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ABSTRACT 

The behavior of the scattering amplitude, in-the vicinity of a 

physical Landau singularity is considered. It is shown that its 

singular part may be written as an algebraic product of the scatter- 

ing amplitudes for each vertex of the corresponding Landau graph 

times a certain explicitly determined singularity factor which 

depen&s only on the typeof singularity (triangle graph, square 

graph, etc. ) and on the masses and spins of the internal particles. 

Thus the well known result for single particle exchange poles is 

generalized to arbitrary physical Landau singularities. Also, it 

is shown that for any Landau singularity there exists a finite 

polynomial in the scalar products of the external four momenta 

whose vanishing gives the Landau singularity curve. A general, 
T 

purely algebraic, method is given for constructing this polynomial. 

(Submitted to Physical Review) 
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I. INTRODUCTION 

Among the various properties of scattering amplitudes, one of the best 

known and most useful is the behavior in the neighborhood of single particle 

exchange poles. It is known that if the n external legs of a given amplitude be 

divided into two disjoint subsets, (1,a.a ,r) and (r+l;.a. ,n), and if the 

total quantum numbers of each subset allow for the exchange of a known physi- 

cal particle of mass M, and if we let 

r . n . 

c 
pl = - 

c 
P1 =P 

l-l I-1 lJ.- 
i=l i=r+l 

Then we find: 

1. The amplitude has a pole at points satisfying P2 = M2. 

2. The four momentum of the corresponding exchanged particle is P . 
P 

3. In the immediate vicinity of the pole, if the exchanged particle has 

spin 0, the amplitude may be written in the form: 

A cy.o”n !Pl,“‘, pn) = A(l) (P se** ,I=,, -P) a!l”‘o!r 1’ 

X i 

P2-M2+i E 
Af2) 

ar+f l - 9 

(pJ$+l’“’ ,Pn) 
on 

+ other nonsingular terms, 

’ where A(l) and A(2) are the amplitudes for the two independent scattering pro- 

cesses connected by the exchanged particle. If the exchanged particle has spin 
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I 

l/2, then we have 

A 
9 

. . . ($(P1’ . . . ..p.) = c A(l) 

LAP’ 
cy*- ,o’p 

(P ;*** ,Pr, -P) 
1 

i(P+M) ’ 
X 

P2-M2+ ie 
A(2) 

p,cY 

r+l ’ 

l ‘a* ,a! 
(p¶pr+l’*” ,Pn). 

n 

In space-time this represents the possibility of the overall scattering taking 

place in two far separated clusters, one in the forward light cone of the other, 

with a physical particle on its mass shell being emitted by the earlier cluster 

and absorbed by the later cluster. 1 

It is well known that scattering amplitudes also posses singularities cor- 

responding to more complicated types of particle exchanges. These are called 

Landau singularities and their location is given by the Landau equations. Each 

Landau singularity (i. e. , each type of particle exchange) may be represented 

by a graph in a standard way. 2 

We regard a reduced graph of a given graph as a distinct graph, repre- 

senting a distinct type of particle exchange. We shall be interested only in 

physical region Landau singularities, i. e. , only Landau singularities which 

correspond to real physical space-time processes. 3 One may then ask the 

question--how much of properties 1 through 3 for single particle exchanges 

may be generalized to arbitrary physical region Landau singularities? As we 

shall prove in what fo lows, 5 all of it may be generalized, more precisely, we 

shall consider an arbitrary scattering amplitude 

A 
al’“’ Gn (pl , 

*‘se ,P,) 

and an arbitrary physical Landau singularity of that amplitude with its’ cor- 

responding graph. The graph has n external lines. Let it have m internal 
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lines, ! independent loops, and p vertices. Let rj external lines and sj inter- 

nal lines meet at the j ‘th vertex. Then 

P 

c 5 
=n. 

j=l 

Let 

p(Lj) i=l;-” ,p 

j=l;*** ,ri 

be the four momentum of the j’th external line which-enters at the iYh vertex. 

