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Abstract In the present work, we investigate evolving
wormhole configurations in higher-dimensions, by adding a
Gauss—Bonnet term to the standard Einstein—Hilbert action.
Using a generalized Friedmann—Robertson—Walker space-
time, we derive evolving wormhole geometries by consid-
ering a constraint on Ricci scalar. In standard cosmologi-
cal models, the Ricci scalar is independent of radial coor-
dinate r and is only a function of time. We use this prop-
erty to introduce a particular class of wormhole solutions for
which microscopic wormholes may have been enlarged to
macroscopic sizes in an expanding inflationary cosmologi-
cal background. We find, for the first time, specific solutions
that satisfy the weak energy condition (WEC) throughout the
entire spacetime in four dimensions. In addition to this, we
also present other wormhole solutions that satisfy the WEC
throughout their respective evolution.

1 Introduction

Wormholes are throat-like geometrical structures which con-
nect two parallel universes or otherwise distant parts of the
same universe. In 1988, Morris and Thorne presented a fam-
ily of traversable wormholes [1,2], where the fundamental
ingredient is the flaring-out condition of the wormhole throat.
This condition leads to violation of the null energy condition
(NEC) in the framework of general relativity (GR). Matter
that violates NEC is denoted by exotic matter [3,4]. Then,
One of the most important challenges in wormhole scenarios
is the establishment of standard energy conditions. Several
avenues of research have been explored in order to mini-
mize the usage of exotic matter [5]. For instance, Visser and
Poisson have studied the construction of thin-shell worm-
holes where the supporting matter is concentrated on the
wormhole’s throat [6]. Thin-shell wormholes extensively
investigated in the literature [7-16]. Also, a large amount
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of work has been devoted to build and study wormhole
solutions within the framework of modified gravity theo-
ries among which we quote: wormhole solutions in Brans—
Dicke theory [17-20], f(R) gravity [21-23], Born-Infeld
theory [24,25], third order Lovelock theory [26], Kaluza—
Klein gravity [27,28], scalar-tensor gravity [29] and solu-
tions in the presence of a cosmological constant have been
reported in [30,31]. Recently, the possibility of existence of
traversable wormholes in the context of f (R, T') gravity have
been reported in the literature, such as wormhole formation
with two types of varying Chaplygin gas [32], wormhole
solutions satisfying the energy conditions in the exponential
f(R, T) gravity [33], see also [34—38] for other solutions in
this theory.

Though in GR framework, static wormhole configura-
tions require fluid sources that violate the NEC, there are
nonstatic Lorentzian wormholes without the need of WEC
violating matter to sustain them. Such wormhole structures
can live for arbitrarily small or large time intervals [39,40]
or even satisfy the dominant energy condition (DEC) in the
whole spacetime [41]. Work along this line has been extended
towards dynamical wormhole geometries which satisfy the
energy conditions and the averaged energy conditions over
timelike or null geodesics during a time period [42,43]. An
interesting scenario is that the expansion of the Universe
could increase the size of the static wormholes by a fac-
tor which is proportional to the scale factor of the Universe,
in a time-dependent inflationary background [44]. Evolving
wormbholes in a cosmological background have been studied
in [42,45-52], and dynamic wormhole spacetimes supported
by two fluids and also by a polytropic equation of state (EoS)
have been investigated in [53,54] and [55], respectively. It is
noteworthy that in modified gravity it is possible to obtain
wormbhole solutions by imposing that normal matter satisfies
the energy conditions. This possibility is due to the presence
of additional ingredients, not present in GR, that could sus-
tain wormhole geometries without the need of exotic matter.
Such configurations that respect energy conditions through-
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out the spacetime have been reported in the framework of
Einstein—Cartan gravity [56,57]. An alternative way to obtain
traversable wormhole configurations satisfying WEC or at
least minimum violation of it, is to consider modified matter
sources see e.g., [58,59] and references therein. However,
generalizing the matter sector may not necessarily guarantee
to obtain a setting for non-exotic wormhole geometries [60—
62].

