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Abstract

This thesis has two parts. In the first part we study M-theory compactifications on
singular manifolds of G5 holonomy which are asymptotic to quotients of cones over S3 x S3.
We investigate the moduli space of M-theory compactifications on these manifolds, and we
discover smooth interpolations leading to a new kind of duality among four dimensional
supersymmetric gauge theories with different gauge groups, with a fixed number of abelian
factors. The quotients are such that the internal space has a finite, non-trivial fundamen-
tal group, and we construct a grand unified model in which the breaking of the gauge
symmetry by Wilson lines to the standard model arises naturally. This model provides the
basis for the study of unification from M-theory. Contrary to long-standing perception,
we show that a grand unification scale exists even in the presence of threshold corrections.
We obtain a precise relation between the unification scale and the mass of heavy gauge
bosons in terms of topological invariants. This relation replaces the often-made assump-
tion that the unification scale and the heavy masses are equal. We also find the relation
between Newton’s constant, the unification scale, and the unified couplings. We go on
to investigate the lifetime of the proton and we find that, when compared with standard
four dimensional GUT’s, some modes of proton decay in M-theory compactifications are

suppressed relative to others.

In the second part of the thesis, we combine two rather fundamental, yet previously
disjoint, results: one is the Kaluza-Klein unification of gravity with electromagnetism via
the introduction of an extra dimension; the other is Schwinger’s production of electron-
positron pairs from a constant electric field. The combination involves investigating the
production of pairs of KK-charged particles from a KK electric field. While it has been
well-accepted that Schwinger pair production occurs via a semi-classical tunneling mech-
anism, we find here that pair production takes place even though tunneling does not.

Instead, the pair production occurs via a different mechanism which involves a combina-



tion of the Unruh effect and vacuum polarization.
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Prelude

In this thesis, we investigate three distinct features that can arise in four dimensional
physics from the study of theories with extra dimensions: dualities, unification, and pair
production.

The idea that theories which have more than four space-time dimensions can be used
to describe the four dimensional world originates in the work of Kaluza and Klein in the
1920’s [1, 2]. Motivated by the quest for unification, Kaluza and Klein introduced a fifth
dimension to unify the forces of gravity and electromagnetism. Their argument was rather
simple and elegant: they showed that when a five dimensional metric is decomposed into
a four dimensional metric, a four-vector, and a scalar, the Einstein action for gravity in
five dimensions contains terms involving the Einstein action for gravity in four dimensions
as well as the Maxwell action for electromagnetism in four dimensions. Hence, one force
in five dimensions — gravity — is enough for describing both gravity and electromagnetism
in four dimensions.

This idea of introducing extra dimensions has had an enormous amount of influence
on theoretical physics. Often, as in the case of Kaluza and Klein, extra dimensions are
associated with unification of forces. For example, superstring theories, which require
ten dimensions for their space-time, have emerged as candidates for unification of all the
four forces: gravity as well as the three gauge interactions. Sometimes, extra dimensions
may unify something other than forces. For example, recently a seventh extra dimension
unified various string theories — which are believed to be dual, or equivalent, to each other

— into one eleven-dimensional picture, known as M-theory; this theory is believed to be



an underlying unified theory and a common origin of the various string theories and their
dualities [3, 4, 5, 6].

Once the extra dimensions are included in a theory, one attempts to see how they affect
four dimensional physics. The method of describing the effect of the extra dimensions on
four dimensional physics is known as Kaluza-Klein reduction or compactification. The
extra dimensions form a space known as the internal space or compactification manifold.
Various quantities in four dimensions are given by properties of this space. For example,
masses of particles as seen by the four dimensional observer are given by eigenvalues of
the Laplacian operator of the internal space; electric charge as seen in four dimensions
is given by momentum in an extra direction. Sometimes, it is not the case that the
reduction arises in a way similar to that which appeared in Kaluza and Klein’s work.
One example which will be used here is geometric engineering, in which certain types of
singularities in the internal space lead to the appearance of certain kinds of particles in
four dimensions. Another example is preservation of supersymmetry in four dimensions,
which is determined by the holonomy of the internal space.

In the first part of this thesis, we investigate dualities and unification as they arise
from our study of M-theory, in which we take the seven dimensional internal manifold to
be singular and have G5 holonomy. In the second part of this thesis, we investigate pair
production of Kaluza-Klein charged particles in an electric field which arises from one

extra dimension. We now discuss each of these investigations in turn.

Part I: On dualities and unification from G, manifolds

Dualities

Dualities are equivalences among theories which may seem to be distinct but in fact
describe the same physics. There is a close interrelation between unification of seemingly
distinct theories and dualities between them, which dates back to the development of the
theory of electromagnetism: Maxwell’s theory of electromagnetism unifies electricity with

magnetism, and at the same time makes manifest a symmetry between them known as



electric-magnetic duality.

As the ultimate unifying theory, M-theory is believed to underlie dualities among
the various ten dimensional string theories. It is also believed to be the origin of dual-
ities among four dimensional theories. For example, modern manifestations of electric-
magnetic duality in four dimensional supersymmetric gauge theories [7, 8, 9] have been

rederived via smooth deformations in M-theory [10, 11, 12].

Here, we deal with dualities of four dimensional supersymmetric gauge theories as
they arise from M-theory. We arrive at such theories by choosing internal spaces with
appropriate properties. Supersymmetry in four dimensions is ensured by a choice of an
internal space which has G5 holonomy, and the gauge group that we obtain in four di-
mensions is encoded geometrically in the structure of the internal space via geometric
engineering. When the internal space has, in addition to its G5 holonomy, also a singu-
larity of ADFE type, it corresponds to a supersymmetric gauge theory in four dimensions
with gauge group SU(N) (corresponding to A), SO(2N) (corresponding to D), or Eg g
(corresponding to E) [13]; singularities of a type different from ADE can lead to chiral

matter fields in four dimensions [14, 15, 16].

We consider the internal manifolds which are asymptotic to cones over quotients of
S? x S3; they have both G5 holonomy and ADF singularities. In Chapter 1 [17], we study
the moduli space of M-theory compactifications on these manifolds, and we find that it
is composed of several connected components. On each component, we discover smooth
interpolations leading to a new kind of duality among four dimensional supersymmetric
gauge theories with different gauge groups, all of which have the same number of abelian

factors. The dual theories all lie on the same connected component of the moduli space.

An example of a set of theories smoothly connected to each other is theories whose
low energy gauge group is of the form I1;,SU(n;) x U(1)® , where s is a fixed integer, 3" n;
is p, q, or r, where p,q,r are relatively prime integers, and the {n;} can be any set of
integers satisfying these properties; due to confinement in non-abelian gauge theories, the

gauge group that is actually observed on a given branch at low energies is given by the



abelian factors, i.e. U(1)®. Further examples include dualities among gauge groups which
contain orthogonal, symplectic, and exceptional Lie groups. The smooth interpolations
and dualities derived here from M-theory have been rederived and extended within a field
theory point of view in [18, 19, 20] for the unitary gauge groups and in [21, 22, 23] for

orthogonal and symplectic gauge groups.

The abelian factors arise when the gauge groups corresponding to the ADFE singular-
ities are broken by Wilson lines; the Wilson lines arise naturally due to the non-trivial
fundamental group of the locus of the ADFE singularity, which is a lens space. By count-
ing the number of inequivalent Wilson lines, we find the number of dual theories and
incidentally arrive at a certain symmetry between the Lie groups SU(p) and SU(q) where
p and q are relatively prime. The idea presented here of counting the number of theories,

or vacua, that one could get from M-theory has been further developed in [24].

Symmetry breaking by Wilson lines [25, 26, 27, 28, 29| is well-known to be an ingre-
dient in models of grand unification; hence our internal spaces of [17] lead us directly
to construct unified theories. In fact, choosing p = 5 and s = 1 above leads us to the

well-known SU(5) model of grand unification. This is the subject of the second chapter.

Unification

The quest for unification has motivated many of the great developments in physics in
the last century. The goal of this quest has been to find a unique theory which describes

all the fundamental forces of nature.

An early important step towards unification, which we already mentioned, was the
one taken by Kaluza and Klein in the 1920’s, in which the forces of gravity and electro-

magnetism were unified by introducing an extra dimension.

In addition to gravity and electromagnetism, there are two more forces which must
be included in a unified theory, namely the strong force and the weak force. Of these
four forces, three are well-known to be described by a gauge theory; electromagnetism is
described by a U(1) gauge group, the weak force by SU(2), and the strong force by SU(3).

4



A major step towards unifying these three forces was achieved in the 1970’s [30, 31]. In
what is known as four dimensional grand unified theories, or GUT’s, the three gauge
interactions are included in a simple gauge group at a high energy scale. This scale is
called the gauge coupling unification scale M., and is defined to be the scale at which
all the three gauge coupling constants are equal. At energies below this scale, the simple
gauge group, which is also known as the unified group and is denoted Gy, is broken
into the product of the three individual gauge groups, which make up the group of the
standard model of particle physics, namely SU(3) x SU(2) x U(1).

It is believed that to obtain unification that includes gravity as well as the three gauge
interactions, the gauge coupling unification scale M.y, should somehow be close to the
Planck scale Mp; = 10 GeV, which is given in terms of the coupling constant G of
gravity, also known as Newton’s constant, by Gy = 1/M3,;. In the original estimation of
the running of the three gauge coupling constants in four-dimensional GUT’s [31], it was
found that the coupling constants can be approximately unified in the simple gauge group
SU(5) at an energy scale of about 10! GeV. Subsequently, with more precise measure-
ments of the couplings at low energies, it became clear that gauge coupling unification
occurs much more precisely if the gauge theories are supersymmetric [32], in which case
the unification scale is higher, around 10'® GeV. In this sense, supersymmetric GUT’s are

better since their unification scale is closer to the Planck scale.

It is interesting to note that the unifying theories of the 1970’s did not invoke extra
dimensions; this might explain why they largely left gravity out of the picture. In the
next decade, however, the ten dimensional supersymmetric string theories, which naturally
contain gravity, have emerged as candidates for unification of all the four forces. Especially
with the development of heterotic string theory [33], it became feasible to include both
GUT’s and gravity in one framework [28], since in addition to containing gravity, the
heterotic string theory also contains a gauge group which can give rise to a unified group
as well as chiral matter fields which appear in the standard model. Other GUT models

have since been constructed, not just from the heterotic string but also from other string



theories (for some examples and reviews, see [34, 35, 36, 37, 38, 39, 40]).
Even though it is possible to include both GUT’s and gravity in superstring theory,

the appearance of superstring theories was not the end of the road to unification; it might
have been if there were only one superstring theory, but there were five. Another major
step in the search for unification was taken when the five superstring theories were unified
into the eleven dimensional M-theory. Naturally, this theory should contain GUT’s as

well as gravity.

In Chapter 2, we study grand unified theories as they arise from M-theory. Our
study of GUT’s from M-theory is a direct continuation of our study of dualities, since
the singular internal spaces of G5 holonomy considered in our derivation of dualities have
certain key properties which lead not just to supersymmetric gauge theories, but also to

supersymmetric GUT models.

A GUT model must have a unified group and a mechanism for breaking this group
to the standard model. In our internal spaces, the ADFE singularity, which is determined
by our choice of quotient of S* x S3, corresponds to the unified group, which we take to
be SU(5); the Wilson line provides the mechanism for breaking it down precisely to the
group of the standard model. In addition, a GUT model should also include the chiral
fermions of the standard model; we put them into our model by hand, or by assuming
that in addition to the ADFE singularities, the G5 manifold has other singularities that
can give rise to chiral fermions. (We should note that many of our results, specifically the

formula that we discuss below, are independent of the inclusion of these fermions.)

One of our main tasks in investigating our GUT model is to study in detail the
equations which govern the running of the gauge coupling constants, known as renormal-
ization group equations (RGE’s). These include threshold correction terms, which arise

from Kaluza-Klein modes with momenta around the extra dimensions.

We find that the threshold correction terms, which as we show are determined by the
topological invariant known as the Ray-Singer torsion, satisfy a property which leads to

exact preservation of unification, and holds when G¢pr = SU(5). The unification scale is
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in fact the same as the one obtained in standard four dimensional supersymmetric GUT’s
with no threshold effects, namely 2.2 x 10 GeV. We derive a simple formula which
provides a precise relation between the unification scale and the volume of a certain
submanifold in the internal space, namely the three dimensional locus ) of the ADE
singularity, which is a lens space. The formula implies two important results, both of
which involve some historical perspective.

a. In 1981, when Weinberg [42] included threshold corrections in the RGE’s of a
four dimensional model, he found that in the presence of threshold corrections, there
is no energy scale at which the three gauge coupling constants are equal. While he
undertook the study of the RGE’s for any unified group, he checked for the existence of a
unification scale only for the example of a model in which the unified group was SO(10).
In his abstract, however, Weinberg stated this result as true for any unified group; it has
since become standard lore that there is no unification scale in the presence of threshold
corrections.

It is indeed true that, generically, in the presence of threshold corrections there is
no energy scale at which all three gauge couplings are equal (see also explanation in
Section 2.3). However, if one repeats Weinberg’s calculation for the popular example of a
model in which the unified group is SU(5), one finds the opposite answer: there does exist
a value of the energy scale for which all three gauge couplings are equal, and it is given by!

cor = €Y My, where My is the mass of a gauge boson. Hence, contrary to standard
lore, threshold corrections do not necessarily preclude the existence of a unification scale:
unification may be preserved in the presence of threshold corrections.

The fact that the unification scale actually exists in our model as well is therefore
really an M-theory analog of a result about four dimensional SU(5) theories.

b. A major theme in GUT’s is the proton lifetime. In the original papers [30, 31] of the
1970’s about GUT’s, the authors noticed that the lifetime of the proton came out much

too short unless they made the assumption that the mass of gauge bosons which appear

"'While this fact appeared in [43], it seems to have gone unnoticed.
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in GUT’s and can mediate proton decay was of the same order as the gauge coupling
unification scale. Since then, such an assumption is very often made in GUT models,
and the gauge boson mass is sometimes used interchangeably with the unification scale.
Sometimes [44], the relation between the unification scale and this mass is taken to be a

matter of convention.

Since in our model, the mass of the heavy gauge bosons can be given in terms of the
volume of the locus @) and the eigenvalues of its Laplacian, our formula can be translated
into a precise relation between the unification scale and the mass of the heavy gauge
bosons. It shows that, while indeed in many cases these two quantities are of the same
order — proving that the assumption originally made in the 1970’s was a good one — they

are distinct and should not be used interchangeably.

For the possible cases in which the two quantities are not of the same order, our
formula can be seen as a challenge to the common practice of using simple dimensional

analysis in determining or estimating physical quantities.

Given the formula for the gauge coupling unification scale, we also obtain expressions
for the gravitational coupling constant Gy, for the eleven-dimensional Planck mass M1,
and for the eleven-dimensional gravitational coupling x1;. These expressions are given in
terms of the unified coupling, the unification scale, and the Ray-Singer torsions mentioned
above. In addition to these, Newton’s constant also depends on a certain ratio of volumes
in the Gy manifold. We find that in our model, the value of Newton’s constant is in
a certain sense closer to its true experimental value than it was in models arising from

heterotic strings.

We go on to investigate the classic question of the proton lifetime. We find that, when
compared with standard four dimensional supersymmetric GUT’s, some modes of proton
decay in M-theory compactifications are suppressed relative to others.? If proton decay is

ever found experimentally, and if such suppression is found as well, it could be interpreted

2This calculation was repeated in [45] for GUT models that arise from intersecting D-branes.



as a signature of M-theory.

Part II: Pair production of Kaluza-Klein particles

In this part of the thesis, we go back to the original Kaluza-Klein theory, with just
one extra dimension. In this framework, we study the production of pairs of Kaluza-Klein
charged particles from a static background electric field that arises from Kaluza-Klein
reduction. Hence, our study combines two fundamental results: the unification of gravity
and electromagnetism as achieved by Kaluza and Klein in the 1920’s, and Schwinger’s
classic study [46] of production of electron-positron pairs from a constant electric field,
carried out via quantum field theory methods in 1951.

It has been widely accepted and well-known that Schwinger pair production occurs
via quantum mechanical barrier penetration, or tunneling. The intuition behind it is
simple: the height of the potential barrier to create a pair of charged particles in a
constant electric field is equal to their total mass, and the width of the barrier is given
by a critical separation of the pair. By using their electrostatic energy, which increases
with their separation, virtual pairs can overcome this barrier and materialize. Once a
pair reaches the critical separation at which the total potential — the mass together with
the electrostatic energy — is zero, and beyond which the potential is negative, the system
has tunneled through the barrier and a pair has been created. The modern instanton
method [47, 48] of computing the pair creation rate depends crucially on this intuition,
as do other related studies [49, 50].

Schwinger’s original calculation did not invoke tunneling. His result, however, was
rederived as a tunneling effect in [51], and was understood as such much earlier (for
example, see [52]). Another well-known example of particle production which is often
considered to arise by a tunneling process is the Hawking—Unruh effect [53, 54], whose
derivation via tunneling was carried out recently in [55]. Other contexts in which pair
production by tunneling appears include an argument given by Dyson [56] about the

divergence of perturbation theory in QED, and the Josephson effect in superconductors
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[57].

However, we show here that tunneling is not a prerequisite for pair production from
a static electric field. In fact, pair creation takes place even though the gravitational
backreaction of the electric field on the geometry — which we incorporate via the electric
Kaluza-Klein Melvin solution — prevents the electrostatic potential from overcoming the
rest mass of the Kaluza-Klein particles, thus impeding the tunneling mechanism which is
often thought of as responsible for the pair creation. We find that pair creation occurs
with a finite rate formally similar to the classic Schwinger result, but via an apparently
different mechanism, involving a combination of the Unruh effect and vacuum polarization
due to the electric field.

Another case which shows that tunneling and pair production are not necessarily
linked appeared in a study of a static magnetic field in [58], in which pair production does
not occur even though the tunneling probability is non-zero.

It therefore seems plausible that, contrary to standard lore, the original Schwinger
effect also does not necessarily arise from tunneling. This may be relevant to experimental

searches for Schwinger pair production [59, 60].

This thesis is organized as follows. Part I is divided into two chapters and contains
the study of M-theory compactified on G5 manifolds, leading to dualities and unification.
Chapter 1 has been published in [17]. Chapter 2 overlaps with [61], which was done in
collaboration with E. Witten. Part II presents the study of pair production of Kaluza-
Klein particles. It was done in collaboration with H. Verlinde and has appeared in [62].

I would like to thank E. Witten for discussions and guidance while the work in Chap-
ter 1 was carried out, M. Goresky and P. Sarnak for helpful discussions related to Chap-
ter 2, and E. Brezin, K.T. McDonald, and A.M. Polyakov for helpful discussions related
to Part IL.
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Chapter 1

On the Quantum Moduli Space of
M-Theory Compactifications

1.1 Introduction

The study of M-theory compactifications on seven dimensional manifolds X of G5 holon-
omy has been motivated by the fact that such compactifications result in unbroken su-
persymmetry in four dimensions. The properties of the compactification manifold X
determine the particle spectrum of the corresponding four dimensional theory. It has
been shown in recent years that compactifications on singular manifolds can result in low
energy physics containing interesting massless spectra. Specifically, certain singular Go
manifolds give rise to N/ = 1 supersymmetric gauge theories at low energies, as shown for
example in [13, 63, 64]. There, X was taken to be asymptotic to a quotient of a cone on
S? x 83, and the singularities of X took the form of families of co-dimension four ADE
singularities giving ADE gauge theories at low energies.

Subsequently, the quantum moduli space of M-theories on G5 manifolds X which are
asymptotic to a cone on S x S3 or quotients thereof has been studied in [16]. It was shown

that the moduli space is a Riemann surface of genus zero, which interpolates smoothly

13



between different semiclassical spacetimes.

The purpose of this chapter is to generalize the construction of [16] to other quotients
of S? x S? and obtain the moduli spaces and smooth interpolations for those as well. Our
quotients contain those in [16] as special cases. We propose that the moduli space for our
quotients consists of several branches classified according to the number of massless U(1)
factors that appear in the low energy gauge theories corresponding to semiclassical points.
Each branch of our moduli space interpolates smoothly among the different semiclassical
points appearing on it; hence, we get smooth interpolation among supersymmetric gauge
theories with different gauge groups.

