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Abstract

This thesis has two parts. In the first part we study M-theory compactifications on

singular manifolds of G2 holonomy which are asymptotic to quotients of cones over S3×S3.

We investigate the moduli space of M-theory compactifications on these manifolds, and we

discover smooth interpolations leading to a new kind of duality among four dimensional

supersymmetric gauge theories with different gauge groups, with a fixed number of abelian

factors. The quotients are such that the internal space has a finite, non-trivial fundamen-

tal group, and we construct a grand unified model in which the breaking of the gauge

symmetry by Wilson lines to the standard model arises naturally. This model provides the

basis for the study of unification from M-theory. Contrary to long-standing perception,

we show that a grand unification scale exists even in the presence of threshold corrections.

We obtain a precise relation between the unification scale and the mass of heavy gauge

bosons in terms of topological invariants. This relation replaces the often-made assump-

tion that the unification scale and the heavy masses are equal. We also find the relation

between Newton’s constant, the unification scale, and the unified couplings. We go on

to investigate the lifetime of the proton and we find that, when compared with standard

four dimensional GUT’s, some modes of proton decay in M-theory compactifications are

suppressed relative to others.

In the second part of the thesis, we combine two rather fundamental, yet previously

disjoint, results: one is the Kaluza-Klein unification of gravity with electromagnetism via

the introduction of an extra dimension; the other is Schwinger’s production of electron-

positron pairs from a constant electric field. The combination involves investigating the

production of pairs of KK-charged particles from a KK electric field. While it has been

well-accepted that Schwinger pair production occurs via a semi-classical tunneling mech-

anism, we find here that pair production takes place even though tunneling does not.

Instead, the pair production occurs via a different mechanism which involves a combina-
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tion of the Unruh effect and vacuum polarization.
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Prelude

In this thesis, we investigate three distinct features that can arise in four dimensional

physics from the study of theories with extra dimensions: dualities, unification, and pair

production.

The idea that theories which have more than four space-time dimensions can be used

to describe the four dimensional world originates in the work of Kaluza and Klein in the

1920’s [1, 2]. Motivated by the quest for unification, Kaluza and Klein introduced a fifth

dimension to unify the forces of gravity and electromagnetism. Their argument was rather

simple and elegant: they showed that when a five dimensional metric is decomposed into

a four dimensional metric, a four-vector, and a scalar, the Einstein action for gravity in

five dimensions contains terms involving the Einstein action for gravity in four dimensions

as well as the Maxwell action for electromagnetism in four dimensions. Hence, one force

in five dimensions – gravity – is enough for describing both gravity and electromagnetism

in four dimensions.

This idea of introducing extra dimensions has had an enormous amount of influence

on theoretical physics. Often, as in the case of Kaluza and Klein, extra dimensions are

associated with unification of forces. For example, superstring theories, which require

ten dimensions for their space-time, have emerged as candidates for unification of all the

four forces: gravity as well as the three gauge interactions. Sometimes, extra dimensions

may unify something other than forces. For example, recently a seventh extra dimension

unified various string theories – which are believed to be dual, or equivalent, to each other

– into one eleven-dimensional picture, known as M-theory; this theory is believed to be
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an underlying unified theory and a common origin of the various string theories and their

dualities [3, 4, 5, 6].

Once the extra dimensions are included in a theory, one attempts to see how they affect

four dimensional physics. The method of describing the effect of the extra dimensions on

four dimensional physics is known as Kaluza-Klein reduction or compactification. The

extra dimensions form a space known as the internal space or compactification manifold.

Various quantities in four dimensions are given by properties of this space. For example,

masses of particles as seen by the four dimensional observer are given by eigenvalues of

the Laplacian operator of the internal space; electric charge as seen in four dimensions

is given by momentum in an extra direction. Sometimes, it is not the case that the

reduction arises in a way similar to that which appeared in Kaluza and Klein’s work.

One example which will be used here is geometric engineering, in which certain types of

singularities in the internal space lead to the appearance of certain kinds of particles in

four dimensions. Another example is preservation of supersymmetry in four dimensions,

which is determined by the holonomy of the internal space.

In the first part of this thesis, we investigate dualities and unification as they arise

from our study of M-theory, in which we take the seven dimensional internal manifold to

be singular and have G2 holonomy. In the second part of this thesis, we investigate pair

production of Kaluza-Klein charged particles in an electric field which arises from one

extra dimension. We now discuss each of these investigations in turn.

Part I: On dualities and unification from G2 manifolds

Dualities

Dualities are equivalences among theories which may seem to be distinct but in fact

describe the same physics. There is a close interrelation between unification of seemingly

distinct theories and dualities between them, which dates back to the development of the

theory of electromagnetism: Maxwell’s theory of electromagnetism unifies electricity with

magnetism, and at the same time makes manifest a symmetry between them known as
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electric-magnetic duality.

As the ultimate unifying theory, M-theory is believed to underlie dualities among

the various ten dimensional string theories. It is also believed to be the origin of dual-

ities among four dimensional theories. For example, modern manifestations of electric-

magnetic duality in four dimensional supersymmetric gauge theories [7, 8, 9] have been

rederived via smooth deformations in M-theory [10, 11, 12].

Here, we deal with dualities of four dimensional supersymmetric gauge theories as

they arise from M-theory. We arrive at such theories by choosing internal spaces with

appropriate properties. Supersymmetry in four dimensions is ensured by a choice of an

internal space which has G2 holonomy, and the gauge group that we obtain in four di-

mensions is encoded geometrically in the structure of the internal space via geometric

engineering. When the internal space has, in addition to its G2 holonomy, also a singu-

larity of ADE type, it corresponds to a supersymmetric gauge theory in four dimensions

with gauge group SU(N) (corresponding to A), SO(2N) (corresponding to D), or E6,7,8

(corresponding to E) [13]; singularities of a type different from ADE can lead to chiral

matter fields in four dimensions [14, 15, 16].

We consider the internal manifolds which are asymptotic to cones over quotients of

S3×S3; they have both G2 holonomy and ADE singularities. In Chapter 1 [17], we study

the moduli space of M-theory compactifications on these manifolds, and we find that it

is composed of several connected components. On each component, we discover smooth

interpolations leading to a new kind of duality among four dimensional supersymmetric

gauge theories with different gauge groups, all of which have the same number of abelian

factors. The dual theories all lie on the same connected component of the moduli space.

An example of a set of theories smoothly connected to each other is theories whose

low energy gauge group is of the form ΠiSU(ni)×U(1)s , where s is a fixed integer,
∑

ni

is p, q, or r, where p, q, r are relatively prime integers, and the {ni} can be any set of

integers satisfying these properties; due to confinement in non-abelian gauge theories, the

gauge group that is actually observed on a given branch at low energies is given by the
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abelian factors, i.e. U(1)s. Further examples include dualities among gauge groups which

contain orthogonal, symplectic, and exceptional Lie groups. The smooth interpolations

and dualities derived here from M-theory have been rederived and extended within a field

theory point of view in [18, 19, 20] for the unitary gauge groups and in [21, 22, 23] for

orthogonal and symplectic gauge groups.

The abelian factors arise when the gauge groups corresponding to the ADE singular-

ities are broken by Wilson lines; the Wilson lines arise naturally due to the non-trivial

fundamental group of the locus of the ADE singularity, which is a lens space. By count-

ing the number of inequivalent Wilson lines, we find the number of dual theories and

incidentally arrive at a certain symmetry between the Lie groups SU(p) and SU(q) where

p and q are relatively prime. The idea presented here of counting the number of theories,

or vacua, that one could get from M-theory has been further developed in [24].

Symmetry breaking by Wilson lines [25, 26, 27, 28, 29] is well-known to be an ingre-

dient in models of grand unification; hence our internal spaces of [17] lead us directly

to construct unified theories. In fact, choosing p = 5 and s = 1 above leads us to the

well-known SU(5) model of grand unification. This is the subject of the second chapter.

Unification

The quest for unification has motivated many of the great developments in physics in

the last century. The goal of this quest has been to find a unique theory which describes

all the fundamental forces of nature.

An early important step towards unification, which we already mentioned, was the

one taken by Kaluza and Klein in the 1920’s, in which the forces of gravity and electro-

magnetism were unified by introducing an extra dimension.

In addition to gravity and electromagnetism, there are two more forces which must

be included in a unified theory, namely the strong force and the weak force. Of these

four forces, three are well-known to be described by a gauge theory; electromagnetism is

described by a U(1) gauge group, the weak force by SU(2), and the strong force by SU(3).
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A major step towards unifying these three forces was achieved in the 1970’s [30, 31]. In

what is known as four dimensional grand unified theories, or GUT’s, the three gauge

interactions are included in a simple gauge group at a high energy scale. This scale is

called the gauge coupling unification scale MGUT and is defined to be the scale at which

all the three gauge coupling constants are equal. At energies below this scale, the simple

gauge group, which is also known as the unified group and is denoted GGUT , is broken

into the product of the three individual gauge groups, which make up the group of the

standard model of particle physics, namely SU(3) × SU(2) × U(1).

It is believed that to obtain unification that includes gravity as well as the three gauge

interactions, the gauge coupling unification scale MGUT should somehow be close to the

Planck scale MP l = 1019 GeV, which is given in terms of the coupling constant GN of

gravity, also known as Newton’s constant, by GN = 1/M2
P l . In the original estimation of

the running of the three gauge coupling constants in four-dimensional GUT’s [31], it was

found that the coupling constants can be approximately unified in the simple gauge group

SU(5) at an energy scale of about 1015 GeV. Subsequently, with more precise measure-

ments of the couplings at low energies, it became clear that gauge coupling unification

occurs much more precisely if the gauge theories are supersymmetric [32], in which case

the unification scale is higher, around 1016 GeV. In this sense, supersymmetric GUT’s are

better since their unification scale is closer to the Planck scale.

It is interesting to note that the unifying theories of the 1970’s did not invoke extra

dimensions; this might explain why they largely left gravity out of the picture. In the

next decade, however, the ten dimensional supersymmetric string theories, which naturally

contain gravity, have emerged as candidates for unification of all the four forces. Especially

with the development of heterotic string theory [33], it became feasible to include both

GUT’s and gravity in one framework [28], since in addition to containing gravity, the

heterotic string theory also contains a gauge group which can give rise to a unified group

as well as chiral matter fields which appear in the standard model. Other GUT models

have since been constructed, not just from the heterotic string but also from other string
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theories (for some examples and reviews, see [34, 35, 36, 37, 38, 39, 40]).

Even though it is possible to include both GUT’s and gravity in superstring theory,

the appearance of superstring theories was not the end of the road to unification; it might

have been if there were only one superstring theory, but there were five. Another major

step in the search for unification was taken when the five superstring theories were unified

into the eleven dimensional M-theory. Naturally, this theory should contain GUT’s as

well as gravity.

In Chapter 2, we study grand unified theories as they arise from M-theory. Our

study of GUT’s from M-theory is a direct continuation of our study of dualities, since

the singular internal spaces of G2 holonomy considered in our derivation of dualities have

certain key properties which lead not just to supersymmetric gauge theories, but also to

supersymmetric GUT models.

A GUT model must have a unified group and a mechanism for breaking this group

to the standard model. In our internal spaces, the ADE singularity, which is determined

by our choice of quotient of S3 × S3, corresponds to the unified group, which we take to

be SU(5); the Wilson line provides the mechanism for breaking it down precisely to the

group of the standard model. In addition, a GUT model should also include the chiral

fermions of the standard model; we put them into our model by hand, or by assuming

that in addition to the ADE singularities, the G2 manifold has other singularities that

can give rise to chiral fermions. (We should note that many of our results, specifically the

formula that we discuss below, are independent of the inclusion of these fermions.)

One of our main tasks in investigating our GUT model is to study in detail the

equations which govern the running of the gauge coupling constants, known as renormal-

ization group equations (RGE’s). These include threshold correction terms, which arise

from Kaluza-Klein modes with momenta around the extra dimensions.

We find that the threshold correction terms, which as we show are determined by the

topological invariant known as the Ray-Singer torsion, satisfy a property which leads to

exact preservation of unification, and holds when GGUT = SU(5). The unification scale is

6



in fact the same as the one obtained in standard four dimensional supersymmetric GUT’s

with no threshold effects, namely 2.2 × 1016 GeV. We derive a simple formula which

provides a precise relation between the unification scale and the volume of a certain

submanifold in the internal space, namely the three dimensional locus Q of the ADE

singularity, which is a lens space. The formula implies two important results, both of

which involve some historical perspective.

a. In 1981, when Weinberg [42] included threshold corrections in the RGE’s of a

four dimensional model, he found that in the presence of threshold corrections, there

is no energy scale at which the three gauge coupling constants are equal. While he

undertook the study of the RGE’s for any unified group, he checked for the existence of a

unification scale only for the example of a model in which the unified group was SO(10).

In his abstract, however, Weinberg stated this result as true for any unified group; it has

since become standard lore that there is no unification scale in the presence of threshold

corrections.

It is indeed true that, generically, in the presence of threshold corrections there is

no energy scale at which all three gauge couplings are equal (see also explanation in

Section 2.3). However, if one repeats Weinberg’s calculation for the popular example of a

model in which the unified group is SU(5), one finds the opposite answer: there does exist

a value of the energy scale for which all three gauge couplings are equal, and it is given by1

MGUT = e1/21MV , where MV is the mass of a gauge boson. Hence, contrary to standard

lore, threshold corrections do not necessarily preclude the existence of a unification scale:

unification may be preserved in the presence of threshold corrections.

The fact that the unification scale actually exists in our model as well is therefore

really an M-theory analog of a result about four dimensional SU(5) theories.

b. A major theme in GUT’s is the proton lifetime. In the original papers [30, 31] of the

1970’s about GUT’s, the authors noticed that the lifetime of the proton came out much

too short unless they made the assumption that the mass of gauge bosons which appear

1While this fact appeared in [43], it seems to have gone unnoticed.
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in GUT’s and can mediate proton decay was of the same order as the gauge coupling

unification scale. Since then, such an assumption is very often made in GUT models,

and the gauge boson mass is sometimes used interchangeably with the unification scale.

Sometimes [44], the relation between the unification scale and this mass is taken to be a

matter of convention.

Since in our model, the mass of the heavy gauge bosons can be given in terms of the

volume of the locus Q and the eigenvalues of its Laplacian, our formula can be translated

into a precise relation between the unification scale and the mass of the heavy gauge

bosons. It shows that, while indeed in many cases these two quantities are of the same

order – proving that the assumption originally made in the 1970’s was a good one – they

are distinct and should not be used interchangeably.

For the possible cases in which the two quantities are not of the same order, our

formula can be seen as a challenge to the common practice of using simple dimensional

analysis in determining or estimating physical quantities.

Given the formula for the gauge coupling unification scale, we also obtain expressions

for the gravitational coupling constant GN , for the eleven-dimensional Planck mass M11,

and for the eleven-dimensional gravitational coupling κ11. These expressions are given in

terms of the unified coupling, the unification scale, and the Ray-Singer torsions mentioned

above. In addition to these, Newton’s constant also depends on a certain ratio of volumes

in the G2 manifold. We find that in our model, the value of Newton’s constant is in

a certain sense closer to its true experimental value than it was in models arising from

heterotic strings.

We go on to investigate the classic question of the proton lifetime. We find that, when

compared with standard four dimensional supersymmetric GUT’s, some modes of proton

decay in M-theory compactifications are suppressed relative to others.2 If proton decay is

ever found experimentally, and if such suppression is found as well, it could be interpreted

2This calculation was repeated in [45] for GUT models that arise from intersecting D-branes.
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as a signature of M-theory.

Part II: Pair production of Kaluza-Klein particles

In this part of the thesis, we go back to the original Kaluza-Klein theory, with just

one extra dimension. In this framework, we study the production of pairs of Kaluza-Klein

charged particles from a static background electric field that arises from Kaluza-Klein

reduction. Hence, our study combines two fundamental results: the unification of gravity

and electromagnetism as achieved by Kaluza and Klein in the 1920’s, and Schwinger’s

classic study [46] of production of electron-positron pairs from a constant electric field,

carried out via quantum field theory methods in 1951.

It has been widely accepted and well-known that Schwinger pair production occurs

via quantum mechanical barrier penetration, or tunneling. The intuition behind it is

simple: the height of the potential barrier to create a pair of charged particles in a

constant electric field is equal to their total mass, and the width of the barrier is given

by a critical separation of the pair. By using their electrostatic energy, which increases

with their separation, virtual pairs can overcome this barrier and materialize. Once a

pair reaches the critical separation at which the total potential – the mass together with

the electrostatic energy – is zero, and beyond which the potential is negative, the system

has tunneled through the barrier and a pair has been created. The modern instanton

method [47, 48] of computing the pair creation rate depends crucially on this intuition,

as do other related studies [49, 50].

Schwinger’s original calculation did not invoke tunneling. His result, however, was

rederived as a tunneling effect in [51], and was understood as such much earlier (for

example, see [52]). Another well–known example of particle production which is often

considered to arise by a tunneling process is the Hawking–Unruh effect [53, 54], whose

derivation via tunneling was carried out recently in [55]. Other contexts in which pair

production by tunneling appears include an argument given by Dyson [56] about the

divergence of perturbation theory in QED, and the Josephson effect in superconductors
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[57].

However, we show here that tunneling is not a prerequisite for pair production from

a static electric field. In fact, pair creation takes place even though the gravitational

backreaction of the electric field on the geometry – which we incorporate via the electric

Kaluza-Klein Melvin solution – prevents the electrostatic potential from overcoming the

rest mass of the Kaluza-Klein particles, thus impeding the tunneling mechanism which is

often thought of as responsible for the pair creation. We find that pair creation occurs

with a finite rate formally similar to the classic Schwinger result, but via an apparently

different mechanism, involving a combination of the Unruh effect and vacuum polarization

due to the electric field.

Another case which shows that tunneling and pair production are not necessarily

linked appeared in a study of a static magnetic field in [58], in which pair production does

not occur even though the tunneling probability is non-zero.

It therefore seems plausible that, contrary to standard lore, the original Schwinger

effect also does not necessarily arise from tunneling. This may be relevant to experimental

searches for Schwinger pair production [59, 60].

This thesis is organized as follows. Part I is divided into two chapters and contains

the study of M-theory compactified on G2 manifolds, leading to dualities and unification.

Chapter 1 has been published in [17]. Chapter 2 overlaps with [61], which was done in

collaboration with E. Witten. Part II presents the study of pair production of Kaluza-

Klein particles. It was done in collaboration with H. Verlinde and has appeared in [62].

I would like to thank E. Witten for discussions and guidance while the work in Chap-

ter 1 was carried out, M. Goresky and P. Sarnak for helpful discussions related to Chap-

ter 2, and E. Brezin, K.T. McDonald, and A.M. Polyakov for helpful discussions related

to Part II.
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Chapter 1

On the Quantum Moduli Space of

M-Theory Compactifications

1.1 Introduction

The study of M -theory compactifications on seven dimensional manifolds X of G2 holon-

omy has been motivated by the fact that such compactifications result in unbroken su-

persymmetry in four dimensions. The properties of the compactification manifold X

determine the particle spectrum of the corresponding four dimensional theory. It has

been shown in recent years that compactifications on singular manifolds can result in low

energy physics containing interesting massless spectra. Specifically, certain singular G2

manifolds give rise to N = 1 supersymmetric gauge theories at low energies, as shown for

example in [13, 63, 64]. There, X was taken to be asymptotic to a quotient of a cone on

S3 × S3, and the singularities of X took the form of families of co-dimension four ADE

singularities giving ADE gauge theories at low energies.

Subsequently, the quantum moduli space of M -theories on G2 manifolds X which are

asymptotic to a cone on S3×S3 or quotients thereof has been studied in [16]. It was shown

that the moduli space is a Riemann surface of genus zero, which interpolates smoothly
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between different semiclassical spacetimes.

The purpose of this chapter is to generalize the construction of [16] to other quotients

of S3 ×S3 and obtain the moduli spaces and smooth interpolations for those as well. Our

quotients contain those in [16] as special cases. We propose that the moduli space for our

quotients consists of several branches classified according to the number of massless U(1)

factors that appear in the low energy gauge theories corresponding to semiclassical points.

Each branch of our moduli space interpolates smoothly among the different semiclassical

points appearing on it; hence, we get smooth interpolation among supersymmetric gauge

theories with different gauge groups.

This chapter is organized as follows. In Section 1.2 we review the M -theory dynamics

on the cone on Y = S3 × S3 given in [16]. In Section 1.3, we describe quotients of this

cone by discrete groups of the form Γ = Γ1 ×Γ2 ×Γ3 where the Γi are ADE subgroups of

SU(2); these ADE groups must be chosen carefully in order to obtain known low energy

gauge theories from the compactification. In Section 1.4, we turn to the description of the

moduli space NΓ of M -theories on these quotients, beginning with the classical moduli

space and concluding with the quantum moduli space.

1.2 Dynamics of M-theory on the Cone over S3 × S3

In this section, we review the M -theory dynamics on a manifold X of G2 holonomy which is

asymptotic at infinity to a cone over Y = S3×S3 [16]. The manifold Y can be described as

a homogeneous space Y = SU(2)3/SU(2), where the equivalence relation is (g1, g2, g3) ∼
(g1h, g2h, g3h), gi, h ∈ SU(2). Viewed this way, this manifold has SU(2)3 symmetry via

left action on each of the three factors in Y , as well as a “triality” symmetry S3 permuting

the three factors. Up to scaling, there is a unique metric with such symmetries given by

dΩ2 = da2 + db2 + dc2, (1.2.1)

where a, b, c ∈ SU(2), da2 = −Tr(a−1da)2, the trace is taken in the fundamental represen-

tation of SU(2), and a, b, c are related to g1, g2, g3 by a = g2g
−1
3 and cyclic permutations
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thereof.

The metric for a cone on Y is

ds2 = dr2 + r2dΩ2, (1.2.2)

where dΩ2 is the metric on Y . Such a cone can be constructed by filling in one of the

three SU(2) ∼ S3 factors of Y to a ball. We denote the manifold obtained by filling in a

given gi by Xi. The metric on a manifold X, asymptotic to Xi at infinity, can be written

with a new radial variable y, which is related to r by

y = r − r3
0

4r2
+ O(1/r5), (1.2.3)

as

ds2 = dy2 +
y2

36

(
da2 + db2 + dc2 − r3

0

2y3

(
f1 da2 + f2 db2 + f3 dc2

)
+ O(r6

0/y
6)
)
, (1.2.4)

where r0 is a parameter denoting the length scale of Xi, and (fi−1, fi, fi+1) = (1,−2, 1)

(indices are understood mod 3). When y → ∞ or r → ∞, this becomes precisely the

cone (1.2.2).

