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Abstract We generalize the Jacobi no-core shell model (J-
NCSM) to study double-strangeness hypernuclei. All parti-
cle conversions in the strangeness S = −1,−2 sectors are
explicitly taken into account. In two-body space, such tran-
sitions may lead to the coupling between states of identical
particles and of non-identical ones. Therefore, a careful con-
sideration is required when determining the combinatorial
factors that connect the many-body potential matrix elements
and the free-space two-body potentials. Using second quan-
tization, we systematically derive the combinatorial factors
in question for S = 0,−1,−2 sectors. As a first application,
we use the J-NCSM to investigate ΛΛ s-shell hypernuclei
based on hyperon-hyperon (YY) potentials derived within
chiral effective field theory at leading order (LO) and up to
next-to-leading order (NLO). We find that the LO potential
overbinds 6

ΛΛHe while the prediction of the NLO interaction
is close to experiment. Both interactions also yield a bound
state for 5

ΛΛHe. The 4
ΛΛH system is predicted to be unbound.

Keywords Hyperon–Hyperon interactions · ΛΛ Hypernu-
clei · Forces in hadronic systems and effective interactions ·
Shell model

1 Introduction

The scarcity of hyperon-nucleon (YN; Y=Λ, Σ) data and the
almost complete lack of direct empirical information on the
hyperon-hyperon (YY) and ΞN systems poses an enormous
challenge for theorists in the attempt to derive baryon-baryon
(BB) interactions in the strangeness sector on a microscopic
level. By exploiting SU(3) flavor symmetry, several sophis-
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ticated YN potentials have been derived [1–5], which all
describe the available YN data on an adequate quantitative
level. The situation however remains largely unsatisfactory
for the strangeness S = −2 sector, at least for the foresee-
able future, because it is practically impossible to perform
direct YY scattering experiments and so far there have been
no two-body S = −2 bound states observed. Data on ΛΛ-
and Ξ hypernuclei are therefore an indispensable source of
information that can provide valuable additional constraints
for constructing YY interactions. The latter requires solving
the exact S = −2 many-body Hamiltonian with microscopic
two- and higher-body BB interactions as input.

In the present work, we utilize the Jacobi no-core shell
model (J-NCSM) [6,7] to study double-strangeness hypernu-
clei. Historically, since the first observations of ΛΛ hypernu-
clei, 10

ΛΛBe [8], 6
ΛΛHe [9] and especially after publication of

the so-called Nagara event [10,11], various approaches have
been employed to study doubly-strange hypernuclei [12–
26]. For example, Nemura et al. used the so-called stochas-
tic variational method in combination with phenomenolog-
ical effective central ΛN and ΛΛ potentials to investigate
ΛΛ s-shell hypernuclei [12]. Thereby, it was assumed that
the effects of tensor forces, three-body forces and Λ − Σ

conversion are effectively included in such central poten-
tials by fitting the binding energies of the s-shell (core)
Λ-hypernuclei. In their later work [13], the channel cou-
pling, e.g., ΛN − ΣN or ΛΛ − ΞN was fully taken into
account, but again the YY interaction consisted of only cen-
tral potentials. Hiyama and co-workers have successfully
applied the Jacobian-coordinate Gaussian expansion method
to ΛΛ hypernuclei with A = 6 − 11, which treats hyper-
nuclear systems as three-, four-, or five-cluster structures
[14,15,23]. The authors have advanced the approach in order
to allow for all possible rearrangement channels so that any
changes in the dynamic structure due to Λ interactions can be
taken into account. The interactions between a Λ and a cluster
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are approximated using the simulated G-matrix YN poten-
tials that are derived from a set of one-boson-exchange poten-
tials. Here, the ΛN−ΣN and ΛΛ−ΞN couplings were not
treated explicitly but the tuning parameters of the simulated
potentials are chosen to reproduce some experimental sepa-
ration energies such as those of 5

ΛHe and 6
ΛΛHe. It is there-

fore rather difficult to relate the properties of the employed
potentials to the free-space BB interactions. Filikhin and Gal
have solved the Faddeev–Yakubovsky equations formulated
for three- (ΛΛα), four-cluster (ΛΛαα) and ΛΛnp compo-
nents [16–18]. Their calculations are also based on simu-
lated potentials similar to those used in the works of Hiyama
et al. but the ΛΛ interactions were mainly restricted to the
s-wave. Lately, Contessi and co-workers [25] have combined
the stochastic variational method with pionless effective field
theory (EFT) interactions at LO to investigate the consistency
of A = 4 − 6 ΛΛ hypernuclei.

Recently, the Jacobi NCSM has been successfully
employed by us in studies of single-Λ hypernuclei up to
A = 7 [27,28]. In these investigations, the full complex-
ity of the underlying nucleon-nucleon (NN) and YN inter-
actions (tensor forces, channel coupling) could be incorpo-
rated. Now we extend the Jacobi NCSM to S = −2 sys-
tems. Also here all channel couplings, i.e., ΛN − ΣN , and
ΛΛ−ΛΣ −ΣΣ −ΞN are explicitly considered. As a first
application, we use the approach to obtain predictions of the
chiral leading order (LO) [29] and next-to-leading order
(NLO) [30,31] YY interactions for ΛΛ s-shell hypernuclei.
Chiral EFT [32] is a very successful tool for describing the
NN interaction (see [33] and references therein) and allows
for accurate calculations of nuclear observables [34–37]. The
YN interaction derived within the chiral EFT approach up to
NLO likewise leads to realistic results for (s- and p-shell)
hypernuclei [27,28,38–40] and for nuclear matter [31,41].
It is therefore of great interest to study the predictions of the
chiral YY potentials for ΛΛ hypernuclei.

The paper is structured in the following way. We present
in Sect. 2 some details of the technical realization. Some rele-
vant formulas are also provided in the appendix. First results
for the 6

ΛΛHe, 5
ΛΛHe and 4

ΛΛH hypernuclei are discussed
in Sect. 3. Finally, conclusions and an outlook are given in
Sect. 4.

2 Numerical realization

2.1 Jacobi basis for S = −2 systems

In this section, we generalize our Jacobi no-core shell model
(J-NCSM) formalism [28] to S = −2 hypernuclei. Adding
a second Λ hyperon to single-strangeness systems com-
plicates the numerical realization in many ways. All par-
ticle conversions that involve a Ξ hyperon, for instance

ΛΛ ↔ ΞN , ΣΣ ↔ ΞN or ΛΣ ↔ ΞN change the
total number of nucleons in the system by one. The latter
must be explicitly taken into account for the many-body
Hamiltonian and for the basis states. Furthermore, parti-
cle conversions in both S = −1 and S = −2 sectors
can also lead to couplings between states of identical and
non-identical hyperons. Because of that, special attention is
required when evaluating the Hamiltonian matrix elements.
These issues will thoroughly be addressed in this section
and in Appendix A. We start with the construction of many-
body basis states first. Since the total number of nucleons
in the system can change depending on the strange parti-
cles, we split the basis functions into two orthogonal sets:
one set that involves two singly strange hyperons referred
to as |α∗(Y1Y2)〉, and the other that contains a doubly strange
Ξ hyperon denoted as |α∗(Ξ)〉. The former is constructed
by coupling the antisymmetrized states of A − 2 nucleons,
|α(A−2)N 〉, to the states describing a system of two hyperons,
|Y1Y2〉

|α∗(Y1Y2)〉 = |α(A−2)N 〉 ⊗ |Y1Y2〉 (1)

= |N JT, α(A−2)N αY1Y2 nλλ;
((lY1Y2(sY1sY2)SY1Y2)JY1Y2(λJA−2)Iλ)J,

((tY1 tY2)TY1Y2TA−2)T 〉 ≡ ∣
∣

Y1

Y2

〉

,

with Y1,Y2 = Λ,Σ and Y1 ≤ Y2. Here the inequality
Y1 ≤ Y2 indicates the fact that we distinguish among the
three two-hyperon states |ΛΛ〉, |ΛΣ〉 and |ΣΣ〉 but do not
consider the |ΣΛ〉 state explicitly. The notations in Eq. (1)
are the same as introduced in Refs. [7,28]. For example,
the symbol α(A−2)N stands for all quantum numbers char-
acterizing the antisymmetrized states of A − 2 nucleons:
the total number of oscillator quanta NA−2, total angular
momentum JA−2, isospin TA−2 and state index ζA−2 as well.
Similarly, αY1Y2 stands for a complete set of quantum num-
bers describing the subcluster of two hyperons Y1 and Y2.
The principal quantum number nλ of the harmonic oscil-
lator (HO) together with the orbital angular λ describe the
relative motion of the (A − 2)N core with respect to the
center-of-mass (C.M.) of the Y1Y2 subcluster. The orders, in
which these quantum numbers are coupled, are shown after
the semicolon. As for the transition coefficients for standard
nuclei and single Λ hypernuclei [7,28], the corresponding
momenta or position vectors point to Y1 and the A − 2 clus-
ter, respectively.

Analogously, in order to construct the basis |α∗(Ξ)〉, one
combines the antisymmetrized states of an (A−1)N system,
|α(A−1)N 〉, with the HO states, |Ξ 〉, describing the relative
motion of a Ξ hyperon with respect to the C.M. of the (A-1)N
subcluster
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|α∗(Ξ)〉 = |α(A−1)N 〉 ⊗ |Ξ 〉 = |N JT, α(A−1)N nΞ IΞ tΞ ;
(JA−1(lΞ sΞ) IΞ)J, (TA−1 tΞ)T 〉 ≡ ∣

∣ Ξ

Ξ

〉

.

(2)

Here, also α(A−1)N denotes a set of quantum numbers rep-
resenting an antisymmetrized state of A − 1 nucleons. The
relative motion of a Ξ hyperon is labelled by the HO princi-
pal quantum number nΞ , the orbital angular momentum lΞ
and spin sΞ = 1

2 which combine together to form the total
angular momentum IΞ , and the isospin tΞ = 1

2 . Again, fol-
lowing the definition of our coefficients of fractional parent-
age (CFPs) [7], the momentum or position vector points
towards the spectator particle, i.e., the Ξ . Finally, the last
lines in Eqs. (1,2) also show the graphical representations of
the states.

With the basis states defined in Eqs. (1,2), the S = −2
hypernuclear wave function |Ψ (π JT )〉 can be expanded as

|Ψ (π JT )
〉 =

∑

α∗(Y1Y2)

Cα∗(Y1Y2)

∣
∣α∗(Y1Y2)(N JT )

〉

+
∑

α∗(Ξ)

Cα∗(Ξ)

∣
∣α∗(Ξ)(N JT )

〉

. (3)

The expansion coefficients are obtained when diagonaliz-
ing the S = −2 Hamiltonian in the basis Eq. (1,2). For
practical calculations, the model space is truncated by lim-
iting the total HO energy quantum number N = NA−2 +
2nλ + lλ + NY1Y2 = NA−1 + lΞ + 2nΞ ≤ Nmax . Of
course, by doing so, the computed binding energies will
depend on Nmax and on HO frequency ω. There are sev-
eral extrapolation methods that have been well tested for
nuclear NCSM calculations [42–45]. Here we observe, like
for the S = −1 systems, that the optimal HO frequencies
for the S = −2 hypernuclear binding energies are gener-
ally not the same as the one for the parent nuclear bind-
ing energies. Therefore, in order to extract the converged
results, we follow the two-step extrapolation procedure that
has been extensively employed for the J-NCSM nuclear
and single-Λ hypernuclear calculations [7,28]. The ener-
gies E(N , ω) are computed for all accessible model spaces
Nmax and for a wide range of ω. We then determine EN for
a given Nmax = N by minimizing the energies E(N , ω)

with respect to ω. In the second step, an exponential fit is
applied to EN in order to extrapolate to N → ∞. For
excitation energies and separation energy differences, it is
more appropriate to fit the results to a constant as will be
discussed in Sect. 3.1. A similar approach has been followed
in [28].

