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Abstract We generalize the Jacobi no-core shell model (J-
NCSM) to study double-strangeness hypernuclei. All parti-
cle conversions in the strangeness S = —1, —2 sectors are
explicitly taken into account. In two-body space, such tran-
sitions may lead to the coupling between states of identical
particles and of non-identical ones. Therefore, a careful con-
sideration is required when determining the combinatorial
factors that connect the many-body potential matrix elements
and the free-space two-body potentials. Using second quan-
tization, we systematically derive the combinatorial factors
in question for § = 0, —1, —2 sectors. As a first application,
we use the J-NCSM to investigate A A s-shell hypernuclei
based on hyperon-hyperon (YY) potentials derived within
chiral effective field theory at leading order (LO) and up to
next-to-leading order (NLO). We find that the LO potential
overbinds A6A He while the prediction of the NLO interaction
is close to experiment. Both interactions also yield a bound
state for A5AHe. The A4 4 H system is predicted to be unbound.

Keywords Hyperon—Hyperon interactions - A A Hypernu-
clei - Forces in hadronic systems and effective interactions -
Shell model

1 Introduction

The scarcity of hyperon-nucleon (YN; Y=A, ¥') data and the
almost complete lack of direct empirical information on the
hyperon-hyperon (YY) and = N systems poses an enormous
challenge for theorists in the attempt to derive baryon-baryon
(BB) interactions in the strangeness sector on a microscopic
level. By exploiting SU(3) flavor symmetry, several sophis-
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ticated YN potentials have been derived [1-5], which all
describe the available YN data on an adequate quantitative
level. The situation however remains largely unsatisfactory
for the strangeness S = —2 sector, at least for the foresee-
able future, because it is practically impossible to perform
direct YY scattering experiments and so far there have been
no two-body S = —2 bound states observed. Data on A A-
and Z hypernuclei are therefore an indispensable source of
information that can provide valuable additional constraints
for constructing Y'Y interactions. The latter requires solving
the exact S = —2 many-body Hamiltonian with microscopic
two- and higher-body BB interactions as input.

In the present work, we utilize the Jacobi no-core shell
model (J-NCSM) [6,7] to study double-strangeness hypernu-
clei. Historically, since the first observations of A A hypernu-
clei, AlgBe [8], A(j‘ He [9] and especially after publication of
the so-called Nagara event [10, 11], various approaches have
been employed to study doubly-strange hypernuclei [12-
26]. For example, Nemura et al. used the so-called stochas-
tic variational method in combination with phenomenolog-
ical effective central AN and A A potentials to investigate
AA s-shell hypernuclei [12]. Thereby, it was assumed that
the effects of tensor forces, three-body forces and A — ¥
conversion are effectively included in such central poten-
tials by fitting the binding energies of the s-shell (core)
A-hypernuclei. In their later work [13], the channel cou-
pling, e.g., AN — ¥ N or AA — EN was fully taken into
account, but again the Y'Y interaction consisted of only cen-
tral potentials. Hiyama and co-workers have successfully
applied the Jacobian-coordinate Gaussian expansion method
to AA hypernuclei with A = 6 — 11, which treats hyper-
nuclear systems as three-, four-, or five-cluster structures
[14,15,23]. The authors have advanced the approach in order
to allow for all possible rearrangement channels so that any
changes in the dynamic structure due to A interactions can be
taken into account. The interactions between a A and a cluster

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1140/epja/s10050-021-00522-8&domain=pdf
mailto:h.le@fz-juelich.de
mailto:j.haidenbauer@fz-juelich.de
mailto:meissner@hiskp.uni-bonn.de
mailto:a.nogga@fz-juelich.de

217 Page 2 of 21

Eur. Phys. J. A (2021) 57:217

are approximated using the simulated G-matrix YN poten-
tials that are derived from a set of one-boson-exchange poten-
tials. Here, the AN — ¥ N and A A — & N couplings were not
treated explicitly but the tuning parameters of the simulated
potentials are chosen to reproduce some experimental sepa-
ration energies such as those of iHe and A6AHe. It is there-
fore rather difficult to relate the properties of the employed
potentials to the free-space BB interactions. Filikhin and Gal
have solved the Faddeev—Yakubovsky equations formulated
for three- (A Aw), four-cluster (A Axa) and A Anp compo-
nents [16—18]. Their calculations are also based on simu-
lated potentials similar to those used in the works of Hiyama
et al. but the A A interactions were mainly restricted to the
s-wave. Lately, Contessi and co-workers [25] have combined
the stochastic variational method with pionless effective field
theory (EFT) interactions at LO to investigate the consistency
of A =4 — 6 AA hypernuclei.

Recently, the Jacobi NCSM has been successfully
employed by us in studies of single-A hypernuclei up to
A =7 [27,28]. In these investigations, the full complex-
ity of the underlying nucleon-nucleon (NN) and YN inter-
actions (tensor forces, channel coupling) could be incorpo-
rated. Now we extend the Jacobi NCSM to § = —2 sys-
tems. Also here all channel couplings, i.e., AN — YN, and
AA—AY — X3 — E N are explicitly considered. As a first
application, we use the approach to obtain predictions of the
chiral leading order (LO) [29] and next-to-leading order
(NLO) [30,31] YY interactions for A A s-shell hypernuclei.
Chiral EFT [32] is a very successful tool for describing the
NN interaction (see [33] and references therein) and allows
for accurate calculations of nuclear observables [34—37]. The
YN interaction derived within the chiral EFT approach up to
NLO likewise leads to realistic results for (s- and p-shell)
hypernuclei [27,28,38-40] and for nuclear matter [31,41].
It is therefore of great interest to study the predictions of the
chiral YY potentials for A A hypernuclei.

The paper is structured in the following way. We present
in Sect. 2 some details of the technical realization. Some rele-
vant formulas are also provided in the appendix. First results
for the AaHe, ASAHe and A‘;H hypernuclei are discussed
in Sect. 3. Finally, conclusions and an outlook are given in
Sect. 4.

2 Numerical realization
2.1 Jacobi basis for S = —2 systems

In this section, we generalize our Jacobi no-core shell model
(J-NCSM) formalism [28] to S = —2 hypernuclei. Adding
a second A hyperon to single-strangeness systems com-
plicates the numerical realization in many ways. All par-

—~

ticle conversions that involve a & hyperon, for instance
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AA < EN, XYY < ENor AY < EN change the
total number of nucleons in the system by one. The latter
must be explicitly taken into account for the many-body
Hamiltonian and for the basis states. Furthermore, parti-
cle conversions in both § = —1 and S = —2 sectors
can also lead to couplings between states of identical and
non-identical hyperons. Because of that, special attention is
required when evaluating the Hamiltonian matrix elements.
These issues will thoroughly be addressed in this section
and in Appendix A. We start with the construction of many-
body basis states first. Since the total number of nucleons
in the system can change depending on the strange parti-
cles, we split the basis functions into two orthogonal sets:
one set that involves two singly strange hyperons referred
to as |a*(172)) and the other that contains a doubly strange
Z hyperon denoted as |a*(Z)). The former is constructed
by coupling the antisymmetrized states of A — 2 nucleons,
leca—2)N ), to the states describing a system of two hyperons,
|Y1Y2)

o M11) = a4 n) ® V1Y) M
= |NJT, aa—2)n ay, v, NoA;
((lYlYz(sYlSYz)SYlyz)JYIYZ()”JA_2)I)‘)J’

Yy
((ty, 1) Triv, Ta-2)T) = | HO).
r

with Y1,Y> = A, X and Y1 < Y,. Here the inequality
Y1 < Y, indicates the fact that we distinguish among the
three two-hyperon states |AA), |AX) and | X X') but do not
consider the | X' A) state explicitly. The notations in Eq. (1)
are the same as introduced in Refs. [7,28]. For example,
the symbol o4—2)n stands for all quantum numbers char-
acterizing the antisymmetrized states of A — 2 nucleons:
the total number of oscillator quanta N4_,, total angular
momentum J4_7, isospin 747 and state index 4> as well.
Similarly, oy, y, stands for a complete set of quantum num-
bers describing the subcluster of two hyperons Y; and Y».
The principal quantum number n; of the harmonic oscil-
lator (HO) together with the orbital angular A describe the
relative motion of the (A — 2)N core with respect to the
center-of-mass (C.M.) of the Y| Y> subcluster. The orders, in
which these quantum numbers are coupled, are shown after
the semicolon. As for the transition coefficients for standard
nuclei and single A hypernuclei [7,28], the corresponding
momenta or position vectors point to Y1 and the A — 2 clus-
ter, respectively.

Analogously, in order to construct the basis |a*(5 )), one
combines the antisymmetrized states of an (A — 1)N system,
leea—1)n ), with the HO states, |Z'), describing the relative
motion of a = hyperon with respect to the C.M. of the (A-1)N
subcluster
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l* &)y = a—1n) ® 18) = INIT, aa-1yy ns Iz ts;

(Ja—1legsz)Iz)), (Ta—1t2)T) = |.—€ ).
2

Here, also a(4—1)y denotes a set of quantum numbers rep-
resenting an antisymmetrized state of A — 1 nucleons. The
relative motion of a & hyperon is labelled by the HO princi-
pal quantum number n z, the orbital angular momentum /z
and spin sg = % which combine together to form the total
angular momentum /z, and the isospin t5 = % Again, fol-
lowing the definition of our coefficients of fractional parent-
age (CFPs) [7], the momentum or position vector points
towards the spectator particle, i.e., the =. Finally, the last
lines in Eqs. (1,2) also show the graphical representations of
the states.

