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ABSTRACT
The behavior of the scattering amplitude in the vicinity of a

physical Landau singularity is considered. It is shown that its
singular part may be written as an algebraic product of the scatter~
ing amplitudes for each vertex of the corresponding Landau graph
times a certain explicitly determined singularity factor which

. depen&s only on the typ'é -of singuiarity (triangle graph, square
graph, etc.) and on the masses and spins of the internal particles.
Thus the well known result for single particle exchange poles is
generalized to arbitrary physical Landau singularities. Also, it
is shown that for any Landau singularity there exists a finite
polynomial in the scélar products of the external four momenta
whose vanishing gives the Landau singularity curve. A general,

S

purely algebraic, method is given for constructing this polynomial.
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I. INTRODUCTION

Among the various properties of scattering amplitudes, one of the best
known and most useful is the behavior in the neighborhood of single particle
exchange poles. It is known that if the n external legs of a given amplitude be
divided into two disjoint subsets, (1,-:-,r)and (r+1,----,n), and if the
total quantum numbers of each subset allow for the exchange of a known physi-

cal particle of mass M, and if we let

Then we find:

1. The amplitude has a pole at points satisfying P2= Mz.
2. The four momentum of the corresponding exchanged particle is PM .

3. In the immediate vicinity of the pole, if the exchanged particle has

spin 0, the amplitude may be written in the form:

1)
A (,,-+,p)=A (... P -p)
Qe 1 n oy 1 r
i (2)
X e A (PP ., ,P)
p?mZ+ie %r+r T %m T "

+ other nonsingular terms,

where A(l) and A(z) are the amplitudes for the two independent scattering pro-

cesses connected by the exchanged particle. If the exchanged particle has spin



1/2, then we have

A (P ceee P ): Z A(l) (P R _P)
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In space-time this represents the possibility of the overall scattering taking
place in two far separated clusters, one in the forward light cone of the other,
with a physical particle on its mass shell being emitted by the earlier cluster
and absorbed by the later cluster. 1

It is well known that scattering amplitudes also posses singularities cor-
responding to more complicated types of particle exchanges. These are called
Landau singularities and their location is given by the Landau equations. Each
Landau singularity (i.e., each type of particle exchange) may be represented
by a graph in a standard way. 2

We regard a reduced graph of a given graph as a distinct graph, repre-

senting a distinct type of particle exchange. We shall be interested only in
physical region Landau singularities, i.e., only Landau singularities which
correspond to real physical space-time processes. 3 One may then ask the
question-~how much of properties 1 through 3 for single particle exchanges
may be generalized to arbitrary physical region Landau singularities? As we
shall prove in what féllows , all of it may be generalized, more precisely, we

shall consider an arbitrary scattering amplitude

A, oo o (P
g

and an arbitrary physical Landau singularity of that amplitude with its' cor-

responding graph. The graph has n external lines. Let it have m internal

-3 -



lines, f independent loops, and p vertices. Let rj external lines and Sj inter-

nal lines meet at the j'th vertex. Then

p
er=n.

j=1
Let
P9 L
=L,y
be the four momentum of the j'th external line which-enters at the i'th vertex.
Finally, let Qi’ i=1,--,m, be the four momentufn of the i'th internal line and

let r.
i

K= 20 Py

j=1
be the total external four momentum entering at the i'th vertex.

In what follows we shall prove that:

1. There always exists a finite polynomial in the scalar products of
the Kisuch that Z(K;* Kj) = 0 gives the location of the Landau singularity.

2. For a given set of values (Kl, oo ,Kp) Which lie on the given physi-
cal Landau singularity ( = %(Ki' K].)= 0) there exists only one unique set of
values for the internal line four momenta, Q;(K,,"**" ,I%) which satisfy
Landau's equations. {n other words, if four momentum is conserved at each

vertex, and if, Qi2 = M2

. ,i=1,***,m, where Mi is the mass of the i'th internal

line, and if ZaiQiu = 0 around each independent loop of the graph, with
oy >0, i=l,**,m, where a, are the Feynman parameters for each internal

line, then each Qi is uniquely determined.



