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ABSTRACT: Within the framework of hybrid metric-Palatini gravity, we incorporate non-
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assess the stability conditions to ensure the absence of ghost instabilities. Focusing on a
special class of well-defined hybrid actions — where local and non-local contributions are
carried by distinct types of curvature — we investigate the feasibility of inflation within
the resulting Einstein-frame multi-field scenario. We examine how the non-minimal kinetic
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our results, we draw analogies with benchmark single-field inflation scenarios that include
spectator fields.
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1 Introduction

General Relativity (GR) represents our current best theoretical framework for describing and
understanding gravitational interactions. Since its introduction in 1915, it has consistently
demonstrated its ability to explain well-known phenomena, such as Mercury’s perihelion
precession, which could not be accounted for within the context of Newtonian gravity.
Moreover, it quickly became evident that GR predicted previously unforeseen phenomena,
all of which have been corroborated by direct observations, including (but not limited to)
the bending of light in gravitational fields [1], the existence of black holes (BHs) [2], and
the propagation of gravitational waves (GWs) [3].

Despite its remarkable success, GR faces several significant theoretical challenges. In
strong-field regimes, such as near black holes and the Big Bang, the theory predicts singularities
where physical quantities like curvature, temperature, or density diverge, causing physical
laws (as we know them) to break down. Furthermore, all attempts to reconcile GR with
quantum mechanics have so far been unsuccessful, limiting the theory’s predictivity, especially
in regimes where quantum gravitational effects — such as spacetime fluctuations at the Planck
scale — are expected to play a crucial role. At these scales (possibly relevant for early Universe
cosmology) GR struggles to provide a consistent framework, and quantum gravity effects are
anticipated to dominate. Finally, GR is non-renormalizable because the gravitational coupling
constant has dimensions, unlike the coupling constants in other fundamental forces, which are
dimensionless. This leads to divergences in quantum field theory at high energies, meaning
that quantum corrections produce infinite values that cannot be absorbed into a finite number
of parameters. Consequently, GR becomes somewhat inconsistent in the high-energy limit,
preventing it from being effectively integrated into quantum field theory frameworks.



To compound the challenges, when it comes to cosmological scales, GR and the Standard
Model of particles (SM) on their own somehow fail to provide a coherent and satisfactory
description of several observed phenomena. At the top of the list, we might mention the fact
that the current accelerated expansion of the Universe sharply contrasts with GR’s predictions
when only the matter content expected from the SM is considered. This problem led to
re-introduce a cosmological constant term in the Einstein field equations (initially proposed by
the same Einstein in 1917 to achieve a static Universe, reflecting the prevailing consensus at
the time that the Universe was unchanging and stationary), which is not free from conceptual
problems [4-29] and seems challenged by recent observations [30-32]. Similarly, several
independent observations, including the Cosmic Microwave Background (CMB) radiation
and Large Scale Structure (LSS) of the Universe, contrast with what is expected in GR when
only the matter content predicted by the SM is taken into account, providing indirect yet
strong evidence for a missing mass in the universe commonly referred to as dark matter
(DM). Last but not least, another de Sitter phase of accelerated expansion — inflation [33-36]
— appears necessary to set appropriate initial conditions and explain key features of the
observable Universe, such as its remarkable flatness and the thermal equilibrium of the CMB
radiation. The microphysical interpretation of these features remains unclear within our
current understanding of fundamental interactions.!

Adopting a critical perspective, it is certainly worth pondering whether GR is the
ultimate theory of gravitation, or rather the low-energy limit of a more fundamental theory
capable of addressing both the theoretical challenges surrounding our current understanding
of gravitational interactions and the missing pieces in the Universe’s puzzle outlined above.
In fact, this possibility has motivated a significant portion of the high-energy physics and
gravity community to explore various extended theories of gravity beyond GR.

Among the many scenarios explored, f(R) theories of gravity stand out due to their
conceptual simplicity, relevance, and flexibility. These theories have been extensively studied
in various cosmological contexts [75], demonstrating remarkable versatility in providing
frameworks that can potentially account for a wide range of phenomena across energy scales
differing by several orders of magnitude. At the heart of f(R) gravity is the idea of replacing
the Ricci scalar R in the Einstein-Hilbert action of GR with a function f(R), which introduces
additional degrees of freedom. The central theme across different applications is the modified
dynamical evolution of the gravitational degrees of freedom, which is driven by the extra
scalar field embedded in the f(R) formalism [76, 77]. While not exhaustive, it is worth
noting that the inclusion of extra degrees of freedom in the effective gravitational action has
proven to be a promising framework for addressing the dynamics of gravitating systems in
the presence of DM [78-80]. These theories have also been proposed as viable alternatives
for triggering a phase of repulsive gravity responsible for the current accelerated expansion
of the Universe within dark energy (DE) models, as well as for inducing nearly de Sitter
dynamics in the early Universe in the context of inflationary cosmology. In fact, when it

!Many have argued that (part of) the tensions and anomalies emerging in recent years in cosmological and
astrophysical data (most notably the Hubble tension [37-49] and the weak lensing discrepancy [50-61]) may be
traced back to limitations of GR on cosmological scales, hindering its ability to fully capture the dynamics of
the Universe either at the background or perturbation level. Without claiming completeness, we refer readers
interested in works exploring the impact of modified gravity theories on cosmological tensions to refs. [62-74].



comes to inflation, it is no exaggeration to say that the most widely accepted models favoured
by current observations — most notably the one proposed by Alexei Starobinsky [81] — are
grounded in f(R) gravity (see, e.g., [81-89] and references therein).