With the basis states defined in Egs. (1,2), the § = —2
hypernuclear wave function |¥ (7w JT)) can be expanded as

W@IT))= Y Copunry | WIT))

a*(Yl Ys)

+ ) Couio [ EWIT)). 3)

(&)

The expansion coefficients are obtained when diagonaliz-
ing the § = —2 Hamiltonian in the basis Eq. (1,2). For
practical calculations, the model space is truncated by lim-
iting the total HO energy quantum number N' = Ny, +
2n, + L + Nyyy, = Naoi + 1z + 2ng < Nipax. Of
course, by doing so, the computed binding energies will
depend on N4, and on HO frequency w. There are sev-
eral extrapolation methods that have been well tested for
nuclear NCSM calculations [42-45]. Here we observe, like
for the § = —1 systems, that the optimal HO frequencies
for the S = —2 hypernuclear binding energies are gener-
ally not the same as the one for the parent nuclear bind-
ing energies. Therefore, in order to extract the converged
results, we follow the two-step extrapolation procedure that
has been extensively employed for the J-NCSM nuclear
and single-A hypernuclear calculations [7,28]. The ener-
gies E(N, w) are computed for all accessible model spaces
Ninax and for a wide range of w. We then determine E zs for
a given N4y = N by minimizing the energies E(N, o)
with respect to w. In the second step, an exponential fit is
applied to Ejs in order to extrapolate to N — oo. For
excitation energies and separation energy differences, it is
more appropriate to fit the results to a constant as will be
discussed in Sect. 3.1. A similar approach has been followed
in [28].

2.2 S = —2 many-body Hamiltoninan
For the solution of the A-body Schrddinger equation,
H|¥) =E|¥) “)

we use a standard, iterative Lanczos solver. In order to
introduce the pertinent ingredients, we will in the follow-
ing present the evaluation of an expectation value of H. The
extension to the evalution of H |¥) is then straightforward.
Using the wave function in Eq. (3), one can write down the
final expression for the energy expectation value as follows

(W(@EJT)|H|Y(JT))
= Z C 1) C vy vy (*112)| f | o/*(172)y

a*(172)
a/*(Yl Ys)

>

a*(E) | @*(E)

2 Y Counry Cyeia (D H |o*D)) - (5)

(Y172
)

Ca*(E)Ca/*(E) <(X*(E) |H | Ol,*(E)>

The last line in Eq. (5) is obtained by exploiting the hermitic-
ity of the Hamiltonian. It should be clear from Eq. (5) that
the part of the Hamiltonian that only involves the doubly-
strange hyperon = does not contribute to the matrix ele-
ment (o*Y172)| H | o*¥1Y2)) (in the first line). Likewise,
(*®) | H | o’*(5)y will not receive any contributions from
the part of the Hamiltonian that contains two singly-strange
hyperons Y and Y>, whereas the last term is nonzero only
for the transition potentials in the S = —2 channels. There-
fore, in order to write down the explicit form of the § = —2
A-body Hamiltonian, we distinguish three parts of the Hamil-
tonian, namely Hy,y,, Hz and Hlflzyz__zs > Which contributes
to the matrix elements in the first, second and third lines in
Eq. (5), respectively. The first part of the Hamiltonian Hy, y,
corresponds to a system consisting of A — 2 nucleons and
two singly-strange hyperons Y and Y>, and has the following
form,
HYle = H)iz)’g + Hf;;;] + Hf/gl:Y;Z
¥ (gl v)

Mty ty,) Y

i<j=1

S=—1
Yy

A=2 2
n Z (mN +m(ty,) Piy,
= N Mty ty,) 2y,

2

my +m(ty,) Piy, ys=1
M s+ )

(tYla th) Miy,
2

m(tYl) + m(th) leYz
M(ty,, ty2)  2uyy,
+(m(tY1)+m(tY2) _zmA) +---, (6)

S§=-2
Y11

@ Springer
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with Y1,Y> = A, XY and Y| < Y». Here, m(ty,), m(ty,)
and my are the Yj, Y, hyperon and nucleon rest masses,
respectively. M (ty,, ty,) denotes the total rest mass of the
system M (ty,, ty,) = m(ty,) + m(ty,) + (A — 2)my, while
Wiy, and py,y, are the YN and Y'Y reduced masses, respec-
tively. The rest mass differences within the nucleon- and
hyperon-isospin multiplets are neglected. Vif.zo, Vi‘;:_l, and
VYS? =2 are the nucleon-nucleon (NN), YN and YY poten-
tials. Finally, the last term in Eq. (6) accounts for the differ-
ence in the rest masses of the hyperons arising due to particle
conversions.

Likewise, the second Hamiltonian, Hg (involving a &
hyperon) corresponds to a system composed of a & hyperon
and A — 1 nucleons. Hence,

Hz = HS™® + H3=
A-1 2
2pi; 5=0
= Z (M(’:) +Vij )
i<j=1 =
A-1 2
my-+mg pg; S=—2
+ <—,_, = 4+ V_: )
; M(E) 2ugz; =t
+(mz +my —2mp)+---, )

where m g is the = hyperon rest mass and w; z is the reduced
mass of a & and a nucleon. The total mass of the system is
now givenby M(Z) =mg +(A—Dmy. VESi:_2 isthe &N
potential. The ellipses in Egs. (6,7) stand for those higher-
body forces that are omitted here. The transition Hamiltonian
H 5;2_%_;  is simply given by the YY-Z N transition potential

A—1
S=—2 _ S=-2
Hyyoen = D Vi ®)
i=1
2.3 Evaluation of the § = —2 Hamiltonian matrix elements

Now, taking into account the explicit forms of the A-body
Hamiltonian in Eqgs. (6-8), all possible contributions to the
matrix element (' (xJT)| H |W¥ (7w JT)) can then be split
into three groups involving the non-strange H5=°, single-
strange H5="" and double-strange HS="2 parts of the total
Hamiltonian,

(W@EJIT) |H|W(xJT)) = (W(rJT) | H= | W (xJT))
+W@JIT) | HS=" |\ w(xJT))
HWEIT) | HS=2 |\ w@xJT)). (9)

The evaluation of the non-strange part,

(W (rJdT)|H= | w(xJT))

*(Y1Y, S=0, . /%(YY
= Z C v C iy vy {0t I 2)|Hy1y2|0[ @ 2))

a*(112)
a/*(Yl Ys)
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+ Z Ca*(E)Ca/*(s) (a*(s) |Hg=0|a/*(5')) ’
a*(E) g*(8)

(10)

does not require any new transition coefficients, and can
be performed analogously as done for the S = —1 sys-
tems [28]. Furthermore, the combinatorial factors that relate
the A-body matrix elements (o*(¥172)| Hf/?l:Y(2)| o*¥172)y and
(a*B) |H g:ol a*(8)y to the two-nucleon matrix elements
in the two-body sector are given by the binomial coefficients
of ("3) = Apuet(Anuet — 1)/2 with Apyer = A — 2 and
Apuel = A — 1, respectively, being the number of nucle-
ons in the system (see Appendix A for the definition of the
combinatorial factors).

The matrix elements of the double-strange part H5="2 of
the Hamiltonian,

(W (xJdT)|H="2 | W (nJT))
= Z Ca*(ylyz)ca/*(yly2) (Ol*(y1 Y2)| Hf/gl:YZ—2| Ol/*(y' YZ))

a*(YIYZ)
a/*(Yle)
#(V1Y; S=— (8
+ Y 2C, 00y Coneay (@M HPT 2 [*0D))
o172
)
(5 S=-2| /x(&
+ E Coni@) Coue (@™ &) |HE=2 o/ ¥ 5D,
a*(E) g+(E)

(1D

are evaluated analogously. Indeed, in order to calculate the
last two terms in Eq. (11), one simply needs to expand
the states |o*(Z)) in the complete set of intermediate states
la*(EN)Y that explicitly single out a Z N pair,

Q*(EN)

12)

+(3) | K(EN))

Here the transition coefficients (a*(%) |« can be com-
puted using the expression Eq. (A.6) in Ref. [28]. It is easy to
see that the last term in Eq. (11), (o*(%) |H_:3.:_2| o*(&)y _ dif-
fers from the matrix element of the two-body & N Hamilto-
nianinthe | Z N) basis by a combinatorial factor of A—1. The
factor that relates (o*(Y172)] H}SIZY;_ZE vl ) to the two-
body transition potential Vy,y,—zy is, however, not obvious
because of possible couplings between identical and non-
identical two-body states, for instance, ¥ X — &N or AA —
& N. In Appendix A, we have shown that, in this case, the

corresponding combinatorial factor is 4/A — 1 (see Table 4).

