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ABSTRACT: Motivated by the large difference between the direct CP asymmetries
Acp(B~ — 7°K~) and Acp(B° — 7t K~), we combine the up-to-date experimental
information on B — 7K, mK* and pK decays to pursue possible solutions with the nonuni-
versal Z' model. Detailed analyses of the relative impacts of different types of couplings
are presented in four specific cases. Numerically, we find that the new coupling parameters,
€M and ¢8R with a common nontrivial new weak phase ¢, ~ —86°, which are relevant to
the Z' contributions to the electroweak penguin sector ACy and AC7, are crucial to the
observed “mK puzzle”. Furthermore, they are found to be definitely unequal and opposite
in sign. We also find that Acp(B~ — p’K ™) can put a strong constraint on the new Z’
couplings, which implies the Z’ contributions to the coefficient of QCD penguins operator
O3 involving the parameter ¢(“* required.
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1 Introduction

During the past several years, the observed discrepancies between the experimental mea-
surements and the theoretical predications within the Standard Model (SM) for several
observables in B — 7K decays, the so-called “rK puzzle” [1], have attracted much atten-
tion. Extensive investigations both within the SM [2-7], as well as with various specific
New Physics (NP) scenarios [8-10], have been performed.

Averaging the recent experimental data from BABAR [11], Belle [12], CLEO [13]
and CDF [14], the Heavy Flavor Averaging Group (HFAG) gives the following up-to-date
rsults [15]

Acp(B™ — K%)= 0.050 £ 0.025,
Acp(B® — K—nt) = —0.097 + 0.012, (1.1)

from which the difference between direct CP violations in the charged and the neu-
tral modes

AA=Acp (B~ — K 7°) — Acp (B® — K~ n) = 0.147 £0.028 (1.2)



is now established at about 5o level.

Theoretically, it is generally expected that within the SM, these two CP asymmetries
Acp(BY — 7t K~) and Acp(B, — 7K ™) should be approximately equal. For example,
based on the QCD factorization approach (QCDF) [16], the recent theoretical predictions
with two different schemes for the end-point divergence are

Acp(By — n°K™) = —3.6%, .
{Acpwg T TeK) 2 gy, Sehieme T (Scenario 50) 3] 13
Acp(B, — nK™) = —10.8%,
50 heme TT (my = 0.5 M . 1.4
{ACP(BS S aTKT) = —12.4%, Scheme II (m, = 0.5 MeV) [8] (1.4)

Here, the Scheme I is the way to parameterize the end-point divergence appearing in
hard-spectator and annihilation corrections, by complex parameters X4 g = fol dy/y =
In(my/A)(1 + pa ge®4m), with pa g < 1 and unrestricted ¢4 g [3]. The Scheme II, as
an alternative to the first one, is the way to quote the infrared finite gluon propagator
to regulate the divergence. It is interesting to note that an infrared finite behavior of
gluon propagator are not only obtained by solving the well-known Schwinger-Dyson equa-
tion [17-19], but also supported by recent Lattice QCD simulations [20]. However, both
of these two schemes suffer the mismatch of AA given by eq. (1.2). Furthermore, within
the framework of perturbative QCD approach (pQCD) [21], and the soft-collinear effective
theory (SCET) [22], the theoretical predictions read

— (L1t
mci;g_;g;;’ pQCD [5], (1.5)
SCET [6]. (1.6)

Obviously, the present theoretical estimations within the SM are not consistent with the
established AA. The mismatch might be due to our current limited understanding of
the strong dynamics involved in hadronic B decays, but equally also to possible NP ef-
fects [23, 24].

In some well-motivated extensions of the SM, additional U(1)" gauge symmetries and
associated Z' gauge boson could arise. Searching for the extra Z’ boson is an important
mission in the experimental programs of Tevatron [25] and LHC [26]. Performing the con-
straints on the new Z’ couplings through low-energy physics, on the other hand, is very
imporatnt for the direct searches and understanding its phenomenology. Theoretically, the
flavor changing neutral current (FCNC) is forbidden at tree level in the SM. One of the
simple extensions is the family nonuniversal Z’ model, which could be naturally derived in
certain string constructions [27], Eg models [28] and so on. It is interesting to note that
the nonuniversal Z’ couplings could lead to FCNC and new CP-violating effect [29], which
possibly provide a solution to the afore mentioned “mK puzzle”. With some simplifica-
tions of the nonuniversal Z’ model and neglecting the color-suppressed electroweak (EW)



penguins and the annihilation amplitudes, ref. [9] gets four possible solutions

A {¢", 61} = {0.0055,110°} By : {¢"", o1} = {0.0098, —97°}
with 9% = 0;
App ¢ =€ ¢} = {0.0104,-70°},  Brp: {¢"" = ¢"", ¢} = {0.0186,83°}. (1.7)

However, the corresponding prediction Acp(B, — 7°K~) = —0.03 £ 0.01 [9] of solution
Ar and Apg in eq. (1.7) is obviously inconsistent with the up-to-date experimental data
0.050 £ 0.025. Moreover, the annihilation amplitudes, which could generate some strong-
interaction phases, are important for predicting CP violations.