We will need to study the 3-cycles of Y in order to understand the relations between

the periods of the M -theory C-field and the membrane instanton amplitudes, which we

shall need in order to describe the moduli space.

The 3-cycles Dj of Y are given by projections of the jth factor of SU(2)3 to Y . Hence,

Dj
∼= S3. The third Betti number of Y is two, so the three Dj satisfy the relation

D1 + D2 + D3 = 0. (1.2.5)

The intersection numbers of the Di are given by

Di · Dj = δj,i+1 − δj,i−1. (1.2.6)

At Xi, where the ith factor is filled in, Di shrinks to zero and the relation (1.2.5) reduces

to Di−1 + Di+1 = 0 (where again the indices are understood mod 3).
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At each Xi, there is a supersymmetric 3-cycle Qi given by gi = 0. It can be shown

that Qi is homologous to ±Di−1 and ∓Di+1, where the sign depends on orientation.

A manifold still has G2 holonomy up to third order in r0/y if we take the fj of (1.2.4)

to be any linear combination of (1,−2, 1) and its permutations – so we have G2 holonomy

as long as

f1 + f2 + f3 = 0. (1.2.7)

These fj can be interpreted as volume defects of the cycle Dj at infinity: the volume

of Dj depends linearly on a positive multiple of fj. Furthermore, since at the classical

manifold Xi, only one of the Dj vanishes, only one of the fj (namely fi) can be negative.

So the classical moduli space may contain manifolds with the relation (1.2.7) as long as

only one of the fj is negative [16, 65].

The periods of the C-field along the cycles Dj are αj =
∫
Dj

C. We combine them with

the fj into holomorphic observables ηj where now the C-field period is a phase:

ηj = exp
(2k

3
fj−1 +

k

3
fj + iαj

)
, (1.2.8)

where k is a parameter. The relation (1.2.7) means that the ηj are not independent, but

instead they obey

η1η2η3 = exp
(
i
∑

αj

)
. (1.2.9)

(It can be shown that due to a global anomaly in the membrane effective action, the right

hand side above is −1).

The moduli space at the classical approximation is given by three branches Ni, each of

which contains one of the points Xi with r0 → ∞. On Xi, αi vanishes and the parameters

fj are such that ηi = 1. So on Ni the functions ηj obey

ηi = 1, ηi−1ηi+1 = −1. (1.2.10)

At the quantum level, there are corrections to this statement. It has been suggested

in [64] that the different classical points Xi are continuously connected to one another.
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Hence they should appear on the same branch of the moduli space N . We proceed now

with the assumption that the only classical points are the Xi, which are the points where

some of the ηj have a zero or pole. As explained in [16], since a component of N which

contains a zero of a holomorphic function ηj must also contain its pole, and since the only

points at which the ηj are singular are associated with one of the Xi, it follows indeed

that all Xi are contained on a single component of N . Furthermore, each ηj has a simple

zero and simple pole in N . The existence of such functions on N means that the branch

containing the zero and pole has genus zero. In addition, any of the ηj can be identified

as a global coordinate of N . Choosing any ηj gives a complete description for this branch

of N .

1.3 Quotients and Low Energy Gauge Groups

Here, we begin our study of manifolds which are asymptotic to a cone over quotients of

Y . We shall consider a discrete group action of Γ = Γ1 × Γ2 × Γ3 on Y where the Γi will

be chosen from ADE subgroups of SU(2) in such a way that the low energy physics is

known.

We begin with the simplest case where Γ = Zp × Zq × Zr. Each Zn is embedded in

SU(2) via

βk =



 e2πik/n 0

0 e−2πik/n



 , (1.3.1)

where β is the generator of Zn and k = 0, 1, . . . , n − 1. The action of Γ on Y =

SU(2)3/SU(2) is given by

(γ, δ, ε) ∈ Zp × Zq × Zr : (g1, g2, g3) 7→ (γg1, δg2, εg3), (1.3.2)

and we denote the resulting quotient space by YΓ.

The spaces Xi,Γ, obtained by filling in the ith SU(2) factor of YΓ, are quotients of R4×
S3 where the R4 corresponds to the filled-in factor. Choosing i = 1 and gauging g2 away
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using the right diagonal SU(2) action, the identification corresponding to (γk, δl, εm) ∈ Γ

is

(g1, 1, g3) ∼ (γkg1δ
−l, 1, εmg3δ

−l), (1.3.3)

where g1 ∈ R4 and g3 ∈ SU(2) ∼ S3. The set (0, 1, g3) with g3 varying in SU(2) is a

fixed point of the action of the Zp subgroup of Γ, and this singularity is identical to the

standard Ap−1 singularity of codimension four of the form R4/Zp or C2/Zp, which gives

an SU(p) gauge theory at low energies.

Depending on the values of the integers q and r, there may be additional, unfamiliar

singularities for which we do not know the low energy physics. Namely, there may be

values of g3 which are fixed under a non trivial subgroup of Zq × Zr, i.e. where the

following holds

εmg3δ
−l = g3. (1.3.4)

This is the same as looking for elements g3 of SU(2) which diagonalize δl:

εm = g3δ
lg−1

3 . (1.3.5)

Choosing the orders q and r of δ and ε to be relatively prime, (q, r) = 1, ensures that

there are no solutions of this equation (since then the orders of the left and right hand

sides of (1.3.5) are relatively prime). Similarly, we choose (p, q) = (p, r) = 1, and so there

are no singularities at Xi,Γ other than the ADE singularities whose low energy physics is

known: an Ap−1 singularity on S3/(Zq ×Zr) at X1,Γ, an Aq−1 singularity on S3/(Zr ×Zp)

at X2,Γ, and an Ar−1 singularity on S3/(Zp × Zq) at X3,Γ, with the discrete group action

on S3 given by the appropriate cyclic permutation of the action on g3 in (1.3.3).

Now consider also the non-abelian ADE groups. Again, we would like to choose Γ

such that we will only get singularities whose physics at low energies we understand –

namely, ADE singularities. For this purpose we review the relevant properties of the DE

groups. For information about these groups, see [66].

As in the abelian case, we let Γ = Γ1 × Γ2 × Γ3 act on Y by

(γ, δ, ε) ∈ Γ1 × Γ2 × Γ3 : (g1, g2, g3) 7→ (γg1, δg2, εg3), (1.3.6)
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from which equations (1.3.3) and (1.3.4) follow in the same way as before.

The binary dihedral groups Dq have order 4q − 8 and are generated in SU(2) by two

elements:

Dq =

〈
 e

πi
q−2 0

0 e−
πi

q−2


 ,


 0 1

−1 0



〉

. (1.3.7)

Since all Dq groups share an element of order 4, we cannot choose more than one of the

Γi to be a dihedral group, since otherwise we would get solutions to (1.3.4). Hence we let

Γ = Zp × Dq × Zr with (p, r) = (p, 2(q − 2)) = (r, 2(q − 2)) = 1.

We turn to the E series. A singularity R4/G which gives at low energies E6, E7,

or E8 gauge groups corresponds to G being the tetrahedral group T24, the octahedral

group O48, or the icosahedral group I120 . The orders of these groups are 24, 48, and 120

respectively, and each of them has elements of orders 3 and 4, so we cannot have more

than one E group appearing in Γ. The group I120 also has elements of order 5. Hence,

in addition to (p, r) = 1, for Γ = Zp × E6 × Zr or Γ = Zp × E7 × Zr, we need also

(p, 2 · 3) = (r, 2 · 3) = 1, and for Γ = Zp ×E8 ×Zr, we need (p, 2 · 3 · 5) = (r, 2 · 3 · 5) = 1.

Therefore, our group Γ is always chosen to be of the form Γ = Zp × Γ2 ×Zr where Γ2

is an A, D, or E group, and p, r, and Γ2 satisfy the conditions noted above, which can

be summarized by

(p, N) = (r, N) = (p, r) = 1, (1.3.8)

where N is the order of the group Γ2. At X1,Γ we have an Ap−1 singularity on S3/(Γ2×Zr),

at X3,Γ we have an Ar−1 singularity on S3/(Zp × Γ2), and at X2,Γ we have an A, D, or

E singularity on S3/(Zr × Zp), where here the discrete group action is given by the

appropriate cyclic permutation of the action on g3 in (1.3.3).

The low energy gauge theories obtained from compactifying M -theory on R4×Xi,Γ are

listed in Table (1.3.9). Each entry contains the gauge group and the compact 3-manifold

which is the locus of the ADE singularity.

As we shall see below, for the cases where Γ2 is a D or E group, there are additional

semiclassical points where the low energy gauge group is different from those listed above.
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Γ2 X1,Γ X2,Γ X3,Γ

Zq SU(p) S3/(Zq × Zr) SU(q) S3/(Zr × Zp) SU(r) S3/(Zp × Zq)

Dq SU(p) S3/(Dq × Zr) SO(2q) S3/(Zr × Zp) SU(r) S3/(Zp × Dq)

T24 SU(p) S3/(T24 × Zr) E6 S3/(Zr × Zp) SU(r) S3/(Zp × T24)

O48 SU(p) S3/(O48 × Zr) E7 S3/(Zr × Zp) SU(r) S3/(Zp × O48)

I120 SU(p) S3/(I120 × Zr) E8 S3/(Zr × Zp) SU(r) S3/(Zp × I120)

(1.3.9)

We note that for the case with r = 1, X3,Γ is smooth and its low energy theory has no

gauge symmetry. If also p = 1, X1,Γ is smooth as well (this is the case studied in [16]).

1.4 The Curve of M-theories on the Quotient

1.4.1 Classical geometry

The 3-cycles D′
i of YΓ are the projections of the ith factor of SU(2)3 to YΓ. Hence, for

Γ = Zp × Γ2 × Zr we have

D′
1 = S3/Zp, (1.4.1)

D′
2 = S3/Γ2, (1.4.2)

D′
3 = S3/Zr. (1.4.3)

Using the relation (1.2.5) in Y and the fact that D1 ∈ Y projects to a p-fold cover of

D′
1 ∈ YΓ, as well as cyclic permutations of this fact, we find

pD′
1 + ND′

2 + rD′
3 = 0, (1.4.4)

where N is the order of the group Γ2. To study the intersection numbers of the D′
i we

note that D′
1 ∈ YΓ lifts to NrD1 ∈ Y , and similar statements are true for the other D′

i.
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Counting the intersection numbers in Y and then dividing by pNr (since there are pNr

points in Y which project to one point in YΓ), we get

D′
1 · D′

2 = r, D′
2 · D′

3 = p, D′
3 · D′

1 = N. (1.4.5)

Here we see that the D′
i generate the third homology group of YΓ: since (r, N) = 1, we

can find integers m, n such that

D′
1 · (mD′

2 + nD′
3) = mr − nN = 1, (1.4.6)

and similarly for the other cycles.

We define the periods of the M -theory C-field at infinity by

α′
j =

∫

D′
j

C mod 2π. (1.4.7)

Note that these are related to the αj of Y by

α1 = pα′
1, α2 = Nα′

2, α3 = rα′
3. (1.4.8)

1.4.2 Classical moduli space

We define our holomorphic observables to be the following functions of the periods α′
j and

of the volumes fj:

η1 = exp
(2k

3p
f3 +

k

3p
f1 + iα′

1

)
,

η2 = exp
( 2k

3N
f1 +

k

3N
f2 + iα′

2,
)
,

η3 = exp
(2k

3r
f2 +

k

3r
f3 + iα′

3.
)
.

These functions are adopted from (1.2.8), where we substitute the expressions in (1.4.8)

for the periods and then take the largest possible root that still leaves the ηi invariant

under α′
j 7→ α′

j + 2π.
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The periods of the C-field are interpreted as the phases of the holomorphic observables.

Due to (1.2.7), we have

ηp
1η

N
2 ηr

3 = exp
(
i
∑

j

α′
j

)
. (1.4.9)

The ηj have zeros or poles at the semiclassical points Xi,Γ with large r0 in which the

fj diverge. As in Section 1.2, classically at the point X1,Γ, η1 = 1 and α′
1 = 0. Hence, at

this point

ηN
2 ηr

3 = exp
(
i(α′

2 + α′
3)
)
, (1.4.10)

so when η2 has a pole, η3 has a zero and vice versa. In fact, the order of the zeros or poles

of η2 must be a multiple of r, and similarly the order of the zeros or poles of η3 must be

a multiple of N for this equation to hold. In the classical approximation, there are three

branches Ni of the moduli space, on which we have ηi = 1 and ηi±1 obeying the relation

(1.4.10) for i = 1 or cyclic permutations of it for i = 2, 3.

1.4.3 Quantum curve via membrane instantons

To study the quantum curve, we study the singularities, i.e. the zeros and poles of the

holomorphic observables ηj, which correspond to the classical points Xi,Γ with r0 → ∞.

We shall use a relation between the ηj and the amplitude for membrane instantons which

wrap on supersymmetric cycles Q in X. Using chiral symmetry breaking of the low energy

gauge theories, we find a clear relation between the local parameter on the moduli space

and our observables, and hence can describe the moduli space.

A supersymmetric cycle in Xi,Γ is given by the 3-manifolds Qi given by gi = 0:

Q1 = S3/(Γ2 × Zr), (1.4.11)

Q2 = S3/(Zr × Zp), (1.4.12)

Q3 = S3/(Zp × Γ2). (1.4.13)

At X1,Γ, Q1 is homologous (up to orientation) to the D′
j as follows:

rQ1 ∼ D′
2, (1.4.14)
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NQ1 ∼ D′
3, (1.4.15)

and cyclic permutations of that give the relations at X2,Γ to be pQ2 ∼ D′
3 and rQ2 ∼ D′

1,

and at X3,Γ we have NQ3 ∼ D′
1 and pQ3 ∼ D′

2.

We now study the zeros and poles of the ηj. To understand the orders of the zeros

and poles, we must compare the ηj to the true local parameter on NΓ around each Xi,Γ

with large r0.

One would expect at first that the membrane instanton amplitude u itself, given near

Xi,Γ by

u = exp
(
−TV (Qi) + i

∫

Qi

C
)
, (1.4.16)

where T is the membrane tension and V (Qi) is the volume of Qi, would be a good local

parameter near Xi,Γ. However, at low energies we have a supersymmetric A, D, or E

gauge theory in four dimensions, and due to chiral symmetry breaking, we expect the

good local parameter – the gluino condensate – to be u1/h where h is the dual Coxeter

number of the gauge group.

We now compare phases of the ηj to the phase of u. Let Pi,Γ correspond to the

manifolds Xi,Γ with large r0. For the case where Γ2 = Zq, at P1,Γ equation (1.4.14)

implies that the phase
∫
D′

2
C of η2 is related to the phase

∫
Q1

C of u by
∫
D′

2
C ∼ r

∫
Q1

C.

Since the good local parameter is actually u1/p due to chiral symmetry breaking of the

SU(p) gauge theory at P1,Γ, the true order of the zero of η2 at P1,Γ is pr. The same

calculation for the other ηj and Pi,Γ gives the orders of zeros and poles shown in the

following table:

Γ2 = Zq P1,Γ P2,Γ P3,Γ

η1 1 ∞qr 0qr

η2 0pr 1 ∞pr

η3 ∞pq 0pq 1

(1.4.17)

The cases where Γ2 is a D or E group give similar tables, except that in these cases we

get extra semiclassical points in the same way as in [16]: for the case Γ2 = Dq, we have
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Γ2 = Dq P1,Γ P2,Γ P2′,Γ P3,Γ

η1 1 ∞rh ∞2rh′

0rN

η2 0rp 1 −1 ∞rp

η3 ∞Np 0hp 02h′p 1

, (1.4.18)

where h = 2q − 2, h′ = q − 3, and h + 2h′ = N . The low energy gauge theory at P2′,Γ has

gauge group Sp(q − 4).

For Γ2 in the E series, the table is

Γ2 = Ea P1,Γ P2,Γ Pµt,Γ P3,Γ

η1 1 ∞rh ∞rtht 0rN

η2 0rp 1 e2πiµ/t ∞rp

η3 ∞Np 0hp 0ptht 1

, (1.4.19)

where t, ht, µ are given for each Ea as follows: let ki be the Dynkin indices of Ea, and

let t be the positive integers which divide some of the ki; µ runs over positive integers

less than t that are prime to t, unless t = 1 in which case µ = 0; ht is the dual Coxeter

number of the associated group Kt whose Dynkin indices are ki/t where here the ki run

through the indices of Ea that divide t. The t and ht obey the relation
∑

tht = N . The

low energy gauge group is given by the ADE group corresponding to Kt.

From the relation
∑

tht = N and the tables above, we see that for each ηj, the total

number of zeros and poles is equal. Since the total number of zeros is the same as the

total number of poles for each of the ηj, it seems reasonable to assume that we have found

all the zeros and poles, and hence all the semiclassical limits in our moduli space. It

would seem, therefore, that we can now proceed to describe the moduli space completely,

by writing our functions ηi explicitly and identifying the points Pi,Γ with values of a good

coordinate on the moduli space. However, as we shall see, we run into a few puzzles.

The first question we ask is: what can be said about the genus of NΓ? For the cases

p = r = 1, which are the cases considered in [16], the function η2 has a simple zero and

a simple pole, and hence can be identified with a global coordinate on the moduli space,

24



which can then be claimed to have genus zero. If p, r > 1, this is not so: none of our ηj

have just a simple zero and pole, so we cannot identify the moduli space with any of the

ηj, and we do not know the genus.

However, the simplest result would be that the curve has genus zero, and we proceed

with this assumption. Hence, we assign the curve a global coordinate z, write the ηj as

holomorphic functions of z, and see how well we can describe the curve.

For the case Γ2 = Zq, this turns out to be straightforward; we may fix P1,Γ at z = 0,

P2,Γ at z = 1, and P3,Γ at z = ∞, and then write our functions:

η1 =
1

(1 − z)qr
, (1.4.20)

η2 = zpr, (1.4.21)

η3 =
(1 − z)pq

zpq
. (1.4.22)

This description is unique up to possible overall factors which are related to an anomaly

in the membrane effective action, analogous to the one described in Section 5 of [16].

For Γ2 = Dq, we run into a puzzle. Once we fix the first three points, we have to find

at what value z4 the fourth point P2′,Γ sits: our functions in this case are

η1 =
z2rh′

4

(1 − z)rh(z4 − z)2rh′
, (1.4.23)

η2 = zrp, (1.4.24)

η3 =
(1 − z)ph(z4 − z)2h′p

zNp
, (1.4.25)

again up to overall factors. The forms of η1 and η3 do not constrain z4, but to satisfy

η2(z4) = −1, we need zpr
4 = −1 for which there are pr solutions. A similar situation arises

for Γ2 in the E series, where there are pr choices for each point beyond the first three.

The pr solutions, however, should correspond to the same point in the moduli space

of M -theories, since they correspond to the same theory. Hence, it seems that we have a

redundancy in our description of the moduli space; we should impose a symmetry on NΓ

which identifies the different values of z4.
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There is another, more serious puzzle which shows up, also involving possible extra

classical points on NΓ: from table (1.3.9), we see that our low energy gauge theory is

compactified on a manifold which is not simply connected, but rather is of the form S3/H

for some discrete group H. Hence its fundamental group is equal to H. Therefore, it is

possible to construct theories which have gauge fields with non-trivial Wilson loops which

break the gauge symmetry.1 Where in NΓ do these theories lie?

For the case Γ2 = Zq, the point P1,Γ can have Wilson loops which are conjugacy classes

of elements of SU(p) of order qr. One can show that, when p, q, r are relatively prime,

the number of inequivalent such elements is

1

qr



 p + qr − 1

qr − 1



 =
(p + qr − 1)!

p!(qr)!
(1.4.26)

with cyclic permutations for P2,Γ and P3,Γ. Furthermore, for Wilson loops that break

SU(p) in a way that leaves s − 1 factors of U(1), i.e.

SU(p) −→ Πs
i=1SU(ni) × U(1)s−1,

where
∑

ni = p, the number of inequivalent Wilson loops is

s

pqr



 p

s







 qr

s



 . (1.4.27)

Each set of theories with a given number s − 1 of U(1) factors should lie on a separate

component Ns,Γ of the moduli space, since smooth interpolation means that the number

of massless modes – which corresponds to U(1) fields – is constant on each component.

For s > 1, we know that the theories on Ns,Γ do not have a mass gap due to the massless

U(1) field. On the other hand, the theories corresponding to the points Pi,Γ with no non

trivial Wilson loops are believed to have a mass gap. Hence we claim that N1,Γ contains

theories with a mass gap.

1These theories are the basis for our GUT models in Chapter 2.
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For the case r = 1, we obtain no singularity at X3,Γ. Hence, for that case the mass

gap of the theory at X3,Γ means that all of N1,Γ has a mass gap.

Continuing with the case where r = 1, we note a manifest symmetry between p and

q in the expression (1.4.27) for the number of possible Wilson loops at each level s. At

first sight, this could support the assertion that these points lie on their own branch

of the moduli space, which will interpolate smoothly among them and contain no other

singular points. However, chiral symmetry breaking means that the number of vacua at

each classical point is given by Πini which is clearly not symmetric between p and q, and

spoils the counting of the orders of zeros and poles.

Going back to general r and looking at N1,Γ only, we see that we have smooth in-

terpolation among theories with different gauge groups: SU(p), SU(q), and SU(r) when

Γ2 = Zq; SU(p), SO(2q), Sp(q − 4), and SU(r) when Γ2 = Dq; and analogously for

Γ2 in the E series, where we interpolate between SU(p), Kt, and SU(r), with Kt as

described after table (1.4.19). Similarly, the other branches Ns,Γ smoothly interpolate

among theories with these gauge groups broken by Wilson lines.
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Chapter 2

Unification from M-Theory

2.1 Introduction

We construct a supersymmetric M–theory compactification on a G2 manifold X in which

a grand unified theory arises naturally. The unified group GGUT appears due to a co-

dimension four ADE singularity in the compactification manifold, so the unified gauge

theory is seven-dimensional. The breaking of GGUT to an effective low-energy gauge group

G, which occurs around an energy scale MGUT known as the grand unification scale, arises

from a Wilson line which appears due to the non-trivial fundamental group of the 3–

dimensional locus Q of the ADE singularity. The low energy effective gauge theory is four

dimensional.

