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Abstract

The AdS5 ×S5 superstring action is constructed by the Green-Schwarz formalism. For quanti-

zation it is necessary to eliminate unphysical degrees of freedom from the action by solving the

Virasoro constraints and fixing the fermionic kappa-symmetry, which can be achieved by the

Pohlmeyer reduction preserving the two-dimensional Lorentz invariance and the integrability.

The resulting system is a gauged Wess-Zumino-Witten (gWZW) model deformed with a certain

integrable potential and two-dimensional fermions. This thesis explores the quantum relation

between the AdS5 × S5 superstring theory and the deformed gWZW model by evaluating the

reduced theory quantum partition functions for respective classical string configurations.

To understand the quantum relation between the original string theory and the reduced theory,

the one-loop computation in the reduced theory is first studied for homogeneous and inho-

mogeneous string configurations localized in subspaces. For these classical backgrounds we

demonstrate that the reduced theory partition function is exactly the same as the string theory

one, then they are equivalent at one-loop level.

Next we investigate the two-loop relation between the original string theory the reduced theory.

The two-loop computation in the reduced theory is performed by considering the long folded

string localized in AdS3. We show that the nontrivial finite terms of the two-loop partition

functions of the two theories match, exhibiting the same patterns of the bosonic contributions

and fermionic contributions. This is a strong indication that the AdS5 × S5 GS string and its

reduced form are closely related at the quantum level.
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Chapter 1

Introduction

Overview and motivation

The original motivation to introduce the one-dimensional object to elementary particle physics

was to construct a phenomenological model of strong interactions. This idea was forgotten after

the discovery of quantum chromodynamics (QCD) and due to shortcomings of the string theory

in four dimensions. Later physicists considered QCD string as a convenient tool for studying

strongly coupled regime of gauge interactions. While perturbative QCD is very successful, to

address the questions about its strong-coupling dynamics one needs alternative tools. String

theory is one of them.

A revival of string theory, as a unified theory of all the fundamental interactions, was driven

by the discovery that string theory can be a consistent, i.e., anomaly free, theory [1]. The

perturbative string theory in the first revolution during the 1980’s is summarized in [2] and

references therein.

A remarkable progress during the 1990’s, including a discovery of a new solitonic object, D-

brane [11], and string duality web accommodated by eleven-dimensional M-theory [3, 4, 5,

6, 7, 8, 9, 10], allowed for nonperturbative exploration not only in string theory but also in

gauge theory. The D-brane is a hypersurface where open strings can attach. In the low energy

limit open strings are described by gauge theory on the worldvolume of the D-brane. At the

1
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same time, a D-brane deforms the spacetime around it; when the number of the branes is

large, the stack of D-branes can be described as a supergravity soliton. Given the two different

descriptions of the D-brane, one might expect a connection between gauge theory and closed

string theory [12, 13].

The conjectured duality, the anti-de Sitter/conformal field theory (AdS/CFT ) correspondence,

elaborates this expectation and states the equivalence of a particular closed string theory and

quantum field theory. Strong/weak coupling nature of the AdS/CFT allows us to investigate

strongly coupled field theories in terms of weekly coupled gravity, which stimulated its appli-

cation to broad range of areas such as the holographic approach to QCD (see review article

[14] and references therein) and the connection between condensed matter and gravitational

physics (recent reviews are given in [15, 16]).

The most celebrated example in the AdS/CFT correspondence is the equivalence between type

IIB superstring theory in AdS5 × S5 and the N = 4 SU(N) Super Yang-Mills (SYM) theory.

On the gauge theory side, the theory is controlled by the Yang-Mills coupling gYM and the rank

of the gauge group N , whereas the parameters on the string theory side are the string coupling

gs and string length ℓs. Together with the identical radii of AdS5 and S5, R, these parameters

are related in the AdS/CFT duality as

g2
YM = 4πgs , R4 = 4πgsNℓ4

s . (1.1)

These relations explicitly show that the AdS/CFT is the strong/weak type duality. For exam-

ple, when the gauge theory is strongly coupled λ = g2
YMN ≫ 1, the string theory is at weak

coupling R/ℓs ≫ 1, that is, the type IIB supergravity is a good approximation. The dictionary

of the AdS/CFT correspondence provides a map between a string state in AdS5 × S5 and a

local gauge invariant operator in SYM; one can identify the energy of a given string state, E,

with the conformal dimension of the dual operator, △ [17, 18],

E(R/ℓs, gs) = △(λ, 1/N) . (1.2)
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Hence examining this formula in various regions in the parameter space is a nontrivial check of

the AdS/CFT duality. At early stage, this mapping was only confirmed for a small subset of

the operators; the chiral primaries in the gauge theory dual to the string states that survive in

the supergravity limit. In general, one should quantize strings in AdS5 ×S5, express the string

energy spectrum in terms of R/ℓs, gs and show its equivalence to gauge theory spectrum.

A nontriviality in formulating superstring theory in AdS5 × S5 stems from the existence of the

Ramond-Ramond (RR) background. Superstring action in a curved background supported by

nonvanishing RR fields can be constructed using the Green-Schwarz (GS) formalism leading to

the action which is invariant under the spacetime supersymmetry transformation [19, 20] (see

[21, 22] for GS action in a general supergravity background). The paper [23] introduced the

reinterpretation of the GS action as a two-dimensional sigma model on the coset superspace

F/G, where F is the target superspace isometry and G is its subgroup. Using the coset approach

to the GS superstring, the AdS5 × S5 case was considered in [24, 25]. In this case the coset is

F/G =
PSU(2, 2|4)

Sp(2, 2) × Sp(4)
. (1.3)

The authors there employed the exponential parametrization for the coset elements and solved

the Maurer-Cartan equations, then showed that the resulting action possesses the local fermionic

κ symmetry by introducing the three-dimensional topological Wess-Zumino (WZ) term. For

quantization we need to eliminate unphysical degrees of freedom. Fixing the local fermionic κ

symmetry and choosing the light-cone gauge necessarily causes the problem that the resulting

action contains terms quadratic and quartic in the fermions and the gauge-fixed action does

not exhibit the two-dimensional Lorentz invariance beyond the quadratic level [26, 27].

Although the AdS5×S5 superstring sigma model is in general nonlinear, it can be simplified by

taking a specific limit [28, 29], where the background geometry takes the form of the plane wave

metric supported by a RR 5-from field. This is one of the three maximally supersymmetric

solutions of type IIB supergravity, the other two are flat spacetime and AdS5 × S5 spacetime

[30, 31]. In the plane wave background the GS string becomes a free massive theory once one

chooses the light-cone gauge, and so, it is straightforwardly quantized as in the flat background.
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Furthermore, in [32], Berenstein, Maldacena and Nastase (BMN) proposed the duality relating

type IIB superstrings in the maximally supersymmetric plane wave background to the four-

dimensional N = 4 SYM theory in the so-called BMN limit,

N → ∞, and then, J → ∞ with λ̃ ≡ λ

J2
fixed, (1.4)

where J is an R-charge in the SYM side, or equivalently, an angular momentum in S5 in the

string side. With the agreement in the asymptotic behavior between the spectra of E − J in

the string theory side and △ − J in the gauge theory side, a concrete AdS/CFT dictionary

relating string states and SYM operators in the near-BPS sector was constructed.

Despite the large amount of supporting evidence and the wide range of applications of the

AdS/CFT correspondence, no rigorous proof of it was given so far. This is due to the difficulty

of the string quantization in a nontrivial background. It is integrability that allows us to deal

with this difficulty and provides a better way of understanding both the AdS5 ×S5 superstring

theory and N = 4 SYM theory.1 On the string theory side, the classical integrability for the

AdS5 × S5 bosonic string theory was found based on a coset model on F/G = SU(2,2)×SU(4)
Sp(2,2)×Sp(4) in

[34] and it was shown in [35] the classical integrability also exists in the full AdS5 × S5 GS

superstring theory. Using the classical integrability, the algebraic curve approach to the classical

and semiclassical aspects of finite-gap string solutions was developed, e.g., in [36, 37, 38, 39]

(for further quantum generalizations see e.g., [40, 41]).

In this thesis we are going to explore an approach to string theory in AdS5 × S5 based on

Pohlmeyer reduction. Initiated by Pohlmeyer’s original work where it was shown that the

equation of motion of the chiral S2 sigma model is reduced to the sin-Gordon equation [42],

the reduction technique was applied to conformal-gauge bosonic string theory, which involves

studying the integrability of classical string motion in de Sitter spacetime [43, 44] and finding

classical string configurations localized in subspace of AdS5 × S5 [45, 46, 47, 48, 49, 50, 51, 52,

53, 54, 55]. The integrability property allows for powerful methods to generate soliton solutions

1The integrability on the gauge theory side is not discussed in this thesis. See the review article [33] and
references therein for the progress in this direction.
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in the reduced theory, and string solutions can be constructed from the solutions in the reduced

theory. For example, string theory in R×S3 and string theory in AdS3 ×S1 are reduced to the

complex sin-Gordon model and the complex sinh-Gordon model, respectively. More recently

the Pohlmeyer reduction of AdS3 string theory was used in evaluating the minimal area of an

open string surface ending on null Wilson loop, which is related to the strong-coupling limit of

N = 4 SYM theory [56, 57, 58, 59, 60]. For this theory it is known that the reduced form is the

generalized sinh-Gordon model. Although one can easily switch off the S1 sector of most of the

classical string solutions stretching in AdS3×S1, the relation between the complex sinh-Gordon

model and the generalized sinh-Gordon model is understood only at the level of equation of

motion. The extension of the above argument on the AdS3 theory to the AdSn × Sm case for

general n, m is nontrivial. Open string solutions stretching in AdS4, AdS5 or AdS3 × S3 are

discussed in [58, 59, 60, 61, 62, 63].

The Pohlmeyer-type reduction of the full AdS5 × S5 superstring sigma model was proposed in

[64, 65, 66] based on the Lagrangian formulation of the generalized sin-Gordon models reduced

from sigma models in symmetric space [67]. In the construction of the reduced theory, new

variables are algebraically related to supercoset current components, the Virasoro conditions

are automatically solved, and the local fermionic κ symmetry is fixed. The resulting system is

expressed as gauged Wess-Zumino-Witten (gWZW) model associated with the coset,

G/H =
Sp(2, 2) × Sp(4))

[SU(2)]4
, (1.5)

and deformed with an integrable potential and two-dimensional fermionic fields. The reduced

Lagrangian exhibits the two-dimensional Lorentz invariance, and after integrating out the gauge

fields, the reduced theory involves 8 bosonic degrees of freedom and 16 fermionic degrees of

freedom, i.e., involves only physical degrees of freedom.

While the Pohlmeyer reduction connects the two theories at the level of equations of motion, the

deformed gWZW model and the original superstring theory are classically different in the sense

that they are governed by different Hamiltonians and Poisson bracket structures. However,

this does not necessarily imply that their quantum theories are different. For bosonic string
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theory in the R × S3 subspace of AdS5 × S5, the Faddeev-Reshetikhin reduction of the SU(2)

principal chiral sigma model is admitted [68], where the Hamiltonian and Poisson brackets

for the original sigma model are replaced by new Hamiltonian and Poisson brackets. After

quantization of this new system, the original sigma model is recovered in a certain limit. In

this thesis we shall investigate the quantum relation between the full AdS5 × S5 superstring

sigma model and its Pohlmeyer-reduced form in terms of their partition functions.2

If the quantum relation between the two theories is uncovered, quantum aspects of the AdS5×S5

GS superstring could be understood by studying the Pohlmeyer-reduced form instead of the

original string theory. There are several advantages in discussing the Pohlmeyer-reduced form

of the AdS5 × S5 superstring sigma model.

The primary point is that one solves the Virasoro constraints of the original theory pre-

serving the Lorentz invariance on the worldsheet and the classical integrability. Hence the

Pohlmeyer-reduced theory could be regarded as a starting point for a “first-principles” solu-

tion of the AdS5 × S5 superstring and used to derive S-matrices for elementary excitation on

the worldsheet with the two-dimensional Lorentz invariance [73, 74, 75, 76, 77, 78] (see also

[53, 54, 55, 79, 80, 81] for the Pohlmeyer-reduced approach to sigma models on other symmetric

spaces). This should be in contrast with lack of the 2d Lorentz invariance in the light-cone

gauge AdS5 × S5 superstring S-matrix determining the full quantum string spectrum once the

quantum integrability is assumed [82, 83, 84, 85].3 Further expectation in this direction could

be to find an exact Lorentz-invariant S-matrix as for other two-dimensional Lorentz-invariant

theories [86, 87].

Another advantage of the Pohlmeyer reduction is that the reduced model has a simpler quantum

2The AdS5 × S5 superstring sigma model and the deformed gWZW model have common properties. As
noticed in [64], the bosonic interaction potential and fermionic “Yukawa” term in the reduced theory are exactly
the same as the original AdS5 × S5 superstring Lagrangian expressed in terms of the new variables. Also, the
UV finiteness was confirmed up to two-loop order for the AdS5 × S5 GS superstring theory in [69, 70, 71] and
for the Pohlmeyer-reduced theory in [72].

3In [77, 78] the S-matrix in the Pohlmeyer-reduced theory was studied by using the quantum group defor-
mation, where the S-matrix describing the magnon excitations for the original string theory is realized as a
limiting case and the relativistic reduced theory S-matrix is obtained in another limit. However, the direct
connection between the light-cone gauge AdS5 × S5 superstring S-matrix and the relativistic reduced theory
S-matrix is still unclear. Also, there are significant differences between the quantum deformed S-matrix and
the perturbative S-matrix in the reduced theory [75].
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structure than the original theory does. In the bosonic subsector, this is because the reduced

theory contains only physical degrees of freedom and one need not consider the interactions

between physical and unphysical fluctuations (after gauge degrees of freedom are properly

integrated out). For fermions, the Lagrangian in the reduced theory contains only quadratic

terms in fermions in the “Yukawa” term, which means that fermionic loop never becomes

higher than one even in higher-loop computation of the deformed gWZW model. Therefore,

the reduced theory could be a useful alternative for the purpose of investigating the quantum

strings in AdS5 × S5.

Original contributions

This thesis is devoted to elucidating the quantum relation between AdS5 × S5 superstring

theory (ST) and its Pohlmeyer-reduced theory (PRT) by comparing their partition functions.

The original research was published in [HIT, IWA, IRT].

In [HIT] it was conjectured that the one-loop equivalence of the two theories should be realized

at the level of the quantum partition functions,

Z
(1)

ST = Z
(1)

PRT , (1.6)

where (1) represents that both the reduced theory partition function and string theory partition

function are at one-loop level. While the one-loop equivalence may be naively expected from

that of the equations of motion, the explicit demonstration of (1.6) is needed for individual string

configurations. The contribution of the paper [HIT] is to show that characteristic frequencies

of quadratic fluctuations found in the GS superstring in the conformal gauge agree with those

found in the reduced theory for cases of any classical string localized AdS2×S2 and homogeneous

strings in R × S3 or AdS3 × S1. All of the results there support the conjecture (1.6) .

In [IWA] the semiclassical equivalence of the original theory and reduced theory was investigated

at the level of the fluctuation Lagrangian for more nontrivial classical string configurations

lying in AdS3 × S1. The examples of the classical solutions include the (S, J) folded string,

the (S, J) circular string, the (S, J) spiky string and the generalized folded string with both
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the orbital momentum and the winding on a big circle of S5. Especially, it was shown that

the Lagrangian for quadratic fluctuations in the reduced theory is exactly the same as the

fluctuation Lagrangian found by perturbing the Nambu action in the static gauge for the (S, J)

folded string. This statement is stronger than (1.6).

In [IRT] the two-loop relation of the AdSn × Sn GS string theory (n = 3, 5) and its reduced

form was investigated by evaluating the two-loop effective action of the reduced theory for the

folded string solution localized in AdS3. Then it was proposed that the PRT side of the relation

(1.6) should be modified as

ΓPRT = − ln ZPRT =
1

2π
f(k) V2 , f(k) = a1PRT

+
2a2PRT

k
+ O(

1

k2
) ,

a1PRT
= a1ST

, a2PRT
= a2ST

+
1

4
a2

1ST
, (1.7)

where V2 is the string worldvolume and k is the coupling constant in the reduced theory assumed

to be proportional to the effective string tension
√

λ. Although the two-loop effective action

in the reduced theory contains extra term 1
4
a2

1ST
, the reproduction of the nontrivial part a2ST

implies that these two theories are nontrivially related at the quantum level.

This thesis also contains two original results which were not published.

In chapter 3 we discuss the one-loop computation for several string configurations in AdS3×S1.

If a classical string possesses both the orbital momentum and the winding on a big circle on

of S5, the reduced theory has µ+ ̸= µ− (see section 2.1 for the definition of µ±). In such a

case, we did not get the exact agreement of characteristic frequencies of individual fluctuations

in [IWA], while the sum of the frequencies in PRT agrees with the string theory result. One

solution to this is given in section 3.5, where we consider the (S, J) circular string solution as

an example.

The other result is the one-loop computation for a homogeneous solution in R×S5 in appendix

C. The cases we discussed so far are classical string solutions localized in subspaces of AdS3×S3.

Hence, this is the first exploration in the semiclassical structure of the reduced theory for a string

truly stretching in R × S5. As expected, the one-loop equivalence is demonstrated, although
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the structure of the reduced model is slightly different from the cases mentioned before.

Contents of this thesis

We shall start in the next chapter with a review of the classical Pohlmeyer reduction for the

AdS3×S1 bosonic string theory (section 2.1) and the AdSn×Sn GS string theory (section 2.2)

following the papers [HIT, 64]. For the bosonic string theory in AdS3 × S1 one can explicitly

write the relation between the embedding coordinates in the original string theory and two fields

of the reduced theory. There we will introduce two reduced models called the coth model and

the tanh model, which are connected by the nonlocal “T-duality” transformation. We shall show

that these two models are embedded in the reduced model of the AdS5 ×S5 superstring theory

and are related by the H × H gauge transformation rather than the H gauge transformation

in the full reduction, giving rise to much simplification of reducing classical string solutions to

the corresponding reduced theory solutions.

The main goal of chapter 3 is to demonstrate the one-loop equivalence of the original string

theory and the reduced theory in terms of their quantum partition functions.

In section 3.1 we shall discuss the (S, J) folded string. A folded string in pure AdS3 was

first studied as the simplest string state whose classical energy grows logarithmically with the

spacetime spin in AdS3 [88], and soon after, this solution was extended to the (S, J) folded

string solution in AdS3 × S1 where the S1 sector is the pointlike string moving along a big

circle of S5, i.e., the BMN state [89]. Its quadratic fluctuations were found from the Nambu

action in the static gauge and in the Polyakov action in the conformal gauge [89, 90], and the

equivalence of these two approaches was shown at the one-loop level in [91]. Here one may ask

which type of the fluctuation Lagrangian arises in the reduced theory. We shall show that the

fluctuation Lagrangian derived from the Nambu action is related to that of the coth model.

In section 3.2 we shall study the homogeneous (S, J) circular string solution which has both

the angular momentum and the winding on a big circle of S5, and gives us the first example of

µ+ ̸= µ− (see section 2.1 for the definition of µ±). In [38, 92, 93] semiclassical expansions around

the circular string were worked out, and in particular, its fermionic fluctuations are evaluated by
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carrying out the worldsheet computation in [93] and by employing the algebraic curve method

in [38] (see also [94]). We shall show that the fluctuation Lagrangian of the reduced theory

is equivalent to the Lagrangian found in [93]. As the circular string is homogeneous, we can

evaluate characteristic frequencies of its quadratic fluctuations also in the reduced theory. In

the case of the (S, J) circular string the total sum of the bosonic and fermionic frequencies in the

reduced theory agrees with the string theory result although some of the individual frequencies

appear to disagree.

A spiky string solution in AdS3 was first found in [95] as a generalization of the folded string

solution, and extended to a solution stretching in AdS3 × S1 in [96]. In section 3.3 we shall

discuss the (S, J) spiky string solution and derive its fluctuation Lagrangian of the reduced

theory. Our result on the semiclassical expansions for the (S, J) spiky string is expected to

agree with the one in the original string theory. As the (S, J) spiky string solution is also the

case of µ+ ̸= µ− (see section 2.1 for the definition of µ±), we consider that the discrepancy

could happen for the individual fluctuations, but the total sum the fluctuations should be the

same as in the string theory. We shall also discuss the fluctuation Lagrangian in the limiting

cases of the (S, J) spiky string; spiky string without motion or stretching in S5, and its folded

string limit.

In the large spin limit, spikes of the spiky string approach the conformal boundary of AdS3, and

the solution becomes locally equivalent to the scaling limit of the folded string. The existence

of this homogeneous limit is shown in [96] where the expression for its string energy is similar

to that for the homogeneous (S, J) folded string. A generalization of the (S, J) folded string

solution leads to the explicit construction of another limiting solution of the (S, J) spiky string;

the new folded string has both the orbital momentum and the winding in the S1 sector [97].

This solution again has the scaling limit where the solution becomes homogeneous, which is

the case we shall study in section 3.4. As happened in the circular string case, some individual

characteristic frequencies in the reduced theory disagree with the result in [97], but the sum of

the frequencies is the same as in the string theory.

The disagreement of characteristic frequencies of the individual fluctuations found in the µ+ ̸=
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µ− cases in section 3.2 and section 3.4 can be resolved by modifying the relation between the

embedding coordinates in the original string theory and two complex sinh-Gordon fields in the

reduced theory. This prescription will be discussed in section 3.5 by considering the (S, J)

circular string solution.

Chapter 4 will be devoted to investigating the two-loop relation between AdSn × Sn GS string

and its reduced theory for n = 3, 5. Since the two-loop computation for a general string

configuration is complicated, we shall consider the infinite spin limit of the folded string in

AdS3. This case was studied in [69, 70] in the original string theory.

We will give a summary of the two-loop computation for the long spinning string in the original

string theory and the reduced theory in section 4.1. While the non-trivial parts of the two two-

loop partition functions agree, the reduced theory partition function contains an extra two-loop

term proportional to the square of the one-loop coefficient in both the n = 3 and n = 5 cases.

Section 4.2 will review the action of reduced theory for string theory in AdSn × Sn and then

explain its perturbative expansion around a general classical configuration. We shall follow

an approach based on the Polyakov-Wiegmann identity, by which the unphysical degrees of

freedom contained in the gauge fields are isolated. We will present the fluctuation Lagrangian

in this approach up to quartic order and show the Feynman diagrams that contribute to the two-

loop partition functions in the reduced theory. In general, individual diagram contributions are

gauge-dependent, so some graphs may or may not appear depending on the gauge choices. In the

original string theory non-1PI diagrams did not contribute in the conformal gauge [69, 70], but

did in the light-cone gauge [97]. In the present case we will also have nonvanishing contributions

of the non-1PI diagrams in the reduced theory.

In section 4.3 we will consider the AdS3 × S3 reduced theory using two approaches. The first

approach is to use the Polyakov-Wiegmann identity mentioned above, where the unphysical

degrees of freedom are still involved (approach I). The second approach is to impose a gauge

on g ∈ G and integrate out the gauge fields from the deformed gWZW Lagrangian (approach

II). The resulting system contains only physical degrees of freedom and is described by sum

of the complex sinh-Gordon and the complex sine-Gordon models coupled to two-dimensional
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fermions. We shall compare the results of the two approaches and suggest a resolution such

that they provide the same result.

In section 4.4 we shall discuss the two-loop computation in the reduced AdS5 × S5 theory. As

approach II in AdS3×S3 case based on integrating out gauge fields first appears to be difficult,

we will follow approach I using the Polyakov-Wiegmann identity. We will first show that the

one-loop partition function in the reduced theory will match again the corresponding string

theory result. Then we will discuss the two-loop computation and present the final expression

for the two-loop coefficient (4.11) by a direct analogy with the AdS3 × S3 case.

Chapter 5 will contain a summary and remarks on open problems.

The psu(n, n|2n) superalgebra for n = 1, 2 will be summarized in appendix A, which will be used

when we introduce component fields of the fluctuations in the reduced theory. In appendix B

we shall relate the parametrization of the supercoset PSU(2,2|4)
Sp(2,2)×Sp(4) to the embedding coordinates

in AdS5 × S5. Appendix C will deal with the one-loop computation in the reduced theory

for strings in R × S5. By the analogous computation in chapter 3 we will show the one-loop

equivalence for a pulsating string in R×S2 in appendix C.1, a two-spin circular string in R×S3

in appendix C.2 and a short two-spin in R × S5 in appendix C.3. Appendix D will contain

remarks on the computation for AdS5×S5 in chapter 4, including the investigation on nonlocal

transformations such that physical modes decouple from unphysical modes in appendix D.1,

the one-loop computation with an alternative gauge choice in appendix D.2, and the BMN limit

in the two-loop computation in appendix D.3.