Finally, let Qi, i=l,***, m, be the four momentum of the i’th internal line and 

let r. 
1 

Ki= C '(i,j)' 
j=l 

be the total external four momentum entering at the i’th vertex. 

In what follows we shall prove that: 

1. There always exists a finite polynomial in the scalar products of 

the K i such that z(Ki* Kj) = 0 gives the location of the Landau singularity. 

2. For a given set of values (Kl, l * * , Kp) which lie on the given physi- 

cal Landau singularity ( =. .%(Ki* Kj)= 0) there exists only one unique set of 

values for the internal line four momenta, Qi(K1, * * l * ,Kp) which satisfy 

Landau’s equations. $n th o er words, if four momentum is conserved at each 

vertex, and if, QB = Mf ,i=l,“‘, m, where Mi is the mass of the i’th internal 

line, and if co iQicl = 0 around each independent loop of the graph, with 

ai > 0, i=l,**. , m, where rzi are the Feynman parameters for each internal 

line, then each Qi is uniquely determined. 
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3. For Pl,... , Pn in the immediate vicinity of the given Landau 

singularity, the scattering amplitude may be written in the form: 

A 
9 

. . . q1 ““‘n)= c 
~(l,lj*~+@,sp) 

A(l) 
a(l,l)“‘QI 

(p(l, 1)’ * * 
(~,~l)p(~,l)~“p(l,sl) 

p (l,rl)Q(l,l)“‘Q(l,~l)) 

x At2) 
o(a,l)“‘o (2,r2)~(2,1)~“P(2,s2) (pP 3 1) l l * 72 ,- r2)Q(2, 1)’ ’ ’ &(2, s2)) 

xA@) 
“(p,l)“‘a! 

+ other nonsingular terms, (1) 

where A(l) through A(p) are the scattering amplitudes for the p independent 

scattering processes taking place at each vertex, and $ is determined only 

by the type of Landau singularity (triangle, square, acnode , etc. ) and the 

type (mass and spin) if each internal particle. 6 is analytic in the imme- 

diate vicinity of the given Landau singularity, and singular on it. The Q(i jj 
, 

are the uniquely determined internal momenta given by 2. 

In order that 1 and 2 may hold only one restriction need be observed: 

all internal lines must have non-zero mass. If property 3 is to hold we must 

further require that the given Landau singularity point does not also lie on the 
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Landau curve of another graph, of which the given graph is a contraction. 

This excludes mainly normal threshold singularities and isolated points where 

a given Landau singularity curve touches one of its reduced graph singularity 
4 curves. 

Property 2 is really a theorem in classical mechanics. It says, for 

example, that if we fire three relativistic billiard balls at each other, and the 

lightest of the three balls bounces back and forth 13 times between the two 

heavier ones and goes off, then given only the initial and final momenta of the 

three balls, we can uniquely reconstruct the momenta of each of the three 

balls at any time during the scattering. It is assumed that the distance be- 

tween collisions is large compared to the radius of the billard balls. 

Given property 2, it is not surprising that property 3 holds. The total 

amplitude for a given process with specified initial and final states, is a sum 

over the amplitudes for the possible imtermediate states. If the intermediate 

state is uniquely determined, then the sum collapses into one term which is ’ 

a product of the cluster amplitudes. What is a little surprising is that the 

functions cp are, in simple cases such as the triangle graph, square graph, 

etc. , very simple expressions as we shall show by explicit calculation. 

The results have a number of applications. Theoretically the cluster 

decomposition program of analyzing the momentum space behavior of field 

theory amplitudes (orC s matrix amplitudes) implied by their behavior at large 

space-time separations has never gotten beyond the case of noninteracting 

clusters and the one particle exchange case. The results obtained here enable 

one to extend the cluster decomposition program to include multiparticle ex- 

changes. Experimentally, there has been interest for many years in trying 

to use the triangle singularity to explain certain enhancements in strongly 
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interacting three particle final states. 5 This effort was hampered by the fact 

that one had to do lengthy dispersion calculations in order to estimate the 

intensity and width of any given enhancement. 6 The results given below enable 

one to make the same estimates by substituting the appropriate masses (some 

of which may be unstable complex masses) and real four momenta into the 

simple formulae obtained below. 

