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Abstract

The AdSs x S® superstring action is constructed by the Green-Schwarz formalism. For quanti-
zation it is necessary to eliminate unphysical degrees of freedom from the action by solving the
Virasoro constraints and fixing the fermionic kappa-symmetry, which can be achieved by the
Pohlmeyer reduction preserving the two-dimensional Lorentz invariance and the integrability.
The resulting system is a gauged Wess-Zumino-Witten (gWZW) model deformed with a certain
integrable potential and two-dimensional fermions. This thesis explores the quantum relation
between the AdSs x S° superstring theory and the deformed gWZW model by evaluating the

reduced theory quantum partition functions for respective classical string configurations.

To understand the quantum relation between the original string theory and the reduced theory,
the one-loop computation in the reduced theory is first studied for homogeneous and inho-
mogeneous string configurations localized in subspaces. For these classical backgrounds we
demonstrate that the reduced theory partition function is exactly the same as the string theory

one, then they are equivalent at one-loop level.

Next we investigate the two-loop relation between the original string theory the reduced theory.
The two-loop computation in the reduced theory is performed by considering the long folded
string localized in AdS3. We show that the nontrivial finite terms of the two-loop partition
functions of the two theories match, exhibiting the same patterns of the bosonic contributions
and fermionic contributions. This is a strong indication that the AdSs x S° GS string and its

reduced form are closely related at the quantum level.
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Chapter 1

Introduction

Overview and motivation

The original motivation to introduce the one-dimensional object to elementary particle physics
was to construct a phenomenological model of strong interactions. This idea was forgotten after
the discovery of quantum chromodynamics (QQCD) and due to shortcomings of the string theory
in four dimensions. Later physicists considered QCD string as a convenient tool for studying
strongly coupled regime of gauge interactions. While perturbative QCD is very successful, to
address the questions about its strong-coupling dynamics one needs alternative tools. String

theory is one of them.

A revival of string theory, as a unified theory of all the fundamental interactions, was driven
by the discovery that string theory can be a consistent, i.e., anomaly free, theory [1]. The
perturbative string theory in the first revolution during the 1980’s is summarized in [2] and

references therein.

A remarkable progress during the 1990’s, including a discovery of a new solitonic object, D-
brane [11], and string duality web accommodated by eleven-dimensional M-theory [3, 4, 5,
6, 7, 8, 9, 10], allowed for nonperturbative exploration not only in string theory but also in
gauge theory. The D-brane is a hypersurface where open strings can attach. In the low energy

limit open strings are described by gauge theory on the worldvolume of the D-brane. At the
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same time, a D-brane deforms the spacetime around it; when the number of the branes is
large, the stack of D-branes can be described as a supergravity soliton. Given the two different
descriptions of the D-brane, one might expect a connection between gauge theory and closed

string theory [12, 13].

The conjectured duality, the anti-de Sitter/conformal field theory (AdS/CFT) correspondence,
elaborates this expectation and states the equivalence of a particular closed string theory and
quantum field theory. Strong/weak coupling nature of the AdS/CFT allows us to investigate
strongly coupled field theories in terms of weekly coupled gravity, which stimulated its appli-
cation to broad range of areas such as the holographic approach to QCD (see review article
[14] and references therein) and the connection between condensed matter and gravitational

physics (recent reviews are given in [15, 16]).

The most celebrated example in the AdS/CFT correspondence is the equivalence between type
I1B superstring theory in AdSs x S° and the N'= 4 SU(N) Super Yang-Mills (SYM) theory.
On the gauge theory side, the theory is controlled by the Yang-Mills coupling gyn and the rank
of the gauge group N, whereas the parameters on the string theory side are the string coupling
gs and string length ¢,. Together with the identical radii of AdSs and S°, R, these parameters
are related in the AdS/CFT duality as

gym = 4mgs, R* = 4mg NI} . (1.1)

These relations explicitly show that the AdS/CFT is the strong/weak type duality. For exam-
ple, when the gauge theory is strongly coupled A = g2,;N >> 1, the string theory is at weak
coupling R/l > 1, that is, the type IIB supergravity is a good approximation. The dictionary
of the AdS/CFT correspondence provides a map between a string state in AdSs x S° and a
local gauge invariant operator in SYM; one can identify the energy of a given string state, FE,

with the conformal dimension of the dual operator, A [17, 18],

B(R/ts,g,) = DOLL/N). (1.2)



Hence examining this formula in various regions in the parameter space is a nontrivial check of
the AdS/CFT duality. At early stage, this mapping was only confirmed for a small subset of
the operators; the chiral primaries in the gauge theory dual to the string states that survive in
the supergravity limit. In general, one should quantize strings in AdSs x S°, express the string

energy spectrum in terms of R//,, gs and show its equivalence to gauge theory spectrum.

A nontriviality in formulating superstring theory in AdSs x S° stems from the existence of the
Ramond-Ramond (RR) background. Superstring action in a curved background supported by
nonvanishing RR fields can be constructed using the Green-Schwarz (GS) formalism leading to
the action which is invariant under the spacetime supersymmetry transformation [19, 20] (see
[21, 22] for GS action in a general supergravity background). The paper [23] introduced the
reinterpretation of the GS action as a two-dimensional sigma model on the coset superspace
F/G, where F is the target superspace isometry and G is its subgroup. Using the coset approach

to the GS superstring, the AdSs x S° case was considered in [24, 25]. In this case the coset is

PSU(2,2|4)

FIG = Sp@.2) x p(a)

(1.3)

The authors there employed the exponential parametrization for the coset elements and solved
the Maurer-Cartan equations, then showed that the resulting action possesses the local fermionic
k symmetry by introducing the three-dimensional topological Wess-Zumino (WZ) term. For
quantization we need to eliminate unphysical degrees of freedom. Fixing the local fermionic x
symmetry and choosing the light-cone gauge necessarily causes the problem that the resulting
action contains terms quadratic and quartic in the fermions and the gauge-fixed action does

not exhibit the two-dimensional Lorentz invariance beyond the quadratic level [26, 27].

Although the AdSs x S® superstring sigma model is in general nonlinear, it can be simplified by
taking a specific limit [28, 29], where the background geometry takes the form of the plane wave
metric supported by a RR 5-from field. This is one of the three maximally supersymmetric
solutions of type IIB supergravity, the other two are flat spacetime and AdSs x S® spacetime
[30, 31]. In the plane wave background the GS string becomes a free massive theory once one

chooses the light-cone gauge, and so, it is straightforwardly quantized as in the flat background.
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Furthermore, in [32], Berenstein, Maldacena and Nastase (BMN) proposed the duality relating
type IIB superstrings in the maximally supersymmetric plane wave background to the four-

dimensional N =4 SYM theory in the so-called BMN limit,
S A
N — oo, and then, J — oo with A = 7 fixed, (1.4)

where J is an R-charge in the SYM side, or equivalently, an angular momentum in S® in the
string side. With the agreement in the asymptotic behavior between the spectra of £ — J in
the string theory side and A — J in the gauge theory side, a concrete AdS/CFT dictionary

relating string states and SYM operators in the near-BPS sector was constructed.

Despite the large amount of supporting evidence and the wide range of applications of the
AdS/CFT correspondence, no rigorous proof of it was given so far. This is due to the difficulty
of the string quantization in a nontrivial background. It is integrability that allows us to deal
with this difficulty and provides a better way of understanding both the AdSs x S° superstring

theory and A/ = 4 SYM theory.! On the string theory side, the classical integrability for the

SU(2,2)xSU(4) -

AdSs5 x S° bosonic string theory was found based on a coset model on F'/G = @) xsp(d) 1

[34] and it was shown in [35] the classical integrability also exists in the full AdSs x S° GS
superstring theory. Using the classical integrability, the algebraic curve approach to the classical
and semiclassical aspects of finite-gap string solutions was developed, e.g., in [36, 37, 38, 39]

(for further quantum generalizations see e.g., [40, 41]).

In this thesis we are going to explore an approach to string theory in AdSs; x S® based on
Pohlmeyer reduction. Initiated by Pohlmeyer’s original work where it was shown that the
equation of motion of the chiral S? sigma model is reduced to the sin-Gordon equation [42],
the reduction technique was applied to conformal-gauge bosonic string theory, which involves
studying the integrability of classical string motion in de Sitter spacetime [43, 44] and finding
classical string configurations localized in subspace of AdSs x S° [45, 46, 47, 48, 49, 50, 51, 52,

53, 54, 55]. The integrability property allows for powerful methods to generate soliton solutions

!The integrability on the gauge theory side is not discussed in this thesis. See the review article [33] and
references therein for the progress in this direction.



in the reduced theory, and string solutions can be constructed from the solutions in the reduced
theory. For example, string theory in R x S® and string theory in AdS5 x S! are reduced to the
complex sin-Gordon model and the complex sinh-Gordon model, respectively. More recently
the Pohlmeyer reduction of AdSj string theory was used in evaluating the minimal area of an
open string surface ending on null Wilson loop, which is related to the strong-coupling limit of
N =4 SYM theory [56, 57, 58, 59, 60]. For this theory it is known that the reduced form is the
generalized sinh-Gordon model. Although one can easily switch off the S! sector of most of the
classical string solutions stretching in AdSs x S*, the relation between the complex sinh-Gordon
model and the generalized sinh-Gordon model is understood only at the level of equation of
motion. The extension of the above argument on the AdS; theory to the AdS, x S™ case for
general n, m is nontrivial. Open string solutions stretching in AdS,, AdSs or AdSs x S3 are

discussed in [58, 59, 60, 61, 62, 63].

The Pohlmeyer-type reduction of the full AdSs x S° superstring sigma model was proposed in
[64, 65, 66] based on the Lagrangian formulation of the generalized sin-Gordon models reduced
from sigma models in symmetric space [67]. In the construction of the reduced theory, new
variables are algebraically related to supercoset current components, the Virasoro conditions
are automatically solved, and the local fermionic x symmetry is fixed. The resulting system is

expressed as gauged Wess-Zumino-Witten (gWZW) model associated with the coset,

Sp(2,2) X Sp(4))

G =50

(1.5)

and deformed with an integrable potential and two-dimensional fermionic fields. The reduced
Lagrangian exhibits the two-dimensional Lorentz invariance, and after integrating out the gauge
fields, the reduced theory involves 8 bosonic degrees of freedom and 16 fermionic degrees of

freedom, i.e., involves only physical degrees of freedom.

While the Pohlmeyer reduction connects the two theories at the level of equations of motion, the
deformed gWZW model and the original superstring theory are classically different in the sense
that they are governed by different Hamiltonians and Poisson bracket structures. However,

this does not necessarily imply that their quantum theories are different. For bosonic string
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theory in the R x S3 subspace of AdSs x S°, the Faddeev-Reshetikhin reduction of the SU(2)
principal chiral sigma model is admitted [68], where the Hamiltonian and Poisson brackets
for the original sigma model are replaced by new Hamiltonian and Poisson brackets. After
quantization of this new system, the original sigma model is recovered in a certain limit. In
this thesis we shall investigate the quantum relation between the full AdSs x S° superstring

sigma model and its Pohlmeyer-reduced form in terms of their partition functions.?

If the quantum relation between the two theories is uncovered, quantum aspects of the AdSsx.S°
GS superstring could be understood by studying the Pohlmeyer-reduced form instead of the
original string theory. There are several advantages in discussing the Pohlmeyer-reduced form

of the AdS5 x S° superstring sigma model.

The primary point is that one solves the Virasoro constraints of the original theory pre-
serving the Lorentz invariance on the worldsheet and the classical integrability. Hence the
Pohlmeyer-reduced theory could be regarded as a starting point for a “first-principles” solu-
tion of the AdSs x S® superstring and used to derive S-matrices for elementary excitation on
the worldsheet with the two-dimensional Lorentz invariance [73, 74, 75, 76, 77, 78] (see also
[53, 54, 55, 79, 80, 81] for the Pohlmeyer-reduced approach to sigma models on other symmetric
spaces). This should be in contrast with lack of the 2d Lorentz invariance in the light-cone
gauge AdSs x S° superstring S-matrix determining the full quantum string spectrum once the
quantum integrability is assumed [82, 83, 84, 85].3 Further expectation in this direction could
be to find an exact Lorentz-invariant S-matrix as for other two-dimensional Lorentz-invariant

theories [86, 87].

Another advantage of the Pohlmeyer reduction is that the reduced model has a simpler quantum

2The AdS5 x S° superstring sigma model and the deformed gWZW model have common properties. As
noticed in [64], the bosonic interaction potential and fermionic “Yukawa” term in the reduced theory are exactly
the same as the original AdS5 x S® superstring Lagrangian expressed in terms of the new variables. Also, the
UV finiteness was confirmed up to two-loop order for the AdSs x S° GS superstring theory in [69, 70, 71] and
for the Pohlmeyer-reduced theory in [72].

3In [77, 78] the S-matrix in the Pohlmeyer-reduced theory was studied by using the quantum group defor-
mation, where the S-matrix describing the magnon excitations for the original string theory is realized as a
limiting case and the relativistic reduced theory S-matrix is obtained in another limit. However, the direct
connection between the light-cone gauge AdSs x S° superstring S-matrix and the relativistic reduced theory
S-matrix is still unclear. Also, there are significant differences between the quantum deformed S-matrix and
the perturbative S-matrix in the reduced theory [75].



structure than the original theory does. In the bosonic subsector, this is because the reduced
theory contains only physical degrees of freedom and one need not consider the interactions
between physical and unphysical fluctuations (after gauge degrees of freedom are properly
integrated out). For fermions, the Lagrangian in the reduced theory contains only quadratic
terms in fermions in the “Yukawa” term, which means that fermionic loop never becomes
higher than one even in higher-loop computation of the deformed gWZW model. Therefore,
the reduced theory could be a useful alternative for the purpose of investigating the quantum

strings in AdSs x S°.
Original contributions

This thesis is devoted to elucidating the quantum relation between AdSs x S° superstring
theory (ST) and its Pohlmeyer-reduced theory (PRT) by comparing their partition functions.
The original research was published in [HIT, IWA, IRT].

In [HIT] it was conjectured that the one-loop equivalence of the two theories should be realized

at the level of the quantum partition functions,

Zsr = Zpnr (L6)
where (1) represents that both the reduced theory partition function and string theory partition
function are at one-loop level. While the one-loop equivalence may be naively expected from
that of the equations of motion, the explicit demonstration of (1.6) is needed for individual string
configurations. The contribution of the paper [HIT] is to show that characteristic frequencies
of quadratic fluctuations found in the GS superstring in the conformal gauge agree with those
found in the reduced theory for cases of any classical string localized AdS,x .S? and homogeneous

strings in R x S% or AdSs; x S1. All of the results there support the conjecture (1.6) .

In [TWA] the semiclassical equivalence of the original theory and reduced theory was investigated
at the level of the fluctuation Lagrangian for more nontrivial classical string configurations
lying in AdS3 x S'. The examples of the classical solutions include the (S, J) folded string,

the (S, J) circular string, the (S, J) spiky string and the generalized folded string with both
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the orbital momentum and the winding on a big circle of S°. Especially, it was shown that
the Lagrangian for quadratic fluctuations in the reduced theory is exactly the same as the
fluctuation Lagrangian found by perturbing the Nambu action in the static gauge for the (S, .J)

folded string. This statement is stronger than (1.6).

In [IRT] the two-loop relation of the AdS, x S™ GS string theory (n = 3,5) and its reduced
form was investigated by evaluating the two-loop effective action of the reduced theory for the
folded string solution localized in AdS3. Then it was proposed that the PRT side of the relation

(1.6) should be modified as

1 2&2 1
FPRT =—1In ZPRT = % f(]{) ‘/2 R f(k) = Ql1pgy + ]:RT + O(ﬁ) y
1
Alppr = Mgt s A2pgy = A2gp T+ Za%ST ) (17)

where V5 is the string worldvolume and k is the coupling constant in the reduced theory assumed
to be proportional to the effective string tension v/A. Although the two-loop effective action
in the reduced theory contains extra term iafST, the reproduction of the nontrivial part agg,

implies that these two theories are nontrivially related at the quantum level.
This thesis also contains two original results which were not published.

In chapter 3 we discuss the one-loop computation for several string configurations in AdSs x S*.
If a classical string possesses both the orbital momentum and the winding on a big circle on
of S5, the reduced theory has u; # p_ (see section 2.1 for the definition of ps). In such a
case, we did not get the exact agreement of characteristic frequencies of individual fluctuations
in [IWA], while the sum of the frequencies in PRT agrees with the string theory result. One
solution to this is given in section 3.5, where we consider the (.S, J) circular string solution as

an example.

The other result is the one-loop computation for a homogeneous solution in R x S® in appendix
C. The cases we discussed so far are classical string solutions localized in subspaces of AdSs5x .S3.
Hence, this is the first exploration in the semiclassical structure of the reduced theory for a string

truly stretching in R x S®. As expected, the one-loop equivalence is demonstrated, although



the structure of the reduced model is slightly different from the cases mentioned before.
Contents of this thesis

We shall start in the next chapter with a review of the classical Pohlmeyer reduction for the
AdS3 x St bosonic string theory (section 2.1) and the AdS,, x S™ GS string theory (section 2.2)
following the papers [HIT, 64]. For the bosonic string theory in AdSs x S! one can explicitly
write the relation between the embedding coordinates in the original string theory and two fields
of the reduced theory. There we will introduce two reduced models called the coth model and
the tanh model, which are connected by the nonlocal “T-duality” transformation. We shall show
that these two models are embedded in the reduced model of the AdSs x S° superstring theory
and are related by the H x H gauge transformation rather than the H gauge transformation
in the full reduction, giving rise to much simplification of reducing classical string solutions to

the corresponding reduced theory solutions.

The main goal of chapter 3 is to demonstrate the one-loop equivalence of the original string

theory and the reduced theory in terms of their quantum partition functions.

In section 3.1 we shall discuss the (S, J) folded string. A folded string in pure AdS; was
first studied as the simplest string state whose classical energy grows logarithmically with the
spacetime spin in AdSs [88], and soon after, this solution was extended to the (S, J) folded
string solution in AdSs x S! where the S! sector is the pointlike string moving along a big
circle of S5, i.e., the BMN state [89]. Its quadratic fluctuations were found from the Nambu
action in the static gauge and in the Polyakov action in the conformal gauge [89, 90], and the
equivalence of these two approaches was shown at the one-loop level in [91]. Here one may ask
which type of the fluctuation Lagrangian arises in the reduced theory. We shall show that the

fluctuation Lagrangian derived from the Nambu action is related to that of the coth model.

In section 3.2 we shall study the homogeneous (S, J) circular string solution which has both
the angular momentum and the winding on a big circle of S®, and gives us the first example of
py # p_ (see section 2.1 for the definition of p4). In [38, 92, 93] semiclassical expansions around

the circular string were worked out, and in particular, its fermionic fluctuations are evaluated by
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carrying out the worldsheet computation in [93] and by employing the algebraic curve method
in [38] (see also [94]). We shall show that the fluctuation Lagrangian of the reduced theory
is equivalent to the Lagrangian found in [93]. As the circular string is homogeneous, we can
evaluate characteristic frequencies of its quadratic fluctuations also in the reduced theory. In
the case of the (.9, J) circular string the total sum of the bosonic and fermionic frequencies in the
reduced theory agrees with the string theory result although some of the individual frequencies

appear to disagree.

A spiky string solution in AdS3 was first found in [95] as a generalization of the folded string
solution, and extended to a solution stretching in AdSs; x S* in [96]. In section 3.3 we shall
discuss the (.S, J) spiky string solution and derive its fluctuation Lagrangian of the reduced
theory. Our result on the semiclassical expansions for the (S,.J) spiky string is expected to
agree with the one in the original string theory. As the (S, J) spiky string solution is also the
case of py # p_ (see section 2.1 for the definition of ui), we consider that the discrepancy
could happen for the individual fluctuations, but the total sum the fluctuations should be the
same as in the string theory. We shall also discuss the fluctuation Lagrangian in the limiting
cases of the (S, J) spiky string; spiky string without motion or stretching in S®, and its folded

string limit.

In the large spin limit, spikes of the spiky string approach the conformal boundary of AdSs3, and
the solution becomes locally equivalent to the scaling limit of the folded string. The existence
of this homogeneous limit is shown in [96] where the expression for its string energy is similar
to that for the homogeneous (5, J) folded string. A generalization of the (S, J) folded string
solution leads to the explicit construction of another limiting solution of the (S, J) spiky string;
the new folded string has both the orbital momentum and the winding in the S* sector [97].
This solution again has the scaling limit where the solution becomes homogeneous, which is
the case we shall study in section 3.4. As happened in the circular string case, some individual
characteristic frequencies in the reduced theory disagree with the result in [97], but the sum of

the frequencies is the same as in the string theory.

The disagreement of characteristic frequencies of the individual fluctuations found in the p, #
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(i cases in section 3.2 and section 3.4 can be resolved by modifying the relation between the
embedding coordinates in the original string theory and two complex sinh-Gordon fields in the
reduced theory. This prescription will be discussed in section 3.5 by considering the (S, .J)

circular string solution.

Chapter 4 will be devoted to investigating the two-loop relation between AdS,, x S™ GS string
and its reduced theory for n = 3,5. Since the two-loop computation for a general string
configuration is complicated, we shall consider the infinite spin limit of the folded string in

AdS3. This case was studied in [69, 70] in the original string theory.

We will give a summary of the two-loop computation for the long spinning string in the original
string theory and the reduced theory in section 4.1. While the non-trivial parts of the two two-
loop partition functions agree, the reduced theory partition function contains an extra two-loop

term proportional to the square of the one-loop coefficient in both the n = 3 and n = 5 cases.

Section 4.2 will review the action of reduced theory for string theory in AdS,, x S™ and then
explain its perturbative expansion around a general classical configuration. We shall follow
an approach based on the Polyakov-Wiegmann identity, by which the unphysical degrees of
freedom contained in the gauge fields are isolated. We will present the fluctuation Lagrangian
in this approach up to quartic order and show the Feynman diagrams that contribute to the two-
loop partition functions in the reduced theory. In general, individual diagram contributions are
gauge-dependent, so some graphs may or may not appear depending on the gauge choices. In the
original string theory non-1PI diagrams did not contribute in the conformal gauge [69, 70], but
did in the light-cone gauge [97]. In the present case we will also have nonvanishing contributions

of the non-1PI diagrams in the reduced theory.

In section 4.3 we will consider the AdS; x S® reduced theory using two approaches. The first
approach is to use the Polyakov-Wiegmann identity mentioned above, where the unphysical
degrees of freedom are still involved (approach I). The second approach is to impose a gauge
on g € G and integrate out the gauge fields from the deformed gWZW Lagrangian (approach
IT). The resulting system contains only physical degrees of freedom and is described by sum

of the complex sinh-Gordon and the complex sine-Gordon models coupled to two-dimensional
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fermions. We shall compare the results of the two approaches and suggest a resolution such

that they provide the same result.

In section 4.4 we shall discuss the two-loop computation in the reduced AdSs x S° theory. As
approach II in AdS5 x S? case based on integrating out gauge fields first appears to be difficult,
we will follow approach I using the Polyakov-Wiegmann identity. We will first show that the
one-loop partition function in the reduced theory will match again the corresponding string
theory result. Then we will discuss the two-loop computation and present the final expression

for the two-loop coefficient (4.11) by a direct analogy with the AdSs; x S® case.
Chapter 5 will contain a summary and remarks on open problems.

The psu(n, n|2n) superalgebra for n = 1, 2 will be summarized in appendix A, which will be used

when we introduce component fields of the fluctuations in the reduced theory. In appendix B

PSU(2,2/4)

2.2 % Sp(d) to the embedding coordinates

we shall relate the parametrization of the supercoset
in AdSs x S°. Appendix C will deal with the one-loop computation in the reduced theory
for strings in R x S°. By the analogous computation in chapter 3 we will show the one-loop
equivalence for a pulsating string in R x S? in appendix C.1, a two-spin circular string in R x S3
in appendix C.2 and a short two-spin in R x S® in appendix C.3. Appendix D will contain
remarks on the computation for AdSs x S® in chapter 4, including the investigation on nonlocal
transformations such that physical modes decouple from unphysical modes in appendix D.1,

the one-loop computation with an alternative gauge choice in appendix D.2, and the BMN limit

in the two-loop computation in appendix D.3.



Chapter 2

Pohlmeyer reduction

This chapter is devoted to a description of the Pohlmeyer reduction of bosonic string theory
in AdS; x S' and GS string theory in AdSs; x S and in AdSs x S°. Pohlmeyer originally
proposed a way of reducing the equations of motion of the sigma model on R x S? to the
sin-Gordon equation [42]. This work is extended to the case of a sigma model on R x S? and its
reduced model is the complex sin-Gordon theory. The construction of these reduced model can
be applied for the AdS; x S bosonic string theory with a slight modification. In section 2.1
we shall review the Pohlmeyer reduction of bosonic string theory in AdS3 x S* being based on
the coset model on SO(2,2)/S0O(1,2). We will particularly focus on two reduced models called
the coth model and the tanh model of the complex sinh-Gordon theory, which are related by
the “T-duality” transformation as discussed in detail in [64] for complex sin-Gordon model. In
section 2.2 we shall review the Pohlmeyer reduction of GS AdS,, x S™ string theory for n = 3,5

following the papers [HIT, 64].

13



14 Chapter 2. Pohlmeyer reduction

2.1 Pohlmeyer reduction of bosonic string theory in AdS;x

Sl

Our starting point is the worldsheet Lagrangian for a bosonic string propagating in AdSs x S*
spacetime,
L = Laas + Ls, (2.1)

with
Laas = 0.YPOYp —A(YPYp+1), 22)
2.2
Ls = 0. XM0_Xp — A (XMXy — 1),

where 0. = 0,+0, and the contraction is defined by using n = diag(—1,1,1, —1) for P,Q, --- =
0,1,2,3 indices (AdSs sector) and § = diag(1,1) for M, N,--- = 1,2 indices (S! sector).

Reflecting the fact that the S* sector of a string solution in AdSsx S* is always homogeneous, the

AdS part of the stress tensor satisfies TP = —p2 with constant pi. Because the worldsheet
of a closed string is a cylinder, it is not necessarily allowed to set u, = pu_ = p.' Instead we

introduce the mass scale in the reduced theory by pu = /uip—. This prescription will be used
in the case of classical string with both the orbital momentum and the winding in the S* sector

(see sections 3.2, 3.3, 3.4).

In the case of the AdS5 x S! bosonic string theory, we can explicitly write the relation between
the embedding coordinates and scalar fields of the reduced theory. Let us first look at the
construction of the coth model. Introduce a set of O(2,2) vectors by Yp, 0,Yg, 0-Yg and
Kp = egrspY 90, YRO_Y® and define ¢ and 6, by

0, YPO_Yp = —p? cosh 2¢, ,
(2.3)
Kpd2YP = 4p% cosh®, 01 x, ,

'We have p1, = p— in several cases, e.g., when the S! sector is the BMN vacuum.
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then these ¢, and y, satisfy the complex sinh-Gordon equations,

0400, + S50, X, 0-x, + hp? sinh2¢, =0,
A (2.4)
Oy (COth2 N a*XA) +0- (COth2 N 8+XA) =0,
which follow from the Lagrangian of the coth model,
1
Leon = 01.6,0_¢, + coth®¢, 0, x,0_x, — §,u2 cosh2¢, . (2.5)

Another model of the complex sinh-Gordon theory is the tanh model obtained by replacing
(2.3) by

0, YPO_Yp = —p? cosh 2¢, ,
(2.6)
Kpd2YP = F4u3sinh®¢, 040, .

The resulting equations describe the tanh model,

0+0-¢, — :;::% 0:0,0_0, + 1p*sinh2¢, =0,

O, (tanh?¢, 0_6,) + 0_(tanh®¢, 0,60,) =0,

whose Lagrangian is
1
Lianh = 04+0,0_¢, + tanh®¢, 0,6,0_6, — §,u2 cosh2¢, . (2.8)

As pointed out in [64] for the complex sin-Gordon model, these two models are related at the

level of equations of motion by the “T-duality” transformation,
d1x, = Ftanh®p, 0.0, . (2.9)

Because this transformation is non-local, a classical solution in the reduced theory might take

a complicated form in one model even if it is simple in the other model.

As we will see in the next chapter, the perturbation in the complex sinh-Gordon model describes

a part of the fluctuations in the reduced model of the AdS5 x S® GS string. Moreover, it can be
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a useful tool for evaluating a complicated subsector of the physical fluctuations in the reduced

AdSs x S® theory.

2.2 Pohlmeyer reduction of AdS, x S" Green-Schwarz
string

The AdS, x S™ GS string can be described by the F/G coset sigma model where F' =

PSU(1,1|2) x PSU(1,1|2), G = SU(1,1) x SU(2) for n = 3 and the F = PSU(2,2[|4), G =

Sp(2,2) x Sp(4) for n =5 [24]. The essential feature of the superalgebra psu(1,1]2), psu(2,2|4)

is that it admits a Z; automorphism €2 such that the condition Z,(F) = F determines the

maximal subgroup to be G.2 Regarding a coset element f as a map from the string world-

sheet into the graded group F, the current the left-invariant current J = f~!df belongs to the

superalgebra of F', then is decomposed as
J=fldf=A+Q1+P+Q:, A€f, Qi€f, Pcf, Qr€cfs. (2.10)

For the latter purpose let us introduce new notations for the bosonic components, g = f, and
p = fo. A is the algebra of the subgroup G defining the F'/G coset, P is the bosonic “coset”

component, and ()1, ()2 are the fermionic currents.

The GS action in the conformal gauge is written in terms of these components,

VA 1
Isp = e /d2aLG5, Lgs = STr [P+P_ + §(Q1+Q2— —Q1-Q2y)|, (2.11)

where 0. = 0, £+ 0,. The conformal-gauge (Virasoro) constraints are
STr (PLPy) =0. (2.12)

This system is invariant under a local G' gauge transformation, f — fg. The equations of

2Important aspects of the psu(1,1]|2) algebra and the psu(2,2|4) algebra are summarized in appendix A.
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motion are derived by varying (2.11) by f,

0P+ [Ay, P ]+ [Qay, Q2] =0,
O_Py +[A, P +[Q1-,Q11] =0, (2.13)

[P-HQI—]:O? [P—vQQ-i—]:O)

which should be supplemented by the conformal gauge constraints (2.12) and by the Maurer-
Cartan equation,

a_J+—3+J_—|—[J_,J+] :0 (214)

Under the Z; decomposition the Maurer-Cartan equation (2.14) decomposes as follows

0Py =0, P+ A P)+[Qu, Quy] + [P Ay + Qo Q2] = 0,
O-Ap — 0o A+ A, A+ Q1 Qail + [P Pyl +[Qo, Qui] = 0.
0-Que = 0,Qr- + A Qi) + Qi A+ [P Qo] + Qo P = 0,
0-Qae = 0,Qa- + A, Q] + [Qus P+ [P Qui] 4+ Qo AL = 0.

