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ABSTRACT

Reinforcement learning (RL) using conventional neural net-
works (NN) has significantly progressed in various appli-
cations. However, conventional RL needs help training in
environments with large-scale action dimensions, such as co-
ordinated mobility/satellite systems. Quantum reinforcement
learning (QRL) with quantum NN (QNN) can address this
problem through superposition and entanglement, one of the
great features of quantum mechanics. Based on its ‘i) fast
convergence’ and ‘ii) high scalability’, unique advantages
of QRL that distinguish it from conventional RL, this paper
highlights the potential for QRL utilization in coordinated
mobility and satellite systems.

Index Terms— Quantum Reinforcement Learning (QRL),
Quantum Neural Network (QNN), Mobility/Satellite Systems

1. INTRODUCTION

Reinforcement learning (RL) utilizing conventional neu-
ral networks (NN) has progressed significantly across var-
ious application domains. However, it faces several in-
herent structural limitations, particularly in handling high-
dimensional data and complex decision-making tasks. In
high-dimensional environments such as coordinated mobil-
ity/satellite systems,, higher-dimensional state spaces (inputs
of NN) and action spaces (outputs of NN) pose significant
challenges to the training performance of conventional RL.
In conventional RL, as the dimensions of the state and action
spaces increase, the number of parameters that the model
needs to train grows exponentially. This, in turn, leads to
a substantial rise in computational costs. Furthermore, data
sparsity in high-dimensional spaces necessitates more train-
ing samples to develop optimal policies effectively. Con-
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sequently, as the action dimension of the agent increases,
RL based on conventional artificial NNs suffers from the so-
called curse of dimensionality, which hampers both training
convergence and scalability [1, 2].

Quantum reinforcement learning (QRL) [3] and quan-
tum multi-agent reinforcement learning (QMARL) [4] are
emerging as promising approaches to addressing the chal-
lenges associated with conventional RL. Developments in
quantum computing are opening up innovative possibilities
in artificial intelligence (Al), particularly in RL [5, 6]. Quan-
tum Al using quantum neural networks (QNN) leverages
fundamental principles of quantum mechanics [7, 8]—such
as superposition and entanglement to overcome the inher-
ent structural limitations of conventional NN [9, 10, 11].
Quantum AI can effectively tackle the challenges mentioned
above by utilizing these quantum characteristics. QNN can
exploit the superposition of quantum bits (qubits) to repre-
sent multiple possible states at once. This capability allows
a single qubit to simultaneously encode multiple states, en-
abling the efficient representation of high-dimensional data
using fewer qubits. Consequently, the resources required to
solve high-dimensional problems are greatly minimized, re-
sulting in faster and more efficient training processes. These
QNNs have the advantage of allowing QRL and QMARL
to be utilized for coordinated mobility/satellite systems. As
the number of agents and coordinated mobilities/satellites
increases, the agents’ action dimensions increase, making it
difficult for them to train. However, QRL and QMARL can
take advantage of superposition and entanglement phenom-
ena to address this problem through the advantages of i) fast
convergence and ii) high scalability. In particular, the agent’s
output dimension is extended with only a few qubits by utiliz-
ing basis measurement during the measurement phase. This
paper introduces the basic concept and structure of QNN and
how it can be applied to coordinated mobility/satellite sys-
tems in terms of QRL and QMARL. In addition, this paper
discusses the areas where QRL and QMARL can be applied.

The main contributions of the proposed QRL framework
in this article are as follows. Firstly, this paper utilizes basis
measurements to free agents from the curse of dimensionality
in high-dimensional environments such as coordinated mo-
bility/satellite systems. It boasts high scalability in response
to the agent’s high action dimensions with only a few qubits.
Secondly, this paper describes the advantages of QRL using



QNN with superposition and entanglement, as well as the fun-
damentals and structures of QNN.

