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Resumen

Las caracteŕısticas de las señales del bosón escalar descubierto por las Colaboraciones
ATLAS y CMS, en el Gran Colisionador de Hadrones (LHC) en 2012, indican que esta
resonancia es compatible con las expectativas para el bosón de Higgs del Modelo Estándar
(SM) de la f́ısica de part́ıculas. Por lo tanto, esta part́ıcula representa la última evidencia
que faltaba a favor del SM, para explicar las part́ıculas elementales conocidas y sus inter-
acciones. Sin embargo, hay cuestiones relevantes que no se pueden responder en el marco
teórico del SM, como por ejemplo el origen del potencial de Higgs que produce la ruptura
de la simetŕıa electrodébil (EWSB), la solución del problema de las jerarqúıas, el origen
de las masas y ángulos de mezcla de los neutrinos, la naturaleza de la materia oscura
(DM), la solución al problema CP de las interacciones fuertes, el origen de la asimetŕıa
entre la materia y la anti-materia, o cómo acomodar la interacción gravitacional.

Desde el punto de vista teórico, se han propuesto muchas teoŕıas para abordar estas
cuestiones. Aunque la motivación para cada una de ellas puede diferir, el factor común
para la mayoŕıa es que el contenido de part́ıculas del SM tiene que aumentarse y se espera
que las nuevas part́ıculas aparezcan a escalas no muy alejadas de la escala Electrodébil
(EW).

Entre un puñado de teoŕıas elegibles más allá del Modelo Estándar (BSM), la Super-
simetŕıa (SUSY) a la escala EW ha recibido una gran atención durante un largo peŕıodo
de tiempo, tanto desde la perspectiva teórica como experimental. SUSY es una simetŕıa
que proporciona una conexión entre fermiones y bosones, de tal manera que para cada
part́ıcula del SM existe una compañera supersimétrica (también llamada sparticle) con los
mismos números cuánticos pero con media unidad menos de esṕın. Aśı, el principio super-
simétrico permite que cada bosón (fermión) del SM tenga una compañera supersimétrica
que es un fermión (bosón). Como consecuencia, SUSY predice un gran número de nuevas
part́ıculas que podŕıan ser descubiertas en el LHC o en la próxima generación de coli-
sionadores. Sin embargo, no se ha detectado todav́ıa ninguna part́ıcula supersimétrica,
a pesar de las numerosas búsquedas y de los tremendos esfuerzos de las colaboraciones
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experimentales. Por tanto, los espacios de parámetros de los modelos supersimétricos
parecen reducirse considerablemente. Se deduce entonces que es crucial llevar a cabo
estudios exhaustivos de la situación actual de los distintos modelos.

En esta tesis, consideramos el ‘µ from ν’ Supersymmetric Standard Model (µνSSM)
como el modelo teórico a analizar. Además de las ventajas habituales de los modelos
supersimétricos, el µνSSM, a través de la presencia de tres familias de supercampos de
neutrinos right-handed puede resolver simultáneamente el problema µ del Minimal Su-
persymmetric Standard Model (MSSM), aśı como el problema ν, siendo capaz de repro-
ducir correctamente las masas de los neutrinos y sus ángulos de mezcla. También puede
propocionar un buen candidato a DM, el gravitino.

En los modelos supersimétricos, la presencia de términos que violan los números
bariónico y leptónico predice una desintegración demasiado rápida del proton y usual-
mente se utiliza la simetŕıa de paridad R para prohibir que los mismos aparezcan en el
Lagrangiano. Esta estrategia da lugar a modelos que conservan la paridad R (RPC), tales
como el MSSM. Por el contrario, el µνSSM es un modelo en el que la paridad R se viola
(RPV) debido a nuevos acoplamientos que involucran a los neutrinos right-handed, los
cuales violan por tanto el número leptónico (siendo inofensivos para el desintegración del
proton) Como la part́ıcula supersimétrica más ligera (LSP) no es por tanto estable en
el µνSSM, se generan nuevas señasles en los colisionadores, tales como la producción de
vértices desplazados, multileptones o nuevos canales de desintegración.

El objetivo de esta tesis es estudiar a fondo el espacio de parámetros del µνSSM a la
luz de los datos experimentales actuales, utilizando un método muy potente basado en
el análisis de datos y probabilidad. En concreto, estudiamos las regiones viables que son
compatibles con los datos del Higgs y de las oscilaciones de neutrinos, aśı como con una
clase de observables de sabor. Por un lado, analizamos aquellas regiones que pueden ser
exploradas en el funcionamiento actual y futuro del LHC a través del sector extendido de
Higgs del µνSSM, que en general consiste en dos dobletes de Higgs mezclados con las tres
familias de sneutrinos. Después, aplicamos esta estrategia para estudiar la compatibilidad
del sneutrino left como un candidato interesante a LSP en el µνSSM, con las búsquedas
actuales de dileptones desplazados. Por otro lado, también analizamos las regiones que
pueden explicar un viejo rompecabezas del SM, a saber, la desviación del valor medido
del momento magnético anómalo del muón con respecto a la predicción teórica.
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Summary

The properties and signal rates of the scalar boson discovered by ATLAS and CMS
Collaborations at the Large Hadron Collider (LHC) in 2012 indicate that this resonance
is compatible with the expectations for the Higgs boson of the Standard Model (SM) of
particle physics. Hence, this particle represents the last piece of evidence in favour of the
SM in explaining the known elementary particles and their interactions. However, there
are relevant questions that cannot be answered in the theoretical framework of the SM,
such as for example the origin of the Higgs potential producing the electroweak symmetry
breaking (EWSB), the solution of the hierarchy problem, the origin of neutrino masses and
mixing angles, the nature of dark matter (DM), the solution to the strong CP problem,
the origin of matter anti-matter asymmetry, or how to accommodate the gravitational
interaction.

From the theoretical viewpoint, many theories have been proposed to address some of
these questions. Even though the motivation for each theory might differ, the common
point for most of them is that the SM particle content has to be extended and that the
new particles are expected to show up at scales not too far from the electroweak (EW)
scale.

Among a handful of eligible theories beyond the standard model (BSM), EW Su-
persymmetry (SUSY) has received extensive attention from both theoretical and exper-
imental perspectives over a long period of time. SUSY is a symmetry that provides a
connection between fermions and bosons in such a way that for each SM particle there
exists a supersymmetric partner (also called sparticle) with the same set of quantum
numbers but a half integer spin difference. Thus, SUSY principle allows every SM boson
(fermion) to have a supersymmetric partner that is a fermion (boson). As a consequence,
SUSY predicts a large number of new particles that could be discovered at the LHC or at
the next generation of colliders. Nevertheless, no sparticle has been detected yet despite
numerous searches and tremendous efforts of the experimental collaborations. Therefore,
the parameter spaces of SUSY models seem to be shrinking considerably. It appears then
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crucial to conduct thorough studies of the current situation for the different models.
In this thesis, we consider the ‘µ from ν’ Supersymmetric Standard Model (µνSSM) as

the theoretical model to be analyzed. In addition to the usual advantages of SUSY models,
the µνSSM, through the presence of three families of right-handed neutrino superfields
can simultaneously solve the µ-problem of the Minimal Supersymmetric Standard Model
(MSSM), as well as the ν-problem, being able to reproduce the correct neutrino masses
and mixing angles. It can also provide a good candidate for DM, the gravitino.

In SUSY models, the presence of baryon- and lepton-number violating terms predicts
too fast proton decay, and usually the R-parity symmetry is used to forbid these terms
from appearing in the Lagrangian. This strategy gives rise to the so-called R-parity
conserving (RPC) models, such as the MSSM. On the contrary, the µνSSM is an R-
parity violating (RPV) model due to the presence of new couplings involving right-handed
neutrinos, and therefore violating lepton number (harmless for proton decay). Then, since
the lightest supersymmetric particle (LSP) is no longer stable in the µνSSM, it leads to
novel signatures at colliders, such as the production of displaced vertices, multileptons or
new decay chains.

The goal of this thesis is to thoroughly study the parameter space of the µνSSM in the
light of current experimental data, using a powerful likelihood data-driven method. In
particular, we study the viable regions compatible with current neutrino oscillations and
Higgs data, as well as a class of flavor observables. On the one hand, we analyze those
regions that can be explored at the current and future runs of the LHC via the extended
Higgs sector of the µνSSM, which in general consists of two Higgs doublets mixed with
the three families of sneutrinos. Then, we apply this strategy to study the compatibility
of the left sneutrino as an interesting LSP candidate in the µνSSM, with current displaced
dilepton searches. On the other hand, we also analyze the regions that can explain a long
standing puzzle of the SM, namely, the deviation of the measurement of the anomalous
magnetic moment of the muon with respect to the theoretical prediction.
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Chapter 1

Introduction/Introducción

The properties and signal rates of the scalar boson discovered by ATLAS [1] and CMS
Collaborations [2] at the Large Hadron Collider (LHC) in 2012 indicate that this resonance
is compatible with the expectations for the Higgs boson of the Standard Model (SM) of
particle physics. Hence, this particle represents the last piece of evidence in favour of the
SM in explaining the known elementary particles and their interactions. However, there
are relevant questions that cannot be answered in the theoretical framework of the SM,
such as for example the origin of the Higgs potential producing the electroweak symmetry
breaking (EWSB), the solution of the hierarchy problem, the origin of neutrino masses and
mixing angles, the nature of dark matter (DM), the solution to the strong CP problem,
the origin of matter anti-matter asymmetry, or how to accommodate the gravitational
interaction.

From the theoretical viewpoint, many theories have been proposed to address some of
these questions. Even though the motivation for each theory might differ, the common
point for most of them is that the SM particle content has to be extended and that the
new particles are expected to show up at scales not too far from the electroweak (EW)
scale.

Among a handful of eligible theories beyond the standard model (BSM), EW Su-
persymmetry (SUSY) [3–7] has received extensive attention from both theoretical and
experimental perspectives over a long period of time. SUSY is a symmetry that provides
a connection between fermions and bosons in such a way that for each SM particle there
exists a supersymmetric partner (also called sparticle) with the same set of quantum
numbers but a half integer spin difference. Thus, SUSY principle allows every SM boson
(fermion) to have a supersymmetric partner that is a fermion (boson). As a consequence,
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SUSY predicts a large number of new particles that could be discovered at the LHC or at
the next generation of colliders. Nevertheless, no sparticle has been detected yet despite
numerous searches and tremendous efforts of the experimental collaborations. Therefore,
the parameter spaces of SUSY models seem to be shrinking considerably. It appears then
crucial to conduct thorough studies of the current situation for the different models.

In this thesis, we consider the ‘µ from ν’ Supersymmetric Standard Model (µνSSM) [8]
as the theoretical model to be analyzed. In addition to the usual advantages of SUSY
models, the µνSSM, through the presence of three families of right-handed neutrino super-
fields can simultaneously solve the µ-problem [9] of the Minimal Supersymmetric Standard
Model (MSSM) [4,6,7], as well as the ν-problem, being able to reproduce the correct neu-
trino masses and mixing angles [10–13]. It can also provide a good candidate for DM, the
gravitino.

In SUSY models, the presence of baryon- and lepton-number violating terms predicts
too fast proton decay, and usually the R-parity symmetry is used to forbid these terms
from appearing in the Lagrangian. This strategy gives rise to the so-called R-parity
conserving (RPC) [14–18] models, such as the MSSM. On the contrary, the µνSSM is an
R-parity violating (RPV) model [19] due to the presence of new couplings involving right-
handed neutrinos, and therefore violating lepton number (harmless for proton decay).
Then, since the lightest supersymmetric particle (LSP) is no longer stable in the µνSSM,
it leads to novel signatures at colliders, such as the production of displaced vertices,
multileptons or new decay chains.

The goal of this thesis is to thoroughly study the parameter space of the µνSSM in the
light of current experimental data, using a powerful likelihood data-driven method. In
particular, we study the viable regions compatible with current neutrino oscillations and
Higgs data, as well as a class of flavor observables. On the one hand, we analyze those
regions that can be explored at the current and future runs of the LHC via the extended
Higgs sector of the µνSSM, which in general consists of two Higgs doublets mixed with
the three families of sneutrinos. Then, we apply this strategy to study the compatibility
of the left sneutrino as an interesting LSP candidate [20, 21] in the µνSSM, with current
displaced dilepton searches. On the other hand, we also analyze the regions that can
explain a long standing puzzle of the SM, namely, the deviation of the measurement of
the anomalous magnetic moment of the muon with respect to the theoretical prediction.

This work is organized as follows: In Chapter 2, we briefly describe the MSSM and
discuss some of its limitations. Chapter 3 is devoted to describe the µνSSM, its main
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Chapter 1. Introduction/Introducción

features and the extended Higgs sector of the model are presented. In Chapter 4, we
describe the methodology employed in our analyses. In particular, the sampling method
and likelihoods used are introduced. Using this methodology, in Chapter 5 we sample
the µνSSM to study the impact of Higgs physics on its parameter space. We identify
all possible viable regions that are compatible with the latest LHC data, with some
complementary data from LEP and Tevatron, as well as a class of flavor observables such
as B decays and µ decays. In Chapter 6, we recast the result of the ATLAS 8-TeV
displaced dilepton search from long-lived particles, in order to obtain the potential limits
on the parameter space for the tau left sneutrino LSP in the µνSSM with a mass in the
range 45 − 100 GeV. In particular, we sample the µνSSM to explore the regions of the
parameter space that lead to tau left sneutrino as the LSP, and to find those that can
be probed using the displaced dilepton signal at current and future runs of the LHC. In
Chapter 7, we analyze the parameter space of the model that can explain the measurement
of the anomalous magnetic moment of muon. Within the model it is possible to produce
light supersymmetric particles that are still consistent with experimental exclusion limits,
and that can contribute to solve this challenging puzzle of the SM. Finally, in Chapter 8
the main results obtained are summarized, and the future prospects are outlined.

Introducción

Las caracteŕısticas de las señales del bosón escalar descubierto por las Colaboraciones
ATLAS [1] y CMS [2], en el Gran Colisionador de Hadrones (LHC) en 2012, indican que
esta resonancia es compatible con las expectativas para el bosón de Higgs del Modelo
Estándar (SM) de la f́ısica de part́ıculas. Por lo tanto, esta part́ıcula representa la última
evidencia que faltaba a favor del SM, para explicar las part́ıculas elementales conocidas y
sus interacciones. Sin embargo, hay cuestiones relevantes que no se pueden responder en
el marco teórico del SM, como por ejemplo el origen del potencial de Higgs que produce la
ruptura de la simetŕıa electrodébil (EWSB), la solución del problema de las jerarqúıas, el
origen de las masas y ángulos de mezcla de los neutrinos, la naturaleza de la materia oscura
(DM), la solución al problema CP de las interacciones fuertes, el origen de la asimetŕıa
entre la materia y la anti-materia, o cómo acomodar la interacción gravitacional.

Desde el punto de vista teórico, se han propuesto muchas teoŕıas para abordar estas
cuestiones. Aunque la motivación para cada una de ellas puede diferir, el factor común
para la mayoŕıa es que el contenido de part́ıculas del SM tiene que aumentarse y se espera
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que las nuevas part́ıculas aparezcan a escalas no muy alejadas de la escala Electrodébil
(EW).

Entre un puñado de teoŕıas elegibles más allá del Modelo Estándar (BSM), la Super-
simetŕıa (SUSY) a la escala EW [3–7] ha recibido una gran atención durante un largo
peŕıodo de tiempo, tanto desde la perspectiva teórica como experimental. SUSY es una
simetŕıa que proporciona una conexión entre fermiones y bosones, de tal manera que
para cada part́ıcula del SM existe una compañera supersimétrica (también llamada spar-
ticle) con los mismos números cuánticos pero con media unidad menos de esṕın. Aśı, el
principio supersimétrico permite que cada bosón (fermión) del SM tenga una compañera
supersimétrica que es un fermión (bosón). Como consecuencia, SUSY predice un gran
número de nuevas part́ıculas que podŕıan ser descubiertas en el LHC o en la próxima
generación de colisionadores. Sin embargo, no se ha detectado todav́ıa ninguna part́ıcula
supersimétrica, a pesar de las numerosas búsquedas y de los tremendos esfuerzos de las
colaboraciones experimentales. Por tanto, los espacios de parámetros de los modelos su-
persimétricos parecen reducirse considerablemente. Se deduce entonces que es crucial
llevar a cabo estudios exhaustivos de la situación actual de los distintos modelos.

En esta tesis, consideramos el ‘µ from ν’ Supersymmetric Standard Model (µνSSM) [8]
como el modelo teórico a analizar. Además de las ventajas habituales de los modelos
supersimétricos, el µνSSM, a través de la presencia de tres familias de supercampos de
neutrinos right-handed puede resolver simultáneamente el problema µ [9] del Minimal
Supersymmetric Standard Model (MSSM) [4, 6, 7], aśı como el problema ν, siendo capaz
de reproducir correctamente las masas de los neutrinos y sus ángulos de mezcla [10–13].
También puede propocionar un buen candidato a DM, el gravitino.

En los modelos supersimétricos, la presencia de términos que violan los números
bariónico y leptónico predice una desintegración demasiado rápida del proton y usual-
mente se utiliza la simetŕıa de paridad R para prohibir que los mismos aparezcan en el La-
grangiano. Esta estrategia da lugar a modelos que conservan la paridad R (RPC) [14–18],
tales como el MSSM. Por el contrario, el µνSSM es un modelo en el que la paridad R se vi-
ola (RPV) [19] debido a nuevos acoplamientos que involucran a los neutrinos right-handed,
los cuales violan por tanto el número leptónico (siendo inofensivos para el desintegración
del proton) Como la part́ıcula supersimétrica más ligera (LSP) no es por tanto estable en
el µνSSM, se generan nuevas señasles en los colisionadores, tales como la producción de
vértices desplazados, multileptones o nuevos canales de desintegración.

El objetivo de esta tesis es estudiar a fondo el espacio de parámetros del µνSSM a
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Chapter 1. Introduction/Introducción

la luz de los datos experimentales actuales, utilizando un método muy potente basado
en el análisis de datos y probabilidad. En concreto, estudiamos las regiones viables que
son compatibles con los datos del Higgs y de las oscilaciones de neutrinos, aśı como
con una clase de observables de sabor. Por un lado, analizamos aquellas regiones que
pueden ser exploradas en el funcionamiento actual y futuro del LHC a través del sector
extendido de Higgs del µνSSM, que en general consiste en dos dobletes de Higgs mezclados
con las tres familias de sneutrinos. Después, aplicamos esta estrategia para estudiar la
compatibilidad del sneutrino left como un candidato interesante a LSP [20, 21] en el
µνSSM, con las búsquedas actuales de dileptones desplazados. Por otro lado, también
analizamos las regiones que pueden explicar un viejo rompecabezas del SM, a saber, la
desviación del valor medido del momento magnético anómalo del muón con respecto a la
predicción teórica.

La tesis está organizada como sigue. En el Caṕıtulo 2 describimos brevemente el MSSM
y discutimos algunas de sus limitaciones. En el Caṕıtulo 3 describimos el modelo µνSSM,
presentando sus principales caracteŕısticas y su sector de Higgs extendido. El caṕıtulo 4
está dedicado a la descripción de la metodoloǵıa que empleamos para nuestros análisis.
Describimos el método de muestreo y los datos utilizados. Usando esta metodoloǵıa,
en el Caṕıtulo 5 muestreamos el µνSSM para estudiar el impacto de la f́ısica del Higgs
sobre su espacio de parámetros. Identificamos todas las regiones viables posibles que son
compatibles con los últimos datos del LHC, teniendo en cuenta también otros datos del
LEP y del Tevatron, aśı como una clase de observables de sabor como las desintegracion del
B y el muon. En el Caṕıtulo 6, reinterpretamos el resultado de la búsqueda de dileptones
desplazados en ATLAS a 8-TeV originados en la desintegración de part́ıculas de una vida
media grande, para obtener los ĺımites potenciales sobre el espacio de parámetros del
sneutrino tauónico left como LSP en el µνSSM, con masa en el rango 45− 100 GeV. En
concreto, muestreamos el µνSSM para explorar las regiones del espacio de parámetros
que conducen al sneutrino tauónico left como LSP y para encontrar aquellas que puedan
ser probadas usando la señal de dileptones desplazados en el funcionamiento actual y
futuro del LHC. En el Caṕıtulo 7, analizamos el espacio de parámetros del modelo que
puede explicar el valor medido del momento magnético anómalo del muón. Dentro del
modelo es posible producir part́ıculas supersimétricas ligeras que son consistentes con los
ĺımites de exclusión experimental y que pueden contribuir por tanto a resolver este enorme
rompecabezas del SM. Por último, en el Caṕıtulo 8, resumimos los principales resultados
obtenidos y esbozamos las perspectivas de futuro.
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Chapter 2

Beyond the Standard Model

The SM of particles physics remains so far the most successful framework to explain the
known elementary particles and their interactions. Considerable credence has further been
given to it following the discovery in 2012 by the ATLAS [1] and CMS Collaborations [2]
at the LHC of a new scalar resonance with properties similar to the SM predictions.
Nevertheless, there are credible indications that the SM is not the ultimate theory and
physics BSM must be present.

From the theoretical viewpoint, one of the relevant arguments in this sense is the
existence of the hierarchy problem [22–24]. This is a problem that concerns the hierarchy
between the electroweak scale and the Planck scale at which gravitational interactions are
relevant. It is associated with the presence of an elementary scalar in the SM. Unlike the
fermions and the gauge bosons, whose masses are finite because they are protected by the
chiral and gauge symmetries, respectively, the scalar mass is unprotected. In a general
quantum field theory like the SM, where an elementary scalar is present, the mass of the
latter would be naturally at the scale of the cutoff of the theory up to which it remains
valid. Thus, if the SM were the final theory the Higgs mass would be naturally of the
order of the Planck scale. Therefore, the SM lacks a well-motivated explanation for the
value of the mass of the scalar particle ∼ 125 GeV, if the new physics is much above the
electroweak scale.

Another argument in favor of physics BSM, from the experimental perspective, is the
ν-problem, i.e. the evidence of non-zero masses and mixing angles of neutrinos [25, 26].
These results have been established by numerous collaborations, such as the atmospheric
neutrino experiments SuperKamiokande [27] and SNO [28], the solar neutrino experi-
ments [29–31] and the reactor experiments [32–36]. These observations are BSM frame-
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Chapter 2. Beyond the Standard Model

work where, by construction, the light active neutrinos are exactly massless. Also, by
construction, the SM does not include the gravitational interaction. Moreover, the evi-
dence for DM [37–40] cannot be explained within the SM. Other arguments in favor of
physics BSM include for example the strong CP problem, or the explanation of the baryon
asymmetry of the Universe.

SUSY [3–7] has been the most studied of all the eligible candidates for physics BSM. It
is a symmetry that provides a connection between fermions and bosons in such a way that
for each SM particle there exists a supersymmetric partner with the same set of quantum
numbers but a half integer spin difference. In addition, unlike in the SM where one Higgs
doublet is enough, SUSY requires two Higgs doublets for the consistency of the theory
and for giving masses to the up and down type fermions. As already mentioned, SUSY
principle allows every SM boson and fermion to have a supersymmetric partner that is a
fermion and boson respectively. In an exact SUSY, the masses of supersymmetric partners
would be identical to their corresponding SM partners. However, none of the SUSY
partners have been discovered, thus they must be heavier than their corresponding SM
partners. By construction, SUSY solves several shortcomings of the SM, for instance, the
hierarchy problem cancelling the quadratic divergences [7]. Also, assuming RPC [14–18]
the LSP becomes stable and thereby provides a natural candidate for DM. Even in the case
of RPV [19], it is possible to accommodate a decaying gravitino DM with a lifetime longer
than the age of the Universe [41,42]. Moreover, local SUSY is a theory of (super)gravity
and therefore includes the gravitational interaction [43].

The simplest realization of SUSY, the MSSM [4, 6, 7], is briefly described in the next
sections, as well as the issue of R-parity, the µ-problem and the ν-problem.

2.1 The MSSM
The MSSM particle content consists of the two-Higgs-doublet extension of the SM plus

the corresponding SUSY partners. The Higgses and sparticles are shown in Table 2.1,
together with their quantum numbers. The superpotential of the MSSM is written as

WMSSM = εab
(
YeijĤ

a
d L̂

b
i ê
c
j + YdijĤ

a
d Q̂

b
i d̂
c
j + YuijĤ

b
uQ̂

a
i û

c
j

)
− εab µĤ

b
uĤ

a
d , (2.1)

where Q̂i = (ûi, d̂i), L̂i = (ν̂i, êi), Ĥd = (Ĥ0
d , Ĥ

−
d ), Ĥu = (Ĥ+

u , Ĥ
0
u) are SU(2)L doublet

superfields, and a, b are SU(2)L indices with εab the totally antisymmetric tensor ε12 =
1. The first three terms of Eq. (2.1) are related to quark and charged lepton Yukawa
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2.1. The MSSM

Spin Gauge eigenstates SU(3)c SU(2)L U(1)Y
Squarks 0 Q̃i, ũiR, d̃iR 3, 3, 3 2, 1, 1 1/6, 2/3, −1/3

Sleptons 0 L̃i, ẽiR 1, 1 2, 1 −1/2,−1

Higgses 0 Hd, Hu 1, 1 2, 2 −1/2, 1/2

Higgsinos 1/2 H̃d, H̃u 1, 1 2, 2 −1/2, 1/2

Gauginos 1/2 W̃µ, B̃µ, g̃ 1, 1, 8 3, 1, 1 0, 0, 0

Table 2.1: Sparticle and Higgs content of the MSSM, with i = 1, 2, 3 a family index.

interactions. The fourth term, i.e. the so-called µ-term, is the only dimensionful in
superpotential.

In an exact SUSY, the SM particles and their SUSY partners would have the same
masses and, therefore, should have already been discovered at colliders. SUSY partners
must be therefore heavier then their SM counterparts. As a consequence, SUSY must be
(softly) broken. The soft SUSY-breaking Lagrangian of the MSSM is given by [4,6, 7]

−Lsoft
MSSM = εab

(
TeijH

a
d L̃

b
iLẽ
∗
jR + TdijH

a
d Q̃

b
iLd̃
∗
jR + TuijH

b
uQ̃

a
iLũ
∗
jR + h.c

)
− εab

(
bHb

uH
u
d + h.c

)
+

(
m2
Q̃L

)
ij
Q̃∗iLQ̃jL +

(
m2
ũR

)
ij
ũ∗iRũjR +

(
m2
d̃R

)
ij
d̃∗iRd̃jR +

(
m2
L̃

)
ij
L̃∗iLL̃jL

+
(
m2
ẽR

)
ij
ẽ∗iRẽjR +m2

Hd
Ha∗

d H
a
d +m2

HuH
a∗

u H
a
u

+ 1
2
(
M3 g̃g̃ +M2 W̃W̃ +M1 B̃

0B̃0 + h.c
)
. (2.2)

The trilinear terms in the first line are in correspondence with the trilinear couplings of
the superpotential. The bilinear term in the second line is in correspondence with the
µ-term. The terms in the third and fourth lines are the squared sfermion masses and
Higgs masses. Finally, the parameters M1,2,3 are the Majorana masses of the gluino, wino
and bino fields.

The EWSB of the MSSM occurs when the neutral components of the two Higgs dou-
blets, H0

u and H0
d , acquire non-zero vacuum expectation values (VEVs) vu and vd, respec-

tively, generating mass terms for quarks and charged leptons. After the EWSB, the gauge
eigenstates mix forming the mass eigenstates. In particular, in the Higgs sector which is
specially interesting for our analysis, the two neutral higgsinos mix with the two neutral
gauginos giving rise to the four neutralinos. Similarly, charged gauginos mix with charged
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Chapter 2. Beyond the Standard Model

higgsinos giving rise to the two charginos. Concerning Higgses, of the eight states, three
of them are swallowed by the SM gauge bosons to become massive, while the other five
give rise to two scalar Higgses, one pseudoscalar Higgs and two charged Higgses.

2.2 R-parity
The superpotential of the MSSM given in Eq. (2.1) is not the most general one. In

fact, the most general (gauge invariant and renormalizable) superpotential of the MSSM
must include in addition [19]:

WRPV = εab
(
λijkL̂

a
i L̂

b
j ê
c
k + λ′ijkL̂

a
i Q̂

b
j d̂
c
k + µiL̂

a
i Ĥ

b
d

)
+ λ′′ijkû

c
i d̂
c
j d̂
c
k , (2.3)

where the terms in brackets, and the last term, violate lepton and baryon number, respec-
tively. However, the simultaneous presence of the second and fourth term produces fast
proton decay. To forbid this situation, R-parity was introduced [14–18] implying that all
the SM particles have quantum number Rp = 1 while their superpartners have Rp = −1.
One of the crucial consequences is that SUSY particles must be produced in pairs and,
therefore, the LSP is stable and, hence, a good candidate for DM.

Nevertheless, invoking RPV to avoid the problem of proton decay is clearly too strin-
gent, since then the other couplings λijk and µi in the superpotential (2.3), which are
harmless for proton decay, would also be forbidden. As discussed recently in detail in
Ref. [44], λ′′ijk can be naturally forbidden, for example through Z3 Baryon-parity or stringy
selection rules.

2.3 The µ-problem
The µ-term in the second line of Eq. (2.1), is the only coupling in the superpotential

with dimension of mass. Given that this term is purely supersymmetric, the scale of µ is
expected to be of the same order as the scale at which SUSY remains preserved, typically
the Planck scale. However, µ also contributes to the EWSB, and therefore to the mass of
the Z:

1
2M

2
Z =

m2
Hd
−m2

Hu tan2 β

tan2 β − 1 − µ2. (2.4)

For soft masses of the order of the TeV scale, the measured value of MZ = 91.1876
GeV [45] indicates that the scale of µ should be also around the TeV. This is the so-called
µ-problem [9], the origin of µ and why it is much smaller than the Planck scale. The µ-
term cannot be set to zero because then vd = 0 giving rise to massless down-type fermions
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2.4. The ν-problem

and charged leptons. Besides, if µ = 0, WMSSM would have a global U(1) symmetry leading
to a Goldstone boson after EWSB [46, 47]. In addition, µ >∼ 100 GeV is necessary if we
want to fulfill the RPC lower bound on chargino masses from LEP [45].

A solution to the µ problem is present in the gauge singlet extension of the MSSM,
the so-called Next-to-MSSM (NMSSM) [48,49] where the bilinear µĤuĤd term is replaced
by λŜĤuĤd, with the superfield Ŝ a singlet under the SM gauge group. After EWSB, an
effective µ-term, with µ = λs, is generated with s the vacuum expectation value of the
scalar S.

2.4 The ν-problem
The minimal way of generating massive neutrinos in the MSSM is by allowing RPV in-

teraction terms in the Lagrangian [19]. In particular, the third type of terms in Eq. (2.3),
µiL̂iĤd, added to the superpotential of the MSSM constitute the Bilinear R-parity Violat-
ing (BRpV) model, which generates neutrino masses through the mixing of the left-handed
neutrinos with the neutralinos. However, because of the structure of the mass matrix,
only one neutrino is massive at tree level while the remaining masses must appear through
loops corrections. In addition, this type of terms generates other µ problems since the µi
have to be very small <∼ 10−4 GeV, if one wants to reproduce the smallness of neutrino
masses.

For the trilinear R-parity Violating (TRpV) models, the terms proportional to λijk

and λ′ijk, or to λ′′ijk, in Eq. (2.3), are added to the superpotential of the MSSM. In this
case, all light active neutrino masses are generated at loop level.

In sum, there exist SUSY models that can either solve the µ-problem or accommodate
massive neutrinos. A simultaneous solution to both, µ- and ν-problem is possible in
another singlet extension of the MSSM, once one allows RPV terms in the Lagrangian.
This is the case of the so-called µνSSM, where three families of right-handed neutrino
superfields are introduced for these tasks, as we will discuss in the next chapter.
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Chapter 3

The µνSSM

In the previous chapter, we introduced the minimal realization of a SUSY model, the
MSSM, and briefly presented several arguments as motivations to extend its framework.
In this chapter, we introduce one of the extensions of the MSSM that provides a solution
to the µ problem, and, simultaneously, an answer to the origin of neutrinos masses and
mixing angles. This model is known as the ‘µ from ν’ Supersymmetric Standard Model
(µνSSM) [8]. As we will discuss in detail below, in the µνSSM the presence of trilinear
terms in the superpotential involving three families of right-handed neutrino superfields
ν̂ci , with i = 1, 2, 3, is crucial to relate the origin of the µ-term to the origin of neutrino
masses and mixing angles.

3.1 The superpotential and soft terms
The simplest superpotential of the µνSSM [8,20,50] with three right-handed neutrinos

is the following:

W =
∑
a,b

∑
i,j

εab
(
Yeij Ĥ

a
d L̂

b
i ê

c
j + Ydij Ĥ

a
d Q̂

b
i d̂

c
j + Yuij Ĥ

b
u Q̂

a ûcj
)

+
∑
a,b

∑
i,j

εab
(
Yνij Ĥ

b
u L̂

a
i ν̂

c
j − λi ν̂ci Ĥb

uĤ
a
d

)
+
∑
i,j,k

1
3κijkν̂

c
i ν̂

c
j ν̂

c
k , (3.1)

with a, b = 1, 2 SU(2)L indices with εab the totally antisymmetric tensor ε12 = 1, and
i, j, k = 1, 2, 3 the usual family indices of the SM.

The three terms in the first line of the superpotential are the usual Dirac Yukawa
couplings for quarks and charged leptons of the MSSM. The three terms in the third
line are characteristic of the µνSSM. In particular, the first one contains the Dirac
Yukawa couplings for neutrinos, and the last two generate dynamically the µ term and
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3.1. The superpotential and soft terms

Majorana masses for neutrinos, respectively. The simultaneous presence of these terms
in Eq. (3.1) makes it impossible to assign R-parity charges consistently to the right-
handed neutrinos (νiR), thus producing explicit RPV (harmless for proton decay). Note
nevertheless, that in the limit of neutrino Yukawa couplings Yνij → 0, ν̂ci can be identified
in the superpotential as pure singlet superfields without lepton number, similar to the
singlet of the NMSSM [49], and therefore R parity is restored. Thus, Yν are the parameters
which control the amount of RPV in the µνSSM, and as a consequence this violation is
small since the size of Yν <∼ 10−6 is determined by the electroweak-scale seesaw of the
µνSSM [8,50].

Working in the framework of a typical low-energy SUSY, the Lagrangian containing
the soft SUSY-breaking terms related to the superpotential in Eq. (3.1) is given by:

−Lsoft =
∑
a,b

∑
i,j

εab
(
Teij H

a
d L̃

b
iL ẽ
∗
jR + Tdij H

a
d Q̃

b
iL d̃

∗
jR + Tuij H

b
uQ̃

a
iLũ
∗
jR + h.c.

)
+

∑
a,b

∑
i,j

εab
(
Tνij H

b
u L̃

a
iLν̃
∗
jR − Tλi ν̃∗iRHa

dH
b
u + h.c.

)
+

∑
i,j,k

(1
3Tκijk ν̃

∗
iRν̃
∗
jRν̃

∗
kR + h.c.