This chapter is organized as follows. In Section 1.2 we review the M-theory dynamics
on the cone on Y = S x S given in [16]. In Section 1.3, we describe quotients of this
cone by discrete groups of the form I' = I'y x I'y x I'3 where the I'; are ADE subgroups of
SU(2); these ADFE groups must be chosen carefully in order to obtain known low energy
gauge theories from the compactification. In Section 1.4, we turn to the description of the
moduli space Nt of M-theories on these quotients, beginning with the classical moduli

space and concluding with the quantum moduli space.

1.2 Dynamics of M-theory on the Cone over S? x S3

In this section, we review the M-theory dynamics on a manifold X of G'5 holonomy which is
asymptotic at infinity to a cone over Y = 8% xS? [16]. The manifold Y can be described as
a homogeneous space Y = SU(2)3/SU(2), where the equivalence relation is (g1, g, g3) ~
(g1h, goh, g3h), g, h € SU(2). Viewed this way, this manifold has SU(2)? symmetry via
left action on each of the three factors in Y, as well as a “triality” symmetry S3 permuting

the three factors. Up to scaling, there is a unique metric with such symmetries given by
d* = da® + db* + dc?, (1.2.1)

where a, b, c € SU(2), da* = —Tr(a"da)?, the trace is taken in the fundamental represen-

tation of SU(2), and a, b, ¢ are related to g1, g2, g3 by @ = gog3 * and cyclic permutations
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thereof.

The metric for a cone on Y is
ds® = dr® + r?dQ?, (1.2.2)

where d2? is the metric on Y. Such a cone can be constructed by filling in one of the
three SU(2) ~ S3 factors of Y to a ball. We denote the manifold obtained by filling in a
given g; by X;. The metric on a manifold X, asymptotic to X; at infinity, can be written

with a new radial variable y, which is related to r by
y=r—1%+0(1/r"), (1.2.3)
as
2 3
2 _ 592 Y 2 2 2 To 2 2 2 67,6
ds® = dy? + %(da A+ de = o (frda® + fodb® + fzdc®) + O(rl/y")),  (1.24)

where 7y is a parameter denoting the length scale of X, and (f;_1, fi, fix1) = (1,—2,1)
(indices are understood mod 3). When y — oo or r — oo, this becomes precisely the
cone (1.2.2).

We will need to study the 3-cycles of Y in order to understand the relations between
the periods of the M-theory C-field and the membrane instanton amplitudes, which we
shall need in order to describe the moduli space.

The 3-cycles D; of Y are given by projections of the j™ factor of SU(2)? to Y. Hence,
D; = S?. The third Betti number of Y is two, so the three D; satisfy the relation

Dy + Dy + D3 = 0. (1.2.5)
The intersection numbers of the D; are given by
Di . Dj = i+l — 5]‘71'_1. (126)

At X;, where the i factor is filled in, D; shrinks to zero and the relation (1.2.5) reduces

to D;_1 + D;11 = 0 (where again the indices are understood mod 3).
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At each X;, there is a supersymmetric 3-cycle ); given by ¢g; = 0. It can be shown
that @; is homologous to +D; ; and FD; 1, where the sign depends on orientation.

A manifold still has G holonomy up to third order in ry/y if we take the f; of (1.2.4)
to be any linear combination of (1, —2,1) and its permutations — so we have G holonomy

as long as
i+ fot f3=0. (1.2.7)

These f; can be interpreted as volume defects of the cycle D; at infinity: the volume
of D; depends linearly on a positive multiple of f;. Furthermore, since at the classical
manifold X;, only one of the D; vanishes, only one of the f; (namely f;) can be negative.
So the classical moduli space may contain manifolds with the relation (1.2.7) as long as
only one of the f; is negative [16, 65].

The periods of the C-field along the cycles D; are a; = |, D, C. We combine them with

the f; into holomorphic observables n; where now the C-field period is a phase:

2k k ,
n; = exp (?fj—l + gfj + ZO‘j)v (1.2.8)

where k is a parameter. The relation (1.2.7) means that the 7, are not independent, but

instead they obey
M2n3 = exXp (Z > aj)- (1.2.9)

(It can be shown that due to a global anomaly in the membrane effective action, the right
hand side above is —1).

The moduli space at the classical approximation is given by three branches N;, each of
which contains one of the points X; with rq — co. On X;, «; vanishes and the parameters

f; are such that 1, = 1. So on N; the functions 7; obey

ni =1, Nicinisr = —1. (1.2.10)

At the quantum level, there are corrections to this statement. It has been suggested

in [64] that the different classical points X; are continuously connected to one another.
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Hence they should appear on the same branch of the moduli space A'. We proceed now
with the assumption that the only classical points are the X;, which are the points where
some of the 7; have a zero or pole. As explained in [16], since a component of N which
contains a zero of a holomorphic function 7; must also contain its pole, and since the only
points at which the 7; are singular are associated with one of the Xj, it follows indeed
that all X; are contained on a single component of /. Furthermore, each n; has a simple
zero and simple pole in N. The existence of such functions on N means that the branch
containing the zero and pole has genus zero. In addition, any of the n; can be identified

as a global coordinate of N. Choosing any 7; gives a complete description for this branch

of V.

1.3 Quotients and Low Energy Gauge Groups

Here, we begin our study of manifolds which are asymptotic to a cone over quotients of
Y. We shall consider a discrete group action of I' ="'y x 'y x I'3 on Y where the I'; will
be chosen from ADE subgroups of SU(2) in such a way that the low energy physics is
known.

We begin with the simplest case where I' = Z,, x Z, x Z,. Each Z, is embedded in

SU(2) via
e27rik/n 0
Bk — ( o i | (1.3.1)

where ( is the generator of Z,, and £ = 0,1,...,n — 1. The action of I' on Y =
SU(2)3/SU(2) is given by

(v,0,€) € Z, X Zy X Zy : (g1, G2, 93) — (Y91, 092, €93), (1.3.2)

and we denote the resulting quotient space by Y.
The spaces X; r, obtained by filling in the i* SU(2) factor of Yr, are quotients of R* x
S? where the R* corresponds to the filled-in factor. Choosing i = 1 and gauging g, away

17



using the right diagonal SU(2) action, the identification corresponding to (v*,d%, ™) € T
is

(91,1, 93) ~ (7" 9167, 1, €™gs07), (1.3.3)
where g; € R* and g3 € SU(2) ~ S3. The set (0,1, g3) with g3 varying in SU(2) is a
fixed point of the action of the Z, subgroup of I', and this singularity is identical to the
standard A, ; singularity of codimension four of the form R*/Z, or C?/Z,, which gives
an SU(p) gauge theory at low energies.

Depending on the values of the integers ¢ and r, there may be additional, unfamiliar
singularities for which we do not know the low energy physics. Namely, there may be
values of g3 which are fixed under a non trivial subgroup of Z, x Z,, i.e. where the
following holds

"3 = gs. (1.3.4)

This is the same as looking for elements g3 of SU(2) which diagonalize §':
€™ = gsd'gs . (1.3.5)

Choosing the orders ¢ and r of § and € to be relatively prime, (¢,7) = 1, ensures that
there are no solutions of this equation (since then the orders of the left and right hand
sides of (1.3.5) are relatively prime). Similarly, we choose (p,q) = (p,) = 1, and so there
are no singularities at X; r other than the ADE singularities whose low energy physics is
known: an A, ; singularity on S*/(Z, x Z,) at X;r, an A,_; singularity on S*/(Z, x Z,)
at Xor, and an A,_; singularity on S*/(Z, x Z,) at X3, with the discrete group action
on S? given by the appropriate cyclic permutation of the action on g3 in (1.3.3).

Now consider also the non-abelian ADFE groups. Again, we would like to choose I'
such that we will only get singularities whose physics at low energies we understand —
namely, ADFE singularities. For this purpose we review the relevant properties of the DFE
groups. For information about these groups, see [66].

As in the abelian case, we let ' =1'; x I'y; x 'y act on Y by
(7,6,€) €Ty x Ty x '3 2 (g1, 92, 93) = (791, 092, €93), (1.3.6)
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from which equations (1.3.3) and (1.3.4) follow in the same way as before.

The binary dihedral groups D, have order 4¢ — 8 and are generated in SU(2) by two

D, = << ef 6_(:,,_1.2 )(_01 (1))> (1.3.7)

Since all D, groups share an element of order 4, we cannot choose more than one of the

elements:

['; to be a dihedral group, since otherwise we would get solutions to (1.3.4). Hence we let
I'=27,x D, xZ, with (p,7) = (p,2(¢ —2)) = (r,2(¢ — 2)) = 1.

We turn to the E series. A singularity R*/G which gives at low energies Eg, E7,
or Eg gauge groups corresponds to G being the tetrahedral group Tay, the octahedral
group Qyg, or the icosahedral group I;59 . The orders of these groups are 24, 48, and 120
respectively, and each of them has elements of orders 3 and 4, so we cannot have more
than one F group appearing in I'. The group I;5 also has elements of order 5. Hence,
in addition to (p,r) =1, for I' = Z, x Eg X Z, or I' = Z, x E; X Z,, we need also
(p,2-3)=(r,2-3) =1, and for I' = Z, x Eg x Z,, we need (p,2-3-5) = (r,2-3-5) = 1.

Therefore, our group I' is always chosen to be of the form I' = Z,, x I'y x Z, where I'y
is an A, D, or E group, and p, r, and I'y satisfy the conditions noted above, which can

be summarized by

(p, N) =(r,N) = (p,7) =1, (1.3.8)

where N is the order of the group I'y. At X we have an A,_; singularity on S?/(I'y x Z,.),
at X3 we have an A,_; singularity on S*/(Z, x T'y), and at Xor we have an A, D, or
E singularity on S*/(Z, x Z,), where here the discrete group action is given by the
appropriate cyclic permutation of the action on g3 in (1.3.3).

The low energy gauge theories obtained from compactifying M-theory on R* x X; r are
listed in Table (1.3.9). Each entry contains the gauge group and the compact 3-manifold
which is the locus of the ADFE singularity.

As we shall see below, for the cases where I's is a D or E group, there are additional

semiclassical points where the low energy gauge group is different from those listed above.
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Fg Xl,F X2,F X37F
Z,| SU(p) S*/(Z,xZ,) | SU(q) S*/(Z, xZ,) | SU(r) S*/(Z,x Z,)
D, | SU(p) S$%/(D,xZ,) |SO(2q) S*/(Z, xZ,)| SU(r) S$*/(Z,xD,)

Tt | SU() S /(TosxZ) | Bs  S*/(Ze x Z,) | SU() S*/(Z, x Tar)

Ou | SUM) /(0w xZo) | B S/(Zy x Z,) | SUG) S*/(Z, x Ous)

Ly | SU(p) 8°/(Liy x Z,) | Eg S°/(Z, x Zy) | SU(r) 8°/(Zy x Tixo)
(1.3.9)

We note that for the case with r = 1, X3 is smooth and its low energy theory has no

gauge symmetry. If also p = 1, X r is smooth as well (this is the case studied in [16]).

1.4 The Curve of M-theories on the Quotient

1.4.1 Classical geometry

The 3-cycles D) of Yr are the projections of the i factor of SU(2)3 to Yr. Hence, for

I' =72, xT'y x Z, we have

D, = S*/Z,, (1.4.1)
D), = S*/Ty, (1.4.2)
D, = S*/Z,. (1.4.3)

Using the relation (1.2.5) in Y and the fact that D; € Y projects to a p-fold cover of

D} € Yr, as well as cyclic permutations of this fact, we find
pD]+ ND) +rD; =0, (1.4.4)

where N is the order of the group I's. To study the intersection numbers of the D! we

note that D] € Yr lifts to NrD; € Y, and similar statements are true for the other D..
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Counting the intersection numbers in Y and then dividing by pNr (since there are pNr

points in Y which project to one point in Yr), we get
Di-Djy=r, Dj - Dy = p, D;- D} = N. (1.4.5)

Here we see that the D) generate the third homology group of Yr: since (r, N) = 1, we

can find integers m, n such that
D} - (mDy+nDj3) =mr —nN =1, (1.4.6)

and similarly for the other cycles.
We define the periods of the M-theory C-field at infinity by

o = /D/. C mod 27. (1.4.7)
Note that these are related to the a; of Y by

oy = paj, as = Nay, az = raj. (1.4.8)

1.4.2 Classical moduli space

We define our holomorphic observables to be the following functions of the periods o and

of the volumes f;:
2k k .
m = exp (%fs + %fl + ZO/l)a
2k k .
N2 = exp (S_Nfl + 3—Nf2 + ZO/27)7
2k k .
s = €exXp (gfz + 3_Tf3 + Zag.).

These functions are adopted from (1.2.8), where we substitute the expressions in (1.4.8)
for the periods and then take the largest possible root that still leaves the 7); invariant

under a;» — a; + 2.

21



The periods of the C-field are interpreted as the phases of the holomorphic observables.
Due to (1.2.7), we have

nans = exp (z > a;). (1.4.9)
J
The n; have zeros or poles at the semiclassical points X; r with large ¢ in which the

f; diverge. As in Section 1.2, classically at the point X;r, 71 = 1 and o} = 0. Hence, at
this point
namh = exp ( (ah + 043)) (1.4.10)

so when 7y has a pole, n3 has a zero and vice versa. In fact, the order of the zeros or poles
of ny must be a multiple of r, and similarly the order of the zeros or poles of 3 must be
a multiple of N for this equation to hold. In the classical approximation, there are three
branches N; of the moduli space, on which we have 7; = 1 and 7;+; obeying the relation

(1.4.10) for i = 1 or cyclic permutations of it for i = 2, 3.

1.4.3 Quantum curve via membrane instantons

To study the quantum curve, we study the singularities, i.e. the zeros and poles of the
holomorphic observables 7;, which correspond to the classical points X, r with ry — oo.
We shall use a relation between the n; and the amplitude for membrane instantons which
wrap on supersymmetric cycles @ in X. Using chiral symmetry breaking of the low energy
gauge theories, we find a clear relation between the local parameter on the moduli space
and our observables, and hence can describe the moduli space.

A supersymmetric cycle in X, p is given by the 3-manifolds (); given by g; = 0:

Q1 = S*/(TaxZ,), (1.4.11)

Q: = S°/(Z, x1Z,), (1.4.12)

Qs = S*/(Z,xTy). (1.4.13)
At Xy, Q1 is homologous (up to orientation) to the D’ as follows:

rQ, ~ D}, (1.4.14)



NQ; ~ D, (1.4.15)

and cyclic permutations of that give the relations at Xsp to be pQ2 ~ Dj and rQy ~ Df,
and at X3 we have NQ3 ~ D and pQs ~ D).

We now study the zeros and poles of the n;. To understand the orders of the zeros
and poles, we must compare the 7; to the true local parameter on N around each X;
with large rg.

One would expect at first that the membrane instanton amplitude w itself, given near
Xi,F by

w=exp(-TV@Q)+i [ C), (1.4.16)

7

where T' is the membrane tension and V(@Q;) is the volume of @;, would be a good local
parameter near X;p. However, at low energies we have a supersymmetric A, D, or E
gauge theory in four dimensions, and due to chiral symmetry breaking, we expect the
good local parameter — the gluino condensate — to be u'/* where h is the dual Coxeter
number of the gauge group.

We now compare phases of the 7; to the phase of u. Let P;r correspond to the
manifolds X, with large r7p. For the case where I'y = Z,, at P, equation (1.4.14)
implies that the phase fD’2 C of n; is related to the phase [y, C of u by fD,Q Cr~rfg C.
Since the good local parameter is actually «!/? due to chiral symmetry breaking of the
SU(p) gauge theory at P;p, the true order of the zero of 7y at Py is pr. The same
calculation for the other n; and P,r gives the orders of zeros and poles shown in the

following table:

I'y=%2,| Pir | Por | Psr
1 Joor | 0
n ad (1.4.17)
Mo opr 1 | ooP”
s ooPe | opa | 1

The cases where I'y is a D or E group give similar tables, except that in these cases we

get extra semiclassical points in the same way as in [16]: for the case I'y = D,, we have
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I'y=Dy| Pir | Por | Por | Bsr
1 Oorh Oo2rh’ OTN
n , (1.4.18)
mo | or | 1] -1 oo
73 OONp th 02h’p 1

where h =2¢—2, ' = q—3, and h +2h' = N. The low energy gauge theory at Py r has

gauge group Sp(q — 4).
For I'y in the E series, the table is

I'y=E,| Pir | or | Pur | Psr
m 1 Oorh Oortht OT‘N
o 0P 1 e27rz',u/t o™P ’ (1419)
73 oolVP | Qe | (pthe 1

where t, hy, u are given for each E, as follows: let k; be the Dynkin indices of E,, and
let t be the positive integers which divide some of the k;; u runs over positive integers
less than ¢ that are prime to ¢, unless ¢ = 1 in which case p = 0; h; is the dual Coxeter
number of the associated group K; whose Dynkin indices are k;/t where here the k; run
through the indices of E, that divide t. The ¢ and h; obey the relation Y th, = N. The
low energy gauge group is given by the ADFE group corresponding to K;.

From the relation ) th, = N and the tables above, we see that for each 7;, the total
number of zeros and poles is equal. Since the total number of zeros is the same as the
total number of poles for each of the n;, it seems reasonable to assume that we have found
all the zeros and poles, and hence all the semiclassical limits in our moduli space. It
would seem, therefore, that we can now proceed to describe the moduli space completely,
by writing our functions 7; explicitly and identifying the points P; r with values of a good
coordinate on the moduli space. However, as we shall see, we run into a few puzzles.

The first question we ask is: what can be said about the genus of N1? For the cases
p = r = 1, which are the cases considered in [16], the function 7, has a simple zero and

a simple pole, and hence can be identified with a global coordinate on the moduli space,
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which can then be claimed to have genus zero. If p,r > 1, this is not so: none of our 7;
have just a simple zero and pole, so we cannot identify the moduli space with any of the
n;, and we do not know the genus.

However, the simplest result would be that the curve has genus zero, and we proceed
with this assumption. Hence, we assign the curve a global coordinate z, write the 7; as
holomorphic functions of z, and see how well we can describe the curve.

For the case I'y = Z,, this turns out to be straightforward; we may fix P;p at 2 = 0,

Pyrat z=1, and Psr at z = 0o, and then write our functions:

1

m = =T (1.4.20)

ny = 2P, (1.4.21)
1—z)re

N = (Gl qu> : (1.4.22)

This description is unique up to possible overall factors which are related to an anomaly
in the membrane effective action, analogous to the one described in Section 5 of [16].
For I'y; = Dy, we run into a puzzle. Once we fix the first three points, we have to find

at what value z4 the fourth point Py r sits: our functions in this case are

Zirh’
= 1.4.23
n (1= 2)h(zg — 2)2H" ( )
n = 2P, (1.4.24)
(1 — 2)"" (24 — 2)*"7
ns = N , (1.4.25)

again up to overall factors. The forms of 77; and 73 do not constrain z4, but to satisfy
n2(24) = —1, we need 2" = —1 for which there are pr solutions. A similar situation arises
for I'y in the F series, where there are pr choices for each point beyond the first three.
The pr solutions, however, should correspond to the same point in the moduli space
of M-theories, since they correspond to the same theory. Hence, it seems that we have a
redundancy in our description of the moduli space; we should impose a symmetry on Nt

which identifies the different values of z4.
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There is another, more serious puzzle which shows up, also involving possible extra
classical points on Nr: from table (1.3.9), we see that our low energy gauge theory is
compactified on a manifold which is not simply connected, but rather is of the form S3/H
for some discrete group H. Hence its fundamental group is equal to H. Therefore, it is
possible to construct theories which have gauge fields with non-trivial Wilson loops which
break the gauge symmetry.! Where in At do these theories lie?

For the case I'y = Z,, the point P, r can have Wilson loops which are conjugacy classes
of elements of SU(p) of order gr. One can show that, when p, ¢, r are relatively prime,

the number of inequivalent such elements is

1 -1 —1)!
1 fpta _(ptg—1! (1.4.26)
qr gr—1 pl(qr)!

with cyclic permutations for Por and Ps;p. Furthermore, for Wilson loops that break

SU(p) in a way that leaves s — 1 factors of U(1), i.e.
SU(p) — I, SU(ny) x U(1)",

where >~ n; = p, the number of inequivalent Wilson loops is

S ( p ) ( a ) , (1.4.27)
bgr \ s S

Each set of theories with a given number s — 1 of U(1) factors should lie on a separate
component Ny of the moduli space, since smooth interpolation means that the number
of massless modes — which corresponds to U(1) fields — is constant on each component.
For s > 1, we know that the theories on N do not have a mass gap due to the massless
U(1) field. On the other hand, the theories corresponding to the points P;r with no non
trivial Wilson loops are believed to have a mass gap. Hence we claim that N7 r contains

theories with a mass gap.

