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Abstract In this work, we present an exact solution of
phonon quasibound states in a vortex photon flow that cre-
ates an analogous black hole background. We worked out
and successfully solve the governing differential equation of
the systen that is similar with the relativistic Klein–Gordon
equation. The exact radial solutions are discovered in terms of
the confluent Heun functions that behaves as ingoing waves
near the black hole’s horizon and decaying far away from the
black hole’s horizon. The polynomial condition of the conflu-
ent Heun function leads to the discovery of the the complex
valued quantized energy levels expression of the quasibound
state of which depends on the phonon mass �0, the photon
vortex horizon’s spin �H and the azimuthal and the main
quantum number (m, n). In the last section, by using the
Damour–Ruffini method, the Hawking radiation of the ana-
log black hole’s horizon is investigated to derive the phononic
radiation distribution function from where, the Hawking tem-
berature is obtained.

1 Introduction

Progress in investigations of critical phenomenas in general
relativity and quantum field theory in curved space-time has
been lacking of experimental feedback. Strong efforts have
been strived in search of non-relativistic systems that experi-
mentally testable in the laboratory. In 1981, Unruh [1] inves-
tigated the propagation of sound waves in an inhomogeneous
flowing fluid and found out that the governing equation was
analogous to a massless scalar field in curved space-time.
The surface of the fluid flow’s velocity has an inward point-
ing normal component that is equal to the local speed of sound
preventing any sound wave propagating through this surface
in outward direction. Thus, the surface acts analogously as
the event horizon of a black hole. This analogy implies that
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the analogous black hole should also emits Hawking radia-
tion in the form of phonons. This analogous black hole sys-
tem makes experimental verification of such phenomenon
possible to be done in laboratory.

Many different kinds of analogue models has been pro-
posed after Unruh’s prediction such as Bose–Einstein con-
densates, electromagnetic wave guides, graphene, optical
black hole, sonic black hole and ion rings [2–6]. In opti-
cal domain, Leonhardt and Piwnicki [7] proposed the idea of
an optical black hole for the first time in the year of 2000.
The idea is that propagation of light in a moving medium
resembles many features of a motion in a curved space-time
background. Analogue gravity models have been emerging
as a new interest as they suit as test-beds for several aspects
relativistic quantum field theory in a curved space-time.

In this letter, we will be focus on photon-fluid system,
a non-linear optical system that is represented by hydrody-
namic equations of an interacting Bosonic gas [8]. Together
with exciton-polariton system and Bose–Einstein condensa-
tion of photons in an optical microcavity [9], the photon-fluid
system also belongs to the family of the so-called quantum
fluids of light [10].

In [11] a photon-fluid with both local and non-local inter-
actions have been investigated, showing that the phonons
acquire a finite mass and propagate according to the mas-
sive Klein–Gordon equation in a (2+1)-dimensional curved
space-time. In this system, with the presence of suitable vor-
tex flows, both quasibound states and stationary states of
phonons can be created [12]. These represent the acoustic
counterpart of quasibound states and scalar clouds origi-
nating from massive fields around Kerr black holes. Scalar
clouds in photon fluids have been analytically studied in [ [13]
and [14], while the derivation of exact solutions of phonon
quasibound states is the subject of the present manuscript.

In general, any inhomogeneous neutrally stable nonlin-
ear system provides an effective curved space-time on which
its linear elementary excitations can propagate [15]. For the
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longer wavelengths, phonons propagating in an inhomoge-
neous photon flow has a similar evolution with scalar fields
in curved space-time that is governed by a Klein–Gordon
like equation, obtained via linearization around the back-
ground state. By comparing the governing equation with the
Klein–Gordon equationin 2+1 dimension, we can extract the
analogous space-time metric as follows [11],

ds2 = − f (r)d(ct)2 + dr2

g(r)
− 2�Hr

2
Hdθd(ct) + r2dθ2,

(1)

f (r) = 1 − rH
r

− �2
Hr

4
H

r2 , (2)

g(r) = 1 − rH
r

, (3)

where rH is the radius of the analog black-hole’s horizon that
is geometrically interpreted as the circular ring at which the
inward radial velocity of the fluid flow is equal to the speed
of sound. The �H is the angular velocity at the horizon.
The term dθd(ct) represents frame dragging and this term
vanishes as �H → 0.