2.4 Separation of a YN pair

Let us now discuss the evaluation of the second term in
Eq. (9) that involves the singly-strange Hamiltonian H5="!
of Eq. (6),
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(W (rJT)|H=" W (zJT))
Z Ca*(Yle)Ca/*(Yle) (Ol*(Yl Y2)| 1'151:;/2_1“3‘/*(1/I Yz))’

Y112
o172

13)

in some details since it requires new sets of transition coef-
ficients. Here, in order to compute the matrix elements
(o*(N112)) H)‘f]:yz_l | a*(Y1¥2)y "one needs to employ other sets
of intermediate states that explicitly separate out a YN pair .
Obviously, each of the hyperons, Y| and Y>, can interact with
anucleon independently (asitis clearly seen from the expres-
sion for Hy, _*] in Eq. (6)). It is then instructive to exploit

*(Yz))

two separate 1ntermediate sets, namely |(a* 1)) and

I(a*(YZN))*(YI)). The first set, |(o*M1 N))*(YZ)), is needed

when computing the matrix elements of the first two terms

of Hy~ ! where Y] is the active hyperon while Y> plays the
Y1V

role of a spectator. Similarly, the second set, | (c*(2¥ ))*(Yl ) ),
is useful for evaluating the two remaining terms in Eq. (6)
where the roles of the Y] and Y, hyperons have been inter-
changed (i.e.,Y> is now the active particle). The construction
of these bases is straightforward. For example, the first set
can be formed by combining the hyperon states | Y>), depend-
ing on the Jacobi coordinate of the Y hyperon relative to the
C.M. of the ((A —3) N + Y N) subcluster, with the |o*¥1V))
states constructed in Eq. (9) in [28]. Thus,

|(a*(Y]N))*(Y2)) (14)
= |o*MV)y ® |1,)
= INIT, & Wiy, Iy, iy,; (T30
(T V)T

(y,sv,)Iy,)J,

Yy

o)

6}

and, similarly

|(a*(Y2N))*(Y1)) (15)
=" ™M) @ 1)
= INJIT, 52N iy Ty, iy, (15N sy v,
(T*(YZN) 1)T)

Y

el

Y

Inboth of these basis states, we have one momentum/position
of the spectator pointing towards the spectator, the one of
the pair pointing towards the hyperon and the third momen-
tum/position pointing towards the A — 3 cluster.

Clearly, each of the above two auxiliary sets is complete
with respect to the basis states |o*¥12)) in Eq. (1). This in
turn allows for the following expansions

|a*(Y1 Y2)>
_ Z <(a*(Y1N))*(Y2)|a*(Y1Y2)>‘(a*(YlN))*(Yz))7

(@*V1M)y*(¥2)

(16)

or,
|a*(Y1Yz)>
_ Z ((a*(yzN))*(Yl)|a*(Y1Y2)>|(a*(Y2N))*(Y1))_

(@*V2M)y*(¥))

7)

Obviously, when Y] and Y, are identical, the two auxiliary
sets Egs. (14,15) are the same, and there is no need to distin-
guish between the two expansions. In any case, the expansion
coefficients in Eqs. (16,17) are very similar to each other and
can be computed analogously. In the following, we focus on
the transition coefficients of the first expansion. For com-
puting the overlap, ((a*Y1M))*(¥2)|o*(Y1¥2)y 'we make use of
another set of auxiliary states, |(a*¥1)*(2)) that explicitly
single out the Y7 and Y> hyperons. These states are obtained
by coupling the hyperon states |Y>) to the basis states of the
((A = 2)N + Yp) system, |a*¥), 1, defined in Eq. (4)
in [28],

(@) (18)
= la*) 4 1®|Y2>
= |NJT, o) ll)nyzlyztyz; (JZ(,Yll)(lyzsyz)Iyz)J,
(T3 1)) T)
= INJT Ny _ony, Iy, ty,ny, Iy, tyy; ((JA 2y sy Iyy)
(IYZSYZ)IYZ)J ((Ty_ thl)T 1 th)T)

The third line in Eq. (18) is to illustrate how the quantum
number of the three subclusters: (A-2) nucleons, Y1 and Y,
hyperons, are combined to form the intermediate states with
the definite quantum numbers A, J and T. Exploiting the

completeness of the auxiliary states |(oc*(Y 1))*(Y2)), the tran-
sition coefficient in Eq. (16) then becomes

((a*(le))*(Yz) a1 Yz))
_ ((a*(YIN))*(Y2)|(a*(Yl))*(Y2)><(a*(Y1))*(Y2)|a*(Y1Y2))

@ Springer
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=(ort[“0)(er | o]

= 8y}, Sa-2,A-2

Yy

X <‘_YI1 ) Y'l_.>(A—1)<.}: ?_‘>’

63

(19)

where a summation over the states |(a*(yl))*(Y2)) is implied.

The first overlap ((a*(le))*(YZ)|(a*(y1))*(y2)> in Eq. (19) is
essentially given by the transition coefficients of a system
consisting of (A — 2) nucleons and the Y7 hyperon (see
Eq. (11) in [28]), whereas the second term
((*M ))*(Yz) |o*(172)) can quickly be deduced from Eq. (11)
in [7],

((a*(h))*(”z) |a*(Y1 Y2)>

Z‘ST’ TAfzsfg ZJAfzsN'A—ZNA 25{/’4 )
(Yl) *(Yl)
X(_1)3JA72+2TA72+TY] y2+Sy1 y2+)»+tyl +ly] +ty, +ly2+1y]
P Ja—2 sy, Sa-1
Sa_1+1 82 |
X DG Ml SA—1= )
Y Y
Sa—1=Ja—2+sy, 1A=l !

e ly, Sa-1 JA( ! lyyy, Sviva i1,
x Y L8Ny, sy, Iy, hodaa I
N J

L=ly, +ly, L L S J
S:SA,I-Q-SYZ
X{ Sy, Sy; SYIYZ} IYZ tYI TY%YZ
*(Y1)
Ja—2 S Sa—1 ) | Taa T Ty

X(ny, ly, ny, ly, : LIny,y, ly,y, na A : L)q, (20)

with,

_ (A =2)my m(ty,)
m(ty))((A =2y my +m(ty,) +m(ty,))

Here, we use the notation j = /2] + 1 and abbreviate the
summations running from |J; — J2| to J; + J» simply by
J1 + ).

The transition coefficients for the second expansion in
Eq. (17) are computed analogously. Taking into account
the expansions Eqgs. (16,17), the matrix element (o*(112)]

Hfflfz_l | *(172)) in Eq. (13) is then decomposed into,

<d*(Y1 Y2)| HS:—l | a/*(Y] Yz))

— < *(Y]Yz)lHS——l

| Ol/*(Yl Y2)>Y2

+ < *(Y1Y2)| HS__1|Ol/*(Y1Y2))Y1 (21)

The subscript in each term on the right-hand side of Eq. (21)
specifies the hyperon spectator. The first contribution is fur-
ther given by

@ Springer

( *(Y1Y2)| HS—*] /*(Y1Y2)>Y2

| (22)

= o] | 5[-><-le #75: 1;‘)(’;1 1ol

- (0] Iy i0-1 |15, 1-ojeri o

The expression for the second term in Eq. (21) is obtained
from Eq. (22) by interchanging the roles of the Y7 and Y»
hyperons in the intermediate states,

<(X*(Y1Y2)| H).EI:yz—l|a/*(Y1Y2)>Y1 (23)

- (uyx @y, o115, f—-)(’yrl |;1;—0>-

Although Eqgs.(22,23) are very similar to the expression
for computing the Hamiltonian matrix elements in § =
—1 systems, the presence of a hyperon spectator Y (Y1)
makes it rather difficult to determine the proper combi-
natorial factors that relate the many-body matrix elements

W s=—1 1 2 s=1 2
._I |HY1Y2 | I_.> and 8YI Y{(._I |HY1Y2 | I_‘> to
the YN Hamiltonian matrix elements in the two-body sector.
These factors are also provided in Table 3 in Appendix A.
From Table 3, one can clearly see that the corresponding fac-

tors depend not only on the total number of nucleons but also
on the two hyperons Y7 and Y> in the intermediate states.

8Y2Y2/<

3 Results

In this section, as a first application, we report results for
the A A s-shell hypernuclei AAH(1+ 0), ASAH (1+, 1) and

He(0+, 0). To zeroth approximation, these systems can
be regarded as a AA pair in the ' Sy state being attached to
the corresponding core-nuclei predominantly in their ground
states. While the quantum numbers of A5AHe J*T7T) =

(1+, 1) are obvious, those for the , AH hypernucleus are
chosen according to our observations that the state with
(JT,T) = (17,0) is the lowest-lying level and in many
calculations the one closest to binding of all A =4 § = -2
hypernuclei. Therefore, we will report our results for this
state below.

For all calculations presented here, we employ BB interac-
tions that are derived within chiral EFT [32]. The high-order
semilocal momentum-space regularized potential with a reg-
ulator of Ay = 450 MeV (N4LO+(450)) [33], SRG-evolved
toAyy = 1.6 fm~L, is adopted for describing the NN inter-
action. The next-to-leading order potential NLO19 [4] with
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a chiral cutoff of Ay = 650 MeV and an SRG parameter
of Ayy = 0.868 fm~! is used for the YN interaction. We
remark that the chosen NN and YN potentials successfully
predict the empirical A-separation energies for ZH iHe(l“L)
and iHe, and underbind ‘j‘He(O“L) only slightly [28]. There-
fore, those potentials are an excellent starting point for the
extension to S = —2. Eventually, in a future study, it will
be interesting to also examine the dependence of § = —2
hypernuclei on the SRG evolution and the starting interac-
tions in the § = —1 sector. Clearly, in such an investigation
one has to ensure to maintain the favorable description of
S = —1 hypernuclei. Therefore, we do not expect a signif-
icant impact of any variations subject to that pre-condition
on separation energies for S = —2 hypernuclei. For the two-
body interactions in the S = —2 sector, we utilize the chiral
YY interactions at LO [29] and up to NLO [30,31], with a
chiral cutoff of Ayy = 600 MeV. Therefore, the predictions
for S = —2 hypernuclei shown here are based on a set of
interactions that are consistent with the available NN, YN
and YY data and with the empirical separation energies of
light S = —1 hypernuclei.