That said, f(R) gravity is not free from limitations. These theories are often inadequate
in the weak-field regime and require a screening mechanism [90-94]. To address this and
other limitations, alternative formulations to metric gravity have been proposed where the
connection is treated as an independent variable, encapsulating local invariance under GL(4)
gauge transformations [95]. A notable example pertains to the Palatini gravity formalism,
where the metric and the connection are varied independently in the action, resulting in
distinct properties for the scalar field in the context of f(R) gravity [76, 96]. While this
approach has been able to account for the late-time cosmic acceleration models, significant
limitations remains due to gradient instabilities in cosmological perturbations [97]. In the
spirit of hitting two targets with the same arrow — circumventing some of the shortcomings
of both the Palatini and metric f(R) approaches — hybrid metric-Palatini gravity has been
devised in recent years [98, 99] (see also [100]) where both types of formulations are considered
within a unique theoretical framework and a viable screening mechanism is already exhibited
at the level of the Jordan frame [101]. The implications in the cosmology of the extended
dynamical content have received some attention [102-104].

An alternative approach, inspired by a quantum field theory perspective, to address
the same limitations and challenges of GR involves considering non-local interaction terms
in the Einstein-Hilbert action. The resulting non-local gravity theories, explored over the
past decade, offer perspectives that are somewhat different from both f(R) models and
hybrid metric-Palatini gravity, see, e.g., ref. [105] and references therein for reviews. Long
story short, depending on the type of non-locality implemented, these non-local theories
can be distinguished in general terms in infinite derivative and integral kernel theories of
gravity, based respectively on analytic transcendental functions of the d’Alembert operator
O or on the inverse operator J~!. Infinite derivative models have demonstrated some
interesting hints in addressing the issue of renormalizability, unitary and UV completion
in gravitational theories beyond GR [106, 107], as well as in preventing the appearance of
singularities as byproduct of the non-local smearing mechanism [108, 109]. Integral kernel
theories were originally introduced in the seminal papers [110-112], where it is was discussed
the possibility of reproducing the late-time expansion of the Universe via the application of
the 00! operator to the scalar curvature R. However, some criticalities of such an approach
were outlined in ref. [113], and further extensions were proposed in ref. [114] by authors
in order to amend the original flaws.

Drawing inspiration from the distinct challenges and opportunities presented by non-local
gravity, f(R) models, and hybrid metric-Palatini gravity, this work takes a pioneering step
forward by exploring the implications of incorporating non-localities into the hybrid metric-
Palatini gravity framework, rigorously assessing the stability conditions of these combined
theories and their applicability, particularly in the context of early Universe cosmology. We
consider non-localities in the form of powers of the inverse of the d’Alembert operator, which
we assume to act on both the type of curvatures, i.e. on the metric R and the Palatini R
Ricci scalar. In doing so, we extend the analysis of the purely metric case of ref. [115] to



embed also Palatini contributions, by following the hybrid formalism developed for f(R,R)
theories in refs. [98, 99, 101]. Furthermore, always in analogy with ref. [115], we adopt the
perspective of considering the non-local theory as equivalent to a local scalar-tensor model,
where non-localities are localized via a suitable procedure relying on a set of auxiliary fields.
That allows us to bypass the ambiguity of the retarded boundary conditions for the integral
operator (17! (see discussion in ref. [115] and [116, 117] for recent applications in gravitational
wave phenomenology), as it was instead pursued in the original formulation?[110, 111] (see
also ref. [114]).

We thereby demonstrate that a naive extension of ref. [115] to the hybrid metric-Palatini
case is not sufficient to remove the presence of ghost instabilities, whose number we show to
depend on the sum of the highest powers of the (0=F operators acting on the metric and the
Palatini curvature. We discuss how this is an unavoidable property of every non-degenerate
non-local F(R,R,...,0° ™R, ..., 0°"™R) action, even when a purely Palatini approach is
enforced, in contrast with the findings of standard f(R) gravity where no additional degrees
of freedom are excited. Following these considerations, we look then at specific configurations
where degeneracy is explicitly violated, consisting in metric (Palatini) f(R) (f(R)) models
supplemented by Palatini (metric) non-local terms, where non-localities are linearly coupled
to the curvature and introduce deformations to the Starobinsky-like potential, providing
a novel path to test the robustness of the model. We elucidate how such a hybridization
mechanism is capable of restoring dynamical stability, and we derive a set of algebraic
constraints assuring the absence of ghost modes in the corresponding three-dimensional scalar
field space. In the second part of the work we address the feasibility of slow-roll inflation
in such a theoretical framework, and as a preliminary step we assess the well-posedness of
the first-order slow-roll parameter, ultimately resulting in additional constraints among the
derivatives of the potential and the fields. We then numerically evaluate possible inflationary
scenarios at the level of background evolution, analyzing how both the trajectories of the
scalar fields over the potential and the e-fold number are affected by different choices of the
initial non-localities. We focus in particular on quadratic metric f(R) models accompanied
by Palatini non-local terms, which turn out to be the only viable scenario for a finite slow-roll
phase, being the quadratic Palatini f(R) case with metric non-localities plagued by an infinite
slow-rolling stage along one scalar field direction. Eventually, for every reliable scenario
exhibiting the adequate number of e-folds, we numerically check a posteriori the consistency
of the no-ghost and slow-roll conditions along the dynamical evolution of the scalar fields.

