
to any zero of the LG beam.

2D=10 mm =30 m

B
| i |

T2

—»

Collimated LG,
beam

Beam-waist
W,=1mm
—

Far-field
region

Figure 15. Apparatus allowing to determine the diffracting properties of the cascade of two circular
phase plates (CPP) separated by a distance 2D = 10 mm. The diffracted field is determined in the
far-field at a distance z = 30 m by using Equation (12).
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Figure 16. Variations in the divergence 6, = W,/z, calculated by using Equations (11) and (12), of
the diffracted LGqy, LG1g, LGyo, and LG3p beams passing twice through the CPPs versus Ypj, the
normalised CPP radius. The arrows A, B, and C indicate the smallest divergence of the LGy, LGy,
LGsy, respectively.

If we combine the CPP with a diaphragm set in its far-field, as shown in Figure 15, then
it would be possible to install a hierarchy of losses susceptible to favouring the transmission
of any LGy beam for adequate Rp; and diaphragm radius Rp. For convenience, we
introduce the normalised diaphragm radius Yp = Rp/W,, where W, would be the width
of the LGgp beam in the diaphragm plane, i.e., at a distance of z = 30 m. The variations
in the losses introduced by the diaphragm versus Yp; were determined for two values of
the normalised diaphragm radius, Yp = 3.5 (Figure 17a) and Yp = 6.5 (Figure 17b). It
can be seen in Figure 17a that a diaphragm that is not open enough does not allow the
instigation of the fundamental mode in a cavity, as shown in Figure A2, but could result
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Diaphragm Loss (%)

254

p=0

in a high-order transverse mode by setting the phase discontinuity of the CPP on the first
node of the desired LGy mode. However, for a diaphragm that is wide open (Yp = 6.5),
as is seen in Figure 17b, a hierarchy of losses takes place which is similar to that shown in
Figure 16. The latter allows the possible oscillation of a LG, mode, provided the value of
Yp; is adjusted for minimizing the losses. It has been demonstrated experimentally [59]
that a CPP set inside a solid-state laser cavity is able to impose the fundamental mode,
which is an LGy mode (p =1, 2, 3).

141

(@)Y, =35 -
o 12 p=0 (b) Y,=6.5

Diaphragm Loss (%)

Figure 17. Variations in the losses of the diaphragm set at a distance of z =30 m versus Yp; = Rp;/W
for (a) Yp = 3.5and (b) Yp = 6.5. The beam incident on the cascade of the CPP is a LGpp beam whose
Gaussian term has a width of Wy = 1 mm.

The discrimination property of the CPP is related to the value of the divergence of
the other modes rather than the one targeted by the phase circle discontinuity of the
CPP. Table 8 shows that the greater the divergence difference, the more discrimination
is expected.

Table 8. Particular values of the divergence of diffracted LG (p =0, 1, 2, and 3) beams passing twice
through the CPP shown in Figure 15. The circle phase discontinuity is set on the first node of the
incident LGy beam. The minimum divergence is indicated in red.

Ypr 0o (rad) 01 (rad) 0, (rad) 05 (rad)
0.707 22,6 x 1074 6.1 x 1074 12.4 x 10~* 16.4 x 1074
0.541 235 x 1074 109 x 1074 75 x 1074 11 x 1074
0.455 23 x 10~* 14.6 x 10~* 10 x 104 89 x 1074

It is also interesting to estimate the expected transverse mode discrimination by
considering the losses introduced by a diaphragm with a normalised radius equal to
Yp = 6.5 and located at a distance z = 30m from the cascade of the two CPP. The results are
shown in Table 9, which also contains the discrimination factor F., defined as the inverse
ratio of the two first losses. In the next section, we will confirm whether the use of a BAPP,
setting a phase circle discontinuity on all nodes of the desired LGy mode, improves or
does not improve the transverse mode discrimination factor F..

Now, it remains for us to study the single-pass properties of the binary annular phase
plate (BAPP) with geometry described by Equation (A15) and by Figure 18, which repre-
sents the transmittance profile Tpor(p) of the considered BAPP. The phase discontinuities
circles of the BAPP correspond to the zeros of intensity given in Table 1.
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Table 9. Variations in losses induced by the diaphragm of normalised radius Yp = 6.5 set at a distance
z = 30 m from the cascade of the two CPP. F, is the discrimination factor defined as the inverse ratio
of the two first losses. The minimum in the loss value is indicated in red.

Ypr Loss forp =0 Loss forp=1 Loss forp =2 Loss forp=3 E.
0.707 7.7% 0.19% 2.13% 3.95% 11.2
0.541 9.38% 1.64% 0.26% 1.2% 4.6
0.455 8.9% 3.33% 0.95% 0.35% 2.7
TOOR A ook 4
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Figure 18. Transmittance profile (field ratio) of the BAPP#p intended to select a LG9 when inserted
in the cavity shown in Figure Al.
As performed previously for the CPP, we will consider the properties of the BAPP#p
given in Figure 18 through the losses (Table 10) induced on a LGy beam passing through a
cascade of two BAPP#p, as a result of a diaphragm set in the far-field at a distance z = 30 m.
Table 10. Variations in losses induced by the diaphragm of normalised radius Yp = 6.5 set at a
distance z = 30 m from the cascade of the two BAPP. F. is the discrimination factor defined as the
inverse ratio of the two first losses. The minimum in the loss value is indicated in red.
BAPP Loss forp =0 Lossforp=1 Loss forp =2 Loss forp=3 E,
#1 7.7% 0.19% 2.13% 3.95% 11.2
#2 10.67% 10.74% 0.48% 4.92% 10.25
#3 15.2% 10.98% 11% 0.65% 16.9

A comparison between Tables 9 and 10 indicates a transverse mode discrimination
improvement forthe BAPP compared to the CPP. The question of high-transverse mode
discrimination is very important from a practical point of view, since it allows the laser to
oscillate on a single high-order transverse mode with a large range of pumping power. In
the next section, we will consider the fundamental mode of a laser cavity in which a CPP
or a BAPP is inserted.

