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Abstract

In this thesis we investigate the phase structure of dense quark matter, the structure and stability of neutron

and quark stars, and the phases of ultracold fermions in the presence of an artificial spin-orbit coupling.

While spanning an extraordinary twenty orders of magnitude in energy scales, these systems exhibit some

remarkable similarities including non-perturbative many-body interactions, perfect fluid behavior, the for-

mation of Cooper pairs, and the possibility of BCS-BEC crossovers between weakly and strongly interacting

regimes. Moreover, due to phenomenal advancements in laser cooling techniques and the ability to exert an

unprecedented level of control over the interactions of ultracold atomic gases, the possibility of using these

systems to simulate the complex behavior of systems not easily realized in the laboratory (e.g., non-Abelian

gauge fields, quantum chromodynamics) is becoming increasingly real.

Despite the widespread success of quantum chromodynamics (QCD), the theory of the strong nuclear

force, much remains unknown about the properties of strongly-interacting quark matter. In large part, this

continued ignorance is a result of the mathematical intractability of QCD and the limitations of current

numerical techniques to very low densities. In the first part of this thesis, in order to gain some insight

into the phase structure of dense quark matter we therefore apply an effective field theory which is built

upon the symmetries of QCD, the Polyakov–Nambu–Jona-Lasinio (PNJL) model. We construct the QCD

phase diagram for two and three quark flavors, giving special attention to the effect of the intermediate

strange quark mass on the preferred quark pairing structure at intermediate to high density. In addition, we

investigate the impact of the strange quark mass and axial anomaly on a recently proposed low temperature

critical point, which may allow for a smooth crossover between hadronic and color superconducting matter.

Finally, we investigate the impact of a local color neutrality constraint on phases of asymmetric quark

pairing.

While the Relativistic Heavy Ion Collider (RHIC) continues to probe the QCD phase diagram at ever-

higher temperatures and researchers await the completion of the highly anticipated Facility for Antiprotons

and Ion Research (FAIR), the only known “laboratories” in which low temperature dense quark matter

is encountered are the cores of neutron stars. Fortunately, the structure of these astrophysical objects is

highly dependent upon the properties of the dense matter in their cores, and observations of the mass-

radius relationship of these stars impose constraints on the quark matter equation of state. In the second

part of this thesis we investigate the possibility of realizing massive neutron stars, such as the recently
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observed PSRs J1614-2230, J0348+0432, and J1311-3430 with M = (1.97±0.04)M⊙, M = (2.01±0.04)M⊙,

and M = (2.4± 0.3)M⊙, respectively, by including a flavor-symmetric vector coupling within an NJL model

description of quark matter. By extracting the quark matter equation of state we show that in the absence of

diquark pairing, a reasonable magnitude vector repulsion can to stabilize neutron stars against gravitational

collapse up to M ≈ 2.34M⊙. We also investigate the possibility of realizing stable quark stars with densities

much higher than those obtained in conventional neutron stars, but find that stars with central densities

ρc ≫ 10ρ0 are always unstable to gravitational collapse.

In the third part of this thesis we study the properties of ultracold atomic gases in the presence of

artificial gauge fields. While neutral atoms do not naturally couple to the gauge fields in nature (e.g.,

magnetic fields, the strong nuclear force), recent advancements in laser techniques have led to the realization

of synthetic gauge fields in which ultracold atoms behave as if they were charged. Combined with the

Feshbach resonance, through which the two-body interactions which dominate these dilute gases can be

arbitrarily tuned, these gases can be used to simulate a wide variety of systems, including those that occur

naturally and those that do not. We study the phase structure of a two-species mixture of fermions in the

presence of Rashba-Dresselhaus (RD) spin-orbit coupling, which is induced by a specific type of non-Abelian

gauge field. In particular, we compute the dependence of the superfluid critical temperature on the RD

coupling strength and the tunable two-body interaction. We also investigate the effects of the spin-orbit

coupling on the crossover between weakly bound (BCS) atomic pairs and strongly bound (BEC) molecules

and the effects of fluctuations on the stability of the superfluid phase.
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To my father,

I changed my mind.
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Finally, I am sincerely grateful to Carlos Sá de Melo for his selfless guidance and support over the past



vii

eight years. Since he first introduced me to the world of physics research in the summer of 2005, he has not

hesitated to share his immense knowledge and experience in both physics and the often confounding world

of practicalities which surrounds it. His wisdom and support have been invaluable to my development as a

student of physics, and as I hope, to a productive member of the physics community.



Table of Contents

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 QCD Phase Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.1 Symmetries of QCD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.2 Approximate Symmetries of QCD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1.3 Polyakov–Nambu–Jona-Lasinio Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Structure of Neutron and Dense Quark Stars . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3 Artificial Gauge Fields in Ultracold Atoms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Chapter 2 Phase Diagram of Two Flavor QCD . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Two Flavor NJL Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3 Mean Field Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.1 Eigenvalues for Nc = 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.2 Eigenvalues for Nc = 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.3 Thermodynamic Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4 Two Color NJL Phase Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.4.1 BEC-BCS Crossover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.5 Three Color NJL Phase Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.6 Mean Field PNJL Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.6.1 Eigenvalues for Nc = 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.6.2 Eigenvalues for Nc = 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.7 Two Color PNJL Phase Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.8 Three Color PNJL Phase Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Chapter 3 Phase Diagram of Massless Three Flavor QCD . . . . . . . . . . . . . . . . . . 39

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2 Three Flavor PNJL Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.3 Mean Field Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.4 Eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.5 Phase Diagram without Confinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.6 Phase Diagram with Confinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.7 Ginzburg-Landau Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.7.1 Noncoupling terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.7.2 Coupling terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.8 Low temperature critical point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Chapter 4 Phase Diagram of Three Flavor QCD with Realistic Masses . . . . . . . . . . 56

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.2 Three Flavor PNJL Model with Realistic Masses . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.3 Massless QCD Phase Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3.1 Without Confinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.3.2 With Confinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.4 Realistic Mass QCD Phase Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.5 Asymmetric CFL (ACFL) Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.5.1 Quark Pairing Amplitudes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.5.2 Symmetry Breaking Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.6 Color Neutrality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

viii



ix

Chapter 5 Structure and Stability of Neutron and Dense Quark Stars . . . . . . . . . . 72

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.2 Quark Matter Equation of State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.3 Quark-Hadron Hybrid Equation of State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.4 Massive Neutron Star Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.5 Stability of Neutron and Ultra-Dense Quark Stars . . . . . . . . . . . . . . . . . . . . . . . . 82
5.6 Observational Constraints and the Equation of State . . . . . . . . . . . . . . . . . . . . . . . 84

Chapter 6 Artificial Gauge Fields in Ultracold Atoms . . . . . . . . . . . . . . . . . . . . 87

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.2 Berry’s Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.3 Creating an Artificial Gauge Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.3.1 Schrödinger Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.3.2 Interaction Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.3.3 Abelian Gauge Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.4 Rashba-Dresselhaus Spin-Orbit Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.5 Spin-Orbit Coupled Fermions with a Contact Interaction . . . . . . . . . . . . . . . . . . . . . 97
6.6 Mean Field Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.6.1 Gap Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.6.2 Number Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.7 Population Balanced System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.8 Population Imbalanced System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.9 Ginzburg-Landau Thermodynamic Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

Appendix A Effects of Fluctuations on Spin-Orbit Coupled Fermions . . . . . . . . . . . 109

A.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
A.2 Fluctuation Thermodynamic Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
A.3 Calculation of Γ−1(q) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
A.4 Expansion of Γ−1(ω,0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
A.5 Expansion of Γ−1(0,q) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
A.6 Time-Dependent Ginzburg-Landau Functional . . . . . . . . . . . . . . . . . . . . . . . . . . 116
A.7 BEC Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

Appendix B Gauge Fields at Finite Temperature . . . . . . . . . . . . . . . . . . . . . . . 119

Appendix C Evaluation of Matsubara Sums . . . . . . . . . . . . . . . . . . . . . . . . . . 120

Appendix D Determinants of Block Matrices . . . . . . . . . . . . . . . . . . . . . . . . . 124

D.1 General Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
D.2 Simple Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

D.2.1 2× 2 Block Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
D.2.2 3× 3 Block Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

D.3 Eigenvalues of the two-flavor NJL model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

Appendix E NJL Model Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

Appendix F Gap and Number Equations Code . . . . . . . . . . . . . . . . . . . . . . . . . 139

Appendix G Evaluation of Matsubara sums in Γ−1(q) . . . . . . . . . . . . . . . . . . . . . 148

G.1 Mean Field Eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
G.2 Term 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
G.3 Term 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
G.4 Terms 3 and 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
G.5 Constructing Γ−1(q) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152



x

Appendix H Green’s Functions for Spin-Orbit Coupled Fermions . . . . . . . . . . . . . . 153

H.1 Equation of motion for ψkσ(t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
H.2 Equation of motion for Gαβ(k; t1, t2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
H.3 Single-Particle Green’s Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158



Chapter 1

Introduction

In this thesis we discuss three topics concerning matter under extreme conditions. First, we construct the

phase diagram of quantum chromodynamics (QCD) by applying effective field theory at finite temperature

and density. Second, we investigate the effects of quark thermodynamics on the structure and stability of

neutron and dense quark stars. Third, we study the properties of Fermi gas mixtures in the presence of

artificial spin-orbit coupling and a tunable s-wave contact interaction. While spanning an extraordinary

twenty orders of magnitude in energy scales, these systems exhibit remarkable similarities which will be

the subject of our investigation, including non-perturbative many-body interactions, perfect fluid behavior,

the formation of Cooper pairs, and the possibility of BCS-BEC crossovers between weakly and strongly

interacting regimes. In the following sections we briefly introduce each of these topics. Much of this work is

based on the author’s publications [2–5].

1.1 QCD Phase Diagram

Since its inception in the mid-1960s, the theory of quantum chromodynamics (QCD) has cemented its place

as one of the most robust and successful theories of modern physics. Modeled after the unprecedented success

of quantum electrodynamics (QED), for which Feynman, Schwinger, and Tomonaga received the 1965 Nobel

Prize in Physics, QCD describes the strong nuclear interaction in terms of a fundamental quark field which

interacts via the exchange of gauge bosons known as gluons. As suggested in 1965 by Nambu with Han,

and independently by Greenberg, it was possible to explain the observed hadronic structure of protons and

neutrons, an antisymmetric orbital s-state of three quarks, by positing a new quantum number color, which

belongs to the fundamental representation of SU(3). In order for the theory to retain the local SU(3) color

symmetry expected of relativistic field theories, it also demanded the existence of an octet of gauge bosons

which mediated the strong interaction, in the same way that virtual photon exchange mediates the U(1)

theory of QED.

While QCD has certainly obtained a secure footing in the contemporary physics community, it is unique

among such “successful” theories in that, while it has passed all experimental tests, there are an extremely

wide variety of conditions under which we are, nearly fifty years after its inception, still completely incapable

of discerning its predictions. This practical barrier is a consequence the strength of the aptly named strong

1



2 CHAPTER 1. INTRODUCTION

interaction, namely that in contrast to the QED coupling constant α = e2/4π ≈ 1/137, the strong coupling

constant αs = g2/4π is not small. As a result, the perturbative techniques which have proven so effective

in QED are much less useful in QCD, applying only in the limit of asymptotically large energies, where

the renormalized coupling αs(µR) becomes small. Thus, we find ourselves in the unique circumstance of

possessing a theory which we believe to be a complete and accurate description of strongly interacting matter,

but which is intractable in the majority of the phase diagram.

In our present undertaking we wish to construct the QCD phase diagram, which displays the ground

state phases of quark matter over a range of quark chemical potentials µ and temperatures T . Thus, we

are fundamentally required to assess the properties of strongly interacting matter under a wide variety of

conditions. As a starting point, we note that at asymptotically large densities, as the distance between

quarks becomes small and asymptotic freedom is obtained, quark matter becomes weakly-interacting and

the perturbative techniques developed in QED can be applied. However, except in this special region of

the phase diagram, we have no analytical method for ascertaining the predictions of QCD. At present,

there are two methods by which one may then proceed. First, by defining a discrete space-time lattice and

solving the equations of QCD on it, one may extrapolate to the continuum limit and thereby approximate

the properties of strongly interacting matter. Such lattice techniques have seen an explosion of interest

and precision thanks to the corresponding explosion in computing power over the decades since their initial

development in the 1980s [6–10]. At present, these techniques are our sole method for performing non-

perturbative QCD calculations, and are therefore invaluable both for the direct insight they provide to

strongly interacting systems, as well as in testing and verifying any approximation scheme one might apply.

Unfortunately, despite its successes, lattice QCD is largely restricted to zero quark density by the “fermion

sign problem” [6, 7]. In constructing the QCD phase diagram, we therefore have “exact” lattice results at

zero density and perturbative results at asymptotically large densities, but we are left with very little insight

regarding the properties of quark matter in between. Thus, we are led to consider the second method of

studying strongly interacting matter, through the use of effective field theories (EFTs). Such theories are

constructed to retain the symmetry-breaking properties of QCD while dispensing with the full complexities

that render QCD intractable. Naturally, such a theory will have a limited region of applicability, namely

the region of phase space in which the symmetry-breaking properties it contains dominate the system.

Fortunately for our present undertaking, this symmetry breaking is precisely what determines the phase

boundaries of the system, so that the EFT approach is well-suited to an analysis of the QCD phase diagram.

In addition, an effective theory has the advantage of analytic tractability which may yield insight into the

basic mechanisms at work in the system, and which may be obscured by a brute force numerical treatment
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or hidden entirely in the full “parent” theory.

In Chapters 2, 3, and 4, we construct the phase diagram of two and three flavor QCD by employing the

Polyakov–Nambu–Jona-Lasinio (PNJL) model, an effective field theory built upon the spontaneous chiral

symmetry breaking exhibited by QCD. The earliest form of this model, which did not include the Polyakov

loop, an effective order parameter for confinement, was developed prior to the discovery of quarks and

provided a method for dynamically generating nucleon mass from a massless fundamental field [11, 12].

After the discovery of quarks and the full theory of the strong interaction, the NJL model was reinterpreted

in terms of a massless fundamental quark field [13–16]. Since then, the model has been extended in a

variety of ways by including the effects of the QCD axial anomaly, diquark pairing, and confinement, among

others [2, 17–22].

We observe that for three quark flavors the chiral phase transition at T = 176 MeV, which is first-order

in the massless quark limit, becomes a smooth crossover at µ = 0 for non-zero quark masses. A line of first-

order transitions and an associated high temperature critical end point does persist, however, at non-zero

baryon density within a certain parameter regime, namely when the coupling between the chiral and diquark

condensates is not too strong. At low temperatures, we find that when the chiral and diquark condensate

coupling is sufficiently strong, the first-order transition between the hadronic and color superconducting

phases becomes second-order and the system develops a BEC-BCS crossover between strongly bound diquark

molecules and weakly coupled pairs consisting of up and down quarks (e.g., within a 2SC phase). In addition,

while the presence of the 2SC phase eliminates the possibility of continuity between hadronic and color-flavor-

locked (CFL) superconducting matter, we find that for certain parameter sets there exists a line of first-order

BEC-BCS transitions within the 2SC phase, and an associated low temperature critical end point. Finally,

in the presence of a local color neutrality constraint, we find that certain phases of asymmetric quark pairing

are suppressed, which tends to decrease the 2SC portion of the phase diagram.

In order to motivate the PNJL model we now briefly discuss the symmetries upon which it is built and

the general properties which follow.

1.1.1 Symmetries of QCD

Having described the complexities inherent in QCD that prevent us from directly discerning its implications,

we now briefly discuss the symmetries of QCD, which motivate the NJL model. We begin by writing the

QCD Lagrangian density:

LQCD = q
(

i/∂ − m̂
)

q − gqγµAa
µTaq −

1

4
Ga
µνGµν

a , (1.1)
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Symmetry Name Transformation Manifestation

SU(Nf )V isospin q → e−iTaθaq approximately realized

SU(Nf )A chiral q → e−iTaωaγ5q spontaneously broken

U(1)V baryon q → e−iαq exactly realized

U(1)A axial q → e−iβγ5q broken by anomaly

Table 1.1: Exact and approximate symmetries of QCD with Nf quark flavors of approximately equal mass. Also
shown are the respective quark field transformations and their manifestation in nature. Adapted
from [15].

where q is a quark field with Dirac, color, and flavor indices, m̂ is the bare quark mass matrix, Aµ = Aa
µTa

is the gluon field where Ta (a = 1...8) are the generators of the local SU(3) color symmetry,1 g is the strong

coupling constant, and the gluon field strength is defined by

Ga
µν = ∂µAa

ν − ∂νAa
µ − gfabcAb

µAc
ν , (1.2)

where fabc are the structure constants of SU(3), defined by the commutation relations [Ta, Tb] = ifabcTc.

These coefficients are antisymmetric under the interchange of any two indices and are explicitly given by

f123 = 1,

f147 = f246 = f257 = f345 = −f156 = −f367 =
1

2
, (1.3)

f458 = f678 =

√
3

2
,

and where the coefficients not related to those above by cyclic permutation of the indices vanish. In

addition, we employ the Feynman slash notation, /∂ ≡ γµ∂µ ≡ γµη
µν∂ν , where we adopt the metric

η = diag(1,−1,−1,−1).

In analyzing QCD, there are three types of symmetries that one encounters. First, there are the sym-

metries of the Poincaré group and CPT invariance, which are characteristic of all relativistic quantum field

theories. These will certainly be maintained in any effective field theory which we might wish to consider,

but are sufficiently general that they will not play a defining role in our analysis and we will not discuss

them further. Second, there is the local SU(3) color symmetry which plays a defining role in QCD. It is

evident that this symmetry, which gives rise to the gluon field and thereby the complexities which render

QCD largely intractable, must be dispensed with (or approximated) to some degree. The specific way in

1While the majority of this thesis concerns systems exhibiting the local SU(3) color symmetry realized in nature, for
analytical purposes we also briefly consider a two color, two flavor system in Chapter 2. In this case, the Ta (a = 1...3) are
instead the generators of the local SU(2) color symmetry and the structure constants are simply given by the antisymmetric
tensor fabc = εabc.
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which we shall deal with this symmetry will be a topic of the next subsection. Third, there are approxi-

mate “accidental” symmetries of QCD which are not built into the structure of the QCD Lagrangian, but

are instead the result of the particular parameter values observed in nature (e.g., quark masses). These

approximate symmetries play a crucial role in QCD phenomenology and the observed hadronic spectrum,

and so will play a correspondingly important role in the construction of any effective field theory which we

hope to reproduce this phenomenology. Let us now turn to this third category of symmetries and discuss

the properties of QCD in more detail.

1.1.2 Approximate Symmetries of QCD

In order to identify the approximate symmetries of QCD it is helpful to first rewrite the QCD Lagrangian

in terms of quark fields of definite chirality. Defining the projection operators

PR ≡ 1 + γ5
2

, PL ≡ 1− γ5
2

, (1.4)

where γ5 = iγ0γ1γ2γ3, and the corresponding chirality states qR = PRq and qL = PLq, we can rewrite LQCD

as

L = qRi/∂qR + qLi/∂qL − qRm̂qL − qLm̂qR − gqRγ
µAa

µTaqR − gqLγ
µAa

µTaqL − 1

4
Ga
µνGµν

a . (1.5)

In this form, one immediately recognizes that only the mass terms couple states of different chirality. As a

consequence, for massless quarks the Lagrangian is invariant under independent unitary transformations of

right- and left-handed quarks (i.e. qR = URqR and qL = ULqL, where U
†
RUR = U †

LUL = I). More generally,

for Nf massless flavors the states of different chirality corresponding to those flavors remain uncoupled and

so the QCD Lagrangian possesses the symmetry group G = U(Nf )L ⊗ U(Nf )R.

In order to make the connection between the symmetries of the QCD vacuum and its phase structure

we now decompose the symmetry group of the QCD Lagrangian in terms of those symmetries which are

physically realized (or broken) in nature. To this end, we first note that an element of U(Nf ) can always be

decomposed into the product of elements of SU(Nf ) and U(1) so that2

G = [SU(Nf)⊗ U(1)]L ⊗ [SU(Nf )⊗ U(1)]R . (1.6)

Next, by considering that a finite SU(Nf) or U(1) transformation can be built up from infinitesimal trans-

2If U ∈ U(Nf ) then U
†U = 1 so that det(U) = eiα. Defining Ũ = e−iαU , factorization of the determinant yields det(Ũ) = 1

so that U ∈ SU(Nf ). Thus, by writing U = eiαŨ , we find that U(Nf ) = SU(Nf ) ⊗ U(1).
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formations, one can show that SU(Nf )L ⊗ SU(Nf )R = SU(Nf)V ⊗ SU(Nf)A and U(1)L ⊗ U(1)R =

U(1)V ⊗ U(1)A, where the vector (V) and axial (A) transformations are defined by

U(1)V : q → e−iαq SU(Nf )V : q → e−iθaTaq

U(1)A : q → e−iαγ5q SU(Nf)A : q → e−iθaTaγ5q, (1.7)

where the Ta are here understood to be the generators of SU(Nf ). Thus, we may write the symmetry group

of the QCD Lagrangian with Nf massless flavors as

G = SU(Nf )V ⊗ SU(Nf )A ⊗ U(1)V ⊗ U(1)A. (1.8)

Having now expressed the symmetry group in terms of those symmetries which are physically realized (or

broken) in nature we shall now briefly discuss the four components of G.

The first component of G, SU(Nf )V , is a simple rotation in the space of massless flavors and is known as

isospin symmetry. While this symmetry is only approximate, owing to the only approximately equal masses

of the up and down quarks, and to a lesser extent the strange quark, this symmetry remains unbroken in

nature and is reflected in the spectrum of the light hadrons [23, 24].

The second component of G, SU(Nf )A, is known as chiral symmetry, and is spontaneously broken in the

hadronic phase of QCD, giving rise to the large effective quark masses present in the proton and neutron.3

We note that many authors use the term chiral symmetry to refer to either the entire symmetry group

U(Nf )L ⊗ U(Nf )R, or the slightly smaller group SU(Nf)L ⊗ SU(Nf )R. For any of these definitions, it is

certainly correct to say that chiral symmetry is broken in the hadronic phase. However, with our definition

we isolate the particular SU(Nf)V symmetry which is completely broken in the hadronic phase, thus avoiding

the question of what subgroups might yet be realized.

The third component of G, U(1)V , corresponds to baryon number conservation and is believed to be

realized exactly in nature.

Finally, the fourth component of G, U(1)A, is known as the axial symmetry and as shown by ’t Hooft,

is broken by instanton effects via the QCD axial anomaly [25]. Thus, while this group is a symmetry of the

QCD Lagrangian (i.e., “classical” QCD), it is not a true symmetry of QCD under any circumstances.

3The bare up and down quark masses are approximately mu = 2.3 MeV and md = 4.8 MeV, while the proton (uud) and
neutron (udd) have masses of mp = 938 MeV and mn = 940 MeV, respectively. One important observation from this data is
that despite the fact that mu,md 6= 0, so that chiral symmetry is not truly present in the system, the effective quark mass in
the hadronic phase is nonetheless orders of magnitude larger than the quark bare masses. By attributing the large dynamically
generated masses to the same chiral symmetry breaking mechanism at work in the massless (bare) quark case, we may still
refer to (approximate) chiral symmetry breaking, and define the hadronic phase in terms of a chiral condensate which is much
larger than that stemming from the non-zero bare quark masses.
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1.1.3 Polyakov–Nambu–Jona-Lasinio Model

Having discussed the symmetries of QCD, we are now in a position to construct an effective field theory

which will approximate the behavior of QCD in at least some portion of the phase diagram. As noted in

the prior subsection, we must begin by dispensing with QCD’s local SU(3) color symmetry, which gives rise

to the gluonic degrees of freedom. Thus, we replace the local symmetry with a global SU(3) symmetry, and

correspondingly eliminate the gluon field altogether. Next, having eliminated the mechanism for coupling

the quark fields, we must introduce an effective interaction which retains isospin and U(1)V symmetry,

while providing a mechanism for spontaneous chiral symmetry breaking. Finally, we must also introduce an

effective interaction which plays the role of the QCD instanton and explicitly breaks the U(1)A symmetry

of the QCD Lagrangian.

While the specific form of the NJL model Lagrangian depends both on the number of quark colors and

flavors considered as well as the types of interactions one wishes to study, in this thesis we will study models

which can be generally written in the form

LNJL = q
(

i/∂ − m̂
)

q + L(4) + L(6), (1.9)

where L(4) is an effective four-quark interaction which is invariant under the full symmetry group G, but

allows for the spontaneous breaking of chiral symmetry and diquark pairing, and L(6) is an effective six-quark

interaction that is present for three quark flavors and reflects the QCD axial anomaly by explicitly breaking

the U(1)A symmetry.

While the NJL model accounts for many of the defining properties of QCD, there remains one crucial

property of strongly interacting matter which we have thus far neglected, namely the phenomenon of con-

finement. As with the chiral symmetry breaking and diquark pairing already mentioned, the confinement of

quarks into color singlets at low temperatures, and their “melting” into the quark-gluon plasma (QGP) is

the result of an extraordinarily complex exchange of gluons, as well as a variety of gluon-gluon interactions,

which we have necessarily dispensed with in our effective theory. In fact, an analytic proof that QCD is

color confining has so successfully eluded the physics community that since 2000 it has been the subject of

a Millennium Prize, and the corresponding $1 million which accompanies the six such outstanding prob-

lems [26]. Nonetheless, given that all known QCD phenomenology at low energies exhibits such confinement,

it remains a property which we wish to include in any effective theory of the strong interaction.

A quantity which will prove most useful in discussing confinement both in the full theory of QCD and

in modeling it in our present effective theory is the Polyakov loop, or thermal Wilson line with periodic
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boundary conditions, which is defined as [27–29]

L(r) = exp

(

i

∫ β

0

dτ A0(r, τ)

)

, (1.10)

where A0(r, τ) is the time-like component of the gluon field. We note that the Polyakov loop L(r) inherits

any non-Dirac indices from the gauge field and so in the case of QCD, it is a matrix in color space. Tracing

over these indices yields the “traced Polyakov loop,” often itself simply referred to as the Polyakov loop:

Φ(r) =
1

Nc
trL(r), (1.11)

where Nc is the number of colors. The utility of this object is found in the fact that in the limit of infinitely

massive quarks the partition function of a static quark pair separated by r can be simply expressed in terms

of Φ:

e−βFqq(r) ∼
〈

Φ(r)Φ(0)
〉

, (1.12)

where Fqq(r) is the free energy of the quark-quark pair and 〈· · ·〉 denotes the thermal expectation value. In

the absence of long-range order we expect the correlations in Eq. (1.12) to fall off as a power of r. Thus, by

taking the quark separation to infinity the expectation value can be factored to yield

e−βFqq(∞) ∼
〈

Φ(r)
〉

〈Φ(0)〉 = |〈Φ(0)〉|2, (1.13)

where we have used the fact that Φ(r) = Φ(0), which follows from the symmetry of the two-quark system.

Thus, assuming a spatially homogeneous 〈Φ〉 we obtain

〈Φ〉 ∼ e−βFqq(∞)/2. (1.14)

In the confined phase it requires an infinite energy to separate the two quarks to infinity so that 〈Φ〉 = 0,

while in a non-confining phase Fqq(∞) remains finite and 〈Φ〉 6= 0. Thus, 〈Φ〉 serves as an order parameter

for confinement, and after normalizing we obtain

〈Φ〉 =















0 confined

1 deconfined

. (1.15)
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A careful reader will note that we prefaced Eq. (1.12) by assuming infinitely massive quarks so that the

quark dynamics were suppressed. Thus, 〈Φ〉 is a true order parameter for confinement only in this limit. In

fact, as has been observed in both lattice and EFT calculations such as those which follow, for finite quark

masses there need not be a true deconfinement phase transition at all. Rather, the system may undergo a

more or less rapid and smooth crossover from 〈Φ〉 ∼ 0 to 〈Φ〉 ∼ 1 with increasing temperature. Thus, given

the phenomenological character of our model and the rough correspondence of these limiting values to the

confining and deconfining phases of QCD, we will employ the Polyakov loop as an effective parameter for

confinement.

Finally, we note that we will treat the PNJL model in the mean field approximation throughout this

thesis, replacing the traced Polyakov loop and its conjugate with their thermal expectation values. For the

sake of notational simplicity, we will continue to use Φ to represent this expectation value, not writing the

brackets explicitly.

As seen in Eq. (1.10), the Polyakov loop is defined in terms of the time-like component of the gluon field

A0. Thus, if one were computing true QCD thermodynamics, one can imagine determining the equilibrium

gluon field configuration for a system, and from it calculating the Polyakov loop, thereby determining whether

the system is in a confined phase or not. However, having begun our search for an EFT by dispensing with

the dynamical gluon field, we no longer have either the field A0 nor a means to define the Polyakov loop.

Thus, our first step in incorporating confinement into the NJL model is to re-introduce a static homogeneous

gauge field Aµ and the corresponding covariant derivatives into the NJL Lagrangian:

Dµ = ∂µ − iAµ, Aµ = δ0µA0, (1.16)

where we have absorbed any coupling strength which would otherwise multiply Aµ into the definition of the

gauge field.

One crucial aspect of the Polyakov loop’s place in an EFT is the fact that unlike in QCD, its value is no

longer the byproduct of the theory’s dynamical degrees of freedom. Rather, we must treat Φ (or equivalently,

A0) as a variable on par with the chiral and diquark condensates, with respect to which we will minimize

the thermodynamic potential. As a result, we must also introduce an effective potential U(Φ,Φ), which will

govern the deconfinement phase transition in the pure gauge sector (i.e., in the absence of quarks). The

precise form of the potential will depend on the number of quark colors, but will allow us to write the PNJL

model Lagrangian generally in the form

LPNJL = q
(

i/∂ − m̂+A0γ
0
)

q + L(4) + L(6) − U(Φ,Φ). (1.17)
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Figure 1.1: Schematic QCD phase diagram showing the regions probed by current heavy ion colliders as well as
the low temperature region applicable to neutron stars. Adapted from [30].

1.2 Structure of Neutron and Dense Quark Stars

While much of our current observational study of the QCD phase diagram is restricted to the high temper-

ature, low density matter created in heavy ion collisions, nature itself provides us an indirect method for

the study of low temperature quark matter in neutron stars. These astrophysical objects have temperatures

T . 1 MeV and are thought to obtain central densities of ρc ∼ 5 − 10ρ0, where ρ0 ≈ 2.3 × 1014 g /cm3 is

nuclear density. As a result, the cores of neutron stars are thought to have precisely the conditions necessary

to reach into the rich, but highly uncertain, region of the QCD phase diagram (see Fig. 1.1).

Unfortunately, while neutron stars may hold the key to understanding the structure of dense quark

matter, our observations of the quark matter that comprises them are necessarily indirect, owing both to

their distance (∼ 100 ly to the nearest [31,32], and ∼ 4000 ly to the most massive [33]) and to their intense

gravitational and rotational properties. Thus, we are led to consider what observable properties of a neutron

star is capable of providing insight into the thermodynamic properties of its core [34–36].

The connection between neutron star thermodynamics and structure is contained in the Tolman-Oppenheimer-

Volkov (TOV) equation, which describes spherically symmetric solutions of the Einstein field equations of

general relativity [37, 38]:

dP (r)

dr
= −G

[

ρ(r) + P (r)/c2
] [

M(r) + 4πr3 P (r)/c2
]

r2 − 2GM(r)/c2 r
, (1.18)

where P (r) and ρ(r) are the pressure and energy density at a radius r from the star’s center, G is Newton’s
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gravitational constant, and the mass contained within a shell of radius r is given by

M(r) =

∫ r

0

dr′ 4πr′2ρ(r′). (1.19)

In order to solve Eq. (1.18) we must specify the equation of state of the matter comprising the star, which

gives the matter’s pressure as a function of its mass density, P (ρ). Once this ingredient is supplied by a

thermodynamic analysis of the quark matter which comprises the star, the relationship between neutron star

mass and radius is determined. Working in reverse, by making astronomical observations of the mass-radius

relationship of neutron stars one can constrain the possible quark matter equations of state and thereby gain

insight into the microscopic properties of dense quark matter.

One reason that observing the masses of neutron stars is so useful is that for a given equation of state

there exists a maximum total mass (Mmax), beyond which a star would be unstable to gravitational collapse.

Thus, by observing the neutron star masses obtained in nature, one can eliminate those candidate equations

of state which do not permit the realization of such massive stars. One can understand the existence of

Mmax by considering the simpler case of a much lower density white dwarf, which is supported against

gravitational collapse by electron (rather than neutron) degeneracy pressure. For simplicity, we assume

the star is comprised of highly relativistic electrons and stationary nuclei. Taking into account the spin

degeneracy, the kinetic energy of the electrons is

Ekin = 2V

∫ pF

0

d3p

(2π~)3

√

(pc)2 + (mec2)2, (1.20)

where me is the electron mass, pF = ~(3π2Ne/V )2/3 is the Fermi momentum of the electrons, Ne is the

number of electrons in the star, and V is the star’s volume. In the highly relativistic limit (pF ≫ mec) the

electrons’ rest energy is a small correction to their kinetic energy so that we can expand the square root in

Eq. (1.20) and after performing the integrals obtain

Ekin(R) ∼
B

R
+ CR, (1.21)

where R is the star’s radius and we define the constants

B =
3

4

(

9π

4

)1/3(
Z

A

)4/3(
M

mp

)4/3

~c C =
3

4

(

9π

4

)−1/3(
Z

A

)2/3(
M

mp

)2/3
(mc

~

)2

~c, (1.22)

where mp is the proton mass and M ≈ (A/Z)Nemp is the total star mass, with A and Z the mass and
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atomic numbers, respectively. Meanwhile, the gravitational potential energy of the star is V = −D/R where

we take D = 3GM2/5, assuming a constant density star.4 The total energy of the star is therefore

E(R) =
B −D

R
+ CR. (1.23)

The equilibrium radius of the star is the radius at which the pressure P = −(∂E/∂V )S,N = 0, so that

E′(R∗) = 0. However, if B < D then the star’s energy is a monotonically decreasing function of R; in this

situation the degeneracy pressure of the electrons is insufficient to balance the gravitational force, and the

star is unstable to collapse. Setting B = D thus yields the maximum white dwarf mass:

Mmax =
15

√
5π

16

(

Z

A

)2(
~c

G

)3/2
1

m2
p

≈ 6.87

(

Z

A

)2

M⊙, (1.24)

where M⊙ = 2.0 × 1033 g is a solar mass. The appearance of the ratio Z/A in this expression can be

traced to the fact that while protons contribute to both the gravitational and degeneracy pressures of the

star (the latter indirectly, through the presence of a neutralizing electron), neutrons do not. Thus, a star

composed of neutron rich nuclei (A > 2Z) will become unstable before a star with equal numbers of protons

and neutrons. In practice, white dwarfs primarily consist of low atomic number nuclei with roughly equal

numbers of protons and neutrons (e.g., 12C, 16O) and using a value of A/Z ≈ 2.2 yields the Chandrasekhar

limit of Mmax = 1.41M⊙ [39, 40].

Looking back at Eq. (1.23) we see that while the coefficient D, which stems from the gravitational

pressure of the star, is independent of the type of particles which comprise the star, the coefficient B

is highly dependent on the detailed properties of the gas’ constituents. In particular, it can be derived

from the equation of state for the star’s constituent matter, which for a free ultra-relativistic Fermi gas is

simply P (ρ) = ρ/3. Thus, if by careful astronomical observation we are able to identify a white dwarf with

Mobs > Mmax then we can conclude that we must modify our equation of state in order to raiseMmax above

Mobs.

In Chapter 5 we investigate the constraints placed on the equation of state of dense quark matter by the

recent observation of massive neutron stars with M & 2M⊙ [33, 41, 42]. By introducing a flavor-symmetric

vector repulsion within an NJL model of dense quark matter we construct a quark matter equation of

state which stabilizes neutron stars up to M ≈ 2.34M⊙. Such an interaction can therefore explain the

recent observations of PSRs J1614-2230 and J0348+0432 with M = (1.97± 0.04)M⊙ and (2.01± 0.04)M⊙

respectively [33,42], though its capacity to account for PSR J1311-3430 with M = (2.4± 0.3)M⊙ is unclear,

4This approximation is not necessary, but simplifies the present calculation without affecting the qualitative result.
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given the large uncertainty in its observed mass [41]. We then consider observational data from non-

maximally massive neutron stars and find that our equation of state is in marked agreement with the

observational constraints imposed by this data for quite reasonable magnitudes of the vector coupling.

We also investigate the stability of neutron stars and the proposed ultra-dense quark stars, whose central

densities are thought to be ρc ≫ 10ρ0 [43, 44]. We construct density profiles and determine the mass-

radius relationships for these dense stars in the presence of a vector repulsion and study the impact of this

coupling on the stability limits of quark and neutron stars. We find that the vector coupling is not capable

of stabilizing the ultra-dense matter of quark stars against gravitational collapse, so that if such stars are to

be realized in nature, additional physics is required.

1.3 Artificial Gauge Fields in Ultracold Atoms

In the past two decades the study of ultracold atomic gases has quickly become one of the most rapidly

developing fields of science, due in large part to these systems’ remarkable ability to simulate other widely

disparate physical systems. The explosion in both interest and application of these systems has been largely

precipitated by the technological developments which have recently allowed experimentalists to reach the

extremely low temperatures (T ∼ 100 nK) required to observe macroscopic quantum mechanical behavior.

In particular, the development of laser cooling techniques which earned Phillips, Cohen-Tannoudji, and

Chu the 1997 Nobel Prize in physics, paved the way for researchers to probe the lowest energy states of

matter [45].

The realization of the first man-made atomic Bose-Einstein condensate (BEC) in 1995 [46] and the

first degenerate Fermi gas four years later [47] opened these prototypical quantum systems to experimental

probes for the first time, seventy years after they were postulated [48, 49]. Soon after, the first signs of the

wide application of these systems began to appear, and in 1998 Ketterle et al. demonstrated the ability

to arbitrarily tune a two-body atomic interaction by means of an external magnetic field, via a mechanism

known in nuclear physics as a Feshbach resonance [50, 51]. Five years later, beginning with a gas of weakly

bound Bardeen-Cooper-Schrieffer (BCS) pairs of fermions, Jin et al. induced the formation of strongly

bound diatomic molecules which then condensed to form a molecular BEC, as shown in Fig. 1.2 [52, 53].

Thus, a mere eight years after creating the first BEC, researchers were able to create and probe either Bose

or Fermi systems with arbitrary two-body interactions, and remarkably, to move continuously between the

two regimes via a BEC-BCS crossover.

The ability to prepare and measure the properties of strongly interacting systems in a controlled manner

ensure sustained interest in ultracold gases and has inevitably led researchers to pursue methods of simulating
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(a) (b)

Figure 1.2: Momentum distribution (a) above and (b) below the critical temperature Tc for Bose-Einstein con-
densation of a 40K2 molecular gas. Above Tc the gas has a thermal Boltzmann distribution, while
below Tc a large peak in the distribution forms, indicating the presence of a macroscopic number of
molecules in the zero-momentum ground state. Image is courtesy of [53].

other systems that are difficult to study in their naturally occurring forms. One such application which has

garnered particular attention is the simulation of both Abelian gauge fields (e.g., magnetic fields) in which

the symmetry group generators commute, and non-Abelian fields (e.g., QCD) in which they do not. For

example, in order to simulate a charged particle in a magnetic field, we must design a system described by

a Hamiltonian of the form

H =
1

2m

(

p− q

c
A
)2

, (1.25)

where p is the particle’s momentum and B = ∇×A is the magnetic field. The remaining variables m and q

are the particle’s effective mass and charge, while c is the speed of light. Of course, the reason we cannot use

a cold atomic gas to probe a magnetic field directly is that q = 0 so that the atoms do not couple to the gauge

field A. Thus, we must devise a way in which to construct a Hamiltonian of the form in Eq. (1.25) without

a true electric charge. At present, two such methods have been successfully implemented. The first, which

is capable of simulating constant Abelian gauge fields (i.e., magnetic fields), is through mechanical rotation.

The second, through which it is possible to simulate both spatially varying and non-Abelian gauge fields,

employs carefully tuned laser techniques. Though it is the second technique which we will be concerned with

in this thesis, we will first briefly review the rotation method, as it is technically less complex and provides

insight to the general approach of gauge field simulation.

Consider an atom with Hamiltonian H0 = p2/2m+ V0, where V0 is an unspecified external potential. If

we place the atom in a frame rotating at an angular velocity ω = ωz the Hamiltonian in the rotating frame

is

H ′ = H0 − ω · L, (1.26)
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where L = r×p is the particle’s angular momentum in the lab frame. Writing out the components explicitly,

the rotating-frame Hamiltonian becomes

H ′ =
p2x + p2y + p2z

2m
− ω(xpy − ypx) + V0,

=
(px +mωy)2 + (py −mωx)2 + p2z

2m
− 1

2
mω2(x2 + y2) + V0,

≡ 1

2m

(

p− q

c
A
)2

+ V ′, (1.27)

where we define the artificial gauge field A and rotating frame external potential V ′

qA = mcω (−yx+ xy) V ′ = V0 −
1

2
mω2(x2 + y2). (1.28)

Thus, measured in the rotating frame, the neutral atom responds as if it were a charged particle subject

to the vector potential A as well as an additional scalar potential which gives rise to the centrifugal force.

Incidentally, very often the external potential is a harmonic trap of the form V0 = mΩ2r2/2 so that if the

system is tuned to Ω = ω, the centrifugal and trapping potentials precisely cancel in the plane perpendicular

to the rotation, and one is left only with a trapping potential V ′ = mω2z2/2 in the plane perpendicular to

the rotation. Also, note that by equating Eqs. (1.25) and (1.27) we are only able to determine the product

qA, which is as expected, since both q and A are artificial “effective” quantities, and only their product

appears in the Hamiltonian.

From the vector potential A we can compute the artificial magnetic field B = ∇ × A. Since only the

product qB is fixed by Eq. (1.28) we are free to choose q = e for simplicity so that

B =
2mc

e
ω ≈ 10−13Aω gauss, (1.29)

where A = m/mp is the mass number of the atom and ω is measured in Hertz. The magnetic field is

necessarily constant in space and while its magnitude can be tuned arbitrarily in principle, in practice the

attainable fields are limited by achievable rotation rates. As a result, researchers have recently developed

optical techniques for creating synthetic gauge fields which are much more versatile than mechanical rota-

tion [54–56]. In particular, these methods do not face the technical limitations associated with high rotation

rates and therefore allow for the realization of much larger synthetic field strengths. Moreover, these meth-

ods also allow for the simulation of both spatially varying and non-Abelian gauge fields, with which we are

concerned in this thesis.