Chapter 2

Pohlmeyer reduction

This chapter is devoted to a description of the Pohlmeyer reduction of bosonic string theory

in AdS3 × S1 and GS string theory in AdS3 × S3 and in AdS5 × S5. Pohlmeyer originally

proposed a way of reducing the equations of motion of the sigma model on R × S2 to the

sin-Gordon equation [42]. This work is extended to the case of a sigma model on R×S3 and its

reduced model is the complex sin-Gordon theory. The construction of these reduced model can

be applied for the AdS3 × S1 bosonic string theory with a slight modification. In section 2.1

we shall review the Pohlmeyer reduction of bosonic string theory in AdS3 × S1 being based on

the coset model on SO(2, 2)/SO(1, 2). We will particularly focus on two reduced models called

the coth model and the tanh model of the complex sinh-Gordon theory, which are related by

the “T-duality” transformation as discussed in detail in [64] for complex sin-Gordon model. In

section 2.2 we shall review the Pohlmeyer reduction of GS AdSn×Sn string theory for n = 3, 5

following the papers [HIT, 64].

13
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2.1 Pohlmeyer reduction of bosonic string theory in AdS3×

S1

Our starting point is the worldsheet Lagrangian for a bosonic string propagating in AdS3 × S1

spacetime,

L = LAdS + LS , (2.1)

with

LAdS = ∂+Y P∂−YP − Λ
(
Y PYP + 1

)
,

LS = ∂+XM∂−XM − Λ̃
(
XMXM − 1

)
,

(2.2)

where ∂± = ∂τ±∂σ and the contraction is defined by using η = diag(−1, 1, 1,−1) for P,Q, · · · =

0, 1, 2, 3 indices (AdS3 sector) and δ = diag(1, 1) for M, N, · · · = 1, 2 indices (S1 sector).

Reflecting the fact that the S1 sector of a string solution in AdS3×S1 is always homogeneous, the

AdS part of the stress tensor satisfies TAdS
±± = −µ2

± with constant µ±. Because the worldsheet

of a closed string is a cylinder, it is not necessarily allowed to set µ+ = µ− ≡ µ.1 Instead we

introduce the mass scale in the reduced theory by µ =
√

µ+µ−. This prescription will be used

in the case of classical string with both the orbital momentum and the winding in the S1 sector

(see sections 3.2, 3.3, 3.4).

In the case of the AdS3 ×S1 bosonic string theory, we can explicitly write the relation between

the embedding coordinates and scalar fields of the reduced theory. Let us first look at the

construction of the coth model. Introduce a set of O(2, 2) vectors by YP , ∂+YQ, ∂−YR and

KP ≡ ϵQRSPY Q∂+Y R∂−Y S, and define ϕ and θ
A

by

∂+Y P∂−YP = −µ2 cosh 2ϕ
A

,

KP ∂2
±Y P = 4µ3 cosh2ϕ

A
∂±χ

A
,

(2.3)

1We have µ+ = µ− in several cases, e.g., when the S1 sector is the BMN vacuum.
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then these ϕ
A

and χ
A

satisfy the complex sinh-Gordon equations,

∂+∂−ϕ
A

+
coshϕ

A

sinh3 ϕ
A

∂+χ
A
∂−χ

A
+ 1

2
µ2 sinh 2ϕ

A
= 0 ,

∂+(coth2 ϕ
A

∂−χ
A
) + ∂−(coth2 ϕ

A
∂+χ

A
) = 0 ,

(2.4)

which follow from the Lagrangian of the coth model,

Lcoth = ∂+ϕ
A
∂−ϕ

A
+ coth2ϕ

A
∂+χ

A
∂−χ

A
− 1

2
µ2 cosh 2ϕ

A
. (2.5)

Another model of the complex sinh-Gordon theory is the tanh model obtained by replacing

(2.3) by

∂+Y P∂−YP = −µ2 cosh 2ϕ
A

,

KP ∂2
±Y P = ∓4µ3 sinh2ϕ

A
∂±θ

A
.

(2.6)

The resulting equations describe the tanh model,

∂+∂−ϕ
A
− sinhϕ

A

cosh3ϕ
A

∂+θ
A
∂−θ

A
+ 1

2
µ2sinh2ϕ

A
= 0 ,

∂+(tanh2ϕ
A

∂−θ
A
) + ∂−(tanh2ϕ

A
∂+θ

A
) = 0 ,

(2.7)

whose Lagrangian is

Ltanh = ∂+ϕ
A
∂−ϕ

A
+ tanh2ϕ

A
∂+θ

A
∂−θ

A
− 1

2
µ2 cosh 2ϕ

A
. (2.8)

As pointed out in [64] for the complex sin-Gordon model, these two models are related at the

level of equations of motion by the “T-duality” transformation,

∂±χ
A

= ∓ tanh2ϕ
A

∂±θ
A

. (2.9)

Because this transformation is non-local, a classical solution in the reduced theory might take

a complicated form in one model even if it is simple in the other model.

As we will see in the next chapter, the perturbation in the complex sinh-Gordon model describes

a part of the fluctuations in the reduced model of the AdS5×S5 GS string. Moreover, it can be
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a useful tool for evaluating a complicated subsector of the physical fluctuations in the reduced

AdS5 × S5 theory.

2.2 Pohlmeyer reduction of AdSn × Sn Green-Schwarz

string

The AdSn × Sn GS string can be described by the F/G coset sigma model where F =

PSU(1, 1|2) × PSU(1, 1|2), G = SU(1, 1) × SU(2) for n = 3 and the F = PSU(2, 2|4), G =

Sp(2, 2)×Sp(4) for n = 5 [24]. The essential feature of the superalgebra psu(1, 1|2), psu(2, 2|4)

is that it admits a Z4 automorphism Ω such that the condition Z4(F ) = F determines the

maximal subgroup to be G.2 Regarding a coset element f as a map from the string world-

sheet into the graded group F , the current the left-invariant current J = f−1df belongs to the

superalgebra of F , then is decomposed as

J = f−1d f = A + Q1 + P + Q2 , A ∈ f0, Q1 ∈ f1, P ∈ f2, Q2 ∈ f3 . (2.10)

For the latter purpose let us introduce new notations for the bosonic components, g = f0 and

p = f2. A is the algebra of the subgroup G defining the F/G coset, P is the bosonic “coset”

component, and Q1, Q2 are the fermionic currents.

The GS action in the conformal gauge is written in terms of these components,

IST =

√
λ

4π

∫
d2σLGS , LGS = STr

[
P+P− +

1

2
(Q1+Q2− − Q1−Q2+)

]
, (2.11)

where ∂± = ∂τ ± ∂σ. The conformal-gauge (Virasoro) constraints are

STr (P±P±) = 0 . (2.12)

This system is invariant under a local G gauge transformation, f → fg. The equations of

2Important aspects of the psu(1, 1|2) algebra and the psu(2, 2|4) algebra are summarized in appendix A.
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motion are derived by varying (2.11) by f ,

∂+P− + [A+, P−] + [Q2+, Q2−] = 0 ,

∂−P+ + [A−, P+] + [Q1−, Q1+] = 0 ,

[P+, Q1−] = 0 , [P−, Q2+] = 0 ,

(2.13)

which should be supplemented by the conformal gauge constraints (2.12) and by the Maurer-

Cartan equation,

∂−J+ − ∂+J− + [J−, J+] = 0 . (2.14)

Under the Z4 decomposition the Maurer-Cartan equation (2.14) decomposes as follows

∂−P+ − ∂+P− + [A−, P+] + [Q1−, Q1+] + [P−,A+] + [Q2−, Q2+] = 0 ,

∂−A+ − ∂+A− + [A−,A+] + [Q1−, Q2+] + [P−, P+] + [Q2−, Q1+] = 0 ,

∂−Q1+ − ∂+Q1− + [A−, Q1+] + [Q1−,A+] + [P−, Q2+] + [Q2−, P+] = 0 ,

∂−Q2+ − ∂+Q2− + [A−, Q2+] + [Q1−, P+] + [P−, Q1+] + [Q2−,A+] = 0 .

(2.15)

Note that the first equation is the sum of the first and second equations in (2.13), then automat-

ically solved by the equations of motion. The Pohlmeyer reduction procedure involves solving

the equations of motion and Virasoro constraints by introducing new variables parametrising

the physical degrees of freedom. For the new variables, the final three equations in the decom-

posed Maurer-Cartan equation (2.15) yield nontrivial equations which will be the equations of

motion in the reduced theory.

The following is the brief description on the Pohlmeyer reduction (for more details see [64]).

Before solving the Virasoro constraints, let us fix the G gauge and find a useful form of P± for

the reduction. This can be done by the polar decomposition theorem which states that for any

k ∈ p there exists g0 ∈ G such that g−1
0 kg0 ∈ a (see appendix A for the definition of p and a).

Hence it is allowed to use a G gauge transformation to put P+ into the form,

P+ = p1T1 + p2T2 , (2.16)
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where p1, p2 are real functions and T1, T2 ∈ a are

T1 = i
2

diag (1, −1, 0, 0) , T2 = i
2

diag (0, 0, 1, −1) , for n = 3 ,

T1 = i
2

diag (1, 1, −1, −1, 0, 0, 0, 0) , T2 = i
2

diag (0, 0, 0, 0, 1, 1, −1, −1) , for n = 5 .

(2.17)

From the Virasoro constraints (2.12) we have the condition p2
1 − p2

2 = 0. Then we set p1 = p2 =

p+, that is,

P+ = p+T , T = T1 + T2 =
i

2
diag (1, 1, −1, −1, 1, 1, −1, −1) , (2.18)

We can apply the polar decomposition theorem to P−; there exists g ∈ G = Sp (2, 2) × Sp (4)

such that

P− = p−g−1Tg , (2.19)

where p− is a real function. It should be noted that T is an element of the maximal abelian

subalgebra of p and induces the further orthogonal decomposition. The group H whose algebra

is h is then defined as the subgroup of G which stabilizes T ,
[
h, T

]
= 0, h ∈ H. Due to this

property there is an arbitrariness in the choice of g since P− is invariant under g → hg for

h ∈ H.

Next we shall show that p± are constants by solving the equations of motion in (2.13). If

one fixes the κ-symmetry gauge to project the fermionic currents as Q1 = Q
∥
1 and gQ2g

−1 =

(gQ2g
−1)∥, the last two equations in (2.13) implies Q1− = Q2+ = 0 because

[
T, f

∥
1,3

]
= 2T f

∥
1,3.

Then the first and second equations in (2.13) are simplified

∂+P− + [A+, P−] = 0 , ∂−P+ + [A−, P+] = 0 . (2.20)

Noticing that P+ ∈ h, the second equation is decomposed as

∂−P+ +
[
(A−)h , P+

]
= 0 , [(A−)m , P+] = 0 . (2.21)

Due to the block diagonal nature of P+, A− these equation should hold in the AdSn part and
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Sn part separately. In particular, the first equation in (2.21) reads ∂−(P+)1 +
[(
A1

−
)
h
, P 1

+

]
=

0,3 that ends up with the conservation laws in the individual subparts, ∂−tr1 (P+P+) = 0,

∂−tr2 (P+P+) = 0. Since tr1,2(T 2) ̸= 0, we can conclude ∂−p+ = 0. The same trick for the first

equation in (2.20) leads to ∂+p− = 0. Using the residual conformal diffeomorphism symmetry

it is always possible to set p± = µ± = const. Hence we get

P+ = µ+T ,

P− = µ−g−1Tg .

(2.22)

As seen in the reduction of the AdS3 × S1 bosonic string theory, there is an argument on the

constants µ±; if the sigma model was defined on 2d Minkowski space then we could use a

Lorentz transformation to set µ+ = µ− = µ as was done in [64]. However, if we are interested

in the case of the closed string when the worldsheet is a cylinder, then this is not possible. It

is still useful to define the following combination of µ+ and µ−,

µ =
√

µ+µ− . (2.23)

With the solutions for P±, (2.22), it is possible to rewrite A±. Under the Z2 decomposition,

A± = A± + (A±)m , A± = (A±)h , (2.24)

the second equation in (2.21) implies (A−)m = 0. Plugging (2.22) into the first equation in

(2.20), one finds that it is solved by

A+ = g−1∂+g + g−1 + g−1A+g . (2.25)

So the equations of motion (2.13) and the Virasoro constraints (2.12) have been totally solved.

All of the bosonic degrees of freedom have been encoded into an group element g ∈ G and

3Here we use the notation 1, 2 introduced in [64]. The index 1 represents the 4 × 4 su(2, 2) part and the
index 2 does the 4× 4 su(4) part in the 8× 8 supermatrix representation of psu(2, 2|4) described in appendix A
(similarly they respectively represent the 2 × 2 su(1, 1) part and the 2 × 2 su(2) part for psu(1, 1|2)). In terms
of this notation the supertrace STr is expressed as STr = tr1 − tr2.
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A± taking values in the algebra h of H, i.e.,
[
A±, T

]
= 0. Finally, we make the following

redefinitions of the non-vanishing fermionic fields

Ψ
R

= 1√
µ+

(Q1+)∥ ,

Ψ
L

= 1√
µ−

(gQ2−g−1)∥ .

(2.26)

Then we have rewritten the original currents in terms of a new set of fields, (g , A±, Ψ
R
, Ψ

L
),

describing only the physical degrees of freedom of the system.

Substituting these fields into the second, third and fourth equations in (2.15) we obtain the

following set of equations of motion for the reduced theory

∂− (g−1∂+g + g−1A+g) − ∂+A− + [A−, g−1∂+g + g−1A+g]

= −µ2 [g−1Tg, T ] − µ [g−1Ψ
L
g, Ψ

R
] ,

D−Ψ
R

= µ [T, g−1Ψ
L
g] , D+Ψ

L
= µ [T, gΨ

R
g−1] , D± = ∂± + [A±, ] .

(2.27)

The set of these equations exhibits H × H gauge symmetry,

g → h−1gh̄ , A+ → h−1A+h + h−1∂+h, A− → h̄−1A−h̄ + h̄−1∂−h̄

Ψ
R
→ h̄−1Ψ

R
h̄ , Ψ

L
→ h−1Ψ

L
h .

(2.28)

In order to write down a Lagrangian for the equations of motion (2.27) we should partially fix

the H × H gauge symmetry as in [HIT],

τ (A+) =
(
g−1∂+g + g−1A+g − 1

2
[[T, Ψ

R
] , Ψ

R
]
)
h

,

τ−1 (A−) =
(
−∂−gg−1 + gA−g−1 − 1

2
[[T, Ψ

L
] , Ψ

L
]
)
h

.

(2.29)

Here τ is a supertrace-preserving4 automorphism of the algebra h. This partial gauge fixing

4STr (τ (u1) τ (u2)) = STr (u1u2), u1,2 ∈ h.
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reduces the H × H gauge symmetry to the following asymmetric H gauge symmetry,

g → h−1gτ̂ (h) , A+ → h−1A+h + h−1∂+h, A− → τ̂ (h)−1 A−τ̂ (h) + τ̂ (h)−1 ∂−τ̂ (h)

Ψ
R
→ τ̂ (h)−1 Ψ

R
τ̂ (h) , Ψ

L
→ h−1Ψ

L
h ,

(2.30)

where τ̂ is a lift of τ from h to H. Hereafter we shall consider a special case where τ , τ̂ are

identity. The equations of motion, (2.27), and the gauge field equations, (2.29), follow from the

Lagrangian,

LdWZW = LgWZW + µ2 STr(g−1TgT )

+ 1
2
STr (Ψ

L
[T , D+Ψ

L
] + Ψ

R
[T , D−Ψ

R
]) + µ STr

(
g−1Ψ

L
gΨ

R

)
,

(2.31)

where LgWZW is the Lagrangian of the gauged G/H WZW model,

IgWZW =

∫
d2σ

4π
STr(g−1∂+gg−1∂−g) −

∫
d3σ

12π
STr(g−1dgg−1dgg−1dg)

+

∫
d2σ

2π
STr

(
A+ ∂−gg−1 − A− g−1∂+g − g−1A+gA− + A+A−

)
.

(2.32)

This Lagrangian is invariant under the gauge transformations (2.30). It is this system that will

be referred to as the Pohlmeyer-reduced theory (PRT) computed with the original string theory

(ST). The reduced theory is the G/H gauged WZW model with a gauge invariant integrable

potential and fermionic extension. We have G = Sp (2, 2) × Sp (4), H = [SU (2)]4 in the

AdS5 × S5 case and G = SU (1, 1) × SU (2), H = [U (1)]2 in the AdS3 × S3 case.

Consequently the reduced model is described by the action,

IPRT =
k

8π

∫
dσ2LdWZW , (2.33)

where the coupling constant k is undetermined classically.5 However, if the the GS string theory

and the Pohlmeyer-reduced theory are related at the quantum level, k should be related to the

string coupling constant
√

λ. In particular, it is observed that the µ-dependent term in the

5Generally the constant in front of the action is given by k
8πs , where s is the index of the representation.

For the representation we will use in this thesis, we have s = 1/2 for AdS5 × S5 and s = 1 for AdS3 × S3. The
detailed discussion is given in [73, 74, 75].
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reduced theory can be directly obtained by substituting (2.22) into the GS action (2.11). Then

one may conjecture that

k = 2
√

λ . (2.34)

While the one-loop computation is insensitive to the identification of the coupling constants

(chapter 3), the two-loop computation depends on the coupling constant (chapter 4).

In order to study fluctuations around a particular classical solution by using the reduced theory

one needs to find corresponding g0, A0± by fixing the G gauge and partially fixing the H × H

gauge. Generally it is not easy to find a gauge such that g0, A0± solve the gauge equations

(2.29) and take a convenient form for extracting physical part of the perturbation. Moreover,

it becomes much harder if the classical string solution is inhomogeneous, which is also the case

we will discuss in the next chapter. One can circumvent this gauge fixing task by using an

embedding of the complex sinh-Gordon model into the deformed gWZW model.

Hence we shall next show how the complex sinh-Gordon model is realized in the framework of

the Pohlmeyer reduction of the AdS5×S5 superstring theory. Because we will consider classical

solutions whose S5 part is localized in S1 of the S5, the S5 parts of g0 and A0± are the vacuum

solution, and accordingly, the bosonic fluctuations in the S5 sector are massive fields with the

masses ±µ as shown in appendix C.2. Hence we will focus on the AdS sector, then g0 and A0±

below always mean matrices for the AdS sector.

A classical string solution in AdS3 × S1 can be expressed as a classical solution g0 which takes

value on SU(1, 1) in the gWZW model. One natural parameterization of su(1, 1) as a subalgebra

of sp(2, 2) in [66] is

R1 =



0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0


, R2 =



i 0 0 0

0 −i 0 0

0 0 i 0

0 0 0 −i


, R3 =



0 0 0 i

0 0 −i 0

0 i 0 0

−i 0 0 0


. (2.35)
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Then the classical solution is expressed in terms of the Euler angles, ϕ
A

and χ
A
,

ḡ0 = g2g1g2 , g1 = exp(ϕ
A
R1) , g2 = exp(

1

2
χ

A
R2) , (2.36)

and the matrix elements of ḡ0 are written as,

ḡ0 =



eiχA cosh ϕ
A

0 0 sinh ϕ
A

0 e−iχA cosh ϕ
A

sinh ϕ
A

0

0 sinh ϕ
A

eiχA cosh ϕ
A

0

sinh ϕ
A

0 0 e−iχA cosh ϕ
A


. (2.37)

The corresponding gauge fields are obtained by solving the gauge field equations (2.29),

Ā0± =
i

2
ā±R2 , ā+ = −coth2ϕ

A
∂+χ

A
, ā− = coth2ϕ

A
∂−χ

A
. (2.38)

Plugging these into the gWZW Lagrangian in [64], one finds that the Lagrangian of the coth

model, (2.5), is recovered.

On the other hand, the Lagrangian of the tanh model is obtained if we choose the following

parameterization of g0,

g0 =



0 eiθA coshϕ
A

−eiθA sinhϕ
A

0

−e−iθA coshϕ
A

0 0 e−iθA sinhϕ
A

eiθA sinhϕ
A

0 0 −eiθA coshϕ
A

0 −e−iθA sinhϕ
A

e−iθA coshϕ
A

0


. (2.39)

The gauge equations (2.29) are solved by

A0± =
i

2
a±R2 , a+ = −2

cosh2ϕ
A

∂+θ
A

1 + cosh2ϕ
A

, a− = −sech2ϕ
A

∂−θ
A

. (2.40)

Note that ḡ0 and g0 are related by an H × H gauge transformation rather than an H gauge
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transformation. One example of the H gauge transformation is

ḡ0 → g0 = h−1
L ḡ0hR , (2.41)

where

hL =



0 −e
3
2
iθ

A 0 0

e−
3
2
i θ

A 0 0 0

0 0 0 −e
3
2
iθ

A

0 0 e−
3
2
iθ

A 0


, hR =



e−
1
2
iθ

A 0 0 0

0 e
1
2
iθ

A 0 0

0 0 −e−
1
2
iθ

A 0

0 0 0 −e
1
2
iθ

A


.

(2.42)



Chapter 3

One-loop computation: strings in

AdS3 × S1

In chapter 2 we reviewed the Pohlmeyer reduction of the AdS3 × S1 bosonic string theory

and AdSn × Sn GS string theory, and introduced particular ways of embedding the reduced

AdS3 × S1 model into the Pohlmeyer-reduced GS string theory. Bosonic string theory in

AdS3 × S1 is classically equivalent to the complex sinh-Gordon theory and the AdSn × Sn GS

string is reduced to the deformed gWZW model at the classical level. In this chapter we shall

extend this equivalence to the one-loop level. For this purpose we will first discuss perturbative

expansions around a general classical solution in the reduced models.

Lagrangian for quadratic fluctuations in the coth model of the complex sinh-Gordon theory

(2.5) is obtained by considering the perturbation, ϕ
A
→ ϕ

A
+ δϕ

A
and χ

A
→ χ

A
+ δχ

A
. Then we

have

Lcoth (2) = ∂+δϕ
A
∂−δϕ

A
+

(
3+2 sinh2ϕ

A

sinh4ϕ
A

∂+χ
A
∂−χ

A
− µ2 cosh 2ϕ

A

)
(δϕ

A
)2

+ coth2ϕ
A

∂+δχ
A
∂−δχ

A
− 2 coshϕ

A

sinh3ϕ
A

(∂+χ
A
∂−δχ

A
+ ∂+δχ

A
∂−χ

A
)δϕ

A
.

(3.1)

It is also useful to discuss perturbation in the T-dualized model, the tanh model (2.8). By

25



26 Chapter 3. One-loop computation: strings in AdS3 × S1

ϕ
A
→ ϕ

A
+ δϕ

A
and θ

A
→ θ

A
+ δθ

A
in (2.8), we obtain the Lagrangian for quadratic fluctuations,

Ltanh (2) = ∂+δϕ
A
∂−δϕ

A
+

(
3−2 cosh2ϕ

A

cosh4ϕ
A

∂+θ
A
∂−θ

A
− µ2 cosh 2ϕ

A

)
(δϕ

A
)2

+ tanh2ϕ
A

∂+δθ
A
∂−δθ

A
+

2 sinhϕ
A

cosh3ϕ
A

(∂+θ
A
∂−δθ

A
+ ∂+δθ

A
∂−θ

A
)δϕ

A
.

(3.2)

Note that the the T-duality transformation given in (2.9) works even at the semiclassical level,

that is, (3.2) is T-dual to (3.1), which we will use in section 3.1.

On general ground there is no reason to expect that the complex sinh-Gordon theory is equiv-

alent to the AdS3 × S1 bosonic string theory at the quantum level. As far as the one-loop

corrections are concerned, on may think this expectation might be true because the first order

corrections directly follow from the equations of motion. However, this is not correct for the

case of µ+ ̸= µ− if we use the reduction relation (2.3) for the coth model or (2.6) for the tan

model, and it is necessary to take into account all the bosonic and fermionic fluctuations in

order to obtain a correct set of physical fluctuations (see sections 3.2, 3.3 and 3.4). This issue

can be resolved if we modify the reduction (2.3), (2.6) leaving the reduced model (2.5), (2.8)

unchanged. We will come back to this point in section 3.5.

Next let us consider perturbation in the deformed gWZW model (2.31). We shall introduce

fluctuations around a classical solution, g0, A0±, Ψ
R0, Ψ

L0, as follows

g = g0e
η = g0(1 + η + 1

2
η2 + O(η3)) ,

A+ = A+0 + δA+ , A− = A−0 + δA− ,

Ψ
R

= Ψ
R0 + δΨ

R
, Ψ

L
= Ψ

L0 + δΨ
L

.