2.2 S = −2 many-body Hamiltoninan

For the solution of the A-body Schrödinger equation,

H |Ψ 〉 = E |Ψ 〉 (4)

we use a standard, iterative Lanczos solver. In order to
introduce the pertinent ingredients, we will in the follow-
ing present the evaluation of an expectation value of H . The
extension to the evalution of H |Ψ 〉 is then straightforward.
Using the wave function in Eq. (3), one can write down the
final expression for the energy expectation value as follows

〈Ψ (π JT ) | H | Ψ (π JT )〉
=

∑

α∗(Y1Y2)

α′∗(Y1Y2)

Cα∗(Y1Y2)Cα′∗(Y1Y2) 〈α∗(Y1Y2)| H | α′∗(Y1Y2)〉

+
∑

α∗(Ξ), α′∗(Ξ)

Cα∗(Ξ)Cα′∗(Ξ)〈α∗(Ξ) |H | α′∗(Ξ)〉

+2
∑

α∗(Y1Y2)

α′∗(Ξ)

Cα∗(Y1Y2)Cα′∗(Ξ) 〈α∗(Y1Y2)| H | α′∗(Ξ)〉 . (5)

The last line in Eq. (5) is obtained by exploiting the hermitic-
ity of the Hamiltonian. It should be clear from Eq. (5) that
the part of the Hamiltonian that only involves the doubly-
strange hyperon Ξ does not contribute to the matrix ele-
ment 〈α∗(Y1Y2)| H | α′∗(Y1Y2)〉 (in the first line). Likewise,
〈α∗(Ξ) |H | α′∗(Ξ)〉 will not receive any contributions from
the part of the Hamiltonian that contains two singly-strange
hyperons Y1 and Y2, whereas the last term is nonzero only
for the transition potentials in the S = −2 channels. There-
fore, in order to write down the explicit form of the S = −2
A-body Hamiltonian, we distinguish three parts of the Hamil-
tonian, namely HY1Y2 , HΞ and HS=−2

Y1Y2−ΞN , which contributes
to the matrix elements in the first, second and third lines in
Eq. (5), respectively. The first part of the Hamiltonian HY1Y2

corresponds to a system consisting of A − 2 nucleons and
two singly-strange hyperons Y1 and Y2, and has the following
form,

HY1Y2 = HS=0
Y1Y2

+ HS=−1
Y1Y2

+ HS=−2
Y1Y2

=
A−2
∑

i< j=1

( 2p2
i j

M(tY1, tY2)
+ V S=0

i j

)

+
A−2
∑

i=1

(mN + m(tY1)

M(tY1, tY2)

p2
iY1

2μiY1

+ V S=−1
iY1

+mN + m(tY2)

M(tY1, tY2)

p2
iY2

2μiY2

+ V S=−1
iY2

)

+m(tY1) + m(tY2)

M(tY1, tY2)

p2
Y1Y2

2μY1Y2

+ V S=−2
Y1Y2

+(m(tY1) + m(tY2) − 2mΛ

)+ · · · , (6)
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with Y1,Y2 = Λ,Σ and Y1 ≤ Y2. Here, m(tY1),m(tY2)

and mN are the Y1, Y2 hyperon and nucleon rest masses,
respectively. M(tY1, tY2) denotes the total rest mass of the
system M(tY1, tY2) = m(tY1) + m(tY2) + (A − 2)mN , while
μiY1 and μY1Y2 are the YN and YY reduced masses, respec-
tively. The rest mass differences within the nucleon- and
hyperon-isospin multiplets are neglected. V S=0

i j , V S=−1
iY , and

V S=−2
YY are the nucleon-nucleon (NN), YN and YY poten-

tials. Finally, the last term in Eq. (6) accounts for the differ-
ence in the rest masses of the hyperons arising due to particle
conversions.

Likewise, the second Hamiltonian, HΞ (involving a Ξ

hyperon) corresponds to a system composed of a Ξ hyperon
and A − 1 nucleons. Hence,

HΞ = HS=0
Ξ + HS=−2

Ξ

=
A−1
∑

i< j=1

( 2p2
i j

M(Ξ)
+ V S=0

i j

)

+
A−1
∑

i=1

(mN + mΞ

M(Ξ)

p2
Ξ i

2μΞ i
+ V S=−2

Ξ i

)

+(mΞ + mN − 2mΛ

)+ · · · , (7)

where mΞ is the Ξ hyperon rest mass and μiΞ is the reduced
mass of a Ξ and a nucleon. The total mass of the system is
now given by M(Ξ) = mΞ + (A−1)mN . V S=−2

Ξ i is the ΞN
potential. The ellipses in Eqs. (6,7) stand for those higher-
body forces that are omitted here. The transition Hamiltonian
HS=−2
Y1Y2,ΞN is simply given by the YY-ΞN transition potential

HS=−2
Y1Y2,ΞN =

A−1
∑

i=1

V S=−2
Y1Y2,Ξ i . (8)

2.3 Evaluation of the S = −2 Hamiltonian matrix elements

Now, taking into account the explicit forms of the A-body
Hamiltonian in Eqs. (6-8), all possible contributions to the
matrix element 〈Ψ (π JT ) | H | Ψ (π JT )〉 can then be split
into three groups involving the non-strange HS=0, single-
strange HS=−1 and double-strange HS=−2 parts of the total
Hamiltonian,

〈Ψ (π JT ) | H | Ψ (π JT )〉 = 〈Ψ (π JT ) | HS=0 | Ψ (π JT )〉
+〈Ψ (π JT ) | HS=−1 | Ψ (π JT )〉
+〈Ψ (π JT ) | HS=−2 | Ψ (π JT )〉. (9)

The evaluation of the non-strange part,

〈Ψ (π JT ) | HS=0 | Ψ (π JT )〉
=

∑

α∗(Y1Y2)

α′∗(Y1Y2)

Cα∗(Y1Y2)Cα′∗(Y1Y2) 〈α∗(Y1Y2)| HS=0
Y1Y2

| α′∗(Y1Y2)〉

+
∑

α∗(Ξ),α′∗(Ξ)

Cα∗(Ξ)Cα′∗(Ξ)〈α∗(Ξ) |HS=0
Ξ |α′∗(Ξ)〉 ,

(10)

does not require any new transition coefficients, and can
be performed analogously as done for the S = −1 sys-
tems [28]. Furthermore, the combinatorial factors that relate
the A-body matrix elements 〈α∗(Y1Y2)| HS=0

Y1Y2
| α′∗(Y1Y2)〉 and

〈α∗(Ξ) |HS=0
Ξ | α′∗(Ξ)〉 to the two-nucleon matrix elements

in the two-body sector are given by the binomial coefficients
of
(Anucl

2

) = Anucl(Anucl − 1)/2 with Anucl = A − 2 and
Anucl = A − 1, respectively, being the number of nucle-
ons in the system (see Appendix A for the definition of the
combinatorial factors).

The matrix elements of the double-strange part HS=−2 of
the Hamiltonian,

〈Ψ (π JT ) | HS=−2 | Ψ (π JT )〉
=

∑

α∗(Y1Y2)

α′∗(Y1Y2)

Cα∗(Y1Y2)Cα′∗(Y1Y2) 〈α∗(Y1Y2)| HS=−2
Y1Y2

| α′∗(Y1Y2)〉

+
∑

α∗(Y1Y2)

α′∗(Ξ)

2Cα∗(Y1Y2)Cα′∗(Ξ) 〈α∗(Y1Y2)| HS=−2
Y1Y2,ΞN | α′∗(Ξ)〉

+
∑

α∗(Ξ),α′∗(Ξ)

Cα∗(Ξ)Cα′∗(Ξ)〈α∗(Ξ) |HS=−2
Ξ | α′∗(Ξ)〉,

(11)

are evaluated analogously. Indeed, in order to calculate the
last two terms in Eq. (11), one simply needs to expand
the states |α∗(Ξ)〉 in the complete set of intermediate states
|α∗(ΞN )〉 that explicitly single out a ΞN pair,

|α∗(Ξ)〉 =
∑

α∗(ΞN )

〈α∗(Ξ)|α∗(ΞN )〉 |α∗(ΞN )〉 . (12)

Here the transition coefficients 〈α∗(Ξ)|α∗(ΞN )〉 can be com-
puted using the expression Eq. (A.6) in Ref. [28]. It is easy to
see that the last term in Eq. (11), 〈α∗(Ξ) |HS=−2

Ξ | α′∗(Ξ)〉, dif-
fers from the matrix element of the two-body ΞN Hamilto-
nian in the |ΞN 〉 basis by a combinatorial factor of A−1. The
factor that relates 〈α∗(Y1Y2)| HS=−2

Y1Y2−ΞN | α′∗(Ξ)〉 to the two-
body transition potential VY1Y2−ΞN is, however, not obvious
because of possible couplings between identical and non-
identical two-body states, for instance, ΣΣ −ΞN or ΛΛ−
ΞN . In Appendix A, we have shown that, in this case, the
corresponding combinatorial factor is

√
A − 1 (see Table 4).

2.4 Separation of a YN pair

Let us now discuss the evaluation of the second term in
Eq. (9) that involves the singly-strange Hamiltonian HS=−1

of Eq. (6),
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〈Ψ (π JT ) | HS=−1 | Ψ (π JT )〉
=

∑

α∗(Y1Y2)

α′∗(Y1Y2)

Cα∗(Y1Y2)Cα′∗(Y1Y2) 〈α∗(Y1Y2)| HS=−1
Y1Y2

| α′∗(Y1Y2)〉,

(13)

in some details since it requires new sets of transition coef-
ficients. Here, in order to compute the matrix elements
〈α∗(Y1Y2)| HS=−1

Y1Y2
| α′∗(Y1Y2)〉, one needs to employ other sets

of intermediate states that explicitly separate out a YN pair .
Obviously, each of the hyperons, Y1 and Y2, can interact with
a nucleon independently (as it is clearly seen from the expres-
sion for HS=−1

Y1Y2
in Eq. (6)). It is then instructive to exploit

two separate intermediate sets, namely |(α∗(Y1N )
)∗(Y2)〉 and

|(α∗(Y2N )
)∗(Y1)〉. The first set, |(α∗(Y1N )

)∗(Y2)〉, is needed
when computing the matrix elements of the first two terms
of HS=−1

Y1Y2
where Y1 is the active hyperon while Y2 plays the

role of a spectator. Similarly, the second set, |(α∗(Y2N )
)∗(Y1)〉,

is useful for evaluating the two remaining terms in Eq. (6)
where the roles of the Y1 and Y2 hyperons have been inter-
changed (i.e.,Y2 is now the active particle). The construction
of these bases is straightforward. For example, the first set
can be formed by combining the hyperon states |Y2〉, depend-
ing on the Jacobi coordinate of the Y2 hyperon relative to the
C.M. of the ((A−3)N +Y1N ) subcluster, with the |α∗(Y1N )〉
states constructed in Eq. (9) in [28]. Thus,

|(α∗(Y1N )
)∗(Y2)〉 (14)

= |α∗(Y1N )〉 ⊗ |Y2〉
= |N JT, α

∗(Y1N )
A−1 ñY2 ĨY2 t̃Y2; (J ∗(Y1N )

A−1 (l̃Y2sY2) ĨY2)J,

(T ∗(Y1N )
A−1 t̃Y2)T 〉

≡
∣
∣
∣

Y1

Y2

Y2
〉

,

and, similarly

|(α∗(Y2N )
)∗(Y1)〉 (15)

= |α∗(Y2N )〉 ⊗ |Y1〉
= |N JT, α

∗(Y2N )
A−1 ñY1 ĨY1 t̃Y1; (J ∗(Y2N )

A−1 (l̃Y1sY1) ĨY1)J,

(T ∗(Y2N )
A−1 t̃Y1)T 〉

≡
∣
∣
∣

Y2

Y1

Y1
〉

.

In both of these basis states, we have one momentum/position
of the spectator pointing towards the spectator, the one of
the pair pointing towards the hyperon and the third momen-
tum/position pointing towards the A − 3 cluster.