One of our primary aims here is to establish the predictions
of these chiral YY potentials for double-A s-shell hypernu-
clei. Ultimately, it is expected that results from such a study
may provide useful additional constraints for constructing
realistic S = —2 BB interaction potentials, given the scarcity
of direct empirical information on the underlying two-body
systems (A A, &N, ...). Due to the latter circumstance, in the
chiral approach (as well as in meson-exchange and/or con-
stituent quark models) the assumption of SU(3); symmetry is
an essential prerequisite for deriving pertinent potentials. For
example, in chiral EFT the short-distance dynamics is repre-
sented by contact terms which involve low-energy constants
(LECs) that need to be determined from a fit to data [32].
SU(3) symmetry strongly limits the number of independent
LECs [3]. However, at NLO, there are two LECs which are
only present in the S = —2 sector, and which contribute to
the interaction in the spin- and isospin zero channel, specifi-
cally to the ' Sy partial wave of AA. They correspond to the
SU(3) singlet irreducible representation, see Ref. [30], and
are denoted by C'and C', respectively, in that work. These
have been fixed by considering the extremely sparse and
uncertain YY data (i.e., a total cross section for &~ p — AA
[46] and the upper limits of elastic and inelastic =~ p cross
sections [47]). Clearly, such poor empirical data do not allow
for a reliable quantitative determination of the unknown
strength of the two contact terms in question. Nevertheless, it
turned out that reasonable choices for the C!’s can be made
[30,31] and the YY cross sections predicted by the two NLO
potentials are fairly consistent with the experiments. Further-
more, the A A 'Sy scattering lengths predicted by these inter-
actions are compatible with values inferred from empirical
information [48,49]. The LO interaction yields a somewhat

large scattering length in comparison to those values and it
also exhibits a rather strong regulator dependence [29].

It should be pointed out that our initial NLO interaction for
S = —2 [30] and the updated version [31] differ only in the
antisymmetric SU(3); component which means essentially
only in the strength of the £ N interaction in the 35| partial
wave. This has an impact on the corresponding in-medium
properties of the =. Specifically, the updated version from
2019 [31] yields a moderately attractive = single-particle
potential that is roughly in line [50] with recent experimental
evidence that the existence of bound Z-hypernuclei is very
likely [51]. With regard to A A systems, we observe that the
two realizations yield very similar binding energies for the
double- A s-shell hypernuclei. This indicates that, in general,
the actual strength of the spin-triplet = N interaction has lit-
tle influence on few-body observables related to A A. In the
following, we therefore present results for the LO and the
updated NLO interactions for a chiral cutoff of Ayy = 600
MeV. In order to speed up the convergence, both YY poten-
tials are also SRG-evolved. We use a wide range of the SRG
flow parameters, namely 1.4 < Ayy < 3.0 fm~1, to quantify
the contribution of possible SRG-induced YYN three-body
forces.

3.1 ,SHe(0, 0)

The /&He hypernucleus is so far the lightest double- A sys-
tem being unambiguously established. Since the observa-
tion of the Nagara event [10], its AA separation energy,
defined as Baa(,5He) = E(*He) — E(,5He), has been
exploited as a crucial constraint for constructing effective
potentials that are then employed in many-body calculations
like the Gaussian expansion method [13,52] or the cluster
Faddeev-Yakubovsky approach [16,17]. The re-analysis of
the Nagara event using the updated & mass yielded a slightly
smaller A A separation energy, B ( AGAHe) = 6.91+0.16
MeV [11,53], as compared to the initially estimated value
of BAA(A%He) = 7.2540.19 [10]. This, in turn, may have
direct consequences for theoretical predictions for poten-
tially observable bound states of other s-shell AA hyper-
nuclei, particularly the A = 4 double-A system [25,54],
see also the discussion in 3.3. We note that the information
about B ( A(}\He) has not been directly utilized in order
to constrain the LECs appearing in the chiral LO and NLO
potentials. It is therefore of enormous interest to explore this
double- A system using the two chiral interactions to scru-
tinize their consistency with the measured A A separation
energy.

As mentioned earlier, in order to eliminate the effect of the
finite-basis truncation on the binding energies, we follow the
two-step extrapolation procedure as explained in [28]. The
w- and N -space extrapolations for E( AﬁA He) are illustrated
in panels (a) and (b) of Fig. 1, respectively. The error bars
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Fig. 1 Binding energy E, A A-separation energy B 4 and A A-excess
energy ABj, for A6 'yHe computed using the YY NLO(600) interac-
tion [31] that is SRG evolved to a flow parameter of Ayy = 1.8 fm~!,
The SMS N*LO+(450) potential [33] with Ayy = 1.6 fm~! and the
NLO19(650) potential [4] with Lyy = 0.868 fm~! are employed for
the NN and YN interactions, respectively. (a): Solid lines with differ-

shown in the figures of the A/-dependence of energies, panel
(b), are given by the difference to the next model space. These
error bars are not meant to provide a realistic uncertainty esti-
mate but only to give weights for the following extrapolation
to N/ — oo. For illustration purposes, we present results for
the NLO potential with Ayy = 1.8 fm~! but stress that the
convergence trend is similar for all other values of Ayy, and
for the LO interaction. Also, the behavior of E( Af‘,‘ He) with
respect to @ and N resembles that of the binding energy
of the parent hypernucleus iHe [28]. Furthermore, panel
(b) clearly demonstrates a nice convergence pattern of the
binding energy E( A%He) computed for model spaces up to
Niax = 14. We also perform an exponential fit to extrapo-
late the A A-separation energy, as done for S = —1 systems.
Clearly, the result for B4 ( A%He), displayed in panel (c),
is also well-converged for N,,,, = 14 (practically with the
same speed as that of E( A(}\He)). Note that, for single-A
hypernuclei, the separation energy B4 converges somewhat
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(d) ABsa(,%He) as a function of

ent colors and symbols represent numerical results for different model
spaces A. Dashed lines are obtained using the ansatz Eq. (22) in [28].
(b-d): Red (horizontal) lines with shaded areas indicate the converged
results and the corresponding uncertainties. Note that binding energies
strictly converge from above whereas binding energy differences like
separation and excess energies do not necessarily fulfill this constraint

faster than the individual binding energies. For § = —2 sys-
tems, we are also interested in the so-called A A excess bind-
ing energy

ABAA({4X) = Baa({4X) —2BA(h7'X)
=2E7'X) - E(AX) - EAATIX)
(24)

which provides information about the strength of the AA
interaction. B and E are spin averaged A-separation and
binding energies of the hypernuclear core if the core supports
several spin states. Cleary, this difference is also affected by
the spin-dependent part of the A-core interaction, dynamical
changes in the core-nucleus structure as well as the mass-
polarization effect [8,15]. For AﬁAHe, the spin-dependent
part of the A-core interaction vanishes because of the spin
zero the parent nucleus 4He, hence the difference



Eur. Phys. J. A (2021) 57:217

Page 9 of 21 217

ABaa(,5He) = Baa(,4He) — 2B, He),

will reflect the net contributions of the A A interactions and
the “He core-distortion’ (polarization) effects. In panel (d),
we exemplify the model-space extrapolation for
ABAA( A%He). We observe that AB,4 converges with
respect to AV visibly faster than both, the A A-separation and
the binding energies. For this quantity it is more appropriate
to fit to a constant in order to determine the large N extrap-
olation.

Being able to accurately extract Bj( A%He) and
ABAA( A%He), we are in a position to study the impact
of the two chiral interactions on these quantities. The con-
verged results for Bps and ABj 4, calculated for a wide
range of the SRG flow parameter Ayy, are presented in the
left and right plots of Fig. 2, respectively. Evidently, the LO
YY potential (blue triangles) produces too much attraction
(more than 2 MeV as can be seen in the right panel), which,
as a consequence, leads to overbinding by about 1.5 MeV in
A6AHe as can be seen in the left panel. On the other hand,
the moderately attractive NLO interaction predicts a AA
excess energy of ABy, ~ 1.1 MeV, that is only slightly
larger than the empirical value of AB%'} = 0.6740.17 MeV
[11,53]. For completeness, let us mention that the pertinent
AALS, scattering lengths are a = —1.52 fm (LO [29]) and
a = —0.66 fm (NLO [30]), respectively.

It is rather remarkable that both, B4 ( A6A He) and
ABAA( A6A He), exhibit a rather weak dependence on the SRG
YY parameter Ayy. With an order of 100 keV, it is at least
one order of magnitude smaller than the variation of, say,
B (i He) with respect to the SRG YN flow parameter Ayy
[28]. The insensitivity of the A A-separation energy to the
SRG evolution indicates that the SRG-induced YYN forces
are negligibly small. This is probably the result of a rather
weak A A interaction.

Finally, we benchmark the probabilities of finding one
Y (Pypy) ortwo X (Pyy), or the & hyperon (Pg) in the
ground-state wave function of A%He obtained for the two chi-
ral potentials. Such probabilities are summarized in Table 1
for several values of Ayy. Overall, the P4 x and Pxy prob-
abilities are fairly small, but almost stable with respect to
the SRG evolution of the YY interaction. Also, their depen-
dence on the two considered potentials is practically negli-
gible. We remark that the probability of finding a ¥ in iHe
for the employed NN and YN interactions is also very small,

I Qur preliminary results for the RMS distances of an NN pair and
point-nucleon radii in AéAHe, iHe and “He are very similar to each
other which implies that the distortions of the *He core are rather small.
However, we also note that Hiyama e al. in their study for A =7 — 10
double-strangeness systems using the Gaussian-basis coupled cluster
method found that the dynamical changes in the nuclear core structures
are quite visible [15]. Further studies are necessary in order to clarify
the discrepancy.

