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Abstract

M-Theory, Supergravity and the Matrix Model: Graviton Scattering and

Non-Renormalization Theorems

by

Robert S. Echols

After briefly reviewing M-Theory and it’s relationship to the previously known
superstring theories, we investigate some of the initial evidence for the matrix model de-
scription of M-Theory, namely graviton-graviton scattering. We discuss the importance of
non-renormalization theorems in understanding the matrix models success for reproducing
the supergravity two-graviton scattering result for finite NV, and provide evidence for the
non-renormalization theorem involving terms with four derivatives in the low energy matrix
model effective action.

We then go on to analyze the matrix models ability to reproduce tree level super-
gravity amplitudes for multigraviton scattering. Beginning with three-graviton scattering,
we discuss and resolve the apparent discrepancy between the supergravity and matrix model
amplitudes. We also show exact agreement for certain terms in n-graviton scattering. The
matrix model’s success in describing these terms in n-graviton scattering led us to search
for an infinite sequence of non-renormalization theorems for a subset of terms in the matrix
model effective action. We describe the difficulties with some of our approaches in achieving

this goal.
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Chapter 1

Introduction

1.1 Motivation

Perhaps the most naive motivation for string theory is reflected in the fact that
present day particle physicists treat the fundamental particles as point objects in their
calculations. It seems natural to suppose that the fundamental objects have a finite size.
String theory does exactly this by postulating that the building blocks of nature are tiny
pieces of string. However, with the relatively recent discovery of D-branes [1, 2] as essential
fundamental objects in string theory along with the emergence of M-theory [3, 4] and its
fundamental two and five dimensional membranes, it is clear that strings are not necessarily
the fundamental objects either.

Aside from the conceptual problems of treating the fundamental particles as point-
like, there are technical difficulties as well. The most notorious problem is the appearance
of ultra-violet or high energy divergences in four dimensional perturbative quantum field

theory calculations at one loop. Although these difficulties can be overcome for the quantum



field theories describing the strong, weak and electromagnetic forces, the quantization of
Einstein’s theory of general relativity leads to uncontrollable divergences, signaling the
need for an underlying fundamental theory. String theory is able to soften all the ultra-
violet divergences and at present is the only known consistent theory of quantum gravity.
Superstring theory is more than a theory of quantum gravity, it also has the ability to unify
all the fundamental forces found in nature [5, 6].

An important ingredient in superstring theory is the need for nature to exhibit
spacetime supersymmetry, a symmetry relating the equal numbers of bosonic and fermionic
degrees of freedom in the theory [7]. Low energy supersymmetry is currently the most
popular means for stabilizing the hierarchy from the electroweak scale (100 GeV) to the
GUT scale (10'® GeV) with the added benefit of nicely predicting the unification of the
gauge coupling constants. While supersymmetry is an essential part of superstring theory,
low energy supersymmetry breaking is at present not yet a prediction of the theory and
supersymmetry broken at high energies is also a consistent possibility.

Taking the approach that superstring theory is possibly the underlying consistent
theory which will replace the low energy effective theory of the standard model while in-
corporating quantum gravity, we investigate in this thesis the matrix model description of
M-theory, a recently discovered non-perturbative limit of superstring theory. By way of
introduction, the next section of this chapter describes the emergence of eleven dimensional
M-theory as the strong coupling limit of the Type IIA superstring. We finish this chapter
by giving a heuristic motivation for the matrix model description of M-theory and discuss
some interesting features of the matrix model.

In chapter two we review the calculations which show how matrix theory does



indeed reproduce the leading term for long distance graviton-graviton scattering in super-
gravity. The matrix theory calculations are done using the background field method with
an unspecified background allowing us to determine if acceleration terms are present in the
matrix model effective action with four external background fields. The supergravity calcu-
lation is carried out by using the Feynman rules derived from the Einstein-Hilbert action in
eleven dimensions. We conclude this chapter with a closer look at the SU(2) matrix model
loop expansion and discuss the role non-renormalization theorems play in understanding
the matrix model’s ability to reproduce the two graviton scattering amplitude.

Chapter three analyzes the matrix model effective action for SU(2) and SU(3)
beyond one loop. By investigating potential infrared divergences, we show that divergent
contributions to v* terms at two loops cancel. In fact, we are able to show to all orders
that the infrared corrections to v* cancel as a result of %7 being the Green’s function for
the nine dimensional Laplacian, further establishing evidence for the non-renormalization
of v* terms in the matrix model effective action. We then generalize to SU(3) and show
that potentially finite corrections to the v* terms cancel at two loops. Unlike the SU(2)
case we are unable to establish an all orders argument.

In chapter four we take a more in depth look at multigraviton scattering. Pro-
viding a rebuttal to a claim in the literature, we describe in detail why the matrix model
effective action does not contain a term found in the supergravity scattering amplitude for
three gravitons. We then go on to show how the matrix model can generate such a term by
analyzing the matrix model S-matrix. We look at additional terms in three graviton scat-
tering and then generalize to n-graviton scattering, showing agreement between the matrix

model and supergravity with up to four spacetime dimensions compactified. At the end of



this chapter we discuss renormalized terms which are subleading in the velocity expansion.
In particular, we look at a renormalized v® term in SU(4) and conclude that there are many
similar terms in the v?" velocity expansion with fewer powers of velocity in SU(N) starting
at three loops.

Based on our success with using the matrix model to describe certain terms in
n-graviton scattering we explore in chapter five various attempts at finding an infinite
sequence of non-renormalization theorems. We begin by reviewing the techniques used to
prove a non-renormalization theorem for the v* term in SU(2). In generalizing to SU(3),
we encounter difficulties with a proliferation of fermion tensor structures and the need to
assume that certain fermion terms involving acceleration are absent in the matrix model
effective action. We are, however, able to provide a direct proof showing a certain class of

02N terms in the SU(N) matrix model are exact by making some reasonable assumptions.

1.2 From String Theory to M-Theory

What is superstring theory? In the mid 1980’s, the answer was five consistent
string theories each formulated in ten space-time dimensions possessing world-sheet and
space-time supersymmetry with a well defined perturbation expansion. The five theories
have become known as the type IIA, type IIB, type I, Eg X Fs heterotic and the SO(32)
heterotic. The type Il and heterotic theories describe oriented closed strings while the type
I theory describes open and closed unoriented strings'. The size of these strings is taken to
be close to the Planck scale (107% e¢m) and the six extra dimensions are believed to have

remained small while our familiar three spatial dimensions have expanded since the time of

! An unoriented string does not have an orientation or handedness. Speaking more precisely, if the string
has length, I, and is parameterized by o, then ¢ =1 — ¢ is a symmetry of an unoriented string.



the big bang. In this scenario, the fundamental particles observed in nature are excitations
of the quantized string. For example, the graviton turns out to be the first excitation of the
left and right moving modes of a closed string.

Recently, in what has been called the second superstring revolution?, new meth-
ods have been developed to understand superstring theories at strong coupling. What has
emerged is an understanding that the five distinct superstring theories are merely weak cou-
pling limits of a larger non-perturbative eleven dimensional limit called, M-theory®. Crucial
to these developments has been the discovery of new dynamical objects in string theory,
Dp-branes [1], p-dimensional objects on which open strings with Dirichlet (X* =constant)
boundary conditions can end. The first (and most relevant for the discussion below) route
to M-theory from string theory was discovered by Witten [3], as the strong coupling limit
of the ITA superstring. It had previously been known that the low energy limit of the
ITA string, type IIA supergravity, could be obtained by the dimensional reduction of the
elegantly formulated ' = 1 supergravity in eleven dimensions [9]. The spectrum of eleven
dimensional supergravity contains 128 bosonic degrees of freedom in the form of the gravi-
ton and an antisymmetric 3-Form tensor, and 128 fermionic gravitino degrees of freedom.
The natural question to ask is what consistent theory could eleven dimensional supergravity
be the low energy limit of? In analyzing the DO0-branes of the IIA string theory, one finds

that the mass of NV of them behaves as

M= (1.1)

where g is the coupling and [, is the string length. Since D0-branes are annihilated by half

2See, for example, the article by J. Schwarz [8].
#Some authors argue that M-theory is the underlying theory from which all the rest of string theory is
to be derived while others contend that it is merely another point in the moduli space of the theory.



the supersymmetry generators (BPS states), the mass relation above is exact for any value
of the coupling. Taking the g — oo limit the spectrum goes over to a continuum reminiscent

of Kaluza-Klein modes when a dimension is uncompactified. Making the identification
RH = gls, (12)

we see that a new eleventh dimension appears in the strong coupling limit of the IIA string
theory. We can also see why this extra dimension and the D0-branes went unnoticed in
weak coupling string theory. In the limit ¢ — 0 the DO0-branes become infinitely massive
and the eleventh dimension goes to zero size. The identification (1.2) can be made stronger
by realizing that these states (1.1) are the 256 states of eleven dimensional supergravity
compactified on radius Ry;. Thus, the ITA theory at strong coupling grows another dimen-
sion and this new limit, called M-theory, contains eleven dimensional supergravity at low

energy.

1.3 Matrix Model Description of M-Theory

To arrive at the original conjecture of M-theory as a matrix model [10], Banks,
Fischler, Shenker, and Susskind (BEFSS) exploited the M-theory/IIA duality mentioned in
the previous section. In particular, they argued that a spatial compactification of an eleven
dimensional coordinate in M-theory on a circle of radius, Ry, gives rise to a quantized
momentum, P; = N/Rj;. In the infinite momentum frame (IMF), N — oo limit, they
assumed that objects of negative and zero momentum decouple, leaving only objects which
carry positive momentum. Since M-theory compactified on a circle is the ITA string, and

only DO0-branes carry Pp; in the ITA theory, BFSS concluded that M-theory in the limit



N — oo must be described by the theory of N DO0-branes. Previous work by Witten [11]
had established that the theory of N DO0-branes is described by a U(N) supersymmetric
quantum mechanics derived from the dimensional reduction of 9 + 1 dimensional super
Yang-Mills theory down to 0 4+ 1 dimensions. The BEFSS conjecture can be summarized as
this: M-theory in the IMF is a U(N) supersymmetric quantum mechanics (matrix model)
describing D0-branes in the limit N — oc.

In addition to their heuristic motivation for the matrix model description of M-
theory, BFSS provided a number of pieces of evidence to support the conjecture. They
showed that the matrix model contained the 256 states of the supergravity multiplet in
addition to being able to describe large classical membranes both of which were believed
to exist in M-theory. BFSS also presented a calculation showing that graviton scattering
in the matrix model at low energy and long distance gives what one expects of M-theory
in this regime, namely graviton scattering in supergravity. To date, numerous additional
pieces of evidence have been put forth to support the BEF'SS conjecture, many of which can
be found in the reviews of the matrix model [12, 13, 14, 15].

Shortly after the original conjecture of BIFSS, another conjecture was put forward
by Susskind [16] arguing for an equivalence between M-theory and the matrix model for finite
N. Susskind noted that if a light-like coordinate = = x,—=z1; is compactified then the states
with negative discrete momentum, p_ = % decouple for all N. Periodically identifying a
light-like coordinate is know in the literature as Discrete Light Cone Quantization (DLCQ)
[17]. Consequently, Susskind’s conjecture states that the DLCQ of M-theory is described by
the U(N) super Yang-Mills matrix theory for finite N. This new conjecture was subsequently

derived by considering M-theory compactified on a light-like circle as a limit of a small



spatially compactified circle boosted by a large amount [18, 19]. However, this does not
necessarily mean that for long distance processes, the finite N matrix model should agree
with the the DLCQ of eleven dimensional supergravity. In other words, is the DLCQ of
M-theory described at low energy by DLCQ supergravity? We will refer to this expectation
as the “naive DLCQ”. Throughout the course of this thesis our primary emphasis will
be placed on testing the naive DLCQ hypothesis. We will investigate the matrix model’s
ability to reproduce graviton scattering and the role of non-renormalization theorems in
understanding the agreement with supergravity. Before beginning it will be useful to discuss
the matrix model description of D0-branes.

Prior to the BEF'SS proposal, D0-brane dynamics had been studied by a number of
authors [20, 21, 22]. As mentioned above, the supersymmetric quantum mechanics describ-
ing D0-branes is obtained by the dimensional reduction of ten dimensional super Yang-Mills

theory down to one time dimension giving the action,
1 : : 1 o
S = /dt[—tr(DtXZDtXZ) + 2—M6Rfltr([XZ,X]][XZ,X]])—|— (1.3)
) g
ltr(wT Db + M>Ry167~' X1, 6])]
)

where Rqq is the eleven dimensional radius, M is the eleven dimensional Planck mass and
g = 2Ry;. The diagonal elements of the hermitian matrices X* give the positions of the
DO0-branes in the transverse space (¢ = 1 to 9). There are sixteen real fermionic coordinates,
0., and 'yéb are the 16 x 16 real symmetric Dirac matrices representing the SO(9) Clifford
algebra. The covariant derivative is defined by D; X" = 9; X' +[A, X], where A is the gauge
field and a similar expression holds for D;6.