In Chapters 6 and Appendix A we investigate the properties of a mixture of two hyperfine species of
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fermions coupled to a non-Abelian gauge field, induced by spatially-varying lasers. In particular, we consider

a spin-orbit coupling of the Rashba-Dresselhaus (RD) form:

H =
κ

m
kxσx +

ηκ

m
kyσy , (1.30)

where m and k are the atom’s mass and momentum respectively, σ = (σx, σy, σz) is the vector of Pauli

matrices in hyperfine space, κ is the overall strength of the spin-orbit coupling, and η is the anisotropy of

the Rashba and Dresselhaus components. The special cases η = 1 and η = 0 were first encountered in the

study of two-dimensional semiconductors [57,58], and this class of Hamiltonians has recently gained attention

as the first type of experimentally realized artificial non-Abelian gauge field [59]. With the addition of a

Zeeman field (hz) and a tunable s-wave contact interaction this system exhibits a very rich phase structure

including a variety of topologically distinct superfluid phases, a BEC-BCS crossover, and the emergence of

Majorana and Dirac excitations [59–63].

In Chapter 6 we investigate the phase structure of artificially spin-orbit coupled systems in the mean

field approximation, which yields the general phase structure of these systems and reveals many important

properties. We compute the critical superfluid temperature as a function of the RD coupling strength and

anisotropy, as well as the applied Zeeman field. We observe a continuous BEC-BCS crossover with increasing

two-body coupling strength, indicating a movement from a gas of weakly bound fermions to a composite

gas of strongly bound Bose molecules. We also find that the critical temperature for superfluidity can either

be enhanced or suppressed by the presence of a Zeeman field, depending on the system’s location in phase

space, namely whether the system is dominated by singlet or triplet pairing and the form of the density of

states.

In Appendix A we study the effects of fluctuations on the phase diagram of spin-orbit coupled fermions,

which play an increasingly important role as the system approaches phase transitions. In particular, we

focus on the BEC regime in which the Fermi gas is largely composed of composite Bose molecules. We

compute the coefficients of the Ginzburg-Landau thermodynamic potential, which can be used to obtain the

superfluid critical temperature in this limit. Thus, one can show that the formation of bosonic molecules

strongly suppresses the critical temperature relative to the mean field result by replacing the energetically

costly pair-breaking excitations of the BCS limit with excitations of the strongly bound diatomic molecules

from their bosonic ground state.



Chapter 2

Phase Diagram of Two Flavor QCD

2.1 Introduction

The reasons for the great sustained interest in the QCD phase diagram are many, but two factors in particular

have contributed to its long-standing status among theoreticians. First, QCD’s phase structure has the

potential to be nearly arbitrarily rich, owing to the complexities of the gluon-mediated interaction, the

wide variety of potential quark pairing structures, and the asymptotic freedom which is obtained at large

densities. Second, until very recently it has been nearly impossible to probe the phase diagram experimentally

and thereby constrain the number of “good” models. As a result, within the general bounds provided by

the structure of QCD, each theoretician is limited only by his imagination as regards the varied exotic

phases in which quark matter might exist, particularly at intermediate to large densities. Examples of such

postulated phases include the color superconducting 2SC and CFL phases, superconducting phases with

condensed mesons (e.g., CFLK±, CFLK0, CFLπ±), strange quark matter (e.q., stranglets, strange stars),

and quarkyonic matter, among others [8, 30, 64–71].

In principle, a complete QCD phase diagram would involve an exhaustive analysis of the phases of the six

quark flavors over all energy scales. Fortunately, nature has provided a convenient method for approaching

the complete phase structure systematically. In particular, the six flavors of quarks are spread out over

a wide range of masses so that at chemical potentials below a given threshold, quarks whose masses are

greater than that threshold may be neglected. Conveniently, given the masses observed in nature, only the

two lightest quarks (up and down) are relevant at the densities observed in our everyday world. Thus, the

case of Nf = 2 provides a very useful and physically meaningful starting place from which to study the QCD

phase diagram.

In this chapter we begin our study of the QCD phase diagram by considering the two flavor PNJL model

for both two and three colors. In doing so, we pay special attention to how the addition of the third quark

color and confinement affects the phase structure of strongly interacting matter. In particular, we find that

the existence of a third quark color suppresses color superconductivity at low chemical potentials, thereby

greatly increasing the hadronic region of the phase diagram. In fact, while the two flavor model yields a

phase structure incorporating the rough features of more elaborate models (e.g., a hadronic phase, color

17
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superconductivity, and a deconfined quark gluon plasma), for Nc = 3 the onset of color superconductivity is

delayed to chemical potentials large enough that the strange quark can no longer be consistently neglected.

Thus, we are naturally led to consider the three flavor PNJL model, which is the subject of Chapters 3

and 4.

2.2 Two Flavor NJL Model

Recalling the general NJL Lagrangian of Eq. (1.9) and noting that the six-quark interaction is absent in the

two flavor system, we write the two flavor NJL Lagrangian in the form

L2F = q
(

i/∂ − m̂+ µγ0
)

q + L(4)
σ + L(4)

d , (2.1)

L(4)
σ = G

[

(qq)
2
+ (qiγ5τq)

2

]

, (2.2)

L(4)
d = H

[

(

qiγ5τ2λ2Cq
T
) (

qTCiγ5τ2λ2q
)

+
(

qτ2λ2Cq
T
) (

qTCτ2λ2q
)

]

, (2.3)

where we have introduced the quark chemical potential µ, and L(4)
σ and L(4)

d are responsible for spontaneous

chiral symmetry breaking and diquark pairing, respectively. The coupling coefficients are G,H > 0, cor-

responding to attractive quark-quark interactions, while τ = (τ1, τ2, τ3) is the vector of Pauli matrices in

flavor space, λ2 is the second Pauli (for Nc = 2 colors) or Gell-Mann (for Nc = 3) matrix in color space, and

C is the charge conjugation operator. We now make two observations regarding this Lagrangian. First, the

coefficients G and H subsume all of the gluon-mediated interactions of QCD into themselves. Second, by

using four-quark point interaction vertices, our theory is no longer renormalizable and therefore requires the

introduction of a high-momentum cutoff (Λ) to regulate the theory. This cutoff will serve as a parameter

of our model and will be determined along with the other parameters (namely, m̂, G, and H) by fitting

to various experimentally determined, or otherwise known, quantities. We are free to choose either a 3-

or 4-momentum cutoff, but in order to maintain contact with the majority of the literature and to remain

applicable in the finite temperature formalism, we will choose the former.

In order to complete the definition of our model, we must now specify a method for fixing the parameters

m̂, G, H , and Λ. For simplicity, we treat the situation of equal up and down quark masses and follow the

standard prescription in which m, G, and Λ are fixed by fitting to the pion mass (mπ = 139.3 MeV) and

decay constant (fπ = 92.3 MeV) in vacuum, along with the chiral condensate determined from QCD sum

rules [〈uu〉 ≈
〈

dd
〉

= −(240± 20) MeV)3] [16,20]. The diquark coupling H can be related to G by means of

a Fierz transformation which connects the L(4)
σ and L(4)

d vertices so that for Nc = 2 we have H = G, while

for Nc = 3 we have H = 3G/4. The result of this fitting procedure is given in Table 2.1, which is taken
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Nc m [MeV] GΛ2 HΛ2 Λ M [MeV]

2 4.5 3.13 3.13 780 360
3 5.5 2.13 1.60 650 323

Table 2.1: Parameters for the two flavor NJL model: the bare quark mass m, chiral and diquark couplings G and
H , and the spatial momentum cutoff Λ [72, 73]. Also shown is the effective quark mass M at µ = T =
0.

from [72, 73].

2.3 Mean Field Approximation

The condensates preferred by our chosen interaction are the flavor symmetric chiral and diquark condensates

in the spin-parity 0+ channel [2, 20]:

σ = 〈qq〉 , d =
〈

qTCγ5τ2λ2q
〉

, (2.4)

where σ represents the degree to which the system has spontaneously broken SU(3)A chiral symmetry and d

is the amplitude of quark Cooper pairing. In particular, by writing out the color and flavor indices explicitly,

one finds

d = −
〈

uTr Cγ5dg
〉

+
〈

uTg Cγ5dr
〉

+
〈

dTr Cγ5ug
〉

−
〈

dTg Cγ5ur
〉

, (2.5)

where (u, d) and (r, g) denote up and down flavors and red and green colors, respectively. Thus, the structure

of d ensures that a quark pair will be a color and flavor singlet consisting of one quark of each color and

flavor. Working in mean field and neglecting quadratic fluctuations of the fields, we expand the products of

operators appearing in the Lagrangian as

XY = [〈X〉+ (X − 〈X〉)][〈Y 〉+ (Y − 〈Y 〉)],

= 〈X〉 〈Y 〉+ 〈X〉 (Y − 〈Y 〉) + (X − 〈X〉) 〈Y 〉+ (X − 〈Y 〉)(X − 〈Y 〉),

≈ 〈X〉 〈Y 〉+ 〈X〉 (Y − 〈Y 〉) + (X − 〈X〉) 〈Y 〉 ,

= 〈X〉Y +X 〈Y 〉 − 〈X〉 〈Y 〉 . (2.6)

The mean field Lagrangian thus becomes

L2F = q
(

i/∂ − m̂+ 2Gσ + µγ0
)

q −Hd∗(qTCγ5τ2λ2q) +Hd(qγ5τ2λ2Cq
T )− V2F (σ, d), (2.7)
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where V2F (σ, d) = Gσ2+H |d|2 prevents double-counting the degrees of freedom in our mean field treatment.

Next, in order to transform the Lagrangian to Gaussian form we introduce the Nambu-Gor’kov spinor

Ψ =
1√
2







q

qC






, (2.8)

where qC ≡ CqT is the charge-conjugate quark field. Symmetrizing the first term in Eq. (2.7) with respect

to the Nambu-Gor’kov indices and defining the effective mass and gap

M̂ = m̂− 2Gσ, ∆ = −2Hd, (2.9)

we can write the Lagrangian in the form

L2F = ΨS−1Ψ− V2F (σ, d), (2.10)

where the inverse propagator is

S−1(x) =







i/∂ − M̂ + µγ0 ∆γ5τ2λ2

−∆∗γ5τ2λ2 i/∂ − M̂ − µγ0






. (2.11)

Thus, we have cast the mean field NJL model in the form of a free theory which can be solved exactly.

In particular, the quasiparticle dispersion relations are simply the poles of the propagator in Eq. (2.11). We

now proceed to calculate these eigenvalues in both the two- and three-color cases.

2.3.1 Eigenvalues for Nc = 2

In order to compute the eigenvalues for Nc = 2 we first transform the inverse propagator in Eq. (2.11) to

momentum space:

S−1(k) =







/k − M̂ + µγ0 ∆γ5τ2λ2

−∆∗γ5τ2λ2 /k − M̂ − µγ0






. (2.12)

We note that while the Nambu-Gor’kov indices are written explicitly, each of the four elements appearing in

S−1(k) is itself a 16× 16 matrix, having 4 Dirac, 2 color, and 2 flavor indices. The eigenvalues of the system

are given by the roots of the equation det[S−1(k0)] = 0. As shown in Appendix D.2.1, the determinant of
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Eq. (2.12) can be written in terms of its blocks:

det[S−1(k)] = det
[

/k − M̂ + µγ0 − (∆γ5τ2λ2)(/k − M̂ − µγ0)−1(−∆∗γ5τ2λ2)
]

det(/k − M̂ − µγ0). (2.13)

Assuming equal mass up and down quarks (m̂ = mI2), the argument of the first determinant above can be

simplified significantly by commuting τ2λ2 through the inverted Dirac matrix (which is both color and flavor

independent) and noting that τ22 = λ22 = I2. In addition, it is easily verified that

(/k − M̂ − µγ0)−1 =
/k + M̂ − µγ0

(k0 − µ)2 − E2
k

, (2.14)

where Ek =
√
k2 +M2 is the energy of a free quark of massM . Using these facts and taking the now trivial

determinant over color and flavor indices, we obtain

det[S−1(k)] = det

[

/k −M + µγ0 − |∆|2 /k −M − µγ0

(k0 − µ)2 − E2
k

]4

det(/k −M − µγ0)4. (2.15)

After writing out the Dirac indices and a bit of algebra (see Appendix D for details) we obtain the eigenvalues:

E1,2 =
√

(Ek ± µ)2 + |∆|2, (2.16)

each with multiplicity 16, though we note that the Nambu-Gor’kov formalism has doubled the number of

degrees of freedom, so that only 8 of each eigenvalue are “physical” (4 Dirac × 2 color × 2 flavor indices).

Thus, we find that for Nc = 2 all 16 eigenvalues of the system are gapped, half corresponding to quasiparticles

(−), and half to quasiholes (+).

2.3.2 Eigenvalues for Nc = 3

In the Nc = 3 case, the momentum-space inverse propagator is again given by Eq. (2.12), but with λ2

the second Gell-Mann matrix, rather than the second Pauli matrix. Thus, each block is now a 24 × 24

matrix. The expression in Eq. (2.13) similarly holds for the Nc = 3 case, but while we can commute the

τ2λ2 and utilize the fact that τ22 = I2 as before, it is no longer true that λ22 = I2. Rather, we now have

λ22 = diag(1, 1, 0), so that the eigenvalues will fall into two classes. Two-thirds of the eigenvalues (those

corresponding to the first and second diagonal elements of λ22) will be of the form of Eq. (2.16), while the
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remaining third will be ungapped. The detailed calculation is given in Appendix D.3, and the result is:

E1,2 =
√

(Ek ± µ)2 + |∆|2 multiplicity 16, (2.17)

E3,4 = |Ek ± µ| multiplicity 8. (2.18)

We can understand the appearance of ungapped excitations in the Nc = 3 case by considering the explicit

form of the diquark pairing amplitude, given in Eq. (2.5). In this form we see that the system pairs up

(red) with down (green) quarks, as well as up (green) with down (red), while blue quarks remain unpaired.

Thus, in the Nc = 2 case, in which there are no blue quarks, all quark colors and flavors participate in the

pairing, thereby inducing gaps into all quasiparticle excitations. In the Nc = 3 case, however, blue quarks are

unpaired and the corresponding one-third of the eigenvalues are the ungapped excitations of free particles.

Having computed the eigenvalues for both the Nc = 2 and Nc = 3 cases, we are now in a position to

evaluate the thermodynamic potential of the system, from which we can construct the QCD phase diagram.

2.3.3 Thermodynamic Potential

The partition function of the system can be expressed in path-integral formalism as

Z =

∫

D[q, q] e−SE[q,q], (2.19)

where the Euclidean action is defined as

SE [q, q] =

∫ β

0

dτ

∫

d3x
(

qγ0∂τ q +H
)

, (2.20)

with β = 1/T the inverse temperature (and kB = 1 throughout). Thus, having cast the Lagrangian in the

quadratic form of Eq. (2.10), the Gaussian integral over the quark fields can be performed exactly so that

we obtain

Z =

∫

D[q, q] e−
∫

β

0
dτ

∫
d3r (ΨS−1Ψ+V2F ),

= e−βV V2F

√

∫

D[Ψ,Ψ] e−
∫

β

0
dτ

∫
d3rΨS−1Ψ,

= e−βV V2F

√

det(βS−1),

= e−βV V2F+ 1
2
ln det(βS−1), (2.21)
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where V is the volume of the system and we have used the identity tr lnA = ln detA to rewrite the last line

above. In addition, the square root in the second line comes from doubling the number of degrees of freedom

in the path integral from (q, q) to (Ψ,Ψ). The thermodynamic potential per unit volume (Ω = −T lnZ/V )

is therefore

Ω = − T

2V
tr ln(βS−1) + V2F . (2.22)

The trace in Eq. (2.22) is taken over the discrete indices (Dirac, color, flavor, and Nambu-Gor’kov)

as well as the continuous labels (τ, r), or equivalently (iωn,k), where ωn = (2n + 1)πT are the fermionic

Matsubara frequencies. Choosing the latter set of variables, by virtue of our interest in finite temperature

effects, and writing out the trace over (iωn,k) explicitly, we obtain

Ω = −T
2

∑

n

∫

d3k

(2π)3
tr ln

[

βS−1(iωn,k)
]

+ V2F . (2.23)

This result is of the standard form except for the unusual factor of 1/2 present in the first term, which

accounts for the double-counting of the degrees of freedom inherent in the Nambu-Gor’kov formalism. We

can take our expression a step further by noting that the eigenvalues of the system Ej(k) are the poles of

S−1(iωn,k) so that

det
[

βS−1(iωn,k)
]

=
∏

j

β [iωn − Ej(k)] .

Inserting this expression into Eq. (2.22) and performing the Matsubara sum (see Appendix C for details)

we obtain

Ω = −T
2

∑

j

∫

d3k

(2π)3

[

ln(1 + e−βEj) +
1

2
β∆Ej

]

+ V2F , (2.24)

where ∆Ej = Ej − Efree
j is the difference between the eigenvalue and its value in the non-interacting case

(without absolute values). This term is required to ensure that Ω = 0 when all condensates are set to zero

at T = 0, so that Ω is measured with respect to the ground state of the non-interacting Dirac sea.

Having obtained the thermodynamic potential, we now proceed to minimize it with respect to the con-

densates σ and d at each point (µ, T ), and thereby obtain the phase diagram in both the two and three color

cases.
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Figure 2.1: Phase diagram for the two flavor, two color NJL model. Solid (green) lines denote second-order
transitions while the dash-dotted (cyan) and dotted (blue) lines denote the chiral and BEC-BCS
crossovers respectively. The BEC-BCS crossover is defined by M(µ, T ) = µ.

2.4 Two Color NJL Phase Diagram

The eigenvalues in the case Nc = 2 are given in Eq. (2.16), so that recalling Eq. (2.24), the thermodynamic

potential becomes

Ω(σ, d) = −8T

2
∑

j=1

[

ln(1 + e−βEj) +
1

2
β∆Ej

]

+ V2F (σ, d). (2.25)

Having fixed the parameters m, G, and Λ, as described in subsection 2.2, we now minimize Ω with respect

to σ and d, which yields the phase diagram in Fig. 2.1. The three phases are the chirally broken Nambu-

Goldstone (NG) phase with σ 6= 0 and d = 0, a color superconducting (CSC) phase with d 6= 0, and which

may or may not be chirally broken, and the quark-gluon plasma (QGP) with σ ∼ 0 and d = 0. We note that

while in the chiral (m → 0) limit the QGP is defined by σ = d = 0, the presence of a non-zero bare quark

mass (m = 4.5 MeV) turns the chiral phase transition into a smooth crossover, blurring the distinction

between the NG and QGP phases. Nonetheless, while no longer a true phase transition, we define the

crossover temperature Tc as the location of the maximum in the dσ/dT , as shown in Fig. 2.2.

At low temperatures the NG-CSC phase transition occurs at a critical chemical potential µc = mπ/2 = 70

MeV, precisely half of the pion mass mπ, as is expected from general considerations [72]. Roughly speaking,

the system will begin pairing as soon as there is sufficient energy to generate a pion (i.e. a quark pair) from

the vacuum.

In addition to the three phases just discussed, we also make a distinction within the CSC phase between
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Figure 2.2: Normalized dσ/dT vs. temperature at µ = 0 in the two flavor, two color NJL model.

regions characterized by tightly bound diquark molecules (BEC) and delocalized weakly bound quark Cooper

pairs (BCS). The blue dotted line in Fig. 2.1 demarks the boundary between these regions, which is defined

by M(µ, T ) = µ, and is smooth crossover at all temperatures. As this BEC-BCS crossover will be a topic of

interest throughout the remainder of our work, let us now investigate the transition in more detail.

2.4.1 BEC-BCS Crossover

In order to begin our discussion of the crossover from tightly bound diquark molecules to weakly bound

Cooper pairs we first consider the quasiparticle excitation spectrum given in Eq. (2.16). In particular, we

ask the question, “At what momentum is the quasiparticle energy minimized?” Noting that E1 corresponds

to the quasihole energy, while E2 is the quasiparticle energy, we set dE2/dk = 0 and solve for the momentum,

which yields two possible minima:

(1) k1 = 0 E2(k1) =
√

(µ−M)2 + |∆|2 ,

(2) k2 =
√

µ2 −M2 E2(k2) = |∆| ,

where the first solution always exists, but the second exists only for µ > M . If this condition is met then

E2(k2) < E2(k1) and the quasiparticle energy is minimized for k =
√

µ2 −M2 ≡ kF , which we recognize

as the quark Fermi momentum. This corresponds to a weakly bound (BCS) Cooper pair whose component

quarks have momenta k and −k, where |k| = kF . On the other hand, if µ < M then only the first solution

exists and the quasiparticle energy is minimized for k = 0. In this case, the paired quarks are at rest with

respect to one another, and the excitation energy is simply the gap |∆|. This corresponds to a tightly bound

diquark molecule, the low energy excitations of which simply involve the quarks moving together at non-zero

momentum.
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(a) (b)

Figure 2.3: Quasiparticle dispersion for the CSC phase of the two flavor, two color NJL model, Eq. (2.16). The
dependence on kz, which is identical to that of kx and ky is neglected for the sake of representation .
(a) For µ < M(µ, T ) the dispersion’s minimum is at k = 0 and the diquark pair is a tightly bound
(BEC) molecule. (b) For µ > M(µ, T ), the dispersion’s minimum is at k =

√

µ2 −M2 and the
diquark pair is a weakly bound (BCS) Cooper pair.

Having identified the BEC and BCS regimes of quark pairing, it is instructive to consider the low-energy

excitations in each regime. First, in the BEC regime we expand E2(k) about k = 0, which gives

E2(k) ≈ E2(0) +
M − µ

E2(0)

k2

2M
+ · · · (2.26)

In this form, we see that at low energies, the quasiparticle dispersion is of the form of a free particle with

an effective mass

MBEC

eff =

(

E2(0)

M − µ

)

M =M

√

1 +
|∆|2

(M − µ)2
. (2.27)

The free particle-like dispersion is consistent with our picture of a tightly bound molecule in which the

diquark ground state consists of two quarks at rest (k = 0), while the low energy excitations involve the

quarks moving together at small k 6= 0, with an effective mass that is modified by their interaction strength

|∆|.

Turning now to the BCS regime, expanding Eq. (2.16) about k = kF yields

E2(k) ≈ |∆|+ µ2 −M2

2µ2|∆| (k − kF )
2 + · · · (2.28)
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Figure 2.4: Properties of the two flavor, two color NJL model at T = 0. (a) Normalized chiral and diquark con-
densates, where σ0 and d0 are the condensates’ maximum values. Note both the second-order NG-
CSC transition at µc = mπ/2 and the smooth crossover from the BEC to BCS pairing regimes at
µ = 121 MeV. (b) Effective quark mass, Meff = (∂2E2/∂k

2)−1|k=0, across the BEC-BCS crossover.

This expression is again consistent with a weakly bound quark Cooper pair with momenta (k,−k) and

|k| = kF and binding energy |∆|. In order to excite the diquark pair, one must first expend an energy |∆|

to break the Cooper pair, and then give the liberated quark a small “kick,” modifying its momentum from

its unperturbed position on the Fermi surface. Nonetheless, even after its liberation from the Cooper pair,

the quark’s effective mass is still modified by the presence of the other quarks surrounding it, and becomes

MBCS

eff =

(

µ2

µ2 −M2

)

|∆|. (2.29)

As indicated in Fig. 2.4(a), at low µ when the system is in the NG phase, the chiral condensate, and

therefore the constituent quark mass M = m− 2Gσ, remains constant. Further, since quarks are unpaired

(∆ = 0), the effective quark mass Meff and constituent quark mass M are identical. In the opposite limit,

at large µ, chiral symmetry is asymptotically restored so that M → m ≈ 0, while the BCS pairing gap

plateaus so that Meff also approaches a constant value. As shown in Fig. 2.4(b), in between these two limits

as the system moves through the BEC-BCS crossover at µ = 121 MeV, one observes a divergence in Meff.

Physically, this implies that even a finite momentum quasiparticle carries a vanishingly small kinetic energy.1

Having observed the phase structure of the two flavor, two color QCD phase diagram, let us now move

on to observe the modifications made by the addition a third color, as is realized in nature.

1Care must be taken in applying the expansions Eqs. (2.26) and (2.28) very near the crossover. It is straightforward to

show that these expansions are valid only for |k − k0| ≪
√

µ|M − µ|, where k0 = 0 on the BEC side and k0 = kF on the BCS
side of the transition. Thus, precisely at the crossover when M = µ, the radius of convergence of the expansions goes to zero.
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Figure 2.5: Phase diagram for the two flavor, three color NJL model. Line types are the same as in Fig. 2.1, with
the additional thick (red) line denoting a first-order transition.

2.5 Three Color NJL Phase Diagram

While two color QCD provides an instructive introduction to the phases and characteristics of strongly

interacting matter that we will observe throughout this work, the Nc = 3 case which we now consider moves

us much closer to “real world” QCD. In particular, while QCD’s SU(3) color symmetry guarantees that

quark masses are independent of color, and there is therefore no physical basis on which to eliminate one

of the three colors, no such fundamental flavor symmetry exists. Rather, the existence of two light flavors

(mu,d ∼ 5 MeV), an intermediate mass flavor (ms ∼ 100 MeV), and three heavy flavors (mc,b,t & 1, 300

MeV) of quarks implies that two flavor QCD is a very physically meaningful limit. In particular, for µ≪ ms

a strongly interacting system will have insufficient energy to generate strange quarks and the two light flavors

will be the only physically relevant degrees of freedom. Thus, in this regime, two flavor QCD will be precisely

the governing theory of the system.

Having previously computed the eigenvalues in the case Nc = 3, which are given in Eq. (2.18), the three

color thermodynamic potential becomes

Ω(σ, d) = −4T

∫

d3k

(2π)3

[

2 ln(1 + e−βE1) + β∆E1 + 2 ln(1 + e−βE2)

+β∆E2 + ln(1 + e−βE3) +
1

2
β∆E3 + ln(1 + e−βE4) +

1

2
β∆E4

]

+ V2F (σ, d).(2.30)

Minimizing the thermodynamic potential yields the phase diagram shown in Fig. 2.5. Comparing this phase

diagram to the Nc = 2 case (Fig. 2.1), we observe a few notable differences.

First, we note that the inclusion of a third quark color significantly reduces the transition temperature to
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Figure 2.6: Normalized chiral and diquark condensates vs. µ at T = 0 in the NJL model with Nf = 2, Nc = 3.
The discontinuous jump at µ = 327 MeV indicates a first-order NG-CSC phase transition.

the QGP phase, particularly at large chemical potentials. While the CSC-QGP phase boundary is relatively

independent of µ in both cases, the transition now occurs at TNc=3
c ∼ 65 MeV, approximately one third

the value of the two color transition temperature TNc=2
c ∼ 215 MeV. Thus, the region dominated by quark

pairing is significantly smaller for Nc = 3 than for Nc = 2.

The second significant difference between the Nc = 2 and Nc = 3 phase diagrams is that in the latter

case there exists no BEC region of color superconductivity. Instead, the NG phase gives way immediately

to a weakly-coupled CSCBCS phase via a first -order transition, as shown in Fig. 2.6. In addition, the critical

chemical potential at which the NG-CSC transition occurs has increased by nearly a factor of 5 to µc = 327

MeV, so that where the CSCBEC region existed in the Nc = 2 case, it is now energetically favorable to remain

in the chirally broken NG phase.

2.6 Mean Field PNJL Model

Having constructed the phase diagram for the two flavor NJL model with both Nc = 2 and N = 3, we

now investigate the effects of confinement by introducing the Polyakov loop. From Eq. (1.17) we observe

that the static gauge field A0 associated with the Polyakov loop enters the Lagrangian in the form of a

color-dependent chemical potential, resulting in the modification µ→ µ+ iA0. Thus, the inverse propagator

Eq. (2.11) now becomes

S−1(x) =







i/∂ − M̂ + (µ+ iA0)γ
0 ∆γ5τ2λ2

−∆∗γ5τ2λ2 i/∂ − M̂ − (µ+ iA0)γ
0






. (2.31)



30 CHAPTER 2. PHASE DIAGRAM OF TWO FLAVOR QCD

Before constructing the phase diagram, we next compute the eigenvalues in both the Nc = 2 and Nc = 3

cases in order to observe how they are modified by the presence of the Polyakov loop.

2.6.1 Eigenvalues for Nc = 2

The eigenvalues in the Nc = 2 case are the poles of the momentum space propagator

S−1(k) =







/k − M̂ + (µ+ iA0)γ
0 ∆γ5τ2λ2

−∆∗γ5τ2λ2 /k − M̂ − (µ+ iA0)γ
0






, (2.32)

where λ2 is the second Pauli matrix in color space. The field A0 is a matrix in color space so in order

to write down the inverse propagator explicitly we must fix the gauge. For convenience, we choose the

Polyakov gauge, in which A0 is diagonal and can therefore be expressed in the form A0 = φ3λ3. Computing

the 4D × 2c × 2f × 2NG = 32 eigenvalues yields

E1,2 =
√

(Ek + µ)2 + |∆|2 ± iφ3 multiplicity 8, (2.33)

E3,4 =
√

(Ek − µ)2 + |∆|2 ± iφ3 multiplicity 8. (2.34)

Comparing this result to Eq. (2.16), we note that the presence of the Polyakov loop introduces an imaginary

part to the eigenvalues. However, the fact that the eigenvalues appear in conjugate pairs will ensure that

the thermodynamic potential is real so that its minimization remains well defined.

Before moving on to the Nc = 3 case, we now pause to briefly consider the Polyakov loop itself. While

our discussion in Section 1.1.3 concerned the quantity Φ = trL/Nc, which serves as an order parameter for

confinement, the eigenvalues above have been expressed in terms of the variable φ3. Thus, we must ask how

these two quantities are related. From Eqs. (1.10) and (1.11) we observe that for the homogeneous gauge

field we have adopted we obtain Φ = tr(eiβA0)/2. Evaluating the matrix exponential with A0 = φ3λ3 leads

to the relation

Φ = cos(βφ3). (2.35)

From this expression we find that the physically relevant range 0 ≤ Φ ≤ 1 corresponds to 0 ≤ φ3 ≤ πT/2,

with φ3 = 0 (Φ = 1) denoting a completely deconfined phase and φ3 = πT/2 (Φ = 0) a completely confined

phase. In between these limiting values the system can be interpreted as being either more or less confined,

as we will discuss in more detail in Sections 2.7 and 2.8.
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2.6.2 Eigenvalues for Nc = 3

In Sections 2.3.2 we found that the addition of blue quarks, which do not participate in pairing as a result of

the color-flavor locking of L(4)
d , leads to a set of non-gapped eigenstates, while leaving unchanged the gapped

quasiparticle excitations corresponding to red and green quark pairs. Unfortunately, we cannot apply this

same reasoning to the three color PNJL model because in exchanging SU(2)c for SU(3)c, we have introduced

a second diagonal generator and so in the three color Polyakov gauge we have A0 = φ3λ3 + φ8λ8. Thus, the

Polyakov loop now involves two independent fields, φ3 and φ8. Solving for the eigenvalues in terms of these

fields, we obtain

E1,2 =

√

(

Ek + µ+
iφ8√
3

)2

+ |∆|2 ± iφ3 multiplicity 8,

E3,4 =

√

(

Ek − µ− iφ8√
3

)2

+ |∆|2 ± iφ3 multiplicity 8,

E5,6 = |Ek + µ| ± 2iφ8√
3

multiplicity 4, (2.36)

E7,8 = |Ek − µ| ± 2iφ8√
3

multiplicity 4.

We note that as expected on physical grounds, and as observed in the Nc = 3 NJL model, one-third

of the eigenvalues are ungapped, corresponding to the unpaired blue quarks. The remaining two-thirds of

the 48 eigenvalues consist of gapped quasiparticle and quasihole excitations with complex chemical potential

µqp = −µqh = µ+ iφ8/
√
3. In addition, the gapped eigenvalues have an imaginary part of the same form as

observed in the Nc = 2 case, while the ungapped eigenvalues are modified by the new field φ8.

Next, we must again determine the relationship between the quantities φ3 and Φ, this time for Nc = 3.

Since A0 is diagonal in the Polyakov gauge its exponentiation is trivial and we obtain the relation

Φ =
1

3

(

ei(φ3+φ8/
√
3) + ei(−φ3+φ8/

√
3) + e2iφ8/

√
3
)

. (2.37)

At this point, we must say a few words about the traced Polyakov loop and its properties in our mean field

treatment. First, it is evident from the definition of the thermal expectation values

〈Φ〉 = 1

Z tr
(

Φe−βH
)

,
〈

Φ
〉

=
1

Z tr
(

Φe−βH
)

, (2.38)

that we need not have
〈

Φ
〉

= 〈Φ〉∗. This follows from the fact that the Hamiltonian density corresponding
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to Eq. (1.17) is

H = q
(

iγ · ∇+ m̂− (µ+ iA0)γ
0
)

q +Hint + U(Φ,Φ), (2.39)

where γ = (γ1, γ2, γ3). In particular, the quark-Polyakov loop coupling term qiA0γ
0q is anti-Hermitian, and

is responsible for the complex eigenvalues obtained in Eqs. (2.34) and (2.36).2

Having observed that the PNJL model Hamiltonian is not Hermitian, it follows that

〈

Φ
〉

=

[

1

Z† tr
(

Φe−βH†
)

]∗
6= 〈Φ〉∗ . (2.40)

Despite this complexity, it is quite generally true that the thermal expectation values 〈Φ〉 and
〈

Φ
〉

are both

real quantities [74]. As a result, in mean field where we make the replacements Φ → 〈Φ〉 and Φ →
〈

Φ
〉

, the

imaginary part of Eq. (2.37) must vanish, which requires φ8 = 0.3 Incidentally, this result also allows us to

avoid the rather confounding prospect of a complex thermodynamic potential which would result from the

presence of a non-zero φ8 [21, 77–79].

Having eliminated φ8, the eigenvalues in Eq. (2.36) reduce to

E1,2 =
√

(Ek + µ)2 + |∆|2 ± iφ3 multiplicity 8, (2.41)

E3,4 =
√

(Ek − µ)2 + |∆|2 ± iφ3 multiplicity 8, (2.42)

E5,6 = |Ek ± µ| multiplicity 8, (2.43)

where we have redefined the subscripts as indicated. In fact, we might have expected these eigenvalues on

the basis of the argument at the beginning of this section. That is, having eliminated φ8, the Polyakov loop

now couples only to red and green quarks, which happen to be the same colors which give rise to the gapped

quasiparticle states. As a result, we would expect the Polyakov loop to generate an imaginary part of the

gapped eigenvalues as in the Nc = 2 case, while leaving the ungapped (blue) eigenvalues unchanged. Finally,

we note that after setting φ8 = 0, Eq. (2.37) reduces to

Φ =
1 + 2 cos(βφ3)

3
. (2.44)

2Any Hermitian operator possesses only real eigenvalues, so if we had not noticed at the outset, the appearance of complex
eigenvalues in Eqs. (2.34) and (2.36) indicate that the PNJL Hamiltonian is decidedly non-Hermitian.

3In some of the literature authors attempt to account for the beyond-mean field effects of
〈

Φ
〉

6= 〈Φ〉∗ by treating Φ and

Φ as independent quantities (interchangeable with φ3 and φ8) and minimizing Ω with respect to the full set (σ, d,Φ,Φ) [73,
75, 76]. However, as noted in [21], this treatment results in certain unphysical features and does not substantially improve any
quantitative aspects of the model. Therefore, we do not consider such extensions of the PNJL model in this thesis.
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Thus, the range 0 ≤ Φ ≤ 1 corresponds to 0 ≤ φ3 ≤ 2πT/3, with φ3 = 0 corresponding to a completely

deconfined phase and φ3 = 2πT/3 corresponding to a completely confined phase.

2.7 Two Color PNJL Phase Diagram

Having solved for the Nf = Nc = 2 eigenvalues in Eq. (2.34), the thermodynamic potential becomes

Ω(σ, d,Φ) = −4T
4
∑

j=1

∫

d3k

(2π)3

[

ln(1 + e−βEj) +
1

2
β∆Ej

]

+ V2F (σ, d) + U2C(Φ), (2.45)

where, as the notation suggests, we have made use of the mean field relation
〈

Φ
〉

= 〈Φ〉, and have represented

both by a single Φ in the argument of the Polyakov loop potential U2C(Φ). Following Brauner, we write this

potential in the form [80, 81]

U2C(Φ,Φ)

T
= −b2

[

24ΦΦe−βa2 + ln
(

1− ΦΦ
)]

, (2.46)

where a2 and b2 are coefficients fixed by matching with two color lattice data at µ = 0 [8,21,73,82]. We can

rewrite Eq. (2.45) in a somewhat more transparent form by defining the quantities E± =
√

(Ek ± µ)2 + |∆|2

and combining the logarithms from the j = 1, 2 terms as follows:

ln(1 + e−βE1) + ln(1 + e−βE2) = ln(1 + e−βE+e−iβφ3) + ln(1 + e−βE+e+iβφ3),

= ln
[

1 +
(

eiβφ3 + e−iβφ3
)

e−βE+ + e−2βE+
]

,

= ln
(

1 + 2Φ e−βE+ + e−2βE+
)

. (2.47)

Similarly combining the j = 3, 4 logarithms, the thermodynamic potential becomes

Ω(σ, d,Φ) = −4T
∑

±

∫

d3k

(2π)3

[

ln(1 + 2Φ e−βE± + e−2βE±) + β∆E±

]

+ V2F (σ, d) + U2C(Φ). (2.48)

We can interpret this form of the thermodynamic potential by first noting that the logarithm in Ω has its

physical origin in the entropy of the system since Ω = ε−Ts−µn and s = V −1
∑

k [fk ln fk + (1− fk) ln(1− fk)],

where fk is the Fermi distribution function. Since the logarithm in Eq. (2.48) is the result of adding loga-

rithms corresponding to two distinct eigenvalues, the result is related to the entropy of two quasi-quarks. In

a confined phase (Φ = 0) there will be no isolated quarks to contribute to the system’s entropy so that the

terms weighted by e−βE± vanish. On the other hand, in a deconfined phase (Φ = 1) the two quarks may

either be free (corresponding to the term 2e−βE±) or “paired” (corresponding to the term e−2βE±).
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Figure 2.7: Phase diagram for the two flavor, two color PNJL model. Line types are the same as in Fig. 2.5, with
the additional dotted (purple) line denoting the deconfinement crossover, defined as a maximum in
dΦ/dT .

Before constructing the phase diagram, we must now fix the Polyakov loop parameters a2 and b2 in

Eq. (2.46). It is straightforward to show that in the pure gauge sector, where Ω = U2C(Φ), the critical

temperature for the first-order deconfinement transition is Tc = a/ ln(24). Thus, one common method of

parameter fixing is to determine a2 by matching this pure gauge transition to the lattice QCD value of

T
Nf=0
Φ = 270 MeV [19, 80, 83]. The second parameter b2, which is known with less certainty, can be fixed

independently in order to ensure coincident chiral and deconfinement transitions [19] or related to a2 via the

QCD string tension, b2 = (σs/a2)
3, where σs = (425 MeV)2 [80]. However, fixing a2 in the pure gauge sector

results in a deconfinement transition temperature approximately 30 MeV higher than the lattice QCD value

of T
Nf=2
Φ = 173 MeV. Since our present goal is to model the Nf = Nc = 2 QCD phase diagram, we therefore

choose a2 = 565 MeV in order to reproduce the two flavor lattice transition temperature and subsequently

set b2 = (320 MeV)3 to reproduce the QCD string tension.

Minimizing Eq. (2.48) with respect to σ, d, and Φ yields the phase diagram in Fig. 2.7. Comparing

to Fig. 2.1, we find that the inclusion of the Polyakov loop does not significantly alter the structure of the

two color QCD phase diagram. Indeed, we appear to have simply overlaid a µ-independent deconfinement

transition onto our previous non-confining (NJL) model. However, it is important to note that given our

parameter choice for a2, in the absence of quarks the deconfinement transition is first-order and occurs

at TΦ = 177 MeV. Thus, the coupling between the quarks and the Polyakov loop has transformed the

deconfinement transition from first-order to a smooth crossover, and has pulled the critical temperature

for this transition down slightly. In fact, the difference between the chiral and deconfinement crossover

temperatures at low µ is very nearly constant at ∆Tc = Tσ − TΦ = 35 MeV, as shown in Fig. 2.8. So, while
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Figure 2.8: Near coincidence of the chiral and deconfinement crossovers at µ = 0 in the Nf = Nc = 2 PNJL
model. (a) Normalized chiral condensate and traced Polyakov loop. (b) Normalized dσ/dT and
dΦ/dT . The transitions are nearly coincident, with ∆T = Tσ − TΦ ≈ 21.5 MeV, independent of
µ.

the two crossovers are not coincident, they are certainly correlated.

Before moving on to consider the Nc = 3 phase diagram, we note one subtle feature of Fig. 2.8(b),

namely the slight “bump” in dσ/dT which accompanies the local maximum in dΦ/dT . We will see a much

more pronounced correlation between the two derivatives in the Nc = 3 case, but it is interesting to note

that while the chiral and deconfinement crossovers do not coincide in the PNJL model, they do nonetheless

influence one another.

2.8 Three Color PNJL Phase Diagram

Having solved for the Nf = 2, Nc = 3 eigenvalues in Eq. (2.42), the three color thermodynamic potential is

Ω(σ, d,Φ) = −4T

6
∑

j=1

∫

d3k

(2π)3

[

ln(1 + e−βEj) +
1

2
β∆Ej

]

+ V2F (σ, d) + U3C(Φ), (2.49)

where, following Fukushima, we use the three color Polyakov loop potential [17, 21]

U3C(Φ,Φ)

T 4
= −a(T )

2
ΦΦ + b(T ) ln

[

1− 6ΦΦ + 4(Φ
3
+Φ3)− 3(ΦΦ)2

]

, (2.50)

where the temperature-dependent coefficients are

a(T ) = a0 + a1

(

T0
T

)

+ a2

(

T0
T

)2

, b(T ) = b3

(

T0
T

)3

, (2.51)
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a0 a1 a2 b3
3.51 -2.47 15.2 -1.75

Table 2.2: Coefficients of the three color Polyakov-loop potential U3C(Φ), given in Eq. (2.50) [21].

and where the coefficients ai, and b3 are determined by fitting to three color lattice data at µ = 0. The

constant T0, which is the critical temperature for deconfinement in the pure gauge sector, has a value of

T0 = 270 MeV [17]. However, we will treat T0 as a parameter of the theory, along with the various NJL

couplings, and will fix its value by matching the µ = 0 deconfinement transition from lattice QCD.