(3.3)

Hereafter we will focus on classical solutions with vanishing fermions, i.e., Ψ
R0 = Ψ

L0 = 0.

Under this perturbation the quadratic fluctuations of the Lagrangian for the deformed gWZW

model (2.31) are described by

L
dWZW(2)

= STr

[
1
2
D+ηD−η − D+δA− − g−1

0 δA+g0D−η − g−1
0 δA+g0δA− + δA+δA−

−µ2

2

[
η, g−1

0 Tg0

]
[η, T ] + 1

2
δΨ

R
[T , D−δΨ

R
] + 1

2
δΨ

L
[T ,D+δΨ

L
] + µg−1

0 δΨ
L
g0δΨR

]
,

(3.4)
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where the derivative operators D , D are defined by D+ = ∂+ +
[
g−1
0 ∂+g0 + g−1

0 A+g0,
]
, D± =

∂± + [A±, ]. This Lagrangian was derived in [HIT].

Below we will evaluate the fluctuations in the whole AdS5×S5 around classical strings stretching

in the AdS3 ×S1 subspace by using the embedding of the complex sinh-Gordon model into the

deformed gWZW model, i.e., (2.39) and (2.37). Although g0 for the coth model is constructed by

a standard gauging, the coth model has several issues when we calculate quadratic fluctuations,

and we will mainly use the embedding of the tanh model.

The remaining part of this chapter is organized as follows.

In section 3.1 we shall discuss the (S, J) folded string. Its quadratic fluctuations were found

from the Nambu action in the static gauge and in the Polyakov action in the conformal gauge

in the original string theory [89, 90]. We shall show that the fluctuation Lagrangian in the coth

model of the reduced theory is related to that derived from the Nambu action.

In section 3.2 we shall study the homogeneous (S, J) circular string solution which has both

the angular momentum and the winding on a big circle of S5, and gives us the first example

of µ+ ̸= µ−. We will show that the fluctuation Lagrangian of the reduced theory agrees

with the string theory result [93]. Since the circular string is homogeneous, we can evaluate

characteristic frequencies of the quadratic fluctuations also in the reduced theory. In the case of

the (S, J) circular string the total sum of the bosonic and fermionic frequencies in the reduced

theory agrees with the string theory result although some of the individual frequencies appear

to disagree.

In section 3.3 we shall discuss the (S, J) spiky string solution and derive its fluctuation La-

grangian of the reduced theory. Our result on the semiclassical expansions for the (S, J) spiky

string is expected to agree with the one in the original string theory. We shall also discuss

the fluctuation Lagrangian in the limiting cases of the (S, J) spiky string; spiky string without

motion or stretching in S5, and its folded string limit.

In section 3.4 we will consider a generalization of the (S, J) folded string solution with both

the orbital momentum and the winding in the S1 sector found in [97]. This solution again has
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the scaling limit where the solution becomes homogeneous. As happened in the circular string

case, some individual characteristic frequencies in the reduced theory disagree with the result

in [97], but the sum of the frequencies is the same as in the string theory.

We will find the disagreement of characteristic frequencies of the individual fluctuations in the

µ+ ̸= µ− cases in section 3.2 and section 3.4. It can be resolved by modifying the reduction

relations (2.3) and (2.6). This prescription will be discussed in section 3.5 by considering the

(S, J) circular string solution.

3.1 Folded string

In this section we shall evaluate the Lagrangian for quadratic fluctuations around the (S, J)

folded string. In the original string theory the semiclassical expansions are carried out in the

Nambu action in the static gauge and in the Polyakov action in the conformal gauge in [89],

and the equivalence of these two approaches is shown in [91]. Although the Pohlmeyer reduced

form of the AdS5×S5 is constructed from the conformal gauge string theory, it is expected that

the fluctuation Lagrangian of the reduced theory takes a similar form to the effective Nambu

action as both the reduced model and the Nambu action involve only the physical degrees of

freedom after choosing a gauge.

We shall derive the Lagrangian for bosonic fluctuations in section 3.1.1 and the Lagrangian for

fermionic fluctuations in section 3.1.2. To compare our result with the original string theory we

shall carry out the perturbation in the Nambu action in the static gauge, and show how this

approach is related to the coth model and tanh model in the reduced theory in section 3.1.3.

Let us first review the (S, J) folded string in AdS3 × S1 which is expressed in terms of the

embedding coordinates,

Y0 + iY3 = coshρ eiκτ , Y1 + iY2 = sinhρ eiwτ , X1 + iX2 = eiντ , (3.5)

where κ, w and ν are constants, and ρ is a function of σ, ρ = ρ(σ). The equation of motion
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and the conformal gauge constrains read

ρ′′ = (κ2 − w2) sinhρ coshρ , ρ′2 = κ2 cosh2ρ − w2 sinh2ρ − ν2 . (3.6)

Next we shall derive the corresponding classical solution in the reduced theory. The mass scale

of the reduced theory µ can be found by observing the AdS part of the stress tensor. In the

present case we have TAdS
±± = −ν2 meaning that this is the case of µ+ = µ−. Then we set

µ = ν . (3.7)

We have two ways of the reduction, the embedding of the coth model or the embedding of the

tanh model. As mentioned below it is more convenient to employ the tanh approach. The

classical solution, ϕ
A

and θ
A
, in the tanh model is given by the relations in (2.6),

ϕ
A

= log

(
ρ′+

√
ν2+ρ′2

ν

)
, θ

A
= wκ

ν
τ . (3.8)

Substituting these into the formula of g0 and A±, we have

g0 =



0 v

√
ν2+ρ′2

ν
−v ρ

′

ν
0

−v∗
√
ν2+ρ′2

ν
0 0 v∗ ρ′

ν

v ρ
′

ν
0 0 −v

√
ν2+ρ′2

ν

0 −v∗ ρ′
ν

v∗
√
ν2+ρ′2

ν
0


, v = e

iwκτ
ν , (3.9)

and the gauge field equations (2.29) are solved by the following A±0,

A±0 =
i

2
a±0R2 , a+0 = 2wκ

(
−1

ν
+

ν

2 (ν2 + ρ′2)

)
, a−0 = − wκν

(ν2 + ρ′2)
. (3.10)

The reason we use the tanh model here is as follows. If we plug the folded string solution (3.5)
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into the reduction equation (2.3) with µ = ν, we obtain the classical solution of the coth model

ϕ
A

= log

(
ρ′+

√
ν2+ρ′2

ν

)
, ∂±χ

A
= ∓

(
wκ
ν
− wκν

ν2+ρ′2

)
. (3.11)

Here χ
A

can be expressed in an integral form. This can be also understood by substituting ϕ
A

into the relation of χ
A

and θ
A

in (2.9). On the right hand side, ∂±θ
A

is constant, but tanh ϕ
A

has the ρ(σ) dependence, and then, χ
A

ends up with the complicated form.

As far as the calculation of the quadratic fluctuations is concerned, the expression of χ
A

in (3.11)

does not seem to cause a serious problem because only its derivative, ∂+χ
A
, appears in to the

Lagrangian for the quadratic fluctuations if the H × H gauge is properly chosen. However, ḡ0

for the coth model in (2.37) is not this case; due to the peculiar form of ḡ0 some components of

ḡ−1
0 ∂+ḡ0 and ḡ−1

0 Ā0+ḡ0 contain the eiχA factor, and consequently, the perturbed Lagrangian has

the χ
A

dependence. Of course this eiχA factor can be removed from the perturbed Lagrangian

by redefinition of fluctuation fields, but such redefinition is not trivial. Also, the form of g0 for

the tan model in (2.39) is very convenient to integrate out the gauge fields and decouple the

physical fields from the unphysical fields. Therefore, we will basically continue to use the tanh

model in the following sections.

Before moving on to the one-loop computation, let us add some remarks on the open string

counterpart of the folded string solution in the scaling limit where the (S, J) folded string

solution becomes homogeneous. The (S, J) folded string in this limit was studied in the reduced

theory [HIT]. In [98] it was shown that the two classical string solutions are connected by the

SO(2, 4) rotation and analytic continuation on the worldsheet τ → −iτ , and then, quantum

corrections to the scaling function calculated in the open string picture are the same as those

in the folded string picture.1 As the isometry of AdS5, SO(2, 4), becomes obscure by the

Pohlmeyer reduction, any two solutions related by an SO(2, 4) transformation are encoded into

a single solution in the reduced theory. Hence we obtain a reduced theory solution corresponding

1In [98] the equivalence of the closed string and the open string was shown for ν = 0 classically and
semiclassically. A ν ̸= 0 open string solution can be easily constructed by adding the BMN vacuum in the S1

sector [70], which is the counterpart of the scaling limit of the (S, J) folded string (see also [97] for a folded
string and its corresponding open string surface with both the orbital momentum and the winding in S1 of S5).
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to the null cusp solution in the original theory by the analytic continuation τ → −iτ in g0 (3.9)

(after taking the scaling limit, w → κ and ρ → ℓσ with κ2 − ν2 = ℓ2). In general, the

equivalence of characteristic frequencies of the quadratic fluctuations in the reduced theory

comes from that of the classical solutions g0. In the reduced theory, therefore, one can trivially

check the frequencies for the two classical solutions match.

3.1.1 Bosonic fluctuations in reduced theory

The argument for the S5 sector is the same as the case of the scaling limit studied in [HIT] (see

appendix C.2). Four bosonic fluctuations in the S5 sector are massive fields with m2
B = ν2.

In the AdS5 sector we shall discuss the bosonic fluctuations by using the tanh model by the

above reason. To express the quadratic fluctuations in terms of components fields, let us

introduce bosonic fields by

η∥ =



0 0 a1 + ia2 a3 + ia4

0 0 a3 − ia4 −a1 + ia2

a1 − ia2 a3 + ia4 0 0

a3 − ia4 −a1 − ia2 0 0


, (3.12)

which correspond to physical fields in the reduced theory.

η⊥ =



ih1 h2 + ih3 0 0

−h2 + ih3 −ih1 0 0

0 0 ih4 h5 + ih6

0 0 −h5 + ih6 −ih4


, (3.13)



32 Chapter 3. One-loop computation: strings in AdS3 × S1

δA+ =



ia+1 (a+2 + ia+3) v2 0 0

− (a+2 − ia+3) v∗2 −ia+1 0 0

0 0 ia+4 (a+5 + ia+6) v2

0 0 − (a+5 − ia+6) v∗2 −ia+4


,

δA− =



ia−1 a−2 + ia−3 0 0

−a−2 + ia−3 −ia−1 0 0

0 0 ia−4 a−5 + ia−6

0 0 −a−5 + ia−6 −ia−4


.

(3.14)

These are unphysical fields in the reduced theory and to be gauged away or integrated out from

the fluctuation Lagrangian.

An advantage of using g0 (2.39) is that the system decouples into two subsectors: One contains

a1 and a2 coupling to the diagonal parts of η⊥ and δA±, while the other contains a3 and a4

coupling to the off-diagonal components of η⊥ and δA±. One can fix the H gauge such that

the physical fields ai decouple from the unphysical fields,

h1 + h4 = const , (3.15)

which is the same as one of the three gauge conditions in the long string limit case in [HIT],

and we should impose two more conditions,

√
(−w2 + ν2 + ρ′2) (−κ2 + ν2 + ρ′2)

×
[
wκν3(h3 + h6) + (ν2 + ρ′2)

(
(ν2 + 2ρ′2) (a+2 + a+5) + ν2 (∂−h2 + ∂−h5 − a−2 − a−5)

)]
+ρ′

[
− w2κ2ν2(h2 + h5) + (ν2 + ρ′2)

(
wκν (∂−h3 + ∂−h6 − a−3 − a−6)

+ (ν2 + ρ′2) (∂−a+2 + ∂−a+5)
)]

= 0 ,

(3.16)
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and

√
(−w2 + ν2 + ρ′2) (−κ2 + ν2 + ρ′2)

×
[
wκν3(−h2 + h5) − (ν2 + ρ′2)

(
(a+3 − a+6) (ν2 + 2ρ′2) + ν2 (−∂−h3 + ∂−h6 + a−3 − a−6)

)]
+ρ′

[
w2κ2ν2(−h3 + h6) + (ν2 + ρ′2)

(
wκν (−∂−h2 + ∂−h5 + a−2 − a−5)

− (ν2 + ρ′2) (∂−a+3 − ∂−a+6)
)]

= 0 .

(3.17)

Under this gauge choice the Lagrangian for a sector with a1 and a2 is

L1 = 2
∑
i=1,2

(
∂+ai∂−ai −

(
ν2 + 2ρ′2) a2

i

)
, (3.18)

and the sector with a3 and a4 has the Lagrangian,

L2 = 2

[
∂−a3∂+a3 −

(
ν2 + 2ρ′2 + 2w2κ2

ν2+ρ′2
− 3w2κ2ν2

(ν2+ρ′2)2

)
a2

3 + ∂−a4∂+a4

+
(

2wκν∂−a3

ν2+ρ′2
+ 2wκν∂+a3

ν2+ρ′2

)
a4 − ν2

(
−1 +

2(w2+κ2)
(ν2+ρ′2)

− 3w2κ2

(ν2+ρ′2)2

)
a2

4

]
.

(3.19)

This Lagrangian does not diverge at turning points of the folded string, i.e., at ρ′ = 0. This

observation is different from the case of ν = 0 in [89]. The long string limit case is recovered if

we take w → κ and ρ → ℓσ, and replace the conformal gauge constraint by κ2 − ν2 = ℓ2. In

this limit the resulting Lagrangian yields the correct frequencies [90].

If we take ν → 0 limit in (3.18) and (3.19), the Lagrangians become

L1 = 2
∑
i=1,2

(
∂+ai∂−ai − 2ρ′2a2

i

)
, (3.20)

and

L2 = 2

[
∂−a3∂+a3 −

2(w2κ2+ρ′4)
ρ′2

a2
3 + ∂−a4∂+a4

]
. (3.21)

The sum of these two Lagrangians is the exactly the same as the Lagrangian (5.6) in [89], which

is found by perturbing the Nambu action in the static gauge. We find that a1 and a2 correspond

to βi while a3 corresponds to ϕ
A

and a4 is interpreted as a massless fluctuation denoted as φ̃ in



34 Chapter 3. One-loop computation: strings in AdS3 × S1

[89].

So far we have carried out the perturbation in the full reduced theory by embedding the tanh

model into the gWZW model and shown that the perturbed Lagrangian takes the Nambu-

Goto type in the original string theory. One may expect two of the fluctuations are captured by

perturbing the tanh model directly. Plugging the folded string solution (3.8) into the fluctuation

Lagrangian (3.2) and rescaling δθ
A

by

δθ
A
→ δθ

A√
1 − ν2

ν2+ρ′2

, (3.22)

then we have the following Lagrangian,

Ltanh = ∂−δϕ
A
∂+δϕ

A
−

(
ν2 + 2ρ′2 + 2w2κ2

ν2+ρ′2
− 3w2κ2ν2

(ν2+ρ′2)2

)
δϕ2

A
+ ∂−δθ

A
∂+δθ

A

+
(

2wκν∂−δϕA
ν2+ρ′2

+
2wκν∂+δϕA
ν2+ρ′2

)
δθ

A
− ν2

(
−1 +

2(w2+κ2)
(ν2+ρ′2)

− 3w2κ2

(ν2+ρ′2)2

)
δθ2

A
.

(3.23)

Noticing that this Lagrangian takes the same form as (3.19), we find that δϕ
A

and δθ
A

correspond

to a3 and a4, respectively. Hence it turns out that the perturbation in the tanh model describes

the most complicated part of the bosonic fluctuation Lagrangian of the deformed gWZW model.

This fact is useful when we consider more complicated classical solutions (see sections 3.2, 3.3

and 3.4).

3.1.2 Fermionic fluctuations

For a consistency with the original string theory, the masses of the fermionic fluctuations in the

reduced theory should match those found in the original theory. We define component fields of

the fermionic fluctuations in the following way,

δΨ
R

=

 0 XR

YR 0

 , δΨ
L

=

 0 XL

YL 0

 , (3.24)



3.1. Folded string 35

where

XR =



0 0 α1 + iα2 α3 + iα4

0 0 −α3 + iα4 α1 − iα2

α5 + iα6 α7 − iα8 0 0

α7 + iα8 −α5 + iα6 0 0


, (3.25)

YR =



0 0 −α6 − iα5 −α8 − iα7

0 0 α8 − iα7 −α6 + iα5

α2 + iα1 α4 − iα3 0 0

α4 + iα3 −α2 + iα1 0 0


, (3.26)

and

XL =



0 0 (β1 + iβ2)v (β3 + iβ4)v

0 0 (β3 − iβ4)v∗ (−β1 + iβ2)v∗

(β5 + iβ6)v (−β7 + iβ8)v 0 0

(β7 + iβ8)v∗ (β5 − iβ6)v∗ 0 0


, (3.27)

YL =



0 0 (−β6 − iβ5)v∗ (−β8 − iβ7)v

0 0 (−β8 + iβ7)v∗ (β6 − iβ5)v

(β2 + iβ1)v∗ (−β4 + iβ3)v 0 0

(β4 + iβ3)v∗ (β2 − iβ1)v 0 0


, (3.28)

where all component fields are real Grassmann. The extra factor v = exp(iwκτ/ν) is introduced in XL

and YL such that the exponential factor does not appear in the Lagrangian. The resulting Lagrangian

is

LF = 2
[

8∑
i=1

(αi∂−αi + βi∂+βi)

+ wκν
ν2+ρ′2 (α1α2 + α3α4 + α5α6 − α7α8 − β1β2 − β3β4 − β5β6 + β7β8)

+2
√
ν2 + ρ′2 (−α3β1 − α1β3 + α7β5 − α5β7 + α4β2 + α2β4 + α8β6 − α6β8)

]
,

(3.29)
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After a careful observation we find that this system decouples into four subsectors which exhibit an

identical structure containing two of αi fields and two of βi fields. Let us focus on the subsector

containing α1, α2, β3 and β4, described by a part of the Lagrangian,

L = α1∂−α1 + α2∂−α2 + β3∂+β3 + β4∂+β4 + wκν
ν2+ρ′2 (α1α2 − β3β4) + 2

√
ν2 + ρ′2 (−α1β3 + α2β4) ,

(3.30)

which is simplified as

L = ψ̄γa∂aψ +
1
2

wκν

ν2 + ρ′2
ψ̄Γ1ψ −

√
ν2 + ρ′2ψ̄Γ2ψ , (3.31)

where

ψ =



β3

β4

α1

α2


, γτ =



0 0 0 −i

0 0 −i 0

0 i 0 0

i 0 0 0


, γσ =



0 0 0 i

0 0 i 0

0 i 0 0

i 0 0 0


, ψ̄ = ψ†γτ , (3.32)

and

Γ1 =



0 0 i 0

0 0 0 −i

−i 0 0 0

0 i 0 0


, Γ2 =



0 i 0 0

−i 0 0 0

0 0 0 i

0 0 −i 0


. (3.33)

The same prescription applies for the other subsectors, and consequently, our result agrees with the

string theory result [89].

3.1.3 Bosonic fluctuations from Nambu action of original string the-

ory

In [89] the authors studied fluctuations around the folded string without the S1 part (ν = 0 in (3.5))

and found that the mass of one bosonic fluctuation found in the Nambu action contains a 1/ρ′2 term.

However, our calculation in the reduced theory in section 3.1.1 shows that the Lagrangian has no 1/ρ′2

term if the string solution has the S1 sector.
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It might be considered that this difference appears because the fluctuations in the AdS5 part nontriv-

ially couple to a fluctuation in S5 part in the ν ̸= 0 case. So we shall first carry out the perturbation

in the Nambu action with nonvanishing ν. However we will find that the nontrivial coupling is not

all of the reason for the difference; the fluctuations in the tanh model and in the Nambu action are

related by the T-duality transformation rather than rescaling or rotation of fluctuation fields. Since

the partition functions of any two theories connected by the T-duality transformation are the same,

this is a nontrivial support for our conjecture on the one-loop equivalence (1.6).

In the reduced theory the T-dual of the tanh model is the coth model. So we shall also show that the

perturbation in the coth model recovers the quadratic fluctuations found by perturbing the Nambu

action in another gauge. In section 2.1 we showed that the tanh model and coth model are realized as

the different ways of H ×H gauge fixing in the full AdS5 × S5 reduction. Hence the result supports

that the partition function is H ×H gauge independent.

The Nambu action for the bosonic string in AdS5 × S5 is given by

SN = −
∫
dτdσ

√
−dethab , (3.34)

where the induced metric on the worldsheet hab is

hab = gµν(x)∂axµ∂bxν . (3.35)

In the present case the classical forms of gµν(x) and xµ are respectively

gµν(x)dxµdxν = − cosh2ρ dt2 + dρ2 + sinh2ρ
(
dβ2

i + dϕ2
)

+ dψ2
s + dφ2 (i = 1, 2, s = 1, 2, 3, 4) ,

t = κτ , ρ = ρ(σ) , βi = 0 , ϕ = wτ , ψs = 0 , φ = ντ ,

(3.36)

which are related by the Virasoro constraints and equation of motion (3.6). Imposing the static gauge

where the fluctuations of t and ρ are set to zero we have the following perturbation,

t = κτ , ρ = ρ(σ) , βi = 1
λ1/4 β̃i , ϕ = wτ + 1

λ1/4 ϕ̃ , ψs = 1
λ1/4 ψ̃s , φ = ντ + 1

λ1/4 φ̃ , (3.37)



38 Chapter 3. One-loop computation: strings in AdS3 × S1

Expanding the Lagrangian (3.34) gives the following action for the quadratic fluctuations,

SN = 1
2

∫
dτdσ

[
sinh2ρ∂+β̃i∂−β̃i − w2 sinh2ρβ̃2

i + ∂+ψ̃s∂−ψ̃s − ν2ψ̃2
s

+sinh2ρ
(
1 + w2 sinh2ρ

ρ′2

)
∂+ϕ̃∂−ϕ̃+

(
1 + ν2

ρ′2

)
∂+φ̃∂−φ̃+

wν sinh2ρ (∂+φ̃∂−ϕ̃+∂+ϕ̃∂−φ̃)
ρ′2

]
.

(3.38)

This shows that the fluctuations ψ̃s have m2
ψ̃s

= ν2. They describe the four fluctuations in the S5

sector in the reduced theory. By rescaling β̃i by β̃i → sinh−1ρ β̃i, we find that β̃i have m2
β̃i

= ν2 +2ρ′2.

Hence the fluctuations βi correspond to a1 and a2 in (3.18).

Let us focus on the other two fields, ϕ̃ and φ̃, which should be compared with a3 and a4 in (3.19).

The corresponding part in (3.38) is

LN = F1∂+ϕ̃∂−ϕ̃+ F2∂+φ̃∂−φ̃+ F3

(
∂+φ̃∂−ϕ̃+ ∂+ϕ̃∂−φ̃

)
, (3.39)

where

F1 = sinh2ρ

(
1 +

w2 sinh2ρ

ρ′2

)
, F2 = 1 +

ν2

ρ′2
, F3 =

wν sinh2ρ

ρ′2
, (3.40)

Even if we rescale ϕ̃ and φ̃ such that the coefficients of their kinetic terms are one, the resulting

Lagrangian does not match the Lagrangian in (3.19). In fact (3.39) and (3.19) are related by the

T-duality transformation. Since the Lagrangian (3.39) only depends on the derivatives of the fields ϕ

and φ, it is allowed to carry out the T-duality transformation at the level of the Lagrangian in the

present case. In order to derive the T-dualized Lagrangian we first denote ∂±φ̃ by A± and introduce

a Lagrange multiplier x̃. Then the Lagrangian (3.39) is becomes

LN = F1∂+ϕ̃∂−ϕ̃+ F2A+A− + F3

(
∂+ϕ̃A− + A+∂−ϕ̃

)
+ x̃(∂+A− − ∂−A+) . (3.41)

The Lagrange multiplier x̃ will become a new physical field in the T-dual picture. Integrating out A+

yields

LTN =
1
F2
∂+x̃∂−x̃+

(
F1 −

F 2
3

F2

)
∂+ϕ̃∂−ϕ̃+

F3

F2

(
∂+x̃∂−ϕ̃− ∂+ϕ̃∂−x̃

)
. (3.42)
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Finally, rescaling x̃→ F
1/2
2 x̃ and ϕ̃→

(
F1 −

F 2
3
F2

)−1/2
ϕ̃, we have the following Lagrangian,

LTN = ∂−ϕ̃∂+ϕ̃−
(
ν2 + 2ρ′2 + 2w2κ2

ν2+ρ′2 − 3w2κ2ν2

(ν2+ρ′2)2

)
ϕ̃2 + ∂−x̃∂+x̃

+
(

2wκν∂−ϕ̃
ν2+ρ′2 + 2wκν∂+ϕ̃

ν2+ρ′2

)
x̃− ν2

(
−1 +

2(w2+κ2)
(ν2+ρ′2)

− 3w2κ2

(ν2+ρ′2)2

)
x̃2 .