In recent years, there has been considerable interest in the
subject of higher curvature gravity, much of which has been
motivated through attempts to provide a quantum descrip-
tion of the gravitational field. The Einstein—Hilbert action
with higher curvature interactions can lead to a renormal-
izable theory of gravity [63]. In the low energy limit of
string theory, the Gauss—Bonnet term and a linear combi-
nation of the Lovelock terms will add to Einstein—Hilbert
action [64,65]. More recently, higher curvature gravity has
been of interest in holography [66,67] and has been consid-
ered in the context of cosmology [68,69]. Bhawal and Kar
studied N-dimensional Lorentzian wormholes in Einstein—
Gauss—Bonnet gravity [70]. These solutions with normal and
exotic matter which are limited to the vicinity of the throat
was also explored. Explicit wormhole solutions respecting
energy conditions in the whole spacetime were obtained in
vacuum and dust cases with k = —1, where k is the sectional
curvature of an (n —2) symmetric space [71]. However, these
solutions were further extended to the positive k = 1 sec-
tional curvature and for the first time specific solutions that
satisfy the WEC throughout the spacetime were found in [72].
In the context of third-order Lovelock gravity it was shown
that one may impose the matter threading the wormhole to
satisfy the energy conditions, so that it is the higher order cur-
vature terms that sustain these exotic geometries [73]. Also,
dynamic wormhole solutions in this framework with compact
extra dimensions were analyzed in [74].

The present paper investigates expanding wormbholes in
higher dimensions that is an important ingredient of the
modern theories of fundamental physics, such as Kaluza—
Klein, string theory and supergravity [75-81]. It is shown
that higher-dimensional evolving wormholes can be obtained
satisfying NEC throughout spacetime [82]. However, in four
dimensions, the solutions satisfy the NEC in specific time
intervals. In this work, we are motivated to find dynamical
solutions in Gauss—Bonnet gravity that satisfy the energy
conditions throughout the spacetime utilizing a homoge-
neous Ricci scalar as presented in standard cosmological
models. This paper is organized as follows: in Sect. 2, we
present a brief review on (n+1)dimensional field equations
of Gauss—Bonnet gravity. In Sect. 3, we obtain wormhole
solutions in different expansionary regimes and examine the
validity of WEC in detail. Our conclusions are drawn in
Sect. 4.

@ Springer

2 Action and field equations

The action in the framework of GB theory is given by

e =fd”xv—g [R+a2LGE], (H

where n is the dimension of the space-time and oy is
the Gauss—-Bonnet (GB) coefficient. Also, R is the n -
dimensional Ricci scalar and the GB term L p is given by

Lop =R — AR R™ + Rynpo RO 2)

In Lovelock theory, for each Euler density of order k in n
dimensional space-time, only terms with k < n contribute
to the equations of motion [84]. Therefore, the allowed solu-
tions of the Einstein—Gauss—Bonnet theory are derived in
n > 5 dimensions. Note that the action (1) is recovered in
the low energy limit of string theory [85-88].

Now, varying the action (1) with respect to metric, one
obtains the field equations

G/w + a2g;,w = Ly, 3)

where T}, is the energy—-momentum (EM) tensor, G, is the
Einstein tensor and G,,, is the GB tensor, given by

guv = 2(_RMGK1RIETU - ZRMpvaRpo
1
— 2R RS + RR ) — EEGBglw- )

We use a unit system with 87 G, = 1, where G, is the n-
dimensional gravitational constant.