Clearly, each of the above two auxiliary sets is complete
with respect to the basis states |α∗(Y1Y2)〉 in Eq. (1). This in
turn allows for the following expansions

|α∗(Y1Y2)〉
=

∑

(α∗(Y1N ))∗(Y2)

〈(

α∗(Y1N )
)∗(Y2)

∣
∣α∗(Y1Y2)

〉 ∣
∣
(

α∗(Y1N )
)∗(Y2)

〉

,

(16)

or,

|α∗(Y1Y2)〉
=

∑

(α∗(Y2N ))∗(Y1)

〈(

α∗(Y2N )
)∗(Y1)

∣
∣α∗(Y1Y2)

〉 ∣
∣
(

α∗(Y2N )
)∗(Y1)

〉

.

(17)

Obviously, when Y1 and Y2 are identical, the two auxiliary
sets Eqs. (14,15) are the same, and there is no need to distin-
guish between the two expansions. In any case, the expansion
coefficients in Eqs. (16,17) are very similar to each other and
can be computed analogously. In the following, we focus on
the transition coefficients of the first expansion. For com-
puting the overlap, 〈(α∗(Y1N ))∗(Y2)|α∗(Y1Y2)〉, we make use of
another set of auxiliary states, |(α∗(Y1))∗(Y2)〉, that explicitly
single out the Y1 and Y2 hyperons. These states are obtained
by coupling the hyperon states |Y2〉 to the basis states of the
((A − 2)N + Y1) system, |α∗(Y1)〉A−1, defined in Eq. (4)
in [28],

|(α∗(Y1)
)∗(Y2)〉 (18)

= |α∗(Y1)〉A−1 ⊗ |Y2〉
= |N JT, α

∗(Y1)
A−1 nY2 IY2 tY2; (J ∗(Y1)

A−1 (lY2sY2)IY2)J,

(T ∗(Y1)
A−1 tY2)T 〉

= |N JT,N ′
A−2nY1 IY1 tY1nY2 IY2 tY2; ((J ′

A−2(lY1sY1)IY1)

J ∗(Y1)
A−1 (lY2sY2)IY2)J, (( T

′
A−2 tY1)T

∗(Y1)
A−1 tY2)T 〉

≡
∣
∣
∣

Y1

Y2

Y2
〉

.

The third line in Eq. (18) is to illustrate how the quantum
number of the three subclusters: (A-2) nucleons, Y1 and Y2

hyperons, are combined to form the intermediate states with
the definite quantum numbers N , J and T . Exploiting the

completeness of the auxiliary states |(α∗(Y1)
)∗(Y2)

〉

, the tran-
sition coefficient in Eq. (16) then becomes

〈(

α∗(Y1N )
)∗(Y2)|α∗(Y1Y2)

〉

= 〈(

α∗(Y1N )
)∗(Y2)|(α∗(Y1)

)∗(Y2)
〉 〈(

α∗(Y1)
)∗(Y2)|α∗(Y1Y2)〉
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≡
〈 Y1

Y2

Y2 ∣
∣
∣

Y1

Y2

Y2
〉 〈

Y1

Y2

Y2 ∣
∣
∣

Y1

Y2

〉

= δY ′
2Y2

δA−2′,A−2

× Y1
∣
∣
∣
Y1

Y1

Y1
Y1

〉

(A−1)

〈
Y1

Y2

Y2 ∣
∣
∣

Y1

Y2

〉

,

(19)

where a summation over the states |(α∗(Y1)
)∗(Y2)

〉

is implied.

The first overlap
〈(

α∗(Y1N )
)∗(Y2)|(α∗(Y1)

)∗(Y2)
〉

in Eq. (19) is
essentially given by the transition coefficients of a system
consisting of (A − 2) nucleons and the Y1 hyperon (see
Eq. (11) in [28]), whereas the second term
〈(

α∗(Y1)
)∗(Y2)|α∗(Y1Y2)

〉

can quickly be deduced from Eq. (11)
in [7],
〈(

α∗(Y1)
)∗(Y2)|α∗(Y1Y2)

〉

=δT ′
A−2TA−2

δJ ′
A−2 JA−2

δN ′
A−2NA−2

δζ ′
A−2ζA−2

× ÎY1 ÎY2 ĴY1Y2 ŜY1Y2 T̂Y1Y2 Îλ Ĵ
∗(Y1)
A−1 T̂

∗(Y1)
A−1

×(−1)
3JA−2+2TA−2+TY1Y2 +SY1Y2 +λ+tY1 +lY1 +tY2 +lY2 +IY1

×
∑

SA−1=JA−2+sY1

(−1)SA−1+1 Ŝ2
A−1

{

JA−2 sY1 SA−1

lY1 J
∗(Y1)
A−1 IY1

}

×
∑

L=lY1 +lY2
S=SA−1+sY2

L̂2 Ŝ2

⎧

⎪⎨

⎪⎩

lY1 SA−1 J
∗(Y1)
A−1

lY2 sY2 IY2
L S J

⎫

⎪⎬

⎪⎭

⎧

⎨

⎩

lY1Y2 SY1Y2 JY1Y2
λ JA−2 Iλ
L S J

⎫

⎬

⎭

×
{

sY2 sY1 SY1Y2
JA−2 S SA−1

}{

tY2 tY1 TY1Y2

TA−2 T T
∗(Y1)
A−1

}

×〈nY1 lY1 nY2 lY2 : L | nY1Y2 lY1Y2 nλ λ : L〉d , (20)

with,

d = (A − 2)mN m(tY2)

m(tY1)
(

(A − 2)mN + m(tY1) + m(tY2)
) .

Here, we use the notation ĵ = √
2 j + 1 and abbreviate the

summations running from |J1 − J2| to J1 + J2 simply by
J1 + J2.

The transition coefficients for the second expansion in
Eq. (17) are computed analogously. Taking into account
the expansions Eqs. (16,17), the matrix element 〈α∗(Y1Y2)|
HS=−1
Y1Y2

| α′∗(Y1Y2)〉 in Eq. (13) is then decomposed into,

〈α∗(Y1Y2)| HS=−1
Y1Y2

| α′∗(Y1Y2)〉
= 〈α∗(Y1Y2)| HS=−1

Y1Y2
| α′∗(Y1Y2)〉Y2

+ 〈α∗(Y1Y2)| HS=−1
Y1Y2

| α′∗(Y1Y2)〉Y1 . (21)

The subscript in each term on the right-hand side of Eq. (21)
specifies the hyperon spectator. The first contribution is fur-
ther given by

〈α∗(Y1Y2)| HS=−1
Y1Y2

| α′∗(Y1Y2)〉Y2 (22)

= 〈 Y1

Y2

∣
∣

Y1

Y2

〉〈
Y1

Y2

∣
∣HS=−1

Y1Y2

∣
∣

Y1

Y2

〉〈
Y1

Y2

∣
∣
Y1

Y2

〉

= 〈 Y1

Y2

∣
∣

Y1

Y2

〉

δY2Y ′
2

〈 Y1

Y1

∣
∣HS=−1

Y1Y2

∣
∣
Y1

Y1

〉〈
Y1

Y2

∣
∣
Y1

Y2

〉

.

The expression for the second term in Eq. (21) is obtained
from Eq. (22) by interchanging the roles of the Y1 and Y2

hyperons in the intermediate states,

〈α∗(Y1Y2)| HS=−1
Y1Y2

| α′∗(Y1Y2)〉Y1 (23)

= 〈 Y1

Y2

∣
∣

Y2

Y1

〉

δY1Y ′
1

〈 Y2

Y2

∣
∣HS=−1

Y1Y2

∣
∣
Y2

Y2

〉〈
Y2

Y1

∣
∣
Y1

Y2

〉

.

Although Eqs.(22,23) are very similar to the expression
for computing the Hamiltonian matrix elements in S =
−1 systems, the presence of a hyperon spectator Y2(Y1)

makes it rather difficult to determine the proper combi-
natorial factors that relate the many-body matrix elements

δY2Y ′
2

〈 Y1

Y1

∣
∣HS=−1

Y1Y2

∣
∣
Y1

Y1

〉

and δY1Y ′
1

〈 Y2

Y2

∣
∣HS=−1

Y1Y2

∣
∣
Y2

Y2

〉

to

the YN Hamiltonian matrix elements in the two-body sector.
These factors are also provided in Table 3 in Appendix A.
From Table 3, one can clearly see that the corresponding fac-
tors depend not only on the total number of nucleons but also
on the two hyperons Y1 and Y2 in the intermediate states.

3 Results

In this section, as a first application, we report results for
the ΛΛ s-shell hypernuclei 4

ΛΛH(1+, 0), 5
ΛΛHe( 1

2
+
, 1

2 ), and
6

ΛΛHe(0+, 0). To zeroth approximation, these systems can
be regarded as a ΛΛ pair in the 1S0 state being attached to
the corresponding core-nuclei predominantly in their ground
states. While the quantum numbers of 5

ΛΛHe, (J+, T ) =
( 1

2
+
, 1

2 ), are obvious, those for the 4
ΛΛH hypernucleus are

chosen according to our observations that the state with
(J+, T ) = (1+, 0) is the lowest-lying level and in many
calculations the one closest to binding of all A = 4 S = −2
hypernuclei. Therefore, we will report our results for this
state below.

For all calculations presented here, we employ BB interac-
tions that are derived within chiral EFT [32]. The high-order
semilocal momentum-space regularized potential with a reg-
ulator of ΛN = 450 MeV (N4LO+(450)) [33], SRG-evolved
to λNN = 1.6 fm−1, is adopted for describing the NN inter-
action. The next-to-leading order potential NLO19 [4] with
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a chiral cutoff of ΛY = 650 MeV and an SRG parameter
of λY N = 0.868 fm−1 is used for the YN interaction. We
remark that the chosen NN and YN potentials successfully
predict the empirical Λ-separation energies for 3

ΛH, 4
ΛHe(1+)

and 5
ΛHe, and underbind 4

ΛHe(0+) only slightly [28]. There-
fore, those potentials are an excellent starting point for the
extension to S = −2. Eventually, in a future study, it will
be interesting to also examine the dependence of S = −2
hypernuclei on the SRG evolution and the starting interac-
tions in the S = −1 sector. Clearly, in such an investigation
one has to ensure to maintain the favorable description of
S = −1 hypernuclei. Therefore, we do not expect a signif-
icant impact of any variations subject to that pre-condition
on separation energies for S = −2 hypernuclei. For the two-
body interactions in the S = −2 sector, we utilize the chiral
YY interactions at LO [29] and up to NLO [30,31], with a
chiral cutoff of ΛYY = 600 MeV. Therefore, the predictions
for S = −2 hypernuclei shown here are based on a set of
interactions that are consistent with the available NN, YN
and YY data and with the empirical separation energies of
light S = −1 hypernuclei.

One of our primary aims here is to establish the predictions
of these chiral YY potentials for double-Λ s-shell hypernu-
clei. Ultimately, it is expected that results from such a study
may provide useful additional constraints for constructing
realistic S = −2 BB interaction potentials, given the scarcity
of direct empirical information on the underlying two-body
systems (ΛΛ, ΞN , ...). Due to the latter circumstance, in the
chiral approach (as well as in meson-exchange and/or con-
stituent quark models) the assumption of SU(3)f symmetry is
an essential prerequisite for deriving pertinent potentials. For
example, in chiral EFT the short-distance dynamics is repre-
sented by contact terms which involve low-energy constants
(LECs) that need to be determined from a fit to data [32].
SU(3) symmetry strongly limits the number of independent
LECs [3]. However, at NLO, there are two LECs which are
only present in the S = −2 sector, and which contribute to
the interaction in the spin- and isospin zero channel, specifi-
cally to the 1S0 partial wave of ΛΛ. They correspond to the
SU(3) singlet irreducible representation, see Ref. [30], and
are denoted by C̃1 and C1, respectively, in that work. These
have been fixed by considering the extremely sparse and
uncertain YY data (i.e., a total cross section for Ξ− p − ΛΛ

[46] and the upper limits of elastic and inelastic Ξ− p cross
sections [47]). Clearly, such poor empirical data do not allow
for a reliable quantitative determination of the unknown
strength of the two contact terms in question. Nevertheless, it
turned out that reasonable choices for the C1’s can be made
[30,31] and the YY cross sections predicted by the two NLO
potentials are fairly consistent with the experiments. Further-
more, the ΛΛ 1S0 scattering lengths predicted by these inter-
actions are compatible with values inferred from empirical
information [48,49]. The LO interaction yields a somewhat

large scattering length in comparison to those values and it
also exhibits a rather strong regulator dependence [29].