II. DEMONSTRATIONS 

Proof of Property 1 

Our notation will be that given in the introduction. It is well known, that 

there exists a function D((Ki’ Kj),Mf, oi) called the discriminant, which is a 

homogeneous polynomial in the CY i, and whose coefficients are linear in the 

(Ki* Kj) and Mf , such that the equations aD - ~0, i=l,*.** 
aai ,m are equivalent 

to the usual Landau conditions for the existence of a Landau singularity. 7 

There is a theorem in algebra which states that given any m homogeneous 

polynomials, gi(oi * * l * on), in m unknowns, there exists a unique minimal 

homogeneous polynomial in the coefficients, Z’((Ki* Kj, Mf ), called the resul- 

tant, such that 9%0 is a necessary and sufficient condition for the existence of 

a solution to the system of equations .9Yl=0, * * l l , pm=0 distinct from the 

trivial solution ((~~‘0, * l l * , om=O). 8 Further, this polynomial may be ex- 

plicitly written down T the general case as the quotient of two determinants. 9 

Note that in particular, when we have m homogeneous linear polynomials in 

m unknowns, the resultant becomes just the usual determinant. Clearly 

B((Ki’Kj), Mf ) is the desired polynomial in the external momenta whose 

vanishing gives a necessary and sufficient condition for a Landau singularity. 

Note thatZ=O gives unphysical as well as physical Landau singularities. 
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This establishes property 1. This method offers an algebraic alternative to 

the usual geometric dual diagram method, initiated by Landau, for finding the 

location of singularities. 

Proof of Property 2 

By conservation of four momentum at the vertices, the m internal line 

conditions may be written as Qi 2 =$ , where 

P e 

Q ii-c = t C 'ijKjp + & 'rjRjp) ' 

j=l (2) 

and E ij 
= -1, 0, +1. 

Consider the problem of locating an extremum of Qt , satisfying subsidiary 

conditions 

. 
Q;=M;, i=2,3;** ,m, (3) 

in the 41 dimensional space of the R. . The K. 
JP J/J 

are regarded as fixed. In 

order for a point in the R. 
JP 

space to be an extremum it must be a simultaneous 

solution of the equations i 

Qf =MF, i=2,3,**** ,m 

a 
aR. 

31-1 
p,(Q; - M;) = 0, 

I 
(4) 

where the pi are the Lagrange multipliers. If an extremum happens to satisfy 

in addition to equations (4), the equation 

Q; =M;, (5) 
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then clearly we have a solution to the Landau equations, and the external 

momenta K. 
l/J 

must lie on a Landau singularity. Thus any set of internal loop 

momenta, R. 
J/J 

, which satisfies the Landau equations gives an ex- 

tremum of Qy for fixed QH=MF, i=2,3, l l * , m. In fact, if the given Landau 

singularity is a physical one => pi>O, i=2,3, l * * ,m, then the Rjp which 

solve the Landau equations give a miximum. Proof: Let qI,, 

a=1,2;**. ,(48 - m + 1), paramatrize the surface in the R. 
J/J 

space deter- 

mined by the (m-l) subsidiary conditions in the neighborhood of a given 

solution of equations (4). Then for points on this surface we have 

and 

aQf 
- = 2Q. 
a% 

aQicl = o 
l/J aq7, 

a2Qf a&. a&. 

aq aa77 = 
2 A--$ = 

a% 
0 

P P 

At the extremum point we have further from (4). 

aQ2, _ 
m 

-- - 
3R. c P 

a&l 

JP i-2 iaR.’ 
w 

Also since 2 = etj 6pv = constant, anywhere on the surface we have 
jv 

(6) 

a 
2 

Qip = 

a T.Tqp 

(7) 

(8) 

(9) 