In this work, we consider the n-dimensional traversable
wormholes spacetime, by replacing the two-sphere [1,2] with
a (n — 2)-sphere (d Qﬁfz is the metric on the surface of the
(n — 2) -sphere), given by the following line element

d52 — —62¢(r)dl2 + R (t)z |: + rdeZ_z] s (5)

1—b(r)/r
where R(t) is the scale factor of the universe, ¢ (r) being
the redshift function as it is related to the gravitational red-
shift and b(r) is the wormhole shape function. The shape
function must satisfy the flare-out condition at the throat,
i.e., we must have b'(rg) < 1 and b(r) < r for r > rg in the
whole spacetime, where ry is the throat radius. The condition
¢ (r) = 0 has been discussed in [89-92] that zero tidal force
wormholes are supported by anisotropic fluid with a diago-
nal EM tensor. Our aim here is to study evolving wormholes
with anisotropic pressures in an inhomogeneous spacetime
which merge smoothly to the homogeneous FRW model. In
the present work, we consider ¢ (r) = 0 in order to ensure the
absence of horizons and singularities throughout the space-
time. These evolving Lorentzian wormholes are conformally
related to another family of static wormholes with zero-tidal
force. The general constraints on these functions have been
discussed by Morris and Thorne in [1,2]. It is clear that if
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b(r) and ¢ (r) tends to zero the metric (5) becomes the flat
FRW metric, and as R(t) — const the static Morris—Thorne
wormhole is recovered. In the herein model, we search a way
to determine the shape function b(r) and the scale factor R(¢)
in order to construct dynamical wormholes.

In an orthonormal reference frame, the nonzero compo-
nents of the stress-energy tensor read

T} =diag[—p (r,1), Pr (r,t), Py (r, 1), Pr (r, 1), ...], 6)

where p (r, t) is the energy density and P, (, t) and Py (r, t)
are the radial and transverse pressures, respectively. Thus,
the gravitational field equation (3) provides the components
of T," as

(n=DR*H*+(n—3)Q+2p)(n—2)

3 Wormbhole solutions
3.1 Energy—-momentum conditions

It is well-known that static traversable wormholes in four
dimensions violate energy conditions [93] which is due to
the fulfillment of flaring-out condition near the throat of the
wormhole. However, the energy conditions can be satisfied in
the vicinity of static wormhole throats in higher-dimensional
alternative theories of gravity [94-97] and the whole space-
time in the case of higher-order curvature terms [98]. On
the other hand, evolving wormholes may avoid the energy
condition violation for a limited time period. For the sake of

p(r.t) = 7R
@ (0+H*R*)(n—2)((n— ) R*H> + (n —5) Q + 4 p)
+ 2R4 ’ )
T 2 _ 22 _ —
Pr(r’t):_(ZHR +(m—DR*H*+(n—-3)0)(n—2)
2R?
(4HR>+(n—D)R*H*+(n—5 Q) (n—2)a (Q + H?R?)
B 2R4 ’ ®
2RPn—-2H—-H*n—-1)(mn—-2)R2—(n—4) Q+2p)(n—73)
P (r,t) = R?
a(—4R*(n—2)H*R*+(n—4) Q0 +2p)H—H*(n—1)(n —2) R*)
+ 2R4
+a(—2((n—4)Q+2p)H2(n—3)R2—((n—6)Q+4p)Q(n—5)) ©

2R4

where an overdot denotes a derivative with respect to time.

Wedefinea = (n—3)(n—4)apy and H = % for notational

convenience and the functions p and Q are given by
br—b b

P = 2}"3 s Q - V_3 (10)
One can check that for R(#) = constant, equations (7)—
(9) reduce to the field equations as derived in the paper by
Bhawal and Kar [70]. It is also easy to check that, for o = 0
the field equations are those of higher-dimensional evolving
wormbholes in Einstein gravity [82].