3.2. Multi-Pass Properties of a Binary Phase Mask

First, we will consider the fundamental mode of the cavity previously shown in
Figure A1, with the parameters given in Table 3, in which a CPP with its phase discontinuity
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positioned on the first node of LG,o modes (p =1, 2, and 3) is inserted. The results are
summarised in Table 11. The fundamental mode can be either a LGy, LGqg, or LG,y mode,
but with a low transverse mode discrimination. These results are in a good agreement
with a previous experiment [59]. It is worth mentioning that the opening or closing of the
diaphragm does not allow any transverse mode jumps, as shown above in Figures 12 and 13.
Indeed, whatever the diaphragm opening, it is the mode with the smallest divergence
which undergoes the lowest losses. The hierarchy of losses is imposed by the hierarchy
of divergences, as shown in Figure 16, and remains independent from the diaphragm
opening. In order to illustrate this property, we extracted the values of LG, divergences
when Yp; is equal to (0.707, 0.541, and 0.455) from Figure 16, and the results are given in
Table 8. The values in red colour in Table 8 represent the minimum values of LGy beam
divergence, and the minimum of losses are shown in Table 9. It now remains to be seen
whether the characteristics of the fundamental mode of a plano-concave cavity, including a
binary annular phase plate, simultaneously impose the p nodes of the fundamental mode,
thus taking the form of LG, mode. The key parameter will mainly be the transverse mode
discrimination, TMD, which is expected to be improved in comparison with the TMD
obtained using a CPP (Table 11).

Table 11. Loss Lrp; of the fundamental mode of the cavity shown in Figure A1, in which a CPP is
inserted at a distance D = 5 mm from the concave mirror of radius of curvature R = 150 mm, and the
diaphragm is located against the plane mirror. The fundamental mode is an LGy (p =1, 2, and 3)
depending on the normalised radius Yp; of the CPP. The beam emerging from the plane mirror is
characterised by its M? factor.

L Lem 2
(mm) 8 Ypr Y. in % Fc M
93 0.38 0.707 3.1 3 2.84 297
124 0.17 0.54 4.5 1.7 1.85 5.15
137 0.08 0.45 5 2.3 1.19 7.008

Now, let us consider the cavity shown in Figure A1 with the same parameters used
in Section 2.2 when considering the multi-pass properties of absorbing rings: L = 260 mm;
R =300 mm; A = 1064 nm; g = 0.133; W), = 186 um; W, = 260 um. The results are shown in
Table 12. It can be seen that the selection of a LG, mode, as the fundamental mode with
low losses, Lryy, is effectively carried out by inserting a BAPP#p since the M? factor is very
close to (2p + 1). It cannot be said that using a BAPP in place of a CPP inside a laser cavity
significantly improves the transverse mode discrimination Fe.

Table 12. Loss Lry; of the fundamental mode of the cavity shown in Figure A1, in which a BAPP
(see Figure 18) is inserted at a distance D = 5 mm from the concave mirror of radius of curvature
R =150 mm, and a diaphragm is located against the plane mirror. The cavity length is L = 260 mm.
The fundamental mode is a LGy (p = 1, 2, and 3), depending on the BAPP inserted. The beam
emerging from the plane mirror is characterised by its M? factor.

Y, Lem E. M?
BAPP#1 6.5 0.30% 2.49 3
BAPP#2 6.5 0.74% 2.88 498
BAPP#3 6.5 1.28% 1.59 6.97

It is important to point out that the far-field of the two cavity outputs shown in
Figure A1 are characterised by distinct intensity profiles. For instance, Figure 19 displays
the far-field intensity distributions, calculated in the focal plane of a converging lens, from
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Out#1 and Out#2 when the BAPP#3 is inserted inside the resonator. The focused beam
emerging from Out#1 is a shaped like an LGzg, while it is quasi-Gaussian in shape from
Out#2. The latter is in fact a rectified LG3y beam with the same M? factor as the LGs
beam emerging from Out#1, in accordance with A.E. Siegman [60], who has demonstrated
that a binary diffractive optical element is not able to improve the M? factor when the
phase discontinuities of the BAPP correspond to the node of the incident LG, beam. In
contrast, the M? factor is degraded if the phase discontinuities of the BAPP are shifted from
the nodes of the LG, beam. This property is illustrated by the plots in Figure 20, which
displays the variations in the M? factor of LG beams passing through a CPP. Every time
the phase discontinuity is set on a node, the M? factor is either unchanged or is increased.
We note that the rectification of a LG beam involves a phase object set on its path aiming
to convert the alternately out-of-phase rings into a unified phase. This function is fulfilled
by the BAPP#p. The rectified LG beams have interesting properties which can be found
in [21] and the references therein.
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Figure 19. Intensity profile of the focused beam emerging from Out#1 and Out#2 of the cavity,
including a BAPP#3. The focused beam from output Out#l (Out#2) is an LG3p (quasi-Gaussian
distribution).
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Figure 20. Variations in the M? factor of LGpo beams (p =0, 1, 2, and 3) passing through a CPP versus Yp;.

4. Discussion

In this paper, we considered the use of binary amplitude or phase masks as intra-cavity
filters for forcing the fundamental mode of a laser to be a single high-order radial Laguerre—
Gauss LGy mode. The intra-cavity binary mask aims to impose the zeros of intensity of
the oscillating laser beam. As soon as the nodes of the oscillating mode are imposed by the
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mask, according to the positions of the zeros of the Laguerre polynomial, then the oscillating
mode undergoes the lowest loss: this is a LGy mode given by Equation (1). For convenience
and clarity, we limited ourselves to p = 3, but it may be perfectly feasible to obtain laser
oscillation on higher-order transverse modes forced by a binary amplitude or phase mask.

