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Abstract

In this thesis I study astrophysical and cosmological effects of axion-like particles
(ALPs). ALPs are pseudo-scalar particles, which are generally very weakly-interacting,
with a coupling a

M
E · B to electromagnetism. They are predicted by many theories

which extend the standard model (SM) of particle physics, most notably string theory.
String theory compactifications also predict many scalar fields called moduli which
describe the size and shape of the extra, compact dimensions.

In string theory models generically the moduli fields are responsible for reheating
the universe after inflation. Being gravitationally-coupled, they will also decay to any
other particles or sectors of the theory, including any light ALPs, of which there are
usually many. The ALPs produced by moduli decay will contribute to dark radia-
tion, additional relativistic energy density. The amount of dark radiation is tightly
constrained by observations, this bounds the branching fraction of moduli decays into
ALPs, which constrains the string theory model itself. I calculate the amount of dark
radiation produced in a model with one light modulus, solely responsible for reheating,
called the Large Volume Scenario. I study a minimal version of this model with one
ALP and a visible sector comprised of the minimal supersymmetric SM. The dom-
inant visible sector decay mode is to two Higgses, I include radiative corrections to
this decay and find that ALP dark radiation is over-produced in this minimal version
of the model, effectively ruling it out.

The production of ALPs from moduli decay at reheating seems to be a generic
feature of string theory models. These ALPs would exist today as a homogeneous
cosmic ALP background (CAB). The coupling of ALPs to electromagnetism allows
ALPs to convert to photons and vice versa in a magnetic field, leading to potential ob-
servable astrophysical signals of this CAB. Observations have shown an excess in soft
X-ray emission from many galaxy clusters. I use detailed simulations of galaxy cluster
magnetic fields to show that a CAB can explain these observations by conversion of
ALPs into X-ray photons. I simulate ALP–photon conversion in four galaxy clusters
and compare to soft X-ray observations. I show the excesses (or lack thereof) can be
fit consistently across the clusters for a CAB with ALP–photon inverse coupling of
M = 6− 12× 1012 GeV, if the CAB spectrum has energy ∼ 200 eV.

I also study the possibility of using galaxy clusters to search for and constrain
the ALP coupling to photons using cluster X-ray emission. Conversion of X-ray
photons into ALPs will cause spectral distortions to the thermal X-ray spectrum
emitted by galaxy clusters. I show that the non-observation of these distortions is
able to produce the strongest constraints to date on the ALP–photon inverse coupling,
M & 7× 1011 GeV.



Acknowledgements

I would like to start by thanking my supervisor Joseph Conlon. I am
grateful for his support, encouragement and help during my DPhil. I am
also very grateful for the many interesting projects and topics he has in-
troduced me to, and for the tips and advice for writing this thesis. I would
also like to thank my examiners Pedro Ferreira and Mark Goodsell for tak-
ing the time to read this thesis, and prodiving insightful and interesting
questions and comments about the work.

I would also like to thank my collaborators Stephen Angus, Marcus
Berg, Francesca Day, Giovanni Grilli di Cortona, Ulrich Haisch, Edward
Hardy, Nicholas Jennings, David Marsh, Markus Rummel, Sven Krippen-
dorf, and Lukas Witkowski, who were a pleasure to work with. I would
also like to thank the many other people, lecturers and fellow students
who have helped me with my research, and have made the last four years
fly by. An incomplete list includes Eirik Svanes, David Kraljic, James
Scargill, James Scoville, Jim Talbert, Alexander Karlberg, Pedro Alvarez,
Robert Lasenby, Subir Sarkar, and many others. I would especially like
to thank Ed Hardy for taking the time to proof-read this thesis.

Most of all I would like to thank my wife, Steph, whose love, support and
encouragement has helped me no end throughout my DPhil, and during
our seven wonderful years together. I also thank my family and all my
other friends not mentioned above.

Finally I am very grateful to the STFC and the ERC for providing me
with the funding for my studies, and for allowing me to travel to many
interesting conferences, schools, and workshops.



Statement of Originality

This thesis is based on original research and contains no material that

has already been accepted, or is concurrently being submitted, for any

degree or diploma or certificate or other qualification in this university or

elsewhere. To the best of my knowledge and belief this thesis contains no

material previously published or written by another person, except where

due reference is made in the text.

Andrew Powell 2016



Contents

1 Introduction and Motivation 1
1.1 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 String Moduli and Cosmology 7
2.1 Dark Radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 String Moduli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Moduli in Cosmology . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Axion-like Particles 18
3.1 The QCD Axion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 String Axions and Axion-like Particles . . . . . . . . . . . . . . . . . 21
3.3 Searching for ALPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3.1 ALP–photon Mixing . . . . . . . . . . . . . . . . . . . . . . . 24
3.3.2 Astrophysics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3.3 Terrestrial Experiments . . . . . . . . . . . . . . . . . . . . . 29

4 ALP Dark Radiation Production in Large Volume Scenarios 32
4.1 Dark Radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2 The Large Volume Scenario . . . . . . . . . . . . . . . . . . . . . . . 34
4.3 Tree Level Dark Radiation Prediction . . . . . . . . . . . . . . . . . . 36

4.3.1 Decay Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.3.2 Dark Radiation Prediction . . . . . . . . . . . . . . . . . . . . 38

4.4 Analytic Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.4.1 Running of Volume Modulus Higgs Coupling . . . . . . . . . . 40

4.5 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.5.1 Solution of RG Equations . . . . . . . . . . . . . . . . . . . . 42
4.5.2 SM and MSUGRA Parameter Dependencies . . . . . . . . . . 43
4.5.3 Predictions for the Effective Excess Number of Neutrinos . . . 45

4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5 A Cosmic ALP Background and the Galaxy Cluster Soft X-ray Ex-
cess 50
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.2 A Cosmic ALP Background . . . . . . . . . . . . . . . . . . . . . . . 53
5.3 The Cluster Soft X-ray Excess . . . . . . . . . . . . . . . . . . . . . . 56

5.3.1 History of Soft Excess Observations . . . . . . . . . . . . . . . 56
5.3.2 Specific Clusters . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.3.3 Astrophysical Models of the Soft Excess . . . . . . . . . . . . 62

5.4 Cluster Magnetic Fields . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.4.1 Magnetic Field Observations . . . . . . . . . . . . . . . . . . . 66
5.4.2 Magnetic Field Model . . . . . . . . . . . . . . . . . . . . . . 69
5.4.3 Magnetic Field Generation . . . . . . . . . . . . . . . . . . . . 77

5.5 ALP–photon Propagation . . . . . . . . . . . . . . . . . . . . . . . . 77

iv



5.5.1 Homogeneous Solution . . . . . . . . . . . . . . . . . . . . . . 78
5.5.2 Inhomogeneous Magnetic Fields . . . . . . . . . . . . . . . . . 80

5.6 Consistency Checks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.7 Coma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.7.1 Luminosity Calculation . . . . . . . . . . . . . . . . . . . . . . 84
5.7.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.7.3 Summary of Coma Results . . . . . . . . . . . . . . . . . . . . 100

5.8 A665, A2199 and A2255 . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.8.1 Luminosity and Fractional Excess . . . . . . . . . . . . . . . . 101
5.8.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.8.3 Comparison and Summary . . . . . . . . . . . . . . . . . . . . 113

5.9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6 Constraining ALPs using Galaxy Clusters 121
6.1 Current Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
6.2 Photon-ALP Conversion in Galaxy Clusters . . . . . . . . . . . . . . 122
6.3 Cluster Spectral Distortions from ALPs . . . . . . . . . . . . . . . . . 124
6.4 Further Properties of the Distorted Spectrum . . . . . . . . . . . . . 128
6.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

7 Summary and Conclusions 133

References 139

v



1 Introduction and Motivation

With the discovery of the Higgs boson, the Standard Model (SM) of particle physics

is now complete. The SM is a theory of the electromagnetic, weak, and strong in-

teractions and the three generations of quarks and leptons on which they act. The

interactions are mediated by the bosons, the photon, gluon, and the W/Z. The Higgs

mechanism solves the puzzle of how the W/Z bosons, the carriers of the weak inter-

action, get their masses. It is also responsible for giving the leptons and quarks their

masses.

However we know that the SM does not describe every interaction between fun-

damental particles. The theory does not include gravity, which is described at low

energies by the General Theory of Relativity (GR). The SM is a quantum theory,

however treating GR in this way leads to an ‘effective field theory’ valid only for

energies well below the Planck scale, Mpl = 1.22 × 1019 GeV. At energies close to

the Planck scale the theory breaks down. Thus it is thought that some new quantum

gravity theory must complete GR close to this scale.

We have other reasons for believing the SM is not the end of the story for particle

physics. Astronomical and cosmological observations have shown that the majority of

matter in the universe is not made up of particles from the SM. Instead, dark matter
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accounts for more than 80% of the matter in the universe. Even more strangely, 68%

of the energy density of the universe appears to reside as so-called dark energy. This

is a fluid whose energy density stays constant with the expansion of the universe,

thus the importance of which grows with time. It is a puzzle why this dark energy

is only now starting to dominate the universe, as is the seemingly arbitrary value of

the energy density, and the fact that its energy density is so much smaller than the

natural particle physics scales.

In addition, the SM alone cannot explain the particle anti-particle asymmetry ob-

served in the universe. Neutrino masses, and why they are so much smaller than the

other fundamental particles’ masses, are also unexplained. There is no explanation

for why the Higgs mechanism breaks electroweak symmetry at scales much lower than

the Planck scale, mweak � Mpl. The Higgs mass should receive radiative corrections

proportional to any new mass scale that accompanies the solutions to the above prob-

lems. Thus we should expect the electroweak symmetry to be broken at a much higher

scale, this is called the electroweak hierarchy problem. The most popular solution to

this is supersymmetry, a new symmetry between fermions and bosons. Each particle

then has a ‘superpartner’ with spin differing by half a unit. This symmetry causes

the problematic corrections to the Higgs mass to cancel, explaining the lightness of

the Higgs boson.

More abstractly, there are issues such as explaining why there are three generations

of quarks and leptons, or why the Yukawa couplings of the fermions vary by so many

orders of magnitude, or even why we observe four space-time dimensions. In sum,

there are many reasons why there is a need to investigate theories beyond the Standard

Model (BSM).

The best understood quantum gravity theory is string theory. In string theory the

fundamental degrees of freedom are supersymmetric one-dimensional objects called

strings. These strings can only be consistently embedded in a ten-dimensional space-

time. Particles arise as excitations of this string, one of these is the graviton, the

massless spin-2 particle which mediates the gravitational force. At very high energies
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(typically) Mstring � mweak the true one-dimensional nature of particles is resolvable,

solving the problems which plague GR close to the Planck scale. However this feature

of string theory is also one of its biggest challenges. Physics predicted by string theory

is inaccessible to particle colliders and thus not directly testable.

A major effort in the last few decades has gone into string phenomenology—

connecting string-scale physics to the physics of the low energy world we live in. String

theory requires ten-dimensional space-time, but we only observe four dimensions, so

the six extra spatial dimensions must only be resolvable at very high energies, or

very small distances, close to the string scale. This ‘compactification’ of the extra

dimensions leads to a rich low energy four-dimensional effective field theory. This

must include the matter and force content of the SM, but will also typically include

many new scalar fields called moduli and axion-like particles. Moduli fields arise from

compactification of the ten-dimensional graviton, whereas axion-like particles come

from the compactification of other massless fields in the ten-dimensional spectrum.

The moduli can have very important consequences in cosmology. Their existence can

change the early evolution of the universe, adding periods of matter domination. It

is then the decay of moduli which produces the hot bath of SM particles from which

the usual cosmological evolution follows. The details of the decay are important since

the moduli can also decay to particles such as axion-like particles. Part of this thesis

will be concerned with the phenomenological implications of such decays to axion-like

particles in the early universe, and in that sense we will be probing a class of string

theory models.

Axion-like particles (ALPs) are pseudo-scalar particles. They are generally very

light, very weakly interacting and have a coupling to electromagnetism. They are

abundant in string theory and are also predicted in many other BSM models. The

QCD axion, after which ALPs are named, is a pseudo-Goldstone boson which is

hypothesised to solve another problem with the SM, the lack of CP violation in QCD.

The QCD Lagrangian contains a P (parity) and CP (charge-parity) violating term

∼ θ GµνG̃
µν , where G is the gluon field strength tensor. Its existence leads to a
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neutron electric dipole moment (EDM) proportional to the dimensionless parameter

θ in the Lagrangian. Such a neutron EDM has not been observed, requiring θ < 10−10.

This is unnaturally small compared to its expected value θ ∼ O(1). The situation is

even worse as this term receives an additional contribution from any complex phases

in the quark mass matrix. Thus the two contributions to θ must each be very small,

or cancel to at least one part in 1010. This is the strong CP problem.

The QCD axion solves this problem since it has the same coupling to QCD gauge

fields as θ. QCD induces a potential for the axion, such that at the minimum of this

potential the axion has a vacuum expectation value a = −θ, and thus the effective

CP violating parameter is set to zero, solving the strong CP problem. ALPs are in

the same class of particles, but they have no coupling to QCD. The ALPs we study

are very light and couple to photons through the term aFµνF̃
µν . This interaction

allows ALPs to be detected. We will use this coupling to both search for the ALPs

potentially produced in moduli decays in the early universe, and to constrain the

properties of ALPs.

1.1 Outline

The outline of this thesis is as follows. In Chapter 2 I review the standard cosmological

model, before reviewing the prediction of moduli fields in string theory compactifica-

tions. I outline how the existence of moduli can drastically change the evolution of the

early universe, with the universe potentially going through several periods of moduli

energy domination. It is the moduli fields then that are responsible for reheating

the universe after inflation. I discuss one cosmological observable which can be used

to test string theory models of the early universe, the number of relativistic degrees

of freedom or ‘dark radiation’. The amount of dark radiation is observable both in

the cosmic microwave background (CMB) and in the primordial abundances of light

elements.

In Chapter 3 I will motivate the study of axion-like particles by firstly introduc-

ing the QCD axion as the solution to the strong CP problem. String theory models
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often feature many very light, very weakly-coupled particles similar to the QCD ax-

ion, known as axion-like particles (ALPs). ALPs can be observed by their coupling

to electromagnetism, which allows them to convert into photons and vice versa in

external magnetic fields. I review this process, before discussing the constraints on

this coupling from astrophysical observations and terrestrial experiments.

The first non-introductory chapter will be Chapter 4. In this chapter I look at

dark radiation production in a class of string theory models called the Large Volume

Scenario (LVS). In these models there is one lightest modulus that is responsible for

reheating. I calculate the branching ratio of this modulus to ALPs, including relevant

radiative corrections to the visible sector decay rate. We will see that even in the

minimal version of this model, with one ALP, dark radiation is over-produced. Thus

ruling out the minimal version of the LVS.

Nevertheless it is clear that ALP production by modulus decay is a fairly generic

prediction in string theory models. In Chapter 5 I will discuss a possible way to

observe these light ALPs produced during moduli decay. These ALPs will form a

homogeneous background and the conversion of this in astrophysical magnetic fields

leads to potential signals. X-ray observations have revealed a ‘soft X-ray excess’ in

many galaxy clusters. If this cosmic ALP background (CAB) has X-ray energies now

(set by the parent modulus’ mass), then this excess can be explained by ALP–photon

conversion. I simulate the conversion of ALPs into photons in the magnetic fields of

four galaxy clusters and compare to observations. I also look in detail at the predicted

morphology in these clusters, and show that a CAB reproduces the observed trend of

an excess which increases with cluster radii.

In Chapter 6 I again focus on ALP–photon conversion in galaxy clusters, this time

looking at the reverse process. I look at potential distortions to the X-ray spectrum

emitted by galaxy clusters that would be caused by photons converting to ALPs. This

study is independent of any specific BSM model like string theory, as it does not rely

on the production of ALPs in the early universe. I show that the lack of observation

of this effect is able to provide the best limits on the ALP–photon coupling for low
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mass ALPs. Finally, I will conclude in Chapter 7.

This thesis is based on the following papers:
• S. Angus, J. P. Conlon, U. Haisch and A. J. Powell, Loop corrections to ∆Neff

in large volume models, JHEP 12 (2013) 061, arXiv:1305.4128 [1],

• S. Angus, J. P. Conlon, M. C. D. Marsh, A. J. Powell, L. T. Witkowski, Soft X-
ray Excess in the Coma Cluster from a Cosmic ALP Background, JCAP 1409
(2014), no. 09 026, arXiv:1312.3947 [2],

• A. J. Powell, A Cosmic ALP Background and the Cluster Soft X-ray Excess in
A665, A2199 and A2255, JCAP 1509 (2015), no. 09 017, arXiv:1411.4172 [3],

• J. P. Conlon, M. C. D. Marsh, A. J. Powell, Galaxy Cluster Thermal X-ray
Spectra Constrain Axion-Like Particles, arXiv:1509.0674 (To appear in Phys.
Rev. D) [4].

Chapter 4 is based on the paper [1], written in collaboration with Stephen Angus,

Joseph P. Conlon and Ulrich Haisch. My main contribution to this work was the

computation of the anomalous dimension of the modulus’ dominant coupling to the

visible sector, Z. The wording of this chapter has been changed to reflect the current

state of observations of dark radiation.

Chapter 5 is based on the papers [2, 3], the first of which was written in collabo-

ration with Stephen Angus, Joseph P. Conlon, David Marsh and Lukas Witkowski.

My contribution to the Coma cluster analysis [2] was implementing and running the

simulation of the magnetic field, and the numerical calculation of the conversion prob-

abilities. The follow up study of the A665, A2199, and A2255 galaxy clusters [3] is

all my own work.

Chapter 6 is based on the paper [4], written in collaboration with Joseph P. Conlon

and David Marsh. My contribution was calculating the conversion probabilities, and

analysing these in order to get bounds on the ALP–photon inverse coupling M .

Other work not included in this thesis includes:
• J. P. Conlon, A. J. Powell, A 3.55 keV line from DM → a → γ: predic-

tions for cool-core and non-cool-core clusters, JCAP 1501 (2015), no. 01 019,
arXiv:1406.5518 [5],

• M. Berg, J. P. Conlon, F. Day, N. Jennings, S. Krippendorf, A. J. Powell and
M. Rummel, Searches for Axion-Like Particles with NGC1275: Observation of
Spectral Modulations, arXiv:1605.01043 [6],

• G. Grilli di Cortona, E. Hardy and A. J. Powell, Dirac vs Majorana gauginos
at a 100 TeV collider, JHEP 1608 (2016), 014, arXiv:1606.07090 [7].

6



2 String Moduli and Cosmology

The universe is observed to be expanding. It naturally follows that the universe was

much denser and hotter in the past. Thus the universe was once filled with a hot

thermal bath of relativistic particles. The expansion of the universe caused the bath

to cool, interaction rates to fall, and particles to become non-relativistic, until finally

the universe became matter-dominated. The universe then became transparent to

photons and the cosmic microwave background (CMB) was formed. Gravitational

interactions then became important leading to the galaxies and galaxy clusters we see

today.

Whilst we may naturally conclude that the further we look back in the universe’s

history, the hotter the thermal bath was, there is however no observational evidence

for a universe hotter than a few MeV. This is the temperature at which light elements

form (big bang nucleosynthesis, or BBN). Thus it is not necessary that the universe

was always dominated by the hot thermal SM bath pre-BBN.

A period of inflation much earlier in the universe’s history is thought to set the

initial conditions for the subsequent evolution: homogeneity, low curvature, the seeds

of structure formation, and super-horizon correlations. Such a period has certainly

gained a lot of experimental evidence in favour of it [8], however the energy scale
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of, and mechanism inducing inflation is unknown. It seems likely that inflation was

driven by one or more scalar fields (the inflaton), whose potential energy dominated

the energy density of the universe, leading to an exponential expansion, lasting around

60 e-folds, for a review, see [9].

After inflation ends the energy density stored in the inflaton must be transferred

into the SM fields, since inflation dilutes the SM particles to almost zero energy

density. Decays of the inflaton must generate the hot SM thermal bath. This is known

as reheating, and as we have seen, the reheating temperature is only constrained to

be & MeV. In this chapter I will briefly review the thermal history of the universe,

putting emphasis on one cosmological observable—dark radiation—which we shall use

to test string theory models later. I then show that string theory generically posits

the existence of a multitude of scalar fields, moduli, whose properties will lead to

a much different history of the universe prior to BBN then in the standard picture.

Oscillating moduli fields can dominate the energy density of the universe leading to

periods of non-relativistic matter domination. It is then the decay of these moduli

not the inflaton that reheats the universe, and this idea will be of central importance

to Chapters 4 and 5.

2.1 Dark Radiation

Let us start post-inflation and after reheating. At this point the universe is in a hot

thermal equilibrium, dominated by relativistic particles, with temperatures at least

above a few MeV. The energy density of a population of relativistic particles redshifts

as ρrad ∼ a−4, where a is the scale factor, and falls with temperature as,

ρrad =


π2

30 g T
4 (bosons),

7
8
π2

30 g T
4 (fermions),

(2.1)

where the difference is due to Bose/Fermi statistics, and g counts the degrees of

freedom of the particle. In the early universe, if we assume chemical and thermal

equilibrium, then all particles have the same temperature, and the total energy density
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of the universe is ρrad = π2

30g?T
4, where

g? =
∑
bosons

gi + 7
8

∑
fermions

gi, (2.2)

with gi the number of internal degrees of freedom for each particle species.

As the universe cools below the mass of a particle species, it becomes non-relativistic.

The thermal bath is now no longer able to produce the particle, so the interactions

such as X + X 
 Y + Y go out of equilibrium, and the particle annihilates away,

until the annihilation rate falls below the Hubble scale. Subsequently the typical time

for a particle to annihilate is longer than the age of the universe at that time, so the

number of that particle is essentially fixed, i.e. it ‘freezes in’. The energy density in

the annihilating particles is transferred to the thermal bath of standard model parti-

cles. Since the entropy per comoving volume, s, remains a constant with expansion,

and s ∝ g a3T 3, the temperature of the thermal bath evolves as T ∝ g
−1/3
? a−1.

At temperatures of around a few MeV, the weak interaction rate becomes smaller

than the current expansion rate. The cross-section for scattering by a massive gauge

boson is σ ∝
(

α
M2
X
E
)2
∼ G2T 2, where G ∼ α

M2
X

, thus the interaction rate is Γ =

〈nσv〉 ∼ G2T 5. This interaction freezes out when H ∼ Γ, and since H2 ∼ T 4

M2
pl

, this

implies that for temperatures

T .
(

MX

100 GeV

)4/3
MeV, (2.3)

the interaction is no longer strong enough to keep particles in thermal equilibrium.

This has two important consequences: i) neutrino freeze-out and ii) big bang

nucleosynthesis (BBN). Since neutrinos only interact via the weak interaction, as soon

as the weak interaction freezes out, neutrinos decouple from the thermal bath. Soon

afterwards electrons and positrons become non-relativistic and annihilate away. The

energy is transferred into the thermal bath, which by now only consists of photons,

but not into the neutrinos since they have decoupled. Thus the photon temperature

gets a
(
g?(before)
g? (after)

)1/3
=
(

11/2
2

)1/3
boost relative to the neutrinos. The total energy in
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the universe is now ρ = π2

30g?T
4, with T the photon temperature, and now

g? =
∑
bosons

gi

(
Ti
T

)4
+ 7

8
∑

fermions

gi

(
Ti
T

)4
,

g? = 2 + 7
4Nν

( 4
11

)4/3
,

(2.4)

with Ti the temperature of particle i.

Here Nν counts the number of neutrino species with temperature Tν =
(

4
11

)1/3
T .

The standard model contains three neutrinos, however the SM prediction for Nν is

3.046. This is because the decoupling of neutrinos is not instantaneous as we have

assumed. In addition, electron neutrinos have an extra charged current interaction

with the electrons in the thermal bath, and thus decouple slightly later than the muon

and tau neutrinos, which only interact with the electrons via the neutral current

interaction. These two effects result in the neutrinos getting partially heated by

the electron-positron annihilation. This effect is conventionally absorbed into the

parameter Nν .

The parameter Nν is very sensitive to new physics. Any new, light relativistic

degrees of freedom produced either thermally or non-thermally in the early universe

will contribute to g? and will thus increase any measurement of Nν . This extra

relativistic energy density is called dark radiation (see e.g. [10] for a review). Including

dark radiation ρdark, the total energy density in radiation below the electron mass is,

ρrad = ργ + ρν + ρdark,

ρrad = ργ

(
1 + 7

8Nν

( 4
11

)4/3)
+ ρdark,

ρrad = ργ

(
1 + 7

8Neff

( 4
11

)4/3)
.

(2.5)

In the last line we have used the conventional parametrisation of absorbing dark

radiation into the parameter Neff = Nν + ∆Neff , and thus measurements of Neff tell

us about the additional amount of radiation density in the universe.

Dark radiation can be any new particle that remains relativistic until BBN and

CMB decoupling times. It can either be in thermal contact with or decoupled from

10



the SM thermal bath. Light states produced from decays at reheating are a natural

candidate for dark radiation, and we will discuss such a candidate, axion-like particles,

in Chapter 3. Dark radiation is thus very interesting theoretically, as an absence would

imply the particle responsible for reheating had no light hidden sector decay modes.

Note that despite its parametrisation in terms of number of neutrinos, it can have

nothing to do with these particles, and the number ∆Neff need not be an integer.

BBN takes place when the weak interaction rate keeping protons and neutrons in

equilibrium, p+ e
 n+νe falls below the Hubble rate. Given that the particles were

in equilibrium, the ratio of their number densities is nn/np ∼ e−(mn−mp)/T ∼ 1/6,

which is reduced to nn/np ∼ 1/7 due to neutron decay before light elements are

formed. Helium can now be formed, and it continues to be formed until all the

neutrons are inside nuclei. A small amount of lithium is also formed before the reaction

rates for further nucleosynthesis also freeze-out. Since neutron-proton equilibrium

is maintained until Γ ∼ H ∼ g
1/2
? T 2, the number density nn/np is very sensitive

to additional light relativistic degrees of freedom present that will contribute to g?.

Measurements of the amount of primordial Helium for instance allow a test for the SM

prediction of Nν in the early universe. For a review of BBN and its use in studying

BSM physics, see for example [11].

Later on in the universe’s history, since radiation redshifts as ρ ∼ a−4 and matter

redshifts as ρ ∼ a−3, we pass the period of matter-radiation equality and now the

universe becomes matter-dominated. Soon after, the rates for interactions such as

p+e
 H fall out of equilibrium, and the electrons in the universe become captured on

nuclei forming electrically neutral atoms. After this the mean free path for photons is

increased, and at some point becomes larger than the Hubble distance. This is known

as the last scattering surface or the time of decoupling. Photons now free stream, and

can be observed at current times as the CMB. Now gravitational effects between the

non-relativistic particles become important, and structure formation begins.
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2.2 String Moduli

One of the main predictions of string theory is that space-time is ten-dimensional.

The six unobserved dimensions must be compact, and very small in order to evade

observational constraints. The compactification of ten-dimensional fields leads to a

multitude of scalar fields in the observable four dimensions. I review this here.

The appearance of scalar fields happens for any number of compact dimensions.

Let us start by considering the simple example of a massless scalar field in five di-

mensions, Φ. The field has the action
∫
d5x ∂MΦ†∂MΦ, where M = 0, 1, ..., 4. Now

suppose the fifth dimension is compactified into a circle, such that we identify the

points x4 = 2πnR for n = 0, 1, ..., with R the radius of the compact dimension. We

can then decompose the field Φ into a part in the four space-time coordinates xµ and

modes in the compact dimension,

Φ(xM) =
∑
n

φn(xµ)einx4/R. (2.6)

Under this decomposition the action splits as
∫
d4x

∫ 2πR
0 dx4 (∂µΦ∂µΦ + ∂4Φ∂4Φ), and

upon integrating over the compact dimension, we find the four-dimensional action for

the fields φn ∫
d4x

∑
n

(
∂µφ

†
n∂

µφn + n2

R2φ
†
nφn

)
. (2.7)

The compactification has then produced an infinite tower of scalar fields in four di-

mensions, one of which is massless, the rest separated in mass by 1/R.

The above was true because the five-dimensional space could be written M5 =

M4 × S1 where M4 is four-dimensional Minkowski space, and S1 is the circle. In

this case the five-dimensional Laplacian splits as ∆5 = � + ∂4∂
4 where � = ∂µ∂

µ

as usual. The mode which satisfied ∂4∂
4Φ = 0 gave a massless particle in the four-

dimensional spectrum, since the five-dimensional equation of motion for this mode

reduces to ∆5Φ = �Φ = 0, which is the equation of motion of a massless field in four

dimensions.

If the metric is itself a dynamical field, then compactification gives a massless
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scalar field in the four-dimensional theory. The five-dimensional metric splits into a

four-dimensional metric gµν , along with a vector field gµ4 ∼ Aµ and a scalar, g44 ∼ φ,

where all three are a function of the xM . Then just like above we can decompose

these fields into Fourier modes of the circular compact dimension, with the n = 0

mode giving a massless field, and an infinite tower of massive modes for n > 0. The

metric of the five-dimensional space can be written

ds2 = gµνdxµxν + e2Φ
(
dx4 + Aµdxµ

)
, (2.8)

then the vacuum expectation value of the n = 0 mode, φ, of field Φ determines the

radius of the compact dimension, since

∫
d5x det |g(5)| −→ 2πR

∫
d4x eφ det |g(4)|, (2.9)

when integrated over the circle. This is a simple example of a modulus, whose vacuum

expectation value characterises the size of the compact space.

In the simple example above the fields were split into Fourier modes of the circle,

and the mode for which ∂4∂
4φ = 0 gave a massless field. In higher dimensional spaces

there are many more modes for which ∆compactφ = 0, and thus there are many more

massless fields. In string theory the compact space is usually a Calabi-Yau manifold,

and the moduli space of such manifolds is very complex [12]. There can be hundreds

of such modes, leading to hundreds of moduli in the four-dimensional spectrum. Just

like in the simple example above, the vacuum expectation values will determine the

size and shape of the compact space.1

In addition, there are several other massless fields in the ten-dimensional string

spectrum. The dimensional reduction of these fields leads to more massless scalar

fields in four-dimensions just like in the simple case of the massless scalar field in five

dimensions. These fields are the string axions, or axion-like particles. We will discuss

these fields more in the following chapter, Chapter 3.
1The moduli space is larger because one can continuously deform the manifold, whilst keeping

the topology the same, in many different ways. In the example of the circle the only deformation
corresponded to changing the radius.
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Massless moduli transmit long-range forces [13], and are thus ruled out since con-

straints from fifth-force experiments imply moduli should have masses & O(meV) [14].