(p—HR*)(n=2) 2a(HR*—p)(n—-2)(Q+HR?)

physical reasonability of wormhole configuration the weak
energy condition (WEC) must be satisfied. This condition
requires that 7, U*U" > 0, where U" is a timelike vector.
For a diagonal EM tensor, the WEC leads to the following
inequalities

Note that the last two inequalities are defined as the null
energy condition (NEC). Using Egs. (7)—(9), one finds the
following relationships

prb= R2 7 : (12)
—RPn—-2)H+(n—-3)0+p 20(-5+n)0+3

pp =KD Rz(” )0+p  2«( 124Q PO
L2 (—R*(H*(n =2 R*+ (n—4) Q+2p) H+ ((n—3) Q + p) H*R?) W)

R4
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where a prime and an overdot stand for differentiation
with respect to r and ¢, respectively. From (12) we get at
the throat

1-by .
b+ P)._, =—(n—2)< +H>

2R2ry?

x (1+2aH2+2—a) (14)
r?R2 )"

which shows that for « = 0 and H = constant the NEC,

and consequently the WEC, are violated at the throat, due to

the flaring-out condition. In order to satisfy p + P. > 0 in

GB gravity, one can choose suitable values of H and « at the

wormbhole throat.

3.2 Cosmological wormholes

We now have three equations, namely, the field equations
(7)—(9), with the five unknown functions p(r,t), P.(r, 1),
P;(r,t), b(r) and R(t). Therefore, in order to determine the
wormhole geometry, one can adopt several strategies [99—
101]. Here, we are interested to study evolving worm-
holes with anisotropic pressures in an inhomogeneous space-
time which merge smoothly to the cosmological back-
ground. The wormhole solutions presented in a cosmolog-
ical background have the interesting property that their Ricci
scalar is independent of the radial coordinate » similar to
what happens in cosmological settings [102,103]. In other
words, the scalar curvature of the spacetime is a function
of time, only. The Ricci scalar corresponding to the met-
ric (5) will play a fundamental role in our analysis which is
obtained as

n=2)((n=3)0+2p)

R(t,r)=m—1)(nH*+2H) + RG?

(15)

It can be seen that the second term depends on r coordinate,
hence in a cosmological background, condition 3%73 (t,r) =
0 leads to the following differential equation

p(r.t) = pep(t) —

n—=Dm—=2ary™ (CI ro® — 1)2 (ro

d d
(n=3)—Q(@r)+2—p(r)=0. (16)

dr dr
The above differential equation provides us with the follow-
ing form for the shape function
b(r)y=Cird+ Cor "4, (17)
where C1 and C, are constants of integration. Notice that,
the space slice t = const of the metric (5) for shape func-
tion introduced (with C; = 0) coincides with the space slice
of the n-dimensional extension of the Schwarzschild black
hole [104]. Using the condition b(rg) = ro at the throat we
get

b(r) = C; r3 — rg" =3 (c, o — 1) pnH (18)

Also the condition b’ (rg) < 1 leads to the following inequal-
ity
n—3

C _
= =1

(19)
We can now obtain constant C; with using the fact that
the space-time is asymptotically FRW along with apply-
ing the normalization C; = 0, £1 for the curvature con-
stant. It is clear that solutions with C; = 0 (flat universe)
are asymptotically flat, i.e., @ tends to zero as r — ©oo.
Also, the condition b’ (r¢) < 1 is satisfied for solution with

C1 = —1 (open universe). The case of wormhole solu-
tion with C; = 1 (closed universe) cannot be arbitrarily
large.

With b(r) in hand, given by Eq. (18), and using the field
equations (7)—(9), we obtain

Pr(r. 1) = Pep(1) +

Py (r,1) = Pep(t) —

2n—2 ,
2R* 7) ’ (20)

(n — 2)r0_2 (2aR2H +(@H +1/2) (n=3) R2+aC; (n—5)) (C1 10> — 1) /rgy n-1

2 ()
a (Crr0* — 1)2 (n—15)(n—2) /ro\2n—2
- 2R* (7) ’ @1)
(QaR*H + (@ H2 +1/2) (1 = 3) R* +a C; (n —5)) (C1 70> — 1) /7oy n-1
R ()
2 _ 1\ _ e

+n0l (C] r0 1) (n—-5) (r_O)Z 2’ o

2R4 r
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where p., and P., components correspond cosmological
background and are given by