From (7), (8) and (9) it follows that at the extremum 

a 
2 

2Q 
a2Ql aQl/J, 

11.1 877 aaq p 
=2Q - 

Rjv 

l/J c 
j,V aRjV a77$71p 

Z-Z c 

aQt a2Rjv _ 

j,v, aRjv ao.wp - 

m 2 

= -2 C Pi Qi~ at :q’ = (10) 
i=2 cr P 

Using (10) we find that at the extremum 

a2Qt a& a& a 2 

11.4A.Q QlJl 1 
a7gwP = m, mp 11.1 aq,a77p f 

Since QF=I$ > 0, Q. 
l/J 

is timelike and so by (6), for an arbitrary displace- 

ment dn o, we find that A& il.l = s F dq (T is spacelike. Using this result 
o- 

we see from (11) that for arbitrary dn cT, 

c 
a2Q2 

m ,a’7 
dq Cdvp ~2 { (AQlf + E Pi(AQi~} < 0, (12) 

gyp 
P i=2 

since pi > 0 at a physical Landau singularity. Q. E. D. 

This establishes property 2 except for the possibility that there may be 

a finite number (>l) of maxima. That is not the case may be seen as follows. 

Assume there were two distinct positive 01 solutions to Landau’s equation for a 
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given Landau graph, and given external four momenta. 

Then coziQi = c ziGi = 0 around each closed 

with (as in equation (2)), 

loop, and QF =?$ =$ 

?ji = c eijKj +c E%, 
11 J 

j j 

for each internal line. This implies (Qi-Qi)p = c- efj (R. - RjP ). Multiplying on 
J J/J 

the left by oliQi and summing over i and 1-1 we find 

m 

c y(Q; -(Qi*Gi)) = 0, 
i=l 

since &L&~E;~ = coiQi around the j’th closed loop = 0. However 

Q;=Q$Mf , , and if we assume QioQio> 0, then Qf - (QiQ i) < 0 for all i, and 

since ai>O for all i, Qf =QiGi => Qi =Qi. lo Thus there is only one maxi- 

mum. We assumed that &;a: > 0. We regard solutions for which the time 

directions of some of the internal lines have been reversed, as corresponding 

to distinct types of processes. We may accordingly redefine the notion of 

lra distinct Landau Graph” to include a specification of the time direction of 

each internal line. 

Proof of Property 3 

Consider for general values of the external momenta, the (41-m) 

dimensional surface in the R. 
3/J 

space satisfying Qf =Mf , i=l; * l ,m. It is 

the intersection of the (4Q-m+l) dimensional surface given by QF=MF, i>_Z, 
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and the surface Qt=Mt . When the external momenta move onto a given point 

on the physical Landau curve, M2 1 becomes the maximum value of QF for fixed 

Q;=M;, i 2 2, so clearly for these particular values of the external momenta, 

the (41-m) dimensional surface (or the branch of it in the vicinity of the maxi- 

mum) satisfying Qf =Mf , i=l;*- ,m, degenerates into a single point. Let 

zjP be the given set of external momenta on the physical Landau curve, and 

let RjP be the point which maximizes Qi. Clearly by continuity arguments, 

for any E >O, there exists a 6 > 0: 

=> ‘ff RjP is any point in the (41-m) dimensional surface determined by the 

equations QF(K jcL ,RjP) =M2, i=l;.* ,m, then 1 

Now consider any perturbation theory contribution to the given n point 

amplitude, 

/ 

Q’ B 

n d4R 
O!f. ‘O!, (P,,- ,Pn,Rl>-RQ4 

A al’ * - an (Pl,“’ 2,) = i , 
i=l m’ 

I7 (&f-My + ie) 
j=l 

where the given Feynman graph has m’ internal lines and 8’ independent 

loops. l1 If this Feynman graph has no Landau singularity at the given point 

E 
jp ’ 

then we include its contribution among “other non singular terms. l1 If it 

does have a Landau singularity at the given point, we may write, without loss 
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of generality, 

J 
d B 

I7 cf?Ri 
tpl “‘Pn,Rl,**.RQt) 