Based on the above observations, in this paper we shall adopt the QCDF approach
and reevaluate the effects of the nonuniversal Z’ model on these decay modes with the
updated experimental data. Furthermore, since the B — 7K™ and pK decays also involve
the same quark level b — sqq (¢ = u,d) transition, it is necessary to take into account
these decay modes.

In section 2, we provide a quick survey of B — 7K, mK* and pK decays in the SM
within the QCDF formalism; our numerical results, with two different schemes for the
end-point divergence, are also presented. In section 3, after reviewing the nonuniversal
7' model briefly, we present our analyses and numerical results in detail. Section 4 con-
tains our conclusions. Appendix A recapitulates the decay amplitudes for the twelve decay
modes within the SM [3]. Appendix B contains the formulas for hard-spectator and anni-
hilation amplitudes with the infrared finite gluon propagator [8]. All the theoretical input
parameters are summarized in appendix C.

2 The SM results with two schemes for the end-point divergence
In the SM, the effective Hamiltonian responsible for b — s transitions is given as [31]

_Gr

Mo = 5 | VisVi (CLOF + Co05) + Va V5, (G0 + C20%)

10
—th‘/;; <Z C;0; + 077077 + ngOgg> + h.c., (2.1)

=3

where Vy Vi (¢ = u, c and t) are products of the Cabibbo-Kobayashi-Maskawa (CKM)
matrix elements [30], C; the Wilson coefficients, and O; the relevant four-quark operators
whose explicit forms could be found, for example, in refs. [2, 31].

In recent years, the QCDF approach has been employed extensively to study the
hadronic B-meson decays. The B — nK, nK* and pK decays have been studied compre-
hensively within the SM in refs. [2-4, 32|, and the relevant decay amplitudes within this
formalism are shown in appendix A. It is also noted that the framework contains estimates
of the hard-spectator and annihilation corrections. Even though they are power-suppressed,
their strength and associated strong-interaction phase are numerically important to eval-
uate the branching ratio and the CP asymmetry. However, unfortunately, the end-point



singularities appear in twist-3 spectator and annihilation amplitudes. So, how to regulate
the end-point divergence becomes important and necessary within this formalism. Here we
shall adopt the following two schemes:

Scheme I: Parametrization. As the most popular way, the end-point divergent inte-
grals are treated as signs of infrared sensitive contributions and phenomenologically pa-
rameterized by [2, 3]

J R T (R
0o Y Ap 0 2

with A, = 0.5GeV, pa <1 and ¢4 unrestricted. X is treated in the same manner. The
different choices of p4 and ¢4 correspond to different scenarios as discussed in ref. [3], and
S4 is mentioned as the most favorable one. It presents the moderate value of nonuniversal
annihilation phase ¢4 = —55° (PP), —20° (PV) and —70° (VP). Conservatively, in our
calculations we quote £5° as their theoretical uncertainties. Taking p4 = 1 and X4 g
universal for all decay processes belonging to the same modes (PP, PV or VP), we present
our numerical results of branching ratios and direct CP asymmetries for B — 7K, nK*
and pK decays in the third column of tables 2 and 3, respectively.

As is known, the mixing-induced CP asymmetry 15}3‘ is well suited for testing the SM
and searching for new physics effects. For example, the investigation of mixing-induced
CP asymmetries in penguin dominated B — WOKg and B? — pOKg decay modes has
attracted much attention recently [33-36]. After neglecting the Ky — Ky mixing effect, the
mixing-induced asymmetry could be written as

= 2ImA
x (R0 / 00 070
with Ay = —exp {z arg [“Zg éﬂ } A #/Ay in our phase convention. Our numerical predictions

are listed in table 4, which agree with the measurements within large experimental errors.

Scheme II: Infrared finite dynamical gluon propagator. In our previous paper [8],
we have thoroughly studied the end-point divergence with an infrared finite dynamical
gluon propagator. It is interesting to note that recent theoretical and phenomenological
studies are now accumulating supports for a softer infrared behavior of the gluon prop-
agator [19, 37, 38]. Furthermore, the infrared finite dynamical gluon propagator, which
is shown to be not divergent as fast as q%, has been successfully applied to the hadronic
B-meson decays [39, 40]. In our evaluations, we shall quote the gluon propagator derived
by Cornwall (in Minkowski space) [17]

1
T E MR e

D(¢%) (2.4)

where ¢ is the gluon momentum. The corresponding strong coupling constant reads

47
OéS(QQ): . CHAMZ(P) (2.5)
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where Gy = 11 — %nf is the first coefficient of the beta function, with ny being the number
of active quark flavors. The dynamical gluon mass square M, 92 (¢?) is obtained as [17]