In our model so far, the spectrum of the four dimensional theory is composed entirely

of Kaluza-Klein modes of the adjoint fields of GGUT . This spectrum contains, for example,

the gauge fields of the effective low energy gauge group as well as the superheavy vector

bosons which have a mass MV and mediate proton decay. It does not, however, include

the full spectrum of the standard model, which contains the quarks, leptons, and Higgs

bosons. To be as realistic as possible, we shall take as our main example GGUT = SU(5)

broken to the standard model gauge group G = SU(3)× SU(2)×U(1), and at one point
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we shall put in the quarks, leptons, and Higgs bosons. We can add these chiral fields

either by hand, or by assuming that X has, in addition to its ADE singularities, certain

other singularities which are different from the ADE ones and which can give rise to the

chiral fermions; such singularities were studied in [16, 67, 14, 15].

The three effective gauge couplings in four dimensions obey renormalization group

equations (RGE’s). As in usual four dimensional GUT’s [30, 31, 68, 43], the description

of the effective theory in terms of these RGE’s is valid up to an energy scale MGUT . Above

this scale, the three couplings are equal to each other and to the unified coupling gGUT ,

and obey a single RGE.

We consider the threshold corrections (studied within four dimensional models origi-

nally by Weinberg [42] and by Ovrut and Schnitzer [69]) to the four dimensional RGE’s

due to the entire massive Kaluza-Klein modes (we do not include any winding modes).

We find that the threshold corrections are a topological invariant of the 3–manifold Q,

given by linear combinations of Ray-Singer torsions. (For a related result within heterotic

string theory, see section 8.2 of [70].) The fact that they are topological depends heavily

on choosing the compactification to be supersymmetric.

Furthermore, we show that the threshold corrections due to Kaluza-Klein harmonics

satisfy a property which leads to exact preservation of unification; that is, there is an

energy scale MGUT at which the gauge couplings are equal, even in the presence of threshold

corrections. This property stems primarily from group theory factors, and holds when

GGUT = SU(5) (but not when GGUT = SO(10)). We find not only an exact unification

scale, but also a precise relation between this scale and the mass MV of the heavy vector

bosons.

Generically, in the presence of threshold corrections [42, 71, 72, 73, 74] there is no

energy scale at which all three gauge couplings are exactly equal. There are only a few

cases in the literature in which threshold corrections do exactly preserve unification, as

they do here. In one case, it is stated in [43] that for GGUT = SU(5), the model considered

in [42] leads to preservation of unification in the presence of threshold corrections, along
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with the relation MGUT = e−1/21MV (in [42], only the case of GGUT = SO(10) which does

not preserve unification was considered, and not the case GGUT = SU(5)). 1

An underlying assumption often made in GUT’s is that, in order to explain the sup-

pression of effects such as proton decay, the mass MV is assumed to be superheavy and

of the same order as the unification scale MGUT [30, 31, 43, 79, 80]. The mass MV and

the unification scale MGUT are sometimes used interchangeably. What we have here is a

derivation of a precise relation between these two quantities , and in fact, it could be that

– depending on Q – the above assumption may even be false. From here on, to avoid

confusion, we will use EGUT to denote the unification scale which we previously called

MGUT ; when we say EGUT we strictly mean the energy at which the couplings are equal,

to be distinguished from the masses MV of heavy vector bosons.

Our relation between EGUT and MV can be presented quite generally in terms of a

relation between EGUT and the volume VQ of Q:

E2
GUT

=
D(Q)

V
2/3
Q

, (2.1.1)

where D(Q) is a topological invariant to be defined in Section 2.6. This formula is the

one we referred to in the Prelude.

The relation in equation (2.1.1) is valid whether or not we have included the chiral

fermions. We get realistic predictions for the scale EGUT as well as the weak mixing angle

sin2 θW by adding to our low-energy beta functions the contribution from the quarks,

leptons, and Higgs bosons of the supersymmetric standard model (we assume that they

have no Kaluza-Klein excitations). What we find is that the predictions we get are exactly

the same as – and hence as good as – those coming from the standard field theoretic grand

unified model: EGUT = 2.2 × 1016GeV , sin2 θW = 0.23.

1See also [75, 76] for a mechanism in which gauge coupling unification is (essentially) preserved in

the presence of extra dimensions, see [77] for a model in which stringy threshold corrections conserve

gauge coupling unification, and see [78] for a case where the standard model spectrum is extended for

the specific purpose of preserving unification.
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We complete our unification picture by including the gravitational coupling GN via

dualities between M–theory and string theories. As in heterotic string theory GUT’s (see

[81] and references therein), where at tree level, the gravitational couplings automatically

unify with the gauge couplings, here too unification of gauge couplings leads to unification

with GN , since by duality with string theories, all couplings are given in terms of the one

string coupling constant gs. We find an expression for GN which may agree with its

experimental value, and could be even in better agreement with the experimental value

than the case of the strongly or weakly coupled heterotic string (see [82, 83, 84] and

references therein).

Finally, we study the classic problem of proton decay in our model. To discuss proton

decay in a sensible fashion, we need to assume a mechanism for doublet-triplet splitting;

here, we assume the mechanism of [41] (which is a close cousin of the original mechanism

for doublet-triplet splitting in Calabi-Yau compactification of the heterotic string [29];

this mechanism has been reconsidered recently from a bottom-up point of view [85, 86,

87, 88, 89]). One consequence of this particular doublet-triplet splitting mechanism is

that dimension five (or four) operators contributing to proton decay are absent; proton

decay is dominated, therefore, by dimension six operators, which are the ones we shall

study.

In four-dimensional SUSY GUT’s, the gauge boson exchange contributions to proton

decay, if they dominate, lead to a proton lifetime that has been estimated recently as

5 × 1036±1 years [90, 91]. (Four-dimensional GUT’s also generally have a dimension five

contribution that can be phenomenologically troublesome (but see [92, 93]); it is absent in

the models we consider.) Relative to four-dimensional GUT’s, we find a mechanism that

enhances proton decay modes such as2 p → π0e+
L relative to p → π0e+

R or p → π+ν̄R; these

are typical modes that arise from gauge boson exchange. Given numerical uncertainties

that will appear in Section 2.7, it is hard to say if in practice this mechanism enhances the

2And similar modes with π0 replaced by K0, or e+

L by µ+

L . As in most four-dimensional GUT’s, we

do not have precise knowledge of the flavor structure.
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p → π0e+
L modes relative to GUT’s or suppresses the others. Because of these issues, to

cite a very rough estimate of the proton lifetime, we somewhat arbitrarily keep the central

value estimated in the four-dimensional models and double the logarithmic uncertainty,

so that if gauge boson exchange dominates, the proton lifetime in these models might

be 5 × 1036±2 years.3 (In practice, the uncertainty could be much larger if because of

additional light charged particles, the unification scale is modified; the same statement

applies to four-dimensional GUT models.)

This Chapter is organized as follows. In Section 2.2 we present our M -theory GUT

model. In Section 2.3 we write the standard expressions for the RGE’s and for the

threshold corrections which shall be used throughout. In Section 2.4 we describe the

Kaluza-Klein spectrum obtained from our model. Section 2.5 is devoted to showing how

to write the threshold corrections in terms of Ray-Singer torsions. In Section 2.6 we

arrive at our main results: we show that the threshold corrections preserve unification,

and we display the relation between EGUT and the volume VQ of Q in terms of Ray-Singer

torsions. We discuss the mass of the heavy gauge bosons, briefly comment on proton

decay, and then show how the chiral fermions are included. In Section 2.7 we add the

gravitational coupling to the story. Section 2.8 contains our results about proton decay.

Throughout our presentation, we derive our results for a general 3-manifold Q which has

a finite fundamental group, and we also include completely explicit results for our case

of the lens space. Appendix A contains the calculation of a Ray-Singer torsion which is

used in Section 2.5, and Appendix B generalizes our results to different GUT groups.

2.2 GUT’s from M-theory

We construct here our GUT model, based on a compactification of M -theory on a manifold

X of G2 holonomy, which preserves N = 1 supersymmetry. In compactifying eleven-

3The current experimental bound on p → π0e+ is 4.4 × 1033 years (for a recent report, see [94]) and

the next generation of experiments may improve this by a factor of 10 to 20 (for example, see [95]).
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dimensional M -theory on a seven-manifold X, the properties of X determine what theory

we get in four dimensions. For example, a singular manifold X leads to a gauge theory

in four dimensions [13, 63, 64, 16]. In the model we are about to describe, which is based

on results obtained in Chapter 1 [17], the choice of X is such that both a grand unified

gauge group and its breaking into the standard model subgroup arise naturally. As we will

show, the unified group arises from an ADE singularity in the compactification manifold,

which translates into an ADE gauge theory at low energies, while the breaking of this

group comes from Wilson loops which arise due to the non-trivial fundamental group of

the locus Q of the ADE singularity.

As described in Chapter 1 [17], our compactification manifold X is asymptotic to a

cone over quotients of Y = S3 × S3 = SU(2)3/SU(2), where the equivalence relation

is (g1, g2, g3) ∼ (g1h, g2h, g3h), with gi, h ∈ SU(2). We consider a discrete group Γ =

Γ1 × Γ2 × Γ3, where the Γi are ADE subgroups of SU(2), which acts on Y by

(γ, δ, ε) ∈ Γ1 × Γ2 × Γ3 : (g1, g2, g3) 7→ (γg1, δg2, εg3), (2.2.1)

and we denote the resulting quotient space by YΓ.

The compactification manifolds Xi,Γ asymptotic to YΓ are singular spaces obtained by

filling in the ith SU(2) factor of YΓ to a ball in R4; they are topologically quotients of

R4×S3, where the R4 corresponds to the filled-in factor. For i = 1, gauging g2 away using

the right diagonal SU(2) action in Y , the identification corresponding to (γk, δl, εm) ∈ Γ

becomes

(g1, 1, g3) ≡ (γkg1δ
−l, 1, εmg3δ

−l), (2.2.2)

where g1 ∈ R4 and g3 ∈ SU(2) ∼ S3; the set (0, 1, g3) with g3 varying in SU(2) and

g3 ≡ εmg3δ
−l , (δ, ε) ∈ Γ2 × Γ3 , (2.2.3)

is the fixed point locus of the action of the Γ1 subgroup of Γ. A similar description holds

when i = 2, 3. For these fixed points to be identical to a standard A, D, or E singularity
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of codimension four of the form R4/Γi or C2/Γi, which gives a Γi gauge theory in seven

dimensions, it was explained in Chapter 1 [17] that we must choose our group Γ to be of

the form Γ = Zp × Γ2 × Zr where Γ2 is any A, D, or E group, and where, if N is the

order of the group Γ2, then p, r, and N satisfy

(p, N) = (r, N) = (p, r) = 1. (2.2.4)

At X1, Γ we have an SU(p) gauge theory on R4 × Q where Q = S3/(Γ2 × Zr), at X3, Γ

we have an SU(r) gauge theory on R4 ×Q where Q = S3/(Zp ×Γ2), and at X2, Γ we have

an A, D, or E gauge theory on R4 × Q where Q = S3/(Zr × Zp); in each of these three

cases, the free discrete group action on S3 is given by the appropriate cyclic permutation

of the action on g3 in (2.2.2).

We can view S3 as embedded in C2 satisfying |z1|2 + |z2|2 = 1, and it will be useful

for us later to rewrite the action of Γ2 × Zr on S3 for the case Γ2 = Zq in terms of its

action on C2:

(δ, ε) · (z1, z2) = (e2πi/q−2πi/rz1 , e−2πi/q+2πi/rz2), (2.2.5)

where δ and ε here generate Zq and Zr, respectively.

We see that our low energy gauge theory lives on a manifold of the form Q = S3/H,

where H is a finite group. This manifold is not simply connected – its fundamental group

is equal to H. Therefore, it is natural to include in the low energy theory non-trivial

Wilson loops which break the gauge symmetry. The remaining gauge group will contain

abelian U(1) factors, and, as was shown in Chapter 1 [17], the moduli space for theories

corresponding to Γ consists of several branches classified according to the number of these

abelian factors that appear in the low energy gauge theory. Within each branch, called

Ns,Γ, we get smooth interpolation between supersymmetric gauge theories with different

gauge groups containing the same number s − 1 of U(1) factors.

The theories we will be studying here live on N2,Γ, the branch of moduli space which

contains theories with Wilson lines that break the ADE gauge group into a subgroup

containing one U(1) factor. For example, one theory on this moduli space contains a
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Wilson line in SU(p) that breaks it as follows:

SU(p) −→ SU(n) × SU(m) × U(1), n + m = p. (2.2.6)

This provides a natural model for symmetry breaking of a grand unified gauge group into

the Standard Model: we can treat SU(p) as a GUT group, and with p = 5 we can choose

a Wilson line which will break SU(5) precisely into the Standard Model gauge group

SU(3) × SU(2) × U(1). We shall use this theory as our main example.

Hence, we take the simplest example Γ = Z5 × Zq (Γ3 = I) and fill in g1. The co-

dimension four Z5 singularity gives a gauge theory in seven dimensions with GGUT = SU(5)

gauge group on R1,3 × Q where Q = S3/Zq is the locus in X of the Z5 singularity. Since

π1(Q) = Zq, we can take the Wilson loop to be

U =




e4πiw/q

e4πiw/q

e4πiw/q

e−6πiw/q

e−6πiw/q




(2.2.7)

where we can choose4 an integer w = 1, . . . , q − 1 with 5w not divisible by q. This breaks

SU(5) to the standard model group SU(3) × SU(2) × U(1).

To have a realistic model, we need to include chiral fields. We shall include them

by assuming that at some points Pi on Q, there are singularities in X which are worse

than the ADE singularity and which support chiral fermions. At these points, Q itself is

smooth but the normal directions to Q in X have a singularity more complicated than the

orbifold singularity. This mechanism was determined in [14], and the relevant singularities

have been studied in [16, 67, 14, 15]. Their details will not be important here.

4In Chapter 1 [17] we would take (5, q) = 1 and 5w would be automatically indivisible by q; however,

here the condition (5, q) = 1 is not necessary since in this example with g1 filled in and Γ3 = I , the action

on g3 in (1.3.3) (which is (2.2.2) here) is smooth for any q.
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2.3 Renormalization Group Equations

The renormalization group equations (RGE’s) at the one-loop level for a supersymmetric

gauge theory with gauge group G = ΠaGa, including threshold corrections, are given by

[44, 96, 81]:5

1

kag2
a(µ)

=
1

g2
M

+
1

16π2

ba

ka
log

Λ2

µ2
+

1

16π2

Sa

ka
, (2.3.1)

where

ba = 2
∑

m=0

Tr Q2
a(−1)F(

1

12
− χ2) , (2.3.2)

Sa = 2
∑

m6=0

Tr Q2
a (−1)F (

1

12
− χ2) log

Λ2

m2
. (2.3.3)

Here, a indexes the factors of G, ga(µ) is the coupling associated with Ga, gM is the

underlying gauge coupling as deduced from M-theory in the supergravity approximation,

χ is the helicity operator, µ is the renormalization scale, F is the fermion number, and the

Qa are generators of the ath gauge group for the representation in which the massless (in

(2.3.2)) or massive (in (2.3.3)) particles live. The trace over them is normalized such that

for SU(N), Tr Q2
a = N for the adjoint representation and Tr Q2

a = 1/2 for the fundamental

representation.

The ka are normalization constants, which for the standard model with unified group

GGUT = SU(5) are kY = 5/3, k2 = k3 = 1. They encode the tree-level relation among

the three couplings which follows from the existence of an underlying GGUT structure; the

tree-level equation is (2.3.1) with ba = Sa = 0.

The second and third terms of (2.3.1) are the one-loop corrections to the tree-level

relation. The second term, where the ba are the one-loop beta function coefficients, gives

the running of the couplings due to massless particles. The third term is the one-loop

5The threshold corrections are called ∆a in [44, 96], but we will call them Sa to avoid confusion with

the use of ∆ for the Laplacian.
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threshold correction and is a sum over contributions from heavy particles; it is independent

of µ. The assumption of gauge coupling unification in the absence of threshold corrections,

i.e. when Sa = 0, is equivalent to the fact that Λ and gM in (2.3.1) are independent of the

index a: when µ = Λ, we have kY g2
Y
(µ) = k2g

2
2(µ) = k3g

2
3(µ) = g2

M , so the energy scale

of unification is EGUT = Λ. In the presence of threshold corrections, i.e. when Sa 6= 0,

generically there is no longer a value of µ at which all the couplings are equal to each

other (but in our case, we will find such a value of µ).

Combining the formulas above, we can write

1

g2
a(µ)

=
ka

g2
M

+
1

16π2
2
∑

m=0

TrQ2
a(−1)F

(
1

12
− χ2

)
log(Λ2/µ2)

+
1

16π2
2
∑

m6=0

TrQ2
a(−1)F

(
1

12
− χ2

)
log(Λ2/m2). (2.3.4)

2.4 Kaluza-Klein Reduction

In this section, we fit both the massive and massless Kaluza-Klein modes of our GUT

model into four dimensional N = 1 supermultiplets.

As described in Section 2.2, we have compactification on a manifold with a codimension

four Ap−1 singularity which leads to a seven dimensional supersymmetric SU(p) gauge

theory on R4 × Q; R4 is four dimensional Minkowski space, and Q is a supersymmetric

cycle in the G2 manifold. The (massless) bosonic sector of the seven dimensional theory

consists of the gauge field and 3 scalar fields, all in the adjoint representation of SU(p).

Under Kaluza-Klein reduction on Q, the seven dimensional gauge field decomposes into

a four dimensional gauge field, which is at the same time a scalar on Q, and a four

dimensional scalar, which is a 1–form on Q. As explained in [13], the identification of

part of the structure group of the normal bundle of Q with the struture group of the

tangent bundle of Q, which is a result of the fact that Q is a supersymmetric cycle in the

G2 manifold, means that the set of 3 seven dimensional scalars can be treated as a 1–form

on Q which is at the same time a scalar in four dimensions. So the bosonic spectrum in
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Table 2.1: Field content in four dimensions

Form on Q Supermultiplet χ Tr (−1)F( 1
12

− χ2)

0–forms 1, 1/2,−1/2,−1 −3/2

massive closed
vector

1/2, 0, 0,−1/2 1/2
1–forms

co-closed chiral 1/2, 0, 0,−1/2 1/2

0–forms harmonic vector 1, 1/2,−1/2,−1 −3/2
massless

1–forms harmonic chiral 1/2, 0, 0,−1/2 1/2

four dimensions consists of one gauge field which is a scalar on Q and two scalars which

are two 1–forms on Q.

We would like to fit this spectrum into N = 1 supermultiplets in four dimensions.

We have taken into account only the massless fields in seven dimensions, but in four

dimensions their mass is given by the eigenvalues of the Laplacian on Q. The spectrum

of the four dimensional gauge fields is the spectrum of the Laplacian on 0–forms on Q.

The spectrum of the four dimensional scalars is that of 1–forms on Q; the spectrum of

1–forms can be divided into closed 1–forms, which have the same spectrum as 0–forms,

and co-closed 1–forms, which have a different spectrum.

The massive gauge fields in four dimensions fit into a massive vector multiplet with

helicities (1, 1/2, 1/2, 0, 0,−1/2,−1/2,−1). The modes of the two scalars, each of helicity

0, that have the same spectrum as the gauge field (namely the closed 1–forms on Q) fit into

the same multiplet. The rest of the scalar modes, namely the co-closed 1–forms, fit into

a different multiplet, namely a massive chiral multiplet with helicities (1/2, 0, 0,−1/2).

As to the massless fields, the harmonic forms are the modes which correspond to

massless fields in four dimensions. The value of the kth betti number bk(Q) tells us how

many harmonic k–forms exist on Q. There will be b0(Q) harmonic scalars on Q, which
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are massless four dimensional gauge fields, and there will be b1(Q) harmonic 1–forms on

Q, which are simultaneously closed and co-closed, which are massless four dimensional

scalars. The massless four dimensional gauge fields fit into a massless vector multiplet

with helicities (1, 1/2,−1/2,−1), and the massless four dimensional scalars fit into b1(Q)

massless chiral multiplets with helicities (1/2, 0, 0,−1, 2), corresponding to harmonic 1–

forms. For the case in which b0(Q) = 1 and b1(Q) = 0, the massless spectrum is just one

massless vector multiplet (1, 1/2,−1/2,−1).

We summarize the results of this section in Table 2.1, where in the last column we

also calculate the sum Tr (−1)F ( 1
12
−χ2) which appears in the RGE’s via equations (2.3.2)

and (2.3.3). For completeness, we include in the table the harmonic 1–forms even though

they do not appear in our case.

2.5 Threshold Corrections as Ray-Singer Torsions

Here, we first describe the Ray–Singer torsion for a general closed, oriented manifold.

Then, we derive an expression for the threshold corrections Sa in terms of Ray–Singer

torsions of the 3–manifold Q. We conclude this section by computing them explicitly for

the case Q = S3/Zq.

The Ray–Singer torsion is a topological invariant defined for any Riemannian or com-

plex manifold. We focus on the Riemannian case [97, 98, 99], as it is the relevant one for

our 3–manifold Q.

Let Md be a closed, oriented d–dimensional Riemannian manifold with finite funda-

mental group π1(M
d), and let M̃d be its universal covering space on which π1(M

d) acts

freely. Then, given a one dimensional complex representation ω of π1(M
d), the Ray–Singer

torsion is expressed as a sum of two terms:

T (Md, ω) =

(
1

2

d∑

k=0

(−1)k+1k log det(∆′
k)

)
+

(
d∑

k=0

(−1)k log det Ak

)
(2.5.1)

≡ K(Md, ω) + A(Md, ω) . (2.5.2)
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In the first term, the Laplacian ∆′
k is taken to act on non-harmonic k–forms φk of M̃d

which satisfy

γ · φk(θ) ≡ φk(γ · θ) = ω(γ)φk(θ) , γ ∈ π1(M
d) , θ ∈ M̃d . (2.5.3)

In the second term, Ak is the matrix of change of basis from an integral basis for the

kth integral cohomology to the basis of harmonic k–forms of norm 1 (there is also a

dependence on the choice of basis for the cohomology, which we shall not need to consider

here). This second term appears only for the representations ω for which the Laplacian

has zero modes.