!These theories are the basis for our GUT models in Chapter 2.
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For the case r = 1, we obtain no singularity at X3p. Hence, for that case the mass
gap of the theory at X3 means that all of A7 has a mass gap.

Continuing with the case where r = 1, we note a manifest symmetry between p and
¢ in the expression (1.4.27) for the number of possible Wilson loops at each level s. At
first sight, this could support the assertion that these points lie on their own branch
of the moduli space, which will interpolate smoothly among them and contain no other
singular points. However, chiral symmetry breaking means that the number of vacua at
each classical point is given by II;n; which is clearly not symmetric between p and ¢, and
spoils the counting of the orders of zeros and poles.

Going back to general r and looking at N only, we see that we have smooth in-
terpolation among theories with different gauge groups: SU(p), SU(q), and SU(r) when
I'y = Z, SU(p), SO(2q), Sp(q —4), and SU(r) when I'y; = D,; and analogously for
[y in the E series, where we interpolate between SU(p), K;, and SU(r), with K, as
described after table (1.4.19). Similarly, the other branches N smoothly interpolate

among theories with these gauge groups broken by Wilson lines.
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Chapter 2

Unification from M-Theory

2.1 Introduction

We construct a supersymmetric M—theory compactification on a GG, manifold X in which
a grand unified theory arises naturally. The unified group G¢yr appears due to a co-
dimension four ADE singularity in the compactification manifold, so the unified gauge
theory is seven-dimensional. The breaking of G+ to an effective low-energy gauge group
G, which occurs around an energy scale M, known as the grand unification scale, arises
from a Wilson line which appears due to the non-trivial fundamental group of the 3—
dimensional locus ) of the ADE singularity. The low energy effective gauge theory is four
dimensional.

In our model so far, the spectrum of the four dimensional theory is composed entirely
of Kaluza-Klein modes of the adjoint fields of G,». This spectrum contains, for example,
the gauge fields of the effective low energy gauge group as well as the superheavy vector
bosons which have a mass My and mediate proton decay. It does not, however, include
the full spectrum of the standard model, which contains the quarks, leptons, and Higgs
bosons. To be as realistic as possible, we shall take as our main example Gy = SU(5)
broken to the standard model gauge group G = SU(3) x SU(2) x U(1), and at one point
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we shall put in the quarks, leptons, and Higgs bosons. We can add these chiral fields
either by hand, or by assuming that X has, in addition to its ADFE singularities, certain
other singularities which are different from the ADFE ones and which can give rise to the

chiral fermions; such singularities were studied in [16, 67, 14, 15].

The three effective gauge couplings in four dimensions obey renormalization group
equations (RGE’s). As in usual four dimensional GUT’s [30, 31, 68, 43], the description
of the effective theory in terms of these RGE’s is valid up to an energy scale M, .. Above
this scale, the three couplings are equal to each other and to the unified coupling gsir,

and obey a single RGE.

We consider the threshold corrections (studied within four dimensional models origi-
nally by Weinberg [42] and by Ovrut and Schnitzer [69]) to the four dimensional RGE’s

due to the entire massive Kaluza-Klein modes (we do not include any winding modes).

We find that the threshold corrections are a topological invariant of the 3—manifold @),
given by linear combinations of Ray-Singer torsions. (For a related result within heterotic
string theory, see section 8.2 of [70].) The fact that they are topological depends heavily

on choosing the compactification to be supersymmetric.

Furthermore, we show that the threshold corrections due to Kaluza-Klein harmonics
satisfy a property which leads to exact preservation of unification; that is, there is an
energy scale Mg+ at which the gauge couplings are equal, even in the presence of threshold
corrections. This property stems primarily from group theory factors, and holds when
Gour = SU(5) (but not when Ggpr = SO(10)). We find not only an exact unification
scale, but also a precise relation between this scale and the mass My of the heavy vector
bosons.

Generically, in the presence of threshold corrections [42, 71, 72, 73, 74] there is no
energy scale at which all three gauge couplings are exactly equal. There are only a few
cases in the literature in which threshold corrections do exactly preserve unification, as
they do here. In one case, it is stated in [43] that for Gy = SU(5), the model considered

in [42] leads to preservation of unification in the presence of threshold corrections, along
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with the relation Mgy = e /2! My, (in [42], only the case of Gy = SO(10) which does
not preserve unification was considered, and not the case Ggpr = SU(5)). !

An underlying assumption often made in GUT’s is that, in order to explain the sup-
pression of effects such as proton decay, the mass My is assumed to be superheavy and
of the same order as the unification scale Mgy, [30, 31, 43, 79, 80]. The mass My and
the unification scale M, are sometimes used interchangeably. What we have here is a
derivation of a precise relation between these two quantities , and in fact, it could be that
— depending on () — the above assumption may even be false. From here on, to avoid
confusion, we will use E.y+ to denote the unification scale which we previously called
Meyr; when we say Egyr we strictly mean the energy at which the couplings are equal,
to be distinguished from the masses My of heavy vector bosons.

Our relation between E.,, and My can be presented quite generally in terms of a

relation between E¢,, and the volume Vg of Q:

D(Q)
E?;UT = 2/3 ’ (211)
Vo

where D(Q) is a topological invariant to be defined in Section 2.6. This formula is the
one we referred to in the Prelude.

The relation in equation (2.1.1) is valid whether or not we have included the chiral
fermions. We get realistic predictions for the scale F, .+ as well as the weak mixing angle
sin?#,, by adding to our low-energy beta functions the contribution from the quarks,
leptons, and Higgs bosons of the supersymmetric standard model (we assume that they
have no Kaluza-Klein excitations). What we find is that the predictions we get are exactly

the same as — and hence as good as — those coming from the standard field theoretic grand
unified model: Egyr = 2.2 x 10'9GeV, sin? 6, = 0.23.

1See also [75, 76] for a mechanism in which gauge coupling unification is (essentially) preserved in
the presence of extra dimensions, see [77] for a model in which stringy threshold corrections conserve
gauge coupling unification, and see 78] for a case where the standard model spectrum is extended for

the specific purpose of preserving unification.
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We complete our unification picture by including the gravitational coupling G via
dualities between M—theory and string theories. As in heterotic string theory GUT’s (see
[81] and references therein), where at tree level, the gravitational couplings automatically
unify with the gauge couplings, here too unification of gauge couplings leads to unification
with G, since by duality with string theories, all couplings are given in terms of the one
string coupling constant gs. We find an expression for Gy which may agree with its
experimental value, and could be even in better agreement with the experimental value
than the case of the strongly or weakly coupled heterotic string (see [82, 83, 84] and

references therein).

Finally, we study the classic problem of proton decay in our model. To discuss proton
decay in a sensible fashion, we need to assume a mechanism for doublet-triplet splitting;
here, we assume the mechanism of [41] (which is a close cousin of the original mechanism
for doublet-triplet splitting in Calabi-Yau compactification of the heterotic string [29];
this mechanism has been reconsidered recently from a bottom-up point of view [85, 86,
87, 88, 89]). One consequence of this particular doublet-triplet splitting mechanism is
that dimension five (or four) operators contributing to proton decay are absent; proton
decay is dominated, therefore, by dimension six operators, which are the ones we shall

study.

In four-dimensional SUSY GUT’s, the gauge boson exchange contributions to proton
decay, if they dominate, lead to a proton lifetime that has been estimated recently as
5 x 1036+ years [90, 91]. (Four-dimensional GUT’s also generally have a dimension five
contribution that can be phenomenologically troublesome (but see [92, 93]); it is absent in
the models we consider.) Relative to four-dimensional GUT’s, we find a mechanism that

enhances proton decay modes such as? p — 7le} relative to p — 7%k or p — 7 g; these
are typical modes that arise from gauge boson exchange. Given numerical uncertainties

that will appear in Section 2.7, it is hard to say if in practice this mechanism enhances the

2And similar modes with 7° replaced by K°, or ez by ,uz. As in most four-dimensional GUT’s, we

do not have precise knowledge of the flavor structure.
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p — 7’} modes relative to GUT’s or suppresses the others. Because of these issues, to

cite a very rough estimate of the proton lifetime, we somewhat arbitrarily keep the central
value estimated in the four-dimensional models and double the logarithmic uncertainty,
so that if gauge boson exchange dominates, the proton lifetime in these models might
be 5 x 10%%*2 years.® (In practice, the uncertainty could be much larger if because of
additional light charged particles, the unification scale is modified; the same statement
applies to four-dimensional GUT models.)

This Chapter is organized as follows. In Section 2.2 we present our M-theory GUT
model. In Section 2.3 we write the standard expressions for the RGE’s and for the
threshold corrections which shall be used throughout. In Section 2.4 we describe the
Kaluza-Klein spectrum obtained from our model. Section 2.5 is devoted to showing how
to write the threshold corrections in terms of Ray-Singer torsions. In Section 2.6 we
arrive at our main results: we show that the threshold corrections preserve unification,
and we display the relation between E.,, and the volume Vj of @) in terms of Ray-Singer
torsions. We discuss the mass of the heavy gauge bosons, briefly comment on proton
decay, and then show how the chiral fermions are included. In Section 2.7 we add the
gravitational coupling to the story. Section 2.8 contains our results about proton decay.
Throughout our presentation, we derive our results for a general 3-manifold ) which has
a finite fundamental group, and we also include completely explicit results for our case
of the lens space. Appendix A contains the calculation of a Ray-Singer torsion which is

used in Section 2.5, and Appendix B generalizes our results to different GUT groups.

2.2 GUT’s from M-theory

We construct here our GUT model, based on a compactification of M-theory on a manifold

X of G5 holonomy, which preserves N' = 1 supersymmetry. In compactifying eleven-

3The current experimental bound on p — 7%t is 4.4 x 1033 years (for a recent report, see [94]) and

the next generation of experiments may improve this by a factor of 10 to 20 (for example, see [95]).

33



dimensional M-theory on a seven-manifold X, the properties of X determine what theory
we get in four dimensions. For example, a singular manifold X leads to a gauge theory
in four dimensions [13, 63, 64, 16]. In the model we are about to describe, which is based
on results obtained in Chapter 1 [17], the choice of X is such that both a grand unified
gauge group and its breaking into the standard model subgroup arise naturally. As we will
show, the unified group arises from an ADF singularity in the compactification manifold,
which translates into an ADE gauge theory at low energies, while the breaking of this
group comes from Wilson loops which arise due to the non-trivial fundamental group of
the locus @ of the ADE singularity.

As described in Chapter 1 [17], our compactification manifold X is asymptotic to a
cone over quotients of Y = S3 x S3 = SU(2)3/SU(2), where the equivalence relation
is (g1,92,93) ~ (g1h, goh, g3h), with g;;h € SU(2). We consider a discrete group I' =
[’y x I'y x '3, where the I'; are ADE subgroups of SU(2), which acts on Y by

(7,0,€) € Ty x Ty x I's : (g1, g2, 93) — (791,092, €93), (2.2.1)

and we denote the resulting quotient space by Y.

The compactification manifolds X, ;. asymptotic to Y} are singular spaces obtained by
filling in the i*" SU(2) factor of Y; to a ball in R*; they are topologically quotients of
R*x S3, where the R? corresponds to the filled-in factor. For i = 1, gauging g, away using
the right diagonal SU(2) action in Y, the identification corresponding to (v*,8!,e™) € T

becomes
(91,1,93) = (Y"g107',1,€Mg307™"), (22.2)
where g; € R* and g3 € SU(2) ~ S?; the set (0,1, g3) with g3 varying in SU(2) and
g3 = €Mgy0 !, (6,e) ey x 'z, (2.2.3)

is the fixed point locus of the action of the I'; subgroup of I'. A similar description holds
when ¢ = 2, 3. For these fixed points to be identical to a standard A, D, or E singularity
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of codimension four of the form R*/T’; or C?/T;, which gives a I'; gauge theory in seven
dimensions, it was explained in Chapter 1 [17] that we must choose our group I' to be of
the form I' = Z, x I'y x Z, where I'y is any A, D, or E group, and where, if N is the
order of the group I's, then p, r, and N satisfy

(p, N)=(r,N) = (p,r) = 1. (2.2.4)

At X, we have an SU(p) gauge theory on R* x Q where Q = S3/(T'y x Z,), at X, 1
we have an SU(r) gauge theory on R* x Q where Q = S3/(Z, x I';), and at X,  we have
an A, D, or E gauge theory on R* x Q where Q = S*/(Z, x Z,); in each of these three
cases, the free discrete group action on S? is given by the appropriate cyclic permutation
of the action on g3 in (2.2.2).

We can view S? as embedded in C? satisfying |21]? + |22|> = 1, and it will be useful
for us later to rewrite the action of I's x Z, on S? for the case ['y = Z, in terms of its

action on C?2:

(5’ 6) . (21’ 22) — (e2m'/q—27ri/rzl : 6—27ri/q+27ri/rz2)’ (2‘2‘5)

where § and € here generate Z, and Z,, respectively.

We see that our low energy gauge theory lives on a manifold of the form Q = S3/H,
where H is a finite group. This manifold is not simply connected — its fundamental group
is equal to H. Therefore, it is natural to include in the low energy theory non-trivial
Wilson loops which break the gauge symmetry. The remaining gauge group will contain
abelian U(1) factors, and, as was shown in Chapter 1 [17], the moduli space for theories
corresponding to I' consists of several branches classified according to the number of these
abelian factors that appear in the low energy gauge theory. Within each branch, called
N r, we get smooth interpolation between supersymmetric gauge theories with different
gauge groups containing the same number s — 1 of U(1) factors.

The theories we will be studying here live on Ny, the branch of moduli space which
contains theories with Wilson lines that break the ADFE gauge group into a subgroup

containing one U(1) factor. For example, one theory on this moduli space contains a
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Wilson line in SU(p) that breaks it as follows:
SU(p) — SU(n) x SU(m) x U(1), n+m=p. (2.2.6)

This provides a natural model for symmetry breaking of a grand unified gauge group into
the Standard Model: we can treat SU(p) as a GUT group, and with p = 5 we can choose
a Wilson line which will break SU(5) precisely into the Standard Model gauge group
SU(3) x SU(2) x U(1). We shall use this theory as our main example.

Hence, we take the simplest example I' = Z5 x Z, (I'; = I) and fill in g;. The co-
dimension four Zjs singularity gives a gauge theory in seven dimensions with G¢pr = SU(5)
gauge group on R'? x Q where Q = S3/Z, is the locus in X of the Zs singularity. Since
m(Q) = Z,, we can take the Wilson loop to be

647rzw /q

dmiw/q
U= elmiw/q (2.2.7)

e—ﬁmw/q

6—67r2w/q

where we can choose® an integer w = 1,..., ¢ — 1 with 5w not divisible by g. This breaks
SU(5) to the standard model group SU(3) x SU(2) x U(1).

To have a realistic model, we need to include chiral fields. We shall include them
by assuming that at some points P; on (), there are singularities in X which are worse
than the ADFE singularity and which support chiral fermions. At these points, @) itself is
smooth but the normal directions to () in X have a singularity more complicated than the
orbifold singularity. This mechanism was determined in [14], and the relevant singularities
have been studied in [16, 67, 14, 15]. Their details will not be important here.

4In Chapter 1 [17] we would take (5,¢) = 1 and 5w would be automatically indivisible by ¢; however,
here the condition (5, ¢) = 1 is not necessary since in this example with g; filled in and I's = I, the action

on gz in (1.3.3) (which is (2.2.2) here) is smooth for any g¢.
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2.3 Renormalization Group Equations

The renormalization group equations (RGE’s) at the one-loop level for a supersymmetric
gauge theory with gauge group G = II,G,,, including threshold corrections, are given by
44, 96, 81]:°

1 1 1 b A? 1§
- 2 log — 4 — ¢ 2.3.1
kag?(p) g3, * 1672 k, °8 2 * 1672 k, ( )

where
1
he = 23 Q-1 (55 1) (2.3.2)
m=0

S, = 2> TrQ? (—1)F(i — X2)logA—2 : (2.3.3)

¢ o ¢ 12 m?

Here, a indexes the factors of G, g,(u) is the coupling associated with G,, gy is the
underlying gauge coupling as deduced from M-theory in the supergravity approximation,
X is the helicity operator, i is the renormalization scale, F' is the fermion number, and the
Q. are generators of the a'™ gauge group for the representation in which the massless (in
(2.3.2)) or massive (in (2.3.3)) particles live. The trace over them is normalized such that
for SU(N), Tr Q* = N for the adjoint representation and Tr Q? = 1/2 for the fundamental
representation.

The k, are normalization constants, which for the standard model with unified group
Gour = SU(B) are ky = 5/3, ko = k3 = 1. They encode the tree-level relation among
the three couplings which follows from the existence of an underlying G4+ structure; the
tree-level equation is (2.3.1) with b, = S, = 0.

The second and third terms of (2.3.1) are the one-loop corrections to the tree-level
relation. The second term, where the b, are the one-loop beta function coefficients, gives

the running of the couplings due to massless particles. The third term is the one-loop

®The threshold corrections are called A, in [44, 96], but we will call them S, to avoid confusion with

the use of A for the Laplacian.

37



threshold correction and is a sum over contributions from heavy particles; it is independent
of . The assumption of gauge coupling unification in the absence of threshold corrections,
i.e. when S, = 0, is equivalent to the fact that A and g, in (2.3.1) are independent of the
index a: when pu = A, we have ky g2 (1) = kogi(p) = ksg2(p) = g3, so the energy scale
of unification is Fgyr = A. In the presence of threshold corrections, i.e. when S, # 0,
generically there is no longer a value of y at which all the couplings are equal to each
other (but in our case, we will find such a value of u).

Combining the formulas above, we can write

1 k, 1 1
m = @ + @2 mZ:O TI"Qi(_l)F <E - X2) 108;(/\2/#2)
1 1
T Dk oG (E _ X2) log(A2/m?). (2.3.4)

m##0

2.4 Kaluza-Klein Reduction

In this section, we fit both the massive and massless Kaluza-Klein modes of our GUT
model into four dimensional AN/ = 1 supermultiplets.

As described in Section 2.2, we have compactification on a manifold with a codimension
four A, singularity which leads to a seven dimensional supersymmetric SU(p) gauge
theory on R* x ); R* is four dimensional Minkowski space, and @ is a supersymmetric
cycle in the Gy manifold. The (massless) bosonic sector of the seven dimensional theory
consists of the gauge field and 3 scalar fields, all in the adjoint representation of SU(p).
Under Kaluza-Klein reduction on @), the seven dimensional gauge field decomposes into
a four dimensional gauge field, which is at the same time a scalar on (), and a four
dimensional scalar, which is a 1-form on ). As explained in [13], the identification of
part of the structure group of the normal bundle of () with the struture group of the
tangent bundle of (), which is a result of the fact that () is a supersymmetric cycle in the
(G5 manifold, means that the set of 3 seven dimensional scalars can be treated as a 1-form

on () which is at the same time a scalar in four dimensions. So the bosonic spectrum in
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Table 2.1: Field content in four dimensions

Form on @ Supermultiplet X Tr (-1)"(5 — x%)
0-forms 1,1/2,-1/2,—1 —3/2
vector
massive closed 1/2,0,0,—1/2 1/2
1-forms
co-closed chiral 1/2,0,0,—1/2 1/2
O-forms | harmonic vector 1,1/2,-1/2, -1 —3/2
massless
1-forms | harmonic chiral 1/2,0,0,—1/2 1/2

four dimensions consists of one gauge field which is a scalar on () and two scalars which
are two 1-forms on Q.

We would like to fit this spectrum into N/ = 1 supermultiplets in four dimensions.
We have taken into account only the massless fields in seven dimensions, but in four
dimensions their mass is given by the eigenvalues of the Laplacian on (). The spectrum
of the four dimensional gauge fields is the spectrum of the Laplacian on O—forms on Q.
The spectrum of the four dimensional scalars is that of 1-forms on @); the spectrum of
1-forms can be divided into closed 1-forms, which have the same spectrum as O—forms,
and co-closed 1-forms, which have a different spectrum.