(3.43)

This is exactly the same as the fluctuated Lagrangian (3.19), and also (3.23). Since the characteristic

frequencies are invariant under the T-duality transformation, the fluctuated Lagrangian of the long

string limit in the reduced theory produces the correct frequencies.

Recalling that the T-dual of the tanh model is the coth model in the reduced theory, one can expect the

fluctuation Lagrangian of the coth model exactly agrees with that of the Nambu action. We are now

interested in the nontrivial sector described by the complex sinh-Gordon model. Hence, for our present

purpose, it is enough to perturb the Lagrangian of the coth model rather than the deformed gWZW

model. Plugging the classical solution (3.11) into the fluctuation Lagrangian (3.1) and rescaling χA

such that its kinetic term has unit coefficient, we obtain the following Lagrangian,

Lcoth(2) = ∂+δϕ∂−δϕ−
(
ν2 + 2ρ′2 + 2w2κ2

ν2+ρ′2 + w2κ2ν2

(ν2+ρ′2)2

)
(δϕ)2

+∂−δχA∂+δχA −
(
ν2 +

2(w2−ν2)(κ2−ν2)
ρ′2 − 2w2κ2

ν2+ρ′2 + w2κ2ν2

(ν2+ρ′2)2

)
(δχ2

A
)

− 4wκν3ρ′′

ρ′(ν2+ρ′2)2
δχAδϕ+

2wκν(∂−δχA
−∂+δχA)

ν2+ρ′2 δϕ .

(3.44)

In the Nambu action in the original string theory this Lagrangian is obtained if two fluctuations are

introduced in the following way,

t = κτ +N1
1 z1 +N1

2 z2 , ρ = ρ(σ) +N2
1 z1 +N2

2 z2 ,

ϕ = ωτ +N3
1 z1 +N3

2 z2 , φ = ντ +N4
1 z1 +N4

2 z2 ,

(3.45)

where N i
1 and N i

2 are defined as

N1 =
(

w tanh ρ(σ)√
ρ′(σ)2+ν2

, 0, w coth ρ(σ)√
ρ′(σ)2+ν2

, 0
)
,

N2 =
(

κν

ρ′(σ)
√
ρ′(σ)2+ν2

, 0, wν

ρ′(σ)
√
ρ′(σ)2+ν2

,

√
ρ′(σ)2+ν2

ρ′(σ)

)
.

(3.46)

Substituting these into the Nambu action (3.34), one finds that z1 corresponds to δϕ and z2 does

δχA . Alternatively one can reproduce the same Lagrangian by applying O(2) rotation to the two

fields, ϕ̃ and φ̃, in the Lagrangian (3.38). Hence it turns out that the perturbation in the coth model
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corresponds to the perturbation of the Nambu action in the specific gauge.

In the original theory or in the coth model, the Lagrangian possesses the term proportional to 1/ρ′2,

while such a term does not appear in the tanh model. This can be understood by looking at the

T-duality transformation in the reduced theory, (2.9). For the present ϕA in (3.8), we have tanh2 ϕA =

ρ′2/(ν2 +ρ′2) and the T-duality transformation is singular at turning points of the folded string. Since

the partition function is invariant under the T-duality transformation, the partition function of the

reduced theory is the same as that of the original string theory for the (S, J) folded string, which

supports our conjecture on the quantum partition function (1.6).

Due to this direct relation between the coth model and the Nambu action one might think that it

would be better to use the embedding of the coth model, (2.37), (2.38) rather than tanh model, (2.39),

(2.40), when comparing the fluctuations in the reduced theory and original string theory. However, as

mentioned earlier, (2.37) is a bad H ×H gauge fixing for the perturbation. Hence we will basically

continue to use the tanh model.

In this section we have shown that the relation of the perturbations in the coth model, the tanh model

and the Nambu action in the original string theory. Their fluctuation Lagrangians are seemingly

different and the difference in the reduced theory follows from the choices of the complex sinh-Gordon

model, or in the words of the deformed gWZW model, the choices of the H ×H gauge. However, if a

classical string solution in a subsector is described by the sin(sinh)-Gordon model, or equivalently, if

the subgroup H for the subsector is trivial, this freedom of choice does not exist, and so, the fluctuation

Lagrangian of the reduced theory should always match that found by perturbing the Nambu action.

This is the case for the bosonic string theory in R× S2, which is studied in appendix C.1

3.2 Circular string

In this section we shall discuss semiclassical quantization in the reduced theory for the (S, J) circular

string solution. The parallel computation in the original string theory was studied in [92, 93, 38, 94].

It is expected that the perturbation in the reduced theory reproduces the result of [93].

We shall derive the Lagrangian for the quadratic fluctuations by using the embedding of the tanh

model, and evaluate their characteristic frequencies for the bosonic fluctuations in section 3.2.1 and for
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the fermionic fluctuations in section 3.2.2. However a set of the characteristic frequencies in the reduced

theory is not identical to the result in [93]. Then we shall show that the sum of the frequencies matches

the original string theory result perturbatively in section 3.2.3, and find a 2d Lorentz transformation

such that each of the frequencies in the reduced theory is the same as the corresponding frequency in

the original theory in section 3.2.4. It may be considered that this happens because the (S, J) circular

string is the case of µ+ ̸= µ− as a reflection of the existence of winding on a big circle of S5. We will

find an analogous discrepancy for another example of µ+ ̸= µ− in section 3.4.

We shall start the discussion with introducing the (S, J) circular string solution in the embedding

coordinates,

Y0 + iY3 = r0 e
iκτ , Y1 + iY2 = r1 e

iwτ+ikσ , X1 + iX2 = eiωτ+imσ , (3.47)

where r0 = coshρ0 and r1 = sinhρ0 with a constant radius ρ0. The parameters m and k are integer

winding numbers in the AdS3 subspace and the S1 subspace, respectively. This solution has three

Cartan charges, (E,S, J) =
√
λ(E ,S,J ),

E = r20κ , S = r21w , J = ω . (3.48)

The equations of motion read

w2 = κ2 + k2 , ω2 = ν2 +m2 , ν2 = −Λ , κ2 = Λ̃ , (3.49)

whereas the conformal gauge constraints are written as

2κE − κ2 = 2
√
k2 + κ2 + J 2 +m2 , kS +mJ = 0 . (3.50)

They are supplemented by the identity r20 − r21 = 1, which can be rewritten as

E
κ
− S√

k2 + κ2
= 1 . (3.51)

The relations (3.49), (3.50) and (3.51) show that only three of these parameters are independent. When

calculating quantum fluctuations it is convenient to use κ, k, r1.2 From the latter three expressions,

2Since k can be absorbed in S, it is possible to set k to be 1. Here we leave k arbitrary in order to make it
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(3.50) and (3.51), we obtain the following relations,

ν2 =
√
κ4 − 4k2κ2r21(1 + r21) , m2 = 1

2

(
κ2 − 2k2r21 − ν2

)
, (3.52)

whcih will be useful when we compute fluctuations.

Now let us move on to the reduction of the (S, J) circular string solution. The mass scale of the reduced

theory µ is determined by the stress tensor in the original string theory. For the (S, J) circular string

solution (3.47) we have

TAdS
±± = −

(
κ2 − 2k

(
k ±

√
k2 + κ2

)
r21

)
, (3.53)

which imply that one needs introduce µ2
± =

√
κ2 − 2k

(
k ±

√
k2 + κ2

)
r21. Since the closed string

theory is defined on a cylinder rather than a plane, it is not allowed to set µ+ = µ− by us-

ing a 2d Lorentz transformation. Instead we proceed with a single µ defined by µ = √
µ+µ− =

√
κ
(
κ2 − 4k2r21 − 4k2r41

)1/4. Using this µ, the relations in (2.6) for the tanh model give ϕA and θA ,

ϕA = 1
2 log

(
κ−2kr1

√
1+r21√

κ2−4k2r21(1+r21)

)
, θA = A

(√
k2 + κ2τ + kσ

)
, (3.54)

where

A =
2k2r21(1+r21)

√
κ(κ2−4k2r21−4k2r41)1/4

(
κ−

√
κ2−4k2r21−4k2r41

) , (3.55)

then the corrsponding classical solution in the deformed gWZW model is obtained by substituting

these into (2.39),

g0 =



0 vB+ −vB− 0

−v∗B+ 0 0 v∗B−

vB− 0 0 −vB+

0 −v∗B− v∗B+ 0


, (3.56)

where

v = eiA(
√
k2+κ2τ+kσ) , B± = 1

2

( √
κ−2kr1

√
1+r21

(κ2−4k2r21(1+r21))1/4
± (κ2−4k2r21(1+r21))1/4√

κ−2kr1
√

1+r21

)
. (3.57)

easier to compare our result with [93].



3.2. Circular string 43

By solving the gauge field equations (2.29) we have the classical gauge fields, A±0 = i
2 a±0R2 with

a+0 = −
√
κ(k+

√
k2+κ2)

2(κ2−4k2r21(1+r21))1/4
, a−0 = (k−

√
k2+κ2)(κ2−4k2r21(1+r21))1/4

2
√
κ

. (3.58)

We find that g−1
0 ∂+g0 and g−1

0 A+0g0 are constant with these expressions. Hence this is a good starting

point to discuss quantum fluctuations around the homogeneous string solution.

3.2.1 Bosonic fluctuations in reduced theory

The S5 sector is rather simple; bosonic fluctuations in the S5 sector for a string solution inAdS3×S1 are

massive fields with masses ±µ. In the present case we have µ2 = µ+µ−, then we obtain characteristic

frequencies for the four massive fields,

±
√
n2 + µ2 = ±

√
n2 +

√
κ4 − 4k2κ2r21(1 + r21) , (3.59)

which are exactly the same as the result in [93].

As done in the case of the folded string, we introduce the fluctuation fields by (3.12), (3.13) and

(3.14),3 integrate out the diagonal parts of the gauge field fluctuations, and then, use the H gauge

freedom such that physical fluctuations decople from unphysical fluctuations. The physical part of the

quadratic fluctuations is described by the Lagrangian containing a1 and a2,

L1 = 2
∑
i=1,2

(
∂+ai∂−ai − κ2a2

i

)
, (3.60)

and the Lagrangian containing a3 and a4,

L2 = 2
[
∂−a3∂+a3 − 2κ

(
κ−

√
κ2 − 4k2r21

(
1 + r21

))
a2

3 + ∂−a4∂+a4

+
2(κ2−4k2r21(1+r21))1/4

√
κ

((
k +

√
k2 + κ2

)
∂−a3 −

(
k −

√
k2 + κ2

)
∂+a3

)
a4

]
.

(3.61)

Now it is clear that a1 and a2 correspond to Ỹ2 in [93], whose frequencies are

±
√
n2 + κ2 . (3.62)

3Note that v in the expression (3.14) should be replaced by v in (3.57).
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However the second Lagrangian L2 does not describe the remaining two fluctuations in AdS5 in [93].

In fact, by substituting ei(Ωτ−nσ) into the fluctuation Lagrangian (3.61), one finds that the condition

that the determinant of the mass matrix vanishes reads

(n2 − Ω2)2 −
8k
√

(k2+κ2)(κ2−4k2r21(1+r21))
κ nΩ +

2
(
κ3−(κ2+2k2)

√
κ2−4k2r21(1+r21)

)
κ n2

−
2
(
κ3+(κ2+2k2)

√
κ2−4k2r21(1+r21)

)
κ Ω2 = 0 ,

(3.63)

which is different from the corresponding equation in the original theory (cf. Eq. (4.15) in [93]),

(
Ω2 − n2

)2 + 4Ω2κ2r21 − 4
(
1 + r21

) (
Ω
√
k2 + κ2 + kn

)2
= 0 , (3.64)

and consequently, the characteristic frequencies do not match.4 Although the equation (3.63) can not

be solved for a genral case, it is possible to solve the equation (3.63) approximately for large J with

u = S/J , k fixed. The four roots ΩI;n are

ΩI=1,2;n = −2kn±
√
n2(n2+4k2u(1+u))

2J +O
(

1
J 3

)
,

ΩI=3,4;n = ±2J ± n2∓2kn+2k2(1+u)
2J +O

(
1
J 3

)
.

(3.65)

For n = 0 the equation (3.63) can be solved exactly,

ΩI,0 = {0, 0,Ω0,−Ω0} , Ω0 =

√√√√2κ3 + 2(κ2 + 2k2)
√
κ2 − 4k2r21

(
1 + r21

)
κ

. (3.66)

These frequencies are totally different from those found in [93]. Therefore, as far as the individual

characteristic frequencies are concerned, the reduced theory does not reproduce the result of the

original string theory even for the zero modes.

For consistency we shall discuss the perturbation in the coth model which should describe the nontrivial

sector containing a3 and a4, (3.61). Using the reduction (2.3) and the fluctuation Lagrangian of the

4Note that the equation (3.64) is obtained from the equation (4.15) in [93] by Ω → −Ω. This difference
originates from the fact we use the mode expansion ei(Ωτ−nσ) rather than ei(Ωτ+nσ).
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coth model (3.1) we obtain the following Lagrangian,

Lcoth = ∂+δϕ∂−δϕ− 2κ
(
κ+

√
κ2 − 4k2r21

(
1 + r21

))
δϕ2 +

κ+
√
κ2−4k2r21(1+r21)

κ−
√
κ2−4k2r21(1+r21)

∂−δχA∂+δχA

+16k2r21
(
1 + r21

) (
κ2 − 4k2r21(1 + r21)

)
1/4
(
κ− 2kr1

√
1 + r21

)
×
(
κ−2kr1

√
1+r21+

√
κ2−4k2r21(1+r21)

)
((k+

√
k2+κ2)∂−δχA

+(k−
√
k2+κ2)∂+δχA)

√
κ
(
κ−2kr1

√
1+r21−

√
κ2−4k2r21(1+r21)

)
3
(
κ+

√
κ2−4k2r21(1+r21)

) δϕ ,

(3.67)

which yields the same equation for characteristic frequencies as in (3.63). Hence the bosonic frequencies

for this subsector are model-independent.

Since the other six bosonic frequencies match the corresponding six frequencies of the original theory,

the discrepancy in these two frequencies seems to be a serious problem. However, in the following

subsections, we will show that the total sum of the characteristic frequencies including the fermionic

contributions is the same as that of the original string theory.

3.2.2 Fermionic fluctuations in reduced theory

We define component fields of the fermionic fluctuations as in the folded string case (3.24) - (3.28).5

Then the fermionic part of the quadratic fluctuations takes the form,

Lf = 2
[∑8

i=1 (αi∂−αi + βi∂−βi) + (k−
√
k2+κ2)(κ2−4k2r21(1+r21))1/4

√
κ

(−α1α2 − α3α4 − α5α6 + α7α8)

+(k+
√
k2+κ2)(κ2−4k2r21(1+r21))1/4

√
κ

(−β1β2 − β3β4 − β5β6 + β7β8)

+
√
κ

(√
κ− 2kr1

√
1 + r21 +

√
κ+ 2kr1

√
1 + r21

)
× (−α3β1 − α1β3 + α7β5 − α5β7 + α4β2 + α2β4 + α8β6 − α6β8)

]
.

(3.68)

As expected the coefficients of each term in the Lagrangian is totally constant. Then we can evaluate

frequencies in a straightforward way,

±
√

(n± c)2 + a2 ± d , (3.69)

5Here we should use v in (3.57) for v in the expression of δΨ
L
.
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where

a2 = κ
2

(
κ+

√
κ2 − 4k2r21(1 + r21)

)
,

c =
k(κ2−4k2r21(1+r21))1/4

2
√
κ

,

d =
√
k2+κ2(κ2−4k2r21(1+r21))1/4

2
√
κ

.

(3.70)

While a agrees with a in [93], the other two do not match.

Despite of the discrepancies in the individual frequencies, one might still expect that the sums of all

the frequencies match, which could provide a nontrivial support that the partition functions in the

two theories are equivalent in the case of the (S, J) circular string at one-loop level. To show this we

shall evaluate the sum of the frequencies perturbatively in large J in the next subsection.

3.2.3 Sum of frequencies

The procedure of calculating sum of the characteristic frequencies directly follows from the computa-

tion of the one-loop energy correction discussed in [93]. If given a set of N fluctuations, we obtain 2N

roots ΩI;n (I = 1, . . . , 2N) by solving the conditions that the determinant of the corresponding N ×N

mass matrix vanishes. The zero modes appear in pairs, ΩI;0 = ±Ωp;0 (p = 1, . . . , N), and the non-zero

modes can be paired by the condition ΩI;n = −ΩI;n. Then the frequencies should be summed up as

N∑
p=1

Ω̂p;0 +
∞∑
n=1

2N∑
I=1

Ω̂I;n , (3.71)

with

Ω̂p;0 = sign(Cp)Ωp;0 , Ω̂I;n = sign(C(n)
I )ΩI;n , (3.72)

Cp =
1

2m11(Ωp;0)Ωp;0
∏
q ̸=p(Ω

2
p;0 − Ω2

q;0)
, C

(n)
I =

1
m11(ΩI;n)

∏
J ̸=I(ΩI;n − ΩJ ;n)

, (3.73)

where m11 is a minor of the mass matrix, i.e., the determinant of the matrix obtained from the mass

matrix by removing the first row and first column. Note that the fermionic frequencies contribute to

the partition function negatively. For the (S, J) string we find that the structure of signC(n)
I becomes

simple because half of the frequencies are positive and half of the frequencies are negative.

The zero modes contribution is

4ν + 2κ+ Ω0 − 8
√
c2 + a2 , (3.74)
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and nonzero modes are

2
∞∑
n=1

[
4
√
n2 + ν2 + 2

√
n2 + κ2 +

1
2

4∑
I=1

sign(C(n)
I )ΩI;n − 4

(√
(n+ c)2 + a2 +

√
(n− c)2 + a2

)]
,

(3.75)

where Ω0 is shown in (3.66) and ΩI;n is expanded in terms of large J in (3.65). Using the formula for

the large J expansion of κ,

κ = J +
k2u(2 + u)

2J
−
k4u

(
4 + 12u+ 8u2 + u3

)
8J 3

+ · · · , (3.76)

where u = S/J , we find the zero mode part,

−k
2u(1 + u)

J
+O

(
1
J 3

)
. (3.77)

On the other hand, the contribution from the non-zero modes is expanded as

−
∞∑
n=1

n2 + 2k2u(1 + u) − n
√
n2 + 4k2u(1 + u)

2J
+O

(
1
J 3

)
. (3.78)

These two results are the same as [93].

It is still mysterious that the characteristic frequencies of the individual fluctuations do not match. In

[93] the expansions of the Landau-Lifshitz Lagrangian is also discussed as a useful tool for extracting

the part of the fluctuation frequencies in the string theory, ΩI=1,2. Although each frequency in the

Landau-Lifshitz model is different from the corresponding one in the string theory, the sum of the two

frequencies agrees with the string theory result. So one might expect that the sum of the frequencies

of a3 and a4 would agree with that of the two fluctuations in the original string theory in the large J

expansion. However this does not happen. Actually, for the nonzero modes of a3 and a4, we have

1
2

4∑
I=1

sign(C(n)
I )ΩI;n = 2J +

2k2(1 + u) + n
(
n+

√
n2 + 4k2u(1 + u)

)
2J

+O

(
1
J 3

)
, (3.79)

On the other hand, the corresponding sum in the original string theory is

2J +
2k2

(
1 + 3u+ u2

)
+ n

(
n+

√
n2 + 4k2u(1 + u)

)
2J

+O

(
1
J 3

)
, (3.80)
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which is different from (3.79) and the discrepancy is

k2u(2 + u)
J

. (3.81)

This cancels with the discrepancy found in the fermionic sector, and then the total sums of the

frequencies are the same.

3.2.4 2d Lorentz boost

Generally one can evaluate the characteristic frequencies and confirm the agreement of the total sums

of the frequencies order by order in large J . However it is technically hard to continue the calculation

to higher orders in 1/J . Here we shall find a 2d Lorentz transformation on the worldsheet, which

does not change the total sum of the bosonic and fermionic frequencies, but can change some of the

frequencies.

As the Lagrangians for the two fluctuations a1, a2 in the AdS5 sector and all of the four fluctuations

in the S5 sector do not contain a first derivative term, their frequencies are obviously invariant under

any Lorentz boost on the worldsheet. Hence one can expect a certain 2d Lorentz boost allows us to

modify the equations for the fermionic frequencies and the other two bosonic frequencies such that

they yield the frequencies found in [93]. Let us introduce the 2d Lorentz boost by

τ → p1τ + q1σ , σ → q1τ + p1σ , with p2
1 − q21 = 1 . (3.82)

In order to set the equations for frequencies of the two bosonic fluctuations a3 and a4 to be the same

as the corresponding equation in the original theory (3.64), we choose

p1 =

√
κ2−2k2r21+κ

√
κ2−4k2r21(1+r21)

2κ
√
κ2−4k2r21(1+r21)

,

q1 = −

√
κ2−2k2r21−κ

√
κ2−4k2r21(1+r21)

2κ
√
κ2−4k2r21(1+r21)

.

(3.83)

By this 2d boost the fermionic frequencies are changed into

±
√

(n± c)2 + a2 ± d , (3.84)
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where

a2 =

(
κ2+κ

√
κ2−4k2r21(1+r21)

)
2 ,

c =

√
κ2+2k2(1+r21)−κ

√
κ2−4k2r21(1+r21)

2
√

2
,

d =

√
κ2+2k2(1+r21)+κ

√
κ2−4k2r21(1+r21)

2
√

2
,

(3.85)

which are exactly the same as [93]. Therefore all of the fluctuations in the reduced theory agree with

the result of [93] in this frame. As the sum of the frequencies should be invariant under the 2d boost,

our result implies that the sum of the frequencies in the reduced theory, (3.74) and (3.75), recovers

the result of the original string theory calculation to all orders in 1/J . Then the quantum equivalence

of the partition functions (1.6) has been demonstrated for the (S, J) circular string at one-loop level.

Let us discuss the meaning of this 2d Lorentz boost. Since the form of the classical solution (3.47) is not

2d Lorentz invariant, the fluctuation Lagrangians (3.61) and (3.68) are not either, and consequently,

each fluctuation frequency may change by the 2d Lorentz transformation. If we apply the Lorentz

transformation (3.83) to the classical solution (3.47), the solution becomes

Y0 + iY3 = r0 e
iκp1τ+iκq1σ , Y1 + iY2 = r1 e

i(wp1+kq1)τ+i(kp1+wq1)σ ,

X1 + iX2 = ei(ωp1+mq1)τ+i(mp1+ωq1)σ .

(3.86)

With this classical solution the stress tensor takes the following form,

TAdS
±± = −κ

√
κ2 − 4k2r21

(
1 + r21

)
, (3.87)

which implies µ+ = µ− =
√
κ
(
κ2 − 4k2r21

(
1 + r21

))1/4. Hence it turns out that the 2d Lorentz boost

we applied to both the bosonic fluctuations and the fermionic fluctuations is the same as the one setting

µ+ = µ−. However, it is still mysterious why the mixing of the bosonic and fermionic frequencies

occurs by the Pohlmeyer reduction and why it is necessary to set µ+ = µ− for the agreement of the

frequencies of the individual fluctuations.
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3.3 Spiky string

We shall discuss semiclassical expansion around the (S, J) spiky string solution in AdS3 ×S1 by using

the embedding of the tanh model into the deformed gWZW model for the bosonic sector in section

3.3.1 and for the fermionic sector in section 3.3.2. Classical aspects of the spiky string solution were

studied in the bosonic string theory [95, 96] and in the Pohlmeyer-reduced form [51, 52]. In [HIT] and

in the earlier sections of this chapter we have seen that the semiclassical computation in the reduced

theory perfectly recovers the one-loop corrections to the string partition function, and moreover, it

has a huge advantage as the reduced theory has simple structures of both the bosonic and fermionic

fluctuations after properly fixing the H gauge. Hence we expect that our result will agree with the

string theory side, and the computation here will be much simpler than the standard worldsheet

approach in the conformal gauge string theory.