Hodge duality tells us that log det(∆′
k) = log det(∆′

d−k), so in particular for d = 3,

which is the case we study here, the expression for the torsion for a 3–manifold Q becomes

T (Q, ω) =
(

3

2
log det(∆′

0) −
1

2
log det(∆′

1)
)

+

(
log

det A0 det A2

det A1 det A3

)
(2.5.4)

≡ K(Q, ω) + A(Q, ω) ,

where the Laplacian again acts on the fields satisfying (2.5.3) with M d = Q.

Since the Laplacian is the energy operator, its k–form eigenvalues λk,n correspond to

the squares of the masses of particles, m2
k,n. The logarithm of the determinant of the

Laplacian is formally

log det(∆′
k) =

∑

n

log λk,n =
∑

n

log m2
k,n , (2.5.5)

where the sum is over non-zero eigenvalues λk,n of ∆′
k.

6 Hence, the sums in the expression

(2.3.3) for Sa have the form of (2.5.5).

As a first step towards showing that the threshold corrections are actually given by

the Ray-Singer torsions, we insert the values in the last column of the upper half of Table

6This sum as written formally is clearly infinite; it becomes well–defined via zeta function regulariza-

tion, of which we shall have an explicit example in Appendix A.
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2.1 into (2.3.3) to get

Sa = 2Tr Q2
a

(
−3

2

∑

n

log
Λ2

m2
0,n

+
1

2

∑

n

log
Λ2

m2
1,n

)
, (2.5.6)

where m2
0,n are 0–form eigenvalues and m2

1,n are 1–form eigenvalues, both closed and co-

closed.

There are two happy coincidences that have entered (2.5.6) as coefficients in front of

the sums, and which at the end will allow us to rewrite Sa in terms of Ray-Singer torsions.

The first is the fact that the coefficient for the closed 1–forms is equal to that for the co-

closed 1–forms (namely, 1/2). This will allow us to write the threshold corrections as a

linear combination of logarithms of determinants of the Laplacian on k–forms without

separating the closed from the co-closed sectors. The other coincidence is that the ratio

between the coefficient −3/2 for the 0–forms and 1/2 for the 1–forms is the same ratio

appearing in K(Q, ω) in (2.5.4).

To show that the threshold corrections can indeed be given in terms of the Ray-Singer

torsions, we need to be more precise about which 0–form and 1–form eigenvalues appear

in the sums in (2.5.6). Namely, we need to find the analog in our model of (2.5.3). As we

shall show, this analog is given by the twisting of the adjoint fields φk by the Wilson line.

Using the setup of Section 2.2, we take SU(5) gauge theory7 living on R4 ×Q, where

Q has a finite, non-trivial fundamental group π1(Q). As explained in Section 2.2, it is

natural to include Wilson lines that break the gauge symmetry. Choose such a Wilson

line

Uγ = exp (ivγ · diag{2, 2, 2,−3,−3}) , (2.5.7)

where γ ∈ π1(Q) and vγ |π1(Q)| ∈ 2πZ so that we have an embedding of π1(Q) in SU(5).

This Wilson line breaks an SU(5) gauge field into the following five representations of the

7Note that the constructions in the rest of this section and in parts of the next section can be presented

more generally for any choice of gauge group; we present them here for SU(5) both for concreteness and

since this is the example we shall pursue later. We will make a few comments on a more general case

later, and present the details in Appendix B.
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standard model gauge group SU(3) × SU(2) × U(1):

(8, 1, 0) ⊕ (1, 3, 0) ⊕ (1, 1, 0) ⊕ (3, 2,−5/6) ⊕ (3̄, 2, 5/6), (2.5.8)

ρ1 ρ2 ρ3 ρ4 ρ5

where in each parenthesis, the first two numbers denote dimensions of representations of

SU(3) and SU(2), and the third number is hypercharge. In this context of symmetry

breaking by Wilson lines [25, 26, 27, 28, 29], the fields φk which transform in these

representations are k–forms on the universal cover Q̃ which obey the following boundary

condition: the adjoint action of the Wilson line on the fields, given by

U · φk = Uφk U−1, (2.5.9)

translates into an action of the fundamental group Γ on these fields via

φk(γθ) = Uφk(θ)U
−1, (2.5.10)

where γ is a generator of π1(Q) and θ ∈ Q̃. This action is a self-intertwining map for

each irreducible representation ρi and, by Schur’s lemma, is just multiplication by a scalar

depending only on i. This scalar is trivial for i = 1, 2, 3, but not for i = 4, 5:

φk(γθ) = φk(θ) φk ∈ (8, 1, 0) ⊕ (1, 3, 0)⊕ (1, 1, 0)

φk(γθ) = e5ivγ φk(θ) φk ∈ (3, 2,−5/6) (2.5.11)

φk(γθ) = e−5ivγ φk(θ) φk ∈ (3̄, 2, 5/6).

The equations (2.5.11) are precisely analogs of (2.5.3): each representation ρi corresponds

by (2.5.11) to a one dimensional complex representation of π1(Q), which we shall call ωi.

To simplify notation, if γ generates π1(Q), we shall write ωi(γ) ≡ ωi.

We need only one more point before expressing the threshold corrections in terms of

Ray-Singer torsions. The eigenvalues m2
k,n = λk,n of the Laplacian scale with the size of

Q: they have units of (length)−2, and if we rewrite them in terms of the volume VQ of Q
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as m2
k,n/V

2/3
Q , we see that the sums in (2.5.6) are of the form

∑

n

log
V

2/3
Q Λ2

m2
k,n

. (2.5.12)

Changing V
2/3
Q Λ2 is equivalent to rescaling the masses, which is equivalent to changing

the metric of Q. For representations of the fundamental group for which there are no

zero modes, namely those that do not commute with the Wilson line and hence acquire a

mass (they are ω4 and ω5), the sum in (2.5.12) is topological (the term A(Q, ω) does not

appear in the expression (2.5.4) for the torsion), and there can be no volume dependence.

Therefore, we may set V
2/3
Q Λ2 = 1, and we simply have

K(Q, ω4) = T (Q, ω4), K(Q, ω5) = T (Q, ω5). (2.5.13)

For the representations ω1, ω2, and ω3, which do have zero modes since they commute

with the Wilson line and hence their lowest KK mode does not acquire a mass, we will get

a dependence on V
2/3
Q Λ2 which, for any 3–manifold Q with b1(Q) = b2(Q) = 0, is given

by (see Appendix A.2 for a computation of A(Q, 1))

K(Q, ωi) = K(Q, 1) = T (Q, 1) +
3

2
log V

2/3
Q Λ2 , i = 1, 2, 3 . (2.5.14)

Putting everything together, we have the following general expression for the threshold

corrections to the RGE’s in terms of Ray–Singer torsions:

Sa = 2
∑

i

fa(ρi) Ca
2 (ρi) K(Q, ωi) . (2.5.15)

The sum is over the representations ρi in the decomposition (2.5.8), f a(ρi) is the dimension

of the representation ρi divided by the dimension of the representation of the ath gauge

group that is included in ρi, and Ca
2
(ρi) is the quadratic Casimir of the representation of

the ath gauge group that is included in ρi, normalized as explained after (2.3.2).
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Our current form for the RGE’s is:

1

g2
a(µ)

=
ka

g2
M

+ +
ba

16π2
log

Λ2

µ2

+
1

16π2
2
∑

ωi=1

fa(ρi)C
a
2 (ρi)

(
T (Q, 1) +

3

2
log V

2/3
Q Λ2

)

+
1

16π2
2
∑

ωi 6=1

fa(ρi)C
a
2 (ρi)T (Q, ωi) . (2.5.16)

Note that since the derivation of equation (2.5.16) does not depend on the choice of the

unified group, it is true for any choice of a GUT group, with the ρi given by the appropriate

analog of (2.5.8) and ωi are the representations of π1(Q) corresponding to the ρi.

For SU(5) broken to SU(3) × SU(2) × U(1) via equations (2.2.7) and (2.5.8), the

threshold corrections become

SY =
25

3
(T (Q, ω4) + T (Q, ω5)) ,

S2 = 4 (T (Q, 1) + log VQΛ3) + 3 (T (Q, ω4) + T (Q, ω5)) ,

S3 = 6 (T (Q, 1) + log VQΛ3) + 2(T (Q, ω4) + T (Q, ω5)) . (2.5.17)

The quantities that will become meaningful when we put the threshold corrections

into the RGE’s are the differences between the Sa/ka, since an overall additive constant

can be absorbed into 1/g2
M in equation (2.3.1). Also, since the representations ω4 and

ω5 are complex conjugates, and complex conjugation of the eigenfunctions exchanges a

representation with its complex conjugate without changing the eigenvalues of the Lapla-

cian, we have T (Q, ω4) = T (Q, ω5) ≡ T (Q, ω). Therefore, we can replace the Sa by S−
a

given by S−
a /ka = Sa/ka − SY /kY to get

SY
− = 0 ,

S2
− = 4 (T (Q, 1) + log VQΛ3) − 4 T (Q, ω) ,

S3
− = 6 (T (Q, 1) + log VQΛ3) − 6 T (Q, ω) . (2.5.18)

The Sa
− are proportional to each other:

SY
− : S2

− : S3
− = 0 : 2 : 3, (2.5.19)
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where the ratios originate from quadratic Casimirs of the adjoint representations of SU(2)

and SU(3). This proportionality will become crucial in our study of unification in the next

section: we will show there that it means the threshold corrections preserve unification.

It would be interesting to find a deep underlying reason for this proportionality.8

As we show explicitly in Appendix B, this proportionality is still present in a more

general case, namely not just for GGUT = SU(5) breaking to SU(3) × SU(2) × U(1), but

for any breaking of GGUT = SU(p) to a standard model-like group SU(m)×SU(n)×U(1),

where m + n = p. Just like the standard model, all these correspond to points on the

branch N2,Γ of the moduli space.

The lens space

We specialize to the case of the lens space Q = S3/Zq. A general lens space is given

with an action of its fundamental group

γzj = e2πiνk/qzj , j = 1, 2 (2.5.20)

where zj are complex coordinates denoting the 4-dimensional space in which S3 is em-

bedded, and νk are integers relatively prime to q. Taking equation (2.2.5) with r = 1 and

replacing the notation for δ by γ, we see that in our case, ν1 = 1 and ν2 = −1 in (2.5.20).

Fixing γ to be a generator of Zq, we can take our Wilson line Uγ to be given by (2.2.7).

The action of the Wilson line on the fields φk is

φk(γθ) = φk(θ) φk ∈ (8, 1, 0) ⊕ (1, 3, 0) ⊕ (1, 1, 0)

φk(γθ) = e10πiw/qφk(θ) φk ∈ (3, 2,−5/6) (2.5.21)

φk(γθ) = e−10πiw/qφk(θ) φk ∈ (3̄, 2, 5/6).

Therefore, the threshold corrections are given by

SY
− = 0 ,

8In string theory models, properties of the threshold corrections of a similar flavor have been attributed

to modular invariance [77].
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S2
− = 4 K(S3/Zq, 1) − 4 T (S3/Zq, e

10πiw/q) ,

S3
− = 6 K(S3/Zq, 1) − 6 T (S3/Zq, e

10πiw/q) . (2.5.22)

The torsion of the lens space has been explicitly calculated in [97, 98, 99] for non–trivial

representations:

T (S3/Zq, ω) = K(S3/Zq, ω) = log |ω − 1||ω−1 − 1| , (2.5.23)

from which we get

T (S3/Zq, e
±10πiw/q) = log |e10πiw/q − 1||e−10πiw/q − 1| = log(4 sin2 5πw/q).(2.5.24)

For the trivial representation, the quantity K(S3/Zq, 1) is computed in Appendix A:

K(S3/Zq, 1) = log

(
2π2

q

)
+

3

2
log R2Λ2 = − log q +

3

2
log V

2/3
Q Λ2 , (2.5.25)

where VQ = 2π2R3/q is the volume of the lens space. As expected, we see the term

A(Q, 1) = −3
2
log V

2/3
Q Λ2 which appeared in (2.5.14). Putting this into (2.5.22) and

defining

D(q, w) =
(
4q sin2(5πw/q)

)2/3
, (2.5.26)

we have

S−
Y = 0 ,

S−
2 = 6 log



 V
2/3
Q Λ2

D(q, w)



 ,

S−
3 = 9 log



 V
2/3
Q Λ2

D(q, w)



 . (2.5.27)

If our lens space could have any value of νk in (2.5.20), where νk are relatively prime

to q, this result would be slightly modified. By replacing γ by a power of itself, there
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is no loss of generality to take, say ν2 = 1; we then denote ν1 simply as ν. In this

more general case (see [99], pp. 168-9), T (Q, 1) is unchanged, and T (Q, ω) becomes

log(4| sin(5πw/q) sin(5πjw/q)|) where jν ≡ 1 modulo q, so D(q, w) = (4q| sin(5πw/q) sin(5πjw/q)|)2/3.

2.6 Unification

In this section we finally write the RGE’s for the three gauge couplings, with the threshold

corrections included. In most of this section, we consider the case in which the only

singularity that we have is the ADE singularity, and the only particles which appear in

the model are those we obtained in Section 2.4. First, we show that for any GGUT , the

RGE’s are independent of the cutoff Λ. Then we show that for an SU(5) GUT group,

unification of the gauge couplings is preserved in the presence of the threshold corrections,

and we derive a precise relation between the unification scale EGUT and the volume VQ of

Q; we also show the relation between EGUT and the masses MV of heavy vector bosons,

and use it to make some (preliminary) comments about the lifetime of the proton (though

most of our discussion of proton decay will appear in Section 2.8). We then proceed to

add the quarks, leptons, and Higgs bosons to our model, and show that the predictions

for the unification scale EGUT and the weak mixing angle sin2 θW are the same as the well

known ones from the standard four dimensional supersymmetric unified SU(5) model.

We conclude this section by writing all the results explicitly for the lens space.

2.6.1 Elimination of Λ

From the discussion in Section 2.3, we see that every helicity state, massless or massive,

makes a contribution to the low energy couplings that has the same dependence on the

cutoff Λ, independent of its mass.

In a unified four-dimensional GUT theory, the quantum numbers of the tree level

particles are G-invariant, though the masses are not. Hence, the coefficient of log Λ in

(2.3.4) is G-invariant. The precise value of Λ is therefore irrelevant in the sense that a
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change in Λ can be absorbed in redefining the unified coupling (which in a four-dimensional

theory would usually be called gGUT rather than gM).

It seems from (2.5.16) that the RGE’s depend on the cutoff Λ. However, for any

3–manifold with b1(Q) = b2(Q) = 0, a magical cancellation occurs: the coefficient 3/2

multiplying log Λ2/µ2 in the first line of (2.5.16) precisely cancels the 3/2 which is the

coefficient of log V
2/3
Q Λ2 in the second line of equation (2.5.16). Hence there is no de-

pendence on Λ and we can now rewrite the formula for the threshold corrections in a

Λ-independent and useful form:

1

g2
a(µ)

=
ka

g2
M

+
ba

16π2
log


 1

µ2V
2/3
Q


+

S ′
a

16π2
, (2.6.1)

with

S ′
a = 2

∑

i

fa(ρi)C
a
2 (ρi) T (Q, ωi). (2.6.2)

The fact that the same factor of 3/2 appears twice is rather intriguing, as it seems to

arise from two completely different origins: one comes from a sum over chiralities (given

in the last column of Table 2.1), and the other arises in the computation of a term in

the Ray-Singer torsion (computed in Appendix A.2). They do have an intimate relation,

though: the first comes from an expression for zero-modes, and the second arises from

the term A in the Ray-Singer torsion which appears because massless contributions are

omitted.

By using the relation to analytic torsion, we have defined the second sum in equation

(2.3.4) with zeta-function regularization, and we found there are no divergences. With

a different regularization, there would be divergences, but they would be G-invariant.

Of course, if we really had a proper understanding of M -theory, we would use whatever

regularization it gives.
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2.6.2 Preservation of Unification

As we have emphasized in the introduction and in Section 2.3, generically in the presence

of threshold corrections, there is no energy scale µ at which the gauge couplings exactly

unify. However, taking our result above and evaluating for SU(5), which just amounts to

working out some Casimirs of representations of SU(5) (which we in fact already did in

deriving (2.5.17)–(2.5.19)), we can write the RGE’s in the form

1

g2
a(µ)

=

(
1

g2
M

+
10T (Q, ω4)

16π2

)
ka +

ba

16π2
log

E2
GUT

µ2
, (2.6.3)

where

E2
GUT

=
D(Q)

V
2/3
Q

, (2.6.4)

D(Q) ≡ exp
(
−2

3
(T (Q, 1) − T (Q, ω4))

)
. (2.6.5)

Hence, there is an energy scale at which the gauge couplings unify, namely µ = EGUT .

The quantity D(Q) is topological; the only dependence of EGUT on the metric of Q is

through its dependence on the volume.

Even if Λ was not eliminated, we would find a unification scale EGUT for an SU(5)

theory; however, in that case, EGUT would be Λ-dependent. We were able to write our

RGE’s in the form (2.6.3) because it turned out that the threshold corrections were

proportional, as shown in (2.5.19), and furthermore their ratios matched those of the

beta functions bY : b2 : b3 = 0 : 2 : 3. We will show in Appendix B that this generalizes

to some other gauge groups.

If we compare (2.6.3) to a naive one-loop renormalization group formula that we might

write in a GUT theory, which would read

1

g2
a(µ)

=

(
1

g2
GUT

)
ka +

ba

16π2
log(E2

GUT
/µ2) , (2.6.6)

then we also see that we can write

1

g2
GUT

=
1

g2
M

+
10T (Q, ω)

16π2
. (2.6.7)
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This formula tells us how the coupling gM used in M -theory should be compared to the

gGUT that is inferred from low energy data. Our computation really only makes sense if

the difference between gM and gGUT is much smaller than either, since otherwise higher

order corrections would be important. Moreover, a different regularization (such as M -

theory may supply) might have given a different answer for the shift in gM , so this shift

is unreliable.

A noteworthy fact – though a simple consequence of SU(5) group theory – is that the

massive Kaluza-Klein harmonics have made no correction at all to the prediction of the

theory for sin2 θW .

2.6.3 Interlude on Masses of Heavy Bosons

For any manifold, the eigenvalues of the Laplacian scale with the volume. Hence, as we

described in the Prelude, the relation (2.6.4) is also a relation between the unification

scale and the masses of those Kaluza-Klein modes that correspond to the heavy gauge

bosons that can mediate proton decay in four dimensional theories. That mass is

MV =

√
λmin(Q)

V
1/3
Q

, (2.6.8)

where λmin(Q) is the smallest λ0,n which corresponds to a vector boson φ0 in either the

(3, 2,−5/6) or (3, 2, 5/6) representation. We take the smallest one here since we are

assuming for this interlude that the matrix elements for proton decay in our model are

the same as in usual GUT’s, i.e. that they are roughly proportional to the fourth power

of the mass of these gauge bosons and hence dominated by the lightest gauge boson.

(However, we shall see in Section 2.8 that our situation is different due to the way in

which the chiral fermions are localized.) The relation between MV and EGUT , in terms of

D(Q) and λmin(Q), is
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EGUT = MV

√√√√ D(Q)

λmin(Q)
(2.6.9)

With our assumption, the proton lifetime would get a correction from its usual pre-

diction in which MV is taken to be equal to EGUT by a factor

(
MV

EGUT

)4

=

(
λmin(Q)

D(Q)

)2

. (2.6.10)

For many lens spaces, both D(Q) and λmin(Q) are of order 1-10, so for those cases, this

correction is close to 1.

2.6.4 Adding Quarks, Leptons, and Higgs Bosons

Here we discuss how the quarks, leptons, and Higgs bosons can be introduced into the

model. The construction here will be important for the study of proton decay in Section

2.8.

So far we have solely considered the case that the normal space to Q has only the

standard orbifold singularity, so that the only charged particles with masses ≤ 1/RQ are

the Kaluza-Klein harmonics. Now we want to introduce quarks, leptons, Higgs bosons,

and possibly other charged light fields such as messengers of gauge-mediated supersym-

metry breaking. We do this by assuming at points Pi ∈ Q the existence of certain more

complicated singularities of the normal bundle. These generate charged massless SU(5)

multiplets (which may ultimately get masses at a lower scale if a superpotential is gener-

ated or supersymmetry is spontaneously broken). If the singularities of the Pi are generic,

each one contributes a new irreducible SU(5) multiplet Mi of massless chiral superfields.

Specific singularities that generate chiral multiplets transforming in the 5, 10, 10, and 5

of SU(5) have been studied in [16, 67, 14, 15].

It is believed that these singularities are conical. This is definitely true in a few cases in

which the relevant G2 metrics are conical metrics that were constructed long ago [100, 101]
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(and found recently [16] to generate massless chiral multiplets). Since a conical metric

introduces no new length scale that is positive but smaller than the eleven-dimensional

Planck length, we expect that these singularities, apart from the massless multiplets Mi,

introduce no new particles of masses ≤ 1/RQ that need to be considered in evaluating

the threshold corrections.

We can also argue, a little less rigorously, that the singularities of the normal bundle

that produces massless chiral superfields in the 5, 10, etc., have no effect on the Kaluza-

Klein harmonics of the seven-dimensional vector multiplet on R4 × Q. To show this,

we consider the construction in [14], where the association of massless chiral multiplets

with singularities was argued using duality with the heterotic string. In this argument,

the existence in the G2 description of a conical singularity that generates massless chiral

superfields was related, in a heterotic string description that uses a T3 fibration, to the

existence of a certain zero mode of the Dirac equation on a special T3 fiber. The existence

of this zero mode generates a localized massless multiplet in the 5, 10, etc., as shown in

[14], but does nothing at all to the seven-dimensional vector multiplet (which has no

exceptional zero mode on the T3 in question).

