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Abstract
Circuit quantum electrodynamics (cQED) provides a modern test bed for exploring

the well-established physics of cavity quantum electrodynamics. cQED exploits circuit-
based cavities that are fabricated on a chip and interfaced with real or artificial atoms
to examine a range of light-matter interactions. It has gained considerable popularity
and became one of the most powerful platforms to experimentally explore quantum me-
chanical effects in the solid state. cQED offers a simple way to couple together distinct
quantized degrees of freedom, and this has instigated a new sub-field often referred
to as “hybrid quantum systems”. Through combining different quantum systems with
superconducting circuits, one can deploy the cQED toolbox to deliver advantages in
other fields. Recently, superconducting micro-resonators have been used in conjunc-
tion with microwave parametric amplifiers to push the detection sensitivity in electron
spin resonance (ESR) spectroscopy to the quantum noise limit. ESR spectroscopy is
an important technique for studying the structure and function of materials, broadly
utilized throughout chemistry, physics and biology and sensitive enhancement is often
a highly prized goal.

The superconducting parametric amplifier circuits employed in previous quantum-
limited ESR experiments have all been based on Josephson junction technology – a
lossless nonlinear element that enables many important cQED devices – and are in-
compatible with the high magnetic fields often required by spins. Spin signals are
collected using a linear resonator and must be routed to the amplifier (housed away
from any magnetic fields) through various microwave components and cables, which
introduce loss and complexity. In this thesis we develop a new type of superconduct-
ing parametric amplifier that utilizes a nonlinear kinetic inductance, called the KIPA.
The amplifier contains no Josephson junctions and is compatible with the large mag-
netic fields relevant for ESR spectroscopy. We analyze the key properties of this new
amplifier and demonstrate that it has excellent characteristics, including a quantum-
limited noise performance and high dynamic range. In a break from previous work,
we integrate the spins directly with this parametric amplifier and show that the spin
signals can be collected and amplified all within the same device, greatly simplifying
the quantum-limited spectrometer design.

By adopting analogues from optomechanics, we develop and lay the experimental
groundwork for an idea that utilizes the nonlinearity of our KIPA circuit to paramet-
rically cool a spin ensemble coupled to it. We show that we can induce a parametric
interaction between the fundamental mode and first harmonic of the device, which can
in-principle be used to cool the lower frequency mode. By coupling the electron spins to
the fundamental mode, their polarization can be increased through Purcell relaxation
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(or radiative cooling), where the spins relax via photon emission into the device and
thus thermalize to the photon temperature. This constitutes an active cooling process
and can be used to lower the effective spin temperature below that of the cryostat to
which the device is thermally anchored. Our proposed active cooling scheme would
have application in low-temperature ESR spectroscopy, where the resulting population
enhancement directly translates to a sensitivity gain.

This thesis presents a novel hybrid architecture that combines spins in a solid-
state chip with a new type of high-performance superconducting parametric amplifier,
allowing for high-sensitivity detection of the spins through parametric amplification and
cooling, where both processes may be performed entirely on-chip. The results are of
interest to a range of fields, particularly ESR spectroscopy and superconducting-based
quantum information processing (QIP).

vi



Acknowledgements
This PhD project is a result of efforts and support from many people whom I am

deeply grateful.
First of all, I would like to thank Dr Jarryd Pla for giving me the opportunity

to become your first PhD student and to work on this amazing project with you. I
also thank you for your supervision of my work, for your patience, for many fruitful
discussions and for the great support in my research. I am grateful for entrusting me
to join you in building and setting up the new lab. And finally, you provided me with
a fantastic opportunity to spend four unforgettable years in Australia. Thank you!

I am thankful to Prof. Andrea Morello for your support of my work, for being my
co-supervisor, for our many interesting discussions and for accepting me as a part of
your group.

I thank Daniel Parker, a brilliant engineer and fellow student, for your support with
hardware and software that made the experiments presented in this thesis possible. I
want to thank Wyatt Vine for helping me with measurements, productive discussions
and boost of excitement during hard times.

I would like to express my gratitude to Prof. Tim Duty for providing the dilution
refrigerator setup that was used for the experiments presented in one of the chapters.

I am also grateful to Prof. Torsten Lehmann, Dr Aaron Michael, Dr Fay Hudson,
Dr Tuomo Taantu, Dr Arne Laucht for supporting and monitoring the progress of my
PhD studies.

I thank Joanna Szymanska, Dr Andrew See, Josiah Firth, Prof. Andrew Dzurak
and all ANFF-NSW staff members for training and advising me in regards of nanofab-
rication and for providing me with the opportunity to fabricate my devices for this PhD
project. For the support and continuous supply of liquid helium and liquid nitrogen
required to operate the cryogenic setup I thank Dr Rodrigo Ormeno.

I thank Dr Vivien Schmitt, Dr Vincent Mourik and Dr Tim Botzem for providing
useful tips and discussions on handling microwave equipment, operation of cryostats
and nanofabrication. Also, I am grateful to the group of Prof. Andrea Morello for
creating a pleasant working atmosphere in the office and for all our parties together.

I am very thankful to my family and their limitless support in all my endeavours.
Especially, to my brother, Rostyslav Savytskyy, whose wisdom, advice and appreciation
were extremely important for me.

Finally, I would like to thank my wife, Tetiana, whose love and support over the
years has been crucial in the completion of this PhD. Thank you for your courage to
adventures that yielded so many happy memories. I look forward to having many more
together in the years to come.

vii



Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

1 Introduction 9
1.1 The dawn of quantum experiments . . . . . . . . . . . . . . . . . . . . . 10
1.2 cQED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3 Hybrid systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.4 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Background 15
2.1 Superconducting microwave resonators . . . . . . . . . . . . . . . . . . . 16

2.1.1 Infinitely long transmission line . . . . . . . . . . . . . . . . . . . 16
2.1.2 Lagrangian and classical Hamiltonian of a transmission line . . . 18
2.1.3 Transmission line resonator . . . . . . . . . . . . . . . . . . . . . 20
2.1.4 Quantum harmonic oscillator . . . . . . . . . . . . . . . . . . . . 21
2.1.5 Quantum states of electromagnetic radiation . . . . . . . . . . . 22
2.1.6 Probing the resonator . . . . . . . . . . . . . . . . . . . . . . . . 27
2.1.7 Input-output formalism . . . . . . . . . . . . . . . . . . . . . . . 29
2.1.8 Losses in superconducting resonators . . . . . . . . . . . . . . . . 31

2.2 Nonlinear elements in superconducting cavities . . . . . . . . . . . . . . 34
2.2.1 SQUIDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.2.2 Kinetic inductance . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.3 Quantum limits to amplification . . . . . . . . . . . . . . . . . . . . . . 38
2.4 Hybrid systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.4.1 Spins in a classical magnetic field . . . . . . . . . . . . . . . . . . 40
2.4.2 Single spin in quantized field of a cavity . . . . . . . . . . . . . . 46

2.5 209Bi donors in silicon . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.5.1 ESR transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

1



CONTENTS

3 Experimental methods 56
3.1 Device design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.1.1 Coplanar waveguide . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.1.2 Coplanar waveguide resonator . . . . . . . . . . . . . . . . . . . . 59
3.1.3 Microwave photonic bandgap . . . . . . . . . . . . . . . . . . . . 61
3.1.4 Photonic bandgap resonator . . . . . . . . . . . . . . . . . . . . . 63

3.2 Device fabrication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.2.1 Ion implantation . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.2.2 Resonator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.3 Packaging of the device . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.3.1 Practical considerations . . . . . . . . . . . . . . . . . . . . . . . 76

3.4 Cryogenic measurement setup . . . . . . . . . . . . . . . . . . . . . . . . 76
3.4.1 3He refrigerator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.4.2 3He-4He dilution refrigerator . . . . . . . . . . . . . . . . . . . . 82

3.5 Room temperature measurement setup . . . . . . . . . . . . . . . . . . . 85
3.6 Pulsed ESR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.6.1 Hahn echo pulse sequence . . . . . . . . . . . . . . . . . . . . . . 88
3.6.2 Carr-Purcell-Meiboom-Gill pulse sequence . . . . . . . . . . . . . 91
3.6.3 T2 measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
3.6.4 T1 measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4 The Kinetic Inductance Parametric Amplifier 95
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.2 Theory of parametric amplification . . . . . . . . . . . . . . . . . . . . . 97
4.3 Device and setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.4 Parametric amplification . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.4.1 Phase insensitive parametric amplification . . . . . . . . . . . . . 103
4.4.2 Phase sensitive parametric amplification . . . . . . . . . . . . . . 104

4.5 Squeezing of a coherent state . . . . . . . . . . . . . . . . . . . . . . . . 106
4.6 Calibrating the photon-to-power conversion factor . . . . . . . . . . . . 108
4.7 Noise properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
4.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5 Parametric amplification of spin echoes 114
5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
5.2 Device and setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

2



CONTENTS

5.2.1 Device characterization . . . . . . . . . . . . . . . . . . . . . . . 116
5.2.2 Resonator - spin ensemble coupling . . . . . . . . . . . . . . . . . 120

5.3 Spin echoes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
5.4 Parametric amplification of spin echoes . . . . . . . . . . . . . . . . . . . 128
5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6 Parametric spin cooling 134
6.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
6.2 Proposal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

6.2.1 System Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . 137
6.2.2 Input-output formalism . . . . . . . . . . . . . . . . . . . . . . . 141
6.2.3 Parametric spin cooling requirements . . . . . . . . . . . . . . . . 143

6.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
6.4 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

6.4.1 Device characterization . . . . . . . . . . . . . . . . . . . . . . . 147
6.4.2 Coupled modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
6.4.3 Spins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

6.5 Future directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

7 Conclusions 157
7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
7.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

Appendix A Matlab script for photonic bandgap structure 162

Appendix B Photonic bandgap resonator fabrication details 165

References 168

3



List of Figures

2.1 Lumped element circuit of a transmission line section . . . . . . . . . . . 17
2.2 States of electromagnetic radiation . . . . . . . . . . . . . . . . . . . . . 26
2.3 LCR resonator coupled to transmission line . . . . . . . . . . . . . . . . 28
2.4 Input-output model for the cavity probed in reflection . . . . . . . . . . 30
2.5 Losses in microwave resonators . . . . . . . . . . . . . . . . . . . . . . . 32
2.6 Illustration of a SQUID . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.7 Precession of spins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.8 Illustration of a rotating frame . . . . . . . . . . . . . . . . . . . . . . . 42
2.9 Illustration of a π/2 pulse . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.10 Bismuth donor energy levels . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.1 Conventional coplanar waveguide implementation . . . . . . . . . . . . . 58
3.2 λ/2 and λ/4 CPW resonators . . . . . . . . . . . . . . . . . . . . . . . . 60
3.3 Dependence of the kinetic inductance on film thickness . . . . . . . . . . 61
3.4 IDC transmission line . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.5 Characteristic impedance of a CPW with IDC . . . . . . . . . . . . . . . 63
3.6 Schematics of a PBG structure . . . . . . . . . . . . . . . . . . . . . . . 63
3.7 S21 Matlab calculation of a PBG structure . . . . . . . . . . . . . . . . . 64
3.8 PBG resonators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.9 Sonnet S21 simulations of the λ/2 PBG resonator . . . . . . . . . . . . . 66
3.10 Matlab S21 simulations of the λ/2 PBG resonator . . . . . . . . . . . . . 66
3.11 Reflection spectra S11 of the λ/4 PBG resonator . . . . . . . . . . . . . 67
3.12 Implantation of bismuth into silicon . . . . . . . . . . . . . . . . . . . . 69
3.13 Fabrication steps of the PBG resonator . . . . . . . . . . . . . . . . . . 70
3.14 CST model of the λ/4 PBG resonator . . . . . . . . . . . . . . . . . . . 73
3.15 Packaging of the device . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.16 Device attached to the cold finger of the 3He cryogenic system . . . . . 74
3.17 CST current density simulations of the λ/4 PBG resonator . . . . . . . 75

4



LIST OF FIGURES

3.18 Microwave wiring inside the 3He cryogenic system . . . . . . . . . . . . 80
3.19 Measurement setup utilizing the 3He-4He dilution fridge . . . . . . . . . 84
3.20 Microwave bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
3.21 Schematics of the resonator for ESR spectroscopy . . . . . . . . . . . . . 88
3.22 Hahn echo pulse sequence . . . . . . . . . . . . . . . . . . . . . . . . . . 89
3.23 CPMG pulse sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
3.24 Inversion recovery pulse sequence . . . . . . . . . . . . . . . . . . . . . . 93

4.1 Feynman diagram for three and four wave mixing processes . . . . . . . 98
4.2 Simplified schematic of the measurement setup used for KIPA charac-

terization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.3 Fundamental mode of the KIPA as a function of a DC current . . . . . 102
4.4 Phase insensitive gain of the KIPA . . . . . . . . . . . . . . . . . . . . . 103
4.5 Phase sensitive gain of the KIPA . . . . . . . . . . . . . . . . . . . . . . 105
4.6 Degenerate 1-dB compression point of the KIPA . . . . . . . . . . . . . 105
4.7 KIPA response to coherent inputs of constant amplitude and varying phase107
4.8 Deamplification and amplification of the coherent signal as a function of

pump power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
4.9 Detection chain containing a series of amplifiers . . . . . . . . . . . . . . 109
4.10 Photon-to-power conversion factor . . . . . . . . . . . . . . . . . . . . . 111
4.11 Noise properties of the KIPA . . . . . . . . . . . . . . . . . . . . . . . . 112

5.1 Illustration of experimental setup . . . . . . . . . . . . . . . . . . . . . . 117
5.2 Fitting routine of the fundamental mode . . . . . . . . . . . . . . . . . . 118
5.3 Fundamental mode of the resonator as a function of a DC current . . . 119
5.4 Fundamental mode as a function of the input power . . . . . . . . . . . 120
5.5 B1 magnetic field vacuum fluctuations . . . . . . . . . . . . . . . . . . . 121
5.6 Resonator-spin ensemble coupling strength distribution . . . . . . . . . . 122
5.7 Detected ESR transitions as a function of magnetic field . . . . . . . . . 123
5.8 Spin echo in time domain . . . . . . . . . . . . . . . . . . . . . . . . . . 125
5.9 Rabi oscillations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
5.10 T1 measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
5.11 T2 measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
5.12 Parametric amplification of spin echoes . . . . . . . . . . . . . . . . . . . 129
5.13 SNR improvement of spin echo measurements . . . . . . . . . . . . . . . 132

5



6.1 Radiative spin cooling scheme . . . . . . . . . . . . . . . . . . . . . . . . 136
6.2 Optomechanical system coupling scheme . . . . . . . . . . . . . . . . . . 137
6.3 Illustration of coherent photon exchange between resonantly coupled cav-

ity modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
6.4 Input-output model for the coupled cavity modes . . . . . . . . . . . . . 142
6.5 Parametric spin cooling scheme . . . . . . . . . . . . . . . . . . . . . . . 144
6.6 Experimental setup adapted for the first harmonic measurements . . . . 146
6.7 Fitting routine of the first harmonic . . . . . . . . . . . . . . . . . . . . 148
6.8 First harmonic of the resonator as a function of a DC current . . . . . . 148
6.9 Coupling between the modes as a function of the pump frequency . . . . 150
6.10 Coupling between the modes as a function of the pump power . . . . . . 151
6.11 Individual reflection spectra of the fundamental mode in the presence of

pump tone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
6.12 Parametric coupling rate as a function of the pump amplitude . . . . . . 153
6.13 Purcell limited T1 relaxation time . . . . . . . . . . . . . . . . . . . . . . 154
6.14 T1 measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

List of Tables

2.1 Group V donor properties . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.2 Magnetic field clock transitions . . . . . . . . . . . . . . . . . . . . . . . 54
2.3 Hyperfine interaction clock transitions . . . . . . . . . . . . . . . . . . . 55

6



Acronyms

3WM three wave mixing
4WM four wave mixing
AWG arbitrary waveform generator
BCS Bardeen-Cooper-Schrieffer
CPMG Carr-Purcell-Meiboom-Gill
CPW coplanar waveguide
cQED circuit quantum electrodynamics
CQED cavity quantum electrodynamics
CST Computer Simulation Technology
DPA degenerate parametric amplifier
EBL electron beam lithography
EM electromagnetic
ESD electrostatic discharge
ESR electron spin resonance
FEM finite element method
FID free induction decay
FZ float-zone
HEMT High Electron Mobility Transistor
IDC interdigitated capacitor
IVC inner vacuum chamber
JPA Josephson parametric amplifier
KIPA kinetic inductance parametric amplifier
LGR loop-gap resonator
LO local oscillator
LPF low-pass filter
MKID microwave kinetic inductance detectors
MOS metal-oxide-semiconductor

7



Acronyms

NI National Instruments
PBG photonic bandgap
PCB printed circuit board
QHO quantum harmonic oscillator
QIP quantum information processing
RIE reactive ion etching
RMS root-mean-square
RWA rotating wave approximation
SMU source measurement unit
SNR signal-to-noise ratio
SQUID superconducting quantum interference device
TEM transverse electromagnetic
TL transmission line
TLS two level system
US ultrasonicate
VNA vector network analyzer

8



Chapter 1

Introduction

9



1.1. The dawn of quantum experiments

1.1 The dawn of quantum experiments

At the end of nineteenth century physicists believed that their understanding of
the nature was close to being complete [1]. This notion was backed by their classical
theory based on Newtonian mechanics [2], where everything is deterministic and can be
predicted a priori. However, there were some “minor discrepancies” that could not be
explained with classical theory. For instance, according to the theory the distribution of
electromagnetic radiation of a black body at higher frequencies (toward the ultraviolet
end of the spectrum) should become infinite, known as the ultraviolet catastrophe.
Contrary to this, experiments proved the opposite – it approaches zero. The controversy
was resolved by a new theory, now called quantummechanics, first introduced in 1900 by
Max Planck [3]. This theory of atoms and subatomic particles introduced concepts such
as quanta of energy, particle-wave duality, superposition and entanglement – foreign
concepts to physicists at the time.

At the beginning of twentieth century the founders of quantum mechanics used a
tool known as thought (or gedanken) experiments to test their theories, since it was
technically impossible to perform experiments with single photons, atoms or electrons
at the time. These experiments required apparatus with detection sensitivities close to
the level of a single quanta. This all changed over the space of a century thanks to the
development of modern technologies. The quantum thought experiments became real.
The first single-atom experiments were performed with ions confined in electromagnetic
traps [4]. The ions were localized using gradients of magnetic and electric fields, and
light transmitted through them carried information on their quantum states, which
could be detected and analyzed.

Another early experimental study of the interactions of photons and matter were
performed on atoms in 3D electromagnetic cavities [5], [6]. These breakthrough exper-
iments led to the 2012 Nobel Prize in Physics [7] and an entirely new field of study
called cavity quantum electrodynamics (CQED), a sub-field of quantum optics. For
cavity QED in the microwave domain, the photons are confined in a high quality fac-
tor microwave cavity that typically has walls made from a low-loss superconducting
material. The atoms are prepared in excited Rydberg states that possess large electric
dipole moments. This results in an enhanced interaction strength (coupling) between
the photons and the atoms. After passing through the cavity, the atoms are measured
by a state-selective field-ionization detector. Depending on the atom-photon interaction
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1.2. cQED

time one can infer information on the cavity field evolution [8].

1.2 cQED

The groundbreaking cavity QED experiments of the late twentieth century involving
single atoms and quantized electromagnetic fields revealed the rich nature of light-
matter interactions and the potential to exploit them in new technologies. At the end of
twentieth century, enabled by increasing access to advanced micro- and nanofabrication
facilities at the research institution level, cavity QED experiments were translated
to two dimensions, leading to the establishment of the new sub-field of circuit QED
(cQED) [9], [10]. Here the 3D cavity with highly reflective walls is replaced with a
planar circuit-based resonator (often called cavities as well) fabricated on a dielectric
substrate (e.g. silicon or sapphire). In cQED the natural atoms can be replaced by
mesoscopic quantized electrical circuits that mimic the energy spectra of real atoms,
and are thus typically called artificial atoms [11]. The majority of artificial atoms are
made from lumped-element LC resonant circuits with integrated Josephson junctions,
which add anharmonicity to produce unequal energy level spacings.

cQED has facilitated fundamental investigations in light-matter interactions, for
example, to measure and entangle macroscopic quantum objects [12]. Artificial atoms
have been exploited to catch and reverse quantum jumps [13], supporting the modern
quantum trajectory theory [14], [15]. Moreover, cQED has been instrumental in scaling
up quantum computers made from superconducting circuits [16]. A wide variety of su-
perconducting quantum bits (qubits) have been developed from artificial atoms, includ-
ing the “Cooper pair box” (or charge qubit) [17], “flux qubit” [18], “phase qubit” [19],
“transmon” [20] and the “fluxonium” [21]. The high quality factors provided by super-
conducting circuit resonators allowed for strong coupling with superconducting qubits,
resulting in practical realizations of the coherent transfer of excitations between res-
onators and qubits. [22]. In conjunction with the development of fast control electronics
cQED enables the successful interconnection of substantial numbers of superconduct-
ing qubits [23] facilitating complex quantum circuits for implementing quantum error
correction [12].

Aside from their utility in quantum information processing, cQED devices pro-
vide a platform for connecting different quantum degrees of freedom together. Planar
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resonators offer the means to deliver classical and non-classical states of light to an an-
cillary system of interest. cQED has facilitated the study of hybrid quantum systems,
where new technologies are being developed that combine the strengths of different
physical systems [24].

1.3 Hybrid systems

The pioneering early work in cQED positioned it as an excellent testbed for explor-
ing the control of quantum states of artificial atoms and provided a new way to interact
with other systems.

cQED techniques have successfully been integrated with a diverse range of quan-
tum systems, such as phonons in surface acoustic resonators [25] and bulk acoustic res-
onators [26]. Magnetic coupling of single electron spins [27] and ensembles of spins [28]
with microwave resonators has also been achieved in a cQED context. Moreover, mov-
ing to high-density spin systems like ferromagnets has even allowed the coupling of
magnons (or spin waves) to superconducting circuits [29]. cQED can therefore be used
to probe previously unexplored quantum regimes of a variety of physical systems.

The connection of different quantum systems via cQED allows for the creation of
hybrid quantum devices [24], where the primary goal is to exploit the inherent advan-
tages of different systems to perform a task that none of the systems could achieve in
isolation. However, interfacing distinct quantum systems can present several challenges
in practice. For example, the systems of interest may have substantially different natu-
ral excitation frequencies, resulting in the need for a transducer [30]. Another problem
can arise from if the systems share a weak coupling, relative to their individual rates
of loss. For instance, the coupling of a single electron spin to the mode of a microwave
resonator (∼ 50 Hz [31]) is typically many orders of magnitude smaller than the photon
loss rates from cavities (> 10 kHz [32]) and spin dephasing rates (> 1 kHz [33]), mak-
ing the coherent transfer of quantum information between the systems a formidable
challenge. For this reason, electron spin ensembles are typically employed – they lead
to collective effects that can enhance the coupling rate, allowing coherent transfer to
take place [34].

This thesis is concerned with hybrid devices combining superconducting circuits and
spin ensembles. Instead of focusing on coherent interactions we work with a weakly-
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coupled spin-resonator system and use QED phenomena such as the Purcell effect
as well as parametric interactions to deliver new techniques and devices for enhanced
electron spin resonance (ESR) spectroscopy – a widely used method for characterization
of paramagnetic materials in biology, chemistry, and physics [35].

Many efforts have been made to improve the sensitivity of detection in ESR through
the use of superconducting circuits. Recent pioneering research has demonstrated spin
sensitivity enhancement by integrating quantum-limited microwave parametric ampli-
fiers into the signal detection chain [31]. Planar superconducting resonators are used to
inductively couple to the spins; the small structures enhance the magnetic field fluctu-
ations and lead to greater spin-resonator couplings (relative to typical 3D cavities) and
thus improved sensitivities. Reducing the size of the inductive element in the resonator
can further confine the magnetic mode volume and thereby enhance magnetic field fluc-
tuations and the detection sensitivity [36], [37]. Another cQED approach to increase
ESR sensitivity was demonstrated using engineered quantum states of light, where de-
generate parametric amplifiers were employed to squeeze the background vacuum noise
as the spins emit their signals, leading to a higher signal-to-noise ratio (SNR) [38]. Fi-
nally, the most recent efforts in the field have shown another route to boost spin signals
through hyper-polarization, achieved via radiative cooling of a spin ensemble [39].

In this thesis we take a step further and combine an electron spin ensemble directly
with a nonlinear superconducting resonator that can be used as a parametric ampli-
fier. We show that this combination has great potential for improving SNR and thus
sensitivity in ESR spectroscopy. The nonlinearity of the resonator enables a range of
parametric processes, of which we explore amplification and cooling in this thesis.

1.4 Thesis outline

The thesis begins with a general introduction to the field of cQED and presents a
theoretical treatment of the quantum mechanical states of light in a resonant microwave
circuit. After having introduced the physics of linear microwave resonators, we discuss
how nonlinearities can be added to enable frequency tunability and parametric pro-
cesses. We then present classical and quantum mechanical treatments of the physics
behind the other important component of our hybrid devices – electron spins. The
spin system employed in this work is provided by bismuth (209Bi) dopants in silicon.
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We discuss the properties of this system in detail and present theory to describe the
interaction of spins with the mode of a microwave resonator.

In Ch. 3 we outline details of the device design, fabrication and packaging. We
also introduce the cryogenic systems utilized in our experiments along with a detailed
account of the microwave measurement setup, including the cryogenic microwave com-
ponents and the room temperature measurement electronics. At the end of this chapter
we provide a description of some important ESR pulse sequences that are used later in
our experiments.

In Ch. 4 we present an experimental study of the application of our nonlinear
resonator as a parametric amplifier. The amplifier uses a three wave mixing (3WM)
process to achieve both phase-insensitive and phase-sensitive parametric amplification.
We explore the ability of the amplifier to perform squeezing by observing the amplifi-
cation and deamplification of coherent signals. Finally we measure the amplifier noise
temperature and show that it operates at the quantum noise limit.

In Ch. 5 we apply the parametric amplification capability of our device to ESR
spectroscopy. We first utilize the device as a cavity to inductively detect spin echo
signals from an ensemble of bismuth donors and characterize their ESR transitions.
Next, we add a pulsed pump tone when the echo response is expected and show that
both detection and parametric amplification of spin signals can be implemented entirely
on-chip, resulting in a substantial measurement SNR.

In Ch. 6 we explain how our device can be used to parametrically cool the spins. We
start with a theoretical framework on the parametric cooling of a mode in a multimode
nonlinear resonator. Following this we experimentally demonstrate parametric coupling
of two of the modes in our resonator and characterize important system parameters.
We further show that we are able to achieve strong coupling between these two modes.
Finally, we outline steps and device modifications that are necessary to fully implement
the parametric spin cooling protocol.

In Ch. 7 we briefly summarize the main results achieved in this thesis and outline
our future work.
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Chapter 2

Background

This chapter provides the reader with a concise theoretical framework required to
understand the experiments described in this thesis.
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2.1. Superconducting microwave resonators

2.1 Superconducting microwave resonators

In this section we introduce the physical description of a confined mode of electro-
magnetic radiation and use it to explore the astonishing physics of light-matter inter-
actions. We will study the superconducting resonator as an ideal device with which to
implement a range of technologies that exploit rich physics.

The discussion will start with an introduction to the transmission line concept.
Initially we consider the microwaves propagating along the transmission line classically.
Following this we impose boundary conditions to confine modes in a transmission line
resonator, leading to a quantum mechanical treatment of the quantization of a single
electromagnetic mode and a description of the quantum states of light in a resonator.

Our discussion is followed by considering the impact of the external microwave
circuitry on the resonator performance needed to measure the resonator dynamics.
Then to describe the intra-cavity electromagnetic field we employ the quantum input-
output theory.

Though superconductors are generally treated as lossless materials, the microwave
resonators made of them are not lossless. This leads to the appearance of additional
channels for photons to leak out of the resonator resulting in a loss of quantum infor-
mation. Moreover, these channels can facilitate the injection of thermal photons from
the bath surrounding the cavity leading to the loss of coherence and heating of the
electromagnetic environment inside the cavity. Therefore, in the end of this section we
discuss the origin of losses in microwave superconducting resonators and how they can
be mitigated.

2.1.1 Infinitely long transmission line

In this thesis we operate close to the microwave X-band frequency range (more
specifically around 7 GHz). The wavelength at this frequency is approximately 4 cm
in vacuum (i.e. εr = 1). The devices we use to perform experiments have silicon as
a dielectric media which reduces the wavelength to approximately 30% of its value in
vacuum (see Sec. 3.1). The dimensions of the cavity should be of the same order to
resonate at these frequencies – exact dimensions depend on the type of resonator imple-
mented (e.g. quarter or half wavelength). Since the size of the circuit is comparable to
the electrical wavelength, there is a spatial variation of the electrical variables like cur-
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2.1. Superconducting microwave resonators

rent and voltage in addition to their time dependence. For this reason we introduce the
transmission line (TL) approach that includes the time and spacial dependence of the
electric and magnetic energies [40]. Whilst this thesis will be concerned with microwave
signals, the theory that follows is general and applies to signals of any frequency.

A TL is a structure that allows microwaves to propagate. An example of a trans-
mission line is the coaxial cable, a popular line used to transport microwaves signals
without significant dissipation (see Fig. 2.1). Let us first consider an infinitely long
transmission line. Electric and magnetic energy are distributed along the length of
the TL, giving rise to the term “distributed” element. The TL can be modeled as an
infinite series of infinitesimally short segments of the TL. This allows us to assume that
the electric and magnetic energy is stored locally in each segment, and we refer to the
segments as “lumped” elements. The standard lumped element circuit of an infinitesi-
mally short segment of the TL is shown in Fig. 2.1. It has a resistance and inductance
connected in series, as well as a shunt capacitance and conductance per unit length
labeled as Lx, Rx, Cx and Gx, respectively.

Figure 2.1: The lumped element circuit representation of an infinitesimally short seg-
ment of transmission line, schematically depicted as a coaxial cable.

By analyzing this electrical circuit with the help of Kirchhoff’s voltage and current
laws, one can easily derive the well-known telegrapher’s equations, where V(x, t) and

17



2.1. Superconducting microwave resonators

I(x, t) are the voltage and current at position x and time t:

∂V(x, t)
∂x

= −RxI(x, t)− Lx
∂I(x, t)
∂t

∂I(x, t)
∂x

= −GxV(x, t)− Cx
∂V(x, t)
∂t

(2.1)

Solving the telegrapher’s equations for a sinusoidal steady-state condition, we obtain
a set of traveling wave equations for the voltage and current:

V(x) = V+
0 e
−γx + V−0 eγx

I(x) = I+
0 e
−γx + I−0 eγx

(2.2)

where a negative exponent represents a wave propagating in the +x direction and a
positive exponent wave in the −x direction. γ is a complex propagation constant that
accounts for microwave losses in the line (α) and the line’s dispersion or phase constant
(β):

γ = α+ jβ =
√

(Rx + jωLx)(Gx + jωCx)

The line impedance is defined as:

Z0 = V
+
0
I+

0
= −V

−
0
I−0

=
√
Rx + jωLx
Gx + jωCx

(2.3)

In practice, the TL we utilize is made of a superconducting metal and all the
measurements presented in this thesis are done at cryogenic temperatures, well below
the critical temperature of the superconductor (Tc). This leads to the condition where
the metal resistance Rx and the dielectric conductance Gx are approximately zero,
yielding α = 0. A more detailed discussion on the superconducting microwave TL
losses can be found in Sec. 2.1.8. As a result, the characteristic line impedance reduces
to Z0 =

√
Lx/Cx.

2.1.2 Lagrangian and classical Hamiltonian of a transmission line

Previously we derived telegrapher’s equations that describe the propagation of elec-
tromagnetic (EM) waves along a TL. Here we describe the EM waves in TL using a
generalized approach by constructing a Lagrangian (L). This method is widely used in
physics and allows to characterize the state of the system at a certain time. In classical
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mechanics, the Lagrangian is simply the difference between the kinetic and potential
energy of the system. In the case of EM waves, we substitute them with electrical and
magnetic energies. Moreover, based on Lagrangian we can readily derive the classical
Hamiltonian which later is converted into quantum mechanical Hamiltonian.

