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Abstract

M�Theory� Supergravity and the Matrix Model� Graviton Scattering and

Non�Renormalization Theorems

by

Robert S� Echols

After brie�y reviewing M�Theory and it�s relationship to the previously known

superstring theories� we investigate some of the initial evidence for the matrix model de�

scription of M�Theory� namely graviton�graviton scattering� We discuss the importance of

non�renormalization theorems in understanding the matrix models success for reproducing

the supergravity two�graviton scattering result for �nite N � and provide evidence for the

non�renormalization theorem involving terms with four derivatives in the low energy matrix

model e	ective action�

We then go on to analyze the matrix models ability to reproduce tree level super�

gravity amplitudes for multigraviton scattering� Beginning with three�graviton scattering�

we discuss and resolve the apparent discrepancy between the supergravity and matrix model

amplitudes� We also show exact agreement for certain terms in n�graviton scattering� The

matrix model�s success in describing these terms in n�graviton scattering led us to search

for an in�nite sequence of non�renormalization theorems for a subset of terms in the matrix

model e	ective action� We describe the di
culties with some of our approaches in achieving

this goal�
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Chapter �

Introduction

��� Motivation

Perhaps the most naive motivation for string theory is re�ected in the fact that

present day particle physicists treat the fundamental particles as point objects in their

calculations� It seems natural to suppose that the fundamental objects have a �nite size�

String theory does exactly this by postulating that the building blocks of nature are tiny

pieces of string� However� with the relatively recent discovery of D�branes ��� �� as essential

fundamental objects in string theory along with the emergence of M�theory ��� �� and its

fundamental two and �ve dimensional membranes� it is clear that strings are not necessarily

the fundamental objects either�

Aside from the conceptual problems of treating the fundamental particles as point�

like� there are technical di
culties as well� The most notorious problem is the appearance

of ultra�violet or high energy divergences in four dimensional perturbative quantum �eld

theory calculations at one loop� Although these di
culties can be overcome for the quantum



�

�eld theories describing the strong� weak and electromagnetic forces� the quantization of

Einstein�s theory of general relativity leads to uncontrollable divergences� signaling the

need for an underlying fundamental theory� String theory is able to soften all the ultra�

violet divergences and at present is the only known consistent theory of quantum gravity�

Superstring theory is more than a theory of quantum gravity� it also has the ability to unify

all the fundamental forces found in nature ��� ���

An important ingredient in superstring theory is the need for nature to exhibit

spacetime supersymmetry� a symmetry relating the equal numbers of bosonic and fermionic

degrees of freedom in the theory ���� Low energy supersymmetry is currently the most

popular means for stabilizing the hierarchy from the electroweak scale 
��� GeV� to the

GUT scale 
���� GeV� with the added bene�t of nicely predicting the uni�cation of the

gauge coupling constants� While supersymmetry is an essential part of superstring theory�

low energy supersymmetry breaking is at present not yet a prediction of the theory and

supersymmetry broken at high energies is also a consistent possibility�

Taking the approach that superstring theory is possibly the underlying consistent

theory which will replace the low energy e	ective theory of the standard model while in�

corporating quantum gravity� we investigate in this thesis the matrix model description of

M�theory� a recently discovered non�perturbative limit of superstring theory� By way of

introduction� the next section of this chapter describes the emergence of eleven dimensional

M�theory as the strong coupling limit of the Type IIA superstring� We �nish this chapter

by giving a heuristic motivation for the matrix model description of M�theory and discuss

some interesting features of the matrix model�

In chapter two we review the calculations which show how matrix theory does
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indeed reproduce the leading term for long distance graviton�graviton scattering in super�

gravity� The matrix theory calculations are done using the background �eld method with

an unspeci�ed background allowing us to determine if acceleration terms are present in the

matrix model e	ective action with four external background �elds� The supergravity calcu�

lation is carried out by using the Feynman rules derived from the Einstein�Hilbert action in

eleven dimensions� We conclude this chapter with a closer look at the SU
�� matrix model

loop expansion and discuss the role non�renormalization theorems play in understanding

the matrix model�s ability to reproduce the two graviton scattering amplitude�

Chapter three analyzes the matrix model e	ective action for SU
�� and SU
��

beyond one loop� By investigating potential infrared divergences� we show that divergent

contributions to v� terms at two loops cancel� In fact� we are able to show to all orders

that the infrared corrections to v� cancel as a result of �
r�
being the Green�s function for

the nine dimensional Laplacian� further establishing evidence for the non�renormalization

of v� terms in the matrix model e	ective action� We then generalize to SU
�� and show

that potentially �nite corrections to the v� terms cancel at two loops� Unlike the SU
��

case we are unable to establish an all orders argument�

In chapter four we take a more in depth look at multigraviton scattering� Pro�

viding a rebuttal to a claim in the literature� we describe in detail why the matrix model

e	ective action does not contain a term found in the supergravity scattering amplitude for

three gravitons� We then go on to show how the matrix model can generate such a term by

analyzing the matrix model S�matrix� We look at additional terms in three graviton scat�

tering and then generalize to n�graviton scattering� showing agreement between the matrix

model and supergravity with up to four spacetime dimensions compacti�ed� At the end of
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this chapter we discuss renormalized terms which are subleading in the velocity expansion�

In particular� we look at a renormalized v� term in SU
�� and conclude that there are many

similar terms in the v�N velocity expansion with fewer powers of velocity in SU
N� starting

at three loops�

Based on our success with using the matrix model to describe certain terms in

n�graviton scattering we explore in chapter �ve various attempts at �nding an in�nite

sequence of non�renormalization theorems� We begin by reviewing the techniques used to

prove a non�renormalization theorem for the v� term in SU
��� In generalizing to SU
���

we encounter di
culties with a proliferation of fermion tensor structures and the need to

assume that certain fermion terms involving acceleration are absent in the matrix model

e	ective action� We are� however� able to provide a direct proof showing a certain class of

v�N terms in the SU
N� matrix model are exact by making some reasonable assumptions�

��� From String Theory to M�Theory

What is superstring theory� In the mid �����s� the answer was �ve consistent

string theories each formulated in ten space�time dimensions possessing world�sheet and

space�time supersymmetry with a well de�ned perturbation expansion� The �ve theories

have become known as the type IIA� type IIB� type I� E	 � E	 heterotic and the SO
���

heterotic� The type II and heterotic theories describe oriented closed strings while the type

I theory describes open and closed unoriented strings�� The size of these strings is taken to

be close to the Planck scale 
���

 cm� and the six extra dimensions are believed to have

remained small while our familiar three spatial dimensions have expanded since the time of

�An unoriented string does not have an orientation or handedness� Speaking more precisely� if the string
has length� l� and is parameterized by �� then � � l � � is a symmetry of an unoriented string�



�

the big bang� In this scenario� the fundamental particles observed in nature are excitations

of the quantized string� For example� the graviton turns out to be the �rst excitation of the

left and right moving modes of a closed string�

Recently� in what has been called the second superstring revolution�� new meth�

ods have been developed to understand superstring theories at strong coupling� What has

emerged is an understanding that the �ve distinct superstring theories are merely weak cou�

pling limits of a larger non�perturbative eleven dimensional limit called� M�theory
� Crucial

to these developments has been the discovery of new dynamical objects in string theory�

Dp�branes ���� p�dimensional objects on which open strings with Dirichlet 
X� �constant�

boundary conditions can end� The �rst 
and most relevant for the discussion below� route

to M�theory from string theory was discovered by Witten ���� as the strong coupling limit

of the IIA superstring� It had previously been known that the low energy limit of the

IIA string� type IIA supergravity� could be obtained by the dimensional reduction of the

elegantly formulated N � � supergravity in eleven dimensions ���� The spectrum of eleven

dimensional supergravity contains ��� bosonic degrees of freedom in the form of the gravi�

ton and an antisymmetric ��Form tensor� and ��� fermionic gravitino degrees of freedom�

The natural question to ask is what consistent theory could eleven dimensional supergravity

be the low energy limit of� In analyzing the D��branes of the IIA string theory� one �nds

that the mass of N of them behaves as

M �
N

gls

����

where g is the coupling and ls is the string length� Since D��branes are annihilated by half

�See� for example� the article by J� Schwarz ����
�Some authors argue that M�theory is the underlying theory from which all the rest of string theory is

to be derived while others contend that it is merely another point in the moduli space of the theory�



�

the supersymmetry generators 
BPS states�� the mass relation above is exact for any value

of the coupling� Taking the g �� limit the spectrum goes over to a continuum reminiscent

of Kaluza�Klein modes when a dimension is uncompacti�ed� Making the identi�cation

R�� � gls� 
����

we see that a new eleventh dimension appears in the strong coupling limit of the IIA string

theory� We can also see why this extra dimension and the D��branes went unnoticed in

weak coupling string theory� In the limit g � � the D��branes become in�nitely massive

and the eleventh dimension goes to zero size� The identi�cation 
���� can be made stronger

by realizing that these states 
���� are the ��� states of eleven dimensional supergravity

compacti�ed on radius R��� Thus� the IIA theory at strong coupling grows another dimen�

sion and this new limit� called M�theory� contains eleven dimensional supergravity at low

energy�

��� Matrix Model Description of M�Theory

To arrive at the original conjecture of M�theory as a matrix model ����� Banks�

Fischler� Shenker� and Susskind 
BFSS� exploited the M�theory�IIA duality mentioned in

the previous section� In particular� they argued that a spatial compacti�cation of an eleven

dimensional coordinate in M�theory on a circle of radius� R��� gives rise to a quantized

momentum� P�� � N�R��� In the in�nite momentum frame 
IMF�� N � � limit� they

assumed that objects of negative and zero momentum decouple� leaving only objects which

carry positive momentum� Since M�theory compacti�ed on a circle is the IIA string� and

only D��branes carry P�� in the IIA theory� BFSS concluded that M�theory in the limit



�

N � � must be described by the theory of N D��branes� Previous work by Witten ����

had established that the theory of N D��branes is described by a U
N� supersymmetric

quantum mechanics derived from the dimensional reduction of � � � dimensional super

Yang�Mills theory down to � � � dimensions� The BFSS conjecture can be summarized as

this� M�theory in the IMF is a U
N� supersymmetric quantum mechanics 
matrix model�

describing D��branes in the limit N ���

In addition to their heuristic motivation for the matrix model description of M�

theory� BFSS provided a number of pieces of evidence to support the conjecture� They

showed that the matrix model contained the ��� states of the supergravity multiplet in

addition to being able to describe large classical membranes both of which were believed

to exist in M�theory� BFSS also presented a calculation showing that graviton scattering

in the matrix model at low energy and long distance gives what one expects of M�theory

in this regime� namely graviton scattering in supergravity� To date� numerous additional

pieces of evidence have been put forth to support the BFSS conjecture� many of which can

be found in the reviews of the matrix model ���� ��� ��� ����

Shortly after the original conjecture of BFSS� another conjecture was put forward

by Susskind ���� arguing for an equivalence between M�theory and the matrix model for �nite

N � Susskind noted that if a light�like coordinate x� � xo�x�� is compacti�ed then the states

with negative discrete momentum� p� � N
R decouple for all N � Periodically identifying a

light�like coordinate is know in the literature as Discrete Light Cone Quantization 
DLCQ�

����� Consequently� Susskind�s conjecture states that the DLCQ of M�theory is described by

the U
N� super Yang�Mills matrix theory for �niteN � This new conjecture was subsequently

derived by considering M�theory compacti�ed on a light�like circle as a limit of a small



�

spatially compacti�ed circle boosted by a large amount ���� ���� However� this does not

necessarily mean that for long distance processes� the �nite N matrix model should agree

with the the DLCQ of eleven dimensional supergravity� In other words� is the DLCQ of

M�theory described at low energy by DLCQ supergravity� We will refer to this expectation

as the �naive DLCQ�� Throughout the course of this thesis our primary emphasis will

be placed on testing the naive DLCQ hypothesis� We will investigate the matrix model�s

ability to reproduce graviton scattering and the role of non�renormalization theorems in

understanding the agreement with supergravity� Before beginning it will be useful to discuss

the matrix model description of D��branes�

Prior to the BFSS proposal� D��brane dynamics had been studied by a number of

authors ���� ��� ���� As mentioned above� the supersymmetric quantum mechanics describ�

ing D��branes is obtained by the dimensional reduction of ten dimensional super Yang�Mills

theory down to one time dimension giving the action�

S �

Z
dt�
�

g
tr
DtX

iDtX
i� �

�

�g
M�R�

��tr
�X
i� Xj��X i� Xj��� 
����

�

g
tr
i�TDt� �M
R���

T�i�X i� ����

where R�� is the eleven dimensional radius� M is the eleven dimensional Planck mass and

g � �R��� The diagonal elements of the hermitian matrices X i give the positions of the

D��branes in the transverse space 
i � � to ��� There are sixteen real fermionic coordinates�

�a� and �iab are the ��� �� real symmetric Dirac matrices representing the SO
�� Cli	ord

algebra� The covariant derivative is de�ned by DtX
i � �tX

i��A�X i�� where A is the gauge

�eld and a similar expression holds for Dt��

To see how the matrix model reproduces the supergravity multiplet of ��� states�



�

consider the free matrix model Hamiltonian 
choosing the gauge A � ���

H �
�

g
tr
�tX

i�tX
i�� 
����

Since 
���� is independent of fermions� we can form a Cli	ord algebra with the sixteen

degenerate fermions

f��� ��g � 	���� 
����

Making eight 
i � � to �� creation and annihilation operators from the fermions

a�i �
�p
�

��i�� � ��i�� 
����

we can act on the ground state using the usual Fermi�Dirac statistics to show there are

a total of ��� states� With further analysis ���� it can be shown that these ��� states

decompose into a ���������� the spin content of eleven dimensional supergravity�

An interesting feature of the matrix model is the potential term involving the

coordinates�

tr
�X i� Xj��X i� Xj��� 
����

At long distances� large values of X � this potential must vanish classically to minimize the

energy of the system� The X �s must be diagonal and commuting of the form

�x �

�
BBBBBBBBB�

�x� � � � � �

� �x� � � � �

� � � � � � � � � � � �

� � � � � � � �xN

�
CCCCCCCCCA
� 
����

Commuting coordinates are� of course� what we are used to� but when the D��branes

get close to each other the dynamics is taken over by the full non�commuting geometry�

For our purposes of long distance scattering� we will be interested in classically commuting
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coordinates with small non�commuting quantum �uctuations� The simplest case to analyze�

which we will do in greater depth in the next chapter� is two D��branes separated by a

distance r� After removing an overall U
�� describing the center of mass motion� we are

left with an SU
�� theory with classical positions of the D��branes given by

�x � �r T
 �
�

�

�
� �r �

� ��r

�
A 
����

and the relative separation between the D��branes is �x� � �x� � �r� The classical D��brane

separation acts as a vacuum expectation value 
vev� and breaks SU
�� down to U
�� in

the same way the Higgs vev provides symmetry breaking in the standard model� The o	�

diagonal states become very massive for large r and can be integrated out giving rise to

an e	ective potential for the massless diagonal degrees of freedom describing the D��brane

positions� We will see in the next chapter� that the leading term in the e	ective potential has

the necessary form and precise numerical coe
cient to correspond with graviton�graviton

scattering in eleven dimensional supergravity�
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Chapter �

Evidence for the Matrix

Conjecture� Graviton�Graviton

Scattering

One of the important original pieces of evidence for the matrix model conjecture

was that it successfully reproduced graviton�graviton scattering in supergravity ����� It will

be useful to review in detail the calculations showing agreement between the matrix model

and supergravity for graviton�graviton scattering� The technique we employ to calculate

the leading term in the matrix model e	ective action allows us to determine if acceleration

terms are present� Other matrix model calculations appearing in the literature either lacked

detail ���� to determine the presence of acceleration terms or used an explicit straight line

constant velocity background ����� The tools that we develop in this chapter will be later

generalized to analyze multigraviton scattering�



��

��� Matrix Model low energy e�ective action for SU���

The matrix model Lagrangian is obtained from the dimensional reduction ofN � �

supersymmetric Yang�Mills theory in D � ��� down to D � ��� dimensions ����� For our

purposes it will be useful to initially keep the action in its ten dimensional form expressed

as

S �

Z
d��x

�
� �

�g
F a
��F

��a �
i

�
 
a
!�D� 

a

�

����

where the �eld strength is given by

F a
�� � ��A

a
� � ��A

a
� � fabcA�A� � 
����

and the ����� dimensional Dirac matrices ! satisfy the usual algebra f!��!�g � �g�� with

metric g�� �diag
������ �������� The �� component Majorana�Weyl adjoint spinor  a has

only �� real physical components o	 mass shell� We should mention that the center of mass

motion of the D� particles has been removed and we are considering the SU
�� theory�

To calculate the one loop contributions to the e	ective action� we will use the

background �eld method ���� and break the gauge �eld up into a classical background �eld

and a �uctuating quantum �eld�

Aa
� � Xa

� �A
�a
� � 
����

and choose our gauge �xing condition� D�A
�a
� � �� to be covariant with respect to the

background �eld� D� � �� � itaXa
�� Using the generators for Lorentz transformations on

��vectors� 
J ����� � i
�
	��	

�
� � 	��	

�
�

�
� and spinors� S�� � i

� �!
��!� �� and only keeping terms

quadratic in the quantum �elds� one obtains the gauge��xed Lagrangian in the Feynman�



��

"t Hooft gauge�

L � LB � LA� � L	 � Lc� 
����

The �rst piece of the Lagrangian just contains the background gauge �eld�

LB � � �

�g
F a
��F

��a 
����

whereas the other pieces are quadratic in their respective quantum �elds and contain the

background gauge �eld in the background covariant derivative squared� D�� as well as in

the background �eld strength F b
���

LA� � � �

�g

n
A

�a
�

h
�
�
D�

�ac
g�� �

�
F b
��J ��

��� �
tb
�aci

A
�c
�

o

����

L	 � �

�
 
a

	r
� 
D��ac �

�
F b
��S

��
�

tb�ac



 c 
����

Lc � ca
�
�
�
D�

�ab�
cb� 
����

In the fermion term� the square root arises from squaring i!�D� and then taking the square

root with the virtue of putting each of the quadratic parts of the Lagrangian in the same

form� This will allow the supersymmetric cancellations of diagrams to become explicit

without having to evaluate individual Feynman diagrams�

The one loop e	ective action is obtained by evaluating the functional integral for

the quantum �elds�

ei��X
 �

Z
DA�D Dc exp�i

Z
d��x
LB � LA� � L	 � Lc��� 
����

giving

!�X � �
Z
d��x
� �

�g
F a
��F

��a� �
i

�
lnDet��

�
D�

�
g�� �

�
F b
��J ��

���
tb�

� i

�
lnDet��

�
D�

�
�
�
F b
��S

��
�
tb�� i lnDet��
D���� 
�����
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For the fermion functional integration the extra factor �
� arises from the fermion �eld having

�� real components instead of �� complex ones�

To compute the determinants for the di	erent �elds� it is useful to expand D��

�D� � ��� ��� ��� 
�����

where

�� � ita
��X
�a �Xa

��
�� 
�����

�� � Xa
�t

aX�btb� 
�����

At this point it is convenient to dimensionally reduce to ��D while choosing Xa
� � �� then

�� � �� Choosing the D��branes to have a separation of r in the ninth transverse spatial

direction� Xa
� � r	a
	

�
� �Xa

� � we can break SU
��� U
�� giving

�� � �r�t
t
 � �rXa
� t

at
 �Xa
i t

aX ibtb 
�����

with the Latin index going �#� and �elds Xa
i depending only on time� The magnetic moment

interaction for the bosons

�B
J �

�
F b
��J ��

���
tb 
�����

dimensionally reduced becomes

�B
J � �

�
��X

b
iJ �i

���
tb 
�����

since we will be working in a �at direction� Similarly for the fermions one has

�	
J � �

�
��X

b
iS

�i
�
tb� 
�����

where we recognize ��Xi � F�i as the velocity� The general form of a determinant in 
�����

can be written

Tr ln
���� ��� ��J�� 
�����



��

Because we will only be considering the case of massless background �elds we combine ��

with r� and de�ne

�F �
�

���� � r�

�����

in addition to

�b � ��rXa
� t

at
 
�����

��
� � �Xa

i t
aX ibtb 
�����

then the trace becomes

Tr ln
���� � r�� � Tr ln�� ��F 
��
� ��b ��J��� 
�����

The �rst piece involving �����r� is a constant and the second contains the one loop quantum

correction to the e	ective action which we will evaluate below by expanding the logarithm

for various numbers of external background �elds�

����� Non�Renormalization of F �
�i

The various contributions with two external �elds are�

Tr

�F��

�

�
� 
�����

��
�
Tr ��F�b�F�b� 
�����

and

��
�
Tr ��F�J�F�J � � 
�����

The �rst and second terms occur in the determinant for the gauge� fermion and ghost

�elds whereas the last term only occurs for gauge and fermion �elds� Writing out 
����� in



��

frequency space gives

Tr��F��
�� � �Tr�t
t
�

Z
dw�

�

X

i 
w��X

i

�w��
Z

dw

�


�


w� � r��

�����

which involves Tr�t
t
� � � d
j�� where d
j� is the number of components for the various

�elds

d
j�	 � �� d
j�A
�

� �� d
j�c � �� 
�����

and the � arises from the trace of an SU
�� generator squared in the adjoint representation�

Now it becomes clear that identical terms which arise in each of the three determinants

appearing in 
����� will cancel� To be explicit one gets

�
i

�

���� i

�

���� i
����Term� � � 
�����

where �Term� is the frequency integral of 
����� or 
������ The supersymmetric cancellation

of 
����� between bosons and fermions is slightly more subtle requiring the determination

of Tr�S�iS�j� � �gij for fermions and Tr�J oiJ oj � � �gij for bosons� Putting the terms into


����� gives

�
i

�

��� i

�

���i
���

Z
dw�

�

w�
�X



i 
w��X

i

�w��

Z
dw

�


�


w� � r��

�

�
w� w��� � r��
� � 
�����

which shows that the ��point contribution to the e	ective action at one�loop is zero� This

result is consistent with the fact that N � � super Yang�Mills in four dimensions receives

no renormalizations of the kinetic terms�

����� Coe�cient of v��r�

With four external �elds� the only term which doesn�t cancel by the arguments

given above is

��
�
Tr��F�J�F�J�F�J�F�J � 
�����



��

or in frequency space

Z dw�dw
dw�dw� 
w� � w
 � w��X


i ��
w� � w
 � w���w�X



j 
w��w
X



k
w
�w�X



l 
w��


�
���
w� w��� � r���
w� w� � w
�� � r���
w� w� � w
 � w��� � r���w� � r��


�����

with the prefactor

��
�
�� Tr�
t
�

�
�Tr�
J �i�

�
� 
�����

for the gauge boson case� An identical result holds for fermions if one replaces the Lorentz

generator trace with

Tr�S�iS�jS�kS�l� � �
gijgkl � gikgjl � gilgjk� 
�����

whereas for the gauge bosons one �nds

Tr�J �iJ �jJ �kJ �l� � 
gijgkl � gilgjk�� 
�����

Now using 
����� and the low energy approximation w�� w�� w
� w� � �� we get

��i�
F 

�i�

���
Z

dw

�


�


w� � r���
� 
�����

The integral can be performed in the complex plane using the usual �i� prescription for

handling the poles� One is left with the well known result ���� ��� ���

L���
eff �

��

��

v���
r�


�����

suppressing factors of N � R��� Mpl and using v��� � 
F 

oi�

� � 
�v� � �v��
�� Although many

authors have obtained this same result� only the calculation discussed in ���� was sensitive

to acceleration terms� Since the calculation in ���� lacked details� we wanted to see explicitly

that the matrix model did not have acceleration terms in the one�loop e	ective action with

four external �elds as we have just demonstrated� We will see below that the leading term



��

in a ��r expansion of the supergravity e	ective action for graviton�graviton scattering has

precisely this structure and numeric coe
cient�

��� Supergravity E�ective Action� Two Graviton Interaction

Now that we have the leading term in the matrix model low energy e	ective action

we are in a position to test the DLCQ matrix model�supergravity conjecture� In this section

we will calculate the leading term in the e	ective potential between two gravitons and

compare it with the matrix model calculation 
������

Since there are no couplings of two gravitons with a gravitino in the supergravity

action� a tree�level calculation of graviton scattering only involves gravitons� It is therefore

su
cient to proceed with the Feynman rules derived from the Einstein�Hilbert action in

eleven dimensions�

S �
�

���

Z
d��x

p�gR� 
�����

In 
������ �� � ��
� is the gravitational coupling constant using units with Mpl � ��

g � det
g��� and R is the Ricci scalar curvature� To derive the Feynman rules for the

graviton propagator and vertices one expands 
����� in powers of the coupling by writing

the metric as

g�� � 
�� � �h�� 
�����

where 
�� is the �at space�time metric and the metric perturbation h�� is identi�ed with

the gravitational �eld� Such a procedure was �rst carried out by DeWitt ����� The Feynman

rules for the three and four�graviton vertex functions as well as the propagator in D space�

time dimensions are nicely summarized in �����



��

Graviton�graviton scattering at long distance or small momentum transfer� q� re�

quires the evaluation of the Feynman diagram shown in �gure ���� The incoming graviton

q

k

k

k

k

1

2

1
/

2
/

Figure ���� Graviton�graviton scattering at small momentum transfer� Solid lines are the
scattering gravitons� The wiggly line represents a virtual graviton with zero longitudinal
momentum�

momentum are k� and k� with outgoing momentum given by k�� and k��� Each external

on�shell graviton has a symmetric� traceless polarization tensor of the form� ��� � which is

transverse to the graviton propagation� k���� � �� In evaluating this diagram� a number

of simpli�cations occur by considering the q � � limit and realizing that the leading term

in the matrix model calculation 
����� preserves the helicity of the scattering gravitons�

In particular� ki � �k�i 
the Feynman rules in ���� de�ne all momentum �owing into the

vertex� or ki � k�i � � 
i � � or �� and we are only interested in terms with the polarization

tensors dotting into themselves� 
�� � ����
�� � ����� Given these simpli�cations along with the

fact that the external gravitons are traceless and transverse� we only need to consider two

out of the eleven terms in the ��vertex function�

�� sym�P

k��k
�
�

��
��� � P�
k��k�

��
����� 
�����

where sym means that the result must be symmetric in the three graviton indices� ��� ��� ��

and P with the subscript indicates the number of distinct permutations of the momentum�

graviton index combinations� As an example� consider the �rst term in 
������

symP

k��k
�
�

��
��� � k��k

�
�

���
��� � k��q�
���
��
 � k���q�
���

�� 
�����

�To be consistent with the authors �	
� 	�� �
� who use �� � ����� the 	�vertex in ���� needs to be
multiplied by ��



��

with


���
��� �
�

�


��
�� � 
��
���� 
�����

Performing the various contractions for the vertex involving graviton one and keeping the

relevant terms gives� ��k��k�

�������� A similar result holds for the vertex involving graviton

two� ��k��k�

�� � ����� Thus contracting the ��vertices together with a graviton propagator

gives the term of interest for graviton�graviton scattering�

���
k� � k���
�� � ����
�� � ����
q�

� 
�����

To compare 
����� with 
����� we need to convert to light cone variables with non�relativistic

normalization�

Light cone variables can be de�ned in various ways depending on where one chooses

to place factors of two� We use k� � ko�k�� and k
� � ko�k�� where k�� � N�R�� carries

the discrete Kaluza�Klein momentum� Then de�ning the invariant scalar product of two

space�time vectors to be

k� � k� � �

�

k�� k

�
� � k�� k

�
� �� �k� � �k�� 
�����

one can show that

k� � k� � k�� k
�
�

�

�v� � �v��

� 
�����

where k� � �k�� and we have used �k � k���v along with k� � �k���k��� To obtain the

non�relativistic amplitude we divide by
p
k� �

p
�E for each external graviton giving

��N�N�v
�
��

�R�
���q

�

�����

for the non�relativistic graviton�graviton amplitude expressed in light cone variables with

zero longitudinal momentum transfer� q� � �� and �v�� � �v� � �v�� Now taking the Fourier



��

transform of the transverse momentum to obtain the e	ective potential between gravitons�

one arrives at

Veff
r� �
�

�
R��

Z
d�q


�
��
��N�N�v

�
��

�R�
���q

�
�
��

��

N�N�

R

��

v���
r�


�����

in perfect agreement with the matrix model result 
������ Of course one might argue that we

have made the supergravity result agree with the matrix model by our choice of �� However�

as discussed in ����� the value of � is determined by comparing the membrane tension when

M�theory is compacti�ed on a circle with the type IIA string tension� In addition� as we

will see in chapter �� this same value of � gives agreement between supergravity and the

matrix model for multigraviton scattering�

��� Importance of Non�Renormalization Theorems

As argued in the original proposal for the Matrix description of M�Theory ����

the agreement between supergravity and the matrix model that we have displayed in the

previous sections can only be understood if the one�loop matrix model result� v��r�� is

exact� To understand this point more clearly it is useful to write down the loop expansion

in powers of v and r for the bosonic terms in the SU
�� matrix model e	ective action �����

L� � c��v
�

L� � c��
v�

r�
� c��

v�

r��
� c�


v	

r��
� � � �

L� � c��
v�

r��
� c��

v�

r��
� c�


v	

r�	
� � � �

L
 � c
�
v�

r�

� c
�

v�

r��
� c



v	

r��
� � � �


�����

The authors in ���� gave direct evidence that the two�loop correction to v��r� was zero by

showing the coe
cient c�� � �� In the next chapter we will show that potential infrared



��

corrections to the four derivative term� v�� at arbitrary loop order cancel� Historically�

this cancellation of infrared corrections to the v� term was the �rst evidence for the non�

renormalization of v� at all orders in the matrix model� The complete proof for the matrix

model was given shortly after in ����� Using constraints from supersymmetry they were able

to show that indeed the v��r� term is exact and the higher order coe
cients ci� at loop i

should be zero�



��

Chapter �

Evidence of a Non�Renormalization

Theorem for v� terms

In this chapter� we will give additional evidence supporting the non�renormalization

theorem for v� in low dimensions� We will also see that it is not possible to make a de�nite

statement about v� with our techniques� In doing so� the �rst question we have to ask

is� �non�renormalization of what�� In four dimensions we are used to the idea that non�

renormalization theorems are statements about a Wilsonian e	ective action� For example�

the non�renormalization theorem discussed in ���� is derived by considering the N � � the�

ory on its Coulomb branch� and studying the e	ective action obtained by integrating out

massive and high frequency modes� In � � � and � � � dimensions 
or in �nite volume��

however� there is not a notion of a moduli space in the same sense� Instead� one must adopt

a Born�Oppenheimer treatment of the problem� thinking of holding the slow modes �xed

and solving for the dynamics of the fast modes�

The approach of most authors has been to compute the one particle irreducible



��

e	ective action� using conventional �eld theory rules� Consider the case of SU
��� As shown

at the end of the previous chapter� at a given order in v� the loop expansion is formally

an expansion in powers of ��r
 
��r��� in � � � 
� � �� dimensions ����� Recall� r is the

expectation value of the adjoint �elds 
transverse separation of the gravitons� in the matrix

model interpretation�� The spectrum includes states with mass 
frequency� of order r and

massless states� In the two�loop computation of ����� individual diagrams contributing to

the e	ective action containing massless states are infrared divergent� The authors of this

reference dealt with this by using dimensional regularization� de�ning

Z
ddp

p�
� �� 
����

With this regulator� these authors �nd that there is no renormalization of the v� term� The

result involves not only fermi�bose cancellations� but also cancellations between diagrams

containing only massive states and diagrams containing massless states�

This result is encouraging� but since infrared divergences usually signal real physics�

one might worry about the regularization procedure� However� there are many infrared di�

vergent diagrams� and� as we will see in section ���� in the case of v�� the infrared divergences

cancel and there is no sensitivity to the regularization procedure� We will also see that this

cancellation is quite special to v�� and there is no reason to expect it to occur for higher

orders in velocity�

While it is true that we do not have a good de�nition of aWilsonian e	ective action�

for the success of the naive DLCQ� what really interests us is the scattering amplitude� For

the success of the naive DLCQ� at O
v��� we actually require that there should be no

corrections to this amplitude� This is� as we will explain in the next section� equivalent to

the requirement that there should be no corrections to the �PI e	ective action�



��

Figure ���� Infrared divergent contributions to the e	ective action�

The origin of the infrared problem is easily understood� In � loop order� � 	 ��

consider the diagram shown in �g� ���� Here the central loop contains a massive �eld�

and the � � � smaller loops contain massless �elds� In momentum space� this graph is

proportional to

�

r�������d 

Z

ddp

p�
����� 
����

Alternatively� if the amplitudes are written in coordinate space� the propagator is ambigu�

ous$ individual diagrams are proportional to this ambiguity� In the infrared limit� one can

think of the integral over the massive states as generating a local operator� and the mass�

less integrals as giving the �vacuum matrix element� of this operator� This same type of

analysis can be performed for all of the infrared divergent graphs� For the v� terms� we

will see in the next section that this matrix element vanishes� However� this cancellation

depends crucially on the fact that ��r� is the Green�s function for the nine�dimensional

Laplace operator� and might not hold for higher powers of v� v� turns out to be special



��

as well� because the one loop contribution vanishes ������ and we cannot make a de�nite

statement�

In the case of SU
�� 
and higher rank groups�� one can also exhibit the cancellation

of certain �nite renormalizations� In this case there are two 
or more� scales� R and r� As

in ����� one can consider a hierarchy of scales 
impact parameters� in the matrix model

interpretation�� R 
 r� Again� the diagrams contributing to the e	ective action contain

infrared divergent terms� But there are also �nite terms which behave as 
��R�r����� It is

easy to isolate these terms� Diagrams such as those of �g� ���� where now the small loops

contain �elds of mass r and the big loop masses of order R� are of the form

v�

R�������d 

Z

ddp

p� � r�
�l�� � v�

R�����dr��d

����


in � � �� the r dependence is logarithmic�� In section ���� we will see that there is a can�

cellation of the most singular term at order v� for � � �� Based on the results for SU
���

it seems quite plausible that this cancellation persists to all orders� From the perspective

of the matrix model� this is reassuring� since there would be no sensible spacetime inter�

pretation for such terms� As for SU
��� it is not easy to decide what happens at order

v��

However� to determine the full implications of these results requires settling some

subtle issues� In particular� for these low dimension theories� the signi�cance of the e	ective

action is not completely clear� obscured� as we have noted� by infrared and 
related�� oper�

ator ordering questions� We will o	er some remarks on these issues� but will not completely

resolve them�

�This is only true in the straight line scattering approximation� for more general backgrounds v� is
non�zero and is accompanied by acceleration terms �	
��

�We thank Nathan Seiberg for stressing this connection to us�
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��� Infrared Divergences in SU���

Consider� �rst� the matrix model with N � � in d � � � �� We will write the

bosonic part in terms of a set of ��elds�� xi� i � �� � � ��� and a �gauge boson�� A� All of

these �elds are SU
�� matrices� There are �at directions with �x a diagonal matrix�

�x � �r�
��� 
����

Correspondingly� there are a set of massive modes 
i�e� modes with frequencies proportional

to r� and massless modes� At one loop� integrating out the massive modes in this model

is well�known to generate an e	ective action� whose leading bosonic term was calculated in

the previous chapter to be

L���
eff �

��

��

v�

r�
� 
����

When considering the scattering amplitude� in a path integral approach� one is

interested in

h�xf
tf �j�xi
ti�i 
����

where �xf and �xi are the eigenvalues of �x
� the diagonal component of the matrix� Expanding

�x about the classical solution

�x
t� � �xcl � 	�x 
����

�xi �
�xf � �xi
tf � ti


t� ti� � 	�x
t�

� �b� �vt � 	�x

one studies the region of large j�bj� small j�vj� In this regime� the amplitude can be expanded

in powers of �v ���� ���� At higher orders� as we have noted� there is a serious potential



��

for infrared divergences� In � � � dimension� the problem is familiar from string theory�

Written in a fourier decomposition� the two dimensional massless propagator is�

hx
��x
���i �
Z
d�k

eik�����
��

k�
� 
����

which is ill de�ned� Correspondingly� the coordinate space expression is

hx
��x
���i � ln
� � ���� � constant� 
����

In string theory� one only considers Green�s functions of translationally invariant combina�

tions of operators� and these are infrared �nite$ equivalently� they are independent of the

arbitrary constant�

In � � � dimensions� the divergences are even more severe� If we try to write a

momentum 
frequency� space propagator we have

h	xi
t�	xj
t��i � 	ij

Z
d�

e�i��t�t��

��

�����

which is linearly divergent� Correspondingly� the coordinate space Green�s function is am�

biguous 
dropping the vector symbol��

h	x
t�	x
��i � at�
t�� bt�
�t� � ct� d� 
�����

with a � b � �� The authors in ���� assumed that the coe
cients b� c and d are zero�

however� recent work by Rong Li suggests that the equal time propagator should vanish in

order to reproduce the Born series in potential scattering �����

When we say below that infrared divergences do 
or do not� cancel in � � � or

��� dimension� we will mean that they cancel at the level of momentum space expansions�

or alternatively that the quantities in question are not sensitive to the ambiguities in the

propagators�
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Figure ���� Some two loop corrections to the e	ective action�

Now consider two loop corrections to the e	ective action� Some sample diagrams

are shown in �g� ���� Consider� in particular� diagrams with one massive state and one

massless state running in the loop� Individual diagrams with massless states in the loop are

infrared divergent� behaving as

Z
d�

��

�����

for small frequencies� Note that the external x�s must always attach to massive lines�

Because of this fact� and because the leading infrared divergence always comes from such

a small frequency region of integration� the leading divergent piece of each diagram always

factorizes into a product of two one loop terms� One is a massive loop� with four external

�scalars� 
x�s�� on which the time derivatives act� and two more without derivatives� The

two without derivatives are then contracted with each other� forming the massless loop�

In other words� the infrared divergent terms can all be organized in terms of operators

generated at one loop of the form

O � v�	x��r�� 
�����

The infrared divergence then arises from simply contracting the two factors of x in this

expression� i�e� taking the �vacuum matrix element��
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However� we do not need to compute all of the diagrams to determine the coe
cient

of this term in the e	ective action% In eqn� �� we can interpret r� as 
�xcl� 	�x�
�� and expand

in powers of 	�x� This gives

O� �
v�

x�cl

�
�� �

�x�cl

��xcl � �	x� �	x�� �

�� �
�x�cl


��xcl � �	x� �	x���
�
� 
�����

Taking the expectation value� the last two 
infrared divergent� terms in this expression

cancel because there are nine x�s� A similar cancellation occurs in � � � dimension�

It should be noted that there are no potential infrared divergences from other

diagrams� Diagrams involving gauge �elds 
which exist in gauges other than Ao � �� are

not divergent� The one loop e	ective action must be gauge invariant� and this means that

it must be independent of the gauge �eld in ��� dimensions� and involve at least two time

derivatives in ��� dimension� Diagrams involving fermions are not as divergent due to the

structure of the fermion propagator and have the wrong scaling with r�

It is easy to extend this argument for the cancellation of the most infrared singular

terms to higher orders� At each order� the most singular contribution comes from diagrams

where several massless scalars attach to a single loop of massive �elds� These diagrams

correspond to expanding the ��r� term to higher orders in x� and contracting the x�s� But

��r� is special� as it is the Green�s function for the nine�dimensional laplacian� This means

that� for r �� �� r
 	x�

r� �

j�r� 	�xj� � � 
�����

where the derivatives act with respect to �r� Expanding in powers of 	�x� this must be true for

every term in the sum� It must also� then� be true when we average over 	�x� But averaged

over 	�x� each term is proportional to �
rn

times an infrared divergent integral�� So� except
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for the leading term� the coe
cient of every other term in the expansion must vanish� upon

averaging� The skeptical reader is invited to check the next order explicitly�

Note that in the path integral framework� the non�renormalization of the v� terms


and the cancellation of ir divergences� in the e	ective action immediately implies the same

for the scattering amplitude� It is important to note that the terms in the supersymmetric

completion of the v� term can each be written in the ��r� form ���� 
see e�g� chapter �ve

equation ���� and the argument given above applies to them as well�

Now consider higher orders in velocity� At one loop� there is no v� term in the

e	ective action� There is a v	 term�

v	

r��
� 
�����

Expanding the denominator as before� one now �nds that there is an apparent infrared

divergence at two loops� However� we need to be careful of addition tensor structure which

would also contribute to such a divergence� For example� a term of the form

v�
�v � �r��
r��


�����

would contribute� Since the full tensor structure has not been calculated for v	� it is

impossible to conclude if the v	 term receives an infrared renormalization� The lesson to

be learned is that any terms which scale like �
rn
with n �� � will have the potential to

receive infrared renormalizations� Such a term will arise in chapter � when we consider

multigraviton scattering�

Returning to the v� terms� as noted above� a v� term is not generated at one loop�

Such a term is generated at two loops ����� But we cannot simply apply our reasoning to

the two loop case� The calculation of ���� includes graphs with both massive and massless
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Figure ���� Three loop correction to the e	ective action�

states� At three loops� there are diagrams with zero� one or two massless particles in the

loop� Expanding the two loop action in powers of 	�x� and contracting � �	x�	x � correctly

reproduces the infrared parts of diagrams with one massless �eld� but double counts the

diagrams with two 
see �g� ����� So we cannot establish by this means whether there is an

infrared divergence 
and a breakdown of the non�renormalization theorem� for SU
�� at v��

This is just as well� The fact that the calculation of ���� successfully reproduces the naive

DLCQ strongly suggests that there is a non�renormalization theorem for this case�

Finally� we should note that the authors of ���� have computed� using their regula�

tor� the coe
cient of the v	 term at two loops ����� However� they are not able to perform

a direct comparison with supergravity�

��� Finite Renormalizations in SU���

Consider� now� an SU
�� gauge group� In this case� taking x to be a U
�� �eld�

we will consider �expectation values� of the �elds x of the form�

x� �

�
BBBBB�

� � �

� r �

� � R

�
CCCCCA � 
�����

This is not the most general expectation value� but it is su
cient for our purposes� In

the language of M theory or D� branes� this corresponds to three gravitons 
branes� at
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locations �� r and R respectively�

Suppose that r
 R� Then there is an approximate SU
�� 
U
��� symmetry� We

can then imagine �rst integrating out states with mass of order R� and then those with

mass of order r� to obtain an e	ective action for the massless �elds� At the �rst step� we

expect to generate an operator of the form

O
 �
�v�

a�x

a � �xa � b &R � �xa &R � �xa�
R�

� 
�����

where �xa are the SU
�� triplet �elds� Then� replacing xaxa by

hxai xaj i � 	ij

�

r
�

Z
d�


�
���
� 
�����

in this expression� we obtain a result proportional to

O� �
v�

R�r

� 
�����

as well as a potentially infrared divergent term�

As in the case of SU
��� it is not di
cult to verify that the coe
cient of O�� as

well as the infrared divergence� vanishes to two loops� In the SU
�� case� the one�loop result

is�

Lv� � 

v���
x���

�
v��

x��


�
v��

x��

�� 
�����

Write

�x� � �x� �x� � �r � �x� �x
 � �R� �x
� 
�����

and expand the last two terms in powers of the �uctuations� �x� keeping only the part

proportional to v�
 � The �rst order terms are SU
�� singlets 
they are proportional to
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�x���x��� The quadratic terms contain the SU
�� non�singlet �elds� �x���x�� These couplings

can be generalized to the SU
�� invariant coupling�

	L � 
v
�

x

axa

R�
� �v

�


x

a �R��
R��

�� 
�����

Taking the expectation value� we see that as in the case of the SU
�� infrared divergences�

the leading ��r and infrared divergent pieces cancel� It is not so easy to check higher orders�

in this case� since one can�t generalize� e�g�� the �xn terms unambiguously to SU
���invariant

expressions� However� we have checked explicitly the cancellation to next order� and expect

the same will occur for higher orders�

Again� because of the vanishing of the v� term at one loop� we cannot establish

by this sort of reasoning whether or not there are corrections to the various v� operators at

three loops�

This argument can be extended to � � � dimensions� There is again no infrared

problem at O
v��� and no terms which depend on ln
r� 
the analog of the ��r terms in the

� � � dimensional case��
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Chapter �

Multigraviton Scattering

The �rst test to see if the matrix model could reproduce multigraviton scattering

in supergravity was performed by ����� In ���� it was argued that there was a discrepancy

between the computation of three graviton scattering in the matrix model and in tree level

supergravity� Calling the large distance R and the smaller distance r� and denoting the

velocity of the far�away graviton by v
� the supergravity S�matrix contains a term 
after

Fourier transform��

v�
v
�
��

r�R��

����

However� we will show with a detailed calculation in section ��� that no such term can be

generated in the matrix model e�ective action� The authors of ���� then went on to argue

that this term could not appear in the Matrix model S�matrix�

Subsequently� however� Taylor and Van Raamsdonk ���� pointed out� using simple

symmetry considerations� that if one writes an e	ective action for gravitons in supergravity�

this action cannot contain such terms� Shortly afterwards� Okawa and Yoneya ���� computed

the e	ective action on both the matrix model and supergravity sides� and showed that there



��

is complete agreement� A related computation appeared in ����� Other calculations have

also been reported recently showing impressive agreement between the matrix model and

supergravity �����

It is clear from these remarks that the di
culty in ���� lies in extracting the Matrix

model S�matrix from the e	ective action� In section ��� we show how the �missing term� is

generated in the S�matrix of the matrix model� In order to do this using the e	ective action

approach� it is necessary to resolve certain operator�ordering questions�� To deal with these

issues the most e
cient approach is the path integral� In section ������ we review �rst the

problem of computing the S�matrix from the path integral by studying small �uctuations

about classical trajectories� Once this is done� the isolation of the �missing term� is not

di
cult�

Despite the error in the analysis of ����� the method proposed there yields a con�

siderable simpli�cation in the calculation of the e	ective action� Indeed� it is possible to

calculate certain terms in just a few lines� On the supergravity side� there are also signi�cant

simpli�cations which occur in this limit� One might hope� then� to extract general lessons

from this approach� For example� one can compare certain tensor structures in n�graviton

scattering� and perhaps try to understand whether 
and why� there is agreement� One can

also try to examine� as in ���� the role of non�renormalization theorems�

In section ���� then� we go on to compare certain other terms in three graviton

scattering� some of which were not explicitly studied in ����� These calculations can be

performed using the methods proposed in ����� on both the matrix model and supergravity

sides� and are shown to agree�

�The authors of �	�� had convinced themselves that there was no choice of operator ordering which
generated the missing term� This was their basic error�
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Armed with this success� we consider in section ��� scattering of more than three

gravitons� and scattering when more dimensions are compacti�ed� Some of the terms in the

four graviton scattering amplitude can readily be computed� and compared on both sides�

We �nd agreement of certain terms involving eight powers of velocity� We also �nd certain

terms of order v�n in n�graviton scattering� for arbitrary n� agree� On the other hand�

the matrix model at three loops generates terms of order v� in four graviton scattering�

These do not have the correct scaling with N to generate a Lorentz invariant expression�

and it is di
cult to see how they can be cancelled by other matrix model contributions

to the S�matrix� These terms also indicate that there are terms at order v� which are

renormalized�

These observations raise a number of questions� In particular� it is not completely

clear why the arguments of ���� and ���� imply that the classical supergravity amplitudes

should agree with the matrix model result� One might have thought that this should only

hold in cases in which there are non�renormalization theorems ����� Our results indicate

that already at the level of the four graviton amplitude� there are not non�renormalization

theorems� at least in the most naive sense� They also suggest that at order v�n� the n � �

loop matrix model diagram reproduces the supergravity amplitude� but that there are

discrepancies at three loops and beyond in terms with fewer powers of velocity� We will make

some remarks on these issues in the section ���� but will not provide a de�nite resolution�

��� Background

It is worthwhile to review the problems which arise when one tries to compare

three graviton scattering in the matrix model picture with supergravity� setting the stage
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for our notation which will be used below� Brie�y� the authors of ���� considered the case of

three gravitons$ two separated a distance r from each other and another a distance R from

the other two in the limit R 
 r� A term in the supergravity S�matrix for three graviton

scattering in the small momentum transfer limit was shown to be


k� � k��
k� � k
�
k� � k
�
q��q

�
�


����

where ki are the ith graviton momenta and q��� are the two relevant momenta transfer�

In the language of matrix theory� this corresponds to taking the Fourier transform of the

two�loop e	ective potential

v���v
�
�
v

�
�


R�r�

����

where v�� � 
v� � v��� etc� refer to the relative velocities of the D��branes� The two scales

R and r arise from integrating out the massive degrees of freedom introduced by giving the

diagonal generators of SU
�� vacuum expectation values�

� Xa
i �� r	a
	i� �R	a		i� 
����

where Xa
i are the � SU
���valued �elds describing the bosonic coordinates� Since �Xi �

�X	
i T

	 � �X

i T


� one can work out v���� etc� in terms of �X


i and

�X	
i

v��
 � 
 �X

i �

� 
����

v��
 � 
 �X

i �

� � 
� �X	
i �

� � � �X	
i
�X

i 
����

v��� � 
 �X

i �

� � 
� �X	
i �

� � � �X	
i
�X

i 
����

Multiplying these three together yields the expected result for matrix theory

v���v
�
�
v

�
�
 � 
 �X


i �
�
 �X	

i �
� � 
 �X


i �
� � 
 �X


i �
�
 �X	

i �
� � 
 �X


i
�X	
i �

�
 �X

i �

�� 
����
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In ���� it was argued that matrix theory was incapable of reproducing the term�


 �X	
i �

�
 �X

i �

�

R�r�

����

with the correct powers of R and r at two�loops� In ����� it was argued that this term can

arise at two�loops from vertices with three massive bosons in the form of the setting�sun

diagram� as well as from other two�loop interactions� After describing the background �eld

method for SU
�� below� we go on to show that the one�loop e	ective operator needed

to arrive at the conclusion of ���� does indeed cancel among bosons and fermions� By

exploiting the fact that �X	
i only couples to �elds of scale R� we integrate out these most

massive modes to �nd that the �rst term containing coupling between the heavy and light

states without supersymmetric cancellations has the form 
 �X	
i �

�
Xa
i �

��R� as described in

����� Then integrating over the light SU
�� modes of scale r 
a������ we demonstrate

that the term in the matrix model e	ective action with four powers of �X	
i and the least

suppression in R is 
 �X	
i �

�
 �X

i �

��R�r��

��� Matrix Model low energy e�ective action for SU���

The calculations performed in this section are a generalization of the calculations

carried out in section ��� to the larger rank gauge group SU
��� We will repeat the necessary

background information to make this section self contained� For the reader who is familiar

with material presented in section ���� the new content in this section begins just below

equation 
������

The matrix model Lagrangian is obtained from the dimensional reduction ofN � �

supersymmetric Yang�Mills theory in D � ��� down to D � ��� dimensions ����� For our