In addition we would like to have some control over the moduli, since they effectively

characterise the size and shape of the extra dimensions. A massless field has no poten-

tial allowing the field to take any value, for instance allowing the compact dimensions

to become infinite in size. Thus in an actual compactification, these fields should not

remain massless. Giving a moduli field a mass is known as moduli stabilisation. We

will not discuss moduli stabilisation here, it has been reviewed in many places, and

instead refer the reader to [15,16] for reviews. Stabilisation of all moduli indeed seems

possible, and it is possible to have moduli with masses hierarchically smaller than the

string scale [17], making them of phenomenological interest. We will discuss such a

model in Chapter 4.

2.3 Moduli in Cosmology

If moduli exist, then they can drastically change the evolution of the universe. There

can be periods where the moduli dominate the energy density of the universe post-

inflation. The moduli fields must then decay to the SM producing the hot thermal

bath, instead of the inflaton. Here we review moduli domination and what can be

learnt from their decays.

Moduli have gravitational couplings to all sectors of the theory, in addition the

values of the moduli determine the coupling constants, thus if the energy density

during inflation is sufficiently high, the minimum of the moduli potential can be

shifted relative to the ‘true’ post-inflationary minimum [18]. This can happen through

couplings like φ2

M2
pl
Vinfl. This will mean that post-inflation, the modulus starts out with

a vacuum expectation value which can be O(Mpl) away from its post-inflationary

minimum.

The equation of motion for the evolution of a scalar field in an expanding universe

is

φ̈+ 3H(t)φ̇+ V,φ = 0, (2.10)
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where V,φ = ∂V
∂φ

. If we assume the post-inflationary potential has the form V (φ) =

m2
φφ

2 then when H � mφ, the equation above describes an over-damped harmonic

oscillator. Thus φ is stuck at the value it took during inflation.

This equation of motion above can be re-written

d

dt

(1
2 φ̇

2 + V (φ)
)

= −3Hφ̇2,

dρ

dt
= −3H(ρ+ p),

(2.11)

where ρ = 1
2 φ̇

2 +V (φ) is the energy density, and p = 1
2 φ̇

2−V (φ) is the pressure. When

H drops below mφ, the scalar field is no longer over-damped, and is free to oscillate

around its minimum. On timescales t � H−1, the energy density is a constant,

ρ = Vmax = 1
2m

2φ2
max, and so φ = φmax cos(mt). This results in a pressure

p = Vmax − 2V (φ) = 1
2m

2φ2
max(1− 2 cos2(ωt)),

= −1
2m

2φ2
max cos(2mt).

(2.12)

Thus on short timescales the pressure oscillates, but averaged over timescales t > m−1

the pressure is rapidly oscillating and averages to zero 〈p〉 = 0. Then on timescales

t ∼ H−1 the energy density evolves, according to equations 2.11, as

ρ ∝ a−3. (2.13)

Thus, an oscillating scalar field has an energy density which evolves in exactly the

same way as non-relativistic matter [19].

Any radiation produced by the decay of the inflaton post-inflation will quickly

redshift away compared to this oscillating scalar field. The decay products of the

inflaton will be relativistic and thus redshift as a−4, whereas the oscillating moduli field

redshifts as a−3. Thus the moduli field will come to dominate the energy density of

the universe, and the details of the inflaton’s decay modes become unimportant. Due

to its gravitational couplings to the other fields, the modulus will be unstable, and will

decay. This decay will produce relativistic particles, whose energy density will again

redshift away quickly. If there are other moduli fields with longer lifetimes, then these
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moduli fields will dominate the energy density of the universe later. Thus it is possible

for the universe to undergo several successive stages of moduli (matter) domination

followed by radiation-domination. This is perfectly consistent with observations as

long as the final modulus to decay, does so into SM particles, and produces a thermal

bath with a temperature of at least a few MeV, the temperature at which BBN begins.

Thus, in string models it is generally expected that the moduli fields are responsible

for reheating. Reheating is then almost completely decoupled from the details of

the inflationary model, and so reheating can be discussed independently, without

specifying an inflationary model.

Moduli typically have decay rates Γ ∼ 1
48π

m3
φ

M2
pl

, and decay when Γ ∼ H. If we

assume for simplicity that the modulus decays only into SM particles, instantaneously,

then the post-decay energy density of the universe is ρ = M2
plΓ2 ∼ T 4

rh, with Trh the

reheat temperature, given by

Trh ∼
√

ΓMpl ∼ O(1) GeV
(

mφ

3 · 106 GeV

)3/2
. (2.14)

Importantly in deriving this formula we have assumed that the SM thermal bath

quickly thermalises post decay. Whether this assumption holds was studied for exam-

ple in [20], it was found that thermalisation is dominated by 2→ 3 inelastic scattering

processes, with the thermalisation timescale

τtherm ∼
(
mΦ

α3T 2
rh

)
. (2.15)

Number changing processes are necessary to obtain thermal number densities, and

these processes are also very efficient at cooling the modulus decay products, allowing

kinetic and chemical equilibrium to be quickly established. For our purposes, this

thermalisation timescale will always be shorter than the Hubble time, thus we will

continue to assume instantaneous thermalisation.

Moduli with masses less than ∼ 50 TeV will decay during or after BBN has taken

place, ruining the successful predictions for light element abundances. The measured

primordial abundances put a tight constraint on the allowed variation of the entropy
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density and baryon-to-photon ratio from BBN to now [11]. If a modulus decays and

produces a large number of photons, this would lead to an unacceptable decrease in

the baryon-to-photon ratio. Not only this, but a large number of energetic photons

produced by modulus decay can photo-dissociate the light elements that have been

created. If the moduli are stable on cosmological lifetimes, then their energy density

will vastly exceed the currently observed total energy density. These problems to-

gether are called the ‘Cosmological Moduli Problem’ (CMP) [18, 21, 22], thus string

moduli must have masses mφ & 50 TeV.

Dark radiation is another constraint on moduli. It constrains the decay modes of

the last modulus to decay. In addition to the decay to the SM particles, the modulus

will decay to any light particles that are present in the theory, these include for

example ALPs. These particles will contribute to dark radiation. Thus, bounds on

dark radiation directly test the decay modes of the particle responsible for reheating.

As we will see in Chapter 3, there are typically many light axion-like particles in string

models, see e.g. [23], and thus a large amount of dark radiation can be produced

in these models. We return to this constraint in Chapter 4 where we will look at

predictions for dark radiation in a specific string compactification scenario.
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3 Axion-like Particles

In this chapter I introduce the main topic of this thesis, axion-like particles (ALPs). To

do so it is illustrative to first discuss the QCD axion. The QCD axion is a hypothesised

particle which explains the lack of CP violation in the strong interactions. I then

motivate ALPs from string theory, before discussing attempts to find them using

their coupling to photons. I also summarise relevant bounds on this coupling from

astrophysics and terrestrial experiments.

3.1 The QCD Axion

The QCD Lagrangian contains the parity (P) and charge-parity (CP) violating term

L = θ
αs
8π G

µν
a G̃a, µν , (3.1)

where θ is a constant, and αs is the strong coupling. The GG̃ term can be written

as a total derivative of products of gauge fields. However, the gauge fields do not

necessarily go to zero at infinity, and thus the term cannot be integrated away. The

quark mass matrix Mq will in general be non-diagonal and complex. The rotation

needed to form a real, diagonal mass matrix will include a chiral rotation of the
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quark fields. This rotation gives a contribution of arg detMq to θ through the chiral

anomaly. This leads to the new CP-violating parameter θ = θ + arg detMq, which

is the sum of two contributions with very different physical origins. The term leads

to a neutron electric dipole moment (EDM) proportional to θ, which has not been

observed. The current upper limit on the neutron EDM is |dn| < 2.9 × 10−26 e cm

[24], which leads to the constraint θ . 10−10. Thus it seems there is an unnatural

cancellation between two parameters that are not related. This is the strong CP

problem, for a review see [25].

The most popular solution is the axion. A new U(1) ‘PQ’ (named after Peccei

and Quinn) global chiral symmetry is introduced to the Lagrangian [26, 27], which

is spontaneously broken by a PQ-charged scalar field getting a vacuum expectation

value, Φ = (fPQ + ψ)eiφ. The Goldstone mode φ is the axion [28, 29], it is a pseudo-

scalar and inherits a continuous shift symmetry from the U(1) PQ symmetry, φ →

φ + α. The axion has an anomalous coupling to GµνG̃
µν , and thus through the field

redefinition

φ→ φ′ = φ− θ, (3.2)

the θ parameter is promoted to a dynamical field. QCD instantons induce a potential

for the axion which has a minimum at φ′ = 0, the strong CP problem is thus solved

dynamically.

The canonically normalised axion field is a = fPQφ, and thus the coupling of the

axion to other fields is suppressed by powers of 1/fPQ. In order to evade constraints,

which we discuss in section 3.3, the scale of PQ-symmetry breaking fPQ should be

very high fPQ � mweak, and thus the axion is very weakly interacting. The shift

symmetry also means the axion can only couple to other fields through derivative ∂µa

couplings. The coupling to gluon fields is induced through the colour anomaly by

either SM quarks carrying PQ charge, or new, heavy quarks, which carry colour and

U(1)PQ charge.

The potential that sets a = 0 induces a mass for the axion. The neutral pion gets

its mass from the same source and thus the axion and pion mix. The axion mass is
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then related to the pion mass by fama ∼ fπmπ, which leads to the famous relationship

ma ∝ f−1
a , where fa = fPQ/N , and N is the colour anomaly. A full treatment leads

to the relationship [30],

ma ≈ 6 meV
(

109 GeV
fa

)
. (3.3)

The mixing with the pion leads to a model-independent coupling of the QCD

axion to nucleons. There is also a model-dependent coupling if the SM quarks are

PQ charged. The only other model-independent coupling of the axion is to photons.

Again the mixing with the pion leads to the model-independent term aFµνF̃
µν . If the

heavy quarks that carry PQ charge also carry electric charge, or the axion couples to

the SM fermions, then there will be an additional model-dependent contribution from

the electromagnetic anomaly, leading to

Laγ = −1
4gaγaFµνF̃

µν , (3.4)

with gaγ = αem
2πfa ξ, ξ = E

N
− ξπ, with E the model-dependent electromagnetic anomaly,

and ξπ is the contribution from pion mixing.

In addition, the axion can have model dependent derivative couplings to SM

fermion fields, provided the SM fields carry PQ charge,

Laf = Cj
2fa

Ψjγ
µγ5Ψj∂µa, (3.5)

where Cj is dependent on the PQ charge of the fermion field.

Finally, let us note that the QCD axion can be dark matter [31]. In the early

universe when QCD instanton effects are unimportant, the axion has no potential so

can take any value between 0 and 2πfa. Thus, just like we saw for moduli, the axion

will start out far away from the minimum of its potential when QCD effects become

important. The axion field will then oscillate around its minimum, and as we showed

in Chapter 2 this oscillating field will behave like dark matter. The oscillating axion

field has energy density, see e.g. [30],

Ωah
2 ≈ 0.11

(
fa

5× 1011 GeV

)1.19

, (3.6)
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where we have assumed the axion is initially O(fa) away from the minimum of the

QCD potential. We have also assumed that the PQ-symmetry is broken before infla-

tion, such that the axion takes a constant value throughout the observable universe.

In the opposite case, the axion will take different initial values in different patches of

the universe, and there will be an additional production mechanism of axions from

cosmic strings. Thus for axion decay constants fa ∼ 1012 GeV the axion can account

for the observed dark matter.

3.2 String Axions and Axion-like Particles

We saw in section 2.2 that the four-dimensional effective theories arising from com-

pactifications of string theory contain many scalar fields called moduli, and also many

pseudo-scalar fields called string axions, coming from the compactification of mass-

less fields. I now review the origin of these in slightly more detail. I again point the

interested reader to the reviews [15,16] for more information.

In the different string theories, there are massless p-form fields Cp in the ten-

dimensional spectrum. These fields are higher-dimensional analogues of gauge fields.

Decomposing these p-forms into four and six-dimensional mdoes and compactifying

gives many massless scalar fields, just like in the case of a simple scalar field in five

dimensions studied in section 2.2. We consider an example of the appearance of axions

here using type IIB string theory. Consider, for example, the massless four-form, part

of its decomposition into modes in the compact space includes the term

C4,10d ⊃ ρa(x)ωa. (3.7)

Here ρa(x) is a function of the four space-tme coordinates, ωa is a four-form for which

∆6dω
a = 0, ∆6d is the six-dimensional Laplacian, and a is an index which runs over

the number such four-forms. The fields ρa then obey the four-dimensional equation

of motion for a massless field, they are called string axions.

The forms ωa are dual to the four-cycles Σb
4 of the compact geometry,

∫
Σb4
ωa ∼ δab .

Thus we can also think of axions as arising from the integral of the C4 field over an
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internal four-cycle

ρa(x) ∼
∫

Σa
C4. (3.8)

The size of these four-cycles is dynamical and corresponds to the moduli discussed

earlier which control the size of the compact space, they are called the Kähler moduli.

Thus it is easy to see that we get the same number of Kahler moduli as axions in

the effective theory. In fact the moduli and axions combine into supersymmetry

multiplets, and we can write them as a complex scalar Ta = τa + iρa, where τa is a

modulus.

The p-form fields are invariant under gauge transformations in the higher dimen-

sional theory, and the pseudo-scalar fields inherit this invariance as a shift symmetry.

Thus the string axions are massless pseudo-scalars with a shift symmetry, similar to

the QCD axion, hence their name. The typical decay constant of these axions is

fa ∼Mstring, see e.g. [32].

Moduli stabilisation can also give high scale masses to some of the axions, removing

them from the low energy spectrum. Generally though some of these axions can

remain massless through the stabilisation process. However non-perturbative effects

can give very small masses to these fields. It has been shown that generally many

very light string axions can remain in the low energy spectrum, e.g. [23, 33, 34], this

has been called the ‘axiverse’.

Many different theories of BSM physics lead to similar fields in the low energy

effective theory. Theories with higher-dimensional gauge symmetries, or theories with

broken U(1) symmetries like the PQ symmetry lead to these axion-like fields. If such

a theory contains many of these fields ai, each with decay constant fi, then the

Lagrangian for these fields, including potential couplings to gluons and photons will

be

L = 1
2∂µai∂

µai + αs
8π

Cg,i
fi
aiGG̃+ α

8π
Cγ,i
fi

aiFF̃ + ..., (3.9)

where the ... includes any other couplings to hidden sector fields or SM fermions, and

22



the Cα,i are constants. The combination of fields

aQCD
fa

=
∑
i

Cg,i
fi
ai, (3.10)

solves the strong CP problem, and is the QCD axion discussed in section 3.1.

The orthogonal combinations of fields then do not couple to QCD, but will still

couple to photons. They may pick up small masses from non-QCD non-perturbative

physics. These fields are called axion-like particles (ALPs), they have the Lagrangian

L = 1
2
(
∂µa∂

µa−m2
aa

2
)

+ 1
4MaFµνF̃

µν , (3.11)

where we have dropped indices labelling the ALPs. The inverse coupling M is defined

in this way, how this parameter is related to the decay constant fa is dependent on

the model-dependent parameter Cγ. Importantly, there is no relation between M and

ma as there is for the QCD axion.

When we refer to ALPs in the rest of this thesis, we refer to a generic field which

has the Lagrangian 3.11 above.

We note finally, that just like the QCD axion, ALPs can make up some or all of

the dark matter by the same mechanism. The energy density of the oscillating ALP

field is a function of the ALP mass as well as its decay constant, and also on the

temperature dependence of the ALP mass.

3.3 Searching for ALPs

The coupling of an ALP to electromagnetism in equation 3.11 can be written

Laγγ = 1
4MaFµνF̃

µν = 1
M
a~E · ~B. (3.12)

This makes it clear that in the presence of either an external electric or magnetic field

an ALP can convert into a photon and vice versa. It was realised early on that this

coupling would allow searches for the QCD axion and ALPs [35,36].

In the next section, 3.3.1, I review the theory of ALP–photon oscillations in an

external magnetic field. I then review searches for ALPs, and constraints on the ALP–
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photon coupling, both from astrophysical observations (section 3.3.2), and laboratory

experiments (section 3.3.3). The main focus will be on the ALP–photon coupling,

but where relevant I will also mention constraints on couplings to other particles, or

properties of the QCD axion.

3.3.1 ALP–photon Mixing

The conversion of a photon into an ALP and vice versa in an external magnetic field

will be of central importance to later chapters. Here we show how this conversion is

possible, first worked out in [37]. Note that since the photon has spin 1 and the ALP

has spin 0, it is only possible for this conversion to happen in a magnetic field which

is transverse to the propagation of the ALP/photon.

Let us start with the photon and ALP Lagrangian,

L = −1
4FµνF

µν + 1
2
(
∂µa∂

µa−m2
aa

2
)

+ 1
4M aFµνF̃

µν − JµAµ, (3.13)

where Jµ is the electromagnetic current. This Lagrangian gives the equations of

motion
∂µF

µν = Jν + 1
M
∂µaF̃

µν ,

∂µ∂
µa+m2

aa = − 1
4MFµνF̃

µν ,

(3.14)

along with the usual condition ∂µF̃
µν = 0. Now we write the field strength tensor as

a sum of the photon Aµ and the external field,

F µν = F µν
ext + ∂µAν − ∂νAµ. (3.15)

With the gauge-fixing condition ∂µA
µ = 0, and setting A0 = 0, assuming the photon

field is weaker than the external field we get the equations of motion

∂µ∂
µ ~A = −

~Bext

M

∂a

∂t
,

∂µ∂
µa+m2

aa = 1
M

∂ ~A

∂t
· ~Bext .

(3.16)

We can decompose A into components perpendicular to and parallel to the external

magnetic field, assuming plane wave forms travelling in the z-direction we get the
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Figure 3.1: Left—Feynman diagram for the conversion of a photon into an ALP in an
external magnetic field. Right—Feynman diagram for a photon scattering off the electric
field of a charged nucleon or electron, producing an ALP.

coupled equations of motionω
2 + ∂2

z +


0 0 0

0 0 Bextω/M

0 Bextω/M −m2
a






A⊥

A‖

a

 = 0. (3.17)

We can simplify this by taking ω2 + ∂2
z = (ω + i∂z)(ω − i∂z) ≈ (ω + k)(ω − i∂z) ≈

2ω(ω − i∂z). Then we get the linearised equation of motionω − i∂z +


0 0 0

0 0 Bext/2M

0 Bext/2M −m2
a/2ω






A⊥

A‖

a

 = 0. (3.18)

If one starts with a pure ALP (or photon) state, then along the propagation, due

to the off-diagonal mixing terms, the ALP (photon) wavefunctions develop non-zero

photon (ALP) components. The conversion probability is then just the probability

that the state will be measured as a photon (ALP). This process is shown in figure

3.1 (left).

There is a similar process, depicted in figure 3.1 (right), known as the Primakoff

process. In this case, a photon can scatter off the electric field of an electron or nucleus

producing an ALP in the final state.

In both cases the mis-match between ALP and photon masses leads to a momen-

tum transfer, either to the magnetic field, or to the charged particle in the scatter-

ing. When propagating in a plasma, the photon dispersion relation is modified to

ω2 = k2 + ω2
pl, and the photon develops an effective mass of ωpl. The conversion is
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suppressed for large momentum transfer. This means that conversion in a plasma

is most efficient for ALPs with a mass similar to or less than the plasma frequency,

m2
a . ω2

pl, and highly suppressed for larger ALP masses. The result is that its much

easier to search for lighter ALPs than heavier ALPs, but as discussed in section 3.2

this is a very interesting region for BSM physics and string compactification models.

3.3.2 Astrophysics

In this section I will discuss the very stringent astrophysical bounds on various parts

of the axion and ALP parameter space.

Stars have been used to derive axion and ALP bounds. Photons in the stellar

interior would convert into axions or ALPs by the Primakoff process. This would be

a very efficient energy loss mechanism for the star. The energy carried away by ALPs

or axions should not exceed the luminosity of the star. The constraint from ALP

production in the solar interior is M > 4× 108 GeV [38].

It was noted early on that the helium burning horizontal branch stars are a more

promising place to look [39]. ALP production would dramatically shorten the time

stars exist in a stable helium burning phase, reducing the number of these stars relative

to other populations. The study [40] obtained the lower bound M > 1.5× 1010 GeV

at 95% confidence. In addition they found a slight 1− 2σ preference for an ALP with

M = 1.5× 1010 GeV. This constraint holds for ALPs with masses ma . keV.

In addition to this hint, there are also hints for ALPs from the cooling of white-

dwarfs. It appears that the cooling of white dwarves exhibit small anomalies which

can be explained if the ALP couples to electrons acting as an additional cooling

mechanism. It is even possible to explain both of these hints by the same coupling to

electrons. See [41] for a recent review of cooling hints from stars and their explanation

in terms of ALPs.

The supernova SN1987a leads to a very strong bound on the QCD axion and

ALPs. SN1987a is a core collapse supernova, located in the Large Magellanic Cloud.

At the end of its life, the iron core collapsed until it reached nucleon densities forming a
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neutron star. This caused a ‘bounce’, creating a shock wave which produced the visible

supernova explosion. The resulting proto-neutron star initially had a temperature in

the tens of MeV. The core of the supernova is opaque to photons, but not to the

weakly interacting neutrinos who efficiently carry energy away from the core. The

observations of a burst (∼ 5− 10 seconds) of neutrinos by Kamiokande [42] and the

Irvine-Michigan-Brookhaven water Cerenkov detector [43] provide valuable insight

into core collapse supernovae.

The scattering of photons off the electric fields of charged particles in the proto-

neutron star would produce a large amount of ALPs, which, like neutrinos, can freely

leave the core. On their way to earth, these gamma ray energy ALPs can re-convert

to photons in the Milky Way’s magnetic field, leading to a short burst of gamma

rays at earth coincident with the neutrino burst. Such a burst was not observed [44],

allowing a constraint to be put on the ALP-photon coupling. Early studies produced

bounds M & 1 − 3 × 1011 GeV, depending on the model of the supernova, and the

Milky Way’s magnetic field [45,46]. This was recently updated to M > 2× 1011 GeV,

for ma . 10−10 eV, by [47], using updated models of core collapse supernova, and

modern models for the Milky Way’s magnetic field. This is the most stringent bound

on low mass ALPs, and will be relevant for us later.

These ALPs, and also the QCD axion, will lead to an additional source of energy

loss for the supernova. The required coupling to photons is too small to produce large

effects, however if ALPs or the axion couples to nucleons, then they efficiently carry

energy away from the core. An ALP coupling to nucleons is model-dependent, however

the QCD axion will get a model-independent coupling due to mixing with the neutral

pion. The original bound on the axion was determined to be fa & few × 1010 GeV

[48–52]. This was later relaxed somewhat to fa & 7× 109 GeV [53,54]. This remains

the most stringent lower bound on the axion decay constant. Note the precise value

of the bound is uncertain due to model-dependent O(1) parameters.

Photon-ALP mixing in magnetic fields leads to energy-dependent distortions to

astrophysical spectra. The H.E.S.S. satellite study [55] looked at the spectrum of the
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active galaxy PKS 2155-304 to derive bounds on the ALP–photon coupling. They

derive the bound M > 5 × 1010 GeV, at 95% confidence, for the small ALP mass

window 1×10−8 eV . ma . 6×10−8 eV. The bound is relevant for only these masses

because to get these spectral distortions in the right energy window, ‘resonance’ is

required between the ALP mass and photon mass in the converting medium. This

bound is more constraining than the He-burning stars bound, and also in a mass

region not covered by the bounds from SN1987a γ-rays. We will study a similar

phenomenon for a larger mass range in Chapter 6.

It has been claimed that the universe is more transparent to very high energy

gamma rays than expected [56–58]. The situation is not settled however since another

analysis claims to find no such anomaly [59]. A possible explanation of this effect is

if the gamma rays can oscillate into an ALP and then back into a photon. Very high

energy gamma rays should be attenuated due to absorption on the extragalactic-

background light (EBL)—the light emitted by stars and galaxies—which would pair

produce electrons. Allowing photons to oscillate into ALPs reduces the probability

that they will scatter off the EBL, increasing the universe’s transparency. The oscilla-

tion can either happen as the photon travels through the intergalactic medium [60–62],

and thus takes place in the unknown inter-galactic magnetic field (IGMF), or in the

source AGN or host galaxy cluster (with the back-conversion happening in the galac-

tic magnetic field) [63,64], or a mixture of both [65,66]. If the conversion takes place

in the IGMF then the changes to AGN spectra will be redshift-dependent, otherwise,

the spectra of all AGNs, or just AGNs in galaxy clusters, would be altered. The

detailed analysis of [62] found an ALP with coupling to photons M ∼ 1 × 1011 GeV

fit observations. Couplings smaller than this were excluded since they should produce

even larger effects. These bounds are valid for ALP masses ma . 10−7 eV, and thus

partly overlaps with the SN1987a gamma ray burst bound.
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Figure 3.2: A light-shining-through-a-wall experiment. A laser produces a photon beam
which travels through a magnetic field, some of these photons will transform into ALPs
which can travel freely through a ‘wall’, unlike the photons. The ALP can then convert
back into a photon using the magnetic field on the other side of the wall.

3.3.3 Terrestrial Experiments

There are two main experimental techniques used to search for ALPs on earth. These

are light-shining-through-a-wall (LSW) and helioscope experiments.

In the first of these, an ALP gives a non-zero probability that light can pass

through a wall in the presence of a magnetic field. The photon may oscillate into an

ALP one side of the wall, and instead of getting reflected, travels through the wall to

the other side where it may oscillate back into a photon to be detected. This process

is illustrated schematically in figure 3.2.

The experiment OSQAR has the current best bound for an LSW experiment of

M & 2.9×107 GeV at 95% confidence, for masses ma . 2×10−4 eV [67]. A significant

advance on this bound is expected to come in the next few years from the ALPS-II

(Any Light Particle Search) LSW experiment. ALPS-II is an upgrade on the ALPS-

I experiment [68], which yielded competitive bounds to OSQAR, by several orders

of magnitude. It is hoped that ALPS-II will probe values of the coupling up to

M ∼ 5× 1010 GeV [69], and will thus push into so far uncovered regions in the mass

range ma ∼ 10−9 − 10−4 eV. Data taking is expected to start in 2018/19.

The second type of search is a helioscope experiment. This uses the potential large

flux of ALPs produced in the solar interior. The scattering of photons in the solar
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interior can produce ALPs by the Primakoff process, which freely stream away from

the interior and out of the sun. The ALPs produced are all of keV energies. The

luminosity of ALPs produced, and the flux at earth is [70]

La =
(

1010 GeV
M

)2

1.85× 10−3L�,

Φa =
(

1010 GeV
M

)2

3.75× 1011 cm−2s−1.

(3.19)

Helioscope experiments use a large magnet to re-convert these ALPs into X-ray pho-

tons. The best bounds from this type of experiment come from CAST (CERN Solar

Axion Telescope). The lack of any observation during the running of CAST leads to

the lower limit on M of [71]

M > 1.1× 1010 GeV, (3.20)

for ALP masses ma . 10−2 eV. This bound is comparable in magnitude to the bound

for He-burning horizontal branch stars, and is the most stringent laboratory bound.

There are proposals for the next generation helioscope experiment IAXO (Interna-

tional Axion Observatory), which is still at the technical design stage. The proposed

IAXO experiment will improve on the CAST bound by using a stronger and bigger

magnetic field. The sensitivity of the instrument should probe up to [72]

M ∼ 1− 5× 1011 GeV, (3.21)

for ALP masses up to ma . 0.25 eV, far surpassing the previous bound from CAST

by an order of magnitude. IAXO should also be able to probe ALP–photon couplings

beyond the bound from the lack of a SN1987a gamma ray burst, and will also probe

the region needed to explain the anomalous gamma ray transparency of the universe.

Other types of terrestrial searches focus on ALPs or axions as a dark matter

candidate. Examples of these are ADMX and ADMX-HF [73, 74] which look for

conversion of dark matter axions or ALPs in a microwave cavity, and also CASPEr [75]

which aims to detect the oscillating axion or ALP dark matter field which should

induce an oscillating neutron electric dipole moment. Finally, independent of the
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axion or ALP being dark matter, there is a proposed experiment to search for the

spin-dependent force induced by the QCD axion, which will probe the QCD axion

couplings to fermions [76].
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4 ALP Dark Radiation Production in
Large Volume Scenarios

In this chapter I use early universe cosmology to study a class of string theory com-

pactifications called the Large Volume Scenario (LVS). A generic prediction of these

models is a hierarchical moduli spectrum, and at least one (nearly) massless ALP,

which is the partner of the lightest modulus. This makes it a very tractable model to

deal with, the lightest modulus is responsible for reheating, and computing its decay

rates to various products gives a predictive model for dark radiation. The modulus

will decay with a sizeable branching fraction to its ALP partner. I firstly briefly re-

view the tree level dark radiation prediction in these models, which was first done

in [77, 78]. I then look at loop corrections to this prediction. There are potentially

large effects of running the coupling of the modulus to the visible sector from the

string scale to the mass of modulus. These may suppress or enhance dark radiation

production in these models, allowing them to evade the tight constraints. This work

was published in [1], and was done in collaboration with Stephen Angus, Joseph P.