)

+
∑
a,b

∑
i,j

[(
m2
Q̃L

)
ij
Q̃a∗
iLQ̃

a
jL +

(
m2
ũR

)
ij
ũ∗iRũjR +

(
m2
d̃R

)
ij
d̃∗iRd̃jR

+
(
m2
L̃L

)
ij
L̃a∗iLL̃

a
jL +

(
m2
ν̃R

)
ij
ν̃∗iRν̃jR +

(
m2
ẽR

)
ij
ẽ∗iRẽjR

]
+

∑
a

(
m2
Hd
Ha
d
∗Ha

d +m2
HuH

a
u
∗Ha

u

)
+ 1

2
(
M3 g̃ g̃ +M2 W̃ W̃ +M1 B̃

0 B̃0 + h.c.
)
, (3.2)

The trilinear parameters Td,e,u, Tν , Tλ and Tκ are in correspondence with the trilinear
couplings of the superpotential. If we follow the assumption based on the breaking of
supergravity that all the trilinear parameters are proportional to their corresponding
couplings in the superpotential [51], we can write

Teij = AeijYeij , Tdij = AdijYdij , Tuij = AuijYuij , (3.3)

Tνij = AνijYνij , Tλi = Aλiλi , Tκijk = Aκijkκijk , (3.4)

and the parameters A substitute the T as the most representative. We will use both type of
parameters in our discussions. It is worth noticing here that we do not use the summation
convention on repeated indices throughout this work, unless explicitly specified.
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Chapter 3. The µνSSM

3.2 The scalar potential and EWSB
Together with the corresponding soft SUSY-breaking terms, the F and D terms give

rise to the following tree-level neutral scalar potential:

V (0) = Vsoft + VF + VD , (3.5)

with

Vsoft =
∑
i,j,k

(
Tνij H

0
u ν̃iL ν̃

∗
jR − Tλi ν̃∗iRH0

dH
0
u + 1

3Tκijk ν̃
∗
iRν̃
∗
jRν̃

∗
kR + h.c.

)

+
∑
i,j

[(
m2
L̃L

)
ij
ν̃∗iLν̃jL +

(
m2
ν̃R

)
ij
ν̃∗iRν̃jR

]
+m2

Hd
H0
d
∗
H0
d +m2

HuH
0
u
∗
H0
u , (3.6)

VF =
∑

i,j,k,l,m

(
λjλ

∗
jH

0
dH

0
d

∗
H0
uH

0
u

∗ + λiλ
∗
j ν̃
∗
iRν̃jRH

0
dH

0
d
∗ + λiλ

∗
j ν̃
∗
iRν̃jRH

0
uH

0
u
∗

+ κijkκ
∗
ljmν̃

∗
iRν̃lRν̃

∗
kRν̃mR −

(
κijkλ

∗
j ν̃
∗
iRν̃
∗
kRH

0∗
d H

0∗
u − Yνijκ∗ljkν̃iLν̃lRν̃kRH0

u

+ Yνijλ
∗
j ν̃iLH

0∗
d H

0∗
u H

0
u + Y ∗νijλkν̃

∗
iLν̃jRν̃

∗
kRH

0
d + h.c.

)
+ YνijY

∗
νik
ν̃∗jRν̃kRH

0
uH

0
u
∗ + YνijY

∗
νlk
ν̃iLν̃

∗
lLν̃
∗
jRν̃kR + YνjiY

∗
νki
ν̃jLν̃

∗
kLH

0
uH

0∗
u

)
, (3.7)

VD = 1
8
(
g2 + g′

2)(∑
i

ν̃iLν̃
∗
iL +H0

dH
0
d
∗ −H0

uH
0
u
∗
)2

. (3.8)

The EW gauge couplings are estimated at the mZ scale by e = g sin θW = g′ cos θW .
Since only dimensionless trilinear couplings are present in the superpotential, the EWSB
is determined by the soft terms of the scalar potential. Thus all known particle physics
phenomenology can be reproduced in the µνSSM with one scale, the about 1 TeV scale of
the soft terms, avoiding the introduction of‘ad-hoc’ high-energy scales. With the choice
of CP conservation, one can define the neutral scalars as:

H0
d = 1√

2
(
HRd + vd + i HId

)
, (3.9)

H0
u = 1√

2
(
HRu + vu + i HIu

)
, (3.10)

ν̃iR = 1√
2
(
ν̃RiR + viR + i ν̃IiR

)
, (3.11)

ν̃iL = 1√
2
(
ν̃RiL + viL + i ν̃IiL

)
, (3.12)
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3.2. The scalar potential and EWSB

in such a way that after the EWSB they develop the real VEVs

〈H0
d〉 = vd√

2
, 〈H0

u〉 = vu√
2
, 〈ν̃iR〉 = viR√

2
, 〈ν̃iL〉 = viL√

2
. (3.13)

The eight minimization conditions with respect to vd, vu, viR and viL can then be
written as:

m2
Hd

= −1
8
(
g2 + g′

2
) (
viLviL + v2

d − v2
u

)
− 1

2λiλjviRvjR −
1
2λiλiv

2
u

+viR tan β
( 1√

2
Tλi + 1

2λjκijkvkR
)

+ Yνij
viL
2vd

(
λkvkRvjR + λjv

2
u

)
−
√

2
vd
V (n)
vd

, (3.14)

m2
Hu = 1

8
(
g2 + g′

2
) (
viLviL + v2

d − v2
u

)
− 1

2λiλjviRvjR −
1
2λjλjv

2
d

+λjYνijviLvd −
1
2YνijYνikvkRvjR −

1
2YνijYνkjviLvkL

+ viR
tanβ

( 1√
2
Tλi + 1

2λjκijkvkR
)
− viL
vu

( 1√
2
TνijvjR + 1

2YνijκljkvlRvkR
)

−
√

2
vu
V (n)
vu , (3.15)

(m2
ν̃R

)ijvjR = 1√
2

(
−TνjivjLvu + Tλivuvd − TκijkvjRvkR

)
− 1

2λiλj
(
v2
u + v2

d

)
vjR + λjκijkvdvuvkR

−κlimκljkvmRvjRvkR + 1
2YνjiλkvjLvkRvd + 1

2YνkjλivdvkLvjR − YνjkκiklvuvjLvlR

−1
2YνjiYνlkvjLvlLvkR −

1
2YνkiYνkjv

2
uvjR − V (n)

viR
, (3.16)

(m2
L̃L

)ijvjL = −1
8
(
g2 + g′

2
) (
vjLvjL + v2

d − v2
u

)
viL −

1√
2
TνijvuvjR + 1

2YνijλkvdvjRvkR

+1
2Yνijλjv

2
uvd −

1
2YνilκljkvuvjRvkR −

1
2YνijYνlkvlLvjRvkR −

1
2YνikYνjkv

2
uvjL

−V (n)
viL

, (3.17)

where tan β ≡ vu
vd

, V (n)
θ ≡ ∂V (n)/∂x with x = vd, vu, viR, viL, and V (n) represents the n-

loop radiative correction to the potential, V = V (0) +V (n). Note that here the summation
convention on repeated indices is used for simplicity. The scale at which the EWSB
conditions are imposed is MEWSB = √mt̃lmt̃h , where mt̃l and mt̃h correspond to the
lightest and heaviest stop mass eigenvalues, respectively, measured at MEWSB.

After the successful EWSB, several crucial terms are effectively generated in the
µνSSM. Note from Eq. (3.16) that the VEVs of the right sneutrinos are naturally of
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the order of the EWSB scale
viR√

2
≈ 1 TeV , (3.18)

implying that the µ problem of the MSSM [9] is solved, thanks to the presence of the 5th

term in the superpotential above which generates an effective µ term with

µ =
∑
i

λi
viR√

2
. (3.19)

In addition, the 6th term in the superpotential generates effective Majorana masses for
the right-handed neutrinos

Mij =
∑
κ

2κijk
vkR√

2
, (3.20)

and, as a consequence, we can implement naturally a (generalized) electroweak-scale see-
saw in the µνSSM which includes the neutralinos, asking for neutrino Yukawa couplings of
the order of the electron Yukawa coupling or smaller (see the first two terms of Eqs. (3.32)
and (3.36) below) [8, 50,52–55]:

Yνij <∼ 10−6 . (3.21)

This means that, we work with Dirac masses for neutrinos of the order of

mDij = Yνij
vu√

2
<∼ 10−4 GeV , (3.22)

and that, no ‘ad hoc’ high-energy scales (larger than a TeV) are necessary to reproduce
experimentally consistent neutrino masses. It is worth pointing out in this context that,
the VEVs of the left sneutrinos are much smaller than the other VEVs. This is because of
the small value of Yν . We can see in this respect that in Eq. (3.17), viL → 0 as Yνij → 0.
It is then easy to estimate the values of VEVs as viL <∼ mD [8], thus:

viL√
2
<∼ 10−4 GeV . (3.23)

This result allows that the seesaw of the µνSSM works properly, since the third term ∼
v2
L/M in Eqs. (3.32) and (3.36) below, is of the same order as the first two. Finally, the

4th term in the superpotential generates effective bilinear RPV couplings

µi =
∑
i

Yνij
vjR√

2
, (3.24)

as those constituting the BRpV.
In sum, the superpotential of the µνSSM serves both the purposes of solving the µ

19



3.3. The parameter space

problem and generating non-zero neutrino masses and mixing solving the ν problem. As
a consequence of the new terms introduced in the superpotential to solve these challenges,
R-parity is explicitly broken, with its breaking controlled by the small Yukawa couplings
for neutrinos, i.e. R-parity is restored for Yνij → 0.

3.3 The parameter space
Given the structure of the scalar potential, the free parameters in the neutral scalar

sector of the µνSSM at the low scale MEWSB are therefore: λi, κijk, Yνij , m2
Hd

, m2
Hu , m2

ν̃ij
,

m2
L̃ij

, Tλi , Tκijk and Tνij . Using diagonal sfermion mass matrices, in order to avoid the
strong upper bounds upon the intergenerational scalar mixing (see e.g. Ref. [56]), from
the eight minimization conditions with respect to vd, vu, viR and viL one can eliminate the
above soft masses in favor of the VEVs. In addition, using tan β and the SM Higgs VEV,
v2 = v2

d +v2
u+∑

i v
2
iL = 4m2

Z/(g2 + g′2) ≈ (246 GeV)2, one can determine the SUSY Higgs
VEVs, vd and vu. Since viL � vd, vu, one has vd ≈ v/

√
tan2 β + 1. Besides, we can use

diagonal neutrino Yukawa couplings, since data on neutrino physics can easily be repro-
duced at tree level in the µνSSM with such structure, as we will discuss below. Finally,
assuming for simplicity that the off-diagonal elements of κijk and soft trilinear parameters
T vanish, we are left with the following set of variables as independent parameters in the
neutral scalar sector:

λi, κi, Yνi , tan β, viL, viR, Tλi , Tκi , Tνi , (3.25)

where κi ≡ κiii, Yνi ≡ Yνii , Tνi ≡ Tνii and Tκi ≡ Tκiii . Note that now the Majorana
and Dirac mass matrices for neutrinos are diagonal, with the non-vanishing entries given
respectively by

Mi = 2κi
viR√

2
. (3.26)

mDi = Yνi
vu√

2
(3.27)

The rest of (soft) parameters of the model, namely the following gaugino masses, scalar
masses, and trilinear parameters:

M1, M2, M3, mQ̃iL
, mũiR , md̃iR

, mẽiR , Tui , Tdi , Tei , (3.28)

are also taken as free parameters and specified at low scale.
A further sensible simplification that we will also use in the next sections when nec-
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essary, is to assume universality of the parameters in Eq. (3.25) with the exception of
those connected directly with neutrino physics such as Yνi and viL, that must be non-
universal to generate correct neutrino masses and mixing angles. Neither we will impose
universality for Tνi , since they are connected with sneutrino physics as we will discuss
in the next section, and a hierarchy of masses in that sector can be phenomenologically
interesting [57]. We are then left with the following set of low-energy free parameters:

λ, κ, Yνi , tan β, viL, vR, Tλ, Tκ, Tνi , (3.29)

where λ ≡ λi, κ ≡ κi, vR ≡ viR, Tλ ≡ Tλi and Tκ ≡ Tκi . In this case, the three
non-vanishing Majorana masses are equal Mi =M, with

M = 2κ vR√
2
, (3.30)

and the µ-term is given by
µ = 3λ vR√

2
. (3.31)

3.4 The spectrum
The presence of new couplings and sneutrino VEVs in the µνSSM induce new mixing

of states [8, 50]. In this section we review the particle spectrum of the model.
Neutral scalar sector: The right and left sneutrinos are mixed with the Higgs dou-

blets. The real components of these eight states give rise to eight CP-even scalar eigen-
states. In a similar way, after rotating away the neutral Goldstone boson, the imaginary
parts of these eight states give rise to seven CP-odd scalar eigenstates. The corresponding
mass matrices are given in Appendices A.1.1 and A.1.2, respectively. On the other hand,
the couplings among left sneutrinos and Higgses occur through Yνij or viL. These are
constrained to be small from the smallness of measured neutrino masses and hence left
sneutrinos remain practically decoupled from Higgses. The right sneutrinos, nevertheless,
couple through λi. The latter, being in general O(1) couplings, can generate significant
singlet-doublet mixing in the µνSSM.

Charged scalar sector: The charged Higgses mix with the three families of left
and righ charged sleptons. After rotating away the charged Goldstone boson, one gets
seven charged eigenstates. Basically, the charged Higgs and the charged sleptons remain
practically decoupled because they couple through tiny Yνij . Their mass matrix is given
in Appendix A.1.3.
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Squarks: The squark mass matrices in the µνSSM include new terms with respect to
the MSSM, but they are proportional either to Yνij or viL and hence have small effect in
the determination of squark masses. Thus, the squarks eigenstates of the µνSSM coincide
basically with those of the MSSM scenario. Novel differences, nonetheless, can appear in
the decay cascades in the presence of RPV and additional states. The mass matrices can
be found in Appendices A.1.4 and A.1.5.

Neutral fermions: MSSM neutralinos mix with the three generations of left- and
right-handed neutrinos to form a 10×10 flavour matrix. Of the ten eigenstates, the three
light-most states overlap with the light neutrinos, νL. We will discuss this issue in more
detail in the next subsection. The mass matrix is given in Appendix A.2.1.

Charged fermions: MSSM Charginos mix with the charged leptons in the µνSSM,
giving rise to five chargino eigenstates. Nevertheless, these mixings are suppressed by
the smallness of Yνij and viL and, basically the three lighter charginos coincide with the
charged leptons. The corresponding mass matrix can be found in Appendix A.2.2.

3.5 The neutrino sector
We have discussed in Section 3.2, that effective Majorana masses for right-handed

neutrinos of the order of the EWSB scale are dynamically generated in the µνSSM (see
Eq. (3.20)). In addition, in Section 3.4, we have seen that the MSSM neutralinos mix with
the left- and right-handed neutrinos giving rise to the 10×10 neutral fermion (‘neutrino’)
mass matrix shown in Eq. (A.63), which has the structure of a generalized electroweak-
scale seesaw. Because of this structure, data on neutrino physics [10–13] can easily be
reproduced at tree level [8,50,52–55], even with diagonal Yukawa couplings [52,54]. Qual-
itatively, we can understand this in the following way. First of all, the three neutrino
masses are going to be very small since the entries of the first three rows (and columns)
of the neutrino matrix are much smaller than the rest of the entries. The latter are of the
order of the electroweak scale, whereas the former are of the order of the Dirac masses
for neutrinos (see Eq. (3.22)) [8,50]. Second, from this matrix one can obtain a simplified
formula for the effective mixing mass matrix of the light neutrinos [54]:

(mν)ij =
mDimDj

3M (1− 3δij)−
(viL/

√
2)(vjL/

√
2)

2M eff

−
mDimDj

2M eff
1

3λ tan β

(
viL/
√

2
mDi

+ vjL/
√

2
mDj

+ 1
3λ tan β

)
, (3.32)
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where

M eff ≡M −

(
v/
√

2
)2

2µ
(
M vR√

2 + 2λ
(
v√
2

)2 tanβ
1+tan2 β

)
2M vR√

2
tan β

1 + tan2 β
+ λ

(
v√
2

)2
 , (3.33)

with

1
M

= g′2

M1
+ g2

M2
. (3.34)

Here is assumed λi = λ, viR = vR, and κi = κ, as in Eq. (3.29). The first term of Eq. (3.32)
is generated through the mixing of νiL with νiR-Higgsinos, and the other two also include
the mixing with the gauginos. These are the so-called νR-Higgsino seesaw and gaugino
seesaw, respectively [54].

Using this approximate formula it is easy to understand how diagonal Yukawas can
give rise to off-diagonal entries in the mass matrix. The key points are clearly the extra
contributions with respect to the ordinary seesaw, given by the pieces which are not
proportional to δij.

We are then left in general with the following subset of variables of Eqs. (3.25)
and (3.28) as independent parameters in the neutrino sector:

λi, κi, Yνi , tan β, viL, viR, M, (3.35)

In the numerical analyses, it will be enough for our purposes to consider the sign conven-
tion where all these parameters are positive.

Under several assumptions, the formula for (mν)ij can be further simplified. Notice
first that the third term is inversely proportional to tan β, and therefore negligible in the
limit of large or even moderate tan β provided that λ is not too small. Besides, the first
piece inside the brackets in the second term of Eq. (3.33) is also negligible in this limit,
and for typical values of the parameters involved in the seesaw also the second piece,
thus M eff ∼ M . Under these assumptions, the second term for (mν)ij is generated only
through the mixing of left-handed neutrinos with gauginos. Therefore, we arrive to a very
simple formula where only the first two terms survive with M eff = M in Eq. (3.33), i.e.

(mν)ij =
mDimDj

3M (1− 3δij)−
(viL/

√
2)(vjL/

√
2)

2M , (3.36)

that can be used to understand easily the seesaw mechanism in the µνSSM in a qualitative
way. From this discussion, it is clear that Yνi , viL and M are crucial parameters to
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determine the neutrino physics.
As we can understand from these equations, neutrino physics in the µνSSM is closely

related to the parameters and VEVs of the model, since the values chosen for them must
reproduce current data on neutrino masses and mixing angles. For example, for the
typical values of the parameters and VEVs in Eqs. (3.18), (3.21) and (3.23), neutrino
masses <∼ 0.1 eV as expected, can easily be reproduced.

Let us finally point out that all these results in the µνSSM give a kind of answer to
the question of why the mixing angles are so different in the quark and lepton sectors.
Basically, because no generalized seesaw exists for the quarks.

3.6 The Higgs sector
As we discussed in Section 3.4, neutral Higgses are mixed with left and right sneutrinos,

giving rise to 8×8 (‘Higgs’) mass matrices for scalar and pseudoscalar states. Nevertheless,
we also noticed that in the 8×8 mass matrices, the 5×5 Higgs-right sneutrino submatrix
is almost decoupled from the 3×3 left sneutrino submatrix due to the very small values of
Yνij and viL in the off-diagonal entries [50,52]. Thus we can focus in the next subsection on
the analysis of the Higgs-right sneutrino submatrix to accommodate the SM-like Higgs in
the µνSSM. We will show how to disentangle the Higgs doublets from the rigth sneutrino
states. As the left sneutrinos, the charged Higgs sector of the model is also not relevant for
accommodating the SM-like Higgs, nevertheless we will briefly review it for completeness
at the end.

3.6.1 The SM-like Higgs

We focus here on the analysis of the Higgs-right sneutrino submatrix to accommodate
the SM-like Higgs in the µνSSM. The scalar and pseudoscalar mass submatrices are
shown in Appendix B using the parameters of Eq. (3.25). Through the mixing with the
right sneutrinos, which appears through λi, the tree-level mass of the lightest doublet-like
Higgs receives an extra contribution with respecto to the MSSM. We want to emphasize
that this analysis has a notable similarity with that of the NMSSM (although in the
NMSSM one has only one singlet), however RPV and an enhanced particle content offer
a novel and unconventional phenomenology for the Higgs-right sneutrino sector of the
µνSSM [50, 52, 53, 58–64]. Taking into account all the contributions, the mass of the
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SM-like Higgs in the µνSSM can be schematically written as [50,62]:

m2
h = m2

0h + ∆mixing + ∆loop, (3.37)

where

m2
0h = m2

Z cos2 2β +
(
v√
2

)2

λ2 sin2 2β (3.38)

corresponds to neglect the mixing of the SM-like Higgs with the other states in the mass
squared matrix, ∆mixing encodes those mixing effects lowering (raising) the mass if it mixes
with heavier (lighter) states, and ∆loop refers to the radiative corrections. Note that m2

0h

contains two terms, where the first is characteristic of the MSSM and the second of the
µνSSM with

λ ≡
(∑

i

λ2
i

)1/2

=
√

3 λ, (3.39)

where the last equality is obtained if one assumes universality of the parameters λi = λ.
We can write m2

0h in a more elucidate form for our discussion below as

m2
0h = m2

Z


(

1− tan2β

1 + tan2β

)2

+ 14.5 λ2
(

tanβ
1 + tan2β

)2
 , (3.40)

where we see straightforwardly that the second term grows with small tanβ and large λ.
In the case of the MSSM this term is absent, hence the maximum possible tree-level mass
is about mZ for tanβ � 1 and, consequently, a contribution from loops is essential to
reach the target of a SM-like Higgs in the mass region around 125 GeV. This contribution
is basically determined by the soft parameters Tu3 ,mũ3R

and m
Q̃3L

. On the contrary, in
the µνSSM one can reach this mass solely with the tree-level contribution for large values
of λ [50]. Following the work of Ref. [62], we choose for this analysis three regions in
λ values. In particular, for convenience of the discussion of Section 5.4, where the last
equality of Eq. (3.39) is used, our regions are:

(a) Small to moderate (0.01 ≤ λ/
√

3 < 0.2)
In this range, the maximum value of m0h using Eq. (3.40) with λ/

√
3 = 0.2 goes as

≈ 78.9 GeV for tanβ = 2, which is ≈ 18 GeV more compared to a similar situation in the
MSSM. It is thus essential to have additional contributions to raise m2

0h up to around 125
GeV. A possible source of extra tree-level mass can arise when the right sneutrino-like
states are lighter compared to the lightest doublet-like Higgs. In this situation, the later
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feels a push away effect from the former states characterized by ∆mixing > 0, pushing
mh a bit further towards 125 GeV. Unfortunately, for most of this range of λ values,
away from the upper end, the push-up effect is normally small owing to the small singlet-
doublet mixing which is driven by λi (see Eq. (A.7) of Appendix) [50,59]. The additional
contribution to accommodate the 125 GeV doublet-like Higgs is coming then from loop
effects. The situation is practically similar to that of the MSSM, where large masses for
the third-generation squarks and/or a large trilinear A-term are essential [65–67]. A small
trilinear Au3-term is possible only by decoupling the scalars to at least 5 TeV [67]. A light
third generation squark, especially a stop, is natural in the so-called maximal mixing
scenario [68], where |Xu3/mQ̃3L

|≈
√

6 with Xu3 ≡ Au3 − µ/tan β.
These issues indicate that the novel signatures from SUSY particles (e.g., from a light

stop or sbottom) are less generic in this region of λ. Nevertheless, novel differences are
feasible for Higgs decay phenomenology, especially in the presence of singlet-like lighter
states [53, 58–64].

(b) Moderate to large (0.2 ≤ λ/
√

3 < 0.5)
For this range of λ values, m0h can go beyondmZ , especially for tanβ <∼ 5 and λ/

√
3 >∼ 0.29.

For example with λ/
√

3 ≈ 0.4, tanβ = 2 (5) gives m0h ∼ 112 (96) using Eq. (3.40). This
is ≈ 100% (14%) enhancement compared to the MSSM scenario with the same tanβ.
Note that this value λ ≈ 0.7 (λ ≈ 0.4) is the maximum possible value of λ maintaining
its perturbative nature up to the scale of a grand unified theory (GUT), MGUT ∼ 1016

GeV. As discussed in Ref. [50], using the renormalization group equations (RGEs) for
λ and κ between MGUT and the low scale ∼ 1 TeV, neglecting the contributions from
the top and gauge couplings, one can arrive straightforwardly to the simple formula:
2.35 κ2 + 1.54 λ2 <∼ 1. This gives the bound λ <∼ 0.8, similar but slightly larger than
the one of 0.7 mentioned before. Nevertheless, one should expect a final bound slightly
stronger when all contributions to the RGEs are taken into account. The numerical
analysis indicates that a better approximate formula is

2.77 κ2 + 2 λ2 <∼ 1, (3.41)

which produces the bounds λ <∼ 0.7 and κ <∼ 0.6.
For this region of λ the singlet-doublet mixing is no longer negligible as we will see in

the next subsection, particularly as λ/
√

3→ 0.4. Thus, a state lighter than 125 GeV with
the leading singlet composition appears difficult without a certain degree of tuning of the
other parameters, e.g. κi, viR, Tκi , Tλi , etc. In this situation, the extra contribution to
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the tree-level value of mh is favourable through a push-up action from the singlet states
compared to small to moderate λ scenario. Once again a contribution from the loops is
needed to reach the 125 GeV target. However, depending on the values of λ and tanβ the
requirement sometime is much softer compared to small to moderate λ scenario. Thus
the necessity of very heavy third-generation squarks and/or large trilinear soft-SUSY
breaking term may not be so essential for this region [65]. It is also worth noticing that
the naturalness is therefore improved with respect to the MSSM or smaller values of λ.

When λ/
√

3→ 0.5, m0h as evaluated from Eq. (3.40) can be larger than 125 GeV. For
example, for the upper bound of this range λ/

√
3 = 0.5, tanβ = 2 gives m0h ∼ 132 GeV.

In this case we have to relax the idea of perturbativity up to the GUT scale, as we will
discuss below.

(c) Large λ (0.5 ≤ λ/
√

3 < 1.2)
Assuming e.g. a scale of new physics around 1011 GeV, and following similar analytical
arguments as above using the RGEs, the perturbative limit gives approximately 1.48 κ2 +
0.96 λ2 <∼ 1 producing the bounds λ <∼ 1 and κ <∼ 0.82. For λ, taking into account the
contributions from the top and gauge couplings to the RGEs as above, one can find
numerically [50] the final bound λ <∼ 0.88, i.e. λ/

√
3 <∼ 0.5.

Pushing the scale of new physics further below to 10 TeV, the approximate analytical
analysis gives the perturbative limit

0.25 κ2 + 0.14 λ2 <∼ 1, (3.42)

producing now the bounds λ <∼ 2.6 (i.e. λ/
√

3 <∼ 1.5) and κ <∼ 2. Given that the full
numerical analysis produces typically stronger bounds, we will use λ/

√
3 <∼ 1.2 in our

scan of Sec. 5.4. A similar scenario in the context of the NMSSM has been popularised
as λ-SUSY [69]. The constraint in this case [70] is slightly different than ours because of
the presence of only one singlet.

In this region of λ values, m0h as evaluated from Eq. (3.40) can remain well above 125
GeV even up to tanβ ∼ 8 for λ/

√
3 ∼ 1.2. For λ/

√
3 = 0.58, m0h for tanβ = 2, 5 and 10

is estimated as ∼ 150 GeV, 108 GeV and ∼ 96 GeV, respectively. With λ/
√

3 = 1.2 these
numbers increase further, for example, ∼ 113 GeV when tanβ = 10. The requirement of
an extra contribution to reach the target of 125 GeV is thus rather small and even negative
in this corner of the parameter space unless tanβ goes beyond 10 or 15 depending on the
values of λ. A singlet-like state lighter than 125 GeV is difficult in this corner of the
parameter space due to the large singlet-doublet mixing. In fact even if one manages to
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get a scalar lighter than 125 GeV with parameter tuning, a push-up action can produce a
sizable effect to push the mass of the lightest doublet-like state beyond 125 GeV, especially
for tanβ <∼ 10 taking λ/

√
3 = 1.2. Moreover, a huge doublet component makes these light

states hardly experimentally acceptable. In this region of the parameter space a heavy
singlet-like sector is more favourable which can push mh down towards 125 GeV, due
to ∆mixing < 0. In addition, for such a large λ value, new loop effects from the right
sneutrinos proportional to λ2 can also give a sizeable negative contribution [71, 72]. A
set of very heavy singlet-like states, even with non-negligible doublet composition is also
experimentally less constrained.

It is needless to mention that the amount of the loop correction is much smaller in
this region compared to the two previous scenarios. Following the above discussion for
large values of λ, this region of the parameter space also favours third-generation squarks
lighter than 1 TeV, which can be produced with enhanced cross sections and can lead to
novel signatures of this model with RPV at the LHC, even when the singlet-like states
remain heavier, as stated earlier.

In Sec. 5.4, we will analyze these λ regions using three scans, and we will check
how much room is left for new physics in the µνSSM in the light of the current precise
measurements of the SM-like Higgs properties. Let us now study the right sneutrino-like
sector which, as pointed out before, is crucial to determine the properties of the SM-like
Higgs in the µνSSM.

3.6.2 The right sneutrino-like states

From the scalar and pseudoscalar mass submatrices in Appendix B, it is clear that
κi and Tκi are crucial parameters to determine the masses of the singlet-like states, orig-
inating from the self-interactions. The remaining parameters λi and Tλi (Aλi assuming
the supergravity relation Tλi = λiAλi of Eq. (3.4)) not only appear in the said interac-
tions, but also control the mixing between the singlet and the doublet states and hence,
contribute in determining the mass scale. Note that the contributions of the parameters
Tνi are negligible assuming Tνi = YνiAνi , given the small values of neutrino Yukawas.
We conclude, taking also into account the discussion below Eq. (3.40), that the relevant
independent low-energy parameters in the Higgs-right sneutrino sector are the following
subset of parameters of Eqs. (3.25) and (3.28):

λi, κi, tan β, viR, Tκi , Tλi , Tu3 , mũ3R
, m

Q̃3L
. (3.43)
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In the limit of vanishingly small λi (considering simultaneously very large viR in the
case that we require the lighter chargino mass bound of RPC SUSY µ & 100 GeV),
not only the off-diagonal entries of the right sneutrino submatrices (B.6) and (B.12)
are negligible, but also the off-diagonal entries (B.4), (B.5) and (B.10), (B.11) of the
Higgs-right sneutrino matrices. As a consequence of the latter, the singlet states are
decoupled from the doublets. It is thus apparent, that λi are undoubtedly the most
relevant parameters for the analysis of these states. Another aspect of the parameters λi,
namely to yield additional contributions to the tree-level SM-like Higgs mass has already
been discussed in the previous subsection. Thus, one can write the right sneutrino masses
as:

m2
ν̃RiR

=
(
Tκi
κi

+ 2Mi

)Mi

2 , (3.44)

m2
ν̃IiR

= −3
2
Tκi
κi
Mi, (3.45)

where in the case of supergravity, we can use the relation Tκi/κi = Aκi . In addition,
in this limit, Mi coincide approximately with the masses of the right-handed neutrinos,
since they are decoupled from the other entries of the neutralino mass matrix:

mνiR =Mi. (3.46)

With the sign convention adopted in Section 3.5, Mi > 0, and from Eq. (3.45) we
deduce that negative values for Tκi (or Aκi) are necessary in order to avoid tachyonic
pseudoscalars. Using also that equation, we can write (3.44) as

m2
ν̃RiR

= M2
i −

1
3m

2
ν̃IiR
. (3.47)

Thus, the simultaneus presence of non-tachyonic scalars and pseudoscalars implies that [62]

mν̃IiR
<
√

3Mi, (3.48)

mν̃RiR
< Mi. (3.49)

Hence, light scalars/pseudoscalar states are assured when light neutralinos (i.e. basically
the product κiviR) are present. From Eq. (3.44) we also see that the absence of tachyons
implies the condition

−Tκi
κi

< 2Mi, (3.50)
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and therefore the value of Tκi/κi and the product κiviR have to be chosen appropriately
to fulfill it. Also from that equation we see that singlet scalars lighter than the SM-like
Higgs can be obtained when

2Mi −
2m2

Higgs

Mi

<
−Tκi
κi

. (3.51)

Thus, for a given value of Mi, only a narrow range of values of −Tκi/κi is able to fulfill
simultaneously both conditions (3.50) and (3.51). We will come back to this issue in
Section 5.4.

On the other hand, even in a region of small to moderate λi, to obtain approximate
analytical formulas for tree-level scalar and pseudoscalar masses turn out to be rather
complicated due to the index structure of the parameters involved. As discussed in detail
in Ref. [62], the expressions for their masses can be simplified in the limit of complete
degeneracy in all relevant parameters as in Eq. (3.29), i.e. when λi = λ (λ = λ/

√
3 as

defined in Eq. (3.39)), κi = κ, viR = vR, Tκi = Tκ, Tλi = Tλ. In this case, the 3× 3 scalar
and pseudoscalar mass submatrices in Eqs (B.6) and (B.12) have the form

a b b

b a b

b b a

 , (3.52)

with the three eigenvalues given by a − b, a − b and a + 2b. Then, it was shown that
for both, scalars and pseudoscalars, the two mass eigenstates corresponding to the first
two eigenvalues a − b get decoupled and remain as pure singlet-like states without any
doublet contamination. Using the values of a and b from Appendix B, and neglecting Tν
under the supergravity assumption of being proportional to the small Yν , one obtains the
following degenerate masses:

m2
ν̃R1,2R

=
(
Tκ
κ

+ 2M
)M

2 + 3λ2
(
v√
2

)2 ( 1
µ

Tλ
λ

tan β
1 + tan2 β

− 1
)
, (3.53)

m2
ν̃I1,2R

= −3
2
Tκ
κ
M+ 3λ2

(
v√
2

)2 [( 1
µ

Tλ
λ

+ 4
3
κ

λ

)
tan β

1 + tan2 β
− 1

]
, (3.54)

where now µ is defined in Eq. (3.31), and the Majorana mass is given in Eq. (3.30)
corresponding approximately, also, to two pure right-handed neutrino states decoupled
from the rest of the neutralinos:

mν1,2R =M. (3.55)
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The degeneracy of these states can be broken by introducing mild splittings in κi val-
ues [59, 62], as it is obvious e.g. from Eqs. (3.44), (3.45) and (3.46). One thing to
highlight is that, the first term of Eq. (3.53) is like the one of Eq. (3.44) in the case of
universality, and therefore a condition similar to (3.50) is welcome to avoid tachyons in the
scalar spectrum. Nevertheless, depending on the values chosen for the input parameters,
the second term in (3.53) can be positive, relaxing this condition. The latter is especially
true for large values of λ.

The mass eigenstate corresponding to the third eigenvalue, namely the one which goes
as a + 2b, however mixes with the doublet-like states, and eventually its mass appears
with a complicated form. In the case of the pseudoscalar this is given by

m2
ν̃I3R

= −3
2
Tκ
κ
M+ 9λκ

(
v√
2

)2
Tλ/λ

Tλ
λ

+ M
2

tan β
1 + tan2 β

. (3.56)

In the case of the scalar, m2
ν̃R3R

appears with a much complicated form that can be found
in Ref. [62]. Similarly, the third right-handed neutrino-like state mixes with the other
MSSM-like neutralinos, and its mass is given by

mν3R =M− λ2

2µ

(
v√
2

)2
1 + tan2 β

tan β − 4Mµ(
v/
√

2
)2


1 + tan2 β

tan β
Mµ(
v/
√

2
)2 − 1


−1

, (3.57)

where M is defined in Eq. (3.34).
Depending on the input parameters chosen, the two degenerate states can be heavier

or lighter than the third state. For example, for the pseudoscalars we see that the second
term in Eq. (3.56) is always positive whereas the second term in Eq. (3.54) can be positive
(larger or smaller than the previous one) or even negative.

It is also worthy to note that, for further small λ values (i.e. <∼ 0.01) or in the limit
of a vanishingly small λ, these formulas take simpler forms, and the three states are
degenerate:

m2
ν̃RiR

=
(
Tκ
κ

+ 2M
)M

2 , (3.58)

m2
ν̃IiR

= −3
2
Tκ
κ
M, (3.59)

mνiR = M. (3.60)
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As expected, they coincide with Eqs. (3.44), (3.45), and (3.46), respectively, when written
for universal parameters.