Px (iHe) = 0.07%. In contrast, Pz is more sensitive to the
evolution and also strongly influenced by the interactions.
Surprisingly, the updated NLO potential, that yields a more
attractive =-nuclear interaction [31], predicts a considerably
smaller = probability (less than 0.2 % for Ayy = 3.0 fm~!)
as compared to the value of Pz = 1.1% obtained for the LO
at the same Ayy. This reflects our observation in the § = —1
sector that there is no simple one-to-one connection between
the probabilities of finding a hyperon particle (X, &) and the
interaction strength.

1+ 1

32 S He(5 . 5)

The next system that we investigate is ASA He. Although the
existence of ASAHe has not been experimentally confirmed
yet, most of the many-body calculations employing effective
potentials that reproduce the separation energy B 4 4 ( A6 ' He)
predict a particle-stable bound state of ASAHe [13,16,54].
However, there are visible discrepancies among the values
of Ba( ASA He) predicted by different numerical approaches
or different interaction models. Additionally, it has been
observed in Faddeev cluster calculations that there is an
almost linear correlation between the calculated values of
B4 for the .3 He (,5H)and ,% He hypernuclei [16]. Such
a behavior was also seen in the study based on pionless
EFT [25]. It will be of interest to see whether one observes a
similar correlation using other realizations of the chiral inter-
actions. However, at this stage, we postpone that question to
a future investigation and focus on the different effects of the
LO and NLO potentials on B4 4 ( ASAHe) instead.

The w- and N -extrapolation of the binding energy E, A A-
separation energy B4 4 and the A A-excess energy AB 4 of
ASA He are illustrated in Fig. 3. Here, the results are shown for
the NLO potential with a flow parameter of Ayy = 1.8 fm~!
and for model spaces up to Ny, = 16. Note that in the case
of iHe, the energy calculations were performed for model
spaces up to Nyax (‘k He) = 22 inorder to achieve a good con-
vergence. Calculations with such large model spaces are cur-
rently not feasible for ASAHe because of computer-memory
constraints. Nonetheless, the illustrative results in Fig. 3
clearly indicate that well-converged results are achieved for
this double-A hypernucleus already for model spaces up to
Niax = 16. Moreover, the employed two-step extrapolation
procedure also allows for a reliable estimate of the truncation
uncertainty. Let us further remark that, when calculating the
excess energy

ABaa( 3 He) = Baa(, 5 He) — 2B, (4 He) (25)

we do not simply assign the ground-state A-separation
energy B, (‘}‘He, 0%) to By (‘}‘He) but rather use a spin-
averaged value B 4 (‘j‘ He) of the ground-state doublet [15]
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Fig. 2 Baa(%,He) (left)and AB 4 (8, He) (right) as functions of the
flow parameter Ayy. Calculations are based on the YY LO(600) (blue
triangles) and NLO(600) (red circles) potentials. Dash-dotted line with
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grey band represents the experimental value and the uncertainty of the
Nagara event [11]. Same NN and YN interactions as in Fig. 1

Table 1 Probabilities (%) of finding a single and double ¥, and a = hyperons in the ground-state wavefunction of A(;‘He. Note that Py (SAHe) =

0.07%

Ary NLO(600) LO(600)

fm~! Pax Psx Pz Pax Psx Pz
1.4 0.13 0.11 0.02 0.17 0.04 0.5
2.0 0.13 0.11 0.07 0.17 0.05 0.84
3.0 0.12 0.13 0.12 0.18 0.08 1.08

_ 1 3
B (Y He) = ZBA(A;lHe, 0t + ZBA(A;lHe, 1), (26)

with By (‘j‘He, 0T (1%)) = 1.708(0.904) MeV for the
employed NN and YN potentials [28]. By doing so, the com-
puted quantity AB A 4( ASAHe) will be less dependent on the
spin-dependence effect of the A-core interactions, and, there-
fore, can be used as a measure of the A A interaction strength,
provided that the nuclear contraction effects are small. The
results for B4 ( ASAHe) and ABA( ASAHe) calculated for
the two interactions and a wide range of flow parameter,
14 < Ayy < 3.0 fm~—!, are shown in Fig. 4. Overall,
we observe a very weak dependence of these two quanti-
ties on the SRG flow parameter, like for A6 ' He, reinforcing
the insignificance of SRG-induced YYN forces. Again, the
LO interaction predicts a much larger A A-separation energy
and a more significant A A interaction strength than the one
at NLO. In either case, the A A excess energy ABs4 com-
puted for ASA He, slightly exceeds the corresponding one for
AéAHe, by about 0.23 and 0.5 MeV for the LO and NLO
interactions, respectively. The main deviations should come
from the nuclear-core distortion and the suppression of the
AA — EN coupling in A?‘He as discussed in [18,55,56].
However, it is necessary to carefully study the impact of the
employed interactions on the results before a final conclu-
sion can be drawn. We further note that Filikhin and Gal [16]

@ Springer

in their Faddeev cluster calculations, based on potentials
that simulate the low-energy s-wave scattering parameters
of some Nijmegen interaction models, obtained an oppo-
site relation, namely AB 44 ( ASAHe) < ABAA( A?‘He). As
a consequence, our results do also not fit into the correla-
tion of ABsa(,3He) and AB4 4 (,He) shown in the same
work. We will need to study more interactions in the future to
understand whether such a correlation can also be established
using chiral interactions.

It is also very interesting to point out that the AA-
separation energies B4 for both ASAHe and AE\He pre-
dicted by the NLO potential are surprisingly close to the
results obtained by Nemura et al., B4 4 ( ASA He) = 3.66 MeV,
Baa( AGAHe) = 7.54 MeV, using the modified Nijmegen
YY potential (mNDg) [13]. Finally, we provide in Table 2
the probabilities of finding a ¥ (P,x), double ¥ (Pyxy),
or a & (Pz) in the ASAHe ground-state wave function,
computed with the two potentials and several SRG values,
Ayy = 1.4,2.0 and 3.0 fm~!. Apparently, all the proba-
bilities including also Pg exhibit a rather weak sensitivity
to the flow parameter Ayy. The two interactions seem to
have little impact on the X-probabilities (P4x and Pyyx)
but strongly influence Pz. Like in the A%He system, here,
the LO potential yields considerably larger = -probabilities
as compared to the values predicted by the NLO interaction.
It also clearly sticks out from Tables 1 and 2 that the probabil-
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SRG evolved to a flow parameter of Ayy = 1.8 fm~!. Same notation, NN and YN interactions as in Fig. 1
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Fig. 4 Bja( A5 ' He) (left) and AB A ( AS ' He) (right) as functions of the flow parameter Ayy. Calculations are based on the YY LO(600) (blue
triangles) and NLO(600) (red circles) potentials. Same NN and YN interactions as in Fig. 1

ities of finding a ¥’ or & hyperon in ASAHe are visibly larger
than the corresponding ones in A6 ’yHe. This is indeed consis-
tent with the X-probabilities in the ground-state wave func-
tions of their parent hypernuclei (e.g., Px (‘AHe) =043%

and Py (iHe) = 0.07 %), and more importantly, is con-
sistent with the suppression of particle conversions such as
AA — E N in p-shell hypernuclei [55].
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Table 2 Probabilities (in percentage) of finding a ¥ (P4 x), double ¥ (Pxx)and a & (Pg) hyperons in ASA He. Py (‘/“He) =0.43%

Ayy YY-NLO(600) YY-LO(600)

fm~! Pas Prx o) Pps Psx Pg
1.4 0.61 0.07 0.4 0.53 0.02 1.25
2.0 0.6 0.08 0.38 0.51 0.03 1.36
3.0 0.57 0.08 0.23 0.51 0.05 1.35
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Fig. 5 (a): Ground-state energies of A4 'y He as functions of @ for model
space N' = 10—32. Calculations are performed with the YY NLO(600)
potential evolved to a flow parameter of Ayy = 1.8 fm~!. (b): model
space extrapolation of E( [f '4H) with the same YY interaction as in

3.3 4 HA1T,0)

Our final exploratory s-shell hypernucleus is A‘i‘ H. This sys-
tem has been the subject of many theoretical and experimen-
tal studies. It turned out that theoretical predictions of the sta-
bility of Ai‘H against the ZH+ A breakup are very sensitive to
the interpretations of double-strangeness hypernuclear data,
in particular, the A?& He hypernucleus [54]. Indeed, Nemura et
al. [13] observed a particle-stable but loosely bound state of
A%H (just only about 2 keV below the ZH + A threshold for
the mNDs potential) using the fully coupled-channel stochas-
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(a). (c): model space extrapolation of E (ZH). (d): Converged E( A4 L H)
as functions of the flow parameter for the LO(600) (blue triangles) and
NLO(600) (red circles) potentials. The dashed line with grey band repre-
sents the computed £ (3‘ H) and the theoretical uncertainty, respectively.
Same NN and YN interactions as in Fig. 1

tic variational method in combination with effective YY
potentials that are fitted to reproduce the initially extracted
value of B4 (A6AHe) = 7.25+0.19 MeV [10]. The study by
Filikhin and Gal [17] indicated, however, that there is a siz-
able model dependence. The authors found no bound state
within an exact four-body (Faddeev-Yakubovsky) calcula-
tion for the A Apn system, but a particle-stable A‘KH hypernu-
cleus when solving the (three-body) Faddeev equation for the
A Ad cluster system. A more recent calculation by Contessi et
al. [25], based on the pionless EFT interaction at LO, showed
that the existence of a bound state in A‘i‘H is not compati-



Eur. Phys. J. A (2021) 57:217

Page 13 0of 21 217

ble with the corrected value of BAA(A%HC) = 6.91£0.16
MeV. Although the observation of A‘i‘H was reported in an
experiment at BNL [57], it has been recently invalidated by
a thorough re-examination of the recorded events [58]. Nev-
ertheless, the existence of a stable AiH hypernucleus cannot
be completely ruled out and the search for its experimental
confirmation or exclusion is still ongoing.