Jun

2

1 q2+4m?] 11

n A2 =

2 | _\ facp /

J ln< 42m‘2’ ) ,
AQCD

where my is the effective gluon mass and Agcp = 225 MeV. In ref. [8], we present our sug-

M;(QQ) =m (2.6)

gestion, mgy = 0.5040.05 GeV, which is a reasonable choice so that most of the observables
(except for Acp(B — 7°K ™)) are in good agreement with the experimental data. In this
way, we find that the hard-spectator scattering contributions are real, and the annihilation
contributions are complex with a large imaginary part [8]. Our numerical predictions for
branching ratios, direct CP asymmetries and mixing-induced CP asymmetries are listed in
the fourth column of tables 2, 3 and 4, respectively.

Although numerically these two schemes have some differences, both of their predic-
tions are consistent with most of the experimental data within errors. However, as expected
in the SM, we again find that Acp(B, — 7°K~) = —0.041 4+ 0.008 (—0.100 + 0.008), are
very close to Acp(BY — 77 K~) = —0.077 £ 0.009 (—0.116 + 0.008) in the first (second)
scheme. So, it is still hard to accommodate the measured large difference AA in the SM
within the QCDF formalism, irrespective of adopting which scheme. In the following, we
pursue possible solutions to this problem with a family nonuniversal Z’ model [29].

3 Solution to the “mK puzzle” with nonuniversal Z’ model

3.1 Formalism of the family nonuniversal Z’ model

A possible heavy Z’ boson is predicted in many extensions of the SM, such as grand unified
theories, superstring theories, and theories with large extra dimensions. The simplest
way to extend the SM gauge structure is to include a new U(1) gauge group. A family
nonuniversal Z’ model can lead to FCNC processes even at tree level due to the non-
diagonal chiral coupling matrix. The formalism of the model has been detailed in ref. [29].
The relevant studies in the context of B physics have also been extensively performed in
refs. [9, 42, 43, 45].

After neglecting the Z—Z’ mixing with small mixing angle § ~ O(10~?) [44], and taking
all the fields being the physical eigenstates, the Z’ part of the neutral-current Lagrangian
can be written as [29]

L =—gJ,z", (3.1)

where ¢’ is the gauge coupling constant of extra U’(1) group at the EW My, scale. The
Z' chiral current is

7 L R
T =y | (BE), P+ (B, Pr| ;. (3.2)
where 1 is the mass eigenstate of chiral fields and P, r = (1 F 75)/2. The effective chiral
7' coupling matrices are given as

B;( - quqXVqTX, (¢=u,d; X =L,R). (3.3)



With the assumption of flavor-diagonal right-handed couplings , the Z’ part of the
effective Hamiltonian for b — sgq (¢ = u, d) transitions can be written as [9]

pe., = 2Gr (9Mz L (sb) Z +BE(Gq)via) + he,  (34)
eff 2 \gihiy V-4 @)V -a qq)v+A .

where g1 = e/(sin Oy cos Oy ) and My the new gauge boson mass. It is noted that the forms
of the above operators already exist in the SM. As a result, eq. (3.4) can be modified as

Gr
\/_

where Of(i = 3,5,7,9) are the effective operators in the SM, and AC; the modifications
to the corresponding SM Wilson coefficients caused by Z’ boson, which are expressed as

ViV > (AC30% + AC50¢ + AC70% + ACy08) + h.c.,  (3.5)
q

2 (gMz\* LR
ACy5 = — Bl (BLR+2B") .
B3V Ve <91MZ,> b \Pui” + 254a
4 IMz\* . (LR DR
ACy7 = — B (B’—B’>, 3.6
T3V <91MZ,> sb \Puu T P (3.6)

in terms of the model parameters at the My, scale.
Generally, the diagonal elements of the effective coupling matrices Bqu’R are real as a
result of the hermiticity of the effective Hamiltonian. However, the off-diagonal ones of BSI;)

can contain a new weak phase ¢7. Then, conveniently we can represent AC; as!

o 1Vts Vbl ’V;ts‘/;b’ CLL LR Z¢L

AC )
R AT
ViVl con,ir
ACgr =412 ¢ e 3.7
ViV e
where the real NP parameters (“0 LR ¢LILE and ¢; are defined, respectively, as
2
crin — L (M2 7| By (BLR+2B")
3 \g1Mz VisVib
oor 1 (9 Mg | BS LR _ pL.R
5 - Buu de )
3 \g1Mz VisVib
¢ = Arg [BL] . (3.8)

It is noted that the other SM Wilson coefficients may also receive contributions from
the Z’ boson through renormalization group (RG) evolution. With our assumption that no
significant RG running effect between M/, and Myy scales, the RG evolution of the modified
Wilson coefficients is exactly the same as the ones in the SM [31, 41]. For simplicity,
we define

X = CLL6i¢L , Y/ = CLR6i¢L ,
X = ¢bleior Yy = ¢bfigior (3.9)

! For comparison, we take the same phase convention as ref. [9].