Other simple formulas can be obtained in the limit of tan β →∞, where

m2
ν̃R1,2R

=
(
Tκ
κ

+ 2M
)M

2 − 3λ2
(
v√
2

)2

, (3.61)

m2
ν̃I1,2R

= −3
2
Tκ
κ
M− 3λ2

(
v√
2

)2

, (3.62)

and

m2
ν̃R3R

=
(
Tκ
κ

+ 2M
)M

2 − 3λ2
(
v√
2

)2 ( 2µ
mZ

)2
, (3.63)

m2
ν̃I3R

= −3
2
Tκ
κ
M, (3.64)

whereas for the righ-handed neutrinos one obtains

mν1,2R = M, (3.65)

mν3R = M− λ2

2µ2M

(
v√
2

)4

. (3.66)

It is evident from this result that unless λ is small to moderate, it is in general hard
to accommodate a complete non-tachyonic light spectrum (i.e. <∼ mHiggs/2) for both
the scalars and pseudoscalars in the limit of large tan β without a parameter tuning.
In addition, this limit is severely constrained from diverse experimental results. This is
because the BRs for some low-energy processes (e.g. B0

s → µ+µ−), depending on the
other relevant parameters are sensitive to the high powers of tan β and thus, can produce
large BRs for these processes in an experimentally unnacceptable way. The other limit,
i.e. small tan β, on the contrary, is useful from the viewpoint of raising the mass of the
lightest doublet-like scalar towards 125 GeV, specially for moderate to large λ values .
However, as shown in the discussion of Eqs. (3.53), (3.54) and (3.56), not all the mass
formulas for the light states are simple structured in this region and a numerical analysis
is convenient.

3.6.3 The left sneutrino states

The behaviour of the left sneutrino states is very different from the one of the right
sneutrino states, since the former is tightly associated to neutrino physics.
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As discussed in the previous subsection, the 3×3 scalar and pseudoscalar left sneutrino
submatrices are decoupled from the 5 × 5 Higgs-right sneutrino sumatrices. Besides,
their off-diagonal entries are negligible compared to the diagonal ones, since they are
suppressed by terms proportional to Y 2

νij
and v2

iL. As a consequence, the mass squared
eigenvalues correspond to the diagonal entries, and in this approximation both states also
have degenerate masses. Using the minimization equations for viL, we can write their
tree-level values as [20, 50,52,64]

m2
ν̃RiL

= m2
ν̃IiL

= mDi
viL/
√

2
viR√

2

−Tνi
Yνi
− Mi

2 + µ

tan β + λi

(
v/
√

2
)2

viR/
√

2
tan β

1 + tan2 β

 . (3.67)

Therefore, in addition to the parameters of Eq. (3.35) relevant for neutrino physics, the

Tνi (3.68)

are relevant parameters for the study of left sneutrino masses. The fourth term in
Eq. (3.67) can usually be neglected as long as viR � v and/or λi is small, and we can
write then

m2
ν̃RiL

= m2
ν̃IiL
≈ mDi
viL/
√

2
viR√

2

(
−Tνi
Yνi
− Mi

2 + µ

tan β

)
. (3.69)

In the limit of moderate/large tan β, one can also neglect the third term. Under these
approximations, the condition for non-tachyonic left sneutrinos can be written as an upper
bound on the Majorana masses

Mi

2
<∼
−Tνi
Yνi

, ‘ (3.70)

Given our sign convention of positive Majorana mass, we will use negative values for Tνi
in our numerical analyses.

Going back to Eq. (3.67), we see clearly why left sneutrinos are special in the µνSSM
with respect to other SUSY models. Given that their masses are determined by the
minimization equations with respect to vi, they depend not only on left sneutrino VEVs
but also on neutrino Yukawas, unlike right sneutrinos and, as a consequence, neutrino
physics is very relevant for them.

Considering the normal ordering for the neutrino mass spectrum, which is nowadays
favored by the analyses of neutrino data [10–13], and taking advantage of the dominance
of the gaugino seesaw for some of the three neutrino families, representative solutions for
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neutrino/sneutrino physics using diagonal neutrino Yukawas were summarized in Ref. [57].
Different hierarchies among the generations of left sneutrinos are possible, using different
hierarchies among Yνi (and also viL).

There is enough freedom in the parameter space of the µνSSM in order to get heavy as
well as light left sneutrinos from Eq. (3.67), and the latter scenario with the left sneutrino
as the lightest supersymmetry particle (LSP) was considered in Refs. [20, 21, 57]. Due
to the doublet nature of the left sneutrino, masses smaller than half of the mass of the
SM-like Higgs were found to be forbidden [57] to avoid dominant decay of the latter into
sneutrino pairs, leading to an inconsistency with Higgs data. Let us finally remark that
in those works negative values for Tu3 were used, in order to avoid too light left sneutrinos
due to loop corrections. Although we are not specially interested in light sneutrinos in
this work, we will maintain the same sign convention in what follows. To use positive
values for Tu3 would have not modify our results, since their effect on the SM-like Higgs
mass is similar.

3.6.4 The charged scalars

The charged scalars have a 8×8 (‘charged Higgs’) mass matrix. Similar to the neutral
Higgs mass matrices where some sectors are decoupled, the 2×2 charged Higgs submatrix
is decoupled from the 6 × 6 slepton submatrix. Thus, as in the MSSM, the mass of the
charged Higgs H± is similar to the one of the doublet-like neutral pseudoscalar A, specially
when the latter is not very mixed with the right sneutrinos. In this case, both masses are
also similar to the one of the heavy doublet-like neutral Higgs H.

Concerning the 6 × 6 submatrix, the right sleptons are decoupled from the left ones,
since the mixing terms are suppressed by the electron-type Yukawa couplings or viL. Then,
the masses of right and left sleptons are basically determined by their corresponding soft
terms, m2

ẽiR
and m2

L̃i
, respectively. Although the left sleptons are in the same SU(2)

doublet as the left sneutrinos, they are a little heavier than the latter mainly due to the
mass splitting produced by the D-term contribution, −m2

W cos 2β.

3.7 Collider phenomenology
Concerning collider signals, RPV in the µνSSM leads to novel signatures such as

displaced final states that are practically free from SM backgrounds, and detectable at
the LHC with dedicated analyses. Also, the enlarged particle spectrum discussed in
Section 3.4 could induce new decay chains rendering very rich and diverse the collider
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phenomenology of the model. New final states such as multileptons can also be produced,
etc. In this section we summarize previous studies of collider phenomenology in the
µνSSM.

In Refs. [52, 53, 60, 62], the decay properties of the LSP assumed to be the lightest
neutralino were calculated, and the parameter regions where the displaced decays of the
neutralino could be observed with the LHC detectors were identified.

In Refs. [59, 62], the signatures produced via two-body decays of the SM-like Higgs
into new lighter states were explored. This is motivated by the fact that light neu-
tralinos and neutral scalars with leading singlino and singlet composition, respectively,
are possible in the µνSSM. Thus, a pair produced light neutralinos depending on the
associated decay length can give rise to displaced multi-leptons/taus/jets/photons with
small/moderate missing transverse energy (MET). Also, the SM-like Higgs decaying to a
pair of scalars/pseudoscalars can produce final states with prompt multi-leptons/taus/jets/photons.
Related to this, recently, in Refs. [63, 64], in addition to perform the complete one-loop
renormalization of the neutral scalar sector of the µνSSM, interesting benchmark points
(BPs) with right sneutrinos lighter than the standard model-like Higgs boson were studied.
In the same spirit as above, the presence of these light states can produce non-standard
on-shell decays of W± and Z bosons leading to prompt or displaced multileptons/tau
jets/jets/photons in the final states [61].

In Ref. [20], the relevant signals expected at the LHC for a left sneutrino as the
LSP were studied. The sneutrinos are pair produced via a virtual W , Z or γ in the s
channel. From the prompt decay of a pair of left sneutrinos LSP of any family, a significant
diphoton signal plus MET from neutrinos can be present in the mass range 118−132 GeV,
with 13 TeV center-of-mass energy and integrated luminosity of 100 fb−1. In addition, in
the case of a pair of tau left sneutrinos LSPs, given the large value of the tau Yukawa
coupling diphoton plus leptons and/or multileptons can appear. It was found that, the
number of expected events for the multilepton signal, together with properly adopted
search strategies, is sufficient to give a significant evidence for a sneutrino of mass in the
range 130 - 310 GeV, even with the integrated luminosity of 20 fb−1. In the case of the
signal producing diphoton plus leptons, an integrated luminosity of 100 fb−1 is needed to
give a significant evidence in the mass range 95 - 145 GeV. Moreover, in the framework of
the µνSSM with one generation of right-handed neutrino superfields, displaced dilepton
signal expected at the LHC for a tau left sneutrino as the LSP with a mass in the range
45 - 100 GeV was addressed in [21]. The predictions of this scenario were compared with
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the ATLAS search [73] for long-lived particles using displaced lepton pairs at 8 TeV. The
prospects for the 13 TeV LHC searches we also discussed, as well as optimizations of the
trigger requirements used.

Finally, in Ref. [74] final states with multi-lepton signal plus MET expected at the
LHC were studied for a bino-like neutralino as the LSP, when the left sneutrino is the
next-to-LSP (NLSP) and hence a suitable source of binos. The comparison with LHC
searches for electroweak superpartners through chargino-neutralino production [75, 76],
allowed to exclude a small region of bino (sneutrino) masses 110− 150 (110− 160) GeV.

3.8 Dark matter
The evidence for non-baryonic cold DM in the Universe is confirmed by numerous

observations from galactic to cosmological scales, and hence is one of the most compelling
and striking evidence for physics BSM.

In RPV models, although the LSP is no longer stable, candidates for DM exist. The
lightest neutralino or sneutrino have very short lifetimes and can not be accounted as
DM candidates. Nevertheless, the case of gravitino LSP as DM is possible because its
decay is suppressed both by the smallness of the gravitational interaction and by the
RPV parameters determined by the neutrino Yukawa couplings Yνij . As a consequence,
its lifetime can be much longer than the age of the Universe. Indeed, due to the mixing
of the photino with the left-handed neutrinos, the gravitino is able to decay into a photon
and a neutrino [41] and its lifetime is given by

τ3/2 ' 3.8× 1027 s
(
|Uγ̃νi |

2

10−16

)−1 (
m3/2

10 GeV

)−3
. (3.71)

where |Uγ̃νi |
2 is the photino content of the neutrino. Searches for gamma-ray lines, as well

as smooth spectral signatures, from gravitino dark matter in the µνSSM using Fermi-LAT
data have been carried out in Refs. [77–80].

Note that the case of gravitino LSP does not alter the collider phenomenology of the
remaining sparticles. For example, the neutralino partial decay length into gravitino and
photon is [59]

c τ
3/2
χ̃0 ∼ 80 km

(
m3/2

10 keV

)2 ( mχ̃0
4

50 GeV

)−5
. (3.72)

where m3/2 is the gravitino mass. It can easily be seen that, in order to have a significant
decay to gravitinos, the mass of the latter must be very small, less than about 10 keV.
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That is, for gravitino mass larger than 10 keV, the decay width of neutralino into gravitino
and photon is much smaller than the decay widths into SM particles.
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Chapter 4

Methodology for scanning the
µνSSM

We have detailedly presented the main characteristics of the µνSSM in the previous
chapter. We have described the parameter space that we want to thoroughly study in the
light of given experimental data. Now we want to present the methodology that we will
use for achieving this goal.

The objective is to use a probabilistic method to find all possible regions of the param-
eter space that are compatible with a given set of experimental data. Although we do not
intend to make a statistical interpretation of the results, this approach is well motivated
given the large amount of available experimental data.

Concerning the probabilistic methodologies, there are two main classes: the frequentist
and the Bayesian approaches depending on the interpretation of the notion of probability.
Let us point out that both methods can be used for the parameter estimation as well as
model selection. In model selection, different models are compared and the one that de-
scribes best the data is chosen while in the parameter estimation, which is our case, a set
of parameters of a given model are estimated in the light of given experimental data. Nev-
ertheless, in the frequentist approach the probability is interpreted in terms of frequency
at which an observation occurs from a repeatable experiment in the limit of an infinite or
very large number of identical tests. The usual problem with this kind of approach is that
infinite number or identical experiments are not possible to realize. On the contrary, in the
Bayesian approach, the probability measures a degree of plausibility and is interpreted as
a measure of our belief in an outcome given a prior knowledge. Thus, with the increasing
amount of available experimental data, Bayesian inference methods appear very suitable
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in accessing viable regions of the parameter space of a given theoretical model, and, in
this thesis, this method is employed.

In this Chapter, we summarize the algorithm that we will use for sampling the µνSSM
in our studies.

4.1 Sampling method: Multinest
The Bayesian inference provides a convenient approach to the inference of a given set

of parameters Θ = (Θi)i=1, d ≡ (Θ1, ... , ΘN), where N is the number of parameters, in a
given model and for data D. It relies on the Bayes’ theorem which states that

p(Θ|D) = p(D|Θ)× π(Θ)
p(D) . (4.1)

The quantity p(Θ|D) is the posterior probability density function (we will call it the
posterior henceforth) of the model parameters, and it summarizes the state of knowl-
edge on the parameters after the data has been observed. In the Bayesian approach, the
N–dimensional posterior distribution describing the left hand side of Eq.(4.1) represents
the Bayesian inference of the parameter values. Note that the inference about an individ-
ual parameter Θi is given by the marginalized posterior distribution p(Θi|D) and can be
obtained by integrating p(Θ|D) over all other parameters Θj for j 6= i.

The quantity p(D|Θ) as function of Θ for fixed D is the likelihood and will be denoted
henceforth as L(Θ). The likelihood provides the information encoded in the data. We
will describe L(Θi) associated to each observable in each study presented in this thesis in
subsequent chapters.

The π(Θ) and p(D) are respectively the prior probability density function that supplies
the knowledge about the values of the parameters Θi before observing the data, and the
evidence or model likelihood which is the factor required to normalize the posterior over
the domain of model parameters. In general, the parameters Θi can be correlated. Nev-
ertheless, if the model parameters under consideration are independent and uncorrelated,
the prior π(Θ) is separable and can be written as:

π(Θ) =
N∏
i=1

π(Θi) . (4.2)

One usual problem with Bayesian approaches is that the posterior can strongly depend
on the choice of priors. See for example [81] where it was analyzed how the impact
of the choice of priors may influence the statistical conclusions of the preferred values
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of the parameter space of the Constrained MSSM. This happens when data set used
is not constraining enough so as to remove the dependence on the type of the priors.
Alternatively, it can be understood as if we have a lot of data, the likelihood from that
is going to overpower any information contained in the priors. In this context we note
that, on the one hand, a log prior gives equal weights to all decades for the parameter and
thus is a scale invariant prior. At input level, a log prior means that the concerned input
parameter is in log scale. On the other hand, for a flat prior the concerned parameter is
in linear scale and thus is not scale invariant. An increase in the order of magnitude on
the parameter implies an increase in the weight. Thus the choice of the type of priors is
very important for an efficient Bayesian analysis.

After introducing the basic concepts of Bayesian analysis, we turn now our attention on
the sampling algorithm. For instance, we will use Multinest for the sampling purpose. A
complete and detailed description of Multinest can be found in Refs. [82,83], nevertheless,
we are going to summarize it subsequently.

Multinest is a data driven algorithm that is based on the Nested Sampling (NS)
[84,85] method and it presents a number of advantages with respect to the latter because
it is efficient for multi-modal posterior distributions with pronounced curving and degen-
eracies. The NS is a Monte Carlo method that is aimed for an efficient calculation of the
Bayesian evidence but allows for an inference of posterior distribution. The main purpose
of the NS is the evaluation of the evidence Z and as stated above, it is the quantity that
normalizes the posterior distribution. It can hence be written as

Z =
∫
L(Θ)× π(Θ)dNΘ , dNΘ =

N∏
i=1

dΘi . (4.3)

This is a multi-dimensional integral and its numerical implementation is a hard and
tedious task, even for small dimensional parameter space. However, NS avoids this situ-
ation by finding contours of iso-likelihoods within the prior volume and transforming the
N−dimensional problem of Eq.(4.3) into a one−dimensional integral. If V denotes the
prior volume such that dV = π(Θ)dNΘ then the prior volume defined by the likelihood
L(Θ) > α can be written as

V (α) =
∫
L(Θ)>α

π(Θ)dNΘ . (4.4)
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The evidence of Eq. (4.3) can be rewritten as

Z =
∫ 1

0
L(V )dV , (4.5)

where L(V ) is given by the inverse of Eq. (4.4), i.e. L(V (α)) ≡ α and represents the
likelihood enclosing the volume V . Thus the evidence can be approximated numerically
if for a given sequence of values Vk one can calculate L(Vk) such that

Z ≈
∑
k

wkL(Vk) , (4.6)

where, using the trapezium rule,

wk = 1
2(Vk−1 − Vk). (4.7)

Concerning the evaluation of Eq.(4.6), the NS algorithm progresses via iterations.
From the full prior in the parameter space of the model, it constructs a set of samples
from the posterior in order to estimate how compatible with data is a given region in
parameter space with respect to others.

(1) As a starting point of the iterations, the counter j is set to 0 and M live samples
(also called active samples) are uniformly sampled from the full prior π(Θ) volume such
that the initial prior volume V0 equals 1. Then, these samples are sorted in order of their
likelihood and the sample with the smallest likelihood L0 is removed from the set of live
samples and replaced by a new sample drawn from the prior but with the constraint that
the new point has a likelihood L > L0.

(2) At every subsequent jth iteration, the actions performed in (1) are repeated in
such a way that the lowest likelihood point Lj is discarded in the set of live points and
replaced with a new one with L > Lj. The corresponding prior volume enclosed by the
iso-likelihood contour shrinks down as Vj = tjVj−1 where tj is the largest of the fractions
of the volume enclosed by the likelihood of each live point and it follows Pr(t) = MtM−1

distribution. Noticing that Vj = V0
∏j
i=1 ti (notice V0 = 1) and that the mean value of

log ti is −1/M and that each of them is independent, the prior volume at iteration j

can be taken to Vj = exp (−j/M). Using these steps, the evidence can be calculated
numerically and once this is done, the posterior importance weight is attributed to each
live sample as well as all the discarded (removed) points such that

pj = wjLj
Z

. (4.8)
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(3) Stopping condition is satisfied once the precision on the evidence is smaller than
a user-defined value log(Z0) in log-evidence scheme. At each iteration, the precision Ztol

j

is determined by

Ztol
j = Lmax

j Vj . (4.9)

where Lmax
j is the maximum likelihood in the set of active samples at jth iteration. Hence

at a given iteration, if log(Lmax
j ) < log(Z0) then it exits and the algorithm returns to (2)

with j → j + 1
The convenience of Multinest resides on how it draws the samples with likelihood

L > Lj compared with conventional NS algorithms [84]. In NS, as the prior volume shrinks
down, it could become difficult to draw new points with the constraint on likelihood and
as a result, the acceptance rate of the new points would become more and more small and
new points are constructed within the intersection of the domain of integration and this
ellipsoidal boundary. Multinest identifies all possible clusters of live points and for each
cluster, the points are divided into sub-clusters. Then, ellipsoids are constructed for each
sub-cluster and the new sample is drawn uniformly from the region of the intersection
of these ellipsoids. In other words, at each iteration of the nested sampling process,
the full set of M active points is partitioned and ellipsoidal bounds constructed allowing
to automatically accommodate elongated curving degeneracies, while maintaining high
efficiency.

In sum, the progress of the MultiNest algorithm is controlled by two main parameters:
the number of live points M and the maximum efficiency f . The number of live points
M should be large enough that, in the initial sampling from the full prior volume, there
is a high probability that at least one point is in the ‘basin of attraction’ of each mode
of the posterior. In later iterations, live points will then tend to populate these modes.
M must always be larger than the dimension of the parameter space and also should be
sufficiently higher so that all the regions of the parameter space are sampled adequately.
The maximum efficiency f controls the sampling volume Xi at the ith iteration, which
is equal to the sum of the volumes of the ellipsoids enclosing the live point set, such
that Xi ≥ Vif where Vi is the prior volume at the ith iteration of MultiNest algorithm
and Xi ≥ Vif in the case when at the ith iteration, no set of ellipsoids enclosing the
M live points can be found such that the sum of their volumes, Xi, is smaller than the
prior volume, Vi. Also note that the tolerance that defines the stopping criteria is also
important and has to be provided at the input. In this thesis, unless explicitly mentioned
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Chapter 4. Methodology for scanning the µνSSM

the number of live points M is 2000 and the maximum efficiency f , is set to 1. Also,
the Multinest terminates when Ztol

j of Eq.(4.9) is no longer changing the final evidence
estimate by the user-defined value, here 0.5 in log-evidence.

4.2 Scanning the µνSSM
Based on Multinest described in Section 4.1, we developed a code that allows to find

possible regions of the parameter space that are compatible with a given experimental
data set. Concretely, the code allows to perform scans on subsets of the parameters of
the model. At first, MultiNest samples the points within the prior volume by estimating
the input parameters of the model for the scan. Once this step is completed, the full
set of parameters of the model are then used to calculate the spectrum, and to compute
the likelihood associated to each experimental data. All the likelihoods are then collected
in the combined likelihood Ltot. The schematic description of the program we used is
displayed in Fig. 4.1.

In the subsequent subsections, we discuss the computation of the spectrum as well as
the likelihood functions and the observables used.

4.3 Computation of the spectrum
For the computation of the spectrum, we use SARAH [86] to generate a SPheno [87,

88] version for our model. SPheno stands for Supersymmetric Phenomenology and is a
program that computes particles and sparticles masses and mixing, decays widths, cross
sections, branching ratios and low energy observables. Then, we interface SPheno with
MultiNest. Each spectrum is required to fulfill the physicality constraint that consists
to check the presence of tachyonic eigenstates. The samples that fail this constraint are
discarded. For the points that pass this constraint, the likelihood associated to each
experimental data is computed and collected in the combined likelihood. Note that for
computing the spectrum, the complete set of parameters of the model are used as input.

4.4 Computation of the likelihood
Concerning the likelihoods, we use three types of functions. The first class of function

we use are related to the observables for which the data are provided as best fit or central
value and uncertainties. In this case, the likelihood is a Gaussian,

L = exp
[
−(x− x0)2

2σ2
T

]
, (4.10)
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Inputs: model, number of live samples M, priors, 
likelihoods, and stopping criterion Zref, …

For each live sample, calculate 
likelihoods and join them in the 
combined likelihood  Lj 

 M samples are drawn uniformly in prior volume Vj

    Calculate the tolerance Zj

 First iteration,  j = 0,  V0 = 1

If Zj  < Zref  then stop and move to the next iteration for j = j +1 with 
the prior volume Vj = exp(-j/M)

Samples are sorted according to their likelihood 
and the sample with the smallest likelihood Lmin is 
removed from live points

Interface with SPheno to compute 
masses, decays, observables, ...

Replace the sample that is  removed 
by a new one with likelihood L > Lmin 

    If Zj  > Zref 

Repeat until the 
maximum number of 
replacements

Check the physicalily constraint for 
each sample

Non physical points are 
discarded and replaced

Figure 4.1: Schematic map of the algorithm.

where x0 is the experimental central value for the observable x, σ2
T = σ2 + τ 2 with σ and

τ being respectively the experimental and theoretical uncertainties on the observable x.
The second class of functions concerns the observable for which the constraint is set as

lower or upper limit, for example the lower bound on chargino mass. The corresponding
likelihood function is defined as

L(x) = σ

σT
[1−K(D(x))] exp

[
−(x− x0)2p

2σ2
T

]
+ 1
τ
K((x− x0)p), (4.11)
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Parameters sin2 θ12 sin2 θ13 sin2 θ23 δm2 / 10−5 (eV2) ∆m2 / 10−3 (eV2)

µexp 0.297 0.0215 0.425 7.37 2.525

σexp 0.017 0.0007 0.021 0.17 0.042

Table 4.1: Neutrino data used in the sampling of the µνSSM for the analysis of the ν̃τ
as LSP in Section 6.5.

where

D(x) = σ

τ

(
(x0 − x)p

σT

)
, K(a) = 1

2erfc
(
a√
2

)
. (4.12)

erfc is the complementary error function.
The last class of likelihood function we use is the step function. In this case, the

likelihood is fixed on one hand for the points which satisfy the limit, and on the other
for those which fail. In this case, the values of likelihoods are chosen to penalize, in the
combined likelihood, the points that do not satisfy the corresponding experimental data.

Concerning the uncertainties, the experimental ones are provided with the data while
the theoretical ones are unknown and therefore, unless explicitly mentioned, are taken
to be zero. The observables together with the associated experimental data used are
described subsequently.

4.4.1 Neutrino observables

To impose neutrino physics in sampling the µνSSM for the analysis of ν̃τ as LSP in
Section 6.5, we used the results for normal hierarchy (NO) from Ref. [10] summarized
in Table 4.1, where δm2 = m2

2 − m2
1 and ∆m2 = m2

3 − (m2
2 + m2

1)/2. Nevertheless,
while we were doing the scan, we updated neutrino observables from a new neutrino
global fit analysis [13] summarized in Table 4.2, where ∆m2

ij = m2
i −m2

j . For the work in
Section 7.3, concerning the sampling to explain the discrepancy between the SM prediction
of the anomalous magnetic moment of the muon and the experimental value, we already
used Ref. [13]. For each of the observables listed in the neutrino sector, the likelihood
function is a Gaussian (see Eq. (4.10)) centered at the mean value µexp and with width
σexp. Concerning the cosmological upper bound on the sum of the masses of the light
active neutrinos given by ∑mνi < 0.12 eV [89], even though we did not include it directly
in the total likelihood, we imposed it on the viable points obtained.
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4.4. Computation of the likelihood

Parameters sin2 θ12 sin2 θ13 sin2 θ23 ∆m2
21 / 10−5 (eV2) ∆m2

31 / 10−3 (eV2)

µexp 0.310 0.02241 0.580 7.39 2.525

σexp 0.012 0.00065 0.017 0.20 0.032

Table 4.2: Neutrino data used in the sampling of the µνSSM for the analysis of the
anomalous magnetic moment of the muon in Section 7.3

4.4.2 Higgs observables

Before the discovery of the SM-like Higgs boson, the negative searches of Higgs signals
at the Tevatron, LEP and LHC, were transformed into exclusion limits that must be used
to constrain any model. Its discovery at the LHC added crucial constraints that must
be taken into account in those exclusion limits. We have considered all these constraints
in the analysis of the µνSSM, where the Higgs sector is extended with respect to the
MSSM as discussed in Section 3.6. For constraining the predictions in that sector of the
model, we interfaced HiggsBounds v5.3.2 [90,91] with MultiNest. First, several theoretical
predictions in the Higgs sector (using a ±3 GeV theoretical uncertainty on the SM-like
Higgs boson) are provided to determine which process has the highest exclusion power,
according to the list of expected limits from LEP and Tevatron. Once the process with
the highest statistical sensitivity is identified, the predicted production cross section of
scalars and pseudoscalars multiplied by the BRs are compared with the limits set by these
experiments. Then, whether the corresponding point of the parameter under consideration
is allowed or not at 95% confidence level is indicated. In constructing the likelihood from
HiggsBounds constraints, the likelihood function is taken to be a step function. Namely,
it is set to one for points for which Higgs physics is realized, and zero otherwise. Finally,
in order to address whether a given Higgs scalar of the µνSSM is in agreement with the
signal observed by ATLAS and CMS, we interfaced HiggsSignals v2.2.3 [92, 93] with
MultiNest. A χ2 measure is used to quantitatively determine the compatibility of the
µνSSM prediction with the measured signal strength and mass. The experimental data
used are those of the LHC with some complements from Tevatron. The details of the
likelihood evaluation can be found in Refs. [92, 93].
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4.4.3 B decays

b → sγ is a flavour changing neutral current (FCNC) process, and hence it is forbid-
den at tree level in the SM. However, its occurs at leading order through loop diagrams.
Thus, the effects of new physics (in the loops) on the rate of this process can be con-
strained by precision measurements. In the combined likelihood, we used the average
value of (3.55 ± 0.24) × 10−4 provided in Ref. [94]. Notice that the likelihood function
is also a Gaussian (see Eq. (4.10)). Similarly to the previous process, Bs → µ+µ− and
Bd → µ+µ− are also forbidden at tree level in the SM but occur radiatively. In the likeli-
hood for these observables (4.10), we used the combined results of LHCb and CMS [95],
BR(Bs → µ+µ−) = (2.9 ± 0.7) × 10−9 and BR(Bd → µ+µ−) = (3.6 ± 1.6) × 10−10.
Concerning the theoretical uncertainties for each of these observables we take τ = 10%
of the corresponding best fit value. We denote by LB physics the likelihood from b → sγ,
Bs → µ+µ− and Bd → µ+µ−.

4.4.4 µ decays

We also included in the joint likelihood the constraint from BR(µ→ eγ) < 5.7×10−13

and BR(µ→ eee) < 1.0× 10−12. For each of these observables we defined the likelihood
as a step function. As explained before, if a point is in agreement with the data, the
likelihood Lµ decay is set to 1 otherwise to 0.

4.4.5 Anomalous magnetic moment of the muon

In the studies conducted in Chapters 5 and 6, we did not try to explain the interesting
but not conclusive 3.5σ discrepancy between the measurement and the SM prediction of
the anomalous magnetic moment of the muon, ∆aµ = aexp

µ −aSM
µ = (26.8±6.3±4.3)×10−10

[96]. The reason is that we decouple the rest of the SUSY spectrum with respect to the
tau left sneutrino mass, and hence we do not expect a large SUSY contribution over
the SM value. Nevertheless, we check for the points fulfilling all constraints discussed in
Sections 5.4 and 6.7, whether the extra contribution aSUSY

µ is within the SM uncertainty.
On the other hand, the main goal of the analysis of Chapter 7 is to explain this discrepancy,
and therefore, we included in the joint likelihood the constraint from ∆aµ. We denote by
Laµ the likelihood for this observable.
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4.4. Computation of the likelihood

4.4.6 Chargino mass bound

In RPC SUSY, the lower bound on the lightest chargino mass depends on the spectrum
of the model [96,97]. Although in the µνSSM there is RPV and therefore this constraint
does not apply automatically, to compute Lm

χ̃±
, we have chosen a conservative limit of

mχ̃±1
> 92 GeV with the theoretical uncertainty τ = 5% of the chargino mass.
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Chapter 5

Impact of Higgs physics on the
parameter space of the µνSSM

In Section 3.6 of Chapter 3, we extensively described the Higgs sector of the µνSSM.
We showed that the SM-like Higgs is mainly mixed with the three right sneutrinos, giv-
ing rise to an interesting phenomenology. Then, in Chapter 4 we presented a powerful
approach that allows to scan given subsets of the parameter space of a given model. In
this chapter, which is based on our work of Ref. [98], we will apply this approach to find
the viable regions of the parameter space of the Higgs sector of the µνSSM, in the light
of the existing Higgs data.

5.1 Introduction
The measurements of the properties and signal rates of the discovered scalar boson at

the LHC [1,2], indicate that it is compatible with the expectations of the SM. Besides, no
hints for new physics have been detected yet despite of numerous searches and tremendous
efforts of the experimental collaborations. As a consequence, extensions of the SM such
as low-energy SUSY are being severely constrained, namely the parameter space of SUSY
models is shrinking considerably. This renders the detailed analyses of Higgs properties,
signal rates and couplings to SM particles very important, as well as the search for new
particles.

Concerning Higgs physics, various works, using different methods, have been dedicated
to the study of the parameter space of SUSY models in the light of a given set experimental
data, and vast regions have been explored such as for example in the NMSSM [72,99–103].
In this work, we use the powerful likelihood data-driven method described in Chapter 4
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5.1. Introduction

for sampling the Higgs sector of the µνSSM. Since three families of right-handed neutrino
superfields are present in the model in order to solve the µ problem and simultaneously
reproduce neutrino physics, the new couplings and sneutrino VEVs produce a substantial
mixing among the three right sneutrinos and the SM-like Higgs. Although an analysis of
this sector was performed in Ref. [50], finding viable regions that avoid false minima and
tachyons, as well as fulfill the Landau pole constraint, it was carried out prior the discovery
of the SM-like Higgs boson, and therefore the issue of reproducing Higgs data was still
missing. In Ref. [62], this issue was taking into account to perform an analytical estimate
of all the new two-body decays for the SM-like Higgs in the presence of light scalars,
pseudoscalars and neutralinos. More recently, in Refs. [63,64], in addition to perform the
complete one-loop renormalization of the neutral scalar sector of the µνSSM, interesting
benchmark points (BPs) with right sneutrinos lighter than the standard model-like Higgs
boson were studied.

Given the increasing data including the properties of the SM-like Higgs and the exclu-
sion lines provided by the combined 7-, 8- and 13-TeV searches at the LHC, and also by
other results such as flavor observables, it appears relevant to re-investigate the µνSSM
parameter space to simultaneously accommodate this new scalar and its properties, the
exclusion limits and to explore the phenomenological consequences respecting various ex-
perimental results. To carry this out, the likelihood data-driven method used in our
analysis presents advantages over traditional ones such as those based on random grid
scans or chi-square methods, since it is much more efficient in the computational effort
required to explore a parameter space. Also, since it uses a Bayesian approach, it al-
lows to take easily into account all relevant sources of uncertainties in the likelihood. In
addition, given the accumulation of data from various experimental collaborations, this
method provides a convenient approach to qualitatively explore beyond standard models
compared to simplified methods.

The chapter is organized as follows. The Higgs sector was studied in detail in Sec. 3.6
of Chapter 3, where the mixing among neutral Higgs doublets and right and left sneutrinos
was explained, paying special attention to accommodate the correct mass of the SM-like
Higgs, depending on the values of the couplings λ among right sneutrinos and Higgses, and
the masses of the right sneutrinos. Subsequently, in Chapter 4 we discussed the strategy
to employ in order to perform scans searching for points of the parameter space of our
scenario compatible with current experimental data on Higgs physics, as well as flavor
observables. We will use this strategy in the next Section 5.2, where the methodology that
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µνSSM

we will employ to search for viable points of the parameter space is described. The input
parameters used and the results of the scans will be presented in Sections 5.3 and 5.4,
respectively, and applied to show that there are large viable regions of the parameter
space of the µνSSM. Our conclusions are left for Section 5.5. Finally, figures and BPs
are given in the Appendices. In Appendix C, results from the λ− κ plane are shown for
different values of the other parameters, using several figures for each scan performed. In
Appendix D, several BPs showing interesting characteristics of the model are given.

5.2 Sampling the µνSSM for Higgs physics
In this section we will describe the methodology that we will employ to search for

points of our parameter space that are compatible with the latest experimental data of
Higgs physics In addition, we will demand the compatibility with some flavor observables.
To this end, we will perform scans on the parameter space of the model, with the input
parameters optimally chosen. For the sampling of the µνSSM we will employ the method
described in Chapter 4. The goal is to find regions of the parameter space of the model
that are compatible with a given experimental data. For it we have constructed the joint
likelihood function:

LHiggs
tot = LHiggs × LB physics × Lµ decay × Lm

χ̃±
, (5.1)

where LHiggs, LB physics, Lµ decay, and Lm
χ̃±

are defined in Section 4.4. We recall that we
condition that each point is required not to have tachyonic eigenstates. For the points
that pass this constraint, we compute the likelihood associated to each experimental data
set and for each sample all the likelihoods are collected in the joint likelihood LHiggs

tot .