For this reason we need to choose the generalized coordinates of our system. Con-
ventionally, the magnetic flux φ and electric charge q = Cx(∂φ/∂t) that are stored in
the inductor and capacitor of our line are chosen. Following the approach outlined in
Refs. [41], [42], the local voltage on the TL can be represented by using the flux variable
φ:

V(x, t) = ∂φ(x, t)
∂t

(2.4)

and the local current has the following form:

I(x, t) = −∂φ(x, t)
Lx∂x

(2.5)

We can readily construct the Lagrangian for the TL by taking the difference of the
kinetic (T ) and potential energies (V ):

L = T − V =
∫ ∞

0
dxL(x, t) =

∫ ∞
0

dx
[Cx

2
(∂φ
∂t

)2
− Lx

2
( ∂φ

Lx∂x

)2]
(2.6)

Using the Euler-Lagrange equation that is given by:

d

dt

(
∂L
∂φ̇

)
− ∂L
∂φ

= 0 (2.7)

we can derive the equation of motion for the flux. This equation has the form of
a wave equation which leads to similar expressions for the voltage and current derived
previously:

v2
p

∂2φ

∂x2 −
∂2φ

∂t2
= 0 (2.8)

where vp = 1/
√
LxCx is the phase velocity.

Since the charge density is canonically conjugate to the flux coordinate q = ∂L/∂φ̇,
we can derive the classical Hamiltonian using H(x, t) = φ̇q − L(x, t), which leads to:

H =
∫
dx
[ 1
2Cx

q2 + 1
2Lx

(∂xφ)2
]

(2.9)
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2.1.3 Transmission line resonator

So far we have only considered the problem of an infinitely long TL. We can restrict
the TL to a finite length by including terminations at the input and output. The most
common passive electrical terminations are an open-circuit, short-circuit and 50 W
resistor. The latter is designed to suppress the reflections off the end of the TL by
matching its characteristic impedance. Other terminations define boundary conditions
that can produce reflections of the waves, leading to the appearance of standing waves
at certain frequencies. As a result, the waves no longer propagate freely, but instead
form standing waves confined in the length of TL. Such a section of TL that confines
electromagnetic energy in this way is said to form a resonator. In what follows, we will
discuss two types of microwave resonators with differing boundary conditions - these
resonators are of practical importance and will be utilized in our experiments.

If a section of TL of length l has open ends, the current at the terminations must
vanish:

I(0, t) = I(l, t) = 0

or equivalently,
∂φ(0, t)
∂x

= ∂φ(l, t)
∂x

= 0

This condition restricts modes supported in the TL resonator to those for which l is
a positive integer (k) multiple of a half wavelength l = k ·λ/2, therefore, we refer to this
structure as a λ/2 resonator. Here k identifies the mode number and each mode has
its own resonance frequency ωk = πk/(l

√
LxCx). The functions describing the spatial

variation of the flux and its conjugate (charge) are as follows:

φ(x, t) =
√

2/πk
∑
k

φk(t) cos(kπx/l)

q(x, t) =
√

2πk/l
∑
k

qk(t) cos(kπx/l)
(2.10)

In the case of one open and one short-circuit terminated end, the boundary condi-
tions are I(0, t) = 0 and V(l, t) = 0 and require:

∂φ(0, t)
∂x

= 0

∂φ(l, t)
∂t

= 0
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This leads to the similar harmonic spatial distribution of flux and charge, however, the
set of modes that can reside inside this structure is limited to those for which l is an
odd integer multiple of a quarter wavelength, i.e. with k = 1/2, 3/2, 5/2, . . .. This type
of transmission line is designated a λ/4 resonator.

2.1.4 Quantum harmonic oscillator

After we derived the classical Hamiltonian of an EM wave propagating in a TL, we
transform it into quantum mechanical representation. It is well established that EM
radiation is quantized [6]. The rigorous quantization of an EM field can be found in
Refs. [43], [44]. Here we consider only a single mode of an EM field that is well-known
to behave as a quantum harmonic oscillator (QHO).

The classical canonically conjugate variables of flux φ and charge q (which also
happen to be observable/measurable quantities) are promoted to quantum mechanical
operators:

φ→ Φ̂

q → Q̂

Since the variables are canonically conjugate, their associated operators obey the
well-known commutation relation [Φ̂, Q̂] = i~. Based on the classical Hamiltonian
Eq. 2.9, the quantum mechanical Hamiltonian for a single mode of radiation can be
written as:

Ĥ = 1
2C Q̂

2 + 1
2L Φ̂2 (2.11)

We introduce the annihilation â and creation â† operators of a QHO, which obey
the commutation relation [â, â†] = 1. Writing the flux and charge operators in terms
of â and â† [41]:

Φ̂ =
√

~Z0
2 (â+ â†)

Q̂ = −i
√

~
2Z0

(â− â†)
(2.12)

This simplifies the Hamiltonian to the well-known form for a QHO:

Ĥ = ~ω0(â†â+ 1/2) = ~ω0(n̂+ 1/2) (2.13)
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Here ω0 =
√

1/(LC) is the angular frequency of the mode, and Z0 =
√
L/C its

characteristic impedance. The number state operator n̂ = â†â defines the number of
photons in the QHO. We can also calculate the quantum operators for the current and
voltage based on the flux and charge operators:

Î = Φ̂
L

= ω0

√
~

2Z0
(â+ â†)

V̂ = Q̂
C

= −iω0

√
~Z0

2 (â− â†)
(2.14)

The uncertainty of an operator Â is defined as δÂ =
√
〈Â2〉 − 〈Â〉2, where 〈Â〉 =

〈ψ|Â|ψ〉 signifies the expectation of the operator Â for the system in the state |ψ〉. For
a QHO in the ground (or so-called vacuum) state |0〉, the voltage and current exhibit
root-mean-square (RMS) fluctuations with a strength:

δÎ = ω0

√
~

2Z0

δV̂ = ω0

√
~Z0

2

(2.15)

It is worth noting that these non-zero fluctuations have very profound consequences
in practice and manifest, for example, in the Casimir effect [45] and Lamb shift [46], [47].
Even though the current and voltage expectations values 〈I〉 and 〈V〉 are zero, their
variances 〈I2〉 and 〈V2〉 are not. The vacuum state with zero photons generates current
and voltage fluctuations that translate into vacuum fluctuations of the magnetic and
electric fields. These fluctuations facilitate interactions between resonators and other
quantum systems and are of utmost importance for cQED [22] and hybrid systems [48].

2.1.5 Quantum states of electromagnetic radiation

The quantized EM field exists in a number of exotic quantum mechanical states. In
this paragraph we outline the most relevant quantum states of light and their properties.

So far we have used flux and charge variables to describe the quantum state of
radiation. This was a convenient choice to map the EM waves onto our TL components.
However, these variables are not unique and we are free to choose other canonically
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conjugate pairs to describe the system.
A classical monochromatic signal of frequency ω can be represented as a complex

number S = Aei(ωt+φ), where A is the signal amplitude, φ is its phase and t represents
time. We can write this signal in a static “phasor” notation that separates the time
dependence S = Aei(ωt+φ) = Aeiφeiωt = Meiωt. Here M is a phasor that can be
expressed in terms of the quadratures I and Q following Euler’s formula:

M = Aeiφ = A(cosφ+ i sinφ) = I + iQ (2.16)

where I and Q are the “in-phase” and “quadrature” components, respectively [49].
These quadratures are canonically conjugate, thus we can easily promote these variables
to quantum mechanical operators, expressing them as functions of the annihilation and
creation operators:

Î = â+ â†

2

Q̂ = â− â†

2i

(2.17)

The Hamiltonian Eq. 2.11 can also be generalized and rewritten in terms of quadra-
tures:

Ĥ = 1
2C Q̂

2 + 1
2L Φ̂2 = ~ω0

(
Q̂2

Q2
0

+ Φ̂2

Φ2
0

)
= ~ω0

(
Q̂2 + Î2

)
(2.18)

where normalization factors are Q0 =
√

2~/Z0 and Φ0 =
√

2~Z0.
In what follows, we will use Î and Q̂ more often than Φ̂ and Q̂ to describe the states

of light since they are more general and are more readily measured in experiments, as
we will explain in Ch. 3, 4, 5.

Fock states

The so-called number states |n〉 are the eigenstates of a quantum harmonic oscillator
(Eq. 2.13), where n corresponds to the number of photons in a single mode. They are
often referred to as Fock states, named after the Soviet physicist Vladimir Fock. These
states form a complete set of basis vectors for a Hilbert space [43], allowing Fock’s
representation to describe any electromagnetic radiation state, making it a fundamental
tool in quantum mechanics.

One of the key properties of Fock states is that the expectation values of flux and
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charge are always zero irrespective of the photon number:

〈Φ̂〉 =
√

~Z0
2 〈n|â+ â†|n〉 =

√
~Z0

2
(
〈n|â|n〉+ 〈n|â†|n〉

)
= 0

〈Q̂〉 = −i
√

~
2Z0
〈n|â− â†|n〉 = −i

√
~

2Z0

(
〈n|â|n〉 − 〈n|â†|n〉

)
= 0

(2.19)

According to the Heisenberg uncertainty principle [50] they should have non-zero
variances, which in fact, as we show, depend on the number state. For instance, let us
look at the flux and charge density fluctuations of the microwave resonator treated as
quantum harmonic oscillator. The expectation of the square of the flux and charge for
the system in the Fock state |n〉 are:

〈Φ̂2〉 = ~Z0
2 〈n|(â+ â†)2|n〉 = ~Z0(n+ 1

2)

〈Q̂2〉 = − ~
2Z0
〈n|(â− â†)2|n〉 = ~

Z0
(n+ 1

2)
(2.20)

The uncertainties of these conjugate variables exhibit a dependence on the number
of photons:

δΦ̂ =
√
〈Φ̂2〉 − 〈Φ̂〉2 =

√
~Z0(n+ 1

2)

δQ̂ =
√
〈Q̂2〉 − 〈Q̂〉2 =

√
~
Z0

(n+ 1
2)

(2.21)

It then follows that the uncertainty relation for the flux and charge is:

δΦ̂δQ̂ ≥ ~
2(2n+ 1) (2.22)

For the generalized and dimensionless quadrature operators introduced earlier, it
can be shown that the following uncertainty relation holds:

δÎδQ̂ ≥ 1
4(2n+ 1) (2.23)

This means that we cannot precisely determine the quantities 〈Φ̂〉 (〈Î〉) and 〈Q̂〉
(〈Q̂〉) simultaneously. The uncertainty for a measurement is minimum when n = 0, in
which case:

δÎδQ̂ ≥ 1
4 (2.24)
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This brings us to the special case of Fock states when n = 0. This corresponds to the
system in the ground state |0〉, which is often referred to as the “vacuum state” since it
contains zero photons. The uncertainty is spread equally between the two quadratures,
such that standard deviation of each is given as:

δÎ = δQ̂ = 1
2 (2.25)

Coherent states

A coherent state |α〉 is the state of a QHO that most closely replicates the oscillatory
motion of a classical wave. When discussing coherent states it is helpful to define the
displacement operator [43]:

D̂(α) = eαâ
†−α∗â (2.26)

where α = |α|eiφ is a complex number. A coherent state is generated by applying
the displacement operator to the vacuum state:

|α〉 = D̂(α)|0〉 (2.27)

Moreover, the coherent state is an eigenstate of the annihilation operator â|α〉 =
α|α〉 and a linear superposition of photon number states:

|α〉 = e−|α|
2/2∑ αn

(n!)1/2 |n〉 (2.28)

It is worth noting that photons in a coherent state exhibit a Poisson probability
distribution:

P (n) = |〈n|α〉|2 = |α|
2ne−|α|

2

n! (2.29)

with a mean number of photons 〈n̂〉 = 〈α|â†â|α〉 = |α|2. The coherent state is a
minimum uncertainty state with δÎδQ̂ ≥ 1/4, regardless of the coherent state ampli-
tude.

The quantum states of a QHO can be conveniently represented in quadrature phase
space as shown in Fig. 2.2. They are depicted as colored regions with centers corre-
sponding to their mean field amplitudes and areas to their uncertainties.
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Figure 2.2: States of electromagnetic radiation in phase space. a)Vacuum and coherent
states. b) Squeezed vacuum and squeezed coherent states.

Squeezed states

Squeezed states are states with a reduced quantum uncertainty. The uncertainty in
one of the field quadratures may be reduced at the expense of an increased uncertainty
in the other, so long as the uncertainty principle is satisfied. This can be used to lower
the noise in a measurement where the signal is aligned with the squeezed quadrature.
The nonlinear resonators explored in this thesis are highly effective at squeezing, as
will be presented in Ch. 4.

The squeezed states are obtained by acting on any state with the squeezing operator
Ŝ(ε). When it operates on the state |0〉 it produces a squeezed vacuum. When it
operates on D̂(α)|0〉 (where D̂(α) is the displacement operator) it produces a squeezed
coherent state. The squeezing operator is defined as:

Ŝ(ε) = exp

[
ε∗

2 â
2 − ε

2 â
†2
]

(2.30)

and the squeezing parameter ε = rei2φ is a complex number. For squeezed vacuum
and coherent states, the noise on each quadrature is then:

δÎ = 1
2e
−r

δQ̂ = 1
2e

+r
(2.31)
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Thermal states

Since the cavity has a non-zero temperature, it is said that its electromagnetic
mode is in thermal equilibrium with a bath at temperature T , and the cavity is in a
thermal state. Such a thermal state is an incoherent mixture of Fock states and thus the
number of photons in this state is not well defined, being best described by black-body
radiation [51], [52] that follows Bose-Einstein statistics. The mean number of photons
with energy ~ω in a single mode at thermal equilibrium is:

〈nth〉 = 1

e
~ω

kBT − 1
(2.32)

When the temperature T decreases, the number of thermal photons asymptotically
decreases to zero. For high temperatures, 〈nth〉 displays a linear dependence on T . For
the thermal state, the uncertainty on each quadrature is equal:

δÎ = δQ̂ =
√

2nth + 1
4 (2.33)

2.1.6 Probing the resonator

To excite a resonant mode and probe its field we must couple the resonator to ex-
ternal circuitry. One method for driving and characterizing the resonator is to connect
it via capacitance Cin to a transmission line with a characteristic impedance Z0 (usu-
ally Z0 = 50 W) that leads to a microwave test equipment (e.g. a microwave signal
generator, vector network analyzer, signal analyzer, etc.). For simplicity, the resonator
can be modeled using an effective inductance, capacitance, and resistance connected
in parallel as a LCR circuit (shown in Fig. 2.3a). The LC section of the resonant
circuit is a good approximation for a lossless TL. The resistance R models dissipative
losses of microwave photons residing in the resonator and is the result of unavoidable
imperfections, the origins of which are discussed in Sec. 2.1.8.

The internal quality factor Qint is a figure of merit used to quantify resonator losses.
It is defined as the ratio of the maximum energy stored in the resonator to the energy
dissipated per cycle of oscillation. The internal quality factor can be expressed in terms
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Figure 2.3: a) Lumped element circuit of the LCR resonator coupled to a transmission
line and a signal source. b) Norton equivalent circuit of the LCR resonator coupled to
a transmission line and a signal source.

of the various circuit elements as:

Qint = ω0RC = ω0
κint

= R

Zr
(2.34)

where κint is the internal loss rate, ω0 =
√

1/(LC) is the resonant frequency and
Zr =

√
L/C is the impedance of the resonator.

To estimate how the external circuit modifies the properties of the resonator it is
helpful to write down the Norton equivalent circuit (see Fig. 2.3b). In this case the
frequency dependent effective resistance of the resonator including the external line is:

1
Rtot(ω) = 1

R
+ 1
Re(ω) (2.35)

with Re(ω) = Z0 + 1/(ω2C2
inZ0) and the effective capacitance is:

Ctot(ω) = C + Cin
1 + (ωCinZ0)2 (2.36)

The frequency of the resonator is modified as well since the capacitance of the
effective resonant circuit now includes the coupling capacitance ωtot0 =

√
1/(LCtot).

The presence of external circuit adds an effective resistance Re to the resonator,
resulting in an additional channel of microwave field loss. This loss is not inherent to
the resonator but accounts for coupling of the microwaves to the measurement circuitry.
We can quantify the coupling losses in a similar way to the internal losses, introducing
the external (or coupling) quality factor:

Qext = Re
Zr

= ω0
κext

(2.37)
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where κext is the external (coupling) loss rate. As a result, the total quality factor of
the resonator that accounts for all internal and external losses and defines the resonator
bandwidth is written as:

1
Qtot

= 1
Qint

+ 1
Qext

(2.38)

2.1.7 Input-output formalism

Since we will be interested in the quantum dynamics of the field inside our resonators
we need to treat the resonator as a quantum mechanical system. Gardiner and Collett
[53] developed a formalism, referred to as input-output theory, to describe the equations
of motion of an open quantum system, such as a bosonic resonator mode coupled to
external feed lines and intrinsic channels for loss. This approach allows us to relate the
classical scattering matrix formalism used to characterize microwave networks with the
quantum mechanical parameters of our system. To apply this theory to our system, a
couple of approximations are made, as discussed below.

The input and output fields are treated as an external bath with a continuum
of modes - quite often represented by a heat bath in thermal equilibrium with its
environment (i.e. the bath modes are in thermal states). In our experiments the
resonators are driven by classical fields that can be represented as coherent states
(recall Sec. 2.1.5) and the internal losses are modeled by an additional port at thermal
equilibrium. The interaction between the system (resonator) and the bath is assumed
to be linear and independent of frequency. Additionally, the dynamics of the system of
interest should have a narrow frequency bandwidth. All of these assumptions become
valid if the resonator has a high-quality factor.

The total Hamiltonian treated under the input-output formalism including the res-
onator and the bath is:

Ĥ = Ĥsys + Ĥbath + Ĥint (2.39)

where Ĥsys is the Hamiltonian of the system we are probing, Ĥbath is the Hamilto-
nian of the bath, and Ĥint is the interaction Hamiltonian between the system and the
bath. The Hamiltonian of the microwave resonator, as described in Sec. 2.1.4, can be
written in the form of a quantum harmonic oscillator Ĥsys = ~ω0(â†â+ 1

2).
To describe the time evolution of this system we can write the quantum Langevin

29



2.1. Superconducting microwave resonators

Figure 2.4: Illustration of the input-output model for the cavity probed in reflection.
The input field âin is delivered to the cavity via a transmission line with characteristic
impedance Z0. The reflected field âout follows the same path but in the reverse direction.

equation in the Heisenberg picture:

˙̂a(t) = − i
~

[â(t), Ĥsys]−
κint + κext

2 â(t) +√κextâin(t) +√κintf̂in(t) (2.40)

Using the time-reversed Langevin equation derived by Gardiner and Collett [53],
the following relation between the input âin, output âout and intra-resonator â fields
can be found:

âout(t) = −âin(t) +√κextâ(t) (2.41)

The rigorous derivations of the last two equations are performed in [43], [53], [54].
The first term in Eq. 2.40 is the Heisenberg equation of motion for the mode operator
â, the second term describes damping of the mode due to the internal κint and external
κext couplings in the system, and the third is the coupling to the external line (bath),
which describes the coherent drive field. The last term represents the noise fluctuations
f̂in introduced to the mode via an additional channel at a rate κint. All the coupling rate
parameters introduced in Eqs. 2.40 and 2.41 are consistent with the parameters men-
tioned in previous sections. The schematic representation of the input-output model
under consideration is shown in Fig. 2.4.

Inserting Ĥsys into Eq. 2.40 leaves us with the input-output equation for a single
port resonator:

˙̂a(t) = −iω0â(t)− κint + κext
2 â(t) +√κextâin(t) +√κintf̂in(t) (2.42)

The input-output fields can be mapped to the input Pin = ~ω|α̂in|2 and output
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Pout = ~ω|α̂out|2 microwave powers, where α̂in,out are complex numbers representing
the coherent state amplitude. The mean intra-resonator field under an external classical
drive is written as 〈â〉 = α(t). The mean of quantum noise fluctuations 〈f̂in〉 is zero.
The Langevin is then written as:

α̇(t) = −iω0α(t)− κint + κext
2 α(t) +√κextαin(t) (2.43)

Eq. 2.43 can be solved for the intra-resonator field in the frequency domain by
defining the Fourier transform:

α(t) = 1√
2π

∫ +∞

−∞
e−iω(t−t0)α(ω)dω (2.44)

We can derive the intra-resonator field as:

α(ω) =
√
κext

κext+κint
2 − i(ω − ω0)

αin(ω) (2.45)

The input-output relation for the fields may then be expressed in the frequency
domain:

αout(ω) =
κext−κint

2 + i(ω − ω0)
κext+κint

2 − i(ω − ω0)
αin(ω) (2.46)

Using Eq. 2.45, we can estimate the mean intra-resonator photon number of the
cavity mode (at frequency ω = ω0) with 〈n〉 = |α|2:

〈n〉 = 4κextPin
~ω0(κext + κint)2 (2.47)

As noted at the beginning of this section, the input-output resonator fields allows
us to derive the conventional scattering matrices. Since we consider only a single-port
device, the complex reflection coefficient S11 is:

S11 = αout(ω)
αin(ω) =

κext−κint
2 + i(ω − ω0)

κext+κint
2 − i(ω − ω0)

(2.48)

2.1.8 Losses in superconducting resonators

Microwave resonators made from superconducting materials exhibit extremely small
intrinsic losses when operated below their superconducting critical temperature. Below
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we outline the sources of loss that limit the quality factors in typical superconducting
resonator devices.

In superconducting materials electrons form Cooper pairs that enable current trans-
port without dissipation. The binding energy of the Cooper pairs defines the super-
conducting critical temperature Tc of the material. If the temperature is higher than
Tc the material is in the “normal state”, where there are no Cooper pairs and current
is carried by normal electrons. At non-zero temperatures below Tc, there exist residual
single electrons called quasiparticles. The quasiparticles are a source of dissipative loss
that becomes prominent at temperatures close to Tc, or when the device is subjected
to radiation that can break the Cooper pairs [55], [56].

Radiation loss is a common source of loss for microwave resonators. It origins from
the extension of the electromagnetic field into the dielectric surrounding the resonator.
This type of loss is typical for microstrip resonators (see Fig. 2.5a) [57]. For coplanar
waveguide (CPW) resonators the radiation loss is greatly reduced due to the ground
planes located in the close vicinity to the central conductor which helps localizing
the field (see Fig. 2.5b). Reduction of the width of the central conductor can further
suppress radiation losses [58]. Another approach to protect the field from radiation loss
is to reduce the available density of states of the environment [59]. The resonator field
decays into the bath with a continuum of modes. By modifying the density of states of
the environment we can reduce the rate of emission. This can be achieved, for example,
by embedding the resonator in a 3D cavity.

Figure 2.5: Illustration of the quasi-TEM mode (see Ch. 3, Sec. 3.1.1) residing in a)
microstrip and b) CPW resonators. Solid and dashed lines represent the distribution
of the electric and magnetic fields, respectively.

Another important source of loss arises from two level system (TLS). A TLS is
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any defect with an electric dipole that can resonantly absorb microwave energy at the
resonator frequency. TLSs can be found at the amorphous insulator surface of the
dielectric substrate on which the resonator is fabricated (see Fig. 2.5), at the metal/in-
sulator interfaces and in the bulk of the dielectric material [60]. An identifiable feature
of TLS-based losses is the microwave power dependence of the resonator’s quality fac-
tor. At low powers and cryogenic temperatures, the majority of TLSs are in the ground
state. The microwave power delivered to the resonator can be absorbed by the TLSs
to bring them to the excited state. This is accompanied by a characteristic drop in the
resonator’s internal quality factor, as compared to the internal quality factor measured
at high powers. As the microwave power is increased the TLSs eventually saturate
and are no longer able to absorb the resonator field, leading to an enhanced quality
factor that is limited by some other source of loss. However, as is the case for some of
the experiments performed in this thesis, it is often necessary to operate a resonator
at powers corresponding to single (or fewer) microwave photon occupation. To min-
imize losses associated with TLSs, regions with high electric field amplitude (voltage
anti-nodes) should be placed on carefully treated dielectric surfaces [61], [62] and the
resonator’s design can be optimized to lower the electric field amplitudes that interact
with the TLS electric dipoles.

An externally applied magnetic field can also lead to an increase in the internal loss
rate of the superconducting resonator. Depending on the orientation of the magnetic
field relative to the plane of thin superconducting film, different mechanisms that dete-
riorate the internal quality factor Qint will be important. If the field is parallel to the
film, it will increase the number of quasiparticles by reducing the superconducting gap
energy, as will be explained in Sec. 2.2.2. In our experiments we work exclusively with
NbTiN superconducting films, which is a type-II superconductor. Magnetic fields per-
pendicular to a thin film of NbTiN produces localized regions of normal metal where
the field is able to penetrate the film [63]. As a result, supercurrents circle around
these normal metal centers and generate Abrikosov vortices (fluxons) [64], which can
act as a dissipative channel for microwave signals and cause additional losses inside the
resonator.
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2.2 Nonlinear elements in superconducting cavities

The treatment of standard circuit components as linear elements is an approxima-
tion that holds when their input stimuli are kept below certain conditions. Driven hard
enough, all circuits eventually become nonlinear [65].

Depending on the application, this nonlinear circuit behavior can either limit device
performance or be used to unlock new functionalities. For instance, nonlinear frequency
conversion is widely used in modern electronics. This includes frequency doubling (or
second harmonic generation) in signal generators [66], frequency mixers for sum and
difference frequency generation [67], parametric amplification [68], etc.

Generally, to induce strong nonlinear effects in a medium it should be pumped
with a high intensity field. In optics, lasers can be used to produce high intensity
fields. The invention of the laser [69] has enabled extensive studies to be performed
on nonlinear interactions in optical materials exploiting electro-optic or magneto-optic
Kerr effects [70].

Nowadays, the progress in micro- and nano-fabrication techniques has made it pos-
sible to study nonlinear effects at the quantum mechanical level. In the context of quan-
tum computing, sensitive measurements of qubits (superconducting, spin and optical
based) has been achieved by exploiting nonlinearities to enable quantum-noise-limited
parametric amplification of signals [71], [72]. Moreover, the same nonlinear parametric
amplifiers can be used to generate nonclassical states of light by means of squeezing
one of the quadratures [73], thus going beyond the standard quantum limit.

As will be presented in this thesis, the use of superconducting nonlinear resonators
allows one to explore many interesting parametric effects in the microwave domain
such as frequency conversion, amplification, and squeezing, with application in spin
resonance spectroscopy and QIP. In the following sections we explain what type of
nonlinearity our devices employ.

2.2.1 SQUIDs

The most common way to generate parametric processes in cQED is through in-
troducing a nonlinear element into a superconducting resonant circuit. This is usually
achieved by embedding a variable inductance in the form of a superconducting quantum
interference device (SQUID) [74], [75].
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Figure 2.6: Illustration of a SQUID consisting of two Josephson junctions connected
in parallel. Each Josephson junction consists of two superconducting leads separated
by thin insulating layer shown as a black rectangle.

A SQUID [76] consists of two Josephson junctions [77]–[79] connected in parallel to
form a loop (see Fig. 2.6). A single Josephson junction consists of two superconducting
leads separated by thin insulating layer that allows the tunneling of Cooper pairs from
one lead to the other. DC and AC Josephson effects describe the current and voltage
across a junction with respect to the phase difference φ between the wavefunctions of
the superconductors:

I = Ic sinφ

V = Φ0
2π

dφ

dt

(2.49)

where Ic is the critical current of the Josephson junction and Φ0 = h/(2e) is the
magnetic flux quantum. Allowing for a time-dependent current across the junction we
find:

dI

dt
= Ic cos(φ)dφ

dt
= Ic cos(φ)V 2π

Φ0

V = Φ0
2π

1
Ic cos(φ)

dI

dt
= Lj

dI

dt

(2.50)

where it becomes apparent that the Josephson junction acts as an inductor with
inductance Lj , which is dependent on the phase φ. In a SQUID configuration, the phase
difference between the currents is dependent on the magnetic flux. For symmetric
Josephson junctions the effective inductance of a SQUID is given by the following
equation [80]:

LSQUID(Φext) = ~
4eIc| cos(πΦext

Φ0
)|

(2.51)
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where Ic is the critical current of the SQUID and Φext is the external magnetic flux
that penetrates the loop formed by two Josephson junctions.

Despite the popularity of SQUIDs, these nonlinear circuits are generally quite frag-
ile. Firstly, they are sensitive to electrostatic discharge (ESD) and special care must be
exercised when handling devices that incorporate SQUIDs. Secondly, parametric am-
plifiers built using SQUIDs usually have a small 1 dB compression point (the maximum
input signal that can be effectively amplified) which is explained by their inherently
small critical currents Ic [74], [81]. Moreover, typical Josephson junctions are made
of aluminum/aluminum oxide/aluminum and they have a low critical magnetic field
(around 10 mT for bulk aluminum [82]) which makes them difficult to integrate with
spin systems in solid state devices.

2.2.2 Kinetic inductance

The devices explored in this thesis rely on a nonlinearity originating from a phe-
nomenon known as kinetic inductance. Kinetic inductance is a well know property of
high conductivity materials (such as superconductors) [83], and has been widely utilized
in microwave kinetic inductance detectors (MKID) community [84]–[87]. In this section
we briefly review the underlying physics of kinetic inductance following the treatment
by Zmuidzinas [88], a pioneer in the field of MKIDs.

Based on the Bardeen-Cooper-Schrieffer (BCS) theory of superconductivity [89],
[90], the Mattis-Bardeen equations [91] for the complex conductivity σ(ω) = σ1(ω) −
iσ2(ω) of a superconductor at microwave frequencies ω can be written:

σ1(ω) = 2σn
~ω

∫ ∞
∆

dE
E2 + ∆2 + ~ωE√

(E2 −∆2)((E + ~ω)2 −∆2)
[f(E)− f(E + ~ω)] (2.52)

σ2(ω) = σn
~ω

∫ ∆+~ω

∆
dE

E2 + ∆2 − ~ωE√
(E2 −∆2)(∆2 − (E − ~ω)2)

[1− 2f(E)] (2.53)

where σn is a normal state conductivity, 2∆ is the superconducting energy gap and
f(E) describes the distribution of quasiparticles (broken Cooper pairs) which is given
by Fermi-Dirac statistics. The real part (Eq. 2.52) corresponds to dissipation losses in
the superconductor originating from quasiparticles. The inertia of the superconduct-
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ing electrons (Cooper pairs) is responsible for the imaginary part of the conductivity
(Eq. 2.53). At temperatures well below Tc the real part of the conductivity tends ex-
ponentially towards zeros, however, the same is not true for the imaginary part, which
effectively leads to the appearance of an inductance in superconductors at microwave
frequencies. For T << Tc both components of the complex conductivity are propor-
tional to the quasiparticle density:

nqp = 4N0

∫ ∞
∆

dE
E√

E2 −∆2 f(E) (2.54)

where N0 is the single-spin density of electron states at the Fermi energy.
In the thin film limit (where the superconductor thickness is smaller than the pen-

etration depth) the surface inductance can be written [92]:

Lk =
(
l

w

) ~Rs
π∆

1
tanh( ∆

2kBT
)

(2.55)

with l and w representing the length and the width of the superconducting structure
and Rs the normal-state sheet resistance.

Introducing a DC current to the film suppresses the superconducting energy gap
(relative to its zero-temperature value ∆0) by increasing the density of quasiparticles
[93]:

∆0 −∆
∆0

= 2
∫ ∞

∆
dE

1√
E2 −∆2 f(E) (2.56)

As a result, the kinetic inductance has both a temperature and current dependence.
In terms of an applied current, Lk can be written as [88]:

Lk(I) = Lk(0)
(

1 + I2

I2
2

+ I4

I4
4

+ . . .

)
(2.57)

where I2 and I4 set the scales for the quadratic and quartic current nonlinearities of
the kinetic inductance and Lk(0) is its zero-bias value. Since the inductance depends
on the applied current, it is said to be a nonlinear inductance. As we will discuss
in Ch.3, this current dependence of the kinetic inductance can be used to produce
frequency-tunable nonlinear resonators.

It is worth noting that our experiments combine superconducting resonators with
spins in solids, exposing the devices to external magnetic fields that generate circulating
currents in the superconducting films, which can further enhance the kinetic inductance.
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2.3 Quantum limits to amplification

In cQED quite often one works with very low power signals that can reach the
single photon level. Microwave cQED experiments are generally performed at cryogenic
temperatures to enter the quantum regime (~ω � kBT ), where noise consists primarily
of vacuum fluctuations ~ω/2 of the field. To process such small signals we must first
amplify them above the thermal noise level at room temperature, where they are sent
to be digitized and analyzed. However, all amplifiers add an amount of noise to the
signal during the amplification process. In classical electronics this results from the
motion of charge carriers and is known as Johnson-Nyquist noise [94], [95], which can
be conveniently characterized by a noise temperature that quite often is correlated
with the physical temperature. As such, amplifiers designed to operate at cryogenic
temperatures add less noise than room temperature ones [96]. To detect signals at the
single photon level one needs to ensure that the amplifier added noise does not mask
the signal, i.e. it must be practically noiseless. However, there is a fundamental limit
posed by quantum mechanics on the minimum noise added by an amplifier.