It is important to note that the actions of the phase and amplitude masks are very different.
The binary amplitude masks made up of absorbing rings induces high losses for all modes
except the specific desired LG, mode. The cavity does not necessitate any supplementary
clipping induced by a circular diaphragm. In this case, it was found that the transverse mode
discrimination is high, provided that the rings thickness is small (1020 pum).

The phase mask is made of a transparent material, glass for instance, on which is
etched a relief which results in annular zones that introduce a phase shift equal to 0 or T,
giving rise to a transmittance equal to +1 or —1. The radius of phase discontinuities (0—)
and (m—0) coincide with the zeros of intensity of the desired LGy mode. The action of
the binary phase mask is the change in the divergence hierarchy of the LG, basis so that
the fundamental mode selected by a diaphragm set on the other side of cavity is a single
high-order LG, mode. It was found that the transverse mode discrimination obtained
using the binary phase mask was lower than that obtained using a binary amplitude mask.
It could be added that the fabrication of a binary phase mask is more difficult than a binary
amplitude mask because of the need to control the etched quantity of glass which defines
the phase shift discontinuity (0—).

As was mentioned in the introduction, the LGy beams and the redressed LG, beams
are characterised by a beam propagation factor M?> = (2p + 1), which disqualifies them
for laser applications needing a high brightness. However, such laser beams have certain
qualities which the Gaussian beam does not have [16]. In particular, a rectified LGpp beam
is particularly useful for improving the spatial resolution in 3D-laser prototyping [61] or
the longitudinal force of optical tweezers [62]. In this context, it may be noted that the
setup shown in Figure Al has the advantage of enabling the perfect self-alignment of the
binary phase mask to achieve beam rectification. This would not be the case if the beam
rectification was achieved outside the laser cavity. By contrast, it is useful to note that
the output Out#2 through the opaque rings (Figure Al) is a undeformed LGy beam if
the intracavity beam is a LGy beam because we are dealing with zero-field occluding or
non-diffracting occluding since the absorbing rings are positioned on nodes.

Since, even today, most commercial lasers utilise a Gaussian beam, there is no alter-
native but to build our own home laser able to deliver a LGpo beam. For that, there is an
important feature to consider which concerns the lateral size of the gain region in the laser
medium. Indeed, this point appears when the pumping of a solid-state laser is longitudinal,
since focusing the pump beam only shortly leads to an insufficient lateral extent, which
is unable to sustain the laser oscillation on a high-order transverse mode with a width
proportional to the mode order p.

The last point concerns power extraction, which is increased when forcing laser
oscillation on a high-order transverse mode, as observed experimentally [27,38]. The
interpretation of this effect is that the laser beam power is particularly proportional to the
mode volume inside the cavity, which is proportional to the mode order p [27].

In this paper, we explored in detail how to force the oscillation of a laser to be present
on a high-order, but single, LG, by using a diffractive technique which consists of inserting
an amplitude or a phase mask inside the resonator. It is worth noting that the use of
an interferometric method is possible as a result of the pioneering experimental work
accomplished by P.W. Smith [63] which was also recently modelled [64].

In the interest of completeness, the role of the active medium in the selection of
the oscillating transverse mode should also be considered. In absolute terms, both the
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amplifying medium and the resonator each have a contribution in transverse mode selection.
However, the action of the “cold cavity”, i.e., without the active medium, can be considered
preponderant in cases where the pumped region of the amplifying medium is transversely
much larger than the expected high-order transverse mode. This has been experimentally
observed in solid-state lasers [27,36-38], and this justifies our study, which is exclusively
based on the transverse properties of a “cold cavity”, including binary amplitude or phase
masks. Otherwise, it would be necessary to take into account the nonlinear response of
the active medium, which would make the numerical determination of the transverse
properties of the laser resonant field difficult.
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Appendix A

We consider a plano-concave cavity made up of a plane mirror on which is set a
selecting diaphragm (circular aperture) and a concave mirror, in front of which a diffractive
optical element (DOE), or an absorbing ring, is placed. The DOE can be a circular phase
plate (CPP) or a binary annular phase plate (BAPP). The determination of the resonator
transverse mode parameters (intensity distribution, mode volume, width, etc.) is of key
importance in the design of a laser system. For instance, the knowledge of the fundamental
mode characteristics (M? factor, losses, transverse mode discrimination, etc.) are the
quantities to be evaluated. For a long time, the method used for the determination of
the resonant field of cavities was the so-called Fox and Li method [1] and other more or
less sophisticated procedures based on integral equation solving, the solution of which is
very sensitive to the initial conditions, thus giving rise to a certain amount of numerical
instabilities. This is why we prefer the matrix method proposed by G. Stéphan and M.
Trumper in 1983 [65], which involves, as will be shown below, a matrix operator which
holds the information about amplitude and phase clipping undergone by the resonant field
after insertion inside the cavity. The types of cavities that are considered in the following
section are shown in Figures A1 and A2 when a phase DOE (an absorbing ring) is inserted.