5.3 Input parameters
In order to efficiently scan for Higgs physics in the µνSSM, it is important to identify

first the parameters to be used, and optimize their number and their ranges of values.
In Sect. 3.6, we found that the relevant parameters are those in Eq. (3.43). However, to
perform scans over 19 parameters we would have to run Multinest a extremely long time
making the task very computer resources demanding. The analysis can be nevertheless
much simplified assuming universality of the parameters as we did in the discussion below
Eq. (3.51), without significantly modifying the conclusions. In addition, we will also
assume in the scans for the sake of simplicity mQ̃3L

= mũ3R . Thus, we will perform scans
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5.3. Input parameters

over the 8 parameters

λ, κ, tan β, vR, Tκ, Tλ, Tu3 , mQ̃3L
= mũ3 , (5.2)

as shown in Table 5.1. We will use log priors (in logarithmic scale) for all of the parame-
ters, except for tan β which is taken to be a flat prior (in linear scale). Let us point out,
nevertheless, that we do not assume exact universality of κi, to avoid an artificial degen-
eracy in the masses of the two scalars/pseudoscalars (and two neutralinos) which appear
in the spectrum without doublet contamination (see the discussion in Subsection 3.6.2).
Thus we take

κ3 = 1.04κ1, κ2 = 1.02κ1, κ1 = κ, (5.3)

and scan over κ.
For the choice of the scans, we will choose the ranges of λ (≡

√
3λ) discussed in Sec-

tion 3.6 for convenience of the discussion. In particular, S1 corresponds to small/moderate
values with 0.01 ≤ λ < 0.2, S2 to moderate/large values with 0.2 ≤ λ < 0.5, and finally
S3 to large values 0.5 ≤ λ < 1.2. For each scan, the same ranges for the other parameters
are considered. In particular, the upper bound of κ has been motivated in the discussion
of Subsection 3.6.1 by relaxing the idea of perturbativity up to the GUT scale, pushing
the scale of new physics further below to 10 TeV (see Eq. (3.42)). Concerning the range
of vR, the lower and upper bounds allow to have reasonable Majorana masses for right-
handed neutrinos, Mi = 2kivR/

√
2 (see Eq. (3.26)), even when κi are very large or very

small, respectively. The ranges of Tλ and Tκ are also natural following the supergravity
framework of Eq. (3.4). The lower bound on m

Q̃3L
of 200 GeV is chosen to avoid too

light stops/sbottoms, and the upper bound of 2 TeV is enough not to introduce too large
soft masses and therefore too heavy squarks. With this range of m

Q̃3L
, we take the upper

bound of −Tu3 at 5 TeV to be able to reproduce in the small λ limit the usual maximal
mixing scenario when m

Q̃3L
∼ 2 TeV.

The rest of the parameters of the model, which are less relevant for the analysis, are
fixed as shown in Table 5.2. For squarks, and right sleptons we choose a typical value of
1000 GeV. Note that the rest of soft masses for Higgses, right sneutrinos and left sleptons,
are fixed by the minimization conditions, as discussed in Section 3.2. The relations among
gaugino masses M1,2,3 are inspired by GUTs. As for the other trilinear parameters, the
values of Td3 and Te3 have been chosen taking into account the supergravity relations and
the corresponding Yukawa couplings. Finally, the parameters Yνi , viL, and Tνi are mainly
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Scan 1 (S1) Scan 2 (S2) Scan 3 (S3)

0.01 ≤ λ < 0.2 0.2 ≤ λ < 0.5 0.5 ≤ λ < 1.2

0.01 ≤ κ ≤ 2

1 ≤ tan β ≤ 40

100 ≤ vR/
√

2 ≤ 7000

0 < Tλ ≤ 500

0 < −Tκ ≤ 500

0 < −Tu3 ≤ 5000

200 ≤ m
Q̃3L

= mũ3R
≤ 2000

Table 5.1: Range of low-energy values of the input parameters in Eq. (5.2) that are
varied in the three scans, where tan β is a flat prior whereas the others are log priors. The
VEVs vR, and the soft parameters Tλ, Tκ, Tu3 , mQ̃3L

= mũ3R are given in GeV.

Scan 1 (S1) Scan 2 (S2) Scan 3 (S3)

m
Q̃1,2L

= mũ1.2R
= m

d̃1.2,3R
= mẽ1,2,3R

= 1000

Tu1,2 = Td1,2 = Te1,2 = 0, Te3 = 40, Td3 = 100

−Tν1,2 = 10−3, −Tν3 = 3× 10−4

M1 = M2
2 = M3

3 = 900

Yν1 = 2× 10−7, Yν2 = 4× 10−7, Yν3 = 0.5× 10−7

v1L = 1.5× 10−4, v2L = 4× 10−4, v3L = 5.5× 10−4

Table 5.2: Low-energy values of the input parameters that are fixed in the three scans.
The VEVs viL and the soft parameters Tu,d,e, mQ̃,ũ,d̃,ẽ

, M1,2,3 are given in GeV.

determined by neutrino and sneutrino physics (see Eqs. (3.32) and (3.67)).
Since reproducing neutrino data is an important asset of the µνSSM, a few words

on the subject are worth it. As explained in Chapter 3, how the model reproduces
the correct neutrino masses and mixing angles has been intensively addressed in the
literature [52,54,55,57,80]. Although the parameters in Eq. (3.35), λi, κi, viR, tan β, Yνi ,
viL and M , are important for neutrino physics, the most crucial of them are Yνi , viL and
M , and they are essentially decoupled from the parameters in Eq. (3.43) controlling Higgs
physics. Thus, for a suitable choice of λi, κi, viR and tan β reproducing Higgs physics,
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there is still enough freedom to reproduce in addition neutrino data by playing with Yνi ,
viL and M , as shown in Ref. [57] and we will discuss in Chapter 6. As a consequence, we
will not scan over the parameters Yνi , viL, M1, M2 in order to relax our already demanding
computing task, and since it is not going to affect our results. For our purposes, it will be
sufficient to choose these parameters mimicking the type of solutions of neutrino physics
with normal ordering found in Ref. [57], imposing only the cosmological upper bound on
the sum of the masses of the light active neutrinos given by ∑mνi < 0.12 [89].

The same comment applies to the parameters Tνi in Eq. (3.68), which are only relevant
to determine the left sneutrino masses, and therefore we fix them to mimic also the left
sneutrino physics of Ref. [57]. In that work, it was easy for M > 0 to find solutions
with the gaugino seesaw as the dominant one for the third family. In this case, v3L

determines the corresponding neutrino mass and Yν3 can be small. On the other hand,
the normal ordering for neutrinos determines that the first family dominates the lightest
mass eigenstate implying that Yν1 < Yν2 and v1 < v2, v3, with both νR-Higgsino and
gaugino seesaws contributing significantly to the masses of the first and second family.
Taking also into account that the composition of these two families in the second mass
eigenstate is similar, we expect v2 ∼ v3. Concerning left sneutrino physics, a light tau
left sneutrino was required in Ref. [57] implying −Tν3 < −Tν2 = −Tν1 . This pattern of
hierarchies for Yνi , viL, and Tνi are used in Table 5.2.

5.4 Results
By using the methods described in the previous section, we evaluate now the con-

straints on the parameter space of the µνSSM using the 7-, 8- and 13-TeV LHC data.
To find regions consistent with experimental observations we have performed about

160 million of spectrum evaluations in total and the total amount of computer required
for this was approximately 1110 CPU years.

To carry this analysis out, we first demand Higgs physics to be fulfilled. As already
mentioned in Section 4.4, we use HiggsBounds and HiggsSignals to take into account the
constraints from the LHC data, as well as those from LEP and Tevatron. In particular, we
require that the p-value derived by HiggsSignals be larger than 5%. It is worth noticing
here that, with the help of Vevacious [104], we have also checked that the EWSB vacua
corresponding to the previous allowed points are viable. Then, we select points that lie
within ±3σ from b → sγ, Bs → µ+µ−, and Bd → µ+µ−. In the third step, the points
that pass these cuts are required to also satisfy the upper limits of µ→ eγ and µ→ eee,
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Figure 5.1: Constraints from b → sγ in the tan β − µ plane, for scans S1,2,3. The
grey (light-grey) color corresponds to points of the parameter space that are (are not)
compatible with the BR(b→ sγ).

and the lower bound on the chargino mass inspired in RPC SUSY. At last we require all
the points that passed the above set of cuts to satisfy the cosmological upper bound on
the sum of the masses of the light active neutrinos.

As we will explain below, after imposing the relevant constraints from Higgs physics,
only b→ sγ and (less importantly) the bound on neutrino masses put further constraints
on the parameter space of the µνSSM. For completeness, although we have not tried
to explain the discrepancy between the measurement of the muon anomalous magnetic
moment and the SM prediction, we will also comment on the corners of the parameter
space with SUSY contributions larger than the SM uncertainty, and possible improvements
in this direction.

b→ sγ
The BR(b→ sγ) puts some constraints on the parameters space of the µνSSM, as shown
in Fig. 5.1. There we show the constraints from b → sγ for all points of the parameter
space fulfilling Higgs physics. For instance, in our setup this BR can be too small in
certain regions of the parameter space. Note nevertheless that there are light-grey points
(forbidden) on top of grey points (allowed), thus due to the several free parameters of
the model we cannot say that concrete values of tan β and µ are always forbidden. We
must check this constraint point by point. Forbidden points occur for small to moderate
values of λ, such as in S1 and S2, when tan β can be large while M

Q̃3L
can be small. As

is well known, the most important contributions to the BR(b→ sγ) come from chargino
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Figure 5.2: Constraints from ∑
mνi < 0.12 eV in the M− tan β plane, for scans S1,2,3.

The purple (light-purple) color corresponds to points of the parameter space that are (are
not) compatible with the cosmological upper bound on the sum of the masses of the light
active neutrinos.

and charged Higgs mediated processes. On the one hand, the charged Higgs contribution
always tends to increase the SM value while that of the charginos depends on the sign of
M2, Tu3 and µ, where in our case µ = 3λvR/

√
2. Since we are working with M2, µ > 0

and Tu3 < 0, the contribution from charginos in the loops acts destructively. Also for
light sparticles (here charginos, charged Higgs and stops) and/or large tan β the effects
can be large. This is actually what happens in our cases. For small/moderate λ, large
tan β favors increasing this effect. In the regime of destructive contribution involving light
stops (when M

Q̃3L
becomes small) and light Higgsinos (winos are moderately heavy since

we fix M2 to 1800 GeV), this effect is large and suppresses the BR(b → sγ). Note that
for S3 this does not occur. The reason is that large values of tan β are not needed, as we
will see in detail in the next subsection, and in addition moderate values come together
with relatively large values of M

Q̃3L
.

Sum of neutrino masses
In Fig. 5.2, we show the constraints on the parameter space fulfilling Higgs physics imposed
by the requirement∑mνi < 0.12 eV in theM−tan β plane, withM = 2κ vR/

√
2. We find

that the sum of the masses of the three light neutrinos can exceed this upper bound when
the Majoranna masses are small. This can be qualitatively explained using Eq. (3.32) with
the approximations discussed below Eq. (3.35). Then, the gaugino seesaw contributions
to neutrino masses given by the second term in Eq.(3.32), with M eff = M , is fixed in our
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Figure 5.3: Points of the parameter space in the tan β − µ plane for scans S1,2,3 with
brown (light-brown) color have (have not) aSUSY

µ within ±1σ of SM aSM
µ uncertainty,

scans. Using the values of Table 5.2 for viL and obtaining M = 2640.45 GeV from the
values of M1,2, we can compute these contributions to the diagonal entries of the mass
matrix (mν)ii, which turn out to be in absolute value 0.002, 0.015, and 0.0286 eV for
i = 1, 2, 3, respectively. This indicates that for sizable νR-Higgsino seesaw, i.e. the first
term in Eq. (3.32), the mass of the heaviest neutrino can easily be made too large. This
occurs when M is small. For example, for tan β = 10 and M = 30 GeV the νR-Higgsino
seesaw contribution to the diagonal entries is in absolute value around 0.027, 0.108, and
0.0017 eV, respectively, and added to the gaugino seesaw at least one neutrino mass would
be larger than 0.12 eV. Actually, in our scenarios the effect of tan β is not very relevant,
and the size ofM is the most important one. In particular, as shown in Fig. 5.2, in scans
S1, S2, and S3, for M below 123, 52, and 51 GeV, respectively, we find points excluded
by the cosmological upper bound on neutrino masses.

Muon anomalous magnetic moment
SUSY contributions to the anomalous moment of muon, aSUSY

µ , can be large in the presence
of light muon sneutrino and charginos or light neutralino and smuons. We found in our
scans S1, S2 and S3 that aSUSY

µ is smaller than 16.96×10−10, 16.83×10−10, and 3.7×10−10,
respectively. Thus, although none of the points of the parameter space is compatible at
±1σ with ∆aµ = aexp

µ −aSM
µ = (26.8±6.3±4.3)×10−10, in some regions aSUSY

µ is larger than
the uncertainty of the SM value. In Fig. 5.3, we show in brown (light-brown) color the
points of the parameter space fulfilling Higgs physics where aSUSY

µ is (is not) within ±1σ of
the quadrature sum of the uncertainties of aSM

µ = (11659182.3±0.1±3.4±2.6)×10−10 [96].
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Figure 5.4: Viable points of the parameter space for S1 in the κ− λ plane. The red and
light-red (blue) colours represent cases where the SM-like Higgs is (is not) the lightest
scalar. All red and blue points below the lower black dashed line fulfill the perturbativity
condition up to GUT scale of Eq. (3.41). Light-red points below the upper black dashed
line fulfill the perturbativity condition up to 10 TeV of Eq. (3.42).

The largest contributions to aSUSY
µ are found for small µ and large tan β. In our scenarios.

since bino- and wino-like (neutralino or chargino) eigenstates are heavy (in our scans
M2 = 2M1 = 1800 GeV) the contributions involving them are suppressed. On the other
hand, although the Higgsino-like eigenstates can be light when µ is relatively small, their
contributions can be diluted by the small Yukawa coupling of the muon. However, when
tan β is very large this effect can be important. A way of explaining the discrepancy
between aexp

µ and aSUSY
µ is to try to lower the muon left sneutrino mass, which in these

scans is generically large given the input parameters chosen for neutrino physics. Changing
the latter we could obtain smaller masses, and we leave the analysis of this possibility for
Chapter 7.

5.4.1 Viable regions of the parameter space

Once b→ sγ, and mainly Higgs physics, have determined the parameter space that is
viable in the µνSSM, we will discuss it in detail. For that, we will follow Subsection 5.3
about the choice of the three relevant scans.
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plane.
The color code is the same as in Fig. 5.4.

5.4.1.1 Scan 1 (0.01 ≤ λ < 0.2)

Let us concentrate first on the analysis of the results for Scan 1 (S1). We show in
Fig. 5.4 the viable points of the parameter space in the κ − λ plane. The red points
represent cases where the SM-like Higgs boson is the lightest scalar. All of them fulfill
perturbativity up to the GUT scale, and therefore κ <∼ 0.7. For the light-red points the
SM-like Higgs boson is also the lightest scalar, but we have relaxed the perturbativity
condition up to 10 TeV and therefore 0.7 <∼ κ <∼ 2. On the contrary, the blue points
represent cases where the SM-like Higgs boson is not the lightest scalar. This figure can
be considered as the summary of results for this scan. Let us now discuss them in detail.

As shown in the figure, we find viable solutions in almost the entire κ−λ plane analyzed
in S1. The only small (white) region that becomes forbidden corresponds to very small
values of λ and very large (non-perturbative up to the GUT scale) values of κ. This can be
understood taking into account that we are asking to all the points to fulfill the chargino
mass lower bound of RPC SUSY, which corresponds to condition µ = 3λvR/

√
2 & 100

GeV. Thus for a small λ, a large vR is needed (see also Fig. C.1 in Appendix C). However,
this gives rise to a large value of M = 2κvR/

√
2 and, as a consequence, the condition

in Eq. (3.70) to avoid tachyonic left sneutrinos cannot be fulfilled for any value of κ.
In particular, combining both conditions we can write 100 GeV

3λ
<∼

vR√
2
<∼
−Tνi/Yνi

κ
, which

cannot always be fulfilled. This is the case for the muon left sneutrino whose ratio
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Figure 5.6: The singlet component ∑i|ZH
hν̃RiR
|2 of the singlet-like scalars h versus their

masses, for S1. We only show here viable points with scalar masses smaller than 1000
GeV. In the lower part we zoom in the low-mass region.

−Tν2/Yν2 = 2500 GeV is the smallest of the three families, as can be deduced from
Table 5.2. For example, λ = 0.01 implies vR/

√
2 & 3300 GeV, and then it is straighforward

to see that κ <∼ 0.75 to avoid tachyons. Let us point out nevertheless, that this forbidden
tachyonic region in Fig. 5.4 turns out to be an artifact of our simplified assumption about
the neutrino (sneutrino) pattern in order to relax the demanding computing task, as
discussed in Subsection 5.3. Simply breaking the degeneracy between Tν1 and Tν2 , taking
a larger value for Tν2 , we would recover this region as viable.

Going back to the values of vR in Fig. C.1, it is worth noticing that for large λ and/or
large κ they are bounded, vR/

√
2 <∼ 2000 GeV. The reason is that for those points, to in-

crease the value of vR would increase the mixing term m2
HRu H

R
d

in Eq. (A.5) of Appendix B,
decreasing therefore the SM-like Higgs mass, and eventually leading to the appearance
of a negative eigenvalue. Note in this sense that the diagonal term m2

HRu H
R
u

(m2
HR
d
HR
d

) in
Eq. (A.4) (Eq. (A.3)) is small (large) for the large values of tan β present in this scan, as
we will discuss below (see Fig. C.2). The mixing terms with singlet-like right sneutrinos
also increase with the value of vR, as can be seen in Eqs (A.7) and (A.6), but much less
than the above between Higgses, since the former go like vR whereas the latter as v2

R. As
we can see in those equations, the value of Tλ is also important to determine the mixing
among states. In Fig. C.3, we see that in most of the regions Tλ has an upper bound of
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Figure 5.7: Viable points of the parameter space for S1 in the −Tκ versus 2κM plane.
The color code is the same as in Fig. 5.4. In the upper right we zoom in the region with
blue points.

around 200 GeV, and only for the lower right region with large λ, but small (perturbative
up to the GUT scale) κ, it can reach up to 500 GeV. In the region to the left of the latter,
although the values of κ are also small, vR is large as discussed above, and smaller Tλ
is favoured. On the other hand, assuming the supergravity relation Aλ = Tλ/λ, one can
check that in most of the regions Aλ has the upper bound of around 2 TeV, as shown in
Fig. C.4.

Concerning the values of tan β, we find in S1 that tan β > 4. Such a lower bound
is expected in order to maximize the tree-level SM-like Higgs mass for small/moderate
values of λ, as discussed in Subsect. 3.6.1. We can see in Fig. C.2 that large values of tan β
are welcome for this task, similarly to the MSSM. Given the small singlet-doublet mixing,
significant loop contributions are the main source to increase the tree-level mass of the
SM-like Higgs. The values of the masses of the third-generation squarks and trilinear
soft term necessary to generate the large loop corrections are shown in Fig. 5.5. The
white region in the upper left side is excluded by the mass of the SM-like Higgs or by
the existence of tachyons when −Tu3 is much larger than m

Q̃3L
. For the allowed regions,

we can see first that for κ perturbative up to 10 TeV (light-red points) the values of
−Tu3 . 2000 GeV and m

Q̃3L
. 1000 GeV are highly correlated. Given the large value

of κ, the push-down effect in these light-red points makes necessary the maximal mixing
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Figure 5.8: Viable points of the parameter space for S2 in the κ− λ plane. The red and
light-red (blue and light-blue) colours represent cases where the SM-like Higgs is (is not)
the lightest scalar. All red and blue points below the lower black dashed line fulfill the
perturbativity condition up to GUT scale of Eq. (3.41). Light-red and light-blue points
below the upper black dashed line fulfill the perturbativity condition up to 10 TeV of
Eq. (3.42).

scenario to cancel it, bringing the mass of the SM-like Higgs to the correct value. For
the red points, where κ is smaller, the push-down effect is not so large and the maximal
mixing scenario can be relaxed. We can see that the lower right side of Fig. 5.5 becomes
populated. The same argument applies to the blue points (note that most of them are on
top of red points), but now for the push-up effect which is also small. In Figs. C.5 and C.6
of Appendix C, we show in the κ−λ plane the values of m

Q̃3L
and −Tu3 , respectively. As

discussed, smaller values of these parameters are needed in the perturbative region up to
10 TeV.

Let us now discuss in more detail the (narrow) region with blue points. For small
values of λ, the first term of Eq. (3.53) is a good approximation for right sneutrino
masses. Clearly, unless one makes a tuning between the two pieces in that term, Tκ/κ
and 2M = 4κvR/

√
2, one needs these two quantities to be small in order to obtain right

sneutrinos lighter than the SM-like Higgs. Now, since vR is typically large in this scan
compared to the SM-like Higgs mass, small values of κ are necessary for this task. This is
what we observe in the blue region of Fig. 5.4, where κ <∼ 0.2. There we also see that for
larger values of λ, larger values of κ are allowed, because the values of vR decrease with
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plane.
The color code is the same as in Fig. 5.8.

λ as shown in Fig. C.1. The correlation between the above two pieces for the blue points
is also obvious from Eqs. (3.50) and (3.51). We show explicitly this effect in Fig. 5.7,
where basically the line −Tκ = 2κM separates the tachyonic (white) region from the
non-tachyonic one with blue and red points, i.e. −Tκ < 2κM. Blue points have to be
close to the line since they have to fulfill in addition the approximate condition (3.51). In
Fig. C.7 of the Appendix, we show the different values of −Tκ in the κ− λ plane. As we
can see, for the small values of κ corresponding to the blue region of Fig. 5.4, the values
of −Tκ are typically small. For larger values of κ corresponding to the regions with red
and light-red points of Fig. 5.4, i.e. with right sneutrino masses larger than the SM-like
Higgs mass, the tachyonic region can be avoided even with large values of −Tκ (up to
the upper bound of 500 GeV imposed in the scan), as shown in the figure. We show for
completeness in Fig. C.8 the different values of the supergravity parameter Aκ = Tκ/κ

in the κ − λ plane. Due to this relation, values of −Aκ as large as around 2.9 TeV can
be obtained in regions with small κ. Larger values of −Aκ are not possible because the
condition −Aκ < 2M cannot be fulfilled since vR is bounded, and therefore tachyons
would appear.

Finally, it is worth noticing that about half of the blue points correspond to cases
where the singlet-like scalars have masses <∼ mHiggs/2. As can be seen in Fig. 5.6, most
of these states are almost pure singlets and therefore do not affect the Higgs decays,
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Figure 5.10: The singlet component ∑i|ZH
hν̃RiR
|2 of the singlet-like scalars h versus their

masses, for S2. We only show here viable points with scalar masses smaller than 1000
GeV. In the lower part we zoom in the low-mass region.

surviving as viable points.
The presence of light scalars (hi), pseudoscalars (Ai) and neutralinos (χ̃0

i ) such that
mhi + mAj < MZ , mχ̃0

i
+ mχ̃0

j
< MZ or mχ̃0

i
+ mχ̃±j

< MW (here χ̃±j = e, µ, τ) opens up
new on-shell decay modes for the Z and W bosons. The possible signs of new physics
from these new decay modes in the µνSSM have been studied in Ref. [61].

On the other hand, when the masses of the singlet-like states are close to 125 GeV, it
is possible to find solutions with a larger doublet composition. Actually, for each point of
the parameter space only one of the three states has this property, given our assumption
of almost degenerate κ’s implying that there is always two almost pure singlets. For these
solutions, if the SM-like Higgs and the right sneutrino with significant doublet composition
have masses within the mass resolution of the experiment, they will have their signal rates
superimposed, and both will contribute to the resonance observed at 125 GeV [93]. In this
scan, about 0.4% of the phenomenologically viable points found have singlet-like states
with masses close to 125 GeV We show in Table D.1 a BP (S1-ss1) with these properties.
There we see that the right sneutrino h4 has a large composition of HRu (28.62%), whereas
h1 and h2 are very pure singlets with dominant compositions ν̃ReR and ν̃RµR, respectively,
and not contributing therefore to the superposition of Higgs-like states. As expected, the
right sneutrinos are very little mixed among themselves given that λ is small and therefore
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Figure 5.11: Viable points of the parameter space for S2 in the −Tκ versus 2κM plane.
The color code is the same as in Fig. 5.8. In the upper right we zoom in the region with
blue points.

the off-diagonal terms in Eq. (B.6) are negligible.

5.4.1.2 Scan 2 (0.2 ≤ λ < 0.5)

Fig. 5.8 summarizes our results for Scan 2 (S2). In this case, we find viable solutions
in the entire κ− λ plane, since now λ ≥ 0.2 and therefore the chargino mass lower bound
can be fulfilled with low values of vR, being safe from tachyonic left sneutrinos. In fact,
we see in Fig. C.9 that in most of the regions vR/

√
2 <∼ 1000 GeV. This bound, in order to

avoid a too large mixing term m2
HRu H

R
d

, is smaller than for S1 because now we are working
with moderate/large values of λ. Concerning the value of Tλ, in Fig. C.11 we see that
in regions with large κ this value has an upper bound of around 200 GeV, whereas for
lower values of κ the mixing term is smaller and larger values of Tλ are allowed (up to
the upper bound of 500 GeV imposed in the scan). Assuming the supergravity relation
Aλ = Tλ/λ, we see in Fig. C.12 that given the moderate/large values of λ for this scan,
the upper bound for Aλ is typically smaller than for S1 in all regions, with a maximum
value of around 2.5 TeV.

Concerning tan β, since λ is larger than in S1 we find that smaller values are favoured
to maximize the tree-level SM-like Higgs mass, as shown in Fig. C.10 of Appendix. In
addition, as a consequence of the moderate/large λ, the singlet-doublet mixing is larger
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Figure 5.12: Viable points of the parameter space for S3 in the κ−λ plane. The light-red
(light-blue) colour represents cases where the SM-like Higgs is (is not) the lightest scalar.
All light-red and light-blue points below the black dashed line fulfill the perturbativity
condition up to 10 TeV of Eq. (3.42).

and therefore the push-up effect for the blue points helps to increase the tree-level mass.
All these effects together produce that the loop contributions to increase the tree-level
mass of the SM-like Higgs can be relaxed. One can observed this comparing Fig. 5.9 and
Figs. C.13 and C.14 with the corresponding ones of S1.

Related to the above discussion, is the fact that in the perturbative region up to the
GUT scale is more easy to find blue than red points. The push-down effect of the latter
makes for them more difficult to reach the correct mass of the SM-like Higgs. Note also
that blue points with all values κ are present, since vR is now smaller than for S1.

In Tables D.2 and D.3 of Appendix D, we show two BPs corresponding to the red
region of Fig. 5.8. They have different singlet-like scalar masses, around 230 and 600 GeV
respectively, mainly due to the different values of vR. For the BP S2-R1 in Table D.2,
the right sneutrinos h2,3,4 are significantly mixed among themselves because of the mod-
erate/large value of λ, and h4 is the one having a significant composition of HRu (10.29%).
The SM-like Higgs with a composition of HRd of 19.36% is phenomenologically viable be-
cause tan β is as small as 2.31. The same occurs for the BP S2-R2 in Table D.3, where
now the SM-like Higgs composition of HRd is larger, 46.66%, but tan β is smaller, 1.08.
For this BP the mixing among singlets is larger, but no one has a significant composition
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Figure 5.13: Viable points of the parameter space for S3 in the −Tu3 versus m
Q̃3L

plane.
The color code is the same as in Fig. 5.12.

of HRu given their larger masses. In Fig. 5.10, we show the singlet component of the
singlet-like scalars. As for S1, we find for large masses scalars with a very large doublet
composition.

The correlation discussed for S1 in Fig. 5.7 is relaxed in this new scan, again because
of the larger values of λ, as discussed below Eq. (3.55). We show this in Fig. 5.11. In
Figs. C.15 and C.16 of the Appendix, we can see the different values of −Tκ and Aκ =
Tκ/κ, respectively, in the κ − λ plane. In the perturbative region up to the GUT scale,
except for areas with κ close to its upper bound, Tκ is typically small to avoid tachyonic
right sneutrinos because vR is small. As a consequence, in the case of supergravity Aκ is
also typically small in this region. In this scan, also part of the blue points correspond to
cases where the singlet-like scalars have masses <∼ mHiggs/2.

Concerning solutions with singlet-like states with masses close to 125 GeV, about 5%
of the phenomenologically viable points found in this scan are of this type. However, not
all of them have a significant doublet composition as to have their signals superimposed
with that of the SM-like Higgs. We show in Table D.4 the BP S2-ss1 as an example of this
situation. As we can see, the right sneutrino h4 has the largest doublet composition of
HRu (3.77%) and HRd (2.65%), but insufficient as to contribute significantly to the Higgs
signals. Unlike the BP S1-ss1 of S1, now the three sneutrinos are very mixed because of
the larger value of λ. It is worth noticing that for this BP the Majorana mass is small,
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Figure 5.14: The singlet component ∑i|ZH
hν̃RiR
|2 of the singlet-like scalars h versus their

masses, for S3. We only show here viable points with scalar masses smaller than 1000
GeV. In the lower part we zoom in the low-mass region.

M = 55.8 GeV, giving rise to two almost degenerate right-handed neutrinos of masses 55.9
and 57.2 GeV, and one heavier of mass 76.7 GeV. As a consequence, the decay channel
right sneutrino to two neutralinos (with dominant right-handed neutrino composition)
opens, giving the most important contribution to the BRs.

5.4.1.3 Scan 3 (0.5 ≤ λ < 1.2)

The results for Scan 3 (S3) are summarized in Fig. 5.12. In this case with so large
values of λ, the white region in the lower right is forbidden because of the too large mixing
term m2

HRu H
R
d

producing tachyons. To avoid that situation, in most of the allowed regions
the right sneutrino VEVs take small values, vR/

√
2 <∼ 500 GeV, as shown in Fig. C.17.

These small values imply that κ >∼ 0.2 to avoid tachyonic right sneutrinos. We show
in Fig. C.19 the value of the corresponding Tλ, whereas in Fig. C.20 the supergravity
parameter Aλ is shown.

In Fig. C.18 we show tan β which, given the large value of λ, can take smaller values
than in S2. This region of the parameter space also favours light third generation squarks,
as shown in Fig. 5.13 (see also Figs. C.21 and C.22).

As discussed in Section 3.6.1, the push-down effect (together with negative loop cor-
rections) of a heavy singlet-like sector is more favourable to reproduce the SM-like Higgs
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Figure 5.15: Viable points of the parameter space for S3 in the −Tκ versus 2κM plane.
The color code is the same as in Fig. 5.12. In the upper right we zoom in the region with
light-blue points.

mass. In Fig. 5.14, we show the singlet component of the singlet-like scalars. As for the
other scans, scalars with large masses and with a very large doublet composition can also
be present.

Although more difficult than in previous scans, we are also able to find in S3 solutions
with light singlet-like scalars (light-blue region). However, as we can see in Fig. 5.14, no
solutions with masses <∼ mHiggs/2 are present. In Fig. 5.15, we show the correlation that
is necessary to find these points, and in Figs. C.23 and C.24 we show the different values
of −Tκ and Aκ = Tκ/κ, respectively, en the κ − λ plane. The upper bound for Aκ is
around 500 GeV in this case, but this is an artifact of our scan. If we had allowed in S3

values of Tκ up to 1 TeV, then the upper bound for Aκ would have been around 1 TeV.
In this scan, solutions with singlet-like states with masses close to 125 GeV are more

rare. Only about 0.2% of the phenomenologically viable points found are of this type. We
show in Table D.5 the BP S3-ss1 as an example. As we can see, the right sneutrino h1

has the largest doublet composition of HRu (1.42%) and HRd (4.78%), but its mass if far
away from 125 GeV. For this BP also the Majorana mass is small as for S2-ss1,M = 50.3
GeV, and there are three neutralinos dominantly right-handed neutrinos with masses of
that order, 50.7, 51.8 and 64.8 GeV. As a consequence, the decay channel right sneutrino
to two right-handed neutrinos opens for h2 and h3 (also for the SM-like Higgs h4), but
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is not possible for h1. The latter can decay to right-handed neutrino plus light neutrino,
but with a very small BR.

5.5 Conclusions
We performed a dedicated analysis of the parameter space of the µνSSM, in the light

of the increasing data about the properties of the SM-like Higgs boson. For sampling
the Higgs sector, we used a powerful likelihood data-driven method based on the algo-
rithm Multinest. The states of the Higgs sector crucial for our analysis are the two
Higgs doublets and the three right sneutrinos, which are mixed among themselves. After
determining the relevant parameters related to this sector (see Eq. (5.2)), we performed
scans to search for points compatible with the latest experimental data on Higgs physics.
For constraining the predictions of our extended Higgs sector, we interfaced HiggsBounds

with Multinest, and to address whether a given Higgs scalar of the µνSSM is in agree-
ment with the signals observed by ATLAS and CMS we also interfaced HiggsSignals

with Multinest. In addition, we demanded the compatibility with observables such as B
and µ decays.

In this framework, we performed the three scans described in Table 5.1, which are
determined by the range of λ couplings mixing Higgses and right sneutrinos. In particular,
we considered λ ∈ (0.01, 0.2), (0.2, 0.5), and (0.5, 1.2). Perturbativity up to the GUT scale
is not imposed, and that is why we allow λ values larger than 0.4. Neither we imposed
perturbativity up to the GUT scale for κ couplings among right sneutrinos, considering
therefore the range κ ∈ (0.01, 2). The results are summarized in Figs. 5.4, 5.8, and 5.12
for the three scans. Clearly, we find viable solutions in almost the entire κ − λ plane
with the exception of the scan S3 in Fig. 5.12, which is more constrained. This is due to
the large values of λ ∈ (0.5, 1.2) that can give rise to tachyons originated in the mixing
between the two Higgs doublets.

We have obtained therefore that the parameter space of our model contains many vi-
able solutions, including also many different phenomenological possibilities. For example,
there are solutions where the SM-like Higgs is the lightest scalar (red and light-red points
in the figures), but also solutions where it is not (blue and light-blue points). In the latter
case, it is even possible to have the other (singlet-like) scalars with masses <∼ mHiggs/2.
In addition, we also find solutions where several scalars are degenerated with masses close
to 125 GeV, and can have their signals rates superimposed contributing to the resonance
observed at 125 GeV.
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Given these results, it is then important to study in detail the collider phenomenology
of the solutions found. In particular, the impact of the new states, not only the right
but also the left sneutrinos, and the neutralinos containing right-handed neutrinos. Novel
signals associated to them might help to probe the µνSSM at the LHC. These analyses
will be carried out in a fortcoming publication [105].
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Chapter 6

Sampling the µνSSM for displaced
tau left sneutrino LSP at the LHC

In the previous chapter we thoroughly analyzed the neutral scalar Higgs sector of the
µνSSM in the light of the current experimental data, arguing that the parameters control-
ling Higgs physics can be decoupled from those of the neutrino sector. As a consequence,
the relevant parameters for neutrino physics were fixed. In this chapter, which is based
on our work of Ref. [57], we fix the relevant parameters that determine Higgs physics
and analyse the parameter space of the neutrino sector of the model. In addition, since
the left sneutrino mass and couplings are determined by neutrino physics, we analyse the
phenomenology at the LHC of the displaced dilepton signal from the decay of a tau left
sneutrino as the LSP with a mass in the range 45−100 GeV. We compare the predictions
of this scenario with the ATLAS search for long-lived particles using displaced lepton
pairs in pp collisions, and investigate the regions of the parameter space of the model that
can be probed at the current and future runs of the LHC.

6.1 Introduction
The search for low-energy SUSY is one of the main goals of the LHC. This search

has been focused mainly on signals with MET inspired in RPC models, such as the
MSSM [3, 6, 43]. There, significant bounds on sparticle masses have been obtained [96],
especially for strongly interacting sparticles whose masses must be above about 1 TeV [106,
107]. Less stringent bounds of about 100 GeV have been obtained for weakly interacting
sparticles, and even the bino-like neutralino is basically not constrained due to its small
pair production cross section. Qualitatively similar results have also been obtained in
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the analysis of simplified RPV scenarios with trilinear lepton- or baryon-number violating
terms [19], assuming a single channel available for the decay of the LSP into leptons.
However, this assumption is not possible in other RPV scenarios, such as the µνSSM,
where the several decay branching ratios (BRs) of the LSP significantly decrease the
signal. This implies that the extrapolation of the usual bounds on sparticle masses to the
µνSSM is not applicable.