It should be pointed out that our initial NLO interaction for
S = −2 [30] and the updated version [31] differ only in the
antisymmetric SU(3)f component which means essentially
only in the strength of the ΞN interaction in the 3S1 partial
wave. This has an impact on the corresponding in-medium
properties of the Ξ . Specifically, the updated version from
2019 [31] yields a moderately attractive Ξ single-particle
potential that is roughly in line [50] with recent experimental
evidence that the existence of bound Ξ -hypernuclei is very
likely [51]. With regard to ΛΛ systems, we observe that the
two realizations yield very similar binding energies for the
double-Λ s-shell hypernuclei. This indicates that, in general,
the actual strength of the spin-triplet ΞN interaction has lit-
tle influence on few-body observables related to ΛΛ. In the
following, we therefore present results for the LO and the
updated NLO interactions for a chiral cutoff of ΛYY = 600
MeV. In order to speed up the convergence, both YY poten-
tials are also SRG-evolved. We use a wide range of the SRG
flow parameters, namely 1.4 ≤ λYY ≤ 3.0 fm−1, to quantify
the contribution of possible SRG-induced YYN three-body
forces.

3.1 6
ΛΛHe(0+, 0)

The 6
ΛΛHe hypernucleus is so far the lightest double-Λ sys-

tem being unambiguously established. Since the observa-
tion of the Nagara event [10], its ΛΛ separation energy,
defined as BΛΛ( 6

ΛΛHe) = E(4He) − E( 6
ΛΛHe), has been

exploited as a crucial constraint for constructing effective
potentials that are then employed in many-body calculations
like the Gaussian expansion method [13,52] or the cluster
Faddeev-Yakubovsky approach [16,17]. The re-analysis of
the Nagara event using the updated Ξ mass yielded a slightly
smaller ΛΛ separation energy, BΛΛ( 6

ΛΛHe) = 6.91±0.16
MeV [11,53], as compared to the initially estimated value
of BΛΛ( 6

ΛΛHe) = 7.25±0.19 [10]. This, in turn, may have
direct consequences for theoretical predictions for poten-
tially observable bound states of other s-shell ΛΛ hyper-
nuclei, particularly the A = 4 double-Λ system [25,54],
see also the discussion in 3.3. We note that the information
about BΛΛ( 6

ΛΛHe) has not been directly utilized in order
to constrain the LECs appearing in the chiral LO and NLO
potentials. It is therefore of enormous interest to explore this
double-Λ system using the two chiral interactions to scru-
tinize their consistency with the measured ΛΛ separation
energy.

As mentioned earlier, in order to eliminate the effect of the
finite-basis truncation on the binding energies, we follow the
two-step extrapolation procedure as explained in [28]. The
ω- and N -space extrapolations for E( 6

ΛΛHe) are illustrated
in panels (a) and (b) of Fig. 1, respectively. The error bars
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(a) EN ( 6
ΛΛHe) as a function of ω. (b) E( 6

ΛΛHe) as a function of N .

(c) BΛΛ( 6
ΛΛHe) as a function of . (d) ΔBΛΛ( 6

ΛΛHe) as a function of .

Fig. 1 Binding energy E , ΛΛ-separation energy BΛΛ and ΛΛ-excess
energy ΔBΛΛ for 6

ΛΛHe computed using the YY NLO(600) interac-
tion [31] that is SRG evolved to a flow parameter of λYY = 1.8 fm−1.
The SMS N4LO+(450) potential [33] with λNN = 1.6 fm−1 and the
NLO19(650) potential [4] with λY N = 0.868 fm−1 are employed for
the NN and YN interactions, respectively. (a): Solid lines with differ-

ent colors and symbols represent numerical results for different model
spaces N . Dashed lines are obtained using the ansatz Eq. (22) in [28].
(b-d): Red (horizontal) lines with shaded areas indicate the converged
results and the corresponding uncertainties. Note that binding energies
strictly converge from above whereas binding energy differences like
separation and excess energies do not necessarily fulfill this constraint

shown in the figures of the N -dependence of energies, panel
(b), are given by the difference to the next model space. These
error bars are not meant to provide a realistic uncertainty esti-
mate but only to give weights for the following extrapolation
to N → ∞. For illustration purposes, we present results for
the NLO potential with λYY = 1.8 fm−1 but stress that the
convergence trend is similar for all other values of λYY , and
for the LO interaction. Also, the behavior of E( 6

ΛΛHe) with
respect to ω and N resembles that of the binding energy
of the parent hypernucleus 5

ΛHe [28]. Furthermore, panel
(b) clearly demonstrates a nice convergence pattern of the
binding energy E( 6

ΛΛHe) computed for model spaces up to
Nmax = 14. We also perform an exponential fit to extrapo-
late the ΛΛ-separation energy, as done for S = −1 systems.
Clearly, the result for BΛΛ( 6

ΛΛHe), displayed in panel (c),
is also well-converged for Nmax = 14 (practically with the
same speed as that of E( 6

ΛΛHe)). Note that, for single-Λ
hypernuclei, the separation energy BΛ converges somewhat

faster than the individual binding energies. For S = −2 sys-
tems, we are also interested in the so-called ΛΛ excess bind-
ing energy

ΔBΛΛ( A
ΛΛX) = BΛΛ( A

ΛΛX) − 2B̄Λ(A−1
Λ X)

= 2Ē(A−1
Λ X) − E( A

ΛΛX) − E(A−2X)

(24)

which provides information about the strength of the ΛΛ

interaction. B̄ and Ē are spin averaged Λ-separation and
binding energies of the hypernuclear core if the core supports
several spin states. Cleary, this difference is also affected by
the spin-dependent part of the Λ-core interaction, dynamical
changes in the core-nucleus structure as well as the mass-
polarization effect [8,15]. For 6

ΛΛHe, the spin-dependent
part of the Λ-core interaction vanishes because of the spin
zero the parent nucleus 4He, hence the difference
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ΔBΛΛ( 6
ΛΛHe) = BΛΛ( 6

ΛΛHe) − 2BΛ(5
ΛHe),

will reflect the net contributions of the ΛΛ interactions and
the 4He core-distortion1 (polarization) effects. In panel (d),
we exemplify the model-space extrapolation for
ΔBΛΛ( 6

ΛΛHe). We observe that ΔBΛΛ converges with
respect to N visibly faster than both, the ΛΛ-separation and
the binding energies. For this quantity it is more appropriate
to fit to a constant in order to determine the large N extrap-
olation.

Being able to accurately extract BΛΛ( 6
ΛΛHe) and

ΔBΛΛ( 6
ΛΛHe), we are in a position to study the impact

of the two chiral interactions on these quantities. The con-
verged results for BΛΛ and ΔBΛΛ, calculated for a wide
range of the SRG flow parameter λYY , are presented in the
left and right plots of Fig. 2, respectively. Evidently, the LO
YY potential (blue triangles) produces too much attraction
(more than 2 MeV as can be seen in the right panel), which,
as a consequence, leads to overbinding by about 1.5 MeV in

6
ΛΛHe as can be seen in the left panel. On the other hand,
the moderately attractive NLO interaction predicts a ΛΛ

excess energy of ΔBΛΛ ≈ 1.1 MeV, that is only slightly
larger than the empirical value of ΔBexp

ΛΛ = 0.67±0.17 MeV
[11,53]. For completeness, let us mention that the pertinent
ΛΛ 1S0 scattering lengths are a = −1.52 fm (LO [29]) and
a = −0.66 fm (NLO [30]), respectively.

It is rather remarkable that both, BΛΛ( 6
ΛΛHe) and

ΔBΛΛ( 6
ΛΛHe), exhibit a rather weak dependence on the SRG

YY parameter λYY . With an order of 100 keV, it is at least
one order of magnitude smaller than the variation of, say,
BΛ(5

ΛHe) with respect to the SRG YN flow parameter λY N

[28]. The insensitivity of the ΛΛ-separation energy to the
SRG evolution indicates that the SRG-induced YYN forces
are negligibly small. This is probably the result of a rather
weak ΛΛ interaction.

Finally, we benchmark the probabilities of finding one
Σ (PΛΣ) or two Σ (PΣΣ), or the Ξ hyperon (PΞ) in the
ground-state wave function of 6

ΛΛHe obtained for the two chi-
ral potentials. Such probabilities are summarized in Table 1
for several values of λYY . Overall, the PΛΣ and PΣΣ prob-
abilities are fairly small, but almost stable with respect to
the SRG evolution of the YY interaction. Also, their depen-
dence on the two considered potentials is practically negli-
gible. We remark that the probability of finding a Σ in 5

ΛHe
for the employed NN and YN interactions is also very small,

1 Our preliminary results for the RMS distances of an NN pair and
point-nucleon radii in 6

ΛΛHe, 5
ΛHe and 4He are very similar to each

other which implies that the distortions of the 4He core are rather small.
However, we also note that Hiyama et al. in their study for A = 7 − 10
double-strangeness systems using the Gaussian-basis coupled cluster
method found that the dynamical changes in the nuclear core structures
are quite visible [15]. Further studies are necessary in order to clarify
the discrepancy.

PΣ(5
ΛHe) = 0.07%. In contrast, PΞ is more sensitive to the

evolution and also strongly influenced by the interactions.
Surprisingly, the updated NLO potential, that yields a more
attractive Ξ -nuclear interaction [31], predicts a considerably
smaller Ξ probability (less than 0.2 % for λYY = 3.0 fm−1)
as compared to the value of PΞ = 1.1% obtained for the LO
at the same λYY . This reflects our observation in the S = −1
sector that there is no simple one-to-one connection between
the probabilities of finding a hyperon particle (Σ,Ξ) and the
interaction strength.

3.2 5
ΛΛHe( 1

2
+
, 1

2 )

The next system that we investigate is 5
ΛΛHe. Although the

existence of 5
ΛΛHe has not been experimentally confirmed

yet, most of the many-body calculations employing effective
potentials that reproduce the separation energy BΛΛ( 6

ΛΛHe)
predict a particle-stable bound state of 5

ΛΛHe [13,16,54].
However, there are visible discrepancies among the values
of BΛΛ( 5

ΛΛHe) predicted by different numerical approaches
or different interaction models. Additionally, it has been
observed in Faddeev cluster calculations that there is an
almost linear correlation between the calculated values of
BΛΛ for the 5

ΛΛHe ( 5
ΛΛH) and 6

ΛΛHe hypernuclei [16]. Such
a behavior was also seen in the study based on pionless
EFT [25]. It will be of interest to see whether one observes a
similar correlation using other realizations of the chiral inter-
actions. However, at this stage, we postpone that question to
a future investigation and focus on the different effects of the
LO and NLO potentials on BΛΛ( 5

ΛΛHe) instead.
The ω- andN -extrapolation of the binding energy E , ΛΛ-

separation energy BΛΛ and the ΛΛ-excess energy ΔBΛΛ of
5

ΛΛHe are illustrated in Fig. 3. Here, the results are shown for
the NLO potential with a flow parameter of λYY = 1.8 fm−1

and for model spaces up to Nmax = 16. Note that in the case
of 4

ΛHe, the energy calculations were performed for model
spaces up toNmax (

4
ΛHe) = 22 in order to achieve a good con-

vergence. Calculations with such large model spaces are cur-
rently not feasible for 5

ΛΛHe because of computer-memory
constraints. Nonetheless, the illustrative results in Fig. 3
clearly indicate that well-converged results are achieved for
this double-Λ hypernucleus already for model spaces up to
Nmax = 16. Moreover, the employed two-step extrapolation
procedure also allows for a reliable estimate of the truncation
uncertainty. Let us further remark that, when calculating the
excess energy