Note that the binary DOE in Figure Al is displaced from the concave mirror by a
distance D, and the reason for that can be found in [35]. To understand the necessity of
displacing the DOE from the mirror M. by a distance D < < L, we have to remember that
if we consider, for instance, a DOE in form of a single-phase discontinuity or a binary
annular phase plate, then the emerging beam is reshaped, since it suffers a partial or a total
rectification [21]. Note that the word rectification means that the negative parts of the beam
are rendered positive so that the far-field intensity distribution is no longer identical to the
incident intensity distribution. If we want a LG as the fundamental mode imposed by
the binary DOE, it is important that the beam incident on the DOE, and the reflected beam
by the ensemble (DOE + M,) are together a LGy beam. For this, the reshaping effect of the
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DOE, as mentioned above, must be prevented by passing the mode twice through the DOE.
It is important that the distance D should be very short compared to distance L in order
for the phase change introduced by the first passage to be prevented by the return passage
through the DOE. In other words, if the distance D is sufficiently short then the DOE is
consequently set in its own near field after reflection on the concave mirror, and as a result,
the field distribution does not change.
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Figure A1. Description of the plano-cavity made up of a plane mirror My on which a diaphragm is

set and a binary diffractive optical element (DOE) is inserted, which could be a CPP or a BAPP, set at
a distance D = 5 mm from the concave mirror M. with a radius of curvature R.
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Figure A2. Apparatus showing the plano-concave cavity made up of a diaphragmed plane mirror
M,, and an absorbing ring set against the concave mirror M.

The resonant field determination of the cavities shown in Figures A1 and A2 involves
its decomposition into its two progressive waves: a forward (and backward) beam propa-
gating in the positive (and negative) Z direction. The plane mirror position corresponds to
the origin Z = 0 of the axial coordinate. The circular diaphragm set against the plane mirror
has a radius labelled as pc. The phase DOE (Figure A1), set at a distance D = 5 mm from
the concave mirror, is characterised by its complex transmission, labelled as Tpog(p). The
concave mirror has a radius of curvature of R = 150 mm. In Figure A2, the absorbing ring is
assumed to be set against the concave mirror. The reflectivity (intensity ratio) of the plane
(concave) mirror is labelled as R1(R5).
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The determination of the resonant field is carried out numerically and involves its
decomposition on the basis of the eigenfunctions (eigenmodes) of the bare cavity, i.e., made
up of only mirrors, Mp and Mc. Thereafter, a perfect axial symmetry is assumed for the
cavity. The above mentioned eigenfunctions are formed by 80 Laguerre-Gauss functions
playing the role of orthonormalised bases which, for the forward beam, are

2
Grplp,2) \FWZ) P( ) P(_W’ZZ)Z)

X exp{+1{211§( 2 (2p+1)d>(z)} },

(A1)

and for the backward beam are

Gunto) = s (85 ) o (-7

X exp{ [2I1<( (2) (2p+ 1)@(2)} }

(A2)

where k = 27t/ A. The forward and backward quantities are distinguished by the subscripts
f and b, respectively. The quantities W(z), R¢(z), and ®(z) are defined by Equations (2)—(4).
L,(X) is the Laguerre polynomial of order p. Note that the field distribution in the bare
cavity made up of mirrors My and M. and is identical for the forward and backward
beams. However, it has been demonstrated theoretically [66] and experimentally [35] that
if there are any diffraction effects inside the resonator, then the longitudinal and transversal
intensity distributions associated with the forward and backward waves are different. To
facilitate the use of the following model for the determination of the resonant field of
a cavity with diffracting objects, the reader may wish to refer for details to a previous
work [67] on cavities with a super-Gaussian aperture or a binary circular phase plate.

(a) Cavity with a diaphragm and a binary phase mask (Figure Al):

The forward and backward fields are assumed to be linearly polarised and are ex-
pressed as linear combinations of the basic functions on both sides of the DOE:

Efj(p,z) = expli(kz — wt)]Zf]'prp(p,z), (A3)
P

Eyj(p,z) = exp{i[k(2L — z) — wt]}Y " bjpGpp(p, 2). (A4)
P

The index j is equal to 1 in the region 1 (by 0 < z < zppr) and equal to 2 in the region 2
(zpor < z < L), where zpor = (L — D) is the position of the DOE. We study the stationary
field for t = 0 and then exp(—iwt) =1

The functions of the basis satisfy the orthonormalisation condition given by:

271/ Gfp(p,z)Gjﬁm (0,2)p dp = pm (A5)
0

27 [ Gup(0,2)Girn (0,00 dp = O (46)
0

where the symbol * is used to describe the complex conjugate of the quantity. The knowl-
edge of the forward and backward fields involves the determination of the four (p and z,
independently) coefficients, flp, fzp, by p and bzp, of the field expansion for 0 < zpor < L.
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The boundary conditions at the DOE and aperture planes impose a relation between
the different coefficients, and their determination involves the matrix M, known as the
round-trip operator and expresses the change in the forward coefficients after a round-trip
in the apertured cavity:

f]‘lp = ZMpmf]m (A7)

The matrix M is defined by its typical element M, given by

My, = (RiR2)"? exp[—i2¢ )Y CAY" CP Cil, exp|—idp(®@p — P 4)] exp[—i(n + q)P 4]
p n

(A8)
where
AL
®p = Arctan | A9
D rc an(nW&) (A9)
®, — Arctan | 2ZDOE (A10)
W3
Con = [ T00£(X) exp(= X)Ly (X)L(X)dX (A11)
0
2Y2
ch, = / exp(—Y)Ly(Y) Ly (Y)dY (A12)
0
with ) )
pQ— =2 ye=fe (A13)

T W2(zpor)' W Wo

The complex transmittance Tpor(p) associated with the binary circular phase plate,
annular phase plate, and spherical aberration takes the following form:
For the circular phase plate of the radius:

—1 forp < Rpy

(A14)
+1 forp > Rp;

Rpr: = Tpoe(p) = {

For the binary annular phase plate:
The binary annular DOE is made up of annular zones introducing a phase shift equal
to 0 or 7, giving rise to a transmittance given by Equation (A15):

-1 for 0 < 0 < p1
oe(p) = { (=1)™"  for pi<p<pirand (i+1)<p (A15)
(=17 forp > Op

The position of the phase jumps from 0 to 7t or 7t to 0, exactly following the zeros of
the Laguerre polynomial L, given in Table 1, where p;/s are the p radial positions for which
the intensity of the desired LGy mode is zero.