The paper is organized as follows. In section 2 we discuss the general framework,
elucidating how ghost instabilities are introduced at the level of the scalar-tensor representation
in the Einstein frame. In section 3 we analyse two special configurations where local and
non-local terms are carried by different types of curvature, which we proved to be dynamically
stable. In section 4 the general conditions for having a well-behaved slow-roll inflationary

2In this respect, it is important to highlight that the choice of a priori independent affine connection does
not invalidate the assumptions of [115]. As discussed in [118], the generalization of the D’Alembert operator to
curved spacetimes does not introduce additional non-Riemannian couplings for O acting on scalar fields. This
implies that torsion and non-metricity do not enter the definition of the wave operator, which is ultimately
determined only by the metric. For a detailed and instructive analysis on the role of non-Riemannian geometry
in the generalization of quantum field theories from Minkowski to curved space-times see [118].



phase are set, and we numerically determine the e-fold number and the trajectories of
the fields over the potential for different initial non-local terms, ultimately resulting in
distinct non-diagonal kinetic terms and potential contributions in the Einstein frame. Finally,
conclusions are drawn in section 5.

Conventions about the formalism adopted and the fundamental constants are established
as follows. The gravitational coupling is set as k? = 87, with ¢ = 1, and the spacetime
signature is chosen mostly plus. The definition of the Riemann tensor we used is displayed
by R? o, = 0617, — 0L o + TP 17, — TP T7 .

2 Non-localities for hybrid metric-Palatini gravity

The starting point of our analysis is the non-local model discussed in ref. [115], that here
we extend along the lines of the hybrid framework introduced in refs. [99, 101]. We consider
the action

_ 1
2k2

S /d%; V=g F(R,R,07'R,... O™R,0O7'R,...,0"R), (2.1)

where F' is a function both of the Ricci curvature R, which is built from the Levi-Civita
connection for the metric g,,, and the Palatini Ricci curvature R depending instead on

the independent connection I'”,, i.e.
R=g"" Ry (9) (2:2)
R =g"Ru (). (2.3)

In order to put the original action in a scalar-tensor form, we rewrite eq. (2.1) as

=,

o [ 4oy (F(R’R’ @ B) = M(Ba1 = R) — p1(Of — R)+

. ) (2.4)
=2 A0 —aim1) = Y pi(0B; — 5]‘—1)) )
=2 j=2

where we introduced the n-tuple and m-tuple of real scalar fields «;, 5, denoted respectively
by & and /3, and the related Lagrange multipliers \;, p;. Variation of eq. (2.1) with respect to
Ai, pj guarantees that the original formulation is consistently recovered, how it is showed by

60 S = a; =07'R,
(5,\25 — g = D_lal = D_ZR,

(5,\1,5 — o = Dflai_l = DiiR,

-,

and analogously for p; and the Palatini contribution. Then, the F(R,R,&, ) part can
be further rearranged as



so that by defining F\ = g—i = ¢ and I, = %1; = £, we can rewrite the action as

— [dev=g ( ¢+ M)BHE+p )R~ W (9,6,6,5.%,7) +

. . (2.6)
+ Z (Voua; VEN) + Z VBV p; )
= 7=1
where we assumed F\, Fy, — an # 0 in order to have a well-defined inversion
x=ﬂ¢§75) (2.7)
= 9(¢,£,d,5).
We also introduced the potential term
:¢f(¢7§)&7§)+§g(¢>§7&ag) 0_2 g Za] 1)\ _Zﬁ] 105, (28)

provided the identification oy, Bg = 0. Now, by varying eq. (2.6) with respect to the connection
I'?,,,, under the hypothesis of vanishing torsion (I'”,, —I'”,, = 0) and metric compatibility
(Vg9 = 0), it is possible to show that the equation for the connection takes the form

Y, (V=9Z¢") =0, (2.9)

where Z = £ 4 p1, which admits as solution the Levi-Civita connection for the conformal

metric hy,, = Egu, ie.

1
Fp;w = ihpg (8uhua + 8l/h/w' - aahw/) . (210)
In terms of the original metric g, and the scalar field =, this can be further rewritten as
1 1 - - =
Fp/ux = §gp0' (a,ugucr + ayg,u«a - 609;1,1/) + E (61)1,6#: + 5PM6V: — gmﬁp:> s (211)

so that it is possible to express the Palatini curvature as
3V,EVHE  LE
222 =

We note that assuming from the very beginning a torsionless and metric-compatible connection

R=R+ (2.12)

is not mandatory, as a dynamical equivalent result can be obtained by solving the original
equation of the connection for the different components of torsion and non-metricity. In this
case, indeed, once the spurious degrees of freedom of the affine connection have been gauged
out by virtue of the projective symmetry of the model, the non-Riemannian parts of the
connection can be completely solved in terms of the derivatives of the scalar field =, so that
the final expression of the Palatini curvature is still displayed by (2.12) (see refs. [76, 96, 119]
for technical details). It is then possible to rearrange the action (2.6) into the form

3V, EVHE
2=

+Z(VuozjV“)\ +Z V.uBiVtp; )
j=1 =1

/d4wr((¢+)\1+ )R+ W (6.6,6.8, 5, 5) +

(2.13)



At this stage, we observe that is always possible to perform a linear field redefinition of the form

o+ +=2=7
ai = a5y + ) (2.14)

=) 4 )
o= 15?800

which is well-defined as long as the Jacobian of the transformation is non trivial. Such a
requirement leads in this case to the condition

7| =[] det AD J] det BY # 0, (2.15)
i=1 j=1
where we defined the submatrices

() 0 () )

; a a i bi{ b

A6 — < i %3>7 B — < 1 g), (2.16)
A1 G bat by

and it is easy to see that |J| # 0 simply amounts to require
det A®, det BY) £0 Vi, j. (2.17)
Under these conditions, the action can be rearranged as

3(VE)?
2=

1 — —
Q—I#/dllx\/—ig (@R+ _W(¢)53¢17¢2awla&2)+
(2.18)

£ 3 KEY, v 4 3 H(@gvyw;ﬂww;ﬂ) ,
i—1 =1
with k,1 = 1,2 and

o) elledredal) ppl) bbbt
_ 2 _ 2
Koy = 1| o (), () o Hey = - (219)