2. RELATED WORK

A study on the design of global mobile access in space-air-
ground integrated network (SAGIN) systems using QMARL
is conducted while achieving high scalability by reducing the
action dimension of the agent [12]. Typically, in conven-
tional RL, the more agents in a multi-agent reinforcement
learning (MARL) and the higher the action dimension of the
agent, the more the agent suffers from a curse of dimension-
ality, making training convergence difficult [13, 14]. On the
other hand, the QMARL algorithm using QNN reduces the
agent’s action dimension, freeing the agent from the curse of
dimensionality [15, 16]. QMARL algorithms have been uti-
lized in these satellite communication systems and metaverse
environments [17]. In addition, QMARL is utilized for ef-
ficient coordination between agents in autonomous mobility
systems [18]. QMARL is suitable for mobility systems as it
requires fast convergence, high scalability, and fewer train-
ing parameters than conventional RL [4, 19]. Fewer train-
ing parameters can exert great power on reusable space rock-
ets, where lightweight and computational simplification are
essential, such as Falcon 9 on Space X [20]. QMARL can
be leveraged in rockets and aerial mobility systems such as
UAVs, improving training speed and wireless service qual-
ity [21, 22]. In smart factory management, QMARL is also
used to coordinate Internet-connected multi-robot [23].

3. ADVANTAGES OF
QUANTUM REINFORCEMENT LEARNING

Fast Convergence. QRL, using QNN, employs the parame-
ter shift rule (PSR) for training. QRL using PSR-based QNN
have better generalization capabilities [24]. Consequently,
QRL training can be executed much more rapidly than con-
ventional RL training [25]. This acceleration is particularly
advantageous for real-time scheduling/training within net-
work services and coordinated mobility/satellite systems,
where timely updates are critical. Thus, the ability to train
each QNN quickly is not just beneficial but essential for
effective real-time operations.

High Scalability. QNN can significantly enhance their out-
put dimension, i.e., action dimension of the agent, by in-
corporating basis measurements, thereby overcoming the
qubit limitations typical of the noisy intermediate-scale quan-
tum (NISQ) era [26]. In multi-agent reinforcement learning
(MARL), the potential number of actions of the agent can
significantly increase, necessitating a corresponding rise in
the number of qubits required. This increase in action dimen-
sion degrades the efficiency of MARL training methods in a
finite qubit number environment in the NISQ era. To tackle
this challenge, a novel QMARL-based scheduler has been
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(a) |0) basis in Bloch sphere.  (b) |1) basis in Bloch sphere.

Fig. 1: Quantum states in Bloch sphere.

designed using basis measurements to achieve a logarithmic
reduction in qubit requirements relative to the number of pos-
sible actions [17]. This design is crucial for efficiently man-
aging large-scale systems with extensive mobility/satellite
bases, minimizing qubit use while maintaining high scalabil-
ity. Such an approach is particularly beneficial in expansive
multi-agent environments with large-scale action dimensions
like those involving mobility/satellite, where managing large
numbers of agents and action dimensions is critical [12].

4. QUANTUM NEURAL NETWORKS

Basic Description of Quantum Computing. In QNN, un-
like conventional NN, training utilizes units known as qubits
instead of bits. Qubits, the fundamental units of information
in quantum computing, differ from classical bits in that a reg-
ister of C classical bits can represent any one of 2¢ possi-
ble states at a time, with each state represented as a vector
where only one element is ‘1’ and all others are ‘0’. Con-
versely, in quantum mechanics, a quantum state comprising
P qubits is depicted as a complex vector of 27 dimensions.
This allows for a quantum state as a superposition of mul-
tiple states simultaneously, a phenomenon known as quan-
tum superposition. In this paper, qubits are conventionally
represented in two fundamental states using the bra-ket nota-

tion: |0) := [(ﬂ 1) = {(1)] , Moreover, a single qubit state
can be expressed as a normalized two-dimensional complex