(2.15)

Note that the first equation is the sum of the first and second equations in (2.13), then automat-
ically solved by the equations of motion. The Pohlmeyer reduction procedure involves solving
the equations of motion and Virasoro constraints by introducing new variables parametrising
the physical degrees of freedom. For the new variables, the final three equations in the decom-
posed Maurer-Cartan equation (2.15) yield nontrivial equations which will be the equations of

motion in the reduced theory.

The following is the brief description on the Pohlmeyer reduction (for more details see [64]).
Before solving the Virasoro constraints, let us fix the G gauge and find a useful form of P, for
the reduction. This can be done by the polar decomposition theorem which states that for any
k € p there exists gy € G such that g;'kgy € a (see appendix A for the definition of p and a).

Hence it is allowed to use a GG gauge transformation to put P, into the form,

P, =pT + poTh, (2.16)
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where pq, po are real functions and T, T» € a are

Ty = § diag (1, =1,0,0) , Tp = diag(0,0, 1, =1), forn=3,

Ty = & diag(1, 1, =1, =1, 0,0,0,0) , T =& diag(0, 0,0,0, 1,1, =1, —=1), forn=5.
(2.17)

From the Virasoro constraints (2.12) we have the condition p? — p3 = 0. Then we set p; = py =

P, that is,
Po=p.T, T=T +Ty= % diag (1,1, -1, =1, 1, 1, -1, —1) , (2.18)

We can apply the polar decomposition theorem to P_; there exists g € G = Sp(2, 2) x Sp(4)
such that

P_=p_g'Ty, (2.19)

where p_ is a real function. It should be noted that 7" is an element of the maximal abelian
subalgebra of p and induces the further orthogonal decomposition. The group H whose algebra
is b is then defined as the subgroup of G which stabilizes T, [h, T} =0, h € H. Due to this
property there is an arbitrariness in the choice of ¢ since P_ is invariant under ¢ — hg for

h e H.

Next we shall show that p. are constants by solving the equations of motion in (2.13). If

one fixes the k-symmetry gauge to project the fermionic currents as )1 = ! and gQ.g ! =

(9Q29HII, the last two equations in (2.13) implies @, = Q24 = 0 because [T, f!:)] = 2Tf!73.

Then the first and second equations in (2.13) are simplified

0,P.+[A,,P]=0, 0P, +[A_ P]=0. (2.20)
Noticing that P, € b, the second equation is decomposed as

0P+ [(A)y, P =0, [(A),, P =0. (2.21)

Due to the block diagonal nature of P, A_ these equation should hold in the AdS,, part and
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S™ part separately. In particular, the first equation in (2.21) reads 0_(Py)' + [(Al,)h : Pﬂ =
0,3 that ends up with the conservation laws in the individual subparts, d_tr! (P, P,) = 0,
d_tr? (P, Py) = 0. Since tr'*(T?) # 0, we can conclude d_p, = 0. The same trick for the first
equation in (2.20) leads to 0,p_ = 0. Using the residual conformal diffeomorphism symmetry
it is always possible to set p+ = u+ = const. Hence we get

Py =p, T,

(2.22)
P . =pu_g'Tyg.

As seen in the reduction of the AdS; x S* bosonic string theory, there is an argument on the
constants p4; if the sigma model was defined on 2d Minkowski space then we could use a
Lorentz transformation to set u; = u_ = p as was done in [64]. However, if we are interested
in the case of the closed string when the worldsheet is a cylinder, then this is not possible. It

is still useful to define the following combination of p, and p_,

p= /i - (2.23)

With the solutions for Py, (2.22), it is possible to rewrite Ay. Under the Zy decomposition,
A=A+ (Ay),, AL = (Ai)h , (2.24)

the second equation in (2.21) implies (A_),, = 0. Plugging (2.22) into the first equation in

(2.20), one finds that it is solved by
Ap=g'0,9+9 " +9 ' Ayg. (2.25)

So the equations of motion (2.13) and the Virasoro constraints (2.12) have been totally solved.

All of the bosonic degrees of freedom have been encoded into an group element g € G and

3Here we use the notation !, 2 introduced in [64]. The index ! represents the 4 x 4 su(2,2) part and the
index 2 does the 4 x 4 su(4) part in the 8 x 8 supermatrix representation of psu(2,2[4) described in appendix A
(similarly they respectively represent the 2 x 2 su(1,1) part and the 2 x 2 su(2) part for psu(1,1|2)). In terms
of this notation the supertrace STr is expressed as STr = tr! — tr2.
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AL taking values in the algebra § of H, i.e., [Ai,T ] = 0. Finally, we make the following

redefinitions of the non-vanishing fermionic fields

(/R Il ’
R m(Ql+) (2,26)

\IJL = \/%(QQng_l)” :

Then we have rewritten the original currents in terms of a new set of fields, (¢, Ay, ¥, U, ),

describing only the physical degrees of freedom of the system.

Substituting these fields into the second, third and fourth equations in (2.15) we obtain the

following set of equations of motion for the reduced theory

0 (97'0,9+g'Arg) — 0t A +[A_,g7'0yg+ g 1ALyl

=P lg ' Ty, T —plg™ 'V, g9, 9,] ,

(2.27)
D*\IJR :M[Tvg_l\DLg] ) D+\I/L :/*L[Tag\DRg_l] ; Di:ai+[Aia] .
The set of these equations exhibits H x H gauge symmetry,
g— h7lgh, Ap — h7 YA h+ h™10,h, A_—h'A_h+h7'O_h
(2.28)

U, — h U, — b

In order to write down a Lagrangian for the equations of motion (2.27) we should partially fix

the H x H gauge symmetry as in [HIT],

T (A-i-) = (gila-i-g + gilA-‘rg - % [[Ta \I]R] ) \IJR,]);] )

71 (A_) — (—(9_9971 -+ gA_gf1 — % HT7 \IJL] ) \I]LD

(2.29)
-

Here 7 is a supertrace-preserving? automorphism of the algebra h. This partial gauge fixing

4STr (7 (u1) 7 (u2)) = STr (wquz), uis € b,



2.2. Pohlmeyer reduction of AdS,, x S™ Green-Schwarz string 21

reduces the H x H gauge symmetry to the following asymmetric H gauge symmetry,

g—hlgr(h), A, —h A h+h'oLh,  A_—7(h) A7 (R)+7(h) O 7 (h)

7(h), U, - h 0 h,
(2.30)
where 7 is a lift of 7 from b to H. Hereafter we shall consider a special case where 7, 7 are

identity. The equations of motion, (2.27), and the gauge field equations, (2.29), follow from the

Lagrangian,

Lawzw = Lgwzw + p° STr(g7 ' TgT)

(2.31)
FASTE (W, [T, D0, ]+ U, [T, D))+ pSTr (570, 0,)
where Lgwzw is the Lagrangian of the gauged G/H WZW model,
Iowzw = /—STr 10,997 '0_g) /—STr “Ydgg~tdggdg)
(2.32)

+ /gSTr (A+ O_gg ' —A_g'0,9g— g tALgA_ + A+A_) .

This Lagrangian is invariant under the gauge transformations (2.30). It is this system that will
be referred to as the Pohlmeyer-reduced theory (PRT) computed with the original string theory
(ST). The reduced theory is the G/H gauged WZW model with a gauge invariant integrable
potential and fermionic extension. We have G = Sp(2,2) x Sp(4), H = [SU (2)]* in the
AdSs x S° case and G = SU (1,1) x SU (2), H = [U (1)]* in the AdS3 x S case.

Consequently the reduced model is described by the action,

k
Ippr = —/d02LdWZW, (2.33)
8

where the coupling constant k is undetermined classically.> However, if the the GS string theory
and the Pohlmeyer-reduced theory are related at the quantum level, k£ should be related to the

string coupling constant v/X. In particular, it is observed that the p-dependent term in the

5Generally the constant in front of the action is given by %, where s is the index of the representation.
For the representation we will use in this thesis, we have s = 1/2 for AdSs x S° and s = 1 for AdSs x S3. The
detailed discussion is given in [73, 74, 75].
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reduced theory can be directly obtained by substituting (2.22) into the GS action (2.11). Then
one may conjecture that

k=2V\. (2.34)

While the one-loop computation is insensitive to the identification of the coupling constants

(chapter 3), the two-loop computation depends on the coupling constant (chapter 4).

In order to study fluctuations around a particular classical solution by using the reduced theory
one needs to find corresponding g, Ap+ by fixing the G gauge and partially fixing the H x H
gauge. Generally it is not easy to find a gauge such that gy, Ap+ solve the gauge equations
(2.29) and take a convenient form for extracting physical part of the perturbation. Moreover,
it becomes much harder if the classical string solution is inhomogeneous, which is also the case
we will discuss in the next chapter. One can circumvent this gauge fixing task by using an

embedding of the complex sinh-Gordon model into the deformed gWZW model.

Hence we shall next show how the complex sinh-Gordon model is realized in the framework of
the Pohlmeyer reduction of the AdSs x S° superstring theory. Because we will consider classical
solutions whose S® part is localized in S* of the S®, the S® parts of gy and A4 are the vacuum
solution, and accordingly, the bosonic fluctuations in the S® sector are massive fields with the
masses £ as shown in appendix C.2. Hence we will focus on the AdS sector, then gy and Ay

below always mean matrices for the AdS sector.

A classical string solution in AdSs x S* can be expressed as a classical solution gy which takes
value on SU(1,1) in the gWZW model. One natural parameterization of su(1, 1) as a subalgebra

of sp(2,2) in [66] is

0001 i 00 0 00 0 i
0010 0 —i 0 0 0 0 —i 0

Ry = , Ry = . Ry= . (2.35)
0100 00 i 0 0 i 0 0
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Then the classical solution is expressed in terms of the Euler angles, ¢, and y,,

1
Go = 920192, g1 =exp(¢,R1), go= eXP(gXARz) , (2.36)

and the matrix elements of gy are written as,

e™a cosh ¢, 0 0 sinh ¢,
0 e Xacosh¢,  sinhg, 0
9o = ' . (2.37)
0 sinh ¢, eXa cosh ¢, 0
sinh ¢, 0 0 e~Xa cosh ¢,

The corresponding gauge fields are obtained by solving the gauge field equations (2.29),

Ags = %C_liRg, a, = —coth’¢,0,x,, a. = coth’¢,0_x, . (2.38)
Plugging these into the gWZW Lagrangian in [64], one finds that the Lagrangian of the coth

model, (2.5), is recovered.

On the other hand, the Lagrangian of the tanh model is obtained if we choose the following

parameterization of go,

0 eacoshg,  —elasinhg, 0
—e~%acosho, 0 0 e~ “asinhg,
e’asinhg, 0 0 —e%acoshe,

0 —e Pasinhg, e "acoshg, 0

The gauge equations (2.29) are solved by

i cosh2¢, 0.0
AO:I: = 5 a’:I:R27 ay = _QH—TM s a_ = —SeChZ(bA 87014 . (240)

Note that gy and gy are related by an H x H gauge transformation rather than an H gauge
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transformation.

where

One example of the H gauge transformation is

Go — 9o = h;'Gohr,

(2.41)
0 0
0 0
_6—%i0A 0
0 —6%10/‘




Chapter 3

One-loop computation: strings in

AdSs x S1

In chapter 2 we reviewed the Pohlmeyer reduction of the AdSs; x S! bosonic string theory
and AdS, x S™ GS string theory, and introduced particular ways of embedding the reduced
AdSs x S' model into the Pohlmeyer-reduced GS string theory. Bosonic string theory in
AdSs x St is classically equivalent to the complex sinh-Gordon theory and the AdS, x S™ GS
string is reduced to the deformed gWZW model at the classical level. In this chapter we shall
extend this equivalence to the one-loop level. For this purpose we will first discuss perturbative

expansions around a general classical solution in the reduced models.

Lagrangian for quadratic fluctuations in the coth model of the complex sinh-Gordon theory
(2.5) is obtained by considering the perturbation, ¢, — ¢, +d¢, and x, — x, + dx,. Then we

have

Leom @) = 0:86,0-00, + (3550,x,0_x, — i cosh 29, ) (09,)?

+ cothg, 0,.8x,0_0x, — 20949, x5, + 046, 0-X, )50, -

smh3

(3.1)

It is also useful to discuss perturbation in the T-dualized model, the tanh model (2.8). By

25
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¢, — ¢, +d¢, and 0, — 0, + 660, in (2.8), we obtain the Lagrangian for quadratic fluctuations,

cosh*

Lomn(z) = 0:00,0-66, + (25940,0,0.6, — i cosh 26, ) (66, ) .
+ tanh®3, 060,066, + 22594(0,6,0_06, + 0.50,0.6,)36, . |

Note that the the T-duality transformation given in (2.9) works even at the semiclassical level,

that is, (3.2) is T-dual to (3.1), which we will use in section 3.1.

On general ground there is no reason to expect that the complex sinh-Gordon theory is equiv-
alent to the AdSs; x S' bosonic string theory at the quantum level. As far as the one-loop
corrections are concerned, on may think this expectation might be true because the first order
corrections directly follow from the equations of motion. However, this is not correct for the
case of py # p_ if we use the reduction relation (2.3) for the coth model or (2.6) for the tan
model, and it is necessary to take into account all the bosonic and fermionic fluctuations in
order to obtain a correct set of physical fluctuations (see sections 3.2, 3.3 and 3.4). This issue
can be resolved if we modify the reduction (2.3), (2.6) leaving the reduced model (2.5), (2.8)

unchanged. We will come back to this point in section 3.5.

Next let us consider perturbation in the deformed gWZW model (2.31). We shall introduce

fluctuations around a classical solution, go, Aox, V.0, ¥,0, as follows

rO>»

9=g0e" = go(1+n+37° + O(n)),
Al = Ao +0A., A =A_g+0A_, (3.3)

U, =W, +00,, U, =U,+00,.

Hereafter we will focus on classical solutions with vanishing fermions, ie., ¥, o = ¥, o = 0.
Under this perturbation the quadratic fluctuations of the Lagrangian for the deformed gWZW
model (2.31) are described by

L = STr %.@+77D_77 — Dy 6A_ — gy 0ALgoD_n — gy 0A L godA_ + SALSA_

AWZW (2)

[0, g5 Tgo] [n, T] + L6, [T, D_8W,] + 16U, [T, D60, ] + gy 60, o0,
(3.4)
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where the derivative operators &, D are defined by 2, = 0, + [go_ Y0490 + 90 1A go, }, Dy =
01 +[A4, ]. This Lagrangian was derived in [HIT].

Below we will evaluate the fluctuations in the whole AdSsx S® around classical strings stretching
in the AdSs; x S! subspace by using the embedding of the complex sinh-Gordon model into the
deformed gWZW model, i.e., (2.39) and (2.37). Although g, for the coth model is constructed by
a standard gauging, the coth model has several issues when we calculate quadratic fluctuations,

and we will mainly use the embedding of the tanh model.
The remaining part of this chapter is organized as follows.

In section 3.1 we shall discuss the (S, J) folded string. Its quadratic fluctuations were found
from the Nambu action in the static gauge and in the Polyakov action in the conformal gauge
in the original string theory [89, 90]. We shall show that the fluctuation Lagrangian in the coth

model of the reduced theory is related to that derived from the Nambu action.

In section 3.2 we shall study the homogeneous (S, J) circular string solution which has both
the angular momentum and the winding on a big circle of S, and gives us the first example
of puo # p_. We will show that the fluctuation Lagrangian of the reduced theory agrees
with the string theory result [93]. Since the circular string is homogeneous, we can evaluate
characteristic frequencies of the quadratic fluctuations also in the reduced theory. In the case of
the (.S, J) circular string the total sum of the bosonic and fermionic frequencies in the reduced
theory agrees with the string theory result although some of the individual frequencies appear

to disagree.

In section 3.3 we shall discuss the (S, J) spiky string solution and derive its fluctuation La-
grangian of the reduced theory. Our result on the semiclassical expansions for the (S, J) spiky
string is expected to agree with the one in the original string theory. We shall also discuss
the fluctuation Lagrangian in the limiting cases of the (S, J) spiky string; spiky string without

motion or stretching in S°, and its folded string limit.

In section 3.4 we will consider a generalization of the (S, .J) folded string solution with both

the orbital momentum and the winding in the S* sector found in [97]. This solution again has
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the scaling limit where the solution becomes homogeneous. As happened in the circular string
case, some individual characteristic frequencies in the reduced theory disagree with the result

in [97], but the sum of the frequencies is the same as in the string theory.

We will find the disagreement of characteristic frequencies of the individual fluctuations in the
(s # p_ cases in section 3.2 and section 3.4. It can be resolved by modifying the reduction
relations (2.3) and (2.6). This prescription will be discussed in section 3.5 by considering the

(S, J) circular string solution.

3.1 Folded string

In this section we shall evaluate the Lagrangian for quadratic fluctuations around the (5, .J)
folded string. In the original string theory the semiclassical expansions are carried out in the
Nambu action in the static gauge and in the Polyakov action in the conformal gauge in [89],
and the equivalence of these two approaches is shown in [91]. Although the Pohlmeyer reduced
form of the AdSs x S is constructed from the conformal gauge string theory, it is expected that
the fluctuation Lagrangian of the reduced theory takes a similar form to the effective Nambu
action as both the reduced model and the Nambu action involve only the physical degrees of

freedom after choosing a gauge.

We shall derive the Lagrangian for bosonic fluctuations in section 3.1.1 and the Lagrangian for
fermionic fluctuations in section 3.1.2. To compare our result with the original string theory we
shall carry out the perturbation in the Nambu action in the static gauge, and show how this

approach is related to the coth model and tanh model in the reduced theory in section 3.1.3.

Let us first review the (5, J) folded string in AdS; x S' which is expressed in terms of the

embedding coordinates,
Yy + Y3 = coshpe™ | Y| +iYy = sinhpe™T, X; +iX, =7, (3.5)

where k, w and v are constants, and p is a function of o, p = p(c). The equation of motion
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and the conformal gauge constrains read

P = (k* —w?)sinhp coshp, p? = k? cosh?p — w?sinh?p — 2. (3.6)

Next we shall derive the corresponding classical solution in the reduced theory. The mass scale
of the reduced theory p can be found by observing the AdS part of the stress tensor. In the

present case we have 7295 = —1? meaning that this is the case of iy = u_. Then we set
U=v. (3.7)

We have two ways of the reduction, the embedding of the coth model or the embedding of the
tanh model. As mentioned below it is more convenient to employ the tanh approach. The

classical solution, ¢, and 6,, in the tanh model is given by the relations in (2.6),

¢, = log (”*— V2+p2> ., = s (3.8)

v

Substituting these into the formula of gy and AL, we have

v2 +pl2 /
0 IR At 2 0

_/l}_
_axV V2V+P'2 0 0 U*%/ .

9o = , v=e v , (3.9)

vt 0 0 VI

0 Y A i 0
and the gauge field equations (2.29) are solved by the following Ay,
1 1 v WKV

Aig=-ayR =2 —_—t —— 0= - 3.10
+0 = 5 dxoltz,  Ayo = 2WR ( > + 207 _I_p,Q)) ;a0 ZEYE) (3.10)

The reason we use the tanh model here is as follows. If we plug the folded string solution (3.5)
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into the reduction equation (2.3) with u = v, we obtain the classical solution of the coth model

v V2 +pl2

/ V21 o2 5
¢, = log (*— V*) Ou, = (4 = %) (3.11)

Here x, can be expressed in an integral form. This can be also understood by substituting ¢,
into the relation of x, and 6, in (2.9). On the right hand side, 046, is constant, but tanh ¢,

has the p(o) dependence, and then, x, ends up with the complicated form.

As far as the calculation of the quadratic fluctuations is concerned, the expression of y, in (3.11)
does not seem to cause a serious problem because only its derivative, d;x,, appears in to the
Lagrangian for the quadratic fluctuations if the H x H gauge is properly chosen. However, gy
for the coth model in (2.37) is not this case; due to the peculiar form of gy some components of
950,90 and g5 ' Agy go contain the eXa factor, and consequently, the perturbed Lagrangian has
the y, dependence. Of course this ¢4 factor can be removed from the perturbed Lagrangian
by redefinition of fluctuation fields, but such redefinition is not trivial. Also, the form of gy for
the tan model in (2.39) is very convenient to integrate out the gauge fields and decouple the
physical fields from the unphysical fields. Therefore, we will basically continue to use the tanh

model in the following sections.

Before moving on to the one-loop computation, let us add some remarks on the open string
counterpart of the folded string solution in the scaling limit where the (S, J) folded string
solution becomes homogeneous. The (S, J) folded string in this limit was studied in the reduced
theory [HIT]. In [98] it was shown that the two classical string solutions are connected by the
SO(2,4) rotation and analytic continuation on the worldsheet 7 — —i7, and then, quantum
corrections to the scaling function calculated in the open string picture are the same as those
in the folded string picture.! As the isometry of AdSs, SO(2,4), becomes obscure by the
Pohlmeyer reduction, any two solutions related by an SO(2,4) transformation are encoded into

a single solution in the reduced theory. Hence we obtain a reduced theory solution corresponding

n [98] the equivalence of the closed string and the open string was shown for v = 0 classically and
semiclassically. A v # 0 open string solution can be easily constructed by adding the BMN vacuum in the S*
sector [70], which is the counterpart of the scaling limit of the (S, .J) folded string (see also [97] for a folded
string and its corresponding open string surface with both the orbital momentum and the winding in S* of S°).
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to the null cusp solution in the original theory by the analytic continuation 7 — —i7 in go (3.9)
(after taking the scaling limit, w — x and p — fo with k? — 12 = ¢?). In general, the
equivalence of characteristic frequencies of the quadratic fluctuations in the reduced theory
comes from that of the classical solutions gy. In the reduced theory, therefore, one can trivially

check the frequencies for the two classical solutions match.

3.1.1 Bosonic fluctuations in reduced theory

The argument for the S° sector is the same as the case of the scaling limit studied in [HIT] (see

appendix C.2). Four bosonic fluctuations in the S® sector are massive fields with m% = v2.

In the AdS5 sector we shall discuss the bosonic fluctuations by using the tanh model by the
above reason. To express the quadratic fluctuations in terms of components fields, let us

introduce bosonic fields by

0 0 ay +iay  as -+ iag
0 0 as —tay —ai + a9
nl = : (3.12)
a; — tae Qs+ iay 0 0
as — 1y —ap — 109 0 0

which correspond to physical fields in the reduced theory.

1hy ho + ihg 0 0
—hsy + ihg —ihy 0 0
= , (3.13)
0 0 1hy hs + ihg

0 0 —hs +1ihg  —ihy



32 Chapter 3. One-loop computation: strings in AdSs x S*

a4 (aio +iays)v? 0 0
— (ayo — tay3) v*? —ia4q 0 0
(514_;,_ - )
0 0 ia+4 (a+5 + ia+6) 'U2
0 0 — (a45 — iaqe) v*? —il4q
’L.CL_l a_o + ia_g 0 0
—a_9 + ia_3 —ia_1 0 0
0A_ =
0 0 ia_4 a_s + ia_ﬁ
0 0 —0_5 + ’éa_e —?:Cl_4

(3.14)
These are unphysical fields in the reduced theory and to be gauged away or integrated out from

the fluctuation Lagrangian.

An advantage of using go (2.39) is that the system decouples into two subsectors: One contains
a; and ay coupling to the diagonal parts of n* and dA., while the other contains as and a4
coupling to the off-diagonal components of n* and §A.. One can fix the H gauge such that

the physical fields a; decouple from the unphysical fields,

hy + hy = const, (3.15)

which is the same as one of the three gauge conditions in the long string limit case in [HIT],

and we should impose two more conditions,

\/(_wz + 12+ p?) (—K2 + 12 4 p?)
X |:wlil/3<h3 + hﬁ) + (V2 + p'2) ((V2 + 2/)’2) (CL+2 + CL+5) + 1/2 (a_hg + 8_h5 —a_9 — (l_5) >:|
+p/ [ — w?k?v%(hy + hs) + (V* + p?) <w/w (O_hs+0_hg —a_3 — a_g)

F 074 ) 0+ 0 )| =0
(3.16)
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and

\/(—w2 + 12+ p2) (—K2 + 12 + p?)
X |:’wf{l/3(—h2 + hs) — (V2 + p?) ((a+3 —ayg) W+ 20?) + 12 (—0_h3 +0_hg+a_3—a_g) )]
+p [WZKQVQ(—hg + he) + (V2 + p?) (w/w (—0_hg+0_hs+a_o—a_s)

074 ) 0= 00s) )| <0,

(3.17)
Under this gauge choice the Lagrangian for a sector with a; and as is
Ly =2 Z (0ra;0_a; — (v* +20%) a}) , (3.18)
i=1,2
and the sector with a3 and a4 has the Lagrangian,
Lo =2 {8a38+a3 - (V2 +2p% + 35”?;,22 - (S;gi'j,;’;) a3 4+ 0_aqs0y a4
(3.19)
2wkrO_as 2wkrO4 as 2(w?4r? w2 K2
+ < 212 2+ l/2+p7/L2 d) g — V2 <—1 + ((1/2+p’2)) - (1/?;+p’2)2) CLZ:| .

This Lagrangian does not diverge at turning points of the folded string, i.e., at p’ = 0. This
observation is different from the case of ¥ = 0 in [89]. The long string limit case is recovered if
we take w — x and p — fo, and replace the conformal gauge constraint by % — v? = 2. In

this limit the resulting Lagrangian yields the correct frequencies [90].

If we take v — 0 limit in (3.18) and (3.19), the Lagrangians become

Ly=2) (0r0:0_a; — 2p"a7) (3.20)

i=1,2

and

2(w2m2+p/4) 9

£2 =2 {8_a38+a3 — PE as + 8_(148+CL4 . (321)

The sum of these two Lagrangians is the exactly the same as the Lagrangian (5.6) in [89], which
is found by perturbing the Nambu action in the static gauge. We find that a; and ay correspond

to (; while a3 corresponds to ¢, and a4 is interpreted as a massless fluctuation denoted as ¢ in
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[89).

So far we have carried out the perturbation in the full reduced theory by embedding the tanh
model into the gWZW model and shown that the perturbed Lagrangian takes the Nambu-
Goto type in the original string theory. One may expect two of the fluctuations are captured by
perturbing the tanh model directly. Plugging the folded string solution (3.8) into the fluctuation

Lagrangian (3.2) and rescaling 660, by

50, > ——% (3.22)

A
2
1 - u2+p/2

then we have the following Lagrangian,

2,.2,,2

Loan = 0_06,0.00, — (y2 42 4 P suPkly ) 5 + 0_00,0..60,

l/2+p/2 ( 2+ ,2)2
B (3.23)
2wrrd_ 06, 2wrr04 0, s0 — 2 (-1 + 2(w +K ) 3w’k 562
I/2+p/2 I/2+p/2 A (V2+p/2) (l/2+p’2)2 4"

Noticing that this Lagrangian takes the same form as (3.19), we find that d¢, and 66, correspond
to ag and ay, respectively. Hence it turns out that the perturbation in the tanh model describes
the most complicated part of the bosonic fluctuation Lagrangian of the deformed gWZW model.
This fact is useful when we consider more complicated classical solutions (see sections 3.2, 3.3

and 3.4).

3.1.2 Fermionic fluctuations

For a consistency with the original string theory, the masses of the fermionic fluctuations in the
reduced theory should match those found in the original theory. We define component fields of

the fermionic fluctuations in the following way,

0 %R 0 xL
o, = , 0V, = : (3.24)

mR 0 @L 0
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where
0 0 o1 + 10 s + 100y
0 0 —Q3 + i()é4 ap — iCYQ
Xgp = (3.25)
(071 + iOéﬁ Qry — iOég 0 0
(0%4 + i()ég —05 —+ iOéG 0 0
0 0 —Qg — s —og — 10y
0 0 ag — i —ag +ias
Dr = (3.26)
Q9 + iOél g — i()ég 0 0
g4 + iOég —Qip + 2'061 0 0
and
0 0 (Br+if2)v  (Bs+ifs)v
0 0 (B3 —ifs)v*  (=B1 +ifB2)v"
XL = (3.27)
(Bs +iBs)v  (—B7 +ifs)v 0 0
(Br +ifs)v*  (B5 —iB6)v" 0 0
0 0 (=B —ifs)v*  (—Bs —ifBr)v
0 0 (=B +ifr)v*  (Bs —ifBs)v
DL = (3.28)
(B2 +if1)v"  (—=Bs+iB3)v 0 0
(Ba+ifB3)v* (B2 —if1)v 0 0

where all component fields are real Grassmann. The extra factor v = exp(iwkT/v) is introduced in Xy,

and )1, such that the exponential factor does not appear in the Lagrangian. The resulting Lagrangian

is

8
Ly =23 (0-a; + pi0+ i)

i=1
+o2t e (ara + oy + asas — arag — P12 — B304 — Bs 06 + Brs) (3.29)

v2 4 p? (—agf — 103 + arfs — asfr + asfe + a2l + agfs — asfs) |
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After a careful observation we find that this system decouples into four subsectors which exhibit an
identical structure containing two of «; fields and two of 3; fields. Let us focus on the subsector

containing aq, g, O3 and (4, described by a part of the Lagrangian,

L =001+ az0_as + B304 03 + 010104 + 3 5m (10 — BsBa) + 2¢/ 12 + p (o B3 + azf3)

(3.30)
which is simplified as
— 1 wkr - _
L =9y*0atp + iﬁp,ﬂﬁrlﬂ) — V124 2T, (3.31)
where
B3 00 0 —i 000 i
Ba 0 0 — 0 0 0 ¢« O B
b= , 77 = , 7= , v=907, (332
a1 0« 0 0O 0 ¢« 0O
s i 0 0 O 1 0 00
and
0 0 ¢ O 0O ¢« 0 O
0 0 0 —¢ -3 0 0 O
Iy = , Te= (3.33)
—3 0 0 0 0O 0 0 ¢
0 ¢ 0 O 0 0 -3 O

The same prescription applies for the other subsectors, and consequently, our result agrees with the

string theory result [89].

3.1.3 Bosonic fluctuations from Nambu action of original string the-

ory

In [89] the authors studied fluctuations around the folded string without the S! part (v = 0 in (3.5))
and found that the mass of one bosonic fluctuation found in the Nambu action contains a 1/p"? term.
However, our calculation in the reduced theory in section 3.1.1 shows that the Lagrangian has no 1/

term if the string solution has the S! sector.
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It might be considered that this difference appears because the fluctuations in the AdSs part nontriv-
ially couple to a fluctuation in S® part in the v # 0 case. So we shall first carry out the perturbation
in the Nambu action with nonvanishing v. However we will find that the nontrivial coupling is not
all of the reason for the difference; the fluctuations in the tanh model and in the Nambu action are
related by the T-duality transformation rather than rescaling or rotation of fluctuation fields. Since
the partition functions of any two theories connected by the T-duality transformation are the same,

this is a nontrivial support for our conjecture on the one-loop equivalence (1.6).