In view of the previous calculations, it is interesting to see
whether the chiral YY potential at NLO, that predicts similar
results for A = 5 — 6 AA hypernuclei as the mNDjy inter-
action [13], also results in a loosely bound state for Ai‘H.
It is well-known that NCSM calculations for very loosely
bound systems like the hypertriton converge very slowly.
Hence, in order to unambiguously answer that question, con-
verged results for the binding energy of the parent iH and the
ground-state energy of A‘kH are crucial. In panels (a) and (b)
of Fig. 5, we examine the convergence of E ( A‘k H) in w- and
N -space, respectively, using model spaces to N,qy = 32.
The results are shown for the NLO(600) potential with a
flow parameter of Ayy = 2.4 fm~L. For a better compar-
ison, the N -space extrapolation of E (iH), computed with
model spaces up to N' = 32, is also presented in panel (). As
expected, due to the weak binding of the hypertriton, the bind-
ing energy calculations for both hypernuclei, A‘}‘H and iH,
converge very slowly when using HO bases. It also clearly
sticks out that the optimal HO frequencies w for large model
space sizes are around w,p; ~ 6 MeV which is much smaller
than the value of w,,; ~ 16 MeV for the A = 4, 5 systems.
This again reflects the large spatial extension of the wave
functions of A‘E‘H and iH Nevertheless, one can still observe
a slightly faster convergence speed for E( Ai‘ H) (especially
with the LO potential) as for £ (iH). Moreover, our extrap-
olated value of E(iH) = —2.314£0.009 MeV (for model
space up to N = 36) agrees within 10 keV with the exact
Faddeev result Ep,q (G H) = —2.333:£0.002 MeV [27]. We
conclude that a model space truncation of N, = 32 for
the energy calculations in A%H should be sufficient in order
to draw conclusions about the stability of the system against
A emission.

The extrapolated ground-state energies E( A‘kH) for the
NLO (red circles) and LO (blue triangles) potentials evolved
to a wide range of flow parameters are displayed in panel
(d) of Fig. 5. Here, the dashed black line together with the
grey band represent the computed E (% H) and the estimated
uncertainty. Calculations with the NLO potential seem to
converge more slowly than the ones for the LO interaction.
The NLO potential clearly leads to an unbound A‘kH hyper-
nucleus. Although our results for A = 5 and 6 are similar
to the ones of Ref. [13], our results for A = 4 do not sup-
port the existence of a bound Ai‘H state. The LO results for
A‘kH likely hint at a particle-unstable system with respect to
the hypertriton iH Admittedly, in order to draw a definite
conclusion on the actual situation, the uncertainties of the

calculation would have to be reduced. However, since the
LO interaction considerably overbinds A(j‘He, very likely it
overpredicts the actual attraction in the A = 4 system, too.
Interestingly, in pionless EFT [25] a A A scattering length
practically identical to that of our LO interaction was found
as limit for which the A‘kH system becomes bound.

4 Conclusions and outlook

In this work, we have generalized the J-NCSM formalism
in order to include strangeness S = —2 hyperons. Using the
second quantization approach, we systematically derived the
necessary combinatorial factors that relate the Hamiltonian
matrix elements in a many-body basis to the corresponding
ones in a two-body basis for the § = 0, —1 and —2 sec-
tors. A generalization to higher-strangeness sectors will be
straightforward.

We then applied the J-NCSM approach to compute pre-
dictions of the chiral Y'Y interactions at LO and NLO for A A
s-shell hypernuclei. In the actual calculation, the YY forces
are combined with a set of BB interactions that is consistent
with all available NN, AN and X' N scattering data and with
the empirical separation energies of light S = —1 hypernu-
clei. To speed up the convergence, the YY interactions are
also evolved via SRG. Unlike for the S = —1 systems, here,
we observed a very small effect of the SRG Y'Y evolution on
the A A-separation energies, implying negligible contribu-
tions of SRG-induced YYN forces. We found that the binding
energy for A% He predicted by the YY NLO potential is close
to the empirical value while the LO interaction overbinds the
system. Both interactions also yield a particle-stable ASAHe
hypernucleus, whereas Ai‘H is found to be unstable against a
breakup to ZH + A. However, for a final conclusion, a more
elaborate study thatinvolves a more careful estimate of uncer-
tainties stemming from various NN, YN and Y'Y interactions
is definitely necessary. Work in this direction is in progress.
It will be also very interesting to study the predictions of the
chiral YY interactions for other s-shell A A systems such as
A‘kn or A‘i‘He, as well as for p-shell hypernuclei. Finally,
investigating possible Tjon-line like correlations for B4 4 of
different systems is also of importance.
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Appendix A: Many-body Schrodinger equation in second
quantization

Generally, baryon-baryon (BB) interactions in the § = —2
sector can lead to couplings between states with identi-
cal particles and with non-identical particles, for example
Y'Y — NZ&. Such transitions make it not straightforward
to properly determine the combinatorial factors of free-space
two-body potentials that are embedded in the A-body Hamil-
tonian matrix elements. In this appendix, we demonstrate that
these factors can systematically be deduced by comparing
the Schrodinger equation for A-body systems with the free-
space two-body Schrodinger equation, provided that these
equations are derived in a consistent way. We show explicit
examples for systems of two and three particles, and then
generalize to the A-baryon problems. We note that Glockle,
Miyagawa and Kamada [59,60] have also derived a system
of coupled Faddeev equations for three-baryon systems tak-
ing into account full particle conversions. However it is not
clear to us how to read off the involved combinatorial fac-
tors based on their equations. The authors of Ref. [61] have
formulated the problem (for the K N N-7 X' N system) taking
all permutations of particles explictly into account. This is
however not consistent with the approach of BB interactions
used in [29,30,62]. For directly taking these interactions into
account, we therefore require to derive the combinatorial fac-
tors consistent with these interactions.

To derive the general Schrédinger equation, we will work
with second quantization. The many-body Hamiltonian then
has the form,

_ i I it
H= Z Tt @ a0 + 5 Z Vit kika G g, Wa By
ik i
klkZ

(A.1)
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where k; stands for a set of quantum numbers characterizing
the particle state, i.e., momentum, spin, isospin as well as
particle species A; (N, A, ¥ or Z'). When it is necessary to
separate the particle species A; from other quantum num-
bers, we use k; = A; 1€,~. Let us further assume that the
potential matrix elements Vi k) ki in Eq. (A.1) are anti-
symmetric under exchanges of two indices, i.e., Vi ik =
_Vkikéakal = _VkékiqklkZ = Vkéki,kal' Note that, there is
no ordering imposed for quantum numbers of the incom-
ing particles k1 and k> or of the outgoing pair k| and k5 in
Eq. (A.1).

Appendix A.1: Two-body Schrodinger equation

We start with the derivation of the Schrodinger equation in a
two-particle basis. For that, we define the ordered two-body
antisymmetrized basis states as

1
1{p1p2}) = a), a} 10) = ﬁ(ll)l)lpz) —p2)lp1). (A2)

with the right-hand side being the states in first quantization.
Here, p; and p; also stand for the sets of quantum numbers
(momentum, spin, isospin and particle species) describing
particles 1 and 2, respectively. The completeness relation of
the basis Eq. (A.2) for bases with particle species A1 7# Aa
reads

> Upip2ah){pipal

pi<p2

- ¥

/d3131d3ﬁ2|{)»1ﬁ1)»2152}><{k1ﬁlkzﬁz}l =1,
A1 <A2

(A3)

where the inequality p; < p; accounts for the ordering of the
states in Eq. (A.2) where the leading sorting key is assumed
to be particle species. Note that by exploiting the antisym-
metry of the basis functions, the left hand side of Eq. (A.3)
is equivalent to

> Hpip2 (i p2)l

p1<p2
1
=3 X tmmhttmeli+ Y 1piphiipipa]
p1<p2 P1<p2
1
25{ Z Kpip2h {p1p2}| + Z |{p2p1})({p2p1}|}
p1<p2 pP1=p2
1
=3 > UpipahUpipa)l - (A4)
pP1,p2

Hence, the summation over the ordered particle species on
the left hand side of Eq. (A.3) can be replaced by a normal
summation over all particle species but with a factor of %
For the case of two identical particles, i.e., A.; = Xy, the
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completeness relation becomes

1 » - - - - -
= / d° prd® po i praa pad) (P praa padl = 1 (A.5)

2

following similar lines. The factor % can also be absorbed
into the definition of the states when one rewrites Eq. (A.5)
as follows

1 1
&> prd> pr——=| {01 piag pa ) Uhi pid pa}|— = 1.
/ D1 Pzﬁl{ 1p1A1p2}) ({A1 p1 1P2}|ﬁ
(A.6)

Now, exploiting the anticommutator relation for the creation
and annihilation operators, the kinetic and potential matrix
elements in the basis Eq. (A.2) are easily obtained

UPIPIIT {p1p2})

= ap’.pl Pyp2 _817]172 2321 +8p§pz pip1 817/2171 P2
- 6[’1[’15P2P2t[72 6[’1[’28[’2171 [72 pt+ 3[’2[’2317/1[71 [71
5p’2p|5pipz 4
{p1p}IVI{p1P2))
1
2(Vpip2 piP2 Vp’lpz pap1 T Vpépi,mpz + Vp/zpl pzm)
=2V phpime (A7)

In the second line of Eq. (A.7), we have exploited the fact
that the kinetic operator is diagonal in the momentum basis.
The Schrodinger equation,

H|\W) =

E|W), (A.8)

in the two-body basis Eq. (A.2) then reads

> (P PHHp1p2)) (Up1p2}|¥) =

E ({pip}|¥).
P1<p2 —

=¥ (p|ph)
(A9)

Here, it will be sufficient to consider only those components
of ¥ (p) py) with p| < p). Since the basis states are anti-
symmetric, the other components of ¥ (p] p5) with p} > p}
will differ from the ones with p| < p) by a simple phase
factor. Plugging Eq. (A.7) into Eq. (A.9) and using p| < pj,
one arrives at a general two-body Schrodinger equation

(VP + 1 T (PIPD) + D 2V bW (P1p2)
P1<p2

= E¥ (pph).