��

purposes it will be useful to initially keep the action in its ten dimensional form expressed

as

S �
Z
d��x

�
� �

�g
F a
��F

��a �
i

�
 
a
!�D� 

a

�

�����

where the �eld strength is given by

F a
�� � ��A

a
� � ��A

a
� � fabcAb

�A
c
� � 
�����

and the �� � �� dimensional Dirac matrices ! satisfy the usual algebra f!��!�g � �g��

with metric g�� �diag
������ �������� The �� component Majorana�Weyl adjoint spinor

 a has only �� real physical components o	 mass shell� We should mention that the center

of mass motion of the D� particles has been removed and we will be considering the SU
��

theory with the gauge index a�����

To calculate the one loop contributions to the e	ective action� we will use the

background �eld method ���� and break the gauge �eld up into a classical background �eld

and a �uctuating quantum �eld�

Aa
� � Xa

� �A
�a
� � 
�����

and choose our gauge �xing condition� D�A
�a
� � �� to be covariant with respect to the

background �eld� D� � ��� itaXa
�� By only keeping terms quadratic in the quantum �elds�

one obtains the gauge��xed Lagrangian in the Feynman�"t Hooft gauge�

L � LB � LA� � L	 � Lc� 
�����

The �rst piece of the Lagrangian just contains the background gauge �eld�

LB � � �

�g
F a
��F

��a 
�����



��

whereas the other pieces are quadratic in their respective quantum �elds and contain the

background gauge �eld in the background covariant derivative squared� D�� as well as in

the background �eld strength F b
���

LA� � � �

�g

n
A

�a
�

h
�
�
D�

�ac
g�� �

�
F b
��J ��

��� �
tb
�aci

A
�c
�

o

�����

L	 � �

�
 
a

	r
� 
D��ac �

�
F b
��S

��
�

tb�ac



 c 
�����

Lc � ca
�
�
�
D�

�ab�
cb 
�����

where


J ����� � i
�
	��	

�
� � 	��	

�
�

�

�����

S�� �
i

�
�!��!� � � 
�����

The one loop e	ective action is obtained by evaluating the functional integral for the quan�

tum �elds�

ei��X
 �
Z
DA�D D DcDc exp�i

Z
d��x
LB � LA� � L	 � Lc��� 
�����

giving

!�X � �
Z
d��x
� �

�g
F a
��F

��a� �
i

�
lnDet��

�
D�

�
g�� �

�
F b
��J ��

���
tb�

� i

�
lnDet��

�
D�

�
�
�
F b
��S

��
�
tb�� i lnDet��
D���� 
�����

For the fermion functional integration the extra factor �
� arises from the fermion �eld having

�� real components instead of �� complex ones�

To compute the determinants for the di	erent �elds� it is useful to expand D��

�D� � ��� ��� ��� 
�����



��

where

�� � ita
��X
�a �Xa

��
�� 
�����

�� � Xa
�t

aX�btb� 
�����

At this point it is convenient to dimensionally reduce to ��D while choosing Xa
� � �� so

�� � �� By letting X
a
� � r	a
	

�
� � R	a		

�
� �Xa

� we can break SU
��� U
��� U
�� giving

�� � �r�t
t
 � �rXa
� t

at
 �R�t	t	 � �RXa
� t

at	 �Xa
i t

aX ibtb 
�����

with the Latin index going �#� and �elds Xa
i depending only on time� It is important to

note that in ��D� r and R are dynamical variables and we are holding them �xed in the

spirit of doing a Born�Oppenheimer approximation� The magnetic moment interaction for

the bosons

�B
J �

�
F b
��J ��

���
tb 
�����

dimensionally reduced becomes

�B
J � �

�
��X

b
iJ �i

���
tb 
�����

since we will be working in a �at direction� Similarly for the fermions one has

�	
J � �

�
��X

b
iS

�i
�
tb� 
�����

The general form of a determinant in 
����� can be written

Tr ln
���� ��� ��J�� 
�����

Because we are interested in the limit R 
 r and will be letting only the most massive

modes 
scale R� run in the loop 
gauge index a����� then t
t
r� � �
�r

� and t	t	R� � 

�R

��



��

It is convenient to rescale� r� �r� R� �p


R and de�ne

�F �
�

���� �R� � r�

�����

in addition to

�r � ��rXa
� t

at
 
�����

�R � � �p
�
RXa

� t
at	 
�����

��
� � �Xa

i t
aX ibtb 
�����

then the trace becomes

Tr ln
���� �R� � r�� � Tr ln�� ��F 
��
� ��r ��R ��J��� 
�����

The �rst piece involving ���� �R� � r� is a constant and the second contains the one loop

quantum corrections to the e	ective action which we will evaluate below by expanding the

logarithm for various numbers of external background �elds� We will �nd that the �rst

non�zero terms contain four derivatives even if one just integrates over the most massive

modes� R�

	���� Terms with no derivatives

We will display in this section a supersymmetric cancellation between bosons and

fermions for all operators which can be constructed from �D�� Even before considering

the expansion of �D� in 
������ it is straightforward to see that all terms in the one loop

e	ective action with no derivatives cancel� This is because the determinants of the bosons

and fermions di	er only by derivative terms� and there are an equal number of bosonic and

fermionic factors in the determinant� Given that a non�derivative operator is particularly



��

important in the analysis of ����� we show explicitly in this section how non�derivative

operators are cancelled�

The operator in question has the form

	L���
eff �

r�

R

xb�x

b
� 
�����

where the gauge index� b����� for the small mass SU
�� subgroup 
scale r�� Such a term

arises from expanding the logarithm in 
����� and is given by

��
�
Tr ��F�r�F�r� 
�����

or in frequency space

��Tr�t
tat
tb�r�
Z

dw�

�

xa�
w��x

b
�
�w��

Z
dw

�


�


w� �R��

�

�
w � w��� �R��

�����

where we have dropped r� in �F for the leading ��R behavior� Integrating 
����� in the

limit w� � � and then Fourier transforming gives 
������ Now the important point to notice

is that �r arises from �D� which occurs in each determinant for the gauge� fermion and

ghost �elds 
������ However� they each give a di	erent contribution to Tr�t
tat
tb� � 	abd
j��

where d
j� is the number of components for the various �elds

d
j�	 � �� d
j�A
�

� �� d
j�c � �� 
�����

Now it becomes clear that all terms coming from �D� in each of the three determinants

appearing in 
����� will cancel� To be explicit one gets

�
i

�

���� i

�

���� i
����

r�

R

xb�x

b
�� � �� 
�����

A similar result holds for any number of external �elds without derivatives involving �r�

�R� and ��
��



��

	���� Cancellation of �F a
�i	

� or � 
Xa
i 	

�

In this section� we show that terms with two derivatives cancel as well� This result

is familiar in higher dimensions� where it is well known that the kinetic terms of the �elds

are not renormalized�

Based on the arguments given above the only possible non�vanishing term with

two external �elds contains two derivatives and is given by

��
�
Tr ��F�J�F�J � � 
�����

The supersymmetric cancellation of 
����� between bosons and fermions requires the deter�

mination of Tr�S�iS�j � � �gij for fermions and Tr�J �iJ �j � � �gij for bosons� Putting the

term into 
����� gives

�
i

�

��� i

�

���i
���Tr�tatb�

Z
dw�

�

w�
�X

a
i 
w��X

ib
�w��

Z
dw

�


�


w� �R��

�

�
w� w��� �R��
� �


�����

which shows that the ��point contribution to the e	ective action at one�loop is zero� We

can also generalize this result to show that all possible non�derivative insertions on a loop

with two derivatives will not give a contribution to the e	ective action�

	���
 V ��R�

Since all terms with two derivatives� no derivatives� or a mixture cancel by the

arguments given above� the only possible non�vanishing term with four external �elds is the

four derivative term given by

��
�
Tr�
�F�J�

�� 
�����



��

or in frequency space

Z dw�dw
dw�dw� 
w� � w
 � w��X
	
i ��
w� � w
 � w���w�X

	
j 
w��w
X

	
k
w
�w�X

	
l 
w��


�
���
w� w��� � R���
w� w� � w
�� � R���
w� w� � w
 � w��� �R���w� �R��


�����

with the prefactor

��
�
�� Tr�
t	�

�
�Tr�
J �i�

�
� 
�����

for the gauge boson case� An identical result holds for fermions if one replaces the Lorentz

generator trace with

Tr�S�iS�jS�kS�l� � �
gijgkl � gikgjl � gilgjk� 
�����

whereas for the gauge bosons one �nds

Tr�J �iJ �jJ �kJ �l� � 
gijgkl � gilgjk�� 
�����

Now using 
����� and the low energy approximation w�� w�� w
� w� � �� we get

���i
�
�
F 	

�i�
���

Z
dw

�


�


w� � R���
� 
�����

The integral can be performed in the complex plane using the usual �i� prescription for

handling the poles� De�ning 
 �X	
i �

� � 
F 	
�i�

� � V �� one is left with the result that the �rst

non�vanishing contribution to the e	ective potential has four derivatives�

L���
eff �

��

�

�

��

V �

R�
� 
�����

even when the gauge group experiences multiple levels of breaking�

	���	 V �x��R� and V �v��R�r�

Looking at possible insertions with two background �elds on a massive loop with

four derivatives gives terms of the form�



��

Tr�
�F�J�
���

�� 
�����

��
�
Tr�
�F�J�

�
�F�R�
�� 
�����

��
�
Tr�
�F�J�

�
�F�r�
�� 
�����

��Tr�
�F�J�
�
�F�R�
�F�r��� 
�����

The operators in 
����� and 
����� lead to terms of the form V �x��R� with x being a light

�eld 
scale r� in agreement with ���� � whereas the operators in 
����� and 
����� give terms

with more powers of R in the denominator� At this point in our analysis� one might worry

that we have thrown out the vertices coupling three quantum �elds 
two of mass R and

one of mass r� with one background �eld which was found to be important in the result

of ����� However� by considering the x�s as background plus quantum �elds� the e	ective

operator V �x���R� contains the sum of all non�vanishing vertices with up to four derivatives

constructable from such a vertex� We can now use V �x���R� in the path integral 
����� and

integrate over the light modes x� to generate

V �v�

R�r�
� 
�����

where v� � 
 �X

i �

�� Clearly 
����� has the wrong dependence on R and r to reproduce the

term of interest in the supergravity scattering amplitude�

��� Comment on the Eikonal approximation

When analyzing D��brane scattering most authors 
see e�g� ���� ��� and references

therein� have chosen to use an explicit background given by x � vt � b where v is a



��

relative velocity of the D��branes and b an impact parameter� Such an approach allows

one to construct the exact propagator as a power series in b� v� and t� By organizing the

calculation along the lines suggested by our analysis above� we can exhibit the cancellation of

all V �v��R�r� contributions to the e	ective action� The point� again� is to take advantage

of the large R limit� In the functional integral� one �rst does the integration over the

�elds with mass of order R� As explained in section ����� terms involving only D� cancel�

allowing one to write a simpli�ed expression for the e	ective action which only depends on

the di	erence of the derivative terms between bosons and fermions

!�X � �
i

�
Trln�� ���

F�B
J ��

i

�
Trln�� ���

F�	
J �� 
�����

where��
F � �D�� is the propagator for the heavy �elds and is a function of the background

and the light �elds� Again� terms with two derivatives of the background or light �elds

cancel as in 
������ Terms with four derivatives and factors of r� expanded up from the

heavy propagator yield precisely the structure V �x��R�� So again� there are no terms of

the form V �v��R�r� in the e	ective action�

This of course does not mean that there are not individual diagrams with the

behavior V �v��R�r�� However� we see explicitly from this analysis that there are cancel�

lations between bosons and fermions� In ����� a particular diagram with this behavior was

exhibited� But we see that this contribution is cancelled by diagrams involving fermions�

Having seen by explicit calculation that the matrix model e	ective action contains

no terms of the form V �v��R�r� � v�
v
�
���R

�r�� we show below in a calculation of the matrix

model S�matrix how this term is extracted from the e	ective action�



��

��� Computing the S�Matrix in the Matrix Model

The matrix model is the dimensional reduction of ten dimensional supersymmetric

Yang�Mills theory� The action is

S �

Z
dt�
�

g
tr
DtX

iDtX
i� �

�

�g
M�R�

��tr
�X
i� Xj��X i� Xj��� 
�����

�

g
tr
i�TDt� �M
R���

T�i�X i� ����

where R�� is the eleven dimensional radius� M is the eleven dimensional Planck mass and

g � �R��� The ��s are the fermionic coordinates�

At small transverse velocity and small momentum transfer 
with zero q� exchange�

it is a straightforward matter to compute graviton�graviton scattering in the matrix model�

One considers widely separated gravitons� and integrates out the high frequency modes

of the matrix model� This yields� at one loop� an e	ective Lagrangian for the remaining

diagonal degrees of freedom which behaves as

Leff � ��

��

v�

r�
� fermionic terms� 
�����

If this e	ective Lagrangian is then treated in Born approximation� one reproduces precisely

the supergravity result for the S�matrix�

Ref� ���� focused on the problem of multigraviton scattering in the matrix model�

For three graviton scattering� it is necessary to compute the terms of order v� at two

loops in the matrix model Hamiltonian� In the three graviton case� there are two relative

coordinates and correspondingly two relative velocities� The basic strategy of ����� which

will also be the strategy here� was to consider the case where one of the relative separations�

say x�
 � x��x
 � R� was much larger than x�� � r� In this limit� oscillators with frequency



��

of order R can be integrated out �rst� yielding an e	ective Lagrangian for those with mass


frequency� of order r 
or zero�� This e	ective Lagrangian is restricted by SU
�� symmetry�

Finally� one can consider integrating out oscillators with mass of order r�

In computing the S�matrix for three graviton scattering� as discussed already in

����� it is necessary not only to compute the terms of order v� in the e	ective action� but

also to consider terms in the scattering amplitude which are of second order in the one loop


v�� e	ective action� In other words� working with the e	ective action� it is necessary to go

to higher order in the Born series�

In ����� it was observed that terms of the form

v�
v
�
��

R�r�

�����

cannot appear in the e�ective action of the matrix model� As we have seen in sections ���

and ���� the v
 factors can only arise from couplings to heavy �elds� Integrating out the

�elds with mass of order R at one loop� the leading terms involving the light �elds xa are of

the form v�
x
axa�R�� Moreover� it was argued that the terms in 
����� were not generated

by the higher order Born series referred to above� This last point� however� is incorrect�

and is the source of the error� In fact� it is possible to �nd the corresponding term in the

matrix model S�matrix�

k
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k

k
1

3

1

3

2

Figure ���� Ladder contribution to the supergravity amplitude� Solid lines are the scattering
gravitons� Wiggly lines represent virtual gravitons with zero longitudinal momentum�
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Figure ���� Corresponding contribution in the matrix model involving iteration of the one
loop Hamiltonian� Dashed lines represent matrix elements of the interaction potential�

Consider the problem �rst from a Hamiltonian viewpoint� We wish to compare

the supergravity graph of �g� ��� with the contribution of �g� ��� in old fashioned 
time�

ordered� perturbation theory� The second graph represents the iteration of the one loop

e	ective Hamiltonian to second order� In momentum space� it has the correct �
q�
�
q�
�

behavior

to reproduce the �
R�r�

behavior of the missing supergravity S�matrix term� However� it

has also an energy denominator� and various factors of velocity� It is straightforward to

check that this energy denominator is proportional to �
�k��q��q��

� the propagator appearing

in the covariant diagram of �g� ���� To compare the diagrams in more detail� one also needs

matrix elements of the type h�ki � �qjH �j�kii where H � is the one loop Hamiltonian� As we

will see in section ������ the leading term in powers of momentum transfer reproduces the

corresponding term in the supergravity diagram� In other words� if one ignores the di	erence

in the momenta of the particles in the initial� �nal and intermediate states� one obtains exact

agreement� To see if higher order terms can cancel the energy denominator and reproduce

the missing term� it is necessary to keep at least terms linear in the momentum transfer�

The problem is that it is not clear how the momentum and r factors are to be ordered in

the Hamiltonian� Depending on what one assumes about this ordering� one obtains quite

di	erent answers�



��

Of course� the full model has no such ordering problem� It is only our desire to

simplify the calculation using the e	ective Hamiltonian that leads to this seeming ambiguity�

There is an alternative approach� however� which leads to an unambiguous answer� and

where one can exploit the simplicity of the one loop e	ective action� This is to use the path

integral� As we will see� the path integral approach permits an unambiguous resolution of

the ordering problem�

	�	�� Path integral Computation of the S�Matrix

Let us consider the problem of computing the S�matrix using the path integral�

We will use an approach which is quite close to the eikonal approximation 
it is appropriate

for small angle scattering� which has been used in most analyses of matrix model scattering�

It is helpful� �rst� to review some aspects of potential scattering� In particular� let us �rst

see how to recover the Born approximation by studying motion near a classical trajectory�

A useful starting point is provided in ����� In the path integral� it is most natural

to compute the quantity

h�xf je�iHT j�xii �
Z
�dx�eiS� 
�����

To compute the S�matrix� one wants to take the initial and �nal states to be plane

waves� so one multiplies by ei
pi�
xie�i
pf �
xf and integrates over xi and xf � For small angle

scattering in a weak� short�ranged potential� one expects that the dominant trajectories are

those for free particles�

�xo
t� �
�xi � �xf
�

� �vt 
�����

where t runs from �T
� to

T
� � and �v �


xf�
xi
T
� It is convenient to change variables ���� to �v



��

and �b�

�b �
�xf � �xi
�

� 
�����

The complete expression for the amplitude is then

Ai�f �

Z
d�v

Z
d�bei


b��
pf�pi�ei
v��
pi�
pf �
Z
�d�x�eiS � 
�����

Now if we expand the classical action about this solution� writing

�x � �xo � 	�x� 
�����


note 	�x includes both classical corrections to the straight line path and quantum parts�

we have a free piece�

So � v�T��� 
�����

For large T � the v integral can be done by stationary phase� yielding

�v �
�pf � �pi
�

� 
�����

We will see that this e	ectively provides the ordering prescription we require for the matrix

model problem�

For the case of potential scattering� expand eiS in powers of V � and replace the

potential by its Fourier transform� The leading semiclassical contribution to the amplitude

is then proportional to

Z
d�bei


b��
pf�
pi�
Z
d�q

Z
dtV 
q�ei
q��
b�
vt�� 
�����

The t integral gives a 	�function for energy conservation� while the b integral sets �q � �pf��pi�

This is precisely the Born approximation result�



��

Higher terms in the Born series can be worked out in a similar fashion� Time

ordering the terms and replacing the potential by its Fourier transform� the time integrals

almost give the expected energy denominators� The terms linear in momentum transfer


involving �v ��q� are given correctly� but the �q� terms are not� These terms must be generated

by the expansion of V in powers of 	x� which generates additional powers of �q� This problem�

which is essentially the problem of recoil discussed in ����� will be analyzed in a separate

publication ����� Here we will work to leading order in q� and second order in V �

At second order in V � we need to consider an expression of the form

Z
dv

Z
dbei
v�

�pi��pf

� ei

b��
pf�
pi�e�

v�T
�

Z T
�

�T
�

dt�

Z T
�

�T
�

dt�V 
�x
t���V 
�x
t���� 
�����

Time order the t�� t� integrals� and Fourier transform each of the factors of V � The integral

over �v is again done by stationary phase� and the resulting expression has the form�

�

�%

Z T
�

�T
�

dt�

Z t�

�T
�

dt�

Z
db

Z
dq�

Z
dq�V
�q��V
�q��ei�b�
pf�
pi��i
q���
b�
vt���i
q���
b�
vt�� 
�����

It is now straightforward to do the ti� �qi� and �b integrals� The integral over t� yields the

energy denominator� �

v�
q� � This di	ers from the exact energy denominator by terms of order

q�� The �nal integral over t� yields the overall energy conserving 	�function� Up to these

terms of order q�� this is exactly the second order Born approximation expression�

	�	�� The Ladder Graphs

We are now in a position to compare the supergravity and matrix model ladder

graphs 
see �g� ��� and ����� On the supergravity side� the calculation is completely stan�

dard� and proceeds along the lines of ����� As there� we take the vertices from ����� and

�To be consistent with the authors �	
� 	�� who use �� � ����� the 	�vertex in ���� needs to be multiplied
by ��



��

require that the polarizations of the incoming and outgoing gravitons be identical 
as is

true to leading order in the inverse distance in the matrix model�� The N�N

v�
�

q�
�

term comes

from the second vertex� and is precisely of the same form as in graviton�graviton scattering�

The vertex on the �rst graviton line is

�k��
k�
 � q�
�� 
k�� � q���k�
 � �k��k�
 � �
k�� � q���
k�
 � q�
�� 
�����

From the �rst vertex on the second graviton line� we get a similar expression� replacing k�

with k� and q� by �q�� Multiplying these factors together� and including the propagator�

gives for the corresponding amplitude�

A� � 
���
�
k� � k
��
k� � k�� �
k� � k��� 
q� � k�� � O
q

�
���

q��q
�


�k� � q� � q���

� 
�����

Or

A� �
��

��

N�N
�
�N
v

�

v

�
���
v

�
�� � �

N�
�q� � �v��� �O
q����

q��q
�


�q� � �v���

� 
�����

expressed in light cone variables with non�relativistic normalization�

Now we want to compare with the matrix model prediction� �g� ���� Recalling

the averaging prescription� for the matrix elements of the interaction Hamiltonian we have


dropping terms suppressed by extra powers of q
�



��

��
��N�N

�
�N
v

�



�
�k�
N�

� 

�k�
N�
�� �

�
�q�


�

N�
�
�

N�
�

��


�����

� 

��

��
��N�N

�
�N
v

�

v

�
���
v

�
���

�

N�
�q� � �v���� �

N�

�q� � �v��� � O
q����� 
�����

After Fourier transforming r and R 
not shown above�� the �rst term is exactly the term

found on the supergravity side� The second term cancels the energy denominator� yielding



��

a contact term�

���N�N�N

v�

�

v���
q��q

�



� 
�����

Each of the four ladder diagrams yields an identical contribution� The sum is precisely the

�missing� term of ����� At this level� there is no discrepancy between the DLCQ prediction

for the scattering amplitude and supergravity�

��	 Additional contributions to three graviton scattering

v
3 v

12

3

v
3

v
3

v
12 v

Figure ���� Matrix model contribution to three graviton amplitude�

In section ��� we showed how to obtain terms in the matrix model e	ective action with four

powers of v
 � V and two powers of v�� � v 
see �g� ����� In this section we derive the

coe
cient of 
����� using other techniques� Recall that integrating out �elds with mass of

order R yields no terms independent of velocities or quadratic in velocities$ at quartic order

in velocity� one has�

L � ��

��


v��

j�x�
j� �

v��

j�x�
j� �� 
�����

For small x��� one can expand in powers of x��� The result can can be generalized to an

SU
�� invariant expression�

	L � ��

��
v�
 �

�x�� �x�� � rR�

� � 
�xa � rR�
��
�

R�
� 
�����



��

Here x��x� is the center of mass of the �� � system 
combined with the leading term� the

expression is translationally invariant�� The superscript a is an SU
�� index� Contracting

the xa factors� the leading 
infrared divergent and �nite� terms cancels as we saw in the

previous chapter� The Euclidean propagator� up to terms quadratic in velocities is given by

hx�ix�ji � 	ij

�� � r�
�
�
vivj� � const 	ijv�


�� � r��

� 
�����

Substituting back in our expression above and performing the frequency integral yields

N�N�N

��

��R�
��

v�

r�

�v�� � r�� �

R�
� 
�����

In deriving this expression it is necessary to keep track of various factors of �� One comes

from the two real massive �elds in the loop 
or equivalently� written in terms of complex

�elds� from an extra � which appears in the vertex�� the other from a factor of g � �R�� for

a ��loop result� It is easy to show that this is the only contribution with this r dependence

and four factors of v
�

Let�s compare this with the supergravity amplitude� There is only one diagram

with the tensor structure of 
�����$ this arises from the diagram of �g� ���� There are also

several terms in individual diagrams of the form v�
v
�
��

�
R	r�

� as well as terms of order ��R�r�

with a di	erent tensor structure than the matrix model result� We will shortly explain

that� at the level of the S�matrix� all of these terms match� just as in the case of the leading

��R�r� term�

Let us �rst consider the contribution to the supergravity S�matrix of the form


����� above� The relevant diagram is shown �g� ���� It is convenient to view q� and q
 as

independent� so q� � �q� � q
� From ����� the necessary piece of the three graviton vertex



��
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Figure ���� Contribution to three graviton amplitude involving three graviton vertex�

is

�P

k��k�

��
��� � �P�
k��k�

��
��� � �P�
k��k�

��
��� � �P

k��k��
��

���
�����

It is then a straightforward exercise to evaluate the diagram� Matters are considerably

simpli�ed by using kinematic relations such as k� � q� � ��
�q

�
�� k� � q� � �

�q
�
� � k� � q
� etc��

and dropping terms with the wrong R dependence� After only a few lines of algebra� this

yields the covariant form of the amplitude�

�����
k� � k
��
k� � q
�� � 
k� � k
��
k� � q
�� � �
k� � k
�
k� � k
�
k� � q
�
k� � q
��
q��q