The most recent analyses of signals at the LHC for LSP candidates in the µνSSM
have been dedicated to the left sneutrino [20, 21], and to the bino-like neutralino [74].1

In the latter case, it was shown that only a small region of the parameter space of the
µνSSM was excluded [74] when the left sneutrino is the next-to-LSP (NLSP) and hence
a suitable source of binos. In particular, the region of bino (sneutrino) masses 110− 150
(110− 160) GeV.

Concerning the left sneutrino LSP, in Ref. [20] the prospects for detection of signals
with di-photon plus leptons or MET from neutrinos, and multi-leptons, from the pair
production of left sneutrinos/sleptons and their prompt decays (cτ <∼ 0.1 mm), were an-
alyzed. A significant evidence is expected only in the mass range of about 100 to 300
GeV. The mass range of 45 to 100 GeV (with the lower limit imposed not to disturb the
decay width of the Z) was covered in Ref [21] for the tau left sneutrino (ν̃τ ) LSP. First,
it was checked that no constraint on the ν̃τ mass is obtained from previous searches. In
particular, since the sneutrino has several relevant decay modes, the LEP lower bound
on its mass mass of about 90 GeV [108–113] obtained under the assumption of BR one
to leptons, via trilinear RPV couplings, is not applicable in the µνSSM. Similar con-
clusions were obtained from LEP mono-photon search (gamma+MET) [114], and LHC
mono-photon and mono-jet (jet+MET) searches [115, 116]. Concerning LEP searches
for staus [108–113], in the µνSSM the left stau does not decay directly but through an
off-shell W and a ν̃τ , and therefore searches for its direct decay are not relevant in this
model. Although the sneutrino mass can in principle be constrained using searches for
final states as those of the µνSSM from the production of a pair of ν̃τ from staus, it was
also checked in Ref [21] that this is not the case. Then, the displaced-vertex decays of
the ν̃τ LSP producing signals with di-lepton pairs was studied. Using the present data
set of the ATLAS 8-TeV dilepton search [73], the conclusion was that one can constrain
the sneutrino in some regions of the parameter space of the µνSSM, especially when the
Yukawa couplings and mass scale of neutrinos are rather small. In order to improve the

1The phenomenology of a neutralino LSP was analyzed in the past in Refs. [52, 53,60,62].
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sensitivity of this search, it was proposed an optimization of the trigger requirements
exploited in ATLAS based on a high level trigger that utilizes the tracker information.

The above analyses were carried out in the simplest case of the µνSSM with one right-
handed neutrino superfield. Thus only one of the light neutrinos gets a nonvanishing
tree-level contribution to its mass, whereas the other two masses rely on loop corrections.
Basically, the only experimental constraint imposed in those works was that the heavier
neutrino mass should be in the range mν ∼ [0.05, 0.23] eV, i.e. below the upper bound on
the sum of neutrino masses ∼ 0.23 eV [117], and above the square root of the mass-squared
difference ∆m2

atm ∼ 2.42 × 10−3eV2 [118]. Although these analyses were useful to get a
first idea of the accelerator constraints on the left sneutrino LSP, the lack of experimental
bounds on the masses of the superpartners in the µνSSM makes it peremptory a detailed
study reproducing the whole neutrino physics. This is the aim of this chapter. We will
reconsider the analysis of Ref. [21], but in the context of the µνSSM with three families
of right-handed neutrino superfields where all the neutrinos get contributions to their
masses at tree level. In particular, we will study the constraints on the parameter space
by sampling the model to get the ν̃τ LSP in the range of masses 45 − 100 GeV, with a
decay length of the order of the millimeter. We will pay special attention to reproduce
the experimental neutrino masses and mixing angles [10–13]. The different values of the
neutrino Yukawas will imply that certain regions of the parameter space are excluded
by the LEP analysis, unlike the result of Ref [21]. In addition, we will impose on the
resulting parameters to be in agreement with Higgs data and other observables.

The chapter is organized as follows. In Sections 6.2 and 6.3, we will discuss the relevant
parameters of the µνSSM for our analysis of the neutrino/sneutrino sector, emphasizing
the special role of the sneutrino in this scenario since its couplings have to be chosen so
that the neutrino oscillation data are reproduced. In Section 6.4, we will introduce the
phenomenology of the ν̃τ LSP, studying its pair production channels at the LHC, as well
as the signals. These consist of two dileptons or a dilepton plus MET from the sneutrino
decays. Then, we will consider the existing dilepton displaced-vertex searches, and discuss
its feasibility and significance on ν̃τ searches. In Section 6.5, we will discuss the strategy
that we employed to perform scans searching for points of the parameter space of our
scenario compatible with current experimental data on neutrino and Higgs physics, as
well as flavor observables. The input parameters used and the results of the scans will be
presented in Sections 6.6 and 6.7, respectively, and applied to show the current reach of the
LHC search on the parameter space of the ν̃τ LSP based on the ATLAS 8-TeV result [73],
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and the prospects for the 13-TeV searches. Finally, our conclusions are left for Section 6.8.

6.2 Neutrino/sneutrino physics
Since reproducing neutrino data is an important asset of the µνSSM, as explained

above, we will try to establish here qualitatively what regions of the parameter space are
the best in order to be able to obtain correct neutrino masses and mixing angles. In
particular, we will determine natural hierarchies among neutrino Yukawas, and among
left sneutrino VEVs.

In addition, left sneutrinos are special in the µνSSM with respect to other SUSY
models. This is because, as discussed in Eq. (3.67), their masses are determined by the
minimization equations with respect to vi. Thus, they depend not only on left sneu-
trino VEVs but also on neutrino Yukawas, and as a consequence neutrino physics is very
relevant. In particular, if we work with Eq. (3.69) using Eq. (3.4), we can write

m2
ν̃RiL

= m2
ν̃IiL
≈ Yνivu

vi

viR√
2

(
−Aνi −

Mi

2 + µ

tan β

)
. (6.1)

Assuming the simplest situation that all the Aνi are naturally of the order of the TeV,
neutrino physics determines sneutrino masses through the prefactor Yνivu/vi. Note that
for simplicity of notation we will use vi for the left sneutrino VEVs instead of viL thor-
ough this chapter. Considering the normal ordering (NO) for the neutrino mass spectrum,
which is nowadays favored by the analyses of neutrino data [10–13], representative solu-
tions for neutrino/sneutrino physics using diagonal neutrino Yukawas in this scenario are
summarized below. Note that these solutions take advantage of the dominance of the
gaugino seesaw for some of the three neutrino families.

1) M < 0, with Yν1 < Yν2 , Yν3 , and v1 > v2, v3.
As explained in Refs. [54, 80], a negative value for M is useful in order to reproduce
neutrino data with Yν1 the smallest Yukawa and v1 the largest VEV. Essentially, this is
because a small tuning in Eq. (3.32) between the gaugino seesaw and the νR-Higgsino
seesaw is necessary in order to obtain the correct mass of the first family. Here the contri-
bution of the gaugino seesaw is always the largest one. On the contrary, for the other two
neutrino families, the contribution of the νR-Higgsino seesaw is the most important one
and that of the gaugino seesaw is less relevant for the tuning. Following the above discus-
sion about the prefactor of Eq. (6.1), these hierarchies of Yukawas and VEVs determine
that mν̃1

is the smallest of all the sneutrino masses.
2) M > 0, with Yν3 < Yν1 < Yν2 , and v1 < v2 ∼ v3.
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In this case, it is easy to find solutions with the gaugino seesaw as the dominant one for the
third family. Then, v3 determines the corresponding neutrino mass and Yν3 can be small.
On the other hand, the NO for neutrinos determines that the first family dominates the
lightest mass eigenstate implying that Yν1 < Yν2 and v1 < v2, v3, with both νR-Higgsino
and gaugino seesaws contributing significantly to the masses of the first and second family.
Taking also into account that the composition of these two families in the second mass
eigenstate is similar, we expect v2 ∼ v3. Now for this solution we will have mν̃3

as the
smallest of all the sneutrino masses.

3) M > 0, with Yν2 < Yν1 < Yν3 , and v1 < v2 ∼ v3.
These solutions can be deduced from the previous ones in 2) interchanging the values of
the third family, Yν3 and v3, with the corresponding ones of the second family, Yν2 and
v2. A small adjust in the parameters will lead again to a point in the parameter space
satisfying neutrino data. This is clear from the fact that θ13 and θ12 are not going to
be significantly altered, whilst θ23 may require a small tuning in the parameters. If the
gaugino seesaw dominates for the second family, v2 determines the corresponding neutrino
mass and Yν2 can be small. Then, mν̃2

will be the smallest of all sneutrino masses.

We will see in the next subsection that solutions of type 2) are the ones interesting
for our analysis.

Let us finally point out that when off-diagonal neutrino Yukawas are allowed, it is not
possible to arrive to a general conclusion regarding the hierarchy in sneutrinos masses,
specially when the gaugino seesaw is sub-dominant. This is because one can play with the
hierarchies among vi with enough freedom in the neutrino Yukawas in order to reproduce
the experimental results. Therefore, there is no a priori knowledge of the hierarchies in
the sneutrino masses, and carrying out an analysis case by case turns out to be necessary.

6.3 ν̃τ LSP
In the µνSSM, because of RPV any SUSY particle can be a candidate for the LSP.

Nevertheless, the case of the ν̃τ LSP turns out to be particularly interesting because of
the large value of the tau Yukawa coupling, which can give rise to significant BRs for
decays to2 ττ and τ`, once the sneutrinos are dominantly pair-produced via a Drell-Yan
process mediated by a virtual W , Z or γ, as we will discuss in the next section.

There is enough freedom in the parameter space of the µνSSM in order to get light

2In what follows, the symbol ` will be used for an electron or a muon, ` = e, µ, and charge conjugation
of fermions is to be understood where appropriate.
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left sneutrinos. Assuming as discussed above that the Aνi are naturally of the order of
the TeV, values of the prefactor of Eq. (6.1) Yνivu/vi in the range of about 0.01 − 1, i.e.
Yνi ∼ 10−8− 10−6, will give rise to left sneutrino masses in the range of about 100− 1000
GeV. Thus, with the hierarchy of neutrino Yukawas Yν3 ∼ 10−8 − 10−7 < Yν1,2 ∼ 10−6,
we can obtain a ν̃τ LSP with a mass around 100 GeV whereas the masses of ν̃e,µ are of
the order of the TeV. Clearly, we are in the case of solutions for neutrino physics of type
2) discussed in Subsection 6.2. Actually this type of hierarchy, with significant values for
Yν1,2 , increases the dilepton BRs of the ν̃τ LSP producing signals that can be probed at
the LHC, as the analysis of the next sections will show.

It is worth noticing here that in this scenario the left stau can be naturally the NLSP,
since it is only a little heavier than the ν̃τ because they are in the same SU(2) doublet,
with the mass splitting mainly due to the usual small D-term contribution, −m2

W cos 2β.
As we will see in the next section, this has implications for the production of the left
sneutrino LSP at the LHC, because the direct production of sleptons and their decays is
a significant source of sneutrinos.

6.4 Searching for ν̃τ LSP at the LHC
To probe the ν̃τ LSP, the dilepton displaced-vertex searches are found to be the most

promising. Following the strategy of Ref. [21], we will compare the predictions of our
current scenario with three right-handed neutrinos with the ATLAS search [73] for long-
lived particles using displaced ( >∼ 1 mm) lepton pairs `` in pp collisions at

√
s = 8 TeV,

as well as the prospects for the 13-TeV searches.
The direct production of ν̃τ occurs via a Z channel giving rise to a pair of scalar and

pseudoscalar left sneutrinos, as shown in Fig. 6.1(a). Note that they are co-LSPs since
they have essentially degenerate masses, as explained in the previous section. On the
other hand, since the left stau is typically the NLSP its direct production and decay is
another important source of the ν̃τ LSP. In particular, pair production can be obtained
through a γ or Z decaying into two staus, as shown in Fig. 6.1(b), with the latter having a
dominant RPC prompt decay into a (scalar or pseudoscalar) sneutrino plus an off-shell W
producing a soft meson or a pair of a charged lepton and a neutrino. Note that although
RPV decays of the stau are possible, e.g. stau into a tau plus a neutrino, they are
extremely supressed compared to the RPC one. Numerically, the stau has partial decay
widths through RPV diagrams ∼ 10−14− 10−13 GeV, while the ones corresponding to the
RPC three-body decays are ∼ 10−7 GeV. Therefore, its proper decay length is ∼ 10−9
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Figure 6.1: Decay channels into two τ `/τ , from a pair production at the LHC of scalar and
pseudoscalar tau left sneutrinos co-LSPs. Decay channels into one τ `/τ plus neutrinos
are the same but substituting in (a), (b) and (c) one of the two vertices by a two-neutrino
vertex.

m, with the BRs corresponding to the RPV decays < 10−6. Sneutrinos can also be pair
produced through a W decaying into a stau and a (scalar or pseudoscalar) sneutrino as
shown in Fig. 6.1(c), with the stau decaying as before.

Subsequently, the pair-produced ν̃τ can decay into τ `/τ . As a result of the mixing
between left sneutrinos and Higgses, the sizable decay of ν̃τ into ττ is possible because
of the large value of the tau Yukawa coupling. Other sizable decays into τ `/τ can occur
through the Yukawa interaction of ν̃τ with τ and charged Higgsinos, via the mixing
between the latter and ` or τ . To analyze these processes we can write approximate
formulas for the partial decay widths of the scalar/pseudoscalar tau left sneutrino. The
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one into ττ is given by:

Γ (ν̃τ → ττ) ≈
mν̃τ

16π

(
YτZ

H/A

ν̃τHd
− Yντ

Yτ
3λ

)2
, (6.2)

where Yτ ≡ Ye33 , and ZH/A is the matrix which diagonalizes the mass matrix for the
neutral scalars/pseudoscalars. The latter is determined by the neutrino Yukawas, which
are the order parameters of the RPV. The contribution of λ in the second term of Eq. (6.2)
is due to the charged Higgsino mass that can be approximated by the value of µ = 3λ vR√2 .
The partial decay width into τ` can then be approximated for both sneutrino states by
the second term of Eq. (6.2) with the substitution Yντ → Yν` :

Γ (ν̃τ → τ`) ≈
mν̃τ

16π

(
Yν`

Yτ
3λ

)2
. (6.3)

On the other hand, the gauge interactions of ν̃τ with neutrinos and binos (winos) can
produce a large decay width into neutrinos, via the gauge mixing between these gauginos
and neutrinos. This partial decay width can be approximated for scalar and pseudoscalar
sneutrinos as

∑
i

Γ(ν̃τ → ντνi) ≈
mν̃τ

16π
∑
i

∣∣∣∣∣g′2 UV
i4−

g

2U
V
i5

∣∣∣∣∣
2

, (6.4)

where UV is the matrix which diagonalizes the mass matrix for the neutral fermions, and
the above entries can be approximated as

UV
i4 ≈

−g′√
2M1

∑
l

vlU
PMNS
il ,

UV
i5 ≈

g√
2M2

∑
l

vlU
PMNS
il . (6.5)

Here UPMNS
il are the entries of the PMNS matrix, with i and l neutrino physical and flavor

indices, respectively. The relevant diagrams for ν̃τ searches that include this decay mode
are the same as in Fig. 6.1, but substituting one of the τ `/τ vertices by a two-neutrino
vertex.

Let us remark that other decay channels of the ν̃τ can be present and have been taken
into account in our numerical computation, but they turn out to be negligible for the
sneutrino masses that we are interested in this work.

Given the above results valid for three families of right-handed neutrino superfields,
we can now follow the prescription of Ref. [21] for improving and recasting the ATLAS
search [73] to the case of the ν̃τ . One of the problems with the existing searches [73,119–
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121] is that they are designed for a generic purpose and therefore not optimized for light
metastable particles such as the ν̃τ ; we thus proposed in Ref. [21] a strategy of improving
these searches by lowering trigger thresholds, relying on a high level trigger that utilizes
tracker information. This optimization turned out to be quite feasible and considerably
improves the sensitivity of the displaced-vertex searches to long-lived ν̃τ . In particular, in
the ATLAS 8-TeV analysis, the events must satisfy the following trigger requirements [73]:

• One muon with pT > 50 GeV and |η|< 1.07, one electron with pT > 120 GeV or two
electrons with pT > 40 GeV each,

and off-line selection requirements:

• One pair e+e−, µ+µ− or e±µ∓ with pT > 10 GeV and 0.02 < |η|< 2.5 for each
particle.

As shown in Ref. [21], the trigger requirement for electrons is so restrictive that it makes
the selection efficiency for the dielectron channel be a few percent level, while for the
µ+µ− and e±µ∓ channels the efficiency can be a few tens of percent. We can however
overcome this difficulty by optimizing the trigger requirements for left sneutrino searches
by relaxing the momentum thresholds [21]. In fact, it is possible to reduce momentum
thresholds for triggers by means of established techniques. For instance, the mu24i trigger
used in the ATLAS experiment [122] only requires pT > 24 GeV; such a low threshold can
be achieved thanks to the information from the inner detector. This information can also
improve the trigger performance in a wider range of the pseudorapidity of tracks, and thus
we can also relax the requirement on η; from |η|< 1.07 to |η|< 2.5 [122]. It is then argued
in Ref. [21] that we can still consider the number of background events to be zero even
after we relax the momentum threshold. Consequently, to exploit this trigger instead of
that used in Ref. [73] can significantly enhance the sensitivity to light sneutrinos, since
the typical momentum of muons from the sneutrino decays is a few tens of GeV. After
all, one can use the following criteria for the optimized 8-TeV analysis:3

• At least one muon with pT > 24 GeV.

• One pair µ+µ− or e±µ∓ with pT > 10 GeV and 0.02 < |η|< 2.5 for each particle.

3We could have required a lower threshold for the electron trigger as well, but we do not consider this
optimization since we are unable to estimate the increase in the number of background events caused by
the relaxation in the trigger requirement [21].
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We can also assume an optimization of the trigger requirements in the 13-TeV searches.
It is again discussed in Ref. [21] that one can use the following criteria for the 13-TeV
analysis:

• At least one electron or muon with pT > 26 GeV.

• One pair µ+µ−, e+e−, or e±µ∓ with pT > 10 GeV and 0.02 < |η|< 2.5 for each
particle.

Since we do not have the 13-TeV result for dilepton displaced-vertex searches for the
moment, we just assume the expected number of background events to be zero, which
should be validated in the future experiments. It is worth noticing that unlike the previous
two trigger requirements, in this case the pT threshold of 26 GeV is for both muons and
electrons. The improvement of the selection efficiencies, εsel, for different masses, for the
three production processes, and for the µµ, µe, and ee channels, can be found in Tables
III-IX of Ref. [21]. As pointed out also in that work, this possible improvement is not
only for the ATLAS analysis but also for the CMS one [119].

We can now discuss how to obtain the limits for light sneutrinos. Throughout our
analysis, we assume that the number of both background and signal events to be zero,
as in the ATLAS 8-TeV search result [122]. The limits from the ATLAS search can be
translated into a vertex-level efficiency, taking into account the lack of observation of
events for any value of the decay length. Therefore, εvert(cτ) can be obtained as the ratio
of the number of signal events compatible with zero observed events (which in this case
is 3 as we assume zero background) and that corresponding to the upper limits given in
Ref. [73] with an appropriate modification described in Ref. [21]; for example, we can use
the purple-shaded solid line of Fig. 3 in the later work to obtain the vertex-level efficiency
εµµvert(cτ) for the dimuon channel. It is found that the efficiency decreases significantly for
cτ . 1 mm, which has important implications for the prospects of the ν̃τ searches as we
will see below. By multiplying the number of the events passing the trigger and event
selection criteria with this vertex-level efficiency, we can estimate the total number of
signal events; for the 8-TeV case, this is given for the µµ channel by

#Dimuons =
[
σ(pp→ Z → ν̃τ ν̃τ )εZsel + σ(pp→ W → ν̃τ τ̃)εWsel + σ(pp→ γ, Z → τ̃ τ̃)εγ,Zsel

]
× L×

[
BR(ν̃Rτ → µµ) εµµvert(cτR) + BR(ν̃Iτ → µµ) εµµvert(cτI)

]
, (6.6)
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where

BR(ν̃τ → µµ) ≡ BR(ν̃τ → τµ)× 0.1739 + BR(ν̃τ → ττ)× (0.1739)2 , (6.7)

with 0.1739 the BR of the τ decay into muons (plus neutrinos), and we use an integrated
luminosity of L = 20.3 fb−1 [73] (300 fb−1 when studying the 13-TeV prospects). The
same formula can be applied for the other two channels. If the predicted number of signal
events is above 3 the corresponding parameter point of the model is excluded so that this
is compatible with zero number of events.

Let us finally remark that in our analysis below, we scan the parameter space of the
model and therefore mν̃τ

can be regarded as a continuous variable, unlike Ref [21] where
the sneutrino masses used were 50, 60, 80 and 100 GeV. For the selection efficiency we used
a polynomial fitting from the discrete values of εsel given in Ref. [21] for each production
mode, whereas for the vertex-level efficiency, the fitting function is of the form eP [log(cτ)],
where P [x] is a polynomial in the variable x.

6.5 Sampling the µνSSM for ν̃τ LSP
In this section we describe the likelihood we use in the scans to search for points in

the parameter space that are compatible with neutrino and Higgs physics, as well as ν̃τ
LSP with a mass in the range of 45− 100 GeV. To carry out this analysis, we employ the
method described in Chapter 4 to sample the µνSSM.

In order to concentrate the sampling in the area in which the mass of the tau left
sneutrino mν̃τ

∈ (45, 100) GeV, in addition to the observables presented in Subsection 4.4,
we construct a likelihood function Lν̃τ which is a Gaussian with mean value µm

ν̃τ
= 70

GeV and width σm
ν̃τ

= 10 GeV, and included it in the combined likelihood. In sum, the
joint likelihood function we use in this work is

Ltot = Lν̃τ × Lneutrino × LHiggs × LB physics × Lµ decay × Lm
χ̃±
. (6.8)

The likelihoods were defined in Chapter 4, but we repeat them here. Lν̃τ is basically
the prior we impose on the tau left sneutrino mass, Lneutrino represents measurements of
neutrino observables, LHiggs Higgs observables, LB physics B-physics constraints, Lµ decay µ

decays constraints and Lm
χ̃±

constraints on the chargino mass. Note that neutrino data
in this case is taken from Table 4.1.
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6.6 Input parameters
In order to efficiently scan for the ν̃τ LSP in the µνSSM with a mass in the range

45 − 100 GeV, it is important to identify first the parameters to be used, and optimize
their number and their ranges of values. This is what we carry out here, where we discuss
the most relevant parameters for obtaining correct neutrino and Higgs physics, providing
at the same time the ν̃τ as the LSP with the mass in the desired range.

The relevant parameters in the neutrino sector of the µνSSM are λ, κ, vR, vi, Yνi , tan β
and M (see Eq. (3.43)). Since λ, κ and vR are crucial for Higgs physics, we will fix first
them to appropriate values. The parameter tan β is also important for both, Higgs and
neutrino physics, thus we will consider a narrow range of possible values to ensure good
Higgs physics. Concerning M , which is a kind of average of bino and wino soft masses
(see Eq. (3.34)), inspired by GUTs we will assume M2 = 2M1, and scan over M2. On the
other hand, sneutrino masses introduce in addition the parameters Tνi (see Eq. (3.67)).
In particular, Tν3 is the most relevant one for our discussion of the ν̃τ LSP, and we will
scan it in an appropriate range of small values. Since the left sneutrinos of the first two
generations must be heavier, we will fix Tν1,2 to a larger value.

Summarizing, we will perform scans over the 9 parameters Yνi , vi, Tν3 , tan β,M2, as
shown in Table 6.1, using log priors (in logarithmic scale) for all of them, except for tan β
which is taken to be a flat prior (in linear scale). The ranges of vi and Yνi are natural
in the context of the electroweak-scale seesaw of the µνSSM. The range of Tν3 is also
natural if we follow the usual assumption based on the supergravity framework discussed
in Eq. (3.69) that the trilinear parameters are proportional to the corresponding Yukawa
couplings, i.e. in this case Tν3 = Aν3Yν3 implying −Aν3 ∈ (1, 104) GeV. Concerning M2,
its range of values is taken such that a bino at the bottom of the neutralino spectrum
leaves room to accommodate a ν̃τ LSP with a mass below 100 GeV. Scans 1 (S1) and 2
(S2) correspond to different values of tan β, and other benchmark parameters as shown
in Table 6.2.

In Table 6.2 we choose first two values of λ, covering a representative region of this
parameter. From a small/moderate value, λ ≈ 0.1 (S1), to a large value, λ ≈ 0.4 (S2), in
the border of perturbativity up to the GUT scale [50]. For scan S1, since λ is small we
are in a similar situation as in the MSSM, and moderate/large values of tan β, |Tu3|, and
soft stop masses, are necessary to obtain the correct SM-like Higgs mass. In addition, if
we want to avoid the chargino mass bound of RPC SUSY, the value of λ also force us
to choose a moderate/large value of vR to obtain a large enough value of µ = 3λ vR√2 . In
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Scan 1 (S1) Scan 2 (S2)

tan β ∈ (10, 16) tan β ∈ (1, 4)

Yνi ∈ (10−8, 10−6)

vi ∈ (10−6, 10−3)

−Tν3 ∈ (10−6, 10−4)

M2 ∈ (150, 2000)

Table 6.1: Range of low-energy values of the input parameters that are varied in the two
scans, where Yνi , vi, Tν3 and M2 are log priors while tan β is a flat prior. The VEVs vi,
and the soft parameters Tν3 and M2, are given in GeV.

Parameter Scan 1 (S1) Scan 2 (S2)

λ 0.102 0.42

κ 0.4 0.46

vR 1750 421

Tλ 340 350

−Tκ 390 108

−Tu3 4140 1030

m
Q̃3L

2950 1972

mũ3R
1140 1972

M3 2700

m
Q̃1,2L

,mũ1,2R
,mẽ1,2,3R

1000

Tu1,2 0

Td1,2 , Td3 0, 100

Te1,2 , Te3 0, 40

−Tν1,2 10−3

Table 6.2: Low-energy values of the input parameters that are fixed in the two scans. The
VEV vR and the soft trilinear parameters, soft gluino masses and soft scalar masses are
given in GeV.
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particular, we choose vR = 1750 GeV giving rise to µ ≈ 379 GeV. The latter parameters,
λ and vR, together with κ and Tλ are also relevant to obtain the correct values of the off-
diagonal terms of the mass matrix mixing the right sneutrinos with Higgses. As explained
in Eqs. (3.44) and (3.45), the parameters κ and vR (together with Tκ) are also crucial to
determine the mass scale of the right sneutrinos. In scan S1, where we choose Tκ = −390
GeV to have heavy pseudoscalar right sneutrinos (of about 1190 GeV), the value of κ has
to be large enough in order to avoid too light (even tachyonic) scalar right sneutrinos.
Choosing κ = 0.4, we get masses for the latter of about 700− 755 GeV.

For scan S2, where we choose a large value for λ, we are in a similar situation as in the
NMSSM, and a small value of tan β, and moderate values of |Tu3| and soft stop masses,
are sufficient to reproduce the correct SM-like Higgs mass. Now, a moderate value of vR
is sufficient to obtain a large enough value of µ. In particular, we choose vR = 421 GeV
giving rise to µ ≈ 375 GeV. This value of vR implies that |Tκ| cannot be as large as for
scan S1 because then a too large value of κ would be needed to avoid tachyonic scalar
right sneutrinos. Thus we choose Tκ = −108 GeV, and κ = 0.42, which produces scalar
and pseudoscalar sneutrinos lighter than in scan S1 but still heavier than ν̃τ LSP and left
stau NLSP. In particular, their masses are in the ranges 225 − 256 GeV and 345 − 355
GeV, respectively.

The values of the parameters shown below mũ3R
in Table 6.2, concerning gluino, and

squark and slepton masses, and quark and lepton trilinear parameters, are not specially
relevant for our analysis, and we choose for each of them the same values for both scans.
Finally, compared to the values of Tν3 , the values chosen for Tν1,2 are natural within our
framework Tν1,2 = Aν1,2Yν1,2 , since larger values of the Yukawa couplings are required for
similar values of Aνi . In the same way, the values of Td3 and Te3 have been chosen taking
into account the corresponding Yukawa couplings.

6.7 Results
By using the methods described in the previous sections, we evaluate now the current

and potential limits on the parameter space of our scenario from the displaced-vertex
searches with the 8-TeV ATLAS result [73], and discuss the prospects for the 13-TeV
searches.

To find regions consistent with experimental observations we have performed about
72 million of spectrum evaluations in total and the total amount of computer required for
this was approximately 380 CPU years.
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To carry this analysis out, we follow several steps. First, we select points from the
scan that lie within ±3σ of all neutrino physics observables, namely the mixing angles
and mass squared differences. Second, we put ±3σ cuts from b → sγ, Bs → µ+µ− and
Bd → µ+µ−. The points that pass these cuts are required to satisfy also the upper limits
of µ → eγ and µ → eee. The third step in the selection of our points is to ensure a tau
left sneutrino LSP with mν̃τ

∈ (45, 100) GeV, and the left stau as the NLSP. In the fourth
step we impose that Higgs physics is realized. As already mentioned, we use HiggsBounds

and HiggsSignals taking into account the constraints from the latest 13-TeV results. In
particular, we require that the p-value reported by HiggsSignals be larger than 5 %. It
is worth noticing here that, with the help of Vevacious [104], we have also checked that
the EWSB vacua corresponding to the previous allowed points are stable.

The final set of cuts is related to ν̃τ LSP searches with displaced vertices. From the
points left above, we select those with decay length cτ > 0.1 mm in order to be constrained
by the current experimental results, as mentioned in previous sections. Finally, since the
number of signal events compatible with zero observed events is 3, we look for points with
a number of signal events above 3.

6.7.1 Constraints from neutrino/sneutrino physics.

Reproducing neutrino physics is very important in the µνSSM. Therefore we analyze
first the constraints imposed by this requirement on the relevant parameter space of the
model when the ν̃τ is the LSP.

Imposing all the cuts discussed above, with the exception of the one associated to
the number of signal events, we show in Fig. 6.2 the values of the parameter Aν3 versus
the prefactor in Eq. (3.69), Yν3vu/v3, giving rise to a mass of the ν̃τ in the desired range
45− 100 GeV. The colours indicate different values of this mass. Scan S1 (S2) is shown in
the left (right)-hand side of the figure. Let us remark that these plots have been obtained
using the full numerical computation including loop corrections, although the tree-level
mass in Eq. (3.69) gives a good qualitative idea of the results. In particular, in scan S1

we can see that the allowed range of −Aν3 is 779 − 1820 GeV, corresponding to −Tν3

in the range 8.3 × 10−6 − 3.5 × 10−5 GeV. We can also see, as can be deduced from
Eq. (3.69), that for a fixed value of −Aν3 (Yν3vu/v3) the greater Yν3vu/v3 (−Aν3) is, the
greater mν̃τ

becomes. For scan S2, the allowed range of −Aν3 turns out to be 67 − 3764
GeV, corresponding to −Tν3 in the range 2.1× 10−6 − 4.9× 10−5 GeV. The differences in
the range of allowed values for Aν3 and Yν3vu/v3 of the scan S1 with respect to S2, are
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Figure 6.2: −Aν3 versus Yν3vu/v3 for scan S1 (left) and scan S2 (right). The colours
indicate different values of the tau left sneutrino LSP mass.

due to the negative vs. the positive contribution of the sum of the second and third terms
in the bracket of Eq. (3.69), respectively, as well as to the different values of vR which
appears also as a prefactor in that equation.

Let us finally note that mν̃τ
is always larger than about 61 GeV, which corresponds

to half of the mass of the SM-like Higgs (remember that we allow a ±3 GeV theoretical
uncertainty on its mass). For smaller masses, the latter would dominantly decay into
sneutrino pairs, leading to an inconsistency with Higgs data.4

In Fig. 6.3, we show v3 vs. Yν3 for scan S1 (left) and scan S2 (right), with the colours
indicating now different values of M . There we can see that the greater v3 is, the greater
M becomes. In addition, for a fixed value of v3, M is quite independent of the variation in
Yν3 . This confirms that, as explained in solution 2) of Subsection 6.2, the gaugino seesaw
is the dominant one for the third neutrino family. From the figure, we can see that the

4In this scenario the SM-like Higgs decays into pairs of scalar/pseudoscalar tau left sneutrinos via
gauge interactions, mostly from D-terms ∼ 1

4 (g2 + g′
2)ν̃iν̃∗iH0

uH
0∗
u , since its largest component is H0

u.
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Figure 6.3: v3 versus Yν3 for scan S1 (left) and scan S2 (right). The colours indicate
different values of the gaugino mass parameter M defined in Eq. (3.34).

range of M reproducing the correct neutrino physics is 346 − 2223 GeV for scan S1 and
248− 2100 GeV for S2, corresponding to M2 in the range 236− 1515 GeV and 169− 1431
GeV, respectively. Note that for a fixed value of v3, when Yν3 is sufficiently large the ν̃τ
becomes heavier than 100 GeV, and these points are not shown in the figure. As can also
be seen, Yν3 acquires larger values in scan S2 than in S1, in agreement with the discussion
of Fig. 6.2.

The values of Yν3 and v3 used in order to obtain a ν̃τ LSP in turn constrain the values
of Yν1,2 and v1,2 producing a correct neutrino physics. This is shown in Fig. 6.4, where δm2

vs. Yνi and vi is plotted. As we can see, we obtain the hierarchy qualitatively discussed
in solution 2) of Subsection 6.2, i.e. Yν3 < Yν1 < Yν2 , and v1 < v2 <∼ v3. The values
of the Yukawas Yν1,2 in scan S2 are smaller than the corresponding ones in S1 because
for these two families the νR-Higgsino seesaw contributes significantly to the neutrino
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Figure 6.4: δm2 versus neutrino Yukawas (left) and left sneutrino VEVs (right) for scan S1
(top) and S2 (bottom). Colors blue, green and grey correspond to i = 1, 2, 3, respectively.

masses, and vR is smaller for scan S2. Concerning the absolute value of neutrino masses,
we obtain mν1 ∼ 0.002 eV, mν2 ∼ 0.008 eV, and mν3 ∼ 0.05 eV, fulfilling the cosmological
upper bound on the sum of neutrino masses of 0.12 eV mentioned in Subsection 6.6. The
predicted value of the sum of the neutrino masses can be tested in future CMB experiments
such as CMB-S4 [123]. It is also worth noticing here that these hierarchies of neutrino
Yukawas and left sneutrino VEVS, give rise to a ν̃µ mass in the range 766 − 1568 GeV
for scan S1 and 466− 945 GeV for S2, producing the contributions aSUSY

µ ∼ 3× 10−10 and
∼ 1 × 10−10, respectively, which are within the SM uncertainty of the muon anomalous
magnetic moment as mentioned in Subsection 4.4.5.
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Figure 6.5: (Left) Branching ratio versus M for the decay of a scalar ν̃τ LSP with mν̃τ
∈

(61−100) GeV into µµ for scan S1 (top) and S2 (bottom). (Right) Proper decay length cτ
of the scalar ν̃τ LSP versus M for scan S1 (top) and S2 (bottom). In all plots, the dark-red
points indicate that the number of signal events is above 3 analyzing the prospects for
the 13-TeV search with an integrated luminosity of 300 fb−1, combining the µµ, eµ and
ee channels, and considering also the optimization of the trigger requirements discussed
in the text. The light-red points in scan S1 although have a number of signal events
above 3, are already excluded by the LEP result, as discussed in the text. The dark-blue
points indicate that the number of signal events is below 3 and therefore inaccessible. The
light-blue points in scan S1 have also a number of signal events below 3, and, in addition,
are already excluded by the LEP result.