It is important to note that the round-trip operator M contains the information about
reflection at the mirrors and about amplitude (phase) clipping at the edge of the diaphragm
(DOE). The resonance condition is expressed by the relation f]-’p = I'fj, which holds for all
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p after a round-trip. This allows us to consider the eigenmodes of the phase/amplitude
apertured cavity as the eigenvectors u of the matrix M, defined as

Mu =Tu. (A16)

where I is the complex eigenvalue associated with the eigenvector u. A remarkable
eigenvector is that which has the largest eigenvalue, labelled |Trys|, thus defining the
fundamental mode of the cavity whose power loss per round-trip is given by

Lem =1 [Temf? (A17)

The second eigenvector of M has the second greatest eigenvalue, labelled as |T'sgc|,
and is the second transverse mode whose power loss per round-trip is given by

Lsgc =1 — [Tsec|? (A18)

From a practical point of view, the cavity with an amplifying medium constitutes a
laser which, at the threshold, will oscillate first on the above-mentioned fundamental mode
since it has the lowest losses. From this step, increasing the pumping action will lead to the
emergence of a second transverse mode.

In order for the laser to be able to oscillate on the desired fundamental mode, which
could be a high-order transverse LG,o mode before the second transverse mode begins
the oscillation, the difference between Lrys and Lsgc must be as large as possible. This
possibility of a cavity to contain a second transverse mode can be described by a transverse
mode discrimination factor, defined as

Fe = Lsgc/Lim (A19)

(b) Cavity with a diaphragm and an absorbing ring (Figure A2):

In this case, as shown in Figure A2, the determination of the resonant field requires
knowledge of only two coefficients, f,/s and b,/s. As previously, the change in the forward
coefficients after a round-trip in a cavity with a diaphragm on the plane mirror, and an
absorbing ring can be described by Equation (A7), but the typical element My, is given by

Mpn = (R1R2)"/?Y" CD,.CR  exp[—2i(n + m +1)@p) (A20)
0
where
2Y3 o
CR — /exp(—G)Lp(G)Lm(G)dGJr / exp(—G)Ly(G)Ln(G)AG  (A21)
0 2Y3
and )
G= -2y = PAy, _ 0B (A22)

T WLy 4T WLy W(L)

The numerical computation of overlapping integrals C;,“m, CEn, and CR is carried
out using a double precision FORTRAN 77 routine based on the integration subroutine
DQDAG from IMSL. The numerical calculation of the eigenvectors and eigenvalues of the
complex matrix M is carried out using the double precision routine DEVCCG. The compiler

used is from the ABSOFT company.
(c) Output beam
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The cavities shown in Figures A1 and A2 have two outputs whose intensity profiles
are not necessarily identical, especially in the case of Figure A1, considering the ability of
the phase DOE to achieve a beam reshaping [21]. Like the forward and backward fields,
the field E;(p, z)(E2(p, 2)), associated with the beam emerging from the output#1 (#2), is
developed on the basis of the Laguerre—Gauss functions:

Eq (p,Z) = ZDl,prp(P/Z) (A23)
P

Ez(P,Z) = ZDZ,prp(prZ) (A24)
p

The coefficients of expansion Dy, (D5 ) of the laser output field Ei(p,z)(E2(p,z))
emerging from the output#l (output#2) can be expressed as a function of the internal
coefficients by or by, (f2), according to the method already used in [67]. If one knows the
coefficients of Dy, labelled as D1 , and D , it is easy to deduce the M? factor of the beam
emerging from output #1 or #2 as follows [68]:

1 1/2

2
e {z<zp+1>u>p|2} —4{zzp<D;Dq>rap,q+l} (a25)
P 4

p

where the superscript r is used to describe the real part of the quantity.

References

1.

10.

11.

12.
13.
14.
15.
16.
17.
18.
19.
20.
21.

Fox, A.G,; Li, T. Resonant modes in a maser interferometer. Bell Syst. Tech. ]. 1961, 40, 453-488. [CrossRef]

Boyd, G.D.; Gordon, ]J.P. Confocal multimode resonator for millimetre through optical wavelength masers. Bell Syst. Tech. J. 1961,
40, 489-508. [CrossRef]

Boyd, G.D.; Kogelnik, H. Generalized confocal resonator theory. Bell Syst. Tech. ]. 1962, 41, 1347-1369. [CrossRef]

Li, T. Diffraction loss and selection of modes in maser resonators with circular mirrors. Bell Syst. Tech. ]. 1965, 44, 917-931.
[CrossRef]

Kogelnik, H.; Li, T. Laser beams and resonators. Appl. Opt. 1966, 5, 1550-1567. [CrossRef]

Fox, A.G.; Li, T. Computation of resonator modes by the method of resonant excitation. IEEE J. Quantum Electron. 1968, 4, 460—465.
[CrossRef]

Valle, A. Selection and modulation of high-order transverse modes in vertical-cavity surface-emitting lasers. IEEE ]. Quantum
Electron. 1998, 34, 1924-1932. [CrossRef]

Quirce, A.; Valle, A.; Hurtado, A.; Gimenez, C.; Pesquera, L.; Adams, M.]. Experimental study of transverse mode selection in
VCSELSs induced by parallel polarised optical injection. IEEE |. Quantum Electron. 2010, 46, 467-473. [CrossRef]

Kim, K,; Bittner, S.; Zeng, Y.; Guazzotti, S.; Hess, O.; Wang, Q.].; Cao, H. Massively parallel ultrafast random bit generation with a
chip-scale laser. Sciences 2021, 371, 948. [CrossRef]

Kim, K,; Bittner, S.; Zeng, Y.; Guazzotti, S.; Hess, O.; Wang, Q.].; Cao, H. Sensitive control of broad-area semiconductor lasers by
cavity shape. APL Photonics 2022, 7, 056106. [CrossRef]

Ledentsov, N.N.; Makarov, Y.; Shchukin, V.A.; Kalosha, V.P.; Leventsov Jr, N.; Chrochos, L.; Bou Sanayeh, M.; Turkiewicz, J.P.
High speed VCEL Technology and applications. J. Light Technol. 2022, 40, 1749-1763. [CrossRef]

Koechner, W. Solid-State Laser Engineering, 6th ed.; Springer Sciences: Berlin/Heidelberg, Germany, 2006.