Conlon and Ulrich Haisch.
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4.1 Dark Radiation

The possible existence of dark radiation is interesting from both a theoretical and ob-

servational perspective. Observationally, dark radiation refers to additional radiation

density beyond that predicted in the ΛCDM model of standard Big Bang cosmol-

ogy. As discussed in Chapter 2, at the time of big bang nucleosynthesis (BBN) the

Standard Model (SM) predicts radiation density only in photons and three neutrino

species. The energy density of possible dark radiation is conventionally parametrised

by the effective excess number of neutrino species, ∆Neff ≡ Neff − 3.046, then

ρrad = ργ

(
1 + 7

8Neff

( 4
11

)4/3)
. (4.1)

Cosmic microwave background (CMB) experiments have developed increasing sen-

sitivity to ∆Neff . For a long time CMB experiments saw hints of a non-zero ∆Neff ,

although the situation was confused due to the slight tension between local Hubble

Space Telescope (HST) measurement of the Hubble constant H0 [79] and the CMB

derived value. The degeneracy between Neff and H0 meant the tension could be re-

solved by allowing largerNeff . When combined with the HST measurement, the results

from the Wilkinson Microwave Anisotropy Probe (WMAP), the Atacama Cosmology

Telescope (ACT), and the South Pole Telescope (SPT) are Neff = 3.84 ± 0.40 [80],

Neff = 3.50 ± 0.42 [81], Neff = 3.71 ± 0.35 [82], respectively.1 However, the Planck

satellite [83] has now measured the CMB with the greatest ever precision, resulting

in a measurement of Neff = 3.13± 0.32 at 68% confidence [8]. The constraint is even

more stringent if polarisation data is used, and becomes Neff = 2.99 ± 0.20 [8]. This

leads to the conclusion that at the 3σ level, ∆Neff > 1 is excluded.2

These values are quite consistent with the independent measurements of Neff from

BBN measurements alone [30]. Combining the latest Planck results, with the latest
1Without including direct measurements of H0, the determinations using only CMB and baryon

acoustic oscillations data are Neff = 3.55 ± 0.60 (WMAP), Neff = 2.87 ± 0.60 (ACT) and Neff =
3.50± 0.47 (SPT).

2However, there is still some 2− 3σ tension between the measurement of the Hubble constant by
Planck using the CMB, and ‘local’ astrophysical measurements using standard candles [84]. This
tension can be alleviated if Neff is higher than in the standard model Neff ≈ 3.5− 4.
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deuterium [85] and helium [86] abundances, gives the very stringent 95% C.L. con-

straints Neff = 2.95+0.52
−0.52 and Neff = 3.11+0.59

−0.57 respectively [8]. Thus we take values of

∆Neff & 1 to be ruled out, and values ∆Neff ∼ 0.5 to be disfavoured.

Dark radiation is also interesting theoretically, as it is a simple and natural exten-

sion of ΛCDM. It is believed that after inflation the Universe was reheated from the

decays of a scalar field. Dark radiation is produced whenever this field has a non-zero

branching ratio to light hidden-sector particles. Examples of such particles include

axion-like particles. From this perspective, it is not a presence, but an absence of dark

radiation that would be a surprise—dark radiation is only absent if the reheating field

has no decay modes to light hidden-sector particles.

Dark radiation also provides an arena to make contact between observations and

models of Planck-scale physics. In particular, it allows us to make connections to

string theory models. As discussed in Chapter 2, in theories with moduli it is ex-

pected that the lightest modulus field is responsible for reheating. Thus given a

string theory model with lightest modulus Φ, it is possible to compute the prediction

for dark radiation production given Φs decay rates to light, hidden sectors, compared

to the visible sector. In this Chapter we do exactly this. We look at a promising

compactification scenario of type IIB string theory, a sequestered form of the Large

Volume Scenario (LVS) [87,88], and compute the amount of dark radiation produced

in a minimal version of this model, including relevant radiative corrections.

4.2 The Large Volume Scenario

In the Large Volume Scenario (LVS) [87,88] the volume V of the compact dimensions

is stabilised at exponentially large values. This stabilisation mechanism creates a

naturally small expansion parameter, i.e. the inverse volume, and leads to a distinctive

hierarchy of scales, given in the sequestered LVS by [89]

Mstring ∼
Mpl

V1/2 , mΦ ∼
Mpl

V3/2 , Msoft ∼
Mpl

V2 , ma .Mpl e
−2πV2/3 ∼ 0 .

(4.2)
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Here Mpl = 2.4×1018 GeV is the reduced Planck mass, while Mstring, mΦ, Msoft and ma

denote the string scale, the mass of the volume modulus Φ (the modulus that controls

the overall volume of the extra dimensions), the scale of the SUSY breaking soft masses

and the mass of the volume ALP a, respectively. In what follows, we will assume that

the level of volume sequestering is the same for both scalar and gaugino masses, so

that Msoft ∼ m0 ∼ m1/2. To solve the gauge hierarchy problem, i.e. Msoft ∼ 1 TeV,

one needs V ∼ 5× 107, resulting in Mstring ∼ 3× 1014 GeV and mΦ ∼ 7× 106 GeV.

The LVS is tractable to analyse as it has a unique lightest modulus, the volume

modulus Φ, which is parametrically lighter than any other modulus. As argued in

Chapter 2, the presence of a single lightest Planck-coupled modulus implies that

within these models reheating should be driven by decays of the volume modulus,

independently of the details of the high-scale inflationary model. Here we work with an

MSSM matter content with low energy supersymmetry so as to solve the electroweak

hierarchy problem.

This is an attractive model to study, as the majority of the volume modulus’ cou-

plings are calculable in a model-independent fashion. In fact, there are two important

couplings. The first is to the volume ALP a, which is the ALP partner of the vol-

ume modulus, it is a hidden-sector state and thus the corresponding decay channel

Φ → a a gives rise to dark radiation. The second coupling is to the bilinear HuHd

of Higgs fields. This interaction leads to the only competitive visible-sector decay

mode, Φ → HuHd, and induces the reheating of the Universe. The corresponding

coupling Z is an undetermined constant with a natural value of O(1) at the string

scale Mstring. However, if the Higgs sector has an exact shift symmetry (see [90, 91]

for explicit string theory constructions of such a symmetry), then Z is fixed to 1 at

Mstring. The case of a shift-symmetric Higgs sector with pure MSSM matter content

is then completely defined and predictive. We will refer to this specific LVS as the

minimal LVS (MLVS).

In section 4.3, I review the tree level computation of dark radiation in this model

that was performed in [77, 78] (see also [92]). These authors found that in the
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MLVS, dark radiation was over-produced, with ∆Neff ≈ 1.7. However the cou-

pling Z, defined at the string scale, receives potentially large corrections of the form

1/(4π) ln (Mstring/mΦ), which given the hierarchy Mstring � mΦ could be O(1) and

thus need to be resummed using renormalisation group (RG) techniques. The rest

of the chapter presents this calculation. We find that loop corrections to the MLVS

do not improve the picture. We scan over MSUGRA parameter space, and find in

general that the coupling to the visible sector is actually reduced. Even for the most

optimistic set of parameters, it is not possible to reduce ∆Neff sufficiently to evade

current bounds within the MLVS.

4.3 Tree Level Dark Radiation Prediction

4.3.1 Decay Rates

Let us compute the branching fractions to the various sectors. To leading order, the

volume of the compactified space can be given by the volume modulus τb = Tb+T b as

V ≈ τ
3/2
b . The volume modulus has a partner volume ALP, given by ab = −i(Tb−T b).

The Kähler potential of the moduli fields is

K = −2 lnV = −3 ln
(
Tb + T b

)
, (4.3)

where we have set Mpl = 1 for now.

The volume modulus coupling to its ALP partner comes about through the kinetic

terms. The kinetic terms are L = −Kij∂µΦi∂µΦj where Ki is the derivative of the

Kähler potential with respect to the field Φi. Given the leading order Kähler potential

above, we get

L = 3
4τb

(∂µτb∂µτb + ∂µab∂
µab) . (4.4)

After canonically normalising both fields, τb =
√

3
2 ln Φ and ab =

√
2
3a, we get the

kinetic terms

L = 1
2∂µΦ∂µΦ + 1

2 exp
−

√
8
3Φ
 ∂µa ∂µa, (4.5)
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giving the interaction

L = −
√

2
3

Φ
Mpl

∂µa∂
µa, (4.6)

where we have put Mpl back in. This leads to the decay of the volume modulus into

the volume ALP, with width

Γ = 1
48π

m3
Φ

M2
pl

, (4.7)

which will correspond to the production of dark radiation. In principle there can be

many more light ALPs in the theory, if so the volume modulus would in general decay

into all of these. In the MLVS we only consider there to be one light ALP, the model-

independent volume ALP, but we note with the inclusion of these model-dependent

ALPs, the amount of dark radiation produced by the volume modulus’ decay would

likely increase.

We must now compute the rate of decay of Φ into visible sector fields, this must

be at a rate comparable to or larger than equation 4.7 in order to reheat the visible

sector, and not overproduce dark radiation at the same time. The volume modulus

couples to gauge bosons, through its contribution to the gauge kinetic function fa(Φi)

where Φi are the moduli fields. In the MLVS however such a coupling only comes

about at one loop in the SM couplings, and the decay rate is thus α2
SM suppressed

with respect to equation 4.7.

Next consider the couplings to MSSM scalar fields. The Kähler potential, when

extended to include these fields, takes the form

K = −3 ln(Tb + T b) + CC

Tb + Tb
, (4.8)

which after canonically normalising the kinetic terms, gives the interactions

L = 1√
6

Φ(C�C + C�C). (4.9)

The decay rate induced by this coupling is Γ ∝ m2
CmΦ � m3

Φ and is thus suppressed

compared to the decay rate to ALPs. The decay rate to fermions has the same

dependence, and so is again suppressed.

However, the quantum numbers of the two Higgs doublets allow us to write an
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extra term in the matter part of the Kähler potential, the so-called Giudice-Masiero

term [93],

K = −3 ln(Tb + T b) + HuHu +HdHd + (ZHuHd + h.c.)
Tb + T b

, (4.10)

which gives the extra interaction term

L = 1√
6Mpl

(ZHuHd�Φ + h.c.) , (4.11)

where again we have put Mpl back in. This leads to the unsuppressed decay of Φ into

the Higgs fields, with decay rate

Γ = 2Z2

48π
m3

Φ
M2

pl

. (4.12)

This decay into Higgs fields is the only competitive decay mode to that of dark

radiation.

4.3.2 Dark Radiation Prediction

Let us now compute ∆Neff for this model. First, lets define

Ba = ΓΦ→aa

Γtot
= 1

1 + 2Z2 , (4.13)

as the branching fraction to dark radiation (ALPs). The ratio of dark radiation to

SM radiation does not stay constant due to small boosts in the SM temperature

due to particle decoupling. The value of Neff then does not change from neutrino

decoupling onwards, since the neutrino sector now no longer gets these boosts. During

the expansion of the universe the comoving entropy, s = g(T )a3T 3 remains constant,

so the temperature of the SM obeys

g(Tν,dec)1/3 a Tν,dec = g(Trh)1/3 a Trh (4.14)
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with Trh the reheat temperature, defined in Chapter 2. This tells us then that,

remembering ρ ∼ gT 4,

ρdark,ν
ρSM,ν

=
(
g(Tν)
g(Trh)

)1/3
ρdark,init
ρSM,init

=
(
g(Tν,dec)
g(Trh)

)1/3
Ba

1−Ba

, (4.15)

where the subscript ν means the quantity is evaluated at neutrino decoupling. Then

using Neff = Nν(1 + ρdark/ρν) and that ρν/ρSM = gν/gSM = 21/43 at neutrino

decoupling. Then (setting Nν = 3 for convenience),

∆Neff = 3ρdark
ρν

= 43
7
ρdark
ρSM

= 43
7

(
g(Tν,dec)
g(Trh)

)1/3
Ba

1−Ba

. (4.16)

At neutrino decoupling, g(Tν,dec) = 10.75, and g(Trh) = 247/4− 345/4 depending on

the exact reheat temperature. This gives the prediction for ∆Neff in this model to be

1.56
Z2 ≤ ∆Neff ≤

1.74
Z2 .

(4.17)

At tree level in the MLVS one has Z(mΦ) = Z(Mstring) = 1, which implies ∆Neff '

1.7. However the measured values of Neff require ∆Neff . 0.5, which translates into

Z2 & 4. The MLVS tree-level prediction for ∆Neff is hence in conflict with observation.

However, even if the Higgs sector is exactly shift symmetric at the compactification

scale such that Z = 1, this symmetry is broken by the gauge and Yukawa couplings.

In consequence, the coupling Z will receive logarithmically-enhanced corrections from

MSSM loop diagrams. An immediate question then arises as to whether the radiative

corrections are large enough to make the MLVS compatible with the measurements

of Neff . The next subsections will address this question.

4.4 Analytic Results

We have shown that the MLVS at tree level produces dark radiation a factor of a few

above the current upper bounds. In this section we will derive some analytic results

for the running of the coupling Z, to determine whether radiative corrections can

enhance the modulus’ branching fraction to the visible sector.
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4.4.1 Running of Volume Modulus Higgs Coupling

In contrast to the Φaa coupling, which receives only Planck-suppressed corrections,

the ΦHuHd coupling is modified by the virtual exchange of MSSM particles. As

a result the coupling Z will evolve logarithmically from Mstring to mΦ, where the

volume modulus decays. The scale dependence of Z is determined by the following

RG equation
d

dt
Z = γZZ , (4.18)

where t ≡ ln (Q/Q0) with Q denoting the renormalisation scale and Q0 a reference

scale, and γZ is the corresponding anomalous dimension.

As a consequence of the supersymmetric non-renormalisation theorem [94,95], and

since the volume modulus field itself does not renormalise, the anomalous dimension

γZ can be written in terms of Higgs wave-function renormalisations. Thus

γZ = γHu + γHd , (4.19)

where γHu and γHd are the anomalous dimensions of the Higgs superfields. To verify

the correctness of (4.19), we have calculated the one-loop correction γ(1)
Z to the anoma-

lous dimension γZ explicitly. The corresponding Feynman diagrams are depicted in

figure 4.1. We performed the calculation of the self-energy and vertex diagrams using

dimensional regularisation with modified minimal subtraction (i.e. the DR scheme).

Our results for the individual diagrams agree with those given in [96–98]. Keeping

only the third-family Yukawa couplings yt,b,τ , we obtain

γ
(1)
Z = 1

(4π)2

[
−3g2

1
5 − 3g2

2 + 3|yt|2 + 3|yb|2 + |yτ |2
]
, (4.20)

which equals the sum γ
(1)
Hu + γ

(1)
Hd

of one-loop superfield anomalous dimensions as

given e.g. in the review [99]. Here the couplings g1 and g2 are given in terms of

the conventional U(1)Y and SU(2)L SM gauge couplings by g1 =
√

5/3g′ and g2 = g,

respectively.

Employing the one-loop anomalous dimension (4.20) to solve the RG equation
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Figure 4.1: The HuHu self-energy diagrams (upper row) and ΦHuHd vertex diagrams (lower
row) that contribute to the one-loop anomalous dimension γ

(1)
Z . The HdHd self-energy

diagrams needed to determine the wave-function renormalisation factor of Hd are not shown.

(4.18), we find to leading logarithmic accuracy

K ≡ Z(mΦ)
Z(Mstring) ' 1− γ(1)

Z ln
(
Mstring

mΦ

)
' 1− 18

(4π)2

(
−1.7 + 1.5

sin2 β
+ 1.6 · 10−4

cos2 β

)
,

(4.21)

where γ
(1)
Z is calculated at the string scale. To arrive at the numerical expression

we have employed g1(Mstring) ' 0.65, g2(Mstring) ' 0.69, yt(Mstring) ' 0.70/ sin β,

yb(Mstring) ' 6.0 × 10−3/ cos β and yτ (Mstring) ' 7.2 × 10−3/ cos β, corresponding to

Mstring = 3 × 1014 GeV and mΦ = 7 · 106 GeV.3 In the final result in (4.21), we have

shown the contributions arising from the terms g2
1,2, |yt|2 and |yb,τ |2 separately. The

different overall signs multiplying the contributions from the gauge and the Yukawa

couplings imply that the individual terms in (4.20) tend to cancel. In fact, the nu-

merical expression for γ(1)
Z used in (4.21) is less than 0 for 3 . tan β . 35 and vice

versa. We hence expect to find that loop corrections suppress (enhance) the partial

decay rate Γ(Φ→ HuHd) for small and large (moderate) ratios of the Higgs vacuum

expectation values, tan β. In order to obtain a reliable prediction for K, however, the

large logarithm appearing in (4.21) has to be resummed by solving (4.18) together

with the RG equations describing the scale dependence of the gauge and Yukawa
3These values for the couplings have been obtained using the numerical procedure outlined in

section 4.5.1.
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couplings.

4.5 Numerical Results

After presenting the analytic result for the anomalous dimension of the Guidice-

Masiero coupling, we now turn to the numerical RG analysis of the Φ→ HuHd decay

mode. Our methodology is detailed in the following.

4.5.1 Solution of RG Equations

The system of differential equations describing the renormalisation scale dependence

of the coupling strength Z as well as those of the gauge and Yukawa couplings is

solved iteratively with the help of SoftSusy 3.3.7 [100]. The calculation is per-

formed including all relevant one-loop and two-loop effects.4 The fine structure con-

stant α(mZ) = 1/127.973, the Fermi constant GF = 1.16637 · 10−5 GeV−2, the strong

coupling αs(mZ), the pole mass mt of the top quark, the bottom mass mb = 4.2 GeV

and the tau mass mτ = 1.777 GeV serve as SM inputs and constraints in the RG

evolution. The low-energy boundary conditions are applied at the Z-boson mass

mZ = 91.1875 GeV. At the string scale Mstring we impose minimal supergravity

(MSUGRA) boundary conditions, which just leaves five free SUSY parameters: com-

mon scalar and gaugino masses, m0 and m1/2, universal trilinear terms A0, the bilinear

soft SUSY breaking term B and the SUSY µ parameter. Following common practice,

we use the one-loop corrected electroweak symmetry breaking (EWSB) conditions

(see e.g. [101]) to trade B and the magnitude |µ| in favour of tan β and the sign

of µ. Notice that the assumed scaling of m0 ∼ m1/2 ∼ Mpl/V2 naturally requires

B ∼ M2
pl/V4 and µ ∼ Mpl/V2 to achieve EWSB. We assume that these scalings are

realised by an appropriate volume sequestering, and furthermore take A0 ∼ Mpl/V2.

The SUSY scale is determined by the geometric mean Msoft ≡
√
mt̃1mt̃2 of the masses

mt̃1,2 of the stop mass eigenstates. Finally, the mass of the volume modulus is obtained
4Two-loop effects have however a very minor impact on the analysis, and therefore we only

reported the result of the one-loop anomalous dimension γ
(1)
Z in (4.20).
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from mΦ = M3
string/M

2
P .

4.5.2 SM and MSUGRA Parameter Dependencies

Before studying the effects of varying the MSUGRA parameters on K, in equation

4.21, we consider the impact of the parametric SM errors. The dominant sources of

SM uncertainties arise from the top mass and the strong coupling constant. This is

to be expected because the anomalous dimension of Z (equation 4.20) is quadratic

in the top Yukawa coupling and the RG evolution of yt depends sensitively on the

low-energy initial conditions for mt and αs. The more critical ingredient is the top

mass for which the latest Tevatron measurements find mt = (173.2± 0.9) GeV [102].

The latest world average, including new LHC ATLAS and CMS results [30], is within

this uncertainty, thus will not affect our conclusions. However, the exact meaning of

the mass parameter measured by experiments such as CDF, D0, ATLAS and CMS

via a kinematical reconstruction of the top decay products and comparison to Monte

Carlo simulations is unclear and so is its connection to yt. A theoretically well-

defined determination of mt can, on the other hand, be obtained from the total

cross section for top-quark pair production. While such extractions (see e.g. [103])

give values for mt that are compatible with the mass determinations from direct

reconstruction, the achieved accuracy is notably worse, with an uncertainty of around

±5 GeV. We use the following value of the strong coupling evaluated at the Z-boson

mass αs(mZ) = 0.1184 ± 0.0007 [104]. This value of αs is obtained from a large set

of measurements with significant spreads between them. To account for this fact we

will also give results employing the 3σ error ±0.0021 of the αs world average. Note

the latest world average for αs(MZ) [30] is again well within the 1σ quoted errors we

use in our calculation, and will thus not affect our conclusions at all.

Our predictions for K as a function of Msoft are shown in figure 4.2. The results

displayed in the left panel correspond to m0 = m1/2 = A0, tan β = 10 and signµ = +1.

Almost identical predictions are obtained for different choices of A0 and signµ = −1.

The solid black curve corresponds to mt = 173.2 GeV and αs(mZ) = 0.1184, while the
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Figure 4.2: Left: Predictions for K for fixed MSUGRA input. The solid black line indicates
the result obtained for the central choice of SM inputs while the coloured bands reflect the
uncertainties associated with the errors in the top mass and the strong coupling constant.
Right: Predictions for K for different values of tan β. See text for further explanations.

yellow (green) band has been obtained by varying mt and αs(mZ) by ±0.9 GeV and

±0.0007 (±5 GeV and ±0.0021) around their central values. We see that the ratio

(4.21) is largely independent of the SUSY scale Msoft, but that the exact value of K

depends to some extent on the low-energy input mt and αs(mZ). Numerically, we find

that the variations of ±0.9 GeV and ±0.0007 (±5 GeV and ±0.0021) lead to shifts in

K of less than ±2% (+5%
−10%) relative to the central values. The largest value of (4.21)

is thereby attained for the smallest value of mt and the largest value of αs(mZ), and

vice versa.

We now analyse the dependence of K on the choice of tan β. Our numerical

results are shown in the right panel of figure 4.2. All curves have been obtained for

m0 = m1/2 = A0, signµ = +1, mt = 173.2 GeV and αs(mZ) = 0.1184. The dotted

red, dotted orange, dashed yellow, dashed green, solid blue and solid magenta lines

correspond to tan β = 2, 3, 5, 15, 25 and 50, respectively. As anticipated, we find that

for tan β . 3 the predictions for the ratio (4.21) are below 1, while for moderate values

of tan β one obtains ratios above 1. In fact, the values of K saturate for tan β ' 10

and increasing tan β further leads to a suppression of the ratio
(
a feature that is also

reproduced by the simple formula (4.21)
)
. For large tan β values, the ratio K then

ends up below 1. We see furthermore that varying tan β in the range [2, 50] shifts K
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Figure 4.3: Predictions for the effective excess number of neutrino species in the MLVS
framework. The coloured wedge-shaped region indicates the possible values of ∆Neff con-
sistent with the LHC measurements of a Higgs-like state near 126 GeV. For comparison the
accessible parameter space without imposing the Higgs constraint is underlaid in grey. For
further details see text.

by only +3%
−7% away from 1. The dependence on the other MSUGRA parameters are

even less pronounced than that on tan β.

4.5.3 Predictions for the Effective Excess Number of Neutri-

nos

It is well-known that the mass mh of the Higgs boson puts stringent constraints on

the MSUGRA parameter space. This is particularly true after the discovery of a

relatively heavy Higgs-like state with a mass of around 126 GeV by ATLAS [105] and

CMS [106].

We assess the impact of the LHC measurements of the Higgs mass on the pre-

dictions for ∆Neff by performing a global scan in the MSUGRA parameter space.

Only points that lead to mh ∈ [123, 129] GeV are retained, which is the range allowed

by the ATLAS and CMS data (see [107] for the latest ATLAS and CMS combi-

nation) if one accounts for the theoretical uncertainties in the MSSM calculation

of the Higgs mass (see e.g. [108]). We generate a large sample of points allow-

ing the MSUGRA parameters to take random values within m0,1/2 ∈ [0.1, 10] TeV,
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A0 ∈ [−30, 30] TeV and tan β ∈ [1, 60], permitting µ to be of either sign. In order to

incorporate SM uncertainties we let the top mass and the strong coupling constant

float within mt = (173.2± 5) GeV and αs(mZ) = 0.1184± 0.0021, respectively.

The predicted value of Z(mΦ) at each parameter point is then converted into a

predicted range of ∆Neff using

1.56
Z2 ≤ ∆Neff ≤

1.74
Z2 . (4.22)

Note that the range takes into account the uncertainty associated with the value of

the reheating temperature. Since we effectively scan over all individual sources of

uncertainties, the derived limits on ∆Neff should be considered very conservative.

Our results of the MSUGRA scan are shown in figure 4.3. The accessible pa-

rameter before (after) imposing the Higgs-mass constraint is indicated by the grey

(coloured) region. We see that in the MLVS the values for ∆Neff compatible with the

mh constraint lie in the narrow range of about [1.4, 2.6], and that the width of the

allowed region is essentially constant for Msoft & 5 TeV. The constraint due to the

Higgs mass influences the predictions for ∆Neff only indirectly by narrowing down

the possible values of Msoft and tan β. This effect is most visible for Msoft . 2 TeV,

since such relatively low values of Msoft require large values of tan β to push the Higgs

mass up to around 126 GeV. Notice also that the constraint from mh cuts away the

parts of the parameter space with ∆Neff & 2.6 and Msoft . 0.5 TeV. Both regions

are inaccessible because they correspond to either tan β . 2 or to a too light stop

spectrum. We expect that other low-energy constraints (such as e.g. flavour physics)

have an even smaller impact on the limits obtained for ∆Neff than mh. The latest

Planck measurement of Neff [8] gives ∆Neff = 0.08± 0.32 (∆Neff = −0.06± 0.20 with

polarization data). The minimal value of ∆Neff ' 1.4 that is attainable in the MLVS

framework thus corresponds to a discrepancy of about 4σ (7σ) between theory and

experiment. These findings basically rule out the MLVS as a model of dark radiation.
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4.6 Conclusions

The latest Planck results have ushered in a new era of precision cosmology. These

measurements support the standard ΛCDM cosmological model, and the bounds on

the presence of dark radiation are very stringent. This is especially interesting since

many beyond the standard model theories predict light hidden particles which could

be produced abundantly during reheating. In light of this, in this chapter we have

analysed the predictions for dark radiation in a class of string theory compactifications

called the Large Volume Scenario. We pick a minimal version of these models with

one light ALP, an MSSM visible sector, and shift-symmetric Higgs sector called the

Minimal LVS (MLVS). After reviewing the tree level prediction, we have analysed

loop corrections to ∆Neff in this MLVS.

In this class of models, additional contributions to the effective excess number

of neutrinos are an unavoidable consequence of the presence and the interactions of

a light volume modulus Φ: the decays of this field to the visible sector drive the

reheating of the Universe after inflation, while dark radiation arises from its decays

to an ultralight ALP partner a. The only visible-sector decay mode that can compete

with the ALP channel is the decay into Higgs pairs induced by a Giudice-Masiero term.

The interplay between the two channels, Φ → aa and Φ → HuHd, fixes the relative

fraction of dark radiation uniquely in terms of the coupling strength Z between Φ

and the bilinear HuHd. Under the assumption that the coupling Z is set to 1 at the

string scale by means of a shift-symmetric Higgs sector, the ratio of branching ratios

of visible-sector and hidden-sector decays can then be predicted accurately. At the

tree level such a calculation leads to ∆Neff ' 1.7, at variance with observation.

Unlike the coupling of the volume modulus to its ALP partner, which receives

only Planck-suppressed contributions, the ΦHuHd coupling is modified by MSSM

loops. These radiative corrections induce large logarithms that are formally of O(1),

and hence have to be resummed to all orders. In our work, we have calculated the

anomalous dimension γZ of the composite operator HuHd�Φ needed to perform such
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a resummation. We found that the size of the leading-logarithmic corrections to the

coupling strength Z depends sensitively on the ratio of the Higgs vacuum expectation

values, tan β, through the top Yukawa coupling. As a result, loop corrections suppress

Γ(Φ → HuHd) for tan β . 3 and tan β & 35, while the partial decay rate to Higgs

pairs is enhanced for all other tan β values. The maximal enhancements occur for

tan β ' 10, but amount to below 10% only.

This simple pattern of suppressions and enhancements is also reproduced by our

high-statistics MSUGRA scan, which includes all relevant two-loop effects. Specif-

ically, we find that in the MLVS the values of ∆Neff that are compatible with a

Higgs-boson mass close to 126 GeV all lie in the range [1.4, 2.6]. The spread of the

predictions is rather insensitive to the exact values of the MSUGRA parameters m0,

m1/2 and signµ, and is influenced by the Higgs mass requirement only indirectly be-

cause this constraint needs tuning of A0 and tan β. In consequence, it turns out that

for moderate values of tan β, radiative corrections tend to suppress the tree-level pre-

diction ∆Neff ' 1.7. The loop-induced effects are however always small, leading to a

robust lower bound of ∆Neff & 1.4. This limit corresponds to a ∼ 4σ tension between

theory and experiment, which essentially excludes the MLVS.

The production of ALP dark radiation by moduli decay at reheating appears to

be unavoidable. For now we put aside the question of whether a certain string model

evades the bounds on dark radiation, and instead ask whether these ALPs could be

observed. Since these ALPs do not interact, they should still exist as a homogeneous

background akin to the CMB. Such an observation would be a direct test of early

universe physics and in particular string theory models. We look at the possibility of

using galaxy clusters to observe these ALPs in the next chapter.

Since the publication of the paper this chapter is based on, several studies have

looked at dark radiation production in other string theory compactification models.