11‘1;2)"'“12 21 a(i)a(i) b§l1)b;12>+b§l2)b$1) b(z)b(z)
2 12 %22 2 12722

is displayed by

A simple realization for the matrices A(;, By
1 1
Ay = By = 2.20
@ = 50 (1 _1> ) (2.20)
which allows us to rewrite K(;), H(;) in the diagonal form
10 .
Ky = Hgy = (0 _1> ;o Vg (2.21)

so that we obtain

1 3(VE)? Lo
S:ﬁ/aﬁx\/jg <q>R+<2:)+(\Ir+n)—W(q>,z,¢1,¢2,wl,ﬁ2)>, (2.22)



where we introduced the shortcut notation

¥ =3 (V)2 - (V) | (223
=1

Q= Xn: (V)2 = (vei)?) . (2.24)
j=1

Eventually, we can rewrite the action in the Einstein frame defined by the conformal trans-
formation ¢, = ®g,,, which results in
3(VE)  3(VE)? (¥+9Q) W(PE 1 b1 &)

502 T 2= T ® o2

Sp= 5o [deva <R<q> -

(2.25)
It is clear, then, that by fixing the order N = n 4+ m of non-localities, the theory is always
endowed with at least N ghosts, irrespective of the sign of the field ® and the form of the
function F. Moreover, if we require that ® > 0 for the conformal transformation to be
well-defined, an additional ghost is present for = > 0, which agrees with the results of [101].
In particular, by selecting the ® > 0 branch we can re-define the fields as

=2
o—eV3%, == O’g%c, (2.26)
where o= = +1 is the sign of the field =, and rewrite the action in its final form

0e(VEQ) + ¥ +Q  W(D,E, P, s, &1, &)
e\/g‘bc 62\/2@0 ,
(2.27)
where all the kinetic terms have a canonical form up to a possible coupling with the field

- [dev=a <R<q> ~ (Vdo)? +

®o. In appendix A we briefly discuss the peculiar case where only one type of curvature is
considered in the initial action, showing how this does not alter the main conclusion about
the structure and the number of ghost fields.

3 Ghost free configurations

In ref. [115] it was outlined that ghost instabilities can be removed by simply considering the
linear coupling between the metric Ricci curvature and the nonlocal part of the action. Here
we extend such a result, and we present two specific models where dynamics is stabilized by
supplementing f(R)-like theories with nonlocal terms retaining the same kind of coupling of
ref. [115]. In doing this, we follow the idea of ref. [98], and we pursue hybridization additively,
by endowing the f(R) term with a nonlocal part depending on the type of curvature not
contained in the original f function argument. That amounts to considering two possible
configurations, displayed by the following Lagrangians:

L1 =f(R)+ RGO 'R) - V(O 'R), Ly=f(R)+RGOR) - V(IO 'R). (3.1)

For the sake of completeness, we also included a function V' which does not affect the stability
of the scalar modes (see discussion below) but plays the role of a potential term for the



resulting scalar-tensor theory. We also note that configurations in eq. (3.1) fall outside the
discussion of section 2, in that condition FrrFrr — F }2273 = 0 is now evaded. The first case we
address is the Palatini f(R) theory in the presence of metric nonlocalities as in £, which by
following the procedure illustrated in section 2 can be recast in the following scalar-tensor form

Sy = 2/12/d4x\/jg (f(R)+ RG@O'R) ~ V(O 'R))

_ 2%2 / d*z V=g (ER = U(E) + (A + G(a))R + V,aV A — V(a))

3(V¢)?
28

+VuaVH (¢ =€ = Gla)) - W(Oé>§)> ;

= 2%2 / d*z /=g <(§ + A+ G(a)R+ + V,aVHEA — (V(a) + U(g)))

3(V¢)?
2€

where between the third and the fourth line we introduced the field ¢ = £+ A+ G(«). Moving
to the Einstein frame the action can be further rearranged as

S1= o [atav=a ( qo 3(V9P L 3(VE? | VuaVi($— €= Gla)) _ W(ag)

1
:@/d“x\/fg <¢>R+

2¢? 2¢¢€ ¢ ¢? ’
(3.2)
with the kinetic matrix displayed by
3 1
2¢ 0 2
1
Ki=—[0 -3 3§ |- (3.3)
¢
3 G

We recall that the absence of ghosts is guaranteed if the kinetic matrix is positive definite,
which usually is understood, for symmetric matrices, as the positiveness of its eigenvalues.
Even if these can be found in principle by diagonalizing the kinetic matrix, due to the
unknown dependence of the function GG on the scalar field «, it is in general not possible
to recover the functional relation between the old field base and the diagonal one, so that
the original action cannot be explicitly rewritten in the latter. Therefore, in looking for
equivalent definitions of positiveness which could ease the analysis, we resort to the so-called
Sylvester’s criterion, which for a symmetric real matrix allows us to consider the signs of
the determinants of the upper left £ x k submatrices My, with 1 < k < n, where n is the
dimension of the original matrix. By applying this to K; we then demand that the following
conditions hold simultaneously:

3

M = 555 >0,
9
||M2||:_4¢3§>07
3(p— &) — 18G"
1)) = 22 %&5 @ 5o,



and it is easy to check that the solution for the set of inequalities is given by ¢ > 0,¢& <
0,G'(a) > % (we disregard the configuration with ¢ < 0, > 0,G'(a) < &= 5, since in
this case the conformal transformation defining the Einstein frame is not well behaved).
Eventually, we note that some of the kinetic terms of K7 can be put in their canonical form
by redefining the fields as in section 2, i.e.