In [15], it is mentioned that the metric (1) is comparable
with equatorial slice of the rotating Kerr black hole geometry
in Boyer–Lindquist coordinates where there exists an analog
ergoregion that allows phonons to have negative energies
leading to energy extraction. The radius of the ergosphere is
given by the vanishing of the temporal component, i.e.,

rE = rH
2

(
1 +

√
1 + 4r2

H�2
H

)
. (4)

The frame dragging effect itself was firstly investigated in
detal by [16,17] in 1918. They consider Coriolis effects up to
the first order and calculating such effects near the center of a
rotating mass shell and in the far field of a rotating spherical
body. In the context of a real black hole possessing accretion
disk, the radial precession causes stresses and dissipation and
when the torque is strong enough compared to the internal
viscous forces, the inner regions of the disk are forced to
align with the spin of the central black hole [18]. In these
recent years, the frame dragging effect has been successfully
measured directly [19–21].

In 2015, the gravitational wave signal of a binary black
hole merger was directly detected for the first time [22]
that makes black hole spectroscopy a new emerging interest.
In this research, we are interested to investigate the Klein–
Gordon equation of phonon quasibound states in the vortex
flow of photons that resembles a single horizoned black hole
[12]. The phonon fields in the analog black hole background
is governed by the covariant Klein–Gordon equation. Quan-
tum mechanically, the phonon states have discrete complex
spectrum as they tunnel through the potential barrier and cap-

tured by the horizon. Thus, the quasibound states are decay-
ing localized solutions lying in the black hole potential wells.

However, due to the complexity of the equations involved,
especially the radial equation, analytical methods were used
less often and only for certain problems. The vast major-
ity of these studies made use of numerical techniques such
as the asymptotical analysis, WKB, and continued fraction
to investigate the specific task at hand. Fortunately, very
recently, [23–27] successfully finds novel exact scalar qua-
sibound state solutions respectively around an analog sys-
tems to the Schwarzschild black hole, charged and charge-
less Lense-Thirring black hole and Reissner Nordstrom black
hole where the radial equations of the scalar field are succes-
fully solved in terms of the confluent Heun functions. The
importance of this particular special function in black hole
physics was mentioned in [28].

In this present work, we are going to show in detail analyt-
ical derivation of exact solutions of relativistic phonon qua-
sibound states around an analog rotating optical black hole.
We successfully solve the radial equation exactly in terms
of confluent Heun functions and having the exact solutions
in the hand, the complex quantized energy levels expression
is obtained from the confluent Heun’s polynomial condition.
And finally, by applying the Damour–Ruffini method, the
Hawking radiation of the apparent black hole’s horizon is
investigated and the Hawking temperature is obtained.

2 The Klein–Gordon equation

The Klein–Gordon equation describes the relativistic quan-
tum mechanics of a scalar field in a curved space-time. The
relativistic equation comes from the canonical quantization
of the second class constrained of the relativistic classical
mechanics [29],{

−h̄2
[

1√−g
∂μ

√−ggμν∂ν

]
+ k2c2

}
ψ = 0, (5)

where E0 = kc2 is the scalar’s rest energy per unit mass,
so, k = 1 represents massive particles and k = 0 represents
massless particles. For the phonon-photon flow system, the
governing equation reads as follows [12],
{

−
[

1√−g
∂μ

√−ggμν∂ν

]
+ �2

0

h̄2

}
ψ = 0, (6)

where �0
h̄ is the phonon rest energy per unit mass defined as

�0
h̄ = v2

s where vs is the speed of sound.
Substituting the metric in (1) and using the ansatz of sep-

aration of variables,

ψ(t, r, θ) = e−i E
h̄c ct eimθ R(r)√

r
, (7)
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wherem is the azimuthal quantum number. After substitution
of the ansatz, the radial equation is successfully isolated as
follows,

�∂x (�∂x ) R (x) +
[
�

(
�

4x2 − 1

2x3 − m2

x2 − �2
0

)

+
(

� − m�H

x2

)2
]
R (x) = 0, (8)

where,

� = 1 − rH
r

= 1 − 1

x
, (9)

x = r

rH
, (10)

� = ErH
h̄c

. (11)

Now, operating the derivatives in the first term and multi-
plying the whole equation by �−2, we obtain this following
equation,

∂2
x R +

(
∂x�

�

)
∂x R +

[
�−1

(
�

4x2 − 1

2x3 − m2

x2 − �2
0

)

+�−2
(

� − m�H

x2

)2
]
R = 0. (12)