ΔBΛΛ( 5
ΛΛHe) = BΛΛ( 5

ΛΛHe) − 2BΛ(4
ΛHe) , (25)

we do not simply assign the ground-state Λ-separation
energy BΛ(4

ΛHe, 0+) to BΛ(4
ΛHe) but rather use a spin-

averaged value BΛ(4
ΛHe) of the ground-state doublet [15]

123



  217 Page 10 of 21 Eur. Phys. J. A           (2021) 57:217 

Fig. 2 BΛΛ( 6
ΛΛHe) (left) and ΔBΛΛ( 6

ΛΛHe) (right) as functions of the
flow parameter λYY . Calculations are based on the YY LO(600) (blue
triangles) and NLO(600) (red circles) potentials. Dash-dotted line with

grey band represents the experimental value and the uncertainty of the
Nagara event [11]. Same NN and YN interactions as in Fig. 1

Table 1 Probabilities (%) of finding a single and double Σ , and a Ξ hyperons in the ground-state wavefunction of 6
ΛΛHe. Note that PΣ(5

ΛHe) =
0.07%

λYY NLO(600) LO(600)

fm−1 PΛΣ PΣΣ PΞ PΛΣ PΣΣ PΞ

1.4 0.13 0.11 0.02 0.17 0.04 0.5

2.0 0.13 0.11 0.07 0.17 0.05 0.84

3.0 0.12 0.13 0.12 0.18 0.08 1.08

BΛ(4
ΛHe) = 1

4
BΛ(4

ΛHe, 0+) + 3

4
BΛ(4

ΛHe, 1+), (26)

with BΛ(4
ΛHe, 0+(1+)) = 1.708 (0.904) MeV for the

employed NN and YN potentials [28]. By doing so, the com-
puted quantity ΔBΛΛ( 5

ΛΛHe) will be less dependent on the
spin-dependence effect of the Λ-core interactions, and, there-
fore, can be used as a measure of the ΛΛ interaction strength,
provided that the nuclear contraction effects are small. The
results for BΛΛ( 5

ΛΛHe) and ΔBΛΛ( 5
ΛΛHe) calculated for

the two interactions and a wide range of flow parameter,
1.4 ≤ λYY ≤ 3.0 fm−1, are shown in Fig. 4. Overall,
we observe a very weak dependence of these two quanti-
ties on the SRG flow parameter, like for 6

ΛΛHe, reinforcing
the insignificance of SRG-induced YYN forces. Again, the
LO interaction predicts a much larger ΛΛ-separation energy
and a more significant ΛΛ interaction strength than the one
at NLO. In either case, the ΛΛ excess energy ΔBΛΛ com-
puted for 5

ΛΛHe, slightly exceeds the corresponding one for
6

ΛΛHe, by about 0.23 and 0.5 MeV for the LO and NLO
interactions, respectively. The main deviations should come
from the nuclear-core distortion and the suppression of the
ΛΛ − ΞN coupling in 6

ΛΛHe as discussed in [18,55,56].
However, it is necessary to carefully study the impact of the
employed interactions on the results before a final conclu-
sion can be drawn. We further note that Filikhin and Gal [16]

in their Faddeev cluster calculations, based on potentials
that simulate the low-energy s-wave scattering parameters
of some Nijmegen interaction models, obtained an oppo-
site relation, namely ΔBΛΛ( 5

ΛΛHe) < ΔBΛΛ( 6
ΛΛHe). As

a consequence, our results do also not fit into the correla-
tion of ΔBΛΛ( 5

ΛΛHe) and ΔBΛΛ( 6
ΛΛHe) shown in the same

work. We will need to study more interactions in the future to
understand whether such a correlation can also be established
using chiral interactions.

It is also very interesting to point out that the ΛΛ-
separation energies BΛΛ for both 5

ΛΛHe and 6
ΛΛHe pre-

dicted by the NLO potential are surprisingly close to the
results obtained by Nemura et al., BΛΛ( 5

ΛΛHe) = 3.66 MeV,
BΛΛ( 6

ΛΛHe) = 7.54 MeV, using the modified Nijmegen
YY potential (mNDs) [13]. Finally, we provide in Table 2
the probabilities of finding a Σ (PΛΣ ), double Σ (PΣΣ),
or a Ξ (PΞ) in the 5

ΛΛHe ground-state wave function,
computed with the two potentials and several SRG values,
λYY = 1.4, 2.0 and 3.0 fm−1. Apparently, all the proba-
bilities including also PΞ exhibit a rather weak sensitivity
to the flow parameter λYY . The two interactions seem to
have little impact on the Σ-probabilities (PΛΣ and PΣΣ )
but strongly influence PΞ . Like in the 6

ΛΛHe system, here,
the LO potential yields considerably larger Ξ -probabilities
as compared to the values predicted by the NLO interaction.
It also clearly sticks out from Tables 1 and 2 that the probabil-
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(a) EN ( 5
ΛΛHe) as a function of ω. (b) E( 5

ΛΛHe) as a function of N .

(c) BΛΛ( 5
ΛΛHe) as a function of N . (d) ΔBΛΛ( 5

ΛΛ He) as a function of N .

Fig. 3 Binding energy E , ΛΛ-separation energy BΛΛ and ΛΛ-excess ΔBΛΛ for 5
ΛΛHe computed using the YY NLO(600) interaction that is

SRG evolved to a flow parameter of λYY = 1.8 fm−1. Same notation, NN and YN interactions as in Fig. 1

Fig. 4 BΛΛ( 5
ΛΛHe) (left) and ΔBΛΛ( 5

ΛΛHe) (right) as functions of the flow parameter λYY . Calculations are based on the YY LO(600) (blue
triangles) and NLO(600) (red circles) potentials. Same NN and YN interactions as in Fig. 1

ities of finding a Σ or Ξ hyperon in 5
ΛΛHe are visibly larger

than the corresponding ones in 6
ΛΛHe. This is indeed consis-

tent with the Σ-probabilities in the ground-state wave func-
tions of their parent hypernuclei (e.g., PΣ(4

ΛHe) = 0.43 %

and PΣ(5
ΛHe) = 0.07 %), and more importantly, is con-

sistent with the suppression of particle conversions such as
ΛΛ − ΞN in p-shell hypernuclei [55].
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Table 2 Probabilities (in percentage) of finding a Σ (PΛΣ), double Σ (PΣΣ)and a Ξ (PΞ) hyperons in 5
ΛΛHe. PΣ(4

ΛHe) = 0.43 %

λYY YY-NLO(600) YY-LO(600)

fm−1 PΛΣ PΣΣ PΞ PΛΣ PΣΣ PΞ

1.4 0.61 0.07 0.4 0.53 0.02 1.25

2.0 0.6 0.08 0.38 0.51 0.03 1.36

3.0 0.57 0.08 0.23 0.51 0.05 1.35

(a) EN ( 4
ΛΛH) as a function of ω. (b) E( 4

ΛΛH) as a function of N .

(c) E(3ΛH) as a function of N . (d) E( 4
ΛΛH) as a function of the SRG flow parameter λY Y .

Fig. 5 (a): Ground-state energies of 4
ΛΛHe as functions of ω for model

spaceN = 10−32. Calculations are performed with the YY NLO(600)
potential evolved to a flow parameter of λYY = 1.8 fm−1. (b): model
space extrapolation of E( 4

ΛΛH) with the same YY interaction as in

(a). (c): model space extrapolation of E(3
ΛH). (d): Converged E( 4

ΛΛH)

as functions of the flow parameter for the LO(600) (blue triangles) and
NLO(600) (red circles) potentials. The dashed line with grey band repre-
sents the computed E(3

ΛH) and the theoretical uncertainty, respectively.
Same NN and YN interactions as in Fig. 1

3.3 4
ΛΛH(1+, 0)

Our final exploratory s-shell hypernucleus is 4
ΛΛH. This sys-

tem has been the subject of many theoretical and experimen-
tal studies. It turned out that theoretical predictions of the sta-
bility of 4

ΛΛH against the 3
ΛH+Λ breakup are very sensitive to

the interpretations of double-strangeness hypernuclear data,
in particular, the 6

ΛΛHe hypernucleus [54]. Indeed, Nemura et
al. [13] observed a particle-stable but loosely bound state of

4
ΛΛH (just only about 2 keV below the 3

ΛH +Λ threshold for
the mNDs potential) using the fully coupled-channel stochas-

tic variational method in combination with effective YY
potentials that are fitted to reproduce the initially extracted
value of BΛΛ( 6

ΛΛHe) = 7.25±0.19 MeV [10]. The study by
Filikhin and Gal [17] indicated, however, that there is a siz-
able model dependence. The authors found no bound state
within an exact four-body (Faddeev-Yakubovsky) calcula-
tion for theΛΛpn system, but a particle-stable 4

ΛΛH hypernu-
cleus when solving the (three-body) Faddeev equation for the
ΛΛd cluster system. A more recent calculation by Contessi et
al. [25], based on the pionless EFT interaction at LO, showed
that the existence of a bound state in 4

ΛΛH is not compati-
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ble with the corrected value of BΛΛ( 6
ΛΛHe) = 6.91±0.16

MeV. Although the observation of 4
ΛΛH was reported in an

experiment at BNL [57], it has been recently invalidated by
a thorough re-examination of the recorded events [58]. Nev-
ertheless, the existence of a stable 4

ΛΛH hypernucleus cannot
be completely ruled out and the search for its experimental
confirmation or exclusion is still ongoing.

In view of the previous calculations, it is interesting to see
whether the chiral YY potential at NLO, that predicts similar
results for A = 5 − 6 ΛΛ hypernuclei as the mNDs inter-
action [13], also results in a loosely bound state for 4

ΛΛH.
It is well-known that NCSM calculations for very loosely
bound systems like the hypertriton converge very slowly.
Hence, in order to unambiguously answer that question, con-
verged results for the binding energy of the parent 3

ΛH and the
ground-state energy of 4

ΛΛH are crucial. In panels (a) and (b)
of Fig. 5, we examine the convergence of E( 4

ΛΛH) in ω- and
N -space, respectively, using model spaces to Nmax = 32.
The results are shown for the NLO(600) potential with a
flow parameter of λYY = 2.4 fm−1. For a better compar-
ison, the N -space extrapolation of E(3

ΛH), computed with
model spaces up toN = 32, is also presented in panel (c). As
expected, due to the weak binding of the hypertriton, the bind-
ing energy calculations for both hypernuclei, 4

ΛΛH and 3
ΛH,

converge very slowly when using HO bases. It also clearly
sticks out that the optimal HO frequencies ω for large model
space sizes are around ωopt ≈ 6 MeV which is much smaller
than the value of ωopt ≈ 16 MeV for the A = 4, 5 systems.
This again reflects the large spatial extension of the wave
functions of 4

ΛΛH and 3
ΛH. Nevertheless, one can still observe

a slightly faster convergence speed for E( 4
ΛΛH) (especially

with the LO potential) as for E(3
ΛH). Moreover, our extrap-

olated value of E(3
ΛH) = −2.314±0.009 MeV (for model

space up to N = 36) agrees within 10 keV with the exact
Faddeev result EFad(

3
ΛH) = −2.333±0.002 MeV [27]. We

conclude that a model space truncation of Nmax = 32 for
the energy calculations in 4

ΛΛH should be sufficient in order
to draw conclusions about the stability of the system against
Λ emission.

The extrapolated ground-state energies E( 4
ΛΛH) for the

NLO (red circles) and LO (blue triangles) potentials evolved
to a wide range of flow parameters are displayed in panel
(d) of Fig. 5. Here, the dashed black line together with the
grey band represent the computed E(3

ΛH) and the estimated
uncertainty. Calculations with the NLO potential seem to
converge more slowly than the ones for the LO interaction.
The NLO potential clearly leads to an unbound 4

ΛΛH hyper-
nucleus. Although our results for A = 5 and 6 are similar
to the ones of Ref. [13], our results for A = 4 do not sup-
port the existence of a bound 4

ΛΛH state. The LO results for
4

ΛΛH likely hint at a particle-unstable system with respect to
the hypertriton 3

ΛH. Admittedly, in order to draw a definite
conclusion on the actual situation, the uncertainties of the

calculation would have to be reduced. However, since the
LO interaction considerably overbinds 6

ΛΛHe, very likely it
overpredicts the actual attraction in the A = 4 system, too.
Interestingly, in pionless EFT [25] a ΛΛ scattering length
practically identical to that of our LO interaction was found
as limit for which the 4

ΛΛH system becomes bound.