Saleh, B.E.A.; Teich, M.C. Fundamentals of Photonics, 2nd ed.; Wiley-Interscience: Hoboken, NJ, USA, 2007.

Hodgson, N.; Weber, H. Laser Resonators and Beam Propagation, 2nd ed.; Springer Sciences: Berlin/Heidelberg, Germany, 2005.
Arfken, G. Mathematical Methods for Physicists, 2nd ed.; Academic Press: Cambridge, MA, USA, 1973.

Menzel, R. Photonics; Springer: Cham, Switzerland, 2001; Chapter 2.

Ait-Ameur, K. Amplitude and phase clipping: Strehl ratio versus divergence. Opt. Commun. 2012, 285, 699-705. [CrossRef]
Siegman, A.E. New developments in laser resonators. Proc. SPIE 1990, 1224, 2-14.

Johnston, T.F. M? concept characterizes beam quality. Laser Focus World 1990, 26, 173-174.

Siegman, A.E. Defining, measuring, and optimizing laser beam quality. Opt. Reson. Coherent Opt. 1993, 1868, 2-14.

Ait-Ameur, K. The Advantages and Disadvantages of Using Structured High-Order but Single Laguerre-Gauss LGy Laser Beams.
Photonics 2024, 11, 217. [CrossRef]


https://doi.org/10.1002/j.1538-7305.1961.tb01625.x
https://doi.org/10.1002/j.1538-7305.1961.tb01626.x
https://doi.org/10.1002/j.1538-7305.1962.tb03281.x
https://doi.org/10.1002/j.1538-7305.1965.tb04164.x
https://doi.org/10.1364/AO.5.001550
https://doi.org/10.1109/JQE.1968.1075368
https://doi.org/10.1109/3.720228
https://doi.org/10.1109/JQE.2009.2036270
https://doi.org/10.1126/science.abc2666
https://doi.org/10.1063/5.0087048
https://doi.org/10.1109/JLT.2022.3149372
https://doi.org/10.1016/j.optcom.2011.10.080
https://doi.org/10.3390/photonics11030217

Appl. Sci. 2025, 15, 3331 29 of 30

22.

23.

24.

25.

26.

27.

28.

29.

30.
31.

32.
33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.
44.

45.

46.

47.

48.

49.

Chelkowski, S.; Hild, S.; Freise, A. Prospects of higher-order Laguerre-Gauss modes in future gravitational wave detectors. Phys.
Rev. D 2009, 79, 122002. [CrossRef]

Granata, M.; Buy, C.; Ward, R.; Barsuglia, M. Higher-order Laguerre-Gauss mode generation and interferometry for gravitational
wave detectors. Phys. Rev. Lett. 2010, 105, 231102. [CrossRef]

Sorazu, B.; Fulda, PJ.; Barr, B.W.; Bell, A.S.; Bond, C.; Carbone, L.; Freise, A.; Hild, S.; Huttner, S.H.; Macarthur, J.; et al.
Experimental test of higher-order Laguerre-Gauss modes in the 10 m Glasgow prototype interferometer. Class. Quantum Grav.
2013, 30, 035004. [CrossRef]

Alloca, A.; Gatto, A.; Tacca, M.; Day, R.A.; Barsuglia, M.; Pillant, G.; Buy, C.; Vajente, G. Higher-order Laguerre-Gauss
interferometry for gravitational wave detectors with in situ mirror defects compensation. Phys. Rev. D 2015, 92, 102002.
[CrossRef]

Noack, A.; Boyan, C.; Willke, B. Higher-order Laguerre-Gauss modes in (non-) planar four-mirror cavities for future gravitational
wave detectors. Opt. Lett. 2017, 42, 751-754. [CrossRef] [PubMed]

Ngcobo, S.; Ait-Ameur, K,; Passilly, N.; Hasnaoui, A.; Forbes, A. Exciting higher-order radial Laguerre-Gaussian modes in a
diode-pumped solid-state laser resonator. Appl. Opt. 2013, 52, 2093-2101. [CrossRef] [PubMed]

Abramski, K.M.; Baker, H.J.; Colley, A.D.; Hall, D.R. Single mode selection using coherent imaging within a slab waveguide CO,
laser. Appl. Phys. Lett. 1992, 60, 2469-2471. [CrossRef]

Chu, S.C.; Chen, Y.T.; Tsai, K.F.; Otsuka, K. Generation of high-order Hermite-Gaussian modes in end-pumped solid-state lasers
for square vortex array laser beam generation. Opt. Express 2012, 20, 7128-7141. [CrossRef]

Smith, P.W. Mode selection in Lasers. Proc. IEEE 1965, 60, 422-440. [CrossRef]

Gordon, ].P; Kogelnik, H. Equivalence relations among spherical mirror optical resonators. Bell Syst. Tech. . 1964, 43, 2873-2886.
[CrossRef]

Li, T. Mode selection in an aperture-limited concentric maser interferometer. Bell Syst. Tech. ]. 1963, 42, 2609-2620. [CrossRef]
Kortz, H.P.; Weber, H. Diffraction losses and mode structure of equivalent TEM optical resonators. Appl. Opt. 1981, 20, 1936-1940.
[CrossRef]