In the reduced theory the T-dual of the tanh model is the coth model. So we shall also show that the
perturbation in the coth model recovers the quadratic fluctuations found by perturbing the Nambu
action in another gauge. In section 2.1 we showed that the tanh model and coth model are realized as
the different ways of H x H gauge fixing in the full AdSs x S° reduction. Hence the result supports

that the partition function is H x H gauge independent.

The Nambu action for the bosonic string in AdSs x S° is given by

SN = — / drdo+/—dethg, , (334)

where the induced metric on the worldsheet hg is
hap = Guw () O0qz" Op” . (3.35)
In the present case the classical forms of g,, () and z# are respectively

G (x)datda” = — cosh?p dt? + dp? + sinh?p (dﬂf + d¢2) +dy?+dp?  (i=1,2, s=1,2,3,4),

t=kT, p:p(a)a ﬁlzov p=wr, Ps=0, Y =vT,
(3.36)

which are related by the Virasoro constraints and equation of motion (3.6). Imposing the static gauge

where the fluctuations of ¢t and p are set to zero we have the following perturbation,

t:/ﬁ}T, p:p(o’), /[))Z-:>\11/4 iy ¢:w7—+)\11ﬁ$7 ¢S:>\11/41/~}S7 gp:y7+>\11/4()57 (337)
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Expanding the Lagrangian (3.34) gives the following action for the quadratic fluctuations,

Sy = % f drdo [sinth&rBi@ffi — w? sinthBi2 + 3+1238JZ13 — y2'(Z)§

wv sinh?p (6+ BO_ p+04 pO_ @)
p/2

.12 ~ ~
+sinh2p (1 + wisigh P) 8, $0_ + (1 n pi;) 8, GO_ G +
(3.38)
This shows that the fluctuations v, have mf[; = 2. They describe the four fluctuations in the S°
sector in the reduced theory. By rescaling B; by 3; — sinh ™! P f3;, we find that §; have m%l =12 +2p2

Hence the fluctuations (3; correspond to a; and ag in (3.18).

Let us focus on the other two fields, qg and ¢, which should be compared with a3 and a4 in (3.19).

The corresponding part in (3.38) is

Lx = F10,60_¢ + F2d,30_ ¢ + Fy (8+¢a_gz§ + a+q3a_¢>) , (3.39)
where
2 o3 h2 2 : h2
Flzsinh2p<1—|—wsplgp>, F2:1+%, @:“ﬁ#, (3.40)

Even if we rescale qg and ¢ such that the coefficients of their kinetic terms are one, the resulting
Lagrangian does not match the Lagrangian in (3.19). In fact (3.39) and (3.19) are related by the
T-duality transformation. Since the Lagrangian (3.39) only depends on the derivatives of the fields ¢
and o, it is allowed to carry out the T-duality transformation at the level of the Lagrangian in the
present case. In order to derive the T-dualized Lagrangian we first denote 0+ by A4 and introduce

a Lagrange multiplier Z. Then the Lagrangian (3.39) is becomes
Ly = F10,00_ ¢+ Fob AL A+ F3 (a+05A_ + A+a_<5) + 201 A- —O_Ay). (3.41)

The Lagrange multiplier £ will become a new physical field in the T-dual picture. Integrating out A4

F;

B (ana_qE — a+q38_92> . (3.42)
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$, we have the following Lagrangian,

/ F2 1/2
Finally, rescaling £ — F,’"2 and ¢ — (F1 )

Lan = 06046 — (V2 + 207 + B — W28 ) G2 4 9 G0,
.- ) (3.43)
+ <2wnud,¢ + 2wnud+¢) 7 < 1+ 2((:12)—:;2)) __3w?k? ) 72

V242 V22 (24p/2)?

This is exactly the same as the fluctuated Lagrangian (3.19), and also (3.23). Since the characteristic
frequencies are invariant under the T-duality transformation, the fluctuated Lagrangian of the long

string limit in the reduced theory produces the correct frequencies.

Recalling that the T-dual of the tanh model is the coth model in the reduced theory, one can expect the
fluctuation Lagrangian of the coth model exactly agrees with that of the Nambu action. We are now
interested in the nontrivial sector described by the complex sinh-Gordon model. Hence, for our present
purpose, it is enough to perturb the Lagrangian of the coth model rather than the deformed gWZW
model. Plugging the classical solution (3.11) into the fluctuation Lagrangian (3.1) and rescaling x,

such that its kinetic term has unit coefficient, we obtain the following Lagrangian,

Leon(z) = 0+000-0 — (v + 20 + By 1 w22 (5)2
2(w2—1v2) (k2—12
rOs0uby, — (24 LI et Y ) ()

Awrpd 2wrr(0-dx, —0+6x
- (,/2+p5)2 5XA5¢ ( ,,24;;/2 A)5¢-

In the Nambu action in the original string theory this Lagrangian is obtained if two fluctuations are

introduced in the following way,

t=kKT+ Niz1 + Nizo, p=p(0)+ Nizi + N3z, (3.45)
3.45

¢ =wr + Nz + N329, ¢ =vT + Nitz1 + Nyzo,

where N? and NJ are defined as

[ wtanhp(o) w coth p(o)
N = o' (o 2%*1/2’07 L 0')2+V270> ’
p'(o)>+v?

Ny =
2 \/p )2+v2 ” \/p 2+2’ F(0)

) | (3.46)

Substituting these into the Nambu action (3.34), one finds that z; corresponds to d¢ and ze does
dx,. Alternatively one can reproduce the same Lagrangian by applying O(2) rotation to the two

fields, q; and @, in the Lagrangian (3.38). Hence it turns out that the perturbation in the coth model
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corresponds to the perturbation of the Nambu action in the specific gauge.

In the original theory or in the coth model, the Lagrangian possesses the term proportional to 1/,
while such a term does not appear in the tanh model. This can be understood by looking at the
T-duality transformation in the reduced theory, (2.9). For the present ¢, in (3.8), we have tanh? ¢, =
p%/(v? + p'?) and the T-duality transformation is singular at turning points of the folded string. Since
the partition function is invariant under the T-duality transformation, the partition function of the
reduced theory is the same as that of the original string theory for the (S, .J) folded string, which

supports our conjecture on the quantum partition function (1.6).

Due to this direct relation between the coth model and the Nambu action one might think that it
would be better to use the embedding of the coth model, (2.37), (2.38) rather than tanh model, (2.39),
(2.40), when comparing the fluctuations in the reduced theory and original string theory. However, as
mentioned earlier, (2.37) is a bad H x H gauge fixing for the perturbation. Hence we will basically

continue to use the tanh model.

In this section we have shown that the relation of the perturbations in the coth model, the tanh model
and the Nambu action in the original string theory. Their fluctuation Lagrangians are seemingly
different and the difference in the reduced theory follows from the choices of the complex sinh-Gordon
model, or in the words of the deformed gWZW model, the choices of the H x H gauge. However, if a
classical string solution in a subsector is described by the sin(sinh)-Gordon model, or equivalently, if
the subgroup H for the subsector is trivial, this freedom of choice does not exist, and so, the fluctuation
Lagrangian of the reduced theory should always match that found by perturbing the Nambu action.

This is the case for the bosonic string theory in R x S2, which is studied in appendix C.1

3.2 Circular string

In this section we shall discuss semiclassical quantization in the reduced theory for the (.5, J) circular
string solution. The parallel computation in the original string theory was studied in [92, 93, 38, 94].

It is expected that the perturbation in the reduced theory reproduces the result of [93].

We shall derive the Lagrangian for the quadratic fluctuations by using the embedding of the tanh

model, and evaluate their characteristic frequencies for the bosonic fluctuations in section 3.2.1 and for
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the fermionic fluctuations in section 3.2.2. However a set of the characteristic frequencies in the reduced
theory is not identical to the result in [93]. Then we shall show that the sum of the frequencies matches
the original string theory result perturbatively in section 3.2.3, and find a 2d Lorentz transformation
such that each of the frequencies in the reduced theory is the same as the corresponding frequency in
the original theory in section 3.2.4. It may be considered that this happens because the (S, J) circular
string is the case of py # u_ as a reflection of the existence of winding on a big circle of S°. We will

find an analogous discrepancy for another example of 4 # p— in section 3.4.

We shall start the discussion with introducing the (S,.J) circular string solution in the embedding

coordinates,

Yo + Y3 = 1o ik ., Yi+iYa=mn etwrtiko . X1 4iXy = plwT+imo 7 (347)

where 19 = coshpg and r; = sinhpy with a constant radius pg. The parameters m and k are integer
winding numbers in the AdSs subspace and the S' subspace, respectively. This solution has three

Cartan charges, (E,S,J) = VA(E,S,J),

E=rir, S=riw, J=w. (3.48)

The equations of motion read

w=r2+k, WP=1v24+m?, P=-A, K’

I
=t

(3.49)

whereas the conformal gauge constraints are written as

2kE — K2 =2VE2 + K2+ T2 +m?, kS+mJ =0. (3.50)

They are supplemented by the identity r% —r? = 1, which can be rewritten as

€ S
K

- =1 3.51
1/k2+l-€2 ( )

The relations (3.49), (3.50) and (3.51) show that only three of these parameters are independent. When

calculating quantum fluctuations it is convenient to use s, k, 71.? From the latter three expressions,

2Since k can be absorbed in S, it is possible to set k to be 1. Here we leave k arbitrary in order to make it
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(3.50) and (3.51), we obtain the following relations,

V2 = /Kb —4k22r2(1+r3),  m? =3 (k% —2k%r% —1?) | (3.52)

whcih will be useful when we compute fluctuations.

Now let us move on to the reduction of the (.S, J) circular string solution. The mass scale of the reduced
theory p is determined by the stress tensor in the original string theory. For the (S, J) circular string

solution (3.47) we have

TAIS _ (;-;2 Y (k: + vk + n2) r%) : (3.53)

which imply that one needs introduce p3 = \/ k2 — 2k (k +VEk2 + /@2) r?. Since the closed string
theory is defined on a cylinder rather than a plane, it is not allowed to set puy = p— by us-
ing a 2d Lorentz transformation. Instead we proceed with a single p defined by u = /urp— =

VE (/12 — 4k?r? — 4Ky 4) 14, Using this y, the relations in (2.6) for the tanh model give ¢, and 0,,

6, = Llog ( f—%wwf > 0, =A(VI R ko) (3.54)

k2 —4k2r? (1-{—7’%)

where
2k27’%(1+rf)
\/E(52—4k27“%—4k2r‘11>1/4(5— K2—4k2r? —4k2r >’

A= (3.55)

then the corrsponding classical solution in the deformed gWZW model is obtained by substituting

these into (2.39),

0 vBy —vB_ 0
—v*By 0 0 v*B_
90 = ; (3.56)
vB_ 0 0 —vBy
0 —v*B_ v*B4 0

where

iA(\/mT+kU) 1 k—2kr1y/ 1472 (52—4k2r%(1+r%))1/4
v=e s Bj::§ 241272 (1112 1/4:*: :
( ri(1+r1)) \/n—ri“/1+r§

(3.57)

easier to compare our result with [93].
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By solving the gauge field equations (2.29) we have the classical gauge fields, A1g = %aioRg with

. VE(k+VE2+5k2) (k= VETERZ) (2= 4k (142) ) /4
a+o = _2(/62—41627’%(1—1—7‘%))1/4 ) a—o = 2k ! L . (358)

We find that g, 19, go and 9o YA, 0go are constant with these expressions. Hence this is a good starting

point to discuss quantum fluctuations around the homogeneous string solution.

3.2.1 Bosonic fluctuations in reduced theory

The S sector is rather simple; bosonic fluctuations in the S® sector for a string solution in AdS3x S* are
massive fields with masses . In the present case we have 2 = pypu_, then we obtain characteristic

frequencies for the four massive fields,

++/n2 + p? ::lz\/n2+\/m4—4k:2m2r%(l+r%), (3.59)
which are exactly the same as the result in [93].

As done in the case of the folded string, we introduce the fluctuation fields by (3.12), (3.13) and
(3.14),3 integrate out the diagonal parts of the gauge field fluctuations, and then, use the H gauge
freedom such that physical fluctuations decople from unphysical fluctuations. The physical part of the

quadratic fluctuations is described by the Lagrangian containing a; and as,

L1 =2 Z (8+ai(9_ai — m2a2) , (3.60)

KA
i=1,2

and the Lagrangian containing a3z and ay,

Lo=2 [8_a38+a3 — 2K (ﬁ — \/HQ —4k2r? (1 + r%)) a3+ 0_asday

(k2 4k2r2 (1442) )1/ — - (3.61)
+ i ((k+\/m)a_a3—(k;—\/m)aw?))(u}

Now it is clear that a1 and ag correspond to Y3 in [93], whose frequencies are

+v/n? + k2. (3.62)

3Note that v in the expression (3.14) should be replaced by v in (3.57).
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However the second Lagrangian Lo does not describe the remaining two fluctuations in AdSs in [93].
In fact, by substituting e?(?"=") into the fluctuation Lagrangian (3.61), one finds that the condition

that the determinant of the mass matrix vanishes reads

Sk\/(k2+1€2)(.‘£2—4k27’%(1+7’%))
K

(n? - 02)? - g 4 2T
(3.63)
27162 20%) FTRD) y

K

which is different from the corresponding equation in the original theory (cf. Eq. (4.15) in [93]),
2
(22 = n2)? + 40227 — 4 (1 4 1) (Q\/k2 + K%+ kn) =0, (3.64)

and consequently, the characteristic frequencies do not match.# Although the equation (3.63) can not
be solved for a genral case, it is possible to solve the equation (3.63) approximately for large J with

u=38/J, k fixed. The four roots Qy,, are

Q[:LQ;n _ —ani\/n2(33+4k2u(l+u)) L0 <%) 7
2 2 (3.65)
QI:SA;n — 427 + n :F2kn;—;k (1+u) +0 (%) .

For n = 0 the equation (3.63) can be solved exactly,

2k3 + 2(K2 + 2k2)\//<;2 — 4k} (1+ 1)
Qr0=10,0,Q,—Q}, Q= - : (3.66)

These frequencies are totally different from those found in [93]. Therefore, as far as the individual
characteristic frequencies are concerned, the reduced theory does not reproduce the result of the

original string theory even for the zero modes.

For consistency we shall discuss the perturbation in the coth model which should describe the nontrivial

sector containing ag and a4, (3.61). Using the reduction (2.3) and the fluctuation Lagrangian of the

4Note that the equation (3.64) is obtained from the equation (4.15) in [93] by Q@ — —Q. This difference
originates from the fact we use the mode expansion e (7="9) rather than e*(7+79)
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coth model (3.1) we obtain the following Lagrangian,

K K2— k2r% r%
Leotn = 0+.000_06 — 2% (ﬁ; + \/f# —ak2? (1+ rf)) 52 4 E (it ;a_aan+5XA
1

F16K20 (1+72) (k2 = 423 (1 + 1) 4 (5 = 261 /T 577 (3.67)
(n—2kr1 \/1+7‘%+\/I€2—4k27‘%(1+7‘% ) ((k+\/k2+/€2)875x14+(k—\/ k2+n2)8+6xA)
ﬁ(n—ril\/1+r%—\//@2—4k2r%(1+r%))3(n-‘,— 52—4]627“%(1+T%))

00,

which yields the same equation for characteristic frequencies as in (3.63). Hence the bosonic frequencies

for this subsector are model-independent.

Since the other six bosonic frequencies match the corresponding six frequencies of the original theory,
the discrepancy in these two frequencies seems to be a serious problem. However, in the following
subsections, we will show that the total sum of the characteristic frequencies including the fermionic

contributions is the same as that of the original string theory.

3.2.2 Fermionic fluctuations in reduced theory

We define component fields of the fermionic fluctuations as in the folded string case (3.24) - (3.28).5

Then the fermionic part of the quadratic fluctuations takes the form,

CVEZ 12 (k2 —4k2r2 r2))1/4
Lp= 2{2?:1 (q0—cy; + B;0-B3;) + (o) \/;k t+rd) (—anag — azoq — asag + arog)

(4 VTR) (M0 g o pa sy g

N/

+Vk <\/m— 2kriy/1 4717 + \/n+2lm~1\/1 +r§>

X (—azf1 — a1 83 + arfBs — asfr + asfBa + aafs + agfs — ) | -

_l’_

(3.68)
As expected the coefficients of each term in the Lagrangian is totally constant. Then we can evaluate

frequencies in a straightforward way,

+y/(nEte) +a2+d, (3.69)

SHere we should use v in (3.57) for v in the expression of J¥, .
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where

a? =15 (FL + /K2 — 4k2r3(1 + r%)) ,
2

k(n f4k2r%(1+rf))1/4

. — 0 , (3.70)
d— \/m(n274k2rf(l+rf))l/4
= NG .

While a agrees with a in [93], the other two do not match.

Despite of the discrepancies in the individual frequencies, one might still expect that the sums of all
the frequencies match, which could provide a nontrivial support that the partition functions in the
two theories are equivalent in the case of the (S, J) circular string at one-loop level. To show this we

shall evaluate the sum of the frequencies perturbatively in large 7 in the next subsection.

3.2.3 Sum of frequencies

The procedure of calculating sum of the characteristic frequencies directly follows from the computa-
tion of the one-loop energy correction discussed in [93]. If given a set of N fluctuations, we obtain 2NV
roots Qr., (I =1,...,2N) by solving the conditions that the determinant of the corresponding N x N
mass matrix vanishes. The zero modes appear in pairs, Q.0 = £,0 (p =1,..., N), and the non-zero

modes can be paired by the condition Qr,, = —Qr,,. Then the frequencies should be summed up as

N A oo 2N A
Z Qpo + Z Z Qrin (3.71)
= I=1

p=1 n=1

with
Q0 = sign(Cp) Qo , Qr., = sign(C}n))le , (3.72)
1 (n) 1

C = 5 C - )
T 2ma1(Q:0) 0 [T (R0 — 20) T mai Q) TLer (i — Quin)

(3.73)

where mq1 is a minor of the mass matrix, i.e., the determinant of the matrix obtained from the mass
matrix by removing the first row and first column. Note that the fermionic frequencies contribute to
the partition function negatively. For the (S, J) string we find that the structure of signC}n) becomes

simple because half of the frequencies are positive and half of the frequencies are negative.

The zero modes contribution is

v+ 2K+ Qo — 8V 2 +a?, (3.74)
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and nonzero modes are

2%[4\/n2+u2+2\/n2+m2+ Z&gn an— (\/(n+c)2+a2+\/(n—c)2+a2),

n=1

(3.75)

where € is shown in (3.66) and Qr.,, is expanded in terms of large J in (3.65). Using the formula for

the large J expansion of x,

Fu(24u)  ku(4+ 12u+ 8u? + u?)
k=J+ 57 Ve +oe (3.76)

where u = §/J, we find the zero mode part,

_““;“”+o(;>. (3.77)

On the other hand, the contribution from the non-zero modes is expanded as

oo 2 _ 2 2
Zn + 2k2u(1 + u) 27;\/71 + 4k%u (1+U)+O<;>' (3.78)

n=1

These two results are the same as [93].

It is still mysterious that the characteristic frequencies of the individual fluctuations do not match. In
[93] the expansions of the Landau-Lifshitz Lagrangian is also discussed as a useful tool for extracting
the part of the fluctuation frequencies in the string theory, €2;—; 2. Although each frequency in the
Landau-Lifshitz model is different from the corresponding one in the string theory, the sum of the two
frequencies agrees with the string theory result. So one might expect that the sum of the frequencies
of az and a4 would agree with that of the two fluctuations in the original string theory in the large J

expansion. However this does not happen. Actually, for the nonzero modes of a3 and a4, we have

2k2(1 +u) +n (n +/n? + 4k2u(1 + u))
7251gn an—QJ—i— O(

— 1) o (379)

j3

On the other hand, the corresponding sum in the original string theory is

27 + (3.80)

2k?2 (1+3u+u2)+n(n+\/n2+4k2u(1—|—u)) 1
27 “0(z).
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which is different from (3.79) and the discrepancy is

k2u(2 + u)

7 (3.81)

This cancels with the discrepancy found in the fermionic sector, and then the total sums of the

frequencies are the same.

3.2.4 2d Lorentz boost

Generally one can evaluate the characteristic frequencies and confirm the agreement of the total sums
of the frequencies order by order in large J. However it is technically hard to continue the calculation
to higher orders in 1/J. Here we shall find a 2d Lorentz transformation on the worldsheet, which
does not change the total sum of the bosonic and fermionic frequencies, but can change some of the

frequencies.

As the Lagrangians for the two fluctuations aj, as in the AdSs sector and all of the four fluctuations
in the S® sector do not contain a first derivative term, their frequencies are obviously invariant under
any Lorentz boost on the worldsheet. Hence one can expect a certain 2d Lorentz boost allows us to
modify the equations for the fermionic frequencies and the other two bosonic frequencies such that

they yield the frequencies found in [93]. Let us introduce the 2d Lorentz boost by
T pT+qo, o—qT4+po, with pf—¢ =1. (3.82)

In order to set the equations for frequencies of the two bosonic fluctuations as and a4 to be the same

as the corresponding equation in the original theory (3.64), we choose

\/H2—2k27‘%+51 /n2—4k27’%(1+7’%)
b1 =

2.‘@\//42—4k2r%(1+r%)

¢ \//@2—2k’2rf—m /n2—4k2r%(1+7’%)
1= - :

2/4\//%2—41#7“%(1—}—7‘%)

i

(3.83)

By this 2d boost the fermionic frequencies are changed into

+/(n+e)’ +a2+d, (3.84)
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where
9 (n2+n H2—4k221”%(1+1”%)>
a” = p) )
e \/52+2k2(1+7“%)—/61/52—4k2T%(1+7‘%) (3.85)
22 ’
g \/K2+2k2(1+T%)+/€1/1432—4]62T%(1+T%)
= 372 ,

which are exactly the same as [93]. Therefore all of the fluctuations in the reduced theory agree with
the result of [93] in this frame. As the sum of the frequencies should be invariant under the 2d boost,
our result implies that the sum of the frequencies in the reduced theory, (3.74) and (3.75), recovers
the result of the original string theory calculation to all orders in 1/ 7. Then the quantum equivalence

of the partition functions (1.6) has been demonstrated for the (.S, J) circular string at one-loop level.

Let us discuss the meaning of this 2d Lorentz boost. Since the form of the classical solution (3.47) is not
2d Lorentz invariant, the fluctuation Lagrangians (3.61) and (3.68) are not either, and consequently,
each fluctuation frequency may change by the 2d Lorentz transformation. If we apply the Lorentz

transformation (3.83) to the classical solution (3.47), the solution becomes

Y'O + ’iYg =7 einpm-—l—inqlo ’ Yl + Z}/Q =r ei(wpl—l—kql)ﬂ-—l—z’(kpl—i-wa)o ,

(3.86)

X +iXy = eilwprtma)r+i(mpitwa)o

With this classical solution the stress tensor takes the following form,
Tﬁis _ —I{,\/KQ — 4k2p2 (1 + T%) , (3.87)

which implies py = pu— = /K (/@2 — 4k>r? (1 + r%))1/4. Hence it turns out that the 2d Lorentz boost
we applied to both the bosonic fluctuations and the fermionic fluctuations is the same as the one setting
4 = p—. However, it is still mysterious why the mixing of the bosonic and fermionic frequencies
occurs by the Pohlmeyer reduction and why it is necessary to set uy = pu_ for the agreement of the

frequencies of the individual fluctuations.
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3.3 Spiky string

We shall discuss semiclassical expansion around the (S, .J) spiky string solution in AdS3 x S! by using
the embedding of the tanh model into the deformed gWZW model for the bosonic sector in section
3.3.1 and for the fermionic sector in section 3.3.2. Classical aspects of the spiky string solution were
studied in the bosonic string theory [95, 96] and in the Pohlmeyer-reduced form [51, 52]. In [HIT] and
in the earlier sections of this chapter we have seen that the semiclassical computation in the reduced
theory perfectly recovers the one-loop corrections to the string partition function, and moreover, it
has a huge advantage as the reduced theory has simple structures of both the bosonic and fermionic
fluctuations after properly fixing the H gauge. Hence we expect that our result will agree with the
string theory side, and the computation here will be much simpler than the standard worldsheet

approach in the conformal gauge string theory.

First we shall review the (.S, J) spiky string solution in AdS3x S* found in the paper [96]. The solution

is expressed in terms of the embedding coordinates,’

Yb + T'YE’) = TO(U) eion-i-i(po(u) ) Yi + ZYVZ =T (u) eiwl‘r—‘riwl (u) ) Xl + ZXQ = eu/)(u) ) (388)

with
u=ac+pr, ri-ri=1. (3.89)

Here wy and wy are real constants. The S! part is explicitly written as

TN )

while g and 1 are expressed in differential form,

906 = _ﬁ (%2? + wOﬂ) ) 90,1 = ﬁ (% + wlﬂ) ) (391)

6Here we have assumed ry and 71 have the u(= ao + 37) dependence whereas they are constants in the case
of the circular string (3.47).
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where v, D, Cy and Cy are real constants. The Virasoro constraints read

r202w2 , c? 22
ot + (8% — o) + + B+ g+ s =0,
(3.92)

_T(IJ2(62 —a?) - 2(B2—a2)

(3.93)

and
woCo +w1C1 + Drv =0.

The first constraint is nothing but the condition that the Hamiltonian of this system should vanish

Using 5 — r{ = 1 we rewrite (3.92) into an equation for r,
(3.94)

o CF 2 2 2,2
(1+ )*ﬁ*a wir? — D
i

/ Cc?
(5 =t = (1) s + o

Here it is necessary to assume wgj < w? such that the string does not attach the boundary

The spiky string solution with n spikes consists of 2n arcs, each of which should possess two turning
i U

(3.95)

/!

points (r]
1 1

0) at some finite values of r;. Let us introduce a new radial variable v(u) by

~ cosh2p’

T 1+ 22
where p is the radial coordinate in the global coordinate system of AdSs. Assume that v’ vanishes at

v = v1,v2,v3 with v7 <0 < vy <wg <1, then the equation for r; (3.94) is rewritten as

20P(v) w? — w
r_ _ Wy 0
U—W, P(U)—W U—Ul)(U—UQ)(’U—Ug). (396)
The constant v; is not arbitrary but is a function of vo and wvs,
VU3
witwi—2(2+D) ° (3.97)
witwo s +Y)

v = —
wg_wl

V9 + V3 + VU3

C4 and (5 are expressed in terms of vy, vo and vg
(3.98)

2 wi—wi (1—v1)(1-v2)(1—v3)
- 8 V1V2V3 °

o2 wi—wi (14v1)(14v2)(14v3)
- 8 V1V2v3 ?

Under our assumption v; < 0 < vg < v3 < 1 and w2 < w}, we have C2 > 0 and C? > 0, then our

choice of the roots is consistent. Depending on further conditions for v and vs, the solution has two
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possible regimes; the spike is at the minimum 77 in one regime and at the maximum r; in the other

regime.

Next let us discuss the reduction of the (.S, J) spiky string solution. The mass scale u in the reduced

theory is determined by the AdSs part of the stress tensor, Tﬁis,

in the original string theory. For
the (., J) spiky string solution, due to its complicated structure in the AdS sector, it is convenient to
calculate T2¢S from the S! part of the stress tensor 7%, by using the Virasoro constraint, T2 +T5, =

0. Then we have

2
TASS = 78 = (i“c&éj) : (3.99)
which show that this is also the case of TS £ TA45. So we introduce py by T2 = —pu2 , and define
the mass scale u as
a2 — D2

By this definition of p we have implicitly assumed o?v? > D? and o? > 3? (or o?v? < D? and

a? < 3?) so that p is real. Below we will work on the reduction in these parameter regions.

Following the standard procedure of the Pohlmeyer reduction for the tanh model, (2.6), we obtain the

sinh-Gordon angle ¢, ,7

6, = %log M2+2aa\/2i\g2_1\§,2+a2M3 : (3.101)

and 0,,

a 9 9 042—ﬁ2 (C’g—i-C%)wowl—&-CoCl(w%—i—w%):ﬁ:C’owla(Ml—wg):I:Clwoa(Ml—w%)—i-wowl(a2M3—D2)
+U, =« 2v2—_D2 (aTB)2 M, )

(3.102)
where we introduced M; (i = 1,2, 3) as functions of ry,

My =w}+ (wi—w})r}, My=Ma*-D*  Mz=M —1°. (3.103)

Hereafter let us consider the case of positive M;.® As the radial coordinate 7 is a function of u =

"For notational simplicity we will use r; rather than v which is used in the original paper [96]. Although
expressing the classical solution in terms of 7] makes it easy to understand the behavior of the fluctuations at
spikes, we avoid to employ 7} for the same reason.

8This assumption is related to a condition for the existence of the solution of the equation (3.94) for D =
v = 0. Naively the equation (3.94) has a solution if its right hand side is positive. A sufficient condition for this
is exactly the same as M; > 0 because we have C’O2 > 012.

If we consider the other case where M is negative, the D, v — 0 limit in the fluctuation Lagrangians yields
a wrong answer. This problem is solved by the following prescription. Generally the reduction equation for ¢,
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at + B, 6, can be expressed in an integral form.” However, this is not a serious problem as far as

quadratic fluctuations are concerned, since 6, appears only as 0+6, in the fluctuation Lagrangian.

If we substitute (3.101) and (3.102) into (2.39) we find that the corresponding classical solution in the

gWZW model takes the following form,

0 UPl —UPQ 0
—v* Py 0 0 v* Py
go = (3.105)
’UP2 0 0 —Q}Pl
0 —’U*PQ U*Pl 0
v is given by
v=e (3.106)
where 6, solves the differential equations in (3.102). P, and P, are written as
Pl — Mo—+an/ Mo Ms P2 — a2M3+Oé\/M2M3 . (3 107)
\/(M2+a2M3+2ax/M2M3)(aQVQfDQ) ’ \/(M2+Q2M3+2a\/M2M3)(Q%LD?) '
The classical gauge field equations (2.29) are solved by A1y = %aiORQ with
My + o> M3) 046
aso = _k 3) 010, (3.108)

My ’
where 040, are given by (3.102).

At the level of the classical solution (3.105) we can not take the D, v — 0 limit in which the string is
not stretching or moving in S°. It is because Py 5 in (3.107) diverge in this limit due to the factor of

Va2v? — D? in their denominators. We will show that the D, — 0 limit can be taken once we derive

the Lagrangian for quadratic fluctuations, which is the same situation as the (S, J) folded string case.

in (2.6) has four solutions, two of which are real. Employing the other real branch for ¢,,

1 o My — 200/ My My + o My

—lo
a2 _ D2 ’

5 (3.104)

one can check the D, v — 0 limit becomes well-defined for M; < 0 at the level of the fluctuation Lagrangians.
This observation implies that we should choose ¢, appropriately depending on the parameters, o and wy.
Another reason we have assumed M; > 0 is that the solution has a smooth limit to the folded string in AdSs
under this assumption. In fact the folded string limit corresponds to M; — p'? which is positive-definite.
9Making the T-duality transformation does not help in the present case; d+, in the coth model are not
constant.
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3.3.1 Bosonic fluctuations in reduced theory

Bosonic fluctuations in the S® sector for any string solution in AdS3 x S' are massive fields with

masses 4. From (3.100) we find that the Lagrangian for the quadratic fluctuations in the S° sector,

4 2,2 2
- D
£=2% <8+bi8_bi - O‘O;_ﬁzzﬁ) . (3.109)

=1

In this sector all the fluctuations have the constant masses.