The massive gauge fields in four dimensions fit into a massive vector multiplet with
helicities (1,1/2,1/2,0,0,—1/2,—1/2,—1). The modes of the two scalars, each of helicity
0, that have the same spectrum as the gauge field (namely the closed 1-forms on Q) fit into
the same multiplet. The rest of the scalar modes, namely the co-closed 1-forms, fit into

a different multiplet, namely a massive chiral multiplet with helicities (1/2,0,0,—1/2).

As to the massless fields, the harmonic forms are the modes which correspond to
massless fields in four dimensions. The value of the k* betti number b, (Q) tells us how

many harmonic k—forms exist on ). There will be by(Q) harmonic scalars on @, which
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are massless four dimensional gauge fields, and there will be b;(Q) harmonic 1-forms on
(2, which are simultaneously closed and co-closed, which are massless four dimensional
scalars. The massless four dimensional gauge fields fit into a massless vector multiplet
with helicities (1,1/2,—1/2,—1), and the massless four dimensional scalars fit into b;(Q)
massless chiral multiplets with helicities (1/2,0,0,—1,2), corresponding to harmonic 1-
forms. For the case in which by(Q) =1 and b,(Q) = 0, the massless spectrum is just one
massless vector multiplet (1,1/2,—1/2,—1).

We summarize the results of this section in Table 2.1, where in the last column we
1

-
and (2.3.3). For completeness, we include in the table the harmonic 1-forms even though

also calculate the sum Tr (—1)" (55 — x?) which appears in the RGE’s via equations (2.3.2)

they do not appear in our case.

2.5 Threshold Corrections as Ray-Singer Torsions

Here, we first describe the Ray—Singer torsion for a general closed, oriented manifold.
Then, we derive an expression for the threshold corrections S, in terms of Ray—Singer
torsions of the 3-manifold ). We conclude this section by computing them explicitly for
the case Q = S*/Z,.

The Ray—Singer torsion is a topological invariant defined for any Riemannian or com-
plex manifold. We focus on the Riemannian case [97, 98, 99], as it is the relevant one for
our 3—manifold Q).

Let M9 be a closed, oriented d-dimensional Riemannian manifold with finite funda-
mental group (M%), and let M? be its universal covering space on which (M%) acts
freely. Then, given a one dimensional complex representation w of 71 (M%), the Ray—Singer

torsion is expressed as a sum of two terms:

T(M*w) = (1 zd:(—l)Hlklogdet(A;)) + (Zd:(—l)klogdet Ak> (2.5.1)

2 k=0 k=0
KM% w) + AM? w) . (2.5.2)
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In the first term, the Laplacian A} is taken to act on non-harmonic k—forms ¢y of M

which satisfy

Y- r(0) = dr(y - 0) = w(v)Pr(0) , yem(M?), 6eM’. (2.5.3)

In the second term, A¥ is the matrix of change of basis from an integral basis for the
k' integral cohomology to the basis of harmonic k—forms of norm 1 (there is also a
dependence on the choice of basis for the cohomology, which we shall not need to consider
here). This second term appears only for the representations w for which the Laplacian
has zero modes.

Hodge duality tells us that logdet(A}) = logdet(A/,_,), so in particular for d = 3,

which is the case we study here, the expression for the torsion for a 3—manifold () becomes

det A° det A

3 / 1 /

= K(Q,w)+ AQ,w) ,

where the Laplacian again acts on the fields satisfying (2.5.3) with M? = Q.
Since the Laplacian is the energy operator, its k—form eigenvalues Ay ,, correspond to
the squares of the masses of particles, min The logarithm of the determinant of the

Laplacian is formally
log det(A}) = > log Ay, = Y logmyi,, , (2.5.5)

where the sum is over non-zero eigenvalues A, of A;.° Hence, the sums in the expression
(2.3.3) for S, have the form of (2.5.5).
As a first step towards showing that the threshold corrections are actually given by

the Ray-Singer torsions, we insert the values in the last column of the upper half of Table

6This sum as written formally is clearly infinite; it becomes well-defined via zeta function regulariza-

tion, of which we shall have an explicit example in Appendix A.
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2.1 into (2.3.3) to get

A? 1 A?

3
S, =2Tr Qi(—§ zn: log 2
where m¢, are O-form eigenvalues and m?, are 1-form eigenvalues, both closed and co-
closed.

There are two happy coincidences that have entered (2.5.6) as coefficients in front of
the sums, and which at the end will allow us to rewrite S, in terms of Ray-Singer torsions.
The first is the fact that the coefficient for the closed 1-forms is equal to that for the co-
closed 1-forms (namely, 1/2). This will allow us to write the threshold corrections as a
linear combination of logarithms of determinants of the Laplacian on k—forms without
separating the closed from the co-closed sectors. The other coincidence is that the ratio
between the coefficient —3/2 for the O—forms and 1/2 for the 1-forms is the same ratio
appearing in K(Q,w) in (2.5.4).

To show that the threshold corrections can indeed be given in terms of the Ray-Singer
torsions, we need to be more precise about which 0—form and 1-form eigenvalues appear
in the sums in (2.5.6). Namely, we need to find the analog in our model of (2.5.3). As we
shall show, this analog is given by the twisting of the adjoint fields ¢, by the Wilson line.

Using the setup of Section 2.2, we take SU(5) gauge theory” living on R* x ), where
@ has a finite, non-trivial fundamental group 7 (Q). As explained in Section 2.2, it is
natural to include Wilson lines that break the gauge symmetry. Choose such a Wilson
line

U, = exp (iv, - diag{2, 2,2, -3, -3}), (2.5.7)

where v € m(Q) and v, |m(Q)| € 2nZ so that we have an embedding of 7 (Q) in SU(5).
This Wilson line breaks an SU(5) gauge field into the following five representations of the

"Note that the constructions in the rest of this section and in parts of the next section can be presented
more generally for any choice of gauge group; we present them here for SU(5) both for concreteness and
since this is the example we shall pursue later. We will make a few comments on a more general case

later, and present the details in Appendix B.
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standard model gauge group SU(3) x SU(2) x U(1):

(8,1,0) ® (1,3,0) & (1,1,0) & (3,2, —5/6) @ (3,2,5/6), (2.5.8)

P1 P2 3 P4 Ps
where in each parenthesis, the first two numbers denote dimensions of representations of
SU(3) and SU(2), and the third number is hypercharge. In this context of symmetry
breaking by Wilson lines [25, 26, 27, 28, 29|, the fields ¢, which transform in these

representations are k—forms on the universal cover ) which obey the following boundary

condition: the adjoint action of the Wilson line on the fields, given by
U-¢p=Ud U, (2.5.9)
translates into an action of the fundamental group I" on these fields via
or(10) = Ugy(O)U ™, (2.5.10)

where v is a generator of 71(Q)) and 0 € Q. This action is a self-intertwining map for
each irreducible representation p; and, by Schur’s lemma, is just multiplication by a scalar

depending only on 4. This scalar is trivial for ¢ = 1,2, 3, but not for ¢ = 4, 5:

¢k(79) = ¢k(9) ¢k € (87170)@ (1’370)@(17170)
or(v0) = € ¢y(0) or € (3,2,-5/6) (2.5.11)
dr(n0) = e (0) or € (3,2,5/6).

The equations (2.5.11) are precisely analogs of (2.5.3): each representation p; corresponds
by (2.5.11) to a one dimensional complex representation of m;(Q), which we shall call w;.
To simplify notation, if 7 generates m(Q), we shall write w;(7y) = w;.

We need only one more point before expressing the threshold corrections in terms of
Ray-Singer torsions. The eigenvalues min = A of the Laplacian scale with the size of

Q: they have units of (length) ™2, and if we rewrite them in terms of the volume Vg of Q
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as mim/Vé/g, we see that the sums in (2.5.6) are of the form

VQ2/3A2

5 .
mk,n

> log (2.5.12)
Changing VQ2/ PA? s equivalent to rescaling the masses, which is equivalent to changing
the metric of (). For representations of the fundamental group for which there are no
zero modes, namely those that do not commute with the Wilson line and hence acquire a
mass (they are wy and ws), the sum in (2.5.12) is topological (the term A(Q,w) does not
appear in the expression (2.5.4) for the torsion), and there can be no volume dependence.

Therefore, we may set Vé/ A2 = 1, and we simply have

K(Q,wy) =T(Q,ws), K(Q,ws) =T(Q,ws). (2.5.13)

For the representations wq, wo, and w3, which do have zero modes since they commute
with the Wilson line and hence their lowest KK mode does not acquire a mass, we will get
a dependence on VS/ *A? which, for any 3-manifold Q with b1(Q) = ba(Q) = 0, is given
by (see Appendix A.2 for a computation of A(Q, 1))

K(Q,w) =K(Q,1) =T(Q,1) + glog VolPA2 i=1,2,3. (2.5.14)

Putting everything together, we have the following general expression for the threshold

corrections to the RGE’s in terms of Ray—Singer torsions:
Sa = 2Zfa(pz) Cg(pz) ’C(Q7wz) . (2515)

The sum is over the representations p; in the decomposition (2.5.8), f*(p;) is the dimension
of the representation p; divided by the dimension of the representation of the a** gauge
group that is included in p;, and C%(p;) is the quadratic Casimir of the representation of

the a'® gauge group that is included in p;, normalized as explained after (2.3.2).
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Our current form for the RGE’s is:

: _ﬁ‘l' + ba lo A_2
92(n) i 16702 8 2
! 3
+ g 22 [P G (p) <T(Q,1) +—logVQ2/3A2)
™ = 5
1
+ 1o 2 2 MG T(Qwi) (2.5.16)
T A

Note that since the derivation of equation (2.5.16) does not depend on the choice of the
unified group, it is true for any choice of a GUT group, with the p; given by the appropriate
analog of (2.5.8) and w; are the representations of m;(Q) corresponding to the p;.

For SU(5) broken to SU(3) x SU(2) x U(1) via equations (2.2.7) and (2.5.8), the

threshold corrections become

S = 2 (T(Qun) +T(@ )
So = A(T(Qu1)+logVoA*) +3 (T(Qn) + T(@.)
Ss = 6(T(Q,1) +1logVoA®) + 2(T(Q,ws) + T(Q,ws)) - (2.5.17)

The quantities that will become meaningful when we put the threshold corrections
into the RGE’s are the differences between the S, /k,, since an overall additive constant
can be absorbed into 1/g3, in equation (2.3.1). Also, since the representations w, and
ws are complex conjugates, and complex conjugation of the eigenfunctions exchanges a
representation with its complex conjugate without changing the eigenvalues of the Lapla-
cian, we have 7(Q,ws) = 7(Q,ws) = 7 (Q,w). Therefore, we can replace the S, by S,
given by S, [k, = S./ka — Sy /ky to get

Sy~ = 0,
S™ = 4(T(Q.1) +logVoA?) — 4 T(Qw) ,
S3™ = 6 (T(Q,1)+1ogVoA*) —6 T(Q,w) . (2.5.18)

The S, are proportional to each other:
Sy_ : 82_ : 33_ =0:2: 3, (2519)
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where the ratios originate from quadratic Casimirs of the adjoint representations of SU(2)
and SU(3). This proportionality will become crucial in our study of unification in the next
section: we will show there that it means the threshold corrections preserve unification.
It would be interesting to find a deep underlying reason for this proportionality.®

As we show explicitly in Appendix B, this proportionality is still present in a more
general case, namely not just for G4y = SU(5) breaking to SU(3) x SU(2) x U(1), but
for any breaking of Gy = SU(p) to a standard model-like group SU(m) x SU(n) x U(1),
where m +n = p. Just like the standard model, all these correspond to points on the

branch Ny of the moduli space.

The lens space
We specialize to the case of the lens space Q = S3/Z,. A general lens space is given

with an action of its fundamental group
yzj = 21y, j=1,2 (2.5.20)

where z; are complex coordinates denoting the 4-dimensional space in which S® is em-
bedded, and v} are integers relatively prime to ¢. Taking equation (2.2.5) with r = 1 and
replacing the notation for d by 7, we see that in our case, v; = 1 and v, = —1 in (2.5.20).

Fixing v to be a generator of Z,, we can take our Wilson line U,, to be given by (2.2.7).
The action of the Wilson line on the fields ¢, is

o(v0) = ¢i(0) b € (8,1,0)® (1,3,0) @ (1,1,0)
Pp(10) = €'/ 9g,(6) br € (3,2,-5/6) (2.5.21)
du(0) = e 0T 9,(6) i € (3,2,5/6).

Therefore, the threshold corrections are given by

Sy~ = 0,

8In string theory models, properties of the threshold corrections of a similar flavor have been attributed

to modular invariance [77].
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Sy” = 4K(S%)Zy, 1) — 4 T(S%)Zy, " 77N1)
Ss™ = 6K(S*/Z,,1) —6 T(S?/Z,, '™ /1) (2.5.22)

The torsion of the lens space has been explicitly calculated in [97, 98, 99] for non—trivial

representations:
T(S*/Zy,w) = K(S*/Zy,w) =log|w — 1||Jw™' = 1], (2.5.23)
from which we get
T(S%/Z,, eF0mw/1) = log|e!O™w/1 — 1]|e~10mw/1 _ 1| = log(4sin® 5rw/q)(2.5.24)

For the trivial representation, the quantity K(S®/Z,, 1) is computed in Appendix A:

2 2
K(S*/Z,,1) = log (i> v g log RZA? = —log g + glog V2PA? (2.5.25)
q
where Vi = 27%R?/q is the volume of the lens space. As expected, we see the term
AQ,1) = —3log Vé/gA2 which appeared in (2.5.14). Putting this into (2.5.22) and
defining
o 2/3
D(q,w) = (4q sin (57Tw/q)) , (2.5.26)
we have
Sy = 0,
VoAA2
S, = 6lo < ,
; ° (D<q,w>)
VoPA?
S; = 9log | 2 . 2.5.27
3 (D<q,w>) (2520

If our lens space could have any value of vy in (2.5.20), where v, are relatively prime

to ¢, this result would be slightly modified. By replacing v by a power of itself, there

47



is no loss of generality to take, say v, = 1; we then denote v; simply as v. In this
more general case (see [99], pp. 168-9), 7(Q,1) is unchanged, and 7 (Q,w) becomes

log (4| sin(57w/q) sin(5mjw/q)|) where jv = 1 modulo ¢, so D(q, w) = (4q| sin(57w/q) sin(57jw/q)|)?/>.

2.6 Unification

In this section we finally write the RGE’s for the three gauge couplings, with the threshold
corrections included. In most of this section, we consider the case in which the only
singularity that we have is the ADFE singularity, and the only particles which appear in
the model are those we obtained in Section 2.4. First, we show that for any Gsyr, the
RGE’s are independent of the cutoff A. Then we show that for an SU(5) GUT group,
unification of the gauge couplings is preserved in the presence of the threshold corrections,
and we derive a precise relation between the unification scale F,, and the volume Vj of
@; we also show the relation between FE,, and the masses My of heavy vector bosons,
and use it to make some (preliminary) comments about the lifetime of the proton (though
most of our discussion of proton decay will appear in Section 2.8). We then proceed to
add the quarks, leptons, and Higgs bosons to our model, and show that the predictions
for the unification scale Eq, . and the weak mixing angle sin?#@,, are the same as the well
known ones from the standard four dimensional supersymmetric unified SU(5) model.

We conclude this section by writing all the results explicitly for the lens space.

2.6.1 Elimination of A

From the discussion in Section 2.3, we see that every helicity state, massless or massive,
makes a contribution to the low energy couplings that has the same dependence on the
cutoff A, independent of its mass.

In a unified four-dimensional GUT theory, the quantum numbers of the tree level
particles are G-invariant, though the masses are not. Hence, the coefficient of log A in

(2.3.4) is G-invariant. The precise value of A is therefore irrelevant in the sense that a
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change in A can be absorbed in redefining the unified coupling (which in a four-dimensional

theory would usually be called ggpr rather than gyy).

It seems from (2.5.16) that the RGE’s depend on the cutoff A. However, for any
3-manifold with b;(Q) = b2(Q) = 0, a magical cancellation occurs: the coefficient 3/2
multiplying log A?/u? in the first line of (2.5.16) precisely cancels the 3/2 which is the
coefficient of log Vg/ A% in the second line of equation (2.5.16). Hence there is no de-
pendence on A and we can now rewrite the formula for the threshold corrections in a

A-independent and useful form:

1 “ ba, 1 S’
= — 1 —4 2.6.1
7= o () e

with

S, = 22 [ pi)C3(pi) T(Q,wi). (2.6.2)

The fact that the same factor of 3/2 appears twice is rather intriguing, as it seems to
arise from two completely different origins: one comes from a sum over chiralities (given
in the last column of Table 2.1), and the other arises in the computation of a term in
the Ray-Singer torsion (computed in Appendix A.2). They do have an intimate relation,
though: the first comes from an expression for zero-modes, and the second arises from
the term A in the Ray-Singer torsion which appears because massless contributions are

omitted.

By using the relation to analytic torsion, we have defined the second sum in equation
(2.3.4) with zeta-function regularization, and we found there are no divergences. With
a different regularization, there would be divergences, but they would be G-invariant.
Of course, if we really had a proper understanding of M-theory, we would use whatever

regularization it gives.
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2.6.2 Preservation of Unification

As we have emphasized in the introduction and in Section 2.3, generically in the presence
of threshold corrections, there is no energy scale p at which the gauge couplings exactly
unify. However, taking our result above and evaluating for SU(5), which just amounts to
working out some Casimirs of representations of SU(5) (which we in fact already did in
deriving (2.5.17)—(2.5.19)), we can write the RGE’s in the form

1 (1 107(Q,ws) ba Edur
gg(u) = (@ + W) ]{Za + 1672 10g ,u2 y (263)
where
D(Q)
Eeyr = v (2.6.4)
2
DQ) = e (—5(TQD-T(Quw)) - (26.5)

Hence, there is an energy scale at which the gauge couplings unify, namely pu = Eqyr.
The quantity D(Q) is topological; the only dependence of Es,, on the metric of @ is
through its dependence on the volume.

Even if A was not eliminated, we would find a unification scale Eg,, for an SU(5)
theory; however, in that case, Es,, would be A-dependent. We were able to write our
RGE’s in the form (2.6.3) because it turned out that the threshold corrections were
proportional, as shown in (2.5.19), and furthermore their ratios matched those of the
beta functions by : by : b3 = 0 : 2 : 3. We will show in Appendix B that this generalizes
to some other gauge groups.

If we compare (2.6.3) to a naive one-loop renormalization group formula that we might
write in a GUT theory, which would read

g?ju) - <9é1UT> ot % log(EgUT/M2) ’ (26.6)

then we also see that we can write

1 1 107
11 0@ (2.6.7)
Ydour  9m 167
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This formula tells us how the coupling g, used in M-theory should be compared to the
geur that is inferred from low energy data. Our computation really only makes sense if
the difference between gj; and ggyr is much smaller than either, since otherwise higher
order corrections would be important. Moreover, a different regularization (such as M-
theory may supply) might have given a different answer for the shift in gy, so this shift

is unreliable.

A noteworthy fact — though a simple consequence of SU(5) group theory — is that the
massive Kaluza-Klein harmonics have made no correction at all to the prediction of the

theory for sin? Oy .

2.6.3 Interlude on Masses of Heavy Bosons

For any manifold, the eigenvalues of the Laplacian scale with the volume. Hence, as we
described in the Prelude, the relation (2.6.4) is also a relation between the unification
scale and the masses of those Kaluza-Klein modes that correspond to the heavy gauge

bosons that can mediate proton decay in four dimensional theories. That mass is

where Apin(Q) is the smallest A, which corresponds to a vector boson ¢, in either the
(3,2,—5/6) or (3,2,5/6) representation. We take the smallest one here since we are
assuming for this interlude that the matrix elements for proton decay in our model are
the same as in usual GUT’s, i.e. that they are roughly proportional to the fourth power
of the mass of these gauge bosons and hence dominated by the lightest gauge boson.
(However, we shall see in Section 2.8 that our situation is different due to the way in

which the chiral fermions are localized.) The relation between My and Egyr, in terms of

D(Q) and \in(Q), is

51



D(Q)

With our assumption, the proton lifetime would get a correction from its usual pre-

Eeur = My (2.6.9)

diction in which My is taken to be equal to E,+ by a factor

(EJ\Z)‘* _ (%)2 _ (2.6.10)

For many lens spaces, both D(Q) and \,,;,(Q) are of order 1-10, so for those cases, this

correction is close to 1.

2.6.4 Adding Quarks, Leptons, and Higgs Bosons

Here we discuss how the quarks, leptons, and Higgs bosons can be introduced into the
model. The construction here will be important for the study of proton decay in Section
2.8.