3. For Pl,- v, Pn in the immediate vicinity of the given Landau

singularity, the scattering amplitude may be written in the form:

B ceeeB
(1,1) (p,sp)

(1)
A o Ve P +++P Q e Q

% A2)

“e,1) " %e.r ®e,1y Pery)%e,n " Ye.s,y

P, Pes,)

®)
XA .. (P ;P
%01 Y o) Pesy) @ .5, 0. sy

x ¢ (K, ", K)

ﬁ(l,l)”'ﬁ(l,sl)”'B(p,l)"'ﬁ(p,sp) o P

+ other nonsingular terms, (1)

where A(l) through A(p) are the scattering amplitudes for the p independent
scattering processes taking place at each vertex, and ¢ is determined only
by the type of Landau singularity (triangle, square, acnode, etc.) and the
fype (mass and spin) éf each internal particle. ¢ is analytic in the imme-
diate vicinity of the given Landau singularity, and singular on it. The Q(i,j)
are the uniquely determined internal momenta given by 2.

In order that 1 and 2 may hold only one restriction need be observed:
all internal lines must have non-zero mass. If property 3 is to hold we must

further require that the given Landau singularity point does not also lie on the
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Landau curve of another graph, of which the given graph is a contraction.
This excludes mainly normal threshold singularities and isolated points where
a given Landau singularity curve touches one of its reduced graph singularity
curves.

Property 2 is really a theorem in classical mechanics. It says, for
example, that if we fire three relativistic billiard balls at each other, and the
lightest of the three balls bounces back and forth 13 times between the two
heavier ones and goes off, then given only the initial and final momenta of the
three balls, we can uniquely reconstruct the momenta of each of the three
balls at any time during the scattering. It is assumed that the distance be-
tween collisions is large compared to the radius of the billard balls.

Given property 2, it is not surprising that property 3 holds. The total
amplitude for a given process with specified initial and final states, is a sum
over the amplitudes for the possible imtermediate states. If the intermediate
state is uniquely determined, then the sum collapses into one tei-m which is
a product of the cluster amplitudes. What is a little surprising is that the
functions ¢ are, in simple cases such as the triangle graph, square graph,
etc. , very simple expressions as we shall show by explicit calculation.

The results have a number of applications. Theoretically the cluster
decomposition program of analyzing the momentum space behavior of field
theory amplitudes (oA S matrix amplitudes) implied by their behavior at large
space-time separations has never gotten beyond the case of noninteracting
clusters and the one particle exchange case. The results obtained here enable
one to extend the cluster decomposition program to include multiparticle ex-
changes. Experimentally, there has been interest for many years in trying

to use the triangle singularity to explain certain enhancements in strongly
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interacting three particle final states. 5

This effort was hampered by the fact
that one had to do lengthy dispersion calculations in order to estimate the
intensity and width of any given enhancement. 6 The results given below enable
one to make the same estimates by substituting the appropriate masses (some

of which may be unstable complex masses) and real four momenta into the

simple formulae obtained below.

II. DEMONSTRATIONS

Proof of Property 1

Our notation will be that given in the introducti;)n. It is well known, that
there exists a function D((Ki' Kj)’Miz’ o) called the discriminant, which is a
homogeneous polynomial in the Qs and whose coefficients are linear in the
(Ki~ Kj) and M? , such that the equations —;% =0, i=1,"*** ,m are equivalent
to the usual Landau conditions for the existerice of a Landau singularity. 7
There is a theorem in algebra which states that given any m homogeneous
polynomials, 9”1 (ai- ce an), in m unknowns, there exists a unique minimal
homogeneous polynomial in the coefficients, .)7;’((Ki' Kj’ M? ), called the resul-
tant, such that %20 is a necessary and sufficient condition for the existence of
a solution to the system of equations 9’1=0, ree ,?m=0 distinct from the
trivial solution (oz1=0, reee ,am=0). 8 Further, this polynomial may be ex-
plicitly written down i%a the general case as the quotient of two determinants. 9
Note that in particular, when we have m homogeneous linear polynomials in
m unknowns, the resultant becomes just the usual determinant. Clearly
.%((Ki' Kj)’ M? ) is the desired polynomial in the external momenta whose

vanishing gives a necessary and sufficient condition for a Landau singularity.