The procedure for deriving the physical part of the fluctuated Lagrangian in the AdS5 sector is the
same as that in the (S, J) folded string case and the circular string case; introduce the fluctuation

fields by (3.12), (3.13) and (3.14), integrate out the diagonal parts of the gauge field fluctuations, and

then, use the H gauge freedom such that physical fluctuations decouple from unphysical fluctuations.'®
Consequently we find the Lagrangian containing a; and as,
Mo + M3a2

i=1,2

As shown for the previous classical solutions, one shortcut way to the Lagrangian containing as and
a4 is to perturb the tanh model Lagrangian directly. For the spiky string solution this approach has
a big advantage because of the complicated expression for the classical solution. Substituting the
classical solution (3.102), (3.101) into the perturbed Lagrangian of the tanh model (3.2), we obtain

the Lagrangian for az and a4,

Lo =2|0_az0ra3 + A33a§ +0_as0yay + Agqal + (A 0yay + A_0_ay) az + Asgazays|,  (3.111)
where
2 4(My—3Mza?
Agy = —MafMaor 4 Léfoﬂ_ s ) | wdw? (G + C) + 2CoCruwows (C2 + CF) (wd + w?)

+ C3CF (wi + 4wiw? + wi) + (Cdwi + Ciwd) (—Mia? + 2wd (Ma + Msa?) — wja?)

+ w%w% (D2 — M3a2)2 + 2CyChrwown (—]\4%0[2 + (Mo + M3a2) (w% + w%) — w%w%o?) ] ,
(3.112)

107t should be noted that we use v in (3.106) with (3.102) for v in the expression (3.14).
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a2v2_p2)?
Aua = 5 08 (00— ) (u — ) = €% (01 — ) (3 — ) -
3.113

(M2 — My (wl + w?) + wiu?) (Mao? — D2>} ,

and

o? (wgfw%) (a21/27D2)3/2
M3 M3 (a?—32)7/?

X [wowlﬁ(cg + C% + M3a? — D?) + CoC18(wi + w?) + o?(My — wowr ) (Crwo + C'owl)] ,
(3.114)

4
Azg =

\/(M3a2 - D?)ri + (Cg — C? + M3a? — DQ) r? — C?

A:I: = Z%/Z(((ijﬁﬁ)) A;‘;é’:;_%z) [wowla(C’g + C12) + wowi v (M3 - D2a2)

(3.115)
:F(Clwo + Cowl) (.7\41042 — w%ag) + CQC'loz (w% + w%) :| .

Finally we shall consider the case of no stretching in S°, which is achieved by taking the limit D, v — 0,
and correspondingly, My — o?My, M3 — M. In this case the fluctuations in the S° (3.109) become

massless. In the AdSs sector we have the following Lagrangian,

2 212 (w2 —w?)? —2a2 ( M2 +wiw?
L=2 |:Zi:1,2 (8+ai8—ai - ioz‘_j\g% a?) + 01a3z0-a3 — (v wj}ﬂaf_“ﬁ(z) : wowl)a?’, + 01a40_ay| ,
(3.116)
where we have rewritten Cy and Cy as Cy = w1 f and Cy = —wo f, respectively, such that they solve

the second Virasoro constraint (3.93) with D = v = 0. Hence it turns out that the D,v — 0 limit is

well defined at the level of the fluctuation Lagrangian in the bosonic sector .

Since the folded string solution in pure AdSs is realized as a special case of the spiky string solution,
the Lagrangian (3.116) should recover the fluctuation Lagrangians for the folded string, (3.20) and
(3.21). In fact the folded string solution corresponds to the limit f — 0, My — p'?, wo — K, w1 — w
and «, f — 0, and one can find that the Lagrangian (3.116) reduces to the sum of (3.20) and (3.21)

in this limit.
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3.3.2 Fermionic fluctuations in reduced theory

Given the component fields of the fermionic fluctuations by (3.24) - (3.28), one can write down the

fermionic fluctuation Lagrangian in terms of a; and 3;,'

Ly = 2[2?:1 (aia—ai + /Bza—ﬁz) + Aaa (_a1a2 — gy — a0 + 047048)
+Apg (—6182 — B3Ba — P56 + B70s) (3.117)

+Anp (—a3f1 — 103 + arfs — asf7 + aafa + aafs + agfs — ass) | -

where

A — _lA A — lA, A -9 Mo+~/Ma Mz )
ao 2444 BB 2 ) af \/(M2+2\/ma+M3a2)(a27,82) (3118)

Ay are defined in the bosonic sector, (3.115). The Lagrangian (3.117) again describes four decoupled

systems, each of which has four fermionic component fields.

Let us now discuss the special case where the string is in pure AdSs, that is, D,v — 0, My — a?M;

and M3 — M;. Recalling that we are considering that case of My > 0, then we find that the coefficient

| a2M
%52 . (3.119)

Hence the D,y — 0 limit is well-defined at the level of the fluctuation Lagrangian in the fermionic

Ay p becomes (Anqa, Agg — 0 in this limit)

sector.

For consistency the coefficient (3.119) should recover the case of the folded string in pure AdSs. Taking
the corresponding limit M; — p'? and «a, 3 — 0 yields the mass term with a coefficient p’ which agrees
with [89]. Hence the fermionic part of the quadratic fluctuations around the folded string without the

55 sector is recovered.

11 Again we should use v in (3.106) with (3.102) for ¥, instead of the original v for the (S, j) folded string.
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3.4 Folded string with orbital momentum and winding

in S! of S°

In this section we shall study semiclassical expansion around the generalized folded string solution
with both the orbital momentum and the winding in S' of S which was constructed in [97]. After
reviewing how to achieve the generalized homogeneous folded string from the (S, J) spiky string, we
will evaluate the characteristic frequencies for quadratic fluctuations in the bosonic sector in section

3.4.1 and in the fermionic sector in section 3.4.2 in order to compare them with the result in [97].

The generalized folded string solution also has the open string counterpart, a null cusp solution, which
is obtained by a combination of analytic continuation on the worldsheet and SO(2,4) rotation from the
generalized folded string solution [97]. As the SO(2,4) symmetry is obscure in the reduced theory, the
generalized folded string and its open string counterpart are connected by the analytic continuation
in the reduced theory. As the SO(2,4) symmetry is obscure in the reduced theory, the generalized
folded string and its open string counterpart are connected by the analytic continuation in the reduced
theory. Hence the equivalence between the two classical solutions becomes trivial by the Pohlmeyer

reduction.

Because of the homogeneous nature of the generalized folded string, its fluctuation Lagrangian has
constant coefficients, and thus, quantum corrections to the partition function can be computed. In
fact, in [97], the expansion around the null cusp solutions were discussed and, the one-loop and two-
loop corrections were determined. Directly from the equivalence of the generalized folded string and

the null cusp solution, these quantum corrections are the same as those of the folded string solution.

Below we shall evaluate the characteristic frequencies of the quadratic fluctuations and compare them
with the one loop computation in [97]. Reflecting the fact the generalized folded string has both the
orbital momentum and the winding in the S' sector, this is another case of y; # p_ in the reduced
theory. Therefore, the conclusion of the one loop computation is very similar to the (S,.J) circular
string case in section 3.2; two of eight bosonic frequencies which can be derived by the perturbation
in the complex sinh-Gordon model do not agree with the string theory result. The discrepancy is
covered by the fermionic contributions, and the total sum of the frequencies agrees with the string

theory result. In order to show this we shall find a 2d Lorentz transformation such that all of the
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bosonic and fermionic frequencies become the same as the frequencies of the corresponding fluctuations

in the original theory in section 3.4.3.

We shall first review the generalized folded string solution with both the orbital momentum and the

winding in S* of S°. Introduce the global coordinates in AdSs x S* by

ds® = — cosh? pdt® + dp? + sinh? pdf? + dy? (3.120)

then we expressed the solution in the conformal gauge,

t=xkt, p=plo), O0=rT+9(0), © =vT+mo, (3.121)

where
coshp(o) = y/1+~%cosh(lo), tand(o) =ycoth(lo), ~v=4p,
(3.122)
kK2 =02+ +m?.
Here we are considering the following limit,
v m
£>1, v>1, rbvm>1, Z:ﬁxed, ?:ﬁxed. (3.123)

In this solution only three parameters are independent. We will use k, v and m when we calculate
quadratic fluctuations. If we set the winding in a large circle of S®, m, to be zero, the solution reduces

to the (.5, J) folded string solution discussed in section 3.1.

To compare this solution with the (.S, J) spiky string solution in section 3.3, we rewrite the generalized
folded string solution in terms of another radial coordinate v introduced in (3.95) and derive the

equation for v/,

v = =20\/(1+v) (1 —v —27%), (3.124)

which shows that v’ vanishes at v = —1, 0 corresponding to the three roots v, vo and vs with

1
9 1+2,Y2
v <0 < vy <wsg < 1. Then we find that the generalized folded string solution is realized by taking

the following limit in the (.5, J) spiky string solution,

v = —1, Vo = 0, v3 = (3.125)

1+292°
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which is different from the three limiting cases considered in [96].12

Let us next construct the corresponding solution in the reduced theory. For this purpose we express

the generalized folded string solution (3.121) in terms of the embedding coordinates,
Yy +iY3 = coshp(o) €7, Y] 4 Yy = sinhp(c) (9 | X5 + iXg = e!V7tmo) (3.126)

where p(o) and 9(o) are given in (3.122), and related to the parameters in the S! sector. The mass

scale of the reduced theory p can be extracted from T fﬂs and 7295, In the present case we have
TS = —(v£m)?, (3.127)
which imply p+ = v &= m, and then, p should be introduced by their product,

= Jiurp— =2 —m?2. (3.128)

As done in the semiclassical computation for the other solutions we use the tanh model in the reduced
theory. Once we obtain the mass scale p, the solution in the original theory, (3.126), is encoded into

a solution of the tanh model in the reduced theory by using (2.6),

1 262 —12—m2 42,/ (k2—m2) (k2 —12) 0 — K2 _m?2
), =

¢A = §lOg

T. (3.129)

Plugging these into (2.39) and (2.40) we obtain the classical solution for the deformed gWZW model,

0 vV —oulh 0
—v*W] 0 0 v*V5
9o = ; (3.130)
vVa 0 0 A%
0 —v*Vy  v*W 0

12The connection of the n-spike string and its long string limit was studied in [99] in the context of recovering
AdSs x S* string solutions from the asymptotic SL(2) Bethe Ansatz equations. For n = 2 the limiting solution
reduces to the generalized folded string solution.
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where
i(n2—m2>
v=e Vir-m?
N 52—m2+\/(m2—m2)(m2—u2) V2 _m?2 131
‘/1 - v2_m?2 \/252u2m2+2\/(52m2)(52u2) ) (3 3 )

Vy = _K27V2+\/(K27m2)(ﬁ271/2) v2—m?2
2k2—1?

v2—m? —m242¢/(k2—m2)(r2—12) :

and the corresponding classical gauge fields are Arg = %aiORQ with

ayo =2 g = 2 w2, (3.132)

v2—m

With this choice, gq 19, go and 9o LA, go are constants, and then, the physical part of the quadratic
fluctuation Lagrangian has constant coefficients after properly choosing the H gauge. Hence we can
straightforwardly evaluate characteristic frequencies of the quadratic fluctuations, which should be

compared with the fluctuation frequencies in the original string theory.

3.4.1 Bosonic fluctuations in reduced theory

Four physical modes in the S° sector yield four bosonic fluctuations with the masses +u. Since we

2

have p? = v? — m?, their frequencies are

+vn?+v2—m?2, (3.133)

which are consistent with [97].

For the AdSj5 sector one easy way to obtain the constant coefficient Lagrangian for physical fluctuations
is again to introduce the component fields of n and dA1 as in (3.12), (3.13) and (3.14), and then,
to use the H gauge symmetry such that the physical fields decouple from the unphysical fields as

in the folded string case.'®> Two of the bosonic fluctuations in the AdSs sector are described by the

Lagrangian,
L1 =2 Z (04+ai0_a; — (262 — 12 — m2)a?) , (3.134)
i=1,2
Then their frequencies are
+v/n2 + 262 — 12 —m2, (3.135)

13The original v in (3.14) should be replaced by v in (3.131).
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which agree with the result in [97]. The problem is found in the sector of the other two bosonic

fluctuations, which can also be captured by the perturbation in the complex sinh-Gordon model,
Lo =2|0_az0ra3 — 4 (k* — v?) a3 + 0_asd1as — 2Vv2 —m? (O4a3 + O_as) as| . (3.136)
The equation for the characteristic frequencies derived from this Lagrangian is
QO —2 (n? +2x% — 2m?) Q2 +n? (n® + 4k* — 4%) =0, (3.137)
which is not the same as the corresponding equation in the original string theory [97],
O — 202 (n® + 267) + 8umnQ + n® (n® + 4k* — 4° — 4m®) = 0. (3.138)

Therefore, characteristic frequencies of the reduced theory and the original theory are different in this
subsector. However, this does not imply that our conjecture on the quantum equivalence between the
original string theory and the reduced theory, (1.6), breaks down. Later we will show that this dis-
crepancy should cancel with that of fermionic fluctuations by finding a specific Lorentz transformation

making all of the frequencies the same as those found in the original string theory.

3.4.2 Fermionic fluctuations in reduced theory

The parameterization for the fermionic fields (3.24) - (3.28) in the fermionic part of the fluctuation

Lagrangian (3.4) gives the constant coefficient Lagrangian,'4

£y =2[ S5, (00 ai + i)

+VV2 —m? (anag + azou + asas — aras — B182 — B384 — BsPs + Brls)

2(&27m2+ (n27m2)(/{27u2)>

(184 + a3 — a3fla — cufh — a5 B8 + a7 + a7 fBs — asfs) | -
\/252—m2—1/2+2 (k2—m?2)(k2—12)

(3.139)
The fermionic characteristic frequencies are given by solving the following equation,
1 1
O — 5 (4n® +45% +° = 5m®) @ + T (4n” + 457 —0* 3m?)* =0, (3.140)

4The original v in §¥, should be replaced by v in (3.131).
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which is not the same as the equation for the fermionic frequencies in the original theory,

Q' — 1 (4n® + 4k% 4+ 1% — 3m?) Q% + 2nvmQ
(3.141)
4 [9m + (4n? + 42 — 12)° — 2m? (2007 + 1262 — 3%) | = 0,

and consequently, the characteristic frequencies do not match.

3.4.3 2d Lorentz boost

In section 3.2.3 we carried out the large J expansion and showed that the sum of the frequencies in
the reduced theory is the same as that in the original string theory up to the order 1/72. Since the
sum of the frequencies should be invariant under 2d Lorentz boost on the worldsheet, the sums of the
frequencies of these two theories are the same if all of the individual frequencies in the reduced theory
become the same as the corresponding frequencies in the original theory by a single 2d Lorentz boost.

The (S, J) circular string is the case.

The present situation is very similar. Six of bosonic frequencies, (3.133) and (3.135), are Lorentz
invariant, while the others frequencies described by (3.137) and (3.140) are changed by a Lorentz

transformation. If we introduce a 2d Lorentz transformation in the reduced theory by
T peT+ o, 0 —q@Ttpo, pi-¢=1, (3.142)

with

14 m

b2 = \/ﬁa q2 = _\/ﬁa (3~143)

then (3.137) and (3.140) become (3.138) and (3.141), respectively. Hence the frequencies match for
all of the individual fluctuations. This implies that the total sum of the quantum corrections to the
partition function in the reduced theory agree with the string theory result, and so, supports our

conjecture in (1.6).

It is worth mentioning that the transformation (3.142), (3.143) is exactly the same as the one setting

p4+ = p— in (3.128). In fact, applying the 2d Lorentz boost to the generalized folded string solution
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(3.126), we find that the stress tensor becomes
TP = —(* —m?), (3.144)

that is, py = pu— = vr2 —m?. This is the same observation as in the circular string case in section

3.2.

3.5 Remarks on u, # pu_ case

In sections 3.2, 3.3 and 3.4, we discussed semiclassical quantization for the solutions with uy # p—
in the reduced theory. In particular, the characteristic frequencies of the individual fluctuations in
sections 3.2 and 3.4 do not agree with those found in the string theory computation, while the total
sums of the frequencies match. Then we showed that the agreement of the individual frequencies is

achieved by applying the 2d Lorentz transformation to the fluctuation Lagrangians.

An alternative resolution to this problem is to modify the reduction procedure. Here we will only
discuss the embedding of the tanh model, but the same technique works for the coth model because
they are related by the T-duality transformation. In stead of the reduction relation (2.6), let us employ

the following ansatz,

0+YP0_Yp = —p? cosh 29, ,
(3.145)

Kpd3Y? = 4pp? sinh2¢A 0+0, .
Even with this reduction, the reduced model is still the same as (2.8) since py enter the reduced
theory equations of motion as the square root of their product, u = \/prp—, but it modifies the
corresponding reduced theory solutions. To confirm that this reduction relation leads the agreement
of the individual fluctuation frequencies, we shall again look at the (5, J) circular string (3.47). In the
present case, the complex sinh-Gordon fields take the following form

¢A = %log (\/KQIWI 1+T% ) )

K2—4k2r? (1+7‘%)

(3.146)
HA =C_7+ C+U,
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where

Ci _ k’QT%(l-H”%) + k—v/k2+r2 + kt-vVE2+r2 : (3147)
K*\/K274k2r%(1+1”%) \/n2+2k(fk+\/k2+n2)r% \/n272k(k+\/k2+n2)r%

then the classical solution in the reduced theory (3.56) is slightly modified. This modification changes

one of the Lagrangians for the bosonic fluctuations, (3.61), and that for the fermionic fluctuations,

(3.68), leaving the other Lagrangians unchanged. With these new Lagrangians, one can show that the

characteristic frequencies of the individual fluctuations exactly agree with the string theory result.

One can also check that all of the characteristic frequencies for the generalized folded string in section
3.4 agree with those found in the original string theory if the reduction relation (3.145) is used; one

gets (3.138), (3.141) instead of (3.137), (3.140).



Chapter 4

Two-loop computation

Our aim in this chapter is to explore the two-loop relation of the AdS,, x S™ GS string theory (ST)
and its Pohlmeyer-reduced theory (PRT) by evaluating the two-loop partition function of the reduced
theory for n = 3,5 [IRT]. Since the computation of the partition function for a nontrivial string
configuration is complicated, we shall consider the scaling limit of the folded string localized in the

AdS3 subspace.

4.1 Summary of two-loop computation

Here let us summarize the original string theory result of the partition function in the long spinning

string solution background and show our results in the Pohlmeyer-reduced theory.

4.1.1 Quantum partition function in string theory

Initiated by the exploration of the folded string solution in AdSs [17], the folded string solution was
extended to the (9,.J) folded string carrying nonzero momentum along S! of S®. The semiclassical
expansion around the (S, J) folded string was discussed and the one-loop corrections to the string
energy were evaluated in [89] and [90] for the case of the scaling limit where the string becomes
homogeneous, and the one-loop corrections without taking the limit were studied in [91]. The two-

loop computation in the original string theory was first discussed in [69] for the folded string in AdSs,

65
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and in [70] by considering the open string counterpart of the folded string. The two-loop corrections
in the case of the (S, J) folded string were evaluated by using the conformal gauge in [71], and by

using the light-cone gauge in [97, 100].

When the folded string is localized in AdS3, nontrivial part of two-loop corrections is characterized by
the Catalan’s constant K [69, 70]. The logarithm of the resulting quantum partition function is given

by

1
I'st=—InZgt = o fO) Vo, (4.1)

g B2 1
fN=a+—= + O((ﬁ)Q)’ (4.2)

VA
ap=-3In2, ags = asg +asp = K—2K=-K. (4.3)

Here a; is the one-loop and as is the two-loop contributions (K is the Catalan’s constant), and V5 is the
two-dimensional worldvolume Vo = [ dr'do’ = k?Va. In ay we indicated separately the part coming
from purely bosonic graphs (azp) and graphs involving fermions (agr). Contributions proportional to
K originate from two-loop “sunset” graphs with three propagators that are expressed in terms of the

following momentum integrals

I[m2, m2,m2] = / Poil o 30 +4; + ) (4.4)
vk @2m)t (¢ +mI)(@ +m3) (g +m3)
1
114,2,2) = K 12.1,1) = oK. (4.5)

Recalling that the system possesses one AdSs mode with m? = 4, two AdSs modes transverse to
AdS3 with m? = 2 and five S° modes with m? = 0 [89], one finds that both the bosonic I[4,2,2] and
the fermionic I[2, 1, 1] contributions involve the transverse AdSs modes with m? = 2. As these AdSs

modes are absent, the Catalan’s constant is not produced for the AdS3 x S3 superstring theory [IRT],

AdS3 x S3 - a; = —2In2, ag=0. (4.6)

4.1.2 Quantum partition function in reduced theory

In this section we will summarize our results of the two-loop computation in the reduced theory.
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Although our objective is to evaluate the quantum effective action of the folded string solution localized
in AdSs, it is not allowed to study it directly in the reduced theory. As in [IWA, 66], the reduction
of string solutions in pure AdS3 space is not yet known within the framework of the full AdS5 x S°
reduction. So we will start with the (S, .J) folded string solution lying in AdS3 x S and take J — 0

limit eventually.

Let us define the embedding coordinates Y; (M = —1,0,...,4) on R*? for AdSs and X; (I =
1,2,...,5) on RS for S° with the constraints gy nY YN = —1, 677X X7 = 1 where the metrics are
n = diag(—1,1,...,1,—1), § = diag(1,...,1). The (S, J) folded string solution in the scaling limit is

expressed in terms of the embedding coordinates,

Yy + iYs = cosh(fo) €7, Y7 +iYs = sinh(fo) €7 Ys=Y,=0,

(4.7)
X1i=Xo0=X3=X,=0, X5 +iXg = 7,
where k, ¢ and u are constants related by the Virasoro constraints,
K2 =02 P (4.8)

The J — 0 case is realized by the limit © — 0.

While it was shown in chapter 3 that the limit ;4 — 0 where the string solution is localized in AdSs is
well-defined in the fluctuation Lagrangian at the quadratic level in the “decoupling gauge” in which
physical fluctuations decouple from unphysical fields, this limit is not well-defined in another gauge
which we will take in this chapter. We will keep the S' sector during the intermediate steps and take
the limit at the level of the two-loop integral. Then we will get the PRT counterpart of the two-loop
partition function for the spinning string solution with J = 0. In this case the PRT quantum partition

function takes a similar form as in the string theory (4.1), (4.2),

1
I'prr = —InZprt = o f(k) Va , (4.9)
2 1
f(k) = a1 + % + 0(55)- (4.10)

The coefficients a,, that we found are

a; = —3In2, ag =dg+ay, ag=-K, dg=——(a;)?=—-(In2)2. (4.11)
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The value of the one-loop coefficient a; matches the string theory one in (4.3), in agreement with

(1.6).

The Catalan’s constant term in the two-loop corrections ay contains exactly the same coefficient as in

the string partition function in (4.3) if we assume the identification of the couplings in (2.34),
ks =k =2V (4.12)

Moreover, the bosonic and fermionic contributions are reproduced in the same way as in string theory,

that is, asp + aop = +K — 2K = —K.

It should be emphasized here that the equivalence of the mass spectra of the quadratic fluctuations is
not sufficient for obtaining the same structure of the Catalan’s constant term, because nontrivial cubic
vertices in the reduced theory could generate the additional nontrivial contributions, e.g., a finite term
proportional to I[4,4,4] in (4.4). However, our computation shows that such nontrivial finite term
does not appear and this is a strong indication that the AdSs x S® ST and PRT are closely related at

the quantum level.

The two-loop result in the reduced theory also contains an additional dy ~ (In2)? term which is
absent in the ST two-loop coefficient as. To be precise, we did not manage to derive the value of
the coefficient of (In2)? term directly in the AdSs x S case: We also obtained an IR divergent
result ao = —%(ln 2)2 — In2 Inmg, where mg — 0 is an IR cutoff, and assumed a close analogy with
AdS3 x 83 does work for AdSs x S°. We believe that this IR divergence should be an artifact of

involving unphysical massless fluctuations in our approach.

Our expectation to the origin of the IR divergent term is based on the study on the reduced AdSz x S3
theory, which allows for an alternative approach to the two-loop computation, in which the unphysical
modes are integrated out from the classical PRT Lagrangian [66]. If we use the same approach as
used in AdS5 x S° case, an IR divergent coefficient is obtained, éél) = —%(ln 2)? — %an Inmg. On

the other hand, the other approach led to a consistent finite two-loop result,

AdS; x $ 0 f(hs) = o+ 22 4 O, (4.13)
s 2

a; =—2In2, ag = ——(a;)? = —(In2)? . (4.14)
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The coupling constants in the AdSs x S° and AdS3 x S? are related by

k= ks = 2k . (4.15)

Once again, the one-loop coefficient here is the same as in (4.6) and the absence of the more complicated
contributions like the Catalan’s constant is also consistent with the vanishing of the string theory two-

loop coefficient in (4.6).

It remains to be understood if the apparent disagreement of the two-loop coefficients as and as in
string and reduced theories by precisely the square of the one-loop coeflicient is still suggesting some

relation between the two universal scaling functions.

The remaining part of this chapter is organized as follows.

In section 4.2 we shall first review the structure of the reduced theory and explain the approach
to perturbative calculations based on a field redefinition using the Polyakov-Wiegmann identity and
gauge-fixing on the gauge fields. We shall also present the fluctuation Lagrangian and list the basic

types of two-loop diagrams which we will compute later.

In section 4.3 we will consider the AdS3 x S reduced theory using the two approaches and compare
the results of the two approaches. The first approach is to use the Polyakov-Wiegmann identity, where
the unphysical degrees of freedom are still involved (approach I). The second approach is to impose a
gauge on g € G and integrate out the gauge fields from the deformed gWZW Lagrangian (approach
IT). Only the physical degrees of freedom are present in the resulting system in this approach. Then a
resolution of the IR divergence problem found in approach I will be proposed such that it restores the

equivalence between the two approaches. The resulting finite two-loop coefficient is given in (4.14).

In section 4.4 we will present the analogous computation in the reduced AdSs x S° theory by using the
Polyakov-Wiegmann identity. We will first discuss the one-loop approximation where the result for
the partition function matches the string theory result, and then, consider the two-loop computation
based on approach I. Using a direct analogy with the AdSs; x S® case, the final expression for the
two-loop coefficient is given by the same Catalan’s constant term as found in the original string theory

plus an additional term proportional to the square of the one-loop coefficient (4.11).
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4.2 Expansion of reduced theory Lagrangian

In this section we shall explain perturbative expansions around a general classical configuration in
the Pohlmeyer-reduced form of string theory in AdS, x S™ for n = 3,5. The reduced form is a
gauged Wess-Zumino-Witten model associated with G/H and deformed with an integrable potential
and two-dimensional fermionic fields where G = SU(1,1) x SU(2), H = [U(1)]? for n = 3, and

G = Sp(2,2) x Sp(4), H = [SU(2)]* for n = 5.

4.2.1 Gauge fixing and parameterization based on the

Polyakov-Wiegmann identity

In chapter 3 the perturbation in the Lagrangian (2.31) was discussed for evaluating the one-loop
corrections to the partition function, where the we fixed the H gauge in a specific way so that physical
modes decouple from unphysical modes in the fluctuation Lagrangian. At one-loop level, this gauge
choice is always possible if a classical string is localized in the AdS3 x S3 subspace, and the physical
part of the fluctuation Lagrangian in such gauge agrees with the fluctuation Lagrangian found by
perturbing the Nambu action in the original string theory. However, the decoupling is not expected
at two-loop level; physical fluctuations couple with unphysical fluctuations more complicatedly in the

cubic and quartic terms. Here we shall consider alternative strategies.

Another H gauge choice for the fluctuation fields is that we impose fluctuations of one of the two
gauge fields vanishes, A, = 0, which was employed in [73, 74, 75] in the case of expansions around
the vacuum solution. Solve the gauge equations derived by varying the fluctuation Lagrangian by
0A_, then one obtains the Lagrangian involving only physical fluctuations. However, for the long
spinning string, solutions for the gauge equations are expressed in terms of nonlocal functions of
physical fluctuations, and the nonlocality can not be eliminated from the cubic and quartic terms by

simple field redefinition, which makes it harder to perform the two-loop computation.

In this chapter we will discuss two alternative strategies. The first strategy is to fix the H gauge for
the classical solution in the deformed gWZW model and use the Polyakov-Wiegmann (PW) identity
by which gWZW model reduces into two sets of WZW models at the level of the classical Lagrangian

(approach I) [64, 72]. The equivalence between the gWZW model and the WZW models can be ex-
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tended to the quantum level once one appropriately includes all of the relevant functional determinant
contributions. By the PW identity, the unphysical degrees of freedom contained in the gauge fields de-
couple from the physical degrees of freedom, but we should note that the unphysical modes contained

in an element of GG are still present in the system and couple with the physical modes.

In the other strategy we choose a specific parameterization for a coset element in G and integrate out
the gauge fields at the classical level (approach II). Then the system contains the physical degrees of
freedom only. For AdS3 x S3, the reduced system becomes the sum of the complex sin-Gordon model
and the complex sinh-Gordon model coupled with fermionic fields. We will discuss approach II only
for the reduced AdSs x S® theory because very involved fluctuation Lagrangian is found by the native
extension of the specific parameterization of a coset element in G/H to the AdSs x S° case (cf. [104]).
Moreover, it is unclear whether the reduced model for the AdSs x S° GS string allows us to decouple

physical fields from unphysical fields beyond the classical level.

Now let us review the PW identity. It is always possible to rewrite the gauge fields as
A, =U0, U, A =U0.U", (4.16)

where U, U € H. The coupling of the gauge fields and g € G is eliminated by the following redefinition
of g,
Gg=U1gU. (4.17)

The coupling to the fermionic fields are absorbed into the rotation,
v, =U'w,U, V,=U"'v.U. (4.18)
Finally, the deformed gWZW Lagrangian becomes

Lewzw = Lwzw(§) — Lwzw (U™Y0) + p2STr (G71TGT) (4.19)

+STr (\PLT8+§1L + \IURTa_xifR> + uSTr <§*1@L§@R> .