Combining the logarithms corresponding to j = 1, 2 and j = 3, 4, we can rewrite the thermodynamic

potential in terms of Φ:

Ω(σ, d,Φ) = −4T

∫

d3k

(2π)3

[

ln
[

1 + (3Φ− 1)e−βE+ + e−2βE+
]

+ ln
[

1 + (3Φ− 1)e−βE− + e−2βE−
]

+ ln(1 + e−βE5) + ln(1 + e−βE6) + β∆E+ + β∆E− +
1

2
β∆E5 +

1

2
β∆E6

]

+V3F (σ, d) + U3C(Φ), (2.52)

Comparing this expression to the Nc = 2 case in Eq. (2.48) we note that the coefficient of e−βE± appearing

in the logarithmic terms is now 3Φ− 1 instead of 2Φ.

Before constructing the three color phase diagram, we must also fit the parameter T0 which appears in

the Polyakov loop potential U3C(Φ). As in the Nc = 2 case, we fix T0 in order to reproduce the lattice QCD

deconfinement transition of TΦ = 173 MeV, which leads us to choose T0 = 200 MeV. We must also address

a certain ambiguity in the definition of the chiral crossover for Nc = 3 that did not exist in the Nc = 2

case. As shown in Fig. 2.9(b), the normalized dσ/dT now has two local maxima, and we must determine

which of these we will designate the chiral crossover. To a certain extent our choice is arbitrary, since the

ambiguity arises from the fact that there is, in fact, no true chiral phase transition for m 6= 0. However, from

Fig. 2.9(a), we see that the first (sharp) peak in dσ/dT corresponds to the initial “drop off” of σ from its

maximum value σ0, which persists for 0 < T < 172 MeV. That is, the chiral condensate (and consequently

the constituent quark mass) is constant up to T = 172 MeV, but as the temperature increases further, the

condensate decreases, and begins its descent with an infinite slope, akin to a square root divergence. While

certainly an interesting feature, this behavior does not correspond to our notion of a crossover. Thus, we

define the chiral crossover temperature Tσ as the location of the broader, smooth maximum at somewhat

higher temperature than the slight discontinuity. As a result, the chiral and deconfinement crossovers will

not coincide, but we shall discover that as µ increases, the difference between the crossover temperatures
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Figure 2.9: Near coincidence of the chiral and deconfinement crossovers at µ = 0 in the Nf = 2, Nc = 3
PNJL model. (a) Normalized chiral condensate and traced Polyakov loop. (b) Normalized dσ/dT
and dΦ/dT . Note the presence of two local maxima in dσ/dT : (1) a sharp maximum coincident with
the deconfinement crossover, and (2) a broader, smooth maximum at a higher temperature (∆T ≈ 52
MeV).

will decrease and eventually they will in fact coincide.

Minimizing the thermodynamic potential with respect to σ, d, and Φ yields the phase diagram in Fig. 2.10.

Comparing to Fig. 2.5, we see that the coupling of the Polyakov loop to the quarks significantly increases

the region of chiral symmetry breaking and diquark pairing. In the case of the NG phase, the crossover

temperature to the QGP at µ = 0 has increased by ∆Tσ = 31 MeV. Meanwhile, the temperature to which

diquark pairs exist has nearly doubled from TNJL
c ∼ 65 MeV to TPNJL

c ∼ 125 MeV. This suggests that

the system has a strong aversion to simultaneously undergoing chiral symmetry breaking or diquark pairing

on the one hand, and deconfinement on the other. Thus, deep in the NG phase where confinement is a

dominant property, the system strongly prefers to obtain σ 6= 0. Similarly, at large µ the small value of Φ

drives diquark pairing to persist to a much higher temperature than in the non-confining NJL model.

A second observation we make from Fig. 2.10 is that the deconfinement transition, while still not highly

dependent on µ, is more obviously correlated with the chiral crossover, as well as the diquark pairs, than in

the Nc = 2 case. While ∆Tc = 51 MeV at µ = 0, this difference decreases as the system moves to higher

density, and the deconfinement crossover is very nearly coincident with the CSC-QGP transition at large µ.
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Chapter 3

Phase Diagram of Massless Three
Flavor QCD

3.1 Introduction

In the prior chapter we analyzed the phase structure of two flavor QCD, which is a useful approximation to

the full theory at energies less than the strange quark mass ms ∼ 100 MeV. However, as shown in Fig. 2.5,

our two flavor model predicts the realization of color superconducting phases for µ & 320 MeV, well above the

density at which strange quarks may be expected to play an important role in QCD thermodynamics. Thus,

if we hope to obtain a reliable picture of strongly interacting matter at these densities we are necessarily led

to consider the three flavor system. The content of this chapter is based on [2].

The inclusion of the strange quark in our theory greatly enhances the richness of the possible QCD phase

diagram in two ways. First, the number of possible quark pairing structures is expanded. For example,

while the two flavor system is restricted to forming ud pairs, the three flavor system may also form us and

ds pairs. As a consequence, the system may realize phases in which only one set of quark flavors pairs (e.g.,

2SC, uSC, dSC), a color-flavor-locked (CFL) phase in which all flavors pair with equal magnitude, or an

asymmetric CFL (ACFL) phase in which all flavors pair, but with unequal magnitudes [30, 83, 84].

The second way in which the strange quark affects the QCD phase diagram is by its role in the instanton-

induced QCD axial anomaly. In particular, the axial anomaly, which in three flavor QCD gives rise to the

Kobayashi-Maskawa, ‘t Hooft (KMT) effective six-quark interaction, plays a crucial role in determining both

the properties of the light mesons and the phase structure of quark matter. In the first case, the anomaly

is responsible for breaking the U(1)A symmetry of QCD and giving rise to the anomalously large mass of

the η′ meson. In the second, recent work by Hatsuda et al. has demonstrated the importance of the axial

anomaly in determining the topology of the QCD phase diagram [18,85]. Specifically, they have shown that

under the right circumstances the anomaly-induced attraction between chiral and diquark condensates leads

to a low temperature critical point and a corresponding BCS-BEC crossover between the chirally broken

Nambu-Goldstone phase and a color superconducting phase.

In this chapter we investigate the phases of dense quark matter by considering the massless three flavor

PNJL model. We pay special attention to the impact of the axial anomaly-induced KMT interaction on

the structure of the low temperature QCD phase diagram, and particularly the possibility of realizing a

39
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low temperature critical point. We also carefully consider the combined effects of the axial anomaly and

confinement by performing an expansion of the thermodynamic potential of the Ginzburg-Landau form and

computing the lowest-order couplings between the quark condensates and the Polyakov loop.

3.2 Three Flavor PNJL Model

Following Abuki et al. and introducing the Polyakov loop via the standard prescription we write the three

flavor PNJL Lagrangian [20]

L = q(i/∂ − m̂+ (µ+ iA0)γ
0)q + L(4) + L(6) − U3C(Φ,Φ), (3.1)

where we have introduced a factor of i to the gauge field A0, as required at finite temperature (see Ap-

pendix B). The standard form of the three flavor four-quark interaction L(4) is chosen to respect the full

symmetry group of classical QCD and contains color-flavor-locked quark-quark interactions [65, 86]

L(4) = L(4)
σ + L(4)

d , (3.2)

L(4)
σ = G

8
∑

a=0

[(qτaq)
2 + (qiγ5τaq)

2], (3.3)

L(4)
d = H

∑

A,A′=2,5,7

[(qiγ5τAλA′CqT )(qTCiγ5τAλA′q) + (qτAλA′CqT )(qTCτAλA′q)], (3.4)

where τa are the U(3) flavor generators (a = 0...8), and τA and λA are the antisymmetric flavor and SU(3)

color generators (A,A′ = 2, 5, 7). We also find it useful to define the chiral and diquark operators

φij = (qR)
j
a(qL)

i
a, (3.5)

(dL)ai = ǫabcǫijk(qL)
j
bC(qL)

k
c , (3.6)

(dR)ai = ǫabcǫijk(qR)
j
bC(qR)

k
c , (3.7)

where i, j, k and a, b, c are flavor and color indices respectively and qL and qR denote states of left and right

handed chirality. In terms of these operators, the four-quark interactions can be written in the compact

form

L(4)
σ = 8Gtr(φ†φ), (3.8)

L(4)
d = 2Htr(d†LdL + d†RdR). (3.9)
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GΛ2 HΛ2 KΛ5 M (MeV)
1.926 1.74 12.36 355.1

Table 3.1: Coupling constants and dynamical quark mass for the massless three flavor NJL model. The high mo-
mentum cutoff is Λ = 602.3 MeV [16,20].

The six-quark interaction can also be written as the sum of two terms

L(6) = L(6)
σ + L(6)

σd , (3.10)

L(6)
σ = −8K(detφ+ h.c.), (3.11)

L(6)
σd = K ′

(

tr[(d†RdL)φ] + h.c.
)

. (3.12)

The first term, L(6)
σ , is the standard KMT interaction, which is the result of the instanton-induced QCD

axial anomaly [25, 87]. The second term, L(6)
σd , is the effective interaction between the chiral and diquark

fields, mediated by the QCD instanton [18, 85].

To complete our model we must now fix the NJL parameters of our theory. The couplings G and K,

as well as the cutoff Λ are fixed by fitting to experimentally determined mesonic properties, while H is

related to G via a Fierz transformation, as discussed by Buballa [16], and are given in Table 3.1. The second

anomaly coupling K ′ will be adjusted “by hand” to determine its effect on the QCD phase structure, and in

particular the realization of a low T critical point. In addition, the Polyakov loop parameters ai and b3 are

unchanged from the two flavor case, while the parameter T0 is chosen to match our model’s deconfinement

transition at µ = 0 to the massless lattice value of T
Nf=3
Φ = 154 MeV [30,82]. Throughout this chapter we

assume that the bare masses of the quarks are zero.

3.3 Mean Field Approximation

The condensates favored by L(4) and L(6) are the flavor-symmetric chiral and diquark condensates in the

spin-parity 0+ channel:

〈

qiaq
j
a

〉

= σδij ,
〈

qTCγ5τAλA′q
〉

= dδAA′ . (3.13)

Expanding about these condensates and neglecting quadratic fluctuations, we obtain the mean field La-

grangian

L = q(i/∂ −M + (µ+ iA0)γ
0)q − 1

2
(∆∗qTCγ5τAλAq +H.c.)− V3F (σ, d) − U3C(Φ,Φ), (3.14)
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where H.c. denotes the Hermitian conjugate, the sum over A = 2, 5, 7 is implied, and the effective quark

mass and BCS pairing gap are

M = m− 4Gσ + 2Kσ2 +
K ′

4
|d|2, ∆ = −2d

(

H − K ′

4
σ

)

. (3.15)

In addition, the condensates contribute to the system’s potential directly an amount

V3F (σi, di) = 2G

3
∑

i=1

σ2
i − 4Kσ1σ2σ3 +

3
∑

i=1

(

H − K ′

2
σi

)

|di|2. (3.16)

In terms of the Nambu-Gor’kov spinor Ψ = (q qC)/
√
2, we can now cast the Lagrangian in the quadratic

form L = ΨS−1Ψ− V3F − U3C , where the inverse propagator in Nambu-Gor’kov space is

S−1(k) =







/k −M + (µ+ iA0)γ
0 ∆γ5τAλA

−∆∗γ5τAλA /k −M − (µ+ iA0)γ
0






, (3.17)

Having cast the Lagrangian in Gaussian form, we may integrate over the fields Ψ and Ψ to obtain the

thermodynamic potential:

Ω = −T
2

72
∑

i=1

∫ Λ d3k

(2π)3

[

ln(1 + e−βEi) +
1

2
β∆Ei

]

+ V3F (σi, di) + U3C(Φ,Φ), (3.18)

where the Ei (i = 1...72) are the poles of Eq. (3.17). Working in the Polyakov gauge in which A0 =

φ3λ3 + φ8λ8, our next task is to compute these eigenvalues, from which we may obtain the thermodynamic

potential.

3.4 Eigenvalues

From Eq. (3.17) we see that the presence of the Polyakov loop induces an effectively color-dependent chemical

potential. We therefore define the effective chemical potential matrix µ̂eff = µ+ iA0 = diag(µ1, µ2, µ3) where

µ1 = µ+ i

(

φ3 +
φ8√
3

)

, µ2 = µ+ i

(

−φ3 +
φ8√
3

)

, µ3 = µ− 2iφ8√
3
. (3.19)

Obtaining the 72 roots of Eq. (3.17)’s characteristic polynomial is a laborious calculation involving the

properties of block matrices, the details of which are given in Appendix D. The resulting 18 distinct

eigenvalues, each with multiplicity 4 (2 spin × 2 Nambu-Gor’kov), fall into two classes. The first class,
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consisting of 12 distinct eigenvalues, can be written in the form

E1−12 =

√

(

Ek ±
µi + µj

2

)2

+ |∆|2 ± µi − µj

2
, i, j,= 1, 2, 3 (i 6= j), (3.20)

where Ek =
√
k2 +M2, and the two ± are independent. The remaining six distinct eigenvalues are the

roots of the polynomials F (ωn,±Ek) which satisfy limk→∞ Ei = ∞, where

F (ωn, Ek) = (ωn + Ek + µ1)(ωn − Ek − µ1)(ωn + Ek + µ2)(ωn − Ek − µ2)(ωn + Ek + µ3)(ωn − Ek − µ3)

−|∆|2(ωn + Ek + µ1)(ωn + Ek + µ2)(ωn − Ek − µ3)[(ωn − Ek − µ1) + (ωn − Ek − µ2)]

−|∆|2(ωn + Ek + µ1)(ωn + Ek + µ3)(ωn − Ek − µ2)[(ωn − Ek − µ1) + (ωn − Ek − µ3)]

−|∆|2(ωn + Ek + µ2)(ωn + Ek + µ3)(ωn − Ek − µ1)[(ωn − Ek − µ2) + (ωn − Ek − µ3)]

+|∆|4[(ωn + Ek + µ1) + (ωn + Ek + µ2) + (ωn + Ek + µ3)]

×[(ωn − Ek − µ1) + (ωn − Ek − µ2) + (ωn − Ek − µ3)]− 4|∆|6. (3.21)

The function F (ωn, Ek) is an even sixth-order polynomial and therefore reducible to a cubic polynomial,

whose solutions can be obtained exactly.1 Thus, all of the model’s eigenvalues can be obtained explicitly

and the thermodynamic potential computed via Eq. (3.18).

In light of the eigenvalues’ dependence on the Polyakov loop variables φ3 and φ8, by comparing Eq.

(3.18) to the two-flavor expression in Eq. (2.30) we note that Ω is no longer a simple function of the traced

Polyakov loop Φ, but rather depends on φ3 and φ8 independently. Thus, in order to construct the phase

diagram we must now minimize Ω(σ, d, φ3, φ8) with respect to all variables, then compute Φ via Eq. (2.37).

However, as shown in Section 2.6.2, the self-consistency of our mean field approximation requires us to set

φ8 = 0. In this case, µ†
1 = µ2 and µ3 = µ, so the eigenvalues come in conjugate pairs. This fact, together

with the assurance that Φ is now real ensures that the thermodynamic potential is also real and that the

minimization procedure is well-defined.

In order to assess the effects of confinement on the QCD phase structure we first construct the phase

diagram for Φ = 1 (no confinement), and then compare to the results for the full PNJL model.
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Figure 3.1: Phase diagram for the three flavor NJL model (no confinement). Thick (red) lines represent first-
order phase transitions while thin (green) lines represent second-order transitions. The dotted (blue)
vertical line is a BEC-BCS crossover, defined by M(µ, T ) = µ. The low T critical point is at (µ, T ) =
(291 MeV, 35 MeV).

3.5 Phase Diagram without Confinement

In the absence of confinement we set A0 = φ3 = 0 so that Φ = 1 (see Eq. (2.37)) and eliminate U3C(Φ,Φ)

from the thermodynamic potential, which then reduces to

ΩNJL = V3F (σ, d) − 2T
∑

±

∫

d3k

(2π)3

[

8 ln(1 + e−βE±
1 ) + ln(1 + e−βE±

2 ) + 4β∆E±
1 +

1

2
β∆E±

2

]

, (3.22)

where the eigenvalues are now

E±
1 =

√

(Ek ± µ)2 + |∆|2, (3.23)

E±
2 =

√

(Ek ± µ)2 + 4|∆|2, (3.24)

and where
∑

± denotes summation over E+
1,2 and E−

1,2.

The minimization of Ω with respect to σ and d yields the phase diagram shown in Fig. 3.1. The critical

temperature for the chiral transition at µ = 0 is found to be TNJL
c = 153 MeV, in agreement with Abuki

et al., and within the margin of error of current lattice results [9, 10, 20]. Note that this temperature is

determined entirely by the couplings G and K and the high momentum cut-off Λ, which were in turn fixed

1While the remaining six distinct eigenvalues can in principle now be written down explicitly, due to the complicated
and opaque nature of these expressions, we decline to do so. It is a straightforward exercise to rewrite F (ω,Ek) as a cubic
polynomial in ω2, read off the polynomial’s coefficients, and insert the coefficients into the formula for the roots of a general
cubic polynomial. Having spent several hours in this endeavor himself, the author encourages the reader who feels compelled
to do so to share any insight he thereby gains!
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Figure 3.2: (a) Contour plot for the chiral condensate in the three flavor NJL model, showing contours of σ =
0.2, 0.4, 0.6, 0.8 and 1.0 σ0, where σ0 is the maximum value of the diquark condensate. (b) Contour
plot for the diquark condensate in the NJL model, showing contours of d = 0.2, 0.4, 0.6, 0.8 and 1.0
d0, where d0 is the maximum value of the diquark condensate.

by empirical mesonic properties (TNJL
c proves independent of H and K ′, which are related to diquark

pairing, since d = 0 in this portion of the phase diagram).

As reported by Abuki et al., the topology of the phase diagram depends critically on the ratio of the

anomaly couplings κ = K ′/K [20]. We find, in agreement with their results, that for κ < 4.2, the transition

out of the Nambu-Goldstone (NG) phase is first-order for all temperatures, while for κ ≥ 4.2, a low-T critical

point emerges, below which there is a smooth crossover from the NG phase to a CSC phase, in which both

chiral symmetry breaking and diquark pairing persist (see Fig. 3.1).

We find that as κ increases above the critical value of 4.2, the low T critical point moves up the NG-CSC

phase boundary (to higher T and lower µ) until it vanishes into the NG-QGP phase boundary at κ = 4.8.

We therefore find that there are three distinct structures of the NJL phase diagram, determined by the value

of κ: (1) κ < 4.2, (2) 4.2 ≤ κ ≤ 4.7, and (3) κ ≥ 4.8. Since we are particularly interested in the existence

of the low T critical point, we are interested primarily in structure (2). Therefore, in displaying our results,

we choose κ = 4.2 as a representative value for which the critical point is realized.

Considering the contour plot of σ, shown in Fig. 3.2(a), we see that the chiral condensate is relatively

slowly varying within the NG phase, which implies a relatively constant effective quark mass. Near the

phase boundaries, however, σ varies rapidly, either falling discontinuously (NG-QGP or NG-CSC, above the

critical point) or undergoing a very rapid, though smooth, crossover (NG-CSC, below the critical point).

Similarly, the contours of d show that while d is not maximized over as great a portion of the phase

diagram as σ, it is relatively constant throughout the CSC region, dropping rapidly only near the second-
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Figure 3.3: Phase diagram for the three-flavor PNJL model. Line types are the same as in Fig. 3.1, and the de-
confinement transition coincides with the chiral phase transition at all values of µ. The low T critical
point is at (µ, T ) = (288 MeV, 36 MeV).

order CSC-QGP phase transition and the NG-CSC crossover (Fig. 3.2(b)).

3.6 Phase Diagram with Confinement

Before constructing the three-flavor QCD phase diagram with confinement, we fix the Polyakov loop pa-

rameter T0 by matching the deconfinement temperature at µ = 0 with current lattice data. With massive

quarks, the definition of Tc in this context would be, as noted by Aoki et al., ambiguous, there being at least

three standard choices: (1) a maximum of the chiral susceptibility, (2) a maximum of the quark number

susceptibility, and (3) a maximum in dΦ/dT [9,10].2 While these transitions are coincident in the NJL and

PNJL models, current lattice calculations with non-zero current quark masses yield slightly different values

for the three critical temperatures. However, for massless quarks, all three transitions are coincident and

there is no ambiguity. Thus, we choose to match the deconfinement transition at Tc = 154 MeV [30], which

leads us to set T0 = 50 MeV.

Minimizing Ω in the presence of the Polyakov loop yields the phase diagram shown in Fig. 3.3. Comparing

to Fig. 3.1 we now assess the effects of confinement on the phase structure of QCD. As in the nonconfining

NJL model, the topology of the phase diagram depends critically on κ. We find that this dependence is

unaffected by the inclusion of confinement, and that the critical point continues to appear for 4.2 ≤ κ ≤ 4.7,

while it vanishes into the NG-QGP phase boundary for κ ≥ 4.8. The location in the phase diagram at which

2There is a slight ambiguity in this definition at low µ. For µ . 288 MeV, as the system moves to higher T , Φ first undergoes
a smooth, though rapid, crossover, which is followed by a slight discontinuity coincident with the chiral phase transition, as
shown in Fig. 3.5(b). Whether one chooses to identify the deconfinement transition with the maximum finite value of dΦ/dT
(rapid crossover) or with the absolute maximum of dΦ/dT (discontinuity) is a matter of convention. Here, we choose the latter
definition. For large µ there is no such ambiguity, since the CSC-QGP transition is second-order and no discontinuity exists.
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Figure 3.4: (a) Contour plot for the chiral condensate in the three flavor PNJL model, showing contours of σ =
0.2, 0.4, 0.6, 0.8 and 1.0 σ0, where σ0 is the maximum value of the diquark condensate. (b) Contour
plot for the diquark condensate in the PNJL model, showing contours of d = 0.2, 0.4, 0.6, 0.8 and 1.0
d0, where d0 is the maximum value of the diquark condensate.

the critical point vanishes (for κ = 4.8) is at marginally higher temperature in the PNJL model (T = 54

MeV) than in the NJL model (T = 50 MeV). This reflects the fact that the Polyakov loop causes a slight

shift (between 2 and 4 MeV) of the NG-QGP and CSC-QGP phase boundaries to higher temperatures, at

intermediate to high µ (note that the critical temperature at µ = 0 is unchanged).

Given that deconfinement is a high T effect, it might be unsurprising that it does not materially affect

the low T critical point. However, it is important to note that were possible µ dependence included in the

Polyakov loop potential, Eq. (2.50), the present inclusion of confinement could have a greater effect on the

phase structure of QCD. Unfortunately, because lattice calculations are restricted to µ = 0, we are unable

to discern any µ dependence of U(Φ,Φ).

We also note that while prior work has demonstrated that inclusion of the Polyakov loop pulls the NG-

QGP and CSC-QGP phase transitions, as well as the low-T critical point, to higher temperatures [21,88,89],

our results do not demonstrate such a shift. This apparent disparity is a result of the aforementioned fitting

of T0 = 50 MeV, which we choose to reproduce the µ = 0 deconfinement transition for massless three-flavor

QCD. Had we instead chosen to match the transition in the pure-gauge sector (as in [21]) and set T0 = 270

MeV, both the NG-QGP and CSC-QGP transitions, as well as the low-T critical point, would have been

shifted to significantly higher temperatures.

Comparing the contour plot of the chiral condensate (Fig. 3.4(a)) to that from the NJL model (Fig. 3.2(a)),

we note that the Polyakov loop encourages larger values of σ, most notably near the phase boundaries. This

is clear from the absence of a σ = 0.6σ0 contour at low µ in the PNJL model, as well as the termination of
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Figure 3.5: (a) Contour plot for the traced Polyakov loop in the three flavor PNJL model, showing contours of Φ
= 0.2, 0.4, 0.6, 0.8 and 1.0. (b) Plot of the normalized chiral and diquark condensates and Polyakov
loop for µ = 280 MeV.

the σ = 0.8σ0 contour into the NG-QGP phase boundary at lower chemical potential (µ = 250 MeV) than

in the NJL model (µ = 266 MeV). This effect can be traced to an effective σ2Φ coupling, which favors the

coexistence of a chiral condensate and confinement, and which is discussed in more detail in Sec. 3.7. In the

same vein, from Fig. 3.5(a) we note that Φ tends to decrease in the presence of σ. As a result, curves of

constant Φ are “pulled” to higher temperatures in the NG phase than they would be in the absence of the

effective σ2Φ coupling. On the other hand, inspecting the contours of the diquark condensate (Fig. 3.4(b)),

we find that the Polyakov loop has no appreciable effect on d.

Finally, Fig. 3.5(a) demonstrates that Φ is only weakly dependent on chemical potential, being primarily

an increasing function of temperature, and what µ dependence does exist is almost entirely restricted to

the NG phase. In the CSC phase, the Φ contours line up roughly parallel to the d contours, suggesting an

effective |d|2Φ coupling. However, it does not appear that this coupling affects the deconfinement transition

significantly, since Φ has already achieved nearly its maximum value at much lower temperatures than where

d → 0. We find that Φ is discontinuous across the first-order NG-QGP and NG-CSC transitions (e.g. note

the jump in the Φ = 0 contour at µ = 267 MeV), but the relative magnitude of the discontinuity is much

less than that of σ (Fig. 3.5(b)).

3.7 Ginzburg-Landau Coefficients

Having constructed the PNJL phase diagram, we next seek to understand the lowest-order effects of the

condensate-Polyakov loop couplings by expanding the thermodynamic potential Ω in a Ginzburg-Landau
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form

Ω =

(

a

2
σ2 − c

3
σ3 +

b

4
σ4

)

+

(

α

2
|d|2 + β

4
|d|4
)

+

(

AΦ +
B

2
Φ2 +

C

3
Φ3

)

− γσ|d|2

+
a′

2
σ2Φ− c′

3
σ3Φ +

α′

2
|d|2Φ− γ′σ|d|2Φ + · · · (3.25)

While prior work by Hatsuda et al. focused on the topological consequences of a thermodynamic potential

of this form (without the Polyakov loop), here we are in a position to compute the coefficients explicitly as

functions of temperature and chemical potential [18]. For example, the coefficient a can be computed from

Eq. (3.18) via the relation

a =
∂2Ω

∂σ2

∣

∣

∣

∣

σ=d=Φ=0

, (3.26)

while similar expressions hold for the other coefficients.

In the following calculations, for the sake of convenience the coefficients a, c, γ, etc. will be taken to refer

to their dimensionless versions, where they are scaled by the appropriate power of Λ (as in Table 3.1). This

ensures that the coefficients are of roughly the same order of magnitude and facilitates comparison of their

relative importance. For the purposes of these comparisons, note that the dimensionless chiral and diquark

condensates have maximum values of σ0 = 0.0636 and d0 = 0.0548. In addition, in order to express the

coefficients compactly, we define the following quantities:

f± =
1

cosh(βE±
0 )− 1

2

, g± =
1

cosh(βE±
0 ) + 1

, h± =
1

9(βE±
0 )2 + π2

, (3.27)

where E±
0 = k ± µ are the eigenvalues (without absolute values) in the absence of any interactions.

3.7.1 Noncoupling terms

In computing the coefficients of simple powers of σ, we may set d = Φ = 0 prior to taking the necessary

derivatives. Thus, the 18 distinct eigenvalues shown in Eqs. (3.20) and (3.21) reduce to the six distinct

values: E1−4 = |Ek ±µ|± 2πiT/3 (with the two ± independent) and E5,6 = |Ek ±µ|. In this way, we obtain

the first three LG coefficients:

a(µ, T ) = 12G− 48G2
∑

±

∫

d3k

(2π)3
sinh(βE±

0 )

k
(2f± + g±), (3.28)

c(µ, T ) = 12K − 72GK
∑

±

∫

d3k

(2π)3
sinh(βE±

0 )

k
(2f± + g±), (3.29)
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Figure 3.6: Coefficient of σ2, a(µ, T ), for various values of the chemical potential (solid black = 0, dashed red =
150 MeV, dot-dashed green = 300 MeV, long-dashed blue = 450 MeV).

We note that the σ3 term is proportional to the coupling K, which stems from the axial anomaly. This

proves true for all odd powers of σ so that in the absence of the axial anomaly the thermodynamic potential

is an even function of σ.

Figure 3.6 shows that the coefficient a changes sign, becoming negative at low temperatures and chemical

potentials. As a result, in the low-µ, low-T portion of the phase diagram, the σ2 term in the thermodynamic

potential tends to favor chiral condensation. In fact, we see that if the σ2 term were dominant, this transition

would occur at µ = 0 at the extremely high temperature of T = 395 MeV. However, by looking at Eq. (3.29)

we can assess the relative magnitude of c, and whether it will play a significant role in determining the order

of the NG-QGP phase transition. In fact, noting that the integrals appearing in c are identical to those in

a, we can write

c =
3K

2G
(a− 4G). (3.30)

Thus, we find that at µ = 0, |c/a| & 6K ∼ 60, while as noted above, σ0 ∼ 1/16. As expected from the

results of the prior section then, we find that the σ3 term cannot be ignored in determining the order of

the NG-QGP transition. In fact, the inclusion of higher-order terms coupling σ and Φ leads to a first-order

transition at a more modest temperature of Tc = 154 MeV.

Next, the coefficients of terms involving only powers of |d| may be obtained by setting σ = Φ = 0 at the

outset and taking the appropriate derivatives. Unlike the prior calculation, in which setting d = 0 reduced

the number of distinct eigenvalues from 18 to 6, in this case, no such simplification occurs and the full 18

eigenvalues must be evaluated. Doing so yields the |d|2 coefficient:
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(a) (b)

Figure 3.7: (a) Coefficient of |d|2, α(µ, T ), for various values of the chemical potential (same as Fig. 3.6). (b)
Coefficient of Φ, A(µ, T ).

α(µ, T ) = 6H − 4H2
∑

±

∫

d3k

(2π)3

{

4 sinh(βE±
0 )f±

E±
0

+ 9β[6βE±
0 sinh(βE±

0 ) +
√
3π]f±h±

+36β2E±
0 sinh(βE±

0 )g±h±
}

. (3.31)

As shown in Fig. 3.7(a), for sufficiently large µ, the sign of the |d|2 term becomes negative at low T .

Since no odd powers of the diquark condensate appear in Ω the phase transition is of second-order. This

transition produces a color superconducting phase of quark Cooper pairs in the low T , high µ portion of

the phase diagram, as has been widely reported [16, 21, 66]. The precise location of the diquark condensate

formation is affected by the chiral-diquark condensate coupling, but for T ∼ 0, we find that α becomes

negative at µ ∼ 120 MeV.

Next, we compute the coefficients of powers of Φ. Setting σ = d = 0 again reduces the 18 eigenvalues

to six eigenvalues analogous to those involved in the calculation of the σn coefficients (with Ek → k).

Computing the necessary derivatives yields:

A(µ, T ) = −9T
∑

±

∫

d3k

(2π)3
f±, (3.32)

B(µ, T ) = −T 4 [a(T ) + 12b(T )] +
27T

2

∑

±

∫

d3k

(2π)3
(f±)2, (3.33)

C(µ, T ) = 24b(T )− 81T

4

∑

±

∫

d3k

(2π)3
(f±)3. (3.34)
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(a) (b)

Figure 3.8: (a) Coefficient of σ|d|2, γ(µ, T ), for various values of the chemical potential (same as Fig. 3.6). (b)
Coefficient of σ2Φ, a′(µ, T ).

Significantly, while in the pure-gauge sector the lowest-order term in U3C(Φ,Φ) is quadratic (see Eq. (2.50)),

the existence of quarks generates a term linear in Φ. Further, A is negative at all points in the phase diagram

except at T = 0. As a result, even for very small non-zero temperatures, the Polyakov loop will take on a

finite value. This behavior stands in marked contrast to that of the pure-gauge sector, in which Φ undergoes

a large discontinuous jump at T0 = 270 MeV, below which Φ = 0.

3.7.2 Coupling terms

Having computed the coefficients of the pure condensate and Polyakov loop terms in Eq. (3.25), we now

consider the lowest-order couplings between these variables. Beginning with the chiral and diquark conden-

sates, we note from Figs. 3.4(a) and 3.4(b) that there is only a small region near µ ∼ 280 − 320 MeV in

which both σ and d are significant. Thus, the primary condensate coupling is the lowest-order coupling, of

the form σ|d|2. Setting Φ = 0 at the outset and performing the necessary derivatives yields

γ(µ, T ) =
3

2
K ′ − 2GK ′

∑

±

∫

d3k

(2π)3

{

3G sinh(βE±
0 )

k
(2f± + g±) +

2H sinh(βE±
0 )f±

E±
0

+3Hβ[βE±
0 sinh(βE±

0 ) +
√
3π]f±h± + 18Hβ2E±

0 sinh(βE±
0 )h±g±

}

. (3.35)

In Fig. 3.8(a) we see that γ is negative at all points in the phase diagram, and therefore the σ|d|2 coupling

universally encourages coexistence of the chiral and diquark condensates. In the prior section we observed

that this term is the critical factor in determining the nature of the NG-CSC transition at low temperatures.

Since the σ|d|2 coupling does not involve the Polyakov loop, Eq. (3.35) is the same as that obtained by

Abuki et al., although they did not compute it explicitly, but only observed its consequences in the numerical
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(a) (b)

Figure 3.9: (a) Coefficient of |d|2Φ, α′(µ, T ), for various values of the chemical potential (same as Fig. 3.6). For
α′ < 0, the |d|2Φ term favors the coexistence of a diquark condensate and deconfinement. (b) Coeffi-
cient of σ|d|2Φ, γ′(µ, T ). For γ′ < 0, the system favors the coexistence of σ, d, and Φ.

construction of the QCD phase diagram [20].

Having computed the lowest-order noncoupling terms, we consider the effective modifications to these

terms that arise from the inclusion of the Polyakov loop. The coefficients of the lowest-order couplings

between the condensates and the Polyakov loop, σ2Φ, σ3Φ, and |d|2Φ are:

a′ = 144G2
∑

±

∫

d3k

(2π)3
sinh(βE±

0 )(f±)2

k
, (3.36)

c′ = 216GK
∑

±

∫

d3k

(2π)3
sinh(βE±

0 )(f±)2

k
, (3.37)

α′ = 12H2
±
∑

∫

d3k

(2π)3

{

2 sinh(βE±
0 )(f±)2

E±
0

− 36
√
3πβ2E±

0 sinh(βE±
0 )(h±)2g±,

−2
√
3πβf±h± + 3

√
3β
[

2
√
3βE±

0 sinh(βE±
0 ) + π

]

(f±)2h±
}

. (3.38)

As shown in Fig. 3.8(b), except for at very large chemical potential (µ & 445 MeV) both a′ and c′ =

(3K ′/2G)a′ are positive, and therefore tend to disfavor simultaneous chiral condensation and deconfinement.

Since σ is only appreciable for µ . 300 MeV, this means that to lowest-order, the presence of a chiral

condensate will tend to maintain a confined state, and vice versa. We note, however, that this finding

does not preclude the realization of a spatially inhomogeneous “quarkyonic” phase at large µ, as has been

suggested recently [30, 83, 84, 90, 91], since we have explicitly assumed a homogeneous condensate.

We also note that the magnitude of a′ decreases with increasing chemical potential, and is therefore

largest (most strongly opposing deconfinement) in the NG region of the phase diagram where σ dominates.
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This effect is visible in Fig. 3.5(a), where the curves of constant Φ are pulled to higher temperatures in the

NG phase by virtue of the presence of a non-zero σ. The NG-QGP transition is therefore the result of two

competing effects. On one hand, in the pure-gauge sector confinement tends to become weaker at higher

temperatures, eventually giving way to a deconfined QGP. On the other hand, as temperature increases,

the system has an increasing aversion to a state in which both σ and Φ are non-zero, so the presence of the

chiral condensate tends to suppress the deconfinement transition.

Similarly, as shown in Fig. 3.9(a), the coefficient α′ is positive throughout the phase diagram and its

magnitude increases with increasing µ. Thus, the presence of a diquark condensate also tends to maintain

a confined state with Φ ∼ 0, and does so more strongly at high chemical potentials, where d is appreciable.

This can be understood by noting that in order to satisfy the gap equation, ∂Ω/∂∆ = 0, with increasing Φ,

one must decrease the magnitude of the gap.

The final coefficient that we compute is of the term σ|d|2Φ, the lowest-order term coupling all three

variables:

γ′ = 6K ′
∑

±

∫

d3k

(2π)3

{

− 18
√
3πHβ2E±

0 (h±)2 sinh(βE±
0 )g± +

(

3G

k
+

H

E±
0

)

sinh(βE±
0 )(f±)2

−
√
3πHβf±h± +

3
√
3Hβ

2

[

2
√
3βE±

0 sinh(βE±
0 ) + π

]

(f±)2h±
}

. (3.39)

As shown in Fig. 3.9(b), γ′ is positive throughout the phase diagram, so that once again, we find that

condensation and deconfinement tend to disfavor one another. Thus, we find that in general, the existence

of a condensate (either σ or d) tends to encourage confinement, and the greater the number or magnitude

of the condensate(s) present, the greater the effect.

3.8 Low temperature critical point

Having computed the lowest-order Landau-Ginzburg coefficients, we are now in a position to assess the effect

of the Polyakov loop on the low temperature critical point. As noted in the prior section, in order for the

critical point to appear the ratio of the axial anomaly couplings κ = K ′/K must exceed 4.2. In the presence

of the Polyakov loop, the values of these couplings are effectively modified by terms proportional to Φ, as

well as higher-order terms, which can be neglected to first-order. Comparing Eqs. (3.16) and (3.25) we
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define

Keff ≡ K0

(

1 +
c′

c
Φ

)

, (3.40)

K ′
eff ≡ K ′

0

(

1 +
γ′

γ
Φ

)

. (3.41)

Taking the ratio and expanding to linear order in Φ yields

κeff = κ0

[

1 +

(

γ′

γ
− c′

c

)

Φ

]

. (3.42)

The effect of the Polyakov loop can be assessed in terms of the sign of δ ≡ γ′/γ−c′/c. For δ > 0, the effective

ratio κeff is increased, which will tend to encourage the emergence of the critical point, while for δ < 0 the

critical point will tend to be suppressed. The condition for Eq. (3.42) to remain valid is δ ≪ Φ−1 ∼ 2, which

follows from the fact that Φ ∼ 0.4 at the critical point. Noting that for κ0 = 4.2 the critical point is at

(µ, T ) = (288 MeV, 36 MeV), we find that δcp = −0.16. Thus, the presence of the Polyakov loop decreases

the effective coupling ratio κ by approximately 6%.



Chapter 4

Phase Diagram of Three Flavor QCD
with Realistic Masses

4.1 Introduction

In the prior chapter we began our investigation of the three flavor QCD phase diagram by studying the

massless PNJL model. While we have gained a number of insights by this work, there are several important

factors which we have thus far neglected. In particular, while we have found that the addition of a third

quark flavor may give rise to a low temperature critical point, we have not yet assessed the impact of a

realistic strange quark mass on the realization of this critical point. Thus, in this chapter we investigate the

effects of realistic quark masses on the QCD phase diagram and the “freezing-out” of the strange quark as

the system moves to lower chemical potentials where the light up and down quarks dominate. The material

in this chapter is based on [3].

Another aspect of the QCD phase diagram of particular interest is the nature of quark pairing at inter-

mediate chemical potential. While it is known that for three quark flavors a color-flavor-locked (CFL) phase,

in which all quark flavors and colors pair, is energetically favorable for asymptotically large µ, the preferred

pairings for µ not asymptotically large are not determined. Calculations indicate phases in which only two

colors and flavors pair (2SC) [92], in which one flavor pairs with all others (uSC, dSC) [64], and a spatially

inhomogeneous phase which has properties of both free quarks and hadrons (quarkyonic) [30, 83, 84].

In this chapter we build on prior studies of the effects of confinement on quark pairing in the three flavor

PNJL model by considering a wider range of pairing schemes than the CFL and 2SC phases previously

considered [2, 92]. In particular, by permitting distinct ud, us, and ds pairing amplitudes we allow for the

possibility that the confining mechanism of QCD may not treat all quark flavors on an equal footing, even for

equal masses. Thus, we are led to consider the possibility of a new homogeneous asymmetric CFL (ACFL)

phase characterized by breached pairing in which all quark flavors pair, but with unequal magnitudes [93–95].

Further, by considering a range of strange quark masses we investigate the combined effects of this potential

asymmetry and the decoupling of the strange quark sector with increasing strange quark mass.

We also investigate the implications of a local color neutrality constraint on the phase structure of dense

quark matter. While QCD has the capacity to dynamically achieve local color neutrality by means of a

gluon field condensate
〈

A0
a

〉

, the PNJL model lacks the necessary gluonic degrees of freedom to achieve

56
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such neutrality in a phase of asymmetric quark pairing (e.g., 2SC, uSC, dSC). Thus, one must impose

such neutrality “by hand” in order to avoid the large color-electric forces which would result from color

accumulation [68,96–99]. Prior studies of the axial anomaly’s influence on the phase structure of dense quark

matter in NJL-type models have either focused on pairing structures which are trivially color neutral [2,20]

or have allowed for locally colored phases [92]. By introducing an effectively color-dependent chemical

potential we impose local color neutrality and study its effects on the low temperature portion of the QCD

phase diagram, most notably its suppression of the 2SC phase and the potential for realizing quark-hadron

continuity.

4.2 Three Flavor PNJL Model with Realistic Masses

Recalling the three flavor PNJL Lagrangian in Eq. (3.1) and anticipating the effects of unequal quark masses

we consider chiral and diquark condensates of the form

〈

qiaq
j
a

〉

= σiδij ,
〈

qTCγ5tiljq
〉

= diδij , (4.1)

where the sum over a is implied and we define t1,2,3 = τ7,5,2 and l1,2,3 = λ7,5,2. Note also that there is no

sum over i in Eq. (4.1); rather, the right sides of the equations are diagonal matrices in flavor space with

three distinct elements. Writing out the diquark condensates explicitly, we have

d1 = −
〈

dTg Cγ5sb
〉

+
〈

dTb Cγ5sg
〉

+
〈

sTg Cγ5db
〉

−
〈

sTb Cγ5dg
〉

, (4.2)

d2 = −
〈

uTr Cγ5sb
〉

+
〈

uTb Cγ5sr
〉

+
〈

sTr Cγ5ub
〉

−
〈

sTb Cγ5ur
〉

, (4.3)

d3 = −
〈

uTr Cγ5dg
〉

+
〈

uTg Cγ5dr
〉

+
〈

dTr Cγ5ug
〉

−
〈

dTg Cγ5ur
〉

. (4.4)

Thus, we see that while σ1, σ2, and σ3 represent the up, down, and strange chiral condensates respectively,

d1, d2, and d3 represent the magnitudes of ds, us, and ud pairing. In addition, the color-flavor-locking of the

interaction L(4)
d means that while d3, for example, describes the pairing of red up and green down quarks

(as well as red down and green up quarks), blue quarks of either flavor do not participate in this pairing.