To see how the matrix model reproduces the supergravity multiplet of 256 states,



consider the free matrix model Hamiltonian (choosing the gauge A = 0),
1 : :
H= —tf(athatXl). (14)
)

Since (1.4) is independent of fermions, we can form a Clifford algebra with the sixteen

degenerate fermions
{0,,03} = d,. (1.5)

Making eight (7 = 1 to 8) creation and annihilation operators from the fermions

1
+
== B2 £ 62;), 1.6
4 \/5(2 1% ) (1.6)

we can act on the ground state using the usual Fermi-Dirac statistics to show there are
a total of 256 states. With further analysis [23] it can be shown that these 256 states
decompose into a 44+84+128, the spin content of eleven dimensional supergravity.

An interesting feature of the matrix model is the potential term involving the
coordinates,

tr([X7, X/][X°, X7]). (1.7)

At long distances, large values of X, this potential must vanish classically to minimize the

energy of the system. The X’s must be diagonal and commuting of the form

7 0 0
0 o 0

7= (1.8)
0 TN

Commuting coordinates are, of course, what we are used to, but when the D0-branes
get close to each other the dynamics is taken over by the full non-commuting geometry.

For our purposes of long distance scattering, we will be interested in classically commuting
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coordinates with small non-commuting quantum fluctuations. The simplest case to analyze,
which we will do in greater depth in the next chapter, is two DO0-branes separated by a
distance r. After removing an overall U(1) describing the center of mass motion, we are

left with an SU(2) theory with classical positions of the D0-branes given by
70

F=7rT5== (1.9)
and the relative separation between the DO0-branes is £1 — 9 = 7. The classical D0-brane
separation acts as a vacuum expectation value (vev) and breaks SU(2) down to U(1) in
the same way the Higgs vev provides symmetry breaking in the standard model. The off-
diagonal states become very massive for large r and can be integrated out giving rise to
an effective potential for the massless diagonal degrees of freedom describing the D0-brane
positions. We will see in the next chapter, that the leading term in the effective potential has
the necessary form and precise numerical coefficient to correspond with graviton-graviton

scattering in eleven dimensional supergravity.
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Chapter 2

Evidence for the Matrix
Conjecture: Graviton-Graviton

Scattering

One of the important original pieces of evidence for the matrix model conjecture
was that it successfully reproduced graviton-graviton scattering in supergravity [10]. It will
be useful to review in detail the calculations showing agreement between the matrix model
and supergravity for graviton-graviton scattering. The technique we employ to calculate
the leading term in the matrix model effective action allows us to determine if acceleration
terms are present. Other matrix model calculations appearing in the literature either lacked
detail [24] to determine the presence of acceleration terms or used an explicit straight line
constant velocity background [25]. The tools that we develop in this chapter will be later

generalized to analyze multigraviton scattering.
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2.1 Matrix Model low energy effective action for SU(2)

The matrix model Lagrangian is obtained from the dimensional reduction of A" =1
supersymmetric Yang-Mills theory in D = 941 down to D = 0+ 1 dimensions [10]. For our
purposes it will be useful to initially keep the action in its ten dimensional form expressed

as

1 v —
10 a va a a
where the field strength is given by
F, = 0,A% — 9,A% 4 f*°A, A, (2.2)

and the 32 x 32 dimensional Dirac matrices I' satisfy the usual algebra {I',,,I', } = 2¢,,, with
metric ¢, =diag(+1, —1, ..., —1). The 32 component Majorana-Weyl adjoint spinor ¥* has
only 16 real physical components off mass shell. We should mention that the center of mass
motion of the D0 particles has been removed and we are considering the SU(2) theory.

To calculate the one loop contributions to the effective action, we will use the
background field method [26] and break the gauge field up into a classical background field
and a fluctuating quantum field,

A% X0 4 Al (2.3)

and choose our gauge fixing condition, D“A;f‘ = 0, to be covariant with respect to the
background field, D, = d, — it®X}. Using the generators for Lorentz transformations on

4-vectors, (jpg)aﬁ =¥ (5@5% - 5252), and spinors, S* = £ [I'*,I'"], and only keeping terms

i
4

quadratic in the quantum fields, one obtains the gauge-fixed Lagrangian in the Feynman-
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‘t Hooft gauge:
,C:,CB—I—,CA/—I—,Q/,—I—,CC. (2.4)

The first piece of the Lagrangian just contains the background gauge field,

L :——F“ Jhva 2.5
B ot (2.5)

whereas the other pieces are quadratic in their respective quantum fields and contain the

background gauge field in the background covariant derivative squared, D?, as well as in

the background field strength Fgg:

e = A (0 s () ()14 e

N (D2)* + (F?,507) (tb)“c] v (2.7)
b
= [— (p?)° ] & (2.8)
In the fermion term, the square root arises from squaring ¢I'*D,, and then taking the square
root with the virtue of putting each of the quadratic parts of the Lagrangian in the same
form. This will allow the supersymmetric cancellations of diagrams to become explicit
without having to evaluate individual Feynman diagrams.

The one loop effective action is obtained by evaluating the functional integral for

the quantum fields,
T = /DA’D\IIDC exp[i/dlox(,CB + La+ Ly + Le)], (2.9)
giving

1 a va Z v a Ky
:/dl%(—@FMyF“ )+ 5 In Det[ - (D) g + (FLam)" ¢

—é In Det[— (D?) + (FL,S77) "] = iln Det[—(D?)]. (2.10)
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1

7 arises from the fermion field having

For the fermion functional integration the extra factor
16 real components instead of 32 complex ones.

To compute the determinants for the different fields, it is useful to expand D?,

—D* = 9P+ A+ Dy (2.11)

where
Ap = it (9, X"+ X20M) (2.12)
Doy = XU XM (2.13)

At this point it is convenient to dimensionally reduce to 1-D while choosing X§ = 0, then
A1 = 0. Choosing the D0-branes to have a separation of r in the ninth transverse spatial
direction, X — ré46% + X, we can break SU(2) — U(1) giving
Ny = —r231% — 20 X3 — X2o X (2.14)
with the Latin index going 1-9 and fields X depending only on time. The magnetic moment
interaction for the bosons
A = (B, 0)" 8 (2.15)
dimensionally reduced becomes
A =2 (9px) )"t (2.16)
since we will be working in a flat direction. Similarly for the fermions one has

A =2 (00 X!S") 1, (2.17)

where we recognize 0y X; = Fp; as the velocity. The general form of a determinant in (2.10)
can be written

Trin(=03 + D+ Ag). (2.18)
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Because we will only be considering the case of massless background fields we combine 9?

with 72 and define

1
Ap = ———— 2.19
E=Tor e (2.19)
in addition to

Ay = —2r X513 (2.20)
Ay = — X4 X (2.21)

then the trace becomes
Trin(=93 — r*) + Trin[l + Ap(AL+ Ay + Ag)]. (2.22)

The first piece involving —93 —r? is a constant and the second contains the one loop quantum
correction to the effective action which we will evaluate below by expanding the logarithm

for various numbers of external background fields.

2.1.1 Non-Renormalization of [}

The various contributions with two external fields are,

Tr[ApAY], (2.23)
1
—§Tr VAN ZZANYAN 2VANY (2.24)
and
—%Tr [ArAjARAg). (2.25)

The first and second terms occur in the determinant for the gauge, fermion and ghost

fields whereas the last term only occurs for gauge and fermion fields. Writing out (2.23) in
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frequency space gives

dw . dw 1
—— X (w) X P(—w)

o o (@ =17 (2.26)

TﬂAFAg::—Tqﬁﬁy/

which involves Tr[t3t*] = 2d(j), where d(j) is the number of components for the various

fields
d(j)Y =32 d(j)* =10 d()* =1, (2.27)

and the 2 arises from the trace of an SU(2) generator squared in the adjoint representation.
Now it becomes clear that identical terms which arise in each of the three determinants
appearing in (2.10) will cancel. To be explicit one gets

[%(10) — 2(32) —i(D)][Term]=0 (2.28)
where [T'erm] is the frequency integral of (2.23) or (2.24). The supersymmetric cancellation
of (2.25) between bosons and fermions is slightly more subtle requiring the determination
of Tr[S%SY%] = 8¢% for fermions and Tr[J%J%] = 2¢g" for bosons. Putting the terms into

(2.10) gives

dw 1 1

2 (w? — ) [(w — wn)? — 7]

[22) = 89— 0)] [ S X (0) X )

=0 (2.29)

which shows that the 2-point contribution to the effective action at one-loop is zero. This
result is consistent with the fact that A' = 4 super Yang-Mills in four dimensions receives

no renormalizations of the kinetic terms.

2.1.2 Coefficient of v/r’

With four external fields, the only term which doesn’t cancel by the arguments

given above is

1
S ININININVNINTY) (2.30)
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or in frequency space

/ dwadwzdwsdw — (wy + w3 + wye) X2[— (w3 + w3 + w4)]w2X§’(w2)w3X;§’(w3)w4Xl3(w4)
(277)4[(1” + w2)? — r2][(w 4 we + w3)? — r[(w + we + w3 + wy)% — r2][w? — r?]
(2.31)

with the prefactor

) T ] (2.32)

for the gauge boson case. An identical result holds for fermions if one replaces the Lorentz

generator trace with
Tr[S95% 5Ok O = 2(giighl  gikgil 4 gil giky (2.33)
whereas for the gauge bosons one finds
Tr[7% 7% 7% 70 = (g3 gk 4 gilgik). (2.34)

Now using (2.10) and the low energy approximation wy, wgz, ws, ws — 0, we get

dw 1
27 (w? — r2)4’

—Gi[(F3)? (2.35)

The integral can be performed in the complex plane using the usual 4ie¢ prescription for

handling the poles. One is left with the well known result [27, 25, 24]

1y _ 150

= 1o (2.36)

suppressing factors of N, Ry, My and using v{, = (F2)? = (01 — %2)%. Although many
authors have obtained this same result, only the calculation discussed in [24] was sensitive
to acceleration terms. Since the calculation in [24] lacked details, we wanted to see explicitly
that the matrix model did not have acceleration terms in the one-loop effective action with

four external fields as we have just demonstrated. We will see below that the leading term
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in a 1/r expansion of the supergravity effective action for graviton-graviton scattering has

precisely this structure and numeric coefficient.

2.2 Supergravity Effective Action: Two Graviton Interaction

Now that we have the leading term in the matrix model low energy effective action
we are in a position to test the DLCQ matrix model-supergravity conjecture. In this section
we will calculate the leading term in the effective potential between two gravitons and
compare it with the matrix model calculation (2.36).

Since there are no couplings of two gravitons with a gravitino in the supergravity
action, a tree-level calculation of graviton scattering only involves gravitons. It is therefore
sufficient to proceed with the Feynman rules derived from the Einstein-Hilbert action in

eleven dimensions,
1 11
S = W/d xy/—gR. (2.37)

In (2.37), k* = 167° is the gravitational coupling constant using units with M, = 1,
g = det(g,,) and R is the Ricci scalar curvature. To derive the Feynman rules for the
graviton propagator and vertices one expands (2.37) in powers of the coupling by writing

the metric as

Guv = N + Kl (2.38)

where 7, is the flat space-time metric and the metric perturbation h,, is identified with
the gravitational field. Such a procedure was first carried out by DeWitt [28]. The Feynman
rules for the three and four-graviton vertex functions as well as the propagator in D space-

time dimensions are nicely summarized in [29].
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Graviton-graviton scattering at long distance or small momentum transfer, ¢, re-

quires the evaluation of the Feynman diagram shown in figure 2.1. The incoming graviton

Ky K

/
k
2 K

Figure 2.1: Graviton-graviton scattering at small momentum transfer. Solid lines are the
scattering gravitons. The wiggly line represents a virtual graviton with zero longitudinal
momentum.

momentum are ky; and kp with outgoing momentum given by k] and k5. Each external
on-shell graviton has a symmetric, traceless polarization tensor of the form, ¢,,, which is
transverse to the graviton propagation, k*¢,, = 0. In evaluating this diagram, a number
of simplifications occur by considering the ¢ — 0 limit and realizing that the leading term
in the matrix model calculation (2.36) preserves the helicity of the scattering gravitons.
In particular, k; ~ —k! (the Feynman rules in [29] define all momentum flowing into the
vertex) or k; - k; = 0 (i = 1 or 2) and we are only interested in terms with the polarization
tensors dotting into themselves, (1 - €])(€z - €5). Given these simplifications along with the
fact that the external gravitons are traceless and transverse, we only need to consider two

out of the eleven terms in the 3-vertex function!