Dark radiation production has been studied in the context of anisotropic versions of

the Large Volume Scenario [109], it was found that such models over-produce dark

radiation by several orders of magnitude and thus are ruled out. The authors of [110]

48



considered three different models again within the Large Volume Scenario, where

the volume modulus’ decay to SM gauge bosons was not loop suppressed and thus

found regions of parameter space where dark radiation bounds could be evaded. Dark

radiation bounds were also found to be evaded if one considered split supersymmetry-

like models (see [111, 112] for a discussion of split-supersymmetry), instead of the

MSSM [113]. Here decays to scalars of a similar mass to the modulus enhances the

branching fraction to visible-sector fields. Finally, [114] looked at dark radiation in

the context of the axiverse, and showed that when specific conditions are held, dark

radiation could again be reduced. They showed these conditions could be realised in

both the Large Volume Scenario, and for M-theory compactified on a G2-holonomy

manifold. These studies confirm the ability of dark radiation to probe string models.
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5 A Cosmic ALP Background and the
Galaxy Cluster Soft X-ray Excess

In this chapter I will look at the question of whether a population of relativistic ALPs

produced in the early universe could be detected using X-ray astronomy. I have shown

in the previous chapters the production of light (massless) ALPs during reheating is

generic in string theory compactifications. Here we focus on a potential signal of

this ALP dark radiation. I start by reviewing the work of [115] which showed that

today these ALPs would form a homogeneous background. For an appropriate choice

of modulus mass, this background has X-ray energies. In the rest of the chapter I

show using detailed simulations that this background of ALP dark radiation could

explain a long-standing puzzle of galaxy cluster X-ray astronomy—the soft X-ray

excess. The idea that the soft X-ray excess could be explained in this way was

originally proposed in [116]. This chapter is based on the publications [2], work done

and written in collaboration with Stephen Angus, Joseph P. Conlon, David Marsh

and Lukas Witkowski, and [3].
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5.1 Introduction

We have seen in Chapter 4 that non-thermal production of ALPs in the early universe

is well-motivated in models arising from compactifications of string theory to four

dimensions. These ALPs arise from moduli decays at the time of reheating, and, due

to their very weak interactions, would linger today as a homogeneous and isotropic

background. We call this background a cosmic ALP background (CAB). The CAB

has a non-thermal spectrum determined by the expansion of the universe during the

time of moduli decay [115]. For moduli masses mΦ ≈ 106 GeV the present energy of

these ALPs is Ea ∼ 0.1− 1 keV. In this chapter we will use this background of ALPs

to explain an excess of soft X-ray photons seen in many galaxy clusters.

Galaxy clusters are the largest gravitationally bound objects in the universe and

have historically served as powerful indicators of novel fundamental physics [117].

In addition to the dark matter component comprising around 80% of the cluster

mass, around 15% of the mass is in a hot ionised intra-cluster medium (ICM) with

typical temperatures of T ≈ 108 K (corresponding to ω ≈ 7 keV) and number densities

n ∼ 10−1− 10−3 cm−3. The ICM represents the large majority of a cluster’s baryonic

mass and generates diffuse X-ray emission through thermal bremsstrahlung.

Observations of a large number of galaxy clusters have found evidence at low

energies around E . 0.4 keV, for excess emission above that from the hot ICM. This

soft excess was initially observed in the Virgo and Coma clusters in 1996 [118–120]

and has since been found in many other clusters [121, 122]. There are two candidate

astrophysical explanations: emission from a warm T ≈ 0.1 keV gas; and inverse

Compton scattering of non-thermal electrons on the cosmic microwave background

(CMB). The former explanation has difficulty with rapid cooling times of a warm gas

and the lack of associated line emission; the latter has difficulty remaining consistent

with the observed level of synchrotron radio emission and the failure to detect clusters

in gamma rays.

In [116], the cluster soft excess was proposed to arise from conversion of a CAB
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into photons in the magnetic field of galaxy clusters.

The existence of such a CAB is indirectly probed through its contribution to

dark radiation, see Chapter 2. The latest Planck satellite [83] measurements place

very stringent constraints on the amount of dark radiation in the early universe.

They measure Neff = 3.13 ± 0.32 at 68% confidence [8], dark radiation is even more

constrained if one includes Planck polarisation data Neff = 2.99± 0.20 [8]. This leads

to the conclusion that at the 3σ level, ∆Neff > 1 is excluded. In combination with the

latest deuterium [85] and helium [86] abundances, the Planck 95% C.L. constraints

Neff = 2.95+0.52
−0.52 and Neff = 3.11+0.59

−0.57 respectively [8]. Thus the energy density of the

CAB is very tightly constrained.

In this chapter we will take the ALP mass to be zero, although in practice the

physics is unaffected for any mass ma . 10−12 eV. We will also set the energy density

of the CAB such that the current limits on dark radiation are saturated, i.e. we set

∆Neff = 0.5, but where applicable we will discuss how our results scale with ∆Neff ,

should the bounds become more restrictive (or a discovery made). It should also be

noted that if more than one ALP is produced as dark radiation, not all of these ALPs

may couple to photons, and thus the ∆Neff we use for our results would need to be

smaller than the current bound.

In the presence of a magnetic field, axion-like particles can directly convert into

photons of the same energy via the coupling,

Laγγ = 1
4MaFµνF̃

µν = 1
M
aE ·B , (5.1)

see Chapter 3. In the enlightening case of sufficiently high ALP energies or small

ambient electron densities, the conversion probability for a fixed domain is given by

Pa→γ = 1
4

(
B⊥L

M

)2
, (5.2)

where B⊥ denotes the magnetic field component transverse to the ALP velocity and L

denotes the corresponding coherence length [35]. This conversion allows the potential

detection of a CAB through ALP-photon conversion.
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Galaxy clusters support magnetic fields that are modest in magnitude (B ≈ µG)

but are extended over megaparsec distances and have kiloparsec coherence scales,

allowing observationally significant ALP-photon conversion probabilities. In [116], a

crude model with a constant magnitude and fixed coherence length for the magnetic

field was used to estimate the ALP-photon coupling M that would be required to

reproduce the soft excess in Coma from a CAB, finding M ≈ 1013 GeV.

In this chapter we continue the study of ALP-photon conversion in galaxy clusters

using a far more detailed magnetic field model, first constructed in [123]. In this

model of the cluster magnetic field, the magnetic field has a simple power-law power

spectrum, with cut-offs such that the magnetic field only has power on scales between

Λmin and Λmax. Using this stochastic model, we construct a numerical simulation of the

magnetic field in four clusters: Coma, A665, A2199, and A2255. We then numerically

propagate ALPs through it and quantitatively study the resulting predictions for the

soft excess magnitude and morphology.

This chapter is organised as follows. I start in section 5.2 by introducing what we

call a cosmic ALP background (CAB), produced by moduli decay in the early universe.

Section 5.3 reviews the cluster soft excess phenomenon, the proposed astrophysical

explanations and the constraints on these explanations. Section 5.4 reviews knowledge

of galaxy cluster magnetic fields, introduces the model used in this work and describes

the method used to produce a simulation of the magnetic field. Then in section 5.5 I

describe ALP–photon mixing, and the numerical methodology involved in calculating

ALP-photon conversion probabilities. The results for the detailed study of the Coma

cluster, first published in [2], are presented in section 5.7. In section 5.8, I present a

follow-up study of three more clusters: A665, A2199, and A2255, published in [3]. In

section 5.9 I present the conclusions from these studies.

5.2 A Cosmic ALP Background

As discussed in Chapter 2 if moduli fields arising from the compactification of string

theory exist, general arguments imply they should be responsible for the reheating of
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the Standard Model degrees of freedom. Almost independently of the detailed model

of inflation, moduli become displaced from their final metastable minimum during

inflation and begin to oscillate at the end of inflation. The energy density stored in

this oscillating field will come to dominate the energy density of the universe. This

modulus-dominated stage of the universe’s history lasts until the moduli decay into

visible and hidden sector matter and radiation, thus inducing reheating.

The energy density of the universe at the time the modulus decays, τ−1
decay ∼ H ∼

Γ ∼ 1
8π

m3
Φ

M2
pl

, is

Vdecay ∼ 3H2M2
pl ∼

m6
Φ

M2
pl

. (5.3)

The visible sector decay products of the modulus rapidly thermalise and initiate the

Hot Big Bang at a temperature

Treheat ∼
m

3/2
Φ

M
1
2
pl

∼ 1 GeV
(

mΦ

106 GeV

)3/2
. (5.4)

However, the gravitational origin of the moduli implies that moduli can also decay

to any hidden sector. Indeed we have already shown in Chapter 4 that one expects

large branching fractions to hidden sectors, which include decays into hidden sector

massless particles with extremely weak interactions (such as ALPs) [1,77,78,92] (also

see [124]).

The decay of a modulus field into ALPs is induced by the Lagrangian coupling
Φ
Mpl

∂µa∂
µa, resulting in ALPs with an initial energy Ea = mΦ/2. Since they are weakly

interacting, the ALPs do not thermalise and the vast majority of ALPs propagate

freely to the present day, where they form a homogeneous and isotropic background—

a cosmic ALP background. Being relativistic, they contribute to the dark radiation

energy density of the universe, and thus the energy density of the CAB is probed

indirectly through dark radiation measurements.

The characteristic ALP energy today is set by the initial ALP energy, redshifted

to the present. Since the current CMB temperature is found simply by redshifting

the primordial thermal plasma (up to small
(
g∗,now
g∗,init

)−1/3
boosts as species decouple),
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Figure 5.1: A typical ALP number density per (kpc)3 for a CAB with 〈ECAB〉 = 150 eV,
which contributes to dark radiation with ∆Neff = 0.5. The precise location of the energy
peak depends on the value of mΦ.

we have
Ea,now

Tγ,now
' Ea,init

Tγ,init
∼
(
Mpl

mΦ

)1/2
.

For moduli masses mΦ ≈ 106 GeV, this gives Ea ∼ 106 TCMB ≈ 200 eV.

To find the exact spectral shape of the CAB, we must account for the fact that

moduli do not decay instantaneously, and meanwhile the expansion rate of the uni-

verse changes as it transitions from matter (modulus) domination prior to reheating

into radiation domination after all moduli have decayed. Moduli that decay early give

rise to present-day lower-energy ALPs as they have more time to redshift, whereas

more energetic ALPs arise from late-decaying moduli. The spectral shape was com-

puted numerically in [115] and may be described as ‘quasi-thermal’, with an expo-

nential fall-off at high energies (c.f. figure 5.1). The overall magnitude is normalised

to the ALP contribution to ∆Neff , and the peak location is determined by the mass

of the modulus and its lifetime.

While a CAB can be indirectly probed through studies of dark radiation, it can

be directly observed only through its couplings to visible-sector matter and gauge

bosons, as mediated, for example, by the operator

a

M
E ·B .

In the presence of a magnetic field this induces ‘oscillations’ of ALPs into photons in
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a process analogous to neutrino oscillations [35,36], see Chapter 3. The observational

consequences of this conversion of the CAB have been considered in [116, 125, 126].

ALPs may also play a role by scattering off ambient particles in the thermal plasma,

which was considered in [115]. Giving the value of M , the total ALP energy density,

and the central CAB energy specifies an entirely predictive model. In this model,

the spectrum and number of photons arising from ALP–photon conversion in any

astrophysical magnetic field can be computed.

5.3 The Cluster Soft X-ray Excess

Galaxy clusters are the largest virialised structures in the universe, with typical masses

∼ 1014−1015M� and spatial extents of O(1 Mpc). Clusters emit light of all frequencies

ranging from radio waves to X-rays. The space between galaxies is suffused with

an energetic ionised plasma, termed the intra-cluster medium (ICM). The energy

of the ICM arose from the release of gravitational potential energy as the cluster

formed through accretion and merger of sub-clusters. The hot ICM has a temperature

T ∼ 2 − 8 keV and emits X-rays via thermal bremsstrahlung, with typical X-ray

luminosities of L ∼ 1042−45 erg s−1 (where 1.6 × 10−3 erg = 1 GeV).

The aim of this section is to summarise the observational history of the soft excess

from galaxy clusters and to discuss the astrophysical models proposed to account for

it. We also review the status of these models in light of more recent measurements

of the Coma magnetic field as well as the (null) observations of galaxy clusters in

gamma rays. A comprehensive review of the soft excess phenomenon from 2008 is

given in [122].

5.3.1 History of Soft Excess Observations

Excess soft X-ray emission from galaxy clusters has been consistently found by a

number of satellites and in a significant number of clusters. In this section we review

how the different satellite missions have contributed to observational evidence for the

excess.
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Accurate measurements of soft X-ray fluxes from distant sources require accurate

measurements of the local soft X-ray background. The soft X-ray sky has gradients on

the scale of a few degrees and is also subject to temporal variation due to solar flares

and charge exchange scattering between the solar wind and the Earth’s exosphere.

Galaxy clusters are large objects, with a typical diameter d ≈ 1 Mpc, and the intra-

cluster gas generates diffuse emission with relatively low surface brightness. The ideal

background is therefore one which is both spatially and temporally contiguous. This

is most easily accomplished if the observing telescope has a large field of view, which

can then accommodate the entire cluster and allow the background to be taken from

the edge region of the detector.

The original discovery of the cluster soft excess phenomenon was made in 1996

with observations of the Virgo and Coma clusters [118–120] using the Extreme Ul-

traviolet Explorer (EUVE). The EUVE Lex/B detector [127] had peak response at

138 eV and very limited spectral resolution. The properties of the ICM gas were deter-

mined by measurements on complementary instruments with X-ray sensitivity. The

EUVE observations revealed a large EUV excess over the level of emission expected

from thermal bremsstrahlung from the hot gas. By default, these observations were

interpreted as evidence for a warm gas (T ≈ 5× 105 K ' 50 eV) within the cluster.

An excess was then found in the clusters A1795 and A2199 [128, 129], where

very large soft excesses were reported. However there was disagreement about the

details of background subtraction for the EUVE satellite and the variation in telescope

sensitivity over the field of view. Several re-analyses have disagreed over the presence

and detailed properties of the excesses in specific clusters [130–135]. The analysis [136]

found EUV soft excesses present in Coma, Virgo, A1795, A2199, and A4059. The

magnitude of the soft excess became more pronounced at large radii. No consensus

was reached over the existence of an EUV soft excess in the other clusters observed

with EUVE.

The other main satellite in which the soft excess has been observed was ROSAT

[137] which carried out an all-sky survey. ROSAT was the most suitable satellite for
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studying the excess. It had an energy range of 0.1− 2.4 keV with a large field of view

of 2◦ diameter allowing the full cluster to be seen, and a low internal background.

The large field of view allows the entire cluster to be seen in one pointing, allowing a

temporally contiguous background to be estimated from the edge of the image. The

spectral resolution was however limited, with ∆E/E = 0.43
√

0.93 keV/E.

ROSAT has been used to study the soft excess both through individual papers on

particular clusters and through a large statistical survey [121]. A soft X-ray excess was

seen in many clusters individually: A3558, A3560, A3562 and A3571 [138]; clusters

in the Hercules supercluster [139]; and Sersic-159 (a.k.a. AS1101) [140,141].

The largest study to date of the soft excess was carried out in [121], in which 38

clusters were studied. This study looked for excess emission in the ROSAT 0.1 −

0.28 keV band compared to expectations from the hot gas. In most cases (except for

the nearest clusters), the large ROSAT field of view enabled an in situ background

measurement from the peripheral detector regions.

The study found that soft excess emission was a general feature of galaxy clusters.

A statistically significant detection was observed in 30% of the sample. In some

cases, such as Coma, at very high statistical significance. A soft excess was only ruled

out in a small number of clusters. Soft excess emission was found for both nearby

and distant clusters, for both relaxed and disturbed clusters, and at a wide range of

Milky Way neutral hydrogen absorption column densities. In all cases the relative

magnitude of the soft excess compared to the thermal ICM emission did not exceed

30 percent. The soft excess appeared to follow an identifiable morphological trend

in that excess emission was preferentially found at radii r & 175 kpc, outside the

very centre of clusters. In later sections we will comment on how the properties of

ALP–photon conversion in cluster magnetic fields may explain this trend.

Soft excess emission has also been studied with XMM-Newton, Suzaku and Chan-

dra. These telescopes have better spectral resolution than ROSAT but have much

smaller fields of view and energy ranges not covering all of soft excess range.

Statistical studies of large samples of clusters with XMM-Newton were carried out
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in [142–145]. Searches for emission lines with XMM proved null [146–149] (although

see [150] for a marginal detection), with previous detections [143, 144, 151] explained

by the local or galactic background [152–154].

The current state of soft excess detection in XMM-Newton remains unclear how-

ever. The XMM-Newton detections of soft excess were challenged in [153], where it

was argued that they arose from an incorrect background subtraction. This issue was

therefore revisited in [154]. With a new calibration, these authors found that soft

excesses were consistently detected by one of the two instruments (MOS) while being

absent in the other (PN).

Let us also mention the (limited) studies of the soft excess that have been carried

out with Suzaku and Chandra. The limited field of view again makes these suboptimal

instruments for studies of diffuse soft emission. The soft excess emission for the cluster

A3112 was studied in [155] (with Chandra) and in [148] (with Suzaku), both finding an

excess. Sersic 159 (AS1101) was studied with Suzaku in [147]. This study confirmed

the existence of the soft excess but did not find the tentative OVII emission line

reported by earlier XMM-Newton studies. Chandra data on the same cluster was

considered in [141], again an excess was found.

5.3.2 Specific Clusters

Throughout this work we will compare our simulations to the observations of [121],

which is the largest complete study of the soft X-ray excess in 38 galaxy clusters, and

currently appears unchallenged. ROSAT is also the best instrument for the study

of the soft excess, and unlike the case for EUVE there is no controversy about the

precise mechanism of background subtraction. The excess is usually phrased as the

fractional excess, ξ, defined as

ξ ≡ p− q
q

, (5.5)

where p and q are the observed and expected counts in the 0.1 − 0.28 keV band

respectively. We show the fractional excess in several concentric annuli for the clusters

involved in this study in figure 5.2. Here we summarise the observational standing of
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Figure 5.2: The fractional excess, ξ, over the expected thermal bremsstrahlung emission in
the 0.1− 0.28 keV band, in several annuli for the four clusters a) Coma, b) A665, c) A2199,
and d) A2255. Data taken from [121]. Points coloured red indicate that the total (thermal
and soft excess) flux in the 0.1− 0.28 keV band does not exceed the background by 25%.

the four clusters involved in this study, focusing on ROSAT data.

Coma

Coma was one of the first clusters in which a soft excess was found. It is also one

of the few clusters for which EUVE conclusively found a soft excess. The centre of

the Coma cluster was studied with ROSAT in [121], and two studies have also been

performed for the outskirts of the cluster [156, 157]. In the centre of the cluster, a

large 20− 30% soft excess was found at very high statistical significance, in addition
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the excess was seen to be increasing with radius.

A study of cluster outskirts, where there is less intrinsic signal, requires a careful

subtraction of the background. The first study (2002) [156] used offset pointings to

measure the background and found a soft excess extending out to 2.6 Mpc. A later

study (2009) was [157], which used the observation of Coma during the ROSAT all-

sky survey. Although this observation was of limited temporal duration, it involves

a background that is both spatially and temporally contiguous, being measured as

the satellite slews across the sky. This found a soft excess in the R2 channel (0.14−

0.28 keV) extending up to 5 Mpc from the cluster centre.

A665

ROSAT observations of the galaxy cluster Abell 665 in [121] found no excess. Indeed

the inner part of the cluster seems to show a deficit of soft X-rays which is taken as

a sign of some cooler gas resulting in absorption of the soft X-ray component of the

ICM. Observations at larger radii show results consistent with no excess. No other

analyses of observations of A665 have been performed, that we are aware of.

A2199

The second galaxy cluster we consider is Abell 2199. Many analyses of the soft X-

ray excess in A2199 have been performed. An excess in A2199 has been observed

with three satellites: the EUVE satellite, and the X-ray satellites BeppoSAX and

ROSAT [129, 130, 134, 136, 158–161]. However due to controversies about the back-

ground subtraction in EUVE and BeppoSAX, the status of observations of the soft

excess in A2199 with these satellites is unclear.

Averaging over the whole of the cluster, the ROSAT analysis of [121] found no

compelling evidence for a soft X-ray excess. Excluding a large deficit at< 1 arcminute,

there is small overall excess, however due to the large scatter in the data it has very

low statistical significance.
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A2255

Observations of Abell 2255 in [121] revealed an excess, though averaged over the clus-

ter it is still at low significance. Although the excess is not as statistically significant

as the Coma cluster, an excess of ∼ 20% was seen between 1 and 6 arcminutes from

the cluster centre. An even larger excess of ∼ 50% was seen between 9 and 15 ar-

cminutes, though the total signal (thermal emission from the hot ICM plus any excess

emission) over background in this region was too poor to draw conclusive results and

were thus not analysed further. This is the only analyses of the soft X-ray excess that

has been performed on A2255 that we know of.

5.3.2.1 Summary

In summary, soft excess emission has consistently been found with many different

satellites across many different clusters. While calibration and background subtrac-

tion is difficult, the consistency between different instruments with very different

sources of systematic error strongly suggests that the effect is real and not an in-

strumental artefact. The precise energy range of the excess is unclear. Some XMM-

Newton studies suggest that the excess reaches up to 1 keV, but this is also a satellite

where background and calibration issues are more pronounced.

5.3.3 Astrophysical Models of the Soft Excess

Two main astrophysical models have been proposed to explain the soft excess. The

first is a ‘warm’ gas, which either coexists with the hot gas of the ICM, or is located

at the outskirts of the clusters as a filamentary inter-galactic medium. The soft excess

then arises from thermal bremsstrahlung from this warm gas. The second scenario

involves the non-thermal generation of the soft excess from inverse Compton scattering

of relativistic electrons on the CMB. Here I review both proposed explanations.
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5.3.3.1 A Warm Gas

Thermal emission from a ‘warm’, T ∼ 0.5–1 × 106 K [118–120], gas can come in two

forms. Either as an extra cooler component of the ICM [118–120], or from a warm hot

intergalactic medium (WHIM) located at the outskirts of the cluster [162–164]. Such

a WHIM is thought to be a filamentary structure linking galaxy clusters, and explains

the missing baryons problem [165]. The main problem in the first case is cooling of

the gas. To maintain pressure balance between the warm and hot components of the

ICM, the lower temperature gas must have higher electron densities, increasing the

rate of collisional cooling and resulting in a gas that cools in a shorter time than the

typical age of the cluster [166], thus without cooling flows one would not expect to see

this warm component of the gas. In the second case, it seems possible to explain the

soft X-ray excess at the outskirts of clusters, where the filaments typically reside, but

the central excesses are harder to explain. Explaining the soft excess here requires

very long filaments aligned along the line of sight to each cluster where a central

excess is observed [164].

A second problem is that a warm gas should also have thermal emission lines

associated to it. However searches for lines have proved null [146–149, 167, 168], and

claimed detections [143,144,151] have subsequently been challenged [152–154].

While these two problems render the warm gas proposal at the cluster centre very

problematic, there remains a possibility it could be associated to a filamentary WHIM

at the outskirts of the cluster.

5.3.3.2 Inverse Compton Scattering

In the second scenario, proposed in [169–172], the soft excess arises from inverse

Compton up-scattering of CMB photons with a relativistic electron population, hence

abbreviated as IC-CMB. Up-scattering CMB photons to the soft X-ray regime requires

a population of non-thermal electrons with

γ ∼ 500
(
Eexcess

200 eV

) 1
2
.
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Such electrons have presumably been produced by supernovae, radio galaxies or by

particle creation in intra-cluster shocks, and the IC-CMB explanation therefore ties

the soft excess to the non-thermal cosmic ray content of clusters.

One attractive feature of this scenario is that significant populations of non-

thermal relativistic electrons are known to be present in some galaxy clusters. In

Coma, for example, this is evidenced by the presence of a large radio halo which (as I

will review in section 5.4) indicates the presence of non-thermal relativistic electrons

with γ ≈ 2000. In the first versions of the IC-CMB scenario, the electrons at γ ≈ 500

were assumed to connect with the higher energy electrons at γ ≈ 2000 by a simple

spectral power law.

Observations of the radio emission fix the electron population’s spectral index,

and a combination of the magnetic field magnitude and electron number density. The

magnitude of the soft excess produced by IC-CMB emission is dependent on just the

number density of electrons. Thus given a simple power law model of the relativistic

electrons between the soft excess and synchrotron emitting electrons, matching the

observed fluxes predicts the galaxy cluster magnetic field.

Indeed, early studies of the Coma cluster [169–171,173–178] found that both emis-

sions could be explained in this way, provided the cluster magnetic field is B . 1µG.

Alternatively, extrapolation of the radio population to the soft X-ray regime in [169]

found that a fraction ∼
(

B
0.4µG

)−2.34
of the soft excess in the Coma cluster could be

explained by the radio population.

As we will discuss in section 5.4, observations of Faraday rotation through the

Coma magnetic field imply that the magnetic field has a strength B ∼ 3 − 5 µG.

Thus it is not possible to explain both radio emission and soft excess emission using

the same population of electrons. Instead there must be two populations of relativistic

electrons, and the soft X-ray emitting electron population should have a sharp cut-off

above γ ∼ 500 [179,180].

Given a single injection event, such a cut-off naturally occurs. Due to radiative

losses electrons lose energy as dE
dt
∼ −E2, thus high energy electrons are naturally
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degraded. However this a time-dependent cut off, as such, in order that the cut-off

falls exactly in the region between the two emission regions, γ ∼ 500− 1000, the soft

X-ray emitting electrons would have to have been injected at a rather specific time

in the past. For Coma, this was estimated to be 1 to 1.4 billion years ago [180]. The

radio emitting population must then be generated by other (weaker) injection events

later than this original injection event.

We expect similar constraints on the cluster’s injection histories to hold for the

other clusters in which an excess has been observed. Thus it seems that the ob-

served high magnetic fields in galaxy clusters require rather special initial conditions

to generate the electron populations necessary to produce the soft X-ray and radio

emission.

A further constraint on the IC-CMB explanation of the soft excess comes from

gamma ray emission. Gamma ray emission arises from non-thermal bremsstrahlung

from scattering of the IC-CMB electrons off the thermal proton population, and is

independent of the magnetic field. Since it is physically implausible that whichever

initial event accelerated the electrons did not simultaneously accelerate protons, there

is in addition expected to be gamma ray emission from π0 secondaries produced by

collision of cosmic-ray protons with the thermal protons (note that at the top of

the atmosphere cosmic-ray ions outnumber electrons by a factor ≈ 102). So far,

however, there have been no positive detections of diffuse gamma ray emission from

the intra-cluster medium [181–186], despite a predicted gamma ray flux from the IC-

CMB scenario above current limits [186]. While such tuned initial conditions may

potentially be possible for any single cluster, it is difficult to see how the IC-CMB

scenario can reconcile both the generic presence of the soft excess phenomenon and

the generic absence of gamma rays from clusters at the level accessible to Fermi-LAT.

A further difficulty for the IC-CMB explanation of the soft excess is the observation

of soft excess emission at large radii from the cluster centre [156, 157]. In the case

of Coma, soft excess halo emission has been detected up to radii of ≈ 5 Mpc. This

emission is well beyond the radius at which the hot gas can be detected and at which
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the cluster meaningfully exists. For an IC-CMB explanation of this halo, it is unclear

where this necessary relativistic electron population would come from.

Overall, while it would be premature to conclude that astrophysical explanations

cannot work, the above difficulties and observations motivate alternative scenarios.

5.4 Cluster Magnetic Fields

In this section I discuss magnetic fields in galaxy clusters. In section 5.4.1 I briefly

review the observational methods used to infer the existence of cluster magnetic fields,

and in section 5.4.2 I review the magnetic field model of [187]. Finally in section 5.4.3

I describe the numerical details of how the discretised magnetic field is produced for

the simulation.

5.4.1 Magnetic Field Observations

Galaxy clusters are known to be magnetised, see [188,189] for reviews of observations

and methods to measure cluster magnetic fields. It is well established that clusters

feature magnetic fields of strengths O(1 − 10 µG), which are coherent over scales

∼ 10 kpc, with a physical extent stretching over Mpc scales. Observations in radio

waves have shown that a large number of clusters contain large areas of diffuse radio

emission (radio halos/relics) which cannot be attributed to known sources. Such radio

structures are produced by synchrotron emission of a relativistic electron population

in the magnetic field of the cluster. Observations of polarised sources in and behind

galaxy clusters also exhibit Faraday rotation consistent with treating the cluster as a

‘Faraday screen’, whose magnetic field rotates the plane of polarisation of the radio

emission by making the intra-cluster medium birefringent.

Little is known about the origin of the magnetic field in galaxy clusters, consensus

is that gas motions during cluster formation amplify some seed field by many orders

of magnitude. There is thus two open questions, what is the origin of this seed

field, and what mechanism amplifies it to the ∼ µG strengths we see in clusters

today. It is thought that amplification happens through turbulent gas motions during
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cluster formation which acts as a dynamo explosively amplifying the seed field, see

e.g. [190, 191]. This seed field is expected to still be visible as the cosmological (or

inter-galactic) magnetic field (IGMF), for a review of the cosmological magnetic field

see e.g. [192]. The cosmic magnetic field strength is bounded both from above and

from below, B ∼ 10−16 − 10−9 G [193, 194]. There are two main mechanisms which

are thought to be able to produce such a field: early universe magnetogenesis, i.e.

magnetic field production during inflation or a phase transition; or from outflows

from astrophysical bodies, such as supernovae, active galaxies, starburst regions, and

galactic winds prior to cluster formation [195].

These two mechanisms lead to different magnetic field structures. In the first case,

the primordial field on cluster and galactic scales will go through turbulent, cascade

decay, and will thus develop a turbulent, Kolmogorov power spectrum, the evolution

of these fields have been studied in e.g. [196–198]. In the outflow case this will not

be the case and the field is unlikely to have a Kolmogorov power spectrum, thus

upon measurement of the IGMF, it should be possible to tell these two situations

apart. In the first case the cosmological magnetic field will be pervasive throughout

the whole inter-galactic medium (IGM). In the second case, some fraction of IGM

will contain such a magnetic field, depending on how efficiently such magnetic fields

are transported through the inter-stellar voids. Indeed, coming with the lower bound

on the magnetic field strength, there is also a lower bound on the filling factor of

the IGMF [199]. The cosmological magnetic field thus should fill ∼ 50% of voids,

which is hard to explain in the astrophysical outflow origin for the field, and favours

a primordial origin.

The magnetic field in galaxy clusters has however gone through amplification and

the nature of the seed field is less important compared to the amplification process.

Magneto-hydrodynamical simulations hint that the cluster field is independent of

the initial conditions of the seed field, except for the field magnitude [200, 201]. In

the very outskirts of clusters and in particular in inter-stellar voids where there has

been no processing during cluster formation, the field will remain in its original seed
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form. However in the central parts of the clusters (which we consider) where some

amplification has occurred, the resulting cluster magnetic field structure is likely to

be very different from its cosmological form.