4 Conclusions and outlook

In this work, we have generalized the J-NCSM formalism
in order to include strangeness S = −2 hyperons. Using the
second quantization approach, we systematically derived the
necessary combinatorial factors that relate the Hamiltonian
matrix elements in a many-body basis to the corresponding
ones in a two-body basis for the S = 0,−1 and −2 sec-
tors. A generalization to higher-strangeness sectors will be
straightforward.

We then applied the J-NCSM approach to compute pre-
dictions of the chiral YY interactions at LO and NLO for ΛΛ

s-shell hypernuclei. In the actual calculation, the YY forces
are combined with a set of BB interactions that is consistent
with all available NN, ΛN and ΣN scattering data and with
the empirical separation energies of light S = −1 hypernu-
clei. To speed up the convergence, the YY interactions are
also evolved via SRG. Unlike for the S = −1 systems, here,
we observed a very small effect of the SRG YY evolution on
the ΛΛ-separation energies, implying negligible contribu-
tions of SRG-induced YYN forces. We found that the binding
energy for 6

ΛΛHe predicted by the YY NLO potential is close
to the empirical value while the LO interaction overbinds the
system. Both interactions also yield a particle-stable 5

ΛΛHe
hypernucleus, whereas 4

ΛΛH is found to be unstable against a
breakup to 3

ΛH + Λ. However, for a final conclusion, a more
elaborate study that involves a more careful estimate of uncer-
tainties stemming from various NN, YN and YY interactions
is definitely necessary. Work in this direction is in progress.
It will be also very interesting to study the predictions of the
chiral YY interactions for other s-shell ΛΛ systems such as

4
ΛΛn or 4

ΛΛHe, as well as for p-shell hypernuclei. Finally,
investigating possible Tjon-line like correlations for BΛΛ of
different systems is also of importance.

Acknowledgements This work is supported in part by the NSFC and
the Deutsche Forschungsgemeinschaft (DFG, German Research Foun-
dation) through the funds provided to the Sino-German Collaborative
Research Center TRR110 “Symmetries and the Emergence of Structure
in QCD” (NSFC Grant No. 12070131001, DFG Project-ID 196253076
- TRR 110). We also acknowledge support of the THEIA net-working
activity of the Strong 2020 Project. The numerical calculations have
been performed on JURECA and the JURECA booster of the JSC,
Jülich, Germany. The work of UGM was supported in part by the Chi-
nese Academy of Sciences (CAS) President’s International Fellowship
Initiative (PIFI) (Grant No. 2018DM0034) and by VolkswagenStiftung
(Grant No. 93562).

123



  217 Page 14 of 21 Eur. Phys. J. A           (2021) 57:217 

Funding Open Access funding enabled and organized by Projekt
DEAL.

DataAvailability Statement This manuscript has no associated data or
the data will not be deposited. [Authors’ comment: All results obtained
here are given in the tables and figures.]

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indi-
cated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permit-
ted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

Appendix A:Many-body Schrödinger equation in second
quantization

Generally, baryon-baryon (BB) interactions in the S = −2
sector can lead to couplings between states with identi-
cal particles and with non-identical particles, for example
ΣΣ → NΞ . Such transitions make it not straightforward
to properly determine the combinatorial factors of free-space
two-body potentials that are embedded in the A-body Hamil-
tonian matrix elements. In this appendix, we demonstrate that
these factors can systematically be deduced by comparing
the Schrödinger equation for A-body systems with the free-
space two-body Schrödinger equation, provided that these
equations are derived in a consistent way. We show explicit
examples for systems of two and three particles, and then
generalize to the A-baryon problems. We note that Glöckle,
Miyagawa and Kamada [59,60] have also derived a system
of coupled Faddeev equations for three-baryon systems tak-
ing into account full particle conversions. However it is not
clear to us how to read off the involved combinatorial fac-
tors based on their equations. The authors of Ref. [61] have
formulated the problem (for the K̄ N N -πΣN system) taking
all permutations of particles explictly into account. This is
however not consistent with the approach of BB interactions
used in [29,30,62]. For directly taking these interactions into
account, we therefore require to derive the combinatorial fac-
tors consistent with these interactions.

To derive the general Schrödinger equation, we will work
with second quantization. The many-body Hamiltonian then
has the form,

H =
∑

k1k′
1

Tk′
1k1

a†
k′

1
ak1 + 1

2

∑

k1k2
k′

1k
′
2

Vk′
1k

′
2,k1k2

a†
k′

1
a†
k′

2
ak2ak1 ,

(A.1)

where ki stands for a set of quantum numbers characterizing
the particle state, i.e., momentum, spin, isospin as well as
particle species λi (N,Λ,Σ or Ξ). When it is necessary to
separate the particle species λi from other quantum num-
bers, we use ki = λi k̃i . Let us further assume that the
potential matrix elements Vk′

1k
′
2,k1k2

in Eq. (A.1) are anti-
symmetric under exchanges of two indices, i.e., Vk′

1k
′
2,k1k2

=
−Vk′

1k
′
2,k2k1

= −Vk′
2k

′
1,k1k2

= Vk′
2k

′
1,k2k1

. Note that, there is
no ordering imposed for quantum numbers of the incom-
ing particles k1 and k2 or of the outgoing pair k′

1 and k′
2 in

Eq. (A.1).

Appendix A.1: Two-body Schrödinger equation

We start with the derivation of the Schrödinger equation in a
two-particle basis. For that, we define the ordered two-body
antisymmetrized basis states as

|{p1 p2}〉 ≡ a†
p1
a†
p2

|0〉 = 1√
2

(|p1〉|p2〉 − |p2〉|p1〉
)

, (A.2)

with the right-hand side being the states in first quantization.
Here, p1 and p2 also stand for the sets of quantum numbers
(momentum, spin, isospin and particle species) describing
particles 1 and 2, respectively. The completeness relation of
the basis Eq. (A.2) for bases with particle species λ1 �= λ2

reads
∑

p1<p2

|{p1 p2}〉〈{p1 p2}|

≡
∑

λ1<λ2

∫

d3 p̃1d
3 p̃2|{λ1 p̃1λ2 p̃2}〉〈{λ1 p̃1λ2 p̃2}| = 1,

(A.3)

where the inequality p1 < p2 accounts for the ordering of the
states in Eq. (A.2) where the leading sorting key is assumed
to be particle species. Note that by exploiting the antisym-
metry of the basis functions, the left hand side of Eq. (A.3)
is equivalent to
∑

p1<p2

|{p1 p2}〉〈{p1 p2}|

= 1

2

{ ∑

p1<p2

|{p1 p2}〉〈{p1 p2}| +
∑

p1<p2

|{p1 p2}〉〈{p1 p2}|
}

= 1

2

{ ∑

p1<p2

|{p1 p2}〉〈{p1 p2}| +
∑

p1>p2

|{p2 p1}〉〈{p2 p1}|
}

= 1

2

∑

p1,p2

|{p1 p2}〉〈{p1 p2}| . (A.4)

Hence, the summation over the ordered particle species on
the left hand side of Eq. (A.3) can be replaced by a normal
summation over all particle species but with a factor of 1

2 .
For the case of two identical particles, i.e., λ1 = λ2, the
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completeness relation becomes

1

2

∫

d3 p̃1d
3 p̃2|{λ1 p̃1λ1 p̃2}〉〈{λ1 p̃1λ1 p̃2}| = 1 (A.5)

following similar lines. The factor 1
2 can also be absorbed

into the definition of the states when one rewrites Eq. (A.5)
as follows

∫

d3 p̃1d
3 p̃2

1√
2
|{λ1 p̃1λ1 p̃2}〉〈{λ1 p̃1λ1 p̃2}| 1√

2
= 1.

(A.6)

Now, exploiting the anticommutator relation for the creation
and annihilation operators, the kinetic and potential matrix
elements in the basis Eq. (A.2) are easily obtained

〈{p′
1 p

′
2}|T |{p1 p2}〉

= δp′
1 p1

Tp′
2 p2

− δp′
1 p2

Tp′
2 p1

+ δp′
2 p2

Tp′
1 p1

− δp′
2 p1

Tp′
1 p2

= δp′
1 p1

δp′
2 p2

tp′
2
− δp′

1 p2
δp′

2 p1
tp′

2
+ δp′

2 p2
δp′

1 p1
tp′

1

−δp′
2 p1

δp′
1 p2

tp′
1

〈{p′
1 p

′
2}|V |{p1 p2}〉

= 1

2

(

Vp′
1 p

′
2,p1 p2

− Vp′
1 p

′
2,p2 p1

− Vp′
2 p

′
1,p1 p2

+ Vp′
2 p

′
1,p2 p1

)

= 2Vp′
1 p

′
2,p1 p2

. (A.7)

In the second line of Eq. (A.7), we have exploited the fact
that the kinetic operator is diagonal in the momentum basis.
The Schrödinger equation,

H |Ψ 〉 = E |Ψ 〉, (A.8)

in the two-body basis Eq. (A.2) then reads

∑

p1<p2

〈{p′
1 p

′
2}|H |{p1 p2}〉〈{p1 p2}|Ψ 〉 = E 〈{p′

1 p
′
2}|Ψ 〉

︸ ︷︷ ︸

≡Ψ (p′
1 p

′
2)

.

(A.9)

Here, it will be sufficient to consider only those components
of Ψ (p′

1 p
′
2) with p′

1 < p′
2. Since the basis states are anti-

symmetric, the other components of Ψ (p′
1 p

′
2) with p′

1 > p′
2

will differ from the ones with p′
1 < p′

2 by a simple phase
factor. Plugging Eq. (A.7) into Eq. (A.9) and using p′

1 < p′
2,

one arrives at a general two-body Schrödinger equation

tp′
1
Ψ (p′

1 p
′
2) + tp′

2
Ψ (p′

1 p
′
2) +

∑

p1<p2

2Vp′
1 p

′
2,p1 p2

Ψ (p1 p2)

= EΨ (p′
1 p

′
2). (A.10)

We note that there is a factor of 2 in front of the potential
matrix elements, which drops out for the case of the two-
identical particle basis, i.e., λ1 = λ2. In that case, we use

∑

p1<p2
→ 1/2

∑

p1,p2
and equation Eq. (A.10) becomes

tp′
1
Ψ (p′

1 p
′
2) + tp′

2
Ψ (p′

1 p
′
2) +

∑

p1,p2

Vp′
1 p

′
2,p1 p2

Ψ (p1 p2)

= EΨ (p′
1 p

′
2). (A.11)

To better understand the prefactors of the potential matrix
elements present in Eqs. (A.10,A.11), let us consider some
explicit bases. In the first example, the basis consists of two
two-particle states, one with identical particles and one with
distinguishable particles, e.g., |{ΛΛ}〉 and |{NΞ}〉. Then, the
completeness relation is obtained by combining Eqs. (A.3)
and (A.6)
∫

d3 p̃1d
3 p̃2

{

|{Ξ p̃1N p̃2}〉〈{Ξ p̃1N p̃2}|

+ 1√
2
|{Λ p̃1Λ p̃2}〉〈{Λ p̃1Λ p̃2}| 1√

2

}

= 1, (A.12)

leading to the following expression for the norm of the wave
function

〈Ψ |Ψ 〉 =
∫

d3 p̃1d
3 p̃2

{

|ΨNΞ( p̃1 p̃2)|2 + | 1√
2
ΨΛΛ( p̃1 p̃2)|2

}

.