Wilson =1y pn = VAnmy

coefficients | 7'M AC? crM AC?
Ch 1.075 —0.006X 1.166 —0.008X
Cs —0.170 —0.009X —0.336 —0.014X
Cs 0.013  0.05X —0.01Y —2.20X' —0.05Y" | 0.025 0.11X —0.02Y —2.37X’ —0.12Y"
Cy —0.033 —0.13X +0.01Y +0.55X" +0.02Y" | —0.057 —0.24X 4 0.02Y + 0.92X’ + 0.09Y”
Cs 0.008 0.03X +0.01Y —0.06X’ —1.83Y" | 0.011 0.03X + 0.02Y — 0.10X’ + 0.09Y”’
Ce —0.038 —0.15X 4+ 0.01Y +0.1X" — 0.6Y" |—0.076 —0.32X + 0.04Y + 0.16X" — 1.26Y"

Cr/0tem |—0.015 418X —473Y +0.25X' +1.27Y" |—0.034 57X —459Y + 0.4X' + 1.7Y"
Cs/0em | 0.045 1.18X — 166Y +0.01X' 4+ 0.56Y" | 0.089  3.2X — 355Y + 0.2X’ + 1.5Y”
Co/em |—1.119 —561X +4.52Y —0.8X' +0.4Y" |—-1.228 —611X + 6.7V — 1.2X' 4+ 0.6Y’
Cio/0em | 0190 118X —0.5Y +0.2X' —0.05Y’ | 0.356 207X —1.4Y +0.5X’' — 0.1y’
Cry | —0.207 — 0.360 —
Csy |—0.143 — —0.168 —

Table 1. The Wilson coefficients C; within the SM and with the contribution from Z’ boson
included in NDR scheme at the scale p = my and pp = VApmyp.

Decay Mode Exp. SM Z' model
data Scheme I  Scheme II Case 1 Case 11 Case III Case IV
By — 71 K. 231+10 19.0+£25 234439 233+07 233+06 232406 23.3+0.7
By —»°K~ 129406 105+13 127+20 125+06 126=+0.6 125+0.5 12.6+0.6
BY = atK~ 194406 162+22 20.1+34 199405 198405 19.9+0.5 20.0+0.5
By — K’ 98406 73+11 93+17 94406 95+06 91+04 9.1+04
By —n K 100408 11.7+1.2 103+33 84+10 85+09 87+06 86+0.7
B; —»°K*~ 69+23 7.0+07 60+18 47+06 47+05 49+03 4.8+0.3
By - atK* 103+1.1 99+11 092428 75+1.0 77409 80+06 80+0.6
BY - K 24407 41405 39413 36405 37404 35+04 35+04
B, —»p K 80717 52409 106+37 96+14 97+13 106+13 107+15
By — p°K~ 3817039 25404 54416 4224062 4474063 47+06 4.840.7
By —ptK~ 86799 63+1.0 13.0+3.8 108+14 109+14 11.9+14 125+1.8

—0

By — p°K 54799 37405 73+21 71409 74409 68409 69+1.0

Table 2. The C P-averaged branching ratios (in units of 107%) of B — 7K, 7K* and pK decays in
the SM with two end-point divergence regulation schemes, and in the nonuniversal Z’ model with
four different cases.

The numerical results of Wilson coefficients in the naive dimensional regularization (NDR)
scheme at the scale u = my (up, = VApmy) are listed in table 1. The values at the
scale pp, with my = 4.79 GeV and Aj, = 500 MeV, should be used in the calculation of

hard-spectator and weak annihilation contributions.

3.2 Numerical analyses and discussions

With the theoretical formulas and the input parameters summarized in appendix A, B and
C, we now present our numerical analyses and discussions. Our analyses are divided into

the following four cases with different simplifications for our attention, namely,



Decay Mode Exp. SM Z" model

data Scheme I Scheme II Case 1 Case 11 Case 111 Case IV
Br — 7 K. 09+25 04£01 004+007 —-1.6+03 —-27+09 52+05 51+06
B > K~ 50£25 —41+08 —10.0£08 244+16 23+£15 09+07 12409
By »rtK- —98%12 77409 —11.6+03 —11.7+0.3 —11.04£0.7 —105+1.1 —10.5+1.2
BY - oK’ 1410 -15+03 074£03 —174+2  —18+2 —6+2 —6+2
By -nm K° —27%7 06401 009+015 —-21+04 -33+05 —06+24 —30+6.7
By — m'K* 4429 —6+2  —-37+9 68471 91+72 —17+4  —1846
By - atK*™ —254+11 —13+2 —434+10 —48+3  —46+3  -49+3  —5045
By - K —15+12 —4+1 442 —58+9  —6249  —34+£7 —36+11
By —p K. —12£17 04£01 05+02 15+01 -015+07 53+£1.1 6.5+45
By — p°K~ 41.9%%!, 573458 423+95 —36+10 —46+12 2744 27+ 5
By »ptK~ 1546  36+4 29 + 6 31+3 33+3 25 + 2 25+ 2
By — p°K’ 1420 -21+13 —244+14 45+5 50 +£5 8+3 9+4