So far we have solely considered the case that the normal space to () has only the
standard orbifold singularity, so that the only charged particles with masses < 1/R are
the Kaluza-Klein harmonics. Now we want to introduce quarks, leptons, Higgs bosons,
and possibly other charged light fields such as messengers of gauge-mediated supersym-
metry breaking. We do this by assuming at points P; € () the existence of certain more
complicated singularities of the normal bundle. These generate charged massless SU(5)
multiplets (which may ultimately get masses at a lower scale if a superpotential is gener-
ated or supersymmetry is spontaneously broken). If the singularities of the P; are generic,
each one contributes a new irreducible SU(5) multiplet M; of massless chiral superfields.
Specific singularities that generate chiral multiplets transforming in the 5, 10, 10, and 5
of SU(5) have been studied in [16, 67, 14, 15].

It is believed that these singularities are conical. This is definitely true in a few cases in

which the relevant G metrics are conical metrics that were constructed long ago [100, 101]
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(and found recently [16] to generate massless chiral multiplets). Since a conical metric
introduces no new length scale that is positive but smaller than the eleven-dimensional
Planck length, we expect that these singularities, apart from the massless multiplets M;,
introduce no new particles of masses < 1/R¢ that need to be considered in evaluating
the threshold corrections.

We can also argue, a little less rigorously, that the singularities of the normal bundle
that produces massless chiral superfields in the 5, 10, etc., have no effect on the Kaluza-
Klein harmonics of the seven-dimensional vector multiplet on R* x Q. To show this,
we consider the construction in [14], where the association of massless chiral multiplets
with singularities was argued using duality with the heterotic string. In this argument,
the existence in the G description of a conical singularity that generates massless chiral
superfields was related, in a heterotic string description that uses a T3 fibration, to the
existence of a certain zero mode of the Dirac equation on a special T? fiber. The existence
of this zero mode generates a localized massless multiplet in the 5, 10, etc., as shown in
[14], but does nothing at all to the seven-dimensional vector multiplet (which has no
exceptional zero mode on the T? in question).

Granted these facts, to incorporate the effects of the multiplets M;, all we have to do
is add their contributions to the starting point (2.3.1) or to the final result (2.6.3). If all
of the new multiplets are massless down to the scale of supersymmetry breaking, then,
for p greater than this scale, all we have to do is add a contribution to (2.3.1) due to the
new light fields. Let Ab, be the contribution of the new light fields to the beta function
coefficients b, — note that since the M; form complete SU(5) multiplets, they contribute
to each b, in proportion to k,. The contribution of the new fields to (2.3.1) is to add to
the right hand side

Ab, log(A?/1?), (2.6.11)

which is the contribution due to renormalization group running of the M; from their cutoff
A down to p. We do not exactly know what effective cutoff A to use for the M;, but it

is of order Mi;. Anyway, the exact value of A does not matter; it can be absorbed in
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a small correction to gj; (this correction is no bigger than other unknown corrections
due for example to possible charged particles with masses of order Mj;). In fact, up
to a small shift in gy, it would not matter if we replace A by the (presumably lower)
scale exp (%(T(Q,w) - 7(Q, 1)) /Vé/3 that appears in (2.6.4). So if all components of
the M; are light, we can take our final answer to be simply that of (2.6.3), but with all b,
redefined (by the shift b, — b, + Ab,) to include the effects of the M;. In other words, if
all components of M; are light, we simply have to take the b, in (2.6.3) to be the exact /3

function coefficients of the low energy theory.

Then, our RGE’s are precisely the same ones we would write for the standard model if
we were not considering threshold corrections, except that we have replaced the expression
for Equr by D(Q)/ VQz/ % Therefore, the predictions obtained from measurements of gs
and g.,, are the same as those obtained from the four dimensional SUSY standard model:
Eovr = D(Q)/V)> =22 x 101 GeV, agl, = 47/¢2,, = 24.3, sin® b, = .23,

The assumption that all components of the M; are light is inconsistent with the mea-
sured value of the weak mixing angle sin? ;. That measured value (and the longevity of
the proton) is instead compatible with the hypothesis that all components of the M; are
light except for the color triplet partners of the ordinary SU(2) x U(1) Higgs bosons; we
call those triplets T and T. Let m¢ be the mass of T and T (we assume this mass comes
from a superpotential term 7T, in which case T and T have equal masses), and let Abff’TF
be their contribution to the beta functions. These are not proportional to k, since T" and
T do not form a complete SU(5) multiplet. Then (2.6.11) should be replaced by

(Db, — b5T) log(A2/ ) + b1 log (A% /m3), (2.6.12)

the idea being that the T, T contributions run only from A down to my, while the others

run down to p. Up to a small correction to gy, we can again replace A in (2.6.12) by

A — exp <%(T(Q,w) ~ T, 1))) il (2.6.13)
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If we do this, then (2.6.3) is replaced by

1 (1 107(Qw)+0 ba exp(2(7(Q,w) — T(Q, 1))
2 (@ T ) b g2 108 ( : 2V )
BT (exp(A(T(Q,w) — T(Q, 1))
+16 log ( 3 T ) . (2.6.14)

TT :
b, ' is

Here b, are the full beta functions of the low energy theory below the mass my, and
the additional contribution to the beta functions from T, T between ms and the effective
GUT mass Egyr = exp (%(T(Q,w) - T(Q, 1))) /Vé/?’. Finally, § expresses an unknown
shift in the effective value of g,;; this shift is presumably unimportant within the accuracy

of the computation.

The lens space
The result (2.6.3) holds for any 3—manifold ). For our example of the lens space, we

can make our result completely explicit:

92 (1) Gor
11 6 log D(q,w)
95() 92y 1672 Vau?
1 1 9 D(q,w)
_ _ log A (2.6.15)
95 (1) 9%, 1672 Vau?

where D(q,w) is given by (2.5.26) or its generalization at the end of Section 2.5; one can
check, from the discussion of the lens space at the end of Section 2.5, that D(q,w) is
D(Q) when @ is the lens space.

The value of p at which all gauge couplings unify is given by

p?=E: ==L (2.6.16)



and the relation between Eg,, and Vg in this model is

Agsin(5rw/q)\ ? 4q sin®(5mw
By — (A28 Bmw/a)) -y da E, /a), (2.6.17)
VQ EGUT

2.7 On Newton’s Constant

One virtue of computing the threshold corrections is that we can make somewhat more
precise the formulas for the parameters E.y,r, agur, and Gy that are read off from the
eleven-dimensional supergravity action.

Since M-theory on C?/Zs is an SU(5) gauge theory equivalent to a gauge theory com-
ing from 5 wrapped D6 branes in Type IIA string theory, we can use the relations between
the gauge couplings on the D6 branes in Type ITA string theory and the gravitational
coupling in 11 dimensions to express the value of Gy in terms of agyr, Vi, and Egyr.

The gravitational action in 11 dimensions is given by

1 1
m/dlll'\/gR: W%l/dlll'\/gR, (271)

where k1; is the 11 dimensional gravitational coupling and G" is Newton’s constant in
11 dimensions. The Yang—Mills action in 7 dimensions is given by the coupling of Yang—
Mills theory to a D6 brane in type ITA string theory (see eqns. (13.3.25) and (13.3.26) of

[102)): 1
4(27) g, ()32 / d'a/g Te By F, (2.7.2)

where g, is the string coupling constant and Tr is the trace in the fundamental represen-
tation of U(n). In the GUT literature, one usually writes F),, = >, Fj;,Qq, where ), are
generators of U(n) normalized to Tr Q,Qp = 56%. So (2.7.2) can be written

1 7
Fe Frre, 2.7.
8(27)ig, ()32 /d f\/ﬁ; v (2.7.3)
Going to M-theory, the relation between k11, gs, and o is (eqn. (14.4.5) of [102])
1
K = 5(2m)%g] (). (2.7.4)
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Combining these, we see that the Yang-Mills action in seven dimensions is

1 1
—[a F,, Fo — / d’ Fy FO 2.7.5
17 | TS Pk = gy | TS &)

where the trace is taken in the fundamental representation and the generators are nor-
malized as described after (2.3.2).

Let X7 be the volume of X. After reducing (2.7.1) and (2.7.5) to four dimensions and
getting a vactor of Vx and Vj respectively, the gravitational and gauge couplings in 4

dimensions can be written as

1 1
= —V
167Gy k2,
L _ ! v, (2.7.6)
16macer  8(2m)* 322,18 ¢ "

Here, GGy is Newton’s constant in 4 dimensions. Eliminating x1; and solving for G gives

— 1 3 Vé’ _ 1 3 2/3 277
N = 327T2aGUTV_X - 327T2aaGUT Q ( b )
where Vy = aVC;/ ®. Using the relation between Vg and Eyp given in (2.6.4)
1
Vo= D@, (2.78)
GUT
we get
Gy = L Gaur pg) (2.7.9)
¥ 32m2a E2 ' o

GUT

Here E ;. is the unification scale as inferred from low energy data. For the simplest
lens space, D(Q) = (4qsin®(5mw/q))?/3.

We now discuss the quantity a. Since the 7-manifolds discussed here are not compact,
in fact it is the case that a is infinite. However, one can also postulate the existence of G,
manifolds which have similar properties (namely, an ADE singularity with locus which

has a finite, non-trivial fundamental group, as well as extra singularities that support
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chiral fermions) and are at the same time compact. Such manifolds have not yet been
explicitly constructed, but there has been much development lately in constructions of
compact G5 manifolds [103], so there is hope that the necessary manifolds will soon be
constructed. Furthermore, such manifolds are believed to exist via dualities. For the cases
when dualities can be used to deduce the existence of a compact G manifold with the
right properties, it is the case (see [61]) that a < 1.

If there is an upper bound on a, then (2.7.9) is a lower bound on Gy that depends on
the values of the GUT parameters, the readily computed constant D(Q), as well as the
bound on a.

Within the uncertainties, such a bound on G, may well be saturated in nature. If
we use the often-quoted values Egpr = 2.2 x 101 GeV and agl, = 24.3, then, with
Gy = 6.7 x 1073 GeV ™2, we need approximately D(Q)/a = 14.7. We recall, however,
that these values correspond to a minimal three family plus Higgs boson spectrum below
the GUT scale, and that the doublet-triplet splitting mechanism [41] that we are assuming
in the present work really leads to extra light fields in vector-like SU(5) multiplets. If we
use the values Egyr ~ 8 X 1016 GeV, agyr ~ .2, which are typical values found in [104]
(see also [105]) for certain models that have TeV-scale vector-like fields transforming as
5 @ 10 plus their conjugates, then we get? D(Q)/a = 1.7.

Ignoring for the moment the unknown value of a, the expression (2.7.9) gives a better
agreement with the known value of GGy than the analogous one for the weakly or strongly
coupled heterotic string; the main reason is the power of agyr: in the weak heterotic

. 4/3 . .
string, the power was aG/UT and in the strong it was aiUT.

Gy that were too large [82, 83]. Here, the power is a2, allowing G to be smaller.

We can combine (2.7.6) and (2.7.9) to give

Both gave lower bounds for

K2 = O‘?éUTD(Q)g/2
1 AT E? ‘

GUT

(2.7.10)

9To get a rough feel, note that if a = 1, we can take for the lens space ¢ = 14 and w = 7 to get
D(Q) = 14.7, or we can take ¢ = 17 and w = 7 to get D(Q) = 1.7.
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This formula is attractive because it is expresses the fundamental eleven-dimensional
coupling k11 in terms of quantities — agyr and Fgyr — about whose values we have at
least some idea from experiment, and another quantity — D(Q) — that is readily calculable
in a given model. Furthermore, a does not appear here.

The eleven-dimensional Planck mass Mj; has been defined ([102], p. 199) by 2x3, =

(2m)3 M7, So we can express (2.7.10) as a formula for M;:

21 Ecyr

U= ""T5 (2.7.11)
adirD(Q)V?

One important result here is that E.;. is parametrically smaller than M;; — by a factor
of aggT. This factor of a}{ST is the reason that it makes sense to use perturbation theory
— as we have done in computing threshold corrections in Section 2.5.

Regrettably, the precise factors in the definition of M;; have been chosen for conve-
nience. We really do not know if the characteristic mass scale at which eleven-dimensional
supergravity breaks down and quantum effects become large is My, or 2w M, or for that

matter My, /27.1% This uncertainty will unfortunately be important in Section 2.8.

2.8 Proton Decay

In this section, we will analyze the gauge boson contribution to proton decay in the present
class of models.

First, we recall how the analysis goes in four-dimensional GUT’s. We will express the
analysis in a way that is convenient for the generalization to R* x ). The gauge boson

contribution to proton decay comes from the matrix element of an operator product

GEr [ Az I (@)J,(0)D(x,0), (2.8.1)

10Just to get a feel for what M1 might be, note that for (¢, w) = (2,1), we have M;; = 2.0 x 1017GeV
for the often-quoted values of Eqyr and agyr, and Mi; = 4.3 x 1017GeV for the values in [104].

59



where J and J are the currents in emission and absorption of the color triplet gauge bosons.
We have used translation invariance to place one current at the origin, and D(z,0) is the
propagator of the heavy gauge bosons that transform as (3, 2) ™%/ of SU(3) x SU(2) xU(1).
Because the proton is so large compared to the range of x that contributes appreciably

in the integral, we can replace J*(x) by J#(0), and then use

1
d*r D(z,0) = — (2.8.2)
/ e
(with My the mass of the heavy gauge bosons) to reduce (2.8.1) to
QéUTJuj”(O)

2.8.

Equation (2.8.2) is a direct consequence of the equation for the propagator, which is
(A+ M) D(x,0) = §*(x), (2.8.4)

with A = —n*”0,0, the Laplacian. Of course, in deriving (2.8.2), we should be careful
in defining the operator product Juj“; doing so leads to some renormalization group
corrections to the above tree level derivation. These can be treated the same way in four
dimensions and in the G-based models, and hence need not concern us here.

In R*xQ, the idea is similar, except that the currents are localized at specific points on
@, which we will call P, and P,. The gauge boson propagator is a function D(zx, P;y, P’)
with 7,y € R?*, and P, P’ € Q; the equation it obeys is

(Ars + Ag) D(z, Pyy, P') = 6*(x — y)d(P, P'). (2.8.5)

Here ARg: is the Laplacian on R*, acting on the x variable, and similarly Ag is the
Laplacian on (), acting on P. Now we set P and P’ to be two of the special points P,
and P, on @) (with enhanced singularities in the normal directions) at which chiral matter

fields are supported. The analog of (2.8.1) is

2 / d'wJ,(z, P)J(0, P)D(x, P13 0, Py), (2.8.6)
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where we have used translation invariance to set y = 0. Again, because the proton is so
large compared to the range of x that contributes significantly to the integral, we can set

z to 01in J,(x, P), giving us
G2J,.(0; Pr).J*(0; Pg)/d4xD(x, P10, P). (2.8.7)
Now it follows from (2.8.5) that the function
F(P,P) = /d%« D(z, P;0, P') (2.8.8)
obeys
AQF(P,P") =4(P,P). (2.8.9)

In other words, F'is the Green’s function of the scalar Laplacian on @ (for scalar fields
valued in the (3,2)™%/% representation). In particular, F' is bounded for P away from P’

and for P — P,
1

A7t|P — P'|

with | P—P’| denoting the distance between these two points. The proton decay interaction

F(P,P) — (2.8.10)

is

927,(0; P)J"0; Py) F(Py, Py). (2.8.11)
More exactly, this is the contribution for fermions living at the points P;, P,. It must be
summed over possible P;.

Given (2.8.10), if it is possible to have P; very close to P,, this will give the dominant
contribution. But how close will the P; be? The smallest that the denominator in (2.8.10)
will get is if P, = P, in other words if the currents J, and J# in the proton decay process
act on the same 10 or 5 of SU(5), living at some point P = P, = P, on Q. If this is
the case, then the result (2.8.7) is infinite. M-theory will cut off this infinity, but we do
not know exactly how. The best we can say is that the cutoff will occur at a distance
of order the eleven-dimensional Planck length, as this is the only scale that is relevant

in studying the conical singularity at P. If we naively say that setting P, = P, means
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replacing 1/|Py — Po| by 1/Ry; = My; (with Ry; the eleven-dimensional Planck length;
M, was evaluated in (2.7.11)), then we would replace F'(P, P) by My, /4w. Unfortunately,
as noted at the end of Section 2.7, we have no idea whether M;j; or some multiple of it is
the natural cutoff in M-theory. This is an important uncertainty, since (for example) 4x
is a relatively large number and the proton decay rate is proportional to the square of the
amplitude. All we can say is that the effective value of F'(P, P), though uncalculable with
the present understanding of M-theory, is model-independent; it does not depend on the
details of X or @), but is a universal property of M-theory with the conical singularity P.
The effective interaction is

Mug? . -
S c i;% J,J(P), (2.8.12)
P

where C' is a constant that in principle depends only on M-theory and not the specific
model. So C' might conceivably be computed in the future (if better methods are dis-
covered) without knowing how to pick the right model. We have made explicit the fact
that the interaction is summed over all possibilities for P = P; = P,. Subleading (and
model-dependent) contributions with P; # P, have not been written.

Let us compare this to the situation in four-dimensional GUT’s. The currents J and

J receive contributions from particles in the 10 and 5 of SU(5). Thus we can expand
Tyt = JNOJH0 4 R T#E 4 A0 4 JB JH. (2.8.13)

Among these terms, the 10 - 10 operator product contributes to p — 7%, 5-5 does not

contribute to proton decay, and the cross terms contribute to p — 7%} and p — 7t 5.
Assuming that the points supporting 10’s are distinct from the points supporting 5’s,
the above mechanism, in comparison to four-dimensional GUT’s, enhances the decay
p — 7l relative to the others.

Using the formulas in Section 2.7, we can evaluate the product g2M;;. Reading off g2

from (2.7.5) and M, from (2.7.11), we find that the effective interaction is

~ 2t D(Q o3
S CJJHP) - % (2.8.14)
P; GUT
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The equivalent formula in four-dimensional GUT’s is

1, 9¢ -rATacur
JTJTugGUT — JTJTM
M M‘Q/ M M‘Q/ ’

(2.8.15)

where the superscript 7' refers to the total current for all fermion multiplets. Moreover,
My, is the mass of the color triplet gauge bosons, and so may not coincide with F.yr,
which is the unification scale as deduced from the low energy gauge couplings. The above
formulas show that, in principle, the decay amplitude for p — 7%} in the Gy-based
theory is enhanced as agyr — 0 by a factor of a&%]/; relative to the corresponding GUT
amplitude. The enhancement means that, in some sense, in the models considered here,
proton decay is not purely a gauge theory phenomenon but a reflection of M-theory.

In practice, a&%]/;i is not such a big number. Whether the effect we have described is

really an enhancement of p — 7% or a suppression of the other decays depends largely on
the unknown M-theory constant C'. The factor D(Q) can also be significant numerically.
For example, for the simplest lens space, with the minimal choice w = 1, ¢ = 2, we get
D(Q) = (dgsin®*(5mw/q))** = 4.

Even if C' and the other factors in (2.8.14) were all known, the proton lifetime would
also depend on how the light quarks and leptons are distributed among the different
P;, or equivalently, how they are distributed among the different 10’s of SU(5). The
same remark applies in four-dimensional GUT’s: the proton decay rate can be reduced by
mixing of quarks and leptons among themselves as well as with other multiplets, including
multiplets that have GUT-scale masses.

The arrangement of the different quarks and leptons among the P; will also affect the

Oct will also contain

flavor structure of proton decay. What we have referred to as p — 7
an admixture of other modes with 7° replaced by K°, and/or ef replaced by uf. As in

four-dimensional GUT’s, these relative decay rates are model-dependent.
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Appendix

We have two appendices. In the first one, we compute the Ray—Singer torsion for
the lens space for the trivial representation and show how its two parts K(S?/Z,, 1) and
A(S?/Z,,1) depend on the volume; we also show that the volume dependence obtained
from it generalizes to any 3-manifold with b;(Q) = 0. In the second appendix, we
generalize our results to the breaking of SU(p) to SU(m) x SU(n) x U(1).