2K Sym[PS(klcrk/mnwnaﬁ) + Fs(k1ok1ymuna8)], (2.39)

where sym means that the result must be symmetric in the three graviton indices, pa, v3, o7y
and P with the subscript indicates the number of distinct permutations of the momentum-

graviton index combinations. As an example, consider the first term in (2.39),

SymP3(k10k/1w77;w770fﬁ) = klgkllwnu(una)ﬁ + klvqﬁnu(crnoz)w + kll;ﬂ]ozncr(unw)ﬁ (240)

'To be consistent with the authors [30, 31, 24] who use x? = 167, the 3-vertex in [29] needs to be
multiplied by 2.
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with

1
Mu(Nays = 5(77;“/77&5 + nuanyﬁ)- (241)

Performing the various contractions for the vertex involving graviton one and keeping the
relevant terms gives, 2kk1,k1~(€1-€]). A similar result holds for the vertex involving graviton
two, 2kkgs ko (€2 - €5). Thus contracting the 3-vertices together with a graviton propagator

gives the term of interest for graviton-graviton scattering,

4k2(ky - ko) (€1 - €)) (€9 - €))
q* '

(2.42)

To compare (2.42) with (2.36) we need to convert to light cone variables with non-relativistic
normalization.

Light cone variables can be defined in various ways depending on where one chooses
to place factors of two. We use k* = k,+kyy and k= = k, — kyy where kyy = N/Ry; carries
the discrete Kaluza-Klein momentum. Then defining the invariant scalar product of two

space-time vectors to be

1 Lo
ki ky = 5(1@1"162_ + kl_k;) — kq - ko, (2.43)
one can show that
+1.4
ky kg = %(a — 5y)? (2.44)

where kT = 2kqy; and we have used k= k117 along with £~ = lgz/QkH. To obtain the

non-relativistic amplitude we divide by v+ = v/2F for each external graviton giving

HleNQUilz

(2.45)
ARY, ¢

for the non-relativistic graviton-graviton amplitude expressed in light cone variables with

zero longitudinal momentum transfer, ¢t = 0, and @3 = ¥, — ¥,. Now taking the Fourier
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transform of the transverse momentum to obtain the effective potential between gravitons,

one arrives at

1 / d9(] I{leNQUilz . ENlNQ@ (246)

Vel =55y | @GP amnE 16 1, 1
in perfect agreement with the matrix model result (2.36). Of course one might argue that we
have made the supergravity result agree with the matrix model by our choice of k. However,
as discussed in [24], the value of k is determined by comparing the membrane tension when
M-theory is compactified on a circle with the type IIA string tension. In addition, as we
will see in chapter 4, this same value of k gives agreement between supergravity and the

matrix model for multigraviton scattering.

2.3 Importance of Non-Renormalization Theorems

As argued in the original proposal for the Matrix description of M-Theory [10]
the agreement between supergravity and the matrix model that we have displayed in the
previous sections can only be understood if the one-loop matrix model result, v*/r7, is
exact. To understand this point more clearly it is useful to write down the loop expansion

in powers of v and r for the bosonic terms in the SU(2) matrix model effective action [31],

,Co = 0001]2
c U el et
1 = C11 C12 C13 e
T Pl r15
\ ) ) (2.47)
Ly = e+ e 43—
2 = 21 22 23 e
10 P14 18
r vt 08 V8
3 = 31773 + €32 17 + €33 o1 + ...

The authors in [25] gave direct evidence that the two-loop correction to v*/r” was zero by

showing the coeflicient ¢o; = 0. In the next chapter we will show that potential infrared
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corrections to the four derivative term, v*, at arbitrary loop order cancel. Historically,
this cancellation of infrared corrections to the v* term was the first evidence for the non-
renormalization of v* at all orders in the matrix model. The complete proof for the matrix
model was given shortly after in [32]. Using constraints from supersymmetry they were able
to show that indeed the v4/r7 term is exact and the higher order coefficients ¢;; at loop ¢

should be zero.
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Chapter 3

Evidence of a Non-Renormalization

Theorem for v* terms

In this chapter, we will give additional evidence supporting the non-renormalization
theorem for v? in low dimensions. We will also see that it is not possible to make a definite
statement about v% with our techniques. In doing so, the first question we have to ask
is: “non-renormalization of what?” In four dimensions we are used to the idea that non-
renormalization theorems are statements about a Wilsonian effective action. For example,
the non-renormalization theorem discussed in [33] is derived by considering the A" = 4 the-
ory on its Coulomb branch, and studying the effective action obtained by integrating out
massive and high frequency modes. In 0+ 1 and 1+ 1 dimensions (or in finite volume),
however, there is not a notion of a moduli space in the same sense. Instead, one must adopt
a Born-Oppenheimer treatment of the problem, thinking of holding the slow modes fixed
and solving for the dynamics of the fast modes.

The approach of most authors has been to compute the one particle irreducible
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effective action, using conventional field theory rules. Consider the case of SU(2). As shown
at the end of the previous chapter, at a given order in v, the loop expansion is formally
an expansion in powers of 1/r® (1/r?),in 0+ 1 (14 1) dimensions [31]. Recall, r is the
expectation value of the adjoint fields (transverse separation of the gravitons, in the matrix
model interpretation). The spectrum includes states with mass (frequency) of order r and
massless states. In the two-loop computation of [25], individual diagrams contributing to
the effective action containing massless states are infrared divergent. The authors of this
reference dealt with this by using dimensional regularization, defining

dp

With this regulator, these authors find that there is no renormalization of the v* term. The
result involves not only fermi-bose cancellations, but also cancellations between diagrams
containing only massive states and diagrams containing massless states.

This result is encouraging, but since infrared divergences usually signal real physics,
one might worry about the regularization procedure. However, there are many infrared di-
vergent diagrams, and, as we will see in section 3.1, in the case of v*, the infrared divergences
cancel and there is no sensitivity to the regularization procedure. We will also see that this
cancellation is quite special to v?, and there is no reason to expect it to occur for higher
orders in velocity.

While it is true that we do not have a good definition of a Wilsonian effective action,
for the success of the naive DLCQ, what really interests us is the scattering amplitude. For
the success of the naive DLCQ, at O(v?), we actually require that there should be no
corrections to this amplitude. This is, as we will explain in the next section, equivalent to

the requirement that there should be no corrections to the 1PI effective action.
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Figure 3.1: Infrared divergent contributions to the effective action.

The origin of the infrared problem is easily understood. In ¢ loop order, £ > 2,
consider the diagram shown in fig. 3.1. Here the central loop contains a massive field,
and the £ — 1 smaller loops contain massless fields. In momentum space, this graph is

proportional to

1 ddp o
r6+2(€)—d(/ p—z) L (3.2)

Alternatively, if the amplitudes are written in coordinate space, the propagator is ambigu-
ous; individual diagrams are proportional to this ambiguity. In the infrared limit, one can
think of the integral over the massive states as generating a local operator, and the mass-
less integrals as giving the “vacuum matrix element” of this operator. This same type of
analysis can be performed for all of the infrared divergent graphs. For the v? terms, we
will see in the next section that this matrix element vanishes. However, this cancellation
depends crucially on the fact that 1/r” is the Green’s function for the nine-dimensional

Laplace operator, and might not hold for higher powers of v. v% turns out to be special
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as well, because the one loop contribution vanishes [31]!, and we cannot make a definite
statement.

In the case of SU(3) (and higher rank groups), one can also exhibit the cancellation
of certain finite renormalizations. In this case there are two (or more) scales, R and r. As
in [35], one can consider a hierarchy of scales (impact parameters, in the matrix model
interpretation), R > r. Again, the diagrams contributing to the effective action contain
infrared divergent terms. But there are also finite terms which behave as (1/R%r)*~!. It is
easy to isolate these terms. Diagrams such as those of fig. 3.1, where now the small loops

contain fields of mass r and the big loop masses of order R, are of the form

4 42 4
st ) T e (3:3)
R6+2(4)—d p? 4 r2 R6+2(—dpl—d

(in 14 1, the r dependence is logarithmic). In section 3.2, we will see that there is a can-
cellation of the most singular term at order v* for £ = 2. Based on the results for SU(2),
it seems quite plausible that this cancellation persists to all orders. From the perspective
of the matrix model, this is reassuring, since there would be no sensible spacetime inter-
pretation for such terms. As for SU(2), it is not easy to decide what happens at order
S,

However, to determine the full implications of these results requires settling some
subtle issues. In particular, for these low dimension theories, the significance of the effective
action is not completely clear, obscured, as we have noted, by infrared and (related?) oper-

ator ordering questions. We will offer some remarks on these issues, but will not completely

resolve them.

!This is only true in the straight line scattering approximation, for more general backgrounds v is
non-zero and is accompanied by acceleration terms [34].
?We thank Nathan Seiberg for stressing this connection to us.
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3.1 Infrared Divergences in SU(2)

Consider, first, the matrix model with N = 2 in d = 0+ 1. We will write the
bosonic part in terms of a set of “fields,” 2*, 7 = 1,...9, and a “gauge boson,” A. All of

these fields are SU(2) matrices. There are flat directions with # a diagonal matrix,
T =rr3/2. (3.4)

Correspondingly, there are a set of massive modes (i.e. modes with frequencies proportional
to r) and massless modes. At one loop, integrating out the massive modes in this model
is well-known to generate an effective action, whose leading bosonic term was calculated in

the previous chapter to be

(1 _ 150

ST (3.5)

When considering the scattering amplitude, in a path integral approach, one is

interested in

(@ (tp)|Z(t:)) (3.6)

where 7'y and &; are the eigenvalues of #'3, the diagonal component of the matrix. Expanding

Z about the classical solution

one studies the region of large |b], small |]. In this regime, the amplitude can be expanded

in powers of ¥ [27, 20]. At higher orders, as we have noted, there is a serious potential
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for infrared divergences. In 1+ 1 dimension, the problem is familiar from string theory.

Written in a fourier decomposition, the two dimensional massless propagator is:
, ) eik~(cr—cr')
((o)a(e) = [ dh— (3.)
which is ill defined. Correspondingly, the coordinate space expression is
(z(0)x(0")) = In(c — 0’)* + constant. (3.9)

In string theory, one only considers Green’s functions of translationally invariant combina-
tions of operators, and these are infrared finite; equivalently, they are independent of the
arbitrary constant.

In 0+ 1 dimensions, the divergences are even more severe. If we try to write a

momentum (frequency) space propagator we have
e—tw(t=t")
(Fa:(t)62; () = 6is / do—— (3.10)

which is linearly divergent. Correspondingly, the coordinate space Green’s function is am-

biguous (dropping the vector symbol):
(6x(t)62(0)) = atf(t) — btO(—t) + ct + d, (3.11)

with @ + b = 1. The authors in [25] assumed that the coefficients b, ¢ and d are zero,
however, recent work by Rong Li suggests that the equal time propagator should vanish in
order to reproduce the Born series in potential scattering [36].

When we say below that infrared divergences do (or do not) cancel in 141 or
04 1 dimension, we will mean that they cancel at the level of momentum space expansions,
or alternatively that the quantities in question are not sensitive to the ambiguities in the

propagators.
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Figure 3.2: Some two loop corrections to the effective action.

Now consider two loop corrections to the effective action. Some sample diagrams
are shown in fig. 3.2. Consider, in particular, diagrams with one massive state and one
massless state running in the loop. Individual diagrams with massless states in the loop are

infrared divergent, behaving as

dw

7 (3.12)
for small frequencies. Note that the external z’s must always attach to massive lines.
Because of this fact, and because the leading infrared divergence always comes from such
a small frequency region of integration, the leading divergent piece of each diagram always
factorizes into a product of two one loop terms. One is a massive loop, with four external
“scalars” (2’s), on which the time derivatives act, and two more without derivatives. The
two without derivatives are then contracted with each other, forming the massless loop.

In other words, the infrared divergent terms can all be organized in terms of operators

generated at one loop of the form

O = v'é2?/r. (3.13)

The infrared divergence then arises from simply contracting the two factors of z in this

expression, i.e. taking the “vacuum matrix element.”
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However, we do not need to compute all of the diagrams to determine the coeflicient
of this term in the effective action! In eqn. 5, we can interpret r? as (7. +d7)?, and expand

in powers of éZ. This gives

7x9
8a?,

T 5.2
cl 2xcl

O, = (1 ! (280 - 02 + 62%) + (27 - 62 + 5962)2) : (3.14)

Taking the expectation value, the last two (infrared divergent) terms in this expression
cancel because there are nine z’s. A similar cancellation occurs in 1 4+ 1 dimension.