We note that there is a factor of 2 in front of the potential
matrix elements, which drops out for the case of the two-
identical particle basis, i.e., A; = Aj. In that case, we use

(A.10)

Zm<m — 1/2 ZPIJ’Z and equation Eq. (A.10) becomes

LW (VP + 1 T (PIPD) + Y Vi gt p ¥ (P1P2)
P1,p2

= E¥ (P ph).

To better understand the prefactors of the potential matrix
elements present in Eqs. (A.10,A.11), let us consider some
explicit bases. In the first example, the basis consists of two
two-particle states, one with identical particles and one with
distinguishable particles, e.g., |{AA}) and |{ N Z'}). Then, the
completeness relation is obtained by combining Egs. (A.3)
and (A.6)

(A.11)

/d3ﬁ1d3ﬁz{I{EﬁlNﬁ2}><{Eﬁ1Nﬁz}l

1 1
+—I{Aﬁ1Aﬁz}><{Aﬁ1Aﬁ2}I—} =1, (A.12)

V2 V2

leading to the following expression for the norm of the wave
function

| B5d5 (a2 L Lo
W19) = [& 51 o 1oz 1 7o) N
(A.13)

Therefore, we absorb the %—factor into the amplitude of

states by introducing a new set of the wave-function compo-
nents,

PNz (p1p2) =¥YNE(PL1D2),
(A.14)

. 1 .
DPpaa(p1p2) = E"PAA(pIPZ);

so that the Schrodinger equation Eqs. (A.10,A.11) for the
two newly defined components possesses a symmetric form

<2IA +Vaa, a4 V2Vaa Nz ) (éDAA >
V2Vnz.aa  tz +iv+2VNsNz PNz

. DA
—E <¢NE> , (A.15)

where, for readability, we have omitted the dependence on
p and p’. Similarly, for the case where the basis consists
of four states {|AA}), {XX}), |{AX}) and |{Z N}), one
analogously defines a new set of wave-function components

1
—V¥srx;

V2

Pyz =WNs .,

Ppap=—=¥an; Pxx=

V2

Dy =¥ax; (A.16)

for which the Schrodinger equation again possesses a sym-
metric form

Daa Dan
25555 2555

H =F , A.17
)% %> ( )
Pyz Pnz
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with
2tp +Vaa,aa Vaa,ss V2Vas ax V2Vaa Nz
H = Vssan 2ts+Vex sy \/EVZ‘E,AE V2Vss NE (A.18)
\/EVAE,AA ﬁVAx,xx IA+ts+2Vas as 2Vas,NE
V2VNs.an  N2Vysss 2VNE,Ax tz +tv +2VNs,NE
One sees that there is a \/E-factor for the transition _Tpépzspi p38p§p1 + Tp§p38p§p1 Sp’lpz - Tp/zp38p/lpl8pgp2
between states of identical and of distinguishable particles, , _T, , ,
L. & P . +Tp3p1‘3p1p2‘sp§p3 Tp3p15p1p35p2pz + TP§P28P1P3(SP§P1
and a factor of 2 for the transition between states of noniden-

: : e . Ty 280 018 ps s T8 pi s pa = T pa®pl p2 s r
tical particles. It is important to mention that these factors 3 ! 2 3 ! 2 3 ! 2
are already included in the definition of the two-body poten- (A.21)
tials derived from chiral EFT [29,30] or phenomenological .4
models [62] (see, e.g., Eq. (2) of [30]). We therefore denote

C . . . /A _
these initial two-body potentials V; ;. M with an appropri- ({PiPaP3}IVIEPLP2p3}) =2
ate factor of +/2 or 2 or 1 to be our new potential \N/k1 e Vo p2p3Opipr Vs phopspi8pipa T Vi v p2Opi s
Expressing in terms of the new potentials V, the Hamiltonian +V1)§p’1 .P2p3 517’2171 + Vpé pi-p3p1 ‘Spépz + Vpé pLpip2 817’2173
Eq. (A.18) now has a more intuitive form +Vp’lp’2,p2p35p§p1 + Vpﬁpé)mpl Spgpz + szl pé‘plmspgp} }.
(A.22)
ZtAj‘ Vaa, aa VAAN,EE YAA,AE YAA,NE
\% 2t Vv Vv Vv z
H = I3, AA s+ Vsrzy IX.A% /S3.NE (A.19)
Vaz.aa Varss tatis+Vazas Vazne
VNEz aa \ 455> \4=9> tz +ty +VNe NE

In the next step, we are going to derive a similar
Schrédinger equation in a three-body basis. Then, by com-
paring the obtained equation with the one for two-body basis,
we will be able to determine the corresponding combinatorial
factors for the potentials in each strangeness sector.

Appendix A.2: Three-body Schrédinger equation

We define the ordered three-body basis states in second quan-
tization and its completeness relations as

—atat at 10
{p1p2p3}) = ay ap,a,.10);

Z Hpip2p3h ({p1p2p3}l = 1.
P1<p2<p3

(A.20)

The kinetic and potential matrix elements in the basis
Eq. (A.20) read

({p1P5P3YIT{p1p2p3))

= Tp’.pl ‘Sp’zpz‘spéps - Tpim%ém%épz + Tp’l p25p§p35p§p1
_Tpipz‘sp/zm‘sp’gm + Tﬁi pz‘sp/zm‘spépz - Tp’l p3‘3p’2p2‘sp§p1
+Tp§p1‘sp’1 pz‘spépz - Tpépl 5p1p25p§p3 + Tp’zpz‘spm 5p§p3
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Now, projecting the Schrodinger equation Eq. (A.8) onto
the state |{ p| p, p5}) and then utilizing the completeness rela-
tion in Eq. (A.20), one arrives at

> [pip e NTI 2 P12 p3) 1)
P1<p2<p3
+({P PPNV Ip1 P2p3 ) (P P23 = E (0 php5 1)
L —

El’I’(P] 172173)

(A.23)

Similar to the case of a two-body basis, here it will be suffi-
cient to consider only those components of ¥ (p| p5 p3) with
Py < p5 < pj. With this condition, only three of the 18
kinetic terms in Eq. (A.21) survive. Hence, we have

> UpiphPSHT Hp1p2p3)) (L1 p2ps} @)
pP1<p2<p3

= (l‘p/1 +ip + tpg)q/(p/lpépé).

The contributions from the potential operator are a little bit
more cumbersome, but can be reduced to a compact form by
exploiting the antisymmetry properties under the exchange
of two indices of the potential as well as of the wave function.
For example, the first three terms in Eq. (A.22) give

(A.24)

2 {Vp§p§,p2p38p1p1q’(l’lmm)
P1<P2<D3
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Vo3 Op pp ¥ (P1P2P3) + Vpépg,mpz‘sp’lpsW<p1p2p3)}
pP2<pi1 p3<pl

= > Vol plpaps Ot py ¥ (P1P2D3)
P1<P2<P3

+ Z Vi pp3pap ¥ (P2P1P3)
P2<p1<p3

2 Yoy p3p2®py py ¥ (P3P2P1)

p3<p2<pi prep3
= 2 Yoy i p2p3 8 py ¥ (P1P2P3)
PI<P2<P3
+ Z Vi vl pap3dp ¥ (P1P2P3)
P2<P1<P3
o2 Yoy p2p3 8 py ¥ (P1P2P3)
P2<p3<pI
=22 vy p2p3Op py ¥ (P1P2P3)
PL P2<D3
= 2 Vol phpan Y PIP2P3). (A.25)

Analogously, the next three terms in Eq. (A.22) yield

{VP pip2p3 pzpllp(pIPZP’;)

pP1<p2<p3 p1<p2
+ Viinipap Spyp ¥ (P1P2P3) + Vpgp’l,mp23p§p3”’(P1P2P3)}
P2op;3
= 2 Vi P P1P5P). (A.26)
pi<p3

and, the three remaining terms result in

Z {VPiP’z,mpa‘SpémW(p11’21’3)

P1<p2<p3 P1<P3
Voo p3pi Spypa ¥ (PLP2P3) + Vit bty 8t p3 ¥ (P1P2P3)

P23
—= (A27)

pP1<p2

/
Vpipfz,p,pzllf(mpzpﬂ.