(A.13)

Therefore, we absorb the 1√
2

-factor into the amplitude of
states by introducing a new set of the wave-function compo-
nents,

ΦΛΛ( p̃1 p̃2)= 1√
2
ΨΛΛ( p̃1 p̃2); ΦNΞ( p̃1 p̃2)= ΨNΞ( p̃1 p̃2),

(A.14)

so that the Schrödinger equation Eqs. (A.10,A.11) for the
two newly defined components possesses a symmetric form
(

2tΛ + VΛΛ,ΛΛ

√
2VΛΛ,NΞ√

2VNΞ,ΛΛ tΞ + tN + 2VNΞ,NΞ

)(

ΦΛΛ

ΦNΞ

)

= E

(

ΦΛΛ

ΦNΞ

)

, (A.15)

where, for readability, we have omitted the dependence on
p̃ and p̃′. Similarly, for the case where the basis consists
of four states {|ΛΛ}〉, |{ΣΣ}〉, |{ΛΣ}〉 and |{ΞN }〉, one
analogously defines a new set of wave-function components

ΦΛΛ = 1√
2
ΨΛΛ ; ΦΣΣ = 1√

2
ΨΣΣ ;

ΦΛΣ = ΨΛΣ ; ΦNΞ = ΨNΞ , (A.16)

for which the Schrödinger equation again possesses a sym-
metric form

H

⎛

⎜
⎜
⎝

ΦΛΛ

ΦΣΣ

ΦΛΣ

ΦNΞ

⎞

⎟
⎟
⎠

= E

⎛

⎜
⎜
⎝

ΦΛΛ

ΦΣΣ

ΦΛΣ

ΦNΞ

⎞

⎟
⎟
⎠

, (A.17)
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with

H =

⎛

⎜
⎜
⎝

2tΛ + VΛΛ,ΛΛ VΛΛ,ΣΣ

√
2VΛΛ,ΛΣ

√
2VΛΛ,NΞ

VΣΣ,ΛΛ 2tΣ + VΣΣ,ΣΣ

√
2VΣΣ,ΛΣ

√
2VΣΣ,NΞ√

2VΛΣ,ΛΛ

√
2VΛΣ,ΣΣ tΛ + tΣ + 2VΛΣ,ΛΣ 2VΛΣ,NΞ√

2VNΞ,ΛΛ

√
2VNΞ,ΣΣ 2VNΞ,ΛΣ tΞ + tN + 2VNΞ,NΞ

⎞

⎟
⎟
⎠

(A.18)

One sees that there is a
√

2-factor for the transition
between states of identical and of distinguishable particles,
and a factor of 2 for the transition between states of noniden-
tical particles. It is important to mention that these factors
are already included in the definition of the two-body poten-
tials derived from chiral EFT [29,30] or phenomenological
models [62] (see, e.g., Eq. (2) of [30]). We therefore denote
these initial two-body potentials Vλ1λ2,λ

′
1λ

′
2

with an appropri-

ate factor of
√

2 or 2 or 1 to be our new potential Ṽλ1λ2,λ
′
1λ

′
2
.

Expressing in terms of the new potentials Ṽ , the Hamiltonian
Eq. (A.18) now has a more intuitive form

H =

⎛

⎜
⎜
⎝

2tΛ + ṼΛΛ,ΛΛ ṼΛΛ,ΣΣ ṼΛΛ,ΛΣ ṼΛΛ,NΞ

ṼΣΣ,ΛΛ 2tΣ + ṼΣΣ,ΣΣ ṼΣΣ,ΛΣ ṼΣΣ,NΞ

ṼΛΣ,ΛΛ ṼΛΣ,ΣΣ tΛ + tΣ + ṼΛΣ,ΛΣ ṼΛΣ,NΞ

ṼNΞ,ΛΛ ṼNΞ,ΣΣ ṼNΞ,ΛΣ tΞ + tN + ṼNΞ,NΞ

⎞

⎟
⎟
⎠

. (A.19)

In the next step, we are going to derive a similar
Schrödinger equation in a three-body basis. Then, by com-
paring the obtained equation with the one for two-body basis,
we will be able to determine the corresponding combinatorial
factors for the potentials in each strangeness sector.

Appendix A.2: Three-body Schrödinger equation

We define the ordered three-body basis states in second quan-
tization and its completeness relations as

|{p1 p2 p3}〉 ≡ a†
p1
a†
p2
a†
p3

|0〉;
∑

p1<p2<p3

|{p1 p2 p3}〉〈{p1 p2 p3}| = 1.

(A.20)

The kinetic and potential matrix elements in the basis
Eq. (A.20) read

〈{p′
1 p

′
2 p

′
3}|T |{p1 p2 p3}〉

= Tp′
1 p1

δp′
2 p2

δp′
3 p3

− Tp′
1 p1

δp′
2 p3

δp′
3 p2

+ Tp′
1 p2

δp′
2 p3

δp′
3 p1

−Tp′
1 p2

δp′
2 p1

δp′
3 p3

+ Tp′
1 p3

δp′
2 p1

δp′
3 p2

− Tp′
1 p3

δp′
2 p2

δp′
3 p1

+Tp′
2 p1

δp′
1 p3

δp′
3 p2

− Tp′
2 p1

δp′
1 p2

δp′
3 p3

+ Tp′
2 p2

δp′
1 p1

δp′
3 p3

−Tp′
2 p2

δp′
1 p3

δp′
3 p1

+ Tp′
2 p3

δp′
3 p1

δp′
1 p2

− Tp′
2 p3

δp′
1 p1

δp′
3 p2

+Tp′
3 p1

δp′
1 p2

δp′
2 p3

− Tp′
3 p1

δp′
1 p3

δp′
2 p2

+ Tp′
3 p2

δp′
1 p3

δp′
2 p1

−Tp′
3 p2

δp′
1 p1

δp′
2 p3

+ Tp′
3 p3

δp′
1 p1

δp′
2 p2

− Tp′
3 p3

δp′
1 p2

δp′
2 p1

,

(A.21)

and

〈{p′
1 p

′
2 p

′
3}|V |{p1 p2 p3}〉 = 2

{

Vp′
2 p

′
3,p2 p3

δp′
1 p1

+ Vp′
2 p

′
3,p3 p1

δp′
1 p2

+ Vp′
2 p

′
3,p1 p2

δp′
1 p3

+Vp′
3 p

′
1,p2 p3

δp′
2 p1

+ Vp′
3 p

′
1,p3 p1

δp′
2 p2

+ Vp′
3 p

′
1,p1 p2

δp′
2 p3

+Vp′
1 p

′
2,p2 p3

δp′
3 p1

+ Vp′
1 p

′
2,p3 p1

δp′
3 p2

+ Vp′
1 p

′
2,p1 p2

δp′
3 p3

}

.

(A.22)

Now, projecting the Schrödinger equation Eq. (A.8) onto
the state |{p′

1 p
′
2 p

′
3}〉 and then utilizing the completeness rela-

tion in Eq. (A.20), one arrives at

∑

p1<p2<p3

{

〈{p′
1 p

′
2 p

′
3}|T |{p1 p2 p3}〉〈{p1 p2 p3}|Ψ 〉

+〈{p′
1 p

′
2 p

′
3}|V |{p1 p2 p3}〉〈{p1 p2 p3}|Ψ 〉

}

= E 〈{p′
1 p

′
2 p

′
3}|Ψ 〉

︸ ︷︷ ︸

≡Ψ (p′
1 p

′
2 p

′
3)

(A.23)

Similar to the case of a two-body basis, here it will be suffi-
cient to consider only those components of Ψ (p′

1 p
′
2 p

′
3) with

p′
1 < p′

2 < p′
3. With this condition, only three of the 18

kinetic terms in Eq. (A.21) survive. Hence, we have
∑

p1<p2<p3

〈{p′
1 p

′
2 p

′
3}|T |{p1 p2 p3}〉〈{p1 p2 p3}|Ψ 〉

= (tp′
1
+ tp′

2
+ tp′

3
)Ψ (p′

1 p
′
2 p

′
3). (A.24)

The contributions from the potential operator are a little bit
more cumbersome, but can be reduced to a compact form by
exploiting the antisymmetry properties under the exchange
of two indices of the potential as well as of the wave function.
For example, the first three terms in Eq. (A.22) give

∑

p1<p2<p3

{

Vp′
2 p

′
3,p2 p3

δp′
1 p1

Ψ (p1 p2 p3)
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+Vp′
2 p

′
3,p3 p1

δp′
1 p2

Ψ (p1 p2 p3)

p2↔p1

+ Vp′
2 p

′
3,p1 p2

δp′
1 p3

Ψ (p1 p2 p3)

p3↔p1

}

=
∑

p1<p2<p3

Vp′
2 p

′
3,p2 p3

δp′
1 p1

Ψ (p1 p2 p3)

+
∑

p2<p1<p3

Vp′
2 p

′
3,p3 p2

δp′
1 p1

Ψ (p2 p1 p3)

+
∑

p3<p2<p1

Vp′
2 p

′
3,p3 p2

δp′
1 p1

p2↔p3

Ψ (p3 p2 p1)

=
∑

p1<p2<p3

Vp′
2 p

′
3,p2 p3

δp′
1 p1

Ψ (p1 p2 p3)

+
∑

p2<p1<p3

Vp′
2 p

′
3,p2 p3

δp′
1 p1

Ψ (p1 p2 p3)

+
∑

p2<p3<p1

Vp′
2 p

′
3,p2 p3

δp′
1 p1

Ψ (p1 p2 p3)

=
∑

p1

∑

p2<p3

Vp′
2 p

′
3,p2 p3

δp′
1 p1

Ψ (p1 p2 p3)

=
∑

p2<p3

Vp′
2 p

′
3,p2 p3

Ψ (p′
1 p2 p3). (A.25)

Analogously, the next three terms in Eq. (A.22) yield

∑

p1<p2<p3

{

Vp′
3 p

′
1,p2 p3

δp′
2 p1

Ψ (p1 p2 p3)

p1↔p2

+ Vp′
3 p

′
1,p3 p1

δp′
2 p2

Ψ (p1 p2 p3) + Vp′
3 p

′
1,p1 p2

δp′
2 p3

Ψ (p1 p2 p3)

p2↔p3

}

= · · · =
∑

p1<p3

Vp′
1 p

′
3,p1 p3

Ψ (p1 p
′
2 p3), (A.26)

and, the three remaining terms result in

∑

p1<p2<p3

{

Vp′
1 p

′
2,p2 p3

δp′
3 p1

Ψ (p1 p2 p3)

p1↔p3

+Vp′
1 p

′
2,p3 p1

δp′
3 p2

Ψ (p1 p2 p3)

p2↔p3

+ Vp′
1 p

′
2,p1 p2

δp′
3 p3

Ψ (p1 p2 p3)

= · · · =
∑

p1<p2

Vp′
1 p

′
2,p1 p2

Ψ (p1 p2 p
′
3). (A.27)

Taking into account Eqs. (A.24-A.27), the Schrödinger equa-
tion Eq. (A.23) in the three-body basis Eq. (A.20) can be
written as

(

tp′
1

+ tp′
2

+ tp′
3

)

Ψ (p′
1 p

′
2 p

′
3) +

∑

p1<p2

2Vp′
1 p

′
2,p1 p2

Ψ (p1 p2 p
′
3)

+
∑

p1<p3

2Vp′
1 p

′
3,p1 p3

Ψ (p1 p
′
2 p3) +

∑

p2<p3

2Vp′
2 p

′
3,p2 p3

Ψ (p′
1 p2 p3)

= EΨ (p′
1 p

′
2 p

′
3), (A.28)

which, as one expects, differs from the Schrödinger equa-
tion in the two-body basis Eq. (A.10) by the kinetic energy
of the third particle and the two-body interactions between
particles 1-3 and 2-3. Again, the factor of 2 in front of the
potential vanishes when the incoming particles are identical
and the summations include all states p̃1, p̃2 etc. For illustra-
tion purposes, let us consider Eq. (A.28) in an explicit basis
consisting of four states, |{NΛΛ}〉, |{NΣΣ}〉, |{NΛΣ}〉
and |{NNΞ}〉. The norm of the wave function in this four-
particle-state basis can be calculated as follows

〈Ψ |Ψ 〉 =
∫

d3 p̃1d
3 p̃2d

3 p̃3

{

| 1√
2
ΨNΛΛ( p̃1 p̃2 p̃3)|2

+ | 1√
2
ΨNΣΣ( p̃1 p̃2 p̃3)|2 + |ΨNΛΣ( p̃1 p̃2 p̃3)|2

+ | 1√
2
ΨNNΞ( p̃1 p̃2 p̃3)|2

}

. (A.29)

Based on Eq. (A.29), we define a new set of wavefunction
components

ΦNΛΛ = 1√
2
ΨNΛΛ ; ΦNΣΣ = 1√

2
ΨNΣΣ ;

ΦNΛΣ = ΨNΛΣ ; ΦNNΞ = 1√
2
ΨNNΞ .