X 
i=Q+l 

j=!+l tQ;- $+ W 

(13) 

where the Qi, i=l, * l * , m are the uncontracted lines -in the Landau diagram 

(the internal lines of the reduced graph) and Qi, i=m+l , l 0 l , m’ are the 

contracted lines. Further, the Ri are chosen so that Qi for i <-m depends only 

on R 1’ l ***,RQandnotonRQ+l,****, RQ’ . This is always possible. 12 Rl 

through RQ are the Q independent loop momenta of the reduced graph. It 

follows from the analysis of Eden et al. , 
13 that the part of the amplitude 

which is singular at the given point arises solely from the coincidence of the 

m poles in the integrand (l/(Qf-I$+it ))i=l, l l l * ,m. Therefore, if we only 

wish to look at the singular part of A, we need not integrate each of the R. JP ’ 
j=l; l * ,Q from --oo to +04 We may write instead 

/ 

Q m 

A (pl ““n) = 
n a4R. 17 i 

Y”an i=l ’ j=l (Qy-l$+it) 

v 

Q’ J B 
d4R ai’ ’ * ’ an (pl -** Pn,Rl* l ‘Ra’, 

x n 
i=Q+l i 

m’ 
co n 

j =m+l 
(Qy -If + k) 

(14) 

+ other non singular terms, 
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where V is a 4Q dimensional volume containing all points (R 
l/J ’ 

l ** ,RQp) 

within 6 (6 > 0 and arbitrarily small) of some point on the (4Q-m) dimensional 

surface givenby [Qi(K1;.. ,Kp; Rl;** ,RQ)12 =MF, i=l;*- ,m. By the 

above, as the external momenta (Kl, D * ’ , Kp) approach the given physical 

Landau singularity, V shrinks to a sphere of radius 6 centered at R. 
JPcl’ 

Ifwe 

require that two distinct Landau singularities (having distinct graphs) not 

coincide at the given point in the space of the external momenta, then the 

second factor in (14) will be analytic in a neighborhood of R. 
itI-1 ’ 

and by choosing 

6 sufficiently small we may regard the second factor as a constant as R. 

varies over V . Thus we obtain 

A (pl ol’ ’ * on 

B(Pl,“’ ,P,, Al,-* ,RQ, RQ+,,-*- 3~‘) 

;; 

/ 
(Q! -M2+ic) 

j=m+1 J Ii 

V 

+ other non singular terms. (15) 

Here, for j=l,.**,m, Qj =Q.(K ;*.,Kp, Rl;*‘*,RQ), and for 
J 1 

Qj=Qj(Kl,*** ,$; Rl**.EQ), j=l;.* ,111. Clearly the first factor on the right 

side of (15) is just equal to the algebraic product of the independent Feynman graph 

contributions to the cluster amplitudes at each vertex, times a factor of ($ +M1) 

for each intermediate spin l/2 particle in the Landau graph. If we put 

9 (l,l)““P&sp) 
equal to this product of intermediate spin factors, and if 
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we set 

and then put 

Q 

Kp’ = J icl d4R. n” * 
1 j=l Q2 - $ +ie ’ 

j j 
V 

@P (l,lj”‘+p,sp) = qf ’ 

(16) 

(17) 

we have explicitly constructed the function Cp which appears in equation (1) and 

if we then sum over all Feynman graph contributions-to the given amplitude we 

find that we have established property 3. It should be noted that the function 4 

is not uniquely defined. Clearly we can add any function, analytic in the 

neighborhood of the singularity, to 5 without invalidating property 3. Thus, 

for example, we could just as well take 

(18) [ = J ; S4R. “n i 

i=l ’ j=l (Qy -$+ie) ’ 
00 

or even better we can use the analysis of Cutkosky 14 and make a change of 

variables in (18) writing 

where mdp is the integral over the remaining angle variables, and J is the 

Jacobian of the transformation. Then the analysis of Cutkosky shows that the 
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singular part of the right hand side of (19) is 

(2qtm-‘) lbrn da; /T (Q2 $ +iE) > 

m m- j 

and we may take 5 equal to expression (20). 