And by substituting �(x) explicitly as(9), we obtain,

∂x�

�
= 1

x − 1
− 1

x
, (13)

∂2
x R + p (x) ∂x R + q (x) R = 0, (14)

where,

p (x) = 1

x − 1
− 1

x
, (15)

q (x) =
(

x

x − 1

)(
x−1

4x3 − 1

2x3 − m2

x2 − �2
0

)

+
(

x

x − 1

)2(
� − m�H

x2

)2

. (16)

The coefficient of R, i.e. q (x), is a polynomial function
that contains of mixture between x and x − 1. It is possible
to express q (x) in terms of 1

x and 1
x−1 using these following

fractional decompositions,

1

x (x − 1)
= 1

x − 1
− 1

x
, (17)

1

x2 (x − 1)
= 1

x − 1
− 1

x
− 1

x2 , (18)

1

x2(x − 1)2 = − 2

x − 1
+ 1

(x − 1)2 + 2

x
+ 1

x2 , (19)

x

x − 1
= 1

x − 1
+ 1, (20)

and by making use of the decomposition formulas above, we
decompose q (x) as follows,

q (x) = (
�2 − �2

0

) + 1

x

(
1

2
+ m2 (

1 + 2�2
H

))

+ 1

x − 1

(
−1

2
− m2 (

1 + 2�2
H

) − �2
0 + 2�2

)

+ 1

x2

(
3

4
+ m2�2

H

)
+ 1

(x − 1)2 (� − m�H )2. (21)

We are interested to find solutions in the region outside
the horizon, i.e. rH ≤ r < ∞ or equivalently 1 ≤ x < ∞,
that for the sake of notation convenience, we define a new
radial variable z = − (x − 1) → ∂x = −∂z that shifts the
domain of interest to 0 ≤ z < −∞. In the new variable, the
radial equation becomes as follows,

∂2
z R + p (z) ∂z R + q (z) R = 0, (22)

p (z) = 1

z
− 1

z − 1
, (23)

−1

2
∂z p (z) = 1

2

1

z2 − 1

2

1

(z − 1)2 , (24)

−1

4
p2 (z) = −1

4

1

z2 − 1

4

1

(z − 1)2 + 1

2

1

x − 1
− 1

2

1

x
, (25)

q (z) =
(
�2 − �2

0

)
− 1

z − 1

(
1

2
+ m2

(
1 + 2�2

H

))

−1

z

(
−1

2
− m2

(
1 + 2�2

H

)
− �2

0 + 2�2
)

+ 1

(z − 1)2

(
3

4
+ m2�2

H

)
+ 1

z2 (� − m�H )2. (26)

Following Appendix A, the normal form of the radial
equation is obtained as follows,

∂2
z Y (z) + K (z) Y (z) = 0, (27)

Y (z) = z
1
2 (z − 1)−

1
2 R(r) (28)

where,

K (z) = −1

2
∂z p (z) − 1

4
p2 (z) + q (z) = (

�2 − �2
0

)

− 1

z − 1

(
m2 (

1 + 2�2
H

)) − 1

z

(−m2 (
1 + 2�2

H

)
−�2

0 + 2�2)

+ 1

(z − 1)2

(
m2�2

H

) + 1

z2

(
1

4
+(� − m�H )2

)
. (29)

2.1 The radial solution

Comparing (27) together with (29) with the normal form of
the confluent Heun’s differential equation in Appendix B, we
find the exact radial solution of the phonon quasibound states
in the vortex flow of photons as follows,
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R = e
1
2 αz z(z − 1)

1
2 γ

[
Az

β
2 HeunC(z) + Bz−

β
2 HeunC′(z)

]
,

(30)

z = −rH − r

rH
, (31)

where the confluent Heun function’s parameters are alge-
braically solved as follows,

α = 2
√

�2
0 − �2, (32)

β = 2i (� − m�H ) , (33)

γ = i
√

4m2�2
H − 1 = i |γ | , (34)

δ = �2
0 − 2�2, (35)

η = 1

2
− m2

(
1 + 2�2

H

)
− �2

0 + 2�2. (36)

Finally, can write the exact solution of the Klein–Gordon
equation (7) as follows,

ψ(t, r, θ) = e−i E
h̄c ct eimθe

1
2 αz z(z − 1)

1
2 (γ−1) ×

×
[
Az

β
2 HeunC(z) + Bz−

β
2 HeunC′(z)

]
, (37)

where z = − rH−r
rH

.