Note that #2=0 gives unphysical as well as physical Landau singularities.



This establishes property 1. This method offers an algebraic alternative to
the usual geometric dual diagram method, initiated by Landau, for finding the

location of singularities.

Proof of Property 2

By conservation of four momentum at the vertices, the m internal line

conditions may be written as Qi2 =Mi2 , Where

P /i
1 2
., = e..K, + €..R. s
Qlu (; ij Z:: ij Ju) (2)
=1 =l
and c..= -1, 0, +1.
ij

Consider the problem of locating an extremum of QZZL’ satisfying subsidiary

conditions

Qizzmiz, i=2,3,"* " ,m, (3)

in the 4{ dimensional space of the RJ'M . The Kju are regarded as fixed. In
order for a point in the R,j“ space to be an extremum it must be a simultaneous

solution of the equations

Q1 :Mi’ i=2,3, ,m
m
9 2 A3 2 2 B
ok, {Qf’ —  B(Q - M) } =0, 4)
ju i=2 !

where the ,Bi are the Lagrange multipliers. If an extremum happens to satisfy
in addition to equations (4), the equation
2 2
Ql - Ml s (5)
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then clearly we have a solution to the Landau equations, and the external
momenta KiM must lie on a Landau singularity. Thus any set of internal loop
momenta,, RJ'M , which satisfies the Landau equations gives an ex-

tremum of Q? for fixed QiZ=M12, i=2,3,:+-,m, In fact, if the given Landau
singularity is a physical one => ,Bi>0, i=2,3,*++ m, then the RJ'M which
solve the Landau equations give a miximum. Proof: Let n _,
c=1,2,***,(4L - m + 1), paramatrize the surface in the RJ.“ space deter-

mined by the (m-1) subsidiary conditions in the neighborhood of a given

solution of equations (4). Then for points on this surface we have

2

8Q; _ 2q 8Q; o ]
=2Q, g - (6)
8770_ ip 8770

i:z’..-. ,m

and
2 .2 2
o om 2 am am Qi“ snon | ° (7)
o 'p o o o 'p
i=2,++++ m,
At the extremum point we have further from (4).
2
aQ? s 8Q;
PR, 2 b i 3R, ®)
in i=2 i
0Qy 2
Also since —S—R—’i = eij Sur =constant, anywhere on the surface we have
jv
2 2
0 Q. 0Q. 9 R.
____Q_ll:i = Z 131“ < JV> . (9)
OIngn, . 08y Bnoanp
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From (7), (8) and (9) it follows that at the extremum

2 2
0" Q 9Qq, O R
1 1 jv
leu 5 = leu Z oR.., 9n on
o p 1.V W P
2 2 2
T 8Q, 'R, ; 0Q] IR,
— —_ - & B-
v B v anoanp = i 18R].V on Bnp
o 5°Q S~ I 1)
= -9 B.Q ——H_ =2 Z B g g (10)
1™y on on i?d 9
¢ p ny ONP
i=2 i=2.
Using (10) we find that at the extremum
2.2 2
9 Q 0Q 0 9
1, { b ey g Q|
on Oanp on anp p 8n08np
/ . . m , -
Y \an <an> . Z N (aQi \CQi ) \ . an
l ana/ 8T’p i=2 ! 8”0/ 8np j

Since Q?=M? >0, Qi“ is timelike and so by (6), for an arbitrary displace-

oG .
ment dy o e find that AQiu = Z —8(%5& dno_ is spacelike. Using this result
o o

we see from (11) that for arbitrary dn =

22 m
5 Q
1 _ 2 2
Zan Ganp dn Udnp 2 {(AQl) + Zi Bi(AQi,) } <0, (12)
o,p . i=

since Bi > 0 at a physical Landau singularity. Q.E.D.
This establishes property 2 except for the possibility that there may be
a finite number (>1) of maxima. That is not the case may be seen as follows.