III. EXAMPLES 

The Triangle Landau Graph - 

Let y12 = 

Then as the above. is easily obtained by the method described in section II 

(20) 

(K;-M”,-M;)/2MlM2 ,yI1 = -1 and cyclic permutations of 

7 

,%!(I, K;, ?3) = DET(yij) = 0 (21) 

gives the Landau singularity curve. 

2. The physical Landau curve has six branches in the K. space. Con- 

sider the specific branch where I? 2 <>(M~+M~), Kf< (Ml-M3)2, 14(M2+M3) 2 

KlO>O, K30< 0. 
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Let us go to the rest frame of K. 
l/J 

and then rotate so that 3 = -p3$ 

where p3>0. Then 

K1 = (EIAO,O) 3 

K2 = (E3-E1, O,O,P3) 3 

K3 = -(E3A0,p3), E3>0. 

Let the loop momentum R /.L = Q2p ’ 

Q3p =Rv -Klp l 

Thensolving for the unique intermediate state momentum as described in 

part II, we find 

3/J,’ (22) 

where p(a,b ,c) = a2+b2+c2-Zab-2ac-2bc. The other branches are obtained by 

cyclic permution and by the overall reflection K. - -K. 
w l/J l 

3. Finally evaluating expression (20) for the case at hand we find for 

all six branches. 

t= 
+i 

8= vbGqq$ 
lwbW~J+~)] , (23) 

where if 9?>0, logz&?is real and ifB<O, log% = log(%)-ir. If all three 
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internal lines are spinless, then 4 = 5. If, for example, the Ql line were 

a spin l/2 particle, and other lines spin 0, then 

The Square Landau Graph 

s = (K3+K4)2 

t = (Kl+K4)2 

1. Let y12= 
M; + M; -K; 

2 Ml”2 
and cyclic permutations, 

yll 
= 1 and cyclic permutations, 

M;+M; -s 

‘24 = 2MlM3 ’ 

M;+M;-t 

y13 = 2MlM3 * 
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(25) 

Then one easily finds 

~(‘1,~,~3,KZq,S,‘) =DET(Yij) =O 

gives the Landau singularity curve. 

2. The physical Landau curve has 14 branches in the K. 
w 

space. 

a. Four branches are in the regions Kt>(Ml+M4) 2, 23>(M2+M3)2, 

K;< (Ml-M2 j2 , + (M3-M4j2 > KlO>O, K30< 0 and its distinct cyclic permuta- 

tions and overall reflections, KiP- -K. , i=l,2,3,4. 
11-1 

b. Eight branches are in the regions KT>(Ml+M4)2, K; >(Ml+M2 I2 > 

K;< (M2-M3)2 ,’ K;< W3-M4J2, KlO>O, Kzo< 0 and its- distinct cyclic permutations 

and overall reflections. 

C. Two branches are in the regions Ki> (Ml+M4)2, +(%+M3)2, 

K; >(Ml+M2)2, 24> (M3+M4 J2, KlO>O, K30>0, K2$0, K40<0 and its distinct 

cyclic permutations and overall reflections. 

Typical space time diagrams for the three types of processes are: 

(a) 09 (c) 
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Let Q =R 
1E.c I-1’ 

= R +K &2cl c1 2P’ 
(26) 

= R +K +K Q3p P 21.1 311’ 

Qqp =Rp -KICI’ 

For the three cases pictured above we can always choose a Lorentz frame 

where 

15~ = (E2,0,hP2) 9 p2’O: 

K3P = (E3,p3x, %Pgz)5 p3x’o, 

Then a simple calculation shows that for each of the three cases pictured 

above, the unique intermediate momenta are given by (26) and 

gp = (Ro, rc), 

where 

R. = 
M;-g4 +K; 

2El ’ 

r= 2El ’ 

U ,=-Jc;zI", 

“Y = 0, 

u = 
Z 

(&) (Mf - g2+K; + 2E2RO)- 
2 

(27) 
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3. Evaluating expression (20) we find for all branches 

i 
t= (28) 

16MlM2M3M4 v’&K;,++$s,t) ’ 

where if Z%?<O, then L?4? = -i J- 6% 
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