6.7.2 Constraints from accelerator searches

Once the neutrino (and sneutrino) physics has determined the relevant regions of the
parameter space of the ν̃τ LSP in the µνSSM, we are ready to analyze the reach of the
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LHC search.
Given that for each scan the largest neutrino Yukawa is Yν2 , the most important

contribution to the dilepton BRs comes from the channel ν̃τ → τµ. We also expect that
the BR(ν̃τ → µµ) is larger for scan S1 than for S2, as can be checked in Fig. 6.5 (left
plots),5 where BR(ν̃Rτ → µµ) is plotted vs. M , for the points fulfilling all constraints
from neutrino/sneutrino physics (although not shown here, a similar figure is obtained
in the case of the pseudoscalar ν̃Iτ ). The main reason is the smaller (larger) value of λ
(tan β) for scan S1 with respect to S2, which are crucial parameters in Eq. (6.3) for the
partial decay width. Although tan β does not appear explicitly in that equation, note
that Yτ = (

√
2mτ/v)

√
tan2 β + 1. In addition, as shown in Fig. 6.4, the value of Yν2 is

larger for scan S1 than for S2, contributing therefore to larger BRs. We can also observe
in both plots of Fig. 6.5 for the BRs that they increase with larger values of M . This can
be understood from Eq. (6.4) showing that larger values of M decrease the decay width
to neutrinos. In Fig. 6.5 (right plots), we show the proper decay length of the ν̃Rτ vs. M .
Clearly, this is larger for scan S2 than for S1 because the BRs into charged leptons are
smaller in the former case, as discussed before. Let us finally remember that the lower
and upper bounds on M in the figure, have their origin in the analysis of the previous
section reproducing neutrino (sneutrino) physics.

It is apparent that in scan S2 for M larger than about 1000 GeV, the points that
we find fulfilling all constraints are not uniformly distributed. This happens essentially
because the value of vR is smaller than in scan S1 modifying the relevant contribution
of the νR-Higgsino seesaw for the first two families, in such a way that is more difficult
to reproduce neutrino physics unless more accurate values of the neutrino Yukawas are
input in the computation. As obtained in Subsection 6.7.1, and can be seen in Fig. 6.4,
the allowed values of Yν3 are larger for S2. This makes more complicated to obtain the
correct mixing, producing a tuning in the parameters. To obtain these more accurate
values, we would have had to run Multinest a much longer time making the task very
computer resources demanding. This is not really necessary since it is not going to affect
the shape of the figure, and therefore neither the conclusions obtained. In addition, let us
point out that we could have also modified the values of the parameters used for scan S2

reproducing more easily neutrino physics, e.g. increasing vR and modifying accordingly

5Notice that the partial decay widths into neutrinos for the S1 and S2 cases are similar in size for a
given value of M , as can be seen from Eq. (6.4) and Fig. 6.4. Therefore, a larger partial decay width of
the ν̃τ → µτ channel for scan S1 implies a larger value of BR(ν̃Rτ → µµ), compared with that for scan
S2.
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Figure 6.6: Ratios of the branching fractions of ν̃τ → µµ and ν̃τ → ee for scan S1 (left)
and scan S2 (right). The color code is the same as in Fig. 6.5.

the other parameters to keep the good Higgs physics.
In all plots of Fig 6.5, the (light- and dark-)red points correspond to regions of the

parameter space where the number of signal events is above 3. Note that this only occurs
for the 13-TeV analysis with an integrated luminosity of L = 300 fb−1. For the 8-TeV
analysis, even considering the optimization of the trigger requirements, no points have a
number of signal events larger than 3. However, we have checked that the light-red points
in scan S1 are already excluded by the LEP bound on left sneutrino masses [108–113]. To
carry out this analysis, one can consider e.g. Fig. 6a of Ref. [111], where the cross section
upper limit for tau sneutrinos decaying directly to ``ττ via a dominant L̂L̂êc operator is
shown. Assuming BR = 1, a lower bound on the sneutrino mass was obtained through the
comparison with the MSSM cross section for pair production of tau sneutrinos. To recast
this result we multiplied this cross section by the factor BR(ν̃Rτ → τµ)×BR(ν̃Iτ → τµ) for
each of our points. For an average value of BR(ν̃τ → µµ) = 0.1 as we can see in Fig 6.5,
the cross section must be multiplied then by a factor of ∼ 0.33, lowering the bound on
the sneutrino mass from about 90 GeV in the case of trilinear RPV to about 74 GeV in
our case (see Fig. 6.7 below). This result turns out to be qualitatively different from the
one of Ref. [21], where no bound on the sneutrino mass was obtained from recasting the
LEP result. This is due to the simplified assumption made in that work that all neutrino
Yukawas have the same value and therefore democratic BRs, implying a smaller value for
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the above factor. On the other hand, using Table II of Ref. [21] with the BRs modified
appropriately, we have checked that the lack of constraint on the sneutrino mass from the
production of a pair of left staus at LEP obtained in that work, is still valid. We have
arrived at the same conclusion for LEP mono-photon search and LHC mono-photon and
mono-jet searches, taking also into account the most recent results [124,125]. Let us finally
remark that the (light- and dark-)blue points correspond to regions where the number of
signal events is below 3, and therefore inaccessible. In addition, we have checked that the
light-blue points on top of the dark-blue ones are already excluded by the LEP result.

Concerning scan S2, we can see in Fig 6.5 that the BRs into charged leptons are
about two orders of magnitude smaller than for S1, and therefore following the above
discussion we have checked that no points are excluded by LEP results in this case. Note
that although these BRs are smaller, still a significant number of points with signal events
above 3 can be obtained when M increases because of the larger value of the decay length,
which gives rise to a larger vertex-level efficiency.

Figure 6.5 also shows that the sensitivity of the dilepton displaced-vertex searches
to ν̃τ is limited by their small efficiency for cτ . 1 mm, especially for the S1 case.
It is, however, worth noticing that we may even probe such a short lifetime region by
optimizing the search strategy for the sub-millimeter displaced vertices, as discussed in
Refs. [126, 127]. Our result highly motivates a dedicated work for such an optimization,
which we defer to another occasion.

As discussed in Section 6.4, the value of Yν1 is rather large in our scenario, and therefore
we expect a sizable branching fraction for the ν̃τ → ee channel. In fact, the ratio of the
branching fractions for the ν̃τ → ee and ν̃τ → µµ channels has important implications
for our scenario since it reflects the information from the neutrino data via the neutrino
Yukawa couplings (see Fig. 6.4). To see this, we plot it against the parameter M in
Fig. 6.6. It is found that for the S1 case, the ratios Rµ/e ≡ BR(ν̃Rτ → µµ)/BR(ν̃Rτ → ee)
are in the range 3 . Rµ/e . 5, while for the S2 case they are more widely distributed:
1 . Rµ/e . 4.6. This different behaviour can be understood if we realize that for scan S1

the second term of BR(ν̃τ → µµ) in Eq. (6.7) is negligible with respect to the first one,
and the same for the corresponding terms of BR(ν̃τ → ee). Thus, with the approximation
in Eq. (6.3) one gets Rµ/e ≈ (Yνµ/Yνe)2, which using the results for the neutrino Yukawas
in Fig. 6.4 gives rise to the above range around 3.5. However, for scan S2 the term
of BR(ν̃τ → ee) proportional to BR(ν̃τ → ττ) is not negligible with respect to the
one proportional to BR(ν̃τ → τe), which is much smaller than in scan S1, due to the
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Figure 6.7: Tau left sneutrino LSP mass versus M for scan S1 (left) and scan S2 (right).
The color code is the same as in Fig. 6.5.

contribution of the first term in Eq. (6.2). This implies that the ratio Rµ/e in scan S2 can
be smaller than in S1, as can be seen in the figure. Now, if we particularly focus on the
parameter points that can be probed at the 13-TeV LHC, the S2 case predicts Rµ/e . 3.6,
and thus we can in principle distinguish this case from the S1 case by measuring this ratio
in the future LHC experiments such as the high-luminosity LHC.

Finally, we show in Fig. 6.7 mν̃τ
vs. M . For scan S1 (left plot), tau left sneutrino

masses in the range 74−91 GeV can be probed, corresponding to a gaugino mass parameter
M in the range 532−1801 GeV, i.e. M2 ∈ (363−1228) GeV. Clearly, red points appear in
these regions because smaller sneutrino masses produce larger decay lengths. Since decay
lengths are larger for scan S2, the range of sneutrino masses that can be probed is also
larger than for S1. In particular, we can see in the right plot that the range of sneutrino
masses is 63−95 GeV. In this scenario, M is in the range 625−2100 GeV, correspoding to
M2 ∈ (427− 1431) GeV. Let us finally mention that points with sneutrino masses slightly
larger than 100 GeV, and with cτ > 0.1 mm, exist, but since they are not constrained by
the number of signals events and therefore cannot be probed at the LHC run 3, we do not
show them in the figures. In any cases, if we actually detect the ν̃τ signal and measure its
mass6 and lifetime in future experiments, we can considerably narrow down the allowed

6As discussed in Ref. [21], we can in principle measure the mass of ν̃τ by using hadronically decaying
tau leptons.
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parameter region, which plays an important role in testing the µνSSM.

6.8 Conclusions
In the framework of the µνSSM, where there is RPV and the several decay BRs of

the LSP significantly decrease the signals, there is a lack of experimental bounds on the
masses of the sparticles. To fill this gap in SUSY searches, it is then crucial to analyze
the recent experimental results that can lead to limits on sparticle masses in this model,
and the prospects for the searches with a higher energy and luminosity.

With this purpose, we recast the result of the ATLAS 8-TeV displaced dilepton search
from long-lived particles [73], to obtain the potential limits on the parameter space of
the tau left sneutrino LSP in the µνSSM with a mass in the range 45 − 100 GeV. A
crucial point of the analysis, which differentiates the µνSSM from other SUSY models is
that neutrino masses and mixing angles are predicted by the generalized electroweak scale
seesaw of the µνSSM once the parameters of the model are fixed. This is obtained at
tree level when three generations of right-handed neutrinos are considered. Therefore, the
sneutrino couplings have to be chosen so that the neutrino oscillation data are reproduced,
which has important implications for the sneutrino decay properties.

The sneutrino LSP is produced via the Z-boson mediated Drell-Yan process or through
the W - and γ/Z-mediated process accompanied with the production and decay of the left
stau NLSP, as shown in Fig. 6.1. Due to the RPV term present in the µνSSM, the left
sneutrino LSP becomes metastable and eventually decays into the SM leptons. Because
of the large value of the tau Yukawa coupling, a significant fraction of the sneutrino LSP
decays into a pair of tau leptons or a tau lepton and a light charged lepton, while the
rest decays into a pair of neutrinos. A tau sneutrino LSP implies in our scenario that
the tau neutrino Yukawa is the smallest coupling, driving neutrino physics to dictate that
the muon neutrino Yukawa is the largest of the neutrino Yukawas. As a consequence, the
most important contribution to the dilepton BRs comes from the channel ν̃τ → τµ. It is
found then that the decay distance of the left sneutrino tends to be as large as & 1 mm,
which thus can be a good target of displaced vertex searches.

The strategy that we employed to search for these points was the same as in Chap-
ter 5, but in this case performing the two scans of the parameter space related to neu-
trino/sneutrino physics described in Table 6.1, imposing compatibility with current ex-
perimental data on neutrino and Higgs physics, as well as flavor observables.

The final result of our analysis for the 8-TeV case is that no points of the parameter

95



6.8. Conclusions

space of the µνSSM can be probed. This is also true even considering the optimization
of the trigger requirements proposed in Ref. [21]. Nevertheless, important regions can be
probed at the LHC run 3 with the trigger optimization, as summarized in Fig. 6.7. We in
particular emphasize that a trigger optimization for muons has more significant impact
on the search ability than that for electrons because of the larger muon neutrino Yukawa
coupling in our scenario. Our observation, therefore, suggests that optimizing only the
muon trigger already has great benefit. In addition, searching for “sub-millimeter” dilep-
ton displaced vertices is also promising. We thus highly motivate both the ATLAS and
CMS collaborations to take account of these options seriously.

If the metastable ν̃τ signature is actually found in the future LHC experiments, we
may also measure the mass, lifetime, and decay branching fractions of ν̃τ through the
detailed analysis of this signature. We can then include these physical observables into
our scan procedure as well in order to further narrow down the allowed parameter space.
For instance, we can distinguish the S1 and S2 cases by measuring the ratio BR(ν̃Rτ →
µµ)/BR(ν̃Rτ → ee) as shown in Fig. 6.6. We can also restrict the parameter M through
the measurements of the mass and decay length of ν̃τ , which allows us to infer the gaugino
mass scale and thus gives important implications for future high energy colliders.
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Chapter 7

Explaining muon anomalous (g− 2)
in the µνSSM

In the previous chapters, we have shown that the parameter space of the µνSSM can
simultaneously accommodate massive neutrino and reproduce Higgs physics. We have also
shown that important part of it can host light electroweak gauginos and left sneutrinos
(and sleptons). The presence of these light states can enhance the model contribution to
the anomalous magnetic moment of the muon, aµ = (g−2)µ/2. Motivated by this, in this
chapter based on our work of Ref. [128], we want to identify the parts of the viable regions
of the parameter space that lead to a sizable contribution to aµ in order to reproduce the
measured value.

7.1 Introduction
One of the long standing problems of the SM is the deviation between its prediction

and the measured value of the muon anomalous magnetic dipole moment. This discrep-
ancy, ∆aµ = aexp

µ − aSM
µ , has survived over decades even after improving the theoretical

calculations within the SM and performing accurate experimental measurements. The
latest value of ∆aµ reported by [96],

∆aµ = 26.8± 6.3± 4.3× 10−10 , (7.1)

represents 3.5σ discrepancy between the measured value and the SM prediction and hence
could be the manifestation of NP beyond the SM. Also, the muon g − 2 experiments at
Fermilab (E989) [129] and at J-PARC (E34) [130] are planned to reduce the experimental
uncertainty of aµ by a factor of four [131, 132] and this could raise this deviation up to
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7.0σ [133] which would be a very strong evidence of NP.
On the one hand, if SUSY is responsible of this deviation, then at least some SUSY

particles are expected to be in the vicinity of the electroweak scale, namely, muon left
sneutrino, smuon and electroweak gauginos B̃ and W̃ . On the other hand, the search
for SUSY at colliders, inspired by RPC models puts significant bounds on sparticles
masses’ [96], especially for strongly interacting sparticles whose masses must be above
about 1 TeV [106, 107]. Nevertheless, less stringent bounds of about 100 GeV have been
obtained for weakly interacting sparticles. Qualitatively similar results have also been
obtained in the analysis of simplified RPV scenarios with trilinear lepton- or baryon-
number violating terms [19], assuming a single channel available for the decay of the LSP
into leptons. However, this assumption is not possible in the µνSSM, where the decay BRs
of the LSP can significantly decrease the signals. This means that the extrapolation of the
usual bounds on sparticles masses’ to the µνSSM is not directly applicable. As a result,
very light sparticles are still possible, making the model very interesting for addressing
∆aµ. For instance, we have shown in Chapter 6 that the electroweak gauginos whose
masses are controlled by Mi=1, 2, are very important for reproducing neutrino physics in
the model and that the left sneutrinos whose masses and couplings are directly connected
to neutrino physics, can naturally be light depending on the choice of the parameters.
As a consequence, SUSY contributions to aµ can naturally be sizeable to accommodate
Eq. (7.1).

In this Chapter we analyze the parameter space of the µνSSM that reproduces simul-
taneously neutrino and Higgs physics and explains the discrepancy ∆aµ. To achieve this,
we sample the model for ∆aµ using the likelihood method described in Chapter 4 and we
focus on the scenarios with light/moderate ν̃µ, µ̃, B̃ and W̃ .

7.2 SUSY contribution to aµ in the µνSSM
The contributions to the aµ in supersymmetric models are known to essentially come

from the chargino-sneutrino and neutralino-smuon loops, and have been intensively stud-
ied. For example in the case of the MSSM, the one-loop contributions can be found
in [134–137] and at two-loop in [138–140]. In the singlet(s) extension(s) of the MSSM, the
contribution to aµ would have same expressions provided that the mixing matrices are
appropriately taken into account. Nevertheless, as was pointed out in Ref. [141,142], the
numerical results in these models can differ from the ones in the MSSM. Depending on
the parameters of the concerned model, very light neutral scalars (few GeV) can appear
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at the bottom of the spectrum and the presence of such very light eigenstates can have an
impact on aµ. This scenario has been also addressed in [143–145] in the context of two-
Higgs-doublet-models. Note that light neutralinos with leading singlino composition are
possible but their contributions are small, owning to their weak couplings to the MSSM
sector.

Concerning the µνSSM, which is a singlets extension of the MSSM, assuming that
the singlets scalars and pseudoscalars (as well as singlinos) are heavy, their contributions
is very small and the expressions of the SUSY contributions to the aµ can be translated
from the MSSM. It follows that the dominants one-loop contributions to aµ from the
chargino-sneutrino and neutralino-smuon loop, can be respectively appropriated as [134],

∆aCµ ≈
α2m

2
µ

4π
µM2 tan β

m2
ν̃µ

FC(M2
2/m

2
ν̃µ

)− FC(µ2/m2
ν̃µ

)
M2

2 − µ2

 (7.2)

and

∆aNµ ≈
α1m

2
µ

4π
µM1 tan β

(m2
µ̃R
−m2

µ̃L
)

FN(M2
1/m

2
µ̃R

)
m2
µ̃R

−
FN(M2

1/m
2
µ̃L

)
m2
µ̃L

 , (7.3)

where the loop functions are given by

FC(k) = 3− 4k + k2 + 2 ln k
(1 + k)3 , FN(k) = −1 + k2 − 2k ln k

(1 + k)3 . (7.4)

Notice that mµ and mµ̃L
(mµ̃R

) are muon and left- (right-)handed smuon masses respec-
tively and αi = g2

i /(4π).
It is well known that the chargino contribution ∆aCµ is much larger compared with

the neutralino contribution ∆aNµ . Thus, in the following we discuss the Eq. (7.4) in order
to draw some important conclusions on the SUSY contributions to aµ that we will check
with our numerical results.

In the light of Eq. (7.1), decreasing the values of M2, µ or mν̃µ
leads to an enhancement

in ∆aCµ . Also, the sign of ∆aCµ is given by the sign of the product µM2 since the factor in
brackets of Eq. (7.4) is positive in general [136]. In the present work, we assume that M2

and µ are positive and thus we expect a positive contribution to aµ. In contrast, the ∆aCµ
increases with increasing tan β. Thus, the parameters controlling the SUSY contributions
to aµ in the scenario we consider are

M2, µ, mν̃µ
, tan β, (7.5)
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and they have to be appropriately chosen to satisfy the constraints we impose and to
explain the experimental discrepancy of Eq. (7.1). Recall that, from Subsection 3.6.3, the
muon left sneutrino mass is mainly determined by Tν2 , Yν2 and v2.

To qualitatively understand the behaviour of the dominant contribution to aµ, we show
in Fig. 7.1, ∆aCµ versus mν̃µ

for different values of other relevant parameters. It can be
deduced, assuming that the SUSY contributions to muon anomalous magnetic moment is
determined by the Eq. (7.2) that, to explain the ±2σ discrepancy of Eq. (7.1), for µ = 380
GeV and tan β = 14, excludes mν̃µ

& 600 (100) GeV corresponding to M2 = 150 (900)
GeV. In these regions the contribution to aµ is too small. Another point to note is that
this contribution can become very large for small values of mν̃µ

and M2. Concretely, this
scenario corresponds to M2 = 150 GeV and mν̃µ

. 200 GeV (blue triangles in the white
area above the yellow colored band). We will check these features with the numerical
results presented in Section 7.5.

7.3 Sampling the µνSSM for aµ
In this section we describe the likelihood that we use to search for benchmark points

of the parameter space that are compatible with the current experimental data from
neutrino and Higgs physics as well as that from the measurement of ∆aµ. To this end,
we performed a scan over the parameter space of the model, with the input parameters
optimally chosen as will be subsequently discussed in Section 7.4.

For the sampling of the µνSSM, we used the method described in Chapter 4. The
goal is to find regions of the parameter space of the µνSSM that are compatible with the
discrepancy of Eq. 7.1. For that we have constructed the likelihood,

Ltot = Laµ × Lneutrino × LHiggs × LB physics × Lµ decay × Lm
χ̃±
, (7.6)

where different pieces in the right hand side are described in Section 4.4.

7.4 Input parameters
The optimal setup to address the anomalous muon aµ, is to focus on the scenarios

involving light moun left sneutrinos (and smuon) and Wino (Bino). Thus we follow the
same strategy for the choice of the parameters as in Chapter 6 but in this case instead of
tau left sneutrino as the LSP, we are interested in the muon left sneutrino. Consequently,
we scan over Tν2 and fix Tν3 .

Concerning how to get light/moderate ν̃µ, we have seen from the previous chapters
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Figure 7.1: ∆aCµ versus mν̃µ
for different values of M2. The green and yellow bands

represent the ±1σ and ±2σ regions of ∆aµ respectively and the red dashed line the best
fit value. Recall that µ and M2 are in GeV.

that we have the freedom in the parameter space of the µνSSM. For example, with the
assumption that the Aν2 is naturally of the order of the TeV, values of the prefactor of
Eq. (3.69) Yν2vu/v2 in the range of about 0.01− 1, i.e. Yν2 ∼ 10−8− 10−6, will give rise to
muon left sneutrino mass in the range of about 100− 1000 GeV. Thus, with the hierarchy
of neutrino Yν2 ∼ 10−8−10−7 < Yν1,3 ∼ 10−6, we can obtain a ν̃µ light with a mass around
100 GeV whereas the masses of ν̃e,τ are of the order of the TeV. Clearly, we are in the
case of solutions for neutrino physics of type 3) discussed in Subsection 6.2. It is worth
noticing here that in this scenario, the left smuon would be naturally light and this has an
interesting implication since light smuon are also relevant for reproducing the anomalous
muon magnetic moment. For getting light gauginos, the parameters M1 and M2 can be
taken as small as of the order of 100 GeV without spoiling neutrino physics depending
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on the choice of other parameters of the model. Thus, assuming the GUT inspired low
energy relation M2 = 2M1. This also allows to get light Bino although not being so
relevant for ∆aµ .

As discussed in Eq. (3.43), the relevant parameters in the neutrino sector of the µνSSM
are λ, κ, vR, vi, Yνi , tan β and M1, 2. Since λ, κ and vR are crucial for Higgs physics, we fix
them to appropriate values. The parameter tan β is also important for both, Higgs and
neutrino physics, thus we will consider a narrow range of possible values to ensure good
Higgs physics.

Summarizing, we perform a scan over the 9 parameters Yνi , vi, Tν2 , tan β,M2, as shown
in Table 7.1, using log priors (in logarithmic scale) for all of them, except for tan β which
is taken to be a flat prior (in linear scale). The ranges of parameters are same as those
in Chapter 6 except for M2. In the present work, we decrease the upper bound of M2

to 1000 GeV because we do not expect sizable contribution to aµ for larger values. The
other parameters are same as these of Table 6.2.

Scan (S)

tan β ∈ (10, 16)
Yνi ∈ (10−8, 10−6)
vi ∈ (10−6, 10−3)
−Tν2 ∈ (10−6, 10−4)
M2 ∈ (150, 1000)

Table 7.1: Range of low-energy values of the input parameters that are varied in the two
scans, where Yνi , vi, Tν2 and M2 are log priors while tan β is a flat prior. The VEVs vi,
and the soft parameters Tν3 and M2, are given in GeV.

7.5 Results
To find regions consistent with experimental observations we have performed about

36 million of spectrum evaluations in total and the total amount of computer required for
this was approximately 190 CPU years.

To carry out this analysis, we select points from the scan that lie within ±3σ of all
neutrino physics observables [13] summarized in Table 4.2. Second, we put ±3σ cuts from
b → sγ, Bs → µ+µ− and Bd → µ+µ− and require them to satisfy also the upper limits
of µ → eγ and µ → eee. In the third step, we impose that Higgs physics is realized. In
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Figure 7.2: −Aν2 versus Yν2vu/v2. The colours indicate different values of the muon left
sneutrino mass.

particular, we require that the p-value reported by HiggsSignals be larger than 5 %.
We also check with Vevacious [104] that the EWSB vacua corresponding to the previous
allowed points are stable. Finally, since we want to explain the ∆aµ, of the allowed points,
we select those within ±2σ of ∆aµ. The resulting points with this last selection cut are
presented in Section 7.5.2.

7.5.1 Constraints from neutrino and light ν̃µ physics.

Imposing all the cuts discussed above, we show in Fig. 7.2 the values of the parameter
Aν2 versus the prefactor in Eq. (3.69), Yν2vu/v2, giving rise to different values for the
mass of the ν̃µ. Let us remark that the plot has been obtained using the full numerical
computation including loop corrections, although the tree-level mass in Eq. (3.69) gives
a good qualitative idea of the results. In particular, we can see that the allowed range
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Figure 7.3: v2 versus Yν2 for the scan. The colours indicate different values of the gaugino
mass parameter M defined in Eq. (3.34).

of −Aν2 is 861− 25500 GeV, corresponding to −Tν2 in the range 8.8× 10−6 − 3.8× 10−4

GeV. We can also see, as can be deduced from Eq. (3.69), that for a fixed value of −Aν2

(Yν2vu/v2) the greater Yν2vu/v2 (−Aν2) is, the greater mν̃µ
becomes. Let us finally note

that mν̃µ
is always larger than 64 GeV, which corresponds to about half of the mass of

the SM-like Higgs. The reason is same as in the case of tau left sneutrino LSP, that is, for
smaller masses, the SM-like Higgs would dominantly decay into sneutrino pairs, leading
to an inconsistency with Higgs data.

In Fig. 7.3, we show v2 vs. Yν2 , with the colours indicating different values of M . There
we can see that the greater v2 is, the greater M becomes. In addition, for a fixed value
of v2, M is quite independent of the variation in Yν2 . This confirms that, as explained
in solution 3) of Subsection 6.2, the gaugino seesaw is the dominant one for the second
neutrino family. From the figure, we can see that the range of M reproducing the correct

104



Chapter 7. Explaining muon anomalous (g− 2) in the µνSSM

0 2 4 6 8
Yνi / 10−7

7.0

7.2

7.4

7.6

7.8

8.0

∆
m

2 21
/

10
−5

(e
V

2
)

0 1 2 3 4
vi / 10−4 (GeV)

7.0

7.2

7.4

7.6

7.8

8.0

∆
m

2 21
/

10
−5

(e
V

2
)

Figure 7.4: ∆m2
21 versus neutrino Yukawas (left) and left sneutrino VEVs (right). Colors

blue, grey and green correspond to i = 1, 2, 3, respectively.

neutrino physics is 223− 1467 GeV corresponding to M2 in the range 152− 1000 GeV.
The values of Yν2 and v2 used in order to obtain a ν̃µ light in turn constrain the values

of Yν1,3 and v1,3 producing a correct neutrino physics. This is shown in Fig. 7.4, where
∆m2

21 vs. Yνi and vi is plotted. As we can see, we obtain the hierarchy qualitatively
discussed in solution 3) of Subsection 6.2, i.e. Yν2 < Yν1 < Yν3 , and v1 < v3 <∼ v2.

Concerning the absolute value of neutrino masses, we obtain mν1 ∼ 0.001 - 0.002 eV,
mν2 ∼ 0.008 - 0.009 eV, and mν3 ∼ 0.05 eV, fulfilling the cosmological upper bound on
the sum of neutrino masses of 0.12 eV.

7.5.2 Constraints from muon aµ

Once the neutrino physics has determined the relevant regions of the parameter space
of the µνSSM for getting left muon sneutrino mass as light as possible but consistent with
Higgs physics, we are ready to analyze the regions of the parameter space that can explain
the deviation between the SM prediction and the experimental value of the anomalous
magnetic moment of muon.

In our scenario µ is fixed to ≈ 379 GeV, thus, from Eq. (7.2) the parameters that de-
termine the chargino-sneutrino contribution to aµ are M2, mν̃µ

and tan β. In the following
we discuss the ∆aµ constraint on these parameters.

105



7.5. Results

10 11 12 13 14 15 16

tan β

5

10

15

20

25

30

35

40

∆
a µ
/

10
−1

0

± 2σ

± 1σ

Figure 7.5: ∆aµ versus tan β. The green and blue colors represent the 1σ and 2σ on ∆aµ.
Notice that the green points are part of the blue points. The red points are not within
the 2σ cut on ∆aµ.

We expect tan β to not have notable effects on the SUSY contribution to aµ considering
its narrow range we chose. This is shown in Fig. 7.5 where it can be seen that ∆aµ is
independent of tan β. However, the effects are expected to be sizable with the variations
of M2 and mν̃µ

and we discuss them subsequently.
In Figs. 7.6 and 7.7, we show ∆aµ versus M2 and mν̃µ

respectively. The white regions
in the upper right sides are excluded by the size of the SUSY contribution to aµ, for
increasing mν̃µ

or M2 it is hard to get large values for ∆aµ. Being illustrative, on the one
hand for M2 ∼ 200 (800) GeV, and on the other hand, for mν̃µ

∼ 100 (500) GeV, the
contribution to ∆aµ is less about 40 (13). In addition, to explain the 1σ (green) and 2σ
(blue) regions of ∆aµ require values smaller than about 520 GeV and 920 GeV for M2

and below 320 GeV and 540 GeV for mν̃µ
respectively. In sum, this result agrees with the

features of Fig. 7.1 and confirms that in our scenario the approximation of Eq. (7.2) can
be qualitatively used to describe the SUSY contribution to aµ in the µνSSM.

In Fig. 7.8 which can be regarded as the summary plot of the scan, we show mν̃µ

versus M2 parameter space. The viable points (green and blue) are classified in three
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Figure 7.6: ∆aµ versus M2. The colors are same as in Fig. 7.5.

different categories: the dot symbol corresponds to the case where mν̃µ
is smaller than

the mass of Bino. Notice that M2 = 2M1 and hence, Bino will always be lighter than
Wino. The plus symbol represents the case where the mν̃µ

is between the mass of Bino
and the mass of Wino. The triangle represent the case where the left muon sneutrino is
heavier than the Wino. This categorization will be important when the constraints from
the LHC searches will be taken into account. For instance, the presence of light left muon
sneutrino, Bino and Wino of order of 100 GeV and long-lived could be constrained by
LHC searches long-lived particles decaying into an oppositely charged lepton pair, µµ, ee,
or eµ, for example Refs. [73,146]. But for the moment we focus on the constraint of ∆aµ
on the M2 −mν̃µ

parameter space of the µνSSM.
Imposing 2σ on the ∆aµ excludes regions with M2 & 900 GeV, for mν̃µ

∼ 65 GeV and
mν̃µ

& 550 GeV for M2 ∼ 150 GeV. Notice that, none of the points we found has ∆aµ
larger than the 2σ upper bound. Larger SUSY contributions are found for M2 ∼ 150
GeV, when left muon sneutrino is as light as 100 GeV. However pushing the lower bound
on M2 to smaller values about 100 GeV would lead to very large ∆aµ.
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Figure 7.7: ∆aµ versus M2. The colors are same as in Fig. 7.5.
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Figure 7.8: mν̃µ
versus M2. The colors are same as in Fig. 7.5. The viable points are

classified in three categories: The dot symbol corresponds to the case where mν̃µ
is smaller

than the mass of Bino (M1). Notice that M2 = M1. The plus symbol represents the case
where the mν̃µ

is between the mass of Bino and the mass of Wino (M2). The triangle is
left for case where the left muon sneutrino is heavier than the Wino.
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7.6 Conclusions
We have analyzed within the framework of the µνSSM, the parameter space that can

explain the about 3.5σ deviation of the measured value of the anomalous magnetic moment
of the muon with respect to the prediction of the SM. Unlike in the RPC SUSY models, like
the MSSM, where it seems hard to explain ∆aµ while satisfying the existing experimental
bounds on the masses of sparticles, in the µνSSM, with the breaking of the R-parity, these
bounds can be relaxed. Besides, the µνSSM can naturally predict light left sneutrinos
as well as electroweak gauginos that are consistent with Higgs and neutrino data. In
addition, the presence of these light sparticles in the spectrum is known to enhance the
supersymmetric contribution to the anomalous magnetic moment of the muon and thus
are very important for accommodating the discrepancy between the experimental and the
SM values.

In this work, we sampled the µνSSM to reproduce the latest value of ∆aµ given in
Eq. (7.1) and to achieve that we focused on the regions of the parameter space that lead
to light/moderate electroweak gauginos (Wino and Bino) and muon left sneutrino (and
smuon) and at the same time are compatible with the latest Higgs and neutrino data. We
found that important regions of the parameter space of the model can easily reproduce
∆aµ. For instance, in our scenario, for ±1σ of ∆aµ, the allowed ranges for M2 and mν̃µ

are respectively 150− 520 GeV and 75− 320 GeV. Note that, at ±2σ the upper bounds
on these parameters are pushed upwards to around 920 GeV and 540 GeV respectively.

Nevertheless, we are also aware that the LHC searches of electroweakinos could further
constrain the allowed regions of our scenario. For instance, the presence of light left muon
sneutrino or gaugino of order of 100 GeV could be constrained by LHC searches for long-
lived particles decaying into charged leptons, for example, the analyses of Refs. [73, 146].
But in this work, we did not consider yet the potential exclusion power of these searches
in our scenario. The next step will be to check whether the allowed regions we found
survive with constraints from the colliders searches.
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Chapter 8

Conclusiones y perspectivas de
futuro/Conclusions and future
perspectives

En este caṕıtulo resumimos los principales resultados de esta tesis, en la que hemos
analizado a fondo el espacio de parámetros del µνSSM a la luz de los datos experimentales
existentes y de las perspectivas de las exploraciones futuras del LHC.

El hecho de que no se haya descubierto todav́ıa nueva f́ısica BSM en los colisionadores
de part́ıculas, junto con la cantidad creciente de datos experimentales, están poniendo
restricciones severas sobre los modelos supersimétricos. Por tanto, son necesarios estu-
dios especializados en el espacio de parámetros de las teoŕıas BSM. En este contexto, en
el trabajo empleamos un método muy potente para escanear el espacio de parámetros
del µνSSM con el fin de encontrar las regiones que son compatibles con los datos experi-
mentales existentes. Como se explica en el texto, el µνSSM es un modelo supersimétrico
bien motivado que de forma natural ofrece una solución al problema µ y al mismo tiempo
aborda el origen delas masas y los ángulos de mezclas de los neutrinos. Debido a los
nuevos términos introducidos para resolver estos problemas, conteniendo tres familias de
supercampos de neutrinos right-handed, se produce RPV, con el tamaño de la violación
controlada por los pequeños acoplos de Yukawa de los neutrinos. Como consecuencia
de esta pequeña RPV y de que el espectro de part́ıculas es mayor, se producen señales
nuevas caracteŕısticas del modelo tales como estados finales desplazados, multileptones o
nuevas canales de decaimiento de las part́ıculas y esto hace que la fenomenoloǵıa en los
colisionadores sea muy rica y diversa.
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Tras haber descrito los aspectos teóricos del µνSSM en el Caṕıtulo 3, en el Caṕıtulo 4
presentamos la metodoloǵıa utilizada en esta tesis para estudiar el espacio de parámetros
del modelo y también para buscar escenarios fenomenológicos que puedan ser testados en
el funcionamiento actual y futuro del LHC. En concreto, usamos un algoritmo basado en
datos y probabilidades llamado Multinest para muestrear el µνSSM. Este método nos
permitió llevar a cabo escaneos en diferentes subconjuntos del espacio de parámetros y
derivar aquellos que están de acuerdo con una clase de datos dada. Para el cálculo del
espectro usamos SARAH para generar una versión SPheno de nuestro modelo. Posterior-
mente, conectamos SPheno con MultiNest. Es de destacar, que para encontrar regiones
consistentes con las observaciones experimentales en todos los estudios realizados en esta
tesis, hemos llevado a cabo alrededor de 268 millones de evaluaciones de espectro en total.
La cantidad total de tiempo de computación requerida para esto fue de aproximadamente
1680 años de CPU.