It should be noted that there are no potential infrared divergences from other
diagrams. Diagrams involving gauge fields (which exist in gauges other than A° = 0) are
not divergent. The one loop effective action must be gauge invariant, and this means that
it must be independent of the gauge field in 04 1 dimensions, and involve at least two time
derivatives in 1+ 1 dimension. Diagrams involving fermions are not as divergent due to the
structure of the fermion propagator and have the wrong scaling with r.

It is easy to extend this argument for the cancellation of the most infrared singular
terms to higher orders. At each order, the most singular contribution comes from diagrams
where several massless scalars attach to a single loop of massive fields. These diagrams
correspond to expanding the 1/r7 term to higher orders in z, and contracting the x’s. But
1/r7 is special, as it is the Green’s function for the nine-dimensional laplacian. This means

that, for r # 0, r > dz,

1

27 =
v |7+ 877

0 (3.15)

where the derivatives act with respect to . Expanding in powers of §&, this must be true for
every term in the sum. It must also, then, be true when we average over §#. But averaged

over 0%, each term is proportional to %n (times an infrared divergent integral). So, except
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for the leading term, the coefficient of every other term in the expansion must vanish, upon
averaging. The skeptical reader is invited to check the next order explicitly.

Note that in the path integral framework, the non-renormalization of the v* terms
(and the cancellation of ir divergences) in the effective action immediately implies the same
for the scattering amplitude. It is important to note that the terms in the supersymmetric
completion of the v? term can each be written in the 1/r" form [37] (see e.g. chapter five
equation 5.2) and the argument given above applies to them as well.

Now consider higher orders in velocity. At one loop, there is no v® term in the

effective action. There is a v® term,

—. (3.16)

rl5

Expanding the denominator as before, one now finds that there is an apparent infrared
divergence at two loops. However, we need to be careful of addition tensor structure which

would also contribute to such a divergence. For example, a term of the form

6= =2
V(U )
would contribute. Since the full tensor structure has not been calculated for v®, it is

impossible to conclude if the v® term receives an infrared renormalization. The lesson to
be learned is that any terms which scale like an with n # 7 will have the potential to
receive infrared renormalizations. Such a term will arise in chapter 4 when we consider
multigraviton scattering.

Returning to the v® terms, as noted above, a v% term is not generated at one loop.
Such a term is generated at two loops [31]. But we cannot simply apply our reasoning to

the two loop case. The calculation of [31] includes graphs with both massive and massless
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Figure 3.3: Three loop correction to the effective action.

states. At three loops, there are diagrams with zero, one or two massless particles in the
loop. Expanding the two loop action in powers of é%, and contracting < Sudx > correctly
reproduces the infrared parts of diagrams with one massless field, but double counts the
diagrams with two (see fig. 3.3). So we cannot establish by this means whether there is an
infrared divergence (and a breakdown of the non-renormalization theorem) for SU(2) at v®.
This is just as well. The fact that the calculation of [31] successfully reproduces the naive
DLCQ strongly suggests that there is a non-renormalization theorem for this case.

Finally, we should note that the authors of [25] have computed, using their regula-
tor, the coefficient of the v® term at two loops [38]. However, they are not able to perform

a direct comparison with supergravity.

3.2 Finite Renormalizations in SU(3)

Consider, now, an SU(3) gauge group. In this case, taking « to be a U(3) field,

we will consider “expectation values” of the fields z of the form:

00 0
@?=10 r 0]. (3.18)
00 R

This is not the most general expectation value, but it is sufficient for our purposes. In

the language of M theory or DO branes, this corresponds to three gravitons (branes) at
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locations 0,r and R respectively.

Suppose that r < R. Then there is an approximate SU(2) (U(2)) symmetry. We
can then imagine first integrating out states with mass of order R, and then those with
mass of order r, to obtain an effective action for the massless fields. At the first step, we

expect to generate an operator of the form

Faz® - 7+ bR - TR - °
O3 = 5 75 ), (3.19)

where @, are the SU(2) triplet fields. Then, replacing z*2* by
1 dw
(wtaf) = 05+ [ o) (3.20)
in this expression, we obtain a result proportional to
Oy = = (3.21)

as well as a potentially infrared divergent term.
As in the case of SU(2), it is not difficult to verify that the coefficient of Oy, as
well as the infrared divergence, vanishes to two loops. In the SU(3) case, the one-loop result

is:

4 4 4
Lo (Hl2 4 O34 Tosy (3.22)
T2 T3 o3
Write
P =& Ty =7+ T s = R+ T3, (3.23)

and expand the last two terms in powers of the fluctuations, Z, keeping only the part

proportional to vi. The first order terms are SU(2) singlets (they are proportional to
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T1+72). The quadratic terms contain the SU(2) non-singlet fields, #; — 3. These couplings
can be generalized to the SU(2) invariant coupling,

vizta® 91}5‘(96“ ‘R)?

0L o ( 79 i

). (3.24)

Taking the expectation value, we see that as in the case of the SU(2) infrared divergences,
the leading 1/r and infrared divergent pieces cancel. It is not so easy to check higher orders,
in this case, since one can’t generalize, e.g., the £ terms unambiguously to SU(2)-invariant
expressions. However, we have checked explicitly the cancellation to next order, and expect
the same will occur for higher orders.

Again, because of the vanishing of the v® term at one loop, we cannot establish
by this sort of reasoning whether or not there are corrections to the various v® operators at
three loops.

This argument can be extended to 1 4+ 1 dimensions. There is again no infrared
problem at O(v*), and no terms which depend on In(r) (the analog of the 1/r terms in the

0 + 1 dimensional case).
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Chapter 4

Multigraviton Scattering

The first test to see if the matrix model could reproduce multigraviton scattering
in supergravity was performed by [35]. In [35] it was argued that there was a discrepancy
between the computation of three graviton scattering in the matrix model and in tree level
supergravity. Calling the large distance R and the smaller distance r, and denoting the
velocity of the far-away graviton by vs, the supergravity S-matrix contains a term (after

Fourier transform):

4,2
U3UTg
2 (4.1)

However, we will show with a detailed calculation in section 4.2 that no such term can be
generated in the matrix model effective action. The authors of [35] then went on to argue
that this term could not appear in the Matrix model S-matriz.

Subsequently, however, Taylor and Van Raamsdonk [39] pointed out, using simple
symmetry considerations, that if one writes an effective action for gravitons in supergravity,
this action cannot contain such terms. Shortly afterwards, Okawa and Yoneya [30] computed

the effective action on both the matrix model and supergravity sides, and showed that there
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is complete agreement. A related computation appeared in [40]. Other calculations have
also been reported recently showing impressive agreement between the matrix model and
supergravity [41].

It is clear from these remarks that the difficulty in [35] lies in extracting the Matrix
model S-matrix from the effective action. In section 4.4 we show how the “missing term” is
generated in the S-matrix of the matrix model. In order to do this using the effective action
approach, it is necessary to resolve certain operator-ordering questions'. To deal with these
issues the most efficient approach is the path integral. In section 4.4.1, we review first the
problem of computing the S-matrix from the path integral by studying small fluctuations
about classical trajectories. Once this is done, the isolation of the “missing term” is not
difficult.

Despite the error in the analysis of [35], the method proposed there yields a con-
siderable simplification in the calculation of the effective action. Indeed, it is possible to
calculate certain terms in just a few lines. On the supergravity side, there are also significant
simplifications which occur in this limit. One might hope, then, to extract general lessons
from this approach. For example, one can compare certain tensor structures in n-graviton
scattering, and perhaps try to understand whether (and why) there is agreement. One can
also try to examine, as in [42] the role of non-renormalization theorems.

In section 4.5, then, we go on to compare certain other terms in three graviton
scattering, some of which were not explicitly studied in [30]. These calculations can be
performed using the methods proposed in [35], on both the matrix model and supergravity

sides, and are shown to agree.

'The authors of [35] had convinced themselves that there was no choice of operator ordering which
generated the missing term. This was their basic error.
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Armed with this success, we consider in section 4.6 scattering of more than three
gravitons, and scattering when more dimensions are compactified. Some of the terms in the
four graviton scattering amplitude can readily be computed, and compared on both sides.
We find agreement of certain terms involving eight powers of velocity. We also find certain
terms of order v?" in n-graviton scattering, for arbitrary n, agree. On the other hand,
the matrix model at three loops generates terms of order v® in four graviton scattering.
These do not have the correct scaling with N to generate a Lorentz invariant expression,
and it is difficult to see how they can be cancelled by other matrix model contributions
to the S-matrix. These terms also indicate that there are terms at order v® which are
renormalized.

These observations raise a number of questions. In particular, it is not completely
clear why the arguments of [18] and [19] imply that the classical supergravity amplitudes
should agree with the matrix model result. One might have thought that this should only
hold in cases in which there are non-renormalization theorems [12]. Our results indicate
that already at the level of the four graviton amplitude, there are not non-renormalization
theorems, at least in the most naive sense. They also suggest that at order v?7, the n — 1
loop matrix model diagram reproduces the supergravity amplitude, but that there are
discrepancies at three loops and beyond in terms with fewer powers of velocity. We will make

some remarks on these issues in the section 4.7, but will not provide a definite resolution.

4.1 Background

It is worthwhile to review the problems which arise when one tries to compare

three graviton scattering in the matrix model picture with supergravity, setting the stage
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for our notation which will be used below. Briefly, the authors of [35] considered the case of
three gravitons; two separated a distance r from each other and another a distance R from
the other two in the limit R > r. A term in the supergravity S-matrix for three graviton

scattering in the small momentum transfer limit was shown to be

(k1 - ko) (k1 - ks) (kg - ks)
4143

(4.2)

where k; are the ith graviton momenta and ¢ o are the two relevant momenta transfer.
In the language of matrix theory, this corresponds to taking the Fourier transform of the

two-loop effective potential

2.2 .2
P12V13Y23 (4.3)
R77‘7 .

where v13 = (v — v3), ete. refer to the relative velocities of the D0-branes. The two scales
R and r arise from integrating out the massive degrees of freedom introduced by giving the

diagonal generators of SU(3) vacuum expectation values:
< XE>=rd"8 + RE™6;, (4.4)

where X are the 9 SU(3)-valued fields describing the bosonic coordinates. Since X; =

XBT® + X277, one can work out vy, etc. in terms of X? and X3

vy ~ (X7)? (4.5)
iy ~ (XD)? 4+ (3XP)% — 6XFX7 (4.6)
v ~ (X2 4+ 3XP)2 4+ 6X3X7 (4.7)

Multiplying these three together yields the expected result for matrix theory

vipuisuas ~ (X7 (XD + (X7)° + (XP)H(XP)? = (XPXF)*(X7)% (4.8)
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In [35] it was argued that matrix theory was incapable of reproducing the term,

(X))

i (4.9)

with the correct powers of R and r at two-loops. In [43], it was argued that this term can
arise at two-loops from vertices with three massive bosons in the form of the setting-sun
diagram, as well as from other two-loop interactions. After describing the background field
method for SU(3) below, we go on to show that the one-loop effective operator needed
to arrive at the conclusion of [43] does indeed cancel among bosons and fermions. By
exploiting the fact that XZ8 only couples to fields of scale R, we integrate out these most
massive modes to find that the first term containing coupling between the heavy and light
states without supersymmetric cancellations has the form (X£)*(X#)2/R? as described in
[35]. Then integrating over the light SU(2) modes of scale r (a=1,2), we demonstrate
that the term in the matrix model effective action with four powers of X2 and the least

suppression in R is (X%)*(X?)2/R%5.

4.2 Matrix Model low energy effective action for SU(3)

The calculations performed in this section are a generalization of the calculations
carried out in section 2.1 to the larger rank gauge group SU(3). We will repeat the necessary
background information to make this section self contained. For the reader who is familiar
with material presented in section 2.1, the new content in this section begins just below
equation (4.24).