(A.30)

The Schrödinger equation Eq. (A.28), applying the wave
function components in Eq. (A.30), now has a symmetric
form,

(T + V )

⎛

⎜
⎜
⎜
⎝

ΦNΛΛ

ΦNΣΣ

ΦNΛΣ

ΦNNΞ

⎞

⎟
⎟
⎟
⎠

= E

⎛

⎜
⎜
⎜
⎝

ΦNΛΛ

ΦNΣΣ

ΦNΛΣ

ΦNNΞ

⎞

⎟
⎟
⎟
⎠

, (A.31)

with T being a diagonal matrix

T =

⎛

⎜
⎜
⎜
⎜
⎝

2tΛ + tN 0 0 0

0 2tΣ + tN 0 0

0 0 tΛ + tΣ + tN 0

0 0 0 2tN + tΞ

⎞

⎟
⎟
⎟
⎟
⎠

,

(A.32)

and the symmetric potential matrix
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V =

⎛

⎜
⎜
⎝

2ṼNΛ,NΛ + ṼΛΛ,ΛΛ ṼΛΛ,ΣΣ ṼΛΛ,ΛΣ + √
2ṼNΛ,NΣ

√
2ṼΛΛ,NΞ

ṼΣΣ,ΛΛ 2ṼNΣ,NΣ + ṼΣΣ,ΣΣ ṼΣΣ,ΛΣ + √
2ṼNΣ,NΛ

√
2ṼΣΣ,NΞ

ṼΛΣ,ΛΛ + √
2ṼNΣ,NΛ ṼΛΣ,ΣΣ + √

2ṼNΛ,NΣ ṼNΛ,NΛ + ṼNΣ,NΣ + ṼΛΣ,ΛΣ

√
2ṼΛΣ,NΞ√

2ṼNΞ,ΛΛ

√
2ṼNΞ,ΣΣ

√
2ṼNΞ,ΛΣ ṼN N ,NN + 2ṼNΞ,NΞ

⎞

⎟
⎟
⎠

. (A.33)

In the last step, we have expressed the potential matrix ele-
ments in terms of Ṽ as given in Eq. (A.19). Eqs. (A.31–A.33)
define the combinatorial factors of the two-body potentials
present in the three-body Hamiltonian. In the following, we
want to generalize this result to an A-body system.

Appendix A.3: A-body Schrödinger equation

With the preparation of the A = 3 system, we are now able
to generalize the combinatorial factors to arbitrary A. For
the kinetic energy, the generalization is trivial and leads to
the sum of the single particle kinetic energies since no par-
ticle conversion can take place for this operator. Interactions
are more involved. To the general A-body matrix element
〈{p′

1 . . . p′
A}|V |{p1 . . . pA}〉 of the n-particle interaction

V = 1

n!
∑

k1,...,kn
k′

1,...,k
′
n

Vk′
1...k

′
n ,k1...kn a

†
k′

1
a†
k′

2
· · · a†

k′
n
akn · · · ak2ak1

(A.34)

a total of

1

n!
(
A

n

)(
A

n

)

n! n!(A − n)! (A.35)

different permutations of Vk′
1...k

′
n ,k1...kn contribute. Therein,

the first 1
n! is just from the definition of V . Following the same

steps that lead to Eq. (A.25), these terms can be rearranged
such that the application to an arbitrary state Ψ can be written
as

〈{p′
1 . . . p′

A}|Ψ ′〉 =
∑

i1<i2...<in

∑

pi1<...<pin

×n! Vp′
i1

,...,p′
in

,pi1 ,...,pin

×〈{p′
1 . . . pi1 . . . pin . . . p′

A}|Ψ 〉 .(A.36)

For this form, we assume that Ψ ′ is represented using the
ordered states p′

1 < . . . < p′
A. Then only one of the (A−n)!

different spectator permutations contributes. One of the
(A
n

)

terms is needed to make the sorting on the spectator particles
and on the interacting particles independent from each other
as done in Eq. (A.25). The other one is explicitly taken care
of by the sum over i1 < i2 . . . < in .

If the interacting particles are (partly) identical, we will
again replace the sum over pi1 < . . . < pin by (partly) full
sums and add the appropriate combinatorial factor (e.g. 1/2!
in the case of two identical particles). Note that this factors
depend on the kind of particles in the incoming Ψ state.

We again introduce rescaled wave functions by studying
the norm of the states similar to Eq. (A.29). The appropriate
factors for states with p particles species and n1, . . . , n p par-
ticles of each species are

√

n1! . . . n p!. The potential matrix
element needs to be multiplied with (divided by) this factor
for incoming states (outgoing states) to reexpress Eq. (A.36)
in terms of Φ states. We note that the potential matrix in
terms of these states is symmetrical. In summary, the poten-
tial matrix elements then reads

n!√n1! . . . n p!
√

n′
1! . . . n′

p!
Vp′

i1
,...,p′

in
,pi1 ,...,pin

. (A.37)

Note that here the factor does not include the additional factor
required when identical particles are involved in the sum of
Eq. (A.36).

We then simplify the expressions by identifying n-
particles that contribute identically to Eq. (A.36). The sum
over i1 < i2 . . . < in can then be reduced and tuples of
outgoing states involving the same kind of particles can be
combined by the appropriate factor. Finally, we build the
ratio of the factors for the A-body and n-body systems to
find the correct combinatorial factors that enter our J-NCSM
calculations.

As an example, we now consider some selected matrix
elements of the S = −2 2-body interaction for (A− 2)-ΛΛ,
(A − 2)-ΛΣ , (A − 2)-ΣΣ , and (A − 1)-Ξ states. For the
diagonal matrix elements in particle space, the square root
factors in Eq. (A.37) cancel. In this case, the prefactor is just
2× the number of pairs contributing in the outgoing channel
×1/2 if the active pair in the incoming channel consists of
identical particles. Therefore, for our example, we find

〈(A − 2) − ΛΛ|V |(A − 2) − ΛΛ〉
= 2 · 1 · 1

2
· Vp′

Λ,1 p
′
Λ,2,pΛ,1 pΛ,2

= Ṽp′
Λ,1 p

′
Λ,2,pΛ,1 pΛ,2

〈(A − 2) − ΛΣ |V |(A − 2) − ΛΣ〉
= 2 · 1 · Vp′

Λ p′
Σ,pΛ pΣ

= Ṽp′
Λ p′

Σ,pΛ pΣ

〈(A − 2) − ΣΣ |V |(A − 2) − ΣΣ〉
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Table 3 Combinatorial factors of the two-body YN interactions embedded in the A-body space with strangeness S = −2

Transition YN

ṼNΛ,NΛ ṼNΛ,NΣ ṼNΣ,NΛ ṼNΣ,NΣ

ΛΛ → ΛΛ 2(A − 2) – –

ΛΛ → ΛΣ –
√

2(A − 2) –

ΛΣ → ΛΣ A − 2 – – A − 2

ΛΣ → ΣΣ –
√

2(A − 2) – –

ΣΣ → ΛΣ – –
√

2(A − 2) –

ΣΣ → ΣΣ – – – 2(A − 2)

Table 4 Combinatorial factors of the two-body YY interactions embedded in the A-body space with strangeness S = −2

Transition YY

ṼΛΛ,ΛΛ ṼΛΛ,ΛΣ ṼΛΛ,ΣΣ ṼΛΣ,ΛΣ ṼΛΣ,ΣΣ ṼΣΣ,ΣΣ ṼΛΛ,NΞ ṼΛΣ,NΞ ṼΣΣ,NΞ ṼNΞ,NΞ

ΛΛ → ΛΛ 1 – – – – – – – – –

ΛΛ → ΛΣ – 1 – – – – – – – –

ΛΛ → ΣΣ – – 1 – – – – – – –

ΛΣ → ΛΣ – – – 1 – – – – – –

ΛΣ → ΣΣ – – – – 1 – – – – –

ΣΣ → ΣΣ – – – – – 1 – – – –

ΛΛ → NΞ – – – – – –
√
A − 1 – – –

ΛΣ → NΞ – – – – – – –
√
A − 1 – –

ΣΣ → NΞ – – – – – – – –
√
A − 1 –

NΞ → NΞ – – – – – – – – – A − 1

= 2 · 1 · 1

2
· Vp′

Σ,1 p
′
Σ,2,pΣ,1 pΣ,2

= Ṽp′
Σ,1 p

′
Σ,2,pΣ,1 pΣ,2

〈(A − 1) − Ξ |V |(A − 1) − Ξ 〉
= 2 · (A − 1) · Vp′

N p′
Ξ ,pN pΞ

= (A − 1)Ṽp′
N p′

Ξ ,pN pΞ
.

(A.38)

In the last step, we have exploited the results of the two-body
system that relate V to Ṽ in Eq. (A.19). The resulting combi-
natorial factors agree with the expectation that the interaction
just has to be multiplied by the number of pairs contributing.
More interesting is the case of transitions. Here, we first look
at transitions between ΣΣ and ΛΣ states. Because the iden-
tity of the particles changes, we now have additionally the
contribution of the square root factors. They are also impor-
tant to guarantee that the interaction matrix is symmetric.

The result for the two matrix elements is

〈(A − 2) − ΣΣ |V |(A − 2) − ΛΣ〉
= 2 · 1 · 1 ·

√
(A − 2)!√

2!(A − 2)! · Vp′
Σ,1 p

′
Σ,2,pΛ pΣ

= Ṽp′
Σ,1 p

′
Σ,2,pΛ pΣ

〈(A − 2) − ΛΣ |V |(A − 2) − ΣΣ〉
= 2 · 1 · 1

2
·
√

2!(A − 2)!√
(A − 2)! · Vp′

Λ p′
Σ,pΣ,1 pΣ,2

= Ṽp′
Λ p′

Σ,pΣ,1 pΣ,2
(A.39)

and just reflects the number of YY pairs in the A-body state.
The final examples are transitions of ΛΛ and NΞ . For these
matrix elements, several pairs contribute and the identity of
the particles changes. It is reassuring that we also find in this
case symmetry of the potential matrix elements

〈(A − 2) − ΛΛ|V |(A − 1) − Ξ 〉
= 2 · 1 · 1 ·

√
(A − 1)!√

2!(A − 2)! · Vp′
Λ,1 p

′
Λ,2,pN pΞ

= √
A − 1 Ṽp′

Λ,1 p
′
Λ,2,pN pΞ

〈(A − 1) − Ξ |V |(A − 2) − ΛΛ〉
= 2 · (A − 1) · 1

2
·
√

2!(A − 2)!√
(A − 1)! · Vp′

N p′
Ξ ,pΛ,1 pΛ,2

= √
A − 1 Ṽp′

N p′
Ξ ,pΛ,1 pΛ,2

. (A.40)

In this way, it is straightforward to identify all relevant
combinatorial factors for our calculations. For the S = 0
interactions, where particle transitions do not occur, it is sim-
ply given by the number of NN pairs in the state, i.e.

(A−2
2

)

and
(A−1

2

)

for (A−2)-YY and (A−1)-Ξ states, respectively.
The factors for S = −1 (S = −2) interactions are summa-
rized in Table 3 (Table 4). To shorten the presentation, we
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only include particle transitions in one direction. The other
one is given by the symmetry of the potentials.
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