With our chosen condensate structure, working in mean field the Lagrangian Eq. (3.1) becomes

L = q(i/∂ − M̂ + (µ+ iA0)γ
0)q − 1

2

3
∑

i=1

[

∆∗
i (q

TCγ5tiliq) + H.c.
]

− V3F (σi, di)− U3C(Φ), (4.5)



58 CHAPTER 4. PHASE DIAGRAM OF THREE FLAVOR QCD WITH REALISTIC MASSES

where the ith effective quark mass and BCS gap are

Mi = mi − 4Gσi +K|εijk|σjσk +
K ′

4
|di|2, ∆i = −2di

(

H − K ′

4
σi

)

, (4.6)

with |εijk| = 1 if i, j, k are all distinct and zero otherwise, and where the condensates’ direct contribution to

Ω is

V ′
3F (σi, di) = 2G

3
∑

i=1

σ2
i − 4Kσ1σ2σ3 +

3
∑

i=1

(

H − K ′

2
σi

)

|di|2. (4.7)

Writing the Lagrangian in terms of the Nambu-Gor’kov spinor Ψ = (q qC)/
√
2, we cast the Lagrangian in

the form L = ΨS−1Ψ− V ′
3F − U3C , where the inverse propagator in Nambu-Gor’kov space is

S−1(k) =







/k −M + (µ+ iA0)γ
0 ∆iγ5tili

−∆∗
i γ5tili /k −M − (µ+ iA0)γ

0






, (4.8)

and where the sum over i in the off-diagonal elements is implied. Integrating over the fermionic fields then

yields the thermodynamic potential:

Ω = −T
2

72
∑

i=1

∫ Λ d3k

(2π)3

[

ln(1 + e−βEi) +
1

2
β∆Ei

]

+ V ′
3F (σi, di) + U3C(Φ,Φ), (4.9)

where the Ej (j = 1...72) are the poles of Eq. (4.8).

Unfortunately, owing to the size of S−1(k) (72×72) and the asymmetry of its constituent blocks, it is not

possible to obtain explicit forms for the system’s eigenvalues in either the case of unequal quark masses or

condensates. Thus, in the general case we are left to proceed by constructing the phase diagram numerically.

Before proceeding to our construction of the phase diagram, we must say a brief word concerning our

parameter fits for this model. The values of Λ, H , andK remain unchanged from the massless case considered

in the prior chapter and are given in Table 3.1. However, in order to observe the gradual decoupling of

the strange quark from the up-down sector, we will consider several strange quark masses in the range

0 < ms < 80 MeV; if G were to remain independent of ms, the result would be quite unreasonably large

effective quark masses at µ = 0. Thus, following Abuki et al., as we adjust the strange quark mass and

coupling K ′ (see Table 4.1), rather than recalculating G by again fitting the mesonic quantities, for the sake

of simplicity we choose G to yield a fixed value for (Mu +Md)/2 = 367.5 MeV [20]. The quantitative effects

of this choice are negligible for the present purposes.

As noted in Table 4.1, we consider two values of K ′: (1) K ′ = K, which is suggested by applying a Fierz
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ms (MeV) GΛ2 K ′Λ5 T0 (MeV) Ms (MeV)

I∗ 0 1.926 12.36 210 355.1
II 5 1.928 12.36 208 369.4
III 5 1.928 51.91 208 369.4
IV 20 1.915 12.36 207 392.2
V 20 1.915 51.91 207 392.2
VI 40 1.899 12.36 206 417.5
VII 40 1.899 51.91 206 417.5
VIII 80 1.877 12.36 204 476.6
IX 80 1.877 51.91 204 476.6

Table 4.1: Parameter sets for the three flavor PNJL model: the strange quark bare mass ms, coupling constants G and
K ′, and Polyakov loop parameter T0, with a spatial momentum cutoff Λ = 602.3 MeV [16]. The remaining
parameters, which are constant across all parameters sets, are H = 1.74/Λ2 and K = 12.36/Λ5 [20, 21, 73].. Also
shown is the constituent strange quark mass at µ = T = 0. ∗Parameter set I, which was studied in Chapter 3
and in which all bare quark masses are set to zero is listed here for comparison. In all subsequent data sets we
take mu = 2.5 MeV and md = 5.0 MeV [24].

transformation to the instanton vertex [20], and (2) K ′ = 4.2K, which allows the realization of the low T

critical point and facilitates comparison with the results of the prior chapter and current literature [20, 92].

Finally, the parameter T0 is chosen for each parameter set to match our model’s deconfinement transition

at µ = 0 to the lattice value of T
Nf=3
Φ = 176 MeV [9, 10].

In order to study the effects of an increasing strange quark mass on the preferred quark pairing struc-

tures at intermediate µ, we begin by again constructing the massless QCD phase diagram, now with the

more general condensate structure given in Eq. (4.1). Afterwards, we adopt realistic up and down quark

masses, while gradually increasing the strange quark mass in order to observe its effects. In addition, to

facilitate a comparison with the current literature, which largely ignores the complication of a local color

neutrality constraint, we begin by constructing the phase diagrams without enforcing color neutrality, de-

ferring a discussion of the effects of this constraint to Sec. 4.6. We also note that while a variety of spatially

inhomogeneous phases (e.g., crystalline color superconductors, FFLO phases) may be energetically preferred

in certain high density regions of the phase diagram [100,101], in this thesis we consider only homogeneous

phases.

4.3 Massless QCD Phase Diagram

4.3.1 Without Confinement

In this section we discuss the phase structure of massless QCD before moving on to consider the case of three

different mass quarks. This will allow us to investigate both the general effects of quark mass on the phase

diagram, as well its particular influence on a possible ACFL phase. We note that we do not impose color

neutrality in either this section or the following, in order that we may consider the effects of this additional
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Figure 4.1: Phase diagram of the NJL model (no confinement) with three massless quark flavors. Red lines de-
note first-order transitions while green lines denote second-order transitions.

constraint in Sec. 4.6.

When we turn off confinement by setting φ3 = 0 and dropping the potential U3C(Φ,Φ) the thermodynamic

potential reduces to that considered by Basler and Buballa [92]. The only significant difference between the

massless NJL model considered here and the massive case is that for massless quarks the chiral phase

transition is first-order for all µ, rather than a smooth crossover at low µ (Fig. 4.1). Basler and Buballa have

shown that for K ′ & 3.5K a 2SCBEC phase appears, in which only up and down quarks pair (d1 = d2 = 0,

d3 6= 0). This phase is similarly visible in Fig 4.1, separated from the hadronic NG phase by a second-order

phase transition, and from the 2SCBCS phase by a first-order transition.

Anticipating the ACFL phase discussed in Secs. 4.4 and 4.5, in Fig. 4.2 we show the single diquark

condensate of the CFL phase as a function of temperature for µ = 500 MeV. We note that it is roughly

constant for T . 30 MeV, and then falls as d ∼
√
Tc − T for 30 MeV . T < 71 MeV, before finally vanishing

as d ∼ (Tc − T ), due to the effective σ|d|2 coupling induced by the axial anomaly [2, 18, 85].

4.3.2 With Confinement

In order to construct the phase diagram in the presence of the Polyakov loop, we first fix T0 by matching the

model’s deconfinement transition at µ = 0 to the lattice value of TQGP
c = 176 MeV. The resulting value of

T0 varies slightly with ms, and is given for the various parameter sets used in Table 3.1. Minimizing Ω with

respect to the condensates and Polyakov loop, we obtain the phase diagram shown in Fig. 4.3(a). As has

been widely reported, the inclusion of the Polyakov loop pulls the chiral transition to higher temperatures

(from 151 MeV to 193 MeV), significantly enlarging the region of symmetry breaking [21, 73].1

1Note that in our prior work [2], we did not observe such an increase in the region of chiral symmetry breaking. This was
due to our defining the deconfinement transition as the (slight) discontinuity in dΦ/dT , which is coincident with the chiral
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Figure 4.2: Dimensionless diquark condensate d̃i = di/Λ
3 for µ = 500 MeV in the massless three flavor NJL

model. As indicated in Fig. 4.1, the system undergoes a second-order CFL-QGP phase transition at
73 MeV. The linear approach to zero for 71 MeV < T < 73 MeV is due to an effective σ|d|2 coupling
(see Sec. 3.7) [2,18,85].

One important consequence of the increase of TQGP

c is that the Polyakov loop gives rise to a much

larger region of 2SCBCS, which we define as a 2SC phase (d1 = d2 = 0, d3 6= 0) in which Mu,d < µ. In

particular, this phase now persists to much higher µ than in the NJL model, where it is constrained to

roughly 270 MeV . µ . 350 MeV.

Figure 4.3(b) shows the two distinct diquark condensates d1 = d2 and d3 for µ = 500 MeV. We find that

for T . 20 MeV, the results are not significantly altered from the NJL model. However, for T & 20 MeV we

find that d1 = d2 falls with increasing T , while d3 increases until the system undergoes a second-order phase

transition to the 2SCBCS phase at 70 MeV, slightly below the location of the CFL-QGP transition in the

absence of confinement. Thus, the ground state of the system at intermediate µ is no longer a symmetric

CFL phase, but rather an asymmetric CFL phase characterized by 0 < d1 = d2 < d3.

4.4 Realistic Mass QCD Phase Diagram

Having observed the emergence of an ACFL phase in massless QCD, we now consider the effects of realistic

bare quark masses on both this phase and the phase diagram generally. To this end we construct phase

diagrams for ms = 0, 20, 40, and 80 MeV. In all cases we take mu = 2.5 MeV and md = 5.0 MeV, while the

coupling G is adjusted in order to maintain (Mu +Md)/2 = 367.5 MeV at µ = T = 0.

As shown in Figs. 4.4 and 4.5, as the strange quark mass increases, the region of ACFL moves to higher

µ, effectively decoupling the strange quark from the up/down sector. This is due to the fact that in the

phase transition, rather than its maximum finite value. Here, we use the latter definition as it more naturally extends to the
case of non-zero quark masses in which dΦ/dT is continuous and the deconfinement “transition” is unquestionably a smooth
crossover.
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Figure 4.3: (a) Phase diagram of the PNJL model with three massless quark flavors. Line types have the
same meaning as in Fig. 4.1, with the additional dotted (blue) line representing the deconfinement
crossover. (b) Dimensionless diquark condensates in the massless PNJL model for µ = 500 MeV.

limit ms → ∞, there is insufficient energy to generate strange quarks and we are left with an effectively

two flavor system. We also note that while for small ms, the deconfinement transition at large µ essentially

coincides with the breaking of up/down quark Cooper pairs (the 2SC-QGP transition), as ms increases the

deconfinement temperature moves down somewhat.

Also noteworthy is the fact that except for small ms and K ′, a critical point appears on the ACFL-2SC

phase boundary, separating a first-order transition at lower µ from a second-order transition at higher µ.

One can summarize the situation by noting that the ACFL-2SC transition is first-order when Tc . 50 MeV,

and second-order when Tc & 50 MeV. Thus, for example, for ms = 5 and 20 MeV and K ′ = K, the phase

boundary never drops below T ≈ 50 MeV and the transition is always second-order. We note, however, that

while the phase boundary has a negative slope for large µ, the transition does not again become first-order

when the boundary drops below T ≈ 50 MeV.

As shown by Abuki et al. in the non-confining NJL model and by the authors for the massless PNJL

model, we find that for K ′ ≥ 4.2K, a low T critical point emerges [2, 64]. Also, as shown by Basler and

Buballa, when one allows for 2SC pairing this critical point acts as the termination of a line of first-order

BEC-BCS transitions, above which a smooth crossover develops [92]. Interestingly, as shown in Fig. 4.5,

when the 2SCBEC phase exists, we find that for ms = 5, 20, and 40 MeV the BEC-BCS transition is first-

order at zero temperature, while for ms = 80 MeV the critical point drops below the T -axis and one obtains

a smooth BEC-BCS crossover at all temperatures.

While not visible in Figs. 4.4 and 4.5, for unequal mass quarks much of the ACFL-2SC phase boundary
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Figure 4.4: Phase diagrams for the PNJL model with realistic up and down quark masses and various strange
quark masses, where the axial anomaly couplings are taken to be equal (K′ = K). Line types have
the same meaning as in Fig. 4.3(a).

is actually two distinct, but very closely spaced phase boundaries. The first boundary, at slightly lower

temperature, separates the ACFL phase from a sliver of a uSC phase in which up/down and up/strange

quarks pair, but down/strange quarks do not. Thus, crossing this phase boundary corresponds to breaking

the down/strange quark Cooper pairs. The second boundary separates the uSC phase from the 2SC and

corresponds to the breaking of the up/strange quark pairs. Figure 4.6 shows these two distinct transitions

for exaggerated up and down quark masses (mu = 0, md = 40 MeV, ms = 80 MeV), in order to make the

distinct phase boundaries visible.

We note that while the precise value of K ′ is unknown, on the basis the Fierz transformation mentioned

in Sec. 4.1 it is expected that K ′ ∼ K, and it is unclear if any mechanism might increase K ′ above the 4.2K

threshold required to realize the low temperature critical point and BEC-BCS crossover. Therefore, it seems

likely that Fig. 4.4(d) is closest to the true QCD phase diagram.
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Figure 4.5: Phase diagrams for the PNJL model with realistic up and down quark masses and various strange
quark masses, where K′ = 4.2K. Line types have the same meaning as in Fig. 4.3(a).

Finally, a word is required regarding quark pairing in the ACFL phase for realistic quark masses. While

the splitting of up and down quark masses is quite small relative to the chemical potential at which the ACFL

phase is obtained (µ ∼ 400 MeV), the mass splitting between the strange quark and the two light flavors is

indeed large (Ms−Mu,d & 100 MeV). This mass difference results in significantly mismatched Fermi surfaces,

which acts as a barrier to quark pairing in the conventional BCS picture of superconductivity. However,

with the assumption of spatially uniform pairing, the different dispersion relations of the ultrarelativistic

light quarks on the one hand, and the much slower strange quarks on the other, can lead to a situation in

which quarks on the strange quark Fermi surface pair with quarks on the interior of the light flavors’ Fermi

spheres, as shown in [93]. This breached pairing corresponds to a situation in which the T = 0 state of the

system consists of both superfluid and normal Fermi liquid components with both gapped and ungapped

quasiparticle excitations [94]. Thus, as shown in [95], it is indeed possible to form a stable homogeneous

superfluid phase out of the mismatched Fermi spheres, as we observe.
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Figure 4.6: Partial phase diagram of the three flavor PNJL model with K′ = 4.2K. Exaggerated bare quark
masses of mu = 0, md = 40 MeV, and ms = 80 MeV are used to make the uSC region more visible.
Line types have the same meaning as in Fig. 4.1.

4.5 Asymmetric CFL (ACFL) Phase

4.5.1 Quark Pairing Amplitudes

The evolution of color superconducting quark matter with increasing temperature can be inferred from

Fig. 4.7. At low temperatures, the ACFL phase is essentially identical with the CFL phase, with d1 = d2 ≈

d3, and has a thermodynamic potential well below the QGP. At high temperatures, the ACFL phase morphs

continuously into the 2SCBCS phase, with d1 = d2 = 0, via a second-order phase transition. In between these

two limiting cases, for 20 MeV < T < 70 MeV, the ACFL phase is distinct from both the 2SC and QGP

phases, and has a thermodynamic potential below both.

We also note that while not clearly visible in Fig. 4.3(b), our calculations indicate that for T > 6 MeV

it is always energetically favorable to adopt unequal pairing amplitudes. Thus, while we cannot exclude the

possibility of a low temperature CFL-ACFL phase transition, it seems very likely that the unequal pairing

amplitudes persist to arbitrarily low temperatures, and that a symmetric CFL phase at intermediate µ is

restricted to T = 0.

We can understand the asymmetric behavior of the quark pairing by noting that in our chosen gauge

(and with φ8 = 0) the quark-Polyakov loop coupling is of the form

qA0γ
0q = φ3(rγ

0r − gγ0g), (4.10)

where we have written the color indices explicitly, so that the Polyakov loop couples only to red and green
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Figure 4.7: Minimum Ω/Λ4 vs. T at µ = 500 MeV for the phases: CFL (green), ACFL (blue), and QGP (red) in
the massless PNJL model.

quarks. Thus, the condensates d1 (which involves green and blue quarks) and d2 (red and blue) are only

singly-coupled to the Polyakov loop, while d3 (green and red) is doubly-coupled.

One may inquire whether this phase of unequal quark pairing is simply an artifact of our choice of φ8 = 0,

or whether such a phase might actually be realized in QCD. Unfortunately, in the present model, allowing

φ8 6= 0 renders the thermodynamic potential complex so that its minimization is no longer a well-posed

problem. Nevertheless, our results do demonstrate the possibility of obtaining a phase characterized by

unequal quark pairing, and they present a challenge to other models of dense quark matter to address the

question of its realization.

In addition to local color charge, asymmetric quark pairing in both the ACFL and 2SC phases can give rise

to a net local electric charge. In quark matter in neutron stars such a charge is neutralized by a net electron

(and possibly muon) density, and indeed in deriving an equation of state for neutron stars, we must include

charge neutrality. On the other hand, matter encountered in heavy ion collisions is electrically charged and

the collisions occur on sufficiently short time scales that while the matter reaches equilibrium with respect to

the strong nuclear force, it does not reach charge equilibrium. While we discuss color neutrality in Sec. 4.6,

we defer a discussion of the effects of electrical neutrality in neutron stars to Chapter 5.

4.5.2 Symmetry Breaking Pattern

Having identified the region of the phase diagram occupied by the ACFL phase as well as the order of the

associated phase transitions, we next study the symmetry breaking pattern of this phase. We begin by
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noting that the symmetry groups of the 2SC and CFL states are [66, 67]

2SC : SU(2)rg ⊗ SU(2)L ⊗ SU(2)R ⊗U(1)B̄ ⊗U(1)S ,

CFL : SU(3)c+L+R ⊗ Z2,

where SU(2)rg denotes a rotation in the color subspace of red and green quarks, U(1)B̄ is a rotated baryon

conserving symmetry with conserved quantity

B = Q + I3 with Q = Q− 1

2
√
3
λ8, (4.11)

and where I3 is the isospin operator, Q and Q are the standard and rotated (conserved) electromagnetic

charge operators in the 2SC phase, and U(1)S corresponds to multiplying the strange quark by an arbitrary

phase.

Since both the CFL and 2SC phases are special cases of the ACFL phase, the symmetry group of the

ACFL phase must be a subset of the symmetry groups of these respective phases. Thus, the color-flavor-

locking aspect of the CFL phase requires that there be no unbroken independent color or chiral rotations

in the ACFL phase, while the SU(2)rg symmetry of the 2SC phase requires that there be no unbroken

symmetry which mixes blue quarks with red or green quarks. A direct calculation demonstrates that none

of the remaining symmetries are broken and we are left with the symmetry group

ACFL : SU(2)rg+L+R ⊗ Z2.

In fact, the symmetry group of the ACFL phase is simply the intersection of the symmetry groups of the

2SC and CFL phases. Moreover, this symmetry group is identical to that of the CFL phase with unequal

strange quark mass.2 Finally, we note that we expect 14 Goldstone bosons in the ACFL phase, which follows

from the 8R +8L +1B = 17 generators of the Lagrangian’s symmetry group and the three generators of the

ACFL symmetry group.

4.6 Color Neutrality

In the prior sections we have constructed the phase diagram of the PNJL model for both massless and

massive quarks and have observed the emergence of a new ACFL phase at large µ. If our model is to

2While one often refers to a CFL phase in the case of unequal strange quark mass, it is implicitly assumed that µ≫ ms so
that d1 = d2 ≈ d3. If µ is not much larger than ms then the quark pairing amplitudes will no longer be approximately equal
and the CFL phase gives way to the ACFL phase.
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Figure 4.8: Minimum thermodynamic potentials in the NG, 2SC, and CFL phases as a function of µ8 at T = 0
for (a) µ = 275, and (b) µ = 285 MeV, in the three flavor PNJL model with massless quarks and
K′ = 4.2K.

accurately reflect the behavior of dense QCD, however, for the homogeneous phases which we consider here

we must also investigate the effects of the requirement of local color neutrality. In fact, both the 2SC phase

previously reported by Basler and Buballa [92] and the new ACFL phase possess non-zero color densities

which would, if left unchecked, induce large color-electric forces in the superconducting quark matter.

The origin of the net color density, in both the 2SC and ACFL phases, is the modification of the quark

dispersion relations which results from unequal pairing amplitudes for red and green quarks compared with

blue quarks. In the 2SC phase, for example, at fixed particle number the pairing of red and green quarks

results in a decrease in the Fermi energy of these colors. In a system at fixed quark chemical potential µ,

this results in an increase in the density of red and green quarks compared to the unpaired blue quarks,

and a corresponding net anti-blue color density. In QCD, this quark color density is exactly cancelled by

the development of a non-zero expectation value of the gluon field (i.e., tadpole diagrams), and so the

homogeneous 2SC phase remains color neutral [96, 97]. However, having replaced the local SU(3) color

symmetry of QCD with the global symmetry of the PNJL model we now lack the means for dynamically

realizing a neutral ground state.

The standard method for imposing color neutrality in the NJL model is to introduce a set of color

chemical potentials µa, which are chosen to ensure vanishing color densities [68, 98, 99]:

na =
〈

q†Taq
〉

= − ∂Ω

∂µa
= 0, (4.12)

where Ta = λa/2. In light of our discussion above, we see that the equilibrium value of µa (i.e., the value

required to achieve color neutrality) is proportional to
〈

A0
a

〉

in QCD. In both the 2SC and ACFL phases red
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and green quarks pair symmetrically, so we need only include µ8, in order to ensure that n8 = nr+ng−2nb =

2(nr − nb) = 0.3 Thus, we modify the Lagrangian from Eq. (3.14) to

L = q(i/∂ − m̂+ (µ+ iA0)γ
0 + µ8λ8γ

0)q + L(4) + L(6) − U3C(Φ,Φ). (4.13)

In order to obtain the locally color neutral phase diagram we now minimize the thermodynamic potential

with respect to the condensates σi and di, and Polyakov loop variable φ3 as before, while imposing the

additional neutrality constraint

n8 = − ∂Ω

∂µ8
= 0, (4.14)

along with the stability condition

∂n8

∂µ8
= −∂

2Ω

∂µ2
8

> 0. (4.15)

Thus, our solution is a saddle point of Ω, minimized with respect to the condensates, and maximized with

respect to µ8.

Due to the computational intensity of the saddle point problem for our eight variable thermodynamic

potential we do not perform a complete assessment of the effects of color neutrality, together with the strange

quark mass and confinement, at present. However, we report two important results from the massless quark

limit at T = 0, which give insight into the structure of the full color neutral QCD phase diagram.

First, in the massless quark limit the color neutrality constraint eliminates the 2SC phase from a large

portion of the phase diagram, in favor of a CFL phase. We can understand this effect by considering Fig. 4.8.

At µ = 275 MeV the thermodynamic potentials of the color neutral NG and CFL phases (µ8 = 0) are nearly

equal, indicating the location of a phase transition between the NG phase, which exists at low µ, and the

CFL phase which exists at high µ. As the system moves to higher density the energy of the NG phase is

essentially constant, while both the 2SC and CFL phases decrease in energy, becoming more favorable.

The crucial effect of the color neutrality constraint is visible in the thermodynamic potentials at µ = 285

MeV. In the absence of a local color neutrality constraint (µ8 = 0), we find that the 2SC phase is indeed the

lowest energy, and therefore the preferred, phase of the system. However, in imposing color neutrality, we

require the 2SC phase to take on a nonzero µ8 ≈ −40 MeV, which results in a (physical) 2SC state which is

3Strictly speaking, because of the small mass splitting between up and down quarks there is a slight imbalance in the light
quarks’ Fermi seas, which in principle leads to d1 6= d2 and requires the introduction of additional color-dependent chemical
potentials, beyond the µ8 considered here. However, because the up-down mass splitting is extremely small compared to the
light quark Fermi energies, this effect is negligible.
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Figure 4.9: (color online) Proposed phase diagram for three flavor QCD with spatially homogeneous color neutral
phases. The arrows indicate the movement of the phase boundaries due to the enforcement of local
color neutrality (compare to Fig. 4.4(d)).

.

formally higher in energy than the colored state. This “additional” energy is sufficient to raise Ω2SC above

both ΩNG and ΩCFL, with the lower energy CFL phase being the color neutral ground state. As the system

moves to yet higher µ, both the 2SC and CFL phases continue to move to lower energies, with the latter

always maintaining a slight energetic advantage. Thus, at T = 0 enforcing local color neutrality eliminates

the 2SC phase altogether.

A second important effect of color neutrality, which is a corollary of the suppression of the 2SC phase is

the “re-emergence” of a low temperature critical point [2, 18]. As shown in [92] and confirmed in Fig. 4.5,

when one allows for 2SC quark pairing (rather than simply a CFL structure) in the absence of a local color

neutrality constraint this critical point is eliminated in favor of a second-order NG-2SC phase transition at

intermediate µ. However, with the 2SC phase eliminated by the color neutrality constraint, the system once

again realizes quark-hadron continuity via a smooth crossover between the NG and ACFL phases at low

temperatures.

In the case of realistic quark masses, the 2SC phase remains intact after imposing local color neutrality,

but the location of the low temperature NG-2SC transition is moved to the right by ∆µ ≈ 30 MeV. This

shift in the phase boundary is not surprising in light of the additional energy required to maintain a non-zero

µ8. Indeed, the 2SC phase still becomes more favorable (i.e., Ω2SC decreases) as the system moves to higher

µ, but the non-zero value of µ8 results in an overall shift of Ω2SC to larger values. As a result, the NG-2SC

phase boundary defined by Ω2SC = ΩNG is shifted to larger µ.

While an exhaustive analysis of the effects of color neutrality and realistic quark masses is beyond the

scope of this thesis, based on the results obtained here we can propose an educated hypothesis for the

QCD phase diagram under the assumptions adopted here, namely the restriction to spatially homogeneous
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phases. Figure 4.9 shows the proposed QCD phase diagram, which should be compared to Fig. 4.4(d), in

which color neutrality was not enforced. We expect the essential effect of the color neutrality constraint to

be the reduction in size of the 2SC phase, due to the additional energy required to generate the neutralizing

gluon condensate. In particular, the lines of first-order NG-2SC and ACFL-2SC transitions will encroach

upon the 2SC region due to the upward shift of Ω2SC , as indicated by the arrows in Fig. 4.9. Second-order

transition lines, however, will remain largely unaffected as µ8 → 0 on these boundaries.

A number of outstanding questions exist regarding the PNJL model and the QCD phase diagram which

have yet to be addressed. Foremost among them is a complete construction of the QCD phase diagram which

incorporates local color neutrality along with realistic quark masses. Also, the effects of charge neutrality

and β-equilibrium, which are important in the study of stable quark matter at low temperatures in neutron

stars, and which is the subject of the next chapter, remain to be completely elucidated in the context of the

PNJL model.



Chapter 5

Structure and Stability of Neutron
and Dense Quark Stars

5.1 Introduction

After several decades of speculation, the Large Hadron Collider (LHC) and the Relativistic Heavy Ion

Collider (RHIC) are finally providing the first significant experimental probes of the phase diagram of

quantum chromodynamics (QCD) [102–107]. Unfortunately, despite their successes and the promise of yet

higher density probes at the Facility for Antiproton and Ion Research (FAIR), accelerators are by their

nature restricted to investigating high temperature matter due to the extreme heating inherent in high

energy collisions. Indeed, there is no conceivable method by which the rich structure of cold dense quark

matter will ever be obtainable in a laboratory, due to the extreme pressures which must be sustained to

produce such matter. As a result, the only opportunity to probe the low temperature region of the QCD

phase diagram is provided by nature herself, in the neutron stars which are fortuitously spread throughout

our galaxy, and beyond.

While neutron stars may hold the key to understanding the properties of dense quark matter, our

observations of the quark matter that comprises them are necessarily indirect, owing both to their distance

(∼ 100 ly to the nearest [31, 32], and ∼ 4000 ly to the most massive [33]) and to their intense gravitational

and rotational properties. Thus, we are led to consider what observable properties of neutron stars are

capable of providing insight into the thermodynamic properties of their constituent matter [34–36,108].

Two astrophysical observables which are intimately connected to the thermodynamic properties of quark

matter are neutron stars’ maximum stable masses (Mmax) and their mass-radius (M -R) relationship. In

particular, for a given equation of state (EoS), which specifies the pressure (P ) of the star’s constituent

matter as a function of its density (ρ), both Mmax and the M -R relationship are uniquely determined by

the Tolman-Oppenheimer-Volkov (TOV) equation [37, 38]. As a result, much work has been done to model

the equation of state of the dense quark matter of which neutron stars are composed, in order that we may

better understand the structure of these astrophysical objects. While a wide variety of nuclear equations of

state have been proposed, until very recently all such models have yielded maximum neutron star masses less

than 2M⊙ [109–115]. The recent observation of several neutron stars with M ∼ 2M⊙ has thus prompted a

revisiting of our understanding of the basic structure of dense quark matter and the search for a mechanism

72
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Neutron Star Discovery Mass (M⊙) Distance

J1614 - 2230 Demorest (2010) 1.97± 0.04 3,900 ly
J0348+0432 Antoniadis (2013) 2.01± 0.04 6,800 ly
J1311 - 3430 Romani (2012) 2.4± 0.3 TBD

Table 5.1: Currently known massive neutron stars with M & 2M⊙, together with the date of their discovery and
distance from Earth [33,41,42].

by which such massive stars might be obtained [33, 41, 42]. Meanwhile, from an observational standpoint,

astrophysical measurements of the masses and radii of neutron stars place strict constraints on the equation

of state of dense quark matter [36, 116].

Neutron stars with central densities of ρ ∼ 5−10ρ0 (where nuclear density is ρ0 ≈ 2.3×1014 g/cm3) have

traditionally been studied under the assumption that they are largely composed of matter whose fundamental

degrees of freedom are hadrons. However, as discussed in Chapters 3 and 4, the phase transition from

confined hadrons to color superconducting phases occurs at a density of roughly ρ ∼ 2ρ0, and as a star’s

central density increases beyond this range, an increasingly large portion of the star is described by matter

whose fundamental degrees of freedom are the quarks themselves. As a result, the structure and stability of

these dense neutron stars is particularly dependent on the quark matter equation of state [43, 44, 117–119].

Moreover, as shown in [120,121], strange matter is expected to emerge at baryon densities of nb ∼ 4n0 (where

nuclear baryon density is n0 ≈ 0.17/fm3), at which point the nuclei comprising the star will have percolated,

rendering a nucleonic description of matter quite tenuous. We therefore take as our starting point a Nambu–

Jona-Lasinio model description of quark, rather than hadronic matter, and investigate the possibility of

realizing massive neutron stars of M & 2M⊙. In particular, we include a tunable flavor-symmetric vector

repulsion and compute Mmax, as well as the stars’ M -R relationship, as a function of the magnitude of the

vector coupling.

In addition to the question of how nature might realize massive neutron stars, the possibility of extremely

dense quark stars has been raised [122–124]. Such stars would have masses typical of observed neutron stars,

but would consist of an extremely dense core (perhaps with ρc ∼ 100 or more) possibly surrounded by a

thin crust (δR ∼ 1 km) of hadronic matter of more typical neutron star densities. For such stars, even

more than typical neutron stars, their stability is determined by the equation of state in the quark sector.

In the next section we derive a quark matter equation of state at T = 0 from the NJL model discussed

in Chapters 3 and 4. After interpolating this equation of state with a hadronic equation of state at low

densities we then proceed to investigate the density profiles and mass-radius relationship of both neutron

stars and the proposed ultra-dense quark stars. The content of this chapter is based largely on [4].
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5.2 Quark Matter Equation of State

The pressure in a homogeneous system in equilibrium is given by the thermodynamic identity

P = n2∂(Ω/n)/∂n, where n = N/V is the baryon density and Ω = (E − TS − µN)/V is the thermo-

dynamic potential per unit volume. Since Ω is an intensive quantity it follows that P = −Ω and it is

possible to obtain the pressure for the three flavor PNJL model trivially from Eq. (4.9). However, since the

Polyakov loop does not significantly impact quark thermodynamics at low temperatures, for simplicity we

work instead with the non-confining NJL model. In addition, we consider the effects of a flavor-symmetric

vector repulsion of the form [120,121, 125, 126]

L(4)
V = −gV (qγµq)

2
, (5.1)

where gV > 0, which increases the quark matter pressure at fixed mass density ρ. Since a star’s radius

is determined by the equilibrium of gravitational and internal pressures, this additional pressure tends to

counteract the tendency toward gravitational collapse that increases with mass and thereby permits the

realization of more massive neutron stars than would otherwise be stable.

Next, we note that while color superconducting phases are thought likely to exist in the cores of neutron

stars, as discussed in Chapters 2, 3, and 4, the preferred quark pairing structures at neutron star densities

are not known. Thus, by investigating a variety of potential pairing structures and computing the maximum

stable star masses for each, it may be possible to infer aspects of the QCD phase diagram directly from

astrophysical observations. Regardless of the precise pairings realized, however, color superconductivity will

always act to soften the quark matter equation of state, reducing P (ρ), and thereby making it more difficult

to realize massive neutron stars. As a first approximation, we therefore neglect quark pairing entirely in

order to determine whether a vector repulsion is capable of stabilizing massive neutron stars even in the

absence of this softening. Future work will be dedicated to a more complete analysis of quark pairing and

its effects on the stability of massive neutron stars.

In the absence of diquark pairing we describe the quark matter of neutron stars with the NJL model

Lagrangian

Lq = q
(

i/∂ − m̂
)

q + L(4)
σ + L(4)

V + L(6)
σ , (5.2)

where L(4)
σ and L(6)

σ are defined in Eqs. (3.3) and (3.11). In order to describe the stable quark matter

which comprises a neutron or quark star we must also impose the conditions of fixed particle number, charge



5.2. QUARK MATTER EQUATION OF STATE 75

neutrality, and β-equilibrium. The first two conditions are incorporated in the standard way by introducing

quark and electron chemical potentials µ and µe as Lagrange multipliers so that

Lq → Lq + µq†q − µeq
†Qq, (5.3)

where Q = diag(2/3,−1/3,−1/3) is the quark charge matrix in flavor space (in units of e, where we take

e > 0). Meanwhile, the β-equilibrium u ↔ d + e− + νe requires that µu = µd + µe, where we neglect µνe

since the neutrinos’ extremely small scattering cross section allows them to escape the star so their number

is not conserved.1 The presence of the electrons required to maintain charge neutrality also requires that we

include the corresponding Dirac Lagrangian Le = ψe(i/∂ −me + µeγ
0)ψe, where ψe is the electron field.2

Having defined our model, we now work at the mean field level by neglecting quadratic fluctuations about

the average chiral condensates σi = 〈qiqi〉 and quark densities ni = 〈q†i qi〉 (i = u, d, s). Thus, we obtain the

Lagrangian

L = q(i/∂ − M̂ + µ̂γ0)q + ψe

(

i/∂ −me + µeγ
0
)

ψe − V (σi, n), (5.4)

where M̂ and µ̂ are flavor-dependent effective quark masses and chemical potentials:

Mi = mi − 4Gσi + 2K|ǫijk|σjσk, µi = µ−Qiµe − 2gV nq, (5.5)

and where nq =
∑

i ni is the net quark density. Writing the partition function as Z =
∫

D[q, q, ψe, ψe]e
−SE

where SE =
∫ β

0 dτ
∫

d3r
{

q†∂τ q + ψ†∂τψ +H
}

and integrating out the fermionic degrees of freedom yields

the thermodynamic potential per unit volume

Ω = −T
2

72
∑

i=1

∫

d3k

(2π)3

[

ln(1 + e−βEqi) +
1

2
β∆Eqi

]

−2T
2
∑

i=1

∫

d3k

(2π)3

[

ln(1 + e−βEei) +
1

2
β∆Eei

]

+ V (σi, n), (5.6)

where V (σi, n) is defined below, the quark and electron eigenvalues Eqi and Eei are the poles of their

1This approximation is very nearly exact in all stable astrophysical objects. However, the νe are believed to play an
important role in the dynamics of stellar core collapse, which occurs on such short time scales that the large quantities of νe
produced are unable to escape the star [127–130].

2One can also allow for the possibility of muon production in neutron stars by introducing an analogous term Lµ =

ψµ(i/∂ −mµ +µµγ0)ψµ. However, as noted in [120,121], within the present model muons are produced neither at low densities
where they are suppressed due to their relatively large masses (mµ ≈ 200me), nor at high densities where the appearance
of strange quarks achieves charge neutrality without lepton generation. Thus, we do not consider the possibility of muon
production further.
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Λ (MeV) GΛ2 K ′Λ5 mu,d (MeV) ms (MeV)

631.4 1.835 9.29 5.5 135.7

Table 5.2: NJL parameters in the 2+1 flavor NJL model, which we use to construct the quark matter equation of
state [14].

respective single particle Green’s functions Sq(k) = (/k − M̂ + µγ0)−1 and Se(k) = (/k −me + µeγ
0)−1:

Eqi = |Ek,i ± µi| where Ek,i =
√

k2 +M2
i , (5.7)

Eei = |Ek,e ± µe| where Ek,e =
√

k2 +m2
e, (5.8)

and ∆Ei = Ei − Efree
i , where Efree

i is the given eigenvalue in the non-interacting case, and measures Ω

with respect to the non-interacting Dirac sea.

The potential V (σi, n), which prevents the double-counting the degrees of freedom in our mean field

treatment is

V (σi, n) = 2G

3
∑

i=1

σ2
i − 4Kσ1σ2σ3 − gV n

2
q. (5.9)

Finally, because neutron star temperatures (T ∼ 1− 10 MeV) are very small compared to the energy scales

of QCD we may consider the limit T → 0 and obtain the quark matter equation of state:

Pq =
1

4

72
∑

i=1

∫ Λ d3k

(2π)3
∆Eqi +

2
∑

i=1

∫ Λ d3k

(2π)3
∆Eei − V (σi, n), (5.10)

where we have introduced the usual high-momentum cutoff Λ to regulate the theory. We note that the total

weighting of the quark degrees of freedom in Eq. (5.10) is 72/4 = 3 (color) × 3 (flavor) × 2 (spin), while

the electrons contribute a factor of 2 (spin). This is what we expect at T = 0 as the antiparticle excitations

are frozen out, reducing the Dirac degeneracy from four to two.

In order to fully define the quark matter equation of state, we must also fix the NJL parameters m̂, G,

K, and Λ. For the sake of simplicity, as well as to facilitate a comparison of our results with the current

literature, we work in the 2+1 flavor NJL model where mu = md 6= ms and adopt the parameters of Hatsuda

and Kunihiro, which are shown in Table 5.2 [14]. While we have now obtained the equation of state for quark

matter, which is valid for high densities at which quarks are no longer confined into hadrons, non-trivial

portions of neutron stars consist of hadronic matter for which Eq. (5.10) will not be valid. Thus, we must

devise a method for extending the region of validity of our equation of state to low densities, which is the

topic of the next section.
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5.3 Quark-Hadron Hybrid Equation of State

While the equations of state for quark matter at very low (hadronic) and very high (liberated quark) densities

are well studied, very little is known of the detailed crossover between these two regimes. As a result,

there is no unique method for extending our quark matter equation of state to low densities. Therefore,

following [120,121] we adopt a simple, qualitatively valid interpolation scheme in which the pressure is given

by

P (n) = fh(n)Ph(n) + fq(n)Pq(n), (5.11)

where n = nq/3 is the net baryon density, Ph(n) and Pq(n) are the pressures as given by the hadronic and

quark equations of state, respectively, and we define the weighting functions

fq,h(n) =
1

2

[

1± tanh

(

n− n

Γ

)]

, (5.12)

where n and Γ are the center and characteristic size of the “crossover region,” and following [120, 121],

we choose (n,Γ) = (3n0, n0). In order to compute the mass (or energy) density in a thermodynamically

consistent way, we integrate the identity P = n2∂(ρc2/n)/∂n to obtain

ρ(n) = fh(n)ρh(n) + fq(n)ρq(n) + ∆ρ(n), (5.13)

where ∆ρ/n is an additional mass density per baryon which stems from the interpolation scheme:

∆ρ(n) = n

∫ n

n

dn′ ρh(n
′)− ρq(n

′)

2Γ

g(n′)

n′ , (5.14)

and where g(n) = sech2[(n − n)/Γ]. In order to apply our interpolation scheme we must of course choose

an equation of state Ph(n) valid in the hadronic regime. Many candidates have been proposed to describe

nuclear matter at low densities [112–115], but here we employ the Akmal-Pandaripande-Ravenhall (APR)

equation of state to describe matter in the low density hadronic regime [111].

Figure 5.1(a) shows the interpolation scheme between the hadronic and quark equations of state for

gV = G. As we found in Chapters 2–4, in the NJL model, in which the quarks themselves are the fundamental

degrees of freedom, for µ . 275 MeV the effective quark masses are sufficiently large to suppress their

generation so that nq = 0. Thus, below this critical chemical potential (and the corresponding density)

Pq = 0, while above it Pq 6= 0. As a result, the quark matter equation of state is only relevant above a
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Figure 5.1: (a) Hadronic (dashed blue), quark (dot-dashed green), and interpolated (solid red) equations of state
P (n) for gV = G. For nb . 1.5n0 the NJL model’s ground state is the vacuum so that Pinterp =
Ph [110]. (b) Hybrid equation of state P (ρ) for gV = 0 (thin blue), G (dashed green), 1.5G (dot-
dashed red), and 5G (solid teal).

critical density, as depicted in the green curve. For lower densities, the interpolated equation of state is

identical to the hadronic equation of state, while at higher densities it moves smoothly between the hadronic

and free quark limits.

Figure 5.1(b) shows the interpolated quark matter equation of state for gV = 0, G, and 1.5G. As

anticipated, the presence of the vector repulsion acts to increase the pressure of the quark gas at fixed

ρ. This effect is most pronounced at small gV , while for gV & 1.5G the marginal effect of increasing gV

diminishes. Having now obtained the equation of state we are in a position to determine the structure of

neutron and quark stars by solving the Tolman-Oppenheimer-Volkov equation, to which we now turn.

5.4 Massive Neutron Star Structure

Having specified the quark matter equation of state for all densities, the pressure (and thus density) profiles

of neutron and hybrid quark stars are determined by the Tolman-Oppenheimer-Volkov (TOV) equation,

which is the solution of the Einstein field equations for a static spherically symmetric body:

dP (r)

dr
= −G

[

ρ(r) + P (r)/c2
] [

M(r) + 4πr3P (r)/c2
]

r2 − 2GM(r)/c2 r
, (5.15)
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Figure 5.2: Quark star density profiles ρ(r) for (a) gV = 0 with ρc = 8ρ0 (solid blue), 25ρ0 (dot-dashed green),
and 200ρ0 (dashed red); (b) ρc = 8ρ0 with gV = 0 (solid blue), 1.5G (dashed green), and 5G (dot-
dashed red). Note that the vertical axis in (a) is logarithmic, while that in (b) is linear.

where G is Newton’s gravitational constant, the equation of state gives ρ(r) = ρ(P (r)), and

M(r) =

∫ r

0

dr′ 4πr′2ρ(r′) (5.16)

is the total mass inside a shell of radius r. Given a central density ρc ≡ ρ(r = 0), Eq. (5.15) can be integrated

numerically to yield P (r), which can then be transformed into the density profile via the equation of state.