=2
6= Vit ¢ —= v, :/ G'()da, (3.4)

with the definition of ¥, which has to be understood for an assigned G(«) function. That
allows us to rewrite eq. (3.2) as

VZ)2 + (VU,)?
(VEe)* +( )+

o2 /d%F < — (Vee)* — \/5@
- w (‘Pc;EC)
(qu>+ —— VB C)—;ﬂ% )

We stress that in this case the potential is separable in the fields ., =, up to a global

(3.5)

factor depending solely on the field &, i.e.

—2
WI(\I]Ca Ec) = V(O‘(\ch)) +U <_H60> . (3'6)
We anticipate that this peculiar configuration forbids a clear implementation of an inflationary
scenario, in that it does not provide a clear mechanism for preventing the field ®. to slow
roll indefinitely (as we discuss in more detail in section 5).
For what concerns the model Lo, it formally retains the same structure of £1, but with the
two curvature interchanged, so that we deal with an initial metric f(R) theory supplemented
by Palatini nonlocalities. In this case the procedure of localization results in

5 | o3 (7B + RGETR) - V(O 'R))

1 3(V(p+G(8)?
ﬁ/d“ac\/fg ((5+p+G(ﬁ))R+ RN +Vuﬁv“p—(V(B)+U(§))>
= oz @V <¢6R+ Wj’) +VNBV“(1/J—G(B))—Wz(ﬁ,qb—w)),

where now we redefined the fields as ¢ = £+ p+ G(5), ¥ = p+ G(p), with 8 kept untouched.
In the Einstein frame, So can be rearranged as

_l’_

1 L 3(Ve)?  3(V)? VuBVE( —G(B)  Wa(B, ¢ —
SQ_M/CZ%H(R_ (Fo | S0° | T,506 -G _ Walds w)’

(3.7)

,10,



and the kinetic matrix is now displayed by

% 0 0
Ky — X 3 1
) 0 - -3 (3.8)
¢
0 —3 G(B)

Following the discussion for K, we see that in this case the Sylvester’s criterion gives us
the conditions

3
|[|[My]] = 252 > 0,
9
|| Ma]| = T 1% > 0,
3 6G’
|[Ms|| = _W >0,

whose only feasible solution is now ¢ > 0,¢ < 0,G'(8) > —%. Then, by redefining the
scalar fields as in the case of S7, by simply trading the roles of &, a with ¥, 3, the action
Sy takes the form

= \2 2
Sy = 21? / &z =g (R—(chc)? _ (VE)+ (Vo)

2P,
evse (3.9)
1 dﬁ EC —_ W2((I>Ca\llcazc)
- VRO .V, B, — ———————= .
+ 3dV. /2o, crpaTe 021/ 20

In this case the potential displays the nice property of a U component depending both on
the =. and the ®. fields,

—_
—
—

Wo(®,, Wy, Be) = V(B(X,)) + U (e\/?‘bc + ) : (3.10)

N

6

which can potentially prevent the latter from an endless slow rolling phase. The functional
dependence on W, is still separable, and in general, as discussed in section 5, it can be
conveniently neglected when interested into inflation. We conclude this section by noting that
eq. (3.9) can be further manipulated into a diagonal form, but since it does not contribute to
a significant improvement in the numerical analysis, we choose to report the corresponding
expression in appendix B in order to not overburden the mathematical exposition. Instead,
we consider an application of the theory to inflationary cosmology in the very early universe.

4 Friedmann-Lemaitre-Robertson-Walker cosmology

In this section we perform a numerical analysis of the homogeneous and isotropic cosmological
background described by the flat Friedmann-Lemaitre-Robertson-Walker line element

ds® = —dt* + a(t)*(dz* + dy? + dz?), (4.1)
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with a(t) denoting the scale factor. In order to present the equations of motion in a more
compact way, it is useful to rewrite eq. (3.5) and eq. (3.9) in the concise form

S; = 211%2/614;16\/_7(1 (ﬁg_ (vayz - (VEL+ (VO

2
eVi3?®

Avil o V o+ —V,. 2| —-Y; ],
d 36\/><I> 8

where y; = «, 8 and o; = 1,0 for ¢ = 1, 2 respectively, and we dropped the ¢ subscript for the

(4.2)

sake of clarity. We also introduced the generalized potential Y; = 2%@. Then, by varying
e 3
eq. (4.2) with respect to ®,= and ¥ we obtain
2
e Ve 19Y;
0%+ —— ((VE)? 0)?
7% (V22 + (V)?) - 354
g; dXz’ = _\/?@dxi _
- —=V VA | — — —V,IV¢¥==0 4.3
/6 “<d\IJ ) 360 dw " ’ (43)
2 V3% 9y,
05 — /= V,.EVHD — .
\/;V“ v SRR
E (X oqne 2 dxi
_= N OVHI av | = 4.4
6<d\112(v Ve VeV Gy 0 (4.4)
2
2 e\/g<I> aY;
Y hep v
Ow \/;V#\I’V ) 5 8\IJ+
dxi f(b (VE)? E -
— [ D_ — V,®VFE | =0 4.5

Now, turning our attention to the equation for the metric field

EV,E4V, IV, dy
GV, 0V, o 2=V =t VUV g w(mfv PV, >+
36

2
eV3®

%gw <(V<I>)2 = )6 \[(V\I/) d’“vp\lf (af Vit va> +m>:o,

it is easy to derive from the tt-component the well-known Friedmann equation
2 1 ) _\/icp -2 £ 9 dX’L 2. _\ﬁq)E;
H =5 O+ e V3T(E +\Ij)_d\11‘ll g §<I>+e 338 +Yi ], (4.7)

whereas the ij-component results in

. 1/. e . dy; - 2. .=
He =624 eV32(E2 4 g2) - Wiy ~f¢> Viess 4
2( FeVEEAV g o re Vi gE) ) U8