Cagpniot, E.; Derrar-Kaddour, Z.; Fromager, M.; Ait-Ameur, K. Improving both transverse mode discrimination and diffraction
losses in a plano-concave cavity. Opt. Commun. 2008, 281, 4449-4454. [CrossRef]

Naidoo, D.; Ait-Ameur, K,; Litvin, I.; Fromager, M.; Forbes, A. Observing mode propagation inside a laser cavity. New J. Phys.
2012, 14, 053021. [CrossRef]

Oron, R.; Danziger, Y.; Davidson, N.; Friesem, A.A.; Hasman, E. Discontinuous phase elements for transverse mode selection in
laser resonators. Appl. Phys. Lett. 1999, 74, 1373-1375. [CrossRef]

Ishaaya, A.A.; Davidson, N.; Machavariani, G.; Hasman, E.; Friesem, A.A. Efficient selection of High-order Laguerre-Gaussian
modes in a Q-switched Nd:YAG laser. IEEE ]. Quantum Electron. 2003, 9, 74-82. [CrossRef]

Ishaaya, A.A.; Davidson, N.; Machavariani, G.; Hasman, E.; Friesem, A.A. Very high-order pure Laguerre-Gaussian mode
selection in a passive Q-switched Nd:YAG laser. Opt. Express 2005, 13, 4952-4962. [CrossRef] [PubMed]

Senatsky, Y.; Bisson, J.E,; Shelobolin, A.; Shirakawa, A.; Ueda, K. Circular modes selection in Yb:YAG laser using an intracavity
lens with spherical aberration. Laser Phys. 2009, 19, 911-918. [CrossRef]

Thirugnansambandam, M.P.; Senatsky, Y.; Ueda, K. Generation of very-high order Laguerre-Gaussian modes in Yb:YAG ceramic
laser. Laser Phys. Lett. 2010, 7, 637-643. [CrossRef]

Senatsky, Y.; Bisson, J.E; Shirakawa, A.; Thirugnansambandam, M. Laguerre-Gaussian modes selection in diode-pumped
solid-state lasers. Opt. Rev. 2012, 19, 201-222. [CrossRef]

Sheng, Q.; Wang, A.; Ma, Y,; Wang, S.; Wang, M.; Shi, Z; Liu, J.; Fu, S.; Shi, W.; Yao, ].; et al. Intracavity spherical aberration for
selective generation of single-transverse-mode Laguerre-Gaussian output with order up to 95. PhotoniX 2022, 3, 4. [CrossRef]
Hall, D.R.; Jackson, P.E. The Physics and Technology of Laser Resonators; Institute of Physics Publishing: Bristol, UK, 1992; Chapter 9.
Ait-Ameur, K. Influence of the longitudinal position of an aperture inside a cavity on the transverse mode discrimination. Appl.
Opt. 1993, 32, 7366-7372. [CrossRef]

Mudge, D.; Ostermeyer, M.; Veitch, P.J.; Munch, J.; Middlemiss, B.; Ottaway, D.J.; Hamilton, M.W. Power scalable TEMy; CW
Nd:YAG laser with thermal lens compensation. IEEE |. Sel. Top. Quantum Electron. 2000, 6, 643—-649. [CrossRef]

Graf, T.; Wyss, E.; Roth, M.; Weber, H.P. Laser resonator with balanced thermal lenses. Opt. Commun. 2000, 190, 327-331.
[CrossRef]

Wyss, E.; Roth, M.; Graf, T.; Weber, H.P. Thermooptical compensation methods for high-power lasers. IEEE |. Quantum Electron.
2002, 38, 1620-1628. [CrossRef]

Chen, H.; Liu, Q.; Yan, X.; Gong, M. High power Q-switched TEMyg Nd:YVOy laser self-adaptive compensation of thermal
lensing effect. Las. Phys. 2010, 20, 1594-1597. [CrossRef]

Wang, J.; Cheng, T.; Wang, L.; Yang, J.; Sun, D.; Yin, S.; Wu, X,; Jiang, H. Compensation of strong thermal lensing in an LD
side-pumped high-power Er: YSGG laser. Las. Phys. 2015, 12, 105004. [CrossRef]


https://doi.org/10.1103/PhysRevD.79.122002
https://doi.org/10.1103/PhysRevLett.105.231102
https://doi.org/10.1088/0264-9381/30/3/035004
https://doi.org/10.1103/PhysRevD.92.102002
https://doi.org/10.1364/OL.42.000751
https://www.ncbi.nlm.nih.gov/pubmed/28198863
https://doi.org/10.1364/AO.52.002093
https://www.ncbi.nlm.nih.gov/pubmed/23545965
https://doi.org/10.1063/1.106936
https://doi.org/10.1364/OE.20.007128
https://doi.org/10.1109/PROC.1972.8649
https://doi.org/10.1002/j.1538-7305.1964.tb01031.x
https://doi.org/10.1002/j.1538-7305.1963.tb00979.x
https://doi.org/10.1364/AO.20.001936
https://doi.org/10.1016/j.optcom.2008.05.010
https://doi.org/10.1088/1367-2630/14/5/053021
https://doi.org/10.1063/1.123554
https://doi.org/10.1109/JQE.2002.806164
https://doi.org/10.1364/OPEX.13.004952
https://www.ncbi.nlm.nih.gov/pubmed/19498483
https://doi.org/10.1134/S1054660X09050028
https://doi.org/10.1002/lapl.201010044
https://doi.org/10.1007/s10043-012-0032-8
https://doi.org/10.1186/s43074-022-00050-8
https://doi.org/10.1364/AO.32.007366
https://doi.org/10.1109/2944.883379
https://doi.org/10.1016/S0030-4018(01)01111-7
https://doi.org/10.1109/JQE.2002.805105
https://doi.org/10.1134/S1054660X10130025
https://doi.org/10.1088/1612-2011/12/10/105004

Appl. Sci. 2025, 15, 3331 30 of 30

50.