Granted these facts, to incorporate the effects of the multiplets Mi, all we have to do

is add their contributions to the starting point (2.3.1) or to the final result (2.6.3). If all

of the new multiplets are massless down to the scale of supersymmetry breaking, then,

for µ greater than this scale, all we have to do is add a contribution to (2.3.1) due to the

new light fields. Let ∆ba be the contribution of the new light fields to the beta function

coefficients ba – note that since the Mi form complete SU(5) multiplets, they contribute

to each ba in proportion to ka. The contribution of the new fields to (2.3.1) is to add to

the right hand side

∆ba log(Λ̃2/µ2), (2.6.11)

which is the contribution due to renormalization group running of the Mi from their cutoff

Λ̃ down to µ. We do not exactly know what effective cutoff Λ̃ to use for the Mi, but it

is of order M11. Anyway, the exact value of Λ̃ does not matter; it can be absorbed in
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a small correction to gM (this correction is no bigger than other unknown corrections

due for example to possible charged particles with masses of order M11). In fact, up

to a small shift in gM , it would not matter if we replace Λ̃ by the (presumably lower)

scale exp
(

1
3
(T (Q, ω) − T (Q, 1)

)
/V

1/3
Q that appears in (2.6.4). So if all components of

the Mi are light, we can take our final answer to be simply that of (2.6.3), but with all ba

redefined (by the shift ba → ba + ∆ba) to include the effects of the Mi. In other words, if

all components of Mi are light, we simply have to take the ba in (2.6.3) to be the exact β

function coefficients of the low energy theory.

Then, our RGE’s are precisely the same ones we would write for the standard model if

we were not considering threshold corrections, except that we have replaced the expression

for EGUT by D(Q)/V
2/3
Q . Therefore, the predictions obtained from measurements of g3

and gem are the same as those obtained from the four dimensional SUSY standard model:

EGUT = D(Q)/V
2/3
Q = 2.2 × 1016 GeV , α−1

GUT
= 4π/g2

GUT
= 24.3, sin2 θW = .23.

The assumption that all components of the Mi are light is inconsistent with the mea-

sured value of the weak mixing angle sin2 θW . That measured value (and the longevity of

the proton) is instead compatible with the hypothesis that all components of the Mi are

light except for the color triplet partners of the ordinary SU(2) × U(1) Higgs bosons; we

call those triplets T and T̃ . Let mT be the mass of T and T̃ (we assume this mass comes

from a superpotential term T T̃ , in which case T and T̃ have equal masses), and let ∆bT,T̃
a

be their contribution to the beta functions. These are not proportional to ka since T and

T̃ do not form a complete SU(5) multiplet. Then (2.6.11) should be replaced by

(∆ba − bT,T̃
a ) log(Λ̃2/µ2) + bT,T̃

a log(Λ̃2/m2
T ), (2.6.12)

the idea being that the T , T̃ contributions run only from Λ̃ down to mT , while the others

run down to µ. Up to a small correction to gM , we can again replace Λ̃ in (2.6.12) by

Λ̃ → exp
(

1

3
(T (Q, ω) − T (Q, 1))

)
V

−1/3
Q . (2.6.13)
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If we do this, then (2.6.3) is replaced by

1

g2
a(µ)

=

(
1

g2
M

+
10T (Q, ω) + δ

16π2

)
ka +

ba

16π2
log


exp(2

3
(T (Q, ω) − T (Q, 1))

µ2V
2/3
Q




+
bT,T̃
a

16π2
log


exp(2

3
(T (Q, ω) − T (Q, 1)))

m2
T V

2/3
Q


 . (2.6.14)

Here ba are the full beta functions of the low energy theory below the mass mT , and bT,T̃
a is

the additional contribution to the beta functions from T, T̃ between mT and the effective

GUT mass EGUT = exp
(

1
3
(T (Q, ω) − T (Q, 1))

)
/V

1/3
Q . Finally, δ expresses an unknown

shift in the effective value of gM ; this shift is presumably unimportant within the accuracy

of the computation.

The lens space

The result (2.6.3) holds for any 3–manifold Q. For our example of the lens space, we

can make our result completely explicit:

1

g2
Y
(µ)

=
kY

g2
GUT

,

1

g2
2(µ)

=
1

g2
GUT

− 6

16π2
log

D(q, w)

V 2
Qµ2

,

1

g2
3(µ)

=
1

g2
GUT

− 9

16π2
log

D(q, w)

V 2
Qµ2

, (2.6.15)

where D(q, w) is given by (2.5.26) or its generalization at the end of Section 2.5; one can

check, from the discussion of the lens space at the end of Section 2.5, that D(q, w) is

D(Q) when Q is the lens space.

The value of µ at which all gauge couplings unify is given by

µ2 = E2
GUT

=
D(q, w)

V
2/3
Q

. (2.6.16)

55



and the relation between EGUT and VQ in this model is

EGUT =

(
4q sin2(5πw/q)

VQ

)1/3

, VQ =
4q sin2(5πw/q)

E3
GUT

. (2.6.17)

2.7 On Newton’s Constant

One virtue of computing the threshold corrections is that we can make somewhat more

precise the formulas for the parameters EGUT , αGUT , and GN that are read off from the

eleven-dimensional supergravity action.

Since M -theory on C2/Z5 is an SU(5) gauge theory equivalent to a gauge theory com-

ing from 5 wrapped D6 branes in Type IIA string theory, we can use the relations between

the gauge couplings on the D6 branes in Type IIA string theory and the gravitational

coupling in 11 dimensions to express the value of GN in terms of αGUT , VQ, and EGUT .

The gravitational action in 11 dimensions is given by

1

16πG(11)
N

∫
d11x

√
gR =

1

2κ2
11

∫
d11x

√
gR , (2.7.1)

where κ11 is the 11 dimensional gravitational coupling and G(11)
N

is Newton’s constant in

11 dimensions. The Yang–Mills action in 7 dimensions is given by the coupling of Yang–

Mills theory to a D6 brane in type IIA string theory (see eqns. (13.3.25) and (13.3.26) of

[102]):
1

4(2π)4gs(α′)3/2

∫
d7x

√
g TrFµνF

µν , (2.7.2)

where gs is the string coupling constant and Tr is the trace in the fundamental represen-

tation of U(n). In the GUT literature, one usually writes Fµν =
∑

a F a
µνQa, where Qa are

generators of U(n) normalized to Tr QaQb = 1
2
δab. So (2.7.2) can be written

1

8(2π)4gs(α′)3/2

∫
d7x

√
g
∑

a

F a
µνF

µν a. (2.7.3)

Going to M -theory, the relation between κ11, gs, and α′ is (eqn. (14.4.5) of [102])

κ2
11 =

1

2
(2π)8g3

s(α
′)9/2. (2.7.4)

56



Combining these, we see that the Yang-Mills action in seven dimensions is

1

4g2
7

∫
d7x

√
g
∑

a

FaµνF
aµν =

1

8(2π)4/3(2κ2
11)

1/3

∫
d7x

√
g
∑

a

FaµνF
aµν , (2.7.5)

where the trace is taken in the fundamental representation and the generators are nor-

malized as described after (2.3.2).

Let X7 be the volume of X. After reducing (2.7.1) and (2.7.5) to four dimensions and

getting a vactor of VX and VQ respectively, the gravitational and gauge couplings in 4

dimensions can be written as

1

16πGN

=
1

2κ2
11

VX ,

1

16παGUT

=
1

8(2π)4/3(2κ2
11)

1/3
VQ . (2.7.6)

Here, GN is Newton’s constant in 4 dimensions. Eliminating κ11 and solving for GN gives

GN =
1

32π2
α3

GUT

V 3
Q

VX
=

1

32π2a
α3

GUT
V

2/3
Q , (2.7.7)

where VX = aV
7/3
Q . Using the relation between VQ and EGUT given in (2.6.4)

VQ =
1

E3
GUT

D(Q)3/2, (2.7.8)

we get

GN =
1

32π2a

α3
GUT

E2
GUT

D(Q). (2.7.9)

Here EGUT is the unification scale as inferred from low energy data. For the simplest

lens space, D(Q) = (4q sin2(5πw/q))2/3.

We now discuss the quantity a. Since the 7-manifolds discussed here are not compact,

in fact it is the case that a is infinite. However, one can also postulate the existence of G2

manifolds which have similar properties (namely, an ADE singularity with locus which

has a finite, non-trivial fundamental group, as well as extra singularities that support
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chiral fermions) and are at the same time compact. Such manifolds have not yet been

explicitly constructed, but there has been much development lately in constructions of

compact G2 manifolds [103], so there is hope that the necessary manifolds will soon be

constructed. Furthermore, such manifolds are believed to exist via dualities. For the cases

when dualities can be used to deduce the existence of a compact G2 manifold with the

right properties, it is the case (see [61]) that a � 1.

If there is an upper bound on a, then (2.7.9) is a lower bound on GN that depends on

the values of the GUT parameters, the readily computed constant D(Q), as well as the

bound on a.

Within the uncertainties, such a bound on GN may well be saturated in nature. If

we use the often-quoted values EGUT = 2.2 × 1016 GeV and α−1
GUT

= 24.3, then, with

GN = 6.7 × 10−39 GeV−2, we need approximately D(Q)/a = 14.7. We recall, however,

that these values correspond to a minimal three family plus Higgs boson spectrum below

the GUT scale, and that the doublet-triplet splitting mechanism [41] that we are assuming

in the present work really leads to extra light fields in vector-like SU(5) multiplets. If we

use the values EGUT ∼ 8 × 1016 GeV, αGUT ∼ .2, which are typical values found in [104]

(see also [105]) for certain models that have TeV-scale vector-like fields transforming as

5̄ ⊕ 10 plus their conjugates, then we get9 D(Q)/a = 1.7.

Ignoring for the moment the unknown value of a, the expression (2.7.9) gives a better

agreement with the known value of GN than the analogous one for the weakly or strongly

coupled heterotic string; the main reason is the power of αGUT : in the weak heterotic

string, the power was α
4/3
GUT and in the strong it was α2

GUT
. Both gave lower bounds for

GN that were too large [82, 83]. Here, the power is α3
GUT

, allowing GN to be smaller.

We can combine (2.7.6) and (2.7.9) to give

κ2
11 =

α3
GUT D(Q)9/2

4πE9
GUT

. (2.7.10)

9To get a rough feel, note that if a = 1, we can take for the lens space q = 14 and w = 7 to get

D(Q) = 14.7, or we can take q = 17 and w = 7 to get D(Q) = 1.7.
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This formula is attractive because it is expresses the fundamental eleven-dimensional

coupling κ11 in terms of quantities – αGUT and EGUT – about whose values we have at

least some idea from experiment, and another quantity – D(Q) – that is readily calculable

in a given model. Furthermore, a does not appear here.

The eleven-dimensional Planck mass M11 has been defined ([102], p. 199) by 2κ2
11 =

(2π)8M−9
11 . So we can express (2.7.10) as a formula for M11:

M11 =
2πEGUT

α
1/3
GUTD(Q)1/2

. (2.7.11)

One important result here is that EGUT is parametrically smaller than M11 – by a factor

of α
1/3
GUT . This factor of α

1/3
GUT is the reason that it makes sense to use perturbation theory

– as we have done in computing threshold corrections in Section 2.5.

Regrettably, the precise factors in the definition of M11 have been chosen for conve-

nience. We really do not know if the characteristic mass scale at which eleven-dimensional

supergravity breaks down and quantum effects become large is M11, or 2πM11, or for that

matter M11/2π.10 This uncertainty will unfortunately be important in Section 2.8.

2.8 Proton Decay

In this section, we will analyze the gauge boson contribution to proton decay in the present

class of models.

First, we recall how the analysis goes in four-dimensional GUT’s. We will express the

analysis in a way that is convenient for the generalization to R4 × Q. The gauge boson

contribution to proton decay comes from the matrix element of an operator product

g2
GUT

∫
d4x Jµ(x)J̃µ(0)D(x, 0), (2.8.1)

10Just to get a feel for what M11 might be, note that for (q, w) = (2, 1), we have M11 = 2.0× 1017GeV

for the often-quoted values of EGUT and αGUT , and M11 = 4.3× 1017GeV for the values in [104].
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where J and J̃ are the currents in emission and absorption of the color triplet gauge bosons.

We have used translation invariance to place one current at the origin, and D(x, 0) is the

propagator of the heavy gauge bosons that transform as (3, 2)−5/6 of SU(3)×SU(2)×U(1).

Because the proton is so large compared to the range of x that contributes appreciably

in the integral, we can replace Jµ(x) by Jµ(0), and then use

∫
d4x D(x, 0) =

1

M2
V

(2.8.2)

(with MV the mass of the heavy gauge bosons) to reduce (2.8.1) to

g2
GUT JµJ̃

µ(0)

M2
V

. (2.8.3)

Equation (2.8.2) is a direct consequence of the equation for the propagator, which is

(
∆ + M2

V

)
D(x, 0) = δ4(x), (2.8.4)

with ∆ = −ηµν∂µ∂ν the Laplacian. Of course, in deriving (2.8.2), we should be careful

in defining the operator product JµJ̃
µ; doing so leads to some renormalization group

corrections to the above tree level derivation. These can be treated the same way in four

dimensions and in the G2-based models, and hence need not concern us here.

In R4×Q, the idea is similar, except that the currents are localized at specific points on

Q, which we will call P1 and P2. The gauge boson propagator is a function D(x, P ; y, P ′)

with x, y ∈ R4, and P, P ′ ∈ Q; the equation it obeys is

(∆R4 + ∆Q) D(x, P ; y, P ′) = δ4(x − y)δ(P, P ′). (2.8.5)

Here ∆R4 is the Laplacian on R4, acting on the x variable, and similarly ∆Q is the

Laplacian on Q, acting on P . Now we set P and P ′ to be two of the special points P1

and P2 on Q (with enhanced singularities in the normal directions) at which chiral matter

fields are supported. The analog of (2.8.1) is

g2
7

∫
d4xJµ(x, P1)J̃

µ(0, P2)D(x, P1; 0, P2), (2.8.6)
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where we have used translation invariance to set y = 0. Again, because the proton is so

large compared to the range of x that contributes significantly to the integral, we can set

x to 0 in Jµ(x, P1), giving us

g2
7Jµ(0; P1)J̃

µ(0; P2)
∫

d4x D(x, P1; 0, P2). (2.8.7)

Now it follows from (2.8.5) that the function

F (P, P ′) =
∫

d4x D(x, P ; 0, P ′) (2.8.8)

obeys

∆QF (P, P ′) = δ(P, P ′). (2.8.9)

In other words, F is the Green’s function of the scalar Laplacian on Q (for scalar fields

valued in the (3, 2)−5/6 representation). In particular, F is bounded for P away from P ′,

and for P → P ′,

F (P, P ′) → 1

4π|P − P ′| , (2.8.10)

with |P−P ′| denoting the distance between these two points. The proton decay interaction

is

g2
7Jµ(0; P1)J̃

µ(0; P2) F (P1, P2). (2.8.11)

More exactly, this is the contribution for fermions living at the points P1, P2. It must be

summed over possible Pi.

Given (2.8.10), if it is possible to have P1 very close to P2, this will give the dominant

contribution. But how close will the Pi be? The smallest that the denominator in (2.8.10)

will get is if P1 = P2, in other words if the currents Jµ and J̃µ in the proton decay process

act on the same 10 or 5̄ of SU(5), living at some point P = P1 = P2 on Q. If this is

the case, then the result (2.8.7) is infinite. M -theory will cut off this infinity, but we do

not know exactly how. The best we can say is that the cutoff will occur at a distance

of order the eleven-dimensional Planck length, as this is the only scale that is relevant

in studying the conical singularity at P . If we naively say that setting P1 = P2 means
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replacing 1/|P1 − P2| by 1/R11 = M11 (with R11 the eleven-dimensional Planck length;

M11 was evaluated in (2.7.11)), then we would replace F (P, P ) by M11/4π. Unfortunately,

as noted at the end of Section 2.7, we have no idea whether M11 or some multiple of it is

the natural cutoff in M -theory. This is an important uncertainty, since (for example) 4π

is a relatively large number and the proton decay rate is proportional to the square of the

amplitude. All we can say is that the effective value of F (P, P ), though uncalculable with

the present understanding of M -theory, is model-independent; it does not depend on the

details of X or Q, but is a universal property of M -theory with the conical singularity P .

The effective interaction is
∑

P

C
M11g

2
7

4π
JµJ̃µ(P ), (2.8.12)

where C is a constant that in principle depends only on M -theory and not the specific

model. So C might conceivably be computed in the future (if better methods are dis-

covered) without knowing how to pick the right model. We have made explicit the fact

that the interaction is summed over all possibilities for P = P1 = P2. Subleading (and

model-dependent) contributions with P1 6= P2 have not been written.

Let us compare this to the situation in four-dimensional GUT’s. The currents J and

J̃ receive contributions from particles in the 10 and 5̄ of SU(5). Thus we can expand

JµJ̃
µ = J10

µ J̃µ10 + J 5̄

µ J̃µ 5̄ + J10

µ J̃µ 5̄ + J 5̄

µ J̃µ10. (2.8.13)

Among these terms, the 10 · 10 operator product contributes to p → π0e+
L , 5̄ · 5̄ does not

contribute to proton decay, and the cross terms contribute to p → π0e+
R and p → π+ν̄R.

Assuming that the points supporting 10’s are distinct from the points supporting 5̄’s,

the above mechanism, in comparison to four-dimensional GUT’s, enhances the decay

p → π0e+
L relative to the others.

Using the formulas in Section 2.7, we can evaluate the product g2
7M11. Reading off g2

7

from (2.7.5) and M11 from (2.7.11), we find that the effective interaction is

∑

Pi

CJµJ̃
µ(Pi) ·

2πD(Q)α
2/3
GUT

E2
GUT

. (2.8.14)
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The equivalent formula in four-dimensional GUT’s is

JT
µ J̃T µ g2

GUT

M2
V

= JT
µ J̃T µ 4παGUT

M2
V

, (2.8.15)

where the superscript T refers to the total current for all fermion multiplets. Moreover,

MV is the mass of the color triplet gauge bosons, and so may not coincide with EGUT ,

which is the unification scale as deduced from the low energy gauge couplings. The above

formulas show that, in principle, the decay amplitude for p → π0e+
L in the G2-based

theory is enhanced as αGUT → 0 by a factor of α
−1/3
GUT relative to the corresponding GUT

amplitude. The enhancement means that, in some sense, in the models considered here,

proton decay is not purely a gauge theory phenomenon but a reflection of M -theory.

In practice, α
−1/3
GUT is not such a big number. Whether the effect we have described is

really an enhancement of p → π0e+
L or a suppression of the other decays depends largely on

the unknown M -theory constant C. The factor D(Q) can also be significant numerically.

For example, for the simplest lens space, with the minimal choice w = 1, q = 2, we get

D(Q) = (4q sin2(5πw/q))2/3 = 4.

Even if C and the other factors in (2.8.14) were all known, the proton lifetime would

also depend on how the light quarks and leptons are distributed among the different

Pi, or equivalently, how they are distributed among the different 10’s of SU(5). The

same remark applies in four-dimensional GUT’s: the proton decay rate can be reduced by

mixing of quarks and leptons among themselves as well as with other multiplets, including

multiplets that have GUT-scale masses.

The arrangement of the different quarks and leptons among the Pi will also affect the

flavor structure of proton decay. What we have referred to as p → π0e+
L will also contain

an admixture of other modes with π0 replaced by K0, and/or e+
L replaced by µ+

L . As in

four-dimensional GUT’s, these relative decay rates are model-dependent.
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Appendix

We have two appendices. In the first one, we compute the Ray–Singer torsion for

the lens space for the trivial representation and show how its two parts K(S3/Zq, 1) and

A(S3/Zq, 1) depend on the volume; we also show that the volume dependence obtained

from it generalizes to any 3–manifold with b1(Q) = 0. In the second appendix, we

generalize our results to the breaking of SU(p) to SU(m) × SU(n) × U(1).

A The Ray-Singer torsion for the trivial representa-

tion

A.1 K(S3/Zq, 1)

We will calculate K(S3, 1) first, and we shall use the relation

K(S3, 1) = K(S3/Zq, 1) +
∑

ω

K(S3/Zq, ω) , (A.1)

where the sum is over non-trivial representations of Zq for which the torsion is known and

given by (2.5.23), to obtain K(S3/Zq, 1). The relation (A.1) follows from an analogous

one for the logarithm of the determinant of each Laplacian: each eigenform on S3 is in

some representation of the Zq action on S3 that defined S3/Zq, so we can separate the sum

over eigenforms on S3 into a sum over the eigenforms living in the trivial representation

of Zq and those living in the non trivial representations.
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The quantity we are about to calculate is

K(S3, 1) =
3

2
log det ∆′

0(S
3) − 1

2
log det ∆′

1(S
3) ,

so we need the eigenvalues of the Laplacian and their multiplicities for 0–forms and 1–

forms on S3. We shall calculate everything first for a sphere of radius 1, and include the

dependence on the radius later.

The 0–forms have eigenvalues λ0,n = n(n+2) with multiplicities y0,n = (n+1)2. There

are two types of 1–forms: closed, which have the same eigenvalues and multiplicities as

the 0–forms, and co-closed, which have eigenvalues λ1,n = (n + 1)2 and multiplicities

y1,n = 2n(n + 2) (see (3.19) of [106]).

The logarithm of the determinant of the Laplacian is defined by analytic continuation

using the Riemann zeta function (for more examples of the use fo zeta function regular-

ization in studying Ray-Singer torsions, see [106]). We begin by writing the zeta function

of the Laplacian on 0–forms or closed 1–forms, and the zeta function of the Laplacian on

co-closed 1–forms:

ζ0(s) =
∑ y0,n

λs
0,n

=
∞∑

n=1

(n + 1)2

(n(n + 2))s
, (A.2)

ζ1(s) =
∑ y1,n

λs
1,n

=
∞∑

n=1

2n(n + 2)

(n + 1)2s
. (A.3)

Then we have

−ζ ′
0(0) = log det ∆′

0 = log det ∆
′ closed
1 , (A.4)

−ζ ′
1(0) = log det ∆

′ co−closed
1 . (A.5)

In terms of these zeta functions, we have

1

2

[
3 log det ∆′

0 − (log det ∆
′ closed
1 + log det ∆

′ co−closed
1 )

]
=

1

2
ζ ′
1(0) − ζ ′

0(0) . (A.6)

We wish to rewrite the sums ζ0(s) and ζ1(s) in terms of the well known Riemann zeta

function ζ(s) so that they will be well-defined at s = 0. This is straightforward for ζ1(s):

ζ1(s) = 2
∞∑

n=1

( (n + 1)2

(n + 1)2s
− 1

(n + 1)2s

)
,
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whose analytic continuation is

ζ1(s) = 2((ζ(2s − 2) − 1) − (ζ(2s) − 1)) = 2(ζ(2s − 2) − ζ(2s)) . (A.7)

As for ζ0(s), we rewrite it as follows:

ζ0(s) =
∞∑

n=1

(n + 1)2
[(

1 − 1

(2s + 1)

)
1

(n + 1)2s
+

1

2(2s + 1)

( 1

n2s
+

1

(n + 2)2s

)]
(A.8)

+
∞∑

n=1

(n + 1)2
[ 1

(n(n + 2))s
−
(

1 − 1

(2s + 1)

)
1

(n + 1)2s
− 1

2(2s + 1)

( 1

n2s
+

1

(n + 2)2s

)]
.