(4.6)

with H = a/a. We require the leading order slow-roll parameter to be positive, i.e. ¢ =
—% > 0, usually corresponding in inflaton models with a single scalar field to neglect
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effective phantom dark energy scenarios (w < —1). Moreover, we can recast the no-ghost
condition in terms of the fields ®,=, ¥ as

1 (dx;\? =2
6 (dﬁl) (meﬁq)%— 6> <1. (4.9)

In the following subsections, we present and discuss the numerical results obtained by

integrating the equations of motion outlined in this section, considering different case studies.
We distinguish between two cases: V(O7'R) = 0 and V(O 'R) # 0. For each case, we
examine the impact of different functional forms of the kinetic coupling. The algorithm used
to integrate the equations of motion is based on previous work by some of us [120-123], with
modifications made to suit these particular cases.

4.1 The case V =0

In this section we specialize the analysis to models with V(O"'R) = 0. As discussed in
section 3, such a condition does not affect the dynamical stability of the theory, but just
deprives the global potential of the dependence on the field ¥. Furthermore, we consider
for the local f(R) (f(R)) part a simple quadratic correction to the standard GR term, with
hybrid non-localities given by the function G. That amounts to consider actions of the form

Li=aR+bR*+RGO'R), Ly=aR+bR+RGO'R), (4.10)

which by following the procedure described in section 3 result in the Einstein frame potential:

2 =2 2
(1= aevd® + (-)7% — )
Yi(®, 2, 0) = . (4.11)

4bz‘€2 \/gq>

The existence of a global minimum is a necessary property we demand in broad terms the

potential to be endowed with, in order for the slow-rolling phase to terminate at some point
in the trajectories’ space for the scalar fields and the reheating stage to be possible to settle.
By inspection of eq. (4.11), we see then that for oy = 1 the potential Y7 is independent
of the field ®, so that at least in the ®-direction the fields are expected to keep to slow
roll, even if eventually they reach the minimum in the subspace spanned by ¥ and =. In
this work, we are mainly interested in slow-rolling realizations of inflationary scenarios, and
we leave for a subsequent analysis the discussion of alternative mechanisms in multi-field
cosmology, e.g. ultra-slow roll, hybrid or rapid turn inflation. Our primary goal is indeed
to demonstrate that a hybrid non-local extension of standard f(R) gravity is theoretically
compatible with an inflationary paradigm at least at the level of background dynamics, so
that we look for the simplest realization of such a configuration, leaving aside for the moment
the issues related to the role of perturbations. For all these reasons, we consider from now
on only the case oo = 0, where the potential Y5 simplifies in

2
(6\/zcb + %2 - a2>
Ya(®,E) = . (4.12)
4[)262\/?1)
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In general, we seek a well-shaped plateau potential with a minimum to enable inflation to
occur by choosing, in the numerical implementations, suitable values for as and bo. However,
the shape of the potential is not tightly constrained by these chosen values. Indeed, by
requiring the potential to be positive we obtain the constraints as > 0 and by > 0, with
ag determining the location of the minimum and é the height of the potential. For this
configuration the no-ghost condition can be rearranged as

dX2 = 2
0< (d\I/6> <1, (4.13)
which according to the form of the function x2(¥) determines the sub-region of plane {=, U}
where the motion of the scalar fields must be confined. We remark that for oo = 0 the
field ® does not enter the former inequality and motion is not a priori constrained in the
®-direction. The explicit dependence of x2 on WV is established by the original choice of
the non-local coupling G, but since the W-factor in eq. (4.13) is the same appearing in the
equations of motion (4.3)—(4.5), it is more reasonable for the sake of numerical computation
to deal directly with different possible choices of K (V) = %. Specifically, we will discuss
in the following the two configurations displayed by

K() = kvt K(U) = ke, (4.14)

that we dub respectively power-law and exponential kinetic coupling case, inasmuch as K (V)
settles the non-diagonal kinetic terms in (4.2). The original function G can be obtained
by reversing the definition of ¥, i.e.

2
G—GO = / (C(le\I;) dXQ, (4.15)

where W = W(x2) is derived by the inversion of

X2 — X2,0 = /K(‘I’) dw. (4.16)

Some attention must be paid to the integration constants Gy, x2,0, Vo (with the latter
stemming out from the r.h.s. of eq. (4.16)), in that they can lead to some undesired features
in the original action (3.1). As an example, we note that a non-vanishing Gy introduces
at the level of the action a linear term in the type of scalar curvature not contained in the
original f(R) function, thereby evading the hypotheses of section 3. An analogous effect is
also expected to be triggered by some (non-trivial) combination of x20 and ¥g, and this
implies that the set of integration constants {Go, x2,0, Po} is in principle constrained and
some mutual conditions must be implemented not to violate dynamical stability. This can be
for instance appreciated by looking at the constant coupling case K = k, where we have

1
Gx2) = Go+ 15 (x2 = x20), (4.17)

and the condition Gy = %

K (¥) allows us to avoid such subtleties and to look for safe configurations at the level of

must be accordingly enforced. Therefore, working directly with

the scalar-tensor reformulation.
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4.1.1 Case I: power-law kinetic coupling