Detailed measurement of the magnetic field in clusters is challenging. Synchrotron

radio emission is dependent on both the strength of the magnetic field in the cluster,

and the size of the electron population. The emission is degenerate in these param-

eters, and, with no other information about the electron population, the magnetic

field strength cannot be measured. An estimate can be made through ‘equipartition’

arguments. This is a minimum energy criterion that the relativistic electron and mag-

netic field energy densities should be the same, however this assumption is not easily

verifiable. This assumption was used in [202] who found the Coma magnetic field,

averaged over the central 1 Mpc3, to be B ∼ 0.7− 1.9µG.

The relativistic electrons in the clusters will inverse Compton scatter off CMB

photons to produce hard X-ray or gamma ray photons. The lack of observation of

these hard X-ray photons in Coma bounds the electron population, and in doing so

has led to lower bounds on the magnetic field strength. This bound is B > 0.2µG for

the Coma radio halo, and B > 1µG for the Coma radio relic [203].

The effect of Faraday rotation of polarised light in a magnetic medium is described

by a ‘rotation measure’

Ψobs(λ) = Ψ0 + λ2 RM . (5.6)

The rotation measure is given by the line-of-sight integral of the parallel component

of the magnetic field multiplied by the electron density,

RM = e3

2πm2
e

∫
l.o.s.

ne(l)B‖(l)dl , (5.7)

where, by convention, a magnetic field pointing towards the observer gives rise to a

positive RM.

Since the electron density distribution may be inferred from X-ray observations,

studies of rotation measures provide a sensitive probe of the magnitude of the cluster

magnetic field. By measuring Ψobs at several frequencies for a given radio source, the
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value of RM may be inferred.

The Faraday rotation observations are limited by the number of polarised radio

sources behind an individual cluster and only depend on the integral of the parallel

component of magnetic field along the line of sight. If one makes an assumption that

the magnitude of the magnetic field is constant along many single-sized domains, the

variance of the Faraday rotation measures gives the size of these domains, which is

a hint to the typical coherence length of the field along the line of sight. Maps of

Faraday rotation exhibit a patchy structure which similarly give hints to the size of

the coherence lengths.

More in-depth analyses involve simulating a magnetic field, given a specific field

model, and using the observed radio halo and Faraday rotation data to constrain

the parameters of the model. Using the power spectrum of the Faraday rotation is

another method used to constrain the magnetic field power spectrum. However, it

has been argued that the use of Faraday rotation measurements does not take into

account the intrinsic rotation in the source of the polarised signal and thus is ill-suited

to constraining the cluster-wide magnetic field [204].

In this study we assume the cluster magnetic fields are well represented by the

model first proposed in [123]. The simulated magnetic field is a stochastically-

generated, Gaussianly-distributed field that is tangled over a range of scales, and

has a power-law power spectrum. The magnitude of the magnetic field is assumed to

decrease with radius as some power of the thermal ICM electron density. Such fields

have been shown to be good fits to Faraday rotation measurements and synchrotron

observations in many clusters [123, 187, 205–208]. However, we caution that it is an

idealised model and thus may not capture the full details of the magnetic fields in

these clusters.

5.4.2 Magnetic Field Model

Here we review the magnetic field model used for the clusters we study.

We start by randomly drawing the Fourier-space vector potential components.

69



The magnitude of each component of the vector potential is drawn randomly from

a Rayleigh distribution with power law scaling |Ak|2 ∼ k−n, where we chose the

normalisation factor to be one,

p(Ãk) = Ãk
|k|−n

exp
(
− Ã2

k

2|k|−n

)
, (5.8)

and the complex phase of each component is drawn randomly from a uniform distribu-

tion. We then choose the correct normalisation of the real space magnetic field later.

We compute the Fourier-space magnetic field as B̃(k) = ik × Ã(k). Then we Fourier

transform this to position space to generate a Gaussianly-distributed, isotropic, tan-

gled, divergence-free magnetic field, with power spectrum

4πk2|Bk|2 ∼ k−ζ , (5.9)

where ζ = n−4. The Fourier vector potential is set to zero outside of the momentum

range kmin to kmax, corresponding to physical scales Λmax = 2π/kmin and Λmin =

2π/kmax. There is observational evidence that the magnetic field magnitude falls as

a function of radius from the cluster centre. To emulate this, the magnetic field is

modulated by multiplying by some function f(ne) ∝ (ne)η, and normalised such that

the core of the cluster has a magnetic field of magnitude B0, such that

B(r) = B0

(
ne(r)
n0

)η
. (5.10)

We take time here to point out there are two interesting values for η: the first is the

case where the magnetic field energy density (εB ∝ B2) falls with the electron energy

density, i.e. B2 ∝ ne and η = 0.5; the second is the case where the magnetic field

lines are ‘frozen-in’ to the plasma,1 which corresponds to the case η = 2/3.

The electron/gas density of clusters follows an isothermal β-model profile

ne(r) = n0

(
1 + r2

r2
c

)− 3
2β

, (5.11)

1Briefly, the magneto-hydrodynamical ICM is in a regime where the magnetic Reynolds number is
large (corresponding to turbulence). In this regime the magnetic field lines ‘move with the plasma’,
specifically this regime corresponds to B · A = const (with A the cross-sectional area) and hence
B ∝ n2/3

e .
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with n0 the central electron density and rc the core radius of the cluster. In many

clusters the core has cooled (such as A2199), leading to a spike in the electron density

in the centre [209]. The electron density profile in these cool-core clusters then usually

follows a double β-model, which is the sum of two β-models,

ne(r) = n0

(
1 + r2

r2
c

)− 3
2β

+ n0,cool

(
1 + r2

r2
c,cool

)− 3
2βcool

, (5.12)

with rc,cool � rc and typically n0,cool ≥ n0.

The magnetic field model then has 5 parameters: the power spectrum index ζ, the

maximum and minimum lengthscales the magnetic field is ‘tangled’ over Λmax and

Λmin,
2 the radial scaling of the magnetic field η, and the magnetic field magnitude in

the centre of the cluster B0. These parameters are constrained using Faraday rotation

maps or synchrotron radio halos.

The natural expectation value for the power law index parameter is ζ = 5/3,

corresponding to a Kolmogorov turbulent spectrum. Observations have hinted that

the ICM is itself turbulent, thus a Kolmogorov index is the theoretically favoured

value for the power spectrum index. However the amplification of the seed field, the

motions of the gas, and the pollution from expulsion of magnetic fields from galactic

environments could all change this spectrum and lead to different values for the power

law index. Hence these power law indices are fit using observational data in all cases

as we will see later, except for A665, where the theoretically favoured value of ζ = 5/3

is chosen.

Coma

The magnetic field in the centre of the Coma cluster was studied using this model

in [187], using the rotation maps of several polarised radio sources, located in or

behind the cluster. For Coma, the beta-model parameters have been experimentally

determined to be n0 = 3.44 × 10−3cm−3, rc = 291 kpc, and β = 0.75 [210]. Mock

Faraday rotation maps were produced, scanning over magnetic field parameters.
2Note that the scale Λ corresponds to the wavelength of a full period of magnetic field ‘oscillation’,

the field will thus be coherent over a scale . Λ/2.
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It is important to note that while the parameters ζ, Λmin, Λmax, η and B0 are

free parameters of the magnetic field model which can be constrained by fitting to

rotation measures [187], there is an effective degeneracy between ζ and Λmax. Larger

ζ can be compensated for by lowering Λmax and vice versa, giving an equally good fit

when comparing to RMs from Faraday rotation. The value ζ = 5/3 corresponds to a

Kolmogorov-like turbulent power-law slope for the one-dimensional power spectrum

of the magnetic field and was the headline value adopted in [187]. This power-law

slope corresponds to a best fit value of Λmax = 34 kpc, with Λmin found to be 2 kpc.

However, as discussed in [187], the Faraday rotation measurements are degenerate

along a curve in (ζ,Λmax) space, with a flatter spectrum as Λmax is increased. Equally

good fits to Faraday rotation measures are provided by a flat one-dimensional power

spectrum, i.e. ζ = 0, with Λmax increased to 100 kpc. These spectra have more power

on small scales compared to the Kolmogorov spectrum.

Due to these degeneracies, we will pick two parameter sets that fit the Faraday

rotation data, to simulate the Coma magnetic field. These are called Models 1 and 3 in

table 5.1. We will also find it illustrative to include a third, less physically-motivated

magnetic field, Model 2, when discussing ALP–photon conversion probabilities, thus

we also put these model parameters in table 5.1.

Let us note that these values are quite consistent with other methods used to

determine the magnetic field in the Coma cluster. Equipartition arguments have

been used to estimate the magnetic field averaged over the central 1 Mpc3, to be B ∼

0.7− 1.9µG [202]. Faraday rotation, assuming the magnetic field to be comprised of

cells of constant magnetic field, but pointing in different directions, gives an estimate

B ≈ 2µG, with a tangling scale of 13− 40 kpc [211].

A665

Here I summarise the method and the results of [206] in constraining the above model

parameters in the A665 galaxy cluster, which we show in table 5.2. The parameters

for A665 are constrained by simulating mock radio halo images, upon assuming the
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Model 1 Model 2 Model 3

Λmin 2 kpc 2 kpc 2 kpc
Λmax 34 kpc 5 kpc 100 kpc
ζ 5/3 5/3 0
B0 3.9− 5.4µG 5.4µG 5.4µG
η 0.4− 0.7 0.7 0.7

Table 5.1: The parameter values for three parameter choices for the Coma magnetic field.
The first (Model 1) is a Kolmogorov spectrum that fits the Faraday rotation data. The
second (Model 2) is designed to show the effect of concentrating all power on small scales
but is not a fit to Faraday rotation data. The third (Model 3) is a flat spectrum (in k-space)
that fits Faraday rotation data and has most power on small scales.

form of the relativistic electron population, and comparing to the observed radio

halo. The analysis proceeds in two steps: first, equipartition arguments are used to

determine the radial scaling of the magnetic field, the parameter η. Secondly mock

radio halos are produced and compared to data to constrain the field strength and

power spectrum.

In the first step the electron population is taken as a power law where the spectral

index of the electron population is related to the spectral index of the observed radio

halo. The number of relativistic electrons in the cluster is set point-by-point such that

at that point there is equipartition between the relativistic electrons and magnetic

field. We note that the spatial form for the relativistic electron population is an

assumption, since little is known about it or how it is produced. Equipartition is the

assumption that the energy stored in the magnetic field and in the cosmic ray electrons

is equal. The radial profile of this spherically-symmetric radio halo is compared to

the radial profile of the observed radio halo, giving a best fit value of η = 0.47± 0.03,

which we note is very close to the interesting value mentioned earlier, where the energy

density of the magnetic field falls proportional to the thermal electron energy density.

A full 3D magnetic field is produced using the method described earlier. The same

form for the electron population as used in the first step is used to simulate mock

radio halos for this field. The predicted radio emission from the idealised, spherically-

symmetric radio model used in the first step is subtracted from both the observed

radio halo and the simulated radio halo. The RMS of the residuals for the simulated
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halos are then plotted as a function of Λmax, and show a clear trend that they increase

with Λmax. The simulated RMS matches the observed radio halo’s for Λmax ∼ 450

kpc.

On top of this there is a more qualitative result that there is a clear change in

shape of the radio halo when going from small to large Λmax, at larger Λmax the halo

becomes more anisotropic and also there is a clear separation between the centre

of the ICM plasma and the centre inferred from radio observations. One can plot

this offset distance for the different values of Λmax, there is a clear trend for larger

offsets for larger Λmax values. The value where the simulations match the offset of the

observations is slightly higher, at roughly 500 kpc.

We note that there are a lot of assumptions made in this analysis, especially about

the electron population used to produce the mock radio halos. It is not clear whether

these assumptions hold, thus there is likely to be a large systematic uncertainty on

these magnetic field parameters.

A2199

The parameters of the model for the magnetic field of A2199 have been constrained

by producing mock Faraday rotation images and comparing to the observed Faraday

rotation in a radio source located at the centre of the cluster [207]. All Faraday

rotation data is contained within 20 kpc of the centre of the cluster, thus in our

analysis we are extending the magnetic field beyond the range which it is known to

be valid. The X-ray brightness of the cluster is not completely spherically-symmetric,

it contains two elliptical regions to the east and the west of the cluster where the

electron density drops significantly. The simulations of [207] showed that there was

very little effect on results when they were included as when they were left out. Since

we are averaging the probabilities over concentric annuli, and since the features are

located within 20 kpc and we simulate out to > 500 kpc, we do not expect these

regions to change the analysis in any appreciable way, we thus do not include these

elliptical areas in our simulation.
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A2199 is a cool-core cluster and thus the gas density follows a double β-model,

see equation 5.12. The electron density in the cool-core is ∼ 30 times that in Coma

and A665 for instance. The cool-core electron density spike drops rapidly beyond 9

kpc, whereas the normal ICM electron population has a core radius of 26 kpc. Again

since we simulate out to ∼ 400 kpc we do not expect the cool-core to have a big effect

on the results.

The magnetic field was simulated scanning over all five parameters of the model,

using the power spectrum of the Faraday rotation to constrain the magnetic field

power spectrum parameters, and maps of Faraday rotation to constrain the radial

scaling. The parameters of the magnetic field of A2199 are not well constrained

from this analysis. The parameters B0 and η are degenerate with respect to Faraday

rotation measurements, i.e. the same average magnetic field can be obtained by

reducing (increasing) B0 whilst simultaneously reducing (increasing) η such that the

field falls off less (more) rapidly with radius. The resulting values of the central

magnetic field and radial parameters are B0 = 11.9 ± 9 and η = 0.9 ± 0.5. There

is a similar degeneracy between the maximum lengthscale the field is tangled over

and the power spectrum of the field, large spectral indices put more power at large

scales, increasing Λmax has the same effect. Thus again these parameters are poorly

constrained, although we keep these parameters fixed at their central values in these

simulations. We list these parameters in table 5.2.

A2255

The magnetic field parameters in A2255 are constrained in [205] (listed in table 5.2),

using polarised emission from three galaxies. In this cluster a synchrotron radio

halo is simulated, as well as mock Faraday rotation maps. The radial scaling of the

magnetic field is constrained in two ways, firstly the root mean square of the Faraday

rotation measures in each galaxy should be proportional to the X-ray brightness of

the ICM, to some power. This poorly constrains η to anywhere between −0.5 and 1.

Secondly there is the observation that the X-ray brightness profile follows the radio
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A665 [206] A2199 [207] A2255 [205]
Cool-core Hot ICM Inner Outer

rc (kpc) 340 9 25 432
β 0.76 1.5 0.39 0.74

n0 (10−3 cm−3) 3.44 74 27 2.20
ζ 5/3 0.6 0 2

Λmin (kpc) 4 0.7 4 64
Λmax (kpc) 450 35 1000 1000
B0 (µG) 1.3 6.0− 11.9 2.5

η 0.5 0.5− 0.9 0.5− 0.7

Table 5.2: Magnetic field and β-model parameters for the three clusters considered. The
A2255 Inner and Outer columns refer to the magnetic field within and without the core
radius respectively. The A2199 cool-core and hot ICM columns refer to the parameters for
the two β-models which make up the cool-core and the normal hot ICM respectively.

halo brightness profile thus it is assumed that the populations of thermal and non-

thermal electrons, and hence also the magnetic field (by equipartition), follow the same

profile. Thus it is assumed in their simulations that ne ∝ B2. In these simulations

we will consider two values: η = 0.5 and η = 0.7, which (roughly) correspond to the

two interesting cases mentioned earlier.

It was shown that the Faraday rotation is best fit for a magnetic field that has

increasing power spectrum index as a function of radius. The best fit global magnetic

field is one in which the magnetic field has ζ = 0 for r < rc and then an exponential

fall off beyond rc, and then a non-Gaussian ζ = 2 magnetic field with larger Λmin for

radii beyond the core radius. In our simulations we use this model, but assume both

parts of the magnetic field follow a Gaussian distribution.

This choice of a rising spectral index with radius results in the magnetic field

coherence lengths increasing with radius. This sort of behaviour is expected on general

theoretical grounds: as the electron density decreases, the typical lengthscale of the

problem ∝ 1/n1/3
e gets larger. Such behaviour of the magnetic field was considered

for ALP−photon conversion in the outskirts of Coma in [212]. Though the model

of the field as a ‘stitching’ together of two fields with differing spectral index with a

smoothing function between them is unrealistic, it is nevertheless a reasonable test

model to study the CAB in A2255.
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5.4.3 Magnetic Field Generation

Following the detailed prescription reviewed in section 5.4.2, we generate numerical

models of the clusters’ magnetic fields. We do this in C++. For Coma we generate

a 20003, for the other three clusters we generate a 2000 × 10002 grid, with differing

unit cell sizes. This grid size is chosen to save computer time, as spherical symmetry

means that it is sufficient to consider one quarter of the plane perpendicular to the

ALP–photon direction only.

The cell size should be chosen so as to evade the Nyquist criterion that the sampling

rate of a dataset must be greater (ideally much greater) than twice the frequency of

the dataset is satisfied for fields with structure only on scales larger than Λmin > 2s.

We note that such a small unit cell size places a limit on the size of the field we can

generate. For Coma the cell size is s = 0.5 kpc, resulting in a simulation of size 1

Mpc.

As outlined in section 5.4.2, the values of the Fourier coefficients of the vector

potential are generated randomly for all modes in the range Λmin to Λmax. After com-

puting the momentum space magnetic field, the real space representation is obtained

by performing a discrete Fourier transform using FFTW 3.3.3 routines [213].

The real-space magnetic field is modulated so as to exhibit attenuation over cluster

scales. For Coma, as in [187] the normalisation of the magnetic field is chosen so that

the average magnitude of the magnetic field within the core radius, rc, of the cluster

is equal to the parameter B0. For the other clusters, the magnetic field normalisation

is chosen slightly differently. In those cases the magnetic field is normalised such that

the average magnetic field across the simulation region, after it has been modulated,

is equal to some value Bave.

5.5 ALP–photon Propagation

In this section we solve the ALP–photon equation of motion. I start in section 5.5.1 by

solving for a homogeneous magnetic field, or a single magnetic field domain, and then
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in section 5.5.2 solve for an inhomogeneous magnetic field applicable to the magnetic

field we simulate.

5.5.1 Homogeneous Solution

As we saw in 3.3.1, the presence of the term aFµνF̃
µν ∼ a ~E · ~B leads to the coupled

ALP–photon equation of motion [37]ω +


∆γ 0 ∆γax

0 ∆γ ∆γay

∆γax ∆γay ∆a

− i∂z



|γx〉

|γy〉

|a〉

 = 0 . (5.13)

Here ω denotes the energy of the photon and ALP modes. We have also set to zero the

mixing between photon polarisation states caused the magnetic field, which represents

Faraday rotation, since it is unimportant for X-ray energies.

The refractive index for photons in the plasma is given by ∆γ = −ω2
pl/2ω, where

ωpl =
√

4παne
me

denotes the plasma frequency of the ICM, and is an effective mass for the

photon. The ALP–photon mixing is induced by the matrix element ∆γai = Bi/2M .

The mass of the ALP determines the final diagonal matrix element: ∆a = −m2
a/2ω.

We can write the solution to equation (5.13) as
|γx〉

|γy〉

|a〉

 (L) = exp
(
−i
∫ L

0
M(z)dz

)

|γx〉

|γy〉

|a〉

 (0) , (5.14)

with

M(z) =


∆γ(z) 0 ∆γax(z)

0 ∆γ(z) ∆γay(z)

∆γax(z) ∆γay(z) ∆a(z)

 , (5.15)

and we have left off the overall phase factor exp(−iωL).

In section 5.8.2 we will describe the results of numerically integrating equation

(5.13) for the inhomogeneous magnetic field discussed in section 5.4.3. However, it

is illuminating to first consider the simpler case of a homogeneous electron density
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and magnetic field in some domain of size L. Furthermore, since only photons with

polarisation parallel to the magnetic field couple to ALPs, a simple rotation in the x-y

plane reduces the non-trivial part of the problem to that of a 2-body system of
∣∣∣γ‖〉

and |a〉. The non-trivial part of the z-evolution generatorM can then be diagonalised

by a rotation of angle θ satisfying

tan (2θ) = 2∆aγ

∆a −∆γ

, (5.16)

where now ∆aγ = B/2M . Thus, in a single domain with a homogeneous magnetic

field, the probability that an ALP converts into a photon is given by

P (a→ γ) = sin2(2θ) sin2
(

∆
cos 2θ

)
, (5.17)

where tan 2θ = 2B⊥ω
Mm2

eff
, ∆ = m2

effL

4ω and m2
eff = m2

a − ω2
pl.

For a single domain with a coherent magnetic field, the ALP-photon conversion

probability is completely determined by the angles θ and ∆,

θ ≈ B⊥ω

Mm2
eff

= 5.6 · 10−4
(

10−3 cm−3

ne

)(
B⊥

2µG

)(
ω

200 eV

)(1013 GeV
M

)
, (5.18)

∆ = 2.7
(

ne
10−3 cm−3

)(200 eV
ω

)(
L

10 kpc

)
, (5.19)

where we have taken ma = 0. To get an estimate of the conversion probabilities,

we take an approximation known as the small-angle regime θ � 1, ∆ � 1, which is

always true for θ, but not true for ∆ for large values of ne (and hence small radii),

large L, or low ALP energies. Then the probability an ALP will convert to a photon

over D/L domains, with D the full cluster size is simply

P (a→ γ) = 0.9 · 10−3
(

D

1 Mpc
L

10 kpc

)(
B⊥

2µG
1013 GeV

M

)2

. (5.20)

We thus see that clusters can be extremely efficient at ALP−photon conversion.

While the above discussion is illuminating, it can only give us an order of magni-

tude estimate for the typical conversion probability in clusters. A constantly varying,

turbulent, multi-scale magnetic field requires a full numerical calculation to calculate

the conversion probabilities. However, we will see that the dependence on radius of
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the conversion probabilities can be well understood by looking at the single-domain

formula. Typically there are two regimes, one where the angle ∆ is large (low ALP

energies, or high electron densities), and one where it is small and the full small angle

regime formula can be used. In the large-∆ regime

P (a→ γ) ∝ ω2

M2

(
B(r)
ne(r)

)2 (
D

L

)
. (5.21)

Thus in this regime the conversion probabilities are energy dependent, and behave

with radius as P ∝ n 2(η−1)
e . This will (for 0 < η < 1) produce conversion probabilities

which increase with radius. For small-∆, we see in equation 5.20 that the probability

will fall with radius, P ∝ n 2η
e , and that the conversion is no longer dependent on the

energy.

5.5.2 Inhomogeneous Magnetic Fields

The ALP–photon conversion probabilities are computed by numerically simulating

the propagation of an ALP through the discretised magnetic field model discussed in

section 5.4.3. Since the lattice spacing is always much smaller than the cluster radius

rc, the electron density is slowly varying over each zone of constant magnetic field and

may consistently be approximated as constant within each lattice zone. Thus within

each zone the unitary ‘z-evolution’ matrix is constant, and equation (5.14) can be

solved recursively from the nth lattice point to the next as
|γx〉

|γy〉

|a〉


n+1

= exp

−i


∆γ, n 0 ∆γax, n

0 ∆γ, n ∆γay, n

∆γax, n ∆γay, n ∆a, n

 s



|γx〉

|γy〉

|a〉


n

, (5.22)

where we have again denoted the lattice spacing by s. This way, an initial pure

ALP state will develop non-vanishing photon components as the particle propagates

through the cluster.

The solution to equation (5.22) is obtained, just as in the single-domain case, by

first rotating to a basis in which the magnetic field is aligned with one of the coordinate
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axes and then diagonalising the non-trivial part of the z-propagation generator. This

way, the ALP–photon propagation can be solved exactly for each lattice point.

The propagation of the full 3-body system through the lattice is then achieved

recursively by diagonalising, propagating the new fields to the next grid point, and

finally rotating back to obtain the state with respect to the original reference basis.

Thus the state at the (n+ 1)th step is given by

|n+ 1〉 = UT
1,nU

T
2,nMnU2,nU1,n |n〉 , (5.23)

where U1,n denotes the rotation required to align a coordinate axis with the local mag-

netic field direction, and U2,n denotes the diagonalisation of the unitary z-evolution

operator at the nth step.

The probability of the ALP converting into a photon is then computed as the sum

of the squares of the |γx〉 and |γy〉 components of the final state. This procedure is

done for each of the grid points in the x-y plane as a function of ALP energy, and for

a vanishing ALP mass. By setting the ALP mass to zero we make the approximation

that m2
eff is dominated by the plasma frequency. The plasma frequency is given as

ωpl = 1.2× 10−12
√

ne
10−3cm−3 eV (5.24)

and is never much less than ≈ 10−12 eV in the systems we are considering. ALP

masses ma ≤ 10−13 eV therefore behave equivalently to a vanishing ALP mass. For

ALP masses m � 10−12 eV (including the case of a QCD axion), θ ∼ 1/m2
a and

∆ ∼ m2
a, so that it is reasonable to expect that the conversion probabilities become

suppressed relative to those we have obtained by a factor of (10−13 eV/ma)4. For an

ALP mass m ≈ 10−12 eV, detailed simulation would be required to study the resulting

morphology and how it differs from the zero-mass case.

Note that the very low mass region applicable to this study is exactly the region

well-motivated by string theory, see section 3.2.
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5.6 Consistency Checks

Before going on to discussing the results in detail, we will quickly discuss some of the

consistency checks of our numerical procedure.

Firstly, let us start with the computation of the conversion probabilities. Two

methods were initially created to calculate conversion, both developed in Mathemat-

ica: the method described above of rotating the wavevector, and a method which

used the matrix exponential function in Mathematica. These two methods agreed

well with each other, with only a small error of O(0.1%), which was likely due to a

numerical error. Both of these conversion probabilities agreed with the single domain

formula when computed along a constant magnetic field. It was then checked that

the C++ implementation agreed with these. Thus we are confident in the accuracy

of the conversion probabilities we calculate.

Similarly, two versions of the magnetic field code were developed independently

and checked against each other to eliminate bugs in the final version. We checked

that the radial scaling and normalisation of the magnetic field gave an average mag-

netic field ∼ 2 µG, which was comparable to [187]. There are several other checks

which we will come across later in the results section, but we will list now. Firstly,

the best fit values of the inverse coupling from our analysis agree very well with that

from the simplified analysis of [116]. That study used a constant, fixed domain model

for the magnetic field, and calculated conversion probabilities in the small angle ap-

proximation, finding a best fit inverse coupling of M ∼ 1013 GeV. Second, as we

have discussed, there are two distinct radial profiles, determined by the value of θ, for

low energies this results in a transition at intermediate radii between increasing and

decreasing conversion probabilities as a function of radius. The radius at which this

happens is essentially fixed (in a constant coherence length model) by the coherence

length of the magnetic field. We can calculate an effective coherence length of our

magnetic field using this turning point, which we found to be ∼ 10 kpc for the canon-

ical magnetic field model in Coma. This agrees very well with both observations and
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the expected coherences lengths given the distribution between Λmin and Λmax.

Finally we checked that the random generation of the magnetic field was stable

by generating multiple versions of the same magnetic field model. We calculated

conversion probabilities and found that they changed little between the realisations.

The largest differences were around 10%, which occurred for small inverse couplings

M ∼ 1011 GeV, where the conversion probabilities were O(1). We note this is not a

rigorous check of the numerical stability but nevertheless all the above points make

us confident in our model. We will use this observed 10% fluctuation as a guide to

the numerical error on our results.

5.7 Coma

This section describes the results of the detailed simulation of the Coma cluster,

which was published in [2]. We compute the expected luminosity from a CAB passing

through the Coma magnetic field and compare to the results of [121].

However, let us start by stating why we focus on the Coma cluster in detail. There

are several reasons for this. First, the soft excess in the Coma cluster is particularly

well established and well studied. Second, the cluster is at a redshift such that a

significant fraction of the cluster fits into the ROSAT field of view. This gives confi-

dence that the properties of the soft excess are associated to the cluster as a whole

(a contrasting example is the Virgo cluster, which is so close that the soft excess is

only studied within the central 50 kpc, and so one might worry that properties of the

cluster may be conflated with properties of the large dominant central galaxy M87).

However the Coma cluster is still close enough that the count rate is large enough to

give high statistical confidence on the soft excess. Finally, the magnetic field structure

of the Coma cluster has been studied in detail. This is crucial for our purposes, as

without the magnetic field structure it is impossible to calculate the a→ γ conversion

rate.

83



5.7.1 Luminosity Calculation

The simulation generates a 20002 grid of a → γ conversion probabilities, each repre-

senting the probability of a single ALP at energy ω, traversing Coma through a unit of

cross-sectional area (0.5 kpc)2, converting into a photon of the same energy. We need

to convert these probabilities into intrinsic source luminosities. A redshift-distance

converter is in [214]. Coma is at a well-determined redshift of z = 0.023. We use the

parameters from the magnetic field model of [187], with H0 = 71 km s−1 corresponding

to 0.460 kpc per arcsecond and a luminosity distance of 98.9 Mpc. We note the soft

excess analysis of [121] assumed a Hubble constant of H0 = 75 km s−1, corresponding

to an angular scale of 0.434 kpc per arcsecond and a luminosity distance to Coma of

93.6 Mpc. These differences are small enough to be neglected compared to the other

statistical and systematic uncertainties in the extraction of the soft excess.

The overall CAB energy density is ρCAB = ∆Neff
7
8

(
4
11

)4/3
ρCMB. Associated with

this is a CAB number density dNa/dE set by the spectral shape, such that

∫
dEEdNa

dE
= ρCAB .

In terms of these the intrinsic excess luminosity associated with ALP–photon conver-

sion is given by

Lexcess = D2
Coma

∫
dΩdE EdNa

dE cPa→γ(Ω, E) , (5.25)

where DComa is the physical distance to Coma and dΩ is a solid angle element (mea-

sured in arcmin2). We restrict the energy integral to the 0.2 − 0.4 keV range, in

accordance with the luminosities calculated in [121].