In quantum mechanics fields can be described by their annihilation â and creation
â† operators, or alternatively, by the quadratures Î and Q̂. These operators satisfy
the standard bosonic commutation relation [â, â†] = 1. Since they do not commute,
we cannot measure them simultaneously with an arbitrary precision, according to the
Heisenberg uncertainty principle [50]. Qualitatively, this can be used to explain why
amplifiers add quantum noise. They cannot output a (phase preserved) enlarged copy
of the signal because it requires precise knowledge of the field expectations of both â
and â†. This is reconciled by adding noise to the output signal. In what follows, which
is based on the treatment outlined in Refs. [97], [98], we present a derivation of this
minimum added quantum noise.

Let’s assume we amplify an input signal â with a linear power gain G and that
the gain is applied equally to both signal quadratures (known as phase-preserving or
phase-insensitive amplification). We expect an output field b̂ satisfying the following
relations:

b̂ =
√
Gâ

b̂† =
√
Gâ†

(2.58)

Since the output signal is a state of an electromagnetic field, it must also satisfy
the commutation relation [b̂, b̂†] = 1. However, this is clearly not possible using the
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operators defined in Eq. 2.58. To resolve this we must add another mode to the output
signal as follows:

b̂ =
√
Gâ+ N̂

b̂† =
√
Gâ† + N̂ †

(2.59)

The operator N̂ represents noise added by the amplifier, which is random and
uncorrelated with the input signal. To ensure that the output field b̂ satisfies the
standard bosonic commutation relation, we must have:

[N̂ , N̂ †] = 1−G (2.60)

We can express the noise operator in terms of an added mode of an electromagnetic
field ĉ when G > 1:

N̂ =
√
G− 1ĉ†

N̂ † =
√
G− 1ĉ

(2.61)

In this model ĉ represents a single additional input mode, which is amplified by a
gain G− 1. This mode is the so-called idler mode in parametric amplifiers.

The amplifier output noise can be calculated from the variance of the output field
(δb̂)2. Using Eq. 2.59 and the bosonic commutation relations for the input and output
fields [98]:

(δb̂)2 ≥ G(δâ)2 + |G− 1|
2 (2.62)

In the high gain limit we have G ≈ G− 1 and the input referred noise is written as:

(δb̂)2/G ≥ (δâ)2 + 1
2 (2.63)

This inequality specifies that at least half a photon of noise should be added to
the input signal during phase preserving amplification. If G = 1, i.e. the signal is not
amplified, the amplifier is not required to add any noise.

The derivation above was for the situation when we amplify both amplitudes of the
field equally. In certain scenarios it is sufficient to amplify only a single quadrature.
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We could define the output field operators in the following way:

b̂ =
√
Gâ

b̂† = â†√
G

(2.64)

It is clear that such a definition of operators satisfies the commutation relations for
the input and output fields. Physically, this definition implies that we are amplifying
one field quadrature and deamplifying the other. This leads to the input referred noise:

(δb̂)2/G ≥ (δâ)2 (2.65)

This type of amplification is known as phase sensitive, since the gain depends on
which quadrature the input field occupies. Remarkably, phase sensitive amplification
can be performed without adding any noise.

2.4 Hybrid systems

The following section starts with a description of the interaction between an elec-
tron spin system and a classical microwave magnetic field, followed by an introduction
to spin relaxation and decoherence processes. We then introduce the Jaynes-Cummings
Hamiltonian to describe the coupling of a single electron spin with a quantized elec-
tromagnetic field. We end by discussing an important phenomenon in QED and this
thesis, the Purcell effect.

2.4.1 Spins in a classical magnetic field

Electrons posses a magnetic dipole moment µ̂ = −γeŜ that results from an intrinsic
angular momentum called spin, where γe = 28 GHz/T is the gyromagnetic ratio for
a free electron and Ŝ is a vector of the spin operators introduced below. For a single
electron subject to an external magnetic field −→B (t), its energy can be described by the
following Hamiltonian:

Ĥ = −µ̂ · −→B (t) (2.66)
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The energy of the spin is minimized if it is aligned anti-parallel to the applied
field (assuming γe to be positive). At zero temperature an ensemble of electron spins
will thermalize to this lowest energy state (the ground state) yielding a maximum net
magnetization Mmax = Nµ, where N is total number of spins. However, at non-zero
temperatures the existence of thermal excitations will reduce the polarization of the
ensemble by a fraction ρ = tanh(~ω/2kBT ), calculated from the Boltzmann distribution
of spin populations of the ground and excited states. The macroscopic magnetization
is expressed as the net magnetic moment per unit volume V :

M = ρ

V

N∑
i=1

µi (2.67)

The equation of motion for the magnetization vector in static external magnetic
field is given by:

d
−→
M

dt
= γe
−→
M ×

−→
B0 (2.68)

Figure 2.7: Precession of the mag-
netization of a spin ensemble in a
static magnetic field.

This describes a torque acting on the net mag-
netic moment, which causes it to precess about the
−→
B0 field. The net magnetization is a bulk property
that can be described classically, however, this is
not a valid treatment of a single spin, which must
be treated with a quantum mechanical framework.
The frequency of precession, which is also called
the Larmor frequency, is given as:

ωs = −γeB0 (2.69)

The precession of the magnetization vector due
to a static −→B0 field along the z axis is depicted in
Fig. 2.7. ESR experiments are usually performed by applying a linearly polarized
magnetic field oscillating at microwave frequencies, applied perpendicular to the strong
static −→B0 field [99]. Linearly polarized fields are easier to implement in practice, and the
superconducting resonators we exploit produce these fields. A linearly polarized field
−→
B1(t) = 2B1[cos(ωmwt), 0, 0] can be decomposed as a linear combination of clockwise
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(CW) and counter-clockwise (CCW) circularly polarized/rotating signals (see Fig. 2.8):

−→
B1 = −→B1ccw +−→B1cw = B1[cos(ωmwt), sin(ωmwt), 0] +B1[cos(ωmwt),− sin(ωmwt), 0]

(2.70)

Figure 2.8: a) Linearly polarized oscillating magnetic field, depicted as two circulating
B1 magnetic fields in the laboratory frame. b) B1 field in the rotating frame.

This treatment allows for a simpler understanding and calculation of the magneti-
zation vector dynamics when operating in a reference frame that rotates at an angular
frequency ωmw. In this rotating frame, the CCW polarized component (which rotates
at the frequency ωmw in the laboratory frame) becomes stationary (i.e. ωccw = 0 in
the rotating frame). The CW component (which rotates at the frequency −ωmw in the
laboratory frame) precesses at an effective frequency of ωcw = −2ωmw in the rotating
frame. The CW term is neglected when 2ωmw >> −γeB1 by invoking the “rotating
wave approximation” (RWA), as this represents a drive that is far off-resonance from
the spins. When the perpendicular field is on-resonance with the spins (ωmw = −γeB0),
then even a weak AC drive B1 << B0 results in a significant precession about the B1

axis. On the other hand, if the field is off-resonance, it does not have a strong effect
on the magnetization.

The equations of motion in the rotating frame, known as Bloch equations, can be
written:

dMx

dt
= −(ωs − ωmw)My = −∆sMy (2.71)

dMy

dt
= (ωs − ωmw)Mx + γeB1Mz = ∆sMx − ω1Mz (2.72)

dMz

dt
= −γeB1My = ω1My (2.73)

where we assume a −→B1 field along x in the rotating frame, a −→B0 along z, with
∆s = ωs − ωmw the detuning and ω1 = −γeB1 being the frequency of precession of
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the magnetization about the −→B1 microwave field direction. The magnetization vector
precesses about the vector sum of the magnetic fields in the rotating frame, which is
tilted by an angle α = arctan(ω1/∆s) from z axis and generates an effective precession
frequency:

ωeff =
√

∆2
s + ω2

1 (2.74)

For a phase-shifted linearly polarized magnetic field−→B1(t) = 2B1[cos(ωmwt+φ), 0, 0],
can be decomposed in the rotating frame as −→B1 = B1[cos(φ), sin(φ), 0]. Thus, by
controlling the phase φ of the drive field we can choose the orientation of the effective
B1 field and the axis of precession.

Inductive detection

In the case where the B1 field is applied for well-defined time tp (along x axis) and
on-resonance with the spins (ωmw = ωs), the magnetization vector is rotated by an angle
α = ω1tp. We can thus produce an arbitrary magnetization rotation by controlling the
strength of the B1 drive field and/or the duration of the pulse. Fig. 2.9 depicts the
case where the magnetization is rotated by magnetization by α = π/2.

Figure 2.9: Polarized spins in a static magnetic field B0 oriented along z-axis (not
shown). a)-b) B1 field applied along the x-axis generating spin precession around −→x
in the rotating frame. c) The B1 field produces π/2 rotation and is then turned off.
d) The spins start to dephase in x− y plane.

After tipping the magnetization by π/2 it will precess in the laboratory frame
about −→z . If we place detection coils in the x − y plane close to our sample, the
rotating magnetization vector will induce an electromotive force (EMF) proportional
to My − iMx in the coils due to Faraday’s law, which can be measured. This inductive
detection scheme is the basis for modern ESR spectroscopy. In our experiments, planar
superconducting resonators play the part of the inductive coils, and can be used to
measure the precession of small spin ensembles.
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Relaxation

The induced EMF in a spin resonance experiment will not persist indefinitely. In-
coherent processes affecting the spins result in a loss of the net magnetization. Below
we distinguish and discuss two types of relaxation: longitudinal and transverse.

Longitudinal relaxation

The spins, through interactions with their environment, will reach a state of thermal
equilibrium where only a proportion of them are in their ground state, anti-aligned with
the B0 field. This fraction is given as

p = tanh
( ~ωs

2kTs

)
(2.75)

for spin S = 1/2 particles [100] at a temperature Ts.
The environmental interactions that cause the spins to thermalize to their environ-

ment leads to longitudinal (or energy) relaxation, which brings the magnetization Mz

(for B0 ‖ −→z ) back to the equilibrium magnetization value M0 after being disturbed
(e.g. by a B1 pulse). The mechanism for longitudinal relaxation of spins in solids is
typically mediated by phonons in the crystal lattice [101]. This spin-lattice relaxation
follows an exponential decay described by a characteristic relaxation time T1:

dMz

dt
= −(Mz −M0)

T1
(2.76)

Transverse relaxation

Transverse relaxation, also known as decoherence in the field of quantum infor-
mation processing, describes the relaxation of the magnetization vector in the x − y
plane (i.e. normal to the direction of B0 field). The characteristic time of transverse
relaxation T2 is different from but limited by the longitudinal relaxation time T2 ≤ 2T1:

dMx,y
dt

= −Mx,y
T2

(2.77)

Accounting for longitudinal and transverse relaxation processes, the Bloch equations
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can be extended:

dMx

dt
= −∆sMy −

Mx

T2
(2.78)

dMy

dt
= ∆sMx − ω1Mz −

My

T2
(2.79)

dMz

dt
= ω1My −

Mz −M0
T1

(2.80)

Transverse relaxation can be caused by spin-spin interactions [99]. This yields a
homogeneous broadening of the ESR spectra with a linewidth proportional to 1/T2.
The ESR community distinguishes several primary spin-spin interaction mechanisms,
including spectral diffusion, instantaneous diffusion and spin diffusion.

Spectral diffusion occurs when spins that are excited by a B1 pulse experience
magnetic field fluctuations originating from spins outside of the pulse bandwidth (i.e.
non-resonant spins). Stochastic flip-flops of the non-resonant spins leads to a random
walk of the excited spin precession frequencies, contributing to transverse relaxation
[102]. Instantaneous diffusion plays a dominant role for large spin concentrations. The
spins “see” the magnetic dipole field produced by their neighbours, which changes sign
when the spins are flipped by a B1 field. Instantaneous diffusion is notoriously difficult
to remove in practice due to its dynamic behaviour with applied pulses [103]. The
final mechanism, spin diffusion [99], is caused by direct dipolar flip-flops between spins
excited by a pulse (resonant spins) and spins that have not. Spin diffusion exhibits a
strong dependence on the distance between the resonant and non-resonant spins (and
thus the concentration), where smaller spin-spin separations lead to higher rates of
diffusion.

Another contributing factor to transverse relaxation is inhomogeneous broadening.
Inhomogeneous broadening is produced by local magnetic field inhomogeneities that
create a distribution of spin Larmor precession frequencies. The inhomogeneities may
exist in the external B0 field, result from unresolved hyperfine interactions with sur-
rounding nuclei etc. In response, the spins fan out (or ‘dephase’) in the x − y plane,
reducing the net magnetization. The linewidth of an inhomogeneously broadened spec-
tra is proportional to 1/T ∗2 , which can be (and often is) much larger than the 1/T2.
However, in contrast to homogeneous broadening, all inhomogeneous broadening mech-
anisms are static, and can be reversed by the application of appropriate pulse sequences
[104].
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2.4.2 Single spin in quantized field of a cavity

In this section we consider the system of a single electron spin interacting with
a single-mode cavity field. Typically in electron and nuclear spin spectroscopy the
electromagnetic field driving spin rotations is described classically, whereas the spin is
treated as a quantum mechanical object. This is called the semi-classical approach. On
the other hand, the Jaynes-Cummings model [105] is a fully quantum-mechanical theory
that treats both the field and spins as quantum objects and is the basis of cQED. We
employ the Jaynes-Cummings model in this thesis and provide here a concise overview
of its basic formulation.

Jaynes-Cummings Hamiltonian

The total Hamiltonian of the system under investigation can be written as:

ĤJC = Ĥs + Ĥc + Ĥi (2.81)

where the first term describes the spin Hamiltonian, the second term stands for
the cavity Hamiltonian and the last term characterizes the interaction between the two
systems.

As introduced in Sec. 2.4.1, a spin interacts with a magnetic field through its mag-
netic dipole moment (see Eq. 2.66). A single electron spin 1/2 particle has two eigen-
states and embodies the prototypical two-level system. For simplicity, we call these
states the ground state |g〉 with eigenenergy Eg and excited state |e〉 with eigenenergy
Ee. The energy difference between these two states defines the transition frequency
ωs = (Ee − Eg)/~, which corresponds to the Larmor frequency of Eq. 2.69.

The Hamiltonian for a spin in an external magnetic field B0 oriented along the
z-axis is:

Ĥs = −γeB0Ŝz = ωsŜz (2.82)

To describe the quantum spin operators Ŝ we first introduce the Pauli matrices:

σ̂x =

0 1
1 0

 , σ̂y =

0 −i
i 0

 , σ̂z =

1 0
0 −1

 (2.83)

Together with the identity matrix, they form a basis for the vector space of 2 × 2
Hermitian matrices. The electron spin operators are simply the Pauli matrices scaled
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by an angular momentum ~/2:
Ŝx,y,z = ~

2 σ̂x,y,z (2.84)

The Hamiltonian 2.82 can be thus be rewritten in the following form:

Ĥs = ~ωs
2 σ̂z (2.85)

The magnetic dipole moment of the spin can be also represented in the basis
V = {|g〉, |e〉} (i.e. the eigenstates of the σ̂z operator), according to the spectral de-
composition theorem [12]:

µ̂ = γeŜ = γe
∑
i,j
|i〉〈i|Ŝ|j〉〈j| =

∑
i,j
Mi,j σ̂ij (2.86)

where |i〉 and |j〉 are elements of the basis V , σ̂ij = |i〉〈j| is the transition operator
and Mi,j = 〈i|Ŝ|j〉 the matrix element that governs the transition probability. When
i 6= j, the transition operator causes the two-level system to gain or lose an excitation.
In terms of the Pauli matrices, such “raising” and “lowering” operators are expressed
as:

σ̂± = σ̂x ± iσ̂y (2.87)

Explicitly, the raising operator σ̂+ creates a spin excitation σ̂+|g〉 = |e〉 and the
lowering operator σ̂− destroys an excitation σ̂−|e〉 = |g〉.

The Hamiltonian of the cavity (with a resonance frequency ωr) is written in the
form of a quantum harmonic oscillator (see Sec. 2.1.4):

Ĥc = ~ωr(â†â+ 1
2) (2.88)

It is worth mentioning that the constant term ~ωr/2, corresponding to the energy
of the vacuum, is usually neglected in the Jaynes-Cummings Hamiltonian as it simply
represents an energy offset to all states.

Since the size of an electron is much smaller than the wavelength of the field, it
is reasonable to assume that the spin interacts with the oscillating magnetic field B1

produced by the cavity via a magnetic dipole interaction and the spatial variation of
the field can be safely ignored:

Ĥint = µ̂ · B̂1 (2.89)

The field B̂1 can be expressed via bosonic creation and annihilation operators in a
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similar way to the current fluctuations of a resonator as described in Eq. 2.14:

B̂1 = δB(â+ â†) (2.90)

with δB representing the root-mean-square vacuum fluctuations of the magnetic
field. Combining Eqs. 2.86-2.90, we arrive at the interaction Hamiltonian:

Ĥint =
∑
i,j
Mij σ̂ijδB(â+ â†) =

∑
i,j

~σ̂ij(gij â+ g∗ij â
†) (2.91)

where gij = MijδB/~ is the coupling strength of a single spin with the resonator
field. A further simplification of the Hamiltonian comes by equating the forward and
reverse transition probabilities between the ground and excited statesMij = Mji, which
yields gij = gji = g. Using the spin raising and lowering operators, the interaction term
becomes:

Ĥint = ~g(σ̂− + σ̂+)(â+ â†) ≈ ~g(σ̂+â+ σ̂−â
†) (2.92)

Here we have used the RWA to neglect fast rotating (non energy conserving) terms
σ̂−â and σ̂+â†, which correspond to two-photon processes. However, this approximation
becomes invalid when the systems enter the ultra-strong coupling regime, where g ≈
ωr [106], [107]. This thesis predominantly considers systems in the weak and strong
coupling regimes with g � ωr. As a result, the appropriate form of Jaynes-Cummings
Hamiltonian is:

ĤJC = ~ωs
2 σ̂z + ~ωrâ†â+ ~g(σ̂+â+ σ̂−â

†) (2.93)

Depending on the size of the rate of the interaction between the systems g in
comparison to their individual loss rates, we define two regimes:

• Weak coupling: if g � κ, γ, where κ is the resonator linewidth and γ is the spin
dephasing rate (or the spin linewidth). In this case the excitation is lost to the
bath before it can be coherently transferred between the systems.

• Strong coupling: if g � κ, γ. In this case the excitation is coherently transferred
between the systems resulting in Rabi oscillations as well as a hybridisation of
the spin and cavity eigenstates.

A useful figure of merit to quantify the coupling regime is the cooperativity C =
g2/(κγ), which is the ratio of the “good system coupling” to “bad system couplings”. For
C � 1 the system is in the weak coupling regime, whilst for C � 1 the spin is strongly
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coupled to the resonator. The intermediate coupling regime, when C ≈ 1, is also of
interest for quantum information processing. This scenario describes an “impedance
matched” system, where the coupling rate of the microwave field to the external port
of the resonator matches the microwave absorption rate of the spin. It has been shown
that this can be used to achieve unit-efficiency transfer of single microwave photons to
the spin system, with application in quantum memories [108], [109].

Purcell relaxation

The spontaneous emission rates of electron or nuclear spin systems in the solid state
are usually incredibly small, and relaxation is dominated by other processes including
spin-lattice (i.e. phonon-mediated) or spin-spin (i.e. spin diffusion) [99]. However, in
1946 Edward Purcell showed that the spontaneous emission rate can be enhanced if a
spin system is placed inside a resonant cavity [110], [111]. According to Purcell, the
probability of spontaneous emission can be calculated from:

Aν = 8πν2

c3 hν
8π3µ2

3h2 [sec−1] (2.94)

where ν is the transition frequency, c is the speed of light and µ is the dipole
moment. In this expression, the factor (8πν2)/c3 describes the number of radiation
oscillators per unit volume per unit frequency at frequency ν, or in other words the
photon density of states. For a spin placed inside a resonant circuit this term must be
modified, since there is only one oscillator in the frequency range ν/Q available. As a
result, the spontaneous emission rate can be increased by many orders of magnitude,
with the enhancement depending on the cavity quality factor Q and the resonant mode
volume. The mode volume determines the concentration of the cavity vacuum energy,
a smaller volume produces larger vacuum fluctuation field strengths and consequently
greater spontaneous emission rates. Expressing the Purcell-enhanced relaxation rate of
spins inside a cavity in terms of our circuit-QED parameters (the single spin-resonator
coupling strength g and cavity linewidth κ) [48]:

ΓP = κg2

κ2/4 + δ2 (2.95)

where δ = ωr − ωs is the spin-cavity frequency detuning.
This effect provides a convenient method for initialising a quantum system and has

been used in superconducting qubits as a fast reset [59], [112]. It is particularly im-
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portant for spin systems, which can display very long intrinsic T1 times at milli-Kelvin
temperatures, ranging from seconds to hours [113]. Despite the Purcell effect initially
being proposed as a method to reduce relaxation times in nuclear spin resonance experi-
ments, it was only very recently demonstrated for the first time with electron spins [48].
It has since been used as a valuable tool in low temperature ESR spectroscopy exper-
iments as a way to enhance experimental repetition times [31], [36]. For an in-depth
theoretical explanation of the Purcell effect, the reader is directed to Ref. [6].

2.5 209Bi donors in silicon

Natural silicon is comprised of three stable isotopes 28Si, 29Si, 30Si with abundances
of 92.2%, 4.7% and 3.1%, respectively. The 29Si isotope is the only one with a non-zero
nuclear spin I = 1/2 [114]. This positions silicon as an excellent host for spin-based
quantum technologies, offering a magnetically silent environment. By enriching silicon
chips in the 28Si isotope, one can further reduce the 29Si nuclear spin noise [115],
producing what’s often referred to as a “semiconductor vacuum”. Much experimental
work has been undertaken to demonstrate record breaking coherence times for spins
in silicon – primarily in donor-based systems – making this system one of the most
coherent in the solid state. Tyryshkin measured T2 times exceeding seconds for donor-
bound electrons [103], whilst Saeedi showed that the nuclear spins of ionized 31P donors
can preserve their coherence for hours [116].

The semiconductor industry has utilized dopant atoms in silicon to tailor the electri-
cal properties of classical microelectronic devices for more than half a century. Over the
years, the metal-oxide-semiconductor (MOS) fabrication process was developed which
now allows the large-scale production of pristine silicon devices with features measur-
ing several nanometers in size. The controllability and scalability of silicon electronics,
together with the high spin coherence times possible in this system instigated a seminal
proposal for a spin-based silicon quantum computer in 1998 [117].

Group V elements, such as phosphorus (31P), arsenic (33As), antimony (121Sb), and
bismuth (209Bi) all serve as donors in silicon (see Table 2.1). They can be introduced
into the substrate during the silicon crystal growth, known as bulk-doping, or by ion-
implantation.

Phosphorus is a common group V donor used in quantum technological application
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Donor I A (MHz) a0 (nm) Eb (meV)

31P 1/2 117.53 16.8 45.6
75As 3/2 198.35 15.5 53.8
121Sb 5/2 186.80 17.3 42.8
123Sb 7/2 101.52 17.3 42.8
209Bi 9/2 1475.4 11.5 71

Table 2.1: Group V donor properties.

because of its nuclear spin of one-half (I = 1/2), which yields a relatively simple four-
dimensional Hilbert space when coupled to its donor-bound electron spin (S = 1/2).
However, recently considerable attention has been directed to the high nuclear spin
donors 123Sb and 209Bi. These donors exhibit many interesting properties, includ-
ing quadrupole moments that allow pure electrical driving of the nuclear spin states
[118]. Bismuth has the greatest nuclear spin I = 9/2 and therefore offers largest
Hilbert space. In addition, bismuth has the strongest hyperfine coupling constant
A/2π = 1475.4 MHz [101], which originates from a magnetic interaction between the
electron and nuclear spins and is proportional to the overlap of the electron wavefunc-
tion with the nucleus. The large I and hyperfine constant of 209Bi leads to a sizable
zero-field splitting of 7.375 GHz – a value in the operational frequency range of typical
superconducting qubit circuits. This raises the intriguing prospect of combining these
two systems in a hybrid device, where the bismuth is utilized as a long-term storage
element for single microwave photons states of the superconducting qubits.

The Si:209Bi system has demonstrated excellent electron and nuclear spin coher-
ence properties, partially owing to its small Bohr radius 11 nm [119] that results from
its strong electron binding energy Eb = 71 meV [120]. The 20-dimensional electron-
nuclear Hilbert space produces rich physics, including operational sweet spots, or “clock
transitions”, where to the first order the spin transition frequencies are insensitive to
magnetic field fluctuations (df/dB → 0) or strain/electric field sweet-spots where sensi-
tivity to changes in A is reduced (df/dA→ 0) [121]. This leads to improved coherence
properties of bismuth donors tuned to clock transitions, where T2 times up to 100 ms
have been observed even in natural silicon samples [122].

In this thesis we explore the use of nonlinear superconducting cavities in quantum
technologies related to ESR spectroscopy. The spins in this work are provided by
bismuth donors in isotopically enriched 28Si substrates which were selected for their
long coherence times and compatibility with our superconducting resonator fabrication
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process (presented in Sec. 3.2). In the following section we discuss additional details
relating specifically to the bismuth spin system.

2.5.1 ESR transitions

Bismuth is a group V element that acts as an electron donor in silicon. When
cooled to cryogenic temperatures, the extra valence electron of the bismuth donor
becomes weakly bound to the Coulomb potential of its nucleus. In the neutral D0

charge state, 209Bi presents a two-spin electron (S = 1/2) nuclear (I = 9/2) system,
strongly coupled via a hyperfine interaction A. The Hamiltonian describing the donor
in an external static magnetic field B0 aligned along z-axis (assuming an isotropic
hyperfine interaction) can be written in the following form [122]:

Ĥ/~ = B0 · (γeŜz ⊗ 1− γn1⊗ Îz) +AŜ · Î (2.96)

where γe/2π = 27.997 GHz/T and γn/2π = 6.9 MHz/T are the gyromagnetic ratios
of the bismuth electron and nucleus [122], respectively. The first term corresponds to
the electron Zeeman interaction, the second term represents the nuclear Zeeman energy
and the last term describes the hyperfine interaction. Ŝ and Î are vectors containing
the electron and nuclear spin operators, respectively.

This Hamiltonian results in 20 B0-dependent energy levels as depicted in Fig. 2.10
– a plot known as the Breit-Rabi diagram. For A � γeB0, which is generally the
case for most of the group V donors at spin transition frequencies typically of interest
(ωs/2π & 5 GHz), the Hamiltonian is diagonal in the Zeeman eigenstate basis, namely
{|mS ,mI〉}, where mS = ±1

2 and mI = −I,−I + 1, . . . , I − 1, I are the electron and
nuclear spin projections on the axis of quantization (here the z-axis). However, due to
the strong hyperfine interaction present in bismuth donors, the electronic and nuclear
spin states hybridize. The relevant quantum numbers in this case are the total spin
F = I ± S and its z-projection mF = mS +mI .

In the low field limit where the hyperfine coupling strength is larger than the Zeeman
interaction (B0 < A/γe ≈ 50 mT), the energy states can be grouped into F = 4 ground
and F = 5 excited multiplets, separated by a large splitting of 5A/2π = 7.375 GHz at
zero magnetic field. In this regime the eigenstates are described in the “coupled” basis
{|F ,mF 〉}. In the high field limit (B0 � A/γe ≈ 50 mT), the electron and nuclear
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Figure 2.10: Neutral bismuth donor energy levels in the presence of external magnetic
field.

spins become “decoupled” and may be expressed in the {|mS ,mI〉} basis. A detailed
theoretical analysis of the bismuth electron-nuclear spin states can found in Refs. [121],
[123].

Transitions between different states are possible only if the transition matrix element
is non-zero. For example, the two-level system with ground state |g〉 and excited state
|e〉 can be driven by Ŝx (i.e. a drive field B1 normal to the direction of B0) only if
〈e|Ŝx|g〉 6= 0. For bismuth, the allowed ESR transitions strongly depend on field of
operation.

In the high field limit, the selection rules for transitions driven by the Ŝx and Ŝy

operators are standard: ∆mS = ±1 and ∆mI = 0. Transitions through the Ŝz operator
are forbidden at high field. In the low field limit, two pairs of transitions with non-
zero matrix elements for the Ŝx and Ŝy operators can be identified. The first has the
selection rule ∆F = ±1 and ∆mF = ±1 and the second ∆F = ±1 and ∆mF = ∓1.
Succinctly, this can be written as ∆F∆mF = ±1. Interestingly, the strong electron-
nuclear spin coupling at low magnetic fields allows certain transitions driven by the Ŝz
operator, corresponding to the selection rule ∆F = ±1 and ∆mF = 0. Practically,
such Sz-type transitions are excited by parallel alignment of the B1 and B0 fields.
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ESR clock transitions

Donor systems with nuclear spins I ≥ 1 exhibit ESR clock transitions. Clock
transitions are classified as being of magnetic-type when df/dB → 0 or electric-type
when df/dA→ 0. At these “sweet spots” the system is protected, to the first order, from
noise that couples in to the system either magnetically, or via the hyperfine interaction.
Since bismuth has the largest nuclear spin amongst the group V donors, it also has the
most clock transitions.

In Table 2.2 we provide details of the ESR magnetic field clock transitions for all
group V donors in silicon. Bismuth is the only element in this table that has the clock
transition at sufficiently large frequencies to be interfaced with superconducting qubits,
making it an exceptional candidate spin system for quantum memory applications. The
hyperfine clock transitions for the group V donors are outlined in Table 2.3.

Donor I Magnetic field (mT) Frequency (GHz) Transition ∆F = +1,mF

75As 3
2 3.8 0.384 −1↔ 0

121Sb 5
2 3.4 0.552 −1↔ 0

10.4 0.482 −2↔ −1
123Sb 7

2 1.8 0.403 −1↔ 0
5.5 0.376 −2↔ −1
9.3 0.314 −3↔ −2

209Bi 9
2 26.6 7.338 −1↔ 0

79.8 7.032 −2↔ −1
133.3 6.372 −3↔ −2
187.8 5.214 −4↔ −3

Table 2.2: Magnetic field clock transitions. Data extracted from Ref. [122].
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Donor I Magnetic field (mT) Frequency (GHz) Transition ∆mS = +1,mI

75As 3
2 53 1.43 −1/2

121Sb 5
2 117 3.21 −1/2

39 0.92 −3/2
123Sb 7

2 114 3.17 −1/2
38 0.98 −3/2
23 0.49 −5/2

209Bi 9
2 2607 72.64 −1/2

868 23.18 −3/2
519 12.57 −5/2
369 7.30 −7/2

Table 2.3: Hyperfine interaction clock transitions. Data extracted from Ref. [122].
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Chapter 3

Experimental methods

The experiments described in this thesis were performed on two devices using two
different experimental setups.

The first device consists of a microwave superconducting resonator fabricated on
top of an isotopically enriched silicon wafer containing ion-implanted bismuth donors.
This silicon chip is wire bonded to a printed circuit board (PCB) and housed inside
a copper enclosure. The enclosure is mounted to the cold finger of a 3He cryogenic
refrigerator that cools the device down to a temperature of 400 mK. The experiments
carried out utilizing this experimental setup are presented in Ch. 5 and Ch. 6.

The second device is a microwave superconducting resonator of comparable design
to the one used in the spin-based experiments, but with a few critical design alterations
that provide it with important properties for low-noise amplification and squeezing. It
is fabricated on top of natural silicon wafer without any implanted donors. This chip
is wire bonded to exactly the same PCB as the first device, and placed inside an
enclosure. The enclosure is thermally anchored to the cold finger of a dilution 3He-4He
cryogenic refrigerator, allowing for measurements to be performed below 20 mK. These
experiments are presented in Ch. 4.