vector: |[¢p) = €0) + R|1) = [g} , where & and R are

complex probability amplitudes corresponding to the states
|0) and |1), respectively, and must satisfy the normalization
condition |2|* + |€> = 1. Quantum states are graphically
represented within the Bloch sphere in the 3D quantum state
space, or Hilbert space, as: [¢)) = cos §|0) + e sin & (1),
where ¢ and 6 are parameters that define the probabilities
of measuring states |0) and |1), constrained by 0 < 6 < 7
and 0 < ¢ < 27. Here, the basis of the quantum state, |0)
and |1), are geometrically represented in the Bloch sphere by
Fig. 1(a) and Fig. 1(b), respectively. For a system with P
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Fig. 2: The structure of QNN

qubits, quantum states in the Hilbert space are denoted as,

|9y = E?igl ve |C) , where v denotes the probability am-

plitude for each (-th basis state, satisfying 212;’0_ ! lve|? = 1.
Structure of Quantum Neural Networks. As illustrated in
Fig. 2, QNN is structured into three distinct phases, i.e., i)
state encoding, ii) parametric quantum circuit (PQC), and iii)
measurement [27].

State Encoding. In QRL, the process known as state encod-
ing involves translating the states of the environment, typi-
cally represented as vectors in conventional RL, into quan-
tum states suitable for quantum computation. In other words,
it means encoding existing classical state information into a
quantum state. This initial step is crucial for leveraging the
potential quantum advantage, as it significantly influences the
quantum system’s capacity to depict and manipulate complex
environments. Effective state encoding allows quantum com-
puters to process environmental states more quickly and ac-
curately. Additionally, it leverages quantum mechanical ad-
vantages like entanglement and superposition to address more
complex problems than conventional RL algorithms can man-
age. In angle encoding, data is encoded into the angles used in
quantum gate rotations [28]. This method adjusts the quan-
tum states of qubits using unitary and rotational gates, e.g.,
Rx, Ry, Rz, and is suitable for continuous values, offering
a way to represent complex patterns or continuous spaces.
Parameterized Quantum Circuits. PQC forms the core
structure of QNN in QRL, similar to how neurons and
synapses function in conventional NN [7, 29]. PQC com-
prises quantum gates with adjustable parameters that are
fine-tuned during training. In QRL, these circuits transform
an encoded quantum state into a new state that represents the
policy or value functions relevant to RL tasks [30, 31, 32].
The parameters within PQC are analogous to conventional
NN weights and optimized using environmental feedback to
enhance policy decision-making. PQC incorporates both ro-
tation gates, e.g., Rx, Ry, Rz, and entanglement gates, e.g.,
controlled-X (CNOT gate), which manipulate the quantum
state. The selection and configuration of gates play a crucial
role in determining the QRL’s training effectiveness [24].
Measurement. In QRL, measurement is the process that con-
verts the quantum states manipulated and evolved by PQC
back into classical information. In other words, it means de-
coding an existing quantum state into classical action distri-
bution. This information is then used to determine the actions

to be executed in the environment. Measurement is essential
for translating the outcomes of quantum computations into
a form that can be practically utilized for decision-making.
When measurement occurs, the quantum state collapses into
one of the possible basis states, with the specific outcome de-
termined by the probabilities defined by the preceding quan-
tum computations. The result of this measurement is inter-
preted as an action or a set of actions within the RL.

5. QUANTUM REINFORCEMENT LEARNING FOR
COORDINATED MOBILITY/SATELLITE SYSTEMS

Parameter Shift Rule for Fast Convergence. The networks
considered in coordinated mobility/satellite systems are for-
mulated as multi-agent systems primarily due to their real-
ity. The control tower, e.g., ground station (GS), base station
(BS), and leader mobility, corresponds to the i-th agent with
its own QNN-based RL policy, i.e., m(A(t)|S;(t); 8;), where
0, denote the parameter of NN. During training, a single cen-
tralized critic, with parameters denoted as ¢, assesses the
value of the policies of multiple actors by approximating the
state-value function, i.e., V4(S(t)). Here, S(¢) refers to the
ground truth state, encompassing all available environmen-
tal information [33]. In contrast, each actor independently
makes decisions based on its own partial observation of the
state, indicated as S;(¢). This training process enables all ac-
tors to develop policies for cooperative decision-making, even
when each actor can only access partial information from the
environment. Additionally, during the inference phase, this
cooperative approach’s distributed nature facilitates effective
scalability and efficient use of computing resources. Using
the temporal difference (TD) error, multi-agent policy gradi-
ent methods are applied to train the quantum multiple-actor
centralized-critic networks. The objective function for the -
th actor, denoted as 7 (0;), can be as,