The first case we analyse is the power-law kinetic coupling
K(¥) = kultn, (4.18)

whose corresponding G(x2) function is displayed in appendix C. We begin by exploring the
case where n = —1, which leads to a constant non-local term. This simplification reduces the
complexity of the equations of motion, resulting in field trajectories that exhibit straight-
forward dependencies on the initial conditions. The kinetic terms introduce non-diagonal
contributions in the Einstein frame, influencing the background evolution. From now on, we
decide to consider the non-local contributions with k& < 1 in order to study these terms acting
as perturbations. In figure 1, we integrate the whole system of equations (4.3), (4.4), (4.5)
and it is carried up to the end of inflation which occurs for ¢y = 1. Numerical simulations
indicate that inflationary scenarios are viable, with the fields gradually rolling along the
potential (bottom right of figure 1). However, careful selection of specific parameter values is
essential to avoid ghost instabilities and to ensure a sufficient number of e-folds. Indeed, we
point out that in this case the no-ghost condition (4.13) takes the form

3= \1/1+"‘ < 6. (4.19)

The central role of the inflaton field is underscored by the behavior of the ®-field, while the
E-field settles promptly to zero. Employing eq. (4.12), the potential lacks dependence on W,
and the coupling between = and ¥ primarily arises from the non-local term. This coupling
generates an initial kick to the W field, after which it experiences drag due to the expansion
of the universe. It is worth noticing that when the dependence of ¥ is turned on in eq. (4.18),
the non-local coupling becomes significant in the dynamics of the fields. Indeed, increasing
the degree of eq. (4.18) the W field stabilises at higher values becoming almost completely
frozen (see figure 1). This model can be treated in the same vein as single-field inflation
with a spectator field, given that its dynamical content is embedded in the ® field only.
Additionally, the above will be compared to n = 0 considering V' # 0 in the following section.

4.1.2 Case II: exponential kinetic coupling

In this subsection we explore the following form
K(¥) = ke, (4.20)
with the corresponding G(x2) reported in appendix C. Dynamical stability is satisfied for
k=e™| < 6. (4.21)

The exponential coupling again plays a crucial role in this context. As n moves toward
positive values, the interaction between = and ¥ becomes more pronounced, allowing ¥ to
stabilise at lower values following an initial drop, figure 2. Moreover, the field appears almost
frozen reducing the dynamics to a single field scenario with a spectator field.
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Figure 1. Power-law coupling case with V' = 0: normalised fields trajectories and shaded potential
profile Y3(®, E) with as = 2.3, bo = 0.001, k£ = 0.1 for n = 0 (blue), n = —1 (orange) and n = 1 (green).

4.2 The case V # 0

In this section, we enlarge our analysis to encompass the case where a non-vanishing V (O~ 'R)
function is considered in the initial action. This amounts to enriching the global potential Y5
with a dependence on the field ¥, obtained via the definition (4.16). In particular, following
the discussion at the beginning of section 4, we select for V' a simple quadratic expression, i.e.
V(x2) = Vox3, where Vj is constant so that the Einstein frame global potential is given by

2
Vox3 () + (6\/?4) + %2 — a2>

Yo (P, =, V) (4.22)
4b262\/ch
4.2.1 Case I: power-law kinetic coupling
For K(¥) as in eq. (4.18), we have
k
= ——ynt? 4.23
X2 n+2 ) ( )
n+2
where we set for the sake of simplicity the integration constants as x20 = kf:j)rQ . For this
choice, the potential term V is displayed by
Vo,
V(¥) = — 2 w2+, 4.24
()= o (4.24)
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Figure 2. Exponential coupling case with V' = 0: normalised fields trajectories and shaded potential
profile Y5(®, =) with as = 2.3, by = 0.001, k = 0.1 for n = 2 (blue), n = —1 (orange), n = 1 (green).

Focusing on n = 0, where K (V) ~ U, there are no main differences from the case described
in subsection 4.1.1. Additionally, the condition H?/Yyy > 1 indicates that the field is light
during inflation and hence it is Hubble damped and not driven to zero by the potential;
instead, during inflation its kinetic energy drops and the field becomes constant. The change
in the strength of the coupling also results in a change in potential amplitude (see figure 3),
which, in turn, would lead to an increase or decrease in the scalar spectral amplitude Ag
of primordial perturbations.

4.2.2 Case II: exponential kinetic coupling

For K(¥) as in eq. (4.20), we have

k
X2 = Ee"q’, (4.25)
where this time we set the integration constants as x20 = %e"‘l’o. In this case, the potential
term V is given by
kQVb 2nv¥

n
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Figure 3. Power-law non-locality with V' # 0: normalised fields trajectories and shaded potential
profiles Y5(®,0, V) with ag = 2.3, bo = 0.001, k = 0.1 for n = 0 (blue) and n = —1 (orange).

The modification of the Starobinsky-like potential (4.22) by V(¥) for & — 0 allows inflation
to happen, for a given shape of V(¥), see figure 4. Also in this case, H?/Ygy > 1 is satisfied.
The resulting field dynamics is very similar to the power-law case.

5 Conclusions

In this work, we explored non-local corrections in the form of powers of the inverse d’Alembert
operator within the framework of hybrid metric-Palatini gravity. Specifically, we considered
non-localities acting on both types of curvature: the metric Ricci scalar R and the Palatini
Ricci scalar R. We approached the non-local theory as equivalent to a local scalar-tensor
model, where the non-local terms are localized through a procedure involving auxiliary fields,
circumventing the ambiguity associated with imposing retarded boundary conditions for the
integral operator [1-!. The main findings of our analysis can be summarized as follows:

e We rigorously demonstrated that non-degenerate hybrid metric-Palatini models sup-
plemented by non-local terms built out of the inverse of the d’Alembert operators
are generically plagued by ghost instabilities. These can be conveniently displayed by
recasting the theory into a scalar-tensor framework, where the interplay between local
and non-local terms is made explicit. We show that the number of ghost instabilities
depends on the sum of the highest powers of the (7% operators acting on the metric
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Figure 4. Exponential coupling with V' # 0: normalised fields trajectories and shaded potential
profiles Y5(®,0, ¥) with as = 2.3, bo = 0.001, £ = 0.1 for n = 1 (orange) and n = —1 (blue).