In this chapter we present the device design, measurement setups and techniques
utilized in our experiments. We start by describing the unique design of the microwave
superconducting resonator used throughout this thesis. To implement our design on a
silicon chip we utilize micro- and nanofabrication techniques with the specific steps out-
lined here. Following this we describe how the resonator is packaged for measurement
and present the experimental setups used for device characterisation. We conclude this
chapter by introducing the ESR control sequences, generated by our room-temperature
setup, that are used to probe the electron spin ensemble for the experiments presented
in Ch. 5.
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3.1 Device design

The devices used in the experiments throughout the thesis exhibit a nonlinearity
originating from kinetic inductance (see Sec. 2.2.2). This inductance can be read-
ily controlled in-situ through the application of DC currents. However, introducing
DC currents to a microwave resonator without introducing losses poses a significant
challenge. To overcome this hurdle we exploit a microwave photonic bandgap (PBG)
structure [124]. This design consists of interchanging low- and high-impedance sections
of a transmission line to produce a band-stop filter in the microwave frequency range.
The bandstop filter (which can alternatively be described as a microwave Bragg re-
flector) allows us to effectively decouple a resonant segment of TL from the external
circuitry, without having to create a gap in the line – the standard way to produce a
distributed resonator. Since the PBG structure is continuous, it allows the passage of
DC currents through the resonator.

The resonator and PBG are implemented using coplanar waveguide (CPW) tech-
nology, which is introduced in this section. CPWs are a great choice for maintaining
high resonator quality factors and are easy to produce with standard clean-room fab-
rication processes. Next, we describe how to construct the PBG structure from CPWs
and how to integrate it with the resonator.

3.1.1 Coplanar waveguide

A coplanar waveguide consists of a conductor separated from a pair of ground planes,
fabricated on top of a dielectric substrate (of height H). The central conductor line
width is parameterized by w and its distance to each ground plane (or, the gap) is given
by g (see Fig. 3.1). Other parameters of the CPW, such as its characteristic impedance
(Z0), phase velocity (vp) and line propagation constant (γ) depend on its exact ge-
ometry and material properties. It is not always trivial to calculate these parameters
analytically. They are often approximated using conformal mapping techniques [125].
Another common approach to CPW design is to utilize an electromagnetic simulator.

To design our devices we make use of two commercially-available electromagnetic
software packages, Sonnet® and Computer Simulation Technology (CST) Microwave
Studio. Sonnet is exclusively used here to simulate planar geometries and employs a
rigorous Method of Moments EM analysis based on Maxwell’s equations. Sonnet is
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a “2.5D” solver, capable of simulating planar circuits with multiple dielectric and/or
conductor layers, providing S-, Y-, Z-parameters or SPICE models as an output. On
the other-hand, CST is a finite element method (FEM) simulator with powerful 3D
full-wave solvers, capable of providing detailed EM field profiles for complex circuits
and true 3D geometries (like cavities).

Figure 3.1: The conventional coplanar waveguide implementation consists of a dielec-
tric substrate (light gray) with a conductive (dark gray) layer on top.

A CPW supports a transverse electromagnetic (TEM) like wave, which has electric
and magnetic fields polarizations perpendicular to each other and to the direction
of the propagation [40], [125]. When a TEM wave propagates in a uniform dielectric
medium it maintains a constant phase velocity. However, the EM wave that is supported
by a CPW propagates partially in the dielectric substrate underneath the conductor,
and partially in the dielectric above it. Since these two dielectric media usually have
different dielectric constants, the wave has longitudinal components of the fields and
does not represent a true TEM mode, but rather a hybrid mode. It is common to
describe this wave as quasi-TEM, since these longitudinal components are small and
quite often neglected in the analysis (see Fig. 2.5b).

To estimate the effective dielectric constant εeff of the CPW we calculate the mean
of the dielectric constants of two insulators surrounding the conductor. In the case of
air or vacuum (εair = 1) above the conductor and a substrate with dielectric constant
εr underneath, we have:

εeff = εr + 1
2 (3.1)

This effective dielectric constant allows us to estimate the phase velocity of the
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quasi-TEM wave propagating along the CPW:

vp = c
√
εeff

(3.2)

where c is the speed of light in vacuum. Since the conductor film is typically much
thinner than the substrate (t � H), we can consider the dielectric substrate as an
infinitely thick layer and calculate the characteristic impedance as:

Z0 = 30π√
(εr + 1)/2

K(k∗0)
K(k0) (3.3)

whereK(x) is the complete elliptic integral of the first kind with arguments provided
by the CPW geometry:

k0 = w

w + 2g

k∗0 =
√

1− k2
0

(3.4)

3.1.2 Coplanar waveguide resonator

λ/2 resonator

A half-wavelength (λ/2) CPW resonator is defined by imposing open boundary con-
ditions at two points along the central conductor, separated by a half-wavelength (see
Sec. 2.1.3). The open boundary is generally implemented by introducing a discontinu-
ity/gap into the central line [126]. The resonator is then capacitively coupled to the
transmission line at either end and the strength of the coupling is determined by the
size of discontinuity.

Fig. 3.2a depicts the voltage and current distributions for the fundamental mode
of a half-wavelength resonator. At the open ends of the resonator the current goes to
zero, whereas the voltage displays antinodes. The harmonics of this structure appear
at frequencies:

fn = nvp
2l (3.5)

where l is the resonator length, vp represents its phase velocity and n is a positive
integer.
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Figure 3.2: Schematics of the a) λ/2 CPW resonator and b) λ/4 CPW resonator,
connected to a microwave source. The fundamental mode current and voltage spatial
distributions are shown in red and black, respectively. Figure adopted from Ref. [127].

λ/4 resonator

The other type of distributed resonator we consider here is the quarter-wavelength
(λ/4) CPW resonator. It is implemented by leaving one end of the central line open and
shorting the other to ground. Hence, a current node forms at the open end and a voltage
node at the shorted end (see Fig. 3.2b). The harmonic frequencies are determined by
its length and phase velocity as:

fn = (2n− 1)vp
4l (3.6)

with n a positive integer.

The interdigitated capacitor

The fraction of kinetic inductance present in the resonant section of the CPW is
determined by several parameters (recall Sec. 2.2.2). To increase the nonlinearity of
our devices, we can reduce the thickness of the superconducting film, which results in a
higher room-temperature sheet resistance Rs and a larger per-square value of the kinetic
inductance as shown in Fig. 3.3. In addition, we may reduce the width of the central
conductor w (see Eq. 2.55) to raise the effective number of squares in the resonator wire
and hence the total kinetic inductance. Whilst the strong nonlinearity is desirable in our
work, the higher inductance of the TL leads to a large characteristic impedance, which
has several detrimental effects. For example, a high resonator impedance reduces its
zero-point current (and hence magnetic field) fluctuations, lowering the spin-resonator
coupling strength. In Ch. 6 a resonator high impedance is a major hurdle to achieving
Purcell-limited relaxation and radiative spin cooling. In addition, in the amplification
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experiments of Ch. 4 a smaller resonator impedance reduces the power requirements (it
provides a larger pump current for a given power), which is important for minimizing
heating and reaching the quantum-noise-limit of amplification.

Figure 3.3: Calculated dependence of the kinetic inductance per-square on the NbTiN
film thickness. The estimated values of sheet resistance Rs, required in Eq. 2.55, were
derived from the empirical data provided by Dr Robin Cantor from the company “Star
Cryo”.

To compensate for the high kinetic inductance and reduce the impedance, we in-
troduce an interdigitated capacitor (IDC) to the resonant CPW section. The IDC is
a microwave planar capacitor that consists of a dense set of interlocking fingers be-
tween the central conductor and ground plane, as shown in Fig. 3.4. This structure
boosts the capacitance per unit length and therefore lowers the characteristic impedance
Z0 =

√
L/C, where L and C are the inductance and capacitance per unit length, re-

spectively. The enhanced L and C in the resonator can reduce considerably its phase
velocity vp = 1/

√
LC, which shortens the resonator length.

To engineer the IDC resonator with the desired capacitance we perform an EM
simulation. Fig. 3.5 depicts the dependence of the IDC CPW characteristic impedance
Z0 on the capacitor finger length h, extracted from Sonnet simulations for a w = 2 µm
wide central line with a kinetic inductance of Lk = 8.55 pH/sq, corresponding to an
18 nm thick NbTiN film.

3.1.3 Microwave photonic bandgap

The PBG is a periodic structure of interchanging low- and high-impedance TLs
that effectively form an LC ladder filter [40] (see Fig. 3.6). It creates a bandstop re-
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Figure 3.4: A CPW transmission line with interdigitated capacitor fingers to ground.

gion of frequencies in which electromagnetic waves cannot propagate, hence the name
“photonic bandgap”. The LC ladder or stepped-impedance filter can readily be de-
signed using the ABCD matrix approach [40]. For a section of TL with length l and
characteristic impedance Z0, the ABCD matrix is written in the following form:

ABCD =

 cos(βl) iZ0 sin(βl)
(i/Z0) sin(βl) cos(βl)

 (3.7)

where β = ω/vp is the phase constant. We find the total ABCD matrix for the
complete PBG structure by taking the product of the matrices for each individual
CPW section. The order of multiplication should be the same as the order of the
CPW sections in the PBG, since matrix multiplication is not necessarily commutative.
The final ABCD matrix can be conveniently converted to the conventional scattering
matrix S: S11 S12

S21 S22

 =

A+B/Z0−CZ0−D
A+B/Z0+CZ0+D

2(AD−BC)
A+B/Z0+CZ0+D

2
A+B/Z0+CZ0+D

−A+B/Z0−CZ0+D
A+B/Z0+CZ0+D

 (3.8)

Based on the ABCD matrix approach described above we use the numerical soft-
ware package Matlab to calculate the bandstop parameters of the PBG structure (see
Appendix A for a copy of the script). The parameters for each CPW segment used
in the calculation (i.e. the impedance Z0 and effective dielectric constant εeff ) are
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Figure 3.5: Characteristic impedance of the CPW with IDC as a function of the
finger length. Data obtained from Sonnet simulations. The width of the central line
w = 2 µm, the finger width f = 4 µm, the separation between fingers s = 4 µm and
the distance to the ground plane g = 2 µm are all kept constant in the simulation. The
solid line serves as a guide to the eye and does not represent a fit.

Figure 3.6: a) Schematics and b) equivalent circuit of the PBG structure implemented
with coplanar waveguide technology. Here 1 and 2 identify the input and output ports,
respectively.

obtained from Sonnet simulations. We calculate the transmission spectrum S21 of the
specific design implemented in the device used for our experiments in Ch. 5, 6 and
plot the result in Fig. 3.7. The low- and high-impedance CPW sections have lengths
llow = 3.4 mm and lhigh = 3.455 mm, with corresponding impedances Zlow = 30.9 W
and Zhigh = 120.3 W. The design entails four cells, where a single cell is defined as a
concatenated block of a low- and high-impedance CPW segment.

3.1.4 Photonic bandgap resonator

λ/2 resonator

The conventional way of defining a CPW resonator is by introducing a gap (disconti-
nuity) to the central line, as depicted in Fig. 3.2. Reflections occur at the discontinuities
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Figure 3.7: Transmission spectrum S21 for the PBG structure calculated using the
ABCD matrix approach.

and lead to the formation of standing waves, or resonances. Unfortunately, this type of
coupling, known as capacitive, does not support the DC currents needed in our experi-
ments to control the nonlinear kinetic inductance of the resonators. For this reason we
use the PBG design to define the resonator [124].

As noted, the PBG implements a bandstop filter that decouples its output from
the port/feed-line and thus can be used to confine a field inside a section of CPW and
define a resonator. Since there are no breaks in the central conductor DC currents can
be passed through the device. By placing a CPW section of length λ/2 between two
PBGs, we obtain a half-wavelength resonator. The schematic for such a resonator is
presented in Fig. 3.8a. The PBG structure can be thought as a microwave analog to
the well-known Bragg mirror or Bragg reflector in optics. Since the number of cells and
impedance step within the Bragg reflector are both finite, the mode extends beyond
the resonator region and into the PBG structure [128]. The finesse of the confined
mode and consequently the external quality factor of the resonator can be adjusted by
engineering the photonic bandstop filter.

Increasing the number of cells within the PBG provides a deeper bandstop region
and, therefore, a larger external quality factor of the resonator (i.e. a smaller coupling
rate of the resonator to the feedlines). The same holds true for the Z0 ratio of the PBG
high- and low-impedance sections. The length of these sections determine the center
frequency of the bandstop region and its span.

The transmission spectra for the PBG half-wavelength resonator formed with two
Bragg reflectors is obtained from a Sonnet simulation and shown in Fig. 3.9. The
Sonnet model contains four cells (repetitions of low- and high-impedance CPW sections)
connecting each end of the resonator (cavity) to a microwave port. The low-impedance
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(a) λ/2 PBG resonator. (b) λ/4 PBG resonator.

Figure 3.8: Schematics of the Bragg mirror/PBG-type resonators implemented using
coplanar waveguide technology.

section has a central conductor width of w = 242 µm and a ground plane gap of
g = 4 µm, providing Zlow = 26 W. The high-impedance section, with w = 40 µm and
g = 105 µm, has an impedance Zhigh = 87 W. Each section is l = 3 mm long. The
resonator section in this model is defined by an IDC coplanar waveguide with length
L = 788 µm and width w = 2 µm. The IDC finger length is h = 100 µm, with a width
f = 4 µm wide and pitch s = 4 µm. The kinetic inductance is calculated from Eq. 2.55
based on Tc and Rs for a 20 nm thick NbTiN film and is found to be Lk = 7.45 pH/sq.
The geometric inductance is estimated to be Lg ≈ 4.2 nH, which constitutes about
60 % of the total inductance within the resonator section. The application of a DC
current is simulated by simply modifying the value of Lk in accordance with Eq. 2.57.
We estimate that the application of a DC bias current close to the critical current of
the superconductor Ic ≈ 5 mA increases the kinetic inductance to Lk = 7.78 pH/sq,
and consequently the resonant frequency is lowered by ∆F ≈ 100 MHz (see Fig. 3.9).
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Figure 3.9: Transmission spectra S21 of the λ/2 PBG resonator obtained from Sonnet
simulations. The blue spectrum is obtained for an Lk at zero bias current. The red
spectrum is taken with the value of Lk for an applied DC bias current of approximately
5 mA.

We can also simulate the transmission spectra for the PBG resonator using the
Matlab ABCD matrix approach described earlier. Here we simply add an additional
ABCD matrix for the resonant section of the transmission line to the PBG cells. The
matrices are multiplied in the order that they appear from the device input. This
method provides a much simpler and faster way to estimate the transmission spectra
for the PBG resonators as shown in Fig. 3.10, but is less accurate than the full method
of moments calculation performed in a Sonnet simulation. The resonance peak position
from the Matlab calculations is in close agreement with the peak obtained from Sonnet
simulations.

Figure 3.10: Transmission spectra S21 of the λ/2 PBG resonator obtained from Matlab
ABCD matrix calculations. The spectrum is simulated for an Lk at zero bias current.
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λ/4 resonator

We can also use the PBG structure to implement a quarter-wavelength resonator,
as shown in Fig. 3.8b. One end of the resonator is shorted to the ground plane and the
other is coupled to the external circuitry via the stepped-impedance bandstop filter.

The reflection spectra of the quarter-wavelength PBG resonator can be simulated in
the same way as for the half-wavelength designs. In the simulations we assume a lossless
resonator and according to Eq. 2.48, when Qi → ∞ (i.e. Qi � Qc) the magnitude of
the reflection spectra around the resonant frequency is unity – the resonator perfectly
reflects the incoming signal. To extract information on the resonator frequency and its
external quality factor Qc we instead analyze the phase response, which undergoes a
180° phase shift around the resonance frequency. Indeed, the S11 magnitude response
for the quarter-wavelength PBG resonator presented in Fig. 3.11a, calculated using
the Matlab ABCD matrix approach, is flat in the bandstop region, whilst its phase
response exhibits a clear shift around 8 GHz, the expected resonance frequency. The
device simulated here has the same four cell PBG structure design as the one simulated
in the previous section.

(a) Magnitude response. (b) Phase response. At the expected resonance
frequency at approximately 8 GHz a clear phase
shift is visible.

Figure 3.11: Reflection spectra (S11) of the λ/4 PBG resonator calculated in Matlab.
The bandstop region is the same as in Fig. 3.10.
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3.2 Device fabrication

3.2.1 Ion implantation

Prior to fabricating the superconducting circuit resonators, we first perform ion-
implantation to introduce bismuth dopants into the silicon chip, which will be used
in the experiments of Chs. 5, 6. The silicon sample we use is a high-resistivity non-
compensation-doped 300 µm thick float-zone (FZ) grown natural silicon (100) substrate.
Silicon produced with the float-zone growth method is preferred since it is generally of
a much higher purity (i.e. less impurities) than what is obtained with other techniques
such as the Czochralski method. Details of crystal growth based on zone melting process
can be found in Refs. [129]–[131]. To maximize the coherence time of the electron spin
ensemble, a 20 µm thick epitaxial layer of silicon enriched 99.95% in the isotope 28Si
is grown on top the natural FZ silicon handle wafer. The bismuth ions are implanted
within this 20 µm 28Si layer.

With the help of the freely-available software SRIM [132], which is based on a
Monte Carlo simulation method, we calculated the required energies and fluences of
the bismuth implants to achieve a desired implantation profile and donor concentration.
We target a uniform implantation profile over a depth of ∼ 2 µm with a concentration
of ∼ 1 × 1017/cm3 (see Fig. 3.12). This relatively high concentration was selected to
enhance the spin ensemble echoes in our experiments, whilst still being well-below the
metallic doping limit, which is around 2 · 1019 cm−3 [133] for bismuth. Since bismuth
is a particularly heavy donor, it requires large accelerations (up to 7 MeV) for these
implantation depths. As such, our implantations were performed at the Australian
Facility for Advanced Ion Implantation Research (AFAiiR), part of the Heavy Ion
Accelerator Facility (HIAF) at the Australian National University. All implants are
made at a 7° angle of incidence to the silicon (100) surface to prevent ion-channeling
of the bismuth [134].

Silicon is a group IV element arranged in a diamond cubic lattice. The four valence
electrons of each silicon atom are locked into covalent bonds with their neighbors. At
room temperature silicon is a semiconductor with a 1.12 eV band gap and a six-fold
degenerate conduction band (i.e. with a minimum along each of the ±X, ±Y and ±Z
directions). Bismuth donors are substitutional impurities in silicon. They replace a
silicon atom forming covalent bonds with the adjacent silicon atoms and donate one
electron to the conduction band. At cryogenic temperatures the bismuth ions retain
their extra valence electron, which provides the electron spin in our experiments.
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Figure 3.12: a) SRIM implantation fluences for a range of bismuth ion acceleration
energies. The angle of incidence to the silicon surface is 7°. b) The desired bismuth
implantation profile. c) The predicted implantation profile obtained from the multi-
energy SRIM simulations shown in a).

The high atomic mass of 209Bi results in extensive damage to silicon crystal lattice
upon implantation, leading to a large number of defects. We anneal the wafer under
a nitrogen atmosphere at 800°C for 20 min. This serves to both repair implantation
damage and incorporate the bismuth ions into the lattice, a process known as elec-
trical activation [135], [136]. Our annealing recipe is expected to activate 60% of the
implanted ions, based on Hall effect measurements of a sample annealed under similar
conditions [135].
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3.2.2 Resonator

Figure 3.13: Steps for fabricating
the PBG superconducting micro-
resonators used in our experi-
ments.

Following ion implantation and donor activa-
tion, we pattern superconducting resonators on
the surface of the silicon. The resonators (of the
PBG design) are made in a NbTiN superconduct-
ing film. We chose NbTiN because it has a high
Rs and thus a large high kinetic inductance, pro-
viding a sizable nonlinearity that will be used in
our experiments. NbTiN also has a high critical
temperature Tc ≈ 13 K, which eases requirements
on the base temperature of cryostat and leads to
lower losses originating from quasiparticle resid-
ual resistance (Sec. 2.1.8). Finally, NbTiN has a
relatively high critical magnetic field Bc, which is
important for experiments where we integrate res-
onators with the bismuth donor spins.

The film thickness of the resonators used in
different experiments varies. When coupling to
spins, we desire a small amount of nonlinearity
to allow for resonator frequency tunability and to
facilitate parametric processes. However, excess
kinetic inductance will reduce the signal collected
from the spins, as it is a form of inductance that
has no coupling with the spins. The device used
for the spin experiments (described in Ch. 5 and
6) is made from a 50 nm NbTiN thick film which is
deposited by magnetron sputtering on top of the
bismuth-implanted 28Si epitaxially-grown layer of
silicon.

The second device, utilized for the ampli-
fication experiments performed in Ch. 4, does
not involve spins and has a requirement for a
high nonlinearity to achieve large amplifier gain-
bandwidth-products. This device is made from a
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thinner NbTiN film measuring 9.5 nm in thickness and is deposited on top of a high
resistivity (> 5 kWcm) natural silicon FZ sample, without any implanted donors.

Given the smallest feature of our superconducting resonators is approximately 1 µm,
a resolution just out of reach for standard optical lithography tools, we use electron
beam lithography (EBL) to write the resonator pattern in a resist mask on the silicon
chip. Aside from the high resolution, another advantage of using EBL is that the mask
is defined in software and is thus trivial to modify, which allows fast turn-around of
devices in the prototyping stage. This is very important when considering new resonator
geometries since numerous trials are required to optimise the resonator design. Maskless
optical lithography tools would be ideal for this purpose, since they have writing speeds
several orders of magnitude larger than an EBL and can achieve minimum feature sizes
down to 400 nm [137].

We now describe the steps for fabricating the superconducting PBG resonator, the
process is presented pictorially in Fig. 3.13.

• Step 1, clean: The silicon sample is first cleaned in a piranha solution (a 3:1
mixture of sulfuric acid H2SO4 and 30% hydrogen peroxide H2O2) for 10 minutes
on a hotplate set to 115°C in order to remove any organic contaminates. Following
this the sample is rinsed in deionized (DI) water for 10 minutes. Next a 15 second
dip in a hydrofluoric (HF) acid bath (10:1 mixture, with 10 parts water to 1 part
49% HF) is performed to strip the native oxide, followed by 5 minute a DI rinse.

• Step 2, metal deposition: A high quality NbTiN film is deposited on the silicon by
magnetron sputtering a NbTi target in a N2 gas atmosphere. The sputtering is a
commercial service performed by Dr Robin Cantor at the company “Star Cryo”.

• Step 3, resist: We spin the positive electron-beam resist AR-P 6200, referred to
as CSAR 62 (purchased from the company “Allresist”) on top of NbTiN film at
a speed 4000 rpm for 60 seconds to achieve a 200 nm thick resist layer. We bake
the sample at 150°C for 3 minutes to remove solvents and harden the resist.

• Step 4, exposure: Next we use a Raith-150 TWO EBL system to expose the
resonator pattern on the chip at a beam acceleration of 20 kV and an aperture of
60 µm.

• Step 5, develop: We develop the exposed chip in n-amyl acetate for 60 seconds,
followed by a 30 second rinse in isopropanol (IPA). A short (1 minute) and low-
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power (50 W) oxygen plasma ash is then performed to remove any residual CSAR
in the exposed and developed regions.

• Steps 6-7, etch: We remove the NbTiN regions exposed by the above steps with
reactive ion etching (RIE), using an in-house built hollow cathode tool. The etch
is performed with a CF4/Ar ion plasma and removes the NbTiN at a rate of
4.5 nm/min.

• Step 8, final clean: After the RIE we strip off any residual CSAR using the
“Allresist” remover AR 600-71.The sample is placed in the remover and left in an
ultrasonic bath for 10 minutes to help remove any stubborn patches of hardened
resist.

It is worth mentioning that CSAR was used here instead of the more conventional
e-beam resist polymethyl methacrylate (PMMA) because of CSARs superior etching
selectivity. Nevertheless, PMMA may also be used as a mask in this process, so long
as the resist layer is made sufficiently thick to withstand the RIE process.

All fabrication processes were carried out in the ANFF-NSW clean-room facilities,
which are graded ISO 5/Class 100 (EBL) and ISO 7/Class 10000 (RIE). Additional
fabrication details and parameters can be found in Appendix B.

3.3 Packaging of the device

In the experiments described in the following chapters we utilize the quarter-wavelength
photonic bandgap resonator design. This design is chosen over the half-wavelength ver-
sion since it occupies only half of the area (conserving our very rare 28Si enriched wafer)
and the single port means all of the signal in an experiment is effectively collected. The
latter (efficient signal collection) can be achieved in the half-wavelength resonator when
measured in transmission only if there is a very large asymmetry between the coupling
rates to the input and output ports.

After fabrication of the photonic bandgap resonator, the silicon chip is secured with
a small amount of wax to a printed circuit board (PCB) that was specifically designed
for this chip. The PCB is made on a Rogers RO3006 0.635 mm thick laminate covered
with 1 oz of copper on both sides with an immersion silver finish. This board contains
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Figure 3.14: A schematic (taken from a CST model) of the λ/4 PBG resonator wire
bonded to the PCB. Bond wires are depicted in blue. The circular objects on the PCB
represent vias.

of a single 50 W CPW trace connected to the external measurement line at one end via
a surface-mount mini-SMP (SMPM) microwave connector (see Fig. 3.15a). The other
end of the PCB is wire bonded to the input port of the superconducting resonator.
The bond wires are 50 µm in diameter and made from aluminum. The transmission
line on the PCB is surrounded by an array of vias connecting top and bottom ground
planes in order to suppress unwanted parasitic modes. The circuit board also has a
milled region without any metalization to accommodate the silicon chip. A schematic
of the PCB and device is illustrated in Fig. 3.14. We bond across the first few cells
in the resonator PBG structure in order to connect the ground planes. This is critical
for suppressing parasitic CPW modes and unintended ground plane resonances in the
device [138], particularly provided our PCB design does not completely enclose the chip
(for reasons detailed below) to allow for bonding to all regions of the ground plane.

The PCB provides a means to decouple the resonator from the port. Much like an
optical Bragg reflector, the PCB supports a fraction of the mode field inside of it. As
the ground plane separation is relatively large in this part of the device, radiation losses
are a serious concern (Sec. 2.1.8). To suppress radiation losses, we place the chip inside
of a 3D copper cavity (see Fig. 3.15a) with a fundamental frequency slightly higher
than the superconducting resonator. The PCB allows most of the chip to protrude into
the microwave cavity via a rectangular waveguide with a cutoff frequency far-exceeding
that of the cavity. This helps us to maintain a high internal quality factor of the 3D
cavity (Qi ≈ 2000), which would otherwise be destroyed by the presence of the PCB
and bond wires. The copper enclosure is thermally anchored to the cold finger in a 3He
adsorption refrigerator or a 3He/4He dilution refrigerator, depending on the experiment.
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(a) Silicon chip with PCB mounted in
a 3D copper cavity.

(b) 3D copper cavity represented by a
loop-gap resonator.

Figure 3.15: Packaging of the device.

Figure 3.16: Device at-
tached to the cold finger
of a 3He adsorption cryo-
genic refrigerator.

We have used a 3D loop-gap resonator (LGR) embed-
ded in a rectangular cavity [139], [140]. A notable feature
of the LGR is the spatial separation between the electric
and magnetic field components of its resonant modes. The
magnetic field profile of the LGR mode is primarily con-
centrated in the middle rectangular box region where the
silicon chip rests, whilst the electric field is strongest in the
small gaps that connect the box to the outer loops. Since
the chip does not disturb the electric field of the mode, it
has minimal influence on its resonance frequency. In addi-
tion, the AC magnetic field of the LGR can, in principle,
be used to perform spin resonance. For the experiments
described in this thesis the LGR acts as a Purcell filter to
suppress the radiation losses of the superconducting res-
onators.

To probe the 3D cavity a microwave antenna (composed
of a straight piece of silver-plated copper wire) is connected
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to the measurement setup via a SMA adapter, as shown in Fig. 3.15b. For the experi-
ments described in the following chapters we only use this microwave port to monitor
the frequency of the 3D cavity. For this reason, after initial characterization of the LGR
the SMA connector was removed and the port sealed with several layers of conductive
tape. A picture of the cavity and device attached to the cold finger of a 3He refrigerator
is shown in Fig. 3.16.

The PBG resonator pattern was designed with Matlab numerical ABCD matrix
calculations and Sonnet simulations (Sec. 3.1). However, we have also constructed a
full 3D model of the device including the PCB, bond wires and 3D cavity, which we
simulate in CST Microwave Studio (part of the model is shown in Fig. 3.14). The
superconducting film was modeled as an infinitely thin perfect electric conductor with
a surface impedance defined by the kinetic inductance of the superconducting material.
The current density distribution in Fig. 3.17 confirms that the mode is not perfectly
confined inside the resonator and extends into the PCB structure, as expected. In this
simulation we extract the fraction of magnetic energy stored in the resonator section
is about 20%. This fraction can vary depending on the resonator impedance and the
PBG design and therefore has room for optimization.

Figure 3.17: CST simulation results of the λ/4 PBG resonator showing the current
density distribution throughout the device.
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3.3.1 Practical considerations

There are a few practical considerations that should be taken into account when
finalizing the resonator design. The CPW is meandered in order to minimize its foot-
print. To ensure that there is no cross-talk between the adjacent meandered PBG
sections, the separation between them should be at least three times the total width of
the low-impedance CPW section [141]. In addition, the bond wires connecting separate
ground planes should be spaced with maximum separation of λ/4. We do not bond
across the last two PBG cells of the resonator, as we have observed a degradation of its
internal quality factor at temperatures above 1 K or magnetic fields & 50 mT when we
do, which we believe is due to ohmic losses in the aluminum bond wires which become
normal under these conditions.

Another important parameter for our device is the critical current, above which
the superconducting material becomes normal. The parametric effects that we will
be interested in scale with the DC bias current, as too does the resonator frequency
tunability, so achieving a high critical current is important. The critical current is an
inherent property of the material that can be related to the nonlinear current parameter
I2 (Eq. 2.57) [88]. However, it has been shown in Refs. [142], [143] that the resonator
design also impacts its value. For example, to avoid current crowding (regions in the
device where the current becomes concentrated and causes the critical current to be
exceeded locally) we minimize the presence of any sharp corners and steep transitions
where it is possible to do so without compromising the device performance.

To conclude, the PBG microwave resonator design offers a simple and elegant solu-
tion to tune the kinetic inductance of a cavity via a DC bias current in a way that does
not deteriorate its quality factor. Moreover, the fabrication of the device is simple and
requires only a single-layer lithography step, as has been described above. As there are
no Josephson junctions, the resonators are extremely robust to electrostatic discharge
and have much larger power-handling capabilities.

3.4 Cryogenic measurement setup

In this section we describe two different cryogenic measurement setups used to per-
form the experiments presented in the following chapters. We start with a brief review
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of the working principles of the cryogenic systems, followed by a detailed description
of the microwave components installed for the experiments.

3.4.1 3He refrigerator

Cryostat

The experiments described in Ch. 5 and 6 were performed in a 3He adsorption-
type cryogenic refrigerator. The refrigerator is a single-shot system, where a charge of
helium gas purified in the 3He isotope is condensed into a liquid by passing it through
a heat exchanger that’s held at a temperature of ∼ 1.5 K. The 1.5 K temperature is
maintained by pumping on a small pot of liquid 4He (filled from a larger bath of helium
that needs to be replenished periodically) to reduce its vapor pressure and therefore
lower its temperature from 4.2 K to 1.5 K. The 3He gas circulates in a closed-loop of
tubes and liquefies at a temperature of 3.2 K. After liquefaction, the 3He is brought to
an even lower temperature through a technique known as adsorption pumping. A piece
of charcoal that’s held at 1.5 K (located in the closed tube system) traps gas molecules
that evaporate from the 3He liquid, reducing its vapor pressure and lowering the liquid
temperature to ∼ 0.3 K. The system is classified as single-shot, since eventually all
of the 3He liquid will boil off and become trapped in the charcoal. At this point the
charcoal sorb must be heated (approximately to a temperature of 40 K) to expel the gas,
so it can once again be condensed into a liquid. This is a process known as regeneration,
and the duration between regeneration events is referred to as the system hold-time.

The 3He cryostat we used is a custom made system from the company ICE Oxford.
It comprises a liquid helium dewar surrounded by both vacuum and liquid nitrogen
shields to protect the liquid 4He bath from external heat sources and thus minimize
boil-off. The “insert” is the part of the fridge that contains all of the refrigerator and
cold experimental components (3He circulation system, experimental wiring, sample
space etc.). The device is clamped to a gold-plated copper flange located inside the
insert and attached to the coldest point (the pot where the 3He liquefies), which is
colloquially known as the cold finger. Together with the cryogenic components, the
device is sealed inside a copper radiation shield and held under vacuum, forming the
inner vacuum chamber (IVC). To cool down the refrigerator the insert is slowly placed
into the liquid 4He bath.

The 3He cryogenic system has a cooling power, at the 3He pot, of about 50 µW

77



3.4. Cryogenic measurement setup

at 300 mK and 2 mW at 500 mK base temperatures, according to the manufacturer.
This allows us to cool a considerable amount of microwave components down is a short
amount of time. The process of cooling the insert from room temperature to 400 mK
takes about 5 hours.