�



� 
�����

Changing to light cone variables with non�relativistic normalization gives

��N�N�N


�R

��

v�


�v� � �v�� � �q
�� �

q��q
�



� 
�����

Then Fourier transforming gives precisely the matrix model result 
������

There are several other kinematic structures which appear in individual super�

gravity diagrams which do not arise in the matrix model computation� and thus must be

produced by iteration of the one loop action� The cancellation� in fact� is closely related to

the cancellation we have studied of the leading term� For example� there are terms from

the diagram of �g� ��� which behave as
v�
�
v�
��

R	r�
� To see how this and other terms cancel� let

us return to our earlier discussion� There� we set q� � �q�� However� we should be more



��

careful� and write q� � �q� � q
� Then from �g� ��� we have a contribution

��
�

�
N�N�N
v

�

v

�
��


q� � q� � q� � q
 � q� � q

q��q

�
�q

�



� 
�����


previously we kept only the �rst term and set q� � �q��� We also have the supergravity

term involving the ��vertex discussed in ����

��
�

�
N�N�N
v

�

v

�
��


�

q��q
�



�
�

q��q
�



�� 
�����

On the matrix model side� the higher order Born terms yield

��
�

�
N�N�N
v

�

v

�
��


�

q��q
�



�
�

q��q
�



�� 
�����

As before� the leading terms match� Expanding in powers of q
� it is not hard to check that

the coe
cients of q� � q
 and 
q� � q
�� match as well�

��
 More Gravitons

	���� n�Graviton Scattering

Certain terms in the four and higher graviton scattering amplitude are easily evalu�

ated by these methods� On the matrix model side� the calculations are particularly simple�

One can� for example� consider a generalization of the three graviton calculation above�

indicated in �g� ���� At two loops� we saw that we generate in SU
�� an e	ective coupling�

��

��
v�

�v�� � �rR�

� �

R�r�
� 
�����

We can generalize this to the case of SU
��� with the hierarchy x�i 
 x
� 
 x��� where

i � �� �� � and � � �� �� In other words� we again suppose that there is a hierarchy of

distance scales� with one particle very far from the other three� and one of these three far



��

from the remaining two� Again� we proceed by �rst integrating out the most massive states�

then the next most massive� and so on� After the �rst two integrations� we generate a term


among others�

��

��
v��
�v
 � r��

� �

j�x�j� 

�

j�x
�j� �
�

j�x
�j� �� 
�����

As before� expand this term in powers of the small distances x�� x�� and generalize to an

SU
���invariant expression� yielding�

��

���
v��
�v
 � r��

� �

j�x�j� 
�x
a � r
�

� �

j�x
j� � 
�����

Finally� the integration of xa yields various terms� The piece of hxiaxjai � vivj gives

���

���
v��
�v
 � �r��

� �

j�x�j� 
�v�� �
�r
�

� �

j�x
j�
�

j�x��j� � 
�����

Higher order terms corresponding to n�graviton scattering generated in a similar fashion

will be discussed below�
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Figure ���� A matrix model diagram contributing to four graviton scattering�

Another term which is easily obtained is indicated in the diagram in �g� ���� This

graph includes the interaction of the light SU
�� �elds from integrating out the �elds with

mass of order x� at one loop� as well as those obtained by integrating out the �elds of mass
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Figure ���� Another diagram which is easily computed�

x
 at one loop� The relevant interactions are
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��
��
v��v

�

��
�x

a � �r��
� �

j�x�j� 
�x
a � �r
�

� �

j�x
j� � 
�����

Now contracting the xa factors as in �g� ��� yields a term�

�

��

��
��
�
v��v

�


ri

�rj
��

�

j�x�j� 
r
i

rj


�
�

j�x
j�
�

�

j�x��j
 
�����

On the supergravity side� the required computations are somewhat more compli�

cated� The easiest to consider is the �rst term 
����� above� This term is generated by the

diagram of �g� ���� It is not di
cult to �nd the particular tensor structures which give

the matrix model expression 
������ Focus �rst on the terms involving �v
 � �r�� These must

come from dotting k
 into q�� or q�� Calling q�� � �q
 � q�� the relevant term in the three

graviton vertex is 
�� � are the polarization indices carried by the graviton with momentum

q���
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Only a few permutations actually contribute� and contracting with the scattering graviton
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Figure ���� A supergravity contribution to four graviton scattering�

momentum� k��k�
k
�k
�� gives

�
k
 � q���k��k�� 
�����

So the whole diagram collapses to ��k��q���
q�
�

times the three graviton term we evaluated

earlier� The result agrees completely with the matrix model computation 
������

Indeed� one can now go on to consider similar terms in n�graviton scattering� The

supergravity graph indicated in �g� ��� can be evaluated by iteration� The coupling of the

n�� graviton is similar to that of the third graviton in the ��graviton amplitude and can be

treated in an identical fashion� The result then reduces to the n� � graviton computation�

So one obtains

��

��


�

�
�n��v�n
�vn�� � �rn�

� �

j�xnj� 
�vn�� �
�rn����

�

j�xn��j� � � �
�v
 �
�r��

� �

j�x�j� 
�v�� �
�r
�

� �

j�x
j�
�

j�x��j�

�����

The corresponding term in the matrix model e	ective action is also obtained by

iteration� It is easy to generalize the calculation of �g� ��� to the case above� Repeating
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our earlier computations gives precisely the result of eqn� 
����� above�

The computation of the part of the supergravity amplitude corresponding to eqn�


����� is more complicated� This term is generated by the sum of several diagrams� We

will not attempt a detailed comparison here� leaving this� as well as certain other terms� for

future work�

.

.

.

Figure ���� Diagram contributing to n graviton scattering�

	���� Other Dimensions

According to the Matrix model hypothesis� the compacti�cation of M �theory to

��� k dimensions is described by k � � dimensional super Yang�Mills theory ���� ���� For

graviton�graviton scattering� this has been done in ����� It is a simple matter to extend our

analysis to these cases�

As an illustration� consider the three graviton case� Working in units where the

compact dimensions have Rk � �� then the Fourier transforms needed to convert the super�
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gravity result 
����� to an e	ective potential are

��v�
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Z
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On the matrix model side� the loop integrals arising from integrating out the massive states

must now be performed in k � � dimensions giving
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in agreement with the supergravity result above� All of the integrals are convergent for

k � � and since these same integrals are needed for our n�graviton result� it is a simple

matter to show that the agreement we have found here persists for arbitrary n�

��� Some Puzzles

In the original discussion of ����� as well as in ����� the question was raised� why

does the lowest order matrix model calculation reproduce the tree level supergravity result

for graviton�graviton scattering� The scattering amplitude is given by a power series in gN
r�
�

and one ultimately wants to take a limit with N ��� g �xed� Moreover� one wants to take

this limit uniformly in r� i�e� one does not expect to scale distances with N � The answer

suggested by these authors was that the explanation lies in a non�renormalization theorem



��

for v� terms� which insures that the one�loop result is exact� The required cancellation

was demonstrated at two loops in ����� Such a theorem for four derivative terms in four

dimensional �eld theory was proven in ����� The complete proof for the matrix model was

�nally provided in �����

The agreement of three graviton scattering in the matrix model with supergravity

suggests that there are more non�renormalization theorems governing the various possible

terms at order v�� Indeed� a proof was provided for SU
�� in ���� and for SU
�� in �����

On the other hand� it is rather easy to see� following reasoning similar to that of ����� that

there are operators at order v� which are renormalized in SU
N�� N 	 �� In particular�

consider the case of four gravitons� In the previous section� we computed the contribution

to the amplitude 
����� by contracting xaxa in eqn� 
������ and took the piece quadratic

in v�� Taking� instead� the leading� velocity�independent term in this propagator yields a

contribution to the e	ective action�

N�N�N
N�
��

���
v��
�v
 � �r��

� �

x��
r�



�

x�


�

x��
� 
�����

Not only does this represent a renormalization of the v� terms computed at two loops�

but the N �dependence of 
����� is not appropriate to a Lorentz�invariant amplitude� One

might wonder if this term can be cancelled by terms generated at higher order in the Born

series� However� to see that this is not the case� one can de�ne an index of an amplitude� A


written in momentum space�� IA� which is simply the di	erence of the number of powers of

momentum in the numerator and in the denominator� All of the amplitudes we have studied

previously have IA � �� The iterations of the lower order matrix Hamiltonian also have

IA � �� However� 
����� has IA � ��� So this can not be the source of the discrepancy� We

have checked carefully for other diagrams in the matrix model e	ective action which might



��

have this structure� and we do not believe there are any� It is interesting to note that the

work of ���� also indicates that there are v� terms that are not necessarily protected from

renormalizations for N � ��
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Chapter �

Non�Renormalization Theorems

for v�N terms in SU�N�

Agreement between the matrix model and supergravity displayed in the previ�

ous chapter suggests an in�nite sequence of non�renormalization theorems for a particu�

lar class of v�N terms in the SU
N� matrix model e	ective action for arbitrary N � The

present chapter will investigate generalizations of the techniques developed in proving non�

renormalization theorems for v� terms in SU
N� and v� terms in SU
�� ���� ��� ��� ����

The basic strategy is to look at the supersymmetric completion of the v�N terms involving

the most fermions� ��N � By analyzing the di	erential equations resulting from a super�

symmetric variation of the ��N terms� one hopes to fully constrain the tensor structure

and scale 
xij� dependence� We will �nd that without additional assumptions about the

absence of acceleration terms in the matrix model e	ective action� we are unable to make

de�nite statements for ��N terms in SU
N�� However� by investigating the implications of

the v� result in SU
�� ����� we can outline a proof showing that some of the v�N terms from



��

chapter four are not renormalized�

	�� Non�renormalization of eight fermion terms in SU���

It will be useful to review the arguments used in ���� to reach the conclusion that

the supersymmetric completion ���� ��� of the v� term involving eight fermions are not

renormalized for the SU
�� matrix model e	ective action� We will see in section ��� and

��� that similar arguments can be applied to twelve fermion terms in SU
�� with varying

degrees of success�

The various terms in the supersymmetric completion of v� have been calculated

by a number of di	erent authors and are written together in ���� where they show complete

agreement with the tree�level supergravity amplitude� The supersymmetric completion of

v� includes terms with at most eight fermions� �	� and no derivatives� The variation of �	

cannot be cancelled by other terms in the action and must therefore vanish� To see this�

consider the free matrix model action for the massless modes in SU
���

L� �
�

g

Z
dt

�

�
v� � i� ��� 
����

and the one�loop supersymmetric completion for v��r� at order four��

L� �
Z
dt
��

��
�v� �

i

�
v�vm
��

mn���n � �
�
vpvq
��

pm��
��qn���m�n� 
����

i

���
vq
��

qm��
��nk��
��pk���m�n�p �
�

����

��ml��
��nl��
��pk��
��qk���m�n�p�q�

�

r�
�

The tree�level susy transformation laws are

	xi � �i��i�

	� � �ivi�� 
����

�Terms of a given order �number of derivative plus one�half the number of fermions� are preserved by the
tree�level susy transformations ��
��
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where the susy transformation parameter � is order���� and �i are the real symmetric Dirac

matrices representing the SO
�� Cli	ord algebra� However� in order for the supersymmetry

algebra to close on shell for L� � L�� the transformation laws must be corrected to

	xi � �i��i� � �N i�

	� � �ivi� �M� 
����

with N order � and M order � ���� ���� Now it becomes apparent that the variation of the �	

term into a �� term must be invariant since the variation of the tree�level fermionic kinetic

term with M containing six fermions produces at most a seven fermion term�

Although we have written down the precise structure of the eight fermion term

in 
���� as �rst computed by ����� it can also be determined by writing down all the pos�

sible eight fermion tensor structures compatible with the SO
�� symmetry and demanding

invariance under susy transformations� As demonstrated in ����� the most general eight

fermion terms compatible with SO
�� invariance and CPT have the form�


��ij���jk���lm���mn��
g�
r�	in	kl � g�
r�	klxixn � g

r�xixkxlxn�� 
����

Keeping only the nine fermion term after varying the bosonic coordinate of the functions

gi
r� in 
���� gives�

�i�sab�b
��ij���jk���lm���mn���s
g�
r�	in	kl � g�
r�	klxixn � g

r�xixkxlxn�� 
����

For invariance of the Lagrangian to susy transformations� 
���� must equal zero� One can

proceed to determine the functions gi
r� by applying the operator �qac
d
d�c

�q to 
���� giving

three coupled second order di	erential equations� By requiring that the solutions go to zero

as r ��� and do not contain negative or fractional powers of the coupling� one is left with



��

the eight fermion term written in the compact ��r� form shown in 
����� Alternatively�

one can apply the operator �qac
d
d�c

xq to 
���� to get three coupled �rst order di	erential

equations with the only solutions being given by the eight fermion term in 
����� Thus we

see that the uniquely determined structure for the eight fermion term has the r dependence

of a one�loop exact result� Consistency with the supersymmetry transformations implies

that the supersymmetric completion of the �	 term� including v� also be non�renormalized