Assume there were two distinct positive o solutions to Landau's equation for a

-10 -



given Landau graph, and given external four momenta.

Then ZoziQ Z o. Q =0 around each closed loop, and Q =Q.

[l l\D
It
o

with (as in equation (2)),

S—

for each internal line. This implies (Qi—Qi)p, = Z eizj (R. —f{j“ . Multiplying on
J

the left by oziQi and summing over i and y we find

m

3 @ -(@Q) =0
i=1

since Z a1Q1€1] Za Q around the j'th closed loop = 0. However

Q: =Q12=Miz and if we assume Q@ >0, then Q- (QQ,) <0 for all i, and
since oy >0 for all i, Qi =QiQi = Qi :Qi' Thus there is only one maxi-
mum. We assumed that Q?Q‘i) > 0. We regard solutions for which the time
directions of some of the internal lines have been reversed, as corresponding
to distinct types of processes. We may accordingly redefine the notion of

"a distinct Landau Graph' to include a specification of the time direction of

each internal line.

Proof of Property 3

Consider for general values of the external momenta, the (44-m)
dimensional surface in the RJ'N space satisfying Q12=Mi2, i=1l,+*+,m. Itis

the intersection of the (4£-m +1) dimensional surface given by QizzMiz, i22,
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and the surface Q?=M§ . When the external momenta move onto a given point

on the physical Landau curve, le becomes the maximum value of Qi for fixed
Qi2=Mi2, i>2, so clearly for these particular values of the external momenta,
the (4¢-m) dimensional surface (or the branch of it in the vicinity of the maxi-
mum) satisfying Q12=M12, i=1,*++,m, degenerates into a single point. Let
Rj“ be the given set of external momenta on the physical Landau curve, and
let EJ'M be the point which maximizes Qi. Clearly by continuity arguments,
for any ¢ >0, there exists a § > 0:

— |2
J',Zu IKiM-KJ.u‘ <5

=> If Rju is any point in the (4£-m) dimensional surface determined by the

. 2 2 .
equations Q (K. ,R. ) =M, i=1,:**,m, then
4 Ql( JU JM) 1

= 2
Z |Rju_Rju <E€.
Jou

Now consider any perturbation theory contribution to the given n point

amplitude,
/
[ . Bal---an(Pl"“’Pn’Rl"”R!Z')
A .o, y=f 1T &°r
o o 1 n . i ’
1 n i=1 m 9 9
IT (Q.-M; + ie)
i=1 ]

where the given Feynman graph has m’ internal lines and ¢’ independent
loops. 11 If this Feynman graph has no Landau singularity at the given point
Kj“ , then we include its contribution among "other non singular terms." If it

does have a Landau singularity at the given point, we may write, without loss
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of generality,

/

2
a oo s n
x [T ¢, 1 1 (13)
i=g+1 t

. (Q?—sz+ ic)

m’
I1
j=m

+1
where the Qi’ i=1,*** ,m are the uncontracted lines in the Landau diagram
(the internal lines of the reduced graph) and Qi’ i=m+1,.-- ,m' are the
contracted lines. Further, the Ri are chosen so that Qi for i £m depends only
on Rl,‘ *++ R, and not on R ---+ R,». This is always possible. 12 R

[ 2+1, [}
through R!Z are the { independent loop momenta of the reduced graph. It

1

follows from the analysis of Eden et al. ,13 that the part of the amplitude
which is singular at the given point arises solely from the coincidence of the
m poles in the integrand (1/(Q?—M§“+ie))i=1,- +++,m. Therefore, if we only
wish to look at the singular part of A, we need not integrate each of the Riu ,

j=1,***,0 from -» to +o. We may write instead

£ m
A (P.+++P )= HJ4R,H__2-1_____
@prrrays1oom i=1 tj=1 (@] —Mj2+i€)
v
L4
. . Bal....an(Pl- PR ;**"Ry)
x [IT d&-°R, (14)
'..l:ﬂ"'l m’
o I7 (QZ—MZ + 1€)
j=m+1 U