T N
Vo,7(0:)=Es [ 3 dg(t) - Vo,logm(AWDISi(1): 6:)]

t=1 i=1

D
where ¢4 (t) denotes the TD error. This approach ensures
that each actor’s policy is optimized based on the observed
TD error, thereby enhancing the cooperative multi-agent
system’s overall performance. The loss function for the
critic, denoted as L£(¢), can be expressed as, V4L(¢) =
Zthl Vi ll6s(t) 1?, where 0 (t) can be expressed as, 6 (t) =
Vs(S(t)) =V (t), where V,(S(t)) is the estimated state-value
function by the critic with parameter ¢, and V(t) is the tar-
get value, typically computed using the TD target. This loss
function aims to minimize the difference between the esti-
mated and actual values, thereby refining the critic’s ability
to evaluate the state accurately. To maximize the objective
function for multiple actors and minimize the loss function
for the centralized critic, the derivatives concerning the k-th



parameters of the actors and critic are expressed as,
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In this context, the first and second derivatives on the right-
hand side of (2) and (3) can be computed using classical
partial derivatives. However, the third derivative cannot be
calculated using classical methods because the quantum state
remains unknown until it collapses through measurement,
which is the last stage of the QNN. To address this, the PSR is
employed for parameter optimization during training [7, 34].
The PSR, when applied to the derivative of the -th actor’s
k-th parameter with respect to the 0-th derivative, is given by,

3(?7;;91) = (Ok,0:+2e,) — (Ok0,— e ) )]
where ey, represents the k-th basis vector. PSR allows the
QNN to be operated under the umbrella of backpropagation or
differentiable programming. As a result, this approach allows
for faster training in QNN, as described in Sec. 3.

High Scalability for Large-Scale Coordinated Mobil-
ity/Satellite Systems. In general, the Pauli-Z measurement
is used in the measurement phase. The Pauli-Z measurement
involves projecting the final quantum state onto the z-axis of
the Bloch sphere. Following this projection, the qubit state
collapses to one of the two basis states, |0) or |1), which cor-
respond to the z-axis states. The Pauli-Z measurement eval-
uates individual qubits in quantum states using the Pauli-Z

.. 1
matrix, i.e., [O 01] , where each column corresponds to the

computational basis states, specifically |0) and |1). However,
in an environment with P coordinated mobilities/satellites,
27 qubits are still necessary to match the 27 action dimen-
sions required for making combinatorial scheduling decisions
for P coordinated mobilities/satellites. Consequently, the is-
sue known as the ‘curse of dimensionality’ remains, as this
measurement approach does not mitigate the exponential in-
crease in complexity associated with a growing number of
coordinated mobilities/satellites [35]. However, with basis
measurement, it is possible to compute the probabilities for
all 27 combinations using only P qubits. This is accom-
plished by measuring the quantum state across all 27 basis,
which is expressed as,

{Prs(A}, 2 {@r_, [0} )

where U; represents the selection vector of ¢-th control tower
for j-th mobility/satellite, with V% € {0,1} and Vj € [1, P].
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Fig. 3: Normalized reward performance in a coordinated mo-
bility satellite system with large action dimensions.