2.2 Energy levels

Polynomial functions have a very important role in quantum
mechanics. In the matter of the scalar’s radial solution, the
polynomial function is essentially responsible for the behav-
ior of scalar field between zero and infinity. Moreover, the
degree of the respective polynomial determines how many
zeroes the radial wave function has [30]. Now, let us apply
the polynomial condition of the confluent Heun function
(see Appendix B) to obtain the energy levels expression as
follows,

δ

α
+ β + γ

2
= −(nr + 1) nr + 1 = n = 1, 2, 3, . . .

(38)

�2
0 − 2�2

2
√

�2
0 − �2

+ i

(
� − m�H + |γ |

2

)
= −n. (39)

For the case �2

�2
0

� 1, the equation can be solved alge-

braically as follows,

�m,n=2i

3
�0+1

3

√
−4�2

0−12i�Hm+6i |γ | +12n+6. (40)

We can compare the exact quasibound states’ frequencies
by solving the exact formula (39) with the one presented in
[12] that are numerically calculated by Numerov integration
method. Following [12], we set �H = 1.0224, nr = 0 and
m = 1 and varying �0 following Table 1 in the aforemen-
tioned reference. The comparison between the two are pre-
sented in Table 1. Comparing both of the real and imaginary

parts of the exact and numerical �, we can conclude that the
real part of � are in agreement with the numerically estimated
values, while for the imaginary part, which is related to the
quasibound states’ lifetime, our analytic formula provides
exact results improving the previously published numerical
estimations.

2.3 Wave function in extreme limits

In this subsection, investigate the behaviour of the quasi-
bound states solution near the horizon r → rH and far
away from the horizon r → ∞ will be investigated. In this
r → rH limit, the confluent Heun functions’ argument r−rH
is approaching 0, thus, HeunC(0) = HeunC′(0) ≈ 1. Also

e
− 1

2 α
(
r−rH
rH

)
≈ 1. Thus, we can rewrite the wave function

(37) as follows,

ψ→rH = e−i E
h̄c ct eimθ

[
A

(
r − rH
rH

) 1
2 β

+ B

(
r − rH
rH

)− 1
2 β

]
.

(41)

Now, for the sake of notation aesthetic, we redefine
r−rH
rH

= ζr − ζ0 and expressing β explicitly as in (33). This
leads to this following equation,

ψ→rH = ei
E
h̄c ctYm�

� (θ, φ)[
A(ζr − ζ0)

i |β|
2 + B(ζr − ζ0)

− i |β|
2

]
, (42)

and using the complex relation zi = e1 ln(z) together with
cos z = 1

2

(
eiz + e−i z

)
, we get,

ψ→rH = e−i E
h̄c ct eimθ [Ccos (ζr − ζ0)] , (43)

which represent a purely ingoing wave.
Thus, approaching rH the solution represents a purely

ingoing wave while approaching ∞, the exponential part of

the wave function, i.e. e
− 1

2 α
(
r−rH
rH

)
, suppresses the confluent

Heun polynomial and quenches the whole wave function, i.e.
ψ→∞ ≈ 0.

3 Hawking radiation

With the exact radial solution in hand, in this section, the
Damour–Ruffini [31] method will be applied to calculate the
Hawking temperature of black hole’s horizon. We start by
expressing the exact radial solution in the near the horizon
limit, i.e. r → rH . In this limit, HeunC(0) = HeunC′(0) ≈ 1
and e− 1

2 α(z) ≈ 1. This condition allows us to rewrite the wave
function (37) as follows,

ψ→rH = e−i E
h̄c ct eimθ z

[
Az

β
2 + Bz−

β
2

]
, (44)
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Table 1 Comparison of the exact and numerical values of �

O0 Re (O) ref Re (O) exact Im (O) ref Im (O) exact

0.35202527 0.35034321 0.345998585 0.078 ×10−5 0.00176420428

0.43203101 0.42909303 0.421994807 0.080 ×10−5 0.00385925494

0.52803790 0.52298580 0.511973344 0.230 ×10−5 0.00777173635

0.62582270 0.61784984 0.602441353 0.500 ×10−5 0.01340131797

0.73338598 0.72119458 0.712366787 1.080 ×10−5 0.02256533483

0.83917135 0.82167984 0.813036093 2.040 ×10−5 0.03312585948

0.93517824 0.91176974 0.904584445 3.090 ×10−5 0.04442945757

1.0498531 1.0178151 1.014315012 3.640 ×10−5 0.05996517330

1.1583054 1.1163115 1.118583814 − 0.462 ×10−5 0.07658340292

where the factor (−1)
1
2 (γ−1) has been absorbed into the nor-

malization constant A and B.
The wave function (44) can be viewed as consisting of

two parts, that are the ingoing and outgoing waves,

ψ =
{

ψ+in = Az
1
2 β ingoing

ψ+out = Bz− 1
2 β outgoing

, (45)