���� in agreement with our results in chapter three�

	�� Supersymmetric completion of v
�
�

r�
��v�� � rR�

� �
R�

In chapter three and again in chapter four we generated an operator of the form�

��

��
v�

�x

a � rR�
� �

R�
� 
����

in SU
�� by integrating out the most massive modes of scale R� Then by integrating out

the lighter SU
�� modes� xa� of scale r� we arrive at the the matrix model term�

��

��

v�

r�

�v�� � rR�

� �

R�
� 
����

which was shown to agree with the supergravity amplitude for three�graviton scattering in

the limit that the third graviton is far away from the remaining two� Based on the results of

the previous section� if we want to prove an expected non�renormalization theorem for these

v� terms in SU
��� a natural place to begin is by studying the supersymmetric completion

of 
���� with the most fermions� However� unlike in the previous section� we will see below

that there are two twelve fermion terms in the supersymmetric completion of 
���� which

complicates the analysis of proving a non�renormalization theorem�



��

To consider the supersymmetric completion of 
���� with the most 
twelve� fermions�

we begin by following the steps used in section ��� to derive 
���� for the analogous eight

fermion term� Up to an overall constant the eight fermion term in SU
�� has been deter�

mined by considering constraints imposed by supersymmetry in the previous section while

an explicit background �eld calculation ���� gives the numerical coe
cient� allowing us to

write down the eight fermion term� in SU
�� after integrating out the modes of scale R�

L � ��

��

�

����



�	�

j�x�
j�� �

�	�

j�x�
j�� �� 
����

As in section ���� expand in powers of x�� and generalize to an SU
�� e	ective operator

	L � ��

��

�

����
��	

�x

a � rR�
��
�

R��
� 
�����

Now using the background fermion Feynman rules developed in ����� it is a straightforward

matter to contract the xa�s to make a two loop twelve fermion term�
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����
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n�j����ri
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R� 
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��
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nrmri
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r�
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����

i�n����
����
n�j����r
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R�

�

R��
�

Schematically� each of the terms in 
����� have the form �	

�
ij
���

�ri
Rrj

R�R
��r�� A susy

variation of such a term with respect to the bosonic coordinate R is invariant based on

the argument given in the previous section while variation with respect to r gives terms of

the form �	
�
�
���R

�
r	� However� unlike the eight fermion term in SU
��� such a variation

is not in general invariant� It turns out that another two loop twelve fermion term can

be constructed from 
���� with the correct powers of R� r� �
� and ��� to vary under a

supersymmetry transformation into the variation of 
������ To derive such a term one

�In the discussion that follows� �	 is understood to represent the full tensor structure of the �	 term
appearing in ����� after the derivatives have acted on ��r��



��

again starts with 
���� and brings up one power of x�� from the denominator to combine

with a ��� from the numerator to make an SU
�� coupling of the form�

���
�
a
xa � rR��

�

R��
� 
�����

Making a second loop by contracting �a with xa and attaching �ve ����s gives about forty�

�ve terms of the form ��
�
�
���R

��r	� some of which vary into �	
�
�
���R

�
r	�

To constrain the ��� tensor structure and functional dependence on r for the

�	
�
�
���R

�
r� term� we would proceed by writing down the four terms compatible with SO
��

invariance� However� we also need to consider the sixty or so possible tensor structures for

the ��
�
�
���R

��r	 terms� In principle� one can imagine having enough constraints from the

di	erential equations to fully determine the ��� structure� but in practice the algebra be�

comes very cumbersome�

	�� Twelve fermion term with the fewest factors of R�

In the previous section� we encountered di
culties when there are two twelve

fermion terms which transform into each other� It is natural to suppose that a twelve

fermion term with the fewest powers of R is free of such di
culties� This term can be

generated by starting with the four fermion term in 
���� which we write schematically as

��v��r�� In SU
�� there will be a term like ��
v
ava�R�� Contracting the SU
�� �elds va to

form a light loop with eight fermions gives

��
�
	
��

R�r���

�����

This term has the nice property that the �	���r
�� part can be shown to be exact following

the argument presented in section ���� We also know that the ��
�R
� structure is not



��

renormalized since it was derived from the exact e	ective operator ��
v
ava�R� which is part

of the supersymmetric completion of the non�renormalized operator �	
�R
���

A potential problem arises with using 
����� to prove a non�renormalization the�

orem in SU
�� due to the fact that this term might not have the fewest powers of R if

acceleration terms are present in the one�loop matrix model e	ective action� For example�

a term of the form

�

�
a �va�R	 
�����

would lead to a two�loop term like �

�
�
���R

	r��� We would then encounter a proliferation of

tensor structure in trying to constrain twelve fermion terms which vary into each other as in

the previous section� There are a couple of reasons to suspect that such an acceleration term

is not present in the matrix model e	ective action� In our calculation of the coe
cient for v�

in chapter two� we did not encounter acceleration terms� In addition� the R dependence of

the corresponding velocity structure� v�
v
�
���R

�r	 does not appear in the detailed calculation

of three graviton scattering ����� However� if such an acceleration term did exit� it is

possible that it wouldn�t upset the supersymmetric completion of v� by being invariant to

supersymmetry transformations�

If it were true that acceleration terms of the form 
����� were absent in the matrix

model e	ective action we could generalize to SU
�� to show that ����
	

�R

�
�R

��

 is exact along

with its supersymmetric completion ����
�

v

ava�R�
�R

�

� Contracting hvavai and attaching

eight light ����s to the loop gives

����
�

�

	
���R

�
�R

�

r

��� 
�����

The �	���r
�� is again exact and we could continue this process to show the exactness of a

certain class of ��N terms in SU
N��
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	�� Outline of a Direct Proof for v�N terms in SU�N�

In the previous two sections we have been unable to convincingly constrain twelve

fermion terms without performing more detailed calculations� We will now outline a proof

for non�renormalization theorems involving some v�N terms in SU
N� by investigating

the implications for the propagator hxaxai due to the successful proof in ���� for the non�

renormalization of twelve fermion terms in SU
���

Before beginning we will need to assume that one could construct the complete

supersymmetric completion for v� terms in SU
�� and establish invariance to supersym�

metry transformation in analogy with the one�loop supersymmetric completion of v� terms

in SU
�� ����� thereby �rmly demonstrating that non�renormalization for ��� terms implies

the same for v� terms� Once this is done� we will know that the term of interest�

v�

�v�� � rR�
� �

R�

�

r�
� 
�����

is an exact result as expected from the matrix model agreement with supergravity for this

term� Knowing that 
����� is exact allows us to reach some conclusions about corrections

to the propagator� In general the massive propagator for the SU
�� modes has the form

hx�ix�ji � 	ij
A�Bv� � C
�r � �v��� �Dvivj � ��� 
�����

where ��� indicates higher order velocity terms� Recall� in deriving 
������ we began with

the non�renormalized operators

v��

j�x�
j� �

v��

j�x�
j� 
�����

to generate

v�

�x
a � rR�

� �

R�
� 
�����
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and then used the vivj part of the propagator� Because 
����� is exact we know that

the coe
cient D is also exact which gives us the potential to draw conclusions about the

exactness of higher order terms that we generated in a similar fashion in chapter four� It

is important to note� however� that we can only draw conclusions about the coe
cient D

in the propagator because none of the 	ij pieces contribute to a two�loop term due to the

fact that the Laplacian annihilates ��R�� For this reason we will only be able to make a

statement about R � v terms below�

To generalize to SU
��� we would need to establish that the term

v��
�v
 � rR�
��
�

R�
�
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j�x�
j� �
�

j�x�
j� � 
�����

is exact in analogy with the exactness of 
������ This would seem to follow from the analysis

carried out by ���� in constraining twelve fermion terms involving two elements of the Cartan

sub�algebra and again assuming that the supersymmetric completion could be established�

We could then proceed as before to generate

v��
�v
 � rR�
��
�

R�
�


�xa � rR�
��
�

R�



� 
�����

Now contracting the xa�s and using the exact vivj part of the propagator we arrive at the

non�renormalized term

v��
�v
 � rR�
��
�

R�
�


�v�� � rR�
��
�

R�



�

r���
� 
�����

As eluded to above� a little bit of care needs to be exercised� since 
����� contains terms

involving

v��
�v
 � rR�
��
�

R�
�


�v�� � �R
�
� �

R�



�

r���

�����

as well as

v��
�v
 � rR�
��
�

R�
�


�v�� � �v��� �
R�




�

r���
� 
�����
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The term 
����� can also be generated by taking the 	ijBv� part of the propagator in

going from 
����� to 
������ and the coe
cient� B� could in principle be renormalized� As a

consequence we could only make a statement about the terms appearing in 
������

In generalizing to SU
N � ��� we would have to make the plausible assumption

that the v�N velocity structure is exact in SU
N���� once it has been shown that the same

velocity structure in SU
N� is exact as we did for 
����� above� One could then proceed to

show that the velocity structure in v��N��� is not renormalized for any N �
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Chapter �

Conclusion

We have seen in the course of this thesis that the matrix model has successfully

passed the cardinal test of reproducing multigraviton scattering in supergravity� Terms in

three�graviton scattering which were not explicitly studied in the work of ���� are shown

to agree� We have seen that terms in four�graviton and n�graviton scattering� for arbitrary

n� also agree� The fact that all the matrix model terms which agree with supergravity are

protected by non�renormalization theorems 
or strong evidence for such theorems exits��

further validates the conjecture that �nite N matrix theory describes the DLCQ of M�

theory with the DLCQ of supergravity as a low energy approximation�

In chapter �� we encountered matrix model terms which did not appear to have a

spacetime description in supergravity� For example� the v� term which gets renormalized

in the SU
�� matrix model e	ective action has the wrong N dependence to correspond

to a tree level supergravity amplitude� It is possible that new issues arise at the level of

four�graviton scattering� Previous work in two particle scattering showing a discrepancy

between supergravity and the matrix model at �nite N in a curved background ���� ��� can



��

be translated into a problem with four�graviton scattering� One can think of the two �far

away� gravitons as providing a background for the scattering of the other two gravitons� It

will be interesting to further investigate some of the matrix model terms describing four�

graviton scattering that we calculated but did not compare with supergravity� If the four

graviton scattering amplitude agrees for terms with di	ering tensor structures� it would

seem natural to expect that all the leading v�N velocity terms agree in SU
N� for any

N � The subleading terms� like the renormalized v� terms in SU
��� presumably have an

interpretation in M�theory in the large N limit�

In chapter � we discussed the problems with de�ning the matrix model e	ective

action starting at two loops� Ordinarily one wants to make a Wilsonian type de�nition

and integrate out massive states down to some scale� However� in the explicit two�loop

calculation ���� both massive and massless states had to be integrated out to obtain the

expected non�renormalization of the v� term� Integrating over the massless states in the

matrix model leads to infrared divergences and an ill�de�ned e	ective action� We were able

to show that for the v� terms that all the infrared divergences cancel due to the fact that

the Laplacian in nine dimensions annihilates �
r�
� Consequently for terms that are generated

from �
r�
� we expect infrared renormalizations� Terms with this behavior� such as

v�
v
�
���R

�r�� 
����

already exist at two loops and in chapter � we saw they agreed with the supergravity

amplitude� We also know from the work in ����� the fermionic supersymetric completion of

such a term is not renormalized� so it seems natural to suspect that this velocity term is

exact� Why then does 
���� receive infrared renormalizations� The answer would seem to

be that the coordinate space propagator should be de�ned so that it vanishes at equal times�



��

This is the correct prescription to reproduce the Born series in potential scattering and free

the matrix model of infrared divergences� On the surface� this answer seems like a logical

prescription� but the fact that an analogous term in SU
�� receives �nite renormalizations


as demonstrated at the end of chapter �� makes one worry that perhaps we are missing

another subtle lesson the matrix model is trying to teach us�

Throughout this thesis we have been mostly studying eleven dimensional DLCQM�

theory� In section ����� we very brie�y considered up to four compact dimensions� indicating

that our multigraviton scattering results should hold for DLCQ M�theory in as low as seven

spacetime dimensions� Of course it would be nice to be able to make contact with four

spacetime dimensions� However� remembering that M�theory compacti�ed k dimensions

is described by k�� dimensional super Yang�Mills theory� one would expect trouble when

k��� due to non�renormalizable operators� It turns out that new states can be added to

the �eld theory allowing an M�theory description in no less than six spacetime dimensions

���� ���� Trying to de�ne M�theory in � or even � spacetime dimensions requires new degrees

of freedom that have yet to be understood �����

Given the matrix model�s tremendous success in reproducing supergravity ampli�

tudes in addition to the numerous other non�trivial tests the matrix model has passed� it

seems reasonable to suspect that the matrix model is a correct formulation for the non�

perturbative limit of superstring theory�
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