(n—2)(H*R*+C;) (H*R*+Cj)a+ R*) (n— 1)

pep (1) = i : (23)
(2+4aH*)R* +4aR?CI)H + H> (1 +a H?) (n — ) R*) (n — 2)
Pep(t) = —
2R*
((n=3)CI (1420 H*)R* + a2 CI*> (n — 5)) (n — 2)
— . (24)
2R4
Notice that for our solutions in a cosmological b.ackgr(?und, R(t) =R, ;Win—l), (26)
the components of p, P, and P; are asymptotically inde-
pendent of r. Moreover, their first terms depend only on time
In this case, one obtains the following expressions
.0 nt @7)
rr) = s
T Ra At wy?
QC2wn—6—2w
(n—2) (r"+‘r0" n—1@m-=3)A+w)t oD — 4r03R12>
+ P=— , 28
ot 2 (14+w)(n—1)12rp3R;? (28)
ntl . n 1 3 1 Q+2wn—6—"2w 4 3R ) 2
- —_ — t (I+w)(n—1) —
prp =10 n-=Dm-=3)A+w t4r°R"n—2) 29)

2 (14+w)(n—1)12rp3R;?

corresponding to a cosmological background as described by
FRW spacetime. Let us now investigate the features of the
evolving wormhole. We can determine the behavior of the
scale factor by applying a linear equation of state between
the radial pressure and energy density of the cosmological
background profiles, i.e., P.p, = wp.p. We then obtain

R> (2HR2+H2(w+ 1) (n—1) R

+((w+1DHn—w-3)Cy)

ta (c, + H2R2> (4 HR2+ H?>(w+1)(n — 1) R?

+((w+DHn—-w-5Cp)=0. (25)
One can check that for « = 0, the solution of Eq. (25)
reduces to the scale factor for higher-dimensional GR [82].
In the following subsections, with the help of the master
equation (25), we will determine the behavior of scale factor
and the related properties of the energy conditions within the
wormhole geometry in the presence of Gauss—Bonnet grav-

ity. Thus, in order to study an evolving wormhole in detail,
we consider three cases C; =0 and C; = +1.

3.3 Solutions for the case C; =0

We firstly solve the differential equation (25) to find the scale
factor for GR case (¢ = 0) as

We see that for w > —1 the values p and p + P; are always
positive, while the quantity p + P, depends on the exponent

: 4 - 4
Of[, 1.€, m SO, fO.I' —l:ﬁ < w qr W < 2at
t = 0 the value of p + P, is positive, while at large time it is

negative. Moreover, we see that for w < —% att = 0 the

value of p + P, is negative, while at large time it is positive.

For w = —H with scale factor R(#) = R; t together with

choosing suitable values of ;R_] 3 < rg the WEC is satisfied
(see Fig. 1).

Consider the inflationary expanding regime, i.e (w = —1),
where by solving Eq. (25), we obtain the scale factor as
R(t) = Rpe" and in order to check the WEC, we have

(n—2)(n—1Dh*(1+ah?)
o n—1) (nz— 2) (r_o)(Zn—Z)
2R *rg (eh’)4
(n—2) (n—3) (1420 h?) ;rog\n-1
- 2R,? (em)Z ro? (_>
_ m=-2)n-3)« (r_o)(Zn—2)
R2* (eh)* 0
(n —3) (L4 2ah?) /rg\n—1
IR,? (em)2 <_>
a (14+n) [ro\@n-2)
e )

p(r,t) =

: (30)

r

p+Pr:

r

) 3D

r

p+ P =
-

(32)
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Fig. 1 The behavior of p + p, with respect to r and 7. The model
parameters are chosen as w = —1/3, Ry = 2 and rp = 1 in 4 dimen-
sions

It is clear that both p + P, and p + P; tend to zero as t — o0,
with opposite signs. Therefore, in the limit of large times,
one of the p + P, or p + P, quantities are negative and
consequently the WEC is violated. However, we see that one
can choose suitable value @ = —# such that their first term
is eliminated. For this case, the values of theses quantities are
positive at the throat and at infinity. Figure 2 shows that it is
possible to choose suitable values for the constants in order
to satisfy the WEC in whole spacetime.