First we shall review the (S, J) spiky string solution in AdS3×S1 found in the paper [96]. The solution

is expressed in terms of the embedding coordinates,6

Y0 + iY3 = r0(u) eiw0τ+iφ0(u) , Y1 + iY2 = r1(u) eiw1τ+iφ1(u) , X1 + iX2 = eiψ(u) , (3.88)

with

u = ασ + βτ , r20 − r21 = 1 . (3.89)

Here w0 and w1 are real constants. The S1 part is explicitly written as

ψ = ντ +
D − βν

β2 − α2
u , (3.90)

while φ0 and φ1 are expressed in differential form,

φ′
0 = − 1

β2−α2

(
C0

r20
+ w0β

)
, φ′

1 = 1
β2−α2

(
C1

r21
+ w1β

)
, (3.91)

6Here we have assumed r0 and r1 have the u(= ασ + βτ) dependence whereas they are constants in the case
of the circular string (3.47).
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where ν, D, C0 and C1 are real constants. The Virasoro constraints read

−r′20 (β2 − α2) − C2
0

r20(β2−α2)
− r20α

2w2
0

β2−α2 + r
′2
1 (β2 − α2) + C2

1

r21(β2−α2)
+ r21α

2w2
1

β2−α2 + D2

β2−α2 + α2ν2

β2−α2 = 0 ,

(3.92)

and

w0C0 + w1C1 +Dν = 0 . (3.93)

The first constraint is nothing but the condition that the Hamiltonian of this system should vanish.

Using r20 − r21 = 1 we rewrite (3.92) into an equation for r1,

(β2 − α2)2r
′2
1 = (1 + r21)

(
C2

0

1 + r21
+ α2w2

0(1 + r21) −
C2

1

r21
− α2w2

1r
2
1 −D2 − α2ν2

)
. (3.94)

Here it is necessary to assume w2
0 < w2

1 such that the string does not attach the boundary.

The spiky string solution with n spikes consists of 2n arcs, each of which should possess two turning

points (r′1 = 0) at some finite values of r1. Let us introduce a new radial variable v(u) by

v =
1

1 + 2r21
=

1
cosh 2ρ

, (3.95)

where ρ is the radial coordinate in the global coordinate system of AdS3. Assume that v′ vanishes at

v = v1, v2, v3 with v1 ≤ 0 ≤ v2 ≤ v3 ≤ 1, then the equation for r1 (3.94) is rewritten as

v′ =

√
2vP (v)
α2 − β2

, P (v) =
w2

1 − w2
0

v1v2v3
(v − v1) (v − v2) (v − v3) . (3.96)

The constant v1 is not arbitrary but is a function of v2 and v3,

v1 = − v2v3

v2 + v3 + v2v3
w2

1+w2
0−2(ν2+D)

w2
0−w2

1

. (3.97)

C1 and C2 are expressed in terms of v1, v2 and v3

C2
0 = w2

0−w2
1

8
(1+v1)(1+v2)(1+v3)

v1v2v3
, C2

1 = w2
0−w2

1
8

(1−v1)(1−v2)(1−v3)
v1v2v3

. (3.98)

Under our assumption v1 ≤ 0 ≤ v2 ≤ v3 ≤ 1 and w2
0 < w2

1, we have C2
0 ≥ 0 and C2

1 ≥ 0, then our

choice of the roots is consistent. Depending on further conditions for v2 and v3, the solution has two
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possible regimes; the spike is at the minimum r1 in one regime and at the maximum r1 in the other

regime.

Next let us discuss the reduction of the (S, J) spiky string solution. The mass scale µ in the reduced

theory is determined by the AdS3 part of the stress tensor, TAdS
±± , in the original string theory. For

the (S, J) spiky string solution, due to its complicated structure in the AdS sector, it is convenient to

calculate TAdS
±± from the S1 part of the stress tensor T S

±± by using the Virasoro constraint, TAdS
±± +T S

±± =

0. Then we have

TAdS
±± = −T S

± = −
(
αν∓D
α∓β

)2
, (3.99)

which show that this is also the case of TAdS
++ ̸= TAdS

−− . So we introduce µ± by TAdS
±± = −µ2

±, and define

the mass scale µ as

µ =
√
µ+µ− =

√
α2ν2 −D2

α2 − β2
. (3.100)

By this definition of µ we have implicitly assumed α2ν2 > D2 and α2 > β2 (or α2ν2 < D2 and

α2 < β2) so that µ is real. Below we will work on the reduction in these parameter regions.

Following the standard procedure of the Pohlmeyer reduction for the tanh model, (2.6), we obtain the

sinh-Gordon angle ϕA ,7

ϕA = 1
2 log

[
M2+2α

√
M2M3+α2M3

α2ν2−D2

]
, (3.101)

and θA ,

∂±θA = α2
√

α2−β2

α2ν2−D2

(C2
0+C2

1 )w0w1+C0C1(w2
0+w2

1)±C0w1α(M1−w2
0)±C1w0α(M1−w2

1)+w0w1(α2M3−D2)
(α∓β)2M2

,

(3.102)

where we introduced Mi (i = 1, 2, 3) as functions of r1,

M1 = w2
0 +

(
w2

0 − w2
1

)
r21 , M2 = M1α

2 −D2 , M3 = M1 − ν2 . (3.103)

Hereafter let us consider the case of positive M1.8 As the radial coordinate r1 is a function of u =

7For notational simplicity we will use r1 rather than v which is used in the original paper [96]. Although
expressing the classical solution in terms of r′1 makes it easy to understand the behavior of the fluctuations at
spikes, we avoid to employ r′1 for the same reason.

8This assumption is related to a condition for the existence of the solution of the equation (3.94) for D =
ν = 0. Naively the equation (3.94) has a solution if its right hand side is positive. A sufficient condition for this
is exactly the same as M1 ≥ 0 because we have C2

0 ≥ C2
1 .

If we consider the other case where M1 is negative, the D, ν → 0 limit in the fluctuation Lagrangians yields
a wrong answer. This problem is solved by the following prescription. Generally the reduction equation for ϕ

A
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ατ + βσ, θA can be expressed in an integral form.9 However, this is not a serious problem as far as

quadratic fluctuations are concerned, since θA appears only as ∂±θA in the fluctuation Lagrangian.

If we substitute (3.101) and (3.102) into (2.39) we find that the corresponding classical solution in the

gWZW model takes the following form,

g0 =



0 vP1 −vP2 0

−v∗P1 0 0 v∗P2

vP2 0 0 −vP1

0 −v∗P2 v∗P1 0


. (3.105)

v is given by

v = eiθA , (3.106)

where θA solves the differential equations in (3.102). P1 and P2 are written as

P1 = M2+α
√
M2M3√

(M2+α2M3+2α
√
M2M3)(α2ν2−D2)

, P2 = α2M3+α
√
M2M3√

(M2+α2M3+2α
√
M2M3)(α2ν2−D2)

. (3.107)

The classical gauge field equations (2.29) are solved by A±0 = i
2 a±0R2 with

a±0 = −
(
M2 ± α2M3

)
∂±θA

M2
, (3.108)

where ∂±θA are given by (3.102).

At the level of the classical solution (3.105) we can not take the D, ν → 0 limit in which the string is

not stretching or moving in S5. It is because P1,2 in (3.107) diverge in this limit due to the factor of
√
α2ν2 −D2 in their denominators. We will show that the D, ν → 0 limit can be taken once we derive

the Lagrangian for quadratic fluctuations, which is the same situation as the (S, J) folded string case.

in (2.6) has four solutions, two of which are real. Employing the other real branch for ϕ
A
,

1
2

log
[
M2 − 2α

√
M2M3 + α2M3

α2ν2 − D2

]
, (3.104)

one can check the D, ν → 0 limit becomes well-defined for M1 < 0 at the level of the fluctuation Lagrangians.
This observation implies that we should choose ϕ

A
appropriately depending on the parameters, α and w0.

Another reason we have assumed M1 ≥ 0 is that the solution has a smooth limit to the folded string in AdS3

under this assumption. In fact the folded string limit corresponds to M1 → ρ′2 which is positive-definite.
9Making the T-duality transformation does not help in the present case; ∂±χA in the coth model are not

constant.
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3.3.1 Bosonic fluctuations in reduced theory

Bosonic fluctuations in the S5 sector for any string solution in AdS3 × S1 are massive fields with

masses ±µ. From (3.100) we find that the Lagrangian for the quadratic fluctuations in the S5 sector,

bi (i = 1, . . . , 4), is

L = 2
4∑
i=1

(
∂+bi∂−bi −

α2ν2 −D2

α2 − β2
b2i

)
. (3.109)

In this sector all the fluctuations have the constant masses.

The procedure for deriving the physical part of the fluctuated Lagrangian in the AdS5 sector is the

same as that in the (S, J) folded string case and the circular string case; introduce the fluctuation

fields by (3.12), (3.13) and (3.14), integrate out the diagonal parts of the gauge field fluctuations, and

then, use the H gauge freedom such that physical fluctuations decouple from unphysical fluctuations.10

Consequently we find the Lagrangian containing a1 and a2,

L1 = 2
∑
i=1,2

(
∂+ai∂−ai −

M2 +M3α
2

α2 − β2
a2
i

)
. (3.110)

As shown for the previous classical solutions, one shortcut way to the Lagrangian containing a3 and

a4 is to perturb the tanh model Lagrangian directly. For the spiky string solution this approach has

a big advantage because of the complicated expression for the classical solution. Substituting the

classical solution (3.102), (3.101) into the perturbed Lagrangian of the tanh model (3.2), we obtain

the Lagrangian for a3 and a4,

L2 = 2
[
∂−a3∂+a3 +A33a

2
3 + ∂−a4∂+a4 +A44a

2
4 + (A+∂+a4 +A−∂−a4) a3 +A34a3a4

]
, (3.111)

where

A33 = −M2+M3α2

α2−β2 +
α4(M2−3M3α2)
M4

2 (α2−β2)

[
w2

0w
2
1(C

4
0 + C4

1 ) + 2C0C1w0w1(C2
0 + C2

1 )
(
w2

0 + w2
1

)
+ C2

0C
2
1

(
w4

0 + 4w2
0w

2
1 + w4

1

)
+ (C2

0w
2
1 + C2

1w
2
0)
(
−M2

1α
2 + 2w2

0

(
M2 +M3α

2
)
− w4

0α
2
)

+ w2
0w

2
1

(
D2 −M3α

2
)2 + 2C0C1w0w1

(
−M2

1α
2 + (M2 +M3α

2)
(
w2

0 + w2
1

)
− w2

0w
2
1α

2
) ]

,

(3.112)

10It should be noted that we use v in (3.106) with (3.102) for v in the expression (3.14).
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A44 = − (α2ν2−D2)2

M2
2M

2
3 (α2−β2)

[
C2

0

(
M1 − w2

0

) (
w2

0 − w2
1

)
− C2

1

(
M1 − w2

1

) (
w2

0 − w2
1

)
+(M2

1 −M1

(
w2

0 + w2
1

)
+ w2

0w
2
1)(M3α

2 −D2)
]
,

(3.113)

and

A34 =
4α2(w2

0−w2
1)(α2ν2−D2)3/2

M3
2M3(α2−β2)3/2

√
(M3α2 −D2) r41 +

(
C2

0 − C2
1 +M3α2 −D2

)
r21 − C2

1

×
[
w0w1β(C2

0 + C2
1 +M3α

2 −D2) + C0C1β(w2
0 + w2

1) + α2(M1 − w0w1)(C1w0 + C0w1)
]
,

(3.114)

A± = 2α(α∓β)
M2(α±β)

√
α2ν2−D2

M2
2 (α2−β2)

[
w0w1α(C2

0 + C2
1 ) + w0w1α

(
M3 −D2α2

)
∓(C1w0 + C0w1)

(
M1α

2 − w2
1α

2
)

+ C0C1α
(
w2

0 + w2
1

) ]
.

(3.115)

Finally we shall consider the case of no stretching in S5, which is achieved by taking the limit D, ν → 0,

and correspondingly, M2 → α2M1, M3 → M1. In this case the fluctuations in the S5 (3.109) become

massless. In the AdS5 sector we have the following Lagrangian,

L = 2
[∑

i=1,2

(
∂+ai∂−ai − 2α2M1

α2−β2 a
2
i

)
+ ∂+a3∂−a3 −

2f2(w2
0−w2

1)
2−2α2(M2

1 +w2
0w

2
1)

M1(α2−β2)
a2

3 + ∂+a4∂−a4

]
,

(3.116)

where we have rewritten C0 and C1 as C0 = w1f and C1 = −w0f , respectively, such that they solve

the second Virasoro constraint (3.93) with D = ν = 0. Hence it turns out that the D, ν → 0 limit is

well defined at the level of the fluctuation Lagrangian in the bosonic sector .

Since the folded string solution in pure AdS3 is realized as a special case of the spiky string solution,

the Lagrangian (3.116) should recover the fluctuation Lagrangians for the folded string, (3.20) and

(3.21). In fact the folded string solution corresponds to the limit f → 0, M1 → ρ′2, w0 → κ, w1 → w

and α, β → 0, and one can find that the Lagrangian (3.116) reduces to the sum of (3.20) and (3.21)

in this limit.
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3.3.2 Fermionic fluctuations in reduced theory

Given the component fields of the fermionic fluctuations by (3.24) - (3.28), one can write down the

fermionic fluctuation Lagrangian in terms of αi and βi,11

LF = 2
[∑8

i=1 (αi∂−αi + βi∂−βi) +Aαα (−α1α2 − α3α4 − α5α6 + α7α8)

+Aββ (−β1β2 − β3β4 − β5β6 + β7β8)

+Aαβ (−α3β1 − α1β3 + α7β5 − α5β7 + α4β2 + α2β4 + α8β6 − α6β8)
]
.

(3.117)

where

Aαα = −1
2A+ , Aββ = 1

2A− , Aαβ = 2 M2+
√
M2M3α√

(M2+2
√
M2M3α+M3α2)(α2−β2)

. (3.118)

A± are defined in the bosonic sector, (3.115). The Lagrangian (3.117) again describes four decoupled

systems, each of which has four fermionic component fields.

Let us now discuss the special case where the string is in pure AdS3, that is, D, ν → 0, M2 → α2M1

and M3 →M1. Recalling that we are considering that case of M1 > 0, then we find that the coefficient

Aαβ becomes (Aαα, Aββ → 0 in this limit)

√
α2M1

α2 − β2
. (3.119)

Hence the D,µ → 0 limit is well-defined at the level of the fluctuation Lagrangian in the fermionic

sector.

For consistency the coefficient (3.119) should recover the case of the folded string in pure AdS3. Taking

the corresponding limit M1 → ρ′2 and α, β → 0 yields the mass term with a coefficient ρ′ which agrees

with [89]. Hence the fermionic part of the quadratic fluctuations around the folded string without the

S5 sector is recovered.

11Again we should use v in (3.106) with (3.102) for δΨ
L

instead of the original v for the (S, j) folded string.
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3.4 Folded string with orbital momentum and winding

in S1 of S5

In this section we shall study semiclassical expansion around the generalized folded string solution

with both the orbital momentum and the winding in S1 of S5 which was constructed in [97]. After

reviewing how to achieve the generalized homogeneous folded string from the (S, J) spiky string, we

will evaluate the characteristic frequencies for quadratic fluctuations in the bosonic sector in section

3.4.1 and in the fermionic sector in section 3.4.2 in order to compare them with the result in [97].

The generalized folded string solution also has the open string counterpart, a null cusp solution, which

is obtained by a combination of analytic continuation on the worldsheet and SO(2, 4) rotation from the

generalized folded string solution [97]. As the SO(2, 4) symmetry is obscure in the reduced theory, the

generalized folded string and its open string counterpart are connected by the analytic continuation

in the reduced theory. As the SO(2, 4) symmetry is obscure in the reduced theory, the generalized

folded string and its open string counterpart are connected by the analytic continuation in the reduced

theory. Hence the equivalence between the two classical solutions becomes trivial by the Pohlmeyer

reduction.

Because of the homogeneous nature of the generalized folded string, its fluctuation Lagrangian has

constant coefficients, and thus, quantum corrections to the partition function can be computed. In

fact, in [97], the expansion around the null cusp solutions were discussed and, the one-loop and two-

loop corrections were determined. Directly from the equivalence of the generalized folded string and

the null cusp solution, these quantum corrections are the same as those of the folded string solution.

Below we shall evaluate the characteristic frequencies of the quadratic fluctuations and compare them

with the one loop computation in [97]. Reflecting the fact the generalized folded string has both the

orbital momentum and the winding in the S1 sector, this is another case of µ+ ̸= µ− in the reduced

theory. Therefore, the conclusion of the one loop computation is very similar to the (S, J) circular

string case in section 3.2; two of eight bosonic frequencies which can be derived by the perturbation

in the complex sinh-Gordon model do not agree with the string theory result. The discrepancy is

covered by the fermionic contributions, and the total sum of the frequencies agrees with the string

theory result. In order to show this we shall find a 2d Lorentz transformation such that all of the
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bosonic and fermionic frequencies become the same as the frequencies of the corresponding fluctuations

in the original theory in section 3.4.3.

We shall first review the generalized folded string solution with both the orbital momentum and the

winding in S1 of S5. Introduce the global coordinates in AdS3 × S1 by

ds2 = − cosh2 ρdt2 + dρ2 + sinh2 ρdθ2 + dφ2 , (3.120)

then we expressed the solution in the conformal gauge,

t = κτ , ρ = ρ(σ) , θ = κτ + ϑ(σ) , φ = ντ +mσ , (3.121)

where

cosh ρ(σ) =
√

1 + γ2 cosh(ℓσ) , tanϑ(σ) = γ coth(ℓσ) , γ ≡ νm
κℓ ,

κ2 = ℓ2 + ν2 +m2 .

(3.122)

Here we are considering the following limit,

ℓ≫ 1 , ν ≫ 1 , κ, ℓ, ν,m≫ 1 ,
ν

ℓ
= fixed ,

m

ℓ
= fixed . (3.123)

In this solution only three parameters are independent. We will use κ, ν and m when we calculate

quadratic fluctuations. If we set the winding in a large circle of S5, m, to be zero, the solution reduces

to the (S, J) folded string solution discussed in section 3.1.

To compare this solution with the (S, J) spiky string solution in section 3.3, we rewrite the generalized

folded string solution in terms of another radial coordinate v introduced in (3.95) and derive the

equation for v′,

v′ = −2ℓv
√

(1 + v) (1 − v − 2γ2v) , (3.124)

which shows that v′ vanishes at v = −1, 0, 1
1+2γ2 corresponding to the three roots v1, v2 and v3 with

v1 ≤ 0 ≤ v2 ≤ v3 ≤ 1. Then we find that the generalized folded string solution is realized by taking

the following limit in the (S, J) spiky string solution,

v1 = −1 , v2 = 0 , v3 =
1

1 + 2γ2
, (3.125)
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which is different from the three limiting cases considered in [96].12

Let us next construct the corresponding solution in the reduced theory. For this purpose we express

the generalized folded string solution (3.121) in terms of the embedding coordinates,

Y0 + iY3 = coshρ(σ) eiκτ , Y1 + iY2 = sinhρ(σ) eiϑ(σ) , X5 + iX6 = ei(ντ+mσ) , (3.126)

where ρ(σ) and ϑ(σ) are given in (3.122), and related to the parameters in the S1 sector. The mass

scale of the reduced theory µ can be extracted from TAdS
++ and TAdS

−− . In the present case we have

TAdS
±± = −(ν ±m)2 , (3.127)

which imply µ± = ν ±m, and then, µ should be introduced by their product,

µ =
√
µ+µ− =

√
ν2 −m2 . (3.128)

As done in the semiclassical computation for the other solutions we use the tanh model in the reduced

theory. Once we obtain the mass scale µ, the solution in the original theory, (3.126), is encoded into

a solution of the tanh model in the reduced theory by using (2.6),

ϕA = 1
2 log

[
2κ2−ν2−m2+2

√
(κ2−m2)(κ2−ν2)

ν2−m2

]
, θA = κ2−m2

√
ν2−m2

τ . (3.129)

Plugging these into (2.39) and (2.40) we obtain the classical solution for the deformed gWZW model,

g0 =



0 vV1 −vV2 0

−v∗V1 0 0 v∗V2

vV2 0 0 −vV1

0 −v∗V2 v∗V1 0


, (3.130)

12The connection of the n-spike string and its long string limit was studied in [99] in the context of recovering
AdS3 ×S1 string solutions from the asymptotic SL(2) Bethe Ansatz equations. For n = 2 the limiting solution
reduces to the generalized folded string solution.
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where

v = e

i(κ2−m2)√
ν2−m2

τ
,

V1 = κ2−m2+
√

(κ2−m2)(κ2−ν2)

ν2−m2

√
ν2−m2

2κ2−ν2−m2+2
√

(κ2−m2)(κ2−ν2)
,

V2 = −κ2−ν2+
√

(κ2−m2)(κ2−ν2)

ν2−m2

√
ν2−m2

2κ2−ν2−m2+2
√

(κ2−m2)(κ2−ν2)
.

(3.131)

and the corresponding classical gauge fields are A±0 = i
2 a±0R2 with

a+0 = m2−2κ2+ν2
√
ν2−m2

, a−0 = −
√
ν2 −m2 . (3.132)

With this choice, g−1
0 ∂+g0 and g−1

0 A+g0 are constants, and then, the physical part of the quadratic

fluctuation Lagrangian has constant coefficients after properly choosing the H gauge. Hence we can

straightforwardly evaluate characteristic frequencies of the quadratic fluctuations, which should be

compared with the fluctuation frequencies in the original string theory.

3.4.1 Bosonic fluctuations in reduced theory

Four physical modes in the S5 sector yield four bosonic fluctuations with the masses ±µ. Since we

have µ2 = ν2 −m2, their frequencies are

±
√
n2 + ν2 −m2 , (3.133)

which are consistent with [97].

For the AdS5 sector one easy way to obtain the constant coefficient Lagrangian for physical fluctuations

is again to introduce the component fields of η and δA± as in (3.12), (3.13) and (3.14), and then,

to use the H gauge symmetry such that the physical fields decouple from the unphysical fields as

in the folded string case.13 Two of the bosonic fluctuations in the AdS5 sector are described by the

Lagrangian,

L1 = 2
∑
i=1,2

(
∂+ai∂−ai − (2κ2 − ν2 −m2)a2

i

)
, (3.134)

Then their frequencies are

±
√
n2 + 2κ2 − ν2 −m2 , (3.135)

13The original v in (3.14) should be replaced by v in (3.131).
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which agree with the result in [97]. The problem is found in the sector of the other two bosonic

fluctuations, which can also be captured by the perturbation in the complex sinh-Gordon model,

L2 = 2
[
∂−a3∂+a3 − 4

(
κ2 − ν2

)
a2

3 + ∂−a4∂+a4 − 2
√
ν2 −m2 (∂+a3 + ∂−a3) a4

]
. (3.136)

The equation for the characteristic frequencies derived from this Lagrangian is

Ω4 − 2
(
n2 + 2κ2 − 2m2

)
Ω2 + n2

(
n2 + 4κ2 − 4ν2

)
= 0 , (3.137)

which is not the same as the corresponding equation in the original string theory [97],

Ω4 − 2Ω2
(
n2 + 2κ2

)
+ 8νmnΩ + n2

(
n2 + 4κ2 − 4ν2 − 4m2

)
= 0 . (3.138)

Therefore, characteristic frequencies of the reduced theory and the original theory are different in this

subsector. However, this does not imply that our conjecture on the quantum equivalence between the

original string theory and the reduced theory, (1.6), breaks down. Later we will show that this dis-

crepancy should cancel with that of fermionic fluctuations by finding a specific Lorentz transformation

making all of the frequencies the same as those found in the original string theory.

3.4.2 Fermionic fluctuations in reduced theory

The parameterization for the fermionic fields (3.24) - (3.28) in the fermionic part of the fluctuation

Lagrangian (3.4) gives the constant coefficient Lagrangian,14

Lf = 2
[∑8

i=1 (αi∂−αi + βi∂−βi)

+
√
ν2 −m2 (α1α2 + α3α4 + α5α6 − α7α8 − β1β2 − β3β4 − β5β6 + β7β8)

+
2
(
κ2−m2+

√
(κ2−m2)(κ2−ν2)

)
√

2κ2−m2−ν2+2
√

(κ2−m2)(κ2−ν2)
(α1β4 + α2β3 − α3β2 − α4β1 − α5β8 + α6β7 + α7β6 − α8β5)

]
.