A The Ray-Singer torsion for the trivial representa-

tion

Al K(SY/Z, 1)
We will calculate K(S3, 1) first, and we shall use the relation

K(SP,1) = K(S%/Z, 1) + S K(S?/Zy,w), (A1)

where the sum is over non-trivial representations of Z, for which the torsion is known and
given by (2.5.23), to obtain K(S*/Z,,1). The relation (A.1) follows from an analogous
one for the logarithm of the determinant of each Laplacian: each eigenform on S? is in
some representation of the Z, action on S* that defined S®/Z,, so we can separate the sum
over eigenforms on S? into a sum over the eigenforms living in the trivial representation

of Z, and those living in the non trivial representations.
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The quantity we are about to calculate is
3 1
K(S?*1) = 3 log det AH(S?) — 3 log det A} (S?),

so we need the eigenvalues of the Laplacian and their multiplicities for O—forms and 1-
forms on S®. We shall calculate everything first for a sphere of radius 1, and include the
dependence on the radius later.

The 0—forms have eigenvalues g, = n(n+2) with multiplicities yo, = (n+1)?. There
are two types of 1-forms: closed, which have the same eigenvalues and multiplicities as
the 0-forms, and co-closed, which have eigenvalues A1, = (n + 1) and multiplicities
Y1.n = 2n(n +2) (see (3.19) of [106]).

The logarithm of the determinant of the Laplacian is defined by analytic continuation
using the Riemann zeta function (for more examples of the use fo zeta function regular-
ization in studying Ray-Singer torsions, see [106]). We begin by writing the zeta function
of the Laplacian on 0—forms or closed 1-forms, and the zeta function of the Laplacian on

co-closed 1-forms:

Yo = (n+1)?
Gls) = =) —— A2
0( ) Z S n;l (n(n+2))5 ( )
_ o Sl M A3
o PP AT o
Then we have
—¢\(0) = logdet Al = logdet Ajcosed (A.4)
—C1(0) = logdet Ajeoclosed (A.5)
In terms of these zeta functions, we have
1 , , 1
5 [3log det Al — (log det A} + log det A “~o)] = G0 =G0). (A6)

We wish to rewrite the sums (y(s) and (i(s) in terms of the well known Riemann zeta
function ((s) so that they will be well-defined at s = 0. This is straightforward for ;(s):

o (n+1)? 1
Gls) = 2;((n+ Dz (n+ 1)28)’
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whose analytic continuation is

Ci(s) = 2((€(2s = 2) = 1) — (C(2s) — 1)) = 2(¢(2s — 2) — ((29)) - (A7)

As for (y(s), we rewrite it as follows:

o 1 1 1 1 1
Gls) = > (n+ 1)2[(1 - (23 n 1)) aTE P G T o)) (A-8)

e 1 1 1 1 1
Zn“ [ (+2)) (1_(25+1)>(n+1)28_2(2s+1)(ﬁ+(n+2)28)}'

The sum on the second line converges absolutely for Re(s) > —1/2: with u = n%rl, it

becomes

o 952 1 1 1 1 1
nz::l“ [(1 —u?)s (1 B (2s+1)> B 2(23+1)((1 — u)? + (1+u)2s” ’

and one can see that the leading order term for large n (small u) is u* 2yt = y?$+2

hence it is bounded by 1/(n + 1)?*2 which converges absolutely for Re(2s +2) > 1 or
Re(s) > —1/2. Hence for Re(s) > —1/2, we can do the sum term by term. At s = 0,
each term in the sum vanishes, and furthermore the derivative of each term with respect

to s at s = 0 vanishes. Therefore, for small s we can write

%0 , 1 1 1 1 1
5) = ;(n+ 1 {<1 B (2s + 1)) (n+1)% + 2(2s+1) (n23 + (n—|—2)25)} ’

which becomes, by analytic continuation,

1 1
Col(s) = ¢(2s—2)+ (25 + 1)C(25) B <1 (25 + 1)) (25 + 1)225F1° (4.9)

Using known values of the Riemann zeta function
, 1
(=2=0,  CO)=-12,  (0)=—7log2m,
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we have at s = 0 the following values of the zeta functions of our Laplacians and their

derivatives:

¢G0) = 20'(-2) —logm, (A.10)
1(0) = 4(¢'(=2) = ¢'(0)) = 4¢"(=2) + 2log(2m) .
(The value of (}(0) can also be obtained from Proposition 3.1 of [107], or from [108].)

Now we include the dependence on the radius: the quantity that comes into the

physical calculation is actually

2
mk,n

_zn:log( A5 ):—;ynlog%,

so we should replace equations (A.2) and (A.3) by

m(s) = (RA)*Co(s) , (A.11)
m(s) = (RA)*G(s), (A.12)

whose derivatives at s = 0 are
n9(0) = —log R*A® + ¢;(0) , (A.13)
n(0) = log RZA* + (;(0) . (A.14)

We now have
1 / !
’C(Sga 1) = 5771(0) - 770(0)

= g log R*A? + log 272 . (A.15)

Finally, we can use (A.1): the sum over w is a sum over non-trivial ¢ roots of unity,

so using (2.5.23), we have

Y K(S*)Zg,w) => T(S*)Zg,w) = log|w —1|jw™" — 1| = 2logq , (A.16)

w
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or, for the more general lens space, with integers m and j as described in the last paragraph

of Section 2.5, we similarly have
=> loglw —1fjw™ — 1] =2logq . (A.17)
Therefore,
K(S*/Z,,1) = glog R?*A? +log2m* — 2logq

2 2
= log <i2> + 2 log R2A2. (A.18)
q 2

In terms of the volume V = 272 R3/q, this becomes

K(S%/Z01) = log () +log L VA7
(8°/Z4,1) = og(?)jtogﬁ

A3

The Ray-Singer torsion K(S*/Z,, 1) for the trivial representation can be calculated from
[99] or [97] to be log%. Hence, the term A(S?/Z,,1) in (2.5.14) is given by —log VA®.
We show in the next subsection that this generalizes to any @) with b,(Q) = 0.

A2 AQ1)

Here we show how the quantity IC(Q, 1) depends only on the volume of @) for any 3—
manifold @ with b;(Q) = b2(Q) = 0.

The term A(Q, 1) defined in (2.5.1)-(2.5.2) involves the matrix A* of change of basis
from an integral basis for the k™ integer cohomology, i.e. a basis whose periods around
cycles is 1, to a basis of harmonic k—forms of norm 1. Having fixed a metric on Q, let V'

be the volume of @) and let ¢;;; be the volume form on Q:

/ ein dat A da? A dat =V, (A.20)
Q

68



The two bases can be written as follows (we need only consider k£ = 0,3 since the other

cohomologies vanish):

basis for cohomology | basis of norm 1 | determinant of change of basis
0 1 1
H 1 i i (A.21)
3 (27 €45
H Sk oL vV
Therefore, we have
A1) = 3 (1) log det[A"] — log 24 _ 1 (l) (A.22)
T4 & T E AN '
The volume Vj, scales as A?, so
3
Alg,1) = S (~1)* log det[A*] = —log(VA®) = —3/2log(V°A?) . (A.23)

k=0

The corresponding coefficients that come up in the RGEs come from the sum (2.3.2)

for one massless vector multiplet, which gives —% log A%2. They cancel with the term for
log A* = 2log A? here.

B Generalization to breaking of SU(p)

Here, we show that for any breaking of an SU(p) gauge group to SU(m) x SU(n) x U(1),
the threshold corrections S, are proportional.
The analog of (2.5.8) for SU(p) breaking to the subgroup SU(m) x SU(n) x U(1),

with m +n =p, is

m-+n m-+n
m —) (B.1
—2) @ (0, — =) (B.1)

P1 P2 P3 P4 Ps

(m*-1,1,00® (1,n* = 1,0) ® (1,1,0) & (m, 7, —

with normalization k, of the abelian factor given by ky = 2(m + n)/mn.
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The threshold corrections are given by

S = 2 Q)+ T(Qws))

Su = 20 K(Q,1) +m (T(Q,wn) + T(Q,ws)) ,
Sn = 2mK(Q.1)+n (T(Q.wi) + T (Q,ws)) , (B.2)

so after shifting by Sy /k, we have

Sy~ = 0,
Sn— = 2n K(Q? 1) —n (T(Q,W4) + T(va5)) )
Sm~ = 2m K(Q,1) —m (T(Q,ws) + T(Q,ws)) , (B.3)

which are proportional, with ratio
Sy S, S, =0:n:m, (B.4)

which is just the ratio of the adjoint Casimirs of the groups, and matches the corresponding
ratio of beta functions by : b, : b,, =0 :n:m.

Note that all the statements in Section 2.5 generalize for this case. We just make the
following additional replacements: in (2.5.11), replace €7 by ePi7; in (2.5.21) replace

10mw/q by 2pmw/q; in (2.5.26), replace 5 by p; finally, replace (2.2.7) by

o
U, =exp (M -diag{n,...n,—m,...,, —m}) , (B.5)
q

with n appearing m times, —m appearing n times. Similarly, the results in Section 2.6
generalize to this case.

Note that generalizing to other unified groups does not in general preserve unification.
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Part 11

Schwinger meets Kaluza-Klein
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Chapter 1
Introduction and Summary

The classic study of the rate of creation of electron-positron pairs in a uniform, constant
electric field was done more than 50 years ago in the seminal paper by Schwinger [46].
The concepts and methodology introduced in this work have had a lasting impact on the
formal development of quantum field theory, and by now several alternative derivations
of the effect have been invented (see e.g. [109, 47, 48, 51, 49, 50]).

Schwinger’s predicted rate per unit time and volume is given by [46, 49, 50]

d’k; 1 mn(m? + k)
W(E) = qE/— —exp(———e M/ (1.0.1)
(2m)? nz::l n ( |¢E]| )
for a spin 1/2 particle in 4 flat space-time dimensions, with m, and ¢ the electron mass
and charge, k; the transverse momenta, and E the electric field.*

In an earlier set of equally classic papers [1, 2], Kaluza and Klein introduced their

unified description of general relativity and electromagnetism, in which charged particles

!The rate (1.0.1) is still very small for experimentally accessible electric fields. For the rate to be
appreciable, the field must be very large, around E..; = 10*eV/em. A static field of this magnitude is
difficult to obtain in laboratories, largely because it is several orders of magnitude above the electric field
that can be sustained by an atom, namely 108¢V/cm. See [59] for a recent experiment that has obtained
pair creation from oscillating electric fields, which were studied theoretically in [52], and see [60] for an

upcoming experiment studying pair production from the low-frequency, Schwinger limit of such fields.
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appear as quanta with non-zero quantized momentum around a compact extra dimension.
It has of course always been clear that the charged Kaluza-Klein particles do not have
the correct properties to represent electrons; most notably, the mass of the fundamental
KK particles is equal to (or bounded below by) their charge, while for the electron the
ratio m./q is about 1072!! So in comparison with electrons, KK particles are either
very heavy or have (in a large extra dimension scenario) an exceedingly small KK electric
charge. Nonetheless, or rather, because of this fact, it is an interesting theoretical question
whether it is at all possible, via an idealized Gedanken experiment, to pair produce KK
particles by means of the Schwinger mechanism. As far as we know, this question has
not been addressed so far in the literature, and probably for a good reason: it turns out
to be a subtle problem! We will show that unlike the standard Schwinger pair creation
effect, pair production of KK particles cannot be given the simple and rather intuitive

interpretation of a tunneling mechanism.

Imagine setting up our Gedanken experiment as in figure 1, with two charged plates
with a non-zero KK electric field in between. As seen from equation (1.0.1), to turn on the
effect by any appreciable amount will require an enormous KK electric field, and since
Kaluza-Klein theory automatically includes gravity, the backreaction of the E-field on
space-time will need to be taken into account. The best analog of a constant electric field
in this setting is the electric version of the Kaluza-Klein Melvin background; the magnetic
version was studied recently in [110, 111, 112, 113, 114, 115, 116]?, and in [115, 116] the
electric version also appeared. We will study some of the features of the electric KKM
background in section 2. For our problem, the relevant properties of this background are
that

(i) the background geometry depends on a longitudinal coordinate, which we will call p;
(ii) a gravitational acceleration a(p), directed along the E-field, is included;

(iii) the total gravitational and electrostatic potential energy remains positive everywhere.

2In [112], pair production of Kaluza-Klein monopoles from the magnetic Kaluza-Klein Melvin solution

was studied. See also [117] for a study of other aspects of the magnetic solutions.
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Plate 1 Plate 2

E40

afo

p:pl E— p:pz
P

Fig. 1: The Gedanken experiment we will imagine in this paper, with two charged plates at
p=p1 and p=p2, producing a non-zero E-field in the intermediate region. The backreaction

and the finite mass density of the plates results in a non-zero gravitational acceleration a.

The first two properties are expected backreaction effects. The last property, however,
implies that the negative electrostatic potential can never be made large enough to com-
pensate for the positive contribution coming from the rest mass of the particles. The
physical reason for this obstruction is that before one reaches the critical electro-static
potential, backreaction effects will cause space-time itself to break down: if one would
formally continue the solution beyond this point, the space-time develops closed time-like
curves, which are known to be unphysical. In this way, gravity puts an upper limit on

the potential difference one can achieve between the two plates in figure 1.

This result may look like an unsurmountable obstacle for pair creation, which is usually
thought of as a tunneling effect by which particle pairs can materialize by using their
electro-static energy to overcome their rest mass. The modern instanton method [47, 48,
51] of computing the pair creation rate, for example, crucially depends on this intuition.
However, as mentioned in point (ii) above, it turns out that the backreaction necessarily

implies that the vacuum state of the KK particles needs to be defined in the presence of
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a non-zero gravitational acceleration. As we will explain in Appendix A, the necessary
presence of this acceleration can be thought of as due to the non-zero mass of the parallel
plates that produce the KK electric field. Consequently, the Schwinger effect needs to be
studied in conjunction with its direct gravitational analog, the equally famous Hawking-
Unruh effect [53, 54, 118].

It has been recognized for some time that the Hawking-Unruh effect and Schwinger
pair creation are rather closely related (see, for example, [49, 50]); both can be understood
via a distortion of the vacuum, which may be parametrized by means of some appropriate
Bogolyubov transformation that relates the standard energy eigenmodes to the new en-
ergy eigenmodes in the non-trivial background field. Also, like the Schwinger effect, the
Hawking—Unruh effect has been thought of as a tunnelling mechanism and was derived
as such recently [55]; see also [119] for a related study of de Sitter radiation.

By combining both the Schwinger and the Unruh effects we will obtain the following
result for the pair creation rate of the Kaluza-Klein particles (which we will assume to be

scalar particles) as a function of the electric field E and gravitational acceleration a

d—2
a*? 11 dk; ) o\ 1/4
W(E,a) = 52 /(271')d_2 (q +Ak:i) exp{—27r¢d(a,q, k:,)} (1.0.2)
where
2 g2 2
Wia,q, ki) = ¢ A=1-"". (1.0.3)

5B +ayg + AR | da?
Here the summation is over the full KK tower of all possible charges ¢ = n/R with n
integer and R the radius of the extra dimension, and a is the ‘bare’ acceleration, that
the particles would experience with the E-field turned off. While F in this formula is
a constant, a in fact depends on the longitudinal coordinate via 1/a = p+ const. The
potential energy in (1.0.3) is the manifestly positive quantity we referred to in property
(iii) above. A more detailed explanation of the result (1.0.2) will be given in Section 4.
Since in our case mass equals charge the result (1.0.2) looks like a reasonable general-

ization of the classic result (1.0.1) of Schwinger and of Unruh [54, 49, 50]. In particular,
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if we turn off the E-field, our expression (1.0.2) reduces to the Boltzmann factor with
Hawking-Unruh temperature § = 27/a. Moreover, if we would allow ourselves to drop
all terms containing the acceleration a, the result is indeed very similar to the dominant
n = 1 term in Schwinger’s formula (1.0.1). However, it turns out that in our case, the
gravitational backreaction dictates that the acceleration a can not be turned off; rather,

it is bounded from below by the electric field via
a>|E/2|. (1.0.4)

Our formula (1.0.2) indeed breaks down when a gets below this value. So in particular,
there is no continuous weak field limit in which our result reduces to Schwinger’s answer.
We will further discuss the physical interpretation of our result in the concluding section,
where we will make a more complete comparison with the known rate [120] for Schwinger
production in an accelerating frame.

This Part is organized as follows. In Chapter 2 we describe some properties of the
electric Kaluza-Klein Melvin space-time. In Chapter 3 we study classical particle mechan-
ics and wave mechanics in this background. Finally in Chapter 4, we set out to calculate
the pair creation rate, using (and comparing) several methods of computation. Chapter
5 contains some concluding remarks. We discuss our experimental set-up in Appendix A,
and in Appendix B we summarize the known result for Schwinger pair production in an

accelerating frame.

7



78



Chapter 2

The Electric Kaluza-Klein-Melvin

Space-Time

We start with describing the classical background of d+1-dimensional Kaluza-Klein the-

ory, representing a maximally uniform KK electric field.

2.1 Definition of the Electric KKM Space-time
Consider a flat d + 1 dimensional flat Minkowski space-time, with the metric
ds* = —dt* + da’® + dy;dy’ + das,,, (2.1.1)

with + = 2,...,d — 1. From this we obtain the electric Kaluza-Klein-Melvin space-time

by making the identification

t t v (t — Bx)
T x’ x — 3t
— _ | =8 (2.1.2)
Yi ?/Z/ Yi
xd_;’_l le-l-l xd+1 + 27TR



with v2(1 — %) = 1. This geometry can be viewed as a non-trivial Kaluza-Klein back-
ground in d dimensions, in which the standard periodic identification x4y = x441 + 27 R
of the extra dimension is accompanied by a Lorentz boost in the z-direction. Since the
d + 1 dimensional space-time is flat everywhere, and the identification map (2.1.2) is an
isometry, it is evident that the electric Melvin background solves the equation of motion
of the Kaluza-Klein theory. As we will describe momentarily, from the d-dimensional
point of view, it looks like a non-trivial background with a constant non-zero electric field
FE and with, as a result of its non-zero stress-energy, a curved space-time geometry. Here

the electric field F is related to the boost parameters § and + by
[ = tanh(rRE), v = cosh(TRE). (2.1.3)
The map (2.1.2) represents a proper space-like identification, for which
—(t' = t)?+ (@' — 2)® + (2l — 2a41)’ = 27R)* — (27— 2)(2* —¢*) > 0 (2.1.4)

provided we restrict to the region

TR 2= 242

hﬂER’ p=2x
2

p < -
S11

(2.1.5)
where we used (2.1.3). Outside of this regime, the electric Melvin space-time contains
closed time-like curves. We will exclude this pathological region from our actual physical

set-up. !

!There is also a different notion of the electric version of the KK Melvin space-time, which is obtained
by applying an electro-magnetic duality transformation F — e2V3é x F , ¢ — —¢ to the magnetic KK
Melvin space-time [121]. This background looks like an electric flux-tube in a U(1) gauge theory with an
electric coupling constant e that diverges at large transverse distance from the flux-tube (due to the fact
that the size of the extra dimension shrinks at large distance). Putting a reasonable physical upper bound
on the size of e restricts the maximal allowed length of the flux tube, suggesting that the obstruction
against creating an arbitrarily large electro-static potential may be more general than only for the type

of backgrounds studied in this paper.
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2.2 Classical Trajectories

As a first motivation for the identification of E with the KK electric field, it is instructive
to consider classical trajectories in this space-time. This is particularly easy, since in flat

d 4+ 1 Minkowski space, freely moving particles move in straight lines:
T =X+ P18, - =19+ pos, Yi = ]CiS, Td+1 = (GS. (221)
Assuming the particle is massless in d + 1-dimensions, we have

po = \/pf + ki + ¢ (2.2.2)

which is the mass-shell relation of a d-dimensional particle with mass equal to ¢. Let’s

introduce coordinates p and 7 via
x = p cosh(t — 1 Exq4) , t = p sinh(7 — 1 Ez441). (2.2.3)
and coordinates X and T' by
X =pcoshr T = p sinh . (2.2.4)

The identification (2.1.2) in the new coordinates becomes

T T
X X
— , (2.2.5)
Yi Yi
Td+1 Tat1 +27R

which is the standard Kaluza-Klein identification. The trajectory in terms of these is:

X = (zo + p1s) cosh( Eqs) + (to + pos) sinh(3 Eqs)

T = (to + pos) cosh(3 Eqs) + (xg + p1s) sinh(3Eqs) (2.2.6)

Considering a particle at rest at the origin zp = 0 and ¢y = 0, we find
DS _qF
dT2 B Po )

This is the expected acceleration of a particle with charge and rest-mass q.