5.7.2 Results

In this section I discuss the results of the numerical simulation of the conversion

probabilities, and present for the first time a detailed description of the predictions

of the CAB conversion scenario for the cluster soft excess.
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(a) 25 eV (b) 50 eV

(c) 75 eV (d) 100 eV

Figure 5.3: Conversion probabilities for energies 25 eV to 100 eV for Model 1, with η = 0.5,
B0 = 4.7µG and M = 7× 1012 GeV.

5.7.2.1 General features of ALP–photon conversion

While several properties of the simulated conversion probabilities and soft X-ray lu-

minosities are sensitive to the detailed magnetic field model, there are also general

features that are shared by all models we have considered. In this section we highlight

these properties by using Model 1 of table 5.1 as our main example.

In this model, the stochastic magnetic field is generated with a Kolmogorov power

spectrum (ζ = 5/3), with coherence lengths in the range 2−34 kpc. The best-fit values
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(a) 150 eV (b) 200 eV

(c) 300 eV (d) 400 eV

Figure 5.4: Conversion probabilities for energies 150 eV to 400 eV for Model 1, with η = 0.5,
B0 = 4.7µG and M = 7× 1012 GeV.

of the scaling of the total magnetic field with electron density, η, and the central value

of the magnetic field, B0, are then η = 0.5 and B0 = 4.7µG, respectively. In section

5.7.2.2 we will also consider the effects of 1σ variations of the parameters of the

magnetic field model on the resulting conversion probabilities.

The simulated conversion probability maps (best viewed in colour) for this model

are shown in figures 5.3, 5.4 and 5.5 with a pixel size of (2 kpc)2. Figure 5.6 shows

the conversion probabilities as a function of the impact parameter, for 8 energies from

25 keV to 2 keV.
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(a) 600 eV (b) 800 eV

(c) 1000 eV (d) 2000 eV

Figure 5.5: Conversion probabilities for energies 600 eV to 2 keV for Model 1, with η = 0.5,
B0 = 4.7µG and M = 7× 1012 GeV.

These figures illustrate two key features of the results that are ubiquitous in all

the magnetic field models we have studied. First, the overall conversion probabilities

increase with energy, up to a maximal energy at which they saturate.

Second, the morphology of the conversion probabilities is quite distinct at low

and high energies. At low energies, the conversion probabilities are lowest for ALPs

which pass through the very centre of the cluster. As a function of increasing impact

parameter, the conversion probabilities increase, reach a maximum at some interme-

diate radius, before again decreasing towards the edge of the cluster. This behaviour
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Figure 5.6: Conversion probabilities as a function of impact parameter for Model 1 with
η = 0.5 and B0 = 4.7 µG.

is clearly visible in the 400 eV plot (figure 5.4d) — for lower energies than this the

point of maximal conversion probability lies beyond the range of the simulation. At

ultra-low energies (c.f. the 25 eV plot, figure 5.3a), a curious, unanticipated ring-like

structure is visible. Here the conversion probabilities increase, decrease and then

increase again. We discuss the origin of this at greater length below.

In contrast, higher energy ALPs have a maximal conversion probability at the

centre of the cluster, with a monotonic decrease in conversion probability on going to

larger radii. A crossover between the high-energy regime of ‘central dominance’ and

the low-energy regime of ‘central deficit’ can be observed for modes with energies of

400 eV < ω < 1 keV for Model 1.

In fact, both these generic features of the conversion probabilities can be under-

stood from the single-domain solution of equation 5.17, even though it is not fully

applicable to the multi-scale fields considered here. The single domain conversion

probability is (to leading order in θ) given by

P (a→ γ) ∝ B2
0
ω̃2

M2 ñ(r)2(η−1) sin2
(

0.93L̃ñ(r)
ω̃

)
, (5.26)

where ñ(r) = ne(r)
n0

, L̃ = L

(1 kpc)
and ω̃ = ω

(200 eV) . Here we have factored out the

dependence of the total magnetic field on the electron density. The fractional electron

density ñ(r) is completely determined by the β-model, and decreases from unity at

the cluster centre to ≈ 0.15 at r = 600 kpc.

88



We now note that for either sufficiently large ω or sufficiently small ñ(r), the argu-

ment of the sin function becomes small. In the small-∆ approximation the conversion

probabilities are given by

P (a→ γ)single domain ∝
B2

0L
2

M2 ñηe(r) , (5.27)

P (a→ γ)per unit length ∝
B2

0L

M2 ñ
η
e(r) . (5.28)

Thus, according to the single-domain formula, sufficiently far away from the cluster

centre the small-θ and small-∆ approximations should be valid for all energies above

a certain cut-off. Evidently, at large radii the small-angle approximation appears as

an ‘attractor’ with a radial dependence completely determined by the modulation of

the magnetic field with ñ(r)η.

As the impact parameter is decreased and ñ(r) increases, some modes will cease

to be well described by the small-∆ approximation and will rather require the full

equation (5.26). Such modes will leave the small-angle ‘attractor’ solution. According

to the single-domain formula, modes with sufficiently low energies may undergo several

2π rotations of ∆ as the impact parameter is decreased towards the centre of the

cluster, and these modes will in particular exhibit rings of decreased probabilities as

∆ comes close to an integer multiple of π.

However, for an ALP traversing multiple magnetic field domains with slightly

varying electron densities and coherence lengths, some of the detailed features of the

single-domain probabilities can be expected to be ‘washed out’. In particular, in the

large ∆ regime it is reasonable to approximate 〈sin2 ∆〉 = 1
2 for ALPs traversing

multiple domains of slightly varying size. Then for B ∝ B0n
η
e , we have

P (a→ γ)single domain ∝
B2

0 ω̃
2

M2 ñ2(η−1)
e , (5.29)

P (a→ γ)per unit length ∝
B2

0 ω̃
2

LM2 ñ
2(η−1)
e . (5.30)

As in all cases we consider η < 1, this gives increasing conversion probabilities as the

electron density decreases with radii. This increase will continue until the small-∆

regime is reached, when the conversion probability is again described by equation
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Figure 5.7: At large impact parameter the conversion probabilities tend to the small angle
approximation, as here illustrated for Model 1 and Model 2.

(5.27).

We now note that several of the features predicted from the single-domain formula

also appear in the radial probabilities emerging from the full numerical simulation with

multi-scale magnetic fields, c.f. figures 5.6 and 5.7a. From these figures, we note that

modes with ω & 400 eV have equal conversion probabilities at large radii (small ñ(r)),

consistent with these modes entering the small-∆ approximation. At smaller impact

parameter (corresponding to larger maximal ñ(r)), the lower energy modes begin to

decouple from the small-∆ approximation with ultimately decreasing probabilities as

a result, perfectly consistent with the single-domain result. Only the highest energy

modes stay in the attractor curve for any impact parameter, as illustrated in figure

5.7a by the modes with ω = 1300 eV and ω = 1600 eV.

The single domain analysis also predicts the presence of regions with highly sup-

pressed conversion probabilities as ∆ approaches an integer multiple of π, and we note

that this feature most likely explains the ring structure of the conversion probability

in the 25 eV plot.

We can use the qualitative consistency of the conversion probabilities with the

single-domain result to generate a heuristic estimate of an ‘effective coherence length’

of the magnetic field. For the high-energy modes in figure 5.7a we have argued that

∆ � 1 at large impact parameter, and we may heuristically associate the radius of

maximum conversion probability, rmax(ω), for each mode with the phase ∆ = π/2 in
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the single-domain formula. By furthermore noting that the largest contribution to

the conversion probability for modes close to the small-∆ approximation will come

from the region closest to the cluster centre, we have

π

2 = 0.93L̃ñ(rc(ω))
ω̃

. (5.31)

From this formula, we can extract an ‘effective coherence length’ L̃ for each mode

that has a peaking conversion probability within the range studied. For Model 1 this

range corresponds to modes with energies 300 eV ≤ ω ≤ 1 keV, as indicated in figure

5.7a. The decoupling of all modes is consistent with the single-domain estimate for

effective coherence lengths in the 13−15 kpc range. In comparison, the full numerical

simulation involves magnetic fields coherent over all scales from 2 kpc to 34 kpc, with

a mean coherence length of ≈ 10 kpc.

The single-domain intuition also holds for other magnetic field models. From figure

5.7b, we note that Model 2 may be associated with an ‘effective coherence length’ of

the magnetic field in the 2.0− 2.2 kpc range, based on the peak positions of modes

with 50 eV < ω < 200 eV. The full multi-scale model has coherence lengths in the

2 − 5 kpc range, with a mean value of 3.2 kpc. These estimates indicate that the

physical picture of ALP–photon conversion motivated by the single-domain analysis

is also quite accurate for more complicated magnetic field configurations such as the

multi-scale configurations considered in this chapter.

Model 3 is distinguished by having the largest range of scales in the magnetic field,

from 2− 100 kpc. As we see in figure 5.8, for this model at large radius (500−600 kpc)

the conversion probabilities have not converged to a small-angle approximation. We

can again understand this behaviour using the single-domain formula.

The greater range of coherence lengths imply that even ALPs traversing the clus-

ter at large impact parameter are likely to encounter domains in which the small-∆

approximation is not valid. Increasing ω always has the effect of decreasing ∆ and

thereby bringing a larger fraction of the traversed distance into the small-angle ap-

proximation, which results in an increased overall conversion probability according
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to equations (5.28) and (5.30). This explains the increase in conversion probabilities

with ω in Model 3, even at the largest radii.

A further difference in figure 5.8 compared to figures 5.7a or 5.7b can also be

understood. For model 3, at large radii the conversion probabilities are roughly similar

for the higher energy modes, with consistent small increases as the energy of the ALP

increases. This behaviour is absent for models 1 and 2. We can understand this

through the different power spectra of the models. For the Kolmogorov spectra of

models 1 and 2, power dominantly lies in the largest coherence lengths. The conversion

probabilities are then highly suppressed for ALP modes that have insufficient energy

to reach the small-∆ regime, given this range of coherence lengths. For the truncated

spectrum of model 2 and the flat spectrum of model 3, more power of the magnetic

field is allocated to shorter scales, and even lower energy modes can reach the small-

∆ approximation. Owing to the wide range of coherence lengths in the Model 3

magnetic field, ALPs traversing the cluster will still pass through regions which are

not well-described by a small-∆ approximation — even for relatively high energy

modes. As the ALP energy is increased, only a small additional fraction of the large

coherence lengths are brought into the small-∆ approximation, which explains the

gradual approach to the small-∆ approximation in this case.

Let us finally for the sake of clarity remark on features of the conversion probabil-

ities that are not well-captured by the single-domain formula. As ∆ approaches π/2,

the single-domain formula predicts a relative decrease in the conversion probability

with respect to the small-∆ approximation, yet the full numerical simulations exhibit

conversion probabilities with a clear trend of ‘overshooting’ the small-angle attractor

at this point.

A final general comment about the simulations: it is useful to know how much

variation one can expect purely from repeating a simulation with identical magnetic

field parameters. By repeating simulations with the Model 1 parameters, we found

that the averaged conversion probabilities within each annulus varied by at most 9%,

where in most cases the difference was less than 5%. We note that the most significant
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Figure 5.8: Mean conversion probability as a function of radius from the centre of Coma,
for Model 3 of table 5.1 and with M = 5.7× 1012 GeV.

variations occurred for larger energies. We thus conclude that our magnetic field model

does not generate large fluctuations in conversion probabilities. However, to account

for this when we plot comparisons between simulated and observed luminosities, we

include a statistical error of 10% on our values.

5.7.2.2 Comparison with Observed Luminosities

We may now compare the predictions of ALP–photon conversion of a CAB in the

Coma cluster to the actual observations of the soft excess with ROSAT, based on the

analysis of Bonamente et al. [121]. Specifically, we will focus on the overall unabsorbed

excess luminosity in the 0.2−0.4 keV band for various different annular regions around

the centre of Coma.

Since the spectral shape of the soft excess is poorly known, the analysis of [121]

quotes results for two different spectral fits to the excess emission: the first employs

a power-law spectrum with photon index 1.75 (so that the excess flux is dNγ/dE ∼

ν−1.75), and the second is based on a thermal spectrum with T = 80 eV. These results

— which differ from each other by an overall factor of ≈ 2.4 — are shown in table

5.3. While neither of these spectral models are in exact agreement with the shape

of the photon spectrum obtained from CAB conversion, the thermal bremsstrahlung
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Region (arcminute) LNT (1041erg s−1) Lthermal(1041erg s−1)

0 - 3 11 4.6
3 - 6 22 9.1
6 - 9 26 10
9 - 12 25 10
12 - 18 47 21

Table 5.3: The results of [121] for excess luminosity from the Coma cluster.

spectrum has an exponentially decreasing tail in the 0.2− 0.4 keV range, as does the

CAB spectrum for mean ALP energies 〈ECAB〉 . 200 eV. We will therefore use the

thermal excess luminosities of table 5.3 when comparing the predictions of our model

to the data. We also note that the model uncertainty in the extraction of the soft

excess mostly affects the overall luminosity and to a much smaller degree its spatial

distribution. In our model, the overall luminosity has a simple dependence on the

values of M and ∆Neff , and the uncertainty in the overall luminosity translates into

an uncertainty in ∆Neff/M
2.

We will now present our main results for the CAB explanation of the soft excess in

Coma. We will first discuss luminosities from ALP–photon conversion in the Model

1 magnetic field (including 1σ variations of the model parameters η and B0) and we

will then turn to Model 2 and Model 3.

Model 1: Figure 5.9 shows the comparison between the observed (thermal) luminos-

ity and that produced by the baseline model of [187] and two other models related by

1σ variations of the model parameters. The integrated luminosity in the 0.2−0.4 keV

range has been normalised to the total luminosity of the soft excess in the same range

by varying M independently for each model. In all cases ∆Neff = 0.5 has been as-

sumed, but we emphasise that alternate values for these parameters that normalise

luminosities can be obtained by scaling ∆Neff → λ∆Neff and M →
√
λM .

From figure 5.9, we note that while the luminosity in each bin is within observa-

tions by a factor of a few, there is a clear tendency to underproduce photons in the

centre and overproduce them in the outskirts. ALP–photon conversion in the Model 1
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magnetic field therefore does not provide a particularly good description of the Coma

soft excess.

The three variations of Model 1 in figure 5.9 correspond to the magnetic field model

parameters which best fit the Faraday rotation measures, here denoted by η = 0.5,

and 1σ variations to η = 0.4 and η = 0.7. In all cases, ALP–photon conversion under-

and over-produces photons in the inner and outer regions respectively. Understand-

ably, increasing η so that the magnetic field falls off more rapidly with radius while

simultaneously increasing B0 to match Faraday rotation measures results in more lu-

minosity to smaller radii relative to larger radii. We note that these variations are

not large enough to make the CAB prediction of the morphology of the soft excess

compatible with observations.

However, despite the poor fit of the ALP-converted photon luminosities to the

soft excess for Model 1, it would be premature to conclude that the conversion of the

CAB cannot explain the soft excess. Even before considering systematic differences

between the magnetic field models of [187] and the actual magnetic field in Coma,

as discussed in section 5.4.2, Faraday rotation measures only constrain the magnetic

field model up to degeneracies in the spectral index of the vector potential, ζ, and

the Fourier mode cut-off scale Λmax. In Model 3, we consider a magnetic field model

which provides an equally good fit to Faraday rotation measures as Model 1, but

with ζ = 0 and Λmax = 100 kpc (as opposed to ζ = 5/3 and Λmax = 34 kpc for

Model 1). The stochastically generated magnetic field prior to modulation by ne(r)

has B̃(k)(gen.) ∼ k(−ζ−2)/2, so that for ζ = 0 the power integral
∫

dkk2B̃(k)2
(gen.) has

constant support from kmin to kmax. Equivalently, magnetic fields with ζ > 0 locate

more power to smaller k-numbers and larger physical scales.

Thus, a key difference between Model 1 and Model 3 is the distribution of effective

coherence lengths. In order to highlight the effect of concentrating more power of the

magnetic field on smaller scales, we first consider a toy magnetic field model, which

does not provide a good fit to Faraday rotation measures.3 This is our Model 2, to
3Note that the small scales in this model are however not necessarily unphysical. Faraday rotation

constrains the magnitude and coherence lengths of the parallel component of the magnetic field along
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Figure 5.9: Luminosity comparison for Model 1 with different η values, compared to the
‘thermal’ excess data. For ∆Neff = 0.5 and 〈ECAB〉 = 150 eV, normalisation of the integrated
luminosities give M = 6.1 × 1012, 6.7 × 1012 and 6.5 × 1012 GeV for η = 0.4, 0.5 and 0.7,
respectively.

which we now turn.

Model 2: In this model the generated magnetic field, prior to modulation by a

function of the electron density, only varies on scales between 2−5 kpc. In this range,

the magnetic field varies with ζ = 5/3 and the modulation with electron density is

the line of sight, whereas ALP conversion involves the transverse components. The magnetic field
models used here make these equal by assumption, but if the latter is actually smaller than the
former by a factor of a few, this model could still be consistent with Faraday rotation.
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Figure 5.10: Luminosity comparison for the different models compared to the ’thermal’
excess data. For ∆Neff = 0.5 and 〈ECAB〉 = 150 eV, normalisation of the integrated lumi-
nosities gives M = 6.5× 1012, 5.2× 1012 and 5.7× 1012 GeV for Models 1 (η = 0.7), 2, and
3 respectively.

obtained with η = 0.7, setting B0 = 5.4 µG. The simulated photon luminosities from

this model match the observational data for the soft excess very well, as is shown in

figure 5.10.

Based on our discussion in section 5.7.2.1 on the radial dependence of the simulated

conversion probabilities, we may interpret the improved fit as due to a decreased

‘effective coherence length’, resulting in modes approaching the small-∆ attractor at

smaller radii, c.f. figures 5.7a and 5.7b.
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Model 3: We now return to magnetic field models consistent with observations of

Faraday rotation measures in Coma, but focus on models which concentrate more

power on smaller scales relative to Model 1. The effective degeneracy between values

of ζ and Λmax allows for reducing ζ by simultaneously increasing Λmax, as is illustrated

in figure 16 of reference [187]. Here again, we take η = 0.7 and B0 = 5.4 µG. The

resulting photon luminosities from CAB conversion are shown in figure 5.10 and again

show a good agreement with the observed soft excess.

The conclusions to draw from these are that an explanation of the soft excess via

ALP–photon conversion appears to require the transverse components of the magnetic

field to have more power on shorter scales than in the Kolmogorov spectra of [187].

This can be achieved either by allowing a flatter spectrum, so as to be consistent with

Faraday rotation measures even for a Gaussian magnetic field, or by having different

coherence lengths for transverse and parallel components of the magnetic field.

5.7.2.3 Constraints on the ALP–photon Coupling

Having established that the CAB explanation of the cluster soft excess is in reason-

able agreement with observations for magnetic field models motivated by observations

of Faraday rotation measures, we will now discuss how additional observational con-

straints give rise to a relatively limited range of possible values for M and the mean

CAB energy, 〈ECAB〉.

Strong bounds on the ALP–photon coupling have been obtained by laboratory

experiments and astrophysical arguments, see Chapter 3 for more information. For

light ALPs, the CAST search for solar ALPs has set a bound M > 1010 GeV. Proposed

experiments looking either for light shining through a wall, such as ALPS-II [69], or

for solar ALPs, such as IAXO [72], are expected to improve this bound by a factor of

10− 20.

The most stringent constraint for light ALPs, ma . 10−9 eV, is from the absence of

a γ ray burst in coincidence with neutrinos from Supernova 1987A. This bounds the

coupling to be M > 1011 GeV [45–47]. In addition to limits, an ALP with parameters
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Figure 5.11: The values of M required to normalise the total soft excess from ALP–photon
conversion in the 0.2−0.4 keV band to the observed total excess luminosity with the central
18 arcminutes of Coma as a function of 〈ECAB〉 for ∆Neff = 0.5. Model 1 is represented
by the blue solid curve, Model 2 by the black curve and Model 3 by the orange curve.
The supernova γ-burst bound is indicated by a dashed grey line, and the bounds from
overproduction of X-rays in the 0.5 − 0.6 keV range are indicated by a vertical dashed line
for each model.

ma . 10−9 eV and M ≈ 1011− 1012 GeV has been suggested to explain the anomalous

transparency of the universe to gamma rays [60,62–65].

We find that the CAB explanation for the soft excess in Coma is possible for light

ALPs with M ∼ 1011 − 7× 1012 GeV, which is in the same range as suggested by the

gamma ray transparency hint.

Furthermore, while in our model ALP–photon conversion in the Coma magnetic

field should explain the soft X-ray excess, strong restrictions on the model parameters

can be obtained by noting that higher energy photons should not be abundantly

produced from ALP–photon conversion: the excess is soft and does not survive to

higher energies. This poses a restriction on the support of the CAB spectrum, as

parametrised by the mean CAB energy. Here, we will impose that ALP–photon

conversion in the 0.5 − 0.6 keV band should not contribute to more than 10% of the

thermal luminosity in this range. More accurate — and quite possibly more stringent

— bounds may be obtained by detailed extraction of the soft excess based on dedicated
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templates for the CAB spectrum.

The astrophysical and laboratory bounds onM may then be translated into a lower

bound on the mean CAB energy, and we find that, quite model-independently, this

gives 〈ECAB〉 & 45− 50 eV. Meanwhile, the bound from X-ray overproduction gives

more model-dependent constraints, but allows for 〈ECAB〉 . 250 eV for the interesting

Model 3.

In sum, we may then express the interesting values for the scale M as

1011 GeV .M . 7× 1012

√
∆Neff

0.5 GeV . (5.32)

5.7.3 Summary of Coma Results

Let us conclude this section by summarising our results from the study of Coma. This

study has led us to three main conclusions. First, we have confirmed the assertion

of [116] that the overall luminosity of the soft excess can easily be explained by ALP-

photon conversion. For example, a CAB with mean energy of 〈ECAB〉 ≈ 150 eV may

explain the soft excess for an ALP-photon coupling of M ∼
√

∆Neff
0.5 6× 1012 GeV.

Second, we have found that the success of the CAB explanation for the morphol-

ogy of the cluster soft excess depends on some of the details of the cluster magnetic

field, and in particular on the distribution of the coherence lengths of the magnetic

domains. The morphology obtained from ALP-photon conversion is compatible with

the observed soft excess for magnetic field models which predominantly have short

(transverse) coherence lengths of a few kpc, as well as models which have uniformly

distributed (transverse) coherence lengths from a few to 100 kpc. For Gaussian mag-

netic field models with transverse coherence lengths predominantly in the 10 kpc

range, such as our Model 1 above, the CAB explanation does not provide a close

match to the observed soft excess morphology in Coma. The CAB explanation of

the soft excess then requires either a flatter power spectrum or a shorter coherence

length for the transverse component of the magnetic field (note that Faraday rotation

measures constrain only the magnetic field component parallel to the line of sight).
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Third, the requirement that the cluster soft excess originates from a CAB strongly

constrains the CAB properties. The absence of an X-ray excess at E & 0.5 keV, and

the astrophysical requirement that the ALP-photon coupling satisfies M & 1011 GeV,

constrains the mean CAB energy to the range

50 eV . 〈ECAB〉 . 250 eV , (5.33)

so that the CAB explanation of the soft excess is viable for 1011 GeV . M . 7 ×

1012
√

∆Neff
0.5 GeV. The ALP mass is similarly constrained to ma . 10−12 eV.

We now continue to study the soft X-ray excess in galaxy clusters, by studying

the CAB in three more galaxy clusters, and comparing to soft X-ray observations in

these clusters.

Following the publication of the work this chapter is based on, and prior to the

following study of A665, A2199, and A2255, the authors of [212] continued to study

the soft X-ray excess in the Coma cluster. They extrapolated this magnetic field model

out to radii ∼ 5 Mpc from the cluster centre, and found the observed excess at these

large radii [157], could be fit by the inverse coupling 5×1012 GeV ≤M ≤ 3×1013 GeV.

5.8 A665, A2199 and A2255

In this section we study the galaxy clusters A665, A2199, and A2255. There is no

observed excess in the A665 cluster, thus it is an important testing ground for the

CAB hypothesis. A CAB should not produce a large X-ray signal in this cluster. The

other two clusters have hints of excesses, but at lower significances than in the Coma

cluster.

5.8.1 Luminosity and Fractional Excess

We start by outlining the method we use to compare to data. The data is collected in

the 0.1− 0.28 keV R1R2 band of ROSAT. In the case where an excess was observed,

the luminosity in the 0.2− 0.4 keV band was computed by [121] for thermal and non-

thermal emission models. Thus in the previous section on Coma, we could compare
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directly to the observed luminosity. Here however, we are dealing with clusters where

no excess was observed, thus we must compare instead to the number of counts

observed. The analysis of [121] lists the expected and observed count rates in the R1

and R2 bands (R1R2, 0.1− 0.28 keV) of the ROSAT PSPC detector. To compare to

these observations we use the NASA PIMMS software [215], we use this to predict

the count rate in the ROSAT PSPC R1R2 band, given a flux and spectral shape.

The result of the simulation is a grid of conversion probabilities, which we com-

pute for several ALP energies between 25 eV − 1 keV. This grid is divided into ten

concentric annuli and the conversion probability in each annulus is averaged. In this

way we end up with an ALP−photon conversion probability distribution which is a

function of radius and energy, P (r, E). We use this ALP−photon conversion proba-

bility distribution to compute the soft X-ray luminosity from CAB conversion in the

cluster. We do this by integrating the product of the probability function P (r, E) and

the CAB energy spectrum E dN
dE

over the area of the annulus of interest and over the

energy interval 0.1− 0.28 keV. The CAB energy density is normalised relative to the

CMB by setting ∆Neff = 0.5.

As can be seen in [121] the assumed spectral shape of the emission can have a

large impact on the luminosity for a given a count rate. This is both due to the

different energy channels of the input and output, and because the detector response

varies over the R1R2 band. To use the PIMMS tool we need to state what spectral

shape the signal has—which would be a modified CAB spectrum to take into account

the energy dependence of the conversion probabilities. Since we are converting be-

tween luminosity and count rate in the same energy channel, we checked to see the

importance of the specific spectral model used. We use two models: a thermal black-

body spectrum which peaks at 150 eV, and a single temperature (0.08 keV) thermal

bremsstrahlung MEKAL plasma model. This second model was the model used for

calculating the luminosities in [121] which we compared the simulation results to in

the previous section. We found little difference between the count rate prediction

for the two models. The count rate is also slightly sensitive to the temperatures of
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both the blackbody and the plasma model (which in principle should be changed

when scanning over the mean CAB energy parameter later), the largest deviations

only came when the temperatures were pushed much higher or lower than the values

above, and thus we keep these temperatures fixed.

The largest uncertainty comes from the count rate prediction itself. There is

likely an inherent systematic uncertainty in simulating the count rate in the ROSAT

detector for a given luminosity. For instance, we took the excess luminosities given

in [121] and converted them to count rates in the ROSAT R1R2 band using PIMMS

to compare with observed count rates. We found that the count rates predicted by

PIMMS were factors 0.5 − 2 different than the observed counts, though these errors

are probably larger due to the different energy ranges of the luminosity and count

rates mentioned earlier. Thus it is important that we do not claim to be too precise

with the count rate prediction from the simulation, as such we allow the count rates

to vary by ±50% when constraining the CAB parameter space later.

5.8.2 Results

In this section we present the results of the simulations for the three individual clus-

ters. We study the morphology and use the observed (lack of a) soft excess to constrain

the CAB parameters M , the inverse coupling, and 〈ECAB〉, the CAB spectrum mean

energy. We then compare the best fit regions for the three clusters to that of the

centre of Coma. Throughout we take H0 = 71 km s−1Mpc−1 and Ωm = 0.27, to

be consistent with [206, 207], though we do not expect this choice to have a signifi-

cant effect on the results compared to that from the systematic uncertainties on the

magnetic fields.

5.8.2.1 A665

No excess is observed from A665, and it is thus an important check for the CAB

hypothesis. Since the CAB will always convert to photons in magnetic fields, the

conversion probability of an ALP to a photon needs to be small in A665 such that an
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observable excess is not produced.

A665 will have smaller conversion probabilities than for instance the Coma cluster,

where the CAB simulation agreed with the significant soft excess observed, for two

reasons. Firstly, the central magnetic field is smaller (1.3 µG compared to 4.7 µG

in Coma), whilst the electron density is roughly similar. Since the conversion prob-

abilities always scale as P (a → γ) ∝ B2 (see equations 5.20 and 5.21), there is a

large (BComa/BA665)2 reduction in conversion probabilities for A665. Secondly, A665

has larger coherence lengths (Λmax, Coma � Λmax, A665) roughly by a factor 10. With

this increase, we see according to equation 5.19 the small ∆ regime will be reached

at ∼ 10 times the impact parameter as for Coma—thus for the energies and impact

parameters we are concerned with, the small angle approximation is never reached in

A665. Outside of the small angle regime the conversion probabilities scale as

P (a→ γ) ∝ 1
L

(
B

ne

)2
, (5.34)

since the conversion probability per domain is now independent of L, but the ALP

passes through D/L domains, this should lead to another large reduction in conversion

probabilities. However, the conversion in Coma was mostly in the small angle regime,

and since probabilities in the small angle formula are naturally smaller (large ∆ implies

sin2 ∆ = 1/2, whereas small ∆ implies sin2 ∆ ≈ ∆2 � 1) the net result is a factor

two drop in conversion probabilities for A665 compared to Coma.

From the above two factors the conversion probabilities are a large factor smaller

in A665 compared to the previously considered Coma cluster. However, the increased

size of A665, both in terms of the cross-sectional area entering the luminosity calcu-

lation, and increased propagation distance,4 results in a luminosity that is a factor

of ∼ 9 smaller than that for Coma. The morphology is also completely different. In

Coma the conversion probabilities were in the small-∆ regime and were thus larger

at low radii, in A665 the opposite is true, see equation 5.21. The CAB conversion is
4We note that the finite volume of the simulation naturally affects the results. A larger propaga-

tion distance, assuming the magnetic field is still non-zero, will naturally lead to larger conversion
probabilities due to the dependence on D of equation 5.19.
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thus largest in the region where the thermal emission from the ICM is smallest.