The fridge is equipped with a two-dimensional superconducting vector magnet. The
primary magnet is a solenoid that can be used to generate a vertically-oriented magnetic
field with a strength of up to 2 T. The second magnet is of a split pair geometry and
can produce a field up to 1 T in the horizontal plane. The magnets are located at the
bottom of the liquid helium dewar and have a hollow bore 10 cm in diameter to allow
the IVC (and therefore device) to pass through.

Cryogenic experimental setup

All of the devices we measure are single-port resonators and the experimental setups
are therefore designed to perform measurements in reflection. For some experiments
we are interested in signals at a single photon level and it is important to reduce any
black body radiation or thermal microwave photons coming from the room temperature
setup – a common problem in cQED. This is achieved by installing cryogenic microwave
attenuators (made by the company XMA Corporation) at each temperature stage of
the fridge, attenuating the thermal photons and helping to thermalize the cables and
the field to these temperatures. The attenuators are dissipative elements and they
therefore add an additional heat load to the stage at which they are installed, this
must be taken into consideration when selecting their values to ensure the fridge can
function properly.

The number of thermal photons coming from the room temperature setup is given
by the Bose-Einstein distribution

nth = 1
exp(~ω/kBT )− 1 (3.9)

where kB is the Boltzmann constant and ω/2π is the frequency of the signal. This
expression simplifies to nth = kBT/~ω in the high temperature limit (kBT � ~ω).
Placing an attenuator with linear attenuation constantX in the signal path, the number
of thermal photons is reduced to natt = nth/X. The attenuator can be modeled as a
beam-splitter in quantum optics [43], with a transmission coefficient 1/X. One port of
the beam-splitter is the signal, whilst the other is noise nadd = nth + 1/2, where the
1/2 term represents the zero-point fluctuation of the microwave field. The final goal is
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to ensure that the noise in the microwave lines at the lowest temperature stage of the
system is dominated by the value of nadd at that temperature (i.e. T ≈ 400 mK in the
case of a 3He refrigerator), not by thermal photons from other stages.

A detailed schematic of the microwave wiring inside the 3He insert is depicted in
Fig. 3.18. We use four microwave lines inside the fridge to run the experiments described
in the next chapters. All of the lines, except those that extract the reflected from the
device (the “Signal OUT” line), are semi-rigid cupronickel coaxial (CN/CN) cables with
an outer diameter of 2.19 mm. The “Signal OUT” line (see Fig. 3.18) is superconducting
(NbTi/NbTi) between the 400 mK and 4 K stages and from 4 K to room temperature
are made from a cupronickel cable with a silver-plated inner conductor (SCN/CN).
Prior to the first amplification stage, any attenuation of the signal reflected from the
device will directly impact the signal-to-noise ratio. The NbTi/NbTi and SCN/CN
output cable is critical for minimizing this loss.
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Figure 3.18: Schematics of the microwave wiring inside the 3He refrigerator.
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The microwave signal that drives the superconducting resonator is delivered via the
“Signal IN” line. We typically operate at signal frequencies around ω/2π = 7.3 GHz.
The signal is attenuated by 20 dB at 4 K, reducing the number of thermal photons
from about nth = 900 at room temperature to 20 photons. It is attenuated by another
20 dB at 400 mK, resulting in a total of ∼ 1 thermal photon at the base temperature
of the system.

Once at the 400 mK plate the input signal is routed via a cryogenic microwave
circulator (Raditek RADC-4-10-Cryo-0.02-4K-S23-1WR-DMS-b) to the first diplexer
(Marki DPXN4). The diplexer combines the input signal (at 7.3 GHz) and the DC
bias current, supplied via the “DC bias” line. The DC line has two low-pass filters
(with cut-offs at 100 MHz), one at 4 K and the other at 400 mK, to remove high-
frequency noise from the room temperature electronics. The combined microwave input
signal and the DC bias is sent to a second diplexer (Marki DPX1114), which is used to
introduce a high frequency pump tone at approximately 14.6 GHz. The common port
of the second diplexer attaches to the SMPM connector of the device PCB. The pump
tone allows us to drive parametric processes in the resonator and is described in the
following chapters. The “Pump” line is also heavily filtered and attenuated to reduce
the number of thermal photons as much as possible, whilst still allowing the relative
high pump powers we need to drive the parametric processes to reach the device.

The signal reflects from the device and returns via the two diplexers to the circu-
lator, which then routes it through an isolator to a high electron mobility transistor
(HEMT) cryogenic amplifier (Low Noise Factory LNF-LNC0.3_14A). The HEMT am-
plifier serves to boost the signal above the noise level at room temperature before
sending it out of the refrigerator.

Amplifiers necessarily add noise to a signal, as was demonstrated by Caves [98] in his
quantum theory for noise limits in amplification. A matched 50 W load at a temperature
TR produces a thermal noise power within the bandwidth B equal to PR = kBTRB.
If this load is connected to the input of an amplifier with a linear power gain G, we
obtain an output noise power of Pout = GkB(TR+Tamp)B, where Tamp is the equivalent
noise temperature added by the amplifier. Quite often the amplifiers are cascaded, i.e.
multiple amplifiers are connected in series to increase the overall system gain. In this
case, the total equivalent noise temperature of the system (referred to the input of the
first amplifier) is given by Friis formula:

Teq = T1 + T2
G1

+ T3
G1G2

+ . . . (3.10)
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where T1,T2,T3, ... and G1,G2,G3, ... are the noise temperatures and linear power
gains of the first, second and the third amplifiers, respectively. It is clear that the noise
temperature of the first amplifier is the most influential, since the noise of the latter
stage amplifiers are attenuated by increasing amounts of gain. For this reason we use
the cryogenic low-noise HEMT amplifier as the first amplifier on our output line. Its
has a low noise temperature of Tn ≈ 4 K.

The microwave isolator located just before the cryogenic amplifier at 400 mK serves
to attenuate 4 K thermal and any HEMT noise that may reflect back down towards
the device.

Finally, we use room temperature electronics and a custom-built microwave mod-
ulation/demodulation configuration to generate the input signal and detect the device
output, labeled as the microwave bridge in Fig. 3.18. Details of the microwave bridge
is described in Sec. 3.5.

3.4.2 3He-4He dilution refrigerator

Cryostat

For the measurements presented in Ch. 4 we used a Bluefors 3He-4He dry dilution
refrigerator (fridge). A dilution fridge reaches base temperatures more than an order
of magnitude colder than a 3He system. The system we use achieves the lowest tem-
perature of 20 mK. In Ch. 4 we study the noise properties of a new type of quantum
amplifier. In order to demonstrate that the amplifier reaches the quantum limit of
noise performance, it is critical to operate at temperatures where kBT � ~ω, which
demands the use of a dilution refrigerator.

The working principle of a dry dilution fridge is more complex than the 3He system
previously described and a detailed explanation can be found in Ref. [144]. The coldest
part of the dilution refrigerator is called the mixing chamber – this is where the cold
finger and device are attached. The cooling power of the fridge derives from a phase
separation that occurs in liquid helium mixture containing both isotopes 3He and 4He.
The 3He-4He mixture sits in the “mixing chamber” and is comprised of two phases: the
dilute phase (composed of 6.6% 3He and 93.4% 4He) and the concentrated phase (with
a 100% 3He concentration). A heater on the mixing chamber at the dilute phase causes
3He to be distilled from the mixture. The 3He gas is then pumped away, condensed into
a liquid and added to the concentrated phase. The distillation of 3He from the dilute
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phase creates a diffusion of 3He across the concentrated/dilute phase boundary. The
process of moving 3He across the boundary is endothermic and, as result, consumes
heat from the environment thus cooling the mixing chamber in the process.

Cryogenic experimental setup

The microwave wiring inside the dilution fridge was designed with the same consid-
erations as in the 3He system. The primary difference being that the dilution fridge has
a lower base temperature and additional thermal stages, requiring extra attenuation.

We use four coaxial lines in the dilution fridge to deliver the DC bias current, high
frequency pump tone and input and output microwave signals to/from the device. A
detailed schematic of the measurement setup is shown in Fig. 3.19. The output signal,
after being amplified with a HEMT cryogenic amplifier at 4 K, goes through a second
HEMT at room temperature before being sent to a microwave switch. The switch
directs the signal either to a vector network analyzer (VNA) or a homodyne detection
setup. The input signal is provided by an ultra-low-phase-noise microwave generator
(Keysight E8267D) or the VNA, with the selection made by another microwave switch.
The experiments performed using this setup do not require short microwave pulses,
which allows for a simplified room temperature configuration as compared to the 3He
system.
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Figure 3.19: Schematics of the measurement setup for experiments performed in the
3He-4He dilution refrigerator.
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3.5 Room temperature measurement setup

Quick characterization of our devices is performed with a VNA – an instrument
used to measure the scattering (S) matrix of a microwave circuit. The VNA generates
a continuous microwave signal that is fed to the “Signal IN” line of the setup (see
Fig. 3.18). The signal propagates through the system to the device and then returns to
the VNA via the “Signal OUT” line. This allows us to characterize the resonator and
extract important parameters such as its quality factor by fitting the scattering matrix
response with an appropriate function (see Eq. 2.48).

To perform the pulsed ESR experiments (see Sec. 3.6) we must deliver short mi-
crowave excitations to the device. For this reason we have designed and made a custom
“microwave bridge”. Microwave bridge is a term coined in conventional ESR spec-
troscopy that describes the collection of equipment (typically housed in a single box)
used for pulse conditioning and signal detection. Here it represents the room temper-
ature measurement setup used for experiments performed on the 3He refrigerator, the
detailed schematic of which is depicted in Fig. 3.20. The bridge is based on homodyne
modulation and demodulation techniques [49].

The signal reflected from the device (at frequency ω0) is routed to the “Signal OUT”.
After the cold amplification stage it is amplified by a further two stages at room tem-
perature and bandpass filtered. In between the room temperature amplification stages
we include a fast microwave switch. This switch has an important role in “blanking”
the high-power pulses that are sent to the spins, which reflect off the resonator and
could damage components along the detection stage. The switch is “unblanked” to
capture the spin signals, which is passed to an “I-Q mixer”. The mixer multiplies the
signal with an additional supplied local oscillator (LO) tone SLO(t) = ALO cos(ω0t),
generated with the same microwave source that produces the signal. The output of the
mixer contains signal components at the sum and difference frequencies. In homodyne
detection the LO frequency is set equal to the signal frequency (i.e. they are both ω0),
so that the mixer produces signals at DC and 2ω0. The high frequency component in
the mixer output can be readily removed with a low-pass filter (LPF), leaving only the
DC component. These DC components at each output of the mixer are proportional
to the quadratures I and Q of the reflected signal (see Sec. 2.1.5). They are further
boosted with RF amplifiers, passed through anti-aliasing filters and then digitized using
a fast analog-to-digital converter (Keysight M3102A).
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Figure 3.20: Detailed schematics of the room temperature microwave measurement
setup used with the 3He cryogenic setup. Microwave sources for the local oscillator (LO)
and pump are phase-locked (dashed line). The dotted lines represent the equipment
synchronization orchestrated by the “PulseBluster” fast pulse generator.
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Knowledge of the “in-phase” I and “quadrature“ Q components of the field allows
us to calculate its amplitude and phase, fully characterizing the resonator response.
The microwave signal that we receive back from resonator can be expressed in terms
of the quadratures as:

S(t) = Are
i(ωrt+φr) = Meiωrt = (I + iQ)eiωrt (3.11)

Consequently, the amplitude and phase of this signal are:

Ar ∝
√
I2 +Q2

φr = arctan(Q/I)
(3.12)

To generate our pulsed microwave signals, we use the same approach as for detec-
tion but in the reverse direction. The low frequency I and Q “baseband” signals (here
with frequency components from DC to a few hundred megahertz) are generated with
the help of an arbitrary waveform generator (AWG) (Keysight M3202A). The baseband
quadrature signals are mixed with a local oscillator tone using an I-Q mixer, resulting
in a modulated microwave signal with carrier frequency ω0. By adjusting the relative
weighting of the I and Q components, we can control the phase of the resulting sig-
nal. The local oscillator used in the signal generation scheme is split from the same
microwave source as used for demodulation (see Fig. 3.20), ensuring phase coherence
between the signals is maintained. Afterwards, the modulated tone is routed through a
variable attenuator to provide amplitude control followed by a high-power amplifier to
boost the signal up to a maximum power of 20 dBm. The signal then passes through
a fast microwave switch to help suppress any local oscillator leakage when the signal is
supposed to be off. Finally, the pulses are sent to the fridge (as shown in Fig. 3.18) via
two microwave isolators to deal with any reflections of the high-power pulses that may
occur along the input line.

The high frequency pump tone is generated by another microwave source that has
its internal clock synchronised with the signal/LO source. This tone is routed via a
microwave switch to the “Pump” line of the fridge. The DC bias signal is provided
by a source measurement unit (SMU) (National Instruments (NI) PXIe-4139), which
allows us to continuously monitor whether the superconducting resonator switches to
the normal state during a measurement. To allow for fast control of the resonator
frequency we combine the output of the SMU with a small RF signal generated by the
AWG. This combined signal is sent to the “DC bias” fridge line.
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Pulse generation and instrument synchronization is provided by a “PulseBlaster
ESR Pro” (Spin Core), with a clock frequency of 250 MHz.

3.6 Pulsed ESR

In Ch. 5 we use the nonlinearity of our resonator to improve the signal-to-noise
ratio of pulsed electron spin resonance (ESR) spectroscopy experiments. We presented
the basic concept of ESR in Sec. 2.4.1. In the following section, we describe common
ESR pulse sequences used to probe the dynamics of spins that we will utilize in our
experiments.

3.6.1 Hahn echo pulse sequence

Arguably the most important pulse sequence used in spin resonance is the conven-
tional Hahn echo [104]. This sequence is the basis for many others that belong to the
wider class of control sequences known as dynamical decoupling [145].

Figure 3.21: Schematics of a CPW-based resonator in a static magnetic field B0,
showing the B1 field used to drive spin rotations. The spins are implanted in the
silicon substrate underneath the resonator, represented as purple dots.

The superconducting device with implanted bismuth donors is placed in a strong
static field B0, aligned parallel to the plane of the superconducting film (along z axis).
The magnetic field causes spin precession about the z axis with a Larmor frequency ωs
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(see Sec. 2.4.1). For electron spins this frequency is typically in the microwave domain.
The linearly polarized B1 field used to generate spin rotations is delivered through the
superconducting PBG resonator fabricated on top of the silicon chip that hosts the
electron spin ensemble (see Fig. 3.21). The B1 field in our experiment is oriented along
the x axis. We select a magnetic field B0 to ensure that the spins are on-resonance
with the drive field ωs = ωmw.

In the rotating frame (Sec. 2.4.1), the applied B1 field is stationary and causes
the spins to precess about the x axis. The strength of the B1 field determines the
Larmor frequency ω1, more commonly defined as the Rabi frequency. By controlling
the strength of the B1 field and/or the time it is applied for, we can rotate the net spin
magnetization M0 by an arbitrary angle about the x axis.

Figure 3.22: Hahn echo pulse sequence. a) We apply a πx/2 pulse to tip the magne-
tization vector along the −y direction. b) The magnetization starts to dephase in the
x − y plane, resulting in a FID signal. c) At a time τ after the first pulse, we apply
the refocusing pulse πy. d) After waiting another period τ a spin echo is observed.

The first pulse of the Hahn sequence is timed to deliver a π/2 rotation on the
Bloch sphere, causing the spins to point along the −y axis (see Fig. 3.22). We let the
spins freely precess for a time τ where they dephase due to homogeneous and inhomoge-
neous line broadenings mechanisms (Sec. 2.4.1). The dephasing caused by homogeneous
broadening is irreversible. On the contrary, dephasing caused by inhomogeneous broad-
ening (i.e. static offsets in the spin frequencies) can be reversed. We apply a second
pulse to produce a π rotation of the spins about the x axis, which serves to rephase any
inhomogeneous broadening and refocus the spin magnetization along the +y axis after
another time τ . The π rotation is therefore often called the refocusing pulse. Shortly
after the spins recover their magnetization along the +y axis they rapidly dephase once
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more. The resulting signal inductively detected via the resonator is called a “spin echo”
and is formed from two back-to-back free induction decays (FID).

The spin echo signal is widely used in ESR to extract important information from
a spin system, such as longitudinal and transverse relaxation rates.

Pulse calibration

In order to minimize rotation errors in the Hahn echo sequence, we must first
calibrate our pulses. This is done here by measuring Rabi oscillations of the integrated
echo signals [99] as the duration or amplitude of the pulses in the sequence are varied.
Since our resonator has a high quality factor (Qtot ≈ 30, 000), we typically fix the pulse
length at the minimum value allowed by the resonator bandwidth t = 1/κ = Qtot/ω

(approximately a few microseconds). We set both the π/2 and π pulse to have the same
duration (so that they have the same spectral width) and control the individual pulse
amplitudes to achieve our desired rotation angles. By keeping the first pulse of the Hahn
echo sequence fixed and varying the amplitude of the second pulse (π-pulse) the echo
signal displays an oscillatory response. If the second pulse amplitude delivers a rotation
that is an odd integer multiple of π, then the echo amplitude is maximum. However, if
the rotation is an even integer multiple of π then the spins are not refocused and the
echo amplitude is zero. From the Rabi oscillations we can determine the approximate
pulse amplitude required to deliver our π/2 and π rotations.

To improve the signal-to-noise ratio (SNR) of the detected spin echo we repeat the
experiment multiple times at each pulse power and average the results. To ensure the
spins are in the same initial state before the pulse sequence we must allow them to
relax to their ground state. As such, we insert a waiting time between repetitions that
exceeds the longitudinal relaxation time. By waiting for 5T1 we can ensure that more
than 99% of the spins will relax to their ground state [146]. The T1 time for electron
spins in the solid state can be extremely long, even exceeding hours [101]. However,
in a resonator device one can exploit Purcell-enhanced relaxation to reduce this time
below a second [48]. Alternatively, high spin concentrations can lead to spin diffusion,
which may reduce T1 to more manageable values [147]. In any case, averaging single
shots of a Hahn echo is a time-consuming task, thus we must consider other ways to
boost the SNR.
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3.6.2 Carr-Purcell-Meiboom-Gill pulse sequence

In 1954 Carr and Purcell proposed a simple extension to the Hahn echo sequence
which was to apply multiple refocusing pulses instead of just one, effectively reducing
the free precession time τ before rephasing occurs and hence enhancing the transverse
relaxation time of a spin system [148]. The Carr-Purcell (CP) pulse sequence starts
with the usual tipping π/2-pulse, followed after time τ by a train of refocusing π-pulses.
The duration between the π-pulses is 2τ . A spin echo forms a time τ after each π pulse,
which can be detected inductively. The amplitude of the echo after consecutive π pulses
decays as a result of inhomogeneous broadening [99].

Figure 3.23: Schematic representation of the CPMG pulse sequence. Pulses have the
same power but different duration.

The CP pulse sequence described above assumes that ideal pulses are applied to
the spin system. However, in practice they are not ideal, and even the minor imperfec-
tions in the π-pulse amplitude, phase or timing will accumulate after being repeated
several times and leads to an enhanced echo decay (unrelated to the intrinsic decoher-
ence mechanisms). In 1958 Meiboom and Gill proposed a slight modification of CP
sequence to compensate for possible pulse imperfections [149]. Their CPMG (Carr-
Purcell-Meiboom-Gill) sequence is identical to the CP protocol apart from the phase
of the pulses. The initial π/2-pulse is applied along the x axis whilst the following
π-pulses are generated along the y axis (see Fig. 3.23). In this way small pulse errors
are corrected after every second π pulse [149].

One major advantage of the CPMG sequence in ESR spectroscopy is the enhance-
ment it can provide to the SNR [150] of a measurement. In a single pulse sequence we
retrieve N spin echoes, where N is a number of π-pulses. Averaging over these echoes
boosts the SNR by a factor of

√
N (in practice the enhancement is lower due to echo

decay) without the need for waiting long times between sequences for the spins to relax.
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3.6.3 T2 measurements

The coherence time T2 for a spin system can be measured by monitoring the echo
amplitude of a Hahn sequence as we increase τ . The Hahn protocol only refocuses noise
that changes over a timescale slower than the experiment 2τ . As τ is increased, the
spins experience dynamic noise that’s not corrected after the π pulse. We fit the decay
of the echo amplitude against the total free precession time 2τ to extract T2.

As noted, we may use the CPMG sequence to extend the measured coherence time
of our spins. To perform an echo decay measurement with the CPMG sequence we
can either add pulses to the sequence with a fixed inter-pulse separation τ , plotting
the echo magnitude as a function of the pulse number, or we can use a fixed number
of pulses and vary τ . These two approaches are fundamentally different when one
considers their spectral properties and they are sensitive to different components of
the spectral density of the underlying noise processes [145]. Depending on the exact
frequency dependence of the decohering noise, it is usually the case that the coherence
time (T2CPMG) measured with CPMG is greater than the T2 extracted from a Hahn
sequence. CPMG is called a dynamical decoupling sequence, since our applied dynamics
(periodic π rotations) decouples the spins from their noisy environment.

3.6.4 T1 measurements

In order to characterize the longitudinal relaxation time we consider two different
approaches. In both techniques the Boltzmann population of the spins is first driven
away from thermal equilibrium with a pulse. A delay immediately after the pulse
provides time for the spins to undergo longitudinal (T1) relaxation before we probe the
spin population difference with a Hahn echo measurement. The approaches differ in
the method used to initially drive the spins away from equilibrium.

Inversion recovery

To measure the longitudinal relaxation rate we need to disturb the spins and observe
their recovery dynamics. The first method for achieving this is called an “inversion
recovery” [99]. Initially in thermal equilibrium, the spins are inverted by a π-pulse (see
Fig. 3.24). At different times Twait during the relaxation process (probed with separate
measurements) the population is inferred with the help of a spin echo sequence (Hahn
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echo or CPMG). The echo will evolve from a reduced, ideally negative, amplitude for
the inverted ensemble to a positive amplitude at sufficiently long Twait, once all of the
spins have relaxed. The characteristic time for the echo amplitude to fully recover is
T1.

Figure 3.24: Inversion recovery pulse sequence. Typically the πx inversion pulse is
short and high power (i.e. broadband) so as to invert the maximum number of spins.
A smaller subset of spins is probed with the Hahn echo sequence by using slightly longer
and lower power pulses.

Saturation recovery

In the second approach, called “saturation recovery”, instead of applying an initial
π inversion pulse, we send a long high power pulse to saturate the spins [99]. The
magnetization for this state can be calculated from the Bloch equations (Eqs. 2.78-2.80)
by assuming steady-state conditions (where the time derivatives of the magnetization
components are zero). This gives:

Mx = M0
ω1∆sT

2
2

1 + Scw + ∆2
sT

2
2

(3.13)

My = M0
ω1T2

1 + Scw + ∆2
sT

2
2

(3.14)

Mz = M0
1 + ∆2

sT
2
2

1 + Scw + ∆2
sT

2
2

(3.15)

where Scw = ω2
1T1T2 is the saturation parameter for a continuously driven sample.

If Scw >> 1 all components of the magnetization approach zero. This implies that the
spin magnetization is equally distributed across all directions in space, representing a
spin population distribution out of thermal equilibrium. The next steps are identical
to the inversion recovery – we wait a time Twait and then probe the spin population
with an echo measurement. However, in this case the spin echo signal will recover from
an initial value of zero (when Twait � T1). One advantage of the saturation recovery
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measurement is that it is able to suppress spin-diffusion mechanisms to some extent
[99], revealing true intrinsic spin energy relaxation mechanisms.
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Chapter 4

The Kinetic Inductance Parametric
Amplifier

I acknowledge the efforts of my colleague and fellow student, Daniel Parker, who
worked tirelessly on many of the measurements detailed in this chapter.
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4.1 Introduction

An increasing number of contemporary experiments in condensed matter physics
work with extremely weak microwave signals, down to the level of a single photon. To
detect such weak signals one must be able to amplify them without adding excessive
amounts of noise. In this regard cryogenic microwave amplifiers represent an enabling
technology. Parametric amplifiers are a special class of microwave amplifier that can
operate at the quantum-noise-limit.

For typical cQED experiments, in order to resolve a single photon signal, a chain of
multiple amplifiers is utilized, where the first one should add the minimum amount of
noise, i.e. be quantum noise limited. Moreover, this quantum noise limited parametric
amplifier should have gain above a specific threshold to suppress the influence of the
noise injected by the second amplifier (cryogenic HEMT amplifier) in the detection
chain. A HEMT amplifier usually provides a gain of 30−40 dB and its noise temperature
is about 3−4 K, which is the lowest noise temperature amongst the semiconductor-based
amplifiers. The effective noise temperature of vacuum fluctuations (half of quanta) can
be written as ~ω/2kb, which corresponds to 170 mK at 7 GHz. According to Friis
formula (Eq. 3.10), if the first amplifier adds not more than half a photon of noise, in
order for it to be the dominant source of noise, its gain should be larger than 15 dB. In
our setup, there is approximately 4.5 dB of insertion loss in the components between
the kinetic inductance parametric amplifier (KIPA) and the HEMT, thus 20 dB of
gain is required for quantum noise limited operation. In this case the weak signal will
not be masked by the noise added by the following amplifiers and lossy components
in the amplification chain. The use of parametric quantum noise limited amplifiers
have enabled the high-fidelity readout of superconducting qubits [151], increased the
sensitivity of the electron spin resonance spectroscopy [31], and are even aiding the
search for dark matter [152].

Parametric amplifiers can be operated in two modes: phase insensitive or phase
sensitive (refer to Sec. 2.3). The amplitude of an electromagnetic field input to an
amplifier can be described by dimensionless quadrature field operators Îin and Q̂in (see
Sec. 2.1.5). A phase insensitive amplifier applies a linear gain G equally to both quadra-
tures 〈Îout〉 =

√
G〈Îin〉 and 〈Q̂out〉 =

√
G〈Q̂in〉, where Îout and Q̂out represent the field

amplitudes at the output of the amplifier. This type of amplification results in the ad-
dition of at least 1/4 photon of noise to each quadrature in the process [98]. Conversely,
for a phase-sensitive amplifier, one field quadrature is amplified 〈Îout〉 =

√
G〈Îin〉, whilst
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the other is de-amplified 〈Q̂out〉 = 〈Q̂in〉/
√
G. This definition of quadrature gain allows

for noiseless amplification of one quadrature. The noiseless nature of a phase-sensitive
amplifier makes it distinctly useful for detecting small microwave signals, particularly
those at the single photon level.

In the microwave domain, the Josephson parametric amplifier (JPA) defines the
state-of-the-art in phase-sensitive amplification technology. A JPA consists of one or
more Josephson junctions embedded in a low quality factor superconducting resonator.
Vacuum squeezing has been achieved with JPAs employing single cavity modes (so-
called degenerate parametric amplifiers) at the level of 10 dB [153] and through the
entanglement of two distinct cavity modes (> 12 dB) [154]. However, recent experi-
mental [38], [155] and theoretical [156] investigations of JPAs has uncovered differences
between the JPA and ideal degenerate parametric amplifier (DPA) Hamiltonians, which
become significant in the high gain limit (> 10 dB) and constrain the amount of achiev-
able squeezing. Higher-order nonlinearities originating from the physics of Josephson
junctions limit the useful linear regime of operation, with typical 1 dB-compression
points measuring less than −110 dBm for 20 dB of gain [74].

In this chapter we present results that show our current-biased PBG resonator
(Sec. 3.1.4) can be used to implement a near-ideal degenerate parametric amplifier, with
excellent performance as a noiseless phase-sensitive amplifier and a potential source of
highly-squeezed microwave states of light. This technology has a number of attractive
advantages relative to other types of quantum-limited microwave amplifiers – the device
contains no Josephson junctions making it robust to electrostatic discharge, it has
an extremely high power-handling capability due to the large critical current of the
NbTiN film and it is produced with a simple single-step lithography process as described
Sec. 3.2.2.

4.2 Theory of parametric amplification

All devices explored in this thesis exhibit a nonlinear kinetic inductance (see Sec. 2.2.2).
This form of nonlinear inductance is analogous to an optical Kerr media. When two
tones of microwave current simultaneously pass through the kinetic inductance device a
process known as four wave mixing (4WM) can occur. If one of the tones (the “pump”)
is much larger in power than the other (the “signal”) then the 4WM process can facili-
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tate a transfer of energy from pump to signal, producing amplification. Here two pump
photons generate one signal photon and a photon in a new tone called the “idler” [157],
[158], as depicted schematically in Fig. 4.1. The idler is required so that the amplifier
output field operators satisfy the standard bosonic commutation relations (see Sec. 2.3).
If the pump and signal frequencies are the same, then the resulting amplification is said
to be degenerate. If the frequencies are different by an amount ∆ω then the resulting
amplification is non-degenerate.

Figure 4.1: Feynman diagrams for a) 3WM and b) 4WM processes. ωp, ωs, ωi rep-
resents the angular frequencies of pump, signal and idler photons, respectively. ∆ω
represents an arbitrary frequency detuning from the degenerate mode of amplification.

If a DC current bias is applied on top of the microwave tones, i.e. I = IDC + Iµw,
then the kinetic inductance obtains both odd and even power dependencies on the
microwave current:

Lk(I) = Lk0

[
1 +

(
IDC
I2

)2
+ 2IDCIµw

I2
2

+
(
Iµw
I2

)2]
(4.1)

In addition to the Kerr component (I2
µw), a new term linear in Iµw appears which can

facilitate a three wave mixing (3WM) process, where one pump photon at roughly twice
the signal frequency splits to produce a signal and an idler photon. Amplification by
three wave mixing (3WM) has been demonstrated recently in several traveling wave
devices [159], [160]. However, it is known that at high pump powers, when Iµw ≥ 2IDC ,
the competition between 4WM and 3WM processes degrades the parametric gain [161]
in these wide-band devices and limits the amplifier performance.

A simple model that describes the performance of a 3WM parametric amplifier
can be adopted from quantum optics, the model is often referred to as the DPA [162],
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4.2. Theory of parametric amplification

[43]. Here a nonlinear medium is placed inside a single mode cavity and pumped at
twice the resonant frequency of the cavity. In optics, for example, this induces periodic
modulation of the refractive index of the nonlinear environment inside the cavity which
leads to changes of its optical path length and, therefore, its resonant frequency. These
conditions facilitate the energy transfer from the strong pump tone to the resonant
mode of the cavity. The Hamiltonian can be written as follows [156]:

Ĥ = ω0â
†â+ χ(â†2 âp + â2â†p) (4.2)

where ω0 is the frequency of the cavity, χ is the strength of the nonlinearity, and
â, â†, âp, â†p are the annihilation and creation operators for excitations in the cavity mode
and pump field, respectively. The first term in Eq. 4.2 is the Hamiltonian for a linear
quantum harmonic oscillator and the second term captures the interactions between
the pump and the cavity, where one pump photon is exchanged with two cavity photons
and vice versa. In the strong classical pump regime we can use the approximation âp ≈
αpe
−iωpt, where pump frequency is ωp ≈ 2ω0. We assume, without loss of generality,

that αp (the pump amplitude) is a real number. The DPA Hamiltonian is then obtained
by rewriting the Hamiltonian 4.2 in a frame rotating at half the pump frequency [156],
[43]:

ĤDPA = δâ†â+ λ

2 â
†2 + λ∗

2 â
2 (4.3)

with the detuning δ = ω0 − ωp/2 and the amplitude of the pump λ = 2χαp.
Inserting the ĤDPA into Eq. 2.40, introduced in Sec. 2.1.7, provides us with the

equation of motion for the intra-cavity field:

˙̂a(t) = − i
~

[â(t), ĤDPA]− κint + κext
2 â(t) +√κextâin(t) +√κintf̂in(t) (4.4)

The field âin represents the input signal to be amplified, whilst f̂in represents the
input mode that mixes in noise with the signal. κint and κext are the internal and
external loss rates of the cavity, respectively. The solution is found in Fourier domain
using the boundary condition listed in Eq. 2.41 [156]:

âout(ω) = gsâin(ω) + giâ
†
in(−ω) +

√
κint

κint + κext

(
(gs + 1)f̂in(ω) + gif̂

†
in(−ω)

)
(4.5)

where âout represents the amplified signal. The amplitude gains of the signal gs and
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idler gi are defined as:

gs =
κext(κint+κext

2 )− iκext(δ + ω)
δ2 + (κint+κext

2 − iω)2 − |λ|2
(4.6)

gi = − iκextλ

δ2 + (κint+κext
2 − iω)2 − |λ|2

(4.7)

A full microscopic derivation of the Hamiltonian for the KIPA was performed by
Daniel Parker and is presented elsewhere [163].