Finally, Since equation (25) cannot be solved analytically
for R(t), we solve this equation numerically for a few values
of the parameters o and w and investigate the WEC. In Fig. 3
the scale factor versus time is plotted for « = —1,0, 1 and
w = —%. Using then the field equations (7)—(9) for numer-

Fig. 2 The behavior of p + p,
and p + p; with respect to r and
t. The model parameters are
takenas o = —0.5,h =1,
Ry=1andrg=1in
5-dimensions in the left and
right plots, respectively

@ Springer

ical values of the scale factor, we can plot the WEC. The
numerical solutions are plotted in Fig. 4. These figures show
that one can choose suitable parameters « = 1,w = —% with
ro = 2 in five dimensions. Note that all of the quantities p,
p + P, and p + P; are positive at the throat and everywhere.

3.4 Solutions for the case C; = —1

In this subsection, we study the open background, by using
Eq. (25). We then find the analytical scale factor for w = —1
as

R (t) = Ry sinh (R%) . (33)

In this case, we obtain the quantities p, p + P, and p + P; as

(- D@m-2)

p(r, 1) = TR
o n—1)mn-2)

2R34

=D (g 1)* (n—2) roy2-2
2R3*r0* (sinh (1%3))4 ( r ) SNCL)

_ _(r02+1)(n—2)(n_3) ro nel
e 2Ry (sinh (R%))z (7)
() (=2 —3) (r_o)n_l

ro?R3* (sinh (RL?»Z

_ (r02 + 1)2 n—2)y(n-73) <r_0)2n—2 (35)

4
R34r04 (sinh (RL;))

r

r

r
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Fig. 3 The behavior of R(¢) with respect to ¢ for w = —3/4,n =5
and « = —1, 1, 0 from up to down, respectively

p+ P =

(r02 + 1) (n—73) (r_o)n—l
2r02R3? (sinh (é))z
(ro* +1) (n —3) (r_o)ﬂ—l
I’02R34 (Sil‘lh (RL3))2
B (ro2 + 1)2 (n+1) (r0>2n—2

(=
R34r04 (sinh (%))

It is seen that in GR (¢ = 0), p + P, is always negative,
implying the violation of NEC throughout the spacetime.
However, one can easily show that for t = 0 the WEC is
satisfied by imposing the negative value o, due to the presence
of the last term in Egs. (35)—(36). We can also suitably choose
the constants so that the WEC be satisfied in whole spacetime,
Fig. 5.

r

+o

r

(36)

r

3.5 Solutions for the case C; = 1

In the case of a close background, we can choose the worm-
hole throat such that the condition &'(rg) < 1 is satisfied,
1.€, rg < % To be a solution of a wormhole, the condition
0 < r — b(r) is also imposed. The condition b(r) = r leads
to two real and positive roots given by r_ = rp and r which
satisfies the following equation

r+n—1 _ r+n—3

—r" N "3 =0. (37)
Thus, the spatial extension of this type of wormhole solution
cannot be arbitrarily large. We then have a finite wormhole
within the range r— < r < r4. Figure 6 shows that increas-
ing the dimension of space enlarges the wormhole spatial
extension. In order to study energy conditions for these class

of solutions we proceed with obtaining the behavior of the

scale factor, using Eq. (25) for w = —1, as
t
R (1) = Ry cosh (—) . (38)
Ry
Also, in order to check the WEC we obtain
n—1)n-2)
rt)=-——-—
p(r, 1) 2R,
mn—1Hn-2)
2R44
(n—1)(r®> = 1)> (1 = 2) /rg\2n—2
- ) e
2RArpt (cosh (RL4)>
1> — 1) (n —2) (n —3) sro\n—1
,0+Pr:(0 ) (n—2)( )(70>