Table 3. The direct CP asymmetries (in unit of 1072) of B — 7K, 7K* and pK decays. The
other captions are the same as table. 2.

Decay Mode  Exp. SM 7' model
data  Scheme I Scheme II Casel Case Il Case III Case IV

By — K% 57+17  77+2 TT+2  46+6 44+6 61+3 625
By — °KY 6371 60+2 66+2 87+2 84+3 8 +3 86+9

Table 4. The mixing-induced CP asymmetries (in unit of 1072) of B — %K% and p° K decays.
The other captions are the same as table. 2.

Case I: With the simplifications BLE —2B£UQR (ie., ¢(FER = 0) and ¢4 = 0,

Case II: With the simplifications Bl ~ —2B£UQR only (i.e., (FFER = (),

Case III: Taking BE, ~ —2BI (i.e., (¥ ~0), and leaving ¢(* and XL arbitrary,

Case IV: Without any simplifications for BER and B;&R, i.e., arbitrary values for
CLL,LR gLL,LR

and are allowed.

Our fitting is performed with the experimental data varying randomly within their 2o
error-bars, while the theoretical uncertainties are obtained by varying the input parameters
within the regions specified in appendix C. In addition, we quote the Scheme II (taking
mg = 0.5GeV) to regulate the appearing end-point divergences.

With the assumption BLI ~ —QBC%R and neglecting the color-suppressed EW pen-
guins and the annihilation amplitudes, four possible solutions eq. (1.7) to the “r K puzzle”
are obtained in ref. [9]. It is still worth to recheck these solutions with the updated ex-
periment data and taken into account the neglected corrections. Furthermore, the possible
solutions may also suffer strong constraints from B — 7K™ and pK decays, since they are

also mediated by the same quark level b — sgq transitions.
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Figure 1. The dependence of Acp(B — mK) on the new weak phase ¢z, for the values of £&F,
EER(CEEand (T as marked by the legends.

Case I: With the simplifications BLR ~ —ZBi’iR(i.e., ¢LLLR — 0) and ¢5R = 0.
In this case, assuming BLE ~ —2B5&R as in ref. [9], the NP effect primarily manifests itself
in the EW penguin sector and the Z’ contribution to the Wilson coefficients eq. (3.6) can
be simplified as

ACg,g, =0,

ACyn = 4 ViV

L
. Bsb
’ VisVi

BLR
VisVio

LR (3.10)

2
¢LLIRGidn ity ¢LLLR _ < g My >
g1 Mz

As shown in figure 1 (a), taking ¢** = 0.004 and ¢*® = 0, we find that
Acp(B~ — 7K ™) is enhanced to be consistent with the experimental data when ¢; ~
—90°. Moreover, Acp(B~ — 7~ K°) and Acp(B® — 7t K ™), which agree roughly with
the experimental data in the SM, are not sensitive to the parameter /0. So, a possible
solution to the observed “mK puzzle” eq. (1.2) in Case I is naively favored.

Taking B(B — 7nK) and Acp(B — 7wK) as constraints on ¢ and ¢r, the allowed
region for these two parameters are shown in figure 3 and the corresponding numerical
results are listed in table. 5, i.e., £¥F = (3.96 4 0.70) x 1072 and ¢y = —88° £ 7°. Our
result confirms that the solution By, in eq. (1.7) is helpful to resolve the “m K puzzle” (note
that a bit of difference might be due to the fact that the annihilation corrections are not
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Figure 2. The dependence of Acp(B — pK) on the new weak phase ¢r,.

£x107%

Figure 3. The allowed regions for the parameters £#* and ¢y, in Case I.

included in ref. [9]). However, the solution Ay is excluded by the updated experimental
data Acp(B~ — 7K ™) = 0.050 £ 0.025 as indicated in figure 1 (a).