4.3 Device and setup

The KIPA device we analyze in this chapter is fabricated from a 9.5 nm thick film
of NbTiN on a FZ silicon substrate with dimensions 11 mm by 4 mm. Its geometry was
described in detail in Sec. 3.1. In summary, it is a CPW quarter-wavelength resonator
with an in-built IDC that is attached to the end of a PBG structure and shorted to
ground (see Fig. 3.8b). It is designed to produce a resonance at the center of the PBG
band-stop region ω0/2π ≈ 7.2 GHz. The IDC increases the effective capacitance per-
unit-length of the resonant segment and thus lowers the impedance of the resonator
to Z0 =

√
L/C ≈ 45 W. By lowering the impedance we produce larger pump currents

for a given pump power, helping to minimize device heating. The internal quality
factor (Qint ≈ 16000) of the resonator is much greater than the coupling quality factor
(Qext ≈ 160) putting it in the highly over-coupled regime (Qext � Qint). The silicon
chip is wire-bonded to a PCB and then packaged into a 3D copper cavity, according to
the procedure described in Sec. 3.3.

The PBG structure that confines the resonance allows us to pass a DC current
through the device. In addition, the PBG has a passband that covers the frequency 2ω0.
The PBG resonator is therefore an ideal device with which to perform amplification
through 3WM. Critically, the resonant nature of our KIPA strongly suppresses 4WM
and higher-order processes, and as we will see permits extremely high levels of pure
3WM gain.
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Figure 4.2: Simplified schematic of the measurement setup used for KIPA characteri-
zation.
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The KIPA device is thermally anchored to the 20 mK stage of a dilution refrigerator.
A simplified schematic of the measurement setup is presented in Fig. 4.2. The full
schematic can be found in Sec. 3.4.2 (Fig. 3.19). To use the KIPA, we feed the combined
bias current, signal and pump into the port of the device. The tones undergo mixing in
the resonator and the reflected amplified signal is routed to a HEMT amplifier at 4 K.
This is followed by a third low-noise amplification stage at room temperature before
being measured with a VNA or undergoing homodyne detection.

The frequency response of the KIPA, measured using the VNA, as a function of
applied DC current (without the pump tone) is presented in Fig. 4.3. This frequency
dependence illustrates the nonlinear response of the kinetic inductance to the applied
current, which is fitted to Eq. 2.57 with extracted fit parameters I2 = 11.418 mA and
I4 = 5.251 mA.
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Figure 4.3: The dependence of the fundamental mode frequency on the applied bias
current. The frequency drops as the current (and therefore kinetic inductance) in-
creases, as expected.

We observe a resonance frequency shift of 100 MHz for a 0.9 mA bias current. For
the remainder of this chapter, the bias current is set to 0.834 mA, which is close to
the critical current of the film but with a sufficient margin for additional microwave
currents applied through the pump and signal without causing the film to turn normal.
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4.4 Parametric amplification

4.4.1 Phase insensitive parametric amplification

By adding a pump tone at the frequency ωp/2π = 14.381GHz and bias current
IDC = 0.834 mA, the KIPA produces an amplification feature centered around ωp/4π =
7.1905 GHz (see Fig. 4.4). The output of the pump, produced by a low-phase-noise mi-
crowave source (Keysight Technologies, E8267D), is routed via a highpass filter (Mini-
circuits, TB-HFCN-9700+) to suppress the pump subharmonics. The voltage source
(Yokogawa, GS2000) is connected in series with a 10 kW resistor at room temperature
to provide the required DC current. We use the VNA (Rohde & Schwarz, ZVB-20)
to probe the S11 magnitude response of the KIPA at approximately half the pump
frequency.
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Figure 4.4: Phase insensitive gain of the KIPA at different pump powers (see inset) as
a function of the signal frequency detuning from ωp/2, i.e. ∆ω/2π = (ω − ωp/2)/2π.

By supplying a DC current to the KIPA we induce 3WM, resulting in an amplified
signal tone ωs at the device output and an idler at the frequency ωi such that energy is
conserved in this process ωp = ωs+ωi. Phase insensitive (or non-degenerate) gain occurs
when ωs = ωp/2+∆ω with |∆ω| exceeding the measurement bandwidth resolution (the
idler frequency is outside the measured frequency band) [156].

To estimate the baseline of the magnitude response, we disable the pump but leave
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the bias current active, which yields an approximately flat magnitude response. We
subtract this baseline measurement from the magnitude response of the gain curves to
obtain the data presented in Fig. 4.4. The phase insensitive gain increases with the
pump power and is found to be in excess of 40 dB before the KIPA crosses the threshold
where spontaneous parametric oscillations occur [164]. In addition, we measure a 3 dB
bandwidth of 6 MHz at a gain of 20 dB, comparable to resonant JPAs [74].

4.4.2 Phase sensitive parametric amplification

When applying a signal tone at exactly half the pump frequency ωs = ωp/2, the
KIPA enters the degenerate mode of operation, producing phase sensitive gain as the
signal and idler tones interfere. To characterize the device in this mode of operation, the
signal line is connected to another microwave source (Keysight Technologies, E8267D),
which is configured for linear phase modulation at ωs. A signal power of ∼ −95 dBm
is applied at the input of the sample. The pump and signal sources are phase locked
using a high stability 1 GHz reference clock. Depending on the precise phase difference
between the signal and the pump we either de-amplify or amplify the signal, as shown
in Fig. 4.5. The phase sensitive gain is measured with the help of the VNA operated
as a spectrum analyzer, using it to only measure the incident power. Configuring the
network analyzer for a zero-span (i.e. time-dependent) measurement that is triggered
off the edge of the linear (sawtooth) phase ramp, we obtain the data presented in
Fig. 4.5.

Since it is the relative phase between the pump and signal tones that determines the
amplifier gain, we arbitrarily set the maximum de-amplification to occur at φpump = 0
with the maximum amplification therefore appearing at φpump = π/2. A de-amplification
gain up to 26 dB was observed with a maximum amplification gain of 50 dB recorded
for the same pump power. Compared to phase insensitive (non-degenerate) amplifica-
tion, an additional 6 dB gain is observed in degenerate mode due to the constructive
interference that occurs between the signal and idler [98].

Next we probe the power-handling capability of the KIPA by repeating the above
gain measurements for a range of input signal powers. The maximum of the phase-
sensitive gain curve is plotted as a function of the signal power in Fig. 4.6. An important
figure of merit for any amplifier is the “1 dB-compression point” P1dB, which is power
at the output of the amplifier where the maximum gain reduces by 1 dB, typically due
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Figure 4.5: Phase sensitive gain of the KIPA at different pump powers as a function
of the pump phase φpump. The maximum of the gain is aligned with φpump = π/2.

to high-order nonlinearities that create unwanted mixing processes which take power
away from the signal and pump.
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Figure 4.6: Phase sensitive gain as a function of the input signal power for different
pump powers (listed in the legend). The 1-dB compression point output power as a
function of the gain is shown in the inset.

The inset of Fig. 4.6 depicts the degenerate 1 dB-compression point of the KIPA
as a function of gain (or pump power). For ∼ 20 dB of phase sensitive gain, we find
a minimum compression power of −61.7 dBm at the KIPA input, comparable to the
compression performance of kinetic inductance traveling wave amplifiers [159], [165] and
many orders of magnitude higher that Josephson junction based parametric amplifiers
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[74]. The output power of the KIPA for this measurement was close to the input power 1
dB-compression point of the cryogenic HEMT amplifier (−40 dBm). It is thus possible
that the true KIPA 1 dB-compression point is higher than we report here.

4.5 Squeezing of a coherent state

The phase dependent interference of the signal and idler fields in a DPA results
in an affine transformation applied to the IQ-plane of the input field, also commonly
called the squeezing transformation [98]. The fields, which initially occupy a circular
region on the IQ-plane, are stretched to form an ellipse, with the area being conserved
in the process (see Sec. 2.1.5). To test this feature of the phase sensitive amplifiers, we
connect the output of the detection chain to a homodyne detection setup consisting of
an IQ mixer (Marki Microwave Inc, IQ4509), with local oscillator supplied by a third
independent microwave source (Keysight Technologies, E8267D), which is phase locked
with a 1 GHz reference clock to the pump and signal sources. The local oscillator is
set to the signal frequency of ωs = 7.1905 GHz. The I and Q outputs of the mixer
first pass through 1.9 MHz low pass anti-aliasing filters (Mini-Circuits Technologies,
SLP-1.9+), followed by two 5 × pre-amplifiers (Stanford Research Systems, SIM914)
connected in series for a total linear amplitude gain of 25 on each channel. I and Q

are then digitized using a fast digitizing card (Keysight Technologies, M3300A) with a
sample rate of 6.25 MS/s.

When the KIPA is off, the input coherent state phase sweep traces out a circle on
the IQ-plane. Activating the KIPA maps the circle to an ellipse at the detector as it
is shown in Fig. 4.7. Ellipse measurements were performed with the pump and local
oscillator phases fixed, while the signal phase is stepped. Each (I, Q) pair is measured
by averaging 106 samples collected at each phase. The entire phase sweep is performed
in less than 60 s to minimize errors due to slow phase drift between the signal and
pump.

Importantly, the ellipses do not show any “S-type” distortions (or “banana curves”),
even for a degenerate gain of 30 dB. Usually, Hamiltonian non-idealities manifest as
an S-shaped distortion of the phase space at high gains, as has been experimentally
observed in Refs. [38], [155] and modeled in Ref. [156] in JPAs for gains typically ex-
ceeding 10 dB. Further increases in gain (up to 50 dB) did not produce any obvious
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Figure 4.7: KIPA response to coherent inputs of constant amplitude and varying phase
plotted on two different scales. Top: outputs are plotted with an equal aspect ratio,
where the reflected input sweep with the KIPA off is observed as a circle (green).
Turning the KIPA on stretches the circle to an ellipse, which resembles a blue line in
this plot. Bottom: the same outputs plotted with an exaggerated scale along Q so that
the elliptical transformation may be observed. Solid lines are a guide for the eye.

distortions, though at these higher gains the signal power had to be reduced to avoid
saturating the cryogenic HEMT and room temperature amplifiers, resulting in signifi-
cant degradation in the SNR. The lack of S-type features at high gain support the idea
that the KIPA is well-approximated by an ideal DPA.

The deamplification level GS is defined as the greatest reduction in amplitude of an
input coherent state by the squeezing transformation. We additionally define the am-
plification level GA as being the corresponding increase in gain that occurs orthogonal
to the axis of deamplification. GS and GA are measured after aligning the amplification
and deamplification axes along I and Q respectively, and averaging multiple measure-
ments. We measure GS (GA) by taking the ratio of the peak to peak amplitudes of the
pump off response and pump on response on Q (I) after averaging. Fig. 4.8 presents
our results, where up to 26 dB of deamplification is observed for 30 dB of amplification.
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The high level of deamplification achieved with the KIPA can be used to squeeze
the vacuum noise level, which can be used to enhance the signal-to-noise ratio (SNR) in
experiments and has been successfully deployed in gravitational wave detection [166],
the search for axions [152] and in electron spin resonance (ESR) spectroscopy [38].
These measurements show that the Hamiltonian non-idealities that limit typical JPA
squeezers do not seem to effect the KIPA even up to large gains as high as 30 dB. Future
work will focus on verifying the squeezing capabilities of the device by analyzing the
statistical properties of squeezed vacuum and thermal states input to the amplifier.
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Figure 4.8: The deamplification GS and amplification GA as a function of pump power.
Points are extracted from the ellipses presented in Fig. 4.7.

4.6 Calibrating the photon-to-power conversion factor

The amount of noise added to a signal during amplification, quantified by the am-
plifier noise temperature, is a primary factor in determining the SNR of a measurement.
For a detection chain containing a series of amplifiers, it is the noise temperature of
the first amplifier that typically dictates the overall system SNR (see Fig. 4.9). As a
fundamental limit [98], a phase insensitive amplifier must add at least 1/2 a photon
of noise to a signal – an equivalent noise temperature of Tn = ~ω/2kB ≈ 170mK at a
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frequency of ω/2π = 7.2GHz. Conversely, no noise is added by an ideal phase sensitive
DPA (Tn = 0mK).
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Figure 4.9: Detection chain containing a series of amplifiers and possible loss at differ-
ent temperature stages.

In order to study the noise performance of the KIPA, we first need to convert the
measured noise power (using spectrum analyzer) at the output of the measurement
detection chain to an equivalent number of photons at the input of the device. We
use the simple schematic in Fig. 4.9 to model the noise in our experiment. The model
includes the KIPA with a linear power gain GK and an effective noise contribution
nk (in dimensionless units of photons), as well as the cold HEMT amplifier and the
room-temperature amplifier with gains and noise contributions GH/ GR and nH/nR,
respectively. We also take into account loss in the cables and microwave components,
which acts like a beam splitter in quantum optics, transmitting a fraction α of the
incident power and mixing in to the output a component (1− α) of a thermal field at
the temperature of the loss. We split the loss into two components, one at the mixing
chamber α1 with noise n1 and any attenuation at higher temperature stages (before
the HEMT) with transmission α2 and effective noise n2. The parameter z converts the
dimensionless photon numbers to a power, as measured on the spectrum analyzer.

When the KIPA is on (i.e. amplifying), we calculate the output noise power as:

PON = {[n1GK + nk(GK − 1)]α1α2 + n1(1− α1)α2 + n2(1− α2) + nH}GHGRz

= [(n1 + nk)(GK − 1)α1α2 + nsys]GHGRz
(4.8)

The first term on the right hand side of line 1 represents the amplified fluctuation-
s/noise of the input field n1 = 1/2+nth, where nth is the Bose factor from Eq. 2.32 that
describes the thermal population of the field. The second term is the amplified noise
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added by the KIPA, which vanishes at unity gain (i.e. when the amplifier is turned off).
The third and fourth terms are the noise fields mixed in by the cold and hot losses and
the last term is the noise added by the HEMT. Note, we ignore the noise added by the
room temperature amplifier since we assume that the HEMT gain is sufficiently large
that the amplified cold noise terms dominate the output signal. In the second line we
introduce the “system noise” nsys = n1α2 + n2(1 − α2) + nH , which is the non-KIPA
related noise referred to the input of the HEMT.

Measuring the output noise with the KIPA off (GK = 1) yields a power:

POFF = nsysGHGRz (4.9)

The difference of these two measurements gives:

PON − POFF = (n1 + nk)(GK − 1)α1α2GHGRz

= (n1 + nk)(GK − 1)GT
(4.10)

Where we have defined the photon-to-power conversion factor GT = α1α2GHGRz.
The KIPA noise component nk can contain several contributions, it includes noise added
by the idler mode ni = 1/2+nth and additional terms if there is any loss present, which
we represent with nk0. Both the signal and idler fields have the same temperature and
therefore the same Bose factor nth, which can be controlled with the base temperature
of the dilution refrigerator. We can rewrite the output power difference signal as:

PON − POFF = (2nth + 1 + nk0)(GK − 1)GT (4.11)

Eq. 4.11 provides a method to experimentally extract the conversion factor GT ;
we can simply monitor the difference in the output noise power (for the KIPA on and
off) as we sweep the fridge temperature (and therefore nth), extracting the gradient
of PON − POFF vs. nth, i.e. m = 2(GK − 1)GT . At each temperature we measure
the output noise power difference for 9 different values of the linear power gain GK

on a spectrum analyzer. We plot PON − POFF versus nth for each GK in Fig. 4.10a
and the extracted gradient from each gain trace is shown in Fig. 4.10b as a function
of GK − 1. The slope of Fig. 4.10b then directly provides 2GT , yielding the conversion
factor GT = 7.15(13)× 10−4 pW/photon for our setup.
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(a) (b)

Figure 4.10: a) The output noise power difference versus nth (controlled by varying
the base temperature of the dilution refrigerator) for different values of the linear power
gain GK . b) The extracted gradient from each gain trace in a) as a function of GK−1.

4.7 Noise properties

In this section we explore the KIPA noise properties. This is done by again monitor-
ing the output power of the measurement setup on the spectrum analyzer without an
input signal. The device is tested in both degenerate and non-degenerate amplification
modes and also when it is off, which gives a measure of the background system noise.
The measured output power is converted to an equivalent number of photons referred
to the output of the KIPA using the factor GT that was found from the analysis in
Sec. 4.6.

The measured noise consists of three main components. The first one originates
from the equilibrium fluctuations of the electromagnetic field (neq), which itself is com-
prised of both thermal photons (nth) and the fluctuations of the vacuum neq = nth+1/2.
In addition, we include any additional noise introduced by the KIPA (nk) due to fun-
damental quantum limitations and/or loss. The last noise component stems from the
system noise (nsys) defined previously, which is generated by the following amplifiers
and higher temperature stages.

In degenerate mode, only a single field quadrature is amplified yielding an effective
input-referred noise of n = (nth + 1/2)/2 +nk +nsys/GK , which for a quantum-limited
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degenerate amplifier (nk = 0) at zero temperature (nth = 0) and with infinite gain
is n = 1/4 photons. In non-degenerate mode, noise from both field quadratures is
amplified and contributes to the output signal, resulting in an input-referred noise
of n = nth + 1/2 + nk + nsys/GK . For a non-degenerate quantum-limited amplifier
(nk = 1/2) the minimum amount of added noise is thus n = 1 photon.

In Fig. 4.11a, we plot the input-referred number of photons by further dividing the
output signal by the KIPA gain GK . For the non-degenerate measurement we detune
the center frequency of the spectrum analyzer by 500 kHz from ωp/2 and both of the
KIPA on measurements are recorded at a degenerate gain of 31 dB and a non-degenerate
gain of 25 dB.

(a) (b)

Figure 4.11: a) Input-referred noise of the KIPA measured with a spectrum analyzer
for the different modes of amplification. b) KIPA input-referred noise as a function
of gain when operated in both degenerate and non-degenerate modes. At low gains
the noise is determined by the system contribution, whilst at large gains the measured
noise reflects that added by the KIPA.

To determine if the KIPA is quantum limited, we plot the input-referred noise n
against gain GK , as shown in Fig. 4.11b. Fitting each data set with the expression
n = n0 +nsys/GK , we obtain n0 = (nth + 1/2)/2 +nk = 0.30(3) in the degenerate case
and n0 = nth+1/2+nk = 1.12(12) in non-degenerate. These numbers are exceptionally
close to their ideal values of 0.25 and 1, with the differences being only a small fraction
of the quantum noise level (i.e. n0 − n0Q � n0Q, with n0Q = 0.25 or 1 depending
on the mode of operation) and we therefore conclude that the KIPA is quantum noise
limited. Both fits produce nsys = 78, which is the strength of the system noise. The
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estimated loss between the KIPA output and input of the cryogenic HEMT amplifier is
∼ 4.5 dB, indicating that the system noise at the input of the HEMT is ∼ 28 photons –
a value in agreement with that measured in other setups [38]. This loss originates from
the insertion loss of the microwave components (a diplexer, a bias-tee, two circulators
and high pass filter) and cables used to route the amplified signal. The amount of loss
was estimated at room temperature with the help of VNA and represents a worst-case
value.

4.8 Conclusions

We have presented a simple and versatile parametric amplifier called a KIPA, fabri-
cated from a thin film of NbTiN. For the bias conditions tested, we report up to 40 dB
of phase insensitive gain and up to 50 dB of phase sensitive gain. Our device features
an exceptionally high input 1 dB-compression point of approximately −60 dBm at its
input for 20 dB of gain, making it suitable for a wide range of cryogenic microwave
measurements. Furthermore we find our amplifier is quantum limited in its noise per-
formance.

The simple design and fabrication of the KIPA opens up new experimental possi-
bilities where quantum limited microwave amplifiers may be integrated ‘on-chip’ with
other quantum systems. We envisage using this amplifier in applications such as elec-
tron spin resonance spectroscopy, where the KIPA can serve as both the microwave
cavity and first-stage amplifier to push the boundary of spin detection sensitivity (see
Ch. 5).
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Chapter 5

Parametric amplification of spin
echoes

I acknowledge my colleague and fellow student, Wyatt Vine, who worked on many
of the measurements detailed in this chapter.
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5.1 Motivation

ESR spectroscopy is a well-established technique used to analyze the paramagnetic
species within samples in a diverse range of fields including physics, chemistry and
biology [99]. The conventional spectrometer used in ESR consists of a 3D microwave
cavity that inductively detects weak signals from electron spins precessing in an external
magnetic field. The signal induced in the cavity by a single electron spin is extremely
small, thus samples typically must contain large ensembles of spins (∼ 1013) to produce
signals with sufficient SNR [99] for detection. As a direct result of the rapid progress
in the field of cQED, where manipulation and detection of weak signals (at the level of
single microwave photons) has now become commonplace [167], the sensitivity of the
inductive ESR spectroscopy was recently pushed to the quantum limit [31], [168]. The
use of high quality factor superconducting micro-resonators for inductive spin detection
in conjunction with quantum-limited parametric amplifiers (see Ch. 4) permitted the
demonstration of a record breaking detection sensitivity down to ∼ 10 spins in a single
shot measurement [36], [37].

Typically, a quantum-limited ESR spectrometer involves a complex and fragile mea-
surement setup. The most fragile of the components is the Josephson parametric ampli-
fier (JPA), which is commonly employed for the first amplification stage in the detection
chain due to its quantum-limited noise performance. As was already noted in the pre-
vious chapter, they consists of one or many Josephson junctions, which are susceptible
to electrostatic discharge. Moreover, the 1 dB-compression point of these amplifiers is
restricted to about −110 dBm [74], which greatly limits the signals that can be applied
to the spins in a typical pulsed experiment. As was pointed in Ref. [38] the nonlinearity
in operation of JPAs might cause power dependent phase shifts and power saturation
of squeezed states that have higher power than vacuum. To avoid the distortion of
the signal, they had to limit the power of the spin echo signal well below the 1 dB-
compression point. In addition, the weak signal emitted by spins into superconducting
cavity must be passed to the JPA via coaxial cables, microwave circulators and other
components, which introduce loss typically in the range of 1− 3 dB [38].

We propose to use the kinetic inductance parametric amplifier (KIPA) introduced
in Ch. 4 as both a superconducting cavity for inductive detection of the electron spins,
whilst simultaneously serving as an on-chip quantum-limited parametric amplifier. The
KIPA’s near ideal DPA performance and simplicity in design makes it a perfect candi-
date for integration with ESR spectroscopy experiments. Moreover, in this architecture
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there is no need to tune the frequency of the parametric amplifier to match the signal
frequency, since the KIPA and the microwave cavity are one and the same.

5.2 Device and setup

The device used in the experiments described in this chapter consists of a PBG-
confined quarter-wavelength cavity, similar in design to the KIPA described in Ch. 4.
The resonator is made of a 50 nm thick NbTiN film lithographically defined on top
of a silicon chip that has been implanted with bismuth donors in a surface layer of
isotopically enriched 28Si. The implantation details can be found in Sec. 3.2.1. The
silicon chip is wire bonded to a PCB and placed inside a 3D copper cavity, as described
in Sec. 3.3.

The resonator section is implemented as a CPW line without an IDC structure (as
was utilized in Ch. 4) with a central line of width w = 1 µm and ground plane gaps of
g = 10 µm. The length of the resonant section is L = 1.75 mm. According to Sonnet
simulations (taking into account kinetic inductance Lk = 3.5 pH/sq) this geometry is
expected to exhibit a characteristic impedance of approximately Zr = 200 W and a
resonant frequency of 7.3 GHz. The PBG structure that confines the resonant mode
of the device consists of four cells that result in the transmission spectrum presented
in Fig. 3.7. The design and fabrication details of the PBG resonator are outlined in
Sec. 3.1 and Sec. 3.2.

The measurements were conducted in the 3He refrigerator at a 400 mK base tem-
perature (see Sec. 3.4.1). Detailed schematics of the cryogenic and room temperature
measurement setups were presented in Fig. 3.18 and Fig. 3.20, respectively. A simplified
experimental setup used in this chapter, portraying the most important components,
is presented in Fig. 5.1.

5.2.1 Device characterization

The resonator is measured in reflection using a VNA. The output port of the VNA
sends a signal down an attenuated coaxial line which is routed to the device via a
circulator. The signal reflected from the resonator is returned to the VNA via another
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Figure 5.1: a) Simplified schematic of the experimental setup, illustrating the PBG
resonator/KIPA inductively coupled to a spin ensemble (purple), amplification stages
at 4 K (HEMT) and room temperature, followed by homodyne detection. The pump
tone ωp, input signal ωs and DC current IDC are generated at room temperature
and combined at 400 mK. b) Simulated transmission spectrum of the PBG structure
demonstrating locations of the signal and pump tone frequencies.

coaxial cable that passes through an additional microwave isolator to protect the spins
and the KIPA from thermal noise emitted by the higher temperature stages. This
allows us to measure the amplitude and phase of the S11 response for the device and
experimental setup.

Using Eq. 2.48 we fit the measured response and extract the resonator properties
such as its resonance frequency (ω0), internal (Qint) and external (Qext) quality factors.
An example of the fitting routine is shown in Fig. 5.2. The circle fit technique for
complex resonator scattering data is described in Ref. [169], and throughout this thesis
we utilize the algorithm detailed there to fit our resonances. Even though the algorithm
corrects for the electrical delay imposed by the measurement lines, in order to get the
most accurate fits we first subtract the line response obtained in a separate measurement
with the resonator detuned in frequency. This allows us to remove any frequency
response of the line not related to the device that might complicate the fitting routine.

It is clear that the resonator line-shape (the dip in the S11 magnitude plot, Fig. 5.2b)
is not an ideal Lorentzian, as predicted by Eq. 2.48, but rather displays some asymme-
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Figure 5.2: Fit of the fundamental mode S11 response. a) The S11 measurement forms
a circle when plot on a complex plane. b) The magnitude of the reflected signal as
a function of frequency. The dip indicates the absorption of some microwave power
by the resonator. c) The phase response of the complex S11 reflection measurement,
indicating that the resonator is in the over-coupled regime (Qint > Qext).

try. The precise origin of this asymmetric response is still under debate [169], though it
is suggested to stem from impedance mismatches in the vicinity of the resonator [170].
To take this asymmetry into account we substitute the real external coupling rate κext
with the complex term κext,asym = κexte

iφ, where the phase φ represents the degree
of an asymmetry. Based on the fits shown in Fig. 5.2, we find the fundamental mode
of the resonator has a frequency of ω0/2π = 7.233 GHz and a linewidth κ ≈ 280 kHz
determined by its internal Qint ≈ 2 · 105 and external Qext ≈ 0.3 · 105 quality factors.

Next we apply a DC bias current to the device, which is utilized later to enable
amplification through 3WM (see Sec. 4.2). We connect a NI source measurement unit
(SMU) (operated as a voltage source) through a room temperature 1 kW resistor to
the device. The DC current was ramped up from 0 mA until we reached the critical
current, which is around 4.5 mA for this device. For each current we measured the
complex reflection S-parameter. The resonant frequency and quality factors have been
extracted from the fits and plotted in Fig. 5.3 as a function of the DC bias current.

For the DC current sweep the microwave power generated by the VNA is kept
constant. We estimate the power to be −117 dBm ± 2 dBm at the resonator input,
determined by performing line loss calibration measurements in a separate cool-down.
At zero bias current this power corresponds to 〈n〉 ≈ 103 photons on average residing
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Figure 5.3: a) Dependence of the resonance frequency of the fundamental mode on the
applied bias current. The frequency drops as the current increases due to the expected
increase of its kinetic inductance. b) The internal and external quality factors of the
fundamental mode as a function of the bias current.

in the resonator (see Eq. 2.47). This number varies slightly for different bias currents
since the coupling rates are not constant.

The frequency of the current-biased resonator decreases as the current is increased,
which is perfectly described by the expected current dependence of the kinetic induc-
tance according to Eq. 2.57. Based on this equation we fit the frequency response to the
biquadratic polynomial ω0/2π = a+bI2 +cI4 resulting in coefficients a = 7.233 (GHz),
b = −2.3712 ·10−3 (GHz/mA2) and c = −8.84348 ·10−6 (GHz/mA4). The experimental
data and fit are shown in Fig. 5.3. The increase of the bias current inevitably leads to an
increase in the number of quasiparticles inside the superconducting material. They act
as dissipative loss centers and deteriorate the internal quality factor when the current
increases significantly. Curiously, there is a small unexplained increase in the internal
quality factor starting at IDC = 1 mA before it begins to drop at high currents. The
slight increase in the external quality factor likely results from a combination of effects
related to the PBG structure; the current will shift resonator frequency relative to the
center of the bandstop region and the impedance of the PBG sections are also expected
to change slightly.

The dependence of the fundamental mode on the signal power, down to the single
photon level, is measured at a constant bias current of 3.3 mA. This bias current value is
kept the same for all measurements described in this chapter (unless stated otherwise)
and corresponds to the frequency ω0/2π = 7.206 GHz. The fit results from the power-
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Figure 5.4: The fundamental mode fit parameters as a function of the power at the
resonator input. The left axis represents the quality factors of the mode and the right
axis depicts the resonance frequency shift relative to the single photon level.

dependence measurement are presented in Fig. 5.4. At the minimum input power
of approximately −147 dBm the average number of intra-cavity photons approaches
unity. When the power is increased the internal quality factor increases. This power
dependence indicates that the device suffers from losses due to the TLSs. Depending on
the TLSs-resonant mode interaction mechanism, at low power the internal quality factor
of the resonator can exhibit a different behaviour to the typically observed saturation
[171]. When the power is large (i.e. greater than −70 dBm) the frequency of resonator
shifts down and the resonator enters the bifurcation (unstable) regime [172], [173]. The
external quality factor is constant over a wide range of input powers and increases
at about −60 dBm, which could simply be related to fitting errors as the resonator
becomes unstable.

5.2.2 Resonator - spin ensemble coupling

The calculation of the coupling strength between the PBG resonator and spin en-
semble is reasonably well-understood and studied problem [174]–[176]. In our device
coupling distribution is expected to be highly inhomogeneous due to the broad implan-
tation profile (recall Sec. 3.2.1) and inhomogeneous B1 field generated by the narrow
central line of the resonator. To estimate this coupling profile, we model this central
line as 1 µm wide and 50 nm thick superconducting inductive wire. The wire is placed
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parallel to the external static magnetic field −→B 0. As a result, current in this wire gener-
ates a −→B 1 field perpendicular to −→B 0. This

−→
B 1 field then drives the Ŝx transitions of the

spins located underneath the wire. Using the simulation software Comsol Multiphysics,
which is based on finite element analysis, and setting the current distribution in the
superconducting wire to that presented in Ref. [177], we compute the magnetic field B1

distribution. The magnetic field is scaled to the level of the RMS vacuum fluctuations
δB1 using Eq. 2.15. The projections of this field (located in the plane perpendicular to
the resonator wire axis) along x and y axes are presented in Fig. 5.5.

Figure 5.5: The projection on a) x and b) y axis of the magnetic field vacuum fluc-
tuations generated by the 1 µm wide inductive wire located at Y = 0 (silicon chip
surface).

To calculate the distribution of coupling rates to the spin ensemble ρ(g), we first
calculate the spin-resonator coupling strength g for each spin in the region implanted
under the wire. We calculate g as:

g = γe ∗ δB1(x, y) ∗Mij (5.1)

where Mij is the transition matrix element that, for example, we can consider
for |F ,mF 〉 = |4,−4〉 → |5,−3〉 transition at B0 ≈ 360 mT and set it to 0.43 (see
Sec. 2.5.1). We calculate the coupling strength g for spins in the implantation profile
detailed in Sec. 3.2.1 and produce a coupling distribution ρ(g). We plot the normalized
coupling distribution g2

g2
ens
ρ(g) shown in Fig. 5.6. The ensemble coupling rate gens is

defined as:
gens =

(∫
g2ρ(g) dg

)1/2
(5.2)

As can be seen in Fig. 5.6, the spin coupling distribution is quite inhomogeneous,
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Figure 5.6: Calculated resonator-spin ensemble coupling strength distribution normal-
ized by (g/gens)2.

with a predominant peak in g at approximately 20 Hz. An inhomogeneous resonator-
spin coupling distribution is common when working with superconducting micro-resonators
[178] and has previously been used in tandem with strain generated by the resonators
to perform spatially-dependent spectroscopy of donors in devices [174], [176], [179].

5.3 Spin echoes

In order to bring the bismuth donor spins into resonance with the cavity, we apply an
external magnetic field −→B0 parallel to the plane of the thin superconducting NbTiN film
and aligned along the quarter-wavelength resonant CPW section to ensure −→B0 ⊥

−→
B1.