The advantage in this form is that physical degrees of freedom on g are not contained in the WZW term

on the subgroup H, Lwzw (U -1 ), and accordingly, we find the physical fluctuations by perturbing
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the other parts, i.e., the deformed WZW model,

Ly = Lwzw(g) + p?STr (57 TgT)
(4.20)

+STr (0,70, 0, + 0, TO-0, ) + pSTr (5719,59,,) .
Not giving any physical contribution, the other WZW term should be considered to show the cancel-

lation of the all of the unphysical modes at one-loop level,

Ly =—Lwaw(U'0). (4.21)

Note that the H gauge symmetry (2.30) is not apparent in the derived Lagrangian (4.19). Under
the the H gauge transformation, we find that U, U changes U — U’ = h™'U, U — U’ = h~'U. By

redefining §, ¥ with the new U’, U’, we again obtain the Lagrangian (4.19).

Also, the Lagrangian (4.20) still contains unphysical degrees of freedom. Taking the AdSs x S case, we
find that the group element § contains 10+ 10 parameters equal to the dimensions of Sp(2,2) x Sp(4),
6 + 6 of which are unphysical corresponding to the subgroup H = [SU(2)]*. Thus one needs discuss

fluctuations for both the physical and unphysical fields.

4.2.2 Structure of quantum corrections

We shall consider perturbation in the Lagrangian (4.20) and derive the fluctuation Lagrangian up to
quartic order. We will first investigate the contributions of diagrams which do not involve fermionic
propagators (we call them the bosonic contribution) in detail. For these diagrams, the system decouples
into the AdS,, sector and the S™ sector as in the original string theory. Using the same technique, we
will study the other class of diagrams containing fermionic propagators (we call them the fermionic

contribution). Hereafter we will omit the tilde on g, U, i.e., § — g, U — 0.

In order to obtain the expansion of the deformed WZW model (4.20) to quartic order we shall introduce

the fluctuations around a classical fields, go and ¥ 0 = ¥,o =0,

g=goe" =go(L+n+ i+ 3>+ 40t +O0(°)), neg, (4.22)

and fermionic fluctuations ¥, and ¥,. The quadratic, cubic and quartic terms in the fluctuation
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Lagrangian are, respectively,

2 o _
£2 = STy [;Dwan — 0,95 ' Tgo] 0, T) + ¥, TO_V, + ¥, TOLV, + pugy 1\I/Lg0\I/R] . (4.23)

2 _ . —
£® = STr [ — L[ Dan) 0-n — & 0,95 " Tgo] [n, [0, T)) + 1 (95" ¥, gon¥ ,, — mgg 1‘%90\%)} :

(4.24)
2 .
LW = STy [214 [0, [0, D)l 0-n + 55 [0, [n,95 " Tao]] [n, [n, T)]
(4.25)
(590 10 90m Yy, + 57790 V90V, — ngol\Ingon‘I'R)} :
where the derivative operator Dy is defined by using the classical field g,
Dy =0+ + [95'0190, | - (4.26)

Physical fluctuations couple with unphysical fluctuations in the fluctuation Lagrangian because the
fluctuation 7 contains both the physical part and unphysical part. Under the Zs decomposition
deduced by T (see appendix A), we have n = nl +nt where nll € m and nt € . It is reasonable
to assume that the physical fluctuations are always found in 7]” corresponding to the coset G/H

[HIT, IWA, 73, 74, 75].

One-loop and two-loop corrections to the partition function for the long folded string can be computed
by using the Euclidean signature on the worldsheet by analytic continuation 7 — 7 and rescaling the

worldsheet coordinate o — fo with £ — oo,

1%
4.27
E ’ ( )

A K N

k=7, =
where k, ¢ and p are the parameters in the (S, J) folded string solution (4.7). After rescaling by ¢ the
period of spatial coordinate on the worldsheet is 27/, and it becomes infinite in the ¢ — oo limit, and
then, the spatial component in the momentum space becomes continuous. In the fi — 0 limit where
string has no rotation in S! of S, we have x = ¢ from the relation (4.8), that is, the rescaling becomes

the same as the one employed in [69].

In the remaining part of this section we will explain the structure of the quantum corrections based
on the fluctuation Lagrangians (4.23), (4.24) and (4.25), for the bosonic contribution and fermionic

contribution separately.
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qi
m 0 .
N

(a) (b)

Figure 4.1: Bosonic two-loop diagrams; sunset diagram (a) and double-bubble diagram (b).
Bosonic propagators are denoted by solid lines. In (a) the vertex momentum conservation gives
the constraint ¢; + ¢; + g = 0.

The bosonic contributions are described by the following parts of the Lagrangians (4.23), (4.24) and

(4.25),
/Jg) = STr {%Dy](?_n — “72 [n,go_ngo] [n,T]] , (4.28)
L3 —STr| — L. Donldn— L [n, g7l T T 4.29
B | — &[0, Dyn)0—n — & [n,95 ' Tago] [n, 0. T |, (4.29)
Ly = STI"[QZ [, [0, D] O-n + 5 [0, [n, 95 *Tgo]] [n, [n,T]]] : (4.30)

Since all the bosonic matrices 1 € g are written in the block-diagonal form, the AdS,, sector decou-
ples from the S™ sector in the bosonic part. These fluctuation Lagrangians show that the two-loop
contributions to the partition function are given by the Feynman diagrams of the topologies shown

in Figure 4.1. The sunset diagram in Figure 4.1(a) comes from the cubic terms in Lg), whereas the

double-bubble diagram in Figure 4.1(b) comes from the quartic terms in [Ig).

To compute these diagrams we shall derive cubic and quartic vertices. Let us denote the fluctuation

fields by ®; symbolically. The vertices are written as

3 LB) 9tr@

Vi == Vi = 4.31

KT 90,00,00, 0 YT 09,08 ,00 08, (431)
then the Lagrangians, (4.23), (4.24) and (4.25), can be expressed as
1 1 1

P44 = 32180y + Vi ®r1®s0x + VK er®s Pk Pr . (4.32)

With the notation (4.31) and (4.32), the one-loop effective action is obtained by computing the quantity

%Tr In A. On the other hand, the two-loop effective action involves the contributions of the cubic terms
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and the quartic terms. They are computed by

1 87 d? ld
18m d2 zd2
= 77‘/ / ! q] VIJKLAIJAKllﬂ (4.34)

where —% in 03 and in I'® are the combinatorial factors, and the factor & k comes from the overall

factor in front of the Lagrangian (2.33).

Following the string theory computation [69, 70|, we assume that the power divergent terms can be
regularized by an analytic regularization scheme.! Thus the two-loop integrals consist of the logarith-
mic divergent terms and finite terms are remaining. Some of the two-loop integrals are simplified into
a product of the one-loop integrals,

I[m?) = / (d ! (4.35)

2m)2 g2 + m?’
It is useful to rewrite this UV divergent integral in terms of I[1] by using the relation,

I[m?) = I1] — — tnm?.

e (4.36)

The second term is divergent if m = 0, which is the IR divergence of the loop integral for massless

fluctuation fields. Also the following integral is obtained from the sunset diagrams,

d%; d; d 5 (g;
I[m2,m2,m2] = / 45 @Gk (¢ +4; +ar) (4.37)

m;,mj, my 2m)2 (2 +m? )(q] +m? )(qk +m3)’

Note that I[m2, mz, mi] is UV and IR finite for nonzero m;, m; and my. In special cases, the finite

2

integral I[m;,m?, m}] gives the Catalan’s constant K.

We shall move on to the fermionic contributions. The Lagrangian for the quadratic fermionic fluctu-

ations is

LP = STy | W, TO_ U, + U, TO\ U, + ugy 'V, 900, | . (4.38)

In the fluctuation Lagrangian (4.24) and (4.25), the interaction between bosonic fields and fermionic

'Power divergent terms should cancel out provided all contributions are properly accounted for.
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q;j

Figure 4.2: Diagrams with bosonic and fermionic propagators. Bosonic propagators are denoted
by solid lines and fermionic ones are denoted by dashed lines.

di 4;

Figure 4.3: Tadpole diagrams. The solid lines can be bosonic or fermionic.

fields is described by the following parts,
3 - _
E%) = STr [,u (go l\I/Lg(m\I/R — N9, 1\I/Lg0\I/R) } , (4.39)

4 — — _
£y = STr [u (590 "W L90m° W, + 51795 "W 90 W . — 195 L 900V ) } : (4.40)

Unlike the computation in the original string theory, quartic terms in fermions are absent in the
approach based on the PW identity in the reduced theory. The contributions of the cubic and quartic
interaction terms are given by the diagrams of the two topologies depicted in Figure 4.2: the fermionic
sunset diagram in Figure 4.2(a) is the contribution of the cubic interaction (4.39) and the other
diagram in Figure 4.2(b) is the fermionic double-bubble arising from the quartic interaction (4.40).

These two-loop contributions are expressed in terms of the integrals (4.35) and (4.37).

Generally, individual diagram contributions are gauge-dependent. In the original string theory, non-
1PI diagrams are not relevant in the two-loop computation in the conformal gauge [69, 70], but
nonvanishing non-1PI contributions are found in the light-cone gauge [97, 100]. In the reduced theory
we will obtain the nonvanishing non-1PI contributions. The non-1PI diagram is shown in Figure 4.3.
The loops can be bosonic or fermionic, and the intermediate line connecting the two loops is bosonic.

The two-loop integrals for the tadpole diagrams are summarized as a product of the integrals (4.35).

In Figure 4.3 the intermediate bosonic line connecting the two loops has zero momentum due to



4.3. Reduced AdSs; x S3 theory 7

momentum conservation. As several physical components of the propagators (see section 4.3 and
section 4.4) vanish by taking the zero-momentum limit, we will set the momentum of the intermediate

line to be zero once the integration in the two loops is completed.

4.3 Reduced AdS; x S° theory

In this section we shall discuss the reduced model of the AdSs; x S® GS string theory and compute

the quantum corrections to the PRT partition function.

In the reduced theory, the number of physical degrees of freedom for bosons is the same as the
dimension of the coset (SU(1,1) x SU(2))/[U(1)]?, i.e., 2+2 degrees of freedom, whereas the fermionic
fields contain 4 + 4 real Grassmann components. In addition to these physical degrees of freedom, the
reduced model involves unphysical degrees of freedom; 1 4+ 1 bosons come from 7" in the algebra b
of the subgroup H = [U(1)]? and 2 + 2 bosons come from the gauge fields A4. In section 4.3.1 we
will discuss the computation of the quantum corrections in the deformed gWZW by using the PW
identity such that the unphysical degrees of freedom in the gauge fields decouple from the physical

fields (approach I).

For the reduced AdS3 x S string theory, the gauge fields are easily integrated out at the classical level.
It was shown in [66] that the resulting system is the sum of the complex sinh-Gordon model and the
complex sin-Gordon model coupled with the fermionic part by employing a specific parameterization
for the the coset element ¢ € G = SU(1,1) x SU(2). Thus the other approach to the two-loop
computation in the reduced theory, addressed in section 4.3.2, is to consider the fluctuations in the

generalized sin-Gordon system (approach II).

Although our final objective is to compute the quantum corrections for the folded string localized in
AdSs, the classical solution we will consider is the (S, J) folded string solution stretching in AdS3 x S1
89, 90, 69], and we will eventually take the limit where the string has no momentum in S'. The
reason for starting with the (S, J) folded string is that it is not well-understood how to embed the
classical AdS3 bosonic theory into the full AdSs x S° reduction [IWA, 66]. In approach II, we will
consider a nontrivial background in the S sector in section 4.3.2 in order to realize the regularity in

the perturbation.
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4.3.1 Approach I: PW identity and gauge-fixing A

The first strategy is to compute the quantum corrections to the PRT partition function by using the

PW identity. The fluctuation Lagrangian is shown in section 4.2.2.

We shall choose a specific parameterization of g in G corresponding to the vector gauging in the paper
[64]. The AdSs part and S3 part of g are in the fundamental representations of SU(1,1) and SU(2),
respectively. Since the S® sector of the (S, J) folded string solution is the vacuum, the S3 part is the
identity matrix. Let us choose the basis in su(1,1) by Ry = 01, Ry = io3 and R3 = 09, where o; are
the Pauli matrices. One can parameterize the coset element g in G in terms of the Euler angles (¢, x),
exp (%XRQ) exp (d)Rl) exp (% XRQ). Then any classical solution with its S part in the vacuum state

is written in the form,

ga O e’X cosh ¢ sinh ¢
g= , ga = ' . (4.41)
0 1 sinh¢p e Xcosho
With this parameterization the gauge equations derived by varying A+ in the deformed gWZW La-

grangian (2.31) solved by

Ata O . .
Ayp = , Aiq=—504x03, A_y = %coshng 0_x03. (4.42)

0 o0
In fact, the parameterization of g in (4.41) is related to the coth model of the complex sinh-Gordon
theory in the AdSs sector. One can confirm this by substituting (4.41) and (4.42) into the classical
deformed gWZW Lagrangian (2.31). The fields in the complex sinh-Gordon theory, ¢ and Y, are
written in terms of the embedding coordinates in AdSs,

0. YPO_Yp = —p% cosh 29,
(4.43)

KpdiYP = 4p3 cosh®¢ 01,

where Kp = eqrspY “04+YFO_YS. Substituting the (S, .J) folded string solution in (4.7) into (4.43)

we obtain the classical values of ¢ and x. Then the classical solution in the deformed gWZW is written
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as

* l

goA 0 EIUO' m
go = ) goA = ! g ) (444)

0 1 £ fy,
ik 2o
Ur =€ F Vg =€ i ) (445)
with the classical gauge fields,

Aota O -

Apt = ;o Aoxa =503, (4.46)
0 0

To decouple the gauge fields AL from the physical fields, we shall apply the PW identity described in

section 4.2.1. First we find U and U defined in (4.16),

u 0 ~ u 0 vil/Q 0
U= , U= , u=1u= , (4.47)

01 0 1 0 o?

then the new classical solution takes the form,

~ ¢
_ goA 0 B %v; EU’T
go = ) goa = (448)
0 1 ﬁvi 1100

Here we used v, and v, defined in (4.45).

In the remaining part, we will study the quantum fluctuations around the classical solution (4.48)

with the fluctuation Lagrangians in (4.23), (4.24) and (4.25).

One-loop computation

Let us first focus on the bosonic sector (4.28). We will express the Lagrangian for the bosonic fluctua-
tions in terms of component fields, derive their characteristic frequencies, and compute the functional

determinant contribution to the partition function.
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Following the parametrization described in appendix A, we introduce the bosonic fluctuation fields,

| nhy 0
" [
0 ng
(4.49)
i 0 w(a1 + ia2) I 0 b1 + ibo
nA = ’ 775’ = )
w*(a1 — iag) 0 b1 — ibQ 0
which correspond to physical fields in m coming from the coset part G/H, and
1
U
nt = ,
0 nfg—
(4.50)
N ic 0 N id 0
Na = ) Ng = )
0 —ic 0 —ud

which are unphysical fields in b of the group H. In (4.49), the rescaling factor w for the fluctuations
a1 and as is
~K,27'+[20
W=00, =€ K, (4.51)
which are introduced such that the resulting fluctuation Lagrangian involves only constant coefficients.

Then the derivation of the Lagrangian for quadratic fluctuations is straightforward; plugging (4.49)

and (4.50) into the bosonic part of the fluctuation Lagrangian (4.28) yields

£® =0 + 8, (4.52)
where the AdS3 sector is described by
Efc)lss = Z 0+a;0_a; + 2 (udyas + Ma0_ag) ag — 01cd_c —4AM10_caq , (4.53)
i=1,2
with the constants M7, M> defined by
M—Hﬁ”a m:%:ﬁ, (4.54)
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and the S? part is

£2 = 57 (94bi0_bi — p?b?) + 04do_d. (4.55)
i=1,2

One can confirm the agreement with the string theory result by deriving characteristic frequencies of
the physical fluctuations from the Lagrangians (4.53), (4.55). The Lagrangian (4.53) describes one

unphysical massless fluctuation ¢ and two physical fluctuations with frequencies,

\/n2+2/<52:t2\//<a4+n2u2, (4.56)

which describe the part of the fluctuations found in the original string theory [90], while the other
Lagrangian (4.55) contains one unphysical massless field d and two physical fields whose characteristic

frequencies are

Vn? 4+ p?. (4.57)
They are exactly a part of the frequencies in the S° sector in the original string theory [90].
From the Lagrangians (4.53) and (4.55) we find that the functional determinant is different from the
string theory result by the massless field contributions,

(1det (2,001 [det (20 + %)) det (2.6 + 20,0 (267 — ) + (8% + 92) 1) )_1/ L (s8)

One can show that the redundant factor det (8%33) is eliminated by considering the two more contri-
butions; the first contribution comes from the Jacobian for the field redefinition (4.16), and quantum
fluctuations found in WZW term in (4.21) gives the other contribution. As a result, the functional

determinant in the bosonic sector is

A ( [det (910_ + 1®)]° det (0202 +20,.0_ (267 — ) + (92 + 02) 1) )71/2 . (4.59)

Next we will discuss the fermionic sector. To derive the Lagrangian for quadratic fluctuations in the

fermionic sector we introduce the following component fields,

U, = . W, = : (4.60)
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where
0
Xr=
(s + ioz4)t;
0
Dr =
(’iOél + Oéz)t;:
and
0
X =
(B3 4 iBa)t;_
0
D =
(181 + Bo)t7_

(041 + i()éz)tl+

, (4.61)
0
(—iaz — ay)t,,
: (4.62)
0
(61 +if2)t,_
, (4.63)
0
(—iff3 — Ba)t,_
, (4.64)
0

where all of the component fields are real Grassmann. The rescaling factors ¢, , ¢,, are defined by

02(rL0)
t.,. =¢e
1+ 9

tQi

2,242
:61-(““27%

(4.65)

These exponential factors will be reused for the fermionic fluctuations in the AdSs x S° case in order

to realize the constant-coefficient Lagrangian. By the substitution of the matrices (4.60)-(4.64) into

the Lagrangian (4.38) we obtain

4
Lr =Y (0 + 3,01 5:) + 2p (azous + B3Bs) + 26 (0182 — iz By — 3B + ufB3) . (4.66)
i=1
Characteristic frequencies of the fermionic fluctuations are
2 X Vn?+ kK2,
1 x Vn?2+k2+u, (4.67)

1 x vVn?2+k2—p.

They are consistent with the result of the original AdS3 x S string theory in [IRT] because the shifts

i in the frequencies can be removed by rescaling the fermionic fluctuations. From the Lagrangian
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(4.66), we find that the functional determinant in the fermionic sector is
Z08) = [det (9,0 + )] det (9202 + 204057 + (9% +02) u? + (k2 = 4?)?) . (4.68)
Here the determinant of the 4-th order operator can be factorized as follows:

det ( [040- +ip (04 +0-) — p® + K2 [0:0— —ip (0 + 0_) — p* + K?] )

= det [e_i’” (10— + K,Q) ei‘”] det [ei’” (040- + /-@2) e_i’”] . (4.69)

and thus the fermionic one-loop contribution is equivalent.

As described in section 4.2.2 the one-loop partition function is computed by using the Euclidean
signature on the worldsheet and rescaling the worldsheet coordinate with the limit (4.27). Taking the
sum of the bosonic sector (4.59) and fermionic sector (4.68) and performing the momentum integral

gives the one-loop correction,

2
r® = ;‘72/ (3732 [In(¢® +4k%) + 3Ing* — 41n(¢* + £?)]

= 2r2V (I4] — I[1]) = 2i(—mn 2)Va (4.70)

T
which is exactly the same as the result in the AdSs3 x S GS string theory [IRT].

Finally let us comment on the y — 0 limit when the classical folded string is localized in AdS3. In the
last chapter it was demonstrated that the limit is well-defined in the fluctuation Lagrangian. However,
the limit can not be taken at the level of the fluctuation Lagrangian here because the constants My,
Ms in (4.54) diverge in this limit. We can understand that this discrepancy is caused by the difference
in the H gauge choice. Before the H gauge is fixed in a very specific way such that the unphysical
degrees of freedom decouple from the physical ones. On the other hand, the physical and unphysical

fields are coupled in our approach based on the PW identity.

Two-loop computation

Here we shall discuss the two-loop computation in the reduced theory using the fluctuation Lagrangian,

(4.23), (4.24) and (4.25).
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As seen in the one-loop computation, the bosonic fluctuations involve the 1+ 1 unphysical fluctuations
in addition to the 2 4 2 physical fluctuations, and they couple with each other. We will consider all of
the fluctuations and compute the diagrams for the 343 bosonic fields, rather than to block-diagonalize

the system into the physical part and the unphysical part.

Throughout the two-loop computation, we will use the Euclidean signature on the worldsheet. To
compute the two-loop diagrams we shall derive the bosonic propagator. Once we denote the bosonic
fluctuation fields as

O = {Pyy, Pgj}, (4.71)

where we reordered the bosonic fields in the AdS3 sector in ® 4;

P4 ={ar,a2,c},  Pgi={b1,b2,d}, (4.72)

the bosonic propagator for the AdSs sector is written as

2 R2q_ +ig'p2 kg /RZ_p2
2 f f
AN g) = D% A2q_ ;iqlﬂz . (qi ﬂQ;’%;(’%Q—ﬂQ)) 2R/ %2—#:( ;;q, +iq1/1%) :
- +
L T il G ) W e Y e i O (4.73)
i 7, 2070

w=qtia, F=¢+q¢., Dy=q"+4rR*? —4p%q>,

and the propagator for the S3 sector is

. 1 1 1
Ag'(q) = diag (—2(q2+ﬂ2),—2( AQ),—2> : (4.74)

where we omitted the overall factor 8% which will be restored later.

Using the bosonic propagator and fermionic propagator following from (4.66), the one-loop effective
action is evaluated by %Tr In A, which indeed agrees with our previous computation (4.70). At the
level of the propagator one can not take the i — 0 (u — 0) limit because several components of the
propagator diverge in this limit. The i — 0 can be smoothly taken after simplifying the integrands
of the two-loop integrals, where the physical mass spectrum includes one bosonic mode m? = 4, four

fermionic modes m? = 1 and three massless modes. The two-loop integrals for the sunset diagrams in
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Figure 4.1(a) and Figure 4.2(a) can be expressed as

, mi,mj,m, =0,1o0r4, (4.75)

/d%d ;g F(qi 95, ar)
my

Tr2m2m2 =
i @2m)* gy qpt (@2 +m?) (g2 +m?)(g) +m3)

and for the double-bubble diagrams in Figure 4.1(b) and Figure 4.2(b) the integrals take the form,

ind2 iy 4y
T2, :/ Flai4)) , mim; =0, Lord, (4.76)
i 2m)* ¢q;” (¢F +m)(q? +m3)

where F(qi,qj,qr), F(qi,q;) are certain polynomial functions of ¢. The Catalan’s constant is not
obtained in this system due to absence of the physical modes with m? = 2, and the integrals (4.75)
and (4.76) are written in terms of I[m?] in (4.35). The bosonic sunset diagrams and the bosonic

double-bubble diagrams give the following contributions,

__1! —(6I[4]I[0] + 6I[4]1[4]),

boson sunset 12
1
Jboson double—bubble - g (_4I [4] I [0] - 4I [4] 1[4]) ’ (4 77)

whereas the contributions of the fermionic sunset and the fermionic double-bubble are

L aoryr) + arrn) — srp)),

fermion—boson sunset 4

Y rpyrio) = srar)). (4.78)

fermion—boson double—bubble = _4

In addition to the 1PI diagram contributions above, it is necessary to consider the non-1PI diagram

contributions in Figure 4.3,

1,8 16
Jboson—boson tadpole = _g(_§I[4]I[O] - 31[4]‘[[4]) ’
1,8 40
Jboson—fermion tadpole = g(_gl[l}l[o] - ?I[Z‘L]I[]‘]) ?
1
fermion—fermion tadpole - _g(_81[1]1[1]) ‘ (479)

Inserting the overall constant in front of the Lagrangian, the two-loop effective action is

r{¥ 7v2 S, (4.80)

where J, are the contributions of the different types of diagrams given in (4.77), (4.78) and (4.79). For
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the latter purpose, we will take the sums of the 1PI and non-1PI (tadpole) contributions separately,

Jipr = —= (I[4] — I[1]) (I[4] + I[0] — 2I[1]) , (4.81)

Jradpole = = (I[4] — I[1]) (2I[4] + I[0] — 31[1]) . (4.82)

1
6
These are separately UV finite but IR divergent due to the presence of I[0]. Notice also that both

expressions are proportional to the coefficient I[4] — I[1] appearing in the one-loop result (4.70).

The total coefficient is then (using (4.36))

S = 2 (104) — 1[0 (114) + 27[0] - 311))

1
— 5 In2Inmy . (4.83)

1 2
(n ) 127

- 2472
This expression is still IR divergent: we introduced an IR cutoff mo — 0 to rewrite 7]0].

It is contrary to our expectation that the finite term (In2)? is obtained in the reduced theory while
the two-loop contributions vanish in the original string theory [IRT]. We believe that the appearance
of the IR divergent term should be an artifact of our computation. The unphysical fluctuations are
included in the present approach, so one may be able to interpret the IR divergence is the contribution
of the massless unphysical fields. Also, another possible explanation is that the IR divergence would
be an artifact due to the p — 0 limit. This limit is well-defined at the level of integrands of the

two-loop integrals although it is not at the level of the fluctuation Lagrangian.

To support this statement, in the next subsection we shall repeat the above two-loop computation
using a different approach: we fix the gauge on g and integrate out A+ so that all unphysical degrees

of freedom are explicitly eliminated from the Lagrangian.

4.3.2 Approach II: Integrating out gauge fields

In this section we will discuss the computation for the one-loop and two-loop partition functions in
the reduced theory of the AdS3 x S string theory in the approach where only the physical degrees of

freedom are present in the resulting system.

Imposing a gauge on g € G and integrating out the gauge fields A4 gives the classical action for
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physical degrees of freedom only. The bosonic part of the resulting model derived in [66] is the sum
of the complex sinh-Gordon model and the complex sin-Gordon model, and it couples with two-
dimensional fermions. Depending on the gauge choice on g, distinct models are obtained. Here we
will consider two models. The first model is the “tanh-tan” model, the product of the tanh model of
the complex sinh-Gordon theory and the tan model of the complex sin-Gordon theory coupling with

two-dimensional fermionic fields (t-t),

Li = 0400 ¢+ tan2 00, 00_0 + 0, ¢0_ ¢ + tanh? O, xO_x + L (cos 2p — cosh 2¢)
+a0_a+ BO_B +v0-v+ CO-C + ANOL A+ 0+ + pOip + 0040
+tan® ¢ [01.0 (A — po) — -0 (aff — 7C)] — tanh® ¢ [4 x (A — po) — D_x (af — 7C)]
— (@B =10) (¢ = po) (s — g ) — 21((cosh deos o (y + €€ = pa = o)

+sinh ¢ sin | cos(x + 0) (—p¢ + oy + A8 — £a) —sin(x + 0) Ao+ £8 + py + JC)]) .
(1.84)

The other model is the “coth-cot” model whose bosonic sector is the combination of the coth model

of the complex sinh-Gordon theory and the cot model of the complex sin-Gordon theory (c-c),

Lee = 0400 + cot? 00, 00_0 + 04 pd_¢ + coth? pdy xO_x + %2 (cos 2¢ — cosh 2¢)
+ad_a+ BO_F +y0-v+ (O-C + N0+ A + 0+ + pO1p + 0010
—cot? 9[040 (A — po) — -6 (af — ()] + coth® ¢ [0, x (A — po) — D-_x (af — 7()]

—(aﬁ—vC)(Aﬁ—pa)( : +m)—2u(sinh¢sinso(h+£c—pa—Uﬁ)

sin? @

+cosh 6 cos [ cos(x +0) (p¢ — 77 = AB + €a) = sin(x +0) (Aa + €8 + p7 + () ] ).
(4.85)

In these Lagrangians, ¢, 6 describe bosonic degrees of freedom in the AdSs sector, ¢, x do bosonic
degrees of freedom in the S® sector, and a, 3, v, ¢, \, &, p, o are real fermionic fields. The mass scale

1 is determined by the stress tensor in the original string theory,

~TEE = T8, =12 (4.86)

Since the Lagrangians (4.84) and (4.85) exhibit that the point ¢, = 0 where the S® sector lies in
the vacuum is special and small expansions around this point are not well-defined, we will start with

a nontrivial background stretching in AdS3 x S®, and take the limit eventually so that the classical
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solution becomes localized in AdSs3. The solution we will consider is a superposition of the the long

spinning string in AdS3 [69, 89, 90] and the circular two-spin string in S3 [92, 93, 101, 102]

Yy +iY_1 = cosh({o) €T | Y) +iYs = sinh(fo) €7
%ein—ika , (487)
K2 =02+, pu?=k> 4+ w?.

X1 +1 X9 = %eiWT—HkU s X3+1Xy =

The string solution localized in AdSj3 is obtained by taking the limit w, u — 0.

The explicit relations between the embedding coordinates and the bosonic fields in the reduced theory

are given in (2.3) for the t-t model,

0. YPO_Yp = —p% cosh2¢,
(4.88)

KpdiY"P = F44%sinh?p 01 x .

and in (2.6) for the c-c¢ model,

0.YPO_Yp = —p?cosh2¢,
(4.89)

Kpodaiyt =43 cosh?¢ 01 x ,

where Kp = €grs pY RO, YRO_YS. The relations for the S part are given by replacing the hyperbolic

functions by the trigonometric functions, i.e., cosh ¢ — cos ¢ and sinh ¢ — sin ¢, and also, x — 6 .

These relations allow us to reduce the classical solution (4.87) into the following solution for the t-t

model,
— rty/ K2 —p? — K
¢0—10g< m >, Xo =T,

4.90
o = %arccos (%i”—; — ) , Oy = “’727', | !
and for the c-c model,
¢o = log (HJ”/F) s Xo= #U, Lol
0o = %arccos (%2 — ) , 0y = “’2;“20. o

Below we will discuss expansions around these classical solutions in the t-t model and c-¢c model,

respectively.
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One-loop computation

We shall expand the reduced theory Lagrangians (4.84), (4.85) near the classical solutions (4.90),
(4.91),
¢=do+0p, x=xo0+0Xx,

(4.92)
Y=o+ 0d9, 6 =6y + 6.

This leads to the Lagrangian for quadratic fluctuations in the t-t model,

Ii2

" 0-0x0+0x

9 2 _ 2 2 _ 2 92 2 _ 42
HVRT T V’;“M (D5 + 040x) + £ wz‘” 8_600,.60 + LV I T ”Zdwago (-6 + 0,.60)

L =0_6¢046¢ + 0_0p010¢p — 4 (k% — 1) 6¢ — 4 (w? — p?) 5 +
(4.93)

_l’_

and in the c-c model,

H,Z

LB =0_640,0¢+ 0_6pd, 00 — 4k25¢* — 4w?5p* + Ry D_6x0,L0x

2 (4.94)
b2 6 (06 — D10X) + —— 050060 + —Y_55(5_60 — .,.50) .