As the canonical CAB parameter values we set the mean CAB energy to 150 eV,

and the inverse coupling to M = 7 × 1012 GeV. For these values the total fractional

excess across the whole cluster is ξ = 0.025, which is unobservably small, however,

let us now discuss the morphology. Figure 5.12a shows the simulated and observed

fractional excesses upon dividing the cluster into three annuli—note 6 arcminutes

corresponds to 1090 kpc at the distance of A665. The errors on the observed data

correspond to 68% confidence levels on the observed counts. The hot ICM emission

at large radii is very small (9.1× 10−3 s−1) and thus despite the average excess being

insignificant, the CAB does predict an excess at > 3 arcminutes.

The shaded regions for the simulation data points only take into account the statis-

tical uncertainties on the random nature of the field. It was shown in the simulation

of Coma in the previous section that upon generating several stochastic magnetic

fields with the same power spectra and radial behaviour, the conversion probabilities

at most varied by 10%. As discussed earlier, there is an additional uncertainty in

predicting the counts in the ROSAT detector for a given luminosity. We will take this

into account when constraining the CAB parameter space next.

The inverse coupling M , and the mean CAB energy 〈ECAB〉, are unknown parame-

ters in the model. Thus we now redo the analysis scanning over these two parameters,

the resultant parameter space is shown in figure 5.12b. The red regions signify the

parameter space where a significant excess is simulated—i.e. the simulated fractional

excess would be distinguishable from zero at 95% confidence in [121], this corresponds

to a count rate in the outer annulus of 2.6 × 10−3 s−1. The light red region corre-

sponds to allowing the count rate to be 50% larger than PIMMS predicts, the darker

region corresponds to allowing the PIMMS prediction to be smaller by 50%, as dis-

cussed in section 5.8.1. The shape of the excluded region is easy to understand, for

a given value of M , the largest luminosity occurs when most of the CAB spectrum

is in the R1R2 energy band, hence forcing the tightest bounds on M . Note that we

cannot push the CAB energy up arbitrarily high in order to not produce an unob-
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served excess in energy bands above 0.4 keV. We see that the red regions include

parts (all) of the best fit region found from simulations of the centre of the Coma

cluster. The simulation thus predicts a significant soft excess, in the sense defined

above, if M . 6− 10× 1012 GeV. Although we take time to point out that averaged

across the whole cluster, the simulation agrees with observations that no excess would

be observed.

The best fit regions from Coma and disfavoured region from A665 thus overlap

each other, though we caution that the favoured or disfavoured values of M for both

Coma and A665 have an additional uncertainty due to systematics on the magnetic

field models. For instance as discussed earlier these turbulent, stochastic field models

are likely to be simplified realisations of the true magneto-hydrodynamical ICM. In

addition, the parameters of the model for A665 are constrained only by comparing

simulated to observed radio halos, this requires several assumptions about the form

of the relativistic electron population within the cluster. As a result, the observed

anisotropies and shift in the radio halo centre and X-ray centre are assumed to be

caused purely by the stochastic magnetic field (note a field with very large coherence

lengths across the cluster will naturally be more anisotropic than one with very small

coherence lengths) and not due to the form of the relativistic electrons. These as-

sumptions allow the field parameters to be constrained, however it is likely that the

resultant best fit parameters are highly sensitive to the form of the relativistic electron

population. The slight overlap of parameter spaces is within the expected uncertainty

arising from these concerns, especially given the dependence of the morphology on

the magnetic field parameters, as seen in the Coma simulation.

5.8.2.2 A2199

A2199 is the first cool-core cluster considered in these simulations. The electron

density in the centre of the cluster peaks at 0.1 cm−3, which is ∼ 30 times that in

Coma, A665 and A2255, and follows a double β-model profile, given in equation 5.12.

The double β-model encompasses the extra, cooler (therefore high density) central
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Figure 5.12: a) The simulated and observed fractional excess in A665, the simulation takes
M = 7× 1012 GeV and 〈ECAB〉 = 150 eV. The observed data error bars are 68% limits on
the observed counts, the shaded region accounts for statistical uncertainty on simulation.
b) The M and ECAB parameter space, shown in red is the region where a non-zero soft
excess in the outer annulus would be observable at 95% C.L., overlaid in green are the best
fit regions from the centre of Coma.

component of the electron density. We can see from equations 5.17 and 5.18 that

outside of the small-∆ approximation

P (a→ γ) ∝ n−2
e , (5.35)

and thus high electron densities suppress conversion. The cluster however has a very

small core radius (O(20 kpc) compared to O(300 kpc) for Coma, A665 and A2255),

and thus the electron density drops very rapidly with increasing radius, and thus we

do not expect much suppression of conversion probabilities with respect to non-cool-

core clusters. As we have argued before, large electron densities imply large magnetic

fields, and thus A2199 has a large central magnetic field value of B0 ∼ 12 µG, much

larger than the two other cluster’s magnetic fields. However again this will drop

rapidly from the centre due to the small core radius.

We show the simulated excess in A2199 in figure 5.13a—15 arcminutes at A2199

corresponds to ∼ 540 kpc. The blue points are the simulated fractional excesses for

the magnetic field parameter values (B0, η) = (11.9 µG, 0.9). In this plot M =
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7 × 1012 GeV and 〈ECAB〉 = 150 eV as usual, and again the shaded region takes

into account the statistical uncertainty on the stochastic field. The CAB-generated

luminosity in the 0.2 − 0.4 keV band between 12 − 15 arcminutes is simulated to be

4.7×1039 erg s−1, which is more than an order of magnitude smaller than the observed

luminosity (assuming thermal emission) of the soft excess, in the same energy range,

of 1.7× 1041 erg s−1 [121]. Thus for the Coma best fit parameters the CAB predicts

no observable excess in A2199 for the canonical magnetic field parameters. This is

mostly due to the incredibly fast fall of the magnetic field magnitude with radius

when η = 0.9, and the fact that we simulate out to many times the core radius.

We first discuss changes to the magnetic field parameters before scanning over

the CAB parameter space. As we mentioned earlier, the magnetic field in A2199 is

poorly constrained. To be specific, the central magnetic field magnitude and the radial

parameter η are constrained to be B0 = (11.9 ± 9.0)µG and η = 0.9 ± 0.5. In the

following we will consider varying these two parameters. These two parameters are

degenerate with respect to Faraday rotation measurements, a larger central magnetic

field value with a steeper fall with radius (higher η) produces a magnetic field with

the same average value. Thus these two parameters must be changed in tandem. We

do not consider any changes in the spectral index or the largest lengthscale Λmax,

although we note that these also have a range of allowed values.

Within the uncertainties on (B0, η) we also show the simulated soft excess for the

parameter choice (B0, η) = (6 µG, 0.5) plotted as the orange points in figure 5.13a.

We choose the value η = 0.5 because as mentioned earlier, this corresponds to the case

where the energy density in the magnetic field is proportional to the energy density of

the thermal gas. The value of the parameter η effects the rate at which the magnetic

field magnitude falls with radius, a smaller η then results in a larger magnetic field

magnitude at large cluster radii, thereby increasing the conversion probabilities at

large radii. We see this as an increased luminosity and hence increased soft excess at

large radii. For these magnetic field parameters we see that the CAB parameters that

fit Coma match the observed morphology (given the amount of scatter in the data)
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and magnitude of the soft excess in A2199 well.

We next fit the magnitude of the soft excess by scanning over the (M,ECAB)

parameter space. We neglect the data in the 0 − 1 arcminutes annulus due to the

presence of a large deficit of soft X-rays. We show the region of CAB parameter space

where the simulation fits the data, for both magnetic field parameters mentioned

above, in figure 5.13b, where the thickness of the bands takes into account the count

rate uncertainty discussed earlier. The dark regions are the regions where the total

excess is reproduced, shown in lighter colours are the regions where the magnitude of

the excess in the 12 − 15 arcminutes annulus only is reproduced. We see then that

given the uncertainty on the magnetic field strength and radial profile, the excess can

be fit for a large range of inverse couplings, M . The CAB converting to photons in

A2199 is consistent with Coma and A665 if the magnetic field magnitude does not

fall as quickly with radius as the best fit field.

The current soft X-ray data contains a large amount of scatter and uncertainty.

The total excess over the whole of the cluster is small (several %) and not significant,

however there are radial regions where there is an observed excess, and there is a

general trend that it increases with radius. We have shown that if the magnetic field

falls less steeply with radius, the magnitude and general morphology are fit well, for

a CAB with M = 6− 12× 1012 GeV. However there is large uncertainty in both the

magnetic field and the soft excess observations. Clearly a more constrained magnetic

field model, and hopefully future soft X-ray observations will shed more light on the

CAB in A2199.

5.8.2.3 A2255

The simulated magnetic field in A2255 is an unrealistic ‘stitching’ together of two

fields with different coherence lengths. For radii less than the core radius, the field

has a flat power spectrum with the full range of scales available. For radii greater

than the core radius, the field has a power spectrum index of ζ = 2 and a minimum

lengthscale of 64 kpc. A larger spectral index puts more of the power in smaller
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Figure 5.13: a) The fractional excess in A2199. Both simulated data sets are taken with
M = 7× 1012 GeV and 〈ECAB〉 = 150 eV. b) The M v 〈ECAB〉 parameter space which fits
the data for the two models, defined as when the total observed fractional excess is equal
to the total simulated fractional excess between 1 − 15 arcminutes. The lighter colours
indicate the regions where the excess is fixed to that in the 12−15 arcminutes annulus. For
comparison, overlaid in green are the best fit regions from the centre of Coma.

momentum modes. As a result the field in the centre of the cluster will on average

have much shorter coherence lengths than in the outer parts of the cluster, which will

typically have very large coherence lengths. We use a smoothing function at the core

radius to interpolate between the two fields.

This magnetic field model then gives a unique morphology to the ALP−photon

conversion probabilities. For ALPs whose impact parameter is small, r < rc, the

ALPs will pass through a large region where the field has small coherence lengths. The

ALP conversion is then in the small-angle regime for a large proportion of the ALP’s

propagation, thus we expect conversion probabilities that decrease with increasing

impact parameter, until r ∼ rc. For impact parameters larger than the core radius the

ALPs will propagate only through the ζ = 2 magnetic field, and the large coherence

lengths here result in conversion probabilities which are out of the small ∆ regime

(although high energies and large impact parameter will reduce the angle ∆ back into

the small angle regime), and thus the conversion probabilities increase with radius.
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Figure 5.14: The ALP-photon conversion probabilities in the cluster A2255 for an ALP
of impact parameter r, shown for three different ALP energies. We see the change in
behaviour between ALPs that propagate mostly through the flat spectrum field at low
impact parameter, and those that propagate only through the ζ = 2 field at large impact
parameter. The conversion probabilities are computed with M = 7× 1012 GeV.

We show this feature of the conversion probabilities for three ALP energies in

figure 5.14. We see the clear feature at rc ∼ 400 kpc where the ALPs are no longer

passing through any of the smaller coherence length field. The conversion probabilities

in the outer field are smaller relative to the centre due to the large coherence lengths

resulting in the ALPs passing through few magnetic field domains.

In figure 5.15a we plot the simulated soft excess for the two radial parameters

η = 0.5, 0.7.5 Since the value of the radial parameter η is not well constrained we

choose these two values as representative of the two interesting cases discussed ear-

lier. In the plot we have again taken M = 7 × 1012 GeV and 〈ECAB〉 = 150 eV, and

the shaded region is the statistical uncertainty. 15 arcminutes at A2255 corresponds

to ∼ 1.4 Mpc. We see that both field parameter choices reproduce the soft excess

magnitude, and the morphology at radii < 9 arcminutes. The low conversion proba-

bilities around ∼ 500 kpc translate into a small, unobservable excess, exactly where

the observations reveal no excess between 6− 9 arcminutes.

Both of the models then have large excesses at large radii due to the radial profile
5Note the magnetic field magnitude normalisation in A2255 is chosen slightly differently to that

of A2199. According to [205] we normalise the field such that the average magnetic field inside the
central 1 Mpc3 is equal to 1.2 µG, which automatically ensures the value of B0 changes according
to the value of η chosen.
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Figure 5.15: a) The simulated and observed fractional excess in A2255. Plotted are the
magnetic field models with radial parameter η = 0.5 in blue, and η = 0.7 in orange. For
the simulations we take M = 7 × 1012 GeV and 〈ECAB〉 = 150 eV. b) The M v 〈ECAB〉
parameter space which fits the data in the central radial zones (excluding > 9 arcminutes
where the data is uncertain) for the two models (which overlap almost completely). For
comparison, overlaid in green are the best fit regions from the centre of Coma.

of the conversion probabilities and the low expected ICM emission. The data at

> 9 arcminutes have a large uncertainty and thus the morphology is not a concern,

however the magnitude of the simulated excess for η = 0.5 at the outskirts is much

higher than that observed. Increasing the radial parameter η results in the magnetic

field dropping off more rapidly with radius, lower field values necessarily produce

lower conversion probabilities and thus increasing to η = 0.7 does not overproduce

soft X-rays and fits the data at > 9 arcminutes well.

In figure 5.15b we illustrate the fact that the CAB parameters that best fit the

observed soft excess between 1 − 9 arcminutes overlap the best fit CAB parameter

region from the central part of Coma. Again the thick band takes into account varying

the count rate prediction from PIMMS by ±50%. We do not fit the large radius data

due to the signal uncertainties mentioned earlier. The CAB morphology of the soft

excess in A2255 clearly prefers a field which falls with radius more steeply than the

canonical B2 ∝ ne choice.
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Finally we note that the simulated magnetic field is not a realistic field. In addi-

tion to the usual systematic uncertainty due to assuming this stochastic model for the

cluster magnetic field, the simulated field for A2255 is produced by stitching together

two stochastic fields produced with different power spectra. Thus while the morphol-

ogy of the simulated soft excess is in very good agreement with the observed excess, it

is clear that this is mostly a feature of the field model used. The magnetic field trans-

forms from a field with small coherence lengths to one with large coherence lengths

over a short distance, and thus the conversion probabilities drop suddenly beyond the

core radius. A better implementation of the field would be to have increasing coher-

ence lengths as a function of radius, something that currently cannot be implemented

as part of the simulation. A magnetic field with a spectral index which increases with

radius and thus has coherence lengths which smoothly increase with radius would not

have such striking distinction between small and large impact parameter as in figure

5.14. It is likely that the CAB-produced excess between 6− 12 arcminutes would not

be as small, but would still provide a good fit to the observed morphology. In [212]

the outskirts of Coma were analysed using a magnetic field whose coherence lengths

increase with radius using a semi-analytical approach, we expect such a method is

better suited to studying A2255.

5.8.3 Comparison and Summary

In this section we have continued to study the soft excess from a CAB in three more

galaxy clusters. Here we compare the CAB parameter space between the clusters,

and summarise our results.

We calculated the expected luminosities from CAB conversion by simulating the

cluster magnetic fields and numerically calculating the conversion probability for an

ALP of mass ma < 10−13 eV travelling through the field. We compared the simulation

results to ROSAT PSPC count rates in the 0.1− 0.28 keV R1R2 band.

Observations of the cluster A665 have shown no excess, thus we can use this

to bound the CAB parameter space. Averaged across the whole of the cluster, the
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simulation predicts an unobservably small soft excess. However, a large excess is

predicted at large radii, since here the conversion probabilities are highest, and the

ICM emission is lowest. Stipulating that the simulated excess from a CAB at these

large radii should not be larger than twice the error on the observed count rate, results

in the disfavoured region

M < 6− 10× 1012 GeV, (5.36)

for CAB mean energies 〈ECAB〉 ∼ 100 − 250 eV. The range takes into account the

uncertainty on where the bound lies due to the uncertainty in predicting count rates

in the ROSAT PSPC detector. This disfavoured region overlaps with the preferred

region from the centre of Coma (M = 5− 8× 1012 GeV), and thus the simulation of

a CAB in A665 is in slight disagreement with the simulations of the Coma cluster.

Across the whole cluster there is no significant excess predicted, in agreement

with the Coma simulation, however the morphology of the excess predicts a large

excess at large radii. The morphology of the soft excess from a CAB is crucially

dependent on the details of the magnetic field. However there are large uncertainties

on the magnetic field model of A665, due to the assumptions about the relativistic

electron population used to constrain the model. Thus further study of the magnetic

field in A665 is needed to determine whether observations of A665 rule out the CAB

explanation of the soft excess.

For the cluster A2199, a CAB produces a soft X-ray excess which would be very

small (a factor of ∼ 20 smaller than observed) for the best fit Coma values, for the

canonical radial scaling parameter value of η = 0.9. We can alleviate this issue by

decreasing this parameter within its allowed uncertainty, to η = 0.5. This results in

a magnetic field magnitude which falls with radius more slowly and thus has a much

more rapidly increasing soft excess with radius. The choice η = 0.5 then gives a good

fit to the morphology of the observed excess. The magnitude of the excess is fit well

for the lower η field for the parameters M = 6− 12× 1012 GeV and thus agrees with

the analysis of Coma. Although we caution that there is a large amount of scatter in

the A2199 soft excess data, and that the observed excess is at very low significance.
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The simulations of A2255 also fit the observed excess well. The canonical choice

of the radial scaling parameter η = 0.5, overproduces X-rays in the outer regions, but

changing this value to η = 0.7 (which is allowed within observational uncertainties)

produces an excess with the right morphology and magnitude for M = 5 − 9 ×

1012 GeV, which agrees with A2199 and again with the Coma cluster. The morphology

is fit very well, but this is mostly a feature of the magnetic field model used. The

magnetic field model has an unrealistic sharp transition around the core radius from

small coherence lengths to large coherence lengths. Where this transition happens

the predicted excess dips due to a drastic reduction in conversion probabilities, and

this is exactly where the observed excess is small.

In figure 5.16 we show the regions of the CAB parameters which fit the soft X-ray

observations of the three clusters considered here, for comparison we also show the

CAB parameter space which fits the soft excess in the centre and the outskirts of the

Coma cluster. We show the good agreement between the clusters by showing in figure

5.16c the best fit values of M for all the clusters considered so far, setting (arbitrarily)

〈ECAB〉 = 150 eV. From the simulations of these three clusters we find the preferred

range of the coupling M to be,

M = 6− 12× 1012 GeV
√

∆Neff

0.5 . (5.37)

Which overlaps well with the parameter space from the centre of Coma, M = 5− 8×

1012 GeV, and from the outskirts of the Coma cluster, which requires M = 5− 30×

1012 GeV.

It has been observed that the cluster soft excess is preferentially seen at large

radii [121]. In all three clusters we have studied in this section, the fractional excess

produced from CAB conversion is largest at large radii. This is because the thermal

emission from the ICM falls off faster than the conversion probabilities from the

magnetic field. Thus we see that the CAB reproduces this observed morphological

trend.

The study of these three clusters has been an important consistency check for
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Figure 5.16: a) The best fit regions of the M vs 〈ECAB〉 parameter space from the analyses
of the centre (green) and the outskirts (yellow) of the Coma cluster. The light green and
dark green regions correspond to Models 1 and 3, of the centre, respectively. Similarly the
light yellow and dark yellow regions are Model A and Model B from the outskirts of Coma
(which correspond to Models 1 and 3 from the centre). b) The best fit regions from the
three clusters studied here: the disfavoured region from A665 is shown in red (dashed line);
the best fit region for A2199 is shown in blue (dot-dashed line); and the same for A2255 is
in orange (solid line). c) A comparison of the best fit values for M between simulations of
the three clusters studied here, along with the best fit values from the Coma studies. The
values of M have been taken corresponding to (the arbitrary choice) 〈ECAB〉 = 150 eV.

the CAB explanation of the soft excess. The best-fit CAB parameters agree fairly

well between the four clusters. The three clusters studied here do not have as much

X-ray observation time as the Coma cluster, nor are the magnetic fields as well deter-

mined, thus there are still large uncertainties in the results for these clusters. However
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the consistency between the four clusters studied so far adds evidence to the CAB

explanation of the soft excess.

5.9 Conclusions

In this Chapter I have used simulations to test the idea that an excess of soft X-

ray emisson from galaxy clusters can be explained by a primordially-generated back-

ground of ALPs. These ALPs are produced by modulus decay at reheating, as studied

in Chapter 4. Since they are very weakly-interacting they form a present-day homo-

geneous background. This background is probed indirectly by its contribution to dark

radiation, but can also be probed directly by the ALP’s coupling to photons. As the

background passes through galaxy cluster magnetic fields the ALPs can convert to

photons and produce a soft X-ray signal.

We have simulated the magnetic field in four clusters. The model we use for

the magnetic field is a stochastically-generated, power-law model, that results in a

tangled magnetic field. The magnetic field falls with radius with the same profile as

the thermal electron density. We then numerically calculated ALP–photon conversion

probabilities.

We started by studying the soft excess in the Coma cluster. Here a soft excess has

been found at very high statistical significance, and the magnetic field properties are

also well studied and constrained. We chose three sets of model parameters for the

Coma cluster, two of which are a good fit to Faraday rotation observations, the other

was used for illustrative purposes. The simulations reproduce well the magnitude of

the observed excess in Coma, for an ALP–photon coupling M ∼ 5 − 8 × 1012 GeV.

We also studied the morphology of the ALP–photon conversion probabilities for the

models and found that the morphology of the excess can be fit well if the magnetic

field has a flat power spectrum, or predominantly short coherence lengths.

We have also studied the clusters A665, A2199, and A2255 as an important con-

sistency check. A665 has no observed excess and we find the exclusion region from

this cluster agrees well with the values of M which reproduce the observed (low sig-
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Figure 5.17: The low mass ALP parameter space showing the bounds on the ALP mass
ma and ALP−photon inverse coupling M . The strongest laboratory bound comes from the
experiment CAST (dark red) [71], an even stronger astrophysical bound is from the lack
of a gamma ray burst associated with SN1987a (red) [45–47], we have also included the
bound from the H.E.S.S. study of PKS 2155-304 [55]. Indicated in green are the favoured
regions for an ALP explanation to the soft X-ray excess, from this work and [212], and to the
anomalous gamma ray transparency of the universe [56,57,60,63,65], bound from [62]. We
have also indicated in blue the regions expected to be probed by the laboratory experiments
ALPS-II [69] and IAXO [72].

nificance) excesses in A2199 and A2255. There is slight tension between the exclusion

region derived from A665 and the results from the Coma simulation, however better

knowledge of the magnetic field in A665 is needed to test this further.

The best fit regions across the four clusters studied here are in agreement with

each other, and indicate an ALP–photon coupling M = 6− 12× 1012 GeV. We show

how this fits in with current bounds in figure 5.17. We note these values are obtained

assuming ∆Neff = 0.5, the best fit M scales as M ∼ (∆Neff)1/2, and we include this

in the figure.

While the simulations conducted so far have shown good agreement between CAB

parameters across the clusters studied, the uncertainties on the magnetic fields of

clusters limit further analysis. The four clusters studied so far exhaust the list of

clusters which have both soft X-ray excess observations and constrained magnetic field
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power spectra and radial profiles. On top of this it is possible that these magnetic

fields models do not capture the full magneto-hydrodynamical structure of the real

cluster magnetic fields. Thus it would be interesting to take magnetic field values

found from a numerical MHD simulation of cluster formation and see whether there

are any qualitative differences in the resulting ALP-photon conversion probabilities.

While the study of the soft excess from a CAB is limited at the moment, this should

improve with time as cluster magnetic fields are determined for more clusters and

with greater accuracy. Currently, for some of the clusters we studied, to constrain the

magnetic field, assumptions about the relativistic electron population that produces

the observed radio halo need to be made. In the future it is hoped that increased

Faraday rotation data in many clusters can reduce the need for such assumptions. If

information can be obtained about the magnetic field and electron density in many

clusters from the sample [121], it would be interesting to see whether this can be

correlated with the presence or absence of a soft excess. Furthermore, we have seen

that the predicted soft X-ray morphology is intimately linked to the magnetic field

parameters. Thus whilst we have shown a good match to the observed morphologies,

better knowledge of the cluster magnetic fields will allow us to study the soft X-ray

excess in more detail.

One of the most interesting results from this section is that galaxy cluster mag-

netic fields are very efficient at converting X-ray ALPs into photons. In addition we

have shown that the X-ray regime is exactly in a crossover region between the large

and small ∆ regimes, which give qualitatively different conversion probabilities. In

the next chapter we will propose a way to use galaxy clusters to search directly for

ALPs, using only the X-ray cluster emission. Photon conversion to ALPs will lead to

significant distortions of the X-ray spectrum of a galaxy cluster.

The effects of a cosmic ALP background have since been studied in various other

astrophysical and cosmological settings. In [216] a detailed study of CAB conversion

in the Milky Way magnetic field showed that a CAB would give a signal several

orders of magnitude below the cosmic X-ray background, rendering it unobservable
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from the Milky Way. A strong constraint on the properties of the ALP that make

up the CAB was found in [217]. Conversion of CAB ALPs into MeV photons in the

early universe would cause a significant amount of reionisation, before the reionisation

epoch (z ∼ 11). If there existed a primordial magnetic field during the reionisation

period, whose current magnitude is B ∼ 1 nG, coherent over Mpc scales, then values

of M almost up to the Planck scale are ruled out. However as discussed earlier, it is

not clear whether these assumptions about the cosmological magnetic field hold.
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6 Constraining ALPs using Galaxy
Clusters

In this chapter I use what we have learnt in the previous chapter about ALP-photon

conversion in galaxy clusters to study the opposite phenomenon. The X-ray photons

emitted by the galaxy cluster itself may convert to ALPs in the cluster’s magnetic field,

this effect is energy-dependent and can be searched for by looking at modifications

to the galaxy cluster’s thermal bremsstrahlung spectrum. This is independent of

any string theory model, as it does not require the production of ALPs in the early

universe. Here I present the first study of this effect, and its prospects for constraining

ALP parameters, which was first published in [4], written in collaboration with Joseph

P. Conlon and David Marsh.

6.1 Current Bounds

As we have already seen in Chapter 5, galaxy clusters are highly efficient at inter-

converting light axion-like particles (ALPs) and photons [2, 3, 116] (see [64, 218, 219]

for some earlier work). In this chapter, we show that the absence of large distortions

of the cluster thermal X-ray bremsstrahlung spectrum may be used to derive the

strongest bounds to date on the ALP–photon coupling for light ALPs. These bounds
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are stricter than the current bound M & 2× 1011 GeV [45–47] from SN1987a, which

holds for ma . 10−10 eV, and better than the planned next generation earth-based

experiments ALPS-II and IAXO, M > 3× 1011 GeV. For a review of the bounds on

the ALP photon coupling, see section 3.3.

We also note that the method used here is similar to that used in previous studies.

For instance, a recent paper used the absence of CMB distortions through clusters to

produce strong bounds on the ALP photon coupling M & 1011 GeV [220], although

as this relies on resonance effects it is only relevant for a small range of ALP masses

around ma ∼ 10−13 eV. A similar method was used in [221], which constrained ALPs

by looking for distortions to an AGN spectrum shining through the Hydra A cluster.

The resulting bounds were slightly less constraining than from SN1987a. Here we use

the cluster emission itself to get bounds which are more stringent. We argue that

current and future data from X-ray observations of galaxy clusters can significantly

improve the bounds on M for the entire small ma region (. 1×10−12 eV), potentially

reaching to around M ∼ 1012 GeV.

I start in section 6.2 by restating photon–ALP conversion in a language more

suitable to a discussion of the effects we consider. Then, after revising X-ray emission

from galaxy clusters, I discuss in section 6.3 the expected distortions to this signal

arising from photon–ALP conversion. In section 6.4, I look at a few more properties

of the distorted spectrum, such as its dependence on the size of the extracted signal

region and potential polarisation signals. Finally, I conclude in section 6.5.

6.2 Photon-ALP Conversion in Galaxy Clusters

Firstly, let us review the relevant theory of ALP–photon conversion for this chapter.

We found in the previous chapter that even in complicated magnetic field models,

the conversion can be understood well by looking at the probabilities in constant

magnetic field domains. For photons travelling in a medium with plasma frequency

ωpl = (4παne/me)1/2 =
(

ne
10−3cm−3

)0.5
1.2× 10−12 eV, (6.1)
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and a constant magnetic field in a domain of length L, the photon-to-ALP conversion

probability for unpolarised light can be written as1,

Pγ→a = 1
2

Θ2

1 + Θ2 sin2
(
∆
√

1 + Θ2
)
, (6.2)

where Θ = 2B⊥ω
Mm2

eff
, ∆ = m2

effL

4ω , and m2
eff = m2

a−ω2
pl. Here B⊥ denotes the component

of the magnetic field that is perpendicular to the ALP/photon wave vector. The

factor of 1
2 accounts for the fact that only one polarisation state of light participates

in the mixing.

The typical values of Θ and ∆ in galaxy clusters, for ma = 0, are

Θ = 0.28
(
B⊥

1µG

)(
ω

1 keV

)(10−3 cm−3

ne

)(
1011 GeV

M

)
,

∆ = 0.54
(

ne
10−3 cm−3

)(
L

10 kpc

)(
1 keV
ω

)
. (6.3)

There are two different regimes for the conversion probabilities in clusters, which we

saw in our discussion of the radial dependence of the conversion probabilities in Coma

in Chapter 5. For Θ,∆� 1, conversion is quadratic in both size and coherence length

of the magnetic field,

Pγ→a = 1
2Θ2∆2 = B2

⊥L
2

8M2 , (6.4)

and ALP-photon conversion is energy-independent. However, for Θ� 1 and ∆� 1,

the conversion probability is energy-dependent and progressively suppressed at lower

energies,

Pγ→a = 1
2Θ2 sin2(∆) ∼ m2

eB
2
⊥

π2α2n2
eM

2ω
2 sin2

(
πα

me

neL

ω

)
. (6.5)

Keeping the other parameters fixed, we can define a critical energy marking the

crossover between the regimes,

ω∆

keV = 0.54
∣∣∣∣∣ ne
10−3 cm−3 −

(
ma

1.2 · 10−12 eV

)2
∣∣∣∣∣
(

L

10 kpc

)
, (6.6)

and thus for typical clusters and for M & 1011GeV2, the crossover occurs within
1Note this is just a rewriting of the single domain formula from Chapter 5, noting the different

definitions between θ and Θ, with tan 2θ = Θ, making the physics relevant to this chapter more
obvious.