This results in 20 electro-nuclear energy states of the neutral 209Bi donor system (see
Sec. 2.5) that can be studied using pulsed ESR spectroscopy techniques (see Sec. 3.6).

The oscillating magnetic field −→B1 generated by the resonator can drive resonant Ŝx
transitions with non-zero matrix elements (see Sec. 2.5.1). By scanning the magnitude
of −→B0 and applying a 200 pulse Carr-Purcell-Meiboom-Gill (CPMG) sequence (see
Fig. 5.7a) at each field, we excite all ESR transitions up to 360 mT, as illustrated
in Fig. 5.7. Fig. 5.7b shows the transition frequencies of 209Bi in the low-field limit,
calculated based on the Hamiltonian presented in Eq. 2.96. The horizontal dashed line
depicts the frequency of the superconducting cavity. At points of crossing with the
spin transition frequencies we observe peaks in the integrated spin echo signal, shown
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in Fig. 5.7c.

τ
πyπx/2 τ

x N 
Aecho

(a)

(b)

(c)

Figure 5.7: a) CPMG pulse sequence used to detect spin echoes. Here N = 200 and
τ = 120 µs. b) ESR transition frequencies of the neutral 209Bi donor spin system
in the low magnetic field limit. Horizontal dashed line represents the frequency of the
superconducting cavity employed to control spins and inductively detect their response.
c) Detected integrated normalized spin echoes as the magnetic field |−→B0| is swept.
Vertical dashed lines highlight the transitions investigated in this chapter.

The use of a CPMG pulse sequence to trigger the emission of multiple echoes (N =
200) in a single measurement allowing us to enhance the SNR, ideally by a factor
√

200 but typically smaller due to the existence of pulse errors and decoherence [31], as
compared to a conventional Hahn echo pulse sequence. To further increase the SNR, we
repeat the CPMG sequence 5 times at each value of the magnetic field (with a repetition
time of Trep = 5 s) and average the result. The relative shape and phase of the pulses
are controlled by IQ-modulation of a local oscillator at the resonator/spin frequency
(ωLO = ω0) with a baseband signal supplied by an arbitrary waveform generator (AWG)
(M3202A, Keysight Technologies). We ensure suppression of any local oscillator leakage
between pulses by additionally gating the output with a fast microwave switch. The
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resulting spin echo signals are routed via a double circulator to a low-noise HEMT
amplifier at 4 K, a further room temperature amplification stage (with a total gain of
75 dB), before undergoing homodyne demodulation by mixing the signal with the local
oscillator carrier at ωLO. The resulting baseband spin signal is filtered, amplified and
digitized. All signals are further digitally filtered at 200 kHz and have a linear baseline
subtracted. The echoes are digitally rotated in the IQ-plane to minimize

∫+Te/2
−Te/2 Q(t) dt

(with Te the duration of an echo) in the time domain in which the echo is recorded.
This maximizes the echo’s alignment along the I quadrature.

The duration of the pulses are the same for both the π/2 and π rotations tp = 3 µs
and the waiting time between pulses is τ = 120 µs. It is worth noting that here the
pulse duration is shorter than the characteristic decay time of the cavity, often called
ring-down time, defined as tcav = 2/κ ≈ 7 µs. In this case the pulse amplitude inside
the cavity rises linearly until the end of the pulse duration and then exponentially
decay (with a time constant tcav) during the ring-down time [180]. The power of the
π/2 pulse is set lower than the π pulse by an amount 6 dB, corresponding to half the
−→
B1 amplitude (and therefore rotation angle) for the π/2 pulse. This approach ensures
the same bandwidth for each pulse in the sequence, so that the spins excited by the
initial pulse are effectively refocused by the following pulses [82].

In Fig. 5.7c we plot the integrated echo signal obtained from the demodulated
quadratures I(t) and Q(t). The echo magnitude is calculated as A(t) =

√
I(t)2 +Q(t)2,

and its area is defined as Aecho =
∫+Te/2
−Te/2 A(t) dt. An example of a single trace of an echo

from which we extract the integrated magnitude is presented in Fig. 5.8. For the most
of spin echo experiments presented in this chapter we focus on the low-field transition
at ∼ 6.78 mT, which corresponds to the |F ,mF 〉 = |4,−4〉 → |5,−5〉 transition (see
Sec. 2.5.1).

To calibrate the optimal length and power of pulses a Rabi oscillation experiment
is performed [99]. The refocusing π pulse power in the CPMG sequence is swept and
the integrated echo magnitude recorded, resulting in the damped oscillations presented
in Fig. 5.9. The maximum of this plot occurs when the refocusing pulse nominally
performs a π rotation of the spin ensemble magnetization, indicating the correct powers
to use in our experiments.

Next we perform an inversion recovery experiment to measure the longitudinal spin
relaxation time T1. This relaxation time dictates how long we must wait between
sequences when repeating measurements, the so-called repetition time Trep. We first
apply a π pulse, called inversion pulse, to invert the magnetization of spin ensemble as
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Figure 5.8: Spin echo signal in time domain. Averaged quadratures I(t) and Q(t) are
shown in blue and red, respectively. Echoes were digitally rotated in the IQ-plane to
maximize the echo’s alignment along I. The echo magnitude A(t) is presented in green.
The duration of the echo is approximately Te = 8 µs.

Figure 5.9: Rabi oscillations measured by sweeping the amplitude of the refocusing π
pulse in the CPMG sequence.

explained in Sec. 3.6.4. Next we pause for a period Twait before performing a CPMG
pulse sequence to probe the spins magnetization. The duration of the pulses are the
same for both the π/2 and π rotations tp = 10 µs and the waiting time between pulses
is τ = 75 µs. This CPMG sequence consists of N = 200 π pulses and is averaged 3
times with repetition time Trep = 30 s to allow for full relaxation of spins. We show the
result of this experiment for different Twait times in Fig. 5.10. The characteristic time
of the exponential decay is T1, which we find here to be T1 = 600 ms. Thus, to allow full
relaxation of the spins between measurements, the wait time between pulse sequences
should be sufficiently larger than T1. Often in hybrid systems employing high quality
factor superconducting cavities, this T1 time can be limited by Purcell relaxation [48].
We investigate the spins longitudinal relaxation mechanisms further in Sec. 6.4.3 of the
next chapter.
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Figure 5.10: Measurement of the longitudinal relaxation time of the electron spins
with an inversion recovery experiment. An exponential fit to the normalised integrated
quadrature I signal AI allows us to extract a T1 = 600 ms.

We measure the transverse relaxation time T2 using the CPMG dynamical decou-
pling sequence (see Sec. 3.6.3). Here we perform an echo decay measurement by adding
pulses to the CPMG sequence with a fixed inter-pulse delay 2τ = 240 µs, plotting the
integrated echo amplitude as a function of the pulse number N (see Fig. 5.11a). We
managed to detect up to 500 echoes in this experiment and each echo was averaged 200
times. The repetition time of the sequence was Trep = 5 s. We fit the resulting decay to
the function Aecho(t) = exp (−(2τN/T2)β) and find T2 = 14 ms (see Fig. 5.11b). This
exceptionally long T2 is permitted by the 28Si isotope enrichment of the silicon chip
and shows the great promise of donors in silicon for quantum information processing
applications.
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Figure 5.11: Measurement of transverse relaxation time T2 of the electron spins using a
CPMG pulse sequence. a) Single quadrature echo amplitude I(t) decay with increasing
pulse number N . b) The decay of the integrated echo amplitude as a function of the
total free precession time after the initial π/2 pulse. This decay is fit to the function
Aecho(t) = exp (−(2τN/T2)β) allowing us extract T2 = 14 ms.

127



5.4. Parametric amplification of spin echoes

5.4 Parametric amplification of spin echoes

So far we have simply employed the KIPA as a superconducting cavity to deliver
control pulses to the spin ensemble and inductively detect their emitted spin echoes.
We now introduce a DC-bias current to the superconducting cavity IDC = 3.3 mA,
which allows us to amplify the echo signals with a pump tone through the process of
3WM.

We first characterise the parametric gain of the KIPA with a VNA measurement.
The pump is routed to the device via a fast microwave switch (allowing us to operate
the pump in pulsed mode, if required), attenuators, a bandpass filter and finally a
diplexer (DPX1114, Marki Microwave Inc.) that combines the pump with the other
tones. In the device the DC current (IDC), strong microwave pump (ωp) and signal
(ω0) are all mixed to produce parametric amplification (see Ch. 4). The pump tone
is generated by an independent low phase noise microwave source (E8267D, Keysight
Technologies) – see setup schematics in Figs. 3.18 and 3.20.

Despite the device reported in this chapter having a slightly different design to the
one measured in Ch. 4, they both operate as phase sensitive parametric amplifiers that
work on the principle of 3WM. In Fig. 5.12a we present the reflection measurements
of the KIPA when the pump tone is off and the signal power at the device input
is P0 = −137.9 dBm. The fitting routine indicates that the device operates close
to the critical coupling regime, with an internal quality factor Qi = 31.5 · 103 and
external quality factor Qc = 39.1 · 103. Application of the pump tone with frequency
ωp ≈ 2ω0, where ∆ω = ω0 − ωp/2 < κ i.e. half of the pump frequency lies within
the resonator bandwidth (∆ω exceeds the VNA bandwidth) results in non-degenerate
(phase-insensitive) parametric amplification. A measurement of the KIPA gain curve
when operating in the non-degenerate mode is shown in Fig. 5.12a (red data points).
When ωp = 2ω0 the KIPA works as a phase-sensitive amplifier, producing degenerate
gain. The degenerate amplification is studied as a function of the pump power and
reveals a maximum gain (found by sweeping the pump phase) as large as 30 dB, as
shown in Fig. 5.12b.

Next we combine amplification with the pulsed spin experiments by introducing the
pump for a duration that overlaps with the time window where we expect a spin echo
to form. The LO and the pump source are phase-locked since we operate the KIPA
in phase sensitive/degenerate mode. Whilst performing non-degenerate amplification
of the spin echo signal is possible, the existence of the idler mode complicates the
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I

Figure 5.12: a) Reflection measurement of the resonator (KIPA) without the pump
tone (green) and with the pump tone (red). The data was recorded with a VNA. b)
Gain produced by the KIPA in the degenerate mode of amplification (green) as well
as the power gain (SNR improvement) of the spin echo signals with amplification as
a function of the pump power. c) Pump phase dependence of the amplified spin echo
signals. The traces are adjusted to align the maximum integrated echoes at φp = 0 rad.
At each phase the amplified integrated echo magnitude is measured 210 times and
the mean is recorded. The error bars correspond to the standard deviation of the
repetitions. The data has been normalized so that the spin echo signal measured
without parametric amplification (yellow) is equal to unity. The solid lines serve as
guides to the eye and do not represent fits. d) Averaged spin echo amplitudes in
the time domain as a function of pump power at φp = 0 rad (maximum gain). The
measurement was performed at 6.78 mT. e) Averaged spin echo amplitude in time
domain as a function of pump power at φp = 0 rad. The measurement was performed
at 254 mT.

resulting demodulated signal. The idler should be filtered out, however, to do that
we require the signal bandwidth to be significantly smaller than the cavity bandwidth
(since both the signal and idler need to be supported within the cavity resonance),
which is not the case here where both bandwidths are approximately equal. Exploiting
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phase-sensitive amplification means we do not need to worry about filtering the idler
tone, which combines with the signal constructively to provide an extra 6 dB of power
gain relative to phase insensitive operation.

In the following experiments we utilize a Hahn echo pulse sequence to investigate
the spin echo amplification. The duration of both pulses is fixed at tp = 10 µs, which
provides an excitation bandwidth (∝ 1/tp) slightly smaller than the cavity linewidth
(κ = ω0/Q). This ensures that the resulting spectral content of the signal is con-
tained within the degenerate amplification bandwidth. The pulse amplitudes are set to
−83.9 dBm and −80.9 dBm at the device input for the π/2 and π pulses, respectively,
whilst the free evolution period between the pulses is τ = 300µs. We repeat the pulse
sequence at a rate of 1 Hz, which is close to the reported relaxation rate 1/T1 in order
to speed up the collection of samples. This results in a residual magnetization of the
spins after each pulse sequence (i.e. saturation). The echo sequence and repetition rate
is kept constant throughout our experiments so that all measurements are saturated
equally.

The pump tone (which is gated with a microwave switch) is sent to the KIPA 50 µs
after the refocusing pulse and left on for 500 µs to overlap with and amplify the echo
signal. We plot the integrated parametrically amplified echo signal as a function of the
pump tone phase in Fig. 5.12c. The integrated echo magnitudes in this plot have the
background noise subtracted, a process achieved in two steps. First, we perform the
Hahn echo pulse sequence with the pump on around the time of echo emission. We
then repeat the exact same pulse sequence with the refocusing pulse amplitude set to
zero (blank pulse sequence), which does not produce any echo and only the noise is
amplified. The reported amplified echo signals are obtained by taking the difference of
the integrated data from both measurements. We present some examples of the time
domain spin echoes measured at 6.78 mT as a function of the pump power in Fig. 5.12d.

In Fig. 5.12b we plot the maximum integrated echo gain from the measurements in
Fig. 5.12c, along with the measured degenerate KIPA gain found by sending down a
continuous wave signal with the spins detuned from the resonator frequency. We observe
qualitative agreement between the two measurements. The echo gain is smaller than
the degenerate gain measured with a continuous signal by ∼ 6 dB, which is likely due
to the wider spectral bandwidth of the echoes which sample a broader range of the
gain curve (Fig. 5.12a), whilst the continuous tone experiences the maximum possible
gain. The single shot power SNR enhancement of the spin echo signal as a function of
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degenerate power gain is presented in Fig. 5.13a and calculated as:

SNR improvement = 20 log10

(
SNRon
SNRoff

)
(5.3)

where
SNRon,off = Aecho −Ablank

Ablank
(5.4)

is the SNR of the echo signal when the pump tone is delivered to the cavity (SNRon)
and when the pump tone is off (SNRoff ). Ablank represents the integrated noise pro-
duced by blank pulse sequence. In this plot the KIPA gain is interpolated from the data
in Fig. 5.12b. We achieve up to 25 dB improvement in the power SNR of the detected
echo and the linear dependence of the data again confirms the qualitative agreement.
We note that the 25 dB enhancement in the power SNR, which corresponds to a linear
amplitude SNR improvement of 17.8, is several factors greater than what has been
achieved in other quantum-limited ESR spectrometers [31], [168], despite this work
being performed at a higher temperature (400 mK compared to 20 mK) and with the
parametric amplifier placed in a magnetic field.

To test our parametric amplifier at even higher magnetic fields that are more typical
for conventional ESR experiments (i.e. at X-band frequencies corresponding to B0 ≈
0.34 T for a g = 2 spin) we operate on the |F ,mF 〉 = |4,−3〉 → |5,−2〉 bismuth
spin transition, which is at B0 = 254 mT for our resonator. At this magnetic field the
internal quality factor of the resonator reduces to Qint ≈ 20·103, however, amplification
is still possible. Fig. 5.12e depicts the parametrically-amplified spin echoes for different
pump powers obtained at B0 = 254 mT. We report an amplitude magnification by up
to four times, with an equivalent increase in the SNR. Achieving echo amplification in
such a large magnetic field is an outstanding outcome and demonstrates the robustness
of the KIPA and the realistic application of this technology to ESR spectroscopy.

Finally, to test the bandwidth of the KIPA we sweep the length of both pulses
simultaneously (and therefore their spectral properties) at different values of the pump
power (see Fig. 5.13b). We find that the linear echo gain saturates at smaller pulse
lengths for the lower pump power measurement, since the reduced gain provides a larger
amplifier bandwidth due to the fixed gain-bandwidth-product of the KIPA [74]. The
data presented in Fig. 5.13b has been digitally low-pass filtered with a 500 kHz cutoff
frequency, greater than the bandwidth of the shortest pulses used in the measurement.
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Figure 5.13: a) Power SNR enhancement of the spin echo signal as a function of the
degenerate KIPA gain. b) Linear spin echo gain as a function of the π and π/2 pulse
duration. Measurements are performed at B0 = 6.78 mT for two different pump powers
and hence KIPA gains.

5.5 Conclusions

We have demonstrated that a simple and versatile amplifier, the KIPA, can be used
as a microwave cavity to inductively detect spin echoes and simultaneously act as a
first-stage low-noise parametric amplifier. We report a 17.8 times improvement in the
SNR of spin echo amplitude – a considerable enhancement that reduces measurement
times by more than a factor of 300. Moreover, the KIPA is suitable to operate in
large magnetic fields compatible with conventional ESR, tested here up to ∼ 250 mT.
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5.5. Conclusions

Improvement of the internal quality factor in future designs of the KIPA and better
alignment of the chip inside the magnetic field could extend its use to even higher
magnetic fields.
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Chapter 6

Parametric spin cooling

In this chapter we present a scheme that enables parametric spin cooling in a cQED
device. Our spin cooling proposal is supported with some preliminary experimental
results.
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6.1. Motivation

6.1 Motivation

In this chapter we focus on a particular technique for improving sensitivity in ESR
spectroscopy that is based on the enhancement of spin polarization.

The amplitude of a spin echo signal is proportional to the spin polarization, which
for an ensemble of electron spins with S = 1/2 is simply defined as the difference
between the number of spins in the ground N↑ and excited N↓ states [99]:

∆N = N↑ −N↓ (6.1)

The thermal spin population is governed by the Boltzmann distribution (Eq. 2.75),
allowing us to write the polarization in terms of the total number of spins N = N↑+N↓

in the following form [100]:

∆N = Np = N tanh
( ~ωs

2kBTs

)
(6.2)

where ωs is the spin Larmor frequency, Ts represents the spin temperature and kB
is the Boltzmann constant. Thus, to enhance the spin polarization, one must either
increase ωs or decrease Ts. Increasing ωs by raising the magnetic field B0 is not a
viable strategy when performing ESR with superconducting resonators, due to the
losses experienced by the resonators at high field. We therefore focus on methods to
reduce the effective spin temperature Ts.

A novel technique for cooling spins using a high-Q superconducting resonator was
recently demonstrated in Ref. [39]. In this experiment they utilize a lithographically
defined superconducting niobium micro-resonator resonator fabricated on a silicon chip
with implanted bismuth donors, which provides the ensemble of electrons spins to be
cooled. There the spins are coupled to two relevant reservoirs, phonons in the host
silicon lattice with temperature Tphon, and photons in the electromagnetic mode of
the resonator with a temperature Tphot. The equilibrium temperature of the spins is
determined by the rate at which the spin system spontaneously emits quanta of energy
~ωs to each bath [39] and the individual bath temperatures.

In standard magnetic resonance experiments the rate of the phonon-mediated spin
relaxation Γphon is many orders of magnitude larger than the photon-based (or radia-
tive) relaxation process occurring at a rate Γphot [48]. As a result, the spin temperature
is set by the temperature of the phonons in the host lattice Tphon [99].

The Purcell effect (Sec. 2.4.2) provides a way to significantly enhance the rate of
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Figure 6.1: Radiative spin cooling scheme. Image taken from Ref. [39].

radiative electron spin relaxation through the use of microwave resonators [48], [111].
The Purcell-enhanced relaxation rate of a spin (frequency ωs) coupled to a resonator
(frequency ωr = ωs) with an interaction strength g0s is Γphot = 4g2

0s/κ (see Eq. 2.95),
where κ = κint + κext is the total decay rate of the resonator, including internal losses
(κint) and any coupling to external transmission lines (κext). For Γphot � Γphon, we
enter the so-called Purcell regime, where the spins thermalize via photon (rather than
phonon) emission, with the relevant temperature being that of the electromagnetic field
Tphot.

The Purcell regime was reached in the experiment reported in Ref. [39]. By cooling
the microwave field, the effective bismuth spin ensemble temperature could be lowered
below that of the chip (i.e. the phonon temperature). Fig. 6.1 presents a simplified
schematic of the scheme followed in the experiment. The spins (green) are pictured
inside the silicon crystal (magenta) and coupled to the high-Q superconducting cavity
(red). The resonator is operated in the over-coupled regime (κext � κint, where mi-
crowave photons in the mode are lost to the external transmission line. In this regime
the resonator mode is thermalized to the electromagnetic field in the transmission line,
as opposed to the various loss mechanisms inside the device (such as two-level systems)
which have a temperature Tphon. A low loss superconducting NbTi coaxial cable con-
nects the resonator external port to a 50 W load at a lower temperature (Tcold = 20 mK)
than the chip (Thot = 850 mK). In the absence of any loss between the resonator and
the load, the temperature of the mode would become Tcold, despite the resonator being
operated at the much warmer Thot. Since the spins are in the Purcell regime, they
thermalize to Tcold. Unavoidable loss of the microwave components used to connect the
load and resonator (a circulator, directional coupler and a switch) meant that the tem-
perature of the mode only reached a value of Tcold = 500 mK. Nevertheless, the authors
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were able to observe an approximate doubling of the spin polarization (detected as an
increase in the echo amplitude) when the resonator was connected to the cold load.

For this scheme to work we require κext � κint, which is challenging provided the
superconducting resonator must be placed in a magnetic field. Furthermore, this idea
is only able to cool the spins to the lowest temperature available in the measurement
system. Inspired by this impressive experiment, here we propose a new scheme to
hyper-polarize an ensemble of electron spins and cool them to arbitrarily low tempera-
tures. This scheme utilizes parametric processes facilitated by our nonlinear multimode
circuit resonator and should even work in the under-coupled regime where κext < κint.
Through the application of a parametric drive, we show that we can couple the fun-
damental mode of our PBG resonator (to which the spins are coupled) to a higher
frequency harmonic. This parametric coupling can be used to cool the fundamental
mode and therefore the spins. Below we present a theoretical framework to understand
and model this multimode parametric cooling idea.

6.2 Proposal

6.2.1 System Hamiltonian

Figure 6.2: Optomechanical cou-
pling scheme. An optical Fabry-
Perot cavity has one movable mir-
ror that forms part of a mechan-
ical system. Image taken from
Ref. [181].

The nonlinear NbTiN photonic bandgap
(PBG) resonators (described in Ch. 3) support
multiple modes that satisfy the open/short bound-
ary conditions at either end of the resonant sec-
tion (Sec. 2.1.3). We consider here the lowest
two modes only; i.e. the fundamental mode and
the first harmonic, though in-principle this scheme
could extend to any modes supported. The kinetic
inductance of the resonator (Eq. 2.57) depends on
the total current flowing through it, including con-
tributions from the various modes. The vacuum
current fluctuations in the fundamental mode will modify the kinetic inductance seen
by the first harmonic (and vice-versa) and therefore its resonance frequency, providing
a means to couple the two modes together.

137



6.2. Proposal

This coupling mechanism resembles the one commonly employed in optomechani-
cal systems, where an optical cavity is coupled to a mechanical resonator with vastly
different natural oscillation frequencies [182]. The optical cavity is formed by two re-
flective mirrors, one mirror is fixed whilst the other is attached to a spring, thus forming
a mechanical resonator. Such an optomechanical system is schematically depicted in
Fig. 6.2. Displacements of the mechanical system (with annihilation operator x̂) change
the length of the optical cavity (â) and modify its frequency, inducing a “parametric”
coupling between the optical and mechanical modes. The Hamiltonian that describes
this interaction between two quantum harmonic oscillators with frequencies ωa and ωb
is written as [183]:

Ĥ = ~ωaâ†â+ ~ωbb̂†b̂− ~g0â
†â(b̂+ b̂†) (6.3)

where g0 is the single photon coupling strength between two modes. The first term
in Eq. 6.3 represents the energy of the harmonic “a”, the second term describes the en-
ergy of the fundamental mode “b” and the last term is their nonlinear coupling induced
by the field of “b”. This standard optomechanical Hamiltonian is derived assuming
ωa >> ωb to ensure that the field in cavity “a” adiabatically adjusts to the para-
metrically modulated resonance frequency caused by the dynamics of cavity “b” [184].
This approximation is valid for optomechanical systems where the frequency of me-
chanical oscillator is many orders of magnitude smaller than the frequency of optical
cavity. In the case of our multimode λ/4 microwave resonator with fundamental mode
frequency ωb/2π ≈ 7.2 GHz and first harmonic ωa ≈ 3ωb this approximation is not
strictly valid. Nevertheless, we find our experimental results to be in good agreement
with the theoretical predictions of this Hamiltonian. Future work is focused on deriv-
ing a first-principles microscopic Hamiltonian of our current-biased kinetic inductance
resonator for a more rigorous description of the parametric inter-mode coupling.

Expanding on the analogy with an optomechanical system, the change in energy
imparted on the first harmonic through the kinetic inductance shared with the funda-
mental mode is:

∆Ek = ∆Lk(Ib)
2 I2

a (6.4)

with ∆Lk(Ib) the change in kinetic inductance seen by mode “a” due to the zero-point
fluctuations in mode “b”. We note that although the spatial distributions of the two
modes are orthogonal by definition, the mode currents enter in Eq. 6.4 as squares, and
thus lead to a non-zero spatial overlap and an energy shift. The kinetic inductance
shift has a quadratic dependence (Eq. 2.57) on the current in the fundamental mode
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∆Lk(Ib) ∝ I2
b , which itself can be written in a form identical to the displacement opera-

tor for a mechanical resonator Ib ∝ (b̂+ b̂†) (see Eq. 2.14). Rewriting I2
a ∝ (â+ â†)2 and

keeping only the energy-conserving terms, we find ∆Ek ∝ â†â(b̂+ b̂†)2. This is not the
standard form of the optomechanical coupling [182], being quadratic instead of linear
in the “displacement” operator (b̂+ b̂†). By introducing a DC current bias (in a similar
vein to Eq. 4.1), so that ∆Lk(Ib + IDC) ∝ I2

b + 2IDCIb + I2
DC , we recover the stan-

dard optomechanical coupling through the linear term 2IDCIb. Phenomenologically,
the single photon coupling strength between the resonator modes can be expressed as:

g0 = −δIb
∣∣∣∣∂ωa∂I

∣∣∣∣
IDC

(6.5)

where δIb is the zero-point current fluctuations of mode “b” (see Eq. 2.15) and
∂ωa/∂I is the shift in frequency of mode “a” due to current at the frequency of mode
“b” with a DC bias IDC applied. A future first-principles Hamiltonian of the DC-biased
kinetic inductance resonator should, for example, be able to relate ∂ωa/∂I to macro-
scopic system parameters such as Za(b) (the mode impedances), I2a(2b) (characteristic
current nonlinearity strengths for the modes) and ωa(b).

Our previous measurements indicate mode frequency resonance shifts of order 100 MHz
for applied DC currents of several milliamps (Fig. 5.3). Together with our estimation for
the zero-point current fluctuations δIb = ωb

√
~/2Zb ≈ 20 nA, we expect very small sin-

gle photon coupling strengths, well within the weak coupling regime where g0 � κa,κb.
In optomechanics, one method to boost the mode coupling is to apply a strong pump
tone (often called a drive) to mode “a” at the difference frequency of the two modes.
Following Ref. [184], we introduce to the Hamiltonian a drive field with frequency ωp
and amplitude εa:

Ĥ = ~ωaâ†â+ ~ωbb̂†b̂− ~g0â
†â(b̂+ b̂†) + ~(εaâe−iωpt + ε∗aâ

†eiωpt) (6.6)

By entering a frame rotating at the drive frequency, accomplished with the uni-
tary transformation Û = eiωpâ†ât (Ĥ → ÛĤÛ † − i~Û∂Û †/∂t), we remove the time
dependence from the driving terms:

Ĥ = ~∆aâ
†â+ ~ωbb̂†b̂− ~g0â

†â(b̂+ b̂†) + ~(εaâ+ ε∗aâ
†) (6.7)

where ∆a = ωa − ωp. It is common in optomechanics at this point to introduce
the so-called linearized approximation [182] where we split the cavity field â into two
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components, the average coherent amplitude 〈â〉 = α and a fluctuating term δâ:

â = α+ δâ (6.8)

This is equivalent to performing a unitary displacement transformation D(α) =
eαâ

†−α∗â with α = εa/∆a [184]. Applying the approximation 6.8 to the interaction part
of the Hamiltonian (Eq. 6.7), we find:

Ĥint = −~g0â
†â(b̂+ b̂†) = −~g0(α+ δâ)†(α+ δâ)(b̂+ b̂†) (6.9)

After expanding the interaction Hamiltonian in powers of α we omit the term
~g0δâ†δâ, which is much smaller than the terms proportional to the large drive α.
The interaction Hamiltonian then becomes:

Ĥint = −~g0(α∗δâ+ αδâ†)(b̂+ b̂†)− ~g0|α|2(b̂+ b̂†) (6.10)

The term proportional to |α|2 can additionally be dropped after implementing an-
other displacement transformation [182], as it simply represents an average radiation-
pressure force, or in our case a shift of the current origin. Without loss of generality
we assume a real-valued drive amplitude α∗ = α so that the linearized interaction
Hamiltonian is written:

Ĥint = −~g0(α∗δâ+ αδâ†)(b̂+ b̂†) = −~g0α(δâ† + δâ)(b̂+ b̂†) (6.11)

Here the effective coupling between modes is now proportional to the drive am-
plitude g = g0α, providing us with an experimental knob to enhance the coupling
strength.

In the case of a “red-detuned” drive, where ∆a = ωb (or ωp = ωa − ωb), in the
rotating frame we have two harmonic oscillators of equal frequency that can resonantly
interchange quanta. Applying the RWA (see Sec. 2.4) to Eq. 6.11 with a red-detuned
drive, we arrive at the “beam-splitter” interaction Hamiltonian in quantum optics:

Ĥint = −~g(δâ†b̂+ δâb̂†) (6.12)

This resonant interaction can be intuitively understood based on energy conserva-
tion. A photon from the low frequency mode ωb is up-converted to the high frequency
mode ωa by absorbing one photon from the drive field ωp = ωa − ωb. At the same
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Figure 6.3: Illustration of the coherent photon exchange between two coupled cavity
modes ωa and ωb, mediated by a pump tone ωp.

time, a high frequency photon can be down-converted by emitting a photon at ωp. The
diagram of this interaction is illustrated in Fig. 6.3.

6.2.2 Input-output formalism

To describe the time evolution of the coupled mode fields, we apply the input-output
formalism introduced in Sec. 2.1.7. We start by assuming the interaction Hamiltonian
under the linearized approximation Ĥint = −~g(â†b̂ + âb̂†), with pump-enhanced cou-
pling strength g = g0α. The quantum Langevin equations (Eq. 2.40) describing the
dynamical evolution of the modes â and b̂ in the rotating frame are then written as:

˙̂a(t) = −κa2 â(t)− i∆aâ(t) + igb̂(t) +√κa,extâin(t) +√κa,intf̂in(t) (6.13)
˙̂
b(t) = −κb2 b̂(t)− iωbb̂(t) + igâ(t) (6.14)

Here κa = κa,int + κa,ext and κb are the total coupling rates to mode “a” and “b”,
respectively. A schematic illustration of the model described by these equation is shown
in Fig. 6.4.

Mode “a” is driven by the field âin in the external transmission line, coupled at
a rate κaext . In the following experiments we measure mean values of the fields and
therefore omit the noise fluctuations f̂in in our Langevin equation, since 〈f̂in〉 = 0.
It is convenient to solve these equations in frequency domain by applying the Fourier
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Figure 6.4: Input-output model for the coupled cavity modes in the rotating reference
frame. The mode â is driven by âin via the transmission line shown in gray.

transform (Eq. 2.44) to obtain:

−iωâ(ω) = −κa2 â(ω)− i∆aâ(ω) + igb̂(ω) +√κa,extâin(ω) (6.15)

−iωb̂(ω) = −κb2 b̂(ω)− iωbb̂(ω) + igâ(ω) (6.16)

From Eq. 6.16 we can denote the field amplitude b̂(ω) of the mode “b” as:

b̂(ω) = − gâ(ω)
iκb
2 + ω − ωb

(6.17)

For a single port resonator the modes are fully characterized by the complex S11

scattering matrix parameter. Using the input/output identity âin + âout = √κa,extâ

(see Eq. 2.41) S11 can be expressed as:

S11 = 〈âout〉
〈âin〉

=
√
κa,ext〈â〉 − 〈âin〉

〈âin〉
(6.18)

Substituting Eq. 6.17 into Eq. 6.15 and putting the resulting expression for â(ω)
into Eq. 6.18, we obtain:

S11 =
−iκaext( iκb

2 + ω − ωb)
g2 − ( iκb

2 + ω − ωb)( iκa
2 + ω −∆a)

− 1 (6.19)

To take us back to laboratory frame we make the substitution ω = ωin− ωp, where
ωin is the frequency used to probe the resonator:

S11(ωin) =
−iκaext( iκb

2 + ωin − ωp − ωb)
g2 − ( iκb

2 + ωin − ωp − ωb)( iκa
2 + ωin − ωa)

− 1 (6.20)
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6.2.3 Parametric spin cooling requirements

Driving the nonlinear PBG resonator with a pump tone at frequency ωp = ωa − ωb
can induce a coherent exchange of photons between the coupled modes at ωa and ωb.
Such a technique (referred to as sideband cooling in optomechanical systems [182]) al-
lows for the reduction of thermal photons in the mode at ωb. For an in-depth theoretical
treatment of this cooling scheme we refer the reader to Refs. [185]–[187]. Ref. [188] re-
ports the cooling of a mechanical system to its quantum mechanical ground state using
this technique – a pioneering experimental demonstration of the power of parametric
processed in QED systems.