and the Palatini curvature. We discuss how this is an unavoidable property of every
non-degenerate non-local F(R,R,...,0°™R,...,0°™"R) action, even when a purely
Palatini approach is enforced, in contrast with the findings of standard f(R) gravity
where no additional degrees of freedom are excited. This result extends the outcomes
of ref. [115] for the purely metric case and is in agreement with the doubling of the
degrees of freedom exhibited by generalized hybrid metric-Palatini gravity [99, 101]
with respect to the single curvature cases.

e We prove that Lagrangian densities characterized by the condition frrfrr — fI%LR =0
are sufficient for removing ghost instabilities, provided local and non-local terms are
associated to distinct types of curvature. In particular, we established that simple
modifications of well-known f(R) (f(R)) theories with Palatini (metric) non-local terms,
where curvature is linearly coupled to functions of the (0~! operator, are fit for the
purpose and can contain the additional dynamical content of the model to three scalar
fields, where for comparison generalized hybrid models display two.

Building on these considerations, in the second part of the work, we focused on a specific
class of well-defined hybrid actions where local and non-local contributions were associated
with distinct types of curvature. We examined configurations consisting of metric (Palatini)
f(R) (f(R)) models supplemented by Palatini (metric) non-local terms, where degeneracy was
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explicitly violated and non-localities were linearly coupled to the curvature. We investigated
the applicability of these theories in the context of early Universe cosmology and studied the
feasibility of inflation within the resulting Einstein-frame multi-field scenario. We analyzed
both the role of non-localities and the influence of non-minimal kinetic couplings between the
fields, reflecting the non-local structure of the original frame, on the background dynamics,
the number of e-folds, and the field trajectories. As a preliminary step, we also assessed the
well-posedness of the first-order slow-roll parameter, which ultimately resulted in additional
constraints among the derivatives of the potential and the fields. Our analysis revealed that
non-localities introduced deformations to the Starobinsky-like potential, providing a novel
pathway to test the robustness of the model.

More quantitatively, we explored two key configurations motivated by the role played
by non-local interaction terms in the resulting potential, considering two different scenarios:
V(O™ 'R) = 0 and V(O 'R) # 0. In the first case, the dynamics are dominated by the
coupling between the non-local terms and the scalar fields and we show that the behavior of
the scalar fields does not depend critically on the choice of kinetic coupling K (V). Indeed,
in both cases of power-law and exponential form, the = field promptly sets in the minimum
of the potential while W freezes due to Hubble damping and ® drives inflation, effectively
reducing the system to a single-field scenario with a spectator field. Moreover, the stability of
these trajectories hinges on satisfying the no-ghost condition. The inclusion of the potential
term V enriches the inflationary dynamics by allowing more intricate interactions between
the fields. The quadratic form of V' introduces additional constraints that help terminate
inflation. It is evident that the effective mass of the W field is light, implying that for general
initial conditions it is not driven to zero during inflation.

Overall, we demonstrated that non-local effects not only introduce an interplay between
the dynamics of the fields by inducing deformations in the Starobinsky-like potential, but also
have direct consequences on the background dynamics during the slow-roll phase of evolution.
These effects leave characteristic footprints, offering a novel avenue for testing the robustness
of the Starobinsky model and providing a significant first step toward characterizing a richer
phenomenology that could help clarify the presence of potential non-localities in gravitational
interactions at high energy scales characterizing the inflationary Universe. While a clear
limitation of our analysis lies in focusing exclusively on the background-level effects of non-
localities, our findings provide a solid foundation for further investigations into inflationary
perturbations and their associated observational signatures within the framework of non-local
hybrid metric-Palatini gravity.
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A Ghosts for the purely metric and Palatini case

Following the procedure described in section 2, it is easy to check that when the initial
function F solely depends on one type of curvature, the final action in the Einstein frame
can be recast as

II W(@,ﬁl,ﬁ2)> | (A1)

4

/dx¢~(<> (VO + o -
where §; = 0,1 for the Palatini and metric configuration, respectively, and we denoted
with © and II the generic field representation associated to each case. We observe that for
d; = 1 the results of [115] are reproduced, i.e. N ghost fields appear, while selecting d; = 0
deprives © of proper dynamics, and in this case, it can be completely expressed in terms
of the other fields, as in ordinary Palatini f(R) theories. Indeed, variation of (A.1) with
respect to © results in the equation

oW — % —eVier, (A.2)
which once W is assigned, can be in principle solved for © = O(7, T2). We remark that also
in this case N ghost show up in II, so that the theory is still dynamically unstable.

B Diagonalization for o = 0

In this appendix we report the diagonal form for (3.9), which is obtained by the field
redefinition ¥ = n + w, 2 = n — w, leading to:

K_(n,w)(Vn)* + K¢ (n,w)(Vw)?
d4 _ @ 2 _ ?
252/ V=g | R— (V®) e +
_ , (B.1)
V(B + ) + U (V/E0 4 o52)
B 62\/§q> ’
where we introduced the kinetic coefficients

n—w dp

K =2F — — ) B.2

e (5.2)

C Expressions of the G function

Following the procedure outlined in section 5, the non-local G functions corresponding to
a power-law in the Einstein frame is given by:

1 n n n+2 Ttz
G(x2) = Go+ — U," - (\I/0+2 + % (x2 — Xz,o)) ] ; n#2 (C.1)
W [ 200-x20)
Glxa) = G0+( B —1), n=2  (C.2)
2k
while an exponential coupling results in
G(x2) = Go + X2 — X2,0 (C.3)

ken¥o (k:e"‘I’O +n (X2 — X270)) ’
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