Figure 5.2(a) shows the density profile for three quark stars with different central densities and gV = 0.

The red curve (with ρc = 8ρ0) represents a typical neutron star while the green (ρc = 25ρ0) and blue

(ρc = 200ρ0) curves represent quark stars with central densities above those of known astrophysical objects.3

One feature of these stars which immediately stands out is the fact that at least for these values of ρc, the

equilibrium star radius decreases with increasing central density. This is due to the increasing gravitational

force which accompanies the increase in ρc, and which tends to decrease the size of the star. In addition,

while stars with intermediate central densities (ρ . 10ρc) have relatively constant density profiles outside

of a thin crust of thickness δR ∼ 1 km, as ρc increases the larger gravitational force induces larger density

gradients and a smaller fraction of the star’s volume realizes densities of ρ ∼ ρc. As a result, for ρ & 10ρ0

the total star mass is actually a decreasing function of ρc, as shown in Fig. 5.3(a).

Figure 5.2(b) shows the density profile for a star with ρc = 8ρ0, for three different values of gV . We

see that as the vector coupling increases, the stiffening of the equation of state tends to raise the density

3Black holes are, of course, an exception that we do not attempt to describe in this thesis.
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Figure 5.3: Neutron star (a) mass (in solar masses) and (b) radius vs. central density for gV = 0 (blue), G
(green), 1.5G (red), and 5G (teal). As gV increases, the additional pressure due to the vector cou-
pling allows neutron stars to become larger and more massive before succumbing to gravitational col-
lapse.

at a given radius. As a result, the density profile “bows out,” tending to give rise to larger, more massive

stars for a specified central density. We also find that while the star radius increases by ∼ 1 km when gV /G

increases from 0 (blue curve) to 1.5 (green), there is no further increase in star size as the vector coupling

increases to gV /G = 5. However, the density profile does continue to bow out, indicating a further mass

increase, since M =
∫ R

0 dr′ 4πr′2ρ(r′).

In Fig. 5.3(b) we display the neutron star radius as a function of its central density for gV /G = 0, 1,

1.5, and 5. For low ρc, where the hadronic equation of state dominates, the star’s structure is relatively

independent of gV . However, as ρc increases, the vector repulsion plays a progressively more significant role

in the stellar equilibrium, and for ρc & 5ρ0 a value of gV & G increases the star radius by ∼ 0.5 km.

While Fig. 5.3(a) indicates that increasing the vector coupling increases the maximum stable neutron

star mass, this situation does not continue indefinitely, as shown in Fig. 5.4(a). The reason for the vector

coupling’s limited capacity to increase Mmax can be understood by considering the effect of an increasing

gV on the interpolation of the equation of state P (ρ). As discussed in Section 5.3, we interpolate between

the hadronic and quark sector equations of state over the domain 2n0 . nb . 4n0, based on the percolation

of quark matter at these baryon densities. As gV increases, the hybrid equation of state stiffens, and ρ(n)

(i.e., the mass density at specified baryon density) decreases. Thus, while the crossover region in baryon

density is fixed, as gV increases the corresponding crossover region in mass density is shifted to progressively
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Figure 5.4: (a) Maximum stable neutron star mass as a function of the vector coupling strength gV /G. (b) Cen-
tral density for maximally massive stars (red) and critical density for onset of strangeness (green) as
a function of gV /G. The curves intersect at gV /G = 3.19, indicating that for gV /G > 3.19, maximally
massive neutron stars have no strange quark content. Black dots denote calculated values while the
red curves are interpolated fits.

larger values of ρ (see the green curve in Fig. 5.4(b) which roughly corresponds with the end of the crossover

region). In other words, while larger values of gV stiffen the hybrid equation of state at large ρ, they soften

it at low ρ. The net effect of the vector coupling is therefore to exchange stiffness at low mass density for

stiffness at high density.

As shown in Fig. 5.2(a), the density profiles of neutron stars with central densities of ρc . 10ρ0 are

relatively flat except for very near the stars’ crusts, where ρ(r) decreases rapidly. As a result, very little of

these stars’ constituent matter exists at low densities. This means that when gV is small, the equation of

state’s stiffening at high ρ impacts a large portion of the star’s constituent matter, while the softening at

low ρ is negligible except in a very thin shell near the star’s surface. In this case, the net effect of gV is

therefore to increase the maximum stable star mass. When gV is large, however, the crossover region is at

a correspondingly high ρ, and for a specified ρc a greater portion of the star is described by the softened,

low ρ portion of the equation of state, tending to lead to lower mass stars. Moreover, increasing ρc does not

counteract this effect, for as shown in Fig. 5.2(a), as ρc increases, so too does the gradient dP/dρ, so that it

is no longer possible to form a star whose constituent matter is described primarily, by the high ρ equation

of state.

The end result of the vector coupling’s ability to shift stiffness between low and high density quark

matter is that, as shown in Fig. 5.4(a), for gV /G . 5 the high density stiffening dominates the star, while
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for gV /G & 5 low density softening is the dominant feature. Thus, the maximum stable neutron star mass

for any vector coupling is Mmax = 2.34M⊙, which is obtained for gV /G ≈ 5.

Figure 5.4(b) shows the central density for maximally massive stars (ρ∗c), as well as the critical density for

strange quark production (ρ∗s), as a function of gV . Noting that the critical baryon density for the onset of

strangeness (n∗
b ∼ 4.3n0) is independent of gV , ρ

∗
s roughly corresponds to the end of the interpolation region

(4n0), and so its rapid increase with gV is anticipated from our prior discussion. Meanwhile, we find that

as gV is increased from zero, ρ∗c initially decreases slightly, as the stiffening of the high density equation of

state is exploited most effectively by “flattening” the density profile of the star, thereby rendering a greater

portion of the star described by the stiff high density equation of state. As gV increases, however, ρ∗c must

likewise increase if a significant portion of the star is to take advantage of the stiff high density region.

Comparing Fig. 5.4(a) to the masses observed in Table 5.1, we find that our equation of state is capable of

generating stable neutron stars consistent with J1614-2230 (M = 1.97M⊙) and J0348+0432 (M = 2.01M⊙)

for quite reasonable values of the vector coupling (gV /G & 1). The status of J1311-3430 [M = (2.4±0.3)M⊙]

is less clear, owing to the large uncertainty in its observed mass, but our calculated value ofMmax ≈ 2.34M⊙

is well within the quoted mass range, with the lower limit on its mass requiring 1.4 . gV /G . 17.0, and

the mean estimate yielding 3.6 . gV /G . 8.0. Perhaps in the near future, improved observational data

will reduce the uncertainty in this massive neutron star’s properties and the discovery of additional massive

neutron stars will further constrain the quark matter equation of state.

5.5 Stability of Neutron and Ultra-Dense Quark Stars

In the previous section we computed the maximum obtainable masses of neutron and hybrid quark stars

as a function of the vector coupling gV . However, we have yet to assess the stability of these massive stars

against gravitational collapse and the formation of black holes. In addition, there has been much interest

recently in the prospect of stable quark stars for which ρc ≫ 10ρ0. In particular, it is suggested that while

neutron stars become unstable to collapse beyond a critical central density, by continuing to increase ρc well

beyond the densities obtained in conventional neutron stars one might arrive at another region of stability.

This ultra-high density matter would consist of equal densities of the three light flavors of quarks, as shown

in Fig. 5.5, and could be absolutely stable, or the true lowest energy state of quark matter [122, 124]. It is

the stability of the neutron stars studied in the prior chapter and the possibility of realizing such ultra-dense

quark stars to which we now turn.

Before assessing the stability of dense quark stars we first briefly discuss the properties of the matter
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Figure 5.5: Fractional quark and electron number densities vs. ρ for electrically neutral matter with gV = 0,
where nq = nu + nd + ns.

which makes up these proposed objects. Charge neutrality requires that

2

3
nu − 1

3
nd −

1

3
ns − ne = 0, (5.17)

so that defining the fractional densities ñi = ni/nq (where nq is the net quark density) we obtain the relations

ñu =
1

3
+ ñe, or equivalently, ñd + ñs =

2

3
− ñe. (5.18)

At low densities there is insufficient energy to generate the intermediate mass strange quark and the electron

density is always much smaller than the net quark density (ne ∼ n/100) so that charge neutrality enforces

nd ≈ 2nu. At the high densities anticipated in quark stars, however, the quark mass splittings are negligible

relative to the large Fermi energies obtained so that the matter becomes flavor symmetric (nu ≈ nd ≈ ns)

and the electrons are suppressed entirely (ne → 0).

One way of assessing the stability of high density quark stars is by constructing the M -R diagram shown

in Fig. 5.6. The structure of neutron stars with low central densities (ρc . 2ρ0) are determined entirely by

the hadronic equation of state and are therefore independent of the magnitude of the (quark) vector coupling

gV . Further, the low densities of these stars result in correspondingly small density gradients via the TOV

equation so that these stars have relatively large radii of R ∼ 20 km for ρc = 0.2ρ0. As ρc increases the

equilibrium radius falls and for ρ & 2ρ0 the vector coupling begins to play an important role in the star’s
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Figure 5.6: Mass-radius relationship for neutron and quark stars for gV = 0 (blue), G (green), and 1.5G (red).
The stars’ central densities increase from ρ0 to 400ρ0 as one moves from right (large R) to left (small
R), tracing out the curves in a counterclockwise fashion.

equilibrium, causing theM -R curves for different values of gV to begin to separate (see the “kink” in Fig. 5.6

at M ∼ 0.3M⊙, after which the stars’ masses begin to increase dramatically with ρc).

As indicated in Figs. 5.3(a) and 5.4(b), for gV /G . 5 the maximum stable neutron star mass is obtained

for ρc ≈ 11ρ0. Thus, as ρc increases from 3ρ0 to 10ρ0 in Fig. 5.6, the stars’ positions in M -R space move

from the “kink” at M ≈ 0.3M⊙ to the respective peaks at Mmax = 1.44M⊙, 2.01M⊙, and 2.14M⊙, with

R ≈ 9 − 10 km. As the central densities increase further, the stars trace out the curves in Fig. 5.6 in a

counterclockwise fashion, but do so at a decreasing rate (i.e., dM/dρc → 0−, as indicated in Fig. 5.3(a)). The

stability of high density quark stars depends on the direction in which the M -R curves bend as ρc becomes

large. Due to the small values of dM/dρc one must consider central densities as high as 400ρ0 in order to

obtain the curves shown in Fig. 5.6, but having done so, we find that while at extremely high densities the

stars’ radii do begin to increase, the masses continue to fall, indicating the onset of a second unstable mode,

rather than a recovery of stability. Thus, while the presence of a vector repulsion does allow neutron stars

to obtain larger stable masses, it does not (within the NJL model, at least) provide sufficient pressure to

stabilize the ultra-high density matter against gravitational collapse and thereby allow for the realization of

high density quark stars.

5.6 Observational Constraints and the Equation of State

Having seen that our equation of state is consistent with the most massive neutron stars yet observed,

we now proceed to consider the constraints placed on our equation of state by observations of other, non-
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Figure 5.7: Comparison of our equation of state, Eq. (5.11), with constraints from astrophysical observations.
Curves show our equation of state (in order of increasing stiffness) for gV /G = 0 (solid magenta), 1
(solid blue), 1.5 (dashed black), and 5 (dot-dashed green). The shaded region with data points shown
is from [36] while the larger (red and green) shaded regions are 68% and 95% confidence regions, re-
spectively, from [116].

maximally massive neutron stars. As discussed in the prior section, a given equation of state uniquely

determines the neutron star M -R relationship. As a result, astrophysical measurements of these parameters

allow one to place strict constraints on the quark matter equation of state. While this connection between

quark thermodynamics and neutron star structure has been discussed for some time, it is only recently that

significant efforts have begun to put this connection into practice [36, 116].

Figure 5.7 shows our hybrid equation of state as a function of baryon density, along with the observational

constraints imposed by the analyses in [36, 116]. While in the absence of the vector coupling (dotted red

curve) our equation of state is too soft to be consistent with the eleven neutron stars analyzed in these studies,

and gV /G = 5 results in an equation of state which is significantly too stiff at high density, vector couplings

of 1.3 . gV /G . 1.7 yield quite marked agreement with the observational constraints. Moreover, this range

of vector couplings is consistent with the constraints imposed by the massive neutron star observations

discussed in the prior section, which required gV /G & 1.4.

An important question which we have not yet addressed is the role of quark pairing in the structure of

neutron and dense quark stars, particularly its impact on the astrophysical observables discussed here [119].

While we are hopeful that by combining observational data with future analysis of the effects of quark pairing

we may gain further insight into the low temperature QCD phase diagram, regardless of the preferred pairing

structures of dense QCD, color superconductivity will always act to soften the quark matter equation of

state, thereby making it more difficult to realize either massive neutron or ultra-dense quark stars. It is
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important, however, to determine how significantly quark pairing reduces the maximum obtainable neutron

star masses. In addition, we have so far neglected the effects of the rapid rotation which many neutron stars

undergo and which tends to stabilize these stars to somewhat greater masses.



Chapter 6

Artificial Gauge Fields in Ultracold
Atoms

6.1 Introduction

Over the past decade the study of cold atomic gases has rapidly become one of the most dynamic and quickly

evolving fields of physics, largely due to the ability of these systems to simulate a wide variety of quantum

systems [131, 132]. One particular type of system which is not easily probed in its naturally occurring

forms, but which is of great theoretical interest is that of both Abelian and non-Abelian gauge fields.

While homogeneous Abelian gauge fields (i.e., magnetic fields) can be simulated via mechanical rotation, as

discussed in Section 1.3, the ability to obtain synthetic fields with large magnitudes is limited by achievable

rotation rates and this method is also incapable of producing spatially varying fields. Further, given the

extreme difficulty of probing the rich phase structure of naturally occurring non-Abelian gauge fields (e.g.,

QCD) the ability to simulate non-Abelian gauge fields in ultracold atoms is of both great theoretical and

experimental interest.

Fortunately, in the last five years researchers have developed optical techniques for achieving both inhomo-

geneous and non-Abelian gauge fields, greatly expanding the number of systems that can be experimentally

probed [54, 55, 59, 133–135]. In particular, studies are no longer limited to simulating naturally occurring

systems, but are now extended to systems never before realized in nature, but having the capacity to greatly

advance our understanding of the complexities of non-Abelian theories.

In this chapter we investigate the properties of a mixture of two hyperfine species of fermions subject

to a particular non-Abelian gauge field of the Rashba-Dresselhaus (RD) form, which couples the atoms’

momenta and spins (H ∼ p · σ). This type of anisotropic spin-orbit coupling is of practical interest due to

its realization in certain two dimensional semiconductors [57, 58]. It is also of great theoretical interest due

to the recently acquired ability to create artificial gauge fields of this type in the laboratory, and perhaps

in the near future, to tune the anisotropy in order to study a wide range of systems which do not naturally

occur, thereby broadening our general understanding of these system’s properties [136–139].

In the next section we begin by reviewing the phenomenon of Berry’s phase, the exploitation of which

allows for the realization of spatially varying and non-Abelian gauge fields by optical methods. We then

move on to discuss Rashba-Dresselhaus coupling specifically, which will be the focus of the rest of this thesis.

87
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The background presented in these two sections is largely based on [56, 140]. Finally, we construct the

mean field phase diagram for spin-orbit coupled fermions whose interactions can be arbitrarily tuned via a

Feshbach resonance.

6.2 Berry’s Phase

Berry’s phase is a quite general quantum phase which emerges in systems described by two sets of variables

which evolve on different time scales [141]. For example, in order to describe a metal fully one must in

principle solve the Schrödinger equation for the many-particle Hamiltonian that describes both the nuclear

and electronic degrees of freedom. However, due to the electrons’ much smaller mass they are able to

respond to internal (and external) forces, and thereby reach dynamical equilibrium, much more rapidly than

the relatively heavy nuclei. Therefore, to a first approximation one may treat the slowly varying nuclei

positions as fixed, solve for the quickly varying electron distribution, and then use this electron distribution

in order to solve for the new positions of the nuclei. In this particular context, this approximation is known

as the Born-Oppenheimer approximation [142].

In the case of the laser-induced artificial gauge fields which we will study in this chapter, the slowly

varying variables are the positions of the atoms (r) while the quickly varying variables are the internal

pseudo-spins |χ(r)〉 (i.e., hyperfine states, which we will henceforth refer to simply as “spins”), where, as the

notation suggests, the spin configuration will be solved for as a function of the positions r, which are taken

as fixed. According to the adiabatic theorem of quantum mechanics, as long as the time scale characterizing

the motion of the atoms is long enough compared to the time scale characterizing the spin dynamics, the

eigenstates of the system will continuously evolve from their unperturbed states. In particular, this means

that the coupling of the quickly and slowly varying degrees of freedom will not couple eigenstates of different

energies. Thus, in considering the evolution of an atom which begins in a particular eigenstate |χi(r)〉 of the

“fast” Hamiltonian HF , we need only consider the subspace of eigenstates which are degenerate (or nearly

degenerate) with |χi(r)〉.

We can write the Hamiltonian of our atomic system quite generally in the form

H =

(

−∇2

2m
+ U(r)

)

I+HF (r), (6.1)

where ∇ is the gradient with respect to the slowly varying variables r, U(r) is an external potential, and

HF (r) is the Hamiltonian describing the quickly varying spin variables. In addition, I is the identity operator

in spin space. Assuming that our atom begins in an eigenstate |χi(r)〉, the total state of the atom at a later
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time t can be written as

|Ψ(r, t)〉 =
N
∑

i=1

ψi(r, t) |χi(r)〉 , (6.2)

where {|χi(r)〉} (i = 1...N) is an orthonormal set of eigenstates of HF (r) with the nearly degenerate eigen-

values E1...EN and {ψi(r, t)} are the atomic position eigenstates. The Schrödinger equation therefore yields

(with ~ = 1)

i
∂

∂t
|Ψ(r, t)〉 =

N
∑

i=1

(

−∇2

2m
+ U(r) + Ei

)

ψi(r) |χi(r)〉 . (6.3)

We can pick out the time evolution of the jth component of |Ψ(r, t)〉 by taking the inner product of this

equation with 〈χj(r)| and using the orthogonality of the eigenstate to obtain

i
∂

∂t
ψj(r, t) = − 1

2m

N
∑

i=1

〈

χj(r)

∣

∣

∣

∣

(

∇2 |χi(r)〉ψi(r, t)

)〉

+ (U(r) + Ej)ψj(r, t),

=

(

−∇2

2m
+ U(r) + Ej

)

ψj(r, t)−
1

m

N
∑

i=1

〈χj(r)|∇|χi(r)〉∇ψi(r, t)

− 1

2m

N
∑

i=1

〈

χj(r)|∇2|χi(r)
〉

ψi(r, t),

=
1

2m

N
∑

i=1

(

− δji∇2 + 2 〈χj(r)|∇|χi(r)〉∇
)

ψj(r, t) + (U(r) + Ej)ψj(r, t)

− 1

2m

N
∑

i=1

〈

χj(r)|∇2|χi(r)
〉

ψi(r, t),

=
1

2m

N
∑

i,k=1

(

− iδji∇− i 〈χj(r)|∇|χi(r)〉
)

·
(

− iδik∇− i 〈χi(r)|∇|χk(r)〉
)

ψk(r, t)

+ (U(r) + Ej)ψj(r, t)−
1

2m

N
∑

i,k=1

〈χj(r)|∇|χi(r)〉 〈χi(r)|∇|χk(r)〉

+
1

2m

N
∑

i=1

(〈χj(r)∇|) · (∇ |χi(r)〉)ψi(r), (6.4)

where (〈χj(r)∇|) indicates ∇ acting to the left on 〈χj(r)|. Next, we write p̂ = −i∇ and define the quantities

~Aij(r) = i 〈χi(r)|∇|χj(r)〉 , (6.5)

where the notation indicates that for each pair (i, j), ~Aij is a three component vector, with the components

corresponding to the three “components” of the gradient operator. Thus, writing Eq. (6.4) in vector notation
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we obtain

i
∂

∂t
~ψ(r, t) =

[

1

2m

(

p̂I− ~A
)2

+ (U(r) + Ej) I+V(r)

]

~ψ(r, t), (6.6)

where ~A = (Ax,Ay,Az) is a 3-component vector of matrices and we define the effective scalar potential

Vij(r) =
1

2m
(〈χi(r)∇|) · (∇ |χj(r)〉)−

1

2m

N
∑

k=1

~Aik(r) · ~Akj(r). (6.7)

We can rewrite this potential by inserting the identity operator I =
∑

k |χk(r)〉 〈χk(r)| into the first term,

where the sum is over the elements of an orthonormal basis of the entire Hilbert space of spin states (i.e., both

the degenerate states with i = 1...N as well as all states non-degenerate with the atom’s initial eigenstate).

Thus, we obtain the expression

Vij(r) =
1

2m

∑

k 6=1...N

~Aik(r) · ~Akj(r). (6.8)

By considering Eq. (6.6) we see that the effective Schrödinger equation for the spatial wavefunction ~ψ(r) is

of the form of a particle subject to an external potential U(r)I+V(r) and a gauge field A(r) = (Ax,Ay,Az)

whose components are N ×N matrices. Thus, if there are no other eigenstates degenerate with the initial

state (N = 1) the synthetic gauge field will necessarily be Abelian. However, if N > 1 the gauge field

components will not, in general, commute (e.g., [Ax,Ay] 6= 0) so that we obtain a non-Abelian field.

Having outlined the general means by which Berry’s phase can be exploited to produce an artificial gauge

field, in the next section we discuss a particular optical scheme which has been proposed to realize such fields

in the laboratory.

6.3 Creating an Artificial Gauge Field

As shown in the previous section, in order to simulate a non-Abelian gauge field we must prepare a system

with more than one degenerate eigenstate. A system would be particularly amenable to manipulation in

this context if its unperturbed eigenvalues came in degenerate sets and were easily controlled with a tunable

external field. One such system, which was exploited to create the first non-Abelian artificial gauge field,

is the three F = 1 hyperfine states of 87Rb [59]. In order to understand how this system can be exploited,

we will briefly consider a three-state system with the “Λ-level” structure shown in Fig. 6.1, and which is

subject to the electric fields of two counter-propagating lasers. In the discussion which follows we will make

use of both the Schrödinger and interaction representations to express system’s operators. For a review of
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Figure 6.1: Atomic Λ-level structure with two nearly degenerate states |g1〉 and |g2〉, which are coupled to an
excited state |e〉 by two lasers with frequencies ωL1 and ωL2. Adapted from [56].

these representations and their connection, see [143].

6.3.1 Schrödinger Representation

Let us consider a three state atomic system which is subject to the external field of two counter-propagating

lasers, one tuned to couple the states |g1〉 and |e〉 (with frequency ωL1) and the other to couple |g2〉 and |e〉

(with frequency ωL2). The system’s Hamiltonian can be written in the form H = HA+HAF1+HAF2, where

HA is the unperturbed atomic Hamiltonian and HAF1 and HAF2 are the interaction Hamiltonians describing

the coupling between the atoms and the lasers. Working in the basis {|g1〉 , |e〉 , |g2〉}, the unperturbed

Hamiltonian is of the form HA = diag(ω1, ωe, ω2). Meanwhile, energy conservation allows us to relate the

various frequencies shown in Fig. 6.1:

g1 − e transition : ωe − ω1 = ωL1 + δ1, (6.9)

g2 − e transition : ωe − ω2 = ωL2 − δ2, (6.10)

where the δi are in general position-dependent. Subtracting Eq. (6.10) from Eq. (6.9) yields

δ1 + δ2 = (ωL2 − ωL1) + (ω2 − ω1), (6.11)

which is known as the detuning of the two-photon Raman excitation (or simply Raman detuning). Alterna-

tively, adding Eq. (6.9) and (6.10) gives

2ωe = (ωL1 + ωL2) + (ω1 + ω2) + δ12, (6.12)
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where we define δ12 = δ1 − δ2. This relation can be used to eliminate ωe in the atomic Hamiltonian and

after shifting the zero of energy so that (HA)22 = 0 we obtain

H ′
A =













−(δ1 + ωL1) 0 0

0 0 0

0 0 (δ2 − ωL2)













. (6.13)

Turning now to the interactions and working in the dipole approximation, the Hamiltonians due to the

two lasers are

HAF1 = −













0 d∗
21 0

d21 0 0

0 0 0













·E1 cos(k1 · r− ωL1t), (6.14)

HAF2 = −













0 0 0

0 0 d∗
32

0 d32 0













·E2 cos(k2 · r− ωL2t). (6.15)

Defining the Rabi frequencies Ω1 = −d21 · E1 and Ω2 = −d32 · E1, and adding the interaction and atomic

Hamiltonians yields the full Hamiltonian

H =













−(δ1 + ωL1) Ω∗
1 cos(k1 · r− ωL1t) 0

Ω1 cos(k1 · r− ωL1t) 0 Ω∗
2 cos(k2 · r− ωL2t)

0 Ω2 cos(k2 · r− ωL2t) (δ2 − ωL2)













. (6.16)

Having obtained the system’s full Hamiltonian, we next transform to the interaction representation in order

to motivate the random wave approximation, which we will shortly apply.

6.3.2 Interaction Representation

In order to transform to the interaction representation we must decompose the Hamiltonian in the form

H = H0 +H ′, after which the interaction Hamiltonian will be given by H ′
I = eiH0tH ′e−iH0t. In order to

simplify this procedure, we will choose H0 = −diag(ωL1, 0, ωL2) so that its exponentiation is trivial. The
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remaining portion of the Hamiltonian is then

H ′ =













−δ1 Ω∗
1 cos(k1 · r− ωL1t) 0

Ω1 cos(k1 · r− ωL1t) 0 Ω∗
2 cos(k2 · r− ωL2t)

0 Ω2 cos(k2 · r− ωL2t) δ2













. (6.17)

Writing the cosine terms as complex exponentials and evaluating H ′
I gives

H ′
I =

1

2













−2δ1 Ω∗
1(e

−ik1·r + ei(k1·r−2ωL1t)) 0

Ω1(e
ik1·r + e−i(k1·r−2ωL1t)) 0 Ω∗

2(e
−ik2·r + ei(k2·r−2ωL2t))

0 Ω2(e
ik2·r + e−i(k2·r−2ωL2t)) 2δ1













. (6.18)

We see that in the interaction representation the Hamiltonian consists of terms that are (1) constant in

time, and (2) oscillatory with frequency 2ωLi. Since the time scale for our measurements is much longer

than the period of oscillation for a visible laser with frequency ωL ∼ 1015 Hz we may safely replace the

oscillatory terms with their average values (zero). This replacement, which is known as the rotating wave

approximation yields the Hamiltonian

H ′RWA
I =

1

2













−2δ1 κ∗1 0

κ1 0 κ2

0 κ∗2 2δ2













, (6.19)

where we have defined the spatially-varying complex Rabi frequencies κ1 = Ω1e
ik1·r and κ2 = Ω∗

2e
−ik2·r,

which are determined by the geometry of the laser configuration. Having obtained the three state Hamil-

tonian, from the discussion in Section 6.2 we know that the effective gauge field will be determined by the

eigenstates of the system. Unfortunately, while as the roots of a cubic polynomial it is possible to obtain

a closed form expression for the eigenvalues (and the corresponding eigenstates) of Eq. (6.19), such an

expression is rather opaque in the general case. However, when the system is tuned symmetrically about

the average of the g1− e and g2− e excitations (i.e., when δ1 = δ2 ≡ δ) the eigenvalues simplify considerably

and it is instructive to consider this limit.

6.3.3 Abelian Gauge Field

In the case of symmetric tuning the eigenvalues of Eq. (6.19) are E0 = 0 and E± = ±
√

δ2 + κ2/2. If we

consider two counter-propagating lasers with equal magnitude wave vectors (κ1 = κ∗2 ≡ κe−ikx) then the
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corresponding eigenstates are [140]

|+〉 =













eikx cos2(θ/2)

− sin(θ)/
√
2

e−ikx sin2(θ/2)













, |0〉 =













eikx sin(θ)/
√
2

cos(θ)

−e−ikx sin(θ)/
√
2













, |−〉 =













eikx sin2(θ/2)

sin(θ)/
√
2

e−ikx cos2(θ/2)













, (6.20)

where we define tan(θ) = κ/
√
2δ. While these eigenstates are position dependent, E− is always the ground

state of the system (as long as κ, δ 6= 0) so that applying the adiabatic theorem, an atom prepared in the

(local) ground state will simply evolve continuously with |−〉. Since the ground state is unique, the synthetic

gauge field is trivially Abelian and from Eq. (6.5) we obtain

~A = i 〈−|∇|−〉 = −k cos(θ)x̂. (6.21)

The synthetic magnetic field B = ∇×A is therefore

B = − κk

2(δ2 + κ2/2)3/2

(

∂δ

∂z
ŷ − ∂δ

∂y
ẑ

)

. (6.22)

We see that the components of the magnetic field are related to the spatial gradient of the detuning δ.

The first synthetic gauge field realized in the laboratory consisted of a spatially uniform δ so that ~A 6= 0, but

B = 0 [133]. Soon after, a detuning linear in y (δ = αy) was utilized to obtain a uniform synthetic magnetic

field which manifested itself by inducing the formation of vortices in the superfluid 87Rb system [54]. Having

seen how an artificial Abelian gauge field can be realized by means of a spatially varying symmetric detuning,

we next consider how a cold atomic gas can be utilized to simulate a non-Abelian field.

6.4 Rashba-Dresselhaus Spin-Orbit Coupling

As discussed in Section 6.2, Berry’s phase is a versatile tool which can, in principle, allow for the synthetic

realization of a wide variety of Abelian and non-Abelian gauge fields. In practice, however, the technical

challenges to achieving these fields are quite significant and it is only slowly that progressively more complex

field configurations are obtained in the laboratory. One particular class of non-Abelian gauge fields which is

beginning to be realized is the Rashba-Dresselhaus spin-orbit coupling, whose Hamiltonians can be written

in the form

HR = vR(kxσy − kyσx), HD = vD(kxσx − kyσy), (6.23)
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where k is the atom’s momentum and σ = (σx, σy, σz) is the vector of Pauli matrices in hyperfine space.

These Hamiltonian were first studied in the context of two dimensional semiconductors, in which the Rashba

interaction stems from an inversion asymmetry of the confining potential, while the Dresselhaus interaction

is brought about by an inversion asymmetry of the bulk material [57, 58]. More recently, these interactions

have found renewed interest due to their relatively simple non-Abelian character and the possibility of their

simulation in cold atomic gases.

While Eq. (6.23) gives the Rashba and Dresselhaus Hamiltonians in their original forms, for our purposes

it will be convenient to work in a rotated coordinate system in which the hyperfine Pauli matrices become

σx → σx − σy√
2

, σy → σx + σy√
2

, (6.24)

and the momentum-space axes become

kx → kx − ky√
2

, ky → kx + ky√
2

. (6.25)

In this rotated space the RD interaction couples only momentum and spin coordinates corresponding to the

same axes, taking on the simple form

H =
κ

m
kxσx +

ηκ

m
kyσy , (6.26)

where κ = m(vR + vD) is the overall strength of the RD coupling and η = (vR − vD)/(vR + vD) is a measure

of the relative strength of the Rashba and Dresselhaus components, which we refer to as the anisotropy of

the RD coupling. Without loss of generality we assume κ > 0 and 0 ≤ η ≤ 1 throughout our discussion.1

While several experimental schemes have been proposed for creating synthetic fields of the Rashba-

Dresselhaus form [136–139, 144], only the equal-Rashba-Dresselhaus (ERD) case (η = 0) has thus far been

realized [54]. Here we will briefly review a proposed method for obtaining a synthetic Rashba-only (RO)

field (η = 1) by means of dark states which follows the discussion in [56].

We consider a generalization of the atomic system discussed in Section 6.3.3 in which there are three nearly

degenerate ground states |g1〉 , |g2〉 , |g3〉, and one excited state |e〉. Working in the interaction representation

and within the rotating wave approximation we can write the Hamiltonian in the compact form

H =

3
∑

j=1

[κi
2

|e〉 〈gj|+H.c.
]

, (6.27)

1If either of these conditions is not met we can simply redefine our momentum-space axes such that both conditions are
satisfied in the new coordinate system.
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where the three κj are spatially-varying complex Rabi frequencies corresponding to three distinct lasers. If

we choose the geometry of our system such that the lasers are positioned at the vertices of an equilateral

triangle whose center is the atomic gas then we can write κj = κeikj ·r/
√
3 where kj = k(− cos θj , sin θj , 0)

and θj = 2πj/3. Thus, we can recast the Hamiltonian in the form

H =
κ

2
|e〉 〈B|+H.c., (6.28)

where we define the bright state as the unique linear combination of the |gj〉 which couples to |e〉:

|B〉 =
3
∑

j=1

e−ikj ·r
√
3

|gj〉 . (6.29)

Next, we define the dark states, which form a basis for the subspace of |gj〉 which do not couple to |e〉:

|D1〉 =
3
∑

j=1

eiθje−ikj ·r
√
3

|gj〉 , |D2〉 =
3
∑

j=1

e2iθje−ikj ·r
√
3

|gj〉 . (6.30)

It is straightforward to verify that {|B〉 , |e〉 , |D1〉 , |D2〉} is an orthonormal basis for the Hilbert space of

relevant states.

Since the dark states do not couple to either |B〉 or |e〉, if an atom is prepared in one of these states (or

a superposition thereof), it will simply evolve within the dark subspace. From Eq. (6.5), the gauge field in

this subspace is therefore

Amn = i 〈Dn|∇|Dm〉 ,

= i





3
∑

j=1

e−inθjeikj ·r
√
3

〈gj |



∇





3
∑

j′=1

eimθj′ e−ikj′ ·r
√
3

|gj′〉



 ,

=
i

3

3
∑

j,j′=1

ei(mθj′−nθj)ei(kj−kj′ )·r(−ikj′ )δjj′ ,

=
1

3

3
∑

j=1

kje
i(m−n)θj . (6.31)

Substituting kj = k(− cos θj , sin θj , 0) and evaluating the sum explicitly yields

~A = −k
2
(σx, σy, 0), (6.32)

which is precisely the gauge field involved in RO spin-orbit coupling. As noted previously, this interaction
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has not yet been realized in the laboratory, largely due to the short lifetime of particles in the dark subspace

due to collisions which induce transitions to lower energy states. At least one proposal for overcoming this

obstacle has been made, however, and experimentalists continue to investigates methods for realizing this

interaction [139].

Having described the form of the RD interaction and the general methods by which synthetic gauge fields

of this form may be realized, we now move on to construct the phase diagram of systems subject to RD

spin-orbit coupling and a tunable two-body contact interaction.

6.5 Spin-Orbit Coupled Fermions with a Contact Interaction

We consider a system of two fermionic species in the presence of a (real or fictitious) magnetic field h(r) and

subject to a two-body contact interaction, whose Hamiltonian density is

H(r) =
∑

αβ

ψ†
α(r) [Kα(r)δαβ − h(r) · σαβ ]ψβ(r) + gψ†

↑(r)ψ
†
↓(r)ψ↓(r)ψ↑(r), (6.33)

where Kα = −∇2/2mα − µα is the kinetic energy operator of species α with mass mα, measured relative

to its chemical potential µα, and g < 0 corresponds to an attractive interaction. In addition, while we label

the species as different “spins,” in ultracold gases these states are typically different hyperfine states rather

than true spins.

Anticipating the effects of pairing, we define the pairing amplitude ∆(r) = g 〈ψ↓(r)ψ↑(r)〉 and approxi-

mate the two-body interaction by factoring in the following form, then neglecting quadratic fluctuations:

Hint = gψ†
↑(r)ψ

†
↓(r)ψ↓(r)ψ↑(r),

= g

[

〈

ψ†
↑(r)ψ

†
↓(r)

〉

+
(

ψ†
↑(r)ψ

†
↓(r) −

〈

ψ†
↑(r)ψ

†
↓(r)

〉

)

]

×
[

〈

ψ↓(r)ψ↑(r)
〉

+
(

ψ↓(r)ψ↑(r) −
〈

ψ↓(r)ψ↑(r)
〉)

]

,

≈ g

[

∣

∣

〈

ψ↓(r)ψ↑(r)
〉∣

∣

2
+
〈

ψ†
↑(r)ψ

†
↓(r)

〉 (

ψ↓(r)ψ↑(r)−
〈

ψ↓(r)ψ↑(r)
〉)

+
〈

ψ↓(r)ψ↑(r)
〉

(

ψ†
↑(r)ψ

†
↓(r)−

〈

ψ†
↑(r)ψ

†
↓(r)

〉

)

]

,

= g

[

〈

ψ†
↑(r)ψ

†
↓(r)

〉

ψ↓(r)ψ↑(r) +
〈

ψ↓(r)ψ↑(r)
〉

ψ†
↑(r)ψ

†
↓(r)−

∣

∣

〈

ψ↓(r)ψ↑(r)
〉∣

∣

2
]

,

= ∆†(r)ψ↓(r)ψ↑(r) + ∆(r)ψ†
↑(r)ψ

†
↓(r)−

|∆(r)|2
g

. (6.34)
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Next, we transform to momentum-space by defining the Fourier transforms

ψσ(r, t) =
1√
V

∑

k

eik·rψkσ(t), ∆(r, t) =
∑

q

eiq·r∆q(t), (6.35)

where V is the volume of the system. Thus, the Hamiltonian becomes

H =
∑

kαβ

[

ξkαδαβ − h(k) · σαβ

]

ψ†
kαψkβ +

∑

kk′

∆†
k′−kψ−k↓ψk′↑ +

∑

kk′

∆k−k′ψ†
k↑ψ

†
−k′↓ −

V

g

∑

q

|∆q|2, (6.36)

where ξkα = k2/(2mα) − µα is the kinetic energy of an atom of species α with respect to its chemical

potential. Noting that the spin-orbit field couples particles of different species (but the same momentum),

while the pairing amplitude couples particles of momentum and spin (k, σ) with particles of (−k′,−σ) we

define the Nambu-Gor’kov spinor

Ψk =

(

ψk↑ ψk↓ ψ†
−k↑ ψ†

−k↓

)T

. (6.37)

Symmetrizing the Hamiltonian with respect to the Nambu-Gor’kov components allows us to write the Hamil-

tonian in the form

H =
1

2

∑

kk′

Ψ†
kHkk′Ψk′ − V

g

∑

q

|∆q|2 +
∑

k

ξ̃k+, (6.38)

where we define ξ̃k↑ = ξk↑−hz, ξ̃k↓ = ξk↓+hz, and ξ̃k± = (ξ̃k↑± ξ̃k↑)/2, along with the Hamiltonian matrix

Hkk′ =



















(ξk↑ − hz)δkk′ −h⊥(k)δkk′ 0 ∆k−k′

−h∗⊥(k)δkk′ (ξk↓ + hz)δkk′ −∆k−k′ 0

0 −∆†
k′−k −(ξ−k↑ − hz)δkk′ h∗⊥(−k)δkk′

∆†
k′−k 0 h⊥(−k)δkk′ −(ξ−k↓ + hz)δkk′



















. (6.39)

Note that the final term in Eq. (6.38) arises from commutation of the diagonal elements of the kinetic energy

operator.

The partition function of the system is Z =
∫

D[∆†,∆, ψ†, ψ]e−SE , where the Euclidean action is

SE =

∫ β

0

dτ

[

∑

α

ψ†
kα(τ)∂τψkα(τ) +H

]

, (6.40)

and where β = 1/T is the inverse temperature and τ = it. Defining the Fourier transforms in (imaginary)



6.5. SPIN-ORBIT COUPLED FERMIONS WITH A CONTACT INTERACTION 99

time

ψkσ =
1√
β

∑

ωn

eiωnτψkσ(τ), ∆q =
∑

νn

eiνnτ∆q(τ), (6.41)

where ωn = (2n+ 1)πT and νn = 2nπT are the fermionic and bosonic Matsubara frequencies, respectively,

we can write SE in the form

SE =
β

2

∑

kk′

Ψ†
kG

−1
kk′Ψk′ − βV

g

∑

q

|∆q|2 + β
∑

k

ξ̃k+, (6.42)

where the single-particle Green’s function is G−1 = iωnI+H:

G−1
kk′ =



















(iωn + ξ̃k↑)δkk′ −h⊥(k)δkk′ 0 ∆k−k′

−h∗⊥(k)δkk′ (iωn + ξ̃k↓)δkk′ −∆k−k′ 0

0 −∆†
k′−k (iωn − ξ̃−k↑)δkk′ h∗⊥(−k)δkk′

∆†
k′−k 0 h⊥(−k)δkk′ (iωn − ξ̃−k↓)δkk′



















, (6.43)

Having cast the partition function in the form of a Gaussian integral, we can integrate over Ψ†,Ψ explicitly

and obtain the thermodynamic potential per unit volume Ω = −T lnZ/V :

Ω = −
∑

q

|∆q|2
g

− T

2V
tr ln(βG−1) +

1

V

∑

k

ξ̃k+, (6.44)

where the trace is taken over the continuous momentum variable as well as the discrete Nambu-Gor’kov and

spin indices and the factor of 1/2 in the second term comes from the double-counting of degrees of freedom

inherent in the Nambu-Gor’kov formalism.2

Next, we expand the thermodynamic potential about the homogeneous mean field gap ∆0 by writing

∆q = ∆0δq,0 + ηq, where ηq is the fluctuation field. Similarly, we rewrite tr ln(βG−1) as

tr ln
(

βG−1
)

= tr ln
[

β
(

G−1
0 +G−1

F

) ]

,

= tr ln
(

βG−1
0

)

+ tr ln
(

1 +G0G
−1
F

)

, (6.45)

2In integrating over Ψ†,Ψ we have treated all elements of the Nambu-Gor’kov spinor as independent fields. However, as one
can see from Eq. (6.37), only two of the four elements are actually independent. The factor of 1/2 in Eq. (6.44) removes this
double-counting of the system’s degrees of freedom.
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where G−1
0 is the inverse of the mean field Green’s function:

G−1
0 (k, k′) =



















iωn + ξ̃k↑ −h⊥(k) 0 ∆0

−h∗⊥(k) iωn + ξ̃k↓ −∆0 0

0 −∆†
0 iωn − ξ̃−k↑ h∗⊥(−k)

∆†
0 0 h⊥(−k) iωn − ξ̃−k↓



















δkk′ . (6.46)

and GF is the fluctuation matrix:

G−1
F (k, k′) =



















0 0 0 −ηk−k′

0 0 ηk−k′ 0

0 η†k′−k 0 0

−η†k′−k 0 0 0



















. (6.47)

Thus, separating the mean field and fluctuation contributions to the thermodynamic potential we can write

Ω = Ω0 +ΩF , (6.48)

Ω0 = −|∆0|2
g

− T

2V
tr ln

(

βG−1
0

)

+
1

V

∑

k

K̃+, (6.49)

ΩF = −
∑

q

|η(q)|2
g

− T

2V
tr ln(1 +G0G

−1
F ), (6.50)

where the terms linear in η vanish due to the stationary condition of Ω at the mean field gap.3 Having

derived the thermodynamic potential, we now proceed to consider the mean field properties of the system,

deferring a discussion of fluctuation effects to Appendix A.