The sum on the second line converges absolutely for <e(s) > −1/2: with u = 1
n+1

, it

becomes

∞∑

n=1

u2s−2
[ 1

(1 − u2)s
−
(

1 − 1

(2s + 1)

)
− 1

2(2s + 1)

( 1

(1 − u)2s
+

1

(1 + u)2s

)]
,

and one can see that the leading order term for large n (small u) is u2s−2u4 = u2s+2,

hence it is bounded by 1/(n + 1)2s+2 which converges absolutely for <e(2s + 2) > 1 or

<e(s) > −1/2. Hence for <e(s) > −1/2, we can do the sum term by term. At s = 0,

each term in the sum vanishes, and furthermore the derivative of each term with respect

to s at s = 0 vanishes. Therefore, for small s we can write

ζ0(s) =
∞∑

n=1

(n + 1)2
[(

1 − 1

(2s + 1)

)
1

(n + 1)2s
+

1

2(2s + 1)

( 1

n2s
+

1

(n + 2)2s

)]
,

which becomes, by analytic continuation,

ζ0(s) = ζ(2s − 2) +
1

(2s + 1)
ζ(2s) −

(
1 − 1

(2s + 1)

)
− 1

(2s + 1)22s+1
. (A.9)

Using known values of the Riemann zeta function

ζ(−2) = 0 , ζ(0) = −1/2 , ζ ′(0) = −1

2
log 2π,
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we have at s = 0 the following values of the zeta functions of our Laplacians and their

derivatives:

ζ0(0) = ζ(−2) + ζ(0) − 1

2
= −1 ,

ζ1(0) = 2(ζ(−2) − ζ(0)) = 1 ,

ζ ′
0(0) = 2ζ ′(−2) − log π , (A.10)

ζ ′
1(0) = 4(ζ ′(−2) − ζ ′(0)) = 4ζ ′(−2) + 2 log(2π) .

(The value of ζ ′
0(0) can also be obtained from Proposition 3.1 of [107], or from [108].)

Now we include the dependence on the radius: the quantity that comes into the

physical calculation is actually

−
∑

n

log
(m2

k,n

Λ2

)
= −

∑

n

yn log
λk,n

Λ2R2
,

so we should replace equations (A.2) and (A.3) by

η0(s) = (RΛ)2sζ0(s) , (A.11)

η1(s) = (RΛ)2sζ1(s) , (A.12)

whose derivatives at s = 0 are

η′
0(0) = − log R2Λ2 + ζ ′

0(0) , (A.13)

η′
1(0) = log R2Λ2 + ζ ′

1(0) . (A.14)

We now have

K(S3, 1) =
1

2
η′

1(0) − η′
0(0)

=
3

2
log R2Λ2 + log 2π2 . (A.15)

Finally, we can use (A.1): the sum over ω is a sum over non-trivial qth roots of unity,

so using (2.5.23), we have

∑

ω

K(S3/Zq, ω) =
∑

ω

T (S3/Zq, ω) =
∑

ω

log |ω − 1||ω−1 − 1| = 2 log q , (A.16)
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or, for the more general lens space, with integers m and j as described in the last paragraph

of Section 2.5, we similarly have

=
∑

ω

log |ω − 1||ω−j − 1| = 2 log q . (A.17)

Therefore,

K(S3/Zq, 1) =
3

2
log R2Λ2 + log 2π2 − 2 log q

= log

(
2π2

q2

)
+

3

2
log R2Λ2. (A.18)

In terms of the volume V = 2π2R3/q, this becomes

K(S3/Zq, 1) = log
(2π2

q2

)
+ log

q

2π2
V Λ3

= log
V Λ3

q
. (A.19)

The Ray-Singer torsion K(S3/Zq, 1) for the trivial representation can be calculated from

[99] or [97] to be log 1
q
. Hence, the term A(S3/Zq, 1) in (2.5.14) is given by − log V Λ3.

We show in the next subsection that this generalizes to any Q with b1(Q) = 0.

A.2 A(Q, 1)

Here we show how the quantity K(Q, 1) depends only on the volume of Q for any 3–

manifold Q with b1(Q) = b2(Q) = 0.

The term A(Q, 1) defined in (2.5.1)-(2.5.2) involves the matrix Ak of change of basis

from an integral basis for the kth integer cohomology, i.e. a basis whose periods around

cycles is 1, to a basis of harmonic k–forms of norm 1. Having fixed a metric on Q, let V

be the volume of Q and let εijk be the volume form on Q:

∫

Q
εijk dxi ∧ dxj ∧ dxk = V. (A.20)
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The two bases can be written as follows (we need only consider k = 0, 3 since the other

cohomologies vanish):

basis for cohomology basis of norm 1 determinant of change of basis

H0 1 1√
V

1√
V

H3 εijk

V

εijk√
V

√
V

(A.21)

Therefore, we have

A(Q, 1) =
3∑

k=0

(−1)k log det[Ak] = log
det A0

det A3
= log

(
1

V

)
(A.22)

The volume VQ scales as Λ3, so

A(q, 1) =
3∑

k=0

(−1)k log det[Ak] = − log(V Λ3) = −3/2 log(V
2/3
Q Λ2) . (A.23)

The corresponding coefficients that come up in the RGEs come from the sum (2.3.2)

for one massless vector multiplet, which gives − 3
2
log Λ2. They cancel with the term for

log Λ3 = 3
2
log Λ2 here.

B Generalization to breaking of SU(p)

Here, we show that for any breaking of an SU(p) gauge group to SU(m)×SU(n)×U(1),

the threshold corrections Sa
′ are proportional.

The analog of (2.5.8) for SU(p) breaking to the subgroup SU(m) × SU(n) × U(1),

with m + n = p, is

(m2 − 1, 1, 0) ⊕ (1, n2 − 1, 0) ⊕ (1, 1, 0)⊕ (m, n,−m + n

mn
) ⊕ (m, n,

m + n

mn
) .(B.1)

ρ1 ρ2 ρ3 ρ4 ρ5

with normalization kY of the abelian factor given by kY = 2(m + n)/mn.
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The threshold corrections are given by

SY = 2
(m + n)2

mn
(T (Q, ω4) + T (Q, ω5)) ,

Sn = 2n K(Q, 1) + m (T (Q, ω4) + T (Q, ω5)) ,

Sm = 2m K(Q, 1) + n (T (Q, ω4) + T (Q, ω5)) , (B.2)

so after shifting by SY /kY we have

SY
− = 0 ,

Sn
− = 2n K(Q, 1) − n (T (Q, ω4) + T (Q, ω5)) ,

Sm
− = 2m K(Q, 1) − m (T (Q, ω4) + T (Q, ω5)) , (B.3)

which are proportional, with ratio

SY
− : Sn

− : Sm
− = 0 : n : m , (B.4)

which is just the ratio of the adjoint Casimirs of the groups, and matches the corresponding

ratio of beta functions bY : bn : bm = 0 : n : m.

Note that all the statements in Section 2.5 generalize for this case. We just make the

following additional replacements: in (2.5.11), replace e5ivγ by epivγ ; in (2.5.21) replace

10πw/q by 2pπw/q; in (2.5.26), replace 5 by p; finally, replace (2.2.7) by

Uγ = exp

(
2πiw

q
· diag{n, . . . n,−m, . . . , ,−m}

)
, (B.5)

with n appearing m times, −m appearing n times. Similarly, the results in Section 2.6

generalize to this case.

Note that generalizing to other unified groups does not in general preserve unification.
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Part II

Schwinger meets Kaluza-Klein

71





Chapter 1

Introduction and Summary

The classic study of the rate of creation of electron-positron pairs in a uniform, constant

electric field was done more than 50 years ago in the seminal paper by Schwinger [46].

The concepts and methodology introduced in this work have had a lasting impact on the

formal development of quantum field theory, and by now several alternative derivations

of the effect have been invented (see e.g. [109, 47, 48, 51, 49, 50]).

Schwinger’s predicted rate per unit time and volume is given by [46, 49, 50]

W(E) = qE
∫

d2ki

(2π)2

∞∑

n=1

1

n
exp

(
−πn(m2

e + k2
i )

|qE|
)

(1.0.1)

for a spin 1/2 particle in 4 flat space-time dimensions, with me and q the electron mass

and charge, ki the transverse momenta, and E the electric field.1

In an earlier set of equally classic papers [1, 2], Kaluza and Klein introduced their

unified description of general relativity and electromagnetism, in which charged particles

1The rate (1.0.1) is still very small for experimentally accessible electric fields. For the rate to be

appreciable, the field must be very large, around Ecrit = 1016eV/cm. A static field of this magnitude is

difficult to obtain in laboratories, largely because it is several orders of magnitude above the electric field

that can be sustained by an atom, namely 108eV/cm. See [59] for a recent experiment that has obtained

pair creation from oscillating electric fields, which were studied theoretically in [52], and see [60] for an

upcoming experiment studying pair production from the low-frequency, Schwinger limit of such fields.
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appear as quanta with non-zero quantized momentum around a compact extra dimension.

It has of course always been clear that the charged Kaluza-Klein particles do not have

the correct properties to represent electrons; most notably, the mass of the fundamental

KK particles is equal to (or bounded below by) their charge, while for the electron the

ratio me/q is about 10−21 ! So in comparison with electrons, KK particles are either

very heavy or have (in a large extra dimension scenario) an exceedingly small KK electric

charge. Nonetheless, or rather, because of this fact, it is an interesting theoretical question

whether it is at all possible, via an idealized Gedanken experiment, to pair produce KK

particles by means of the Schwinger mechanism. As far as we know, this question has

not been addressed so far in the literature, and probably for a good reason: it turns out

to be a subtle problem! We will show that unlike the standard Schwinger pair creation

effect, pair production of KK particles cannot be given the simple and rather intuitive

interpretation of a tunneling mechanism.

Imagine setting up our Gedanken experiment as in figure 1, with two charged plates

with a non-zero KK electric field in between. As seen from equation (1.0.1), to turn on the

effect by any appreciable amount will require an enormous KK electric field, and since

Kaluza-Klein theory automatically includes gravity, the backreaction of the E-field on

space-time will need to be taken into account. The best analog of a constant electric field

in this setting is the electric version of the Kaluza-Klein Melvin background; the magnetic

version was studied recently in [110, 111, 112, 113, 114, 115, 116]2, and in [115, 116] the

electric version also appeared. We will study some of the features of the electric KKM

background in section 2. For our problem, the relevant properties of this background are

that

(i) the background geometry depends on a longitudinal coordinate, which we will call ρ;

(ii) a gravitational acceleration a(ρ), directed along the E-field, is included;

(iii) the total gravitational and electrostatic potential energy remains positive everywhere.

2In [112], pair production of Kaluza-Klein monopoles from the magnetic Kaluza-Klein Melvin solution

was studied. See also [117] for a study of other aspects of the magnetic solutions.
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E = 0

a = 0

ρ = ρ2

Plate 2

ρ = ρ1 ρ

Plate 1

Fig. 1: The Gedanken experiment we will imagine in this paper, with two charged plates at

ρ=ρ1 and ρ=ρ2, producing a non-zero E-field in the intermediate region. The backreaction

and the finite mass density of the plates results in a non-zero gravitational acceleration a.

The first two properties are expected backreaction effects. The last property, however,

implies that the negative electrostatic potential can never be made large enough to com-

pensate for the positive contribution coming from the rest mass of the particles. The

physical reason for this obstruction is that before one reaches the critical electro-static

potential, backreaction effects will cause space-time itself to break down: if one would

formally continue the solution beyond this point, the space-time develops closed time-like

curves, which are known to be unphysical. In this way, gravity puts an upper limit on

the potential difference one can achieve between the two plates in figure 1.

This result may look like an unsurmountable obstacle for pair creation, which is usually

thought of as a tunneling effect by which particle pairs can materialize by using their

electro-static energy to overcome their rest mass. The modern instanton method [47, 48,

51] of computing the pair creation rate, for example, crucially depends on this intuition.

However, as mentioned in point (ii) above, it turns out that the backreaction necessarily

implies that the vacuum state of the KK particles needs to be defined in the presence of
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a non-zero gravitational acceleration. As we will explain in Appendix A, the necessary

presence of this acceleration can be thought of as due to the non-zero mass of the parallel

plates that produce the KK electric field. Consequently, the Schwinger effect needs to be

studied in conjunction with its direct gravitational analog, the equally famous Hawking-

Unruh effect [53, 54, 118].

It has been recognized for some time that the Hawking-Unruh effect and Schwinger

pair creation are rather closely related (see, for example, [49, 50]); both can be understood

via a distortion of the vacuum, which may be parametrized by means of some appropriate

Bogolyubov transformation that relates the standard energy eigenmodes to the new en-

ergy eigenmodes in the non-trivial background field. Also, like the Schwinger effect, the

Hawking–Unruh effect has been thought of as a tunnelling mechanism and was derived

as such recently [55]; see also [119] for a related study of de Sitter radiation.

By combining both the Schwinger and the Unruh effects we will obtain the following

result for the pair creation rate of the Kaluza-Klein particles (which we will assume to be

scalar particles) as a function of the electric field E and gravitational acceleration a

W(E, a) =
a3/2

2π2

∫ d−2∏
dki

(2π)d−2

∑

q

(
q2 + Λk2

i

)1/4
exp

[
−2πω(a, q, ki)

]
(1.0.2)

where

ω(a, q, ki) =
q2 + k2

i

| 1
2
qE + a

√
q2 + Λk2

i |
, Λ = 1 − E2

4a2
. (1.0.3)

Here the summation is over the full KK tower of all possible charges q = n/R with n

integer and R the radius of the extra dimension, and a is the ‘bare’ acceleration, that

the particles would experience with the E-field turned off. While E in this formula is

a constant, a in fact depends on the longitudinal coordinate via 1/a = ρ + const. The

potential energy in (1.0.3) is the manifestly positive quantity we referred to in property

(iii) above. A more detailed explanation of the result (1.0.2) will be given in Section 4.

Since in our case mass equals charge the result (1.0.2) looks like a reasonable general-

ization of the classic result (1.0.1) of Schwinger and of Unruh [54, 49, 50]. In particular,
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if we turn off the E-field, our expression (1.0.2) reduces to the Boltzmann factor with

Hawking-Unruh temperature β = 2π/a. Moreover, if we would allow ourselves to drop

all terms containing the acceleration a, the result is indeed very similar to the dominant

n = 1 term in Schwinger’s formula (1.0.1). However, it turns out that in our case, the

gravitational backreaction dictates that the acceleration a can not be turned off; rather,

it is bounded from below by the electric field via

a > |E/2| . (1.0.4)

Our formula (1.0.2) indeed breaks down when a gets below this value. So in particular,

there is no continuous weak field limit in which our result reduces to Schwinger’s answer.

We will further discuss the physical interpretation of our result in the concluding section,

where we will make a more complete comparison with the known rate [120] for Schwinger

production in an accelerating frame.

This Part is organized as follows. In Chapter 2 we describe some properties of the

electric Kaluza-Klein Melvin space-time. In Chapter 3 we study classical particle mechan-

ics and wave mechanics in this background. Finally in Chapter 4, we set out to calculate

the pair creation rate, using (and comparing) several methods of computation. Chapter

5 contains some concluding remarks. We discuss our experimental set-up in Appendix A,

and in Appendix B we summarize the known result for Schwinger pair production in an

accelerating frame.
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Chapter 2

The Electric Kaluza-Klein-Melvin

Space-Time

We start with describing the classical background of d+1-dimensional Kaluza-Klein the-

ory, representing a maximally uniform KK electric field.

2.1 Definition of the Electric KKM Space-time

Consider a flat d + 1 dimensional flat Minkowski space-time, with the metric

ds2 = −dt2 + dx2 + dyidyi + dx2
d+1, (2.1.1)

with i = 2, . . . , d − 1. From this we obtain the electric Kaluza-Klein-Melvin space-time

by making the identification




t

x

yi

xd+1




−→




t′

x′

y′
i

x′
d+1




=




γ (t − βx)

γ (x − βt)

yi

xd+1 + 2πR




, (2.1.2)

79



with γ2(1 − β2) = 1. This geometry can be viewed as a non-trivial Kaluza-Klein back-

ground in d dimensions, in which the standard periodic identification xd+1 ≡ xd+1 + 2πR

of the extra dimension is accompanied by a Lorentz boost in the x-direction. Since the

d + 1 dimensional space-time is flat everywhere, and the identification map (2.1.2) is an

isometry, it is evident that the electric Melvin background solves the equation of motion

of the Kaluza-Klein theory. As we will describe momentarily, from the d-dimensional

point of view, it looks like a non-trivial background with a constant non-zero electric field

E and with, as a result of its non-zero stress-energy, a curved space-time geometry. Here

the electric field E is related to the boost parameters β and γ by

β = tanh(πRE) , γ = cosh(πRE). (2.1.3)

The map (2.1.2) represents a proper space-like identification, for which

−(t′ − t)2 + (x′ − x)2 + (x′
d+1 − xd+1)

2 = (2πR)2 − (2γ − 2)(x2 − t2) > 0 (2.1.4)

provided we restrict to the region

ρ <
πR

sinh πER
2

, ρ2 ≡ x2 − t2. (2.1.5)

where we used (2.1.3). Outside of this regime, the electric Melvin space-time contains

closed time-like curves. We will exclude this pathological region from our actual physical

set-up. 1

1There is also a different notion of the electric version of the KK Melvin space-time, which is obtained

by applying an electro-magnetic duality transformation F → e2
√

3φ ∗ F , φ → −φ to the magnetic KK

Melvin space-time [121]. This background looks like an electric flux-tube in a U(1) gauge theory with an

electric coupling constant e that diverges at large transverse distance from the flux-tube (due to the fact

that the size of the extra dimension shrinks at large distance). Putting a reasonable physical upper bound

on the size of e restricts the maximal allowed length of the flux tube, suggesting that the obstruction

against creating an arbitrarily large electro-static potential may be more general than only for the type

of backgrounds studied in this paper.
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2.2 Classical Trajectories

As a first motivation for the identification of E with the KK electric field, it is instructive

to consider classical trajectories in this space-time. This is particularly easy, since in flat

d + 1 Minkowski space, freely moving particles move in straight lines:

x = x0 + p1s , x− = t0 + p0s , yi = kis , xd+1 = qs . (2.2.1)

Assuming the particle is massless in d + 1-dimensions, we have

p0 =
√

p2
1 + k2

i + q2 (2.2.2)

which is the mass-shell relation of a d-dimensional particle with mass equal to q. Let’s

introduce coordinates ρ and τ via

x = ρ cosh(τ − 1
2
Exd+1) , t = ρ sinh(τ − 1

2
Exd+1). (2.2.3)

and coordinates X and T by

X = ρ cosh τ T = ρ sinh τ. (2.2.4)

The identification (2.1.2) in the new coordinates becomes



T

X

yi

xd+1




−→




T

X

yi

xd+1 + 2πR




, (2.2.5)

which is the standard Kaluza-Klein identification. The trajectory in terms of these is:

X = (x0 + p1s) cosh(1
2
Eqs) + (t0 + p0s) sinh(1

2
Eqs)

T = (t0 + p0s) cosh(1
2
Eqs) + (x0 + p1s) sinh(1

2
Eqs) (2.2.6)

Considering a particle at rest at the origin x0 = 0 and t0 = 0, we find

d2X

dT 2
=

qE

p0
. (2.2.7)

This is the expected acceleration of a particle with charge and rest-mass q.
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2.3 Kaluza-Klein Reduction

Let us now perform the dimensional reduction to d dimensions. Using the coordinates ρ

and τ defined in (2.2.3) the d + 1 dimensional metric becomes

ds2 = −ρ2(dτ + 1
2
E dxd+1)

2 + dρ2 + dyidyi + dx2
d+1, (2.3.1)

while the identification (2.1.2) simplifies to a direct periodicity in xd+1 with period 2πR,

leaving (ρ, τ, yi) unchanged. We may rewrite the metric (2.3.1) as

ds2 = − ρ2

Λ
dτ 2 + dρ2 + dyidyi + Λ

(
dxd+1−

Eρ2

2Λ
dτ
)2

(2.3.2)

with

Λ ≡ 1 − 1
4
E2ρ2. (2.3.3)

In this form, we can readily perform the dimensional reduction.

The d dimensional low energy effective theory is described by the Einstein-Maxwell

theory coupled to the Kaluza-Klein scalar V via

S =
∫ √−gd

(
V 1/2Rd +

1

4
V 3/2FµνF

µν
)
. (2.3.4)

Here the d-dimensional fields are obtained from the d+1 metric via the decomposition

ds2
d+1 = ds2

d + V (dxd+1 + Aµdxµ)2 . (2.3.5)

Comparing (2.3.5) and (2.3.2) gives the dimensionally reduced form of the electric Melvin

background

ds2
d = −ρ2

Λ
dτ 2 + dρ2 + dyidyi , (2.3.6)

A0 =
Eρ2

2Λ
, V = Λ ≡ 1 − 1

4
ρ2E2 . (2.3.7)

It describes a curved space-time, together with an electric field in the ρ-direction given

by

Eρ ≡
√

g00 ∂ρA0 =
E

Λ3/2
. (2.3.8)
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ρ = 0

ρ = 

Horizon

2/Ε

ΙΙΙ

Ι

IV

ΙΙρ = −2/Ε
Singularity Singularity

Fig. 2: The electric KK Melvin space-time divides up into four regions. Regions I and II

are static regions, while regions III and IV are time-dependent.

This electric field is equal to E at ρ = 0, but diverges at ρ = 2/E; this singular behavior

is related to the mentioned fact that outside the region (2.1.5), the identification map

(2.1.2) becomes time-like and produces closed time-like curves. Note, however, that the

location of the divergence in Eρ slightly differs from the critical value noted in (2.1.5),

but coincides with it in the limit of small ER.