When there is an ingoing wave hitting the horizon rH , a
particle-antiparticle pair are induced. The particle is reflected
and will enhance outgoing wave while the antiparticle coun-
terpart becomes the transmitted wave crossing the horizon.
Analytical continuation of the wave function ψ (z) can be
calculated by using this following trick,

zλ →
[(

r

rH
− 1

)
+ iε

]λ

=
{

zλ , r > rH
|z|λeiλπ , r < rH

. (46)

This allows us to obtain the expression for ψ−out as fol-
lows,

ψ−out = ψ+out , (47)

z → zeiπ , (48)

z → −z = zeiπ , (49)

that leads to,

ψ−out = B
(
zeiπ

)− 1
2 β

,

= ψ+out e
− 1

2 iπβ

(50)

∣∣∣∣ψ−out

ψ+in

∣∣∣∣
2

=
∣∣∣∣ψ+out

ψ+in

∣∣∣∣
2

e−i2πβ =
∣∣∣∣ψ+out

ψ+in

∣∣∣∣
2

e4π [�−m�H ].

(51)

The normalization of the total probability leads to,
∣∣∣∣ψ−out

ψ+in

∣∣∣∣
2

+
∣∣∣∣ψ+out

ψ+in

∣∣∣∣
2

= 1, (52)

i.e. the total probablity of the particle wave going out to infin-
ity and the antiparticle wave going inside the black hole must

be equal to 1. Near the rH , thus, we have,

ψout =
{

ψ+out , r > rH
ψ−out , r < rH

, (53)

or can be rewritten as follows,

ψout = Bz−
1
2 β

[
θ (−z) + θ (z) e2π [�−m�H ]

]
. (54)

The Hawking temperature TH of the corresponding hori-
zon is to be extracted from the thermal spectrum known
as radiation distribution function by calculating the modu-
lus square of the ratio between the normalization constant
between the outgoing and incoming waves as follows,

〈
ψout

ψin

∣∣∣∣ψout

ψin

〉
= 1 =

∣∣∣∣ BA
∣∣∣∣
2 ∣∣∣1 − e4π [�−m�H ]

∣∣∣ , (55)

∣∣∣∣ BA
∣∣∣∣
2

= 1

e4π [�−m�H ] − 1
. (56)

Now, let us consider this following algebraic modification,

4π [� − m�H ] = 4π

[
ErH
h̄c

− m�H

]
= � (ω − ωH )[

ch̄
4πrH

] ,

(57)

ωH = cm�H

rH
. (58)

Finally, by comparing with the bosonic distribution func-

tion e
h̄ω
kB T we obtain the analog black hole’s horizon temper-

ature as follows,

TH = ch̄

4πkBrH
. (59)

The expression (59) is equal to the Hawking temperature
of chargeless Lense-Thirring black hole TH = rH c�

4πkBr2
s

in the

recent published result [26].
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4 Conclusions

In this work, the exact analytical phonon quasibound state’s
quantized energy levels and their wave functions in a vortex
photon flow analog black hole are derived in detail. The exact
angular solution is found in terms of pure harmonics func-
tions while the radial exact solutions are discovered in terms
of confluent Heun functions (30). The obtained exact radial
solution is valid for all region of interest, i.e. rs ≤ r < ∞,
a significant improvement of assymptotical method that can
only solves for either region very close to the horizon of
very far away from the horizon which was presented in [12].
Investigation of the obtained radial solution around the hori-
zon shows a purely ingoing wave while far away from the
horizon, the wave function is decaying exponentially.