(2.2.7)

81



2.3 Kaluza-Klein Reduction

Let us now perform the dimensional reduction to d dimensions. Using the coordinates p

and 7 defined in (2.2.3) the d + 1 dimensional metric becomes
ds®> = —p*(dr + 1E drai1)? + dp* + dyidy’ + dxl 4, (2.3.1)

while the identification (2.1.2) simplifies to a direct periodicity in x4y, with period 27 R,
leaving (p, 7, y;) unchanged. We may rewrite the metric (2.3.1) as

_r

2 2 i Ep? 2
A dr= + dp” + dy;dy" + A(dxd+1 - — dT) (2.3.2)

2 __
ds* = oA

with
A=1-1E% (2.3.3)

In this form, we can readily perform the dimensional reduction.
The d dimensional low energy effective theory is described by the Einstein-Maxwell

theory coupled to the Kaluza-Klein scalar V' via

S = /\/——gd ( V2R, + i V3/2FWF“”). (2.3.4)

Here the d-dimensional fields are obtained from the d+1 metric via the decomposition

dsi., = ds;+ V(dwg + Audat)? . (2.3.5)
Comparing (2.3.5) and (2.3.2) gives the dimensionally reduced form of the electric Melvin
background
ds? — p2d 2 2 i
g = —dr + dp® + dy;dy" | (2.3.6)
E 2
Ay = %, V=A=1-12E. (2.3.7)

It describes a curved space-time, together with an electric field in the p-direction given
by 5
Ep = 4/ gOO 8PA0 = W (238)
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Singularity Singularity
p=-2E 1 p=2/E
N /

AN
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Horizon

v

Fig. 2: The electric KK Melvin space-time divides up into four regions. Regions I and I1

are static regions, while regions III and IV are time-dependent.

This electric field is equal to E at p = 0, but diverges at p = 2/F; this singular behavior
is related to the mentioned fact that outside the region (2.1.5), the identification map
(2.1.2) becomes time-like and produces closed time-like curves. Note, however, that the
location of the divergence in E, slightly differs from the critical value noted in (2.1.5),
but coincides with it in the limit of small ER.

The d dimensional metric in (2.3.6) reduces for £ = 0 to the standard Rindler space-

time metric. For finite E/ there is a non-zero gravitational acceleration

1
a,(p) = g%0,900 = oA (2.3.9)
which includes the gravitational backreaction due to the stress-energy contained in the
electric field. Notice that a(p) diverges at p = 2/F.
The above static Rindler type coordinate system will be most useful for the purpose of
providing a background with a static KK electric field. To obtain a more global perspective

of the full electric KK Melvin space-time, we can use the coordinates X and T defined in
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equation (2.2.4). In this coordinate system, the solution looks like
2

E .
ds® = —dT* + dX* — - (XdT — TdX)* + dy,dy’,

4A
EX ET
AO — ﬁ’ Al — _ﬂ’ (2310)
V=A, A=1-1E*(X*-T7).

In this coordinate system we can distinguish four different regions:
Region I : X > |T, Region IT : X < —|T,
Region IIT: T > | X/, Region IV: T < —|X].

Regions I and IT are static regions (that is, they admit a time-like Killing vector) and are
analogous to the left and right wedges of Rindler space. They are separated by a “horizon”
(as seen only by static observers at p = const.) at X2 = T? from two time-dependent
regions III and IV. (See figure 2) We will mostly dealing with the physics of region I. For
a discussion of the physics in region III, see [115, 116].

2.4 Physical Boundary Conditions

In order to have in mind a physical picture of the part of this spacetime that we will
be studying, we recall the Gedanken experiment as shown in figure 1, in which two
charged plates produce a static KKM electric field between them. As explained in detail
in Appendix A, the space-time between the two plates will correspond to a finite interval
within region I:

p1<p<pa, with 0 <p1<pa<|2/E|. (2.4.1)

By concentrating on the physics within this region, our physical set-up will automatically
exclude the unphysical regime with the closed time-like curves, as well as the horizon at

p = 0. The details of this set-up are given in Appendix A.
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Chapter 3

Particle and Wave Mechanics

3.1 Particle Mechanics

In this section we consider the classical mechanics of charged particles in the electric KK-
Melvin space-time, deriving the expression for the total gravitational and electrostatic
potential energy. This discussion will be useful later on when we consider the quantum

mechanical pair production.

3.1.1 Classical Action

The classical action for a massless particle in d 4+ 1 dimensions is

Saer = [ds [pya" + X (G pupy)], (3.1.1)
where M, N = 0,...,d and X denotes the lagrange multiplier imposing the zero-mass-shell

condition GM]})M py = 0. Upon reduction to d dimensions, using the general Kaluza-Klein

Ansatz (2.3.5), for which
g,uu —AY
" = ( ) : (3.1.2)



where p,v = 0,...,d — 1, the action (3.1.1) attains the form (here we drop the z441-

dependence)

)] (3.1.3)

<[

Sa= [ds [pui + A (9 (b — 04) (s — ad) +
Here we identified ¢ = pg1. The A equation of motion gives
¢
" (p — qAL) (py — ¢A)) + V= 0. (3.1.4)

This is the constraint equation of motion of a particle with charge ¢ and a (space-time
dependent) mass m = —- For the electric KK Melvin background (2.3.6), the constraint
(3.1.4) takes the form

A qEp*\2 q
—ler ) el =0 (3.1.5)
or
pi 1 2 2 2
— 5t @ 3Ep) +p 4l =0, (3.1.6)

Since the background is independent of all coordinates except p, all momenta are conserved

except p,. Let us denote these conserved quantities by
pr=w, pi = ki (3.1.7)
The constraint (3.1.6) allows us to solve for p, in terms of the conserved quantities as
b = 2P — 12 = K+ (- LB (3.1.8)

Using this expression for p,, we can write the total action of a given classical trajectory

purely in terms of its beginning and endpoints as

P2
Si(ta,21) = W + kighy £ /dp\/(wz/pz) ) (3.1.9)

P1

Performing the integral gives
Si(ZL'Q, ZL’l) = Si(l’g) — Si(l’l) s (3110)
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with
Se({p,my}) =kiy' + w (T £ Tolp,kiw)), (3.1.11)

where
Tolp, ki,w) = /1 — (%)2 - log[% (1+y1- (%)2)] . (3.1.12)

This result will become useful in the following.

Notice that, for given radial location p, the classical trajectory only crosses this location
provided the energy w satisfies w > pup with u as defined in (3.1.8). The physical meaning
of the quantity 7y in (3.1.12) is that it specifies the (time difference between the) instances
T = £Ty at which the trajectory passes through this radial location. Notice that indeed
To = 0 when w = pp, indicating that at this energy, p is the turning point of the trajectory.

3.1.2 Potential Energy

We can use the mass-shell constraint (3.1.5) to solve for the total energy

2

E
H=p =2\ A+ 1) + ¢ - T (3.1.13)

The corresponding Hamilton equations

_on o

8Tp - 8Tpp = _a—p ’

, 3.1.14
o, ( )

determine the classical trajectory p(7). An important quantity in the following will be

the potential energy W(p, ¢, k;), defined via

E 2
Wp,q.k) = Hip,=0) = L/g>+ a2 — T2 (3.1.15)

That is, W(p,q, k;) is the energy of particles, with psi1 = ¢ and transverse momentum

pi; = k;, that have their turning point at p.
As expected, the potential energy W(p) contains two contributions: the first term is

the gravitational energy due to the rest mass and momentum of the particle, and the
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Fig. 3 The effective potential W(p) defined in equation (3.1.15) (for k; = 0, and multiplied
by E) as a function of x = %qu, with ¢ = 1.

second term represents the electro-static potential. If ¢F is positive, this last term makes
the particle effectively lighter than its gravitational energy. The total energy for any qF,
however, never becomes negative. For ¢F negative, the expression (3.1.15) is manifestly

positive. For qF either positive or negative, it can be rewritten as
2 2
q +k;
W(Pa q, kl) = 1 5
| 34E + p~ '@ + AR |

which is again manifestly positive. We have plotted this function for k£ = 0 in figure 3.

(3.1.16)

This behavior of the potential energy W(p, ¢, k;) should be contrasted with the classical
electrostatic case, where V(p,q) = m — qEp with m the rest-mass, in which case the
particle can get a negative total energy. When going to single particle wave mechanics,

this negative energy leads to the famous Klein paradox, and upon second quantization, to
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the Schwinger pair creation effect. Since in our case the potential remains positive, there
is no Klein paradox and no immediate reason to expect a vacuum instability. Nonetheless,
as we will see shortly, pair creation will take place.

Finally, we note that in the concrete set-up of Situation I of our Gedanken apparatus
in Appendix A, the particles are in fact restricted to move within the region p; < p < po
between the two plates. To complete the dynamical rules of the model, we need to specify
what happens when the particle reaches the plates; we will simply assume reflecting

boundary conditions.

3.2 Wave Mechanics

In this section we write the solutions to the wave equations in the electric KK-Melvin

background, and illustrate the semi-classical correspondence with the classical mehanics.

3.2.1 Wave Equations
The d + 1-dimensional wave equation in the background (2.3.1) is

1

1 1 2
== O (V=GG""oya) = [; Oulp0p) = 02+ 07 + (Oayr + 3EO;) ] ® =0,

(3.2.1)
subject to the perioding boundary condition in the x4, direction with period 27 R. For

a given eigenmode with ¢ = pg1 = %, we can reduce the wave equation to d dimensions,

B
where it can be written in the form

VA p A iqEp*\2 ,
Here we recognize the conventional wave equation
1
—— D, (V=99""D,®) — M*® =0 (3.2.3)

V=9
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of a d dimensional charged particle with charge ¢ in the background (2.3.6) and with a
position dependent mass equal to M? = ¢?/A. Note the direct correspondence af the
above wave equations with the classical equations (3.1.5) and (3.1.6). They need to be
solved subject to the boundary conditions imposed by our physical set-up. In case of
Situation I, see figure 5 in Appendix A, we will choose to impose Dirichlet boundary

conditions at the two plates
D |pmpy =P |p=p, = 0. (3.2.4)

3.2.2 Mode Solutions

The d + 1-dimensional wave equation is solved by
e iy (O (3.2.5)
with g as defined in (3.1.8), and where K (w, up) solves the differential equation

((p0,)? +w* + p?p*) K (w, p) = 0. (3.2.6)

The solution K has the integral representation
K(w, pup) = /da elwo—inpsinho (3.2.7)

and can be expressed in terms of standard Bessel and Hankel functions [122, 123]. The
functions K (w, up) are defined for arbirary real w. However, upon imposing the boundary
conditions that K(w, up;) = 0 at the location of the two plates, we are left with only a
discrete set of allowed frequencies w,. Since the corresponding mode functions (3.2.7)
form a complete basis of solutions to (3.2.6), they satisfy an orthogonality relation of the
form .

/dppK*(% 1) K (w;, 1y p) = f(we)dej, (3.2.8)

p1

where f(w) some given function that depends on p; and ps.
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For large w and pp, we can approximate the integral in (3.2.7) using the stationary

phase approximation. The stationary phase condition w = up cosh o has two solutions
w 2
oy = *log [— T4+ /1— (£ ] (3.2.9)
< (1 i ()

provided |w|> up, leading to

27 cos(wTo(p) + =
K (w, pp) ~ ( D w6210

Vi 1= ()’

with T¢ as given in equation (3.1.12). This formula is accurate for energies w larger than

the potential energy W(p). For smaller energies there is no saddle-point and the function

K (w, up) is exponentially small

K(w, pp) =~ «/% e HP lw| << pp . (3.2.11)

reflecting the fact that the corresponding classical trajectory has its turning point before
reaching p.
Notice that, upon inserting (3.2.10), the full mode function @, in (3.2.5) can be

written as a sum of two semi-classical contributions

D () ~ Z pita+1(a+5 Bw)tikiy +iw (T£To(pkw)) ZeiSi(ymp)’ (3.2.12)
+ +

corresponding to the left- and right-moving part of the trajectory, respectively.
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Chapter 4
Pair Creation

In this section we will compute the pair creation rate of the Kaluza-Klein particles, follow-
ing three different (though related) methods. We will start with the simplest method, by
looking for Euclidean “bounce” solutions. We then proceed with a more refined method
of computation, more along the lines of Schwinger’s original calculation, producing the
non-trivial result quoted in the introductory section. Finally, we show that the obtained
result can naturally be interpreted by considering the Hawking-Unruh effect, and we use
the method of Bogolyubov transformations to compute the expectation value of the charge

current.

4.1 Classical Euclidean Trajectories

Assuming that, in spite of the fact that the effective potential (3.1.15) seems to suggest
otherwise, the nucleation of the charged particle pairs can be viewed as the result of
a quantum mechanical tunneling process, we compute the rate by considering the cor-

responding Euclidean classical trajectory. The analytic continuation of the electric KK
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Melvin space-time to Euclidean space is

052 = L ag? 1 ap? + dydy' + A, (d B 1) 4
SE_A_E + dp” + ay;ay” + E(xd-i-l_m )a ('1'1)
Ep?
AG — ma V= AE )
with @ a periodic variable with period 27, and
Ay = 1+ E?p*/4. (4.1.2)

This Euclidean geometry is obtained from the Lorentzian electric KK Melvin solution via
the replacement
E —iFE, t— —if, (4.1.3)

and coincides with the space-like section of the magnetic KK Melvin space-time. Unlike
the Lorentzian version, this Euclidean space-time extends over the whole range of positive
p values and ends smoothly at p = 0, by virtue of the periodicity in #. This is standard for
Euclidean cousins of space-times with event horizons, and a first indication that quantum
field theory in the space-time naturally involves physics at a specific finite temperature.
The Euclidean action of a point-particle, with charge (momentum in the d+1-direction)

equal to pgy1 = ¢ and mass M = |q|/+/Az moving in this background reads

VA \ Ag ‘ 2Ap

As a first step, let us look for closed circular classical trajectories at constant p and ;.

20 Ep? .
SE:/dsLE, £p— 4 Jp— ypp - Ly (4.1.4)

The above point-particle action then reduces to
T

Se(p) A,

The first term is the energy of a static particle times the length of the orbit, and the second

(2lalp — qEp®). (4.1.5)

term is the interaction with the background field times the area of the loop. Looking for

an extremum yields one real and positive solution
|E|p = 2V2 — 2 - sign(¢F) (4.1.6)
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with total action
_ 2mq|

1B

The existence of these solutions with finite Euclidean action is a first encouraging sign

Sy (V2 —sign(qE)). (4.1.7)

that pair creation may take place after all. The answer (4.1.5) for the Euclidean action
also looks like a rather direct generalization of the standard semiclassical action for the
Schwinger effect, and it is therefore tempting to conclude at this point that the total pair

creation rate is proportional to

=S8 — o=2rlal (Visign(aE)/ || (4.1.8)

which looks only like a numerical modification of the classic result (1.0.1). This conclusion
is somewhat premature, however, since in particular the pair creation rate should depend
on p. We would like to determine this p-dependence.

For this, we take a second step and consider closed Euclidean trajectories that are
not necessarily circular. As in section 3.1, we now go to a Hamiltonian formulation. To
transform the formulas in section 3.1 to the Euclidean set-up, we need to make, in addition

to (4.1.3), the following replacements
5 — —is, Pp — iDps Di — ip; q—iq. (4.1.9)

In this way we obtain from (3.1.13) a Euclidean Hamiltonian

qEp®

(4.1.10)

He=po= - /lal? = Aep2 + 1) —
E

that generates the motion of particle as a function of the Euclidean time #, and a corre-

sponding potential energy

E 2
We(p, kiyq) = —Hau(p, = 0) = _Ai‘/‘ 2 — Agk? + %. (4.1.11)
E E

In addition to a change in sign, which is the standard way in which a potential changes

when going to Euclidean space, this Euclidean potential differs from (3.1.15) via the

95



0.5

-0./5¢

Fig. 4 The Euclidean effective potential W g(p) defined in equation (4.1.11) (for k; = 0,
and multiplied by FE) as a function of x = %qu, with ¢ = £1.

replacement A — A,. We have drawn Wp, for k; = 0 in figure 4. Note that Wy for k; =0
is proportional to the reduced effective action (4.1.5) for circular trajectories, and the

critical radii (4.1.6) reside at the two minima in figure 4.

Our goal is to obtain semi-classical estimate for the pair creation rate at some given
p. How should we use this Euclidean potential for this purpose? As seen from figure 4,
there is a range of Euclidean energies Hj around the two minima (4.1.6) for which there
exist stable, compact orbits. These orbits have a maximal and minimal radius, p;, and
p—, at which H, = Wg(ps). The idea now is to associate to a given p the corresponding
Euclidean trajectory for which p equals one of these extrema p, and then use the total

action Sp(p) for this trajectory to get a semi-classical estimate of the pair creation rate
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via

W(p) ~ e %) (4.1.12)
Here it is understood that in Sp(p) we undo the rotation £ — iFE, so that Ay, — A.
Equation (4.1.12) is then a clear and unambiguous formula, provided the classical orbit
is closed.

In general, however, the orbits need not be closed: the period of oscillation does not
need to be 27 or even a fraction or multiple thereof. How should we define the total
classical action, to be used in (4.1.12) for such a trajectory?

Our proposal, that perhaps may look ad hoc at this point but will be confirmed and
justified in the subsequent subsections, is to take for S, the total action averaged over
one full rotation period of 2w. Concretely, suppose that the compact trajectory has an
“oscillation period” 6, in which it goes through a full oscillation starting and returning

to its maximal radial position p=p,. We then define S;(p) as:

6—o00

% 6o
2 2
S.(p) = lim 7” /d@ﬁE(Q,p) - 9—: /d@ﬁE(O,p). (4.1.13)
0 0

With this definition, and using the results in Section 3.1.1, we can now easily evaluate
Se(p). From (the Euclidean analog of) equation (3.1.11), while noting that 7¢(p) = 0

since p is the turn-around point, we obtain
Sp(p) =21W(p, q, k;), (4.1.14)

with W as given in (3.1.15). Here we made the replacement F — iFE, as prescribed.

The result (4.1.14) together with (4.1.12) gives our proposed semi-classical estimate
of the pair creation rate as a function of p. Clearly, the derivation as presented thus far
needs some independent justification. It also leaves several open questions. In particular,
it is not clear how we should interpret the Euclidean “bounce” solutions, given the fact
that the real effective potential (3.1.15) doesn’t seem to lead to any tunneling. A better

understanding of the physics that leads to the pair creation seems needed. In the next
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two subsections we will present two slightly more refined derivations of the rate, which

will help answer some of these questions.

4.2 Sum over Euclidean Trajectories

We will now evaluate the pair creation rate, per unit time and volume, by means of the
path-integral. Since we expect that this rate will be a function of longitudinal position
p, we would like to express the final result as an integral over p. We start from the sum

over all Euclidean trajectories
1
W = /Dpr exp(—ﬁS[p, x]) (4.2.1)
defined on flat d+1-dimensional space with metric and periodicity condition
dsy, = dz*dx + dy;dy’ + dal, (4.2.2)

(z, 2%, yi, Tap1) = (™ By, e ™ERy* w40 +27R). (4.2.3)

In the end we intend to rotate back to Lorentzian signature, replacing £ — iFE.

We can read the expression (4.2.1) as a trace over the quantum mechanical Hilbert
space of the single particle described by the action (3.1.1) or (3.1.3). The idea of the
computation is to write this as a sum over winding sectors around the d + 1-th direction.
For each winding number w, the closed path is such that the end-points are related via a
rotation in the (x, z*)-plane over an angle wr ER. Using this insight, we can write (4.2.1)

as
/dd:c W(z) = R / = % S e Cr qy [ B m 3 PP (4.4)
0 w

where T' denotes the Schwinger proper time variable, and where J denotes the rota-
tion generator in the (z,2*) plane. The exponent in front of the the trace is the d+1-

dimensional part of the classical action of the trajectory with winding number w. To
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compute the trace, we write it as an integral over mixed position and momentum eigen

states
A= [ /Hffz (ol | Al ) (4.2.5)
Next we evaluate
(o] emWERT = E0 |y = %T e~ o (P (TR 1) (4.2.6)

where we used the standard formula for the heat kernel in two dimensions. Inserting this

into (4.2.4), we can write the production rate as an integral over p of

_ R / dT\/ﬁ T dk; e W Y e ar((@rRw)? + 4p’sin’(rERw/2) (4 97)

d-2
(27) "

which we will interpret as the pair production rate at the location p.