The matrix model Lagrangian is obtained from the dimensional reduction of A" =1

supersymmetric Yang-Mills theory in D = 941 down to D = 0+ 1 dimensions [10]. For our
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purposes it will be useful to initially keep the action in its ten dimensional form expressed

as

1 i —
10 a va @ a
S = /d x (——4gFWF“ + 5\11 I'“D,w ) (4.10)
where the field strength is given by
Ff, = 0,A% — 9, A% + [ Ab AC, (4.11)

and the 32 x 32 dimensional Dirac matrices I' satisfy the usual algebra {I',,I',} = 2¢,,
with metric g, =diag(+1,—1,...,—1). The 32 component Majorana-Weyl adjoint spinor
W% has only 16 real physical components off mass shell. We should mention that the center
of mass motion of the D0 particles has been removed and we will be considering the SU(3)
theory with the gauge index a=1-8.

To calculate the one loop contributions to the effective action, we will use the
background field method [26] and break the gauge field up into a classical background field
and a fluctuating quantum field,

AL - X2+ AL (4.12)

and choose our gauge fixing condition, D“A;f‘ = 0, to be covariant with respect to the
background field, D), = d,, —it* X . By only keeping terms quadratic in the quantum fields,

one obtains the gauge-fixed Lagrangian in the Feynman-‘t Hooft gauge:
L=Lp+La+Ly+ L. (4.13)
The first piece of the Lagrangian just contains the background gauge field,

1
Lp=——F, F"" 4.14
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whereas the other pieces are quadratic in their respective quantum fields and contain the
background gauge field in the background covariant derivative squared, D?, as well as in

the background field strength Fgg:

Com g {2 [ () 0k () ()14}
Ly = %E l — (D) + (KL, 50) (tb)“] g (4.16)
L.=7¢ [— (DZ)“b] e (4.17)
where
(T77) s = 1 (9065 — 6564 (4.18)
SHY = i[w, . (4.19)

The one loop effective action is obtained by evaluating the functional integral for the quan-

tum fields,
(T / DA'DUDUDEDe expli / 4% (L + Lar + Loy + L£0)], (4.20)
giving
1 1 uy
_ 10/~ pa pura o _ 2 152 b po b
F[X]_/d Pl B ™) + g In Det| (D) g + (FLam)" ¢
Ly Detf- (D*) + (FL,877) "] = iln Det[—(D?)]. (4.21)
8 b

1

7 arises from the fermion field having

For the fermion functional integration the extra factor
16 real components instead of 32 complex ones.

To compute the determinants for the different fields, it is useful to expand D?,

—D* = 9P+ A+ Dy (4.22)
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where

Ay =it* (9, X" + X;0") (4.23)
Doy = XU XM (4.24)

At this point it is convenient to dimensionally reduce to 1-D while choosing X§ = 0, so

Ay = 0. By letting X — rd§8), + RIGS2 + X we can break SU(3) — U(1) x U(1) giving
Ny = —r 38 — 2r X013 — RM3® — 2RX 3% — X010 X0 (4.25)

with the Latin index going 1-9 and fields X? depending only on time. It is important to
note that in 1-D, r and R are dynamical variables and we are holding them fixed in the
spirit of doing a Born-Oppenheimer approximation. The magnetic moment interaction for

the bosons

A = (B, am)" (4.26)
dimensionally reduced becomes
A =2 (9px) )"t (4.27)
since we will be working in a flat direction. Similarly for the fermions one has
A =2 (00 X!5) 1. (4.28)
The general form of a determinant in (4.21) can be written
Trin(—03 + Do+ Ay). (4.29)

Because we are interested in the limit R >>» r and will be letting only the most massive

modes (scale R) run in the loop (gauge index a=4-7) then t3t°r? = 1r? and %8 R? = 2R?.
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It is convenient to rescale, r — 2r, R — %R and define

1
ANp=—i——— 4.
S, VI TP (4.30)
in addition to
A, = —dr Xt (4.31)
AR = ———RXp (4.32)
R — \/g 2 .
AL = X X (4.33)
then the trace becomes
Trin(—03 — R* —r®) + Trin[l + Ap(Ay+ A, 4+ Ar+ AJ)]. (4.34)

The first piece involving —9% — R* — r? is a constant and the second contains the one loop

quantum corrections to the effective action which we will evaluate below by expanding the
logarithm for various numbers of external background fields. We will find that the first
non-zero terms contain four derivatives even if one just integrates over the most massive

modes, R.

4.2.1 Terms with no derivatives

We will display in this section a supersymmetric cancellation between bosons and
fermions for all operators which can be constructed from —D?. Even before considering
the expansion of —D? in (4.22), it is straightforward to see that all terms in the one loop
effective action with no derivatives cancel. This is because the determinants of the bosons
and fermions differ only by derivative terms, and there are an equal number of bosonic and

fermionic factors in the determinant. Given that a non-derivative operator is particularly
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important in the analysis of [43], we show explicitly in this section how non-derivative
operators are cancelled.

The operator in question has the form

2
() I by
5Lefs = i (4.35)

where the gauge index, b=1-2, for the small mass SU(2) subgroup (scale r). Such a term

arises from expanding the logarithm in (4.34) and is given by
1
—§Tr [AFAAFA] (4.36)

or in frequency space

d_w 1 1
21 (w? — R?) [(w — w1)? — R?]

—8Tr[t2t"t31"] /—xl wy)ah (—w) (4.37)

where we have dropped r? in Ap for the leading 1/R behavior. Integrating (4.37) in the
limit wy — 0 and then Fourier transforming gives (4.35). Now the important point to notice
is that A\, arises from —D? which occurs in each determinant for the gauge, fermion and
ghost fields (4.21). However, they each give a different contribution to Tr[t3t*3t*] ~ §%%d(j),

where d(j) is the number of components for the various fields
dj)¥ =32 d(H* =10 d@)F=1. (4.38)

Now it becomes clear that all terms coming from —D? in each of the three determinants

appearing in (4.21) will cancel. To be explicit one gets

[%(10) - é(:sz) —i(D)][ =z 2] = 0. (4.39)

A similar result holds for any number of external fields without derivatives involving A,

Ap, and AL.
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4.2.2 Cancellation of (F{)? or (X#)?

In this section, we show that terms with two derivatives cancel as well. This result
is familiar in higher dimensions, where it is well known that the kinetic terms of the fields
are not renormalized.

Based on the arguments given above the only possible non-vanishing term with

two external fields contains two derivatives and is given by
1
—§Tr [ApAjARAg]. (4.40)

The supersymmetric cancellation of (4.40) between bosons and fermions requires the deter-
mination of Tr[S%SY%] = 8¢% for fermions and Tr[J% %] = 2¢% for bosons. Putting the

term into (4.21) gives

d_w 1 1
21 (w? — R?) [(w — wy)? — R?]

(4.41)

(2@~ (OO rret") [ S X o) X ()

=0

which shows that the 2-point contribution to the effective action at one-loop is zero. We
can also generalize this result to show that all possible non-derivative insertions on a loop

with two derivatives will not give a contribution to the effective action.

4.2.3 V*/RT

Since all terms with two derivatives, no derivatives, or a mixture cancel by the
arguments given above, the only possible non-vanishing term with four external fields is the

four derivative term given by

—%TT‘[(AFAJ)AI] (4.42)
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or in frequency space

/ dwzdwsdwsdw — (w3 + ws + wq) X[~ (wy + w3 + w4)]w2X]8(wz)w3X,§(w3)w4X18(w4)
(27)*[(w + w3)? — RY[(w 4 w3 + w3)? — R][(w + wy + w3 + wy)? — R?|[w? — R?]
(4.43)

with the prefactor

T ) T ] (1.44)

for the gauge boson case. An identical result holds for fermions if one replaces the Lorentz

generator trace with
Tr[§ 5% 50k 50l — 2(gijgkl _ gl 4 gilgjk) (4.45)
whereas for the gauge bosons one finds
Tr[ 7% 7% 70 701 — (gijgkl v gilgjk)' (4.46)

Now using (4.21) and the low energy approximation wy, wz, ws, wsy — 0, we get

271 dw 1
R Ve R AT PR Bk
T | S ey

(4.47)
The integral can be performed in the complex plane using the usual 4ie¢ prescription for
handling the poles. Defining (X%)* = (F3)* = V4, one is left with the result that the first

non-vanishing contribution to the effective potential has four derivatives,

,C(l) 275 V4

ff = A PR (4.48)

even when the gauge group experiences multiple levels of breaking.

4.2.4 V*'%?/R? and V*'?/R%®

Looking at possible insertions with two background fields on a massive loop with

four derivatives gives terms of the form,
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Tri(ApDg)tAL) (4.49)
~2Tr{(Arb s (AFAR) (4.50)
ST Ara) (ALY (4.51)

STH(Ar AN AR (DrA,)) (152

The operators in (4.49) and (4.50) lead to terms of the form V*z%/R? with z being a light
field (scale r) in agreement with [35] , whereas the operators in (4.51) and (4.52) give terms
with more powers of R in the denominator. At this point in our analysis, one might worry
that we have thrown out the vertices coupling three quantum fields (two of mass R and
one of mass r) with one background field which was found to be important in the result
of [43]. However, by considering the z’s as background plus quantum fields, the effective
operator V4x’2/R9 contains the sum of all non-vanishing vertices with up to four derivatives
constructable from such a vertex. We can now use V*4z/>/R? in the path integral (4.20) and

integrate over the light modes 2’ to generate

V4U2
R9y5 ’

(4.53)

where v? = (X?)2. Clearly (4.53) has the wrong dependence on R and r to reproduce the

term of interest in the supergravity scattering amplitude.

4.3 Comment on the Eikonal approximation

When analyzing D0-brane scattering most authors (see e.g. [25, 43] and references

therein) have chosen to use an explicit background given by z = vt + b where v is a
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relative velocity of the DO-branes and b an impact parameter. Such an approach allows
one to construct the exact propagator as a power series in b, v, and ¢t. By organizing the
calculation along the lines suggested by our analysis above, we can exhibit the cancellation of
all V*v2/R7r" contributions to the effective action. The point, again, is to take advantage
of the large R limit. In the functional integral, one first does the integration over the
fields with mass of order R. As explained in section 4.2.1 terms involving only D? cancel,
allowing one to write a simplified expression for the effective action which only depends on

the difference of the derivative terms between bosons and fermions
I[X] = %Trln[l + ALAB) - éTrln[l + ARAY), (4.54)

where A, = —D~?%is the propagator for the heavy fields and is a function of the background
and the light fields. Again, terms with two derivatives of the background or light fields
cancel as in (4.41). Terms with four derivatives and factors of r? expanded up from the
heavy propagator yield precisely the structure V*22/R% So again, there are no terms of
the form V*4v?/R7r" in the effective action.

This of course does not mean that there are not individual diagrams with the
behavior V*4v?/R7r7. However, we see explicitly from this analysis that there are cancel-
lations between bosons and fermions. In [43], a particular diagram with this behavior was
exhibited. But we see that this contribution is cancelled by diagrams involving fermions.

Having seen by explicit calculation that the matrix model effective action contains
no terms of the form V4v?/R7r7 o viv?,/R7r", we show below in a calculation of the matrix

model S-matrix how this term is extracted from the effective action.
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4.4 Computing the S-Matrix in the Matrix Model

The matrix model is the dimensional reduction of ten dimensional supersymmetric

Yang-Mills theory. The action is
1 : : 1 o
S = /dt[gtr(DtXZDtXZ) + gzw‘ﬁﬁltr([xzXf][)(l,XJ])JF (4.55)

ltr(wT Db + M>Ry167~' X1, 6])]
g

where Rqq is the eleven dimensional radius, M is the eleven dimensional Planck mass and
g = 2Rq1. The #’s are the fermionic coordinates.

At small transverse velocity and small momentum transfer (with zero ¢* exchange)
it is a straightforward matter to compute graviton-graviton scattering in the matrix model.
One considers widely separated gravitons, and integrates out the high frequency modes
of the matrix model. This yields, at one loop, an effective Lagrangian for the remaining

diagonal degrees of freedom which behaves as

_150* formion;
Lefp= 677 + fermionic terms. (4.56)

If this effective Lagrangian is then treated in Born approximation, one reproduces precisely
the supergravity result for the S-matrix.

Ref. [35] focused on the problem of multigraviton scattering in the matrix model.
For three graviton scattering, it is necessary to compute the terms of order v® at two
loops in the matrix model Hamiltonian. In the three graviton case, there are two relative
coordinates and correspondingly two relative velocities. The basic strategy of [35], which
will also be the strategy here, was to consider the case where one of the relative separations,

say x13 = #1—23 = R, was much larger than zy5 = r. In this limit, oscillators with frequency
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of order R can be integrated out first, yielding an effective Lagrangian for those with mass
(frequency) of order r (or zero). This effective Lagrangian is restricted by SU(2) symmetry.
Finally, one can consider integrating out oscillators with mass of order r.