(3.139)

The fermionic characteristic frequencies are given by solving the following equation,

Ω4 − 1
2
(
4n2 + 4κ2 + ν2 − 5m2

)
Ω2 +

1
16
(
4n2 + 4κ2 − ν2 − 3m2

)2 = 0 , (3.140)

14The original v in δΨ
L

should be replaced by v in (3.131).
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which is not the same as the equation for the fermionic frequencies in the original theory,

Ω4 − 1
2

(
4n2 + 4κ2 + ν2 − 3m2

)
Ω2 + 2nνmΩ

+ 1
16

[
9m4 +

(
4n2 + 4κ2 − ν2

)2 − 2m2
(
20n2 + 12κ2 − 3ν2

)]
= 0 ,

(3.141)

and consequently, the characteristic frequencies do not match.

3.4.3 2d Lorentz boost

In section 3.2.3 we carried out the large J expansion and showed that the sum of the frequencies in

the reduced theory is the same as that in the original string theory up to the order 1/J 2. Since the

sum of the frequencies should be invariant under 2d Lorentz boost on the worldsheet, the sums of the

frequencies of these two theories are the same if all of the individual frequencies in the reduced theory

become the same as the corresponding frequencies in the original theory by a single 2d Lorentz boost.

The (S, J) circular string is the case.

The present situation is very similar. Six of bosonic frequencies, (3.133) and (3.135), are Lorentz

invariant, while the others frequencies described by (3.137) and (3.140) are changed by a Lorentz

transformation. If we introduce a 2d Lorentz transformation in the reduced theory by

τ → p2τ + q2σ , σ → q2τ + p2σ , p2
2 − q22 = 1 , (3.142)

with

p2 =
ν√

ν2 −m2
, q2 = − m√

ν2 −m2
, (3.143)

then (3.137) and (3.140) become (3.138) and (3.141), respectively. Hence the frequencies match for

all of the individual fluctuations. This implies that the total sum of the quantum corrections to the

partition function in the reduced theory agree with the string theory result, and so, supports our

conjecture in (1.6).

It is worth mentioning that the transformation (3.142), (3.143) is exactly the same as the one setting

µ+ = µ− in (3.128). In fact, applying the 2d Lorentz boost to the generalized folded string solution
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(3.126), we find that the stress tensor becomes

TAdS
±± = −(ν2 −m2) , (3.144)

that is, µ+ = µ− =
√
ν2 −m2. This is the same observation as in the circular string case in section

3.2.

3.5 Remarks on µ+ ̸= µ− case

In sections 3.2, 3.3 and 3.4, we discussed semiclassical quantization for the solutions with µ+ ̸= µ−

in the reduced theory. In particular, the characteristic frequencies of the individual fluctuations in

sections 3.2 and 3.4 do not agree with those found in the string theory computation, while the total

sums of the frequencies match. Then we showed that the agreement of the individual frequencies is

achieved by applying the 2d Lorentz transformation to the fluctuation Lagrangians.

An alternative resolution to this problem is to modify the reduction procedure. Here we will only

discuss the embedding of the tanh model, but the same technique works for the coth model because

they are related by the T-duality transformation. In stead of the reduction relation (2.6), let us employ

the following ansatz,

∂+Y
P∂−YP = −µ2 cosh 2ϕA ,

KP ∂
2
±Y

P = ∓4µ±µ2 sinh2ϕA ∂±θA .

(3.145)

Even with this reduction, the reduced model is still the same as (2.8) since µ± enter the reduced

theory equations of motion as the square root of their product, µ = √
µ+µ−, but it modifies the

corresponding reduced theory solutions. To confirm that this reduction relation leads the agreement

of the individual fluctuation frequencies, we shall again look at the (S, J) circular string (3.47). In the

present case, the complex sinh-Gordon fields take the following form

ϕA = 1
2 log

(
κ−2kr1

√
1+r21√

κ2−4k2r21(1+r21)

)
,

θA = C−τ + C+σ ,

(3.146)
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where

C± =
k2r21(1+r21)

κ−
√
κ2−4k2r21(1+r21)

(
± k−

√
k2+κ2√

κ2+2k(−k+
√
k2+κ2)r21

+ k+
√
k2+κ2√

κ2−2k(k+
√
k2+κ2)r21

)
, (3.147)

then the classical solution in the reduced theory (3.56) is slightly modified. This modification changes

one of the Lagrangians for the bosonic fluctuations, (3.61), and that for the fermionic fluctuations,

(3.68), leaving the other Lagrangians unchanged. With these new Lagrangians, one can show that the

characteristic frequencies of the individual fluctuations exactly agree with the string theory result.

One can also check that all of the characteristic frequencies for the generalized folded string in section

3.4 agree with those found in the original string theory if the reduction relation (3.145) is used; one

gets (3.138), (3.141) instead of (3.137), (3.140).
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Two-loop computation

Our aim in this chapter is to explore the two-loop relation of the AdSn × Sn GS string theory (ST)

and its Pohlmeyer-reduced theory (PRT) by evaluating the two-loop partition function of the reduced

theory for n = 3, 5 [IRT]. Since the computation of the partition function for a nontrivial string

configuration is complicated, we shall consider the scaling limit of the folded string localized in the

AdS3 subspace.

4.1 Summary of two-loop computation

Here let us summarize the original string theory result of the partition function in the long spinning

string solution background and show our results in the Pohlmeyer-reduced theory.

4.1.1 Quantum partition function in string theory

Initiated by the exploration of the folded string solution in AdS3 [17], the folded string solution was

extended to the (S, J) folded string carrying nonzero momentum along S1 of S5. The semiclassical

expansion around the (S, J) folded string was discussed and the one-loop corrections to the string

energy were evaluated in [89] and [90] for the case of the scaling limit where the string becomes

homogeneous, and the one-loop corrections without taking the limit were studied in [91]. The two-

loop computation in the original string theory was first discussed in [69] for the folded string in AdS3,

65
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and in [70] by considering the open string counterpart of the folded string. The two-loop corrections

in the case of the (S, J) folded string were evaluated by using the conformal gauge in [71], and by

using the light-cone gauge in [97, 100].

When the folded string is localized in AdS3, nontrivial part of two-loop corrections is characterized by

the Catalan’s constant K [69, 70]. The logarithm of the resulting quantum partition function is given

by

ΓST = − lnZST =
1
2π

f(λ) V2 , (4.1)

f(λ) = a1 +
a2√
λ

+ O(
1

(
√
λ)2

) , (4.2)

a1 = −3 ln 2 , a2 = a2B + a2F = K − 2K = −K . (4.3)

Here a1 is the one-loop and a2 is the two-loop contributions (K is the Catalan’s constant), and V2 is the

two-dimensional worldvolume V2 =
∫
dτ ′dσ′ = κ2V̄2. In a2 we indicated separately the part coming

from purely bosonic graphs (a2B) and graphs involving fermions (a2F ). Contributions proportional to

K originate from two-loop “sunset” graphs with three propagators that are expressed in terms of the

following momentum integrals

I[m2
i ,m

2
j ,m

2
k] ≡

∫
d2qid

2qjd
2qk

(2π)4
δ(2)(qi + qj + qk)

(q2i +m2
i )(q

2
j +m2

j )(q
2
k +m2

k)
, (4.4)

I[4, 2, 2] =
1

(4π)2
K , I[2, 1, 1] =

2
(4π)2

K . (4.5)

Recalling that the system possesses one AdS3 mode with m2 = 4, two AdS5 modes transverse to

AdS3 with m2 = 2 and five S5 modes with m2 = 0 [89], one finds that both the bosonic I[4, 2, 2] and

the fermionic I[2, 1, 1] contributions involve the transverse AdS5 modes with m2 = 2. As these AdS5

modes are absent, the Catalan’s constant is not produced for the AdS3 ×S3 superstring theory [IRT],

AdS3 × S3 : a1 = −2 ln 2 , a2 = 0 . (4.6)

4.1.2 Quantum partition function in reduced theory

In this section we will summarize our results of the two-loop computation in the reduced theory.
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Although our objective is to evaluate the quantum effective action of the folded string solution localized

in AdS3, it is not allowed to study it directly in the reduced theory. As in [IWA, 66], the reduction

of string solutions in pure AdS3 space is not yet known within the framework of the full AdS5 × S5

reduction. So we will start with the (S, J) folded string solution lying in AdS3 × S1 and take J → 0

limit eventually.

Let us define the embedding coordinates YM (M = −1, 0, . . . , 4) on R4,2 for AdS5 and XI (I =

1, 2, . . . , 5) on R6 for S5 with the constraints ηMNY
MY N = −1, δIJXIXJ = 1 where the metrics are

η = diag(−1, 1, . . . , 1,−1), δ = diag(1, . . . , 1). The (S, J) folded string solution in the scaling limit is

expressed in terms of the embedding coordinates,

Y0 + iY5 = cosh(ℓσ) eiκτ , Y1 + iY2 = sinh(ℓσ) eiκτ , Y3 = Y4 = 0 ,

X1 = X2 = X3 = X4 = 0 , X5 + iX6 = eiµτ ,

(4.7)

where κ, ℓ and µ are constants related by the Virasoro constraints,

κ2 = ℓ2 + µ2 . (4.8)

The J → 0 case is realized by the limit µ→ 0.

While it was shown in chapter 3 that the limit µ→ 0 where the string solution is localized in AdS3 is

well-defined in the fluctuation Lagrangian at the quadratic level in the “decoupling gauge” in which

physical fluctuations decouple from unphysical fields, this limit is not well-defined in another gauge

which we will take in this chapter. We will keep the S1 sector during the intermediate steps and take

the limit at the level of the two-loop integral. Then we will get the PRT counterpart of the two-loop

partition function for the spinning string solution with J = 0. In this case the PRT quantum partition

function takes a similar form as in the string theory (4.1), (4.2),

ΓPRT = − lnZPRT =
1
2π

f(k) V2 , (4.9)

f(k) = a1 +
2a2

k
+ O(

1
k2

) . (4.10)

The coefficients an that we found are

a1 = −3 ln 2 , a2 = ā2 + ã2 , ā2 = −K , ã2 = −1
4
(a1)2 = −9

4
(ln 2)2 . (4.11)
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The value of the one-loop coefficient a1 matches the string theory one in (4.3), in agreement with

(1.6).

The Catalan’s constant term in the two-loop corrections a2 contains exactly the same coefficient as in

the string partition function in (4.3) if we assume the identification of the couplings in (2.34),

k5 = k = 2
√
λ (4.12)

Moreover, the bosonic and fermionic contributions are reproduced in the same way as in string theory,

that is, a2B + a2F = +K − 2K = −K.

It should be emphasized here that the equivalence of the mass spectra of the quadratic fluctuations is

not sufficient for obtaining the same structure of the Catalan’s constant term, because nontrivial cubic

vertices in the reduced theory could generate the additional nontrivial contributions, e.g., a finite term

proportional to I[4, 4, 4] in (4.4). However, our computation shows that such nontrivial finite term

does not appear and this is a strong indication that the AdS5 ×S5 ST and PRT are closely related at

the quantum level.

The two-loop result in the reduced theory also contains an additional ã2 ∼ (ln 2)2 term which is

absent in the ST two-loop coefficient a2. To be precise, we did not manage to derive the value of

the coefficient of (ln 2)2 term directly in the AdS5 × S5 case: We also obtained an IR divergent

result ã2 = −5
4(ln 2)2 − ln 2 lnm0, where m0 → 0 is an IR cutoff, and assumed a close analogy with

AdS3 × S3 does work for AdS5 × S5. We believe that this IR divergence should be an artifact of

involving unphysical massless fluctuations in our approach.

Our expectation to the origin of the IR divergent term is based on the study on the reduced AdS3×S3

theory, which allows for an alternative approach to the two-loop computation, in which the unphysical

modes are integrated out from the classical PRT Lagrangian [66]. If we use the same approach as

used in AdS5 × S5 case, an IR divergent coefficient is obtained, ã(1)
2 = −2

3(ln 2)2 − 4
3 ln 2 lnm0. On

the other hand, the other approach led to a consistent finite two-loop result,

AdS3 × S3 : f(k3) = a1 +
2a2

k3
+ O(

1
k2

3

) , (4.13)

a1 = −2 ln 2 , a2 = −1
4
(a1)2 = −(ln 2)2 . (4.14)
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The coupling constants in the AdS5 × S5 and AdS3 × S3 are related by

k = k5 = 2k3 . (4.15)

Once again, the one-loop coefficient here is the same as in (4.6) and the absence of the more complicated

contributions like the Catalan’s constant is also consistent with the vanishing of the string theory two-

loop coefficient in (4.6).

It remains to be understood if the apparent disagreement of the two-loop coefficients a2 and a2 in

string and reduced theories by precisely the square of the one-loop coefficient is still suggesting some

relation between the two universal scaling functions.

The remaining part of this chapter is organized as follows.

In section 4.2 we shall first review the structure of the reduced theory and explain the approach

to perturbative calculations based on a field redefinition using the Polyakov-Wiegmann identity and

gauge-fixing on the gauge fields. We shall also present the fluctuation Lagrangian and list the basic

types of two-loop diagrams which we will compute later.

In section 4.3 we will consider the AdS3 × S3 reduced theory using the two approaches and compare

the results of the two approaches. The first approach is to use the Polyakov-Wiegmann identity, where

the unphysical degrees of freedom are still involved (approach I). The second approach is to impose a

gauge on g ∈ G and integrate out the gauge fields from the deformed gWZW Lagrangian (approach

II). Only the physical degrees of freedom are present in the resulting system in this approach. Then a

resolution of the IR divergence problem found in approach I will be proposed such that it restores the

equivalence between the two approaches. The resulting finite two-loop coefficient is given in (4.14).

In section 4.4 we will present the analogous computation in the reduced AdS5×S5 theory by using the

Polyakov-Wiegmann identity. We will first discuss the one-loop approximation where the result for

the partition function matches the string theory result, and then, consider the two-loop computation

based on approach I. Using a direct analogy with the AdS3 × S3 case, the final expression for the

two-loop coefficient is given by the same Catalan’s constant term as found in the original string theory

plus an additional term proportional to the square of the one-loop coefficient (4.11).



70 Chapter 4. Two-loop computation

4.2 Expansion of reduced theory Lagrangian

In this section we shall explain perturbative expansions around a general classical configuration in

the Pohlmeyer-reduced form of string theory in AdSn × Sn for n = 3, 5. The reduced form is a

gauged Wess-Zumino-Witten model associated with G/H and deformed with an integrable potential

and two-dimensional fermionic fields where G = SU(1, 1) × SU(2), H = [U(1)]2 for n = 3, and

G = Sp(2, 2) × Sp(4), H = [SU(2)]4 for n = 5.

4.2.1 Gauge fixing and parameterization based on the

Polyakov-Wiegmann identity

In chapter 3 the perturbation in the Lagrangian (2.31) was discussed for evaluating the one-loop

corrections to the partition function, where the we fixed the H gauge in a specific way so that physical

modes decouple from unphysical modes in the fluctuation Lagrangian. At one-loop level, this gauge

choice is always possible if a classical string is localized in the AdS3 × S3 subspace, and the physical

part of the fluctuation Lagrangian in such gauge agrees with the fluctuation Lagrangian found by

perturbing the Nambu action in the original string theory. However, the decoupling is not expected

at two-loop level; physical fluctuations couple with unphysical fluctuations more complicatedly in the

cubic and quartic terms. Here we shall consider alternative strategies.

Another H gauge choice for the fluctuation fields is that we impose fluctuations of one of the two

gauge fields vanishes, δA+ = 0, which was employed in [73, 74, 75] in the case of expansions around

the vacuum solution. Solve the gauge equations derived by varying the fluctuation Lagrangian by

δA−, then one obtains the Lagrangian involving only physical fluctuations. However, for the long

spinning string, solutions for the gauge equations are expressed in terms of nonlocal functions of

physical fluctuations, and the nonlocality can not be eliminated from the cubic and quartic terms by

simple field redefinition, which makes it harder to perform the two-loop computation.

In this chapter we will discuss two alternative strategies. The first strategy is to fix the H gauge for

the classical solution in the deformed gWZW model and use the Polyakov-Wiegmann (PW) identity

by which gWZW model reduces into two sets of WZW models at the level of the classical Lagrangian

(approach I) [64, 72]. The equivalence between the gWZW model and the WZW models can be ex-
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tended to the quantum level once one appropriately includes all of the relevant functional determinant

contributions. By the PW identity, the unphysical degrees of freedom contained in the gauge fields de-

couple from the physical degrees of freedom, but we should note that the unphysical modes contained

in an element of G are still present in the system and couple with the physical modes.

In the other strategy we choose a specific parameterization for a coset element in G and integrate out

the gauge fields at the classical level (approach II). Then the system contains the physical degrees of

freedom only. For AdS3 ×S3, the reduced system becomes the sum of the complex sin-Gordon model

and the complex sinh-Gordon model coupled with fermionic fields. We will discuss approach II only

for the reduced AdS3 ×S3 theory because very involved fluctuation Lagrangian is found by the native

extension of the specific parameterization of a coset element in G/H to the AdS5×S5 case (cf. [104]).

Moreover, it is unclear whether the reduced model for the AdS5 × S5 GS string allows us to decouple

physical fields from unphysical fields beyond the classical level.

Now let us review the PW identity. It is always possible to rewrite the gauge fields as

A+ = U∂+U
−1 , A− = Ũ∂−Ũ

−1 , (4.16)

where U, Ũ ∈ H. The coupling of the gauge fields and g ∈ G is eliminated by the following redefinition

of g,

g̃ = U−1g Ũ . (4.17)

The coupling to the fermionic fields are absorbed into the rotation,

Ψ̃L = U−1ΨLU , Ψ̃R = Ũ−1ΨRŨ . (4.18)

Finally, the deformed gWZW Lagrangian becomes

LgWZW = LWZW(g̃) − LWZW(U−1Ũ) + µ2STr
(
g̃−1T g̃T

)
+STr

(
Ψ̃LT∂+Ψ̃L + Ψ̃RT∂−Ψ̃R

)
+ µSTr

(
g̃−1Ψ̃L g̃Ψ̃R

)
.

(4.19)

The advantage in this form is that physical degrees of freedom on g are not contained in the WZW term

on the subgroup H, LWZW(U−1Ũ), and accordingly, we find the physical fluctuations by perturbing
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the other parts, i.e., the deformed WZW model,

Lg̃,Ψ̃ = LWZW(g̃) + µ2STr
(
g̃−1T g̃T

)
+STr

(
Ψ̃LT∂+Ψ̃L + Ψ̃RT∂−Ψ̃R

)
+ µSTr

(
g̃−1Ψ̃L g̃Ψ̃R

)
.

(4.20)

Not giving any physical contribution, the other WZW term should be considered to show the cancel-

lation of the all of the unphysical modes at one-loop level,

LU,Ũ = −LWZW(U−1Ũ) . (4.21)

Note that the H gauge symmetry (2.30) is not apparent in the derived Lagrangian (4.19). Under

the the H gauge transformation, we find that U, Ũ changes U → U ′ = h−1U , Ũ → Ũ ′ = h−1Ũ . By

redefining g̃, Ψ̃ with the new U ′, Ũ ′, we again obtain the Lagrangian (4.19).

Also, the Lagrangian (4.20) still contains unphysical degrees of freedom. Taking the AdS5×S5 case, we

find that the group element g̃ contains 10+10 parameters equal to the dimensions of Sp(2, 2)×Sp(4),

6 + 6 of which are unphysical corresponding to the subgroup H = [SU(2)]4. Thus one needs discuss

fluctuations for both the physical and unphysical fields.

4.2.2 Structure of quantum corrections

We shall consider perturbation in the Lagrangian (4.20) and derive the fluctuation Lagrangian up to

quartic order. We will first investigate the contributions of diagrams which do not involve fermionic

propagators (we call them the bosonic contribution) in detail. For these diagrams, the system decouples

into the AdSn sector and the Sn sector as in the original string theory. Using the same technique, we

will study the other class of diagrams containing fermionic propagators (we call them the fermionic

contribution). Hereafter we will omit the tilde on g, Ψ, i.e., g̃ → g, Ψ̃ → Ψ.

In order to obtain the expansion of the deformed WZW model (4.20) to quartic order we shall introduce

the fluctuations around a classical fields, g0 and ΨR0 = ΨL0 = 0,

g = g0e
η = g0(1 + η + 1

2η
2 + 1

3!η
3 + 1

4!η
4 + O(η5)) , η ∈ g , (4.22)

and fermionic fluctuations ΨR and ΨL . The quadratic, cubic and quartic terms in the fluctuation
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Lagrangian are, respectively,

L(2) = STr
[

1
2D+η∂−η − µ2

2

[
η, g−1

0 Tg0
]
[η, T ] + ΨRT∂−ΨR + ΨLT∂+ΨL + µg−1

0 ΨLg0ΨR

]
, (4.23)

L(3) = STr
[
− 1

6 [η,D+η] ∂−η − µ2

6

[
η, g−1

0 Tg0
]
[η, [η, T ]] + µ

(
g−1
0 ΨLg0ηΨR − ηg−1

0 ΨLg0ΨR

) ]
,

(4.24)

L(4) = STr
[

1
24 [η, [η,D+η]] ∂−η + µ2

24

[
η,
[
η, g−1

0 Tg0
]]

[η, [η, T ]]

+µ
(

1
2g

−1
0 ΨLg0η

2ΨR + 1
2η

2g−1
0 ΨLg0ΨR − ηg−1

0 ΨLg0ηΨR

) ]
,

(4.25)

where the derivative operator D+ is defined by using the classical field g0,

D+ = ∂+ +
[
g−1
0 ∂+g0 ,

]
. (4.26)

Physical fluctuations couple with unphysical fluctuations in the fluctuation Lagrangian because the

fluctuation η contains both the physical part and unphysical part. Under the Z2 decomposition

deduced by T (see appendix A), we have η = η∥ + η⊥ where η∥ ∈ m and η⊥ ∈ h. It is reasonable

to assume that the physical fluctuations are always found in η∥ corresponding to the coset G/H

[HIT, IWA, 73, 74, 75].

One-loop and two-loop corrections to the partition function for the long folded string can be computed

by using the Euclidean signature on the worldsheet by analytic continuation τ → iτ and rescaling the

worldsheet coordinate σ → ℓσ with ℓ→ ∞,

κ̂ =
κ

ℓ
, µ̂ =

µ

ℓ
, (4.27)

where κ, ℓ and µ are the parameters in the (S, J) folded string solution (4.7). After rescaling by ℓ the

period of spatial coordinate on the worldsheet is 2πℓ, and it becomes infinite in the ℓ→ ∞ limit, and

then, the spatial component in the momentum space becomes continuous. In the µ̂ → 0 limit where

string has no rotation in S1 of S5, we have κ = ℓ from the relation (4.8), that is, the rescaling becomes

the same as the one employed in [69].

In the remaining part of this section we will explain the structure of the quantum corrections based

on the fluctuation Lagrangians (4.23), (4.24) and (4.25), for the bosonic contribution and fermionic

contribution separately.
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Figure 4.1: Bosonic two-loop diagrams; sunset diagram (a) and double-bubble diagram (b).
Bosonic propagators are denoted by solid lines. In (a) the vertex momentum conservation gives
the constraint qi + qj + qk = 0.

The bosonic contributions are described by the following parts of the Lagrangians (4.23), (4.24) and

(4.25),

L(2)
B = STr

[
1
2D+η∂−η − µ2

2

[
η, g−1

0 Tg0
]
[η, T ]

]
, (4.28)

L(3)
B = STr

[
− 1

6 [η,D+η] ∂−η − µ2

6

[
η, g−1

0 Tg0
]
[η, [η, T ]]

]
, (4.29)

L(4)
B = STr

[
1
24 [η, [η,D+η]] ∂−η + µ2

24

[
η,
[
η, g−1

0 Tg0
]]

[η, [η, T ]]
]
. (4.30)

Since all the bosonic matrices η ∈ g are written in the block-diagonal form, the AdSn sector decou-

ples from the Sn sector in the bosonic part. These fluctuation Lagrangians show that the two-loop

contributions to the partition function are given by the Feynman diagrams of the topologies shown

in Figure 4.1. The sunset diagram in Figure 4.1(a) comes from the cubic terms in L(3)
B , whereas the

double-bubble diagram in Figure 4.1(b) comes from the quartic terms in L(4)
B .