When a photon from mode “b” is mixed with a pump photon at ωp it can be up-
converted to a single photon at ωp +ωb (removing a photon from “b” in the process) or
it can be down-converted into two photons with frequencies ωp − ωb and ωb (adding a
photon to “b” in the process). By choosing ωp = ωa−ωb, we ensure that up-conversion
is favored since the photon density of states at ωp+ωb = ωa is enhanced by the resonant
mode “a”. The removal of photons from mode “b” leads to cooling. The rate of photon
up-conversion Γ− and down-conversion Γ+ is given as [185], [188]:

Γ± = 4g2κa
κ2
a + 4(∆a ± ωb)2 (6.21)

The mode also undergoes transitions due to interactions with its thermal environ-
ment, coupled at the rate κb. Including both thermal bath and pump contributions we
find the average number of photons 〈nb〉 in mode “b” from the rate equation [182]:

˙〈nb〉 = (〈nb〉+ 1)(Γ+ + Γ+,th)− 〈nb〉(Γ− + Γ−,th) (6.22)

where Γ+,th = κb〈nb,th〉 is the rate at which thermal photons are removed from the
mode, Γ−,th = κb(〈nb,th〉+ 1) is the rate at which thermal photons are added to it and
〈nb,th〉 is the average thermal occupation. The steady-state solution of Eq. 6.22 that
further takes into account the non-zero photon occupancy of mode “a” 〈na〉 is [189]:

〈nb〉 = 〈nb,th〉
(
κb
κa

4g2 + κ2
a

4g2 + κaκb

)
+ 〈na〉

(
4g2

4g2 + κaκb

)
(6.23)
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If mode “b” is not actively cooled (i.e. the pump tone is off), it has an average
number of photons that tends to thermal equilibrium 〈nb,th〉, as determined by the
temperature of the resonator according to Eq. 2.32. On the other hand, when we drive
at ωp = ωa − ωb and activate photon up-conversion/cooling, the mode population can
be lowered. From Eq. 6.23 it can be seen that the most efficient cooling occurs when
κa > g > κb. In this regime photons from mode “b” are up-converted to mode “a”,
where they dissipate in the thermal bath at the higher frequency ωa. This happens
faster than the rate at which thermal photons at ωb can repopulate “b”, leading to
cooling. In this regime the cooling rate is linear in g, which is controlled with the pump
power. When we reach the strong-coupling regime g > κa > κb, the cooling becomes
limited as the thermal photons Rabi oscillate between the modes. Eq. 6.23 places
bounds on the achievable cooling: the first term cannot be smaller than 〈nb,th〉κb/κa,
whilst the second term (which arises from the photon population of mode “a”) adds a
contribution of approximately 〈na〉. As a result, the photon occupancy of mode “b” is
always larger than the occupancy of photons in mode “a”.

Figure 6.5: Illustration of the parametric spin cooling scheme implemented with cou-
pled modes in a nonlinear resonator. Each electron spin in the ensemble is coupled to
the mode at ωb with a coupling strength gs.

As shown in Ref. [39] and explained here in Sec. 6.1, the spins can thermalize to their
electromagnetic environment if Γphot � Γphon, i.e. by entering the Purcell regime. If
the spins are coupled to mode “b” in the Purcell regime, and the same mode is actively
cooled as described above, then the effective spin temperature can be lowered. This
parametric spin cooling scheme is depicted in Fig. 6.5. Since the harmonic to which
mode “b” is coupled can, in-principle, be arbitrarily large in frequency, we can achieve
very low spin temperatures, below that of the measurement system.

In the Purcell regime the thermal photon population 〈nb,th〉 = 1/[exp(~ωb/kBT )−1]

144



6.3. Implementation

(Eq. 2.32 ) is related to the spin polarization p = tanh (~ωb/2kBT ) (Eq. 6.2) via p =
1/(2〈nb,th〉 + 1) [39]. Applying the parametric drive will lower the average photon
occupancy of mode “b” and reduce the effective spin temperature T , leading to an
enhancement in the spin ensemble polarization of:

η = pon
poff

= 2〈nb,th〉+ 1
2〈nb〉+ 1 (6.24)

Here the spin polarization when the drive is on is denoted as pon (with a photon
population of 〈nb〉) and poff (with population 〈nb,th〉) when it is off. This dynamic
electron spin polarization technique is of broad use in ESR spectroscopy measurements
as it provides a way to enhance SNR. Moreover, the only requirement for the spins is
that they possess a magnetic moment that can be inductively coupled to the resonator,
no specific level structure or ability to incorporate into a semiconductor lattice are
assumed. This scheme will work for any ge ≈ 2 spin, as opposed to other methods
for polarizing spin ensembles which use optical pumping techniques and rely on unique
electronic level structures [190].

6.3 Implementation

The device used in the following proof-of-principle parametric cooling experiments
is the same PBG quarter-wavelength design utilized in Ch. 5. Measurements were
conducted in the 3He cryogenic system at 400 mK using a slightly modified experimental
setup to that shown in Sec. 3.4.1.

To characterize the first harmonic of the resonator at 3ω0 ≈ 22 GHz, the cryo-
genic circulator and low-noise HEMT amplifier must be removed from the detection
chain, since they restrict the system bandwidth to frequencies between 3-10 GHz. The
modified measurement setup is presented in Fig. 6.6.

The probe tone is generated by a VNA and routed to the resonator via a directional
coupler “Pulsar CS10-56-436/20 1610” (0.5 − 27 GHz). The signal reflected from the
device passes through the directional coupler and a diplexer before being sent out of
the cryostat where it is then amplified and subsequently measured with the VNA. The
high-pass frequency range of the diplexer has an upper cut-off of 8 GHz, however,
we find that in practice signals at 22 GHz are transmitted with a small amount of
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Figure 6.6: Experimental setup adapted for probing the first harmonic measurements
of the resonator.

attenuation. We remove most of the fixed attenuators to compensate for the increase
in line loss at 3ω0 and because of the reduced measurement SNR without the cryogenic
amplifier. The DC bias current is provided by a SMU configured as a voltage source and
connected to the low frequency port of the diplexer through a 1 kW resistor. Finally,
at room temperature we use a power combiner to add the strong pump tone (utilized
for parametric mode coupling) with the probe signal from the VNA.

We note that this setup is only useful for characterizing both the fundamental and
first harmonic modes of our PBG resonator in a single measurement. To study spin
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cooling we do not require direct access to the first harmonic at 3ω0 and the setup in
Sec. 3.4.1 is preferred, since sufficient attenuation is critical to ensure that the photon
population of the modes is not dominated by thermal noise of the higher temperature
stages.

6.4 Experimental results

In this section we provide some initial experimental results towards the demonstra-
tion of parametric spin cooling, starting with a recap of the resonator fundamental
mode characterization presented in Sec. 5.2.1. We then present measurements of the
first harmonic mode and demonstrate a tunable inter-mode coupling through the appli-
cation of a strong pump tone. At high drive powers we observe normal-mode splitting
indicating that we reach the regime of strong coupling. Finally, we study the T1 dy-
namics of a spin ensemble coupled to the resonator and discuss some technical hurdles
that must be overcome to reach the Purcell regime.

6.4.1 Device characterization

Fundamental mode

The fundamental mode was observed at ω0/2π = 7.233 GHz with a zero DC current
bias. The internal Qint and external Qext quality factors were 2 · 105 and 3 · 104,
respectively, yielding a linewidth of κ ≈ 280 kHz (see Fig. 5.2). The frequency response
of the fundamental mode to the current fluctuations can be derived from the fit shown
in Fig. 5.3a. The fit is a simple polynomial with even powers of the current ω0/2π =
a + bI2 + cI4. For the fundamental mode these coefficients are a = 7.233 (GHz),
b = −2.3712 · 10−3 (GHz/mA2) and c = −8.84348 · 10−6 (GHz/mA4). The external
quality factor Qext increased by a factor of two at the DC bias current of 4 mA, whilst
the internal quality factor Qint reduced by a factor of two in comparison to its value
at zero DC current bias (see Fig. 5.3b).
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First harmonic

The first harmonic was observed at ω1/2π = 21.72 GHz with a zero DC current
bias. The fitting routine that allowed us to extract its resonance frequency is shown in
Fig. 6.7.

Figure 6.7: Fitting routine of the first harmonic. a) The resonant S11 forms a circle in
a complex plane. b) The magnitude of the reflected signal as a function of frequency.
The dip indicates absorption of the microwave power at the resonance frequency. c)
The phase response of the complex S11 reflection.

Figure 6.8: The current-dependence of the
first harmonic resonance frequency. The
frequency reduces as the current and con-
sequently kinetic inductance increases.

Monitoring the resonator S11 response
as a function of the applied DC cur-
rent, we plot the frequency tunability of
this mode in Fig. 6.8. As with the fun-
damental mode, its frequency tunability
derives from the current dependence of
the kinetic inductance, with the data fit-
ting well to a biquadratic function ω1 =
a + bI2 + cI4 where a = 21.7187 (GHz),
b = −8.8842 · 10−3 (GHz/mA2) and c =
−2.49 · 10−5 (GHz/mA4). Unfortunately,
the large asymmetry in the S11 response
of the first harmonic (see Fig. 6.7), possi-
bly due to impedance mismatches in out-of-band components (like the diplexer) at this
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frequency, meant that an accurate extraction of the quality factors wasn’t possible.

6.4.2 Coupled modes

To enhance the coupling between the first harmonic and the fundamental mode
of our quarter-wavelength PBG resonator we apply a strong parametric drive tone
at their difference frequency, as proposed in Sec. 6.2. We first introduce a DC bias
current of IDC = 3 mA to enable an optomechanical coupling between the modes. The
current shifts the fundamental mode to ω0/2π = 7.20675 GHz and the first harmonic to
ω1/2π = 21.6375 GHz. We then perform S-parameter reflection measurements of the
device centered about the two mode frequencies in the presence of strong pump tone.
Fig. 6.9 shows the S11 measurements about each mode as the pump frequency ωp is
varied. When the pump frequency equals the difference frequency of the first harmonic
and the fundamental mode, ωp/2π = (ω1 − ω0)/2π ≈ 14.43 GHz, a hybridization of
the modes occurs, indicating the onset of strong coupling. Another distinctive feature
is observed at ωp/2π ≈ 14.4135 GHz, exactly twice the fundamental mode frequency
ω0/π = 14.4135 GHz, and corresponds to parametric amplification of the probe signal
at ω0. We studied this process in detail in Chs. 4 and 5.

In Fig. 6.9 the pump power was kept constant at Pp = −45 dBm at the device
input. The probe signal power at the fundamental frequency was set to Ps = −78 dBm
and Ps = −60 dBm at the first harmonic. A larger signal power is required to probe
the first harmonic in order to compensate for the higher loss in the lines and microwave
components at ω1 compared to ω0.

Next we study the coupling strength g between the modes as a function of the
pump power with the pump frequency set precisely to the value ωp = ω1−ω0. Fig. 6.10
shows reflection S-parameter measurements centered on the two modes, where the pump
power is varied along the horizontal axis. The separation between the peaks defines the
normal mode splitting 2g. As the pump power is increased the normal-mode splitting
(and therefore g) is observed to get larger (see Sec. 6.2).

To extract the important coupled-mode system parameters we fit the hybridized
mode responses in the S11 measurements of Fig. 6.10 for the different pump powers
using Eq. 6.20. In our model we considered a probe field applied to the first harmonic,
however, here we measure the fundamental mode. We therefore exchange the role of
the modes in our theoretical expression for S11 (Eq. 6.20). Sample reflection spectra of
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Figure 6.9: Mode response to a parametric pump tone with fixed power and varying
frequency ωp. Reflection measurements of the device centered on a) the fundamental
mode and b) the first harmonic.

the fundamental mode at selected pump powers (along with their fits) are presented in
Fig. 6.11. The relevant coupling rates (g, κb,int, κb,ext and κa) extracted from the fits
are plotted in Fig. 6.12 as a function of the pump amplitude

√
Pp in the cavity. The

highest pump power we managed to deliver to the device before the NbTiN film entered
the normal state in this experiment was −26 dBm, corresponding to a g = 5.13 MHz
coupling strength between the modes. This g is greater than the total rate of loss for
each mode κb ≈ 2 MHz and κa ≈ 0.8 MHz. Such a strong coupling is possible due to
high pump power handling capability of the device. Moreover, as seen in Fig. 6.12 the
coupling strength scales linearly with the pump amplitude as predicted by Eq. 6.11.

We can provide an estimate for the pump enhancement of g by calculating the single

150



6.4. Experimental results

Figure 6.10: Coupling strength g between the modes as a function of the pump power.
S11 measurements of the device centered on a) the fundamental mode and b) the first
harmonic.

photon coupling strength g0, obtained using Eq. 6.5. The zero-point fluctuations of the
current in mode “b” (Eq. 2.15) is found to be δIb ≈ 20 nA. The current to frequency
conversion factor is found from the biquadratic fit of the frequency tunability data in
Fig. 6.8 for mode “a” (restricted to second order in I), performed about the DC bias
IDC , i.e. |δωa/δI|IDC

≈ 2bIDC . We thus find g0 ≈ |2bIDC |δIb = 850 Hz, a value 3-4
orders of magnitude smaller than g. The parametric drive therefore allows us to tune
the system from well within the weak coupling regime all the way to strong coupling.

The internal loss rate of the fundamental mode κb,int displays a quadratic depen-
dence on the pump amplitude in Fig. 6.12. This is predicted by theory, where the
Purcell-enhanced relaxation rate of mode “b” caused by mode “a” is Γb = 4g2/κa.
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Figure 6.11: Individual S11 spectra about the fundamental mode with a fixed-frequency
pump of varying power. Data sets are offset by 5 dB for clarity. The pump power
increases by 1 dBm for each successive spectra. The red lines are fits to the normal-
mode splittings using Eq. 6.20.

Physically, this is caused by photons being up-converted to and dissipated in mode “a”
appearing to mode “b” as another channel of loss. Since g scales linearly with

√
Pp,

then κb,int = κb,int(0) + Γb should exhibit a quadratic dependence (where κb,int(0) is
the intrinsic loss rate for mode “b” with no pump).
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Figure 6.12: The parametric coupling rate g increases linearly with the pump am-
plitude

√
Pp. This coupling increases the internal loss rate κb,int of the fundamental

mode. κb,int follows a quadratic dependence on the pump amplitude starting from its
intrinsic value when the pump tone is absent. The external coupling rate κb,ext of the
fundamental mode and the linewidth of the first harmonic κa remain constant over the
sweep.
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6.4.3 Spins

The spin system investigated in this chapter is the same as in Ch. 5. Here we study
the longitudinal relaxation processes described by the characteristic T1 time to test if
the system is in the Purcell regime, which is one of the requirements for implementing
the cooling protocol. We focus on the ESR transition |F ,mF 〉 = |4,−4〉 → |5,−5〉 (see
Sec. 2.5.1), which is found at 6.78 mT.

Figure 6.13: Measured T1 relaxation time as a func-
tion of the spin-cavity detuning δ. The data is fit
(solid line) to the expected Purcell relaxation rate
(Eq. 2.95), confirming the device is in the Purcell
regime. Plot taken from Ref. [48].

The Purcell energy relax-
ation rate of the spins is sup-
pressed quadratically with the
frequency detuning δ = ω0 −
ωs between the cavity and the
spin system according to Γphot =
κg2

0s/(κ2/4 + δ2) (Eq. 2.95).
This behavior was explored in
the experiments presented in
Ref. [48], where the enhanced
spontaneous emission of an elec-
tron spin ensemble was exper-
imentally demonstrated for the
first time (see Fig. 6.13). In this
work the electron spin T1 was controlled over three orders of magnitude simply by
detuning the spins from cavity by just a few megahertz.

To test if our electron spin energy relaxation rate is Purcell limited we performed
an inversion recovery experiment to measure T1 (see Sec. 3.6.4) when spins are on-
resonance with the cavity δ = 0 and when they are detuned by δ/2π ≈ 10 MHz
during the hold time Twait. The spin-resonator detuning is realized by reducing the
DC bias current in the resonator from IDC = 3.3 mA to IDC = 2.8 mA. The spin
magnetization is measured after the wait period using a N = 200 CPMG pulse sequence
(see Sec. 5.3) with an inter pulse duration of τ = 75 µs. All pulses have a duration
of tp = 10 µs. The sequence was repeated 3 times with a repetition of Trep = 30 s.
The integrated echo quadrature I signals are presented in Fig. 6.14a as a function of
Twait. The echo decays are well fitted to an exponential function, allowing us to extract
the longitudinal relaxation time T1,on ≈ 600(60) ms when spins are resonant with the
cavity and T1,off ≈ 780(90) ms when cavity is detuned from the spins. Since δ/2π � κ
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in the detuned/off-resonance measurement, we would expect a much greater increase
in the T1 if the relaxation was Purcell-limited, indicating that some other mechanism
must be dominant.
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Figure 6.14: Measurements of the longitudinal relaxation time T1 for the electron spins.
Integrated echo quadrature signal AI is plotted as a function of the wait time Twait after
the spin magnetization is initially disturbed by the first pulse of a sequence. The signal
is measured with a N = 200 pulse CPMG sequence. a) Inversion recovery experiment
performed when spin-cavity detuning δ is zero and when δ/2π ≈ 10 MHz. Fits with
exponential functions reveals T1,on = 600 ms and T1,off = 780 ms when δ = 0 and
δ ≈ 10 MHz, respectively. b) Saturation recovery experiment performed when δ = 0.
The exponential fit yields T1 = 7.5 s.

To reveal the other relaxation mechanism we perform a saturation recovery exper-
iment (see Sec. 3.6.4) when the spins are on-resonance with the cavity δ = 0. The
integrated echo quadrature response AI and associated exponential fit is presented in
Fig. 6.14b, indicating a T1 ≈ 7.5 s. The sequence commences with a 5 s long saturation
pulse, followed by the wait period Twait and spin magnetization measurement using a
CPMG pulse sequence (see Sec. 5.3). The advantage of the saturation recovery sequence
in comparison to an inversion recovery is that the saturation pulse strongly suppresses
spin-diffusion relaxation mechanisms [99]. Comparing the values of T1 obtained in the
inversion recovery and saturation recovery measurements, it is clear that the dominant
relaxation mechanism for our spin system is spin-diffusion. Spin-diffusion is caused by
direct dipolar flip-flops between spins excited by a pulse and spins that are just outside
its excitation bandwidth (see Sec. 2.4.1).

155



6.5. Future directions

6.5 Future directions

To realize parametric cooling of the spins, the Purcell relaxation rate of the spins
to the mode, that is actively cooled, should be larger than all other energy relaxation
rates experienced by the spins. As presented above, this was unfortunately not the case
for the current device, where the spin T1 was limited by dipolar interactions (i.e. spin
diffusion). We may take two approaches to reach the Purcell regime here, the first is to
lower the spin diffusion rate and the second is to enhance the Purcell relaxation rate.
The spin diffusion rate is strongly dependent on donor concentration, scaling inversely
proportional to d6, where d is the average donor-donor separation. Thus even a small
reduction in the donor doping concentration can lead to a considerably longer T1. We
can increase the Purcell relaxation rate (Eq. 2.95) by improving the quality factor of
the resonator or raising the spin-photon coupling strength gs. Whilst there is some
scope for small improvements in Q, we believe that more substantial gains will come
from enhancing gs. The Purcell rate scales quadratically with gs, which itself depends
on the distance of the spins from the resonator and the zero-point current fluctuations
– factors that combine to determine the strength of the magnetic field fluctuations
experienced by the spins. Since δIb = ωb

√
~/2Zb, we must decrease the impedance of

the resonator. Given Zb ≈ 200 W this can readily be achieved by introducing an IDC
into the design (Sec. 3.1.2), realistically lowering the impedance below 50 W. Adopting
these changes should put the spins firmly in the Purcell regime.
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Chapter 7

Conclusions

In this chapter we briefly summarize the results presented in this thesis and provide
some insights on the future direction of this research.
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7.1 Summary

In Ch. 3 we presented a design for a novel high-quality factor superconducting
resonator. The resonator, based on CPW technology, is made from a thin film of
superconducting NbTiN metal that provides a high fraction of kinetic inductance and
behaves as a nonlinear medium for microwaves. Integration of a PBG structure between
the resonator and external circuitry allows for a resonance to be confined without
breaking the central line, permitting the passage of DC currents through the device.
The DC current can be used to alter the kinetic inductance and thus the resonant
frequency ωr. We observed typical shifts of ωr/2π of ∼ 100 MHz for DC currents a
couple of milliamperes in strength.

We showed that combining the microwave signal ωs ≈ ωr, DC current and a strong
pump tone at ωp ≈ 2ωs in the nonlinear resonator produces near-perfect three wave
mixing. In this process one pump photon with frequency ωp splits into two photons;
a signal (ωs) and idler (ωi) with the idler frequency selected so as to ensure energy
conservation ωp = ωs+ωi. This mixing produces amplification, which was investigated
experimentally in Ch. 4.

We showed that the device, named the KIPA, produces phase-insensitive (or phase
preserving) parametric amplification when ωp = 2ωs + ∆ω (where ∆ω is within the
resonator linewidth). We achieved signal power gains up to 40 dB in this non-degenerate
mode of operation. When ωp = 2ωs, the device operates in so-called degenerate mode
producing phase-sensitive parametric amplification. In this mode the maximum gain we
measured was 50 dB, which is higher than in non-degenerate mode due to constructive
interference between the signal and the idler. We found a 1 dB-compression point
greater than ≈ −60 dBm for 20 dB of gain, which defines a measure of the maximum
power of the input signal that can be effectively amplified. As far as we are aware, this
is the highest 1 dB-compression point for any resonant microwave parametric amplifier.

When operated in degenerate mode we demonstrated that the KIPA can be used as
an effective microwave squeezer. We measured the amplification and deamplification
of a coherent signal which traces out an ellipse (or stretched circle) in the IQ-plane.
The lack of any distortion to the ellipses suggests that the KIPA doesn’t suffer from
squeezing limitations observed in JPA-based phase sensitive amplifiers. Moreover, we
performed noise measurements and found the device to operate at the quantum noise
limit.

In Ch. 5 the KIPA was employed in spin resonance spectroscopy. Previous high-
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sensitivity ESR spectrometers have combined high quality factor superconducting res-
onators separately with JPA-based quantum limited parametric amplifiers. In our
experiments we used a single device, namely the KIPA, as both the cavity for inductive
detection of spins and as a first-stage amplifier. This architecture offers a versatile and
simple approach for quantum limited ESR where the spins are probed, detected and
amplified on-chip with just a single nonlinear cavity. Specifically, we used the KIPA to
measure spin echo signals from an electron spin ensemble of bismuth donors in silicon.
We achieved an improvement in the SNR of inductively detected spin echo amplitudes
by more than ≈ 10 dB comparing to when the parametric amplifier was off. Moreover,
we demonstrated that our KIPA can withstand magnetic fields up to 250 mT, a value
that allows for ESR of a g = 2 spin at the resonator frequency of 7 GHz and therefore
of interest to conventional ESR.

In Ch. 6 we discussed the multi-mode nature of the KIPA and how a parametric
drive can be used to couple modes together. We measured the coupling between the
fundamental (ω0) and the first harmonic (ω1) modes as a function of pump power at
the difference frequency ωp = ω1 − ω0 and were able to achieve interaction strengths
of ∼ 5 MHz, well into the strong coupling regime. This parametric mode coupling can
be used for up-conversion of thermal photons from the fundamental mode to the first
harmonic, effectively cooling the fundamental mode. We then presented a scheme to
utilize the KIPA for cooling a spin ensemble. When spins are coupled to the funda-
mental mode and their longitudinal relaxation (T1) is limited by spontaneous emission
of photons into the cavity (Purcell relaxation), the spins will thermalize to this mode.
This simple device architecture could therefore be used to cool the spin temperature
below that of the cryostat, resulting in an enhanced spin polarization and improved
sensitive in ESR. We studied spin relaxation in our device and found T1 to be limited
by spin diffusion and not Purcell relaxation, meaning cooling was not possible. We dis-
cussed simple device improvements necessary to successfully implement the proposed
protocol.

This thesis has sown that the KIPA is a versatile device with potential use in low-
noise microwave measurements. Its large critical magnetic field makes it particularly
suited to applications in ESR spectroscopy where it can serve as a first-stage quantum-
limited amplifier that is simultaneously able to hyperpolarize the spins. The high
critical temperature (Tc = 13 K) should also allow operation at temperatures relevant
for conventional ESR spectroscopy (T > 2 K) and we envisage one day integrating this
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device into existing commercial spectrometer systems.

7.2 Future work

In this section we outline the future work based on the key results presented in this
thesis.

The kinetic inductance parametric amplifier designed in this thesis has shown itself
to be an excellent parametric amplifier that can be operated either in phase insensitive
or phase sensitive modes. The latter was used to demonstrate parametric deamplifi-
cation of a coherent signal. Based on this we believe that the KIPA can be used as
an efficient vacuum squeezer and experiments to verify this are already in progress.
Vacuum squeezed states can be used to perform measurements beyond the standard
quantum limit [191]. This has already be used to enhance the sensitivity of ESR spec-
troscopy experiments [38]. However, in this work only a modest noise reduction of
1.2 dB was achieved using a JPA squeezer. This was limited by two factors, the first
being the limited squeezing performance of a JPA, which experience distortions of the
squeezed state typically beyond 10 dB of squeezing. The second factor arises from the
microwave losses in the cables and microwave components connecting the squeezer and
spins. We believe the first factor might be solved by using the KIPA as the squeezer,
due to its higher dynamic range and the observed lack of distortions in our coherent
state measurements of Sec. 4.5.

Another important milestone is to realize the implementation of our proposed cool-
ing scheme. As was already noted in Ch. 6 for this to succeed our device must first reach
the Purcell regime, which was unfortunately not the case for the device examined. We
believe the Purcell regime can be readily accessed by reducing the donor concentration
and/or lowering the impedance of the resonator to increase the spin-resonator coupling.

Whilst the discussion in this thesis has focused on spectroscopy applications of
our device, another interesting use for the KIPA/spin hybrid system is as a long-lived
microwave photon quantum memory [34], [192]. Superconducting quantum bits have
emerged as excellent candidates for building a quantum computer, owing to their fast
quantum logic gate operations and ease of fabrication [193]. However, superconducting
qubits possess relatively short coherence times, of order ten microseconds, which re-
stricts their use as long-term memory elements. Conversely, the electron spins of donors
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in silicon have demonstrated coherence times up to 3 seconds [122]. One can exploit
the strengths of each system in a hybrid quantum computing architecture, where the
superconducting bits are used for processing and the spins for storage, interfaced by a
superconducting resonator as a quantum bus [194]. The KIPA offers a high quality fac-
tor frequency-tunable resonator that is operable in magnetic fields, and thus is an ideal
quantum bus in a spin-based microwave photon quantum memory. We have already
demonstrated that the KIPA can be integrated with a highly-coherent bismuth donor
spin ensemble in silicon, where T2 = 14 ms was measured using a CPMG dynamical
decoupling sequence. This therefore represents a very promising future direction and
application of the work developed in this thesis.
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Matlab script for photonic bandgap
structure

1 clear all; close all;

2

3 % SI units everywhere

4 c=3e8;

5

6 Z1=30.9;

7 Ereff1=8.555;

8 L1=3400e-6;

9

10 Z2=120.3;

11 Ereff2=9.166;

12 % L2=L1;

13 L2=3455e-6;

14

15 Z_input=50;

16 Ereffin=7.294;

17 L_input=1000e-6;

18

19 N_cells=4; %(number of wavelengths)

20

21 Y1=1/Z1;

22 Y2=1/Z2;

23 Y_input=1/Z_input;

24

25 f_start=0;
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26 f_finish=30e9;

27 N=10000;

28 f=linspace(f_start, f_finish, N);

29 omega=2*pi*f;

30 beta1=sqrt(Ereff1)*omega/c;

31 beta2=sqrt(Ereff2)*omega/c;

32 betain=sqrt(Ereffin)*omega/c;

33

34 A1=cos(beta1*L1);

35 B1=1i*Z1*sin(beta1*L1);

36 C1=1i*Y1*sin(beta1*L1);

37 D1=cos(beta1*L1);

38

39 A2=cos(beta2*L2);

40 B2=1i*Z2*sin(beta2*L2);

41 C2=1i*Y2*sin(beta2*L2);

42 D2=cos(beta2*L2);

43

44 S21dB=zeros(1,N);

45

46 %Add 50Ohms input & output

47 A_input=cos(betain*L_input);

48 B_input=1i*Z_input*sin(betain*L_input);

49 C_input=1i*Y_input*sin(betain*L_input);

50 D_input=cos(betain*L_input);

51

52 for n=1:N

53

54 ABCD_input=[A_input(n), B_input(n); C_input(n), D_input(n)];

55 ABCD_1=[A1(n),B1(n); C1(n),D1(n)];

56 ABCD_2=[A2(n),B2(n); C2(n),D2(n)];

57

58 unit_cell=ABCD_1*ABCD_2;

59 ABCD=ABCD_input*unit_cell^N_cells*ABCD_input;

60

61 A=ABCD(1,1);

62 B=ABCD(1,2);

63 C=ABCD(2,1);

64 D=ABCD(2,2);
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65

66 S=abcd2s(ABCD);

67 S21_mag=abs(S(2,1));

68 S21dB(n)=20*log10(S21_mag);

69 end

70 figure;

71 plot(f/1e9,S21dB)

72 xlabel('Frequency (GHz)')

73 ylabel('S21 (dB)')

74

75 length=N_cells*(L1+L2)
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Photonic bandgap resonator
fabrication details

At the beginning of the PBG resonator fabrication process described below we have
330 µm thick silicon chip either implanted with donors in isotopically enriched 28Si
epilayer or natural FZ silicon without donors. On top of the silicon chip NbTiN thin
film is sputtered. The deposition of this film was outsourced to “Star Cryo” and done
by Dr Robin Cantor. Then the wafer was covered with protective layer of PMMA resist
and diced into 11 mm by 4 mm pieces using dicing saw.

Cleaning the wafer before NbTiN deposition

1. Place silicon wafer in piranha solution H2SO4 : H2O2 (3:1) for 10 min at 115 °C

2. Rinse in DI water for 10 min

3. Dip the wafer in HF : H2O (1:10) for 15 s

4. Rinse in DI water for 5 min

5. Dry the wafer with N2 gas

Step 1 - Cleaning the wafer after dicing

1. ultrasonicate (US) in acetone for 10− 15 min

2. US in IPA for 2 min

3. Dry the chip with N2 gas
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Step 2 - Resist spinning

1. Spin AR-P 6200 (CSAR 62) 9% resist at 4000 rpm for 60 s to get 200 nm thick
layer

2. Bake at 150 °C for 3 min

Step 3 - E-beam exposure details

• ETH acceleration voltage: 20 kV

• Aperture: 60 µm

• Step size should be smaller than 100 nm

• Base dose should be about 85 µC/cm2

• Writing current: I ≈ 1.3 nA

Step 4 - Resist development

1. Handshake in n-amyl acetate for 60 s

2. Handshake in MIBK:IPA (1:3) for 60 s

3. Handshake in IPA for 30 s

Step 5 - Oxygen ash

O2 plasma ash at 50 W for 3 min

Step 6 - Reactive ion etching

• Gases: CF4/Ar with flows 20/10 sccm

• Gas pressure: 38 mTorr

• Power: 30 W

• Vdc: 137 V

• Vpp: 0.39 kV
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• Time: 9 min or 17 min to etch through the 9.5 nm NbTiN or 50 nm NbTiN films
respectively

Step 7 - Strip off the resist

1. US in remover AR 600-71 for 30 min

2. Rinse in DI water for 2 min

3. Dry the chip with N2 gas

4. ultrasonicate (US) in acetone for 8 min

5. US in IPA for 2 min

6. Dry the chip with N2 gas
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