6.6 Mean Field Approximation

Before constructing the mean field thermodynamic potential Ω0 explicitly, we make two observations. First,

we note that for Rashba-Dresselhaus spin-orbit fields the magnetic field strength is linear (odd) in the

momentum coordinates, while the energies ξ̃kα are quadratic (even). In particular, this implies h⊥(−k) =

−h⊥(k) and ξ̃−kα = ξ̃kα. Second, while to this point we have allowed for different masses for the two spin

species, in practice a spin-orbit field is incapable of transforming an atom of one species into another species

of different mass. Thus, in what follows we will discuss only the situation of equal masses, m↑ = m↓ ≡ m.4

3The mean field gap is precisely the value of ∆0 that minimizes the thermodynamic potential. As a result, any linear terms
in an expansion of Ω about the mean field configuration must vanish identically. For this reason, this approximation is often
referred to as the saddle point approximation.

4It is possible that in the presence of weak spin-dependent optical lattices one may obtain different effective masses for
the two hyperfine states (m↑ 6= m↓) [62]. Such a spin-dependence would modify our starting Hamiltonian and require careful
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In order to obtain the mean field thermodynamic potential we begin by computing the eigenvalues of the

system by diagonalizing the mean field Hamiltonian H0 = G−1
0 − iωnI. This yields the eigenvalue pairs

E1,2 =

√

Y+ + Y− ± 2
√

Y+Y− − |∆0|2|h⊥|2, (6.51)

E3,4 = −E1,2, (6.52)

where following the notation of [62] we define Y+ = ξ̃2k+ + |∆0|2 and Y− = ξ̃2k− + |h⊥|2, with ξ̃k± =

(ξ̃k↑ ± ξ̃k↓)/2. Making use of the identity tr lnA = ln detA, we can express tr ln(βG−1
0 ) in terms of the

system’s eigenvalues as

tr ln
(

βG−1
0

)

= ln

4
∏

j=1

[β (iωn − Ej)] ,

=

4
∑

j=1

ln [β (iωn − Ej)] . (6.53)

Substituting this expression into Eq. (6.49) and performing the Matsubara sum (as shown in Appendix C),

we obtain the mean field thermodynamic potential:

Ω0 = −|∆0|2
g

− T

V

2
∑

j=1

∑

k

[

ln(1 + e−βEj) +
1

2
βEj

]

+
1

V

∑

k

ξ̃k+, (6.54)

which we have written in terms of the positive eigenvalues E1,2. Having obtained the thermodynamic

potential, we next derive the mean field gap and number equations in order to analyze the phase structure

of the system.

6.6.1 Gap Equation

The mean field gap is the homogeneous configuration ∆(x) = ∆0 which minimizes the thermodynamic

potential Ω0. The trivial solution ∆0 = 0, which represents the “normal” phase of the system, is always a

solution of the equation ∂Ω0/∂|∆0| = 0. The gap equation, which implicitly defines the non-trivial solution

to this extremization problem, is given by ∂Ω0/∂|∆0|2:

1

g
= − 1

2V

2
∑

j=1

∑

k

tanh

(

βEj

2

)

∂Ej

∂|∆0|2
. (6.55)

analysis, but spin-orbit transitions between species of different mass would remain prohibited on physical grounds. An analysis
of the full implications of such spin-dependence is beyond the scope of this thesis.
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Replacing the divergent bare coupling g with the s-wave scattering length via the relation

1

g
=

m

4πas
− 1

V

∑

k

1

2ε
, (6.56)

where ε = k2/2m, and computing the eigenvalues’ derivatives in Eq. (6.55) we obtain the renormalized gap

equation

m

4πas
=

1

V

∑

k

[

1

2ε
−
(

X1

4E1
+

X2

4E2

)

−
ξ̃2k−

√

Y+Y− − |∆0|2|h⊥|2

(

X1

4E1
− X2

4E2

)

]

, (6.57)

where we define Xi = tanh(βEi/2).

6.6.2 Number Equations

The number equation for the species α is given by the thermodynamic identity nα = −∂Ω0/∂µα. Thus,

differentiating Eq. (6.54) we obtain

n↑ =
1

2V

∑

k

[

1− ξ̃k↑

(

X1

2E1
+

X2

2E2

)

− ξ̃k+Y− + ξ̃k−Y+
√

Y+Y− − |∆0|2|h⊥|2

(

X1

2E1
− X2

2E2

)

]

, (6.58)

n↓ =
1

2V

∑

k

[

1− ξ̃k↓

(

X1

2E1
+

X2

2E2

)

− ξ̃k+Y− − ξ̃k−Y+
√

Y+Y− − |∆0|2|h⊥|2

(

X1

2E1
− X2

2E2

)

]

. (6.59)

Before proceeding to solve the gap and number equations we note that by alternatively adding or subtracting

subtracting Eqs. (6.58) and (6.59) we can express the total particle density in the form

n =
1

V

∑

k

[

1− ξ̃k+

(

X1

2E1
+

X2

2E2

)

− ξ̃k+Y−
√

Y+Y− − |∆0|2|h⊥|2

(

X1

2E1
− X2

2E2

)

]

, (6.60)

and the excess density of up spins as

n↑ − n↓ = − 1

V

∑

k

ξ̃k−

[

X1

2E1
+

X2

2E2
+

Y+
√

Y+Y− − |∆0|2|h⊥|2

(

X1

2E1
− X2

2E2

)

]

. (6.61)

From this expression it is clear that the Zeeman field acts in the same way as a chemical potential difference

between the two spin species. In particular, defining µ± = (µ↑ ± µ↓)/2, when ξ̃k− = −(µ− + hz) 6= 0 the

right side of Eq. (6.61) will not vanish and the system will be population imbalanced. On the other hand,

for ξ̃k− = 0 the two number equations are identical and we need only solve Eqs. (6.57) and (6.60) for (∆, µ),

where µ = µ↑ = µ↓ is the two species’ common chemical potential.

There are two different experimental situations that may be realized for which ξ̃k− 6= 0. On the one
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Figure 6.2: (a) Pairing gap magnitude ∆0 and (b) chemical potential µ (in units of εF , the Fermi energy of the
free Fermi gas) vs. inverse scattering length (1/kF as) at T = 0 in the RO case (η = 1) for κ/kF = 0
(solid red), 0.5 (dashed green), 1.0 (dotted blue), 1.5 (thin violet), and 2.0 (dot-dashed light blue),
where kF =

√
2mεF is the Fermi momentum. In the ERD case the gap is independent of κ and hence

is identical to the κ = 0 curve in (a), while µ(v) = µ(0)− κ2/2m (see Eq. (6.62)).

hand, by applying a radio frequency (RF) field during the system’s preparation it is possible to induce a

specified population imbalance. In the absence of a spin-orbit field capable of transforming one hyperfine

state into the another, this imbalance will persist and µ↑ 6= µ↓ so that we must solve the full set of three

equations (6.57), (6.58), and (6.59) for (∆, µ↑, µ↓). On the other hand, in the presence of a Zeeman field

the system will spontaneously develop a population imbalance due to the energy difference between the two

hyperfine states, but the spin-orbit induced equilibrium between the species dictates that µ↑ = µ↓. While

both situations are realizable, in the following calculations we concentrate on the latter case.

In the next section we investigate the phases of the population balanced system by solving Eqs. (6.57)

and (6.60) for ξ̃k− = 0. We then proceed in the following section to introduce a non-zero Zeeman field and

consider the more general case n↑ 6= n↓.

6.7 Population Balanced System

In order to solve the gap and number equations, even for a population balanced system, we must specify the

two-body interaction strength (or s-wave scattering length) as well as the overall spin-orbit magnitude κ and

the anisotropy η. Thus, the phase space of our system is already rather large, depending on three independent

parameters. In order to render our calculations maximally useful, we therefore restrict our attention to

situations which are, or we anticipate will be shortly, within the realm of experimental observation. In

particular, regarding the spin-orbit coupling we will focus on the ERD (η = 0) and RO (η = 1) cases. The
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Figure 6.3: Pairing gap magnitude ∆0 vs. T (in units of εF ) in the case κ = 0 for 1/kF as = −0.5 (solid red), 0.5
(dashed green), 1.5 (dotted blue), and 2.0 (thin violet).

s-wave scattering length, which can be tuned arbitrarily via a Feshbach resonance, will be investigated across

all parameter values.

Figure 6.2 shows the zero temperature mean field gap and chemical potential as a function of the interac-

tion parameter 1/kFas in the RO case, for a variety of spin-orbit couplings. We find that the gap increases

with increasing κ for fixed 1/kFas, but that this effect diminishes as 1/kFaS → ∞ where the curves converge.

Meanwhile, the chemical potential consistently decreases with increasing κ.

The ERD case has the important property that in the absence of a Zeeman field, ∆0 is independent of

the magnitude of the spin-orbit coupling κ, and so is simply given by the κ = 0 curve in Fig. 6.2(a). We

can understand this result by considering the eigenvalues in the ERD case, which for ξ̃k− = 0 reduce to

E1,2 =
√

(ξ̃k+ ± κ|kx|/m)2 + |∆0|2, where ξ̃k+ = ε− µ. By shifting the integral over kx to k′x = kx ± κ we

obtain

ξ̃k+ ± κ|kx|
m

−→ ξ̃k′+ − κ2

2m
. (6.62)

Thus, the entire spin-orbit dependence of the gap and number equations can be subsumed into a shift of

the chemical potential to µ(κ) = µ(0) − κ2/2m. The result is that, as observed, the gap is independent of

κ, while the chemical potential has a simple quadratic dependence on κ.

Turning next to the temperature dependence of ∆0, Fig. 6.3 shows the mean field gap in the absence

of spin-orbit coupling, where the system exhibits behavior typical of second-order phase transitions with

∆(T ) ∝
√
Tc − T . As shown in Fig. 6.4, as κ increases in the RO case, the critical temperature also

increases, as we would expect from the increased zero temperature gap observed in Fig. 6.2(a). In contrast,



6.8. POPULATION IMBALANCED SYSTEM 105

0.0

0.5

1.0

1.5

2.0

2.5

3.0

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

T

1/kFa

N

SF

Figure 6.4: Mean field phase diagram for an RO coupled system for κ/kF = 0 (solid red), 1.0 (dashed green), 1.5
(dotted blue), and 2.0 (thin violet). N and SF denote normal and superfluid phases, respectively. The
ERD phase boundary is identical to the κ = 0 curve. The temperature is in units of εF .

since the zero temperature gap is independent of v in the ERD case, Tc is similarly independent of the

spin-orbit coupling strength.

Figure 6.4 shows the mean field phase diagram for the population balanced system in the RO case for

several values of κ. We see that the effect of κ 6= 0 is to increase the region of superfluidity by enhancing

the pairing strength and thereby increasing Tc for a given interaction strength.

6.8 Population Imbalanced System

Having constructed the phase diagram for a population balanced system with ξ̃k− = 0 we now move on to

consider the more general case in which ξ̃k− 6= 0. The description of imbalanced systems is complicated

by the fact that for N↑ 6= N↓ the Fermi seas of the two species are mismatched (i.e., kF,↑ 6= kF,↓) so that

the net pair condensation energy obtainable by forming spin-singlet BCS pairs is decreased [145–149]. As a

result, in the absence of triplet pairing, as the population imbalance P = (n↑ −n↓)/(n↑+n↓) grows, the net

condensation energy falls until at some critical value Pc superfluidity is destroyed altogether.

Figure 6.5 shows the mean field phase diagrams for RO coupled systems with various Zeeman fields and

Rashba couplings. We see that at small κ the Zeeman field acts to suppress superfluidity by inducing a

mismatch of the Fermi surfaces of the two species, thereby making pairing more difficult. However, as noted

in [62], as κ increases, the pair-breaking mechanism of hz becomes less effective, due to the emergence of

a triplet component of the superfluid order parameter. Indeed, as shown for κ/kF = 1.0, 1.5, and 2.0, the

region of superfluidity actually increases with increasing Zeeman field. Moreover, the effect of hz on the

phase boundary is magnified as κ increases so that the curves in Fig. 6.5 spread out with increasing κ.
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(c) κ/kF = 1.5
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(d) κ/kF = 2.0

Figure 6.5: Mean field phase diagrams for RO coupled systems with hz/εF = 0 (solid red), 0.25 (dashed green),
0.5 (big dotted blue), 0.75 (small dotted violet), and 1.0 (dot-dashed light blue) and various spin-
orbit coupling strengths.

In Fig. 6.6 we show the phase diagrams for ERD coupled systems with various Zeeman fields and spin-

orbit couplings. As shown in Eq. (6.62), for hz = 0 the ERD coupling can be absorbed into a shift in

the system’s chemical potential so that the location of the phase boundary is independent of κ. Thus, the

red curves in the four plots of Fig. 6.6 are identical. However, for hz 6= 0 the κ dependence can no longer

be eliminated by such a gauge transformation and the phase diagram develops a non-trivial dependence on

the spin-orbit coupling. In particular, we find that the Zeeman field tends to increase Tc and its effect is

magnified as the magnitude of the spin-orbit field is increased.

One common feature of the mean field phase diagrams for both RO and ERD coupled systems is the

exponential increase in Tc with increasing 1/kFas. Thus, it appears that one can increase Tc arbitrarily

simply by tuning the system to create strongly bound diatomic molecules (1/kFas → ∞). This cannot be
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Figure 6.6: Mean field phase diagrams for ERD coupled systems with various spin-orbit coupling strengths. Line
types are the same as in Fig. 6.5.

true, however, for in this BEC limit the system simply behaves as a gas of bosons with mB = 2m and

nB = n/2. The critical temperature for BEC formation in a free boson gas is [150]

Tc =
2π

mB

(

nB

ζ(3/2)

)2/3

, (6.63)

where ζ(z) is the Riemann zeta function and ζ(3/2) ≈ 2.61. Comparing this expression to the Fermi

temperature (TF = εF /kB) of the original gas of fermions we find

Tc =

(

2

9πζ(3/2)2

)1/3

TF ≈ 0.218TF . (6.64)

Thus, on physical grounds we expect that the phase boundaries shown in Figs. 6.5 and 6.6 should reach a
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plateau at Tc ∼ TF as 1/kFas → ∞, rather than continuing to increase. In fact, this unphysical behavior

in the BEC limit is a generic feature of our mean field treatment of the BCS-BEC crossover, independent

of the spin-orbit coupling with which we are presently concerned [151–153]. This discrepancy can be traced

to the number equation’s failure to account for the fact that for 1/kFas ≫ 1, nearly all of the fermions

in the system are bound into composite bosons. In particular, in this limit the normal state should be a

(composite) Bose gas, not the Fermi gas about which the mean field treatment expands. In order to account

for BEC physics we must include the effects of fluctuations, which is the subject of Appendix A.

6.9 Ginzburg-Landau Thermodynamic Potential

In order to gain insight into the superfluid-normal phase transition, as well as to lay the foundation for our

consideration of fluctuations in Appendix A, it will be helpful to consider the thermodynamic potential very

near the phase boundary by expanding in a Ginzburg-Landau (GL) form:

ΩGL(∆0) = Ω0(0) + a|∆0|2 +
b

2
|∆0|4 + · · · , (6.65)

where the coefficients a and b depend on µ and T . These coefficients can be computed directly by differen-

tiating Eq. (6.54) and are

a(µ, T ) = − m

4πas
+

1

V

∑

k

[

1

2ε
−
(

X1

4E1
+

X2

4E2

)

− h2z
ξkh

(

X1

4E1
− X2

4E2

)]

, (6.66)

b(µ, T ) =
1

2V

∑

k

[

(

1 +
h4z
ξ2kh

2

)(

Z11

4E3
1

+
Z22

4E3
2

)

+
2h2z
ξkh

(

Z11

4E3
1

− Z22

4E3
2

)

+
h4z
ξ3kh

3

(

X1

4E1
− X2

4E2

)

]

.(6.67)

where we define Yi = sech2(βEi/2) and Zij = Xi − βEiYj/2, and the eigenvalues are understood to be

evaluated at ∆0 = 0, so that E1,2 = ξk ± h, where ξk = ε − µ and Y− = h2z + |h⊥|2 ≡ h2. Note also that

since we have specialized to mass balanced systems in chemical equilibrium we have ξk↑ = ξk↓ ≡ ξk as well

as ξ̃k+ = ξk and ξk− = −hz.

Comparing Eqs. (6.57) and Eq. (6.66) we note that the GL coefficient a(µ, T ) vanishes precisely when

the gap equation is satisfied for ∆0 = 0. This is encouraging, for both of these conditions are criteria for

defining the onset of pairing. In the first case, the gap equation does not in general contain the trivial

solution ∆0 = 0, so that when a solution exists at all, pairing has commenced. In the second case, a negative

coefficient a is precisely what is required of ΩGL to produce a non-trivial minimum.



Appendix A

Effects of Fluctuations on Spin-Orbit
Coupled Fermions

A.1 Introduction

In Chapter 6 we analyzed the mean field properties of ultracold fermions subject to an artificial gauge field

of the Rashba-Dresselhaus form. While our results have provided insight into the generic phase structure of

these systems, particularly in the weak coupling regime, we have observed that fluctuations play a crucial

role in determining the location of the phase boundary in the BEC regime where the normal phase consists

largely of composite bosons. Thus, in this appendix we build on our prior results by considering the effects

of Gaussian fluctuations on the phase diagram of spin-orbit coupled fermions.

A.2 Fluctuation Thermodynamic Potential

In Chapter 6 we derived the thermodynamic potential for our spin-orbit coupled system, including fluctua-

tions, which is given in Eqs. (6.49)-(6.50). However, before proceeding with our treatment of the fluctuation

contribution ΩF we make two approximations. First, we expand ΩF in powers of the fluctuation field η and

truncate the series at quartic order. Second, since we are particularly interested in the effects of fluctuations

on the phase boundary of the system, where the mean field gap vanishes, we set ∆0 = 0 and henceforth

denote the fluctuation field by the now identical full gap ∆.

Anticipating our expansion about ∆ = ∆0 = 0 we begin by writing G−1[∆] = G−1
0 [0] +G−1

F [∆] where

the ungapped Green’s function is now of the block diagonal form

G−1
0 [0] =



















iωn + ξ̃k↑ −h⊥(k) 0 0

−h∗⊥(k) iωn + ξ̃k↓ 0 0

0 0 iωn − ξ̃k↑ −h∗⊥(k)

0 0 −h⊥(k) iωn − ξ̃k↓



















δkk′ . (A.1)

and where the gap-dependent fluctuation matrix is given by Eq. (6.47), with η = ∆. The tr ln term in Eq.

(6.50) can be expanded as

tr ln
(

βG−1[∆]
)

= tr ln
(

βG−1
0 [0] + βG−1

F [∆]
)

,

109
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= tr ln
(

βG−1
0 [0]

)

+ tr ln
(

1 +G0[0]G
−1
F [∆]

)

,

= tr ln
(

βG−1
0 [0]

)

− 1

2
tr
(

G0[0]G
−1
F [∆]

)2 − 1

4
tr
(

G0[0]δG
−1
F [∆]

)4
+ · · · , (A.2)

where we note that traces of odd powers of G[0]G−1
F [∆] vanish. Thus, truncating the thermodynamic

potential per unit volume at fourth order we have

Ω[∆] = Ω0[0] + Ω(2)[∆] + Ω(4)[∆], (A.3)

Ω0[0] = − T

2V
tr ln

(

βG−1
0 [0]

)

+
1

V

∑

k

ξ̃k+, (A.4)

Ω(2)[∆] = −
∑

q

|∆q|2
g

+
T

4V
tr
(

G0[0]G
−1
F [∆]

)2
, (A.5)

Ω(4)[∆] =
T

8V
tr
(

G0[0]G
−1
F [∆]

)4
. (A.6)

Evaluating Eqs. (A.3)-(A.6), we will obtain the Ginzburg-Landau (GL) thermodynamic potential, which

we write in the form

ΩGL[∆] = Ω0[0] +
∑

q

Γ−1(q)|∆q |2 +
1

2

∑

q1···q3

b(q1, q2, q3)∆q1∆
†
q2∆q3∆

†
q1−q2+q3 + · · · (A.7)

Given our interest in how fluctuations affect the critical temperature of the system, our task is now to

compute Γ−1(q) and b(q1, q2, q3) explicitly by evaluating Eq. (A.3)-(A.6) and determine how these quantities

are modified from their mean field values in which qi = 0. Since we are focusing on the phase boundaries of

the system where ∆ → 0, we treat the gap ∆, as well as the Matsubara and momentum coordinates (qn,q),

as an expansion parameter, and in keeping with Eq. (A.7) we truncate our expansion at fourth order.

In order to assess the lowest-order corrections to the mean field action in Eq. (A.4) we must evaluate

the bosonic propagator, Γ−1(q), to second order in the momentum coordinates and first order in frequency:

Γ−1(ω,q) = a+ dω + ci
q2i
2m

+ · · · , (A.8)

where the sum over i = x, y, z is implied and we have analytically continued Γ−1(qn,q) to real frequencies,

as discussed in A.4. For the quartic term in Eq. (A.7), since ∆ is itself an expansion parameter and we

truncate at fourth order, we can set q1 = q2 = q3 = q4 = 0 so that b(q1, q2, q3) ∼ b(0, 0, 0) ≡ b is unchanged

from its mean field value at our level of approximation. In what follows, we no longer consider the term

Ω
(0)
eff , as it provides only an overall shift in the thermodynamic potential and is irrelevant to determining the

phase boundaries of the system.
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A.3 Calculation of Γ−1(q)

In this section we will evaluate the quadratic portion of the thermodynamic potential, Ω(2)[∆], from which

we will extract the bosonic propagator Γ−1(q). To simplify this computation we begin by writing G−1
0 [0]

and G−1
F [∆] in the block matrix form:

G−1[0](k, k′) =







A−1(k) 0

0 −A−1(−k)T






δkk′ , G−1

F [∆](k, k′) =







0 C∆(k − k′)

−C∆†(k′ − k) 0






, (A.9)

where we define the 2× 2 blocks

A−1(k) =







iωn + ξ̃k↑ −h⊥(k)

−h∗⊥(k) iωn + ξ̃k↓






, C =







0 −1

1 0






. (A.10)

Thus, the ungapped mean field propagator may be written as

G0[0](k, k
′) =







A(k) 0

0 −A(−k)T






δkk′ , (A.11)

where direct computation yields

A(k) = a(k)







iωn + ξ̃k↓ h⊥(k)

h∗⊥(k) iωn + ξ̃k↑






, (A.12)

and where we define a(k) = det[A(k)], with the determinant taken over the Nambu-Gor’kov and spin indices.

Given these definitions, computing the product G[0]δG−1[∆] yields

(

G0[0]G
−1
F [∆]

)

(k, k′′) =
∑

k′







A(k) 0

0 −A(−k)T






δkk′







0 C∆(k′ − k′′)

−C∆†(k′′ − k′) 0






,

=







0 A(k)C∆(k − k′′)

A(−k)TC∆†(k′′ − k) 0






. (A.13)

Squaring this matrix and taking the trace, as appears in Ω(2)[∆], we obtain

tr
(

G0[0]G
−1
F [∆]

)2
=
∑

kk′′

tr

[

A(k)CA(−k′′)TC|∆(k − k′′)|2 +A(−k)TCA(k′′)C|∆(k′′ − k)|2
]

. (A.14)
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Rewriting the second term by taking k ↔ k′′ and using the cyclicity of the trace shows that it is identical

to the first term. Thus, shifting the sum over k′′ by defining q = k − k′′, we obtain

tr
(

G0[0]G
−1
F [∆]

)2
= 2

∑

q

|∆(q)|2
∑

k

tr

[

A(k)CA(q − k)TC

]

. (A.15)

Inserting this expression into Eq. (A.5) and comparing with Eq. (A.7), we find that we can write the bosonic

propagator in the form

Γ−1(q) = −1

g
+

T

2V

∑

k

tr

[

A(k)CA(q − k)TC

]

. (A.16)

In order to evaluate the trace in Eq. (A.16) we next obtain the diagonal elements of the productA(k)CA(q−

k)TC:

[

A(k)CA(q − k)TC

a(k)a(q − k)

]

11

=
(

iωn + ξ̃k↓

)(

iωn − iqn − ξ̃k−q,↑

)

− h∗⊥(k− q)h⊥(k), (A.17)

[

A(k)CA(q − k)TC

a(k)a(q − k)

]

22

=
(

iωn + ξ̃k↑

)(

iωn − iqn − ξ̃k−q,↓

)

− h∗⊥(k)h⊥(k− q). (A.18)

Substituting these expressions into Eq. (A.16) gives

Γ−1(q) = −1

g
+

T

2V

∑

k

a(k)a(q − k)

[

(

iωn + ξ̃k↑

)(

iωn − iqn − ξ̃k−q,↓

)

+
(

iωn + ξ̃k↓

)(

iωn − iqn − ξ̃k−q,↑

)

− h∗⊥(k)h⊥(k− q)− h∗⊥(k− q)h⊥(k)

]

. (A.19)

In order to proceed, we must now evaluate the Matsubara sum over each of the terms above. The explicit

calculation is given in Appendix G, the result of which can be written in the form

Γ−1(q) = −1

g
− 1

2V

∑

k

[

W12 +W21 + g(k, q) (W11 −W12 −W21 +W22)

]

, (A.20)

where g(k, q) = u2kv
2
k−q+u

2
k−qv

2
k+2ukvkuk−qvk−q cos(θk−θk−q) is a function of the quasiparticle amplitudes

u2k =
1

2

(

1− ξ̃k−(k)
√

Y−(k)

)

, v2k =
1

2

(

1 +
ξ̃k−(k)
√

Y−(k)

)

, (A.21)

as well as the spin orbit phase angle, defined via the relation h⊥(k) = |h⊥(k)|eiθk , and the quantities

Wij =
1− f(Ei(k)) − f(Ej(k− q))

iqn + Ei(k) + Ej(k− q)
, (A.22)
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where E1,2 are evaluated at ∆0 = 0, and f(E) is the Fermi distribution function. It is straightforward to

verify that by setting q = 0 in Eq. (A.20) and expressing the coupling g in terms of the s-wave scattering

length, one recovers the mean field Ginzburg-Landau coefficient a(µ, T ) given in Eq. (6.66). Thus, having

obtained a general expression for the bosonic propagator, we now proceed to perform a lowest-order frequency

expansion of Γ−1(ω,q).

In the calculations that follow we again specialize to the situation of mass-balanced systems (m↑ = m↓)

in chemical equilibrium (µ↑ = µ↓). We will therefore drop the pseudospin indices from ξkσ, and also write

ξ̃k+ = ξk and ξ̃k− = −hz. This further implies Y− = h2z + |h⊥|2 ≡ h2. Finally, since we are interested in the

superfluid-normal phase boundary throughout this chapter, all quantities are understood to be evaluated at

∆0 = 0 so that Y+ = ξ2k and E1,2 = ξk ± h.

A.4 Expansion of Γ−1(ω, 0)

In order to investigate the frequency behavior of the system, we begin by analytically continuing Γ−1(qn,0)

to real frequency by taking iqn → ω + iǫ, where ǫ→ 0+. The frequency ω appears only in the Wij terms of

Eq. (A.20), which can be written in the form

Wij =
Xi +Xj

2

[

P
(

1

ω + Ei + Ej

)

− iπδ(ω + Ei + Ej)

]

, (A.23)

where P denotes the principal value. Thus, setting q = 0 and defining Q(ω) = Γ−1(ω,0)−Γ−1(0) we obtain

Q(ω) = QR(ω) + iQI(ω), where the real and imaginary parts of Q(ω) are

QR(ω) =
1

2V

∑

k

{

(X1 +X2)P
(

ω

2ξk(ω + 2ξk)

)

+
|h⊥|2
h2

[

X1P
(

ω

2E1(ω + 2E1)

)

+X2P
(

ω

2E2(ω + 2E1)

)

− (X1 +X2)P
(

ω

2ξk(ω + 2ξk)

)]}

, (A.24)

QI(ω) =
π

2V

∑

k

{

(X1 +X2)δ(ω + 2ξk)

+
|h⊥|2
h2

[

X1δ(ω + 2E1) +X2δ(ω + 2E2)− (X1 +X2)δ(ω + 2ξk)

]}

. (A.25)

Having obtained Q(ω), we are in a position to analyze the low frequency fluctuations of the system by

expanding to first order in ω. Writing the expansion in the form Q(ω) = dω + · · · , we obtain d = dR + idI

where

dR(µ, T ) =
1

2V
P
∑

k

[(

1 +
h2z
ξ2
k

)(

X1

4E2
1

+
X2

4E2
2

)

+
2h2z
ξkh

(

X1

4E2
1

− X2

4E2
2

)]

, (A.26)
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dI(µ, T ) =
π

2

∑

k

{

(X1 +X2)δ
′(2ξk) +

|h⊥|2
h2

[

X1δ
′(2E1) +X2δ

′(2E2)− (X1 +X2)δ
′(2ξk)

]}

, (A.27)

where terms involving δ′(x) = dδ(x)/dx are understood to be evaluated by integrating the associated terms

by parts. As we will see in section A.6, the imaginary part of d(µ, T ) determines the lifetime of the bosonic

molecules while the real part plays a role in determining the Bose gas’ properties in the BEC limit. Regarding

the lifetime of the molecules, we note that for 1/kFas → ∞, as µ ∼ −Eb/2 → −∞, the arguments of

the δ′-functions in Eq. (A.27) are always positive so that dI = 0 and the molecules’ lifetime becomes

τB ∝ 1/dI → ∞. Thus, as expected on physical grounds, for large enough 1/kFas the system becomes a

dilute gas of stable bosonic molecules.

A.5 Expansion of Γ−1(0,q)

We now wish to assess the stability of the system to spatial inhomogeneities by expanding Γ−1(0,q) to

second order in q. This expansion is more tedious than the expansion in ω, as we must expand both the

quasiparticle function g(k, q) of Eq. (A.20) as well as theWij . Our first step is then to obtain the expansions

of the quasiparticle amplitudes uk−q and vk−q, as well as the spin-orbit phase angle θk−q. A straightforward,

though cumbersome, Taylor expansion yields

uk−q ∼ uk +
hz

4ukh3
A− hz

32u3kh
6

[

4u2kh
3B +

(

hz − 12u2kh
2
)

A2
]

, (A.28)

vk−q ∼ vk − hz
4vkh3

A+
hz

32v3kh
6

[

4v2kh
3B −

(

hz + 12v2k
√

Y−

)

A2
]

, (A.29)

θk−q ∼ θk +
1

|h⊥|2
C +

1

|h⊥|4
AC, (A.30)

where we define the quantities

A =
κ2

m2

(

kxqx + η2kyqy
)

, B =
κ2

m2

(

q2x + η2q2y
)

, C =
ηκ2

m2
(kxqy − kyqx) . (A.31)

Using these expressions, the second order expansion of the function g(k, q) becomes

g(k, q) ∼ |h⊥|2
h2

− h2z
h4
A+

h2z
2h6

[

h2B −
(

3 +
h2

2|h⊥|2
)

A2

]

− 1

4h2|h⊥|2
C2. (A.32)
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Next, we must obtain expansions for the Wij . We begin by obtaining the second order expansions of the

eigenvalues E1,2(k− q) ∼ E1,2(k)−D± + E±, where we define the quantities

D± =
k · q
m

± A

h
E± =

q2

2m
± B

2h
∓ A2

2h3
. (A.33)

From these expressions we can obtain the expansions of the Fermi distribution functions:

f(E1(k− q)) ∼ f(E1(k)) +
βY1(D+ − E+)

4
+
β2X1Y1D

2
+

8
, (A.34)

f(E2(k− q)) ∼ f(E2(k)) +
βY2(D− − E−)

4
+
β2X1Y1D

2
−

8
, (A.35)

Having obtained expressions for the eigenvalues and the Fermi distributions, we can now write down expan-

sions for the Wij :

W11 =
X1

2E1
+
Z11

4E2
1

(D+ − E+) +
U11

8E3
1

D2
+, (A.36)

W12 =
X1 +X2

4ξk
+
Z12 + Z22

8ξ2k
(D− − E−) +

U12 + U22

16ξ3k
D2

−, (A.37)

W21 =
X1 +X2

4ξk
+
Z11 + Z21

8ξ2k
(D+ − E+) +

U11 + U21

16ξ3k
D2

+, (A.38)

W22 =
X2

2E2
+
Z22

4E2
2

(D− − E−) +
U22

8E3
2

D2
−, (A.39)

where we introduce the quantities Uij = Zij − β2(Ei + Ej)
2XjYj/8. Finally, we are now in a position to

obtain a second order expansion for the full bosonic propagator Γ−1(0,q). Substituting our expansions into

Eq. (A.20) we can write the propagator in the form Eq. (A.8) with a given in Eq. (6.66) and the ci:

cx(µ, T ) = cz +
κ2

2mV

∑

k

{

1

8h

(

1− k2x
k2η

)

Z̃− − k2x
8k2η

Ũ+ − k2x
4κkη

Ũ− +
4h2z
h2

Z̃+

−
[

2h2z
h4

(

1−
(

3 +
h2

2|h⊥|2
)

k2x
k2η

)

−
η2k2y

|h⊥|2k2η

]

X+

}

, (A.40)

cy(µ, T ) = cz +
η2κ2

2mV

∑

k

{

1

8h

(

1−
η2k2y
k2η

)

Z̃− −
η2k2y
8k2η

Ũ+ −
k2y

4κkη
Ũ− +

4h2z
h2

Z̃+

−
[

2h2z
h4

(

1−
(

3 +
h2

2|h⊥|2
)

η2k2y
k2η

)

− η2k2x
|h⊥|2k2η

]

X+

}

, (A.41)

cz(µ, T ) =
1

V

∑

k

{

ζ+
16ξ2k

− υ̃+
16mξ3k

k2z +
|h⊥|2
h2

(

Z+ − U+
k2z
m

)}

, (A.42)
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where we define the quantities kη = mh/κ, ζ± = Z11+Z22±(Z12+Z21), and υ± = (U11+U22)±(U12+U21),

as well as

X+ =
X1

4E1
+

X2

4E2
− X1 +X2

4ξk
, Z± =

Z11

8E2
1

+
Z22

8E2
2

− ζ±
16ξ2k

, U± =
U11

8E3
1

+
U22

8E3
2

− υ̃±
16ξ3k

, (A.43)

Z̃+ = Z+ +
κ

kη
Z−, Z̃− =

ζ−
ξ2k

+
16|h⊥|2
h2

Z−, Ũ± =
υ±
ξ3k

+
16|h⊥|2
h2

U±. (A.44)

Having obtained all of the LG coefficients to quartic order in ∆, we are now in a position to analyze

the full time dependent GL thermodynamic potential. Thus, in the next section we first discuss the general

structure of the time dependent Ginzburg Landau (TDGL) equation and then proceed to consider specifically

the BEC limit.

A.6 Time-Dependent Ginzburg-Landau Functional

Returning to Eq. (A.3) with the expansions of the prior sections in hand, we are now in a position to derive

the time-dependent Ginzburg-Landau (TDGL) functional. Substituting the expansion Eq. (A.8) into Eq.

(A.7) and neglecting the overall constant Ω0[0] gives the momentum-space functional

F [∆] =
∑

q

(

a+ ci
q2i
2m

+ dω

)

|∆(q)|2 + 1

2

∑

q1,q2,q3

b(q1, q2, q3)∆q1∆
†
q2∆q3∆

†
q1−q2+q3 . (A.45)

We now transform to real spacetime by rewriting ∆†
q =

∑

q′ ∆
†
q′δqq′ in the quadratic term, while also

assuming that b(q1, q2, q3) ≡ b is independent of momentum, so that we obtain:

F [∆] =
∑

q,q′

(

a+ ci
q2i
2m

+ dω

)

∆†
q′∆qδqq′ +

1

2
b|∆0|4,

=
∑

q,q′

(

a+ ci
q2i
2m

+ dω

)

∆†
q′∆q

∫

dt

β

d3r

V
ei(q−q′)·r +

b

2

∫

dt

β

d3r

V
|∆(r)|4,

=

∫

dt

β

d3r

V

∑

q,q′

e−iq′·r∆†
q′∆q

(

a− ci
2m

∇2
i − id

∂

∂t

)

eiq·r +
b

2

∫

dt

β

d3r

V
|∆(r)|4,

=

∫

dt

β

d3r

V





∑

q′

e−iq′·r∆†
q′





(

a− ci
2m

∇2
i − id

∂

∂t

)

[

∑

q

eiq·r∆q

]

+
b

2

∫

dt

β

d3r

V
|∆(r)|4,

=

∫

dt

β

d3r

V
∆†(r)

(

a− ci
2m

∇2
i − id

∂

∂t

)

∆(r) +
b

2

∫

dt

β

d3r

V
|∆(r)|4. (A.46)

Integrating the Laplacian term by parts yields the standard form

F [∆] =

∫

dt

β

d3r

V

(

a|∆(r)|2 + ci
2m

|∇i∆(r)|2 + b

2
|∆(r)|4 − id∆†(r)

∂

∂t
∆(r)

)

. (A.47)
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This functional, which describes the low energy excitations of the system, depends on µ and T through the

GL coefficients. By setting δG/δ∆ = 0 we obtain the equation of motion for these excitations:

(

a+ b|∆(r)|2 − ci
2m

∇2
i − id

∂

∂t

)

∆(r) = 0. (A.48)

We note that for a static homogeneous solution this equation reduces to the familiar mean field expression

|∆0| =
√

−a/b, so that the condition for pairing is a(µ, T ) < 0.

A.7 BEC Limit

Having obtained the equation of motion for the low energy excitations of the system, we now consider

the BEC limit in which the ground state above which these excitations exist is a dilute gas of composite

bosons. In particular, by computing the effective bosonic properties of the system one can infer the critical

temperature for the superfluid transition in the limit 1/kFas → ∞.

In the BEC limit we define the bosonic “wavefunction” Ψ =
√
d∆. Substituting into Eq. (A.48) yields

the equation of motion

(

a

d
+

b

d2
|Ψ(r)|2 − ci

2md
∇2

i − i
∂

∂t

)

Ψ(r) = 0. (A.49)

This equation is precisely of the form of the Gross-Pitaevski equation for a dilute Bose gas. The standard

form of this equation, which describes a gas of bosons with mass mB, chemical potential µB, and s-wave

contact interaction strength U = 4πaB/mB, is

(

−µB + U |Ψ(r)|2 − 1

2mB
∇2 − i

∂

∂t

)

Ψ(r) = 0. (A.50)

By equating coefficients of Eqs. (A.49) and (A.50) we find the effective bosonic parameters

µB = −a
d
, U =

b

d2
, mB,i =

(

d

ci

)

m, (A.51)

where we note that the anisotropy of the spin-orbit field induces different effective masses for the three

spatial coordinates.

Having cast the equation of motion in BEC limit in the form of an interacting Bose gas, it is possible

to compute the superfluid transition temperature by applying the results of [154]. In this earlier study

no spin-orbit effects were considered, but having absorbed the spin-orbit effects into the GL coefficients,

it is straightforward to make the necessary correspondences required to compute the spin-orbit-dependent
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transition temperature in the BEC limit. This calculation will be the subject of a future publication.



Appendix B

Gauge Fields at Finite Temperature

In this appendix we discuss the replacements required to treat gauge fields in the standard finite temperature

path integral formalism. This analysis is based largely on the very helpful work [155]. In particular, we will

find that it is necessary to make the replacement x0 → ix0 for all 4-vectors in the theory. In the NJL model

this affects only the position 4-vector, xµ = (t, r), and results in the usual replacement t → it. However,

in the PNJL model, having introduced the 4-vector gauge field Aµ = (A0,0), we must also take A0 → iA0.

The need for this replacement can be observed most easily by considering the electromagnetic field at finite

temperature.

In order to treat the electromagnetic field at finite temperature we wish to transform the path integral

into the partition function by making the replacement t = −iβ, where β = 1/T is the inverse temperature:

Z =

∫

[DAµ] e
i
∫

t

0
dt′

∫
d3xLEM =⇒ Z =

∫

[DAµ] e
−

∫
β

0
dτ

∫
d3xHEM , (B.1)

where LEM = 1
2 (E2 − B2) and BEM = 1

2 (E2 + B2) are the electromagnetic field Lagrangian and Hamilto-

nian densities respectively. Thus, in addition to the replacement t → −iβ, we must make an additional

replacement(s) such that LEM → −HEM . Clearly, the simplest manner in which this can be achieved is by

ensuring E → iE and B → B.

In order to determine the necessary finite temperature replacements of the gauge field components, we

recall that the electric and magnetic field densities are given in terms of the gauge fields by

E = −∇A0 −
∂A

∂t
B = ∇×A. (B.2)

While the change of variable t = iτ in the time integral of Eq. (B.1) produces the necessary factor of i in the

second term of E , we must introduce this factor into the first term by hand. Thus, we find that the required

finite temperature gauge field replacement is (A0,A) → (iA0,A)1.

1We note that while many authors use this convention, a significant portion of the literature does not explicitly introduce
the factor of i, but rather takes the field A0 to be anti-Hermitian, effectively absorbing the i into a redefinition of the field.
While physically equivalent, this discrepancy does lead to slightly different expressions in the literature. For the sake of clarity
we will always write the factor of i explicitly and A0 will correspondingly remain a Hermitian field.
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Appendix C

Evaluation of Matsubara Sums

In this appendix we evaluate a fermionic Matsubara sum which appears frequently in the study of finite

temperature field theories, namely

S =
∑

n

ln[β(iωn + E)], (C.1)

where ωn = (2n+ 1)πT are the fermionic Matsubara frequencies, β = 1/T is the inverse temperature, and

E is a constant.