The d dimensional metric in (2.3.6) reduces for E = 0 to the standard Rindler space-

time metric. For finite E there is a non-zero gravitational acceleration

aρ(ρ) ≡ g00∂ρg00 =
1

ρΛ
, (2.3.9)

which includes the gravitational backreaction due to the stress-energy contained in the

electric field. Notice that a(ρ) diverges at ρ = 2/E.

The above static Rindler type coordinate system will be most useful for the purpose of

providing a background with a static KK electric field. To obtain a more global perspective

of the full electric KK Melvin space-time, we can use the coordinates X and T defined in
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equation (2.2.4). In this coordinate system, the solution looks like

ds2 = −dT 2 + dX2 − E2

4Λ
(XdT − TdX)2 + dyidyi ,

A0 =
EX

2Λ
, A1 = −ET

2Λ
, (2.3.10)

V = Λ , Λ ≡ 1 − 1
4
E2(X2 − T 2) .

In this coordinate system we can distinguish four different regions:

Region I : X > |T | , Region II : X < −|T | ,

Region III : T > |X| , Region IV : T < −|X| .

Regions I and II are static regions (that is, they admit a time-like Killing vector) and are

analogous to the left and right wedges of Rindler space. They are separated by a “horizon”

(as seen only by static observers at ρ = const.) at X2 = T 2 from two time-dependent

regions III and IV. (See figure 2) We will mostly dealing with the physics of region I. For

a discussion of the physics in region III, see [115, 116].

2.4 Physical Boundary Conditions

In order to have in mind a physical picture of the part of this spacetime that we will

be studying, we recall the Gedanken experiment as shown in figure 1, in which two

charged plates produce a static KKM electric field between them. As explained in detail

in Appendix A, the space-time between the two plates will correspond to a finite interval

within region I:

ρ1 < ρ < ρ2 , with 0 <ρ1 <ρ2 < |2/E|. (2.4.1)

By concentrating on the physics within this region, our physical set-up will automatically

exclude the unphysical regime with the closed time-like curves, as well as the horizon at

ρ = 0. The details of this set-up are given in Appendix A.
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Chapter 3

Particle and Wave Mechanics

3.1 Particle Mechanics

In this section we consider the classical mechanics of charged particles in the electric KK-

Melvin space-time, deriving the expression for the total gravitational and electrostatic

potential energy. This discussion will be useful later on when we consider the quantum

mechanical pair production.

3.1.1 Classical Action

The classical action for a massless particle in d + 1 dimensions is

Sd+1 =
∫

ds
[
p

M
ẋ

M

+ λ (G
MN

p
M

p
N
)
]
, (3.1.1)

where M, N = 0, . . . , d and λ denotes the lagrange multiplier imposing the zero-mass-shell

condition G
MN

p
M

p
N

= 0. Upon reduction to d dimensions, using the general Kaluza-Klein

Ansatz (2.3.5), for which

G
MN

=




gµν −Aν

−Aµ V
−1

+ AµAµ


 , (3.1.2)
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where µ, ν = 0, . . . , d − 1, the action (3.1.1) attains the form (here we drop the xd+1-

dependence)

Sd =
∫

ds
[
pµ ẋµ + λ

(
gµν(pµ − qAµ)(pν − qAν) +

q2

V

)]
. (3.1.3)

Here we identified q = pd+1. The λ equation of motion gives

gµν(pµ − qAµ)(pν − qAν) +
q2

V
= 0 . (3.1.4)

This is the constraint equation of motion of a particle with charge q and a (space-time

dependent) mass m = q√
V

. For the electric KK Melvin background (2.3.6), the constraint

(3.1.4) takes the form

− Λ

ρ2

(
pτ +

qEρ2

2Λ

)2
+ p2

ρ + p2
i +

q2

Λ
= 0, (3.1.5)

or

−p2
τ

ρ2
+ (q − 1

2
Epτ )

2 + p2
ρ + p2

i = 0. (3.1.6)

Since the background is independent of all coordinates except ρ, all momenta are conserved

except pρ. Let us denote these conserved quantities by

pτ = ω, pi = ki. (3.1.7)

The constraint (3.1.6) allows us to solve for pρ in terms of the conserved quantities as

pρ = ±
√

(ω2/ρ2) − µ2, µ2 ≡ k2
i + (q − 1

2
Eω)2. (3.1.8)

Using this expression for pρ, we can write the total action of a given classical trajectory

purely in terms of its beginning and endpoints as

S±(x2, x1) = ω τ21 + ki y
i
21 ±

ρ2∫

ρ1

dρ
√

(ω2/ρ2) − µ2. (3.1.9)

Performing the integral gives

S±(x2, x1) = S±(x2) − S±(x1) , (3.1.10)
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with

S±({ρ, τ, y}) = ki y
i + ω (τ ± τ 0(ρ, ki, ω) ) , (3.1.11)

where

τ0(ρ, ki, ω) =

√
1 −

(
µρ
ω

)2 − log

[
ω

µρ

(
1 +

√
1 −

(
µρ
ω

)2 )
]

. (3.1.12)

This result will become useful in the following.

Notice that, for given radial location ρ, the classical trajectory only crosses this location

provided the energy ω satisfies ω ≥ µρ with µ as defined in (3.1.8). The physical meaning

of the quantity τ0 in (3.1.12) is that it specifies the (time difference between the) instances

τ = ±τ0 at which the trajectory passes through this radial location. Notice that indeed

τ0 = 0 when ω = µρ, indicating that at this energy, ρ is the turning point of the trajectory.

3.1.2 Potential Energy

We can use the mass-shell constraint (3.1.5) to solve for the total energy

H ≡ pτ =
ρ

Λ

√
Λ(p2

ρ + k2
i ) + q2 − qEρ2

2Λ
. (3.1.13)

The corresponding Hamilton equations

∂τρ =
∂H

∂pρ

, ∂τpρ = −∂H

∂ρ
, (3.1.14)

determine the classical trajectory ρ(τ). An important quantity in the following will be

the potential energy ω(ρ, q, ki), defined via

ω(ρ, q, ki) ≡ H(pρ = 0) =
ρ

Λ

√
q2 + Λk2

i − qEρ2

2Λ
. (3.1.15)

That is, ω(ρ, q, ki) is the energy of particles, with pd+1 = q and transverse momentum

pi = ki, that have their turning point at ρ.

As expected, the potential energy ω(ρ) contains two contributions: the first term is

the gravitational energy due to the rest mass and momentum of the particle, and the
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Fig. 3 The effective potential ω(ρ) defined in equation (3.1.15) (for ki = 0, and multiplied

by E) as a function of x = 1
2qEρ, with q = ±1.

second term represents the electro-static potential. If qE is positive, this last term makes

the particle effectively lighter than its gravitational energy. The total energy for any qE,

however, never becomes negative. For qE negative, the expression (3.1.15) is manifestly

positive. For qE either positive or negative, it can be rewritten as

ω(ρ, q, ki) =
q2 + k2

i

| 1
2
qE + ρ−1

√
q2 + Λk2

i |
, (3.1.16)

which is again manifestly positive. We have plotted this function for k2
i = 0 in figure 3.

This behavior of the potential energy ω(ρ, q, ki) should be contrasted with the classical

electrostatic case, where V (ρ, q) = m − qEρ with m the rest-mass, in which case the

particle can get a negative total energy. When going to single particle wave mechanics,

this negative energy leads to the famous Klein paradox, and upon second quantization, to
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the Schwinger pair creation effect. Since in our case the potential remains positive, there

is no Klein paradox and no immediate reason to expect a vacuum instability. Nonetheless,

as we will see shortly, pair creation will take place.

Finally, we note that in the concrete set-up of Situation I of our Gedanken apparatus

in Appendix A, the particles are in fact restricted to move within the region ρ1 <ρ<ρ2

between the two plates. To complete the dynamical rules of the model, we need to specify

what happens when the particle reaches the plates; we will simply assume reflecting

boundary conditions.

3.2 Wave Mechanics

In this section we write the solutions to the wave equations in the electric KK-Melvin

background, and illustrate the semi-classical correspondence with the classical mehanics.

3.2.1 Wave Equations

The d + 1-dimensional wave equation in the background (2.3.1) is

1√
−G

∂M

(√
−GG

MN

∂NΦ
)

=

[
1

ρ
∂ρ(ρ ∂ρ) −

1

ρ2
∂2

τ + ∂2
i +

(
∂d+1 + 1

2
E∂τ

)2
]

Φ = 0,

(3.2.1)

subject to the perioding boundary condition in the xd+1 direction with period 2πR. For

a given eigenmode with q ≡ pd+1 = n
R
, we can reduce the wave equation to d dimensions,

where it can be written in the form

(√
Λ

ρ
∂ρ

( ρ√
Λ

∂ρ

)
− Λ

ρ2

(
∂τ +

iqEρ2

2Λ

)2
+ ∂2

i − q2

Λ

)
Φ = 0 . (3.2.2)

Here we recognize the conventional wave equation

1√−g
Dµ

(√−ggµνDνΦ
)
− M2Φ = 0 (3.2.3)
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of a d dimensional charged particle with charge q in the background (2.3.6) and with a

position dependent mass equal to M 2 = q2/Λ. Note the direct correspondence af the

above wave equations with the classical equations (3.1.5) and (3.1.6). They need to be

solved subject to the boundary conditions imposed by our physical set-up. In case of

Situation I, see figure 5 in Appendix A, we will choose to impose Dirichlet boundary

conditions at the two plates

Φ |ρ=ρ1 = Φ |ρ=ρ2 = 0 . (3.2.4)

3.2.2 Mode Solutions

The d + 1-dimensional wave equation is solved by

Φqkω = eixd+1(q− 1
2
Eω)+ikiyi+iωτK(ω, µρ) , (3.2.5)

with µ as defined in (3.1.8), and where K(ω, µρ) solves the differential equation

(
(ρ∂ρ)

2 + ω2 + µ2ρ2
)
K(ω, µρ) = 0. (3.2.6)

The solution K has the integral representation

K(ω, µρ) =

∞∫

−∞
dσ eiω σ−iµρ sinhσ , (3.2.7)

and can be expressed in terms of standard Bessel and Hankel functions [122, 123]. The

functions K(ω, µρ) are defined for arbirary real ω. However, upon imposing the boundary

conditions that K(ω, µρi) = 0 at the location of the two plates, we are left with only a

discrete set of allowed frequencies ω`. Since the corresponding mode functions (3.2.7)

form a complete basis of solutions to (3.2.6), they satisfy an orthogonality relation of the

form
ρ2∫

ρ1

dρ ρ K∗(ὼ , µ̀ ρ)K(ω
j
, µ

j
ρ) = f(ω`)δ`,j , (3.2.8)

where f(ω) some given function that depends on ρ1 and ρ2.
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For large ω and µρ, we can approximate the integral in (3.2.7) using the stationary

phase approximation. The stationary phase condition ω = µρ cosh σ has two solutions

σ± = ± log

[
ω

µρ

(
1 +

√
1 −

(
µρ
ω

)2 )
]

(3.2.9)

provided |ω|>µρ, leading to

K(ω, µρ) '
√

2π cos
(
ωτ 0(ρ) + π

4

)

√
w 4

√
1 −

(
µρ
ω

)2
, |ω| > µρ , (3.2.10)

with τ 0 as given in equation (3.1.12). This formula is accurate for energies ω larger than

the potential energy ω(ρ). For smaller energies there is no saddle-point and the function

K(ω, µρ) is exponentially small

K(ω, µρ) '
√

π

µρ
e−µρ , |ω| << µρ . (3.2.11)

reflecting the fact that the corresponding classical trajectory has its turning point before

reaching ρ.

Notice that, upon inserting (3.2.10), the full mode function Φqkω in (3.2.5) can be

written as a sum of two semi-classical contributions

Φqkω(x) ∼
∑

±
eixd+1(q+

1
2
Eω)+ikiyi+iω (τ±τ0(ρ,k,ω)) ∼

∑

±
eiS±(y,τ,ρ), (3.2.12)

corresponding to the left- and right-moving part of the trajectory, respectively.
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Chapter 4

Pair Creation

In this section we will compute the pair creation rate of the Kaluza-Klein particles, follow-

ing three different (though related) methods. We will start with the simplest method, by

looking for Euclidean “bounce” solutions. We then proceed with a more refined method

of computation, more along the lines of Schwinger’s original calculation, producing the

non-trivial result quoted in the introductory section. Finally, we show that the obtained

result can naturally be interpreted by considering the Hawking-Unruh effect, and we use

the method of Bogolyubov transformations to compute the expectation value of the charge

current.

4.1 Classical Euclidean Trajectories

Assuming that, in spite of the fact that the effective potential (3.1.15) seems to suggest

otherwise, the nucleation of the charged particle pairs can be viewed as the result of

a quantum mechanical tunneling process, we compute the rate by considering the cor-

responding Euclidean classical trajectory. The analytic continuation of the electric KK
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Melvin space-time to Euclidean space is

ds2
E

=
ρ2

ΛE

dθ2 + dρ2 + dyidyi + ΛE

(
dxd+1−

Eρ2

2ΛE

dθ
)2

, (4.1.1)

Aθ =
Eρ2

2ΛE

, V = ΛE ,

with θ a periodic variable with period 2π, and

ΛE ≡ 1 + E2ρ2/4 . (4.1.2)

This Euclidean geometry is obtained from the Lorentzian electric KK Melvin solution via

the replacement

E → iE , t → −iθ, (4.1.3)

and coincides with the space-like section of the magnetic KK Melvin space-time. Unlike

the Lorentzian version, this Euclidean space-time extends over the whole range of positive

ρ values and ends smoothly at ρ = 0, by virtue of the periodicity in θ. This is standard for

Euclidean cousins of space-times with event horizons, and a first indication that quantum

field theory in the space-time naturally involves physics at a specific finite temperature.

The Euclidean action of a point-particle, with charge (momentum in the d+1-direction)

equal to pd+1 = q and mass M = |q|/√ΛE moving in this background reads

SE =
∫

dsLE , LE =
|q|√
ΛE

√√√√ρ2θ̇2

ΛE

+ ρ̇2 + ẏ2
i − qEρ2

2ΛE

θ̇. (4.1.4)

As a first step, let us look for closed circular classical trajectories at constant ρ and yi.

The above point-particle action then reduces to

SE(ρ) =
π

ΛE

(2| q| ρ − qEρ2). (4.1.5)

The first term is the energy of a static particle times the length of the orbit, and the second

term is the interaction with the background field times the area of the loop. Looking for

an extremum yields one real and positive solution

|E|ρ = 2
√

2 − 2 · sign(qE) (4.1.6)
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with total action

SE =
2π|q|
|E| (

√
2 − sign(qE)). (4.1.7)

The existence of these solutions with finite Euclidean action is a first encouraging sign

that pair creation may take place after all. The answer (4.1.5) for the Euclidean action

also looks like a rather direct generalization of the standard semiclassical action for the

Schwinger effect, and it is therefore tempting to conclude at this point that the total pair

creation rate is proportional to

e−SE = e−2π|q| (
√

2−sign(qE))/|E|, (4.1.8)

which looks only like a numerical modification of the classic result (1.0.1). This conclusion

is somewhat premature, however, since in particular the pair creation rate should depend

on ρ. We would like to determine this ρ-dependence.

For this, we take a second step and consider closed Euclidean trajectories that are

not necessarily circular. As in section 3.1, we now go to a Hamiltonian formulation. To

transform the formulas in section 3.1 to the Euclidean set-up, we need to make, in addition

to (4.1.3), the following replacements

s → −is , pρ → ipρ, pi → ipi , q → iq . (4.1.9)

In this way we obtain from (3.1.13) a Euclidean Hamiltonian

HE ≡ pθ =
ρ

ΛE

√
|q|2 − ΛE(p2

ρ + k2
i ) − qEρ2

2ΛE

, (4.1.10)

that generates the motion of particle as a function of the Euclidean time θ, and a corre-

sponding potential energy

ωE(ρ, ki, q) ≡ −HE(pρ = 0) = − ρ

ΛE

√
|q|2 − ΛEk2

i +
qEρ2

2ΛE

. (4.1.11)

In addition to a change in sign, which is the standard way in which a potential changes

when going to Euclidean space, this Euclidean potential differs from (3.1.15) via the

95



-4 -2 2 4
x

-1

-0.5

0.5

wE

Fig. 4 The Euclidean effective potential ωE(ρ) defined in equation (4.1.11) (for ki = 0,

and multiplied by E) as a function of x = 1
2qEρ, with q = ±1.

replacement Λ → ΛE. We have drawn ωE for ki = 0 in figure 4. Note that ωE for ki = 0

is proportional to the reduced effective action (4.1.5) for circular trajectories, and the

critical radii (4.1.6) reside at the two minima in figure 4.

Our goal is to obtain semi-classical estimate for the pair creation rate at some given

ρ. How should we use this Euclidean potential for this purpose? As seen from figure 4,

there is a range of Euclidean energies HE around the two minima (4.1.6) for which there

exist stable, compact orbits. These orbits have a maximal and minimal radius, ρ+ and

ρ−, at which HE = ωE(ρ±). The idea now is to associate to a given ρ the corresponding

Euclidean trajectory for which ρ equals one of these extrema ρ±, and then use the total

action SE(ρ) for this trajectory to get a semi-classical estimate of the pair creation rate
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via

W(ρ) ' e−SE(ρ) . (4.1.12)

Here it is understood that in SE(ρ) we undo the rotation E → iE, so that ΛE → Λ.

Equation (4.1.12) is then a clear and unambiguous formula, provided the classical orbit

is closed.

In general, however, the orbits need not be closed: the period of oscillation does not

need to be 2π or even a fraction or multiple thereof. How should we define the total

classical action, to be used in (4.1.12) for such a trajectory?

Our proposal, that perhaps may look ad hoc at this point but will be confirmed and

justified in the subsequent subsections, is to take for SE the total action averaged over

one full rotation period of 2π. Concretely, suppose that the compact trajectory has an

“oscillation period” θ0, in which it goes through a full oscillation starting and returning

to its maximal radial position ρ=ρ+. We then define SE(ρ) as:

SE(ρ) ≡ lim
θ→∞

2π

θ

θ∫

0

dθLE(θ, ρ) =
2π

θ0

θ0∫

0

dθLE(θ, ρ). (4.1.13)

With this definition, and using the results in Section 3.1.1, we can now easily evaluate

SE(ρ). From (the Euclidean analog of) equation (3.1.11), while noting that τ 0(ρ) = 0

since ρ is the turn-around point, we obtain

SE(ρ) = 2πω(ρ, q, ki), (4.1.14)

with ω as given in (3.1.15). Here we made the replacement E → iE, as prescribed.

The result (4.1.14) together with (4.1.12) gives our proposed semi-classical estimate

of the pair creation rate as a function of ρ. Clearly, the derivation as presented thus far

needs some independent justification. It also leaves several open questions. In particular,

it is not clear how we should interpret the Euclidean “bounce” solutions, given the fact

that the real effective potential (3.1.15) doesn’t seem to lead to any tunneling. A better

understanding of the physics that leads to the pair creation seems needed. In the next
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two subsections we will present two slightly more refined derivations of the rate, which

will help answer some of these questions.

4.2 Sum over Euclidean Trajectories

We will now evaluate the pair creation rate, per unit time and volume, by means of the

path-integral. Since we expect that this rate will be a function of longitudinal position

ρ, we would like to express the final result as an integral over ρ. We start from the sum

over all Euclidean trajectories

W =
∫

DpDx exp
(
−1

h̄
S[p, x]

)
(4.2.1)

defined on flat d+1-dimensional space with metric and periodicity condition

ds2
E = dx∗dx + dyidyi + dx2

d+1, (4.2.2)

(x, x∗, yi, xd+1) ≡ (eiπERx, e−iπERx∗, yi, xd+1 + 2πR) . (4.2.3)

In the end we intend to rotate back to Lorentzian signature, replacing E → iE.

We can read the expression (4.2.1) as a trace over the quantum mechanical Hilbert

space of the single particle described by the action (3.1.1) or (3.1.3). The idea of the

computation is to write this as a sum over winding sectors around the d + 1-th direction.

For each winding number w, the closed path is such that the end-points are related via a

rotation in the (x, x∗)-plane over an angle wπER. Using this insight, we can write (4.2.1)

as

∫
ddx W(x) = R

∞∫

0

dT

T

√
2π

T

∑

w

e−
1

2T
(2πRw)2 Tr

[
eπiwERJe−

T
2
(p∗p + p2

i )
]

(4.2.4)

where T denotes the Schwinger proper time variable, and where J denotes the rota-

tion generator in the (x, x∗) plane. The exponent in front of the the trace is the d+1-

dimensional part of the classical action of the trajectory with winding number w. To
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compute the trace, we write it as an integral over mixed position and momentum eigen

states

Tr A =
∫

d2x
∫ d−2∏

dki

(2π)d−2
〈 x, ki |A | x, ki 〉 (4.2.5)

Next we evaluate

〈x| eπiwERJe−
T
2

p∗p |x〉 =
1

πT
e−

xx∗

2T
(eπiERw− 1)(e−πiERw− 1) (4.2.6)

where we used the standard formula for the heat kernel in two dimensions. Inserting this

into (4.2.4), we can write the production rate as an integral over ρ of

W(ρ) = R

∞∫

0

dT

T

√
2π

T

∫ d−2∏
dki

(2π)d−2

e−
T
2

k2
i

πT

∑

w

e−
1

2T
((2πRw)2 + 4ρ2sin2(πERw/2)) (4.2.7)

which we will interpret as the pair production rate at the location ρ.

Equation (4.2.7) is an exact evaluation of the Euclidean functional determinant. To

put it in a more useful form, we will assume that we are in the regime ρ2 >> T (an

assumption that we will be able to justify momentarily), so that we can simplify the

expression by means of the Villain approximation

∑

w

e−
1

2T
((2πRw)2 + 4ρ2sin2(πERw/2)) '

∑

w,n

e−
1

2T
((2πRw)2 + ρ2(πERw − 2πn)2). (4.2.8)

This replacement essentially amounts to a semi-classical approximation. The right-hand

side can be re-expressed via the Poisson resummation formula (note here that the left-hand

side below is just a trivial rewriting of the right-hand side above)

∑

w

e
− 1

2T

(
ΛE

(
2πRw−πEρ2n

ΛE

)2
+

4π2ρ2n2

ΛE

)

=

√
T

2πΛER2

∑

m

e
− 1

ΛE
(T

2
m2

R2 +
2π2ρ2n2

T +
iπEmnρ2

R )

(4.2.9)
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As the final step, we may now evaluate the integral over the Schwinger parameter T via

the saddle point approximation. The saddle points are at1

T0 =
2πρ |n|

√
m2

R2 + ΛEk2
i

, n = ±1 , ±2 , . . . . (4.2.10)

Before plugging this back in to obtain our final result, let us first briefly check our as-

sumption that ρ2 >> T : setting ki = 0, we find ρ2/T0 = mρ/2π|n|R. So as long as the

spatial distance scale ρ is much larger than the KK compactification radius R, we’re safe

to use (4.2.8).