To summarize, the probability of the i-th control tower se-
lecting the k-th action based on its policy among 2% possible
combinations at time ¢ can be calculated as,

m(AR(8)ISi(1); 0:) = (Ylex) (er|v) = [(¢ler)|* =|ax]?, (6)

where |eg)(ex| is the projector corresponding to the k-th
basis, and the set of projectors for all bases is given by
{lex){ex| }iil Because the probabilities for each action cor-
respond to individual outputs, and the sum of the probabilities

of all actions is 1, i.e., Zi; (A (t)|S:i(t); 0;) = 1.

6. PERFORMANCE EVALUATION

The experimental environment has a vast 2'6 action dimen-
sion of agents, with 16 mobilities/satellites that agents must
coordinate and 4 control towers. In addition, the following
hyper-parameters are used in the experiment, i.e., number of
qubits (16), training epochs (10k), actor and critic’s learning
rate (5x 1073, 2.5 x 10™%), initial/minimum/decay rate of ex-
ploration (0.4, 1072, 5 x 10~?), batch size (32), discount fac-
tor (0.98), activation function (ReLU), and optimizer (Adam).
Agents’ actions are to choose which mobility/satellites to re-
ceive communication services, and the reward function is
designed to maximize the QoS, capacity, and remaining en-
ergy of mobilities/satellites. The considered benchmarks are,
i) MARL (conventional MARL), ii) Independent Q-Learning
(IQL), iii) Deep Q-Learning (DQN), and iv) Monte Carlo
(MC). Fig. 3 shows the normalized reward for each algo-
rithm. Even in environments with vast action dimensions,
such as 216, only the QMARL-based scheduler is free from
the curse of dimensionality with the highest reward.

7. CONCLUDING REMARKS

This paper demonstrates that QRL addresses the challenges
of conventional RL in environments with large action dimen-
sions, such as coordinated satellite systems. QRL’s unique
advantages, including fast convergence and high scalabil-
ity, highlight its potential for effective deployment in com-
plex system operations. In future work, the applications of
QMARL for various mobility systems can be considerable.



(1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

8. REFERENCES

Wei Du and Shifei Ding, “A survey on multi-agent deep reinforcement
learning: From the perspective of challenges and applications,” Ar-
tificial Intelligence Review, vol. 54, no. 5, pp. 3215-3238, November
2020.

Lingwei Zhu, Yunduan Cui, Go Takami, Hiroaki Kanokogi, and
Takamitsu Matsubara, “Scalable reinforcement learning for plant-wide
control of vinyl acetate monomer process,” Control Engineering Prac-
tice, vol. 97, pp. 104331-104340, April 2020.

Nico Meyer, Christian Ufrecht, Maniraman Periyasamy, Daniel D
Scherer, Axel Plinge, and Christopher Mutschler, “A survey on quan-
tum reinforcement learning,” arXiv preprint arXiv:2211.03464, 2022.

Won Joon Yun, Yunseok Kwak, Jae Pyoung Kim, Hyunhee Cho,
Soyi Jung, Jihong Park, and Joongheon Kim, “Quantum multi-agent
reinforcement learning via variational quantum circuit design,” in
Proc. IEEE International Conference on Distributed Computing Sys-
tems (ICDCS), Bologna, Italy, July 2022, pp. 1332-1335.

Haixu Yu and Xudong Zhao, “Deep reinforcement learning with re-
ward design for quantum control,” IEEE Transactions on Artificial In-
telligence, vol. 5, no. 3, pp. 10871101, March 2024.

Hailan Ma, Daoyi Dong, Steven X. Ding, and Chunlin Chen,
“Curriculum-based deep reinforcement learning for quantum control,”
IEEE Transactions on Neural Networks and Learning Systems, vol. 34,
no. 11, pp. 8852-8865, November 2023.

Kosuke Mitarai, Makoto Negoro, Masahiro Kitagawa, and Keisuke Fu-
jii, “Quantum circuit learning,” Physical Review A, vol. 98, no. 3, pp.
32309-32314, September 2018.