En el Caṕıtulo 5, que está basado en nuestro trabajo de la Ref. [98], hemos aplicado este
método para escanear el sector Higgs del µνSSM. Hemos analizado minuciosamente las
regiones del espacio de parámetros a la luz de los datos crecientes sobre las propiedades del
bosón de Higgs del SM. Para llevar a cabo este estudio de manera eficiente, optimizamos el
tiempo y los recursos de computación identificando, en primero lugar, los parámetros más
relevantes que determinan la f́ısica del Higgs del µνSSM. Para restringir las predicciones
del sector de Higgs extendido, donde los dobletes de Higgs se mezclan con los sneutrinos,
hemos conectado HiggsBounds con Multinest y para saber si un determinado escalar
del µνSSM está de acuerdo con las señales observadas por ATLAS y CMS, también
hemos conectado HiggsSignals con Multinest. Además, exigimos la compatibilidad con
observables tales como los decaimientos del B y del muon. En este marco, hemos realizado
los tres escaneos S1,2,3 descritos en la Tabla 5.1, que están determinados por el rango de
los acoplos λ que mezclan Higgses y right sneutrinos. En concreto, hemos considerado
λ ∈ (0.01, 0.2), (0.2, 0.5) y (0.5, 1.2). No imponemos de partida perturbatividad hasta
la escala GUT y por eso permitimos valores de λ mayores de 0.4. Tampoco imponemos
perturbatividad hasta la escala GUT a los acoplamientos κ entre los right sneutrinos,
considerando por lo tanto el rango κ ∈ (0.01, 2). Los resultados se resumen en las Figs.
5.4, 5.8 y 5.12 para los tres escans. Claramente, encontramos soluciones viables en casi
todo el plano κ−λ con la excepción del escan S3 en la Fig. 5.12, que está más restringido.
Esto se debe a los valores grandes de λ ∈ (0.5, 1.2) que pueden dar lugar a taquiones
originados en la mezcla entre los dos dobletes de Higgs.
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Hemos obtenido por tanto que el espacio de parámetros de nuestro modelo contiene
muchas soluciones viables, incluyendo también muchas posibilidades fenomenológicas dis-
tintas. Por ejemplo, hay soluciones en las que el Higgs del SM es el escalar más ligero
(puntos rojos y rojos claro en las figuras), pero también soluciones donde no lo es (puntos
azules y azules claro). En este último caso, es incluso posible tener los otros escalares
(tipo singlete) con masas <∼ mHiggs/2. Además, también encontramos soluciones en las
que varios escalares están degenerados con masas cercanas a 125 GeV y pueden tener sus
señales superpuestas contribuyendo a la resonancia observada a 125 GeV.

Dados estos resultados, es importante estudiar en detalle en el futuro la fenomenoloǵıa
en colisionadores de las soluciones encontradas. En concreto, el impacto de los nuevos
estados, no solo los right sneutrinos sino también los left sneutrinos, y los neutralinos que
contienen los right-handed neutrinos. Las nuevas señales asociadas a ellos pueden verificar
si el µνSSM es el modelo supersimétrico adecuado.

En el Caṕıtulo 6, que está basado en nuestro trabajo de la Ref. [57], primero señalamos
que en el marco del µνSSM, donde hay RPV y la existencia de varios BRs de decaimiento
de la LSP disminuyen significativamente las señales, no hay básicamente ĺımites exper-
imentales sobre las masas de las part́ıculas supersimétricas. Para llenar este vaćıo en
las búsquedas de SUSY, es crucial analizar los resultados experimentales recientes que
puedan conducir a ĺımites en las masas de las part́ıculas SUSY en nuestro modelo, aśı
como las perspectivas para las búsquedas con enerǵıa y luminosidad más grandes.

Con este propósito, hemos reutilizado el resultado de la búsqueda de ATLAS a 8 TeV
de dileptones desplazados debidos a part́ıculas de vidas medias grandes [73], para obtener
los ĺımites potenciales en el espacio de parámetros del sneutrino tauónico left como LSP
en el µνSSM, con la masa en el rango 45 − 100 GeV. Un punto crucial del análisis, que
diferencia al µνSSM de otros modelos SUSY, es que las masas y los ángulos de mezclas
de los neutrinos se pueden predecir debido al seesaw generalizado a la escala EW del
µνSSM, una vez se fijan los parámetros del modelo. Esto se obtiene a nivel árbol cuando
se consideran tres generaciones de neutrinos rigt-handed. Por lo tanto, los acoplos de los
sneutrinos deben ser elegidos de forma que los datos de las oscilaciones de los neutrinos se
reproduzcan, lo cual tiene implicaciones importantes para las propiedades de decaimiento
del sneutrino.

El sneutrino LSP se produce a través del proceso Drell-Yan mediado por el bosón Z, o
a través del proceso mediado por W y γ/Z acompañado con la producción y decaimiento
del left stau NLSP, como se muestra en la Fig. 6.1. Debido al término RPV presente en el
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µνSSM, el left sneutrino LSP es metaestable y eventualmente decae en leptones del SM.
Debido al valor grande del acoplo de Yukawa del lepton tau, una fracción significativa
del sneutrino LSP decae en un par de leptones tau o un leptón tau y un leptón ligero,
mientras que el resto decae en un par de neutrinos. El left sneutrino LSP implica en
nuestro escenario que el Yukawa del neutrino tauónico es el acoplo más pequeño, llevando
a la f́ısica de neutrinos a dictar que el Yukawa del neutrino muónico es el más grande de
los Yukawas de los neutrinos. Como consecuencia, la contribución más importante a los
BRs de dileptones proviene del canal ν̃τ → τµ. Se encuentra entonces que la longitud de
decaimiento del left sneutrino tiende a ser tan grande como & 1 mm, lo que puede ser un
buen objetivo para las búsquedas de vértices desplazados. Para estimar la sensibilidad de
este análisis, las muestras de eventos simulados se generaron usando MadGraph y PYTHIA.

La estrategia que hemos empleado para buscar estos puntos ha sido la misma que en
el Caṕıtulo 5, pero en este caso realizando los dos escaneos S1,2 del espacio de parámetros
relacionados con la f́ısica de neutrinos/sneutrinos descritos en la Table 6.1, y requiriendo
la compatibilidad con los datos experimentales actuales sobre la f́ısica de neutrinos y de
Higgs, aśı como con los observables de sabor.

El resultado final de nuestro análisis para el caso de 8 TeV es que, en nuestro escenario,
no se puede testar ningún punto del espacio de parámetros del µνSSM. Esto también se
cumple incluso si se considera la optimización de los requisitos del trigger propuesta en
la Ref. [21]. Sin embargo, regiones importantes pueden ser testadas en el run 3 del LHC
con la optimización del trigger, como se resume en la Fig. 6.7. En concreto, enfatizamos
que una optimización del trigger de muones tiene un mayor impacto en la capacidad
de búsqueda que la del de electrones, debido al mayor tamaño del acoplo de Yukawa
del neutrino muónico en nuestro escenario. Nuestra observación, por lo tanto, sugiere
que optimizar sólo el trigger de muones es ya muy beneficioso. Además, la búsqueda de
vértices de dileptones desplazados del orden del sub-miĺımetro es también prometedora.
Por tanto, considermos que hemos motivado fuertemente a las colaboraciones ATLAS y
CMS para que tengan en cuenta seriamente estas opciones.

Si se encuentra la señal del ν̃τ metaestable en los futuros experimentos del LHC,
también se podŕıa medir la masa, la vida media y las BRs de decaimiento del ν̃τ a través
del análisis detallado de la misma. Entonces, podemos incluir estos observables f́ısicos en
nuestro procedimiento de escaneo también para reducir aún más el espacio de parámetros
permitido. Por ejemplo, podemos distinguir entre los casos S1 y S2 midiendo la relación
BR(ν̃Rτ → µµ)/BR(ν̃Rτ → ee) como se muestra en la Fig. 6.6. También podemos restringir
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el parámetro M de los gauginos a través de las mediciones de la masa y la longitud de
decaimiento del ν̃τ , lo que nos permite inferir la escala de masa del gaugino y, por lo tanto,
da lugar a importantes implicaciones para futuros colisionadores de particulas.

En el caṕıtulo Chapter 7, que está basado en nuestro trabajo de la Ref. [128], anal-
izamos las regiones del espacio de parámetros del µνSSM que satisfacen a las f́ısicas
del Higgs y de los neutrinos y que explican uno de los rompecabezas más antiguos y
desafiantes del SM, la discrepancia a 3.5σ entre la predicción del SM y el valor medido
experimentalmente del momento magnético anómalo del muón. La presencia de part́ıculas
supersimétricas ligeras como los left sneutrinos y los gauginos en el µνSSM, que aún son vi-
ables a pesar de las restricciones de los datos experimentales y que potencialmente pueden
escapar a una clase de búsquedas del LHC, hacen que el modelo sea muy interesante en
este sentido. Hemos encontrado que regiones importantes del espacio de parámetros del
modelo pueden explicar fácilmente esta discrepancia. Los resultados de nuestro escenario
indican que, a 1σ, se espera que el parámetro M2 y la masa del muón left sneutrino sean
respectivamente sobre de 150−520 GeV y 65−320 GeV. En 2σ, los ĺımites superiores son
empujados hacia arriba a alrededor de 920 GeV y 540 GeV respectivamente. Esto tiene
una implicación muy importante para las búsquedas en los colisionadores en el futuro. Si
esta desviación persiste en el futuro, entonces la predicción del µνSSM puede ser usada
para determinar la masa del muón left sneutrino y reducir la escala de masa para un
descubrimiento potencial de particulas supersimétricas asociadas a los bosones del SM.

Debemos ser también conscientes de que las búsquedas del LHC de electroweakinos
podŕıan acotar también las regiones permitidas de nuestro escenario. Las perspectivas de
futuro para nuestro análisis son tener en cuenta las búsquedas en el LHC de part́ıculas de
vidas medias grandes que decaen a leptones cargados para limitar aún más las actuales
regiones viables del µνSSM que hemos encontrado.

Por último, cabe resaltar que los estudios realizados en esta tesis abren nuevos caminos
para muchos otros trabajos interesantes en el futuro. Varios de ellos ya han sido sugeridos
en la discusión anterior. Claramente, el sector escalar neutro del µνSSM ofrece escenarios
ricos y muy variados, tales como varios Higgses contribuyendo a la señal observada, de
forma que un estudio exhaustivo de los mismos en el futuro será necesario. Otro ejemplo
es el reanálisis de las búsquedas del LHC de part́ıculas de vida media grande. Hemos
demostrado que es muy útil para testar el µνSSM. Por tanto, análisis similares para
otras part́ıculas SUSY como LSPs, tales como stops, right sleptons, etc., constituyen un
nuevo paso interesante para restringir el espacio de parámetros del µνSSM. Por todo lo
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anterior, podemos decir que la metodoloǵıa empleada en esta tesis es una herramienta
muy poderosa para estudiar no sólo el espacio de parámetros del µνSSM, sino también
para futuras investigaciones de otras teoŕıas BSM.

Conclusions and future perspectives

In this chapter, we summarize the main results of this thesis, in which we have thor-
oughly analyzed the parameter space of the µνSSM in the light of current data and the
prospects for explorations at future runs of the LHC.

The lack of discovery of new physics BSM at particles colliders together with the
increasingly amount of experimental data, are putting severe constraints on supersym-
metric models. Therefore, dedicated analyses of the parameter space of theories BSM
are becoming necessary. In this context, we employed a powerful approach to scan the
parameter space of the µνSSM in order to find the regions that are compatible with given
existing experimental data. As explained in the text, the µνSSM is a well motivated
supersymmetric model that naturally offers a solution to the µ problem and simultane-
ously addresses the origin of non-zero masses and mixing angles for neutrinos. Due to the
new terms introduced to solve these challenges, containing three families of right-handed
neutrino superfields, there is RPV with the amount of violation controlled by the small
Yukawa couplings for neutrinos. As a consequence of this small RPV and the enlarged
particle spectrum, novel signatures such as displaced final states, multileptons, or new
decay chains for particles are characteristic of the model, and this renders the collider
phenomenology very rich and diverse.

After describing the theoretical aspects of the µνSSM in Chapter 3, in Chapter 4 we
presented the methodology used in this thesis to study the parameter space of this model,
and also to look for phenomenological scenarios that can be probed in the current and
future runs of the LHC. In particular, we used a likelihood data-driven method algorithm
based on Multinest to sample the µνSSM. This method allowed us to perform scans on
subsets of the parameter space and to derive those that are in agreement with a given
class of data. For the computation of the spectrum, we used SARAH to generate a SPheno

version for our model. Then, we interface SPheno with MultiNest. It is worth noticing
here, that to find regions consistent with experimental observations for all the studies
carried out in this thesis, we had to perform about 268 million of spectrum evaluations in
total, and the total amount of computer required for this was approximately 1680 CPU
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years.
In Chapter 5, which is based on our work of Ref. [98], we applied this method to scan

the Higgs sector of the µνSSM. We thoroughly analyzed the regions of the parameter
space in the light of the increasing data about the properties of the SM-like Higgs boson.
To efficiently conduct this study, we optimized the computing time and resources by first
identifying the most relevant parameters that determine the Higgs physics of the µνSSM.
For constraining the predictions of the extended Higgs sector, where the Higgs doublets
are mixed with the sneutrinos, we interfaced HiggsBounds with Multinest, and to address
whether a given Higgs scalar of the µνSSM is in agreement with the signals observed
by ATLAS and CMS, we also interfaced HiggsSignals with Multinest. In addition, we
demanded the compatibility with observables such as B and µ decays. In this framework,
we performed the three scans S1,2,3 described in Table 5.1, which are determined by the
range of λ couplings mixing Higgses and right sneutrinos. In particular, we considered λ ∈
(0.01, 0.2), (0.2, 0.5), and (0.5, 1.2). Perturbativity up to the GUT scale is not imposed,
and that is why we allow λ values larger than 0.4. Neither we imposed perturbativity up
to the GUT scale for κ couplings among right sneutrinos, considering therefore the range
κ ∈ (0.01, 2). The results are summarized in Figs. 5.4, 5.8, and 5.12 for the three scans.
Clearly, we find viable solutions in almost the entire κ − λ plane with the exception of
the scan S3 in Fig. 5.12, which is more constrained. This is due to the large values of λ ∈
(0.5, 1.2) that can give rise to tachyons originated in the mixing between the two Higgs
doublets.

We have, therefore, obtained that the parameter space of our model contains many vi-
able solutions, including also many different phenomenological possibilities. For example,
there are solutions where the SM-like Higgs is the lightest scalar (red and light-red points
in the figures), but also solutions where it is not (blue and light-blue points). In the latter
case, it is even possible to have the other (singlet-like) scalars with masses <∼ mHiggs/2.
In addition, we also find solutions where several scalars are degenerated with masses close
to 125 GeV, and can have their signal rates superimposed contributing to the resonance
observed at 125 GeV.

Given these results, it is then important to study in detail in the future the collider
phenomenology of the solutions found. In particular, the impact of the new states, not
only the right but also the left sneutrinos, and the neutralinos containing right-handed
neutrinos. Novel signals associated to them might check whether the µνSSM is the ade-
quate SUSY model.
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In Chapter 6, which is based on our work of Ref. [57], we pointed out first that in
the framework of the µνSSM, where there is RPV and the several decay BRs of the LSP
significantly decrease the signals, there is a lack of experimental bounds on the masses of
the sparticles. To fill this gap in SUSY searches, it is then crucial to analyze the recent
experimental results that can lead to limits on sparticle masses in this model, and the
prospects for the searches with a higher energy and luminosity.

With this purpose, we recast the result of the ATLAS 8-TeV displaced dilepton search
from long-lived particles [73], to obtain the potential limits on the parameter space of
the tau left sneutrino LSP in the µνSSM with a mass in the range 45 − 100 GeV. A
crucial point of the analysis, which differentiates the µνSSM from other SUSY models, is
that neutrino masses and mixing angles are predicted by the generalized electroweak scale
seesaw of the µνSSM once the parameters of the model are fixed. This is obtained at
tree level when three generations of right-handed neutrinos are considered. Therefore, the
sneutrino couplings have to be chosen so that the neutrino oscillation data are reproduced,
which has important implications for the sneutrino decay properties.

The sneutrino LSP is produced via the Z-boson mediated Drell-Yan process or through
the W - and γ/Z-mediated process accompanied with the production and decay of the left
stau NLSP, as shown in Fig. 6.1. Due to the RPV term present in the µνSSM, the left
sneutrino LSP becomes metastable and eventually decays into the SM leptons. Because
of the large value of the tau Yukawa coupling, a significant fraction of the sneutrino LSP
decays into a pair of tau leptons or a tau lepton and a light charged lepton, while the
rest decays into a pair of neutrinos. A tau sneutrino LSP implies in our scenario that
the tau neutrino Yukawa is the smallest coupling, driving neutrino physics to dictate that
the muon neutrino Yukawa is the largest of the neutrino Yukawas. As a consequence, the
most important contribution to the dilepton BRs comes from the channel ν̃τ → τµ. It is
found then that the decay distance of the left sneutrino tends to be as large as & 1 mm,
which thus can be a good target of displaced vertex searches. To estimate the sensitivity
of this analysis, samples of simulated events were generated using MadGraph and PYTHIA.

The strategy that we employed to search for these points was the same as in Chap-
ter 5, but in this case performing the two scans S1,2 of the parameter space related to
neutrino/sneutrino physics described in Table 6.1, imposing compatibility with current
experimental data on neutrino and Higgs physics, as well as flavor observables.

The final result of our analysis for the 8-TeV case is that no points of the parameter
space of the µνSSM can be probed. This is also true even considering the optimization
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of the trigger requirements proposed in Ref. [21]. Nevertheless, important regions can be
probed at the LHC run 3 with the trigger optimization, as summarized in Fig. 6.7. We in
particular emphasize that a trigger optimization for muons has more significant impact
on the search ability than that for electrons because of the larger muon neutrino Yukawa
coupling in our scenario. Our observation, therefore, suggests that optimizing only the
muon trigger already has great benefit. In addition, searching for “sub-millimeter” dilep-
ton displaced vertices is also promising. We thus highly motivate both the ATLAS and
CMS collaborations to take account of these options seriously.

If the metastable ν̃τ signature is actually found in the future LHC experiments, we
may also measure the mass, lifetime, and ν̃τ decay BRs through the detailed analysis of
this signature. We can then include these physical observables into our scan procedure
as well in order to further narrow down the allowed parameter space. For instance, we
can distinguish the S1 and S2 cases by measuring the ratio BR(ν̃Rτ → µµ)/BR(ν̃Rτ →
ee) as shown in Fig. 6.6. We can also restrict the gaugino parameter M through the
measurements of the mass and decay length of ν̃τ , which allows us to infer the gaugino
mass scale and thus gives important implications for future high energy colliders.

In Chapter 7, which is based on our work of Ref. [128], we analyzed the regions of the
parameter space of the µνSSM that satisfy Higgs and neutrino physics and explain one
of the long standing and challenging puzzles of the SM, the 3.5σ discrepancy between the
SM prediction and the experimental measured value of the anomalous magnetic moment
of the muon. The presence of light supersymmetric particles such as the left sneutrinos
and electroweak gauginos in the µνSSM, that still survive despite the strong constraints
from the neutrino and Higgs data and that potentially can escape a class of the LHC
searches, make the model very suitable in this regard. We found that important regions
of the parameter space of the model can easily explain this discrepancy. The results of our
scenario indicate that, at 1σ, the parameter M2 and the mass of the muon left sneutrino
are expected to be respectively in the range 150 − 520 GeV and 65 − 320 GeV. At 2σ,
the upper bounds are pushed upwards to around 920 GeV and 540 GeV respectively.
This has important implications for future colliders searches. If this deviation persists in
the future, then the prediction of the µνSSM can be used for pinning down the mass of
the muon left sneutrino and narrowing down the mass scale for a potential discovery of
electroweak supersymmetric partners of the SM gauge bosons.

We were also aware that the LHC searches of electroweakinos could further constrain
the allowed regions of our scenario. The future prospects for our analysis is to take into
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account the LHC searches for long-lived particles decaying into charged leptons to further
constrain the current viable regions of the µνSSM that we found.

Let us finally remark that the studies carried out in this thesis open up new pathways
for many other interesting works for the future. Several of them have already been sug-
gested above. Clearly, the neutral scalar sector of the µνSSM offers rich and a variety
of scenarios, such as several Higgses contributing to the observed signal, and a thor-
ough study of them in future will be necessary. Another example is the recasting of LHC
searches for long-lived particles. It has shown up to be very useful for probing the µνSSM.
Thus, similar analyses for other SUSY particles as LSPs such as stops, right sleptons, etc.,
constitute an interesting next step for constraining the parameter space of the µνSSM.
Because of all this, we can say that the methodology employed in this thesis is a very
powerful tool for studying not only the parameter space of the µνSSM, but also for future
investigations of other theories BSM.
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Appendix A

Mass Matrices

We review below the tree-level mass matrices generated in the µνSSM. Upon EWSB,
fields with the same color, electric charge and spin mix. To name them we follow the
convention of using for the eigenstates the names of detected particles: Higgs, neutrinos,
leptons. In what follows we use i, j, k, l,m, n as family indexes, and a, b as the indices
for the physical states (mass eigenstates). Note that we are using here the summation
convention on repeated indices.

A.1 Scalar Mass Matrices
The scalar mass matrices generated in the µνSSM were computed in Appendix A.1

of Ref. [50] with the assumption of CP conservation for simplicity. In this Appendix,
we write those equations and replace the values of the soft masses obtained through the
minimization conditions in Eqs. (3.14)-(3.17), assuming that slepton soft mass matrices
are diagonal in flavor space.

A.1.1 Mass Matrix for Higgses

Higgses mix with left and right sneutrinos. In the basis ST = (HRd , HRu , ν̃RiR, ν̃RjL), one
obtains the following mass terms for scalar Higgses in the Lagrangian:

− 1
2S

Tm2
hS , (A.1)
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where m2
h is the 8 × 8 (symmetric) matrix obtained computing the second derivative of

the scalar potential of Eq. (3.5) with respect to the fields

m2
h =



m2
HR
d
HR
d

m2
HR
d
HRu

m2
HR
d
ν̃RjR

m2
HR
d
ν̃RjL

m2
HRu H

R
d

m2
HRu H

R
u

m2
HRu ν̃

R
jR

m2
HRu ν̃

R
jL

mν̃RiRH
R
d

mν̃RiRH
R
u

m2
ν̃RiRν̃

R
jR

m2
ν̃RiRν̃

R
jL

m2
ν̃RiLH

R
d

m2
ν̃RiLH

R
u

m2
ν̃RiLν̃

R
jR

m2
ν̃RiLν̃

R
jL


, (A.2)

m2
HR

d
HR

d
= m2

Hd
+ 1

8(g2 + g′
2)(3v2

d − v2
u + viLviL) + 1

2λiλjviRvjR + 1
2λiλiv

2
u

= 1
4(g2 + g′

2)v2
d + viRtanβ

(
1√
2
Tλi + 1

2λjκijkvkR
)

+ Yνij

viL
2vd

(
λkvjRvkR + λjv

2
u

)
(A.3)

m2
HRu HRu

= m2
Hu

+ 1
8(g2 + g′

2)(−v2
d + 3v2

u − viLviL) + 1
2λiλjviRvjR + 1

2λiλiv
2
d

−YνijλjvdviL + 1
2Yνik

Yνij
vjRvkR + 1

2Yνik
Yνjk

viLvjL

= 1
4(g2 + g′

2)v2
u + viR

1
tanβ

(
1√
2
Tλi + 1

2λjκijkvkR
)

−viL
vu

(
1√
2
Tνij

vjR + 1
2Yνij

κljkvlRvkR

)
, (A.4)

m2
HRu HR

d
= −1

4(g2 + g′
2)vdvu −

1√
2
Tλi

viR −
1
2λkκijkviRvjR + vdvuλiλi − Yνij

λjvuviL , (A.5)

m2
ν̃R

iR
HR

d

= − 1√
2
Tλi

vu − λkκijkvuvjR + λiλjvdvjR −
1
2Yνji

λkvjLvkR −
1
2Yνjk

λivjLvkR , (A.6)

m2
ν̃R

iR
HRu

= − 1√
2
Tλi

vd + 1√
2
Tνji

vjL − λkκilkvdvlR + λiλjvuvjR + Yνjk
κilkvjLvlR + Yνjk

Yνji
vuvkR ,(A.7)

m2
ν̃R

iR
ν̃R

jR

=
(
m2
ν̃R

)
ij

+
√

2Tκijk
vkR − λkκijkvdvu + κijkκlmkvlRvmR + 2κilkκjmkvlRvmR

+1
2λiλj(v

2
d + v2

u) + Yνlk
κijkvuvlL −

1
2(Yνkj

λi + Yνki
λj)vdvkL + 1

2Yνki
Yνkj

v2
u + 1

2Yνki
Yνlj

vkLvlL

=
√

2Tκijk
vkR − λkκijkvdvu + κijkκlmkvlRvmR + 2κilkκjmkvlRvmR + 1

2λiλj(v
2
d + v2

u)

−Yνlk
κijkvuvlL −

1
2
(
Yνkj

λi + Yνki
λj
)
vdvkL + 1

2Yνki
Yνkj

v2
u + 1

2Y
ν
li Yνkj

vkLvlL

+ δij
vjR

[
− 1√

2
Tνki

vkLvu + 1√
2
Tλivuvd −

1√
2
TκilkvlRvkR + λlκilkvdvuvkR

−κlimκlnkvmRvnRvkR −
1
2λiλl(v

2
d + v2

u)vlR − Yνlk
κikmvuvlLvmR

+1
2 (Y νklλi + Yνki

λl) vdvkLvlR −
1
2Yνki

Y νklv
2
uvlR −

1
2Yνki

Y νlmvkLvlLvmR

]
, (A.8)
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m2
ν̃R

iL
HR

d

= 1
4(g2 + g′

2)vdviL −
1
2Yνij

λjv
2
u −

1
2Yνij

λkvkRvjR , (A.9)

m2
ν̃R

iL
HRu

= −1
4(g2 + g′

2)vuviL + 1√
2
Tνij

vjR + 1
2Yνik

κljkvlRvjR − Yνij
λjvdvu + Yνij

Yνkj
vuvkL, (A.10)

m2
ν̃R

iL
ν̃R

jR

= 1√
2
Tνij

vu −
1
2Yνij

λkvdvkR −
1
2Yνik

λjvdvkR + Yνik
κjlkvuvlR + 1

2Yνij
Yνkl

vkLvlR

+1
2Yνil

Yνkj
vkLvlR , (A.11)

m2
ν̃R

iL
ν̃R

jL

=
(
m2
L̃L

)
ij

+ 1
4(g2 + g′

2)viLvjL + 1
8(g2 + g′

2)(vkLvkL + v2
d − v2

u)δij

+1
2Yνik

Yνjk
v2
u + 1

2Yνik
Y νjlvkRvlR

= 1
4(g2 + g′

2)viLvjL + 1
2Yνik

Yνjk
v2
u + 1

2Yνik
Y νjlvkRvlR + δij

vjL

[
− 1√

2
Tνik

vuvkR

+1
2Yνik

(
λlvdvkRvlR + λkvdv

2
u − κklmvuvlRvmR − Yνmk

vmLv
2
u − Yνml

vmLvlRvkR
)]
. (A.12)

This matrix is diagonalized by an orthogonal matrix ZH :

ZHm2
h Z

H
T

=
(
m2
h

)dia
, (A.13)

with
S = ZH

T

h , (A.14)

where the 8 entries of the matrix h are the ‘Higgs’ mass eigenstate fields. In particular,

HRd = ZH
b1hb , HRu = ZH

b2hb , ν̃RiR = ZH
bi hb , ν̃RjL = ZH

bjhb . (A.15)

A.1.2 Mass Matrix for Pseudoscalar Higgses

Following similar arguments as above, in the basis P T = (HId , HIu , ν̃IiR, ν̃IjL), one obtains
the following mass terms for pseudoscalar Higgses in the Lagrangian:

− 1
2P

Tm2
A0P , (A.16)
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where m2
A0 is the 8× 8 (symmetric) matrix

m2
A0 =



m2
HI
d
HI
d

m2
HI
d
HIu

m2
HI
d
ν̃IjR

m2
HI
d
ν̃IjL

m2
HIuH

I
d

m2
HIuH

I
u

m2
HIu ν̃

I
jR

m2
HIu ν̃

I
jL

mν̃IiRH
I
d

mν̃IiRH
I
u

m2
ν̃IiRν̃

I
jR

m2
ν̃IiRν̃

I
jL

m2
ν̃IiLH

I
d

m2
ν̃IiLH

I
u

m2
ν̃IiLν̃

I
jR

m2
ν̃IiLν̃

I
jL


, (A.17)

m2
HI

d
HI

d
= m2

HR
d
HR

d
− 1

4(g2 + g′
2)v2

d (A.18)

m2
HIuH

I
u

= m2
HRu HRu

− 1
4(g2 + g′

2)v2
u , (A.19)

m2
HIuH

I
d

= 1√
2
TλiviR + 1

2λkκijkviRvjR , (A.20)

m2
ν̃I

iR
HI

d

= 1√
2
Tλivu − λkκijkvuvjR −

1
2YνjiλkvjLvkR + 1

2Yνjk
λivjLvkR , (A.21)

m2
ν̃I

iR
HIu

= 1√
2
Tλivd −

1√
2
TνjivjL − λkκilkvdvlR + Yνjk

κilkvjLvlR , (A.22)

m2
ν̃I

iR
ν̃I

jR

= m2
ν̃R

iR
ν̃R

jR

− 2
(√

2Tκijk
vkR − λkκijkvdvu + κijkκlmkvlRvmR

)
, (A.23)

m2
ν̃I

iL
HI

d

= −1
2Yνij

λjv
2
u −

1
2Yνij

λkvkRvjR , (A.24)

m2
ν̃I

iL
HIu

= − 1√
2
Tνij

vjR −
1
2Yνik

κljkvlRvjR , (A.25)

m2
ν̃I

iL
ν̃I

jR

= − 1√
2
Tνij

vu + 1
2Yνij

λkvdvkR −
1
2Yνik

λjvdvkR + Yνil
κjlkvuvkR

−1
2Yνij

Yνlk
vlLvkR + 1

2Yνik
Yνlj

vlLvkR , (A.26)

m2
ν̃I

iL
ν̃I

jL

= m2
ν̃R

iL
ν̃R

jL

− 1
4(g2 + g′

2)viLvjL , (A.27)

and, in order to simplify some of these formulas, the entries of the mass matrix for Higgses
are used when appropriate. The matrix of Eq. (A.17) is diagonalized by an orthogonal
matrix ZA:

ZAm2
A0 ZA

T

=
(
m2
A0

)dia
, (A.28)
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with
P = ZA

T

A0 , (A.29)

where the 8 entries of the matrix A0 are the ‘pseudoscalar Higgs’ mass eigenstate fields.
In particular,

HId = ZA
b1hb , HIu = ZA

b2hb , ν̃IiR = ZA
bihb , ν̃IjL = ZA

bjhb . (A.30)

A.1.3 Mass Matrix for Charged Higgses

Charged Higgses mix with left and right sleptons. In the basis CT = (H−d
∗
, H+

u , ẽ
∗
iL, ẽ

∗
jR),

one obtains the following mass terms in the Lagrangian:

− C∗Tm2
H+C , (A.31)

where m2
H+ is the 8× 8 (symmetric) matrix

m2
H+ =



m2
H−
d
H−
d

∗ m2
H−
d
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u
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d
ẽ∗jL
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d
ẽ∗jR
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d
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u
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u
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d
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u
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ẽiLẽ

∗
jL
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ẽiLẽ

∗
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−
d
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+
u

m2
ẽiRẽ

∗
jL

m2
ẽiRẽ

∗
jR


, (A.32)
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H−

d
H−

d

∗ = m2
HR

d
HR

d
− 1

4(g2 + g′
2)v2

d + g2

4 (v2
u − viLviL)− 1

2λiλjv
2
u + 1

2Yeik
Yejk

viLvjL , (A.33)

m2
H+

u
∗
H+

u
= m2

HRu HRu
− 1

4(g2 + g′
2)v2

u + g2

4 (v2
d + viLviL)− 1

2λiλiv
2
d + Yνij

λjvdviL

−1
2Yνik

Yνjk
viLvjL , (A.34)

m2
H+

u
∗
H−

d

∗ = g2

4 vdvu + 1√
2
Tλi

viR + 1
2λkκijkviRvjR −

1
2λiλivdvu + 1

2Yνij
λjvuviL , (A.35)

m2
ẽiLH

−
d

∗ = g2

4 vdviL −
1
2Yνij

λkvkRvjR −
1
2Yeij

Yekj
vdvkL , (A.36)

m2
ẽiLH

+
u

= g2

4 vuviL −
1√
2
Tνij

vjR −
1
2Yνij

κljkvlRvkR + 1
2Yνij

λjvdvu −
1
2Yνik

Yνkj
vuvjL , (A.37)
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m2
ẽiRH

−
d

∗ = − 1√
2
Teji

vjL −
1
2Yeki

Yνkj
vuvjR , (A.38)

m2
ẽiRH

+
u

= −1
2Yeki

(λjvkLvjR + Yνkj
vdvjR) , (A.39)

m2
ẽiLẽ∗jR

= 1√
2
Teij

vd −
1
2Yeij

λkvuvkR , (A.40)

m2
ẽiRẽ∗jR

=
(
m2
ẽR

)
ij

+ g′
2

4 (v2
u − v2

d − vkLvkL)δij + 1
2Yeki

Yekj
v2
d , (A.41)

m2
ẽiLẽ∗jL

= m2
ν̃R

iL
ν̃R

jL

− 1
4(g2 + g′

2)viLvjL + g2

4 (v2
u − v2

d − vkLvkL)δij + g2

4 viLvjL

−1
2Yνik

Yνjk
v2
u + 1

2Yeil
Yejl

v2
d , (A.42)

and, in order to simplify some of these formulas, the entries of the mass matrix for Higgses
are used when appropriate. Matrix of Eq. (A.32) is diagonalized by an orthogonal matrix
Z+:

Z+m2
H+ Z+T

=
(
m2
H+

)dia
, (A.43)

with
C = Z+T

H+ , (A.44)

where the 8 entries of the matrix H+ are the ‘charged Higgs’ mass eigenstate fields. In
particular,

H−d = Z+
b1H

−
b , H+

u = Z+
b2H

+
b , ẽiL = Z+

biH
−
b , ẽjR = Z+

bjH
−
b . (A.45)

A.1.4 Mass Matrix for Down-Squarks

Left and right down-squarks are mixed. In the basis d̃T =
(
d̃iL, d̃jR

)
, one obtains the

following mass terms in the Lagrangian:

− d̃Tm2
d̃
d̃∗ , (A.46)
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where m2
d̃

is the 6× 6 (symmetric) matrix

m2
d̃

=

 m2
d̃iLd̃

∗
jL

m2
d̃iLd̃

∗
jR

m2
d̃iRd̃

∗
jL

m2
d̃iRd̃

∗
jR

 , (A.47)

m2
d̃iLd̃

∗
jL

=
(
m2
Q̃L

)
ij
− 1

24
(
3g2 + g′

2) (
v2
d − v2

u + vkLvkL
)

+ 1
2YdikYdjkv

2
d , (A.48)

m2
d̃iRd̃

∗
jR

=
(
m2
d̃R

)
ij
− g′2

12
(
v2
d − v2

u + vkLvkL
)

+ 1
2YdkiYdkjv

2
d , (A.49)

m2
d̃iLd̃

∗
jR

= m2
d̃jRd̃

∗
iL

= 1√
2
Tdijvd −

1
2YdijλkvuvkR . (A.50)

Matrix of Eq. (A.47) is diagonalized by an orthogonal matrix ZD:

ZDm2
d̃ Z

D
T

=
(
m2
d̃

)dia
, (A.51)

with
d̃ = ZD

T

D̃ , (A.52)

where the 6 entries of the matrix D̃ are the down-squark mass eigenstate fields. In
particular,

d̃iL = ZD
bi D̃b , d̃jR = ZD

bj D̃b . (A.53)

A.1.5 Mass Matrix for Up-Squarks

Left and right up-squarks are mixed. In the basis ũT = (ũiL, ũjR), one obtains the following
mass terms in the Lagrangian:

− ũTm2
ũ ũ
∗ , (A.54)

where m2
ũ

is the 6× 6 (symmetric) matrix

m2
ũ =

 m2
ũiLũ

∗
jL

m2
ũiLũ

∗
jR

m2
ũiRũ

∗
jL

m2
ũiRũ

∗
jR

 , (A.55)
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m2
ũiLũ

∗
jL

=
(
m2
Q̃L

)
ij

+ 1
24
(
3g2 − g′2

) (
v2
d − v2

u + vkLvkL
)

+ 1
2YuikYujkv

2
u , (A.56)

m2
ũiRũ

∗
jR

=
(
m2
ũR

)
ij

+ g′2

6
(
v2
d − v2

u + vkLvkL
)

+ 1
2YukiYukjv

2
u , (A.57)

m2
ũiLũ

∗
jR

= m2
ũjRũ

∗
iL

= 1√
2
Tuijvu −

1
2YuijλkvdvkR + 1

2YuijYνlkvlLvkR . (A.58)

Matrix of Eq. (A.55) is diagonalized by an orthogonal matrix ZU :

ZUm2
ũ Z

U
T

=
(
m2
ũ

)dia
, (A.59)

with
ũ = ZU

T

Ũ , (A.60)

where the 6 entries of the matrix Ũ are the up-squark mass eigenstate fields. In particular,

ũiL = ZU
bi Ũb , ũjR = ZU

bjŨb . (A.61)

A.2 Fermion Mass Matrices
The neutrino and lepton mass matrices were computed in Appendix A.2 of Ref. [50]

with the assumption of CP conservation. In this Appendix we write the general fermion
mass matrices, including the quarks matrices, without assuming CP conservation. To
obtain the results, we apply the standard rotation in the gauge sector:

W̃1

W̃2

W̃3

 = ZW̃


W̃−

W̃+

W̃ 0

 ,

where the mixing matrix ZW̃ is parametrized by

ZW̃ =


1√
2

1√
2 0

−i√
2

i√
2 0

0 0 1

 ,

and W̃1,2,3 are the 2–component wino fields in the soft Lagrangian of Eq. (3.2).
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A.2.1 Mass Matrix for Neutrinos

The usual left-handed neutrinos of the SM mix with the right-handed neutrinos and the
neutral gauginos and higgsinos. Working in the basis of 2–component spinors1, (χ0)T =(
ϕνi , B̃

0, W̃ 0, H̃0
d , H̃

0
u, ηνj

)
, one obtains the following neutral fermion mass terms in the

Lagrangian:
− 1

2(χ0)Tmνχ
0 + h.c. , (A.62)

where mν is the 10× 10 (symmetric) matrix

mν =



03×3 − 1√
2g
′〈ν̃iL〉∗ 1√

2g〈ν̃iL〉
∗ 03×1 Yνik

〈ν̃kR〉∗ 〈H0
u〉Yνij

− 1√
2g
′〈ν̃jL〉∗ M1 0 − 1√

2g
′〈H0

d〉∗ 1√
2g
′〈H0

u〉∗ 01×3
1√
2g〈ν̃jL〉

∗ 0 M2
1√
2g〈H

0
d〉∗ − 1√

2g〈H
0
u〉∗ 01×3

01×3 − 1√
2g
′〈H0

d〉∗ 1√
2g〈H

0
d〉∗ 0 −λk〈ν̃kR〉∗ −λj〈H0

u〉
Yνjk
〈ν̃kR〉∗ 1√

2g
′〈H0

u〉∗ − 1√
2g〈H

0
u〉∗ −λk〈ν̃kR〉∗ 0 −λj〈H0

d〉+ Yνkj
〈ν̃kL〉

〈H0
u〉(Yνij )T 03×1 03×1 −λi〈H0

u〉 −λi〈H0
d〉+ Yνki

〈ν̃kL〉 2κijk〈ν̃kR〉∗


.