In computing the S-matrix for three graviton scattering, as discussed already in
[35], it is necessary not only to compute the terms of order v® in the effective action, but
also to consider terms in the scattering amplitude which are of second order in the one loop
(v*) effective action. In other words, working with the effective action, it is necessary to go
to higher order in the Born series.

In [35], it was observed that terms of the form

4.2
U3V12
i~ (4.57)

cannot appear in the effective action of the matrix model. As we have seen in sections 4.2
and 4.3, the vs factors can only arise from couplings to heavy fields. Integrating out the
fields with mass of order R at one loop, the leading terms involving the light fields z* are of
the form viz®a®/R®. Moreover, it was argued that the terms in (4.57) were not generated
by the higher order Born series referred to above. This last point, however, is incorrect,

and is the source of the error. In fact, it is possible to find the corresponding term in the

matrix model S-matrix.

a,

a,

Figure 4.1: Ladder contribution to the supergravity amplitude. Solid lines are the scattering
gravitons. Wiggly lines represent virtual gravitons with zero longitudinal momentum.
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Figure 4.2: Corresponding contribution in the matrix model involving iteration of the one
loop Hamiltonian. Dashed lines represent matrix elements of the interaction potential.

Consider the problem first from a Hamiltonian viewpoint. We wish to compare
the supergravity graph of fig. 4.1 with the contribution of fig. 4.2 in old fashioned (time-
ordered) perturbation theory. The second graph represents the iteration of the one loop
effective Hamiltonian to second order. In momentum space, it has the correct ﬁ behavior
to reproduce the # behavior of the missing supergravity S-matrix term. However, it
has also an energy denominator, and various factors of velocity. It is straightforward to

check that this energy denominator is proportional to the propagator appearing

1
2k2-q1+493)
in the covariant diagram of fig. 4.1. To compare the diagrams in more detail, one also needs
matrix elements of the type <l§2 + q‘]H’|ng> where H’ is the one loop Hamiltonian. As we
will see in section 4.4.2, the leading term in powers of momentum transfer reproduces the
corresponding term in the supergravity diagram. In other words, if one ignores the difference
in the momenta of the particles in the initial, final and intermediate states, one obtains exact
agreement. To see if higher order terms can cancel the energy denominator and reproduce
the missing term, it is necessary to keep at least terms linear in the momentum transfer.
The problem is that it is not clear how the momentum and r factors are to be ordered in

the Hamiltonian. Depending on what one assumes about this ordering, one obtains quite

different answers.
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Of course, the full model has no such ordering problem. It is only our desire to
simplify the calculation using the effective Hamiltonian that leads to this seeming ambiguity.
There is an alternative approach, however, which leads to an unambiguous answer, and
where one can exploit the simplicity of the one loop effective action. This is to use the path
integral. As we will see, the path integral approach permits an unambiguous resolution of

the ordering problem.

4.4.1 Path integral Computation of the S-Matrix

Let us consider the problem of computing the S-matrix using the path integral.
We will use an approach which is quite close to the eikonal approximation (it is appropriate
for small angle scattering) which has been used in most analyses of matrix model scattering.
It is helpful, first, to review some aspects of potential scattering. In particular, let us first
see how to recover the Born approximation by studying motion near a classical trajectory.
A useful starting point is provided in [37]. In the path integral, it is most natural

to compute the quantity

(# e T |7 = / [de]e’S. (4.58)

To compute the S-matrix, one wants to take the initial and final states to be plane
waves, so one multiplies by P %ie~r ¥t and integrates over a; and zy¢. For small angle
scattering in a weak, short-ranged potential, one expects that the dominant trajectories are

those for free particles,

7 (1) = '2 Tt (4.59)

where ¢ runs from —Z to L, and & = L. It is convenient to change variables [37] to &
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and l;,
f= Lt (4.60)
2
The complete expression for the amplitude is then
Aisf = / dv / d2be B (Fr=pi) iT(Fit ) / [dZ]et. (4.61)
Now if we expand the classical action about this solution, writing
¥F=a,+ 07, (4.62)

(note 6% includes both classical corrections to the straight line path and quantum parts)

we have a free piece,
S, = v?T/2. (4.63)

For large T, the v integral can be done by stationary phase, yielding

7= f‘;pi. (4.64)

We will see that this effectively provides the ordering prescription we require for the matrix
model problem.

For the case of potential scattering, expand e*® in powers of V, and replace the
potential by its Fourier transform. The leading semiclassical contribution to the amplitude

is then proportional to
/dgbeig'(ﬁf_ﬁ") /dgq/dtV(q)eif'(g+ﬁt). (4.65)

The t integral gives a é-function for energy conservation, while the b integral sets ¢ = py—p;.

This is precisely the Born approximation result.
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Higher terms in the Born series can be worked out in a similar fashion. Time
ordering the terms and replacing the potential by its Fourier transform, the time integrals
almost give the expected energy denominators. The terms linear in momentum transfer
(involving ¥-) are given correctly, but the ¢* terms are not. These terms must be generated
by the expansion of V' in powers of dz, which generates additional powers of ¢. This problem,
which is essentially the problem of recoil discussed in [44], will be analyzed in a separate
publication [36]. Here we will work to leading order in ¢, and second order in V.

At second order in V', we need to consider an expression of the form

/dv/dbew P B =) /ﬂ dt1/ dtyV (F(1))V (Z(t)). (4.66)

2

Time order the ¢1,¢; integrals, and Fourier transform each of the factors of V. The integral

over 7 is again done by stationary phase, and the resulting expression has the form:

t N o .
Qv/T dtl/l dt?/db/dql/dqzv GV () P FrPHia-GHo) T (HTt) (g 67)
=2

It is now straightforward to do the ¢;, §;, and gintegrals. The integral over t, yields the
energy denominator, 73.* This differs from the exact energy denominator by terms of order
q*. The final integral over ¢; yields the overall energy conserving d-function. Up to these

terms of order ¢?, this is exactly the second order Born approximation expression.

4.4.2 The Ladder Graphs

We are now in a position to compare the supergravity and matrix model ladder
graphs (see fig. 4.1 and 4.2). On the supergravity side, the calculation is completely stan-

dard, and proceeds along the lines of [35]. As there, we take the vertices from [29]? and

2To be consistent with the authors [30, 31] who use k? = 16x°, the 3-vertex in [29] needs to be multiplied
by 2.
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require that the polarizations of the incoming and outgoing gravitons be identical (as is
4

true to leading order in the inverse distance in the matrix model). The NgNgZ—% term comes
3

from the second vertex, and is precisely of the same form as in graviton-graviton scattering.

The vertex on the first graviton line is

—k1o(k1y — 1v) — (k1o — q10) K1y + 2k10k1y + 2(k10 — q16) (K1y — q1+)- (4.68)

From the first vertex on the second graviton line, we get a similar expression, replacing kq
with k3 and ¢; by —¢;. Multiplying these factors together, and including the propagator,

gives for the corresponding amplitude:

[(k1 - k2) — (g1 - ko) + O(Q%)]‘

Ay = (26) (kg - k3)?(ky - k
1= (26) (k- ha)" (- 2) 4193 (2ks - 1 + 4f)

(4.69)

_ H_4N1N22N3U§U%2[(U%2 - Nllffl FU2) + O(‘I%)]
16 a3 (q1 - Th2)

1 ; (4.70)

expressed in light cone variables with non-relativistic normalization.
Now we want to compare with the matrix model prediction, fig. 4.2. Recalling
the averaging prescription, for the matrix elements of the interaction Hamiltonian we have

(dropping terms suppressed by extra powers of ¢3)

- - 4
15 45 9 4 K1 ko 1.1 1
—)*N{N;N. — — (=) - =g (—+ — 4.71
(322N NZ N (Nl () - 5+ 77) (171)
15,5 2 4.2 2 2 L 2 2
= ()" N1 N3 N3vzvis[(vig — @1 - U12) — —(¢1 - U12) + O(qq)]- (4.72)
16 Ny Ny

After Fourier transforming r and R (not shown above), the first term is exactly the term

found on the supergravity side. The second term cancels the energy denominator, yielding
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a contact term,

NN N5 2 (4.73)
—K 14ViVy— . .
8 4iq3

Each of the four ladder diagrams yields an identical contribution. The sum is precisely the
“missing” term of [35]. At this level, there is no discrepancy between the DLCQ prediction

for the scattering amplitude and supergravity.

4.5 Additional contributions to three graviton scattering

v
3 3
A"
3 \Y
3
v — S
12 Vio

Figure 4.3: Matrix model contribution to three graviton amplitude.

In section 4.2 we showed how to obtain terms in the matrix model effective action with four
powers of vs < V' and two powers of v13 = v (see fig. 4.3). In this section we derive the
coefficient of (4.53) using other techniques. Recall that integrating out fields with mass of
order R yields no terms independent of velocities or quadratic in velocities; at quartic order

in velocity, one has:

15
16

4 4
Uis Vo3
- + = . 4.74
(|9613|7 |9623|7) ( )

For small 215, one can expand in powers of z15. The result can can be generalized to an

SU(2) invariant expression:

_ 15

0L = =13

[((F1 4+ #2) - VR)? + (&% - VR)]—=. (4.75)
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Here 1 + 23 is the center of mass of the 1 — 2 system (combined with the leading term, the
expression is translationally invariant). The superscript @ is an SU(2) index. Contracting
the 2® factors, the leading (infrared divergent and finite) terms cancels as we saw in the

previous chapter. The Euclidean propagator, up to terms quadratic in velocities is given by

S X 4(vivj) + const 69 v?
gy = . 4.
CA W2 + 12 + (w2 +1r2)3 (4.76)

Substituting back in our expression above and performing the frequency integral yields

45 vl , 1

NiN2 N (012 - V)" o=

364—R§1r_5 (4.77)
In deriving this expression it is necessary to keep track of various factors of 2. One comes
from the two real massive fields in the loop (or equivalently, written in terms of complex
fields, from an extra 2 which appears in the vertex), the other from a factor of ¢ = 2Ry, for
a 2-loop result. It is easy to show that this is the only contribution with this r dependence
and four factors of vs.

Let’s compare this with the supergravity amplitude. There is only one diagram
with the tensor structure of (4.77); this arises from the diagram of fig. 4.4. There are also
several terms in individual diagrams of the form vﬁv%zﬁ, as well as terms of order 1/R%®
with a different tensor structure than the matrix model result. We will shortly explain
that, at the level of the S-matrix, all of these terms match, just as in the case of the leading
1/R™r7 term.

Let us first consider the contribution to the supergravity S-matrix of the form

(4.77) above. The relevant diagram is shown fig. 4.4. It is convenient to view ¢; and g3 as

independent, so ¢ = —¢q; — ¢3. From [29], the necessary piece of the three graviton vertex
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.

q,

Figure 4.4: Contribution to three graviton amplitude involving three graviton vertex.
is
2Ps(k1okay v tap) + 286 (Fiokiy N nas) + 4B (ki kayligutac) + 4P (k1 ke hya) (4.78)

It is then a straightforward exercise to evaluate the diagram. Matters are considerably

simplified by using kinematic relations such as &y - q; = —%q%, ki-q2 = %q% — k1 - g3, etc.,

and dropping terms with the wrong R dependence. After only a few lines of algebra, this

yields the covariant form of the amplitude:

1664 [(ky - k3)? (ko - q3)* + (kg - k3)? (ky - q3)® — 2(ky - ks) (ks - ks) (k1 - q3) (ks - f]3)]‘

4.79
0 )
Changing to light cone variables with non-relativistic normalization gives
I{4N1N2N3 4 2 1
—5 (U = 02) - G3)" . (4.80)
2R3, G

Then Fourier transforming gives precisely the matrix model result (4.77).

There are several other kinematic structures which appear in individual super-
gravity diagrams which do not arise in the matrix model computation, and thus must be
produced by iteration of the one loop action. The cancellation, in fact, is closely related to

the cancellation we have studied of the leading term. For example, there are terms from

4,2
the diagram of fig. 4.4 which behave as jg;j}g To see how this and other terms cancel, let

us return to our earlier discussion. There, we set g1 = —¢g2. However, we should be more



59

careful, and write go = —¢; — ¢3. Then from fig. 4.4 we have a contribution

4

K M@+ aqa-g+4q-q
—7N1N2N3U§U%2( )

4iqiql

(4.81)

(previously we kept only the first term and set ¢ = —¢2). We also have the supergravity

term involving the 4-vertex discussed in [35]

4 1 1

K
—— N1 NyN3vgvdy(—— + ——
5 V1iV2 303079 ( 53 —I_q%q%

2 ). (4.82)

On the matrix model side, the higher order Born terms yield

4 1 1

K
— N1 NyN3vsvly(—— + ——
4 ¥ lz(q%q§ 7393

). (4.83)
As before, the leading terms match. Expanding in powers of ¢s, it is not hard to check that

the coefficients of ¢; - g3 and (1 - ¢3)? match as well.