Tyler Wang, Huan-Hsin Tseng, and Shinjae Yoo, “Quantum federated
learning with quantum networks,” in Proc. IEEE International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP), Seoul,
Republic of Korea, April 2024, pp. 13401-13405.

Ruoyu Wang, Jun Du, and Tian Gao, “Quantum transfer learning
using the large-scale unsupervised pre-trained model wavlm-large for
synthetic speech detection,” in Proc. IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), Rhodes Island,
Greece, June 2023, pp. 1-5.

Hari Hara Suthan Chittoor and Osvaldo Simeone, “Learning quan-
tum entanglement distillation with noisy classical communications,” in
Proc. IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), Rhodes Island, Greece, June 2023, pp. 1-5.

Jun Qi and Javier Tejedor, “Classical-to-quantum transfer learning for
spoken command recognition based on quantum neural networks,” in
Proc. IEEE International Conference on Acoustics, Speech and Sig-
nal Processing (ICASSP), Singapore, Singapore, May 2022, pp. 8627—
8631.

Gyu Seon Kim, Yeryeong Cho, Jachyun Chung, Soohyun Park, Soyi
Jung, Zhu Han, and Joongheon Kim, “Quantum multi-agent reinforce-
ment learning for cooperative mobile access in space-air-ground inte-
grated networks,” arXiv preprint arXiv:2406.16994, 2024.

Luiza Caetano Garaffa, Maik Basso, Andréa Aparecida Konzen, and
Edison Pignaton de Freitas, “Reinforcement learning for mobile
robotics exploration: A survey,” IEEE Transactions on Neural Net-
works and Learning Systems, vol. 34, no. 8, pp. 3796-3810, November
2023.

Justin A. Boyan and Andrew W. Moore, “Generalization in reinforce-
ment learning: Safely approximating the value function,” in Proc. Ad-
vances in Neural Information Processing Systems (NIPS), Denver, Col-
orado, USA, December 1994, pp. 369-376.

Soohyun Park, Gyu Seon Kim, Zhu Han, and Joongheon Kim, “Quan-
tum multi-agent reinforcement learning is all you need: Coordinated
global access in integrated TN/NTN cube-satellite networks,” [EEE
Communications Magazine, vol. 62, no. 10, pp. 86-92, October 2024.

Eva Andrés, M. P. Cuéllar, and G. Navarro, “Efficient dimensionality
reduction strategies for quantum reinforcement learning,” IEEE Access,
vol. 11, pp. 104534-104553, September 2023.

Soohyun Park, Jaehyun Chung, Chanyoung Park, Soyi Jung, Minseok
Choi, Sungrae Cho, and Joongheon Kim, “Joint quantum reinforce-
ment learning and stabilized control for spatio-temporal coordination
in metaverse,” IEEE Transactions on Mobile Computing, vol. 23, no.
12, pp. 12410-12427, December 2024.

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

Soohyun Park, Jae Pyoung Kim, Chanyoung Park, Soyi Jung, and
Joongheon Kim, “Quantum multi-agent reinforcement learning for
autonomous mobility cooperation,” IEEE Communications Magazine,
vol. 62, no. 6, pp. 106-112, June 2024.

Samuel Yen-Chi Chen, Chao-Han Huck Yang, Jun Qi, Pin-Yu Chen,
Xiaoli Ma, and Hsi-Sheng Goan, “Variational quantum circuits for deep
reinforcement learning,” IEEE Access, vol. 8, pp. 141007-141024, July
2020.

Gyu Seon Kim, Jaechyun Chung, and Soohyun Park, “Realizing sta-
bilized landing for computation-limited reusable rockets: A quantum
reinforcement learning approach,” IEEE Transactions on Vehicular
Technology, vol. 73, no. 8, pp. 12252-12257, August 2024.

Chanyoung Park, Won Joon Yun, Jae Pyoung Kim, Tiago Koketsu
Rodrigues, Soohyun Park, Soyi Jung, and Joongheon Kim, “Quan-
tum multiagent actor—critic networks for cooperative mobile access in
multi-UAV systems,” IEEE Internet of Things Journal, vol. 10, no. 22,
pp. 20033-20048, November 2023.