+ other non singular terms,
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where V is a 4¢ dimensional volume containing all points (Rlu ,* LR

)

Y
within 6 (6 >0 and arbitrarily small) of some point on the (4{-m) dimensional
i . LU 2 = 2 1= e
surface given by [Qi(Kl’ ,Kp, Rl’ ,Rﬂ)] Mi , i=1, ,m, By the
above, as the external momenta (Kl’ oo ,Kp) approach the given physical

Landau singularity, V shrinks to a sphere of radius 6 centered at f{j“. If we
require that two distinct Landau singularities (having distinct graphs) not
coincide at the given point in the space of the external momenta, then the
second factor in (14) will be analytic in a neighborhood of f{j“ , and by choosing
6 sufficiently small we may regard the second facbor'as a constant as RJ'M

varies over V . Thus we obtain

’

,Q — —
. B(P> P, R, R, R »* ", Rp)
A (P.-++P ) = 17 d‘4R. 1 n’ 1 2’ T+ 2
Q 1 n . 1 ’
1 n i=l+1 m 9
% : I (@ -M +ie)
j=m+1 ) )
g m
4 i
x I a R, Il ——5—
=1 *j=1 (sz—M? +ie)
A%
+ other non singular terms. (15)
Here, for j=1,--*,m, Qj =QJ.(K1,"' ,Kp, Rl,"'- ,Rﬂ), and for
1= o s & @ , LI o) LI n LN B ]
j=m+1, ,m’ QJ.=QJ.(P1, ’Pn’ Rl’ ,RQ, R!Z+1, ,Rﬁz). Also, let
—Qj:Qj(Kl’ cee ,Kp; I—{1~ . -ﬁﬂ), j=1,+++,m. Clearly the first factor on the right

side of (15) is just equal to the algebraic product of the independent Feynman graph

contributions to the cluster amplitudes at each vertex, times a factor of (@i +M1)

for each intermediate spin 1/2 particle in the Landau graph. If we put

equal to this product of intermediate spin factors, and if

n
P Pe.sy)
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we set

£ m
nm 4, I i
E(K K)= S &R, S ) (16
1 P i=1 ij=1 QJ.Z—M?+ie )
A"
and then put
L PPIETEY RN ()
(1,1) (P:Sp) ’

we have explicitly constructed the function ¢ which appears in equation (1) and
if we then sum over all Feynman graph contributions-to the given amplitude we
find that we have established property 3. It should be noted that the function &
is not uniquely defined. Clearly we can add any function, analytic in the
neighborhood of the singularity, to £ without invalidating property 3. Thus,

for example, we could just as well take

(18)

or even better we can use the analysis of Cutkosky 14 and make a change of

variables in (18) writing

b

b m
1 m ITdp,
2 2 Py 1T
‘1;.' = f d «v e f dQ /"‘"‘ * s (19)
Qy a m J i=1 (sz—Mz

i
.+ie)
al m ]

where ST1dp is the integral over the remaining angle variables, and J is the

Jacobian of the transformation. Then the analysis of Cutkosky shows that the
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singular part of the right hand side of (19) is

b
m wdp, .
(m-1) 2 i i
2m) / dQ f : (20)
8 m J <Q?n—Mj2 +ie >

and we may'take £ equal to expression (20).

OoI. EXAMPLES .

The Triangle Landau Graph -

2
1. Let Vg = (Kg—Mi—Mz)ﬂMle Y1y = -1 and cyclic permutations of

the above. Then as is easily obtained by the method described in section II,

R’ Ky . Kg) = DET(y) = 0 (21)

gives the Landau singularity curve.