Equation (4.2.7) is an exact evaluation of the Euclidean functional determinant. To
put it in a more useful form, we will assume that we are in the regime p? > T (an
assumption that we will be able to justify momentarily), so that we can simplify the

expression by means of the Villain approximation

3 e ar((@nRw)® + 4g%ind (nERw/2)) o, §~ o=ar (2nRw)* + (B Rw = 2mn)?) (4 9.5

w,n

This replacement essentially amounts to a semi-classical approximation. The right-hand
side can be re-expressed via the Poisson resummation formula (note here that the left-hand

side below is just a trivial rewriting of the right-hand side above)

P v I = L e
w 27TAER2

(4.2.9)
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As the final step, we may now evaluate the integral over the Schwinger parameter 1" via

the saddle point approximation. The saddle points are at'

2mp | n|

NCEUWEE

Before plugging this back in to obtain our final result, let us first briefly check our as-

Ty = n=+1,+2, ... . (4.2.10)

sumption that p? >> T: setting k; = 0, we find p*/Ty = mp/2n|n|R. So as long as the
spatial distance scale p is much larger than the KK compactification radius R, we're safe
to use (4.2.8).

With this reassurance, we proceed and find our final answer for the pair creation rate

per unit time and volume where we made the replacement £ — iE.?

1 T dk, m2  A\E 1
W) = gam e & (e 00) 2w e[ k)] (210

n=1
where W(p, q, k;) is the potential energy introduced in equation (3.1.15). The summation
over n in (4.2.11) can be seen to correspond to the “winding number” of the Euclidean
trajectory around the periodic Euclidean time direction. The n = 1 term dominates, and
is the result announced in the Introduction. Before discussing it further, we will now

proceed with a second method of derivation.

4.3 The Hawking-Unruh effect

The result (4.2.11) looks like a thermal partition function, indicating that it can be un-
derstood as produced via the Hawking-Unruh effect. We will now make this relation more
explicit.

The functional integral (4.2.1) over all Euclidean paths represent the one-loop partition

function of a scalar field ® in the d+41-dimensional electric KK Melvin space-time. We

"We drop the term with n = 0, since it corresponds to the vacuum contribution.
2Note that the same result can be obtained by replacing the sum in (4.2.7) by (4.2.9), integrating over

T exactly, and then using equation (3.2.11) to approximate the resulting Bessel function.
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can compute this determinant also directly via canonical quantization of this field. The
full expansion of ® into modes starts with a decomposition over wave numbers along the

extra dimension (in this section we restrict ¢ to be positive)
m . .
B =Dy + Y (1 Dy + TP (4.3.1)
q=1

where @ is massless and real, and ®, are complex and have mass m = ¢. Let us define

py and p_ via
pi=(g+3wE)’ + k7, P2 = (—q+ twE)? + k2, (4.3.2)

so that now p. are quantities related to positively or negatively charged particles.

To proceed, we now need to expand the field ®, in creation and annihilation modes,
allowing only modes that satisfy the boundary conditions (3.2.4) that ®,(p;) = 0 at the
location of the two charged plates

dl:lz dkl —iwT+ik;y? .
o, = > /(27T)d_2 € o (K(w,u+p) ag(kiyw) + K*(w, u_p) aT_q(k;Z-,w)) , (4.3.3)

with K (w, up) and f(w) as defined in (3.2.7) and (3.2.8). The creation and annihilation

modes then satisfy the usual commutation relations
(g (k1 wi), aliy (Ka, wo)] = 3 (k1 —K2) 0y, - (4.3.4)

Our goal is to determine what the natural vacuum state of the ® field looks like, as
determined by the initial conditions. In the far past, we imagine that the KK electric field
was completely turned off. The electric KK Melvin background then reduced to Rindler
or Minkowski space — depending on which coordinate system one introduces. The most
reasonable initial condition is that the quantum state of all ® quanta starts out in the
vacuum as defined in the Minkowski coordinate system. Let us denote this Minkowski

vacuum by [€).

101



To determine the expression for |2) in terms of our mode basis, we can follow the
standard procedure [54, 118]. We will not go into the details of this calculation here,
except to mention one key ingredient: the mode functions, when extended over the full

range of p values, have a branch-cut at the horizon at p = 0, such that
K(w,—pp) = e TYK* (w, up) , (4.3.5)

depending on whether the branch cut lies in the upper or lower-half plane. This behavior
of K(w, up) near p=0 is sufficient to deduce the form of the Bogolyubov transformation
relating the modes a(w, k) to the Minkowksi creation and annihilation modes. (see e.g.
[118]). As a result, one finds that the Minkowski vacuum, |€2), behaves like a thermal
density matrix for the observable creation and annihilation modes in (4.3.3). In particular,

the number operator for each mode has the expectation value

1
e2Tw _ 1’

(Q aj](k, w)aq(k,w)| Q) = (4.3.6)

while the overlap of |Q2) with the empty vacuum state, defined via a,(k,w)| 0) =0, becomes

B d—2
2 _ I1 dF; —2TWw
(0] Q)] = exp /W;’log(l—e )’ (4.3.7)
- d—2
H dki 1 —2nTW
— Y L Bk e ) 4.3.
exp /(27r)d—2 2 e (4.3.8)

This expression represents the probability that the state {2 does not contain any particles
— and its dominant n = 1 term looks indeed closely related to the result (4.2.11) obtained
in the previous subsection.

The difference between the two equations is that (4.2.11) is defined at a particular
location p, while (4.3.7) contains a summation over all frequencies. To make the relation
more explicit, imagine placing some measuring device at a location p. As mentioned
before, only modes with a sufficiently large frequency will reach this location with any

appreciable probability, and the probability attains a maximum for frequencies equal to
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the potential energy at p, since for those frequencies, p is the turning point. Via this
observation, we can view the position p as a parametrization of the space of frequencies,

via the insertion of
1= [apd(w—w(p) 0,w(0) . (43.9)
with W(p) as given in equation (3.1.15), thus replacing the summation over w in (4.3.7) by

an integral over p. The integrand at given p is then naturally interpreted as the production
rate (4.2.11) at the corresponding location. This procedure is a good approximation
provided the distance d = ps — p; between the plates is large enough, so that many
frequencies contribute in the sum.

This same condition is also important for a second reason [49, 50]. Since we would like
to imagine that the pair production takes place at a constant rate per unit time, we would
like to see that the overlap (4.3.7) in fact decays exponentially with time. This comes
about as follows [49, 50]. Suppose we restrict the field modes to be supported over a finite
time interval 0 < 7 <T'. This translates into a discreteness of the frequencies. Ignoring
at first the other discreteness due to the reflecting boundary condition at the two parallel
plates, it is clear that the density of frequencies allowed by the time restriction grows
linearly with T". The sum over the frequencies thus produces an overall factor of 7. In
this way, we recover the expected exponential decay of the overlap (4.3.7).

This exponential behavior breaks down, however, as soon as the time interval 1" be-
comes of the same order as the distance d between the plates, or more precisely, when
1/T approaches the distance between the discrete energy levels allowed by the reflecting
boundary conditions at the plates. At this time scale, the situation gradually enters into a
steady state, in which the pair creation rate gets balanced by an equally large annihilation
rate. The system then reaches a thermal equilibrium, specified by the thermal expectation

value (4.3.6). The physical temperature of the final state depends on the location p via

B =21\/Goy = 2%’\). (4.3.10)

Note that this temperature diverges at p = 0 and p = |2/FE]; neither location is within
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our physical region, however.

4.4 Charge Current

It is edifying to consider the vacuum expectation value of the charge current, since this
is a clear physical, observer-independent quantity and a sensitive measure of the local

profile of the pair creation rate. For given ¢, the charge current is given by

Jn = iQ(qDZ(P)auq)q(p> - (I)q(p)auq);(/)))- (4.4.1)

Using the result (4.3.6) for the expectation value of the number operator, one finds that

the time component of the current, the charge density, is non-zero and equal to®

(Q21jr(p) Q) = T (p) = T-(p) (14.2)
with
- qg/ gﬂddkiz f|K(Zue2;l:jpj| 1) (4.4.3)

the positive and negative charge contributions, respectively. Given the thermal nature of
the state |(2), the physical origin of this charge density is clear: the presence of the electric
field reduces the potential energy of one of the two charge sectors, thereby reducing its
Boltzmann suppression, relative to the oppositely charged.

To obtain a rough estimate for the behavior of J(p), it is useful to divide the frequency
sum into three regions: i) w comparable to the potential energy (3.1.15), ii) w much larger,
or iii) w much smaller. By comparing the respective suppression factors, we find that the
leading semi-classical contribution comes from regime i); this is also reasonable from a

physical perspective, since these are the particles that spend most time near p. Regime

3Instead of the expectation value (4.4.2), one could also consider the mixed in-out expectation value
(0|77 (p)|2), which is related to the derivative of the in-out matrix element (0|Q2) with respect to E. This

relation was in fact used by Schwinger in his original derivation of the pair creation rate [46].
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ii) is strongly Boltzmann suppressed and clearly negligible compared to contribution i),
while regime iii) is suppressed because the corresponding mode functions K (w, up) are
exponentially small at the location p, via (3.2.11). The leading contribution of region i)

is of order e=2TwW(p.a:ki)

W(p).
Since the mode functions K(w, up) are real (they are the sum of an incoming and

, in accordance with the result (4.2.11) for the pair creation rate

reflected wave), the current in the p direction appears to vanish. The result (4.4.3) for
the charge density indeed looks static. This static answer, however, can not describe the
time-dependent pair creation process. Recalling our discussion above, however, we can
recover this time-dependence by restricting the sum over only those frequencies necessary
to cover the finite time interval 0 <7 <7T'. This is a T dependent subset, thus leading to a T’
dependent (initially linearly growing) charge density. However, when 1/7" becomes much
smaller than the step-size in the allowed frequency spectrum, the steady state sets in and

the charge density indeed becomes a static thermal distribution given by (4.4.2)—(4.4.3).
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Chapter 5
Discussion

In this Part we have tried to make a systematic study of the Schwinger pair production of
charged Kaluza-Klein particles. Due to their characteristic property that their mass is of
the same order as their charge ¢, the pair creation requires such strong KK electric fields
that gravitational backreaction can not be ignored. We have included this backreaction
by means of the electric KK Melvin solution, and shown that, in spite of the fact that the
electro-static potential can not be made to exceed the rest-mass of the KK particles, pair
production takes place at a rate given by (1.0.2).

What is the physical mechanism that is responsible for the pair creation? Our final
answer (1.0.2) includes both the KK electric field and a gravitational acceleration a. It is
instructive to compare this result with the known rate [120] for Schwinger pair production
in an accelerated frame, as quoted in equation (B.4) in the Appendix. Since in our case
a is bounded below by E/2, we can only directly compare the two answers in the limit
of small electric field. In that limit, if we expand the log in equation (B.4) and take the

dominant n = 1 term there, both answers become

~ Y /Hd’f (~en(Cye R - 10), (5.0)

q==]q|

In this regime, however, one can not honestly separate the Schwinger pair creation effect
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from the pair creation effect due to the acceleration. Electric charge is being produced,
but it is just a simple consequence of the fact that the electrostatic potential reduces the
Boltzmann factor for one type of charge, while increasing it for the other. Rather than
producing the charge “on its own,” the electric field just polarizes the thermal atmosphere
produced by the Unruh effect.

In fact, if we write the potential W(p, ¢, k;) as in (3.1.15) instead of (3.1.16), our final
answer (1.0.2) appears to be just a small modification of (5.0.1) and the physics that leads
to it indeed seems quite identical. So depending on taste, one can either interpret our
result (1.0.2) as pair creation due to a combination of the Schwinger and Unruh effect, or
as the result of the Unruh effect only. There is no definite way to decide between the two,
since the gravitational acceleration can not be turned off independently. Either way, what

is clear is that the mechanism for pair creation cannot be given a tunneling interpretation.
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Appendix

A Gedanken Apparatus

For a good understanding of the situation we wish to study, it will be useful to investigate
how, via a concrete Gedanken experiment, one may in fact attempt to create a large static
Kaluza-Klein electric field. Without taking into account gravitational backreaction, we
imagine taking two parallel plates with opposite KK charge density per unit area o and
perpendicular distance d, thus creating an electric field £ = 470 in the region between
the plates. It turns out however, that when we include the gravitational backreaction of
both the plates and the electric field, there are some restrictions on how symmetric, or
static, we can choose our experimental set-up.

Consider two charged, infinitesimally thin, parallel plates at positions p; and ps, sep-

arated by a distance

The two plates divide space into three regions: Region A left of the first plate, given by
p < p1, region B in between the two plates, p; < p < p2, and region C right of the second
plate p > po.

Let the mass densities of the plates be given by u; and ps, so that

T0 = md(p—p1) + p26(p—p2) - (A.2)

In addition, the two plates have charge densities o, and o5

V0o Ty = 018(p—p1) + 028(p—ps) - (A.3)
We will assume that the charge densities are opposite, 01 = —o9, and tuned so that there

is a Kaluza-Klein electric field in region B between the plates, but none in regions A or C

outside the plates. The region between the plates therefore takes the form of a static slice
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p1 < p < po of the electric KK Melvin space-time. The two regions outside the plates,
on the other hand, are just flat. More precisely, since the parallel plates in effect produce
an attractive gravitational force on freely falling particles in the two outside regions, the
regions A and C should correspond to static sub-regions in Rindler space.

Both Rindler space and the electric KK Melvin solution differ from Minkowski space
only via the gop component. Imposing continuity at p = p;, this leads us to the following

Ansatz for the ggg component of the metric in the three regions

g p) = (1—arlp—p1))* gel p1) .

2

B _ 14
Jool p) = TW )
g5l p) = (L+az(p—p2))* goil p2)- (A4)

Here a; and a, are both positive, and represent the respective free fall accelerations of
freely moving particles just outside of the two plates. In other words, via the equivalence
principle, a; and as are the accelerations (to the left and right, respectively) of the two
plates as viewed from the outside Minkowski observers. The quantities p; and ps play a
similar role, and can be both positive and negative. A physical restriction, however, is
that the denominator in the expression (A.4) for g% remains positive.

In addition there is a non-trivial electric potential ggfd 41 in the region between the

plates, while gé ;Ei—l are constants determined by continuity:

géd-ﬁ-l( p) = gég,d-i-l( p1)

2
p°E /2
g£d+l( p) = 1_ E2p2/4 ) (A5)

Joari(P) = Goanl p2)-
The d+1-dimensional Einstein equations of motion result in the following jump conditions
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for the normal variations of goy and go 441 at the location of the plates!
drp; = 900(8p+900 - 3p,900) ‘p=pi7 (A-6>
1
dro; = (900)2(8p+90,d+1 - ap,go,d+1) |p:pi . (A-7)

The first of these equations is known as the Israel equation, while the second is equivalent

to Gauss’ law in electro-magnetism. Inserting our Ansatz, the Israel jump conditions

become
1
P11 1o
) N=1— 3 Ep;, (A.8)
2 = —
while Gauss’ law takes to the form
Aroy = E/AY? droy = —E/AY?. (A.9)

Equation (A.8) relates the mass density of the two plates to the jump in the surface
acceleration when moving from one to the other side, while (A.9) relates the charge
density to the jump in the KK electric field.

Let us briefly check these formulae by considering some special cases. If £ = 0, then
we can choose the symmetric situation p1 =9 and a3 = ay. Via (A.8) this implies that we
should take the limit p; — oo keeping the distance (A.1) fixed. The intermediate region B
then simply reduces to flat Minkowski space. This is as expected, since the two plates lead
to an equal and opposite gravitational force, which exactly cancels in the intermediate
region. For non-zero F, yet small electro-static potential V5 = Ed between the plates,
we can choose parameters such that Fp; << 1 and p; >> d. Equation (A.9) then reduces
to the standard Gauss law of Maxwell theory.

!Note that while the expressions gg 411 are not gauge invariant, the Gauss equation is, as long as A

in A,dz* — A,dx* + dX is smooth across p; and pa, ie. (9, — 0p_)A |p=p, =0 .
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Plate 1

Plate 2

Fig. 5: Situation I describes the static situation with two charged plates at p = p1 and
p=p2, with 0 < p1 < ps < 2/E. The region of interest, in between the two plates, is a static

slice of region I of the electric KK Melvin solution.

Let’s now consider the general case. There are four equations, and (for given inter-
plate distance d, and densities p; and o; ) four unknowns: a;, as, p; and E. The second
equation in (A.9), however, is not really independent from the first, since we should rather
read it as a fine-tuning condition on o9 (relative to 0;) ensuring that the E-field vanishes
outside the two plates. Discarding this equation, we are thus left with one overall freedom,

namely, the overall acceleration of the center of mass of our apparatus.

For practical purposes, we would have preferred to restrict ourselves to the simplest
and most symmetric case in which the two plates have equal mass density p; = ps and
equal surface acceleration a; = as. This would in particular ensure that our apparatus
is at rest. As seen from equation (A.8), this symmetric situation could be reached if we
could take the limit p; — co. However, for non-zero £, this limit is forbidden via the

restriction 1— iEsz > (. Thus we are basically forced to consider the general situation
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Plate 1 Plate 2

Fig. 6: Situation II describes the time-dependent situation with two accelerating charged
plates at p=p1 < 0 and p=py > 0. The region of interest, in between the two plates, includes
the time-dependent regions III and IV of the electric KK Melvin solution.

with p; and a; arbitrary, and p; both positive. We call this:
Situation I : 0<p <p2<2/E, p; arbitrary. (A.10)

In this case, the region of interest, region B, represents a static slice in the right wedge
of the electric KK Melvin solution. This Situation I is the natural generalization of a
constant, static electric field, and is our starting point for studying the possible Schwinger
pair creation of charged KK particles.

There is, however, another situation we could consider, which does allow for a sym-

metric solution. Namely we can choose:
Situation II : 1 = g, ay = aog, p1 = —pa. (A.11)

In this case the region B includes the special position p = 0 at which gop = 0, the location
of the event horizon of the electric KK Melvin geometry.
To better understand the experimental conditions leading to Situation II, consider the

special case p; =y =0, and 01 =09 =0. This describes two plates with zero mass and
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charge, accelerating away from each other with equal but opposite acceleration a; = 1/p;.
It is now easy to imagine that one can gradually add mass and charge to the plates, and
reach the general Situation II. It must be noted that this experimental set-up does not
lead to a static background, since the geometry now includes the time-dependent regions
IIT and IV enclosed by the Rindler horizon (see figure 1). This set-up is therefore not
a direct analog of the static electric field considered by Schwinger. For a discussion of

Situation II see [115, 116]; our main focus is Situation I.

B Schwinger meets Rindler

In this Appendix we summarize the known result for the Schwinger pair creation rate in
an accelerating frame [120] of charged particles with mass ¢ and mass m with m << q.
In this regime, pair creation starts to occur while the gravitational backreaction of the
electric field is still negligible.

The closest analog of a constant, uniform gravitation field is Rindler space
ds* = —p*d7® + dp* + dy;. (B.1)

Particles, or detectors, located at a given p undergo a uniform acceleration a = 1/p.
Consider a charged field propagating in this space in the presence of a uniform electric
field, described by

A = %Ep? (B.2)

The resulting scalar wave equation reads
1 1 7 2
_ — —(0; —aF 2 2 _ 2 d=0. B.
(20000 - Lo+ Ja)' + o —wt) 0 =0 B3

The above three equations are connected to the ones in Section 3.2.1 by setting A =1
(which indeed amounts to turning off the backreaction) and by setting m =g above.
Equation (B.3) has known mode solutions with given Rindler frequency, in terms of

Whittaker functions [120, 122]. These functions have a relatively intricate, but known
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(equation 9.233 in [122]), branch-cut structure at p = 0, from which one can straight-
forwardly extract the linear combination of (left and right wedge) Rindler creation and
annihilation modes that annihilate the Minkowski vacuum [§2). One obtains the following

result for the total pair creation rate per unit time and (transverse) volume [120]

fan (om0
T1 dk; 1—e2™W) (1 —e  laEl
W=y /dw/ 2n) log T . (B.4)
g==lq] | — 2w

As explained in Section 4.3, we can extract from this result the pair creation rate at
a given radial location p, or equivalently, given acceleration a = 1/p, by equating the

frequency w with the classical potential energy at this location
1 2
wig ki) =~ @+ ki = . (B.5)

As discussed in section 5, in the limit where the electric field is small, the expression (B.4)

reduces to out result.
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