Yuanjian Li, A. Hamid Aghvami, and Daoyi Dong, “Intelligent trajec-
tory planning in UAV-mounted wireless networks: A quantum-inspired
reinforcement learning perspective,” IEEE Wireless Communications
Letters, vol. 10, no. 9, pp. 1994-1998, September 2021.

Won Joon Yun, Jae Pyoung Kim, Soyi Jung, Jae-Hyun Kim, and
Joongheon Kim, “Quantum multiagent actor—critic neural networks
for Internet-connected multirobot coordination in smart factory man-
agement,” IEEE Internet of Things Journal, vol. 10, no. 11, pp. 9942—
9952, June 2023.

Amira Abbas, David Sutter, Christa Zoufal, Aurélien Lucchi, Alessio
Figalli, and Stefan Woerner, “The power of quantum neural networks,”
Nature Computational Science, vol. 1, no. 6, pp. 403—-409, June 2021.

Won Joon Yun, Jihong Park, and Joongheon Kim, “Quantum multi-
agent meta reinforcement learning,” in Proc. AAAI Conference on Arti-
ficial Intelligence, Washingthon, DC, USA, February 2023, pp. 11087-
11095.

Hankyul Baek, Soohyun Park, and Joongheon Kim, “Logarithmic di-
mension reduction for quantum neural networks,” in Proc. ACM In-
ternational Conference on Information and Knowledge Management
(CIKM), Birmingham, UK, October 2023, pp. 3738-3742.

Cheng Chu, Lei Jiang, Martin Swany, and Fan Chen, “Qtrojan: A
circuit backdoor against quantum neural networks,” in Proc. IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), Rhodes Island, Greece, June 2023, pp. 1-5.

Omar Shindi, Qi Yu, Parth Girdhar, and Daoyi Dong, “Model-free
quantum gate design and calibration using deep reinforcement learn-
ing,” IEEE Transactions on Artificial Intelligence, vol. 5, no. 1, pp.
346-357, January 2024.

Nathan Killoran, Thomas R Bromley, Juan Miguel Arrazola, Maria
Schuld, Nicolas Quesada, and Seth Lloyd, “Continuous-variable quan-
tum neural networks,” Physical Review Research, vol. 1, no. 3, pp.
33063-33084, October 2019.

Owen Lockwood and Mei Si, “Reinforcement learning with quantum
variational circuit,” in Proc. AAAI Conference on Artificial Intelligence
and interactive digital entertainment, Virtual, October 2020, pp. 245—
251.

Andrea Skolik, Sofiene Jerbi, and Vedran Dunjko, “Quantum agents in
the gym: a variational quantum algorithm for deep Q-learning,” Quan-
tum, vol. 6, pp. 720-745, May 2022.

Sofiene Jerbi, Casper Gyurik, Simon C. Marshall, Hans J. Briegel, and
Vedran Dunjko, “Parametrized quantum policies for reinforcement
learning,” in Proc. Advances in Neural Information Processing Sys-
tems (NeurIPS), Virtual, December 2021, pp. 28362-28375.

Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, Pieter Abbeel, and Igor
Mordatch, “Multi-agent actor-critic for mixed cooperative-competitive
environments,” in Proc. Advances in Neural Information Processing
Systems (NeurIPS), Long Beach, CA, USA, December 2017, pp. 6379—
6390.

David Wierichs, Josh Izaac, Cody Wang, and Cedric Yen-Yu Lin,
“General parameter-shift rules for quantum gradients,” Quantum, vol.
6, pp. 677-702, March 2022.

Cihan Tugrul Cicek, “A reinforcement learning algorithm for data col-
lection in UAV-aided IoT networks with uncertain time windows,” in
Proc. IEEE International Conference on Communications Workshops
(ICC Workshops), Montreal, QC, Canada, June 2021, pp. 1-6.