The common feature in evaluating Matsubara sums is to convert the sum into a contour integral by

identifying the summand with the residues of a complex function. Having done so, we may then exchange

the sum for an integral by means of Cauchy’s residue theorem:

∮

C
dz g(z) = 2πi

∑

n

res
z=zn

g(z), (C.2)

where {zn} are the poles of g(z), and C is a contour enclosing the given poles. Our first step, then, is

to identify a function g(z) whose poles are the fermionic Matsubara frequencies iωn (or more precisely,

iβωn, since the argument of the complex function must be dimensionless) and whose residues are the terms

appearing in Eq. (C.1). While there are any number of such functions, it is straightforward to verify that one

such function with the correct poles is simply the analytical continuation of the Fermi distribution function

f(z) =
1

ez + 1
. (C.3)

While f(z) has the correct poles, it does not have the desired residues. In fact, expanding f(z) about an
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Figure C.1: Contour for the evaluation of the Matsubara sum Eq. (C.1).

arbitrary pole zn = ωn, we obtain

f(z) =
1

ezne(z−zn) + 1
,

=
1

1− e(z−zn)
, (e−zn = −1)

=
1

1− [1 + (z − zn) + · · · ] ,

= − 1

z − zn
+ · · · (C.4)

Thus, we can simply read off

res
z=zn

f(z) = −1. (C.5)

In order to obtain a function g(z) with the desired residues, we must therefore multiply f(z) by the function

h(z) = − ln(z + βE). Thus, defining g(z) = f(z)h(z), we can rewrite Eq. (C.1) as

S =
1

2πi

∮

C
dz g(z), (C.6)

where C is any contour enclosing the poles of f(z), which lie along the imaginary z axis.

Choosing the contour C as shown in Fig. (C.1), where we have introduced a branch cut from z = −βE to

z = ∞, we note that the contribution to the integral for |z| → ∞ with Re(z) > 0 is exponentially suppressed
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by the function f(z). However, the contribution from |z| → ∞ with Re(z) < 0 is divergent. In order to

remedy this problem, we introduce a small (positive) number η and rewrite (C.6) as

S = − lim
η→0

1

2πi

∮

C
dz f(z) ln(z + βE)eηz . (C.7)

Having accounted for the portions of C at infinity, the only non-zero contribution to S comes from the

segments along the real axis. Taking z = x± iǫ along these segments, we obtain

S = − lim
η,ǫ→0

1

2πi

{∫ ∞

−βE

dxf(x+ iǫ) ln(x+ iǫ+ βE)eη(x+iǫ)

−
∫ ∞

−βE

dxf(x− iǫ) ln(x− iǫ+ βE)eη(x−iǫ)

}

,

= − lim
ǫ→0

1

2πi

∫ ∞

−βE

dxf(x)

[

ln(x+ iǫ+ βE)− ln(x− iǫ+ βE)

]

, (C.8)

Next, we evaluate the term in brackets by using polar coordinates to write

ln(a+ iǫ) = ln(
√

a2 + ǫ2eiθ) (θ = tan−1(ǫ/a)),

= ln(
√

a2 + ǫ2) + iθ. (C.9)

Due to the branch cut we restrict the values of θ to the interval [0, 2π). Thus, the bracketed term in Eq.

(C.8) becomes

ln(x+ iǫ+ βE)− ln(x − iǫ+ βE) = ln
√

(x+ βE)2 + ǫ2 + i tan−1

(

ǫ

x+ βE

)

− ln
√

(x+ βE)2 + ǫ2 − i

[

2π − tan−1

(

ǫ

x+ βE

)]

,

= −2πi+ 2 tan−1

(

ǫ

x+ βE

)

. (C.10)

Substituting this expression into Eq. (C.8) and taking ǫ→ 0 gives

S =

∫ ∞

−βE

dx

ex + 1
= ln(1 + eβE). (C.11)

One final word should be said regarding the Matsubara sum just calculated. An attentive reader may be

bothered by our apparently arbitrary introduction of the convergence factor eηz in Eq. (C.7), particularly

because once we cited its suppression of the portion of the contour for which Re(z) → −∞, we then set

η = 0 and continued as if it had never existed. Even worse, it is straightforward to show that if we had
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instead used the function F (z) = 1/(e−z +1) to pick out the desired poles in Eq. (C.6) and then introduced

the convergence factor e−ηz (a procedure which is equally valid on its face), we would have obtained the

result

S′ = ln(1 + e−βE). (C.12)

In other words, the value of the sum depends on the auxiliary function f(z) chosen and the convergence factor

it requires. Fortunately, for any physical problem, the physics itself will dictate the proper convergence factor.

One is then free to choose any auxiliary function which picks out the correct poles and ensures convergence

in the limit not taken care of by the physical convergence factor, and will then obtain the unique physical

value for the sum.



Appendix D

Determinants of Block Matrices

In this appendix we derive an expression for the determinant of a block matrix of arbitrary partitioning in

terms of its constituent blocks. This material is based on [5].

D.1 General Construction

Let S be an (nN) × (nN) complex matrix, which is partitioned into N2 blocks, each of size n× n, and let

U be a lower triangular auxiliary matrix:

S =



















S11 S12 · · · S1N

S21 S22 · · · S2N

...
...

. . .
...

SN1 SN2 · · · SNN



















U =



















I 0 · · · 0

U21 I · · · 0

...
...

. . .
...

UN1 UN2 · · · I



















. (D.1)

Forming the product SU gives

SU =



















S11 + S12U21 + · · ·S1NUN1 S12 + S13U32 + · · ·S1NUN2 · · · S1N

S21 + S22U21 + · · ·S2NUN1 S22 + S23U32 + · · ·S2NUN2 · · · S2N

...
...

. . .
...

SN1 + SN2U21 + · · ·SNNUN1 SN2 + SN3U32 + · · ·SNNUN2 · · · SNN



















. (D.2)

Now, let us assume that the blocks of U can be chosen such that the product SU is upper triangular. In this

case, we obtain (N2 −N)/2 constraint equations (the lower triangular blocks of SU = 0) with (N2 −N)/2

unknowns (the blocks of U). The N − k equations arising from the kth column of SU are

Sk+1,k + Sk+1,k+1Uk+1,k + · · ·+ Sk+1,NUNk = 0,

Sk+2,k + Sk+2,k+1Uk+1,k + · · ·+ Sk+2,NUNk = 0, (D.3)

...

SN,k + SN,k+1Uk+1,k + · · ·+ SNNUNk = 0.

124
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In order to simplify our notation, we now define the block vectors

sij =



















Sij

Si+1,j

...

SNj



















uij =



















Uij

Ui+1,j

· · ·

UNj



















σij =



















Sij

Si,j+1

· · ·

SiN



















. (D.4)

We also let S̃k represent the k × k block matrix formed from the lower-right corner of S,

S̃k =



















SN−k+1,N−k+1 SN−k+1,N−k+2 · · · SN−k+1,N

SN−k+2,N−k+1 SN−k+2,N−k+2 · · · SN−k+2,N

...
...

. . .
...

SN,N−k+1 SN,N−k+2 · · · SN,N



















. (D.5)

With these definitions, we can rewrite Eqs. (D.3) in the matrix form:

S̃N−kuk+1,k = −sk+1,k. (D.6)

Solving for the auxiliary block vector yields

uk+1,k = −S̃−1
N−ksk+1,k. (D.7)

We now define σT
ij as the block row vector of S lying to the right, and inclusive of, the position (i, j) (Eq.

(D.4)). Inspecting Eq. (D.2), we can express the kth diagonal element of SU in the form

(SU)kk = Skk + σT
k,k+1uk+1,k,

= Skk − σT
k,k+1S̃

−1
N−ksk+1,k,

= S̃N−k+1/S̃N−k, (D.8)

where S̃N−k+1/S̃N−k denotes the Schür complement of S̃N−k+1 with respect to S̃N−k [156]. Next, defining

the matrices

α
(0)
ij = Sij ,

α
(k)
ij = Sij − σT

i,N−k+1S̃
−1
k sN−k+1,j, k ≥ 1, (D.9)



126 APPENDIX D. DETERMINANTS OF BLOCK MATRICES

we can write (SU)kk = α
(N−k)
kk . Since SU is upper triangular by design, the determinant is simply the

product of the determinants of its diagonal blocks. This, together with the fact that det(U) = 1 gives

det(S) =

N
∏

k=1

det(α
(N−k)
kk ). (D.10)

In order to express det(S) in terms of the blocks of S, we must now evaluate S̃−1
k , which appears in Eq.

(D.9). Rather than approaching this problem directly, we will focus on the matrices α
(k)
ij , and seek to find

a recursive relationship between matrices of consecutive values of k. Thus, we begin by writing

α
(k+1)
ij = Sij −αT

i,N−kS̃
−1
k+1sN−k,j ,

= Sij −
(

Si,N−k σT
i,N−k+1

)







SN−k,N−k σT
N−k,N−k+1

sN−k+1,N−k S̃k







−1





SN−k,j

sN−k+1,j






, (D.11)

where we have partitioned the block vectors and matrix into sections of block length 1 and N . Next, we

evaluate the inverse matrix above by making use of the Banachiewic identity [157, 158]







A B

C D







−1

=







(A−BD−1C)−1 −(A−BD−1C)−1BD−1

−D−1C(A−BD−1C)−1 D−1
[

I+C(A−BD−1C)−1BD−1
]






. (D.12)

Identifying this expression with the partitioned form of S̃−1
k in Eq. (D.11), the Schür complement with

respect to S̃k becomes

A−BD−1C = SN−k,N−k − σT
N−k,N−k+1S̃

−1
k sN−k+1,N−k

= α
(k)
N−k,N−k. (D.13)

Thus, evaluating the inverse matrix in Eq. (D.11), we have

α
(k+1)
ij = Sij −

(

Si,N−k σT
i,N−k+1

)

×







(α
(k)
N−k,N−k)

−1 −(α
(k)
N−k,N−k)

−1σT
N−k,N−k+1S̃

−1
k

−S̃−1
k sN−k+1,N−k(α

(k)
N−k,N−k)

−1 S̃−1
k

[

I + sN−k+1,N−k(α
(k)
N−k,N−k)

−1σT
N−k,N−k+1S̃

−1
k

]







×







SN−k,j

sN−k+1,j






,
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= Sij −







(

Si,N−k − σT
i,N−k+1S̃

−1
k sN−k+1,N−k

)

(α
(k)
N−k,N−k)

−1

σT
i,N−k+1S̃

−1
k −

(

Si,N−k − σT
i,N−k+1S̃

−1
k sN−k+1,N−k

)

(α
(k)
N−k,N−k)

−1σT
N−k,N−k+1S̃

−1
k







×







SN−k,j

sN−k+1,j






,

= Sij −







α
(k)
i,N−k(α

(k)
N−k,N−k)

−1

σT
i,N−k+1S̃

−1
k −α

(k)
i,N−k(α

(k)
N−k,N−k)

−1σT
N−k,N−k+1S̃

−1
k













SN−k,j

sN−k+1,j






,

= Sij −α
(k)
i,N−k(α

(k)
N−k,N−k)

−1SN−k,j − σT
i,N−k+1S̃

−1
k sN−k+1,j

+α
(k)
i,N−k(α

(k)
N−k,N−k)

−1σT
N−k,N−k+1S̃

−1
k sN−k+1,j ,

=
(

Sij − σT
i,N−k+1S̃

−1
k sN−k+1,j

)

−α
(k)
i,N−k(α

(k)
N−k,N−k)

−1
(

SN−k,j − σT
N−k,N−k+1S̃

−1
k sN−k+1,j

)

,

= α
(k)
ij −α

(k)
i,N−k(α

(k)
N−k,N−k)

−1α
(k)
N−k,j . (D.14)

We can therefore express the α
(k)
ij in the recursive form:

α
(0)
ij = Sij ,

α
(k+1)
ij = α

(k)
ij −α

(k)
i,N−k(α

(k)
N−k,N−k)

−1α
(k)
N−k,j , k ≥ 1. (D.15)

Given this recursive relationship, the matrix α
(0)
ij can be read off directly from S, and all higher order α

(k)
ij

can be calculated iteratively. Finally, the determinant may be computed via Eq. (D.10).

D.2 Simple Cases

Having derived an expression for the determinant of an N × N complex block matrix, it will be useful to

examine the result for a few specific values of N . We choose to consider N = 2 and N = 3, as the first is a

well-known result and the second gives a clear picture of what sort of objects our result actually involves.

Larger values of N quickly become cumbersome to write down, but the procedure for their calculation will

be made clear. Lastly, we present a “real world” application of our result by calculating the determinant of

a 48× 48 matrix, which arises in the study of quark matter.

D.2.1 2× 2 Block Matrices

In the case N = 2, Eq. (D.10) reduces to

det(S) = det(α
(1)
11 ) det(α

(0)
22 ), (D.16)
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while Eqs. (D.15) become

α
(0)
ij = Sij α

(1)
ij = Sij − Si2S

−1
22 S21. (D.17)

Thus, we obtain the result

det(S) = det(S11 − S12S
−1
22 S21) det(S22). (D.18)

It is instructive to combine the two determinants in this expression and rewrite it in the alternate forms

det(S) = det(S11S22 − S12S
−1
22 S21S22),

= det(S22S11 − S22S12S
−1
22 S21). (D.19)

In these forms, it is clear that when either S12 or S21 commute with S22 our expression reduces to:

S12S22 = S22S12 : det(S) = det(S22S11 − S12S21),

S21S22 = S21S21 : det(S) = det(S11S22 − S12S21). (D.20)

Alternatively, for anti-commuting matrices, which often arise in the study of fermionic systems, the signs in

(D.20) become positive.

D.2.2 3× 3 Block Matrices

In the case N = 3, Eq. (D.10) reduces to

det(S) = det(α
(2)
11 ) det(α

(1)
22 ) det(α

(0)
33 ), (D.21)

while Eqs. (D.15) become

α
(0)
ij = Sij , α

(1)
ij = Sij − Si3S

−1
33 S31,

α
(2)
ij =

(

Sij − Si3S
−1
33 S3j

)

−
(

Si2 − Si3S
−1
33 S32

) (

S22 − S23S
−1
33 S32

)−1 (
S2j − S23S

−1
33 S3j

)

. (D.22)
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Thus, we obtain the result

det(S) = det

[

(

S11 − S13S
−1
33 S31

)

−
(

S12 − S13S
−1
33 S32

) (

S22 − S23S
−1
33 S32

)−1 (
S21 − S23S

−1
33 S31

)

]

× det
(

S22 − S23S
−1
33 S32

)

det(S33). (D.23)

Analogously to the N = 2 case, the commutation of certain blocks (e.g., S33 and S3j , α
(1)
12 with α

(1)
22 ) allows

this expression to be simplified.

D.3 Eigenvalues of the two-flavor NJL model

Having considered the general form of the determinant of 2 × 2 and 3× 3 block matrices, we now consider

an application of our result by calculating the eigenenergies of quark matter in the two flavor Nambu–Jona-

Lasinio model [15, 16, 21]. In this model, the energies are the roots of the equation detS = 0, where

S =







/k + µγ0 −M ∆γ5τ2λ2

−∆∗γ5τ2λ2 /k − µγ0 −M






, (D.24)

and where M is the effective quark mass, µ is the chemical potential, ∆ is the color superconducting pairing

gap, /k ≡ Eγ0 − γ · k, where k = (k1, k2, k3)
T is the quark momentum and the γν (ν = 0...3) are the 4 × 4

Dirac matrices:

γ0 =







I 0

0 −I






, γi =







0 σi

−σi 0






, (D.25)

with σ = (σx, σy , σz)
T representing the vector of Pauli matrices:

σx =







0 1

1 0






, σy =







0 −i

i 0






, σz =







1 0

0 −1






. (D.26)

In addition, γ5 ≡ iγ0γ1γ2γ3, τ2 is the second Pauli matrix in flavor space, and λ2 is the second Gell-Mann

matrix in color space:

λ2 =













0 −i 0

i 0 0

0 0 0













. (D.27)
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Thus, while we have written Eq. (D.24) in 2× 2 block form, each block is itself a 24× 24 matrix (2 (flavor)

× 3 (color) × 4 (Dirac)).

Before constructing the determinant from Eq. (D.10), we must choose how we wish to partition S. We

could, for instance, choose to begin with the 2× 2 block form shown in Eq. (D.24), in which case the α(k)

would be 24× 24 matrices, which we would partition further, repeating the process until we have eliminated

all indices. While this choice has the advantage of requiring the construction of only a single α(k) (α(1)) for

the first step (Eq. (D.16)), the price is that correspondingly more steps are required to finally obtain detS.

As a middle ground, balancing the number of α(k)’s which must be constructed in each step with the

number of steps, we will partition S into a 6 × 6 block matrix, with each block of size 8 × 8. We achieve

this partitioning by writing out the color indices explicitly, while leaving the Dirac and flavor indices intact.

Thus, the non-zero blocks of S become

S11 = S22 = S33 = /k + µγ0 −M,

S44 = S55 = S66 = /k − µγ0 −M,

S24 = −S15 = i∆γ5τ2, (D.28)

S42 = −S51 = i∆∗γ5τ2.

We now must construct α(1) · · ·α(5). From Eq. (D.15), we see that α
(k+1)
ij will be equal to α

(k)
ij unless

both α
(k)
i,N−k and α

(k)
N−k,j are non-zero. As a result, since Si6 = S6j = 0 for i, j 6= 6, we find

α
(1)
ij = Sij , 1 ≤ i, j ≤ 5. (D.29)

Next, we note that S15 and S51 are the only non-zero blocks with a row or column index of 5. Thus, the

only α
(2)
ij which differs from α

(1)
ij is

α
(2)
11 = S11 − S15S

−1
55 S51. (D.30)

A straightforward application of the Banachiewicz identity (Eq. (D.12)) yields S−1
55 :

S−1
55 =

/k − µγ0 +M

(E − µ)2 − E2
k

, (D.31)
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where Ek ≡
√
k2 +M2. Substituting this expression into Eq. (D.30) yields

α
(2)
11 = /k + µγ0 −M − (−i∆γ5τ2)

[

/k − µγ0 +M

(E − µ)2 − E2
k

]

(−i∆γ5τ2),

= /k + µγ0 −M − |∆|2 /k − µγ0 −M

(E − µ)2 − E2
k

, (D.32)

where we have used the fact that τ22 = I and γ5γ
µ = −γµγ5. Meanwhile, the rest of the α

(2)
ij = α

(1)
ij = Sij ,

so that

α
(2)
ij =















/k + µγ0 −M − |∆|2 /k−µγ0−M
(E−µ)2−E2

k

if i, j = 1,

Sij else (1 ≤ i, j ≤ 4).

(D.33)

Constructing α(3), we note that α
(2)
24 and S42 are the only non-zero blocks in the fourth row or column of

α(2). As a result, we find

α
(3)
22 = α

(2)
22 −α

(2)
24

(

α
(2)
44

)−1

α
(2)
42 ,

= S11 − (−S15)(S55)
−1(−S51),

= S11 − S15S
−1
55 S51,

= α
(2)
11 . (D.34)

The rest of the α
(3)
ij are equal to α

(2)
ij so we find

α
(3)
ij =















/k + µγ0 −M − |∆|2 /k−µγ0−M
(E−µ)2−E2

k

if i, j = 1 or i, j = 2,

Sij else (1 ≤ i, j ≤ 3).

(D.35)

Since α
(3)
33 = S33 is the only non-zero block in the third row/column, we have

α
(4)
ij = α

(3)
ij , 1 ≤ i, j ≤ 2. (D.36)

Finally, since α
(4)
12 = α

(4)
21 = S12 = S21 = 0, we find that the sole block of α(5) is

α
(5)
11 = α

(4)
11 = α

(3)
11 ,

= /k + µγ0 −M − |∆|2 /k − µγ0 −M

(E − µ)2 − E2
k

. (D.37)
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Having constructed the necessary determinants, Eq. (D.10) gives

det(S) = det(α
(5)
11 ) det(α

(4)
22 ) det(α

(3)
33 ) det(α

(2)
44 ) det(α

(1)
55 ) det(α

(0)
66 ),

= det
f,D

(

/k + µγ0 −M − |∆|2 /k − µγ0 −M

(E − µ)2 − E2
k

)2

det
f,D

(/k + µγ0 −M) det
f,D

(/k − µγ0 −M)3,(D.38)

where the subscript of f,D on the determinant indicates that the remaining determinant is to be taken over

flavor and Dirac indices.

Thus, we have eliminated 6 of the original 48 indices, and have only the Dirac and flavor indices remaining.

In fact, the flavor indices are now trivial, having vanished upon squaring the matrix τ2 (see Eq. (D.32)), so

that

det(S) = det
D

(

/k + µγ0 −M − |∆|2 /k − µγ0 −M

(E − µ)2 − E2
k

)4

det
D

(/k + µγ0 −M)2 det
D

(/k − µγ0 −M)6.(D.39)

Computing det(/k ± µγ0 −M) yields

det(/k ± µγ0 −M) = det







(E ± µ)−M −σ · k

σ · k −(E ± µ)−M






,

=
[

−(E ± µ)2 +M2 + (σ · k)2
]2
,

=
[

(E ± µ)2 − E2
k

]2
,

= [E + (Ek ± µ)]2 [E − (Ek ∓ µ)]2 , (D.40)

where we have used the fact that (σ · k)2 = k2.

Finally, computing the remaining determinant from Eq. (D.39), we find

det

(

/k + µγ0 −M − |∆|2 /k − µγ0 −M

(E − µ)2 − E2
k

)

=

{

−
[

(E + µ)− |∆|2 E − µ

(E − µ)2 − E2
k

]2

+

[

1− |∆|2
(E − µ)2 − E2

k

]2

E2
k

}2

,

=
[E2 − (Ek + µ)2 − |∆|2]2[E2 − (Ek − µ)2 − |∆|2]2

(E − Ek − µ)2(E + Ek − µ)2
. (D.41)
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Inserting Eq. (D.40) and (D.41) into Eq. (D.39), we obtain the result

det(S) =
[

E +
√

(Ek + µ)2 + |∆|2
]8 [

E +
√

(Ek − µ)2 + |∆|2
]8 [

E −
√

(Ek + µ)2 + |∆|2
]8

×
[

E −
√

(Ek − µ)2 + |∆|2
]8

(E + Ek + µ)4(E − Ek − µ)4

×(E + Ek − µ)4(E − Ek + µ)4. (D.42)

Finally, then, we can read off the eigenenergies, which are the absolute values of the roots of det(S) = 0:

E1 = |Ek + µ| (multiplicity 8),

E2 = |Ek − µ| (multiplicity 8),

E3 =
√

(Ek + µ)2 + |∆|2 (multiplicity 16), (D.43)

E4 =
√

(Ek − µ)2 + |∆|2 (multiplicity 16).

Indeed, these are the correct eigenenergies, as reported previously by Rossner [21].



Appendix E

NJL Model Code

The code below, written in C, minimizes the thermodynamic potential of the three flavor Nambu–Jona-
Lasinio model, including the axial anomaly, with massless bare quarks. This system was considered by
Abuki et al. and is a precursor to the model studied in Chapters 3 and 4. The algorithms employed are part
of the GNU Scientific Library (GSL), release gsl-1.15 [159]. Note that some of the spacing and line-breaks
have been modified in order to comply with formatting requirements.

// F i l e : NJLAAmin. c
// Author : Ph i l i p D. Powell
// Date Created : November 8 , 2011
// Date Last Modif ied : November 8 , 2011

////////////////////////////////////////////////////////////////////////
// //
// This program i s des igned to minimize the thermodynamic p o t e n t i a l //
// f o r the Nambu−−Jona−Las in i o (NJL) model i n c l ud i ng the e f f e c t s o f //
// the QCD ax i a l anomaly . For a g iven chemica l p o t e n t i a l (mu) and //
// temperature (T) i t minimizes the thermodynamic p o t e n t i a l with //
// r e s p e c t to the c h i r a l condensate ( sigma ) and diquark condensate //
// (d ) . The code a l l ows the chemica l p o t e n t i a l and temperature to //
// be var ied , and t h e r e f o r e to compute the equ i l i b r ium va lue s o f //
// the condensates at any po int in the phase diagram (mu,T) . //
// //
////////////////////////////////////////////////////////////////////////

#inc lude <s t d l i b . h>
#inc lude <s t d i o . h>
#inc lude ” g s l / g s l v e c t o r . h”
#inc lude ” g s l / g s l i n t e g r a t i o n . h”
#inc lude ” g s l / g s l mu l t im in . h”

// Def ine d imens i on l e s s coup l ing s ( s c a l e d by Lambda)
double G = 1 . 9 2 6 ;
double K = 12 . 3 6 ;
double Kp = 12 .36 ∗ 4 . 2 ;
double H = 1 . 7 4 ;
double Lambda = 602 . 3 ; // 3−momentum cu t o f f in un i t s o f MeV

double my f ( const g s l v e c t o r ∗v , vo id ∗params ) ;
double integrand1 ( double x , vo id ∗ params ) ;
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s t r u c t rparams
{

double a ; //used f o r s t o r i n g sigma
double b ; //used f o r s t o r i n g d
double d ; //used f o r s t o r i n g mu
double f ; //used f o r s t o r i n g t

} ;

s t r u c t mut
{

double T;
double MU;

} ;

i n t main ( )
{

FILE ∗ f i l e ;
f i l e = fopen (” n j l−data ” ,”wt ” ) ; // open f i l e to s t o r e r e s u l t s

s i z e t i t e r = 0 ;
i n t s ta tus , j , k ;
double s i z e ;

double mu min = 0 .0 / Lambda ;
double mu max = 600 .0 / Lambda ;
double T min = 1 .0 / Lambda ;
double T max = 600 .0 / Lambda ;

double temp = 0 . 5 ; // i n i t i a l i z e temperature
double mu1 = 0 .0 / Lambda ; // i n i t i a l i z e chemica l p o t e n t i a l

s t r u c t mut Mut = {temp ,mu1} ;

const g s l mu l t im in fmin imiz e r type ∗T =
gs l mult imin fmin imizer nms implex2 ;

g s l mu l t im in fmin imiz e r ∗ s = NULL;
g s l v e c t o r ∗ ss , ∗x ;
g s l mu l t im in func t i o n my func ;

my func . n = 2 ;
my func . f = my f ;
my func . params = &Mut ;

s = g s l mu l t im in fm in im i z e r a l l o c (T, 2 ) ;

// vec to r o f unknown v a r i a b l e s ( sigma , d )
x = g s l v e c t o r a l l o c ( 2 ) ;
s s = g s l v e c t o r a l l o c ( 2 ) ;
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f o r ( k = 0 ; k < 601 ; k++) {
f o r ( j = 0 ; j < 155 ; j++)
{

i t e r = 0 ;

Mut .MU = ( 1 .0 ∗ k ) / Lambda ; // s e t the chemica l p o t e n t i a l
Mut .T = ( 1 .0 + 1 .0 ∗ j ) / Lambda ; // s e t the temperature

g s l v e c t o r s e t a l l ( ss , 0 . 0 0 1 ) ;

// Check to s e e i f mu and T are in the d e s i r e d range
i f ( (Mut .MU >= mu min ) && (Mut .MU <= mu max)

&& (Mut .T >= T min ) && (Mut .T <= T max) )
{

i f ( Mut .T ∗ Lambda < 180)
{

// i n i t i a l gues s f o r minimizer
g s l v e c t o r s e t (x , 0 , −0.047);
g s l v e c t o r s e t (x , 1 , 0 . 0 0 ) ;

}
e l s e
{

g s l v e c t o r s e t (x , 0 , 0 . 0 ) ;
g s l v e c t o r s e t (x , 1 , 0 . 0 ) ;

}

g s l mu l t im in fm in im i z e r s e t ( s , &my func , x , s s ) ;

do
{

i t e r ++;
s t a tu s = g s l mu l t im i n fm i n im i z e r i t e r a t e ( s ) ;

i f ( s t a tu s )
break ;

s i z e = g s l mu l t im in fm in im i z e r s i z e ( s ) ;
s t a tu s = g s l mu l t im i n t e s t s i z e ( s i z e , 1e−7);

i f ( s t a tu s == GSL SUCCESS)
f p r i n t f ( f i l e , ”%.1 f %.1 f %.6 f %.6 f %.9 f \n” ,

Mut .MU∗Lambda , Mut .T∗Lambda ,
−g s l v e c t o r g e t ( s−>x , 0 ) / 0 . 0 6 3565 ,
f abs ( g s l v e c t o r g e t ( s−>x , 1 ) ) / 0 . 0 5 4 7 6 0 , s−>f v a l )

}
whi le ( s t a tu s == GSL CONTINUE && i t e r < 4000 ) ;

i f ( s t a tu s != GSL SUCCESS)
f p r i n t f ( f i l e ,”%.1 f %.1 f %.6 f %.6 f %.9 f \n” ,

Mut .MU∗Lambda , Mut .T∗Lambda , 7 .777777 , 7 .777777 ,
7 . 777777777 ) ;
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e l s e
f p r i n t f ( f i l e , ”%.1 f %.1 f %.6 f %.6 f %.9 f \n” ,

Mut .MU∗Lambda , Mut .T∗Lambda , 9 .999999 , 9 .999999 ,
9 . 999999999 ) ;

}
}

g s l v e c t o r f r e e ( x ) ;
g s l v e c t o r f r e e ( s s ) ;
g s l mu l t im in fm in im i z e r f r e e ( s ) ;

f c l o s e ( f i l e ) ;

r e turn 0 ;
}

// Returns the va lue o f Omega
double my f ( const g s l v e c t o r ∗v , vo id ∗params )
{

// i n i t i a l i z e v a r i a b l e s
double V = 0 . 0 ;
double Omega = 0 . 0 ;

// abso lu te e r r o r l im i t f o r i n t e g r a l s
double abs e r r o r = 1e−10;

const s t r u c t mut Mut = ∗( s t r u c t mut ∗) params ;
double mu = Mut .MU;
double t = Mut .T;

const double Sigma = g s l v e c t o r g e t (v , 0 ) ;
const double D = g s l v e c t o r g e t (v , 1 ) ;

g s l i n t e g r a t i o n wo r k spa c e ∗w1 =
g s l i n t e g r a t i o n wo r k s p a c e a l l o c ( 1 0 0 0 ) ;

double r e s u l t 1 , e r r o r 1 ;

s t r u c t rparams Vars = {Sigma , D, mu, t } ;

g s l f u n c t i o n F ;
F . func t i on = &integrand1 ;
F . params = &Vars ;

g s l i n t e g r a t i o n q a g s (&F, 0 , 1 , 0 , abser ror , 0 . 0 ,w1,& r e s u l t 1 ,& e r r o r 1 ) ;

V = 6 ∗ G ∗ pow(Sigma , 2 ) + 3 ∗ H ∗ pow(D, 2 ) − 4 ∗ K ∗ pow(Sigma , 3 )
− 3 ∗ Kp ∗ Sigma ∗ pow(D, 2 ) / 2 ;

double DiracSea = 3 .0 ∗ ( 3 . 0 + pow(mu, 4 ) ) / ( 4 . 0 ∗ pow(M PI , 2 ) ) ;
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Omega = V − t ∗ r e s u l t 1 / pow(M PI , 2 ) + DiracSea ;

g s l i n t e g r a t i o n wo r k s p a c e f r e e (w1 ) ;

r e turn Omega ;
}

double integrand1 ( double x , vo id ∗ params )
{

double ∗p = ( double ∗) params ;
double sigma = p [ 0 ] ;
double d = p [ 1 ] ;
double mu = p [ 2 ] ;
double t = p [ 3 ] ;

double M = − 4 ∗ (G − K ∗ sigma / 2) ∗ sigma + Kp ∗ pow(d , 2 ) / 4 ;
double d e l t a = − 2 ∗ (H − Kp ∗ sigma / 4) ∗ d ;
double Ek = sq r t ( pow(x , 2 ) + pow(M, 2 ) ) ;

double E1 = sq r t ( pow(Ek + mu, 2 ) + pow( de l ta , 2 ) ) ;
double E2 = sq r t ( pow(Ek − mu, 2 ) + pow( de l ta , 2 ) ) ;
double E3 = sq r t ( pow(Ek + mu, 2 ) + 4 ∗ pow( de l ta , 2 ) ) ;
double E4 = sq r t ( pow(Ek − mu, 2 ) + 4 ∗ pow( de l ta , 2 ) ) ;

double logsum = 8 ∗ l o g (1 + pow(M E, −E1/ t ) )
+ 8 ∗ l o g (1 + pow(M E, −E2/ t ) )
+ log (1 + pow(M E, −E3/ t ) )
+ log (1 + pow(M E, −E4/ t ) ) ;

double nonlogsum = 1 .0/ (2∗ t ) ∗ (8 ∗ E1 + 8 ∗ E2 + E3 + E4 ) ;

r e turn pow(x , 2 ) ∗ ( logsum + nonlogsum ) ;
}



Appendix F

Gap and Number Equations Code

The code below, written in C, solves the gap and number equation(s) for the system considered in Chapter 6
and Appendix A. The algorithms employed are part of the GNU Scientific Library (GSL), release gsl-
1.15 [159]. Note that some of the spacing and line-breaks have been modified in order to comply with
formatting requirements.

// F i l e : CASolve . c
// Author : Ph i l i p D. Powell
// Date Created : Apr i l 1 , 2013
// Date Last Modif ied : Apr i l 4 , 2013

////////////////////////////////////////////////////////////////////////
// //
// This program i s des igned to s o l v e the gap and number equat ion ( s ) //
// f o r a system o f a mixture o f two s p e c i e s o f spin−o r b i t coupled //
// fermions , with spin−o r b i t coupl ing o f a Rashba−Dresse lhaus form . //
// The program takes as inputs the temperature (T) , Rashba and //
// Dresse lhaus coupl ing s t r eng th s (vR and vD) , Zeeman f i e l d ( hz ) , //
// and populat ion imbalance (P = ( n up − n down )/ ( n up + n down ) ) , //
// and outputs the equ i l i b r ium chemica l p o t e n t i a l s (mu up and //
// mu down) and BCS pa i r i n g gap ( Delta ) . //
// //
////////////////////////////////////////////////////////////////////////

#inc lude <s t d l i b . h>
#inc lude <g s l / gs l monte vegas . h>
#inc lude <g s l / g s l v e c t o r . h>
#inc lude <g s l / g s l mu l t i r o o t s . h>
#inc lude <g s l / g s l monte mi s e r . h>

// Integrands f o r gap and number equat ions
double gap in t ( double ∗k , s i z e t dim , void ∗params ) ;
double num int 1 ( double ∗k , s i z e t dim , void ∗params ) ;
double num int 2 ( double ∗k , s i z e t dim , void ∗params ) ;

// Gap and number equat ions
i n t gapNnums ( const g s l v e c t o r ∗ x , vo id ∗params , g s l v e c t o r ∗ f ) ;

// Aux i l i a r y func t i on to pr in t i t e r a t i o n data
i n t p r i n t s t a t e ( s i z e t i t e r , g s l m u l t i r o o t f s o l v e r ∗ s ) ;
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s t r u c t Params
{

double T; // temperature
double vD; // Dresse lhaus coupl ing c o e f f i c i e n t
double vR ; // Rashba coupl ing c o e f f i c i e n t
double hz ; // Zeeman f i e l d
double mu up ; // sp in up chemica l p o t e n t i a l
double mu down ; // sp in down chemica l p o t e n t i a l
double Delta ; // BCS gap

} ;

s t r u c t rparams
{

double T;
double vD;
double vR ;
double hz ;
double as ; // s−wave s c a t t e r i n g length
double P; // populat ion inba lance

} ;

// Spec i fy i n t e g r a t i o n method f o r 3−momentum i n t e g r a l s
const char integrat ion method = ’m’ ;

i n t main ( )
{

FILE ∗ f i l e ;
f i l e = fopen (”CAdata” ,”wt ” ) ; // open f i l e to wr i t e r e s u l t s

const g s l mu l t i r o o t f s o l v e r t y p e ∗T;
g s l mu l t i r o o t f s o l v e r ∗ s ;

// vec to r f o r gap & number equat ion ( s )
g s l v e c t o r ∗F = g s l v e c t o r a l l o c ( 2 ) ;

// g s l v e c t o r ∗F = g s l v e c t o r a l l o c ( 3 ) ;

i n t s t a tu s ;
s i z e t i , i t e r = 0 ;

double myDelta = 0 . 0 ;
double myMu = 0 . 0 ;

const s i z e t n = 2 ; // #vars in gap & number equat ions
// const s i z e t n = 3 ;

double Temp = 2 . 3 5 ;
double vD = 0 . 0 ;
double vR = 0 . 0 ;
double hz = 0 . 0 ;
double as = 1 . 0 / ( 2 . 0 ) ;
double P = 0 . 0 ;
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s t r u c t rparams p = {Temp, vD, vR, hz , as , P} ;
g s l mu l t i r o o t f u n c t i o n f = {&gapNnums , n , &p } ;

// i n i t i a l gues s ( Delta , mu up , mu down)
double x i n i t [ 2 ] = {0 .7 , −3 .8} ;

// double x i n i t [ 3 ] = {1.2 ,−0.5 ,−0.5} ;

g s l v e c t o r ∗x = g s l v e c t o r a l l o c (n ) ;

g s l v e c t o r s e t ( x , 0 , x i n i t [ 0 ] ) ;
g s l v e c t o r s e t ( x , 1 , x i n i t [ 1 ] ) ;

// g s l v e c t o r s e t ( x , 2 , x i n i t [ 2 ] ) ;

T = g s l mu l t i r o o t f s o l v e r h y b r i d s ;
s = g s l m u l t i r o o t f s o l v e r a l l o c (T, 2 ) ;

// s = g s l m u l t i r o o t f s o l v e r a l l o c (T, 3 ) ;
g s l mu l t i r o o t f s o l v e r s e t ( s , &f , x ) ;
p r i n t s t a t e ( i t e r , s ) ;

do
{

i t e r ++;
s t a tu s = g s l m u l t i r o o t f s o l v e r i t e r a t e ( s ) ;

p r i n t s t a t e ( i t e r , s ) ;

// stop s o l v e r r out ine when gap and number equat ion ( s )
// are l e s s than 5e−3
i f ( s t a tu s ) // check i f s o l v e r i s s tuck

break ;
s t a tu s = g s l mu l t i r o o t t e s t r e s i d u a l ( s−>f , 5e−3);

}
whi le ( s t a tu s == GSL CONTINUE && i t e r < 5 0 ) ;

p r i n t f (” s t a tu s = %s\n” , g s l s t r e r r o r ( s t a tu s ) ) ;

g s l m u l t i r o o t f s o l v e r f r e e ( s ) ;
g s l v e c t o r f r e e ( x ) ;

r e turn 0 ;
}

double gap in t ( double ∗k , s i z e t dim , void ∗params )
{
// map i n t e g r a t i o n from (− i n f t y . . i n f t y ) ( in p) to (0 , 1 ) ( in k )
// t h i s i s nec e s sa ry because the GSL Monte Carlo i n t e g r a t i o n
// r ou t i n e s r e qu i r e a f i n i t e domain o f i n t e g r a t i o n

double px , py , pz ;
px = k [0 ]/(1−k [ 0 ] ) ;
py = k [1 ]/(1−k [ 1 ] ) ;
pz = k [2 ]/(1−k [ 2 ] ) ;
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// Jacobian f o r the i n t e g r a t i o n va r i a b l e change
double ja cob ian = 1 .0 / (pow(1−k [ 0 ] , 2 ) ∗ pow(1−k [ 1 ] , 2 )

∗ pow(1−k [ 2 ] , 2 ) ) ;

double integrand = 0 . 0 ;

double ∗p = ( double ∗) params ;
double T = p [ 0 ] ;
double vD = p [ 1 ] ;
double vR = p [ 2 ] ;
double hz = p [ 3 ] ;
double mu up = p [ 4 ] ;
double mu down = p [ 4 ] ;

// double mu down = p [ 5 ] ;
double Delta = p [ 6 ] ;

// d e f i n e a ux i l i a r y q u a n t i t i e s which make the equat ions managable
double v p lu s = vD + vR;
double v minus = vD − vR;

double mu plus = (mu up + mu down) / 2 ;
double mu minus = (mu up − mu down) / 2 ;

double Kt plus = pow(px , 2 ) + pow(py , 2 ) + pow(pz , 2 ) − mu plus ;
double Kt minus = − ( hz + mu minus ) ;

double hp = 2 ∗ pow( pow( v p lu s ∗ px , 2 ) + pow( v minus ∗ py , 2 ) , 0 . 5 ) ;

double Y plus = pow( Kt plus , 2 ) + pow(Delta , 2 ) ;
double Y minus = pow(Kt minus , 2 ) + pow(hp , 2 ) ;

double E1 = pow( Y plus + Y minus + 2 ∗ pow( Y plus ∗ Y minus
− pow(Delta , 2 ) ∗ pow(hp , 2 ) , 0 . 5 ) , 0 . 5 ) ;

double E2 = pow( Y plus + Y minus − 2 ∗ pow( Y plus ∗ Y minus
− pow(Delta , 2 ) ∗ pow(hp , 2 ) , 0 . 5 ) , 0 . 5 ) ;

double X1 = tanh (E1/(2∗T) ) ;
double X2 = tanh (E2/(2∗T) ) ;

// t h i s cond i t i on avo ids ”nan” va lue s r e s u l t i n g near 0/0 d i v i s i o n
i f ( Y plus ∗ Y minus − pow(Delta , 2 ) ∗ pow(hp , 2 ) > 1e−4)

integrand = 1 .0 / (pow(px , 2 ) + pow(py , 2 ) + pow(pz , 2 ) )
− X1/(2∗E1) − X2/(2∗E2) − pow(Kt minus , 2 ) /
pow( Y plus ∗ Y minus − pow( Delta , 2 )

∗ pow(hp , 2 ) , 0 . 5 ) ∗ (X1/(2∗E1) − X2/(2∗E2 ) ) ;
e l s e

integrand = 1 .0 / (pow(px , 2 ) + pow(py , 2 ) + pow(pz , 2 ) )
− X1/(2∗E1) − X2/(2∗E2 ) ;

r e turn integrand ∗ j a cob ian ;
}
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double num int 1 ( double ∗k , s i z e t dim , void ∗params )
{

double px , py , pz ;
px = k [0 ]/(1−k [ 0 ] ) ;
py = k [1 ]/(1−k [ 1 ] ) ;
pz = k [2 ]/(1−k [ 2 ] ) ;

double ja cob ian = 1 .0 / (pow(1−k [ 0 ] , 2 ) ∗ pow(1−k [ 1 ] , 2 )
∗ pow(1−k [ 2 ] , 2 ) ) ;

double integrand = 0 . 0 ;

double ∗p = ( double ∗) params ;
double T = p [ 0 ] ;
double vD = p [ 1 ] ;
double vR = p [ 2 ] ;
double hz = p [ 3 ] ;
double mu up = p [ 4 ] ;
double mu down = p [ 4 ] ;