To compute these diagrams we shall derive cubic and quartic vertices. Let us denote the fluctuation

fields by ΦI symbolically. The vertices are written as

VIJK =
∂3L(3)

∂ΦI∂ΦJ∂ΦK
, VIJKL =

∂4L(4)

∂ΦI∂ΦJ∂ΦK∂ΦL
, (4.31)

then the Lagrangians, (4.23), (4.24) and (4.25), can be expressed as

L(2)
B + L(3)

B + L(4)
B =

1
2
ΦI△IJΦJ +

1
3!
VIJKΦIΦJΦK +

1
4!
VIJKLΦIΦJΦKΦL . (4.32)

With the notation (4.31) and (4.32), the one-loop effective action is obtained by computing the quantity

1
2Tr ln△. On the other hand, the two-loop effective action involves the contributions of the cubic terms



4.2. Expansion of reduced theory Lagrangian 75

and the quartic terms. They are computed by

Γ(3) = − 1
12

8π
k
V2

∫
d2qid

2qj
(2π)2

VIJKVI′J ′K′△−1
II′△

−1
JJ ′△−1

KK′ , (4.33)

Γ(4) =
1
8

8π
k
V2

∫
d2qid

2qj
(2π)2

VIJKL△−1
IJ△

−1
KL , (4.34)

where − 1
12 in Γ(3) and 1

8 in Γ(4) are the combinatorial factors, and the factor 8π
k comes from the overall

factor in front of the Lagrangian (2.33).

Following the string theory computation [69, 70], we assume that the power divergent terms can be

regularized by an analytic regularization scheme.1 Thus the two-loop integrals consist of the logarith-

mic divergent terms and finite terms are remaining. Some of the two-loop integrals are simplified into

a product of the one-loop integrals,

I[m2] =
∫

d2q

(2π)2
1

q2 +m2
. (4.35)

It is useful to rewrite this UV divergent integral in terms of I[1] by using the relation,

I[m2] = I[1] − 1
4π

lnm2 . (4.36)

The second term is divergent if m = 0, which is the IR divergence of the loop integral for massless

fluctuation fields. Also the following integral is obtained from the sunset diagrams,

I[m2
i ,m

2
j ,m

2
k] =

∫
d2qi d

2qj d
2qk

(2π)2
δ(2)(qi + qj + qk)

(q2i +m2
i )(q

2
j +m2

j )(q
2
k +m2

k)
. (4.37)

Note that I[m2
i ,m

2
j ,m

2
k] is UV and IR finite for nonzero mi, mj and mk. In special cases, the finite

integral I[m2
i ,m

2
j ,m

2
k] gives the Catalan’s constant K.

We shall move on to the fermionic contributions. The Lagrangian for the quadratic fermionic fluctu-

ations is

L(2)
F = STr

[
ΨRT∂−ΨR + ΨLT∂+ΨL + µg−1

0 ΨLg0ΨR

]
. (4.38)

In the fluctuation Lagrangian (4.24) and (4.25), the interaction between bosonic fields and fermionic

1Power divergent terms should cancel out provided all contributions are properly accounted for.
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Figure 4.2: Diagrams with bosonic and fermionic propagators. Bosonic propagators are denoted
by solid lines and fermionic ones are denoted by dashed lines.

Figure 4.3: Tadpole diagrams. The solid lines can be bosonic or fermionic.

fields is described by the following parts,

L(3)
F = STr

[
µ
(
g−1
0 ΨLg0ηΨR − ηg−1

0 ΨLg0ΨR

) ]
, (4.39)

L(4)
F = STr

[
µ
(

1
2g

−1
0 ΨLg0η

2ΨR + 1
2η

2g−1
0 ΨLg0ΨR − ηg−1

0 ΨLg0ηΨR

) ]
. (4.40)

Unlike the computation in the original string theory, quartic terms in fermions are absent in the

approach based on the PW identity in the reduced theory. The contributions of the cubic and quartic

interaction terms are given by the diagrams of the two topologies depicted in Figure 4.2: the fermionic

sunset diagram in Figure 4.2(a) is the contribution of the cubic interaction (4.39) and the other

diagram in Figure 4.2(b) is the fermionic double-bubble arising from the quartic interaction (4.40).

These two-loop contributions are expressed in terms of the integrals (4.35) and (4.37).

Generally, individual diagram contributions are gauge-dependent. In the original string theory, non-

1PI diagrams are not relevant in the two-loop computation in the conformal gauge [69, 70], but

nonvanishing non-1PI contributions are found in the light-cone gauge [97, 100]. In the reduced theory

we will obtain the nonvanishing non-1PI contributions. The non-1PI diagram is shown in Figure 4.3.

The loops can be bosonic or fermionic, and the intermediate line connecting the two loops is bosonic.

The two-loop integrals for the tadpole diagrams are summarized as a product of the integrals (4.35).

In Figure 4.3 the intermediate bosonic line connecting the two loops has zero momentum due to
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momentum conservation. As several physical components of the propagators (see section 4.3 and

section 4.4) vanish by taking the zero-momentum limit, we will set the momentum of the intermediate

line to be zero once the integration in the two loops is completed.

4.3 Reduced AdS3 × S3 theory

In this section we shall discuss the reduced model of the AdS3 × S3 GS string theory and compute

the quantum corrections to the PRT partition function.

In the reduced theory, the number of physical degrees of freedom for bosons is the same as the

dimension of the coset (SU(1, 1)×SU(2))/[U(1)]2, i.e., 2+2 degrees of freedom, whereas the fermionic

fields contain 4+4 real Grassmann components. In addition to these physical degrees of freedom, the

reduced model involves unphysical degrees of freedom; 1 + 1 bosons come from η⊥ in the algebra h

of the subgroup H = [U(1)]2 and 2 + 2 bosons come from the gauge fields A±. In section 4.3.1 we

will discuss the computation of the quantum corrections in the deformed gWZW by using the PW

identity such that the unphysical degrees of freedom in the gauge fields decouple from the physical

fields (approach I).

For the reduced AdS3×S3 string theory, the gauge fields are easily integrated out at the classical level.

It was shown in [66] that the resulting system is the sum of the complex sinh-Gordon model and the

complex sin-Gordon model coupled with the fermionic part by employing a specific parameterization

for the the coset element g ∈ G = SU(1, 1) × SU(2). Thus the other approach to the two-loop

computation in the reduced theory, addressed in section 4.3.2, is to consider the fluctuations in the

generalized sin-Gordon system (approach II).

Although our final objective is to compute the quantum corrections for the folded string localized in

AdS3, the classical solution we will consider is the (S, J) folded string solution stretching in AdS3×S1

[89, 90, 69], and we will eventually take the limit where the string has no momentum in S1. The

reason for starting with the (S, J) folded string is that it is not well-understood how to embed the

classical AdS3 bosonic theory into the full AdS5 × S5 reduction [IWA, 66]. In approach II, we will

consider a nontrivial background in the S3 sector in section 4.3.2 in order to realize the regularity in

the perturbation.
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4.3.1 Approach I: PW identity and gauge-fixing A

The first strategy is to compute the quantum corrections to the PRT partition function by using the

PW identity. The fluctuation Lagrangian is shown in section 4.2.2.

We shall choose a specific parameterization of g in G corresponding to the vector gauging in the paper

[64]. The AdS3 part and S3 part of g are in the fundamental representations of SU(1, 1) and SU(2),

respectively. Since the S3 sector of the (S, J) folded string solution is the vacuum, the S3 part is the

identity matrix. Let us choose the basis in su(1, 1) by R̄1 = σ1, R̄2 = iσ3 and R̄3 = σ2, where σi are

the Pauli matrices. One can parameterize the coset element g in G in terms of the Euler angles (ϕ, χ),

exp
(

1
2χR̄2

)
exp

(
ϕR̄1

)
exp

(
1
2χR̄2

)
. Then any classical solution with its S3 part in the vacuum state

is written in the form,

g =

 gA 0

0 1

 , gA =

 eiχ coshϕ sinhϕ

sinhϕ e−iχ coshϕ

 . (4.41)

With this parameterization the gauge equations derived by varying A± in the deformed gWZW La-

grangian (2.31) solved by

A± =

 A±A 0

0 0

 , A+A = − i
2∂+χσ3 , A−A = i

2 cosh2ϕ∂−χσ3 . (4.42)

In fact, the parameterization of g in (4.41) is related to the coth model of the complex sinh-Gordon

theory in the AdS3 sector. One can confirm this by substituting (4.41) and (4.42) into the classical

deformed gWZW Lagrangian (2.31). The fields in the complex sinh-Gordon theory, ϕ and χ, are

written in terms of the embedding coordinates in AdS3,

∂+Y
P∂−YP = −µ2 cosh 2ϕ ,

KP ∂
2
±Y

P = 4µ3 cosh2ϕ∂±χ ,

(4.43)

where KP ≡ ϵQRSPY
Q∂+Y

R∂−Y
S . Substituting the (S, J) folded string solution in (4.7) into (4.43)

we obtain the classical values of ϕ and χ. Then the classical solution in the deformed gWZW is written
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as

g0 =

 g0A 0

0 1

 , g0A =

 κ
µv

∗
σ

ℓ
µ

ℓ
µ

κ
µvσ

 , (4.44)

vτ = e
iκ2τ

µ , vσ = e
iℓ2σ

µ , (4.45)

with the classical gauge fields,

A0± =

 A0±A 0

0 0

 , A0±A = iκ2

2µ σ3 . (4.46)

To decouple the gauge fields A± from the physical fields, we shall apply the PW identity described in

section 4.2.1. First we find U and Ũ defined in (4.16),

U =

 u 0

0 1

 , Ũ =

 ũ 0

0 1

 , u = ũ =

 v
∗1/2
τ 0

0 v
1/2
τ

 , (4.47)

then the new classical solution takes the form,

g̃0 =

 g̃0A 0

0 1

 , g̃0A =

 κ
µv

∗
σ

ℓ
µvτ

ℓ
µv

∗
τ

κ
µvσ

 . (4.48)

Here we used vτ and vσ defined in (4.45).

In the remaining part, we will study the quantum fluctuations around the classical solution (4.48)

with the fluctuation Lagrangians in (4.23), (4.24) and (4.25).

One-loop computation

Let us first focus on the bosonic sector (4.28). We will express the Lagrangian for the bosonic fluctua-

tions in terms of component fields, derive their characteristic frequencies, and compute the functional

determinant contribution to the partition function.
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Following the parametrization described in appendix A, we introduce the bosonic fluctuation fields,

η∥ =

 η
∥
A 0

0 η
∥
S

 ,

η
∥
A =

 0 w(a1 + ia2)

w∗(a1 − ia2) 0

 , η
∥
S =

 0 b1 + ib2

b1 − ib2 0

 ,

(4.49)

which correspond to physical fields in m coming from the coset part G/H, and

η⊥ =

 η⊥A 0

0 η⊥S

 ,

η⊥A =

 ic 0

0 −ic

 , η⊥S =

 id 0

0 −id

 ,

(4.50)

which are unphysical fields in h of the group H. In (4.49), the rescaling factor w for the fluctuations

a1 and a2 is

w = vτvσ = e
iκ2τ+ℓ2σ

µ , (4.51)

which are introduced such that the resulting fluctuation Lagrangian involves only constant coefficients.

Then the derivation of the Lagrangian for quadratic fluctuations is straightforward; plugging (4.49)

and (4.50) into the bosonic part of the fluctuation Lagrangian (4.28) yields

L(2) = L(2)
AdS3

+ L(2)
S3 , (4.52)

where the AdS3 sector is described by

L(2)
AdS3

=
∑
i=1,2

∂+ai∂−ai + 2 (µ∂+a2 +M2∂−a2) a1 − ∂+c ∂−c− 4M1∂−c a1 , (4.53)

with the constants M1, M2 defined by

M1 =
κ
√
κ2 − µ2

µ2
, M2 =

2κ2 − µ2

µ
, (4.54)
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and the S3 part is

L(2)
S3 =

∑
i=1,2

(
∂+bi∂−bi − µ2b2i

)
+ ∂+d∂−d . (4.55)

One can confirm the agreement with the string theory result by deriving characteristic frequencies of

the physical fluctuations from the Lagrangians (4.53), (4.55). The Lagrangian (4.53) describes one

unphysical massless fluctuation c and two physical fluctuations with frequencies,

√
n2 + 2κ2 ± 2

√
κ4 + n2µ2 , (4.56)

which describe the part of the fluctuations found in the original string theory [90], while the other

Lagrangian (4.55) contains one unphysical massless field d and two physical fields whose characteristic

frequencies are √
n2 + µ2 . (4.57)

They are exactly a part of the frequencies in the S5 sector in the original string theory [90].

From the Lagrangians (4.53) and (4.55) we find that the functional determinant is different from the

string theory result by the massless field contributions,

(
[det (∂+∂−)]2

[
det
(
∂+∂− + µ2

)]2 det
(
∂2

+∂
2
− + 2∂+∂−

(
2κ2 − µ2

)
+
(
∂2

+ + ∂2
−
)
µ2
) )−1/2

. (4.58)

One can show that the redundant factor det
(
∂2

+∂
2
−
)

is eliminated by considering the two more contri-

butions; the first contribution comes from the Jacobian for the field redefinition (4.16), and quantum

fluctuations found in WZW term in (4.21) gives the other contribution. As a result, the functional

determinant in the bosonic sector is

Z(1B) =
( [

det
(
∂+∂− + µ2

)]2 det
(
∂2

+∂
2
− + 2∂+∂−

(
2κ2 − µ2

)
+
(
∂2

+ + ∂2
−
)
µ2
) )−1/2

. (4.59)

Next we will discuss the fermionic sector. To derive the Lagrangian for quadratic fluctuations in the

fermionic sector we introduce the following component fields,

ΨR =

 0 XR

YR 0

 , ΨL =

 0 XL

YL 0

 , (4.60)
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where

XR =

 0 (α1 + iα2)t1+

(α3 + iα4)t∗2+ 0

 , (4.61)

YR =

 0 (−iα3 − α4)t2+

(iα1 + α2)t∗1+ 0

 , (4.62)

and

XL =

 0 (β1 + iβ2)t1−

(β3 + iβ4)t∗2− 0

 , (4.63)

YL =

 0 (−iβ3 − β4)t2−

(iβ1 + β2)t∗1− 0

 , (4.64)

where all of the component fields are real Grassmann. The rescaling factors t1± , t2± are defined by

t1± = e
i

ℓ2(τ±σ)
2µ , t2± = e

i
(κ2+µ2)τ±ℓ2σ

2µ . (4.65)

These exponential factors will be reused for the fermionic fluctuations in the AdS5 × S5 case in order

to realize the constant-coefficient Lagrangian. By the substitution of the matrices (4.60)-(4.64) into

the Lagrangian (4.38) we obtain

LF =
4∑
i=1

(αi∂−αi + βi∂+βi) + 2µ (α3α4 + β3β4) + 2κ (α1β2 − α2β1 − α3β4 + α4β3) . (4.66)

Characteristic frequencies of the fermionic fluctuations are

2 ×
√
n2 + κ2 ,

1 ×
√
n2 + κ2 + µ ,

1 ×
√
n2 + κ2 − µ .

(4.67)

They are consistent with the result of the original AdS3 ×S3 string theory in [IRT] because the shifts

µ in the frequencies can be removed by rescaling the fermionic fluctuations. From the Lagrangian
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(4.66), we find that the functional determinant in the fermionic sector is

Z(1F ) =
[
det
(
∂+∂− + κ2

)]2 det
(
∂2

+∂
2
− + 2∂+∂−κ

2 +
(
∂2

+ + ∂2
−
)
µ2 +

(
κ2 − µ2

)2)
. (4.68)

Here the determinant of the 4-th order operator can be factorized as follows:

det
( [
∂+∂− + iµ (∂+ + ∂−) − µ2 + κ2

] [
∂+∂− − iµ (∂+ + ∂−) − µ2 + κ2

] )
= det

[
e−iµτ

(
∂+∂− + κ2

)
eiµτ

]
det
[
eiµτ

(
∂+∂− + κ2

)
e−iµτ

]
. (4.69)

and thus the fermionic one-loop contribution is equivalent.

As described in section 4.2.2 the one-loop partition function is computed by using the Euclidean

signature on the worldsheet and rescaling the worldsheet coordinate with the limit (4.27). Taking the

sum of the bosonic sector (4.59) and fermionic sector (4.68) and performing the momentum integral

gives the one-loop correction,

Γ(1) =
1
2
V̄2

∫
d2q

(2π)2
[
ln(q2 + 4κ2) + 3 ln q2 − 4 ln(q2 + κ2)

]
= 2κ2V̄2

(
I[4] − I[1]

)
=

1
2π

(−2 ln 2)V2 , (4.70)

which is exactly the same as the result in the AdS3 × S3 GS string theory [IRT].

Finally let us comment on the µ→ 0 limit when the classical folded string is localized in AdS3. In the

last chapter it was demonstrated that the limit is well-defined in the fluctuation Lagrangian. However,

the limit can not be taken at the level of the fluctuation Lagrangian here because the constants M1,

M2 in (4.54) diverge in this limit. We can understand that this discrepancy is caused by the difference

in the H gauge choice. Before the H gauge is fixed in a very specific way such that the unphysical

degrees of freedom decouple from the physical ones. On the other hand, the physical and unphysical

fields are coupled in our approach based on the PW identity.

Two-loop computation

Here we shall discuss the two-loop computation in the reduced theory using the fluctuation Lagrangian,

(4.23), (4.24) and (4.25).
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As seen in the one-loop computation, the bosonic fluctuations involve the 1+1 unphysical fluctuations

in addition to the 2 + 2 physical fluctuations, and they couple with each other. We will consider all of

the fluctuations and compute the diagrams for the 3+3 bosonic fields, rather than to block-diagonalize

the system into the physical part and the unphysical part.

Throughout the two-loop computation, we will use the Euclidean signature on the worldsheet. To

compute the two-loop diagrams we shall derive the bosonic propagator. Once we denote the bosonic

fluctuation fields as

ΦI = {ΦA i,ΦS j} , (4.71)

where we reordered the bosonic fields in the AdS3 sector in ΦA i

ΦA i = {a1, a2, c} , ΦS i = {b1, b2, d} , (4.72)

the bosonic propagator for the AdS3 sector is written as

△−1
A (q) = 1

D2


− q2

2 − κ̂2q−+iq1µ̂2

µ̂ − κ̂q−

√
κ̂2−µ̂2

µ̂

κ̂2q−+iq1µ̂2

µ̂

q+

(
q2
+
µ̂2−4κ̂2(κ̂2−µ̂2)

)
2q− µ̂

2

2κ̂
√
κ̂2−µ2(κ̂2q−+iq1µ̂2)

q+ µ̂
2

κ̂q−

√
κ̂2−µ̂2

µ̂

2κ̂
√
κ̂2−µ̂2(κ̂2q−+iq1µ̂2)

q+ µ̂
2

q4µ̂2−4(q1µ̂2−iκ̂2q−)2

2q2µ̂2

 ,

q± = q0 ± iq1 , q2 = q20 + q21 , D2 = q4 + 4κ̂2q2 − 4µ̂2q1
2 ,

(4.73)

and the propagator for the S3 sector is

△−1
S (q) = diag

(
− 1

2 (q2 + µ̂2)
,− 1

2 (q2 + µ̂2)
,− 1

2q2

)
, (4.74)

where we omitted the overall factor 8π
k which will be restored later.

Using the bosonic propagator and fermionic propagator following from (4.66), the one-loop effective

action is evaluated by 1
2Tr ln△, which indeed agrees with our previous computation (4.70). At the

level of the propagator one can not take the µ̂ → 0 (µ → 0) limit because several components of the

propagator diverge in this limit. The µ̂ → 0 can be smoothly taken after simplifying the integrands

of the two-loop integrals, where the physical mass spectrum includes one bosonic mode m2 = 4, four

fermionic modes m2 = 1 and three massless modes. The two-loop integrals for the sunset diagrams in
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Figure 4.1(a) and Figure 4.2(a) can be expressed as

Im2
im

2
jm

2
k

=
∫
d2qi d

2qj d
2qj

(2π)4
F(qi, qj , qk)

qni
i q

nj

j q
nk
k (q2i +m2

i )(q
2
j +m2

j )(q
3
k +m2

k)
, mi,mj ,mk = 0, 1 or 4 , (4.75)

and for the double-bubble diagrams in Figure 4.1(b) and Figure 4.2(b) the integrals take the form,

Im2
im

2
j

=
∫
d2qi d

2qj
(2π)4

F(qi, qj)
qni
i q

nj

j (q2i +m2
i )(q

2
j +m2

j )
, mi,mj = 0, 1 or 4 , (4.76)

where F(qi, qj , qk), F(qi, qj) are certain polynomial functions of q. The Catalan’s constant is not

obtained in this system due to absence of the physical modes with m2 = 2, and the integrals (4.75)

and (4.76) are written in terms of I[m2] in (4.35). The bosonic sunset diagrams and the bosonic

double-bubble diagrams give the following contributions,

J
boson sunset

= − 1
12

(6I[4]I[0] + 6I[4]I[4]) ,

J
boson double−bubble

=
1
8
(−4I[4]I[0] − 4I[4]I[4]) , (4.77)

whereas the contributions of the fermionic sunset and the fermionic double-bubble are

J
fermion−boson sunset

=
1
4
(12I[1]I[0] + 4I[4]I[1] − 8I[1]I[1]) ,

J
fermion−boson double−bubble

= −1
4
(8I[1]I[0] − 8I[4]I[1]) . (4.78)

In addition to the 1PI diagram contributions above, it is necessary to consider the non-1PI diagram

contributions in Figure 4.3,

J
boson−boson tadpole

= −1
8
(−8

3
I[4]I[0] − 16

3
I[4]I[4]) ,

J
boson−fermion tadpole

=
1
8
(−8

3
I[1]I[0] − 40

3
I[4]I[1]) ,

J
fermion−fermion tadpole

= −1
8
(−8I[1]I[1]) . (4.79)

Inserting the overall constant in front of the Lagrangian, the two-loop effective action is

Γ(3)
2 =

8π
k3
V2

∑
Jn , (4.80)

where Jn are the contributions of the different types of diagrams given in (4.77), (4.78) and (4.79). For
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the latter purpose, we will take the sums of the 1PI and non-1PI (tadpole) contributions separately,

J1PI = −1
2
(
I[4] − I[1]

)(
I[4] + I[0] − 2I[1]

)
, (4.81)

Jtadpole =
1
6
(
I[4] − I[1]

)(
2I[4] + I[0] − 3I[1]

)
. (4.82)

These are separately UV finite but IR divergent due to the presence of I[0]. Notice also that both

expressions are proportional to the coefficient I[4] − I[1] appearing in the one-loop result (4.70).

The total coefficient is then (using (4.36))

∑
n

Jn = −1
6
(
I[4] − I[1]

)(
I[4] + 2I[0] − 3I[1]

)
= − 1

24π2
(ln 2)2 − 1

12π2
ln 2 lnm0 . (4.83)

This expression is still IR divergent: we introduced an IR cutoff m0 → 0 to rewrite I[0].

It is contrary to our expectation that the finite term (ln 2)2 is obtained in the reduced theory while

the two-loop contributions vanish in the original string theory [IRT]. We believe that the appearance

of the IR divergent term should be an artifact of our computation. The unphysical fluctuations are

included in the present approach, so one may be able to interpret the IR divergence is the contribution

of the massless unphysical fields. Also, another possible explanation is that the IR divergence would

be an artifact due to the µ → 0 limit. This limit is well-defined at the level of integrands of the

two-loop integrals although it is not at the level of the fluctuation Lagrangian.

To support this statement, in the next subsection we shall repeat the above two-loop computation

using a different approach: we fix the gauge on g and integrate out A± so that all unphysical degrees

of freedom are explicitly eliminated from the Lagrangian.

4.3.2 Approach II: Integrating out gauge fields

In this section we will discuss the computation for the one-loop and two-loop partition functions in

the reduced theory of the AdS3 ×S3 string theory in the approach where only the physical degrees of

freedom are present in the resulting system.

Imposing a gauge on g ∈ G and integrating out the gauge fields A± gives the classical action for
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physical degrees of freedom only. The bosonic part of the resulting model derived in [66] is the sum

of the complex sinh-Gordon model and the complex sin-Gordon model, and it couples with two-

dimensional fermions. Depending on the gauge choice on g, distinct models are obtained. Here we

will consider two models. The first model is the “tanh-tan” model, the product of the tanh model of

the complex sinh-Gordon theory and the tan model of the complex sin-Gordon theory coupling with

two-dimensional fermionic fields (t-t),

Lt−t = ∂+φ∂−φ+ tan2 φ∂+θ∂−θ + ∂+ϕ∂−ϕ+ tanh2 ϕ∂+χ∂−χ+ µ2

2 (cos 2φ− cosh 2ϕ)

+α∂−α+ β∂−β + γ∂−γ + ζ∂−ζ + λ∂+λ+ ξ∂+ξ + ρ∂+ρ+ σ∂+σ

+tan2 φ [∂+θ (λξ − ρσ) − ∂−θ (αβ − γζ)] − tanh2 ϕ [∂+χ (λξ − ρσ) − ∂−χ (αβ − γζ)]

− (αβ − γζ) (λξ − ρσ)
(

1
cos2 φ

− 1
cosh2 ϕ

)
− 2µ

(
coshϕ cosφ (λγ + ξζ − ρα− σβ)

+ sinhϕ sinφ
[
cos(χ+ θ) (−ρζ + σγ + λβ − ξα) − sin(χ+ θ) (λα+ ξβ + ργ + σζ)

])
.