2. The physical Landau curve has six branches in the Kiu space. Con-
2

2

. . 2 2
sider the specific branch where Ki>(M,2+M3) , K§>(M1+M2), Kz < (Ml—M3)

K10>0, K30< 0.
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Let us go to the rest frame of Kiu and then rotate so thatE; = -p3Z

where p3>0. Then
K1 =(E;,0,0,0),
K, = (EB—El,O,O,pg) ,
Ko =—(E3,0,0,p3), E5>0.

Let the loop momentum R = ,
P M Qzu

== = R - K ,
Qlu g 3u
=R ,
QZu U
=R -K, .
Q3u p 1u

Thensolving for the unique intermediate state momentum as described in

part II, we find

A\
MiMsz) b2, w2, M2y 7))

Q, =R, _(ZE)(( My, My)
Q, =R +K, , 22
Ip “p 3w (22)
Q =E _K s
3u B lp

2.2 2

where p(a,b,c) =a” +b"+c”-2ab-2ac-2bc. The other branches are obtained by

cyclic permution and by the overall reflection Kiu_. —Kiu .
3. Finally evaluating expression (20) for the case at hand we find for

all six branches.

£ = 1og[92(Kl,K§, K] (28)
8w \/)(
where if #>0, log R is real and if #<0, log R =log(~R)-im. If all three
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internal lines are spinless, then ¢ = ¢. If, for example, the Q line were

a spin 1/2 particle, and other lines spin 0, then

¢ gprK; Ky: Ky) = R(K,, Ky Kg) + Ky + M) g

(24)

X £ (K],K5, Ky).

The Square Landau Graph

Ky

M2 102 K
1. Let y = __1______....2_..—2—
12 2 Mle

and cyclic permutations,

Vi1 7 1 and cyclic permutations,

2 2
_ M2+M4 -8

Vo4 T T2MIM,

2
M1 + M, -t

Y137 72 "Ml“M

LW W o
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Then one easily finds

(K}, Ky, K} K, ,8.1) = DET(y;) = 0 (25)

gives the Landau singularity curve.
2. The physical Landau curve has 14 branches in the Kiu space.
a. Four branches are in the regions K? >(M1+M4)2, K:23>(M2+M3)2,
2 2 2 2 - < o .
Ko< (Ml—Mz) » Ky <(Mg-My), K 0>0: K34<0 and its distinct cyclic permuta-
tions and overall reflections, Kiu—-» —Kiu , 1=1,2,3,4.
b. Eight branches are in the regions Ki>(M1+M 4)2’ Kg >(M 1+M2)2,
2 2 . . . .
K3<(M2—M3) ) K 1< (Mg M4) , K10>0, K20<0 and its- distinct cyclic permutations

and overall reflections.

c¢. Two branches are in the regions K2>(M +M ) , K >(M2+M

2 . s
K2 >(M1+M2) , Ki>(M3+M4) , K 0>O K 0>0 K 0<0 K, <O and its distinct

cyclic permutations and overall reflections.

Typical space time diagrams for the three types of processes are:

N\
¥

@) (b) (c)
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Let = R
QlM u
Qu = Bty
(26)
Qg = R, K, +y s
Q, =R, ~K -

For the three cases pictured above we can always choose a Lorentz frame
where

KlM: (El,0,0,0)’

K2“= (EZ,O,O,pz), p2>0;

K3, = (Eg:Pgyx2 0:Pg,)» P3>0,

Ky, = (B EyEg Dgys 0.0y +Pg ).
Then a simple calculation shows that for each of the three cases pictured

above, the unique intermediate momenta are given by (26) and

- /\
R, =@, 1),
where
MZ-M2 +K
R = —L =
0 2E1‘
7 .3 2
by, 205 M
7E,
~ 3
uX = - 1—(uZ) 5
u = 0, (27)
y
1 2
u = <2p2r> (M‘?- M§+K2 +2E,R ).

-20 -



3. Evaluating expression (20) we find for all branches

i

)
16M, M, M, M, /%(Kl,KZ

; (28)

‘s &

97

Ki,s,t)

29

where if #<0, then@ = -iV- .
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