By making use of the confluent Heun function’s poly-
nomial condition, the quantized energy levels’ expression
is succesfully derived and presented in (39). Comparison of
the values of � between the previously published results [12]
and the the exact results by solving Eq. (39) is presented in
Table 1 where the real parts of the � are convergent while
in this letter, we present for the first time, the exact values of
the imaginary part of the �. And in low frequncy limit, we
obtain a simplified algebraic expression of the energy levels
(40). In the last section, after indentifying the ingoing and
outgoing component of the wave funtion, the [31] method is
applied to find the Hawking temperature of the black hole’s
horizon (59).
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A Normal form

An ordinary differential equation is said to be in the normal
form if is solved explicitly for the highest derivative [32].

One may start with a general form of the linear second order
ordinary differential equation as follows,

d2y

dx2 + p(x)
dy

dx
+ q(x)y = 0. (60)

In order to bring the linear second order ordinary differ-
ential equation above to its normal form, we express the y(x)
in this particular form, which is specially designed to remove
the first order derivative terms [33],

y = Y (x)e− 1
2

∫
p(x)dx , (61)

dy

dx
= dY

dx
e− 1

2

∫
p(x)dx − 1

2
Y pe− ∫

p(x)dx , (62)

d2y

dx2 = d2Y

dx2 e
− 1

2

∫
p(x)dx − 1

2

dY

dx
pe− 1

2

∫
p(x)dx

−1

2
Y
dp

dx
e− 1

2

∫
p(x)dx + 1

4
Y p2e− 1

2

∫
p(x)dx . (63)

Substituting the expressions to (60), a lot of things cancel
out and it resulted in this following equation where the first
order derivative term has been removed,

d2Y

dx2 +
(

−1

2

dp

dx
− 1

4
p2 + q

)
Y = 0, (64)

Y = ye
1
2

∫
p(x)dx . (65)

It is important to mention that if Q(x) = − 1
2
dp
dx − 1

4 p
2 +

q < 0 and Y (x) is a nontrivial solution of (65), then Y (x)
does not oscillate at all and has at most one zero. And if
Q(x) = − 1

2
dp
dx − 1

4 p
2 + q > 0 and

∫ ∞
1 Q(x)dx = ∞, then

Y (x) has infinitely many zeros on the positive x-axis [33].

B Normal form of confluent Heun equation

The confluent Heun equation is a second-order linear differ-
ential equation which has three regular singularities given by
in this following form [34],

d2y

dx2 +
(

α + β + 1

x
+ γ + 1

x − 1

)
dy

dx

+
(

μ

x
+ ν

x − 1

)
y = 0, (66)

ν = 1

2
(α + β + γ + αβ + βγ ) + δ + η. (67)

The solutions of the confluent Heun equation are given in
the terms of the five parameters confluent Heun functions,

y = AHeunC (α, β, γ, δ, η, x)

+Bx−β HeunC (α,−β, γ, δ, η, x) , (68)

y = AHeunC(x) + Bx−β HeunC′(x) = HeunC(x) . (69)
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The confluent Heun function is reduced to be a polynomial
function with degree nr if this following condition is fulfilled,

δ

α
+ β + γ

2
+ 1 = −nr , nr ∈ Z. (70)

Now, let us express confluent Heun’s differential equa-
tion in its the normal form. First, we indentify the p and q
functions (see Appendix A) as follows,

p = α + β + 1

x
+ γ + 1

x − 1
, q = μ

x
+ ν

x − 1
, (71)

y(x) = HeunC = Y (x)e− 1
2 αx x− 1

2 (β+1)(x − 1)−
1
2 (γ+1),

(72)

and this leads to,

−1

2

dp

dx
= 1

x2

(
β + 1

2

)
+ 1

(x − 1)2

(
γ + 1

2

)
, (73)

−1

4
p2 = −α2

4
− 1

x2

(
β2 + 1 + 2β

4

)

− 1

(x − 1)2

(
γ 2 + 1 + 2γ

4

)
− 2

x

(
αβ + α

4

)

− 2

x − 1

(
αγ + α

4

)
− 2

x (x − 1)

(
βγ + 1 + β + γ

4

)
,

(74)

W (x) = −1

2

dp

dx
− 1

4
p2 + q = −α2

4
+

1
2 − η

x
+

1
4 − β2

4

x2

+− 1
2 + δ + η

x − 1
+

1
4 − γ 2

4

(x − 1)2 . (75)

Combining everything, we transform the confluent Heun
equation’s to be in a normal form as follows,

d2Y (x)

dx2 + W (x)Y (x) = 0, (76)

Y (x) = e
1
2 αx x

1
2 (β+1)(x − 1)

1
2 (γ+1) HeunC(x) . (77)
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