/k2 — 12 12 — w2 r —

One can confirm that these Lagrangians describe the same set of fluctuations by computing the

corresponding functional determinant contributions to the partition function,

Z15) — 705 _ (det (0202 +2(2K2 — 1i2)0, O + 202 + p20?)

~1/2
x det (0202 +2(2w? — p2)0L0_ + 202 + y202) ) :

(4.95)
which read characteristic frequencies of the four bosonic fluctuations,
\/n2 +2k2 4+ 2¢/Kk* +n2p2,
(4.96)

\/712 + 2w2 £+ 2/n2p? + wt.

These are exactly the same as two of the four bosonic frequencies in AdS5 and two of the four bosonic
frequencies in S° [90, 92, 103]. In the y,w — 0 limit where the background becomes the folded string

in AdSs3, the functional determinant (4.95) reduces into

~1/2

Z1B) = [det (850-)]73/2 [det(8;.0- + 4K2)] (4.97)
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Let us discuss the fermionic sector. It is observed in the Lagrangians (4.84), (4.85) that the coupling
terms of x,6 and the fermionic fields involve cos(x + #) and sin(x + 6), which give nonconstant
coefficients to the fluctuation Lagrangian for the fermionic fluctuations. Thus we rotate the fermionic
fluctuations in the following way,

a+if = (a+if)eB,  y+i¢— (y+i()e",
(4.98)

Ati§ — (A+i)ef,  p+ioc— (p+io)eb,

where B = i’#%u“’%' for the t-t model and B = i"tﬂ ©? 5 for the c-¢c model. The functional determinants

for the t-t model and the c-¢ model are
Zt(if) = [det (8383 + (81 + 8%) u? 4 20,0 (/{2 —p?+ w2) + (/{2 — w2)2)r , (4.99)

Z(lfz) = [det (010_ + k* — pi® + w2)]4 . (4.100)

C

Although they look different, one can check the equivalence of these expressions by applying a two-
dimensional Lorentz transformation, i.e., SO(1,1) transformation to the worldsheet coordinates (7,

o). In the p,w — 0 limit in which the classical string is localized in AdSs, (4.99) and (4.100) coincide,

Z0F) = [det (0:0- +2)]", (4.101)

which agrees with the string theory computation [89, 90].

Combining the bosonic contributions (4.97) and the fermionic contributions (4.101), one finds that
the one-loop partition function is the same as the string theory computation. Hence approach I in the

previous subsection and approach II here provide the same one-loop result.

Two-loop computation

In approach I the one-particle irreducible contributions are given by the diagrams depicted in Figure
4.1 and Figure 4.2. As we integrated out the gauge fields in approach II, the resulting fluctuation
Lagrangian involves quartic terms in fermions (see (4.84) and (4.85)). Thus we have to compute an

additional diagram depicted in Figure 4.4.
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Figure 4.4: Fermionic two-loop diagram with two fermionic loops.

In the two-loop computation we should note the following two points. Recalling that the Lagrangians
(4.84) and (4.85) are obtained by integrating out the gauge fields at the level of the classical deformed
gWZW Lagrangian, the nontrivial quantum contribution of the counterterm is in general relevant at
two-loop level as pointed out in [73, 74, 75]. However, one can check all of the contribution from the
counter term is power-divergent, then they do not contribute to the final result. The other point is on
the p,w — 0 limit. While it is expected that the final result is irrespective of the order of the limits
@ — 0 and w — 0, individual diagram contributions may have the ambiguity. To show this explicitly

we shall introduce a parameter r = w/p.

The contributions of individual diagrams in the t-t model are

= g5 (=8I[4]1[4]) ,

boson double—bubble ~ §

= L (81[1(0) + 41[4)111) — 2222 1[1]1[1])

fermion—boson sunset

(SI1)1[0] — 4I[4]1]1]) |, (4.102)

_ 1
fermion—boson double—bubble ~ 4

2

=32

J, =1(4!
fermion—fermion double—bubble ~— 8 r2

J

tadpole

= —§ (=8I11]1[1]) ,
and in the c-c model we obtain

=5 (=8I[4)1[4]) ,

boson double—bubble ~ §

= 4 (SII[0] + 4T[0 — S5 )

fermion—boson sunset

J,

fermion—boson double—bubble

_1 1-2r2
errmionffermion double—bubble — & (_4 1—72 [1]1[1]) I

= — 1 (8I[1]I[0] — 4T[4]I[1]), (4.103)

tadpole ~

(=8I[1]I[1]) ,

ool

where I[m?] is defined in (4.35). It is found that the limit » — 0 is not well-defined in the t-t model,
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whereas several diagram contributions blow up by the limit  — 1 in the c-c model.

As done in approach I, we sum up the 1PI contributions and non-1PI contributions separately, then

find that IR-divergent and r-dependent terms cancel out and we get the same result in the two models,

Jip1 = _%1[4}1[4] + T4 — I (4.104)

1
Jtadpole = 51[1]1[1] , (4105)
so that the total is (using (4.36))

@ — 811/2 Z Jn s Z Jp = —%(1[4] - I[l])2 = —# (In2)? . (4.106)

Combining everything together we find that the effective action for the AdS3 x S% model is (cf. (4.14))

1 1
r®@ — Ve =—"(a;)’ = —(In2)?. 4.1
e as Vo, as 4(31) (In2) (4.107)

Let us now compare these results with those (4.81),(4.82),(4.83) found in approach I in section 4.3.1.
It is observed that the 1PI contributions in (4.81) and (4.104) contain the same I[4]1[4] and I[1]7[1]
terms, also the fermion-fermion I[1]7[1] tadpole terms are the same. Assuming that the final result
should be both UV and IR finite, the expression in approach II (4.106) is more natural. This suggests
that it is the tadpole contribution (4.82) in approach I that is to be blamed for the IR problem: it
should not actually contain the I[4]I[4] term if the two approaches are to agree. Then if instead of

(4.81) one would take

Ttuapore =  (114] ~ T11) (81(0) — 31[1)) = 2 (I14] — I[0)) (7[0] — 1)) (4.108)

=

then the sum of (4.108) with the 1PI contribution (4.81) in the first approach would exactly match

the result (4.106) of the second approach.?

Another interesting point is that the final two-loop result in (4.106) is proportional to the square

of the one-loop coefficient in (4.70), while this terms does not appear in the original string theory

2The replacement of (4.82) by (4.108) is formally achieved by replacing I[4] in the second factor in (4.82) by
I[0]. This may be related to a subtlety in how the two massive AdSs modes (which are mixed for p # 0) are
treated in the tadpole contributions in the limit when p — 0: in that limit one of them has m? = 4 and the
other one becomes massless.
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[IRT]. These observations will guide us in interpreting and fixing the two-loop result in the case of

the reduced theory for the AdS5 x S° GS string where we will only consider approach I.

4.4 Reduced AdSs x S° theory

In this section we shall compute the quantum corrections to the partition function of the reduced
AdSs5 x S° theory in the approach based on the PW identity. The one-loop correction will be discussed
in section 4.4.1 where we will first rewrite the fluctuation Lagrangian (4.23) in terms of component
fields of the fluctuations, then derive their functional determinant contribution. The form of the
resulting fluctuation Lagrangian in the bosonic sector is different from the one found in the original
string theory, while both of them give the same functional determinant. In appendix D.1 we will
discuss the detail of the relation between the fluctuation Lagrangians. In section 4.4.2 the quantum
correction at the next order will be evaluated and the nontrivial Catalan’s constant will be derived in
agreement with the string theory computation. IR finite two-loop result will be achieved by a close

analogy with the AdSs; x S® case.

Using the parameterization of PSU(2,2|4) introduced in appendix B, then we have the reduced theory

solution corresponding to the (S, .J) folded string (4.7),3

0 por —gur 0
ga O —ﬁv‘,— 0 0 ﬁvT w2
go = ) gaA = ) Ur = 627 ) (4109)
J Kk
0 1 E/UT 0 0 UUT
0 —Ly Ev 0
woT T

3In general, a choice of the reduced theory solution corresponding to a given string theory solution is not
unique as one may apply an on-shell H x H gauge transformation. For example, one may start with a o-
dependent solution,

Eyr 0 o ¢
M . Iz
0 Evy = 0 K2
ro_ H b , 'a=A , = —diag(1,-1,1,-1),
ga 0 ;% ﬁ « 0 +A A 2% g ( )
L 0 0 “u,

=

/

14

One may expect that the result for the quantum partition function for the two solutions should be the same.
In fact, we have checked that the individual diagram contributions in the two cases are indeed the same.
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Ao = L Apa =" diag (1,-1,1,-1) . A_y = #diag(1,-1,1,-1) ,

(4.110)
and, by computing the stress tensor for the solution (4.7), we find that the mass scale in the reduced

theory is pu.

In order to derive the new classical solution ¢ in the system (4.19), let us first find U and U. In the
case of the (9, J) folded string, the S° sector is in the vacuum where the classical gauge fields A4 are

vanishing. Then U and U take the following form,
U= , U= . (4.111)

One choice for u and @ is such that we have u = @ then U = U. With this choice the background for
the second WZW term in (4.19) is identity. This is achieved by

w*/2 0 0 0

== : (4.112)

then g is given by

K £, *
0 E’UO— —EUT 0
ga 0 —Ep* 0 0 ﬁv.r
g= Coaa=| "7 " , (4.113)
0 1 Lvr 0 0 —%v,
0 —ﬁvT ﬁv; 0

where w, v; and v, are defined in (4.51) and (4.45), respectively. One can confirm that the rotated
solution § solves the equation of motion derived from the Lagrangian (4.19), which ensures that this

is an appropriate starting point for perturbation.



4.4. Reduced AdSs x S® theory 95

4.4.1 One-loop computation

Absence of the mixing term between bosonic fluctuations and fermionic fluctuations in the Lagrangian
for quadratic fluctuations (4.23) allows us to evaluate the bosonic contribution and fermionic contri-
bution separately at one-loop level. In section 4.4.1 we shall discuss the bosonic quadratic fluctuations
described by the Lagrangian (4.28) and show that our result agrees with the string theory computa-
tion in terms functional determinant contributions to the partition function. Next we shall show the

agreement with the original string theory for the fermionic quadratic fluctuations in (4.38).

The argument below is based on approach I used for the reduced AdSs x S® theory. As an alternative
approach, the one-loop computation in the JA; = 0 gauge is discussed in appendix D.2. Both
approaches provide the same functional determinant contribution, so it is confirmed that they are

equivalent at least at one loop.

Bosonic fluctuations

Since of the homogeneous nature of the folded string in the scaling limit, one obtains constant-
coefficient Lagrangian for the quadratic fluctuations by introducing component fields of the bosonic

fluctuations appropriately. One possible choice is

o
nt = | )
0 ng
0 0 a1 + taz (CL3 + ia4)w
! 0 0 (a3 —iag)w*  —aj + iay
77A = )
a; — iag (a3 + ia4)w 0 0
(4.114)
(az —iag)w* —ay —iag 0 0
0 0 b1 +iby b3 +iby
! 0 0 —bg +1by by — ibsy
Ng =
—b1 +1iby b3+ iby 0 0

—bs +iby —by —iba 0 0
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which correspond to physical fields in m coming from the coset part G/H, and

1
ngy 0
nt = :
0 n§
11 (CQ + ic;;)w 0 0
(—co +ics3)w* —icy 0 0
1 _
77,4 - )
0 0 icy (c5 +icg)w
(4.115)
0 0 (—cs + icG)w* —1cy
idy do + id3 0 0
—dgy + ids —idq 0 0
1 _
T]S - ’
0 0 idy ds + idg
0 0 —ds +idg  —idy

which are unphysical fields living in the algebra h of the subgroup H. We rotated several bosonic fluc-

tuations by using w defined in (4.51) in order to have the constant-coefficient fluctuation Lagrangian.

We shall write down Lagrangian for quadratic fluctuations in terms of the component fields and
compute their characteristic frequencies. While the resulting Lagrangian looks different from the
original string theory result, we will show that characteristic frequencies in our present approach in

the reduced theory agree with those found in the string theory computation.

Plugging (4.114) and (4.115) into the Lagrangian for quadratic fluctuations (4.23), we obtain the
constant-coefficient Lagrangian containing 4 + 4 physical fields and 6 + 6 unphysical fields. At one-
loop level the AdS5 sector and the S® sector are decoupled. As the S° part of the classical solution g

is the vacuum, the structure of the fluctuation Lagrangian in the S° sector is simple,

4 6
L8 =25 (0:b:0-bi — p26?) + > 0,d;0-d; . (4.116)

i—1 j=1

This shows that the four physical fields b; are massive fluctuations with characteristic frequencies,

Vn? 2, (4.117)

which agree with [90]. On the other hand, the six unphysical fields d; coming from an element in h of
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the subgroup H = [SU(2)]? are massless.

Next let us discuss the AdS5 sector. As explicitly shown in chapter 3 for several string configurations,
for a classical solution expressed in the form of (4.113), the system for quadratic fluctuations decouples
into two smaller subsectors. One subsector contains aq, as and the off-diagonal part of nj, c2, C3, Cs
and cg, while the other subsector contains as, a4 and the diagonal part of nj, c1 and c4. The total

Lagrangian in the AdSs5 sector is written as
e =P+, (4.118)
where the physical fluctuations a; and ay are governed by the Lagrangian Egz),

£§2) —9 Z (8+ai8,ai - (2%2 - M2) a?) — 4M (pcg + 0—c3 + pes + 0—cg) aq
i=1,2

+AM, (D-cy — pueg — D—cs5 + pcg) az — Y (01¢;0-c; + (267 — p?) ) (4.119)
7=2,3,5,6

—2 (HaJng + M28,03) co — 2 (,u8+c6 + M28706) Cs5 .

and the other subsector described by the Lagrangian Eg) is

LY =23 0,a:0-a; + 4 (udsas + Mad_as)as — Y 0yc;0_c; +AMi(O_c1 + O_ci)az, (4.120)
i=3,4 j=1,4

where M; and M, are constants which we introduced in the AdSs x S case,

_ 2,{2_M2
1

M =" (4.121)

It is worth checking the 4 — 0 (J — 0) limit where the (S, J) folded string has no stretching or
rotation in S°. It is clear that the constants Mj, My in (4.121) are singular by this limit, so the
Lagrangians (4.119), (4.120) are also singular. The p — 0 limit is not well-defined even after applying

the nonlocal transformation discussed in appendix D.1. Thus we will proceed with p nonzero.

We will compute characteristic frequencies of the fluctuations given in (4.119) and (4.120). Although
our fluctuation Lagrangians look different from the fluctuation Lagrangian found by perturbing the
Nambu action [97], it will turn out that the characteristic frequencies and the functional determinant

contributions of the original string theory are recovered from the Lagrangians (4.119), (4.120). The
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detailed discussion on the one-loop computation and the comparison to the original string theory at

the level of the fluctuation Lagrangian are given in appendix D.1.

i(Q7+n9) into all the fluctuation fields in

In order to compute characteristic frequencies we substitute e
the Lagrangians (4.119) and (4.120). For the former Lagrangian we obtain a 6 x 6 mass matrix. The
condition that the determinant of the mass matrix vanishes gives six solutions for 2. We find that four

of the six fluctuation fields are massless, and frequencies of the remaining two massive fluctuations are

n? 4+ 2k% — p2, (4.122)

which agree with [90]. For the other Lagrangian (4.120), we have a 4 x 4 mass matrix, but only two

of the four fluctuations in this Lagrangian are massive with frequencies,

\/n2—|—2/£2:i:2\//£4—|—n2,u2, (4.123)

which agree with [90].

Let us compute the functional determinant for both the AdSs sector and the S® sector. The S® sector

is described by the Lagrangian (4.116) and its functional determinant is

289 = ([t (24.00)]° [det (9,0 + 2)] ") " (4.124)

Here (8+8, + ,u2)4 comes from the four massive fluctuations and (9;0_)% is the contribution from
the six unphysical fluctuations. On the other hand, the functional determinant for the AdS5 sector is
derived from the Lagrangian (4.118) with (4.119) and (4.120),*

24P = (([det (040~ + 262 = i?)]” [det(940-)]? [det (92 + p?)]” [det (62 + 12))”

s (4.125)
x det (8_%8% + 07+ (4/@2 — 2u2) 04+0_ + u28%) ) )

The functional determinant contributions from the massive fluctuations, det (8+(9_ +2K2 — u2)2 and
det (83_@% + O_ZF,uQ + (4/{2 — 2u2) 04+0_ + ,u283), are the same as the functional determinant found
by perturbing the Nambu action. In the remaining part in (4.125), det(d40_)? corresponds to two

of the six unphysical massless fluctuations and the other four massless fluctuations do the factor

4The same determinant is obtained by using the Lagrangians after the nonlocal transformations, that is, by
using (D.6) and (D.11).
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det (02 + ,u2)2 (9% + u2)2 because

det (02 + p?) = det (94 + i) det (O — ip)
= det (e‘“”@iei’”) det (e“”@ie_i’”) ,
and the exponential factors cancel out in the determinant. One can confirm that the unphysical factor
cancels with those of the Jacobian arising from the transformation (4.16) and quantum fluctuations

found in the other WZW term in (4.20). Hence the total bosonic contribution to the one-loop partition

function is obtained by collecting the determinant of the physical fluctuations,

208 = 7(18) 718) _ ( [det (90— + 2% — 1?)]* [det (90— + p?)]* (4.126)

x det (0107 + p® (0207) + (4x* — 24*) 04.0-) )_1/ g

which will be used to compute the total one-loop correction to the partition function.

Fermionic fluctuations

Given the agreement in the bosonic sector, the original string theory result for the fermionic fluctua-

tions should be recovered in the reduced theory in the approach based on the PW identity.

Constant-coefficient Lagrangian is derived also in the fermionic sector if we define component fields of

the fermionic fluctuations in the following way,

0 :{R O %L
Uy = , U, = , (4.127)
Dr O DL 0
where
0 0 (1 +iag)f, (a3 +iou)f,
0 0 (—ag+iag)fT (o1 —iag)f]
Xr = : (4.128)
(a5 +iag)f, (a7 —iag)f, 0 0

(a7 +iag)f]  (—os +iag) f] 0 0
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0 0 (—ag —ias)f7 (—as —ia7)f,
0 0 (ag —iag)fi  (—ag +ias)f,
Dr = : (4.129)
(oo + iozl)fj'; (g —ias) f, 0 0
(aq +iag) [T (—az +ion)f, 0 0
and
0 0 (BL+if2) [T (Bs+iBa)f”
0 0 (B3 —iBa)f- (=P1+iB2)f_
Xy = : (4.130)
(85 +ifs)f* (=B +ifs)f” 0 0
(Br +iBs)f- (B5 —iPs) - 0 0
0 0 (=B —ifs)f- (—=Ps —ifr)f~
0 0 (=Ps+iBr)f-  (Bs —iB5) "
D = : (4.131)
(B2 +if1) [T (—Ba+ifs)f_ 0 0
(Ba+ifs)fr (B2 —iB)f- 0 0
where all component fields are real Grassmann and f, = ei&?ﬂﬂa. The extra factors are introduced

in both ¥, and ¥, such that all coefficients in the Lagrangian become constant. The resulting
Lagrangian is

Ly =2 ; (0i0—c; + B;046;) — p (1o + g + asag — arag — 132 — B304 — Bs86 + Brs)

+2k (0 B4 + ol — a3 — cuffr — a5 08 + a6 87 + arfBs — 04855)] ;
(4.132)

which describes fermionic fluctuations with frequencies (up to trivial shift),
Vn?+ k2. (4.133)

They are the same as the fermionic frequencies in the original string theory [69]. The determinant for

the fermionic fluctuations is

det <a_ia% +20,0_K + i (03 +02) u® + 1—16 (4k% — MQ)Q) . (4.134)
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Again, by the same argument as in (4.69), this functional determinant is reduced into the from

[det(940- + x2)]*.

The final expression for the one-loop partition function is thus the same as in string theory [90]. In
the pr — 0 limit we get the familiar result [89] (see (4.11))
(1) 1o d*q 2 2 2 2 2 2 2
' = -V, [ —[In(¢* + 4x*) + 2In(¢* 4+ 2x%) 4+ 5In¢* — 81In(¢” + £*)]
2 (2m)?

_ 1
= 2k°Vo (I[4] + I[2] — 2I[1]) = 7 V2, a; = —3In2. (4.135)
T

4.4.2 Two-loop computation

In this section we will discuss the two-loop computation using the fluctuation Lagrangians (4.23),
(4.24) and (4.25) for the reduced AdSs x S° theory. First we will study the contributions of diagrams
which involve only bosonic propagators. In this case the system is the direct sum of the AdS5 sector
and the S® sector. Next we will discuss diagrams containing fermionic propagators. Then tadpole
contributions will be evaluated, where we will find that the reduced model gives the nonvanishing
tadpole contributions of both bosonic and fermionic loops. Finally the results of the bosonic, fermionic
and tadpole contributions will be combined. Throughout this section we will use the Euclidean

signature on the worldsheet.

Bosonic 1PI contributions

The bosonic contributions are described by the Lagrangians (4.28), (4.29) and (4.30). These fluctuation
Lagrangians show that the two-loop contributions to the two-loop partition function are given by the

Feynman diagrams of the topologies shown in Figure 4.1.

To compute the two-loop diagrams we shall derive the bosonic propagator. In the AdSs sector, as
shown in the discussion on the one-loop computation in section 4.4.1 and appendix D.1, the quadratic
terms contain the off-diagonal mixing terms of physical and unphysical fields, which can be diagonalized
by the nonlocal transformation. However, the diagonalization is not necessarily useful in the two-loop
computation because this transformation produces a complicated nonlocal Lagrangian. Thus we shall

consider all of the fluctuations and compute the diagrams for the 10410 fields (444 physical and 6+6
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unphysical fluctuations) rather than the block-diagonalization of the system such that the physical
part and the unphysical part are decoupled. It is useful to make a set of O(2) transformations of the
unphysical fluctuations in the AdS5 sector in (D.3) and (D.9) in appendix D.1 to obtain four decoupled

subsectors. Once we denote the bosonic fluctuation fields as

O ={Py;,Ps;} (4.136)

where we reordered the bosonic fields in the AdS5 sector in ® 4;

Q4 ={a1,c2,¢3,a2,¢5,¢6,a3,a4,¢1,¢a}, Pgi={b1,...,bs,d1,...,ds}, (4.137)

then the bosonic propagator for the AdS5 sector is written as

Mi(g) 0 0 0
1 0 Mg 0 0
Ay (q) = ; (4.138)
0 0 Mg O
1
0 0 0 27

where M;(q) and Ms(q) are 3 x 3 matrices,

AR —4R? P+ (qi +ﬂ2) in/2—p2 (282 —p2) in/R2—(i2q,
472 (42 +i2) V22 (42 +i%) V2i(q2 +i?)
N - ~ ~ 22( 2 2 2 ~n2 ~n2 4_ ~4 ~2 2 ~2 - 12 2_n
M) = kA2 2 (2—112) AR (RP—p )(quu )+u (*—p*)  #2q, (quu )+zq 2 (q*—p?)
Dy V2p2 <q2+ +,12) 202 (q*+201% 2 — 42 g2 +4*) (g +202q>—4p2q3+it)
Ry/RZ-[2q, Ry (¢ +42) +ig' 52 (a>~i%) it
V(a2 +i2 A(at+2i2 2 =42 g5 +it) 2(q*+24% 2~ 423+t
¢ _ RPq_+ig'p? Rq_+/R2—p2
4 20 V20
My(g) = L R2q_+igtp? a (qiﬂ274/%2(/%27ﬂ2)) V2in/R2— 12 (R2q_ +iq i)
2\q Do 20 02 - )
Iz dq_p qf
s = - ~ - = ~ PN ~ ~ A 2
_Ra_ R V2RRP-p2 (R +iqip?) g2 —4(q' p2—ikq_)
V20 q, 2 2022

Gw=q+ia, ¢=@¢+q. Di=¢+2r*—p*  Dy=qg"+ 4k — 4p2q:2,
(4.139)
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and the propagator for the S° sector is

1 1 1 1 1 1
A7 () = diag [ — __ __ __ ), (4140
s (@) g( A(2+ a2 4(2+i2) 4(+p2) 4(2+a2) 22 2q2> (4.140)

where we have omitted the overall factor 8{ which will be restored later.

Below we shall evaluate the two-loop contributions diagram by diagram. Ome particle irreducible
contributions of the bosonic fluctuations are given by the bosonic sunset (Figure 4.1(a)) and bosonic
double-bubble (Figure 4.1(b)). It should be emphasized that the main difference between the present
case and the AdS3x.S? case in section 4.3.1 is the appearance of the Catalan’s constant as a consequence

of involving the bosonic fluctuations transverse to the AdSs subspace in the AdSs sector.

Similar to the original string theory computation in the light-cone gauge [97, 100], the bosonic fluc-
tuations also provide the nonvanishing tadpole contributions, which will be discussed later together

with tadpoles containing fermionic propagators (Figure 4.3).

Note that the i — 0 (@ — 0) limit can be smoothly taken once we simplify the integrands of the
two-loop integrals. In this limit we have Kk = £ then & — 1. We will explicitly show the two-loop PRT
partition function only for it — 0. The two-loop computation for a general [i in the reduced theory is

still an open problem.

By plugging the bosonic fluctuation fields (4.114) and (4.115) into £ in (4.24) one finds vertices for
the sunset diagrams in Figure 4.1(a). We shall make use of the fact that the AdSs part decouples
from the S® part as the case of the one-loop computation, and first discuss the complicated AdSs
sector where the Catalan’s constant will arise. Corresponding to the three propagators in the sunset
diagrams, the two-loop integral for the diagrams can be characterized by three mass parameters, m;,

m; and my,

Im$m2

J

2. 2. 12, . .
mi:/d i d7g; dg; F (4> 95> ar) (4.141)

Gt et a4 mdlag o+ mi) g+ miy)
where we symbolically denote a polynomial function of ¢ as F(g;,qj,qr). In the AdSs sector the
vertices contained in the fluctuation Lagrangian are of the three types. The first type includes the
vertices Vi with (4,4, k) = ({7,8,9},{1,2,3},{1,2,3}) or (4,7, k) = ({7,8,9},{4,5,6},{4,5,6}). In
the p — 0 limit we have D; — ¢ + 2 and Dy — (¢ + 4)q¢?, so using these vertices we obtain the

integral Zy90 containing the Catalan’s constant given by the type of integral I[4,2,2]. The vertices
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Vaije with (4,7, k) = ({7,8,9},{7,8,9},{7,8,9}) lead to the integral Z444. For the agreement with
the string theory result, the nontrivial integral I[4, 4, 4] contained in Z444 should not appear. The last

type is Vaj, with (4,4, k) = (10,{1,2,3},{4,5,6}) yielding the integral Zg2».
The two-loop integrals, Z4o0, Z444 and Zyao, respectively, are simplified as

1422 = 21[4? 2> 2] - %I[Q]I[O] - %1[4]1[2] )
Tuaa = — 414700 — L1{4]114], (4.142)

Toz2 = —31[2)1[2],

where we included the combinatorial factor —1/12 and used the notation introduced in (4.35).
The computation in the S° sector is trivial since the S° part of the classical solution in the reduced

theory (4.113) is the vacuum. The S° part of T'® in (4.33) in the 2 — 0 limit is given by the following

integral,

A2 d%: 1o — g qF Tor —q qf
/ i 7G5 [qz q; —4q; 4; n 49 — %9 + (permutation of (i,7,k))| . (4.143)

(2m)4 ;979 499

Due to obvious symmetry of the momentum-space integral under interchange i <~ j, we find that each

term vanishes separately.

For the diagrams 4.1(b), the integral is characterized by two mass parameters, m; and m;, correspond-

ing to the two propagators with the momenta ¢; and g;,

T oo s —/d2id2‘“ (4, 4;) (4.144)
N __ . .
i 2m)* ¢q;” (af +m)(q; +m3)

In the AdS5 part the nonvanishing elements are Zoo and Zy4. After simplification, they are written as

Too = —31[2)1[2], (4.145)

Tyy = —31[4]I[0] — T[4]114],

where the combinatorial factor 1/8 is included. Although the quartic terms for the S° sector are
found in the fluctuation Lagrangian, the corresponding two-loop integrals do not lead to nontrivial

contribution.

By summing up (4.142) and (4.145) we find that the bosonic contribution to the quantum partition
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function is
Jboson = 21[4,2,2] — %I[Q]I[O] — 5[[4]][0] —I2)1[2] — =1]4]I[2] — 5[[4]][4] . (4.146)

The nontrivial finite part of the bosonic contribution is 214, 2, 2],

1
214,2,2) = 5K , (4.147)
T

where K is the Catalan’s constant. Note that the two-loop contributions from the other WZW term
Lywzw (U -1 ) lead to power-divergent terms, which should cancel with power-divergent terms from

other diagrams.

Fermionic 1PI contributions

The fermionic contributions of the cubic and quartic interaction terms are given by the diagrams of the

two topologies depicted in Figure 4.2. As done for the bosonic contributions, the two-loop integrals are

written in terms of Z,,2,.2,,2 for the sunset diagram in Figure 4.2(a) and Z,,2,,2 for the double-bubble
1] L

diagram in Figure 4.2(b).

As the fermionic fluctuations have the mass £ = 1 in the 4 — 0 limit, the integrals arising from the
fermionic sunset are the type of 7,211, where m is the mass of the bosonic fluctuation. We find that

the nonvanishing contributions are

Zon = 9I[1][0] — SI[I[1],
Tony = —21[2,1,1] + I[)I[1] — 21[2]1[1], (4.148)

Ty = I[4)I[1] — 31[1]1(1].

Here we obtained the Catalan’s constant, I[2, 1, 1]. It is also important that the integral of the I'[4, 1, 1]

type is not derived from Z411. This is consistent with the original theory result.

The fermionic double-bubble diagrams give the Z,,2; type, where the mass of the bosonic field m? can
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be 0, 2 or 4. They are summarized as

Ty = —9I[)1[0]
To1 = 6I[2)I[1], (4.149)

Ty = I[1I[0] + 2I[4)[1].

Combining (4.148) and (4.149) we obtain the total fermionic contribution,
Jtermion = —21[2,1,1] + I[1I[0] — 4I[1)I[1] + 4I[2]I[1] + 3I[4]I[1]. (4.150)

The finite part —27[2,1,1] is rewritten as

1

—21[2,1,1] = — 5K, (4.151)
T

where K is the Catalan’s constant. More importantly, this value is —2 of the Catalan’s constant
obtained in the bosonic sector (4.147). This is exactly the same as the observation in the original

string theory (4.3).
Combining the bosonic (4.146) and the fermionic (4.150) 1PI contributions together we find

1 1

e =5 g

(I[4] + I[2] — 21[1]) (I[4] + 21[2] + I[0] — 4I[1]). (4.152)

We observe that as in the AdS3 x S® reduced theory case (4.81), the second term in (4.152) is UV
finite but IR divergent and is proportional to the same combination I[4] 4+ I[2] — 2I[1] which appears

in the one-loop result (4.135).