Taking into account Egs. (A.24-A.27), the Schrodinger equa-
tion Eq. (A.23) in the three-body basis Eq. (A.20) can be
written as

/AN !
(g + 1y 15 )9 (P P2P3) + > 2Vt phoprpa ¥ (P1P2P3)

P1<p2
/ /
D Wy s PIPIPD) D 2V ot o W (P P2P3)
P1<pP3 p2<p3
= EW(p|pyp5). (A.28)

which, as one expects, differs from the Schrédinger equa-
tion in the two-body basis Eq. (A.10) by the kinetic energy
of the third particle and the two-body interactions between
particles 1-3 and 2-3. Again, the factor of 2 in front of the
potential vanishes when the incoming particles are identical
and the summations include all states p1, p» etc. For illustra-
tion purposes, let us consider Eq. (A.28) in an explicit basis
consisting of four states, |{NAA}), {NXX}), {NAXY})
and |{NN &}). The norm of the wave function in this four-
particle-state basis can be calculated as follows

~ 3~ a3~ [ ] R
Wi0) = [ @5 pad a1 S an i)

/2

1
+—=Ynss(P1pap3) + [¥naz(P1p2p3))?
V2

1 o
+ IEWNNE(mmm)IZ}- (A.29)

Based on Eq. (A.29), we define a new set of wavefunction
components

1
Pyry = E‘I’sz ;

1
PynNE = EWNNEL

1
Pyaa = % UNAA

Pyaz =¥Nas:
(A.30)
The Schrodinger equation Eq. (A.28), applying the wave

function components in Eq. (A.30), now has a symmetric
form,

DNaA DPNaa
23Y8>0> 120Y8>0>
T o = oy is | (A31)
PNNE PNNE
with T being a diagonal matrix
2tp4 + N 0 0 0
T 0 2ty +tN 0 0
0 0 ita+ts+ty O '
0 0 0 2ty +tz
(A.32)

and the symmetric potential matrix
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Vaa,zs

2‘7NA,1YA +Vas.aa ) s
2Vns Nz +Vez ss

V= Vez aa

V2VNz.aa NANESS

VA}:,AA + \/EVNZ‘,NA VA):,):E + ﬁVNA,N): VNA,NA + VAp:,N): + VA):,A):

‘:/AA,AE + \/E‘ZNA,NE \/E‘ZAA,NE
Vezaxs + V2Vys Na ﬁYEZ,NE (A33)
V2Vas NE '

V2Vng ax VNN,NN + 2‘7NE,NE

In the last step, we have expressed the potential matrix ele-
ments in terms of V as given in Eq. (A.19). Egs. (A.31-A.33)
define the combinatorial factors of the two-body potentials
present in the three-body Hamiltonian. In the following, we
want to generalize this result to an A-body system.

Appendix A.3: A-body Schrodinger equation

With the preparation of the A = 3 system, we are now able
to generalize the combinatorial factors to arbitrary A. For
the kinetic energy, the generalization is trivial and leads to
the sum of the single particle kinetic energies since no par-
ticle conversion can take place for this operator. Interactions
are more involved. To the general A-body matrix element
{p]--- Py} IVI{p1 ... pa}) of the n-particle interaction

! ot

V= ! Z Vit ke Apr gy " Ay Ok Al Oy

ki, kn

KK,

(A.34)

a total of
1 /A\ (A
— n!'n!(A —n)! (A.35)
n!' \n n

different permutations of Vi k) ey ke contribute. Therein,

the first % is just from the definition of V. Following the same
steps that lead to Eq. (A.25), these terms can be rearranged
such that the application to an arbitrary state ¥ can be written

2. 2

/ / /
<{P1 .- -PA}W’ ) =
i1 <iy...<ip Piy <--<Dip

xn! V. . .
Piyoees Piyy Piyoeees Pin

X{Py -+ Piy - Diy - PANP) (A36)

For this form, we assume that ¥’ is represented using the
ordered states p| < ... < p/,. Then only one of the (A —n)!
different spectator permutations contributes. One of the (%)
terms is needed to make the sorting on the spectator particles
and on the interacting particles independent from each other
as done in Eq. (A.25). The other one is explicitly taken care
of by the sum overi| < ip... < ip.

@ Springer

If the interacting particles are (partly) identical, we will
again replace the sum over p;; < ... < p;, by (partly) full
sums and add the appropriate combinatorial factor (e.g. 1/2!
in the case of two identical particles). Note that this factors
depend on the kind of particles in the incoming ¥ state.

We again introduce rescaled wave functions by studying
the norm of the states similar to Eq. (A.29). The appropriate
factors for states with p particles species and ny, ..., nj, par-
ticles of each species are \/n1!...n,!. The potential matrix
element needs to be multiplied with (divided by) this factor
for incoming states (outgoing states) to reexpress Eq. (A.36)
in terms of @ states. We note that the potential matrix in
terms of these states is symmetrical. In summary, the poten-
tial matrix elements then reads

nl/ni!...np,!
VAT (A37)

Dy seeos Dy s Pigseees Din
x /1 i in 1 n
/nl....np.

Note that here the factor does not include the additional factor
required when identical particles are involved in the sum of
Eq. (A.36).

We then simplify the expressions by identifying n-
particles that contribute identically to Eq. (A.36). The sum
over i1 < ip... < I, can then be reduced and tuples of
outgoing states involving the same kind of particles can be
combined by the appropriate factor. Finally, we build the
ratio of the factors for the A-body and n-body systems to
find the correct combinatorial factors that enter our J-NCSM
calculations.

As an example, we now consider some selected matrix
elements of the S = —2 2-body interaction for (A —2)-AA,
(A—-2)-AX,(A—-2)-YX, and (A — 1)-Z states. For the
diagonal matrix elements in particle space, the square root
factors in Eq. (A.37) cancel. In this case, the prefactor is just
2x the number of pairs contributing in the outgoing channel
x 1/2 if the active pair in the incoming channel consists of
identical particles. Therefore, for our example, we find

((A—2) — AAV|(A —2) — AA)

1 -

2 VP’AJP/AQ,PA,lpA,z =

(A=2)— AZ|V|(A—2) — AX)
=2-1- VP’AP’;,PAPE = Vp//\p’g,p/xpx

(A=2)—ZZ|V|(A—2)— 2%)

P/AJP/AVQ’PA.IPA,Z
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Table 3 Combinatorial factors of the two-body YN interactions embedded in the A-body space with strangeness § = —2

Transition YN

VNa,.na

VNanz

VN, Na

AA —> AA 2(A —2)
AA > AX -

AX > A A-2
AY > XX -

Y > AX -

§25 IS 55 5 - -

V2(A-2) -

V2(A-2)

- A-2

V2(A-2) -

Table 4 Combinatorial factors of the two-body Y'Y interactions embedded in the A-body space with strangeness S = —2

Transition YY

Vaa A Vaa,ax Vaa,sz Vaz ax

Vas sy

15555855 Vaane Vaz NE

AA - AA

1 — — — —
AA > AY - 1 - - -
AA > X - - 1 - -
AZ > AY - - - 1 -
A 5> Y - - - - 1
Xy x5y - - - - -
AA—> NE - - - - -
AX > N8 - - - - -
XY > NE - - - - -

NE - NE - - - - -

=2-1- % : Vp’x,lp’):‘z,px,lpxa =
(A—1)—EIVI(A-1) — &)
—2.(A—1)-V, = (A=DVy o pyps -
(A.38)

P,ZV]P/);J»PZ,IPE,Z
NPz PNDE

In the last step, we have exploited the results of the two-body
system that relate V to V in Eq. (A.19). The resulting combi-
natorial factors agree with the expectation that the interaction
just has to be multiplied by the number of pairs contributing.
More interesting is the case of transitions. Here, we first look
at transitions between X' ¥ and A X states. Because the iden-
tity of the particles changes, we now have additionally the
contribution of the square root factors. They are also impor-
tant to guarantee that the interaction matrix is symmetric.
The result for the two matrix elements is

(A=2)—ZZ|VI(A—2)— AX)
VA=
V2U(A —2)!

= Vp/zvl p,Z,zaPA )2

(A=2)— AZ|V|(A—2)— ¥ %)

=2-1-1-

P Ps2:PAPE

1 JV2I(A-2)!
=2.1. 5 . W Vs .prapsa

=V,

PAP/EJ’E,IPZQ

(A.39)

and just reflects the number of Y'Y pairs in the A-body state.
The final examples are transitions of A A and N =. For these
matrix elements, several pairs contribute and the identity of
the particles changes. It is reassuring that we also find in this
case symmetry of the potential matrix elements

((A=2)—AA|IVI(A=1) — &)
V(A =1)!
L V2I(A = 2)! ) VP/AJPi/\,zaPNPE
=vA-1 VP/AJP,AJJ’NPE
(A=1)—-E|V|(A-2) - AA)

=21

1 J2!(A-2)!
=2-(A-1)- 3 W " VpyPE.pAPA2
=JA-1V, (A.40)

PNP'E,PAJPA,z '

In this way, it is straightforward to identify all relevant
combinatorial factors for our calculations. For the § = 0
interactions, where particle transitions do not occur, it is sim-
ply given by the number of NN pairs in the state, i.e. (Az_ 2)
and (Az_l) for (A—2)-YY and (A — 1)-Z states, respectively.
The factors for § = —1 (S = —2) interactions are summa-
rized in Table 3 (Table 4). To shorten the presentation, we

@ Springer
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only include particle transitions in one direction. The other
one is given by the symmetry of the potentials.
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