// double mu down = p [ 5 ] ;
double Delta = p [ 6 ] ;

double v p lu s = vD + vR;
double v minus = vD − vR;

double mu plus = (mu up + mu down) / 2 ;
double mu minus = (mu up − mu down) / 2 ;

double Kt plus = pow(px , 2 ) + pow(py , 2 ) + pow(pz , 2 ) − mu plus ;
double Kt minus = − ( hz + mu minus ) ;

double Kt up = Kt plus + Kt minus ;
double Kt down = Kt plus − Kt minus ;

double hp = 2 ∗ pow( pow( v p lu s ∗ px , 2 ) + pow( v minus ∗ py , 2 ) , 0 . 5 ) ;
double Y plus = pow( Kt plus , 2 ) + pow(Delta , 2 ) ;
double Y minus = pow(Kt minus , 2 ) + pow(hp , 2 ) ;

double E1 = pow( Y plus + Y minus + 2 ∗ pow( Y plus ∗ Y minus
− pow(Delta , 2 ) ∗ pow(hp , 2 ) , 0 . 5 ) , 0 . 5 ) ;

double E2 = pow( Y plus + Y minus − 2 ∗ pow( Y plus ∗ Y minus
− pow(Delta , 2 ) ∗ pow(hp , 2 ) , 0 . 5 ) , 0 . 5 ) ;

double X1 = tanh (E1/(2∗T) ) ;
double X2 = tanh (E2/(2∗T) ) ;

i f ( Y plus ∗ Y minus − pow(Delta , 2 ) ∗ pow(hp , 2 ) > 1e−4)
integrand = 1 − Kt up ∗ (X1/(2∗E1) + X2/(2∗E2) )

− (Kt up ∗ Y minus + Kt minus ∗ Y plus )
/ pow( Y plus ∗ Y minus − pow( Delta , 2 )
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∗ pow(hp , 2 ) , 0 . 5 ) ∗ (X1/(2∗E1) − X2/(2∗E2 ) ) ;
e l s e

integrand = 1 − Kt up ∗ (X1/(2∗E1) + X2/(2∗E2 ) ) ;

r e turn integrand ∗ j a cob ian ;
}

double num int 2 ( double ∗k , s i z e t dim , void ∗params )
{

double px , py , pz ;
px = k [0 ]/(1−k [ 0 ] ) ;
py = k [1 ]/(1−k [ 1 ] ) ;
pz = k [2 ]/(1−k [ 2 ] ) ;

double ja cob ian = 1 .0 / (pow(1−k [ 0 ] , 2 ) ∗ pow(1−k [ 1 ] , 2 )
∗ pow(1−k [ 2 ] , 2 ) ) ;

double integrand = 0 . 0 ;

double ∗p = ( double ∗) params ;
double T = p [ 0 ] ;
double vD = p [ 1 ] ;
double vR = p [ 2 ] ;
double hz = p [ 3 ] ;
double mu up = p [ 4 ] ;
double mu down = p [ 4 ] ;

// double mu down = p [ 5 ] ;
double Delta = p [ 6 ] ;

double v p lu s = vD + vR;
double v minus = vD − vR;

double mu plus = (mu up + mu down) / 2 ;
double mu minus = (mu up − mu down) / 2 ;

double Kt plus = pow(px , 2 ) + pow(py , 2 ) + pow(pz , 2 ) − mu plus ;
double Kt minus = − ( hz + mu minus ) ;

double Kt up = Kt plus + Kt minus ;
double Kt down = Kt plus − Kt minus ;

double hp = 2 ∗ pow( pow( v p lu s ∗ px , 2 ) + pow( v minus ∗ py , 2 ) , 0 . 5 ) ;

double Y plus = pow( Kt plus , 2 ) + pow(Delta , 2 ) ;
double Y minus = pow(Kt minus , 2 ) + pow(hp , 2 ) ;

double E1 = pow( Y plus + Y minus + 2 ∗ pow( Y plus ∗ Y minus
− pow(Delta , 2 ) ∗ pow(hp , 2 ) , 0 . 5 ) , 0 . 5 ) ;

double E2 = pow( Y plus + Y minus − 2 ∗ pow( Y plus ∗ Y minus
− pow(Delta , 2 ) ∗ pow(hp , 2 ) , 0 . 5 ) , 0 . 5 ) ;

double X1 = tanh (E1/(2∗T) ) ;
double X2 = tanh (E2/(2∗T) ) ;
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i f ( Y plus ∗ Y minus − pow(Delta , 2 ) ∗ pow(hp , 2 ) > 1e−4)
integrand = 1 − Kt down ∗ (X1/(2∗E1) + X2/(2∗E2) )

− (Kt up ∗ Y minus − Kt minus ∗ Y plus )
/ pow( Y plus ∗ Y minus − pow( Delta , 2 )
∗ pow(hp , 2 ) , 0 . 5 ) ∗ (X1/(2∗E1) − X2/(2∗E2 ) ) ;

e l s e
integrand = 1 − Kt down ∗ (X1/(2∗E1) + X2/(2∗E2 ) ) ;

r e turn integrand ∗ j a cob ian ;
}

i n t gapNnums ( const g s l v e c t o r ∗ x , vo id ∗params , g s l v e c t o r ∗ f )
{

double ∗p = ( double ∗) params ;
double Mu down ;

const double Delta = g s l v e c t o r g e t (x , 0 ) ;
const double mu up = g s l v e c t o r g e t (x , 1 ) ;
const double mu down = g s l v e c t o r g e t (x , 1 ) ;

// const double mu down = g s l v e c t o r g e t (x , 2 ) ;

double T = p [ 0 ] ;
double vD = p [ 1 ] ;
double vR = p [ 2 ] ;
double hz = p [ 3 ] ;
double as = p [ 4 ] ;
double P = p [ 5 ] ;

// v a r i a b l e s f o r s t o r i n g i n t e g r a l va lue s and e r r o r s
double res1 , err1 , res2 , e r r 2 ;
double res3 , e r r 3 ;

// lower and upper l im i t s o f i n t e g r a t i o n in {px , py , pz}
double x l [ 3 ] = { 0 . 0 , 0 . 0 , 0 . 0 } ;
double xu [ 3 ] = { 1 . 0 , 1 . 0 , 1 . 0 } ;

double gap equation , num equation 1 ;
// double num equation 2 ;

const g s l r ng type ∗T1 , ∗T2 ;
// const g s l r ng type ∗T3 ;

g s l r n g ∗ r1 , ∗ r2 ;
g s l r n g ∗ r3 ;

s t r u c t Params parameters = {T, vD, vR, hz , mu up , mu down , Delta } ;

g s l monte func t i on F1 = { &gap int , 3 , &parameters } ;
g s l monte func t i on F2 = { &num int 1 , 3 , &parameters } ;

// g s l monte func t i on F3 = { &num int 2 , 3 , &parameters } ;
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// number o f func t i on c a l l s in Monte−Carlo i n t e g r a t i o n procedure
s i z e t c a l l s = 100000 ;

g s l r ng env s e tup ( ) ;

T1 = g s l r n g d e f a u l t ;
r1 = g s l r n g a l l o c (T1 ) ;

T2 = g s l r n g d e f a u l t ;
r2 = g s l r n g a l l o c (T1 ) ;

// T3 = g s l r n g d e f a u l t ;
// r3 = g s l r n g a l l o c (T1 ) ;

g s l mon t e v e g a s s t a t e ∗ s1 = g s l mon t e v e g a s a l l o c ( 3 ) ;
g s l mon t e v e g a s s t a t e ∗ s2 = g s l mon t e v e g a s a l l o c ( 3 ) ;

// g s l mon t e v e g a s s t a t e ∗ s3 = g s l mon t e v e g a s a l l o c ( 3 ) ;

g s l mon t e m i s e r s t a t e ∗S1 = g s l mon t e m i s e r a l l o c ( 3 ) ;
g s l mon t e m i s e r s t a t e ∗S2 = g s l mon t e m i s e r a l l o c ( 3 ) ;

// g s l mon t e m i s e r s t a t e ∗S3 = g s l mon t e m i s e r a l l o c ( 3 ) ;

i f ( integrat ion method == ’v ’ )
{

do
{

g s l mon t e v e g a s i n t e g r a t e
(&F1 , xl , xu , 3 , c a l l s , r1 , s1 , &res1 , &er r 1 ) ;

}
whi le ( f abs ( g s l mon t e v e g a s ch i s q ( s1 ) − 1 . 0 ) > 0 . 5 ) ;

do
{

g s l mon t e v e g a s i n t e g r a t e
(&F2 , xl , xu , 3 , c a l l s , r2 , s2 , &res2 , &er r 2 ) ;

}
whi le ( f abs ( g s l mon t e v e g a s ch i s q ( s2 ) − 1 . 0 ) > 0 . 5 ) ;

/∗
do
{

g s l mon t e v e g a s i n t e g r a t e
(&F3 , xl , xu , 3 , c a l l s , r3 , s3 , &res3 , &er r 3 ) ;

}
whi le ( f abs ( g s l mon t e v e g a s ch i s q ( s3 ) − 1 . 0 ) > 0 . 5 ) ;

∗/
}
e l s e
{

g s l mon t e m i s e r i n t e g r a t e
(&F1 , xl , xu , 3 , c a l l s , r1 , S1 , &res1 , &er r 1 ) ;
g s l mon t e m i s e r i n t e g r a t e
(&F2 , xl , xu , 3 , c a l l s , r2 , S2 , &res2 , &er r 2 ) ;

// g s l mon t e m i s e r i n t e g r a t e
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// (&F3 , xl , xu , 3 , c a l l s , r3 , S3 , &res3 , &er r 3 ) ;
// p r i n t f (” gap in t = %f +/− %f \n” , res1 , e r r 1 ) ;
// p r i n t f (” num int = %f +/− %f \n” , res2 , e r r 2 ) ;

}

g s l mon t e v e g a s f r e e ( s1 ) ;
g s l mon t e v e g a s f r e e ( s2 ) ;

// g s l mon t e v e g a s f r e e ( s3 ) ;

g s l mon t e m i s e r f r e e ( S1 ) ;
g s l mon t e m i s e r f r e e ( S2 ) ;

// g s l mon t e m i s e r f r e e ( S3 ) ;

g s l r n g f r e e ( r1 ) ;
g s l r n g f r e e ( r2 ) ;

// g s l r n g f r e e ( r3 ) ;

gap equat ion = pow(M PI , 2 ) / (4∗ as ) − r e s 1 ;
num equation 1 = M PI ∗ (1 + P) / 3 − r e s 2 ;

g s l v e c t o r s e t ( f , 0 , gap equat ion ) ;
g s l v e c t o r s e t ( f , 1 , num equation 1 ) ;

// g s l v e c t o r s e t ( f , 2 , num equation 2 ) ;

r e turn 0 ;
}

i n t p r i n t s t a t e ( s i z e t i t e r , g s l m u l t i r o o t f s o l v e r ∗ s )
{
// p r i n t f (” i t e r = %3u Delta = % .3 f mu up = % .3 f mu down = %.3 f

f 1 = %.3 f f 2 = %.3 f f 3 = %.3 f \n” , i t e r ,
g s l v e c t o r g e t ( s−>x , 0 ) , g s l v e c t o r g e t ( s−>x , 1 ) ,
g s l v e c t o r g e t ( s−>x , 2 ) , g s l v e c t o r g e t ( s−>f , 0 ) ,
g s l v e c t o r g e t ( s−>f , 1 ) , g s l v e c t o r g e t ( s−>f , 2 ) ) ;

p r i n t f (” i t e r = %3u Delta = % .6 f mu = % .6 f f 1 = %.6 f
f 2 = %.6 f \n” , i t e r , g s l v e c t o r g e t ( s−>x , 0 ) ,
g s l v e c t o r g e t ( s−>x , 1 ) , g s l v e c t o r g e t ( s−>f , 0 ) ,
g s l v e c t o r g e t ( s−>f , 1 ) ) ;

}



Appendix G

Evaluation of Matsubara sums in
Γ−1(q)

In this appendix we explicitly evaluate the Matsubara sums appearing in the bosonic propagator Γ−1(qn,q),
which is given in Eq. (A.19). In order to facilitate a comparison with [62] we use the notation K̃α(k) in
place of ξ̃kα, which is used in Chapter 6.

G.1 Mean Field Eigenvalues

Before evaluating the Matsubara sums of Eq. (A.19), we will find it useful to compute the eigenvalues of
the ungapped system, which are the poles of G[0] (Eq. (A.1)), or alternatively, the roots of the equation
det(G−1[0]) = 0. Due to the block diagonal structure of G−1[0], the determinant is straight-forward to
compute and is simply

det
(

G−1[0]
)

= − 1

a(k)a(−k) , (G.1)

where a(k) is defined below Eq. (A.12). Thus, two of the eigenvalues are the roots of the equation

0 =
1

a(k)
,

= [iωn + K̃↑(k)][iωn + K̃↓(k)]− |h⊥(k)|2,

=

[

iωn +
K̃↑(k) + K̃↓(k)

2

]2

−
[

K̃↑(k) + K̃↓(k)

2

]2

+ K̃↑(k)K̃↓(k)− |h⊥(k)|2,

= [iωn + K̃+(k)]
2 − K̃−(k)

2 − |h⊥(k)|2,
=

[

iωn + K̃+(k) +
√

Y−(k)
] [

iωn + K̃+(k)−
√

Y−(k)
]

, (G.2)

where we have defined K̃− = (K̃↑ − K̃↓)/2 and Y− = K̃2
− + |h⊥|2. Thus, defining the eigenvalues

E1(k) = K̃+(k) +
√

Y−(k), (G.3)

E2(k) = K̃+(k)−
√

Y−(k), (G.4)

we can express a(k) in the form

a(k) =
1

[iωn + E1(k)][iωn + E2(k)]
. (G.5)

The remaining two eigenvalues, which solve the equation 1/a(−k) = 0 are simply E3,4 = −E1,2 so that we
can write

a(−k) = 1

[iωn − E1(k)][iωn − E2(k)]
. (G.6)
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G.2 Term 1

With the above expression for a(k), we can now write the first term in Eq. (A.19) as

term 1 =
∑

k

a(k)a(q − k)[iωn + K̃↑(k)][iωn − iqn − K̃↓(k− q)],

=
∑

k

iωn + K̃↑(k)

iωn + E1(k)

1

iωn + E2(k)

iωn − iqn − K̃↓(k− q)

iωn − iqn − E1(k − q)

1

iωn − iqn − E2(k− q)
,

=
∑

k

(

1 +
K̃↑(k)− E1(k)

iωn + E1(k)

)

1

iωn + E2(k)

(

1 +
E1(k− q)− K̃↓(k− q)

iωn − iqn − E1(k− q)

)

× 1

iωn − iqn − E2(k− q)
,

=
∑

k

(

1 +
K̃−(k)−

√

Y−(k)

iωn + E1(k)

)

1

iωn + E2(k)

(

1 +
K̃−(k− q) +

√

Y−(k− q)

iωn − iqn − E1(k− q)

)

× 1

iωn − iqn − E2(k− q)
. (G.7)

Expanding this expression yields

term 1 =
∑

k

1

iωn + E2(k)

1

iωn − iqn − E2(k− q)

+
[

K̃−(k)−
√

Y−(k)
]

∑

k

1

iωn + E1(k)

1

iωn + E2(k)

1

iωn − iqn − E2(k− q)

+
[

K̃−(k− q) +
√

Y−(k− q)
]

∑

k

1

iωn + E2(k)

1

iωn − iqn − E1(k− q)

1

iωn − iqn − E2(k− q)

+
[

K̃−(k)−
√

Y−(k)
] [

K̃−(k − q) +
√

Y−(k− q)
]

×
∑

k

1

iωn + E1(k)

1

iωn + E2(k)

1

iωn − iqn − E1(k− q)

1

iωn − iqn − E2(k− q)
(G.8)

Next, we will perform partial fraction decomposition on each of the four terms above, after which we will
evaluate the sums directly.

The first component of term 1 is

term 11 =
∑

k

1

iωn + E2(k)

1

iωn − iqn − E2(k− q)

=
1

iqn + E2(k) + E2(k− q)

∑

k

[

1

iωn − iqn − E2(k− q)
− 1

iωn + E2(k)

]

,

=
1

iqn + E2(k) + E2(k− q)

[

∑

k′

1

iωn′ − E2(k− q)
−
∑

k

1

iωn + E2(k)

]

,

=
β

iqn + E2(k) + E2(k− q)

[

f(E2(k− q))− 1

2
− f(−E2(k)) +

1

2

]

,

= −β 1− f(E2(k)) − f(E2(k− q))

iqn + E2(k) + E2(k− q)
, (G.9)

where we have suppressed the sum over k for notational simplicity. In addition, in evaluating the second
sum above we have shifted the summand by defining ωn′ = ωn − qn. This is permissible, as the difference
between a fermionic and bosonic frequency is another fermionic frequency. The second component of term
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1 is

term 12 =
[

K̃−(k) −
√

Y−(k)
]

∑

k

1

iωn + E1(k)

1

iωn + E2(k)

1

iωn − iqn − E2(k− q)
,

=
[

K̃−(k) −
√

Y−(k)
]

∑

k

[

1

E1(k)− E2(k)

1

iqn + E1(k) + E2(k− q)

1

iωn + E1(k)

− 1

E1(k)− E2(k)

1

iqn + E2(k) + E2(k − q)

1

iωn + E2(k)

+
1

iqn + E1(k) + E2(k− q)

1

iqn + E2(k) + E2(k− q)

1

iωn − iqn − E2(k− q)

]

,

= β
[

K̃−(k) −
√

Y−(k)
]

[ 1
2 − f(E1(k))

2
√

Y−(k)

1

iqn + E1(k) + E2(k− q)

−
1
2 − f(E2(k))

2
√

Y−(k)

1

iqn + E2(k) + E2(k− q)

+
f(E2(k− q))− 1

2

2
√

Y−(k)

(

1

iqn + E2(k) + E2(k− q)
− 1

iqn + E1(k) + E2(k− q)

)]

,

= β
K̃−(k) −

√

Y−(k)

2
√

Y−(k)

[

1− f(E1(k)− f(E2(k− q)

iqn + E1(k) + E2(k − q)
− 1− f(E2(k)) − f(E2(k− q))

iqn + E2(k) + E2(k− q)

]

.(G.10)

The third component of term 1 is

term 13 =
[

K̃−(k− q) +
√

Y−(k− q)
]

×
∑

k

1

iωn + E2(k)

1

iωn − iqn − E1(k− q)

1

iωn − iqn − E2(k− q)
,

=
[

K̃−(k− q) +
√

Y−(k− q)
]

×
∑

k

[

1

iqn + E2(k) + E1(k− q)

1

iqn + E2(k) + E2(k − q)

1

iωn + E2(k)

+
1

E1(k− q)− E2(k− q)

1

iqn + E2(k) + E1(k− q)

1

iωn − iqn − E1(k− q)

− 1

E1(k− q)− E2(k− q)

1

iqn + E2(k) + E2(k− q)

1

iωn − iqn − E2(k− q)

]

= β
[

K̃−(k− q) +
√

Y−(k− q)
]

×
[ 1

2 − f(E2(k))

2
√

Y−(k− q)

(

1

iqn + E2(k) + E2(k− q)
− 1

iqn + E2(k) + E1(k− q)

)

+
f(E1(k− q))− 1

2

2
√

Y−(k− q)

1

iqn + E2(k) + E1(k − q)

−f(E2(k− q))− 1
2

2
√

Y−(k− q)

1

iqn + E2(k) + E2(k − q)

]

,

= β
K̃−(k− q) +

√

Y−(k− q)

2
√

Y−(k − q)

[

− 1− f(E2(k))− f(E1(k− q))

iqn + E2(k) + E1(k − q)

+
1− f(E2(k)) − f(E2(k− q))

iqn + E2(k) + E2(k− q)

]

. (G.11)
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The fourth component of term 1 is

term 14 =
[

K̃−(k)−
√

Y−(k)
] [

K̃−(k− q) +
√

Y−(k− q)
]

×
∑

k

1

iωn + E1(k)

1

iωn + E2(k)

1

iωn − iqn − E1(k− q)

1

iωn − iqn − E2(k− q)

= β
[

K̃−(k)−
√

Y−(k)
] [

K̃−(k− q) +
√

Y−(k− q)
]

×
[

1

2
√

Y−(k)

1
2 − f(E2(k))

2
√

Y−(k− q)

(

1

iqn + E2(k) + E2(k− q)
− 1

iqn + E2(k) + E1(k − q)

)

+
f(E1(k− q))− 1

2

2
√

Y−(k− q)

1

2
√

Y−(k)

(

1

iqn + E2(k) + E1(k− q)
− 1

iqn + E1(k) + E1(k− q)

)

−
1
2 − f(E1(k))

2
√

Y−(k)

1

2
√

Y−(k− q)

(

1

iqn + E1(k) + E2(k− q)
− 1

iqn + E1(k) + E1(k− q)

)

−f(E2(k− q))− 1
2

2
√

Y−(k− q)

1

2
√

Y−(k)

(

1

iqn + E2(k) + E2(k− q)
− 1

iqn + E1(k) + E2(k− q)

)]

,

= β
K̃−(k)−

√

Y−(k)

2
√

Y−(k)

K̃−(k− q) +
√

Y−(k − q)

2
√

Y−(k− q)

×
[

1− f(E1(k))− f(E1(k− q))

iqn + E1(k) + E1(k− q)
− 1− f(E1(k))− f(E2(k− q))

iqn + E1(k) + E2(k− q)

−1− f(E2(k)) − f(E1(k − q))

iqn + E2(k) + E1(k− q)
+

1− f(E2(k)) − f(E2(k − q))

iqn + E2(k) + E2(k− q)

]

. (G.12)

Next, in order to simplify our notation we define the quantities

u2k =
1

2

(

1− K̃−(k)
√

Y−(k)

)

, v2k =
1

2

(

1 +
K̃−(k)
√

Y−(k)

)

. (G.13)

along with the quantities

Wij =
1− f(Ei(k)) − f(Ej(k− q))

iqn + Ei(k) + Ej(k− q)
. (G.14)

In terms of these quantities, combining the four components of term 1, we obtain

term 1 = −βW22 − βu2k (W12 −W22) + βv2k−q (W22 −W21) = −βu2kv2k−q (W11 −W12 −W21 +W22) ,

= −β
[

u2kv
2
k−qW11 + u2k(1 − v2k−q)W12 + (1− u2k)v

2
k−qW21 + (1 − u2k)(1 − v2k−q)W22

]

.,

= −β
[

u2kv
2
k−qW11 + u2ku

2
k−qW12 + v2kv

2
k−qW21 + u2k−qv

2
kW22

]

. (G.15)

G.3 Term 2

Looking at Eq. (A.19), we note that the second term may be obtained from the first by simply taking ↑↔↓,
which implies K̃− → −K̃− and therefore u2k ↔ v2k. Thus, we have

term 2 = −β
[

u2k−qv
2
kW11 + v2kv

2
k−qW12 + u2ku

2
k−qW21 + u2kv

2
k−qW22

]

. (G.16)
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G.4 Terms 3 and 4

The third and fourth terms in Eq. (A.19) are

terms 3&4 = − [h∗⊥(k)h⊥(k− q) + h∗⊥(k− q)h⊥(k)]
∑

k

a(k)a(q − k). (G.17)

This sum is precisely the sum evaluated in term 14 (Eq. (G.12)), so we obtain

term 3&4 = −β h
∗
⊥(k)h⊥(k− q) + h∗⊥(k − q)h⊥(k)

4
√

Y−(k)Y−(k− q)
(W11 −W12 −W21 +W22) . (G.18)

From the definition of uk and vk we see that

ukvk =

√

√

Y−(k) − K̃−(k)

2
√

Y−(k)

√

Y−(k) + K̃−(k)

2
√

Y−(k)
=

√

Y−(k) − K̃−(k)2

4
√

Y−(k)
=

|h⊥(k)|
2
√

Y−(k)
. (G.19)

Thus, writing h⊥(k) = |h⊥(k)|eiθk , we can rewrite terms 3&4 as

terms 3&4 = −2βukvkuk−qvk−q cos (θk − θk−q) (W11 −W12 −W21 +W22) . (G.20)

G.5 Constructing Γ−1(q)

Substituting the expressions for terms 1-4 into Eq. (A.19), the full expression for Γ−1(q) becomes

Γ−1(q) = −1

g
− 1

2V

∑

k

{[

u2kv
2
k−q + u2k−qv

2
k + 2ukvkuk−qvk−q cos(θk − θk−q)

]

(W11 +W22)

+

[

u2ku
2
k−q + v2kv

2
k−q − 2ukvkuk−qvk−q cos(θk − θk−q)

]

(W12 +W21)

]}

. (G.21)

We can simplify this expression slightly by noting that the two bracketed terms sum to one (a fact which
follows from the condition |uk|2 + |vk|2 = 1) so that by defining the function

g(k, q) = u2kv
2
k−q + u2k−qv

2
k + 2ukvkuk−qvk−q cos(θk − θk−q), (G.22)

we can express Γ−1(q) in the form

Γ−1(q) = −1

g
− 1

2V

∑

k

[

W12 +W21 + g(k, q) (W11 −W12 −W21 +W22)

]

. (G.23)

Finally, replacing the coupling strength g with the s-wave scattering length via Eq. (6.56) we obtain the
renormalized expression

Γ−1(q) = − m

4πas
+

1

2V

∑

k

{

1

ε
−
[

W12 +W21 + g(k, q) (W11 −W12 −W21 +W22)

]}

. (G.24)



Appendix H

Green’s Functions for Spin-Orbit
Coupled Fermions
In this appendix we construct the Green’s functions relevant to Chapter 6 and Appendix A, whose Hamil-
tonian is H = H0 +Hso +Hint, where

H0 =
∑

kα

ξkαψ
†
kαψkα, (H.1)

Hso = −
∑

kαβ

h(k) · σαβψ
†
kαψkβ , (H.2)

Hint =
g

V

∑

k1···k4

ψ†
k1↑ψ

†
k2↓ψk3↓ψk4↑δk1+k2−k3−k4

, (H.3)

where α, β are spin indices, h is a spin-orbit field, ξkα = k2/2mα − µα, g < 0 corresponds to an attractive
two-body contact interaction, and V is the volume of the system. In order to obtain the Green’s functions,
we will first compute the equations of motion for the operators ψkα, from which the equations of motion for
the Green’s functions will be derived.

H.1 Equation of motion for ψkσ(t)

The equation of motion for the operator ψkσ(t) is given by the standard expression

i
∂ψkσ(t)

∂t
= [ψkσ(t), H(t)]. (H.4)

For simplicity, in the following calculations we suppress the explicit time dependence of the operators when
no confusion will arise. Unless otherwise noted, all operators are evaluated at the same time t. Taking the
commutator of ψk,σ with the free-particle Hamiltonian, we obtain

[ψkσ, H0] =
∑

k′α

ξk′α[ψkσ, ψ
†
k′αψk′α],

=
∑

k′α

ξk′α

(

[ψkσ, ψ
†
k′α]ψk′α + ψ†

k′α[ψkσ, ψk′α]
)

,

=
∑

k′α

ξk′α

[(

{ψkσ, ψ
†
k′α} − 2ψ†

k′αψkσ

)

ψk′α + ψ†
k′α

(

{ψkσ, ψk′α} − 2ψk′ψkσ

)]

,

=
∑

k′α

ξk′α

[

δkk′δσαψk′α − 2ψ†
k′α{ψkσ, ψk′α}

]

,

= ξkσψkσ. (H.5)

Similarly, taking the commutator with the spin-orbit Hamiltonian yields

[ψkσ, Hso] = −
∑

k′αβ

hi(k
′)σi,αβ [ψkσ, ψ

†
k′αψk′β ],

= −
∑

k′αβ

hi(k
′)σi,αβ

(

[ψkσ, ψ
†
k′α]ψk′β + ψ†

k′α[ψkσ, ψk′β ]
)

,
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= −
∑

k′αβ

hi(k
′)σi,αβ

[(

δkk′δσα − 2ψ†
k′αψkσ

)

ψk′β + 2ψ†
k′αψkσψk′β

]

,

= −
∑

β

h(k) · σσβψkβ. (H.6)

Finally, the commutator with the two-body interaction gives

[ψkσ, Hint] =
g

V

∑

k1···k4

[ψkσ, ψ
†
k1↑ψ

†
k2↓ψk3↓ψk4↑]δk1+k2−k3−k4

,

=
g

V

∑

k1···k4

(

[ψkσ, ψ
†
k1↑ψ

†
k2↓]ψk3↓ψk4↑ + ψ†

k1↑ψ
†
k2↓[ψkσ, ψk3↓ψk4↑]

)

δk1+k2−k3−k4
,

=
g

V

∑

k1···k4

(

[ψkσ, ψ
†
k1↑]ψ

†
k2↓ + ψ†

k1↑[ψkσ, ψ
†
k2↓]

)

ψk3↓ψk4↑δk1+k2−k3−k4
,

=
g

V

∑

k1···k4

[(

δkk1
δσ↑ − 2ψ†

k1↑ψkσ

)

ψ†
k2↓ + ψ†

k1↑

(

δkk2
δσ↓ − 2ψ†

k2↓ψkσ

)]

×ψk3↓ψk4↑δk1+k2−k3−k4
,

=
g

V

∑

k1···k4

(

δkk1
δσ↑ψ

†
k2↓ + δkk2

δσ↓ψ
†
k1↑ − 2ψ†

k1↑{ψkσ, ψ
†
k2↓}

)

ψk3↓ψk4↑δk1+k2−k3−k4
,

=
g

V

∑

k1···k4

(

δkk1
δσ↑ψ

†
k2↓ − δkk2

δσ↓ψ
†
k1↑

)

ψk3↓ψk4↑δk1+k2−k3−k4
,

= γσ
g

V

∑

k2···k4

ψ†
k2,−σψk3↓ψk4↑δk+k2−k3−k4

, (H.7)

where we have introduced the quantity γ↑,↓ = ±1 in the last line. Combining the three commutators, after
a trivial relabeling of indices we obtain the equation of motion

i
∂ψkσ

∂t
= ξkσψkσ −

∑

α

h(k) · σσαψkα + γσ
g

V

∑

k1···k3

ψ†
k1,−σψk2↓ψk3↑δk+k1−k2−k3

. (H.8)

In order to proceed we next group the first two terms of Eq. (H.8) and rewrite the third term so that
we obtain

i
∂ψkσ

∂t
=
∑

α

[ξkσδσα − h(k) · σσα]ψkα + γσ
g

V

∑

k1

ψ†
k1,−σ

∑

k2

ψk2↓ψk+k1−k2,↑. (H.9)

Next, we introduce the momentum-space pairing amplitude

∆q =
g

V

∑

k

〈ψk↓ψq−k↑〉 , (H.10)

and approximate the interaction term in Eq. (H.8) by replacing the sum over k2 by its thermal expectation
value. Thus, after making the trivial replacement k1 → −k′ in the final sum we obtain

i
∂ψkσ

∂t
=
∑

α

[ξkσδσα − h(k) · σσα]ψkα + γσ
∑

k′

∆k−k′ψ†
−k′,−σ. (H.11)

We see that the spin-orbit field couples particles of different species, allowing for transitions between the
two, while the two-body interaction couples particles of momentum and spin (k, σ) and holes with (-k,−σ).
In order to obtain a closed set of equations we must therefore obtain the equations of motion for the hole
operators (ψ†

kσ as well. Taking the Hermitian conjugate of Eq. (H.11), taking (k, σ) → (−k,−σ), and
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making the replacement k′ → −k′ in the last sum yields

i
∂ψ†

−kσ

∂t
= −

∑

α

[ξ−kσδσα − h∗(−k) · σσα]ψ
†
−kα − γσ

∑

k′

∆∗
k′−kψk′,−σ. (H.12)

Defining the Nambu-Gor’kov spinor Ψk =
(

ψk↑ ψk↓ ψ†
−k↑ ψ†

−k↓

)T

, by combining Eqs. (H.11) and

(H.12) we can write the equation of motion of Ψk(t) in the matrix form

i
∂Ψk(t)

∂t
=
∑

k′

Mkk′Ψk′(t), (H.13)

where we define the matrix Mkk′ :

Mkk′ =









(ξk↑ − hz)δkk′ −h⊥(k)δkk′ 0 ∆k−k′

−h∗⊥(k)δkk′ (ξk↓ + hz)δkk′ −∆k−k′ 0
0 −∆∗

k′−k −(ξ−k↑ − hz)δkk′ h∗⊥(−k)δkk′

∆∗
k′−k 0 h⊥(−k)δkk′ −(ξ−k↓ + hz)δkk′









, (H.14)

and where h⊥ = hx − ihy. Having obtained the equations of motion for the single particle operators ψkσ

and ψ†
kσ, we now move on to consider the single-particle Green’s functions.

H.2 Equation of motion for Gαβ(k; t1, t2)

The momentum-space single-particle Green’s functions are defined by

Gαβ(k; t1, t2) = −i
〈

T
(

ψkα(t1)ψ
†
kβ(t2)

)〉

, (H.15)

where T is the fermionic time-ordering operator, which we define as

T (AB) =

{

AB if tA > tB

−BA if tA < tB
. (H.16)

In terms of the Nambu-Gor’kov spinor defined in the prior section, we also define the matrix Green’s function

Gij(k; t1, t2) = −i
〈

T
(

Ψki(t1)Ψ
†
kj(t2)

)〉

, (H.17)

where i, j = 1...4 are Nambu-Gor’kov indices. In matrix form, this Green’s function can be written as

G(k; t1, t2) = −i
〈

T











ψk↑(t1)ψ
†
k↑(t2) ψk↑(t1)ψ

†
k↓(t2) ψk↑(t1)ψ−k↑(t2) ψk↑(t1)ψ−k↓(t2)

ψk↓(t1)ψ
†
k↑(t2) ψk↓(t1)ψ

†
k↓(t2) ψk↓(t1)ψ−k↑(t2) ψk↓(t1)ψ−k↓(t2)

ψ†
−k↑(t1)ψ

†
k↑(t2) ψ†

−k↑(t1)ψ
†
k↓(t2) ψ†

−k↑(t1)ψ−k↑(t2) ψ†
−k↑(t1)ψ−k↓(t2)

ψ†
−k↓(t1)ψ

†
k↑(t2) ψ†

−k↓(t1)ψ
†
k↓(t2) ψ†

−k↓(t1)ψ−k↑(t2) ψ†
−k↓(t1)ψ−k↓(t2)











〉

, (H.18)

In order to obtain the equation of motion for G(k; t1, t2) we write out the action of the time-ordering operator
explicitly and differentiate Eq. (H.17) with respect to t1:

i
∂

∂t1
Gij(k; t1, t2) =

∂

∂t1

[

θ(t1 − t2)
〈

Ψki(t1)Ψ
†
kj(t2)

〉

− θ(t2 − t1)
〈

Ψ†
kj(t2)Ψki(t1)

〉]

,

= δ(t1 − t2)
〈{

Ψki(t1),Ψ
†
kj(t2)

}〉

− i

〈

T

(

i
∂Ψki(t1)

∂t1
Ψ†

kj(t2)

)〉

,

= δ(t1 − t2)− i

〈

T

(

i
∂Ψki(t1)

∂t1
Ψ†

kj(t2)

)〉

. (H.19)
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Substituting Eq. (H.13) into this expression gives

i
∂

∂t1
Gij(k; t1, t2) = δ(t1 − t2)− i

〈

T

(

∑

k′l

Mkk′,ilΨk′l(t1)Ψ
†
kj(t2)

)〉

,

= δ(t1 − t2) +
∑

k′l

Mkk′,il(−i)
〈

T
(

Ψk′l(t1)Ψ
†
kj(t2)

)〉

. (H.20)

If we work in the mean field level, assuming a spatially homogeneous pairing gap, then Mkk′ ≡ Mkδkk′ and
Eq. (H.20) simplifies to

i
∂

∂t1
G0,ij(k; t1, t2) = δ(t1 − t2) +

∑

l

Mk,ilG0,lj(k; t1, t2), (H.21)

or, in matrix form:

i
∂

∂t1
G0(k; t1, t2) = δ(t1 − t2)I+MkG0(k; t1, t2), (H.22)

where I is the identity matrix in Nambu-Gor’kov space. Having obtained the equation of motion for
G0(k; t1, t2), we are now in a position to evaluate the single-particle Green’s functions.

H.3 Single-Particle Green’s Functions

In order to solve Eq. (H.22) we define the frequency space matrix Green’s function G(ω,k), where

G(k; t1, t2) =

∫

dω

2π
e−iω(t1−t2)G(ω,k). (H.23)

Thus, Fourier transforming Eq. (H.22), we obtain

G0(ω,k) = (ωI−Mk)
−1
. (H.24)

Before writing out this expression explicitly, we define the quantities ξ̃k↑ = ξk↑ − hz and ξ̃k↓ = ξk↓ + hz
and note that for the Rashba-Dresselhaus coupling with which we are concerned, h⊥(−k) = −h⊥(k). Thus,
combining Eqs. (H.14) and (H.24) we find

G
−1
0 (ω,k) =









ω − ξ̃k↑ h⊥(k) 0 −∆0

h∗⊥(k) ω − ξ̃k↓ ∆0 0

0 ∆∗
0 ω + ξ̃k↑ h∗⊥(k)

−∆∗
0 0 h⊥(k) ω + ξ̃k↓









. (H.25)

This expression can be inverted by applying the Banachiewic identity, Eq. (D.12):1

(

A B

C D

)−1

=

(

(

A−BD−1C
)−1 (

C−DB−1A
)−1

(

B−AC−1D
)−1 (

D−CA−1B
)−1

)

, (H.26)

where A, B, C, and D are the 2× 2 constituent blocks of G−1
0 (ω,k). Using the notation k = (ω,k) we can

express these blocks as

A(k) = −D†(−k) =
(

ω − ξ̃k↑ h⊥(k)

h∗⊥(k) ω − ξ̃k↓

)

, B = C† =

(

0 −∆0

∆0 0

)

. (H.27)

1Note that the form of the Banachiewic identity used here is slightly different than that of Eq. (D.12). This is due to the
fact that the latter form is valid as long as D is invertible, while the simpler form used here requires all of the constituent
blocks be invertible. It is straightforward to verify, however, that our results will be independent of this requirement.
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In order to write the elements of G0(ω,k) explicitly we define the quantities ξ̃k± = (ξ̃k↑ ± ξ̃k↓)/2, Y+ =

ξ̃2k+ + |∆0|2, and Y− = ξ̃2k− + |h⊥(k)|2. Inverting Eq. (H.25) then yields

det[G−1
0 (ω,k)]G0(ω,k)11 = ω

[

(ω + ξ̃k+)
2 − Y− − |∆0|2

]

−
[

(ω + ξ̃k+)
2 − Y− + |∆0|2

]

ξ̃k↓,

det[G−1
0 (ω,k)]G0(ω,k)12 = −h⊥(k)

[

(ω + ξ̃k+)
2 − Y− − |∆0|2

]

,

det[G−1
0 (ω,k)]G0(ω,k)13 = 2∆0h⊥(k)ξ̃k↓,

det[G−1
0 (ω,k)]G0(ω,k)14 = ∆0

[

(ω + ξ̃k−)
2 − Y+ − |h⊥(k)|2

]

,

det[G−1
0 (ω,k)]G0(ω,k)21 = −h∗⊥(k)

[

(ω + ξ̃k+)
2 − Y− − |∆0|2

]

,

det[G−1
0 (ω,k)]G0(ω,k)22 = ω

[

(ω + ξ̃k+)
2 − Y− − |∆0|2

]

−
[

(ω + ξ̃k+)
2 − Y− + |∆0|2

]

ξ̃k↑,

det[G−1
0 (ω,k)]G0(ω,k)23 = −∆0

[

(ω − ξ̃k−)
2 − Y+ − |h⊥(k)|2

]

,

det[G−1
0 (ω,k)]G0(ω,k)24 = −2∆0h

∗
⊥(k)ξ̃k↑,

det[G−1
0 (ω,k)]G0(ω,k)31 = 2∆∗

0h
∗
⊥(k)ξ̃k↓,

det[G−1
0 (ω,k)]G0(ω,k)32 = −∆∗

0

[

(ω − ξ̃k−)
2 − Y+ − |h⊥(k)|2

]

,

det[G−1
0 (ω,k)]G0(ω,k)33 = ω

[

(ω − ξ̃k+)
2 − Y− − |∆0|2

]

+
[

(ω − ξ̃k+)
2 − Y− + |∆0|2

]

ξ̃k↓,

det[G−1
0 (ω,k)]G0(ω,k)34 = −h∗⊥(k)

[

(ω − ξ̃k+)
2 − Y− − |∆0|2

]

,

det[G−1
0 (ω,k)]G0(ω,k)41 = ∆∗

0

[

(ω + ξ̃k−)
2 − Y+ − |h⊥(k)|2

]

,

det[G−1
0 (ω,k)]G0(ω,k)42 = −2∆∗

0h⊥(k)ξ̃k↑,

det[G−1
0 (ω,k)]G0(ω,k)43 = −h⊥(k)

[

(ω − ξ̃k+)
2 − Y− − |∆0|2

]

,

det[G−1
0 (ω,k)]G0(ω,k)44 = ω

[

(ω − ξ̃k+)
2 − Y− − |∆0|2

]

+
[

(ω − ξ̃k+)
2 − Y− + |∆0|2

]

ξ̃k↑.
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[67] M. Alford, K. Rajagopal, Schaefer, T. Schäfer, and A. Schmitt, “Color superconductivity in dense
quark matter,” Rev. Mod. Phys. 80, 1455–1515 (2008).

[68] A. W. Steiner, S. Reddy, and M. Prakash, “Color-neutral superconducting quark matter,” Phys. Rev.
D 66, 094007 (2002).

[69] D. B. Kaplan and S. Reddy, “Novel phases and transitions in color flavor locked matter,” Phys. Rev.
D 65, 054042 (2002).

[70] M. Alford, J. A. Bowers, and K. Rajagopal, “Crystalline color superconductivity,” Phys. Rev. D 63,
074016 (2001).

[71] M. Alford, K. Rajagopal, S. Reddy, and F. Wilczek, “Minimal color-flavor-lockednuclear interface,”
Phys. Rev. D 64, 074017 (2001).

[72] C. Ratti and W. Weise, “Thermodynamics of two-color QCD and the Nambu Jona-Lasinio model,”
Phys. Rev. D 70, 054013 (2004).

[73] C. Ratti, M. A. Thaler, and W. Weise, “Phases of QCD: Lattice thermodynamics and a field
theoretical model,” Phys. Rev. D 73, 014019 (2006).

[74] A. Dumitru, R. D. Pisarski, and D. Zschiesche, “Dense quarks, and the fermion sign problem, in a
SU(N) matrix model,” Phys. Rev. D 72, 065008 (2005).

[75] S. K. Ghosh, T. K. Mukherjee, M. G. Mustafa, and R. Ray, “Susceptibilities and speed of sound from
the Polyakov-Nambu-Jona-Lasinio model,” Phys. Rev. D 73, 114007 (2006).

[76] Z. Zhang and Y.-X. Liu, “Coupling of pion condensate, chiral condensate and Polyakov loop in an
extended NJL model,” Phys. Rev. C 75, 064910 (2007).
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