(A.63)

This is diagonalized by an unitary matrix UV :

UV
∗
mν U

V
†

= mdia
ν , (A.64)

with
χ0 = UV

†
λ0 , (A.65)

where the 10 entries of the matrix λ0 are the 2-component ‘neutrino’ mass eigenstate
fields. In particular,

νiL = UV
bi

∗
λ0
b , B̃0 = UV

b4
∗
λ0
b , W̃ 0 = UV

b5
∗
λ0
b ,

H̃0
d = UV

b6
∗
λ0
b , H̃0

u = UV
b7
∗
λ0
b , (νjR)c

∗
= UV

bjλ
0
b

∗
. (A.66)

1Since both helicities are present for neutrinos, it is convenient to introduce here the notation where
ϕα is a left-handed spinor and η̄α̇ a right-handed spinor. Thus we are using in (χ0)T , ϕανi

≡ (νiL)c
∗

and
ηανj
≡ ν∗jR, and in χ0, ϕνiα ≡ νiL and ηνjα

≡ (νjR)c.
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A.2.2 Mass Matrix for Leptons

The usual leptons of the SM mix with charged gauginos and higgsinos. In the basis of
2–component spinors2, (χ−)T =

(
ϕei , W̃

−, H̃−d
)

and (χ+)T =
(
ηej , W̃

+, H̃+
u

)
, one obtains

the following charged fermion mass terms in the Lagrangian:

− (χ−)Tmeχ
+ + h.c. , (A.67)

where me is the 5× 5 matrix

me =


〈H0

d〉Y e
ij g〈ν̃iL〉∗ −Yνik〈ν̃kR〉∗

01×3 M2 g〈H0
u〉∗

−Yekj〈ν̃kL〉 g〈H0
d〉∗ λk〈ν̃kR〉∗

 . (A.68)

This is diagonalized by two unitary matrices U e
L and U e

R:

U e
R

∗
meU

e
L

† = mdia
e , (A.69)

with

χ+ = U e
L

†
λ+ , (A.70)

χ− = U e
R

†
λ− , (A.71)

where the 5 entries of the matrices λ+, λ−, are the 2-component ‘lepton’ mass eigenstate
fields. In particular,

(ejR)c
∗

= U e
Lb4λ

+
b
∗
, W̃+ = U e

L
∗
b4λ

+
b , H̃+

u = U e
L
∗
b5λ

+
b ,

eiL = U e
R
∗
biλ
−
b , W̃− = U e

R
∗
b4λ
−
b , H̃−d = U e

R
∗
b5λ
−
b . (A.72)

A.2.3 Mass Matrix for Down-Quarks

In the basis of 2–components spinors (d∗L)T = (d∗iL), (dR)T = (djR), one obtains the
following down-quark mass terms in the Lagrangian:

− (d∗L)TmddR + h.c. , (A.73)

2Following the convention of the previous footnote, we have in this case ϕαei
≡ (eiL)c

∗
and ηejα

≡
(ejR)c.
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Appendix A. Mass Matrices

where md is the 3× 3 matrix
md =

(
〈H0

d〉
∗
Y ∗dij

)
. (A.74)

This is diagonalized by two unitary matrices Ud
L and Ud

R:

Ud
L

†
mdU

d
R = mdia

d , (A.75)

with

dR = Ud
RDR , (A.76)

dL = Ud
LDL . (A.77)

where the 3 entries of the matrices DL, DR are the 2-component down-quark mass eigen-
state fields. In particular,

djR = Ud
RjbDbR ,

diL = Ud
RibDbL . (A.78)

A.2.4 Mass Matrix for Up-Quarks

In the basis of 2–components spinors (u∗L)T = (u∗iL), (uR)T = (ujR), one obtains the
following up-quark mass terms in the Lagrangian:

− (u∗L)TmuuR + h.c. , (A.79)

where mu is the 3× 3 matrix
mu =

(
〈H0

u〉
∗
Y ∗uij

)
. (A.80)

This is diagonalized by two unitary matrices Uu
L and Uu

R:

Uu
L

†
muU

u
R = mdia

u , (A.81)

with

uR = Uu
RUR , (A.82)

uL = Uu
LUL . (A.83)
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A.2. Fermion Mass Matrices

where the 3 entries of the matrices UL, UR are the 2-component up-quark mass eigenstate
fields. In particular,

ujR = Uu
RjbUbR ,

uiL = Uu
RibUbL . (A.84)
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Appendix B

Higgs-right sneutrino mass
submatrices

Using the parameters of Eq. (3.25) in the equations of Appendices A.1.1 and A.1.2,
and neglecting terms suppressed by the small Yνij and viL, the tree-level entries of the
5× 5 Higgs-right sneutrino submatrices [20,50,52,53,64] can be approximated as follows:

B.1 Scalars

m2
HR

d
HR

d
= tan β

∑
i

viR√
2

(
Tλi + λi

Mi

2

)
+
(
v√
2

)2 1
1 + tan2 β

1
2(g2 + g′

2), (B.1)

m2
HRu HRu

= 1
tan β

∑
i

viR√
2

(
Tλi

+ λi
Mi

2

)
+
(
v√
2

)2 tan2 β

1 + tan2 β

1
2(g2 + g′

2), (B.2)

m2
HR

d
HRu

= −
∑
i

viR√
2

(
Tλi + λi

Mi

2

)
+
(
v√
2

)2 tan β
1 + tan2 β

[
−1

2(g2 + g′
2) + 2

∑
i

λ2
i

]
, (B.3)

m2
ν̃R

iR
HRu

= − v√
2

1√
1 + tan2 β

[Tλi + λi (Mi − 2µ tan β)] , (B.4)

m2
ν̃R

iR
HR

d

= − v√
2

tan β√
1 + tan2 β

[
Tλi + λi

(
Mi −

2µ
tan β

)]
, (B.5)

m2
ν̃R

iR
ν̃R

jR

= δij

{(
Tκi

κi
+ 2Mi

)
Mi

2 + λiµ

viR/
√

2

(
v√
2

)2( 1
µ

Tλi

λi

tan β
1 + tan2 β

− 1
)

−Tνi

v√
2

tan β√
1 + tan2 β

}
+ λiλj

(
v√
2

)2
, (B.6)

where µ = ∑
i λi

viR√
2 and Mi = 2κi viR√2 .
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B.2. Pseudoscalars

B.2 Pseudoscalars

m2
HI

d
HI

d
= tan β

∑
i

viR√
2

(
Tλi + λi

Mi

2

)
(B.7)

m2
HIuH

I
u

= 1
tan β

∑
i

viR√
2

(
Tλi

+ λi
Mi

2

)
(B.8)

m2
HI

d
HIu

=
∑
i

viR√
2

(
Tλi

+ λi
Mi

2

)
(B.9)

m2
ν̃I

iR
HIu

= v√
2

1√
1 + tan2 β

(Tλi
− λiMi) , (B.10)

m2
ν̃I

iR
HI

d

= v√
2

tan β√
1 + tan2 β

(Tλi
− λiMi) , (B.11)

m2
ν̃I

iR
ν̃I

jR

= δij

{
−3

2
Tκi

κi
Mi + λiµ

viR/
√

2

(
v√
2

)2 [ 1
µ

(
Tλi

λi
+ 2Mi

)
tan β

1 + tan2 β
− 1
]

−Tνi

v√
2

tan β√
1 + tan2 β

}
+ λiλj

(
v√
2

)2
. (B.12)
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Appendix C

Results from the λ− κ plane

Here we show several figures for each scan, where the viable points of the parameter
space can be seen in the κ− λ plane for different values of the other parameters.
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C.1. Scan 1 (0.01 ≤ λ < 0.2)

C.1 Scan 1 (0.01 ≤ λ < 0.2)
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Figure C.1: Viable points of the parameter space for S1 in the κ − λ plane. The points below the
lower black dashed line fulfill the condition of Eq. (3.41), where perturbativity is assumed up to the GUT
scale. All points below the upper dashed line fulfill the condition of Eq. (3.42), where perturbativity is
relaxed up to 10 TeV. The colours indicate different values of the right sneutrino VEVs vR/
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Figure C.2: The same as in Fig. C.1, but the colours indicate different values of tan β.
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Appendix C. Results from the λ− κ plane
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Figure C.3: The same as in Fig. C.1, but the colours indicate different low-energy values of the trilinear
soft terms Tλ.
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Figure C.4: The same as in Fig. C.1, but the colours indicate different low-energy values of the trilinear
soft terms Aλ, assuming the supergravity relation Aλ = Tλ/λ.
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C.1. Scan 1 (0.01 ≤ λ < 0.2)

0.05 0.10 0.15 0.20

λ

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

κ

S1

mQ̃3L

229

500

1000

1500

2000

Figure C.5: The same as in Fig. C.1, but the colours indicate different low-energy values of the soft
masses m

Q̃3L
.
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Figure C.6: The same as in Fig. C.1, but the colours indicate different low-energy values of the trilinear
soft term Tu3 .
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Appendix C. Results from the λ− κ plane
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Figure C.7: The same as in Fig. C.1, but the colours indicate different low-energy values of the trilinear
soft terms Tκ.
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Figure C.8: The same as in Fig. C.1, but the colours indicate different low-energy values of the trilinear
soft terms Aκ, assuming the supergravity relation Aκ = Tκ/κ.
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C.2. Scan 2 (0.2 ≤ λ < 0.5)

C.2 Scan 2 (0.2 ≤ λ < 0.5)
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Figure C.9: Viable points of the parameter space for S2 in the κ − λ plane. The points below the
lower black dashed line fulfill the condition of Eq. (3.41), where perturbativity is assumed up to the GUT
scale. All points below the upper dashed line fulfill the condition of Eq. (3.42), where perturbativity is
relaxed up to 10 TeV. The colours indicate different values of the right sneutrino VEVs vR/
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Figure C.10: The same as in Fig. C.9, but the colours indicate different values of tan β.
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Appendix C. Results from the λ− κ plane
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Figure C.11: The same as in Fig. C.9, but the colours indicate different low-energy values of the
trilinear soft terms Tλ.
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Figure C.12: The same as in Fig. C.9, but the colours indicate different low-energy values of the
trilinear soft terms Aλ, assuming the supergravity relation Aλ = Tλ/λ.
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C.2. Scan 2 (0.2 ≤ λ < 0.5)
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Figure C.13: The same as in Fig. C.9, but the colours indicate different low-energy values of the soft
masses m

Q̃3L
.
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Figure C.14: The same as in Fig. C.9, but the colours indicate different low-energy values of the
trilinear soft term Tu3 .
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Appendix C. Results from the λ− κ plane
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Figure C.15: The same as in Fig. C.9, but the colours indicate different low-energy values of the
trilinear soft terms Tκ.
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Figure C.16: The same as in Fig. C.9, but the colours indicate different low-energy values of the
trilinear soft terms Aκ, assuming the supergravity relation Aκ = Tκ/κ.
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C.3. Scan 3 (0.5 ≤ λ < 1.2)

C.3 Scan 3 (0.5 ≤ λ < 1.2)
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Figure C.17: Viable points of the parameter space for S3 in the κ − λ plane. The points below the
dashed line fulfill the condition of Eq. (3.42), where perturbativity is relaxed up to 10 TeV. The colours
indicate different values of the right sneutrino VEVs vR/
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Figure C.18: The same as in Fig. C.17, but the colours indicate different values of tan β.
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Appendix C. Results from the λ− κ plane
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Figure C.19: The same as in Fig. C.17, but the colours indicate different low-energy values of the
trilinear soft terms Tλ.
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Figure C.20: The same as in Fig. C.17, but the colours indicate different low-energy values of the
trilinear soft terms Aλ, assuming the supergravity relation Aλ = Tλ/λ.
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C.3. Scan 3 (0.5 ≤ λ < 1.2)
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Figure C.21: The same as in Fig. C.17, but the colours indicate different low-energy values of the soft
masses m

Q̃3L
.
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Figure C.22: The same as in Fig. C.17, but the colours indicate different low-energy values of the
trilinear soft term Tu3 .
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Appendix C. Results from the λ− κ plane
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Figure C.23: The same as in Fig. C.17, but the colours indicate different low-energy values of the
trilinear soft terms Tκ.
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Figure C.24: The same as in Fig. C.17, but the colours indicate different low-energy values of the
trilinear soft terms Aκ, assuming the supergravity relation Aκ = Tκ/κ.
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Appendix D

Benchmark points

Here we show for each scan several benchmark points discussed in the text.
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Appendix D. Benchmark points

D.1 Scan 1 (0.01 ≤ λ < 0.2)

S1-ss1
λ = 0.02, κ = 0.036, vR/

√
2 = 1799.28 (µ = 107.95, M = 129.54)

tan β = 32.54, Tλ = 60.70, −Tκ = 1.46, −Tu3 = 2632.61, m
Q̃3L

= 1604.33

mh1(ν̃RR ) = 119.69, mh2(ν̃RR ) = 122.54, mh3(HRu ) = 124.81, mh4(ν̃RR ) = 125.56
mh5(ν̃RτL) = 488.88, mh6(ν̃RµL) = 1034.75, mh7(ν̃ReL) = 1693.70, mh8(HRd ) = 3290.47

mA2(ν̃IR) = 87.95, mA3(ν̃IR) = 87.952, mA4(ν̃IR) = 88.75
mA5(ν̃IτL) = 488.88, mA6(ν̃IµL) = 1034.75, mA7(ν̃IeL) = 1693.70, mA8(HId ) = 3290.46

mH−2
(τ̃L) = 495.75, mH−3

(ẽR) = 1003.31, mH−4
(µ̃R) = 1003.31

mH−5
(τ̃R) = 1003.53, mH−6

(µ̃L) = 1038.37, mH−7
(ẽL) = 1695.31, mH−8

(H−d ) = 3291.45

|ZH
h1ν̃ReR
|2= 99.24 %, |ZH

h1ν̃RµR
|2= 0.44 %, |ZH

h1ν̃RτR
|2= 0.1 %, |ZH

h1HRd
|2= 0.000027 %, |ZH

h1HRu
|2= 0.2 %

|ZH
h2ν̃ReR
|2= 0.35 %, |ZH

h2ν̃RµR
|2= 98.15 %, |ZH

h2ν̃RτR
|2= 0.43 %, |ZH

h2HRd
|2= 0.0005 %, |ZH

h2HRu
|2= 1.04 %

|ZH
h3ν̃ReR
|2= 0.061 %, |ZH

h3ν̃RµR
|2= 0.25 %, |ZH

h3ν̃RτR
|2= 28.56 %, |ZH

h3HRd
|2= 0.07 %, |ZH

h3HRu
|2= 71.00 %

|ZH
h4ν̃ReR
|2= 0.34 %, |ZH

h4ν̃RµR
|2= 1.15 %, |ZH

h4ν̃RτR
|2= 70.89 %, |ZH

h4HRd
|2= 0.03 %, |ZH

h4HRu
|2= 27.58 %

BR(h1 → bb) = 0.186, BR(h1 → ττ) = 0.031, BR(h1 → WW ) = 0.39
BR(h1 → ZZ) = 0.0354, BR(h1 → γγ) = 0.00899, BR(h1 → gg) = 0.285

BR(h2 → bb) = 0.38, BR(h2 → ττ) = 0.063, BR(h2 → WW ) = 0.312
BR(h2 → ZZ) = 0.0315, BR(h2 → γγ) = 0.0049, BR(h2 → gg) = 0.171

BR(h3 → bb) = 0.49, BR(h3 → ττ) = 0.0813, BR(h3 → WW ) = 0.258
BR(h3 → ZZ) = 0.0279, BR(h3 → γγ) = 0.003, BR(h3 → gg) = 0.114

BR(h4 → bb) = 0.51, BR(h4 → ττ) = 0.0846, BR(h4 → WW ) = 0.250
BR(h4 → ZZ) = 0.0275, BR(h4 → γγ) = 0.00265, BR(h4 → gg) = 0.1

Γtot
h1 = 2.32× 10−6, Γtot

h2 = 2.09× 10−5, Γtot
h3 = 2.18× 10−3, Γtot

h4 = 10−3

Table D.1: Benchmark point (S1-ss1) from scan S1, with several scalars of masses close to
the mass of the SM-like Higgs. Input parameters at the low scale MEWSB are given in the
first box, where we also show for completeness µ = 3λvR/

√
2 and M = 2κvR/

√
2 since

their values determine Higgsino and right-handed neutrino masses. Scalar, pseudoscalar
and charged Higgs masses are shown in the second, third and fourth boxes, respectively.
Scalar mass eigenstates are denoted by h1,...,8, pseudoscalars by A2,...,8 and charged Higgses
by H−2,...,8 associating the first states to the Goldstone bosons eaten by the Z and W±.
Their dominant composition is written in brackets. For the case of the SM-like Higgs
and singlet-like scalars their main compositions are broken down in the fifth box. Their
branching ratios are shown in the sixth-nineth boxes. Their decay widths are shown in
the tenth box. VEVs, soft parameters, sparticle masses and decay widths are given in
GeV.
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D.2. Scan 2 (0.2 ≤ λ < 0.5)

D.2 Scan 2 (0.2 ≤ λ < 0.5)

S2-R1

λ = 0.25, κ = 0.56, vR/
√

2 = 203.73 (µ = 152.79, M = 228.17)
tan β = 2.31, Tλ = 82.2, −Tκ = 0.56, −Tu3 = 1515, m

Q̃3L
= 1700

mh1(HRu ) = 125.17, mh2(ν̃RτL) = 159.82, mh3(ν̃RR ) = 227.54, mh4(ν̃RR ) = 232.34
mh5(ν̃RR ) = 239.13, mh6(ν̃RµL) = 340.90, mh7(HRd ) = 433.89, mh8(ν̃ReL) = 557.08

mA2(ν̃IR) = 91.61, mA3(ν̃IR) = 92.45, mA4(ν̃IR) = 110.37
mA5(ν̃IτL) = 159.82, mA6(ν̃IµL) = 340.90, mA7(HId ) = 424.37, mA8(ν̃IeL) = 557.08

mH−2
(τ̃L) = 173.21, mH−3

(µ̃L) = 346.13, mH−4
(H−d ) = 426.77

mH−5
(ẽL) = 558.46, mH−6

(τ̃R) = 1003.45, mH−7
(µ̃R) = 1003.51, mH−8

(ẽR) = 1003.51

|ZH
h1ν̃ReR
|2= 2.85 %, |ZH

h1ν̃RµR
|2= 2.76 %, |ZH

h1ν̃RτR
|2= 2.68 %, |ZH

h1HRd
|2= 19.36 %, |ZH

h1HRu
|2= 72.32 %

|ZH
h3ν̃ReR
|2= 84.34 %, |ZH

h3ν̃RµR
|2= 12.37 %, |ZH

h3ν̃RτR
|2= 2.44 %, |ZH

h3HRd
|2= 0.016 %, |ZH

h3HRu
|2= 0.83 %

|ZH
h4ν̃ReR
|2= 4.50 %, |ZH

h4ν̃RµR
|2= 66.66 %, |ZH

h4ν̃RτR
|2= 27.59 %, |ZH

h4HRd
|2= 0.03 %, |ZH

h4HRu
|2= 1.20 %

|ZH
h5ν̃ReR
|2= 6.88 %, |ZH

h5ν̃RµR
|2= 16.70 %, |ZH

h5ν̃RτR
|2= 65.72 %, |ZH

h5HRd
|2= 0.4 %, |ZH

h5HRu
|2= 10.29 %

BR(h1 → bb) = 0.5548, BR(h1 → ττ) = 0.0926, BR(h1 → WW ) = 0.219
BR(h1 → ZZ) = 0.0239, BR(h1 → γγ) = 0.00235, BR(h1 → gg) = 0.088

Γtot
h1 = 3.48× 10−3

Table D.2: Benchmark point (S2-R1) from scan S2, with the scalar h1 as the SM-like
Higgs. Input parameters at the low scale MEWSB are given in the first box, where we also
show for completeness µ = 3λvR/

√
2 andM = 2κvR/

√
2 since their values determine Hig-

gsino and right-handed neutrino masses. Scalar, pseudoscalar and charged Higgs masses
are shown in the second, third and fourth boxes, respectively. Scalar mass eigenstates are
denoted by h1,...,8, pseudoscalars by A2,...,8 and charged Higgses by H−2,...,8 associating the
first states to the Goldstone bosons eaten by the Z and W±. Their dominant composition
is written in brackets. For the case of the SM-like Higgs and singlet-like scalars their main
compositions are broken down in the fifth box. Relevant branching ratios for h1 are shown
in the sixth box. Its decay width is shown in the seventh box. VEVs, soft parameters,
sparticle masses and decay widths are given in GeV.
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Appendix D. Benchmark points

S2-R2

λ = 0.231, κ = 0.4, vR/
√

2 = 775.53 (µ = 537.44, M = 620.42)
tan β = 1.08, Tλ = 51.0, −Tκ = 31.93, −Tu3 = 1961.5, m

Q̃3L
= 1646.89

mh1(HRu ) = 125.08, mh2(ν̃RτL) = 280.48, mh3(ν̃RR ) = 598.58, mh4(ν̃RµL) = 609.21
mh5(ν̃RR ) = 613.25, mh6(ν̃RR ) = 693.20, mh7(HRd ) = 748.88, mh8(ν̃ReL) = 982.96

mA2(ν̃IR) = 279.06, mA3(ν̃IR) = 279.37, mA4(ν̃IτL) = 280.48
mA5(ν̃IR) = 283.94, mA6(ν̃IµL) = 609.21, mA7(HId ) = 744.60, mA8(ν̃IeL) = 982.96

mH−2
(τ̃L) = 282.95, mH−3

(µ̃L) = 614.07, mH−4
(H−d ) = 746.13

mH−5
(ẽL) = 981.86, mH−6

(τ̃R) = 1003.57, mH−7
(ẽR) = 1003.60, mH−8

(µ̃R) = 1003.60

|ZH
h1ν̃ReR
|2= 0.40 %, |ZH

h1ν̃RµR
|2= 0.33 %, |ZH

h1ν̃RτR
|2= 0.27 % , |ZH

h1HRd
|2= 46.66 %, |ZH

h1HRu
|2= 52.33 %

|ZH
h3ν̃ReR
|2= 66.18 %, |ZH

h3ν̃RµR
|2= 30.21 %, |ZH

h3ν̃RτR
|2= 3.6 %, |ZH

h3HRd
|2= 0.0048 %, |ZH

h3HRu
|2= 0.0055 %

|ZH
h5ν̃ReR
|2= 5.53 %, |ZH

h5ν̃RµR
|2= 37.14 %, |ZH

h5ν̃RτR
|2= 57.3 %, |ZH

h5HRd
|2= 0.0053 %, |ZH

h5HRu
|2= 0.0059 %

|ZH
h6ν̃ReR
|2= 27.87 %, |ZH

h6ν̃RµR
|2= 32.29 %, |ZH

h6ν̃RτR
|2= 38.80 %, |ZH

h6HRd
|2= 0.70 %, |ZH

h6HRu
|2= 0.31 %

BR(h1 → bb) = 0.497, BR(h1 → ττ) = 0.0827, BR(h1 → WW ) = 0.256
BR(h1 → ZZ) = 0.0279, BR(h1 → γγ) = 0.00293, BR(h1 → gg) = 0.109

Γtot
h1 = 3.20× 10−3

Table D.3: The same as in Table D.2, but for a different benchmark point.
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D.2. Scan 2 (0.2 ≤ λ < 0.5)

S2-ss1

λ = 0.39, κ = 0.08, vR/
√

2 = 348.75 (µ = 408.03, M = 55.8)
tan β = 2.25, Tλ = 418, −Tκ = 0.52, −Tu3 = 294.42, m

Q̃3L
= 1433.3

mh1(HRu ) = 123.18, mh2(ν̃RR ) = 125.98, mh3(ν̃RR ) = 126.55, mh4(ν̃RR ) = 139.93
mh5(ν̃RτL) = 212.71, mh6(ν̃RµL) = 460.55, mh7(ν̃ReL) = 737.57, mh8(HRd ) = 1088.04

mA2(ν̃IR) = 77.24, mA3(ν̃IR) = 126.19, mA4(ν̃IR) = 126.41
mA5(ν̃IτL) = 212.71, mA6(ν̃IµL) = 460.55, mA7(ν̃IeL) = 737.57, mA8(HId ) = 1085.45

mH−2
(τ̃L) = 221.36, mH−3

(µ̃L) = 463.71, mH−4
(ẽL) = 737.61

mH−5
(τ̃R) = 1003.78, mH−6

(µ̃R) = 1003.81, mH−7
(ẽR) = 1003.81, mH−8

(H−d ) = 1083.20

|ZH
h1ν̃ReR
|2= 5.53 %, |ZH

h1ν̃RµR
|2= 1.71 %, |ZH

h1ν̃RτR
|2= 0.3 %, |ZH

h1HRd
|2= 14.03 %, |ZH

h1HRu
|2= 78.40 %

|ZH
h2ν̃ReR
|2= 59.00 %, |ZH

h2ν̃RµR
|2= 36.82 %, |ZH

h2ν̃RτR
|2= 3.26 %, |ZH

h2HRd
|2= 0.14 %, |ZH

h2HRu
|2= 0.76 %

|ZH
h3ν̃ReR
|2= 5.54 %, |ZH

h3ν̃RµR
|2= 30.15 %, |ZH

h3ν̃RτR
|2= 63.54 %, |ZH

h3HRd
|2= 0.12 %, |ZH

h3HRu
|2= 0.63 %

|ZH
h4ν̃ReR
|2= 29.73 %, |ZH

h4ν̃RµR
|2= 31.13 %, |ZH

h4ν̃RτR
|2= 32.70 %, |ZH

h4HRd
|2= 2.65 %, |ZH

h4HRu
|2= 3.77 %

BR(h1 → bb) = 0.487, BR(h1 → ττ) = 0.0798, BR(h1 → WW ) = 0.225
BR(h1 → ZZ) = 0.0231, BR(h1 → γγ) = 0.0030, BR(h1 → χ̃0χ̃0) = 0.0367, BR(h1 → gg) = 0.120

BR(h2 → bb) = 0.0133, BR(h2 → ττ) = 0.00218, BR(h2 → WW ) = 0.00791
BR(h2 → ZZ) = 0.00087, BR(h2 → γγ) = 0.000084, BR(h2 → χ̃0χ̃0) = 0.971, BR(h2 → gg) = 0.00324

BR(h3 → bb) = 0.0127, BR(h3 → ττ) = 0.00208, BR(h3 → WW ) = 0.00793
BR(h3 → ZZ) = 0.00089, BR(h3 → γγ) = 0.00008, BR(h3 → χ̃0χ̃0) = 0.972, BR(h3 → gg) = 0.00309

BR(h4 → bb) = 0.054, BR(h4 → ττ) = 0.0089, BR(h4 → WW ) = 0.0447
BR(h4 → ZZ) = 0.00588, BR(h4 → γγ) = 0.000115, BR(h4 → χ̃0χ̃0) = 0.88, BR(h4 → gg) = 0.00436

Γtot
h1 = 2.74× 10−3, Γtot

h2 = 1.05× 10−3, Γtot
h3 = 9.22× 10−4 , Γtot

h4 = 5.27× 10−3

Table D.4: The same as in Table D.1, but for a benchmark point (S2-ss1) from scan S2.
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Appendix D. Benchmark points

D.3 Scan 3 (0.5 ≤ λ < 1.2)

S3-ss1

λ = 0.5, κ = 0.23, vR/
√

2 = 109.35 (µ = 164.02, M = 50.3)
tan β = 3.48, Tλ = 309.70, −Tκ = 0.58, −Tu3 = 386.93, m

Q̃3L
= 1340.97

mh1(ν̃RR ) = 83.95, mh2(ν̃RτL) = 123.06, mh3(ν̃RR ) = 126.32, mh4(ν̃RR ) = 126.76
mh5(HRu ) = 127.48, mh6(ν̃RµL) = 260.06, mh7(ν̃ReL) = 423.60, mh8(HRd ) = 619.46

mA2(ν̃IR) = 101.28, mA3(ν̃IτL) = 123.06, mA4(ν̃IR) = 136.48
mA5(ν̃IR) = 136.87, mA6(ν̃IµL) = 260.67, mA7(ν̃IeL) = 423.67, mA8(HId ) = 622.49

mH−2
(τ̃L) = 141.29, mH−3

(µ̃L) = 269.37, mH−4
(ẽL) = 425.31

mH−5
(H−d ) = 601.69, mH−6

(τ̃R) = 1003.12, mH−7
(µ̃L) = 1003.19, mH−8

(ẽR) = 1003.19

|ZH
h1ν̃ReR
|2= 32.12 %, |ZH

h1ν̃RµR
|2= 31.73 %, |ZH

h1ν̃RτR
|2= 31.34 %, |ZH

h1HRd
|2= 4.78 %, |ZH

h1HRu
|2= 1.42 %

|ZH
h3ν̃ReR
|2= 62.64 %, |ZH

h3ν̃RµR
|2= 31.89 %, |ZH

h3ν̃RτR
|2= 5.07 %, |ZH

h3HRd
|2= 0.027 %, |ZH

h3HRu
|2= 0.361 %

|ZH
h4ν̃ReR
|2= 3.73 %, |ZH

h4ν̃RµR
|2= 34.82 %, |ZH

h4ν̃RτR
|2= 60.92 %, |ZH

h4HRd
|2= 0.035 %, |ZH

h4HRu
|2= 0.49 %

|ZH
h5ν̃ReR
|2= 0.058 %, |ZH

h5ν̃RµR
|2= 0.10 %, |ZH

h5ν̃RτR
|2= 1.20 %, |ZH

h5HRd
|2= 6.19 %, |ZH

h5HRu
|2= 92.45 %

BR(h1 → bb) = 0.858, BR(h1 → ττ) = 0.14, BR(h1 → WW ) = 3× 10−8

BR(h1 → ZZ) = 0.0, BR(h1 → γγ) = 0.000038, BR(h1 → χ̃0χ̃0) =1.2× 10−9, BR(h1 → gg) = 0.000324

BR(h3 → bb) = 0.00023, BR(h3 → ττ) = 0.000037, BR(h3 → WW ) = 0.00014
BR(h3 → ZZ) = 0.000016, BR(h3 → γγ) = 0.0000014, BR(h3 → χ̃0χ̃0) = 0.99, BR(h3 → gg) = 0.000058

BR(h4 → bb) = 0.000314, BR(h4 → ττ) = 0.000051, BR(h4 → WW ) = 0.000213
BR(h4 → ZZ) = 0.000024, BR(h4 → γγ) = 0.0000021, BR(h4 → χ̃0χ̃0) = 0.99, BR(h4 → gg) = 0.000082

BR(h5 → bb) = 0.37, BR(h5 → ττ) = 0.060, BR(h5 → WW ) = 0.293
BR(h5 → ZZ) = 0.0337, BR(h5 → γγ) = 0.00280, BR(h5 → χ̃0χ̃0) = 0.115, BR(h5 → gg) = 0.1

Γtot
h1 = 7.85× 10−4, Γtot

h3 = 2.58× 10−2, Γtot
h4 = 2.42× 10−2, Γtot

h5 = 3.64× 10−3

Table D.5: The same as in Table D.1, but for a benchmark point (S3-ss1) from scan S3.
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