2If M is taken too small then we actually enter the large Θ regime, in this case the conversion is
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the range of observed X-ray photon energies. This effect can be easily seen in, for

example, figure 5.6 for the Coma cluster. Looking at the conversion probabilities as

a function of energy for zero impact parameter, there is a clear transition from small

to large conversion probabilities as a function of energy.

It can also be seen using equation 6.5 that the energy dependence of the conversion

probabilities will lead to very striking signatures. The conversion is oscillatory with

a wavelength proportional to 1/ω. Thus, at small energies the conversion is rapidly

oscillatory and stochastic, along each different sightline the photon/ALP wave vector

will sample different magnetic field values and electron densities, leading to very

different conversion probabilities.

We now show that this effect can lead to substantial distortions of the thermal

spectrum of the intra-cluster medium, using the Coma cluster as our prime example.

6.3 Cluster Spectral Distortions from ALPs

The intra-cluster medium (ICM) permeating galaxy clusters is a hot thermal plasma

with temperatures, depending on the cluster, of between 2 and 10 keV. The clus-

ter is visible in X-rays through the thermal bremsstrahlung of the ICM, with both

continuum and line emission.

Figures 6.1 and 6.2 show fits to emission from the Coma cluster (adapted from [222]

and [223]), which hosts an approximately isothermal ICM with a temperature of

8.1 keV. Note the excellent quality of the fits, with residuals all below the 10% level.

As a further illustration of the attained precision, we note that the possible 3.55

keV dark matter line reported in [224] is observed as a per cent level effect above

the background, thereby requiring the ability to characterise the background thermal

emission to the same level of accuracy.

Thus, galaxy clusters provide an intrinsic, diffuse, bright and well characterised

source of X-ray photons. If a significant proportion of the thermal photons were

to convert to ALPs, the resulting X-ray spectrum would be distorted. The photon-

maximal across the entire X-ray regime.
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to-ALP conversion probability is determined largely by the structure of the cluster

magnetic field.

As we saw in Chapter 5, galaxy clusters support magnetic fields of O(µG) strength

that are coherent over 1–10 kpc scales (for reviews see [188, 189]). For the Coma

cluster, we constructed a detailed model of the cluster magnetic field in the previous

chapter.

Using this simulation of the Coma magnetic field, we have simulated photon-to-

ALP conversion of the ICM by numerically solving the equation of motion, as in

Chapter 5, along a set of sightlines that sample a given field of view. We calculate

conversion probabilities for photons originating at each point in the cluster along the

line of sight. The net conversion probability for each sightline is given by an average

weighted by the thermal photon emissivity at each starting point. This emissivitiy

scales only as ∼ n2
e, assuming there are no temperature gradients. For a given field of

view we also perform the same weighted average of conversion probabilities over all

sightlines with the field.

The distorted X-ray spectrum is then given by,

fdistorted(ω) = (1− 〈Pγ→a〉(ω)) fintrinsic(ω) , (6.7)

where 〈Pγ→a〉(ω) denotes the average conversion probability for the sightlines within

the field of view.

For M . 1011 GeV, the conversion probability saturates for the entire X-ray range,

leading to a uniform reduction of the cluster luminosity to 2/3 of its original amount.

However, as shown in equation 6.6, for precisely the most observationally interesting

range of 1011 < M/GeV . 1012, the photon-to-ALP conversion probability is large at

higher X-ray energies, while being suppressed at lower energies. Thus, such photon-

to-ALP conversion induces spectral distortions of the thermal ICM spectrum.3 In

figure 6.3 we illustrate this by plotting 〈Pγ→a〉(ω) obtained from the simulations with

ma = 0, M = 4× 1011 GeV and a field of view of size (100 kpc)2 at the centre of the
3We note that this effect is unlikely to generate the cluster soft X-ray excess, as that excess is

observed at lower energies.
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Figure 6.1: XMM-Newton best fit flux model from Coma, within a radius of ∼ 300 kpc [222].

4 Gastaldello et al.

regions free of cluster emission so we can not apply straight-
forwardly the procedure adopted by nuskybgd. We have an
empirical nominal model based on blank field observations
that we adopted in the fit of the various regions (see Figure 2
for an example).

In order to determine the best fit value and confidence in-
terval for the spectral parameter of interests we used Bayesian
statistics and a Markov chain Monte Carlo (MCMC) tech-
nique. We performed MCMC simulations using the Xspec
implementation of the algorithm of Goodman & Weare (2010)
where an ensemble of "walkers", which are vectors of the fit
parameters, are evolved via random steps determined by the
difference between two walkers. We evolved eight walkers
for a total of 104 steps, after discarding the initial 5000 steps
(“burn-in” phase) to ensure the chain reached a steady state.
We turned on the Bayesian statistic setting up Gaussian priors
centered on the expected value forecasted by nuskybgd for
the particular region of interest. We set widths equal to the ex-
pected systematic error for the various background normaliza-
tions (8% for the aperture component, 3% for the instrumental
continuum, 50% on the FCXB, 10% on the solar component),
and used constant priors for the temperature, abundance and
normalization of the APEC cluster thermal component. We
then marginalized over all the other parameters to generate
posterior probabilities for the parameter of interest, such as
the temperature or the normalization of the thermal compo-
nent, using the Xspec command margin. The results found
with this method are consistent with the procedure adopted in
Wik et al. (2014). For ease of presentation we will show in
the following figures the background-subtracted spectra using
the realizations provided by nuskybgd.

4.1. Global Spectrum

FIG. 3.— Background-subtracted Coma Cluster spectrum extracted from
the central 120 ⇥ 120 region. The spectra of detector A and B have been
combined for clarity. The best-fit 1T model and ratio of the spectrum over
the model are also shown.

To compare with results obtained with other satellites we
extracted the global A plus B spectra from a box of 120⇥120
encompassing 85% of the FOV. The spectra have excellent
statistical quality with ⇠ 2.5⇥105 total counts with a source
contribution to the total emission of 89% in the 3-30 keV en-
ergy band.

We first consider a single temperature (1T) model fit to
the data, which is the simplest possible description of the

spectrum. This is unlikely to be a realistic description as it
is known that even the very center of Coma hosts tempera-
ture variations (e.g., Sanders et al. 2013). However multi-
temperature, featureless, spectra with a range of temperatures
can be well fitted by a 1T model (e.g., Mazzotta et al. 2004).
We find a temperature of 8.52 keV as a peak of the marginal-
ized posterior distribution, with a 68% confidence interval of
[8.48,8.55] keV. As shown in Table 1, a fit in the 3–30 keV
energy band obtained with background subtraction of a real-
ization of the background model (the procedure used in Wik
et al. 2014) returns consistent results. In Figure 3 we show
the co-added A and B background-subtracted spectrum in the
3–30 keV energy band obtained with this latter method. The
spectrum is well, but not perfectly, described by an isother-
mal spectrum over an order of magnitude in energy. We use
the background-subtraction method to quickly explore the de-
pendence of the temperature determination when using dif-
ferent energy bands for the spectral fitting. In the absence of
systematic calibration issues, different temperatures returned
when fitting different energy bands is yet another indication
of a multi-temperature component spectrum. This is indeed
the case for the Coma global spectrum as increasing either
the upper end or the lower end of the baseline energy band
increases the derived temperature, as detailed in Table 1.

The next step to add complexity to the fitting model is a
two temperature (2T) model consisting of two APEC com-
ponents with abundances tied together. This model is rou-
tinely used when dealing with multi-temperature component
spectra. The fits improve, though the temperature found for
the low-T component (1.02 ± 0.21 keV) does not represent
any real temperature in the spectrum. This seems more a
result of the fit procedure that is accommodating the curva-
ture of the residuals that are not well fitted by a 1T model
in the low energy part of the spectrum where the statistical
quality of the data is higher. To support this hypothesis we
performed simulations with the NuSTAR responses of a two
thermal component model with temperatures of 7 and 9 keV
respectively. We chose the ratio of the normalization of the
two components to be equal to that which best approximates
the observed spectrum. When a 2T model is applied, the fit-
ting process favors a high–T component of the order of 8–9
keV accounting for most of the emission in the fitted band
and a lower–T component (0.5–1 keV), which improves the
fit at the lower range of the energy band. Similar results when
fitting a 2T model have been obtained by Ajello et al. (2009)
when fitting XMM and Swift BAT data (kThigh = 8.40+0.25

-0.24 keV
and kTlow = 1.45+0.21

-0.11 keV). The low–T component has been
interpreted as due to thermal X-ray emission from the galax-
ies in Coma (Finoguenov et al. 2004; Sun et al. 2007). While
this might be a possible interpretation for satellites sensitive
to energies down to 0.5 keV, it can be ruled out for emission
above 3 keV as seen by NuSTAR.

Following the success of the XMM-derived temperature
map for explaining the thermal origin of the Suzaku HXD-PIN
and Swift BAT high-energy spectra (Wik et al. 2009, 2011) we
adopted the same approach exploiting the temperature map
obtained by NuSTAR itself (discussed in the following Section
4.2). We summed the 36 1T APEC models with temperature,
abundances and normalization fixed to construct a Tmap model
for which only the overall normalization was allowed to vary
(an adjustment at the 2% level) to give a fit with the same
quality as the 2T fit (see Table 1). The comparison in the 3-30
keV energy band (cstat/dof = 1208/1129 for the Tmap model

Figure 6.2: NuSTAR spectrum and best-fit single temperature model for the central 12′×12′
of the Coma cluster [223].

Coma cluster. For such a large field of view, the oscillatory and stochastic behaviour

mentioned earlier gets averaged out to the step-like distortion we see in figure 6.3.

Given the quality of the fits in figures 6.1 and 6.2, the simulated photon-to-ALP

conversion probabilities can be used to constrain the ALP parameters M and ma.

We can estimate the ability of cluster spectra to probe the ALP–photon coupling by

assuming deviations in the spectrum of 10% or greater would be observable, we plot

the results in Figure 6.4. For ma . 5 × 10−12 eV we estimate that this method is

sensitive to ALP couplings up to M ∼ 7 × 1011 GeV, while for ma & 5 × 10−12 eV,

the conversion probability starts getting suppressed by the ALP mass, and for ma &
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Figure 6.3: Averaged conversion probabilities for M = 4 × 1011 GeV, ma = 0 eV, for a 100
kpc field of view. The dashed line represents the saturation value of 1/3.
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Figure 6.4: Astrophysical bounds from the lack of an observation of a gamma ray burst
with SN1987a in red, bounds on the parameter space from this study in blue. Because
of uncertainties in the cluster magnetic field, the precise values of M excluded may be
uncertain by a factor of two.

1 × 10−11 eV the estimated sensitivity to the coupling becomes weaker than existing

astrophysical constraints.

We therefore conclude that constraints on spectral deviations of the cluster thermal

bremsstrahlung spectrum can provide the strongest astrophysical bounds to date on

the ALP-photon coupling, excluding an interesting range of parameters that will be

probed in upcoming laboratory experiments.
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6.4 Further Properties of the Distorted Spectrum

There are several further properties, and thus potentially correlated signals, of an

ALP-distorted cluster spectrum.

First, as discussed earlier, along a single line of sight photon-to-ALP conversion is

highly stochastic and energy-dependent. This energy dependence varies between each

line of sight and gets averaged over large fields of view. Thus there are additional

potential signatures observable only for small fields of view. In figure 6.5 we illustrate

this by showing the averaged conversion probability for a (5 kpc)2 field of view. Since

the magnetic field is coherent over O(10 kpc) scales, the photon–ALP conversion

varies little across such a small field of view. This allows the energy-dependence of

the conversion probabilities to be seen. Note that since the simulated field is random

in nature, the exact energy dependence of the real field will differ, but the presence

of these sinusoidal oscillations at X-ray energies is a characteristic feature of ALP-

photon conversion, with the frequency of these oscillations decreasing with increasing

energy.

When averaging over a large field of view of size far greater than the coherence

length of the cluster magnetic field (as in figure 6.3), these variations wash out, due to

the differing energy denpendence of the different sightlines. However, by extracting

the cluster X-ray spectrum across a small region it may be possible to directly observe

such oscillations. In fact such a study would be more sensitive to the ALP–photon

coupling as it is hard to see what astrophysical effect could mimic such oscillatory

features, and for single sightlines these features are more pronounced.

The best candidates for this kind of study are very nearby clusters, where the

fixed telescope angular resolution corresponds to the smallest physical scales. For

example, the Virgo cluster is at a redshift of z = 0.004 and there is approximately

500 ks of observation time on Virgo with the Chandra telescope, whose superb imaging

capabilities gives it arcsecond resolution. By considering spectra extracted from small

angular regions instead of the full field of view, one could search for the presence (or
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Figure 6.5: Left—The conversion probabilities averaged over both polarisations. Right—
The difference between conversion probabilities for the two polarisations of X-rays, showing
the induced polarisation caused by ALP–photon oscillations.

absence) of such oscillatory features.

There is another approach to searching for these small scale features. Clusters are

large Mpc-scale objects, and gradients in their internal structure will generally also

be large-scale. In the absence of photon-ALP conversion, the bremsstrahlung photon

count from nearby pixels on a detector is expected to be identical, subject to the

variations due to Poisson statistics. Photon-ALP conversion can lead to significant

variations in conversion probabilities from nearby sightlines, and so in the presence

of ALPs the photon count from nearby pixels should have a greater variation than

would be expected simply from Poisson statistics.

Furthermore, along a single line of sight the X-ray emission becomes highly po-

larised. In figure 6.5 we show that with a small field of view this induced polarisation

would be observable, but again for larger field of views this effect gets washed out.

The result is that for 1011 GeV . M . 1012 GeV, the diffuse thermal ICM emission

extracted from a small region would be polarised. If an X-ray telescope with polari-

sation capability, such as the European LOFT or Chinese XTP missions, is (finally,

after forty years) flown, the presence or absence of polarised emission from the ICM

could lead either to the detection of ALPs or strong bounds on their coupling. While

optical polarisation induced by ALP–photon oscillations has been considered before

(see for example [225] studied the induced polarisation in the local super-cluster mag-

netic field), the advantage of a galaxy cluster environment is efficient X-ray conversion

and better studied magnetic fields.
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The small-scale spectral oscillations can also be sought by considering X-ray point

sources that are fortuitously observed through a cluster. Such a search has been

carried out for the Hydra A cluster in [221] using a central AGN source. However

this is not an ideal source. Hydra A is at a redshift of z = 0.06, more than ten

times further away than e.g. the Virgo cluster, and furthermore the AGN is optically

thick, with significant intrinsic absorption at lower X-ray energies, making it harder

to separate photon-ALP leakage from this effect.

Another interesting effect would be that the spectral distortions would have a ra-

dial dependence within a cluster. The free electron density decreases with radius, and

observations indicate the magnetic field strength also decreases with radial distance

from the centre of the cluster. Photons travelling along off-centred sightlines will

then convert at a reduced rate at higher energies (see equation 6.4), and the ‘step’ in

the conversion probability appear at lower energies, as implied by equation 6.6. This

behaviour would be characteristic of ALP-induced distortions.

6.5 Conclusions

In this chapter we have built on the knowledge of ALP–photon conversion in galaxy

cluster magnetic fields gained from the previous chapter.

Photon-to-ALP conversion is energy-dependent, and thus leads to distortions of X-

ray spectra. The thermal emission from galaxy clusters provides a well characterised

X-ray source, arising within a magnetic field environment that would get significantly

distorted for ALP masses ma . 1× 10−12 eV and ALP-photon couplings 1011 GeV .

M . 7 × 1011 GeV. Thus dedicated searches for these distortions should be able

to place highly competitive, and potentially the most stringent, bounds on the ALP

parameter space. We should of course also caution that bounds on M can only ever

be as good as knowledge of the astrophysical magnetic field, which for clusters is

probably currently uncertain up to a factor of two.

We have used the absence of any reported large deviations from a thermal spectrum

to estimate the ability of current X-ray satellites to probe the ALP parameter space.
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Existing analyses however are not optimised for ALP searches, since the spectra is

taken from a large field of view. In this case the large spectral distortions are averaged

out due to the different energy dependence of different line of sights. The result is

a step-like feature in the photon spectrum. We can however use this to estimate

sensitivity to the ALP–photon coupling. An optimised search strategy would be to

extract spectra over a smaller field of view. Here the distortions are larger and have

a striking oscillatory energy dependence.

An attractive reason to study X-ray emission from clusters and its connection to

ALPs is that the data is only going to get better. The three current satellites XMM-

Newton, Chandra, and Suzaku, all use CCD detectors with an intrinsic resolution

of ∆E ∼ 100 eV, and these satellites all continue to make observations of clusters.

Over the long term, ATHENA has been approved by ESA for a 2028 launch. It was

hoped that the new satellite Hitomi would provide increased sensitivity to ALPs. The

satellite had a far superior energy resolution of 7 eV. However the satellite has now

been lost, after making only one observation of the Perseus galaxy cluster. The spatial

resolution of Hitomi is poorer than the three satellites mentioned above, for Perseus

this corresponds to ∼ 20 kpc, which is probably larger than the typical coherence

length of the magnetic field, making it sub-optimal for searching for these distortions.

Currently the only data is a full field of view spectrum, roughly 50 kpc×50 kpc. The

full data has not yet been released, and depending on the size of the effects, it may

still be possible to see something by studying the spectra from individual pixels.

Knowledge of cluster magnetic fields will also be enhanced over the short, medium

and longer term. Through observing (or not) upscattered inverse Compton-CMB

photons, hard X-ray imaging telescopes will either produce direct measurements of

the magnetic field, or more stringent lower bounds on the field strength. Over the next

decade, the Square Kilometer Array will also come online. With a large increase in the

number of available radio sources, this will improve Faraday rotation measurements

of galaxy clusters’ magnetic fields.

In the short term however, it should be possible to use data from the current
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generation of satellites to perform a systematic search for ALPs in galaxy clusters.

Here we have only estimated the bound based on observations of the Coma cluster

with a large field of view. Looking for distortions in the spectra from small regions

of the cluster can be combined with the fact that there are many such regions within

each cluster to provide a very sensitive probe of ALPs, and a much more robust

determination of the bounds on the ALP–photon coupling. In addition, since the

energy dependence is most striking for single sightlines, looking for distortions in

point source spectra is also a promising method to search for the presence of ALPs.

Indeed, we have used this method to look for ALPs in the spectra of a point

source, the AGN in the centre of the Perseus cluster. This was published in [6], and

was qualitatively the same as the method used by [221]. Hints of distortions in the

spectrum caused by ALPs were found, hinting at an ALP with coupling to photons

of M ∼ 5× 1011 GeV.
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7 Summary and Conclusions

In this thesis I have studied various cosmological and astrophysical implications of

axion-like particles (ALPs). ALPs are a generic prediction of string theory compact-

ification models, and thus their study provides a window into string phenomenology.

I have looked at their production via modulus decay in the early universe as a way to

test string theory models. ALPs can be searched for using their potential coupling to

electromagnetism, which means that in an external magnetic field they can convert

into photons, and vice versa. I looked at two possible astrophysical signatures of

ALPs, the soft X-ray excess in galaxy clusters, and spectral distortions in the thermal

X-ray emission from galaxy clusters.

In Chapter 4 we studied ALP production in the early universe in a class of string

theory compactification models called the Large Volume Scenario (LVS). Displace-

ment of string moduli fields during inflation leads to periods where the modui domi-

nate the energy density of the universe. Thus in string models the moduli are typically

responsible for reheating. The LVS is tractable to analyse as it has one unique lightest

modulus, and thus reheating is driven solely by this modulus’ decay. We started by

reviewing the tree level computation of the decay rates to different sectors. The two

important decay modes are to Higgs pairs, which is the only visible sector decay and
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is thus responsible for reheating, and to ALPs. The ALPs produced in this decay act

as dark radiation, additional relativistic energy density not predicted by the Standard

Model. We showed that in the minimal LVS (MLVS), with only one ALP, an MSSM

visible sector, and a coupling of the modulus to the Higgses of Z = 1, dark radiation

is over-produced compared to observations.

In view of the large hierarchy between the string scale, where Z = 1 is defined, and

the modulus mass, the coupling Z can receive potentially large radiative corrections.

We computed these analytically and found that the contributions from gauge boson

loops and top loops tend to cancel, and thus change Z by only a small amount. We

confirmed this numerically, scanning over MSUGRA parameter space, and matching

on to the observed Higgs mass, and found that even in the most optimistic case, dark

radiation is produced in excess of observations. Thus effectively ruling out the MLVS.

Several groups have looked at dark radiation production in other string compact-

ification models, and have found that the bounds can be evaded for certain sets of

parameter choices. However, in all of these models it is true that dark radiation ob-

servations provide a very stringent constraint on the model, and in some cases can

completely rule it out. In addition constraints on dark radiation are likely to become

even tighter, thus studies of dark radiation production can be a powerful probe of

high energy physics and string theory model building.

It is clear from this study that dark radiation production at reheating appears to

be a generic prediction in string theory compactification models. If these ALPs are

produced, then because they are very weakly interacting, in the present day they will

form a homogeneous background of relativistic particles. The energy of such a cosmic

ALP background (CAB) is dependent on the mass of the modulus and can plausibly

be in the X-ray regime. In Chapter 5 we studied in detail a proposal that conversion

of this CAB into X-ray photons in galaxy cluster magnetic fields could explain the

cluster soft X-ray excess. The cluster soft X-ray excess is a significant excess seen with

several satellites at energies around ∼ 200 eV, in about a third of all galaxy clusters.

Conventional astrophysical explanations such as warm gases and inverse Compton

134



scattering of CMB photons struggle to explain the excess across many clusters.

To study the soft X-ray excess we constructed simulations of the magnetic fields

inside four galaxy clusters: Coma, A665, A2199, and A2255, and calculated ALP–

photon conversion probabilities. Galaxy cluster magnetic fields typically have mag-

nitudes O(1 − 10 µG) and coherence lengths O(10 kpc). The magnetic fields were

modelled as random, tangled fields, with power-law power spectra. We showed that

a CAB can explain the X-ray observations in each of the four clusters for a consistent

set of CAB parameters, given current uncertainties on the magnetic fields in these

objects. We find the best fit CAB parameters to be M ∼ 6 − 12 × 1012 GeV and

ECAB ∼ 150 eV.

We also studied the morphology of the excess in each galaxy cluster. We found

in Coma that the morphology was fit better for a magnetic field with a flat power

spectrum, or for models with very small coherence lengths. We found the morphology

of the soft excess in A2199 and A2255 is reproduced by the simulations. We find the

lack of an observed excess in A665 puts constraints on the CAB in slight disagreement

with the best fit parameters from the Coma cluster analysis, although this disagree-

ment is not strong considering uncertainties on the magnetic fields. Observations have

shown a trend for increasing excess with radii, a feature which is reproduced by our

simulations of CAB conversion. The conversion probabilities do not fall with radius

as fast as the cluster X-ray emission, leading to larger excesses at large cluster radii.

The soft X-ray excess observations are now around a decade old. The current

generation of X-ray satellites are not as well suited to studying the soft X-ray excess,

due to their small fields of view. The new satellite Hitomi was hoped to be able to

study the soft excess, since it had energy coverage down to 0.3 keV and superb energy

resolution. Unfortunately it was only able to make one observation before breaking

apart, during this observation of the Perseus cluster the satellite had no sensitivity

below 2 keV, so there is now no hope for studying the soft excess with Hitomi. The

future satellite eROSITA should however be able to study the soft excess.

Current studies of the CAB are hindered due to very limited knowledge of galaxy
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cluster magnetic fields. The four clusters we have studied are the only four clusters

for which there are both soft X-ray observations and detailed models of the magnetic

field, and even still there are systematic uncertainties on the magnetic field models.

In addition, we found that the predicted morphology of the excess is dependent on

the magnetic field parameters, thus better knowledge of these is crucial for future

studies of the soft excess. The SKA (square kilometre array) will increase knowledge

of astrophysical magnetic fields in many clusters, allowing for a more systematic study

of the CAB. The CAB can also be searched for in other astrophysical objects, such

as in the Milky Way or other galaxies [216], and through its effects on the evolution

of the universe [217]. Different models for cluster magnetic fields, for example using

MHD simulations of cluster formation, could also be used to study the CAB and the

cluster soft X-ray excess.

More indirectly, this explanation can be probed by the CABs contribution to dark

radiation. Should the bounds on dark radiation become more severe, then the energy

density of the CAB must be smaller. Thus in order to get the same soft excess signals,

conversion probabilities of ALPs to photons would need to be increased. This can

only be accomplished by a larger coupling between photons and ALPs (or smaller

inverse coupling M). Bounds on M and on dark radiation are becoming ever more

constraining and thus it seems plausible that in the long term the parameter region

needed to explain the soft excess can be squeezed from both above and below.

In the last section we looked at constraining the ALP–photon coupling using galaxy

clusters. This constraint is independent of any early universe physics as it does not

require a population of ALPs to be produced. If ALPs exist, then galaxy cluster X-ray

spectra will get distorted as the photons convert to ALPs in the cluster’s magnetic

field. This effect is energy-dependent and so will lead to energy-dependent distortions

to the X-ray emission. We showed that, averaged over a large field of view, the effect

of ALPs is to impart a step like feature into the X-ray spectrum, as the conversion

probabilities are small at low energies, and larger at high X-ray energies. We also

showed that along single photon sight-lines, or for small fields of view, ALP conversion
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leads to large, quasi-oscillatory spectral distortions. There would also be an additional

correlated polarisation signal caused by photon–ALP conversion.

The Coma cluster has been studied with a large field of view with several satellites,

including XMM-Newton. Since these satellites have residuals at the 10% level, and

no deviations from a thermal spectrum have been reported we showed that this leads

to an estimated sensitivity to the ALP–photon coupling of up to M ∼ 7× 1011 GeV.

The conversion probabilities were calculated using the same model for the magnetic

field as in the soft X-ray excess study. A more precise bound would require a full

analysis, fitting the data with the thermal bremsstrahlung model and the photon–

ALP conversion probabilities. It is for this reason that we do not claim from this

analysis to have obtained a bound better than the bound from SN1987a, we merely

showed that this method is capable to doing so with a more thorough analysis.

We did however show a better bound can be found by instead looking for spectral

distortions from small fields of view studies, or by looking at the spectra of point

sources either in or behind a galaxy cluster. In both of these cases the resulting large

oscillatory distortions would give a striking signal for the presence of ALPs. We think

this is a much more promising place to search for ALPs, and can provide more precise

bounds. We have carried out such an analysis [6] for the point source NGC1275 in

the centre of the Perseus galaxy cluster (although the Perseus magnetic field is poorly

constrained compared to Coma), finding hints for the existence of an ALP. The study

of NGC1275 was also able to push the bounds on the ALP–photon coupling past the

limits from the lack of a SN1987a gamma ray signal to around 2 − 5 × 1011 GeV.

Again, increased knowledge of galaxy cluster magnetic fields will allow for even more

precise and stringent constraints.

Let us finish by summarising the state of axion-like particle physics in light of this

thesis. We have shown that the galaxy cluster soft X-ray excess can be explained if

there is a primordially-generated background of relativistic ALPs. We showed that

the explanation holds for ALPs that couple to photons with an inverse coupling of

M ∼ 7×1012 GeV. This coupling holds for a CAB energy density equal to ∆Neff = 0.5,
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and for a CAB spectrum with an average energy around 150 eV. The best fit M in

this scenario is far beyond the reach of current and planned laboratory experiments,

and current astrophysical bounds.

We have shown that looking for distortions to the thermal spectra of galaxy clusters

or the spectra of point sources either located in or behind a cluster should lead to

much improved astrophysical bounds, although even still they are unlikely to get near

the best fit CAB parameters. In a subsequent study we have found indications for

distortions in the spectra of a point source in the centre of the Perseus galaxy cluster,

this hints at an inverse coupling of photons to ALPs around the range 5−10×1011GeV

[6], which is somewhat lower than the best fit CAB value, thus it appears at first sight

that these results are in some tension with each other.

Let us however discuss some ways that the two could co-exist. Firstly its important

to remember that string theory generically predicts several ALPs, therefore it just

may happen that the two effects are created by two different ALPs with differing

couplings to electromagentism. The ALP responsible for the cluster distortions need

not be produced in large quantities at reheating (e.g. by a suppressed branching ratio

of the volume modulus to these ALPs), and thus the effects are completely decoupled,

in this case there is little hope of testing the CAB ALP directly.

On the other hand the best fit value for the coupling from the CAB analysis is

dependent on the unknown quantity ∆Neff , lowering this value results in a lower CAB

density and thus lower best fit M . Future experiments could reveal this number to

be much smaller, bringing the best fit CAB inverse coupling in line with the coupling

from the cluster distortions. In this case there is hope of potentially detecting these

ALPs at future laboratory experiments.

In addition, the ALP responsible for the soft excess need not comprise the full CAB

and thus may have an effective ∆Neff smaller than any observed value (if indeed there

is an observation). Indeed we know this would be the case in the LVS model since

the volume ALP couples too weakly to SM fields to give a CAB, thus a second ALP

population would also have to be produced with a small energy density and have
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a much stronger coupling to electromagetism. In this case it is perfectly plausible

that the two effects can be driven by the same ALP. The main difficulty in this

scenario is the one we came across in Chapter 4, that generically even with one ALP

dark radiation is over-produced, and adding more ALPs may just make this situation

worse.

Finally we note that sliding the CAB energy changes the best fit value of M , and

could again bring it in agreement with the best fit value from the cluster distortions.

However the energy cannot be changed too much otherwise excesses would be observed

in other energy channels, for instance in the UV or the keV X-ray regime, and thus

this does not seem a particularly appealing scenario.

Overall, studies of ALPs using distortions to either galaxy cluster X-ray spectra,

or to point source spectra either in or behind a galaxy cluster are the most promising

place to look for low mass ALPs. In addition any potential detections should be

probeable in a laboratory setting (although maybe only in the long term). Future

measurements of ∆Neff will be important in determining whether the CAB ALPs can

be connected to these cluster distortions in some way. In the mean time only indirect

studies using magnetic field models can be used to study these ALPs.
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