With this reassurance, we proceed and find our final answer for the pair creation rate

per unit time and volume where we made the replacement E → iE.2

W(ρ) =
1

2π2ρ3/2

∫ d−2∏
dki

(2π)d−2

∑

m

(
m2

R2
+ Λk2

i

)1/4 ∞∑

n=1

1

n3/2
exp

[
−2πnω(ρ, q, ki)

]
(4.2.11)

where ω(ρ, q, ki) is the potential energy introduced in equation (3.1.15). The summation

over n in (4.2.11) can be seen to correspond to the “winding number” of the Euclidean

trajectory around the periodic Euclidean time direction. The n = 1 term dominates, and

is the result announced in the Introduction. Before discussing it further, we will now

proceed with a second method of derivation.

4.3 The Hawking-Unruh effect

The result (4.2.11) looks like a thermal partition function, indicating that it can be un-

derstood as produced via the Hawking-Unruh effect. We will now make this relation more

explicit.

The functional integral (4.2.1) over all Euclidean paths represent the one-loop partition

function of a scalar field Φ in the d+1-dimensional electric KK Melvin space-time. We

1We drop the term with n = 0, since it corresponds to the vacuum contribution.
2Note that the same result can be obtained by replacing the sum in (4.2.7) by (4.2.9), integrating over

T exactly, and then using equation (3.2.11) to approximate the resulting Bessel function.
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can compute this determinant also directly via canonical quantization of this field. The

full expansion of Φ into modes starts with a decomposition over wave numbers along the

extra dimension (in this section we restrict q to be positive)

Φ = Φ0 +
∞∑

q=1

(
eiqxd+1Φq + e−iqxd+1Φ∗

q

)
, (4.3.1)

where Φ0 is massless and real, and Φq are complex and have mass m = q. Let us define

µ+ and µ− via

µ2
+ = (q + 1

2
ωE)2 + k2

i , µ2
− = (−q + 1

2
ωE)2 + k2

i , (4.3.2)

so that now µ± are quantities related to positively or negatively charged particles.

To proceed, we now need to expand the field Φq in creation and annihilation modes,

allowing only modes that satisfy the boundary conditions (3.2.4) that Φq(ρi) = 0 at the

location of the two charged plates

Φq =
∑

ω>0

∫ d−2∏
dki

(2π)d−2

e−iωτ+ikiyi

√
ωf(ω)

(
K(ω, µ+ρ) aq(ki, ω) + K∗(ω, µ−ρ) a†

−q(ki, ω)
)

, (4.3.3)

with K(ω, µρ) and f(ω) as defined in (3.2.7) and (3.2.8). The creation and annihilation

modes then satisfy the usual commutation relations

[a±q(k1, ω1), a
†
±q(k2, ω2)] = δ(k1−k2)δω1ω2 . (4.3.4)

Our goal is to determine what the natural vacuum state of the Φ field looks like, as

determined by the initial conditions. In the far past, we imagine that the KK electric field

was completely turned off. The electric KK Melvin background then reduced to Rindler

or Minkowski space – depending on which coordinate system one introduces. The most

reasonable initial condition is that the quantum state of all Φ quanta starts out in the

vacuum as defined in the Minkowski coordinate system. Let us denote this Minkowski

vacuum by |Ω〉.
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To determine the expression for |Ω〉 in terms of our mode basis, we can follow the

standard procedure [54, 118]. We will not go into the details of this calculation here,

except to mention one key ingredient: the mode functions, when extended over the full

range of ρ values, have a branch-cut at the horizon at ρ = 0, such that

K(ω,−µρ) = e±2πωK∗(ω, µρ) , (4.3.5)

depending on whether the branch cut lies in the upper or lower-half plane. This behavior

of K(ω, µρ) near ρ=0 is sufficient to deduce the form of the Bogolyubov transformation

relating the modes a(ω, k) to the Minkowksi creation and annihilation modes. (see e.g.

[118]). As a result, one finds that the Minkowski vacuum, |Ω〉, behaves like a thermal

density matrix for the observable creation and annihilation modes in (4.3.3). In particular,

the number operator for each mode has the expectation value

〈Ω | a†
q(k, ω) aq(k, ω) |Ω 〉 =

1

e2πω − 1
, (4.3.6)

while the overlap of |Ω〉 with the empty vacuum state, defined via aq(k, ω)| 0 〉 =0, becomes

|〈 0 |Ω 〉|2 = exp



∫ d−2∏

dki

(2π)d−2

∑

q,ω

∣∣∣log
(
1 − e−2πω

)∣∣∣


 (4.3.7)

= exp


−

∫ d−2∏
dki

(2π)d−2

∑

q,ω,n

1

n
e−2nπω


 . (4.3.8)

This expression represents the probability that the state Ω does not contain any particles

– and its dominant n = 1 term looks indeed closely related to the result (4.2.11) obtained

in the previous subsection.

The difference between the two equations is that (4.2.11) is defined at a particular

location ρ, while (4.3.7) contains a summation over all frequencies. To make the relation

more explicit, imagine placing some measuring device at a location ρ. As mentioned

before, only modes with a sufficiently large frequency will reach this location with any

appreciable probability, and the probability attains a maximum for frequencies equal to
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the potential energy at ρ, since for those frequencies, ρ is the turning point. Via this

observation, we can view the position ρ as a parametrization of the space of frequencies,

via the insertion of

1 =
∫

dρ δ
(
ω −ω(ρ)

)
|∂ρω(ρ)| , (4.3.9)

with ω(ρ) as given in equation (3.1.15), thus replacing the summation over ω in (4.3.7) by

an integral over ρ. The integrand at given ρ is then naturally interpreted as the production

rate (4.2.11) at the corresponding location. This procedure is a good approximation

provided the distance d = ρ2 − ρ1 between the plates is large enough, so that many

frequencies contribute in the sum.

This same condition is also important for a second reason [49, 50]. Since we would like

to imagine that the pair production takes place at a constant rate per unit time, we would

like to see that the overlap (4.3.7) in fact decays exponentially with time. This comes

about as follows [49, 50]. Suppose we restrict the field modes to be supported over a finite

time interval 0 < τ < T . This translates into a discreteness of the frequencies. Ignoring

at first the other discreteness due to the reflecting boundary condition at the two parallel

plates, it is clear that the density of frequencies allowed by the time restriction grows

linearly with T . The sum over the frequencies thus produces an overall factor of T . In

this way, we recover the expected exponential decay of the overlap (4.3.7).

This exponential behavior breaks down, however, as soon as the time interval T be-

comes of the same order as the distance d between the plates, or more precisely, when

1/T approaches the distance between the discrete energy levels allowed by the reflecting

boundary conditions at the plates. At this time scale, the situation gradually enters into a

steady state, in which the pair creation rate gets balanced by an equally large annihilation

rate. The system then reaches a thermal equilibrium, specified by the thermal expectation

value (4.3.6). The physical temperature of the final state depends on the location ρ via

β = 2π
√

g00 =
2πρ√

Λ
. (4.3.10)

Note that this temperature diverges at ρ = 0 and ρ = |2/E|; neither location is within
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our physical region, however.

4.4 Charge Current

It is edifying to consider the vacuum expectation value of the charge current, since this

is a clear physical, observer-independent quantity and a sensitive measure of the local

profile of the pair creation rate. For given q, the charge current is given by

jµ = iq
(
Φ∗

q(ρ)∂µΦq(ρ) − Φq(ρ)∂µΦ∗
q(ρ)

)
. (4.4.1)

Using the result (4.3.6) for the expectation value of the number operator, one finds that

the time component of the current, the charge density, is non-zero and equal to3

〈Ω | jτ(ρ) |Ω 〉 = J+(ρ) − J−(ρ) (4.4.2)

with

J±(ρ) = q
∑

ω>0

∫ d−2∏
dki

(2π)d−2

|K(ω, µ±ρ)|2
f(ω) (e2πω − 1)

(4.4.3)

the positive and negative charge contributions, respectively. Given the thermal nature of

the state |Ω〉, the physical origin of this charge density is clear: the presence of the electric

field reduces the potential energy of one of the two charge sectors, thereby reducing its

Boltzmann suppression, relative to the oppositely charged.

To obtain a rough estimate for the behavior of J±(ρ), it is useful to divide the frequency

sum into three regions: i) ω comparable to the potential energy (3.1.15), ii) ω much larger,

or iii) ω much smaller. By comparing the respective suppression factors, we find that the

leading semi-classical contribution comes from regime i); this is also reasonable from a

physical perspective, since these are the particles that spend most time near ρ. Regime

3Instead of the expectation value (4.4.2), one could also consider the mixed in-out expectation value

〈0|Jτ (ρ)|Ω〉, which is related to the derivative of the in-out matrix element 〈0|Ω〉 with respect to E. This

relation was in fact used by Schwinger in his original derivation of the pair creation rate [46].
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ii) is strongly Boltzmann suppressed and clearly negligible compared to contribution i),

while regime iii) is suppressed because the corresponding mode functions K(ω, µρ) are

exponentially small at the location ρ, via (3.2.11). The leading contribution of region i)

is of order e−2πω(ρ,q,ki), in accordance with the result (4.2.11) for the pair creation rate

W(ρ).

Since the mode functions K(ω, µρ) are real (they are the sum of an incoming and

reflected wave), the current in the ρ direction appears to vanish. The result (4.4.3) for

the charge density indeed looks static. This static answer, however, can not describe the

time-dependent pair creation process. Recalling our discussion above, however, we can

recover this time-dependence by restricting the sum over only those frequencies necessary

to cover the finite time interval 0<τ <T . This is a T dependent subset, thus leading to a T

dependent (initially linearly growing) charge density. However, when 1/T becomes much

smaller than the step-size in the allowed frequency spectrum, the steady state sets in and

the charge density indeed becomes a static thermal distribution given by (4.4.2)–(4.4.3).
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Chapter 5

Discussion

In this Part we have tried to make a systematic study of the Schwinger pair production of

charged Kaluza-Klein particles. Due to their characteristic property that their mass is of

the same order as their charge q, the pair creation requires such strong KK electric fields

that gravitational backreaction can not be ignored. We have included this backreaction

by means of the electric KK Melvin solution, and shown that, in spite of the fact that the

electro-static potential can not be made to exceed the rest-mass of the KK particles, pair

production takes place at a rate given by (1.0.2).

What is the physical mechanism that is responsible for the pair creation? Our final

answer (1.0.2) includes both the KK electric field and a gravitational acceleration a. It is

instructive to compare this result with the known rate [120] for Schwinger pair production

in an accelerated frame, as quoted in equation (B.4) in the Appendix. Since in our case

a is bounded below by E/2, we can only directly compare the two answers in the limit

of small electric field. In that limit, if we expand the log in equation (B.4) and take the

dominant n = 1 term there, both answers become

W(E, a) '
∑

q=±|q|

∫ d−2∏
dki

(2π)d
exp

(
−2π

(1

a

√
q2 + k2

i −
qE

2a2

))
. (5.0.1)

In this regime, however, one can not honestly separate the Schwinger pair creation effect
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from the pair creation effect due to the acceleration. Electric charge is being produced,

but it is just a simple consequence of the fact that the electrostatic potential reduces the

Boltzmann factor for one type of charge, while increasing it for the other. Rather than

producing the charge “on its own,” the electric field just polarizes the thermal atmosphere

produced by the Unruh effect.

In fact, if we write the potential ω(ρ, q, ki) as in (3.1.15) instead of (3.1.16), our final

answer (1.0.2) appears to be just a small modification of (5.0.1) and the physics that leads

to it indeed seems quite identical. So depending on taste, one can either interpret our

result (1.0.2) as pair creation due to a combination of the Schwinger and Unruh effect, or

as the result of the Unruh effect only. There is no definite way to decide between the two,

since the gravitational acceleration can not be turned off independently. Either way, what

is clear is that the mechanism for pair creation cannot be given a tunneling interpretation.
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Appendix

A Gedanken Apparatus

For a good understanding of the situation we wish to study, it will be useful to investigate

how, via a concrete Gedanken experiment, one may in fact attempt to create a large static

Kaluza-Klein electric field. Without taking into account gravitational backreaction, we

imagine taking two parallel plates with opposite KK charge density per unit area σ and

perpendicular distance d, thus creating an electric field E = 4πσ in the region between

the plates. It turns out however, that when we include the gravitational backreaction of

both the plates and the electric field, there are some restrictions on how symmetric, or

static, we can choose our experimental set-up.

Consider two charged, infinitesimally thin, parallel plates at positions ρ1 and ρ2, sep-

arated by a distance

d = ρ2 − ρ1 . (A.1)

The two plates divide space into three regions: Region A left of the first plate, given by

ρ < ρ1, region B in between the two plates, ρ1 < ρ < ρ2, and region C right of the second

plate ρ > ρ2.

Let the mass densities of the plates be given by µ1 and µ2, so that

T 0
0 = µ1 δ(ρ−ρ1) + µ2 δ(ρ−ρ2) . (A.2)

In addition, the two plates have charge densities σ1 and σ2

√
g00 T 0

d+1 = σ1 δ(ρ−ρ1) + σ2 δ(ρ−ρ2) . (A.3)

We will assume that the charge densities are opposite, σ1 = −σ2, and tuned so that there

is a Kaluza-Klein electric field in region B between the plates, but none in regions A or C

outside the plates. The region between the plates therefore takes the form of a static slice
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ρ1 < ρ < ρ2 of the electric KK Melvin space-time. The two regions outside the plates,

on the other hand, are just flat. More precisely, since the parallel plates in effect produce

an attractive gravitational force on freely falling particles in the two outside regions, the

regions A and C should correspond to static sub-regions in Rindler space.

Both Rindler space and the electric KK Melvin solution differ from Minkowski space

only via the g00 component. Imposing continuity at ρ = ρi, this leads us to the following

Ansatz for the g00 component of the metric in the three regions

gA
00( ρ) = (1−a1(ρ−ρ1))

2 gB
00( ρ1) ,

gB
00( ρ) =

ρ2

1 − E2ρ2/4
,

gC
00( ρ) = (1+a2(ρ−ρ2))

2 gB
00( ρ2). (A.4)

Here a1 and a2 are both positive, and represent the respective free fall accelerations of

freely moving particles just outside of the two plates. In other words, via the equivalence

principle, a1 and a2 are the accelerations (to the left and right, respectively) of the two

plates as viewed from the outside Minkowski observers. The quantities ρ1 and ρ2 play a

similar role, and can be both positive and negative. A physical restriction, however, is

that the denominator in the expression (A.4) for gB
00 remains positive.

In addition there is a non-trivial electric potential gB
0,d+1 in the region between the

plates, while gA,C
0,d+1 are constants determined by continuity:

gA
0,d+1( ρ) = gB

0,d+1( ρ1) ,

gB
0,d+1( ρ) =

ρ2E/2

1 − E2ρ2/4
, (A.5)

gC
0,d+1( ρ) = gB

0,d+1( ρ2).

The d+1-dimensional Einstein equations of motion result in the following jump conditions
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for the normal variations of g00 and g0,d+1 at the location of the plates1

4πµi = g00(∂ρ+g00 − ∂ρ−g00) |ρ=ρi
, (A.6)

4πσi = (g00)
1
2 (∂ρ+g0,d+1 − ∂ρ−g0,d+1) |ρ=ρi

. (A.7)

The first of these equations is known as the Israel equation, while the second is equivalent

to Gauss’ law in electro-magnetism. Inserting our Ansatz, the Israel jump conditions

become

2πµ1 = a1 +
1

ρ1 Λ1
,

Λi = 1 − 1
4
E2ρ2

i , (A.8)

2πµ2 = a2 − 1

ρ2 Λ2
,

while Gauss’ law takes to the form

4πσ1 = E/Λ
3/2
1 , 4πσ2 = −E/Λ

3/2
2 . (A.9)

Equation (A.8) relates the mass density of the two plates to the jump in the surface

acceleration when moving from one to the other side, while (A.9) relates the charge

density to the jump in the KK electric field.

Let us briefly check these formulae by considering some special cases. If E = 0, then

we can choose the symmetric situation µ1 =µ2 and a1 = a2. Via (A.8) this implies that we

should take the limit ρi→∞ keeping the distance (A.1) fixed. The intermediate region B

then simply reduces to flat Minkowski space. This is as expected, since the two plates lead

to an equal and opposite gravitational force, which exactly cancels in the intermediate

region. For non-zero E, yet small electro-static potential V12 = Ed between the plates,

we can choose parameters such that Eρi << 1 and ρi >> d. Equation (A.9) then reduces

to the standard Gauss law of Maxwell theory.

1Note that while the expressions g0,d+1 are not gauge invariant, the Gauss equation is, as long as λ

in Aµdxµ → Aµdxµ + dλ is smooth across ρ1 and ρ2, i.e. (∂ρ+
− ∂ρ

−

)λ |ρ=ρi
= 0 .
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E = 0ρ = ρ

Plate 2

1
ρ = ρ2

Plate 1

ρ = 0

Fig. 5: Situation I describes the static situation with two charged plates at ρ = ρ1 and

ρ=ρ2, with 0 < ρ1 < ρ2 < 2/E. The region of interest, in between the two plates, is a static

slice of region I of the electric KK Melvin solution.

Let’s now consider the general case. There are four equations, and (for given inter-

plate distance d, and densities µi and σi ) four unknowns: a1, a2, ρ1 and E. The second

equation in (A.9), however, is not really independent from the first, since we should rather

read it as a fine-tuning condition on σ2 (relative to σ1) ensuring that the E-field vanishes

outside the two plates. Discarding this equation, we are thus left with one overall freedom,

namely, the overall acceleration of the center of mass of our apparatus.

For practical purposes, we would have preferred to restrict ourselves to the simplest

and most symmetric case in which the two plates have equal mass density µ1 = µ2 and

equal surface acceleration a1 = a2. This would in particular ensure that our apparatus

is at rest. As seen from equation (A.8), this symmetric situation could be reached if we

could take the limit ρi → ∞. However, for non-zero E, this limit is forbidden via the

restriction 1− 1
4
E2ρ2 > 0. Thus we are basically forced to consider the general situation
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III

IV

III

Plate 1 Plate 2

ρ = ρ1 ρ = ρ2

ρ = 0

Fig. 6: Situation II describes the time-dependent situation with two accelerating charged

plates at ρ=ρ1 < 0 and ρ=ρ2 > 0. The region of interest, in between the two plates, includes

the time-dependent regions III and IV of the electric KK Melvin solution.

with µi and ai arbitrary, and ρi both positive. We call this:

Situation I : 0 < ρ1 < ρ2 < 2/E, µi arbitrary. (A.10)

In this case, the region of interest, region B, represents a static slice in the right wedge

of the electric KK Melvin solution. This Situation I is the natural generalization of a

constant, static electric field, and is our starting point for studying the possible Schwinger

pair creation of charged KK particles.

There is, however, another situation we could consider, which does allow for a sym-

metric solution. Namely we can choose:

Situation II : µ1 = µ2 , a1 = a2 , ρ1 = −ρ2. (A.11)

In this case the region B includes the special position ρ = 0 at which g00 = 0, the location

of the event horizon of the electric KK Melvin geometry.

To better understand the experimental conditions leading to Situation II, consider the

special case µ1 = µ2 = 0, and σ1 = σ2 = 0. This describes two plates with zero mass and
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charge, accelerating away from each other with equal but opposite acceleration ai = 1/ρi.

It is now easy to imagine that one can gradually add mass and charge to the plates, and

reach the general Situation II. It must be noted that this experimental set-up does not

lead to a static background, since the geometry now includes the time-dependent regions

III and IV enclosed by the Rindler horizon (see figure 1). This set-up is therefore not

a direct analog of the static electric field considered by Schwinger. For a discussion of

Situation II see [115, 116]; our main focus is Situation I.

B Schwinger meets Rindler

In this Appendix we summarize the known result for the Schwinger pair creation rate in

an accelerating frame [120] of charged particles with mass q and mass m with m << q.

In this regime, pair creation starts to occur while the gravitational backreaction of the

electric field is still negligible.

The closest analog of a constant, uniform gravitation field is Rindler space

ds2 = −ρ2dτ 2 + dρ2 + dy2
i . (B.1)

Particles, or detectors, located at a given ρ undergo a uniform acceleration a = 1/ρ.

Consider a charged field propagating in this space in the presence of a uniform electric

field, described by

Aτ =
1

2
Eρ2. (B.2)

The resulting scalar wave equation reads
(

1

ρ
∂ρ(ρ ∂ρ) − 1

ρ2

(
∂τ +

i

2
qEρ2

)2
+ ∂2

i − m2

)
Φ = 0 . (B.3)

The above three equations are connected to the ones in Section 3.2.1 by setting Λ = 1

(which indeed amounts to turning off the backreaction) and by setting m=q above.

Equation (B.3) has known mode solutions with given Rindler frequency, in terms of

Whittaker functions [120, 122]. These functions have a relatively intricate, but known
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(equation 9.233 in [122]), branch-cut structure at ρ = 0, from which one can straight-

forwardly extract the linear combination of (left and right wedge) Rindler creation and

annihilation modes that annihilate the Minkowski vacuum |Ω〉. One obtains the following

result for the total pair creation rate per unit time and (transverse) volume [120]

W '
∑

q=±|q|

∫
dω

∫ d−2∏
dki

(2π)d
log




(
1 − e−2πω

)(
1 − e

−
π(m2+k2

i
)

|qE|
)

1 − e
−2π(ω+

m2+k2
i

2|qE| )


 . (B.4)

As explained in Section 4.3, we can extract from this result the pair creation rate at

a given radial location ρ, or equivalently, given acceleration a = 1/ρ, by equating the

frequency ω with the classical potential energy at this location

ω(q, ki) =
1

a

√
q2 + k2

i −
qE

2a2
. (B.5)

As discussed in section 5, in the limit where the electric field is small, the expression (B.4)

reduces to out result.
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