Tadpole contributions and total result for the two-loop coefficient

The non-1PI diagram relevant in the present case is shown in Figure 4.3. The loops can be bosonic

or fermionic, and the intermediate line connecting the two loops is bosonic.

When computing this diagram, we should note that it is not allowed to set the momentum for the
intermediate line to be zero initially. M2 (q) of the bosonic propagator in (4.138) and (4.139) vanishes

by setting ¢ = 0, but this part of the propagator contains the physical degrees of freedom and
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may contribute to the two-loop corrections. Thus we shall start with nonzero momentum for the
intermediate line and take the zero momentum limit after the integration in the two loops integrals is

done.

Since the tadpole contributions are necessarily written as a product of the one-loop integral (4.35),
the nontrivial finite integral is not obtained from this sector. The non-1PI diagrams with two bosonic

loops give
1 4 4
Jboson—boson tadpole = —= | —=1[2]I[0] — §I[4]I[O] — 4I[2]1[2] — 31[4]I[2] — §I[4]I[4] . (4.153)
The contributions of non-1PI diagrams with one bosonic loop and one fermionic loop are

Jbosonffermion tadpole — é <_§I[1]I[0] - 16[[2]1[ ] - ZLPTOI[ ]I[ ]) . (4154)

Also we obtain the contribution of the non-1PI diagrams with two fermionic loops
1
Jfermion—fermion tadpole — _g (_16[[1]1[1]) . (4155)

Hence the total tadpole contribution is

Jiadpole = é(I [4] + I[2] — 21I(1]) (21[4] 4 3I[2] + I[0] — 61[1]). (4.156)

Combining together (4.152) and (4.156) we find the following expression for the coefficient in the

two-loop effective action,

@ —Vg Z Jn (4.157)
where
> Jn = Jip + Jradpole = J +J -1k (4.158)
~ n 1PI adapole I 87T2 9
~ 1
J = 5 (1[4] + I[2] — 21[1]) (I[4] + 31[2] + 21[0] — 61[1]). (4.159)
The resulting two-loop coefficient contains, ay = —K, &g = 872J = —g(ln 2)2 —In2 Inmg which is IR

divergent.
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Recalling that the I[4]I[4] term in the tadpole contribution disturbs the IR finite result in approach I
for reduced AdS3 x S theory due to the subtlety in how the tadpole contribution was computed, it
is natural to expect that the same subtlety arises in the AdSs x S° case. Indeed, the results in the
reduced AdS; x S% and reduced AdSs x S° theories are in direct agreement in what concerns I[4]7[4]
contributions coming from the 1PI graphs: this term enters (4.152) with the same coefficient —% as
in (4.81) or (4.104). If we accept the prescription employed in the AdSs x S case where I[4] in the
second factor in the tadpole contribution (4.82) is replaced by I[0], here I[4] in the second factor in
(4.159) should be replaced by I[0], then the tadpole contribution becomes

Jladpole = = (1[4] 4 1[2] — 2I[1]) (31[2] + 31[0] — 61[1])

o N =

(I[4] + I[2] —2I[1])(I[2] + I[0] — 2I[1]) , (4.160)
and the sum of (4.152) and (4.160) leads to the finite integral. Then &s is finite and again proportional
to the square of the one-loop coefficient,

J= —%(1[4] +I[2) - 20[1))%, e dp = 812 = —%(al)Q = —%(m 2)2. (4.161)



Chapter 5

Summary and future directions

In this thesis we discussed quantum aspects of the Pohlmeyer-reduced form of the AdSs x S° GS
superstring theory. The Pohlmeyer reduction is a technique to eliminate unphysical degrees of freedom
at the level of equations of motion preserving the Lorentz symmetry and the integrability. In the
context of string theory in AdSs x S°, these are great advantages because of the breaking of the 2d

Lorentz invariance by a straightforward way of gauge fixing in the AdSs x S° GS action.

After the review of the Pohlmeyer reduction of AdS; x S! bosonic string theory and the AdS5 x S°
GS superstring theory in chapter 2, the one-loop computations for homogeneous and inhomogeneous
backgrounds were considered in chapter 3 (and also in appendix C). We demonstrated that the reduced
theory partition function is the same as the string theory one for the respective string configurations
at one-loop level. The two-loop relation between these two theories was explored in chapter 4. We
found a strong indication that the AdSs x S° GS superstring and its Pohlmeyer-reduced form are
closely related at the quantum level: the reduced AdSs x S° superstring theory correctly produces the
same nontrivial constant as the original string theory, i.e., the Catalan’s constant, under the specific

identification of the coupling constants of the two theories.

Nevertheless, the two-loop partition function in the reduced theory also contains a finite term pro-
portional to the square of the one-loop result. Also, our final result in the AdSs x S° case is inferred
by the comparison between the two approaches in the AdSs x S case. A natural suggestion is that
we could perform the two-loop computation for AdSs x S° based on approach II of AdSs x S3, while

integrating out Ay, A_ first and gauge-fixing g also leads to more involved fluctuation action than the

109
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AdSs x S? case.

As a consequence of the absence of the unphysical modes, one virtue in studying the reduced model
instead of the original theory is its simpler one-loop structure (see chapter 3). In addition to several
string configurations in AdS3 x S which we discussed in this thesis, there are various kinds of solu-
tions localized in pure AdSs3. It was pointed out in [66, IWA] that the reduced AdSs theory is not
embedded in the full reduction of the AdSs x S° GS superstring theory at the level of the classical
Lagrangian. However, our investigation in the semiclassical expansions in chapter 3 shows that the
one-loop computation for strings in AdS3 can be studied in the full reduction by starting with their
generalized solutions in AdS3 x S! and eventually taking the limit where stretching and motion in S!
are eliminated. In particular, it is allowed to take such limit in the fluctuation Lagrangian if one fixes
the H gauge nicely. This statement is expected to be true for general solutions in AdS3 x S! by the
argument analogous to [66]. Let us discuss it briefly. By the replacement ¢, — ¢, +1n %, 0, — ﬁHA
in the fluctuation Lagrangian of the tanh model (3.2), the p — 0 limit becomes well-defined in the
fluctuation Lagrangian. After the limit and a further replacing ¢, — ¢, — % In0,60,0-0,, the resulting

Lagrangian is

Liann (2) = 04+30,0_00, + 01.60,0_60, — 2cosh 26, /:.0,0-0,(56,)> . (5.1)

One can confirm that this is the correct fluctuation Lagrangian by plugging the counterpart of the

folded string solution in AdSs,
1., 1
0+0, = 2wk, b, = an 2p — 11n8+9A8_9A ) (5.2)

and finding that it describes one massless fluctuation and one massive fluctuation with the coefficient
2(w252+p’4) . . . .

of mass term ——27——=, which agrees with (3.21) and [89]. This prescription also works for the full

reduction in the decoupling gauge; one gets four massless fluctuations and two massive fluctuations

with m?2 = 2™ for bosons and the correct fermionic modes as in [89)].

One possible application of this technique is to study semiclassical expansions around the minimal
area of an open string ending on n-cusp null Wilson loop on the conformal boundary of AdSs [61, 62].
Since it is very hard to reconstruct the corresponding string theory solution from the reduced theory

solution which was found in [61, 62], computing the one-loop corrections to the area in the reduced
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theory leads to much simplification while the one-loop computation on the string theory side involves

a problem of the IR regulator [98].

Although the Pohlmeyer-reduced form of the AdSs x S° GS superstring is integrable, the integrable
structure is different from the one found in the original string theory. The integrability property in
the classical reduced theory was studied in [105] in terms of Poisson structure and the realization of
the quantum integrability was discussed perturbatively [75]. As one might expect that the relation
of quantum partition functions of the two theories could directly come from that of the integrable
structures, it would be interesting to uncover the nontrivial relation between these two forms of the

integrability.

Another open problem is the classical relation between the reduced AdS,, theory and the reduced
AdS,, x S' theory. While the limit where string has no stretching or momentum in S*, i.e., g — 0,
can be smoothly taken in the original string theory, the corresponding limit in the reduced theory
is nontrivial especially at the classical level (the semiclassical case was discussed in chapter 3 and
appendix C). This situation is very similar to the algebraic curve approach to the finite-gap solution;
there is no simple limit connecting the structures of AdS3 x S! strings and AdS3 strings [106]. Only
the n = 3 case was discussed in [66] where the authors rescaled the complex sinh-Gordon fields first,
then took the limit in order to obtain the reduced AdS3 theory from the reduced AdS3 x S! theory.
Beyond this case the situation is unclear, but it may be possible to find an analog of [107], where the

strong/weak duality between 2d integrable theories in terms of their S-matrices was found.

A related problem is that the 4 — 0 limit in the deformed gWZW model (2.31), (2.32) is not yet under-
stood. If one naively takes the limit, the potential terms pu?STr(g~'TgT), uSTr (gfllPLg\IlR)disappear

from the Lagrangian.

Finally, one straightforward extension of our work is to compute the three-loop corrections to the
reduced theory partition function. It would be very interesting if we obtain terms such as ajag, (a1)?
in the three-loop coefficients. However, the three-loop computation should be first completed in the

original string theory following the qualitative argument given in [70].

We hope that further study of the Pohlmeyer-reduced version of string theory in AdSs x S® may lead

to important insights into the structure of underlying quantum theory.



Appendix A

Matrix superalgebra

In this appendix we will summarize the superalgebra and its parameterization for the cases of psu(2,2|4)
and psu(1,1|2).} We will first review the psu(2,2|4) superalgebra, then explain the psu(1,1[2) super-

algebra by a slight modification of the psu(2,2[4) case.

We shall start with the su(2,2|4) superalgebra as it is spanned by 8 x 8 supermatrices f. In general §

is expressed in terms of 4 X 4 matrices,

D/
f= (A1)

9 D

where the matrices A, ® are Grassmann even and X, %) are Grassmann odd. The superalgebra

su(2,2]4) requires that the matrix f should vanish by taking the supertrace,
STrf = trd — tr® =0, (A.2)
and satisfy the reality condition,

fTH+ Hf=0, (A.3)

In this paper we follow the notation of [64].
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with a Hermitian matrix H. It is convenient to choose H to be the following form,

> 0
H = , (A4)
0 1
where Y is expressed as
10 0 O
01 0 0
Y= , (A.5)
0 0 -1 0
00 0 -1

and 1 is the 4 x4 identity matrix. With this choice of H, the reality condition (A.3) gives the relations,

A =-—3Ax, o'=-2, P=-x'%. (A.6)

So we see that the bosonic matrix 2 belongs to u(2,2) and the other bosonic matrices ©® belong to
u(4). The only one combination of each u(1) generator, i1, satisfies the reality condition (A.3) and

supertraceless condition (A.2). Hence the bosonic subalgebra of su(2,2[4) is decomposed as

su(2,2) ®su(4) du(l). (A.7)

The superalgebra psu(2,2|4) is defined as the quotient algebra of su(2,2[4) over this u(1) factor.

One important property of the psu(2,2|4) superalgebra is that it admits a Z; automorphism such that
the condition Z4(f) = f determines the subgroup G = Sp(2,2) x Sp(4) of F' = PSU(2,2|4). Define
the automorphism §{ — Q(f) by

KA'K —K)'K

Qf) = - : (A.8)
KX'K K9'K



114 Appendix A. Matrix superalgebra

where the 4 x 4 matrix K is chosen to be

0 -1 0 O
1 0 0 0
K= , (A.9)
0 0 0 -1
0 0 1 O
which satisfies K? = —1, then any matrix in psu(2,2|4) can be decomposed as
f=Ffo®h @ @fs, (A.10)
where f; are eigenstates of €2,
Qi) = i, (A.11)
and given by
1 ) ; 1 [ 24— KA'K 0
fo=7 (F+Q0) + () + (1) = 5 :
0 D - KD'K
1 . ' 1 0 X —iKYP'K
fu= 7 (F=() = Q*(f) +i0°(F)) = 5 ,
D +iKX'K 0
1 ) ; 1 [ 4+ KUK 0
fo= 5 (= 90+ 92(7) - (1) = 5 ,
0 D+ K9'K
1 . ) . 1 0 X+iKYP'K
fo = (F+907) - 02(7) - i0°(7) =
P —iKX'K 0
(A.12)
They satisfy the following commutation relation,
[fis f5] C fitj mod 4 - (A.13)

Let us denote g = fo and p = f2. Then g is the algebra of the subgroup G of F' defining the coset F'/G,
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and p corresponds to the bosonic coset component. The other two components, fi, f3, are fermionic

parts.

Now let us discuss a further Zs decomposition, which defines the group H and the coset G/H. Here

we shall introduce an element T of the maximal Abelian subalgebra of p by
T = % diag (1, 1, -1, -1, 1, 1, =1, —1) . (A.14)
The Zs decomposition is then given by
f=-[T 5 i = AT AT -3} (A.15)

It should be noted that this is an orthogonal decomposition, that is

f=fleft,
(A.16)
STr(flfL) = 0.
and they form the following commutation relation,
|l T [ K= (P [ R o (A.17)

Identify h = fOL, m = y), a = %, n = f!. In fact a is the maximal Abelian subspace of p, and the
algebra b of the subgroup H of G is defined as the stabilizer of T" in g, i.e., [h,T] = 0. Together with

the commutation relations (A.13) and (A.17), one finds these elements satisfy

[a,a] C O, [a,h] C O, [h,h] C b, [m,m] C b, [m,h] Cm, [m,a] Cn, [n,a] Cm.

(A.18)

For the specific choice of the matrices H, K and T in (A.4), (A.9) and (A.14), respectively, then one can
uniquely express general elements of m, b, a, n, f!, fll, g and f3L in terms of their matrix components.

The following four components are relevant when we determine the fluctuation Lagrangian of the
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reduced theory. The subspace m of g corresponds to physical fluctuations in the reduced theory,

m, O
m = s
0 my
0 0 a1 +ias  as -+ iag
0 0 as — z'a4 —a1 + iaz
m, = 3
a; —tas asg+tay 0 0
(A.19)
as —ia4 —a1 — 162 0 0
0 0 b1 + by bg +iby
0 0 —bg +1iby by — ibs
mg =
—by +1by b3+ iby 0 0
—bs +1iby —by — ibsy 0 0

Unphysical fluctuations lie in the subspace b of g , which should be gauged away or integrated out

from the fluctuation Lagrangian of the reduced theory,

h, O
h= ;
0 by
icq co +ics 0 0
—he + ics —1icy 0 0
hA = s
0 0 1Cy cs + icg
(A.20)
0 0 —C5 +ice  —iCq
idy dy + ids 0 0
—ds +id3  —idy 0 0
by =
0 0 idy ds + idg
0 0 —d5 + idg —idy
The k-symmetry allows us to set fermionic fields to take values in fll,
i 0 X ! 0 Xj
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where
0 0 a1+t oz 4ty
0 0 —Q3 + iOé4 a1 — iag
X1 = (A.22)
as + i o7 — 10g 0 0
a7 +iag —os +tag 0 0
0 0 —Qg — ia5 —Qg — iOé7
0 0 ag —tay  —ag + tas
D = (A.23)
a9 + ity g — tag 0 0
a4 +tag —ag +10q 0 0
and
0 0 pr+ife B3+ ib
0 0 B3 —ifs —P1+1if2
X3 = (A.24)
Bs +iB¢ —0B7 +i0s 0 0
Br+ifs  Bs — i 0 0
0 0 —B¢ —ifBs —Bs —ibBr
0 0 —Bs +if7 B —iBs
Y3 = (A.25)
Bo+if1 —Pa+1ifs3 0 0
Ba+iB3 B2 —ifh 0 0

When we derive the fluctuation Lagrangian for fermionic fluctuations, we rescale components of ¥, €

f! and ¥, € f‘3‘.

Now we shall discuss the psu(1,1|2) superalgebra by modifying the above argument for the psu(2,2[4)
superalgebra. In the psu(1,1|2) case, the matrix f in (A.1) is a 4 x 4 supermatrix spanned by 2 x 2

matrices, A, B, X and 9. Also, H, ¥ in (A.4), (A.5) and K in (A.9) should be replaced by

H= . with Y =K= : (A.26)
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whereas T" in (A.14) for the further Z; decomposition should be chosen as
T = % diag (1, —1,1, —1) . (A.27)

Hence general elements of m, b, a, n, fg, f, g and f3 in psu(1,1]2) are expressed explicitly. The

following four components are relevant when we determine the fluctuation Lagrangian of the reduced

theory.
m, O
m = s
0 m
s (A.28)
0 ai + tas 0 b1 + iby
m, = ) my = K
a] — iag 0 b1 - ibg 0

which lie in the subspace m of g corresponding to physical fluctuations in the reduced theory and

by O
h= ;
0
s (A.29)
ic 0 d 0
hA = s bs = 5
0 —ic 0 —id
which are unphysical fields taking value on the subspace b of g.
Among the fermionic currents, we use the following two currents,
[ 0 % I 0 %
fi = , 3= ) (A.30)
291 0 23 0
where
0 o1 + 1o 0 —iQig — Oy
% = L = , (A.31)
a3 + 1oy 0 a1 + a9 0
and
0 B+ i 0 —if33 — P4
X3 = ) Y3 = ) (A32)

B3 + iS4 0 iB1 + B 0
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When we derive the fluctuation Lagrangian for fermionic fluctuations, we rescale components of ¥, €

f! and ¥, € fg.



Appendix B

Parametrization of PSU(2,2|4) in terms

of embedding coordinates

Here we shall discuss the relation between the embedding coordinates in AdSsx.S° and parametrization

of the PSU(2,2|4) coset elements (see [85] for details).

Let us define six real coordinates Y on R*? (P=0,1, ..., 5) and six real coordinates X M on RS
(I=1,2,...,6). To define AdSs and S° embedded in R*? and R’ we impose
npYY? = —1, munXMXN =1,
(B.1)

n=diag(-1, -1, 1,1, 1, 1), d=diag(1, 1,1, 1,1, 1).

and define another set of unconstrained coordinates, ¢, y; on AdSs and 0,, x; on S° i =1, 2, 3, 4:

ylyiyz= 2002 Y3 gyt = BT (B.2)
1-2 1-¥
2
L+ %
YOyt = et
1=+
X1+7:X2:$1+Zf2, )(3_’_1')(4:wﬂfnﬁ7 (BS)
+z +z
g a?
X0 +iX% = . e
_l_i
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such that y? = y;y; and 22 = z;z;. The corresponding metrics of AdSs and S® in terms of ¢, y;, 0,, =

are )
2
4,2 M N 144 2 dyidy;
A dYMay N = <1y42) dt? + (i
6.0 1 22 2 (B'4)
PaxTdx’ = ( —4 ) do? + dwdri,
"1 <1+””f> 4 (1+%)2

A suitable choice of bosonic coset element f would be such that STr ( fldf )2 coincides with the sum
of the two metrics in (B.4). This allows us to relate the embedding coordinates with the bosonic coset

element directly:

fa 04
f=
04 fs
B.5)
. 1 1 (
B exp (%t%) 0, ﬁl_% (14 + gyz‘%‘) 04
0y exp (%HA%) 04 1122 (14 + %ml%)
T
Here vy, are the so (5) Dirac matrices chosen as
0 0 0 -1 0 0 0 =2 0010
0 01 0 0 0 ¢ O 0 0 01
"M = ’ Y2 = ) 73 = > (BG)
0 1 0 O 0 — 0 O 1 0 00
-1 0 0 O — 0 0 0 0100
0 0 — 0 10 0 O
0 0 0 =< 01 0 O
V4 = ) V5 =
1 0 0 0 0 0 -1 0
0 -2 0 O 00 0 -1



Appendix C

One-loop computation: strings in

R x S°

Supplementary to chapter 3, we shall perform the one-loop computation in the reduced theory for
strings in R x S°. We have three examples; the pulsating string in R x S2, the circular two-spin string
in R x S and the short two-spin string in R x S°. In all the cases, the one-loop results in the original

string theory are reproduced.

C.1 Pulsating string in R x S?

The equivalence of equations of motion for the quadratic fluctuations in the original string theory in
conformal gauge and in the reduced theory was shown for an arbitrary classical solution localized in
the AdSy x S? subsector in [HIT]. In this sector there are many classical string configurations; the
pointlike string moving along a big circle of S2, the unstable wrapping static string and inhomogeneous
solutions such as pulsating strings, folded strings and magnons, e.g., [46, 47, 48, 109, 110, 111, 112]. In
this appendix we shall consider the pulsating string in R x S? as a nontrivial example in this subsector,
and derive the Lagrangian for its quadratic fluctuations which should be directly compared with the

fluctuation Lagrangian found by perturbing the Nambu action in the original string theory.

In section 3.1 we showed that the fluctuations from the Nambu action are related to those of the tanh

122
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model by the T-duality transformation and the same as those of the coth model. This variety in the
reduced theory originates from the freedom in introducing the second field, i.e., 6, for the tanh model
or x, for the coth model. Since bosonic string theory in R x S? is reduced to the sin-Gordon model
which possesses a single field ¢y, it is expected that the Lagrangians in the original theory and in the

reduced theory exactly match.

The pulsating string solution in S? studied in [109, 111] is expressed in terms of the embedding

coordinates for AdSs x S,

YO_{_Z.}/E'):eiHT, }/1:)/2203

(C.1)
X1+ Xo =sin¢(r)e™?, Xz =cos¢(r), Xa=X5;=X¢=0,
where m is the winding number on S2. The Virasoro constraints give one nontrivial constraint,
% 4+ m?sin® (1) = K2, (C.2)
and the equation of motion is also derived by its derivative,
. m2
P2+ - sin 2h(1) =0, (C.3)

where the dot represents the derivative with respect to 7.

The detail of the reduction for the case of the AdSsx.S? subsector is described in [HIT]. In the deformed
gWZW model the AdS5 part of the corresponding element in G takes a trivial form, diag(i, —i, 7, —i),

while the S° part is given by

1 COS g 0 0 1 8in @
0 —1COS Qg 1 Sin @ 0
g= , (C.4)
0 isingg  ©cos g 0
i sin ¢ 0 0 —1%.COS g
where
01 Xo0_ X = K? cos 26, . (C.5)

Here we used the fact the mass scale of the reduced theory is 4 = k. One can check that the classical
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gauge fields Ayg totally vanish by solving the gauge field equation (2.29). Substituting (C.1) into

(C.5), then we obtain the classical solution in the S° sector,

i 0 0 iyJi-%
0 YA T -
go = - p > A:tO =0. (CG)
0 iW1-% » 0
W2 i
? 1_? 0 0 —%

C.1.1 Bosonic fluctuations

Let us first discuss the bosonic fluctuations. As the AdSs5 part of the classical solution takes the trivial

form in the present case, the bosonic fluctuations in the AdSs sector are massive fields with mZB = K2

Then their Lagrangian is

4
Ly = 22 (04+a;0_a; — K*a?) . (C.7)
i=1
Introduce the components fields of the S° part of the physical fluctuation 7l as follows,!
0 0 b1 +1iby b3+ iby
0 0 —bg +1ibgy by — iby
—b1 +1iby b3+ iby 0 0
—bs +1iby —by —ibo 0 0

As shown in [HIT] one can partially fix the H gauge such that the physical fields decouple from the

unphysical fields. Then the resulting Lagrangian for the physical fluctuations is,

Lo=2

(C.9)

2m? > 2]
)2l .
K2 — 42

The sum of these two Lagrangians in the reduced theory, £1+4 Lo, is exactly the same as the Lagrangian

- , (9,2 _ .2\ 2 9 < B
; (8+bza—bz <2¢ K ) bl> + 04b40-by — r° [ 1

for the quadratic fluctuations found by perturbing the Nambu action in the original string theory [108].

1Both the AdSs and S® subsectors of H are [SU(2)]?. Hence component fields of the unphysical parts, 7+
and 0 A, are introduced in the same way as the case of AdS3 x S! in (3.13) and (3.14).
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C.1.2 Fermionic fluctuations

The agreement of the bosonic fluctuations in the original theory and reduced theory requires that of
fermionic fluctuations. So we shall next check this for completeness. We write down the fermionic
fluctuation Lagrangian in terms of the component fields of the fermionic fluctuations introduced in
(3.24) - (3.28) with v =1,

Lr = 2|32 (ud_a; + 5i0_5;)
(C.10)

+2¢) (o + a1 Ba + aufls — 3By + aefBs — asfs — agfr + azfs) | -

This Lagrangian can be separated into four parts and each of them is rewritten in terms of a real four

component spinor ¥,

Li =09,V — UL, . (C.11)

Thus we find that the fermionic fluctuations have the mass term with a coefficient 1/}, which again

agrees with the string theory result [108].

C.2 Circular two-spin string in R x S°

One example of a simple string theory solution we shall consider here is the rigid circular two-spin
string on S3 in S5 discussed in [92, 93, 101, 102]. Using the embedding coordinates in appendix B,
ie. Yp (P=—1,0,..., 4) of R*? for the AdSs part and Xj; (M =1, 2, ..., 6) of RS for the S°

part, this bosonic string solution is

Yo +iY_y = €T, Yi=Ya=Y5=Y,=0,
(C.12)

Xy +iXp = peTHme Xy 4 iXy = s X5 = Xe =0,

The Virasoro constraints imply that the three parameters, s, w and m, are related by

K2 =m?+w?. (C.13)



126

Appendix C. One-loop computation: strings in R x S°

Using the parameterizations discussed in appendix B we obtain the corresponding bosonic coset ele-

ment f,

> o

fs=

1 IWT—imo
56

_ % e’LWT—‘r’LmU

fa O
f= ,
0 fs
T 0 0 0
0 % 0 0

0 0 0 e 2
0 ie—iWT—i-ima
2
1 jeiw’r-l—imo
V2 2
ie—in—ima 1
2 \/5
ie—iw7+imo 0

ol

The corresponding solution of the reduced theory is 2

go =
+ 0 0 O
0O — 0 O
gaA =
0O 0 2 O
0O 0 0 —2

ga O 52 —m
, V=e =
0 gs
(R
_wy 0
y 9s =
imv 0
0 —imyr
V,0=%¥,0=0,

and the gauge equations are solved by

2

Aig=i (% - g) diag (1,~1,1,-1) , A_g = —ifdiag(1,~1,1, 1) .

Ay o=

0 O

0 Aig

2The p parameter of the reduced theory here is identified as k.

5€
%ein—imU
0
1
V2
2
—i 2V 0
0 imyr
0 -y
wyk

(C.14)

(C.15)

(C.16)

(C.17)
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Note that the point-like string (BMN vacuum) solution is a particular case of (C.12), that is when
m = 0 and w = k. In the reduced theory the corresponding limit of (C.15) is the vacuum solution in

a specific gauge.

C.2.1 Bosonic fluctuations

Since the classical fermionic fields vanish, the bosonic AdSs sector, the bosonic S® sector and the

fermionic sector all decouple at the level of the action and we will discuss them separately.

Here the AdSs part of go lives in H and is constant.? This is a vacuum solution of this sector. The

resulting fluctuation Lagrangian in the bosonic AdSj5 sector is

1
L4 =STr §8+773_17 —6A_0n+ 5A+go(9_7790_1 + JALIA_ — g0_15A+g05A_ + K2 (nnT2 — 77T77T)
(C.18)
We partially fix the H gauge symmetry by setting the diagonal components of 7' to zero.? After

integrating out § Ay the Lagrangian describing only the physical fluctuations is
1
L4 =STr 5(%77”(?,7)“ + K2 (77”77”T2 — nTn”T)} . (C.19)

Let us introduce the component fields of 7l as

0 0 a1 +tas  az+iay
0 0 as —ia4 —ai + tas
il = . (C.20)
a; —tag a3+ tag 0 0
az — z'a4 —a] — iag 0 0
Then (C.19) becomes
4
La= QZ (0+ai0_a; — K%a?) , (C.21)

=1

which describes four bosonic fluctuations with frequency vn? + k2.

3In the AdSs case we shall assume that the field is just in the top left 4 x 4 matrix of the original (8 x 8)
field and similarly for the S° case the field will be just in the bottom right 4 x 4 matrix.
4This is to completely remove the degeneracy of expanding around this vacuum.
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Now let us consider the S° sector. We introduce the following parametrization of nll, n* and 644,

0 0 b1 +iby  bg + iby
0 0 —bg +1bgy by — iby
nll = : (C.22)
—b1 +1iby b3+ iby 0 0
—bg +1by —by —iby 0 0
1hy ho + ihs 0 0
—ho + ihs —ihy 0 0
nt = : (C.23)
0 0 thy hs + ihg
0 0 —hs +1the  —ihy
Qa4 (ai2 +iays)v? 0 0
—(ayo —iay3)v*? —ia41 0 0
5A+ — 9
0 0 144 (ays +iaye) v?
0 0 — (aqs — iasg) v*2 —i0y
(a5 +6) + (C.24)
1a_1 a_g+ia_3 0 0
—a_9 + 2.(173 —ia,l 0 0
0A_ =
0 0 1a_4 a_5+1a_g
0 0 —a_5+ta_g —10_4

When we substitute this into the bosonic part of the quadratic fluctuation Lagrangian, (3.4) the
fields decouple into two smaller sectors. These are, firstly, a sector containing b3, b4 and the diagonal
components of n°, §A4, which has a Lagrangian with constant coefficients, and secondly, a sector
containing by,by and the off-diagonal components of -, §A+. The coefficients in this sector have some

7 dependence, arising from the JA;JA_ term, (v defined in (C.15) depends on 7).

If the gauge field fluctuations are integrated out first, we end up with a Lagrangian that has 7-

dependent coeflicients. To avoid this complication, i.e. to construct an action containing only physical



C.2. Circular two-spin string in R x S3 129

fluctuations and having constant coefficients we choose the following partial gauge fixing

h1 + h4 = const,
k(a_g —a_s) — k2(hs — hg) — O_(ay3 — aye) — kO_(hy — hs) =0, (C.25)

R(a_g + a_g) + I€2(h2 + h5) —0_ (a+2 + a+5) - Iia_(hg + h@) =0.

Then we can easily integrate out the diagonal components of A4+ to get a Lagrangian for b and b4
in the desired form. The second two gauge constraints are chosen to decouple by and bs from the
unphysical fluctuations. By using the remaining gauge freedom one should be able to ensure that the

unphysical fields give only trivial contributions to the partition function.

The resulting Lagrangian for this sector is then

4 2
Ls =2 [ S 0_bioibi+ > (2m® — k)7 + 4mPh] + 26(badibs + b48_b3)} . (C.26)
=1 =1

This Lagrangian describes two decoupled fluctuations, b1, bo, with frequencies
Vn?+ k2 —2m?, (C.27)

and two coupled fluctuations, b3, by, with frequencies

\/712 + 2k2 — 2m2 £ 2/n2k2 + (m? — K2)2. (C.28)

They agree with the string theory result.

C.2.2 Fermionic fluctuations

The fermionic sector is described by

Lp=STr(i6W, [T,0_0F, +[A¢_,07,]]
( 2 R R R (0‘29)

+360, [T,0.6V, + [Ags, 00, ]] + Kgy 160, god ) .