51.
52.

53.

54.

55.

56.

57.

58.
59.

60.
61.

62.

63.
64.

65.
66.

67.

68.

Shang, P,; Bai, L.; Wang, S.; Cai, D.; Li, B. Research progress on thermal effect of LD pumped solide state laser. Opt. Las. Eng. 2023,
157, 108640.

Veldkamp, W.B.; McHugh, T.J. Binary optics. Sci. Am. 1992, 266, 92-97. [CrossRef]

O’Shea, D.C.; Beletic, ] W.; Poutous, M. Binary-mask generation for diffractive optical elements using microcomputers. Appl. Opt.
1993, 32, 2566-2572. [CrossRef]

Cordingley, ]. Application of a binary diffractive optics for beam shaping in semiconductor processing by lasers. Appl. Opt. 1993,
32, 2538-2542. [CrossRef]

Skeren, M.; Ritcher, I; Fiala, P. Design of binary phase-only diffractive optical elements for laser beam shaping. Proc. SPIE Laser
Beam Shap. 2000, 4095, 154-164.

Raciukaitis, G.; Stankevicius, E.; Geys, P; Gedvilas, M.; Bischoff, C.; Jager, E.; Umhofer, U.; V6lklein, F. Laser processing by using
diffractive optical laser beam shaping technique. J. Laser Micro/Nanoeng. 2011, 6, 37-43. [CrossRef]

Siemon, A.; Siemon, A.; Suszek, J.; Kowalczyk, A.; Bomba, J.; Sobczyk, A. THz beam shaping based on paper diffractive optics.
IEEE Trans. Terahertz Sci. Technol. 2016, 6, 568-575. [CrossRef]

Barlev, O.; Golub, M.A. Multifonctional binary diffractive optical elements for structured light projectors. Opt. Express 2018,
26,21092-21107. [CrossRef] [PubMed]

Marchesini, S.; Sakdinawat, A. Shaping coherent x-rays with binary optics. Opt. Express 2019, 27, 907-917. [CrossRef] [PubMed]
Cagniot, E.; Fromager, M.; Godin, T.; Passilly, N.; Brunel, M.; Ait-Ameur, K. Variant of the method of Fox and Li dedicated to
intracavity laser beam shaping. J. Opt. Soc. Am. A 2011, 28, 489-495. [CrossRef]

Siegman, A.E. Binary phase plates cannot improve laser beam quality. Opt. Lett. 1993, 18, 675-677. [CrossRef]

Hasnaoui, A.; Bencheikh, A.; Ait-Ameur, K. Tailored TEM,,y beams for large size 3-D laser prototyping. Opt. Las. Eng. 2011,
49, 248-251. [CrossRef]

Haddadji, S.; Ait-Ameur, K. Improvement of optical trapping effect by structuring the illuminating laser beam. Optik 2022,
251, 168439. [CrossRef]

Smith, PW. Stabilised single-frequency output from a long laser cavity. IEEE ]. Quantum Electron 1965, 1, 343-348. [CrossRef]
Habchi, A.; Harfouche, A.; Ait-Ameur, K. Flexible control of laser transverse modes using a Fox-Smith mirror. Appl. Phys. B 2021,
127,97. [CrossRef]

Stéphan, G.; Triimper, M. Inhomogeneity effects in a gas laser. Phys. Rev. A. 1983, 28, 2344-2362. [CrossRef]

Ait-Ameur, K.; Ladjouze, H. Fundamental mode distribution in a diaphragmed cavity. |. Phys. D Appl. Phys. 1988, 21, 1566-1577.
[CrossRef]

De Saint Denis, R.; Passilly, N.; Ait-Ameur, K. Laser beam brightness of apertured resonators. Opt. Commun. 2006, 264, 193-202.
[CrossRef]

Vicalvi, S.; Borghi, R.; Santarsiero, M.; Gori, F. Shape-invariance error for axially symmetric light beams. J. Quantum Electron. 1998,
34, 2109-2116. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual

author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to

people or property resulting from any ideas, methods, instructions or products referred to in the content.


https://doi.org/10.1038/scientificamerican0592-92
https://doi.org/10.1364/AO.32.002566
https://doi.org/10.1364/AO.32.002538
https://doi.org/10.2961/jlmn.2011.01.0009
https://doi.org/10.1109/TTHZ.2016.2575440
https://doi.org/10.1364/OE.26.021092
https://www.ncbi.nlm.nih.gov/pubmed/30119414
https://doi.org/10.1364/OE.27.000907
https://www.ncbi.nlm.nih.gov/pubmed/30696169
https://doi.org/10.1364/JOSAA.28.000489
https://doi.org/10.1364/OL.18.000675
https://doi.org/10.1016/j.optlaseng.2010.09.013
https://doi.org/10.1016/j.ijleo.2021.168439
https://doi.org/10.1109/JQE.1965.1072245
https://doi.org/10.1007/s00340-021-07643-4
https://doi.org/10.1103/PhysRevA.28.2344
https://doi.org/10.1088/0022-3727/21/11/004
https://doi.org/10.1016/j.optcom.2006.02.027
https://doi.org/10.1109/3.726602

	Introduction 
	Single-Pass and Multi-Pass Properties of Binary Amplitude Masks 
	Absorbing Ring: Single-Pass Properties 
	Multi-Pass Properties of Absorbing Rings 

	Single-Pass and Multi-Pass Properties of a Binary Phase Mask 
	Single-Pass Properties of a Binary Phase Mask 
	Multi-Pass Properties of a Binary Phase Mask 

	Discussion 
	Appendix A
	References