2102 R4? (cosh (RL4))2
(> = 1) (n =2) (n = 3) (m)n_l
ro?R4* (cosh (RL4)>2
(=) (=) =3) proy 22
Ri*ro? (cosh (RL4>)4 ( ) . (40)
_ (roz_l)(”_?’) ro n—1
e 2ro®R4? (cosh (RL4)>2 (r )

(ro*> — 1) (n — 3) <r_0)n71
ro?R4* (cosh (1%4))2 r
(r02 — 1)2 n+1) (r0>2n*2

+ (2
Rt (cosh (R%))

In this case, we see that in GR (¢ = 0), p + P; is always neg-
ative, implying the violation of NEC throughout the space-
time. However, we can choose a suitable value of « so that
we have normal matter in the whole spacetime. In Fig. 7, we
depict the quantities p , p + P and p 4+ P; in terms of » and
tforRy=1,rg=0.1andn = 5.

+o

r

r

(41)

r

4 Concluding remarks

In this paper, we have explored higher-dimensional dynam-
ical wormhole solutions in the framework of GB gravity by
considering a constraint on the Ricci scalar. In this context,
the existence of higher curvature may help to construct worm-
hole solutions that respect energy conditions. In a cosmolog-

@ Springer
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409

Fig. 4 The behavior of p , p + p; and p + p, with respect to ¢ at throat ro = 2 for the left figure and at » = 5 for the right figure from up to down,
respectively. The constants are chosen as @ = 1, rp = 2 and w = —3/4 in 5-dimensions
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Fig. 5 The behavior of p, p + p, and p + p; versus r and t respectively from left to right, for w = —1,r9 = 1, R3 = 1l and @ = —0.5 in
5-dimensions

ical set up, microscopic dynamical wormholes produced in
the early universe may be inflated to macroscopic scales. We
found that choosing a suitable value for o parameter and

1.07 wormhole throat could help to obtain wormholes without
] the need for exotic matter. We have also briefly presented
087 solutions in higher dimensional Einstein gravity, « = 0, that
0.6 confirms previous results outlined in [82]. Furthermore, for a
specific value of w the WEC is satisfied throughout the entire
0.4 spacetime in four dimensions. Also, we found new solutions
that have finite size for which the WEC can be satisfied for

0.2 negative GB constant.
Finally, it should be noted that during the past years, sev-
07 eral branches of theoretical physics such as string theory,
oo supergravity, Kaluza—Klein theory have predicted the pres-
' 1'.2 ence of extra dimensions [105,106]. Hence, it makes sense
r to seek for possible existence of geometrical objects within

spacetimes with the number of dimensions greater than four

Fig. 6 The behavi f1—-2> ith respect to r f = 0.1, . . .
% € OCHavior © (r)/r with respect to r for ro as for example higher dimensional black holes and worm-

n=9,7,5 from up to down, respectively

@ Springer
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Fig. 7 The behavior of p, p 4+ p, and p + p; versus r and t respectively from left to right, for w = —1,r90 = 0.1, R4 = l and @ = —0.5 in

5-dimensions

holes [107-109]. From astrophysical perspective, the near
horizon black hole solutions in higher dimensional mod-
els are important since they can be regarded as windows to
extra dimensions [110,111], and in cosmological scenarios
the possible existence of extra dimensions is significant dur-
ing the evolution of the early universe [112—114]. In [115] the
author has provided some observational criterion in order to
determine whether the extra dimensions are compact or large
and phenomenological aspects of large, warped, and univer-
sal extra dimensions is reviewed in [116]. Wormhole geome-
tries without exotic matter have been studied in [117]. Such
solutions could be thought of as similar to missing energies in
collider phenomenology which are expected to provide sig-
nals of the existence of extra dimensions [118]. Therefore,
the existence of such configurations with extra dimensions in
our universe cannot be a priori excluded, and their possible
astrophysical results could be a subject of further studies.

Data Availability Statement This manuscript has no associated data or
the data will not be deposited. [Authors” comment: This is a theoretical
study and no experimental data has been listed.]
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