With ¢5F = (3.96 +0.70) x 1073 and ¢ = —88° 4 7° as input parameters, we present
our predictions for B(B — wK*, pK), Acp(B — mK*,pK) and AZX(B® — 7Kg, p’Kg)
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Figure 4. The allowed regions for the parameters X7 and ¢, in Case I1.

in the fifth column of tables. 2, 3 and 4, respectively. We can see that most of them are
consistent with the experimental data within 20. Especially, the predicted ré‘};‘(BO —
7°Kg) = 0.46 + 0.06 is very close to the measurement 0.57 & 0.17 [15]. However, the
prediction for Acp(B~ — p’K~) = —0.36 4+ 0.10 presents a large discrepancy (larger
than 6o errors) with the current experiment data 0.4197093! [15], which is also shown in
figure 2 (a). This fact implies that Acp(B~ — p?K ™) can provide a strong constraint on
the Z' couplings, at lease in Case I, and some more general Z’ models might be required

to explain all of these measurements.

Case II: With the simplification BL:R ~ —2Bé’¢’iR only (i. e. (IR = 0). It is
interesting to note that, as shown in figure 1 (b), a region of minus £¢*% with ¢, ~ —90°
can bridge the discrepancy of Acp(B~ — 7K ~) between theoretical predictions and
experimental data. Moreover, it is also possible to moderate the problem of Acp(B~ —
p°K~) induced by £F as shown in figure 2 (b). So, in Case II we give up the simplification
R = 0 and pursue possible solutions to these discrepancies.

Taking B(B — 7K ) and Acp(B — wK) as constraints, we present the allowed regions
for ¢10, €17 and ¢p, in figure 4. Unfortunately, we find that the required region of minus
MR with ¢ ~ —90° is excluded by Acp(B? — 7 K™), because it will induce a large
negative Acp(B? — 77 K ™) as shown in figure 1 (b). In addition, as shown in figure 1 (b),
the region of plus ¢/ with ¢, ~ —90° is helpless to resolve the “mK puzzle”. The Z’
effects are therefore still dominated by large ¢“*, and the problem of Acp(B~ — p'K ™)
induced by ¢MF still exist.

In fact, with ¢&F and €% having the same sign, the corresponding Z’ contributions
counteract with each other in the B — 7K~ decay as shown in figures 1 (a) and (b).
It is also easily understood from the expression for the effective coefficient ag’ gw(PP) =
ah(PP) — ab(PP) [3], which involves the leading-order Z’ contribution in this case. Thus,
we conclude that any attempt to explain the B — 7K anomaly in the non-universal Z’
_ (LR

model with the assumption ¢V = ¢, as made in ref. [45], is frangible and excluded

in our case.
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Parameters Case 1 Case 11 Case 111 Case IV
¢ (x1073) 3.964+0.70 4.32+0.75 1524024 1.65+0.35
ELR(x1073) — 021 +0.15 —0.53+0.13 —0.54 £0.15
CLE(x1073) — — —11.84+31 —146+7.1
CER(x1073) — — — 1.04 £ 2.70
o —88°47° —88°47° —86°+14°  —85° 4 16°

Table 5. The numerical results for the parameters ¢#0ER ¢LELE and ¢ in the four different

cases. The dashes mean that the corresponding parameters are neglected in each case.

0 : 0 ‘
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Figure 5. The allowed regions for the parameters ¢/% LR ¢l and ¢ in Case III.

In a word, although the Z’ contributions with a positive £F or a negative ¢“% and
#1, ~ —90° are helpful to bridge the discrepancy of Acp(B~ — 7°K ™), they would induce
the unmatched Acp(B~ — p’K~) and Acp(B° — mtK~), respectively. Thus, with
both B(B — 7K) and Acp(B — 7K, pK) as constraints, our results indicate that all of
the parameter spaces in Case I and Case II are excluded with the assumption BLE ~

—2B£UQR. As an alternative, in the following, we proceed to pursue possible solutions to
these observations by considering the Z’ contributions to the QCD penguins ACS 5.
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Figure 6. The allowed regions for the parameters ¢&5% 08 ¢LELE and ¢p in Case IV.

Case III: Taking Bﬁ‘u ~ —2Bﬁl(i.e., ¢IR ~ 0), and leaving ¢IT and ¢LL-LR
arbitrary. As shown in figure 1 (c), we find that the variation trends of Acp(B° —
7t K~) and Acp(B~ — 7K ™) are always the same, indicating that the Z’ contributions
in this case could not give a solution to the observed “mK puzzle” directly, as well as the
unmatched Acp(B~ — p°K ™) induced by ¢M0. However, it is interesting to note that,
with ¢y ~ —90°, both Acp(BY — 7t K~) and Acp(B~ — 7K ~) could be enhanced
simultaneously, which may relax the constraints on &, As mentioned in Case II, a
negative ¢4 is favored by the “mK puzzle” and can moderate the problem of Acp(B~ —
p*K ) induced by ¢F. So, the parameter (** may play an important role.