4.6 More Gravitons

4.6.1 n-Graviton Scattering

Certain terms in the four and higher graviton scattering amplitude are easily evalu-
ated by these methods. On the matrix model side, the calculations are particularly simple.
One can, for example, consider a generalization of the three graviton calculation above,

indicated in fig. 4.5. At two loops, we saw that we generate in SU(3) an effective coupling,

45 > 1

—

6_4U3 (UIQ . VR)z R7r5 . (484)

We can generalize this to the case of SU(4), with the hierarchy z4; > 23/ > 221, where
v = 1,2,3 and £ = 1,2. In other words, we again suppose that there is a hierarchy of

distance scales, with one particle very far from the other three, and one of these three far
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from the remaining two. Again, we proceed by first integrating out the most massive states,
then the next most massive, and so on. After the first two integrations, we generate a term

(among others)

1 1 1

7Y E S R E o

45 .
6—41}2‘(113 . V4)2

(4.85)

As before, expand this term in powers of the small distances x1, x5, and generalize to an

SU(2)-invariant expression, yielding:

45 4 . s 1 5 1
— -V .V . 4.86
256U4(U3 4) |—»4|7($ 3) |53|5 ( )
Finally, the integration of z, yields various terms. The piece of (227} oc v'v7 gives
135 , . =9 1 o = .51 1
— -V -V . 4.87

Higher order terms corresponding to n-graviton scattering generated in a similar fashion

will be discussed below.

Figure 4.5: A matrix model diagram contributing to four graviton scattering.

Another term which is easily obtained is indicated in the diagram in fig. 4.6. This
graph includes the interaction of the light SU(2) fields from integrating out the fields with

mass of order x4 at one loop, as well as those obtained by integrating out the fields of mass
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Figure 4.6: Another diagram which is easily computed.

x3 at one loop. The relevant interactions are

g a aviima 32 b oa g2 1
— EEAY BV 4.88
(G 0 - T @ Vo ) (1.55)
Now contracting the 2 factors as in fig. 4.6 yields a term:
15 i1 i1 1
4(=)? |vivs (V4 V5 ViV 4.89
(64) U4U3( 4 4)|f4|7( 3 3)|53|7 |512|3 ( )

On the supergravity side, the required computations are somewhat more compli-
cated. The easiest to consider is the first term (4.87) above. This term is generated by the
diagram of fig. 4.7. It is not difficult to find the particular tensor structures which give
the matrix model expression (4.87). Focus first on the terms involving @ - V4. These must
come from dotting ks into ¢, or q4. Calling ¢5 = —¢3 — qa, the relevant term in the three

graviton vertex is (u, o are the polarization indices carried by the graviton with momentum
1)
2 | P (o G M os) + P (0o G T ) + 2P (05, G M3ac) + 2Ps (g, G350 Tya) | (4.90)

Only a few permutations actually contribute, and contracting with the scattering graviton



62

Figure 4.7: A supergravity contribution to four graviton scattering.
momentum, kyska ks ksg, gives
2(ks3 - 1) kagkan (4.91)

So the whole diagram collapses to Aki’}%ﬁ times the three graviton term we evaluated
earlier. The result agrees completely with the matrix model computation (4.87).

Indeed, one can now go on to consider similar terms in n-graviton scattering. The
supergravity graph indicated in fig. 4.8 can be evaluated by iteration. The coupling of the
n—1 graviton is similar to that of the third graviton in the 4-graviton amplitude and can be
treated in an identical fashion. The result then reduces to the n — 1 graviton computation.

So one obtains

I N O | T R B

— ()" n— Vn = n— 'vn— T= |5 "°" Y = Y = =

16(z) et Vo) E Bz Vet e (8- Vi) s O Vo) e 5w
(4.92)

The corresponding term in the matrix model effective action is also obtained by

iteration. It is easy to generalize the calculation of fig. 4.5 to the case above. Repeating
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our earlier computations gives precisely the result of eqn. (4.92) above.

The computation of the part of the supergravity amplitude corresponding to eqn.
(4.89) is more complicated. This term is generated by the sum of several diagrams. We
will not attempt a detailed comparison here, leaving this, as well as certain other terms, for

future work.

.,
2T
P

Figure 4.8: Diagram contributing to n graviton scattering.

4.6.2 Other Dimensions

According to the Matrix model hypothesis, the compactification of M-theory to
11 — k dimensions is described by k + 1 dimensional super Yang-Mills theory [45, 46]. For
graviton-graviton scattering, this has been done in [24]. It is a simple matter to extend our
analysis to these cases.

As an illustration, consider the three graviton case. Working in units where the

compact dimensions have Ry = 1, then the Fourier transforms needed to convert the super-
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gravity result (4.80) to an effective potential are

2,4 9k igs-R 4 1 7k
F s / B = o3 [ — (4.93)
4(277)1+k (277)9—k q 21+k(ﬁ)1+k R?—k 2
and
2620101, / d°Fq eizlf _ viyv, 1 F(5 - k) (4.94)
em)it | ot 2w Rt 2

On the matrix model side, the loop integrals arising from integrating out the massive states

must now be performed in &k 4+ 1 dimensions giving

d'*kp 1 vl 1 Tk
~60t | Gt e gy = s e () (4:99)

and

i d*FFp 1 U{QU{Q 1 5—k
4”12”‘{2/ (27) 1k (p2 + r2)3 = 2k (/7)1 HF r5—kr( ) (4.96)

in agreement with the supergravity result above. All of the integrals are convergent for
k < 4 and since these same integrals are needed for our n-graviton result, it is a simple

matter to show that the agreement we have found here persists for arbitrary n.

4.7 Some Puzzles

In the original discussion of [10], as well as in [16], the question was raised: why
does the lowest order matrix model calculation reproduce the tree level supergravity result
for graviton-graviton scattering. The scattering amplitude is given by a power series in i—fi,
and one ultimately wants to take a limit with N — oo, ¢ fixed. Moreover, one wants to take
this limit uniformly in r, i.e. one does not expect to scale distances with N. The answer

suggested by these authors was that the explanation lies in a non-renormalization theorem
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for v* terms, which insures that the one-loop result is exact. The required cancellation
was demonstrated at two loops in [25]. Such a theorem for four derivative terms in four
dimensional field theory was proven in [33]. The complete proof for the matrix model was
finally provided in [32].

The agreement of three graviton scattering in the matrix model with supergravity
suggests that there are more non-renormalization theorems governing the various possible
terms at order v®. Indeed, a proof was provided for SU(2) in [47] and for SU(3) in [48].
On the other hand, it is rather easy to see, following reasoning similar to that of [42], that
there are operators at order v® which are renormalized in SU(N), N > 4. In particular,
consider the case of four gravitons. In the previous section, we computed the contribution
to the amplitude (4.87) by contracting z%z® in eqn. (4.76), and took the piece quadratic

2

in v*. Taking, instead, the leading, velocity-independent term in this propagator yields a

contribution to the effective action,

45 o1 1 1
N{NoN3Ny— v (T3 - V)P =Vi——.
N2 NsNag2cva (s - Vi) 2] 32w

(4.97)
Not only does this represent a renormalization of the v® terms computed at two loops,
but the N-dependence of (4.97) is not appropriate to a Lorentz-invariant amplitude. One
might wonder if this term can be cancelled by terms generated at higher order in the Born
series. However, to see that this is not the case, one can define an index of an amplitude, A
(written in momentum space), I 4, which is simply the difference of the number of powers of
momentum in the numerator and in the denominator. All of the amplitudes we have studied
previously have I4 = 2. The iterations of the lower order matrix Hamiltonian also have

I 4 = 2. However, (4.97) has I4 = —4. So this can not be the source of the discrepancy. We

have checked carefully for other diagrams in the matrix model effective action which might
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have this structure, and we do not believe there are any. It is interesting to note that the
work of [48] also indicates that there are v® terms that are not necessarily protected from

renormalizations for N > 3.
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Chapter 5

Non-Renormalization Theorems

for v*V terms in SU(N)

Agreement between the matrix model and supergravity displayed in the previ-
ous chapter suggests an infinite sequence of non-renormalization theorems for a particu-
lar class of v*V terms in the SU(N) matrix model effective action for arbitrary N. The
present chapter will investigate generalizations of the techniques developed in proving non-
renormalization theorems for v* terms in SU(N) and v® terms in SU(3) [32, 47, 48, 49].
The basic strategy is to look at the supersymmetric completion of the vV terms involving
the most fermions, #*V. By analyzing the differential equations resulting from a super-
symmetric variation of the 645 terms, one hopes to fully constrain the tensor structure
and scale (z;;) dependence. We will find that without additional assumptions about the
absence of acceleration terms in the matrix model effective action, we are unable to make
definite statements for #*V terms in SU(N). However, by investigating the implications of

the v® result in SU(3) [48], we can outline a proof showing that some of the v?" terms from
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chapter four are not renormalized.

5.1 Non-renormalization of eight fermion terms in SU(2)

It will be useful to review the arguments used in [32] to reach the conclusion that
the supersymmetric completion [50, 51] of the v? term involving eight fermions are not
renormalized for the SU(2) matrix model effective action. We will see in section 5.2 and
5.3 that similar arguments can be applied to twelve fermion terms in SU(3) with varying
degrees of success.

The various terms in the supersymmetric completion of v* have been calculated
by a number of different authors and are written together in [37] where they show complete
agreement with the tree-level supergravity amplitude. The supersymmetric completion of
v? includes terms with at most eight fermions, §%, and no derivatives. The variation of #®
cannot be cancelled by other terms in the action and must therefore vanish. To see this,

consider the free matrix model action for the massless modes in SU(2),
1 1 :
— g/dt(?ﬂ + i0d) (5.1)
and the one-loop supersymmetric completion for v*/r” at order four!,
1
Ly = /dt— v —|— v 20, (07™"6)0,, — gvpvq(O'ypT”H)(O'yq”H)@m@n— (5.2)

04 (6970 (6770) (947%0)8,,0,0, + —— (67™16) (647160) (6+7"6) (6+7%0),,, 0,0 ]

144 8064

The tree-level susy transformation laws are
Szt = —iey'd

50 = 7', (5.3)

'Terms of a given order (number of derivative plus one-half the number of fermions) are preserved by the
tree-level susy transformations [50].
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where the susy transformation parameter € is order —1/2 and 4* are the real symmetric Dirac
matrices representing the SO(9) Clifford algebra. However, in order for the supersymmetry

algebra to close on shell for Lo 4+ L1, the transformation laws must be corrected to

Szt = —ie'yiO L eN'g

50 = ~'v'e + Me (5.4)

with N order 2 and M order 3 [32, 51]. Now it becomes apparent that the variation of the 6%
term into a 6% term must be invariant since the variation of the tree-level fermionic kinetic
term with M containing six fermions produces at most a seven fermion term.

Although we have written down the precise structure of the eight fermion term
in (5.2) as first computed by [52], it can also be determined by writing down all the pos-
sible eight fermion tensor structures compatible with the SO(9) symmetry and demanding
invariance under susy transformations. As demonstrated in [32], the most general eight

fermion terms compatible with SO(9) invariance and CPT have the form,
(07ij007jk007lm007m”0) (91(r)0inbk1 + 92(r) Sz + g3(r)xixpaiay,). (5.5)

Keeping only the nine fermion term after varying the bosonic coordinate of the functions

gi(r) in (5.5) gives,
—i'ystb(07ij007jk007lm007mn0)85 (91(r)0inbpr + g2(r) Sz, + g3(r)zizpziz,).  (5.6)

For invariance of the Lagrangian to susy transformations, (5.6) must equal zero. One can
proceed to determine the functions ¢;(r) by applying the operator 750%8(1 to (5.6) giving
three coupled second order differential equations. By requiring that the solutions go to zero

as r — 0o, and do not contain negative or fractional powers of the coupling, one is left with
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the eight fermion term written in the compact 1/r” form shown in (5.2). Alternatively,
one can apply the operator 'ygcﬁxq to (5.6) to get three coupled first order differential
equations with the only solutions being given by the eight fermion term in (5.2). Thus we
see that the uniquely determined structure for the eight fermion term has the » dependence
of a one-loop exact result. Consistency with the supersymmetry transformations implies
that the supersymmetric completion of the % term, including v* also be non-renormalized

[51] in agreement with our results in chapter three.