To make coefficients in this Lagrangian constant we may rotate some of the fermionic fields to cancels

the contribution of gy and g, Uin the “Yukawa” interaction term. This can be achieved by parame-



130

Appendix C. One-loop computation: strings in R x S°

terizing the matrix components of ¥, and 0¥, as follows

0 Xgr
oV, = ,
Dr 0O
where
0 0
0 0
Xr=
a5 + 1o oy — iag
a7 +iag  —as + tog
0 0
0 0
Dr =
g + 10 g — Qg
a4 +tag  —ag +ioq
0 0
0 0
Xp =
(Bs +1iBe)V™  (=Br +iBs)V
(Br +iB3)V* (85 —ifBs)V
0 0
0 0
Y =

(B2 +iB1)V  (=Ps+iB3)V
(Ba+iB3)V* (B2 —if)V™

DL

o1 + i

XL

0

o3 + oy

—a3 + 10y o — 1o

0 0
0 0
—Qag — 1oy —Qg — 1Qy
ag — 1oy —aog + tas
0 0
0 0
(B +iB2)V*
(B3 —iBg)V*
0 0
0 0
(=86 —iBs)V
(=Bs +1ifBr)V*

0

0

(B3 +1i64)V
(=p1+iB2)V

(—Bs —ipr)V
(Bs —iB5)V*

(C.30)

(C.31)

(C.32)

(C.33)

(C.34)
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Here o and () are 848 real anticommuting functions and V is defined in (C.15). The Lagrangian

(C.29) then takes the form

Lp = Q[Zle (0;0_av; + ;04 5;)
+VE2 +m? (—aron + azos — asas — azag + F182 — B304 + 506 + B1s) (C.35)
+V K2 —m? (o183 + asfi — asf7 — arfs — Pacy + Pz + Beag — 58046)] ;

which describes 8 fermionic fluctuations with 4+4 sets of the frequencies,

5k2
\/n2 —m?+ % + VKt + n2k% — m2k2 . (C.36)

The characteristic frequencies found above directly from the reduced theory action are exactly the

same as found [92, 103] from the AdS5 x S° string theory action expanded near the solution (C.12).%

We conclude that expanding the superstring action near the homogeneous 2-spin solution in R x S3
and expanding the reduced theory action near its counterpart in the reduced theory one finds the same
set of characteristic frequencies and thus the same one-loop contribution to the respective partition

functions.

C.3 Short two-spin string in R x S°

Let us consider the two-spin “short-string” solution in S° discussed in [101, 113, 114]. In the conformal-

gauge string theory, the solution takes the form,

Yo +iY_q = €T, Yi=Yo=Y3=Y,=0,
| | (C.37)
X1 +1X9 =sin 7061(7—4_0) s X3 +1Xy4 = Sin’YQGZ(T_U) . X5+ 1Xg = cosp,

where the Virasoro constraints relate the two parameters as x2 = 2sin ’yg . Setting o = 7/2 is allowed
if k2 > 2, in which the solution reduces to a special case of a two-spin solution in R x S? discussed
in [101, 113, 92, 102] in the original string theory and in [HIT] (appendix C.2) in the reduced theory.

On the other hand, the string with x? < 2 lies in the S® and this is the case we will discuss hereafter.

SStarting with the string solution in the form (C.12) used in [92] one finds that the fermions are naturally
periodic [102].
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Using the parameterizations discussed in appendix B, we obtain the corresponding bosonic coset

element f,

e 2 0 0 0

fa 0 0 % 0 0
= ) fA = ) )
0 fs 0 0 eF 0
0 0 0 %
(C.38)
1+ coso 0 ie T sin L —je i T+9) gin L
; ) 0 VItcosy iem)sin  elT)gin X
5= v/H—3 cos . .
’ €™~ sin 2 ie~Tt9) gin L VI+cosy 0
—ie!T) sin X je~U7=) sin W 0 V14 cosvo

After fixing the H x H gauge symmetry such that the classical gauge fields solve the gauge equations,

we find that the corresponding solution of the reduced theory is

¢t 0 0 O
ga Oy 0 —i 0 0
go = ’ ga = )
0, gs 00 i 0
0 0 0 —1
iBoo iBoT . iBgo . iBoT
e 2 e 2 COSYo —e 2 COS7p —1e 2
__i1BoT __iBgo . _iBagT . _iBgo
. —e~ "2 cosvy e 2 —ie” 2 ie” "2 cosvg
gS ~ B iBoo iBoT . iBgo . iBoT
—e 2 cosYp e 2 ie 2 —ie 2 CcoS
__tBaoT __tBgo . _iBgT . _iBgo
—e 2 —e” 2 cos7yy —ie 2 Ccosp —ie” 2

where we defined the constant B,, by

B,, = \/n+ cos2y. (C.39)

There are several ways of partially fixing the H x H gauge. The advantage in taking the present choice
is that classical gauge fields vanishes,

Ao = Aoy =0, (C.40)
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It is obvious that the fermionic fields are zero directly from the vanishing classical fermions in the
original string theory,

U, o=U,=0. (C.41)

For the reduced-theory solution (C.3), it is not possible to decouple the physical fields from the
unphysical fields by imposing a gauge condition on the fluctuation fields. Hence, unlike the previous
two cases, we shall use the PW identity to eliminate the degrees of freedom of the gauge fields AL.
From the vanishing gauge fields (C.40), it turns out that the transformation Agy — U, U in (4.16) is

trivial, U = U = 1gys, which means that the classical background g does not change,

9o =9go- (C.42)

Finding that this is a good starting point of perturbation in the Lagrangian (4.19) in the sense that
Jo solves the equation of motion derived from the classical Lagrangian, then we shall consider the

Lagrangian for quadratic fluctuations (4.23).

C.3.1 Bosonic fluctuations

It is a general property of the reduced theory that the bosonic sector decouples into two subsectors,

the AdSs sector and the S° sector at one-loop level.

Let us define component fields of the bosonic fluctuation 7 in the following way,

0 0 a1 +tas  az+iay
77& 0 ! 0 0 as —iaqs —aq +ias
77” = 9 "7A - Y
0 nl ay —iay  az+iay 0 0
ag — éa4 —a] — ia2 0 0
0 0 by + ibs (bs + iby)ePs 2"
| 0 0 (—b3 + iby)e B3 7" by — iby
s -
—by + iby (bg + ibg)e'P3 5 0 0
(—b3 + iby)e B3 2" —by — iby 0 0

(C.43)



134

Appendix C. One-loop computation: strings in R x S°

which correspond to physical fields in m coming from the coset part G/H, and

ic1 c2 +ic3 0 0
L _ , .
L ng O L co +ics ic1 0 0
- ’ 77A - ’
0 ng 0 0 ica ¢s + ice
0 0 —c5 + icg —1icy
idy (dy + ids3)e'P3 =" 0 0
(—dy + ids)e B3 2" —idy 0 0
1 _
s = ——
0 0 idy (d5 + id6)€ZB3T
0 0 (—ds + idg)e P32~ —idy

(C.44)
where we introduced the rotations such that the fluctuation Lagrangian become constant. The constant

Bs is defined in (C.39).

By substituting the solution (C.42), i.e., (C.3) and the fluctuation fields (C.43), (C.44) into the
Lagrangian (4.23), we obtain the Lagrangian for quadratic fluctuations expressed in terms of the
component fields. As the AdSs sector of the classical solution is the vacuum, the Lagrangian for the

bosonic fluctuations in the AdS5 sector takes the simple form,

4 6
L=2) (0yc0_c;— k) =Y 0yd;j0_d;, (C.45)
i=1 j=1
from which we find characteristic fluctuations of 4 massive fluctuations ¢;,
Vn?+ k2. (C.46)

This agrees with the string theory result in [101, 113, 114]. The unphysical fluctuations d; are totally

massless.

The S5 sector exhibits the involved structure reflecting the fact that all the components in the clas-
sical solution (C.42) (and (C.3)) are nonvanishing. The resulting Lagrangian contains four physical

fluctuations b; and six unphysical fluctuations d; which complicatedly couple with each other. Two of
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the physical fluctuations are massive with frequencies,

\/4 +n2 — k2 £ /1602 — 4n2k2 + K4, (C.47)

and the other two physical fluctuations are massless, in agreement with the string the result [101, 113,
114]. Together with the 6 unphysical fluctuations the massless frequencies receive shift due to the

nontrivial rotation in (C.43) and (C.44),

4 X n,

2 x nEtV4—k2.

(C.48)

Note that we used the relation k% = 2sin~Z in order to eliminate .

C.3.2 Fermionic fluctuations

Fermionic sector
As done in the case of the homogeneous solution in S3, in order to achieve the fluctuated action with

constant coefficients, we rescale 6V, only,

0 %R 0 %L
o, = , 0¥, = , (C.49)
Dr O 9. 0
where
0 0 (o +iag)vy (a3 +io)vs
0 0 (—043 + Z'Oé4)vi (051 — iOéQ)’U.;,.
XRr= , (C.50)
(a5 +iag)vy (a7 —iog)vs 0 0
(a7 +iag)vy  (—as + ios)v 0 0
0 0 (—ag —tas)vy  (—ag —iag)vs
0 0 (ag —iar)vi  (—ae +ias)vl
Dr = : (C.51)
(g +iaq)vy (o4 —ias)vy 0 0

(g +iaz)vy  (—ag +ioq)vk 0 0
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and

0 0 (B +if2)v (B3 +ifa)v-
0 0 (B3 —ifg)v*  (=P1 +ib2)v—
XL = : (C.52)
(85 +i8s)v*  (—B7r + i6s)v— 0 0
(B7 +iBg)vy  (Bs —if6)v— 0 0
0 0 (=86 —ifBs)v— (—Bs —ifr)v—
0 0 (=Bs +ifBr)v:  (Bs — ifs)vr
D = , (C.53)
(Ba +if1)v—  (—Ba+if3)v- 0 0
(Ba+iB3)v* (B2 —ifr1)v" 0 0

vy = i\/?) +2cos2y (T £0), (C.54)

where «j, and [, are 848 real anticommuting functions. Plugging 0¥, and 0¥, into the fermionic
part of (4.23), we obtain the Lagrangian for quadratic fermionic fluctuations. The Lagrangian again
contains constant coefficients only. Characteristic frequencies derived from the resulting Lagrangian

are

2
\/n2+1+,1:t\/(4—/£2)n2+/i2, (C.55)

where we used the constraint k2 = 2sin 7&. These frequencies again agree with the result in [101, 113,

114].



Appendix D

Details of computation in chapter 4

D.1 Comments on one-loop computation in section 4.4

The quadratic fluctuation Lagrangian in section 4.4.1 looks different from the corresponding one in
AdS5 x S5 string theory but these two Lagrangians lead to equivalent sets of characteristic frequencies

and the one-loop determinants. Here we shall comment on the structure of subsectors of the bosonic

fluctuation Lagrangian (4.118). Let us start with ﬁgz) in (4.118) containing a; and az. Integrating

out ¢g, c3, ¢5 and cg gives!

8+6_ + 2/‘4]2 — ,u2

. D.1
0% + M3 i (D-1)

ng =2 Z |:a+aiafai — (2/—@2 — ,u2) a? + 4M12ai
i=1,2

This looks different from the fluctuation Lagrangian found from the corresponding string action,

L1 =2 Z [&rai@,ai — (2/{2 — ,u2) a?} , (D.2)

i=1,2

but the two Lagrangians are closely related as one can factorize the operator 94 0_ +2x2% — p? in (D.1).

)

The Lagrangians £§2 in (4.118) and £; in (D.2) are, in fact, related by a nonlocal transformation. To

IThe resulting determinant of the operator O = fﬁ + M2 is equivalent to the (square of) massless operator
determinant.

137
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see this, it is useful to perform the following O(2) rotations,

c2— Jslea—ce), 3= plestes), = Fsleates), 56— 5(c3—cs). (D-3)
Then Egz) splits into smaller subsectors. One contains a1, co and cg,

£ = 20, 0-a1 — (26 — 1) 3] — 40y (uea +0-cs)

- Z [04.¢;0_c; + (2K2 — /f)cﬂ — 2 (u0ycg + Ma0_c3) ca. (D.4)
7=2,3

Another contains as, ¢5 and cg with a similar Lagrangian. To decouple ay from co, cg we may apply

the nonlocal transformation

N V26\/K2 — p20_ (0% + 1?)

M T e e — 2 (0702 — pt) @
Oy i (8+8_ + 2k2% — /,LQ) +0_ ((252 — uQ) 04+0_ + u4)
c2 — C2 + 3, (D.5)
p(020% — p4)

leading to

E,(Izl) =2[0;a10-a; — (2/@2 - ,u2) a%]
22— (040 + 262 — ) (82 + 122) (82 + 12)
9.0 tom_ 22t 202 — 4t

+ 2¢9 c3. (D.G)

The physical part of this Lagrangian is the same as (D.2). The product of determinants resulting
from integrating out ce and c3 contains only trivial massless factors. The same is true in the as, cs,

cg sector.

Similar observations apply in the sector containing as and a4 described by the Lagrangian Eg) in

(4.118). Integrating out cs, ¢4 directly leads to

Zg) =2 Z 0+a;0_a; + 4 (uodyag + M20_ay) ag + 8M12aggJ:a3 , (D.7)
=3,

which looks different from the string theory counterpart,

Lo =2 Z 0ra;0_a; + 4 (/4;2 — /f) a§ +4p (Oras + 0—a3) ay . (D.8)
i=3,4
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To find a transformation between £§2) and (D.8) let us apply an O(2) rotation

c1 — % (01 + 04) , cy — % (Cl — 64) , (D,Q)

and the following redefinition

o — o+ Qﬂﬂivﬂjﬂﬂi%, Gy — —ay — 28 1 (D.10)
Then we get

ﬁ&?m =2 Z 0ya;0—a; +4 (/<;2 — ,u2) a3 + 4p (Oyas + 0_a3) ag — Z O04cj0_c;, (D.11)
=34 j=1,4

where the physical part is the same as in (D.8).

D.2 One-loop computation in A, = 0 gauge

In this appendix we will perform the one-loop computation in the § A, = 0 gauge. This gauge was used
in [73, 74, 75] to study S-matrices in the reduced theory by perturbing the deformed gWZW model
around the BMN vacuum. A great advantage in the A+ = 0 gauge is that varying the fluctuation
Lagrangian by 0 A_ yields an equation for n* (gauge equation) leading to the Lagrangian which involves
only physical degrees of freedom once the gauge equation is solved. Although the solution of the gauge
equation is expressed as a nonlocal function of the physical fields, the nonlocality disappears from the
resulting Lagrangian in the case of the BMN vacuum. This makes it drastically easier to deal with the
cubic and quartic terms. For the (S, .J) folded string, however, we can not eliminate the nonlocality
from the fluctuation Lagrangian, and the structure of the functional determinant contribution of the
gauge equation for nt is complicated at higher orders. Hence it is still a challenging problem to carry

out the two-loop computation in the §A, = 0 gauge.

Recall the classical solution in the reduced theory in (4.109) and (4.110). One can also set the
coefficients of the fluctuation Lagrangian constant at one-loop level in the JA, = 0 gauge once we

introduce fluctuation fields appropriately.
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Consider fluctuations around a classical solution, gg, Ao+ with vanishing fermions, as follows

g=goe" =go(L+n+in*+0"?), nefo
(D.12)

AL =A 0+ 0A,, A_=A_g+d6A_,
and fermionic fluctuations ¥,, ¥, . The gauge condition we impose is A, = 0. Then the quadratic

fluctuations are described by the Lagrangian,

L? =STr|12,n0_n— 24ndA_ + L[, Zym Ao — %2 (1,96 T g0] [0, T
(D.13)
+%\IIR [T7 a—\IJR + [A0—7 lI’R]] + %\I’L [T’ 8+\PL + [AO+7 \IILH + Ngo_lll’LgO\I’R ;

where 7 =9y + [gy 0190 + 95 Atg0, |-

The Lagrangian (D.13) shows that the bosonic fluctuations and fermionic fluctuations are decoupled.
First we will discuss the bosonic sector. By solving the gauge equation for the unphysical fields
described above, we will derive the fluctuation Lagrangian containing only the physical fluctuations,
and determine the functional determinant contributions to the partition function. Then we will derive
the fluctuation Lagrangian and evaluate the one-loop contribution in the fermionic sector. Combining
the results of these two sectors, we will show that the result obtained by using the PW identity is
reproduced in the §A; = 0 gauge. Finally a brief comment on the two-loop computation in the

0A = 0 gauge will be given.

Bosonic fluctuations

Variation of the fluctuation Lagrangian by 6 A_ yields an equation for 7 and its solution is a nonlocal
function of nll. This implies that nonlocal terms appear in the resulting fluctuation Lagrangian, which
is also observed in appendix D.1. In fact, the bosonic Lagrangians we will obtain here are the same

as those found in appendix D.1.

Since (4.109) is the parameterization such that gg 18+gg and g, 1Tgy are constants, any rotation

for bosonic fluctuations is not needed. Then we will introduce the component fields of the bosonic
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fluctuations,
[
" [
0 ng
0 0 a1 +tas  asz+iay
I 0 0 asz — ia4 —a] + iag
Na
a1 —tas ag+iag 0 0
(D.14)
as — ia4 0 0
0 0 by +1iby b3+ iby
I 0 0 —bg +1by by — ibsy
Ng =
—b1 +1iby b3+ iby 0 0
—bg +1iby —by — ibsy 0 0
which correspond to physical fields in the reduced theory, and
1
ny 0
nt = :
0 ng
1Ccq ca +ics 0 0
—Co + ’ng —iCl 0 0
1 _
A =
0 0 1cy cs + icg
(D.15)
0 0 —c5 + icg —icy
idy da + id3 0 0
—dy +ids  —idy 0 0
1 _
Nsg =
0 0 idy ds + idg
0 0 —ds +1idg  —idy

which are unphysical fields in the reduced theory, and will be eliminated from the fluctuation La-

§£(2)

grangian by solving the equation 55— = 0.

As shown in other approaches in this thesis, the AdSs sector and the S° sector are decoupled at

one-loop level. As the S° part of the classical solution is the vacuum, the Lagrangian for the quadratic
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fluctuations in the S° sector takes the simple form,

1 2
L2 = sTr 50414004 — D4nABA_ — % (4, T)? | - (D.16)

We can integrate out the unphysical fields by solving the equation, which is derived by varying this
Lagrangian by 6 A_,

which eliminates the kinetic term for the unphysical fields. Recalling [nL, T] = 0, then we find that
the potential term does not contain the unphysical fields. Hence the resulting Lagrangian contains

only the physical fluctuations nj,
2) Lo g (T )2
£§) = STr|Sosmho-nh - 5 ([nA,TD . (D.18)
In terms of the component fields introduced in (D.14), the Lagrangian is written as
4
2
L2 =23 (04b:0-b; — 12b?) . (D.19)
i=1
This shows that the four physical fields are massive fluctuations with characteristic frequencies,
vn?+pu?, (D.20)

which agrees with the string theory result [69].

Let us discuss the AdSs sector. First we shall integrate out the unphysical fields. Varying the

fluctuation Lagrangian (D.13) by dA_ yields the following equation,
(D)t =0. (D.21)

This equation can be solved once we rewrite it in terms of the component fields, (D.14) and (D.15),

8+cl — 2M1a3 = 0, 8+CQ — 2M1a2 — MQCg = 0, 8+C3 + 2M1a1 + M202 = 0, ( )
D.22

a+C4 —2Mia3 =0, 0Oics+2Mias — Macg =0, 8+66 4+ 2Ma1 + Mscs =0,
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where My and M are constants,

2 _ 2 ) 2,2
M, = u, M,y = AR (D.23)
M 1
The solution is
=1 =2Migras, =35y (Oraz — Maar) , c3 = 53ty (~04a1 — Maag) |
1 =c4 19,935 C2= Jp2igm (O1az 201) , €3 M2+0% (=0 202) (D.24)
o5 = rig\fﬁ (—8ya1 — Maas) , cg= MQgLﬁag (—04a1 + Maas) .
After solving the gauge equation (D.21) the Lagrangian takes the following form,
9 2 _ 1
£, = STr[; (Ol + [As,nl]) (- + [A-0l]) = & [nl, (95 T0) " | [, 7]
(D.25)

—5[AL ool + [ ] [t + & [0, 7], (05" Tg0)| ”l] ’

where Ay = g, 9, go+ 90 LA ogo. For the choice of go and A in (4.109), A has nonzero components

in both the m and b spaces, and Ai is equal to A4 by definition.

Plugging (D.14) and (D.15) with (D.24) into the Lagrangian (D.25), then we get the fluctuation
Lagrangian expressed in terms of the physical component fields only. The fluctuation fields decouple

into two smaller subsectors. The first subsector, containing a1 and as, is described by the Lagrangian,

2 9
0+0- + (2r “)ai], (D.26)

2 2y 2 2
L = 2i;2 [&rai@,ai — (2k° — p)ai +4Mia; M2+ ai

where M; and M, are defined in (D.23). Due to the existence of the nonlocal terms, this Lagrangian

is different form the fluctuation Lagrangian found by perturbing the Nambu action [IWA, 97],

L1 =2 Z [8+ai8_ai — (2K% — /ﬂ)aﬂ . (D.27)

i=1,2
However, the Lagrangian (D.26) yields the correct fluctuation frequencies, /n? + 2k2 — p2, which
agree with the string theory result [69]. The reason for this result is as follows. The present Lagrangian

(D.26) is rewritten as

AM?

Li=-2 a;010;, O1=0.0-+(2r"—p?), 02:1_1\/!227%-33'

i=1,2

(D.28)
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We have det(O0103) = det O; det O3 and O is the operator found in the string theory result (D.27). In
the present case det Qs gives a trivial contribution, then the frequencies derived from the Lagrangian
(D.26) are the same as the frequencies obtained by solving det @; = 0. Note also that the p — 0 limit

where the classical string is not stretching in S° is well-defined only in the Lagrangian (D.27).

The other subsector contains az and a4 and is described by the Lagrangian,

Lo = 2|: Z 8+ai(9_ai + 4M12agga3 + 2asg (Mga_ + u8+) aql| . (D29)
i=3,4 +

Again this Lagrangian is different from the Lagrangian found in [IWA, 97],

Lo =2 Z 0ra;0_a; — 4 (/{2 — u2) a% +4p (Oras + 0—a3) ay . (D.30)
i=3,4

These two Lagrangian have the same foundational determinant and then give the same set of charac-

teristic frequencies,

\/n2—|—2/£2:i:2\//£4—|—n2,u2, (D.31)

At the level of the Lagrangian, the two Lagrangians (D.29) and (D.30) are related by a nonlocal

transformation; by replacing a4 — a4 — 2”2;“2 iag in (D.29) we obtain the Lagrangian (D.30).

Let us evaluate the functional determinant in the bosonic sector. From the Lagrangian (D.26) and
(D.29) we find that the functional determinant contribution of the physical fluctuations. Here we
should also take into account the functional determinant contributions from the equations (D.17),
(D.22), and the nonvanishing contributions arising from fixing the H gauge, d A4y = 0. Then the total
functional determinant in the bosonic sector is given by

([det (22 + MS)]2)1/2 ( [det (040 + 25 — 2)]” [det (040 + p2)]"

e (D.32)

x [det (0302 + (0% + 0%) p? +2040_ (262 — p?))] [det (9% + ,LLQ)]Z) ;
where the physical contributions are correctly reproduced. The unphysical part in this functional
1/2
determinant is ([det (83r + M22)]2 / [det (8_2|r + ,u2)]2) . By the same argument as the treatment of
the shift in (4.69), one can confirm that the shifts M2, u? are eliminated, then the unphysical part
totally vanishes. Hence our result in the bosonic sector in the dA; = 0 gauge agrees with that found

in the approach based on the PW identity in chapter 4.
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Fermionic fluctuations

As the fermionic sector does not contain the fluctuations of the gauge fields 0 A_, the computation is

straightforward. We define component fields of the fermionic fluctuations in the following way,

0 ZXg 0
\I}R = , \IIL —
Dr 0 D
where
0 0 a1 + 1o
0 0 —asg + 1oy
Xgp =
as +tag  ar —iag 0
a7+ 1oy —as + tag 0
0 0 —Qg — iOé5
0 0 ag — 1oy
Dr =
Qs+t oy —tag 0
a4 +tag  —ao +iaq 0
and
0 0 (B +if2)v*
0 0 (B3 —ifa)v
X =
(Bs +ifBe)v* (=7 + i0s)v* 0
(Br +ifs)v  (Bs —ifs)v 0
0 0 (=086 — if3s5)v
0 0 (=B +ifr)v
D1, =
(B2 +if1)v (=P +if3)v* 0
(Ba+iB3)v (P2 —ifr)v* 0

—ag — 1oy

—op + a5

o3+ ioy
] — 10

0

0

0

0

(B3 + iBa)v”
(=B1 + if2)v
0
0
(—Bs — iBr)v*
(Bs — 165 )v*
0

0

(D.33)

(D.34)

(D.35)

(D.36)

(D.37)
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where all component fields are real Grassmann. The extra factor v, = exp(ik?7/u) is introduced in
X and 9, such that all coefficients in the Lagrangian become constant. The resulting Lagrangian is
Lrp =2

8
1=

. (00— + B;04 ;) — p (aran + azoy + asag — arag — 182 — B304 — B506 + B7/53)

+2K (184 + cof3 — a3 — b1 — a5 08 + a7 + arfBs — 04855)] ,
(D.38)

from which one can derive characteristic frequencies of the fermionic fluctuations. They agree with
the string theory result [69] up to certain trivial shift and exactly agree with the result obtained by

using the PW identity in (4.133). Then the functional determinants also match (cf. (4.134)),
1 1
det <a_ia% + 20407+ 7 (0F + 02) p* + o (457 = u2)2> . (D.39)

Directly from the agreement of (D.32) and (D.39) with the results in section 4.4.1, we find that the

one-loop contribution to the partition function is given by (4.135).

Let us comment on the two-loop computation in this approach. The §A = 0 gauge does work properly
at one-loop order, but is not expected to be useful in the two-loop computation. The primary reason
for this is the difficulty in dealing with the nonlocality which can not be eliminated in the case of the
(S, J) folded string. The nonlocality enters when we solve the gauge equation derived by varying the

fluctuation Lagrangian by §A_. Up to quartic order, the gauge equation is written as

1 1 +
(Do 3 10 Do = 20,0, + Gl D) =o0. (D.40)

Since it is hard to solve it exactly, we shall solve this equation order by order. First we shall consider
the following expansion,

where the index (7) represents the i-th order of the physical fluctuations nll. At the leading order the

equation takes the form,

Dy, + [A+,n(ﬁ)] v [A” ,n”} —0. (D.42)

which was already solved by (D.24) and the solution contains nonlocal terms. Next we shall solve the
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equation for né) using the first order solution. The equation for né) is expressed by using n(ﬁ),

Ounsy+ [Avmty] — 5 [ ol + [ ] + [l ]| 2w, 0,7 = 0. (D.43)

Once the leading order solution né) is substituted, the latter two terms in this equation contain only
the physical field . Then the form of the equation (D.43) is the same as that of (D.42), and can be

in principle solved for né) by rewriting the equation in terms of the component fields.

The obstacle in redoing the computation for higher orders is the nonlocality of the solution; the solution

involves nonlocal terms such as i (aiBfﬁaJ’» and the nonlocality will be more complicated if we
+

discuss quartic terms in the fluctuation Lagrangian. As a result, the fluctuation Lagrangian containing

higher order terms looks almost intractable in this approach.

D.3 Two-loop computation in vacuum case

In chapter 4 we studied two-loop corrections near the folded string with large spin S in AdS3 taking
the limit ;¢ — 0 in which the angular momentum in S° vanishes. Here we shall check that the two-loop
correction vanishes in the opposite limit of the trivial reduced theory solution corresponding to the

BMN vacuum, i.e. in the case when

K— [, {—0. (D.44)
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In this case it is useful to define the “S” part of fluctuation fields with an additional rescaling by

w = €7 as follows (cf. (4.114) )

0 0 by + ibs (bg + Zb4)W
I 0 0 (—bg + ’Lb4)W* b1 — by
775 = )
—by + iby (bs + iby)w 0 0
—bg + ibg)w*  —by —ib 0 0
(—bs 1) 1 2 (D.45)
idy (dz + idg)W 0 0
(—dg + ZClg,)W>’< —idy 0 0
L _
Nsg =
0 0 idy (d5 + idg)W
0 0 (—ds + idg)w™ —idy
Also, the component fields of the fermionic fluctuations are to be defined as (cf. (4.128))
0 0 (a1 +iag)t,,  (az+iog)t,,
0 0 (—as +iag)ty,  (on —iag)t],
Xp= , (D.46)
(a5 +iag)t,, (a7 —iag)t,, 0 0
(a7 +iag)ty,  (—as +iag)t], 0 0
0 0 (—a6 — 2'015)151'(+ (—Oég — ia7)t2+
0 0 (ag — ia7)t* (—OZG + ia5)t
Dy = = B (D.47)
(v + ial)t;"+ (g — iag)t2+ 0 0
(g + iag)t;‘+ (—ag + ial)t1+ 0 0
0 0 (Br+if)t; (B3 +iBa)t]
0 0 (Bs —iBa)t,_ (=B +if2)t,
X = , (D.48)
(Bs +1ife)t,_ (=B +1iBs)t;_ 0 0
(ﬂ'? + Z‘/88)t17 (/85 - Z‘ﬂG)tgf 0 0
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0 0 (=86 —iBs)t,_ (—Bs —ifB7)t]_
0 0 (=Bs +iBr)t,_  (Bs —iB5)t;_
DL = ) (D49)
(Be+if1)t, (=Ba+iBs)t] 0 0
(Ba+iBs)t, . (B2 —if1)t;_ 0 0
where
ilz(r:ta) i(22+2u2)7ﬂ%
ty=e 2 | t,, =€ 2u (D.50)

Taking the limit (D.44) in the two-loop diagrams one finds cancellations between A and S sectors in

each type of diagrams leading to the vanishing two-loop correction.

One can also check this cancellation directly, by expanding near the reduced theory counterpart of

the BMN vacuum

go = Igxs, Ay =0.

(D.51)

In this case the 7, 0-dependent rescalings of fluctuations are not needed and 2d Lorentz invariance of

the perturbation theory is manifest. One then finds for the individual diagram contributions to the

coefficient in the two-loop effective action?

bosonic sunset : Ja=—-Jsg = —; [1]1[1],

bosonic double — bubble : Ja=—Jg= —% [1]I[1],
fermionic sunset : Jy = —Js = —6I[0]I[1] + 3[1]I[1],
fermionic double — bubble : Ja = —Jg = —6I[0]1[1] — 4I[1]I[1],
tadpole : Ja=—-Jg=0.

We conclude again that the sum of the A and S sector contributions vanishes.

(D.52)

2As above, here A and S stand for contributions from the fluctuations corresponding to reduced theory

counterparts of the AdSs and S° sectors.
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