With B(B — nK), Acp(B — 7K) and Acp(B — pK) as constraints, the allowed

regions for ¢LL, gLl ¢LL gL,
gL CLL

and ¢ are shown in figures 5. We find that none of

and ¢t

could be neglected. Especially, the part moderates the contradictions

caused by ¢PF and ¢MF. Furthermore, it is interesting to note that our predictions for
B(B — wK*,pK), Acp(B — nK*) and ABX(B? — 7Kg, p°Kg), listed in tables 2, 3
and 4, respectively, are all consistent with the experimental data within 2o.

Case IV: Without any simplification of Bf;;LR and Bf;‘éR, i.e., arbitrary values of

CLL,LR éLL,LR

and are allowed. More generally, we give up any assumptions of the

couplings BLE and B;&R. Then, there are five arbitrary NP parameters. As in Case III,

,13,



we take B(B — wK), Acp(B — 7K) and Acp(B — pK) as constraints and present the
predictions for the other observables.

The allowed regions for ¢45LR ¢ LLLE

and ¢, are shown in figure 6, while the numer-
ical results are listed in the last column of table 5. We find that, similar to Case III, the
values of ¢L0LF are definitely nonzero. The values of ¢V is a little larger than the one
in Case III, due to the interference effect caused by the parameter ¢(“%. Our predictions
for B(B — nK*, pK), Acp(B — nK*) and ARX(BY — n°Kg, p°Kg), listed in tables 2, 3

and 4, respectively, are consistent with the experimental data within 2¢.

4 Conclusions

Motivated by the recent observed large difference AA between Acp(BT — 7°K¥) and
Acp(B® — K*7F), we have investigated the effect of family non-universal Z’ model and
pursued possible solutions to the observed “m K puzzle”. Moreover, we have also taken into
account the constraints from the B — 7w K*, pK decays, which also involve the same quark
level b — sqq (¢ = u,d) transitions. Our main conclusions are summarized as:

e The Z' contributions to the coefficients of operators O; and Og (¢%F and ¢4F) with
¢1, ~ —86° are crucial to bridge the discrepancy of Acp(B~ — 7K ™) between
theoretical prediction and experimental data. However, they are definitely unequal
and opposite in sign.

e The Z’' contributions to the coefficients of QCD penguins operator O3 related to (.,
are required to moderate the contradiction of Acp(B~ — p°K~) and Acp(B° —
7t K™) to thier experimental values induced by ¢%F and ¢ respectively, even
though they are helpless to resolve the observed “mK puzzle”. On the other hand,
the Z' contributions to C5(¢*?) are inessential.

e For all of the four cases, a new weak phase associated with the chiral Z’ couplings,
with a value about —86°, is always required for the “m K puzzle”.

Combing the up-to-date experimental measurements of B — 7K, piK* and pK de-
cays, the family non-universal Z’ model is found to be helpful to resolve the observed “r K
puzzle”. It is also reminded that more refined measurements of the mix-induced CP asym-
metries in the B — 7Kg and p’Kg decays are required to confirm or refute the NP
signals. In the following years, the precision of measurements for these observables is
expected to be much improved, which will then shrink and reveal the Z’ parameter spaces.

Note added: When the paper is finished, we are aware of the interesting paper by
Barger et al. [56]. Although our topics are very similar, we have taken into account of not
only the CP asymmetries but also the branching ratios of the correlated decay modes to

constrain Z' couplings. Moreover, our approaches for the hadronic dynamics are different.
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A Decay amplitudes in the SM with QCDF

The decay amplitudes for B — wK decays are recapitulated from ref. [3]

1
A%MHW K = Z ‘/Pb ps 7TK |:6pu B2 + Oéi - §aZ,EW + ﬂg + ﬁg,EW}’ (Al)
p=u,c
V2AM e = Z V};b‘/};*s{AwOK— [5pu (a1 + B2) + off + o gy + 05 + ﬁg,EW]
p=u,c
3
YAk o [% as + §a§7EW} } (A.2)
* 1
AR e = D ViV Ao k= [Spu o + 0f + 0 gy + A 5 Pow|s  (A3)
p=u,c
\/’ * P 1 D D 1 D
ABO—>7TOKO = Z V})bvps Arogo [ -yt 5044,Ew - 53 + §BB,EW}
p=u,c
3
Ao Oy 02 + 508 gy | } : (A.4)

where the explicit expressions for the coefficients o = of (M M) and 7 = 5P (M Ms) can
also be found in ref. [3]. Note that expressions of the hard-spectator terms H; appearing in
af and the weak annihilation ones appearing in Bf should be replaced by our recalculated
ones listed in appendix B. The decay amplitudes of B — 7 K* and B — pK decays could
be obtained from the above results by replacing (1K) — (7 K*) and (7 K) — (pK), respec-
tively.