21

5.2 Supersymmetric completion of 2—5(1712 - V) 77

In chapter three and again in chapter four we generated an operator of the form,

1
G i

(Z*-Vg) il (5.7)

in SU(3) by integrating out the most massive modes of scale R. Then by integrating out

the lighter SU(2) modes, %, of scale r, we arrive at the the matrix model term,

4508
6_47‘_?(@12 : VR)

2 1
R

(5.8)
which was shown to agree with the supergravity amplitude for three-graviton scattering in
the limit that the third graviton is far away from the remaining two. Based on the results of
the previous section, if we want to prove an expected non-renormalization theorem for these
v® terms in SU(3), a natural place to begin is by studying the supersymmetric completion
of (5.8) with the most fermions. However, unlike in the previous section, we will see below

that there are two twelve fermion terms in the supersymmetric completion of (5.8) which

complicates the analysis of proving a non-renormalization theorem.
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To consider the supersymmetric completion of (5.8) with the most (twelve) fermions,
we begin by following the steps used in section 4.5 to derive (5.7) for the analogous eight
fermion term. Up to an overall constant the eight fermion term in SU(2) has been deter-
mined by considering constraints imposed by supersymmetry in the previous section while
an explicit background field calculation [52] gives the numerical coefficient, allowing us to

write down the eight fermion term? in SU(3) after integrating out the modes of scale R,

_ 151 ( 6% 63 )
16 8064 |Z13| | [Ta31)

(5.9)

As in section 4.5, expand in powers of z15 and generalize to an SU(2) effective operator

1

151

—_ = 08 =a 2 1

Now using the background fermion Feynman rules developed in [52], it is a straightforward

matter to contract the x%’s to make a two loop twelve fermion term,

5 1 10,3, .. R
5150519 (58 7 (0127'97012) (012777 012) VR Vi~ (5.11)
r—9(9127 Y"012) (127" 012)r" "V VR — r—g(f"VR)(elz’V’Y O12) (0127 v 012)r VR]—RH'

Schematically, each of the terms in (5.11) have the form 0%(01]2)4V%V%/R11r7. A susy
variation of such a term with respect to the bosonic coordinate R is invariant based on
the argument given in the previous section while variation with respect to r gives terms of
the form 6567,/ R'r®. However, unlike the eight fermion term in SU(2), such a variation
is not in general invariant. It turns out that another two loop twelve fermion term can
be constructed from (5.9) with the correct powers of R, r, 65, and 613 to vary under a

supersymmetry transformation into the variation of (5.11). To derive such a term one

?In the discussion that follows, 6% is understood to represent the full tensor structure of the 6% term
appearing in (5.2) after the derivatives have acted on 1/r".
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again starts with (5.9) and brings up one power of x5 from the denominator to combine
with a 615 from the numerator to make an SU(2) coupling of the form,

1

[0;0(1 ($a . VR)]ﬁ

(5.12)

Making a second loop by contracting 8% with z® and attaching five #15’s gives about forty-
five terms of the form 6367,/ R1%r®, some of which vary into 567,/ Rr®.

To constrain the #15 tensor structure and functional dependence on r for the
05601,/ R*r" term, we would proceed by writing down the four terms compatible with SO(9)
invariance. However, we also need to consider the sixty or so possible tensor structures for
the 0767,/ R'%r® terms. In principle, one can imagine having enough constraints from the
differential equations to fully determine the 615 structure, but in practice the algebra be-

comes very cumbersome.

5.3 Twelve fermion term with the fewest factors of R?

In the previous section, we encountered difficulties when there are two twelve
fermion terms which transform into each other. It is natural to suppose that a twelve
fermion term with the fewest powers of R is free of such difficulties. This term can be
generated by starting with the four fermion term in (5.2) which we write schematically as
6*v?/r?. In SU(3) there will be a term like #3v%v®/R?. Contracting the SU(2) fields v® to
form a light loop with eight fermions gives

408
03012
R9p11,

(5.13)

This term has the nice property that the 6%,/r'! part can be shown to be exact following

the argument presented in section 5.1. We also know that the 63/R? structure is not
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renormalized since it was derived from the exact effective operator 3v*v®/R? which is part
of the supersymmetric completion of the non-renormalized operator 65/ R

A potential problem arises with using (5.13) to prove a non-renormalization the-
orem in SU(3) due to the fact that this term might not have the fewest powers of R if
acceleration terms are present in the one-loop matrix model effective action. For example,
a term of the form

030 0" ) R® (5.14)

would lead to a two-loop term like 6367,/ R®r1%. We would then encounter a proliferation of
tensor structure in trying to constrain twelve fermion terms which vary into each other as in
the previous section. There are a couple of reasons to suspect that such an acceleration term
is not present in the matrix model effective action. In our calculation of the coefficient for v*
in chapter two, we did not encounter acceleration terms. In addition, the R dependence of
the corresponding velocity structure, v3v},/R°r® does not appear in the detailed calculation
of three graviton scattering [30]. However, if such an acceleration term did exit, it is
possible that it wouldn’t upset the supersymmetric completion of v* by being invariant to
supersymmetry transformations.

If it were true that acceleration terms of the form (5.14) were absent in the matrix
model effective action we could generalize to SU(4) to show that 8165/ RIR1! is exact along
with its supersymmetric completion #363v%v®/RJRS. Contracting (v*v®) and attaching

eight light #15’s to the loop gives
016567,/ R R3rM. (5.15)

The 6%,/r!! is again exact and we could continue this process to show the exactness of a

certain class of 8*V terms in SU(N).
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5.4 Outline of a Direct Proof for v*" terms in SU(N)

In the previous two sections we have been unable to convincingly constrain twelve
fermion terms without performing more detailed calculations. We will now outline a proof
for non-renormalization theorems involving some v2V terms in SU(N) by investigating
the implications for the propagator (z*2%) due to the successful proof in [48] for the non-
renormalization of twelve fermion terms in SU(3).

Before beginning we will need to assume that one could construct the complete
supersymmetric completion for v® terms in SU(3) and establish invariance to supersym-
metry transformation in analogy with the one-loop supersymmetric completion of v* terms
in SU(2) [51], thereby firmly demonstrating that non-renormalization for #'? terms implies

the same for v® terms. Once this is done, we will know that the term of interest,

1
5

. 1
03 (T2 -vﬁﬁr (5.16)

is an exact result as expected from the matrix model agreement with supergravity for this
term. Knowing that (5.16) is exact allows us to reach some conclusions about corrections

to the propagator. In general the massive propagator for the SU(2) modes has the form
(x¥'e=0) = §9 (A4 Bv2 + C(7- 5)%) + Dv'v! + .. (5.17)

where ... indicates higher order velocity terms. Recall, in deriving (5.16), we began with

the non-renormalized operators

4 4
Y13 U3
S + = 5.18
[T1a]"  |d2a]” (5:18)
to generate
4/ =a 2 1
v (7" - V)" = (5.19)
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and then used the v'v’/ part of the propagator. Because (5.16) is exact we know that
the coefficient D is also exact which gives us the potential to draw conclusions about the
exactness of higher order terms that we generated in a similar fashion in chapter four. It
is important to note, however, that we can only draw conclusions about the coefficient D
in the propagator because none of the §% pieces contribute to a two-loop term due to the
fact that the Laplacian annihilates 1/R”. For this reason we will only be able to make a
statement about R - v terms below.
To generalize to SU(4), we would need to establish that the term

1 1 1

4= v 2
* 5-20
U4(U3 R4) RZ(|513|5 |fz3|5 ( )

is exact in analogy with the exactness of (5.16). This would seem to follow from the analysis
carried out by [48] in constraining twelve fermion terms involving two elements of the Cartan
sub-algebra and again assuming that the supersymmetric completion could be established.

We could then proceed as before to generate

1
R}

1

(% VR,)*—¢.
3 Rg

v (3 - VR,)? (5.21)

Now contracting the z%’s and using the exact v'v’ part of the propagator we arrive at the

non-renormalized term

I 1 . 1 1
Ui(?]g . VR4)2ﬁ(U12 . VRS)QﬁrT' (522)
4 3712

As eluded to above, a little bit of care needs to be exercised, since (5.22) contains terms

involving
1 - 1 1
4/= 2 - 2
v (U3 . VR ) —(U12 . Rg) -3 = (523)
! YRS EE
as well as
1 ., L .11
vy (U3 - VR,)" 27 (V12 - T12) (5.24)
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The term (5.24) can also be generated by taking the § Bv? part of the propagator in
going from (5.21) to (5.24), and the coefficient, B, could in principle be renormalized. As a
consequence we could only make a statement about the terms appearing in (5.23).

In generalizing to SU(N + 1), we would have to make the plausible assumption
that the v2V velocity structure is exact in SU(N + 1), once it has been shown that the same
velocity structure in SU(N) is exact as we did for (5.20) above. One could then proceed to

N+1)

show that the velocity structure in v2( is not renormalized for any N.
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Chapter 6

Conclusion

We have seen in the course of this thesis that the matrix model has successfully
passed the cardinal test of reproducing multigraviton scattering in supergravity. Terms in
three-graviton scattering which were not explicitly studied in the work of [30] are shown
to agree. We have seen that terms in four-graviton and n-graviton scattering, for arbitrary
n, also agree. The fact that all the matrix model terms which agree with supergravity are
protected by non-renormalization theorems (or strong evidence for such theorems exits),
further validates the conjecture that finite N matrix theory describes the DLCQ of M-
theory with the DLCQ of supergravity as a low energy approximation.

In chapter 4, we encountered matrix model terms which did not appear to have a
spacetime description in supergravity. For example, the v® term which gets renormalized
in the SU(4) matrix model effective action has the wrong N dependence to correspond
to a tree level supergravity amplitude. It is possible that new issues arise at the level of
four-graviton scattering. Previous work in two particle scattering showing a discrepancy

between supergravity and the matrix model at finite IV in a curved background [53, 53] can
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be translated into a problem with four-graviton scattering. One can think of the two “far
away” gravitons as providing a background for the scattering of the other two gravitons. It
will be interesting to further investigate some of the matrix model terms describing four-
graviton scattering that we calculated but did not compare with supergravity. If the four
graviton scattering amplitude agrees for terms with differing tensor structures, it would
seem natural to expect that all the leading v*V velocity terms agree in SU(N) for any
N. The subleading terms, like the renormalized v® terms in SU(4), presumably have an
interpretation in M-theory in the large N limit.

In chapter 3 we discussed the problems with defining the matrix model effective
action starting at two loops. Ordinarily one wants to make a Wilsonian type definition
and integrate out massive states down to some scale. However, in the explicit two-loop
calculation [25] both massive and massless states had to be integrated out to obtain the
expected non-renormalization of the v* term. Integrating over the massless states in the
matrix model leads to infrared divergences and an ill-defined effective action. We were able
to show that for the v* terms that all the infrared divergences cancel due to the fact that
the Laplacian in nine dimensions annihilates %7 Consequently for terms that are generated

from %5, we expect infrared renormalizations. Terms with this behavior, such as
4.2 /P9 5
vgv1y /RO, (6.1)

already exist at two loops and in chapter 4 we saw they agreed with the supergravity
amplitude. We also know from the work in [48], the fermionic supersymetric completion of
such a term is not renormalized, so it seems natural to suspect that this velocity term is
exact. Why then does (6.1) receive infrared renormalizations? The answer would seem to

be that the coordinate space propagator should be defined so that it vanishes at equal times.
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This is the correct prescription to reproduce the Born series in potential scattering and free
the matrix model of infrared divergences. On the surface, this answer seems like a logical
prescription, but the fact that an analogous term in SU(4) receives finite renormalizations
(as demonstrated at the end of chapter 4) makes one worry that perhaps we are missing
another subtle lesson the matrix model is trying to teach us.

Throughout this thesis we have been mostly studying eleven dimensional DLCQ M-
theory. In section 4.6.2 we very briefly considered up to four compact dimensions, indicating
that our multigraviton scattering results should hold for DLCQ M-theory in as low as seven
spacetime dimensions. Of course it would be nice to be able to make contact with four
spacetime dimensions. However, remembering that M-theory compactified k dimensions
is described by k+1 dimensional super Yang-Mills theory, one would expect trouble when
k=4, due to non-renormalizable operators. It turns out that new states can be added to
the field theory allowing an M-theory description in no less than six spacetime dimensions
[19, 18]. Trying to define M-theory in 4 or even 5 spacetime dimensions requires new degrees
of freedom that have yet to be understood [12].

Given the matrix model’s tremendous success in reproducing supergravity ampli-
tudes in addition to the numerous other non-trivial tests the matrix model has passed, it
seems reasonable to suspect that the matrix model is a correct formulation for the non-

perturbative limit of superstring theory.
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