B The hard-spectator and annihilation corrections with the infrared fi-
nite gluon propagator

With the infrared finite gluon propagator to cure the end-point divergences, the hard-
spectator corrections in B — PP and PV decays can be expressed as [§]

Hy(MyMs) = %/0 dedyds (5 )<I>31( ), ()
s N ) >0
for the insertion of operators Qi—1_4..10,
H(M ) = — /0 dudyde (g L0 1 (6)D 11, ()
[ors T e ) 32
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for Qi=s7, and H;(M1My) = 0 for Q;=¢s. When both M; and M, are pseudoscalars, the
final building blocks for annihilation contributions can be expressed as [§]

i [ 2 f 1
A= 7T/0 dedyas(q ){ [(xy —w?(q?) +ie)(1 — x7y) * (Ty — w?(q?) +ie)x Dy ()@, ()
M1y Mo
b, () } B3

i_ﬂ' 1.7] « 2 Y P
A= /od duasta ){ [(my—uﬂ(fﬂ) Tl —ap) (xy—uﬂ(q?) +Z€)y] Do (y) Py ()

2 M M2 "
Ty AP e ¥ Frm () Pma )}’ (B4)
1 _

A5 = 7T/o dwdyaS(qQ){ @y — wQ(qQ)zi AT om ()

— 2 M2 (g T

(fy — w2(q2) + ie)(l — 1’@) X ( )¢m2( )CI)Ml (y)} ) (B'5)
Al—al—0 (B.6)
Af :7T/1 dzdyas(q?) 2(1 +2) My (1)@ s, ()
’ 0 ’ @y — w2 (@) +igz * O™ ’

2(1+y) Ma (), .
(Ty — w2(q?) +ie)y X () Pmy () Doy (y)} . (B.7)

When M is a vector meson and My a pseudoscalar, the sign of the second term in A}, the
first term in A%, and the second terms in A% and Ag need to be changed. When Ms is a
vector meson and M; a pseudoscalar, one only has to change the overall sign of A%.

C Theoretical input parameters

C.1 CKM matrix elements

For the CKM matrix elements, we adopt the Wolfenstein parameterization [46] and choose
the four parameters A, A, p and 7 as [47]

A=0.798T002 N =0.225211000085 5 =0.141705° 7 =0.340+£0.016, (C.1)

2

I 2 _
withp=p(1-2)and =n(1 - 2).

C.2 Quark masses and lifetimes

As for the quark masses, there are two different classes appearing in our calculation. One
type is the current quark mass which appears in the factor r)]y through the equation of

,16,



motion for quarks. This type of quark masses is scale dependent and denoted by m,. Here
we take

(1) /Mg () = 27.4 4 0.4 [48], Ms(2GeV) = 87 + 6 MeV [48],
() = 4207907 GeV [49], (C.2)

where ™, () = (M, + Maq)(1)/2, and the difference between w and d quark is not
distinguished.

The other one is the pole quark mass appearing in the evaluation of penguin loop
corrections, and denoted by m,. In this paper, we take [49]

My =mg=ms=0, m.=16170%GeV, my=479"002GeV. (C.3)
As for the B-meson lifetimes, we take [49] 75, = 1.638ps and 75, =
1.530 ps,respectively.
C.3 The decay constants and form factors
In this paper, we take the heavy-to-light transition form factors [51]
FB=™(0) = 0.258 +£0.031, FP7K(0) =0.331 £0.041, VB=E7(0) =0.411 £ 0.033,

AFTR(0) = 0.374£0.034,  APTHT(0) = 020240028, VPP(0) = 0.323 £ 0.030,
AP7P(0) = 0303 £0.020,  AP77(0) = 0.242 4 0.023. (C4)

and the decay constants

fB = (216 £ 22) MeV [50], fr = (130.4 +0.2) MeV [49],
fx = (155.5 +0.8) MeV [49], fie = (217 £ 5) MeV [51],
f, = (209 + 2) MeV [51]. (C.5)

C.4 The LCDAs of mesons and light-cone projector operators.
The light-cone projector operators of light mesons in momentum space read [3, 52]

ifp
4

ML = [1575 Pp(z) — ppPys kiz-kl; (I)p(x)] ;

af
my iy Ko b o
fv ke k"

(1), = -5 [povior - @) ()

where fpy are the decay constants, and up = mbrf /2, with the chirally-enhanced factor
7“5 defined as

Qm%
my(p) (mg +ms) (1)

;i (p) = : (C.7)

) = i 2me )

where the quark masses are all running masses defined in the MS scheme. For the LCDAs
of mesons, we use their asymptotic forms [53, 54]

CPpy(z) =6x(l—z), o¢p(x)=1, ¢y(x)=32x—-1). (C.8)
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As for the B-meson wave function, we take the form [55]

Mg \? 5
d = Np&(1 — o —= — )
5(€) = Nt £>exp[ (52 ) € 0) ] (C9)
where (g = 1 — my/Mp, and Np is the normalization constant to insure that

Ji dePp(€) = 1.
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