(4.84)

The other model is the “coth-cot” model whose bosonic sector is the combination of the coth model

of the complex sinh-Gordon theory and the cot model of the complex sin-Gordon theory (c-c),

Lc−c = ∂+φ∂−φ+ cot2 φ∂+θ∂−θ + ∂+ϕ∂−ϕ+ coth2 ϕ∂+χ∂−χ+ µ2

2 (cos 2φ− cosh 2ϕ)

+α∂−α+ β∂−β + γ∂−γ + ζ∂−ζ + λ∂+λ+ ξ∂+ξ + ρ∂+ρ+ σ∂+σ

− cot2 φ [∂+θ (λξ − ρσ) − ∂−θ (αβ − γζ)] + coth2 ϕ [∂+χ (λξ − ρσ) − ∂−χ (αβ − γζ)]

− (αβ − γζ) (λξ − ρσ)
(

1
sin2 φ

+ 1
sinh2 ϕ

)
− 2µ

(
sinhϕ sinφ (λγ + ξζ − ρα− σβ)

+ coshϕ cosφ
[
cos(χ+ θ) (ρζ − σγ − λβ + ξα) − sin(χ+ θ) (λα+ ξβ + ργ + σζ)

])
.

(4.85)

In these Lagrangians, ϕ, θ describe bosonic degrees of freedom in the AdS3 sector, φ, χ do bosonic

degrees of freedom in the S3 sector, and α, β, γ, ζ, λ, ξ, ρ, σ are real fermionic fields. The mass scale

µ is determined by the stress tensor in the original string theory,

−TAdS±± = TS±± = µ2 . (4.86)

Since the Lagrangians (4.84) and (4.85) exhibit that the point φ, θ = 0 where the S3 sector lies in

the vacuum is special and small expansions around this point are not well-defined, we will start with

a nontrivial background stretching in AdS3 × S3, and take the limit eventually so that the classical
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solution becomes localized in AdS3. The solution we will consider is a superposition of the the long

spinning string in AdS3 [69, 89, 90] and the circular two-spin string in S3 [92, 93, 101, 102]

Y0 + iY−1 = cosh(ℓσ) eiκτ , Y1 + iY2 = sinh(ℓσ) eiκτ ,

X1 + iX2 = 1√
2
eiωτ+ikσ , X3 + iX4 = 1√

2
eiωτ−ikσ ,

κ2 = ℓ2 + µ2 , µ2 = k2 + ω2 .

(4.87)

The string solution localized in AdS3 is obtained by taking the limit ω, µ→ 0.

The explicit relations between the embedding coordinates and the bosonic fields in the reduced theory

are given in (2.3) for the t-t model,

∂+Y
P∂−YP = −µ2 cosh 2ϕ ,

KP ∂
2
±Y

P = ∓4µ3 sinh2ϕ∂±χ .

(4.88)

and in (2.6) for the c-c model,

∂+Y
P∂−YP = −µ2 cosh 2ϕ ,

KP ∂
2
±Y

P = 4µ3 cosh2ϕ∂±χ ,

(4.89)

where KP ≡ ϵQRSPY
Q∂+Y

R∂−Y
S . The relations for the S3 part are given by replacing the hyperbolic

functions by the trigonometric functions, i.e., coshϕ→ cosφ and sinhϕ→ sinφ, and also, χ→ θ .

These relations allow us to reduce the classical solution (4.87) into the following solution for the t-t

model,

ϕ0 = log
(
κ+

√
κ2−µ2

µ

)
, χ0 = κ2

µ τ ,

φ0 = 1
2arccos

(
2ω2

µ2 − 1
)
, θ0 = ω2

µ τ ,

(4.90)

and for the c-c model,

ϕ0 = log
(
κ+

√
κ2−µ2

µ

)
, χ0 = µ2−κ2

µ σ ,

φ0 = 1
2arccos

(
2ω2

µ2 − 1
)
, θ0 = ω2−µ2

µ σ .

(4.91)

Below we will discuss expansions around these classical solutions in the t-t model and c-c model,

respectively.
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One-loop computation

We shall expand the reduced theory Lagrangians (4.84), (4.85) near the classical solutions (4.90),

(4.91),

ϕ = ϕ0 + δϕ , χ = χ0 + δχ ,

φ = φ0 + δϕ , θ = θ0 + δθ .

(4.92)

This leads to the Lagrangian for quadratic fluctuations in the t-t model,

LBt−t = ∂−δϕ∂+δϕ+ ∂−δφ∂+δφ− 4
(
κ2 − µ2

)
δϕ2 − 4

(
ω2 − µ2

)
δφ2 +

κ2 − µ2

κ2
∂−δχ∂+δχ

+
2µ
√
κ2 − µ2

κ
δϕ (∂−δχ+ ∂+δχ) +

µ2 − ω2

ω2
∂−δθ∂+δθ +

2µ
√
µ2 − ω2

ω
δφ (∂−δθ + ∂+δθ) ,

(4.93)

and in the c-c model,

LBc−c = ∂−δϕ∂+δϕ+ ∂−δφ∂+δφ− 4κ2δϕ2 − 4ω2δφ2 +
κ2

κ2 − µ2
∂−δχ∂+δχ

+
2κµ√
κ2 − µ2

δϕ (∂−δχ− ∂+δχ) +
ω2

µ2 − ω2
∂−δθ∂+δθ +

2µω√
µ2 − ω2

δφ (∂−δθ − ∂+δθ) .
(4.94)

One can confirm that these Lagrangians describe the same set of fluctuations by computing the

corresponding functional determinant contributions to the partition function,

Z
(1B)
t−t = Z

(1B)
c−c =

(
det
(
∂2

+∂
2
− + 2(2κ2 − µ2)∂+∂− + µ2∂2

+ + µ2∂2
−
)

×det
(
(∂2

+∂
2
− + 2(2ω2 − µ2)∂+∂− + µ2∂2

+ + µ2∂2
−
) )−1/2

,

(4.95)

which read characteristic frequencies of the four bosonic fluctuations,

√
n2 + 2κ2 ± 2

√
κ4 + n2µ2 ,√

n2 + 2ω2 ± 2
√
n2µ2 + ω4 .

(4.96)

These are exactly the same as two of the four bosonic frequencies in AdS5 and two of the four bosonic

frequencies in S5 [90, 92, 103]. In the µ, ω → 0 limit where the background becomes the folded string

in AdS3, the functional determinant (4.95) reduces into

Z(1B) = [det (∂+∂−)]−3/2 [det(∂+∂− + 4κ2)
]−1/2

. (4.97)
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Let us discuss the fermionic sector. It is observed in the Lagrangians (4.84), (4.85) that the coupling

terms of χ, θ and the fermionic fields involve cos(χ + θ) and sin(χ + θ), which give nonconstant

coefficients to the fluctuation Lagrangian for the fermionic fluctuations. Thus we rotate the fermionic

fluctuations in the following way,

α+ iβ → (α+ iβ)eB , γ + iζ → (γ + iζ)eB
∗
,

λ+ iξ → (λ+ iξ)eB
∗
, ρ+ iσ → (ρ+ iσ)eB ,

(4.98)

where B = iκ
2+ω2

2µ τ for the t-t model and B = iκ
2−ω2

2µ σ for the c-c model. The functional determinants

for the t-t model and the c-c model are

Z
(1F )
t−t =

[
det
(
∂2

+∂
2
− +

(
∂2

+ + ∂2
−
)
µ2 + 2∂+∂−

(
κ2 − µ2 + ω2

)
+
(
κ2 − ω2

)2)]2
, (4.99)

Z
(1F )
c−c =

[
det
(
∂+∂− + κ2 − µ2 + ω2

)]4
. (4.100)

Although they look different, one can check the equivalence of these expressions by applying a two-

dimensional Lorentz transformation, i.e., SO(1, 1) transformation to the worldsheet coordinates (τ ,

σ). In the µ, ω → 0 limit in which the classical string is localized in AdS3, (4.99) and (4.100) coincide,

Z(1F ) =
[
det
(
∂+∂− + κ2

)]4
, (4.101)

which agrees with the string theory computation [89, 90].

Combining the bosonic contributions (4.97) and the fermionic contributions (4.101), one finds that

the one-loop partition function is the same as the string theory computation. Hence approach I in the

previous subsection and approach II here provide the same one-loop result.

Two-loop computation

In approach I the one-particle irreducible contributions are given by the diagrams depicted in Figure

4.1 and Figure 4.2. As we integrated out the gauge fields in approach II, the resulting fluctuation

Lagrangian involves quartic terms in fermions (see (4.84) and (4.85)). Thus we have to compute an

additional diagram depicted in Figure 4.4.
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Figure 4.4: Fermionic two-loop diagram with two fermionic loops.

In the two-loop computation we should note the following two points. Recalling that the Lagrangians

(4.84) and (4.85) are obtained by integrating out the gauge fields at the level of the classical deformed

gWZW Lagrangian, the nontrivial quantum contribution of the counterterm is in general relevant at

two-loop level as pointed out in [73, 74, 75]. However, one can check all of the contribution from the

counter term is power-divergent, then they do not contribute to the final result. The other point is on

the µ, ω → 0 limit. While it is expected that the final result is irrespective of the order of the limits

µ → 0 and ω → 0, individual diagram contributions may have the ambiguity. To show this explicitly

we shall introduce a parameter r = ω/µ.

The contributions of individual diagrams in the t-t model are

J
boson double−bubble

= 1
8 (−8I[4]I[4]) ,

J
fermion−boson sunset

= 1
4

(
8I[1]I[0] + 4I[4]I[1] − 21+2r2

r2
I[1]I[1]

)
,

J
fermion−boson double−bubble

= −1
4 (8I[1]I[0] − 4I[4]I[1]) ,

J
fermion−fermion double−bubble

= 1
8

(
41−2r2

r2
I[1]I[1]

)
,

J
tadpole

= −1
8 (−8I[1]I[1]) ,

(4.102)

and in the c-c model we obtain

J
boson double−bubble

= 1
8 (−8I[4]I[4]) ,

J
fermion−boson sunset

= 1
4

(
8I[1]I[0] + 4I[4]I[1] − 6−4r2

1−r2 I[1]I[1]
)
,

J
fermion−boson double−bubble

= −1
4 (8I[1]I[0] − 4I[4]I[1]) ,

J
fermion−fermion double−bubble

= 1
8

(
−41−2r2

1−r2 I[1]I[1]
)
,

J
tadpole

= −1
8 (−8I[1]I[1]) ,

(4.103)

where I[m2] is defined in (4.35). It is found that the limit r → 0 is not well-defined in the t-t model,
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whereas several diagram contributions blow up by the limit r → 1 in the c-c model.

As done in approach I, we sum up the 1PI contributions and non-1PI contributions separately, then

find that IR-divergent and r-dependent terms cancel out and we get the same result in the two models,

J1PI = −1
2
I[4]I[4] + I[4]I[1] − I[1]I[1] , (4.104)

Jtadpole =
1
2
I[1]I[1] , (4.105)

so that the total is (using (4.36))

Γ(2) =
8π
k3
V2

∑
n

Jn ,
∑
n

Jn = −1
2
(
I[4] − I[1]

)2 = − 1
8π2

(ln 2)2 . (4.106)

Combining everything together we find that the effective action for the AdS3×S3 model is (cf. (4.14))

Γ(2) =
1
πk3

a2 V2 , a2 = −1
4
(a1)2 = −(ln 2)2 . (4.107)

Let us now compare these results with those (4.81),(4.82),(4.83) found in approach I in section 4.3.1.

It is observed that the 1PI contributions in (4.81) and (4.104) contain the same I[4]I[4] and I[1]I[1]

terms, also the fermion-fermion I[1]I[1] tadpole terms are the same. Assuming that the final result

should be both UV and IR finite, the expression in approach II (4.106) is more natural. This suggests

that it is the tadpole contribution (4.82) in approach I that is to be blamed for the IR problem: it

should not actually contain the I[4]I[4] term if the two approaches are to agree. Then if instead of

(4.81) one would take

J ′
tadpole =

1
6
(
I[4] − I[1]

)(
3I[0] − 3I[1]

)
=

1
2
(
I[4] − I[1]

)(
I[0] − I[1]

)
, (4.108)

then the sum of (4.108) with the 1PI contribution (4.81) in the first approach would exactly match

the result (4.106) of the second approach.2

Another interesting point is that the final two-loop result in (4.106) is proportional to the square

of the one-loop coefficient in (4.70), while this terms does not appear in the original string theory

2The replacement of (4.82) by (4.108) is formally achieved by replacing I[4] in the second factor in (4.82) by
I[0]. This may be related to a subtlety in how the two massive AdS3 modes (which are mixed for µ ̸= 0) are
treated in the tadpole contributions in the limit when µ → 0: in that limit one of them has m2 = 4 and the
other one becomes massless.
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[IRT]. These observations will guide us in interpreting and fixing the two-loop result in the case of

the reduced theory for the AdS5 × S5 GS string where we will only consider approach I.

4.4 Reduced AdS5 × S5 theory

In this section we shall compute the quantum corrections to the partition function of the reduced

AdS5×S5 theory in the approach based on the PW identity. The one-loop correction will be discussed

in section 4.4.1 where we will first rewrite the fluctuation Lagrangian (4.23) in terms of component

fields of the fluctuations, then derive their functional determinant contribution. The form of the

resulting fluctuation Lagrangian in the bosonic sector is different from the one found in the original

string theory, while both of them give the same functional determinant. In appendix D.1 we will

discuss the detail of the relation between the fluctuation Lagrangians. In section 4.4.2 the quantum

correction at the next order will be evaluated and the nontrivial Catalan’s constant will be derived in

agreement with the string theory computation. IR finite two-loop result will be achieved by a close

analogy with the AdS3 × S3 case.

Using the parameterization of PSU(2, 2|4) introduced in appendix B, then we have the reduced theory

solution corresponding to the (S, J) folded string (4.7),3

g0 =

 gA 0

0 1

 , gA =



0 κ
µv

∗
τ − ℓ

µv
∗
τ 0

−κ
µvτ 0 0 ℓ

µvτ

ℓ
µv

∗
τ 0 0 −κ

µv
∗
τ

0 − ℓ
µvτ

κ
µvτ 0


, vτ = e

iκ2τ
µ , (4.109)

3In general, a choice of the reduced theory solution corresponding to a given string theory solution is not
unique as one may apply an on-shell H × H gauge transformation. For example, one may start with a σ-
dependent solution,

g′A =


κ
µv∗

σ 0 0 ℓ
µ

0 κ
µvσ

ℓ
µ 0

0 ℓ
µ

κ
µv∗

σ 0
ℓ
µ 0 0 κ

µvσ

 , A′
+A = A′

−A =
iκ2

2µ
diag (1,−1, 1,−1) ,

One may expect that the result for the quantum partition function for the two solutions should be the same.
In fact, we have checked that the individual diagram contributions in the two cases are indeed the same.
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A±0 =

 A±A 0

0 0

 , A+A = i(ℓ2+κ2)
2µ diag (1,−1, 1,−1) , A−A = iµ

2 diag (1,−1, 1,−1) ,

(4.110)

and, by computing the stress tensor for the solution (4.7), we find that the mass scale in the reduced

theory is µ.

In order to derive the new classical solution g̃ in the system (4.19), let us first find U and Ũ . In the

case of the (S, J) folded string, the S5 sector is in the vacuum where the classical gauge fields A± are

vanishing. Then U and Ũ take the following form,

U =

 u 0

0 1

 , Ũ =

 ũ 0

0 1

 . (4.111)

One choice for u and ũ is such that we have u = ũ then U = Ũ . With this choice the background for

the second WZW term in (4.19) is identity. This is achieved by

u = ũ =



w∗1/2 0 0 0

0 w1/2 0 0

0 0 w∗1/2 0

0 0 0 w1/2


, (4.112)

then g̃ is given by

g̃ =

 g̃A 0

0 1

 , g̃A =



0 κ
µvσ − ℓ

µv
∗
τ 0

−κ
µv

∗
σ 0 0 ℓ

µvτ

ℓ
µv

∗
τ 0 0 −κ

µvσ

0 − ℓ
µvτ

κ
µv

∗
σ 0


, (4.113)

where w, vτ and vσ are defined in (4.51) and (4.45), respectively. One can confirm that the rotated

solution g̃ solves the equation of motion derived from the Lagrangian (4.19), which ensures that this

is an appropriate starting point for perturbation.
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4.4.1 One-loop computation

Absence of the mixing term between bosonic fluctuations and fermionic fluctuations in the Lagrangian

for quadratic fluctuations (4.23) allows us to evaluate the bosonic contribution and fermionic contri-

bution separately at one-loop level. In section 4.4.1 we shall discuss the bosonic quadratic fluctuations

described by the Lagrangian (4.28) and show that our result agrees with the string theory computa-

tion in terms functional determinant contributions to the partition function. Next we shall show the

agreement with the original string theory for the fermionic quadratic fluctuations in (4.38).

The argument below is based on approach I used for the reduced AdS3 ×S3 theory. As an alternative

approach, the one-loop computation in the δA+ = 0 gauge is discussed in appendix D.2. Both

approaches provide the same functional determinant contribution, so it is confirmed that they are

equivalent at least at one loop.

Bosonic fluctuations

Since of the homogeneous nature of the folded string in the scaling limit, one obtains constant-

coefficient Lagrangian for the quadratic fluctuations by introducing component fields of the bosonic

fluctuations appropriately. One possible choice is

η∥ =

 η
∥
A 0

0 η
∥
S

 ,

η
∥
A =



0 0 a1 + ia2 (a3 + ia4)w

0 0 (a3 − ia4)w∗ −a1 + ia2

a1 − ia2 (a3 + ia4)w 0 0

(a3 − ia4)w∗ −a1 − ia2 0 0


,

η
∥
S =



0 0 b1 + ib2 b3 + ib4

0 0 −b3 + ib4 b1 − ib2

−b1 + ib2 b3 + ib4 0 0

−b3 + ib4 −b1 − ib2 0 0



(4.114)
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which correspond to physical fields in m coming from the coset part G/H, and

η⊥ =

 η⊥A 0

0 η⊥S

 ,

η⊥A =



ic1 (c2 + ic3)w 0 0

(−c2 + ic3)w∗ −ic1 0 0

0 0 ic4 (c5 + ic6)w

0 0 (−c5 + ic6)w∗ −ic4


,

η⊥S =



id1 d2 + id3 0 0

−d2 + id3 −id1 0 0

0 0 id4 d5 + id6

0 0 −d5 + id6 −id4


,

(4.115)

which are unphysical fields living in the algebra h of the subgroup H. We rotated several bosonic fluc-

tuations by using w defined in (4.51) in order to have the constant-coefficient fluctuation Lagrangian.

We shall write down Lagrangian for quadratic fluctuations in terms of the component fields and

compute their characteristic frequencies. While the resulting Lagrangian looks different from the

original string theory result, we will show that characteristic frequencies in our present approach in

the reduced theory agree with those found in the string theory computation.

Plugging (4.114) and (4.115) into the Lagrangian for quadratic fluctuations (4.23), we obtain the

constant-coefficient Lagrangian containing 4 + 4 physical fields and 6 + 6 unphysical fields. At one-

loop level the AdS5 sector and the S5 sector are decoupled. As the S5 part of the classical solution g0

is the vacuum, the structure of the fluctuation Lagrangian in the S5 sector is simple,

L(2)
S5 = 2

4∑
i=1

(
∂+bi∂−bi − µ2b2i

)
+

6∑
j=1

∂+dj∂−dj . (4.116)

This shows that the four physical fields bi are massive fluctuations with characteristic frequencies,

√
n2 + µ2 , (4.117)

which agree with [90]. On the other hand, the six unphysical fields dj coming from an element in h of
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the subgroup H = [SU(2)]2 are massless.

Next let us discuss the AdS5 sector. As explicitly shown in chapter 3 for several string configurations,

for a classical solution expressed in the form of (4.113), the system for quadratic fluctuations decouples

into two smaller subsectors. One subsector contains a1, a2 and the off-diagonal part of η⊥A , c2, c3, c5

and c6, while the other subsector contains a3, a4 and the diagonal part of η⊥A , c1 and c4. The total

Lagrangian in the AdS5 sector is written as

L(2)
AdS5

= L(2)
1 + L(2)

2 , (4.118)

where the physical fluctuations a1 and a2 are governed by the Lagrangian L(2)
1 ,

L(2)
1 = 2

∑
i=1,2

(
∂+ai∂−ai −

(
2κ2 − µ2

)
a2
i

)
− 4M1 (µc2 + ∂−c3 + µc5 + ∂−c6) a1

+4M1 (∂−c2 − µc3 − ∂−c5 + µc6) a2 −
∑

j=2,3,5,6

(
∂+cj∂−cj +

(
2κ2 − µ2

)
c2j
)

−2 (µ∂+c3 +M2∂−c3) c2 − 2 (µ∂+c6 +M2∂−c6) c5 .

(4.119)

and the other subsector described by the Lagrangian L(2)
2 is

L(2)
2 = 2

∑
i=3,4

∂+ai∂−ai + 4 (µ∂+a4 +M2∂−a4) a3 −
∑
j=1,4

∂+cj∂−cj + 4M1(∂−c1 + ∂−c4)a3 , (4.120)

where M1 and M2 are constants which we introduced in the AdS3 × S3 case,

M1 =
κ
√
κ2 − µ2

µ2
, M2 =

2κ2 − µ2

µ
. (4.121)

It is worth checking the µ → 0 (J → 0) limit where the (S, J) folded string has no stretching or

rotation in S5. It is clear that the constants M1, M2 in (4.121) are singular by this limit, so the

Lagrangians (4.119), (4.120) are also singular. The µ→ 0 limit is not well-defined even after applying

the nonlocal transformation discussed in appendix D.1. Thus we will proceed with µ nonzero.

We will compute characteristic frequencies of the fluctuations given in (4.119) and (4.120). Although

our fluctuation Lagrangians look different from the fluctuation Lagrangian found by perturbing the

Nambu action [97], it will turn out that the characteristic frequencies and the functional determinant

contributions of the original string theory are recovered from the Lagrangians (4.119), (4.120). The
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detailed discussion on the one-loop computation and the comparison to the original string theory at

the level of the fluctuation Lagrangian are given in appendix D.1.

In order to compute characteristic frequencies we substitute ei(Ωτ+nσ) into all the fluctuation fields in

the Lagrangians (4.119) and (4.120). For the former Lagrangian we obtain a 6 × 6 mass matrix. The

condition that the determinant of the mass matrix vanishes gives six solutions for Ω. We find that four

of the six fluctuation fields are massless, and frequencies of the remaining two massive fluctuations are

√
n2 + 2κ2 − µ2 , (4.122)

which agree with [90]. For the other Lagrangian (4.120), we have a 4 × 4 mass matrix, but only two

of the four fluctuations in this Lagrangian are massive with frequencies,

√
n2 + 2κ2 ± 2

√
κ4 + n2µ2 , (4.123)

which agree with [90].

Let us compute the functional determinant for both the AdS5 sector and the S5 sector. The S5 sector

is described by the Lagrangian (4.116) and its functional determinant is

Z
(1B)
S =

(
[det (∂+∂−)]6

[
det
(
∂+∂− + µ2

)]4)−1/2
. (4.124)

Here
(
∂+∂− + µ2

)4 comes from the four massive fluctuations and (∂+∂−)6 is the contribution from

the six unphysical fluctuations. On the other hand, the functional determinant for the AdS5 sector is

derived from the Lagrangian (4.118) with (4.119) and (4.120),4

Z
(1B)
A =

( [
det
(
∂+∂− + 2κ2 − µ2

)]2 [det(∂+∂−)]2
[
det
(
∂2
− + µ2

)]2 [det
(
∂2

+ + µ2
)]2

×det
(
∂2

+∂
2
− + ∂2

+µ
2 +

(
4κ2 − 2µ2

)
∂+∂− + µ2∂2

−
) )−1/2

.

(4.125)

The functional determinant contributions from the massive fluctuations, det
(
∂+∂− + 2κ2 − µ2

)2 and

det
(
∂2

+∂
2
− + ∂2

+µ
2 +

(
4κ2 − 2µ2

)
∂+∂− + µ2∂2

−
)
, are the same as the functional determinant found

by perturbing the Nambu action. In the remaining part in (4.125), det(∂+∂−)2 corresponds to two

of the six unphysical massless fluctuations and the other four massless fluctuations do the factor
4The same determinant is obtained by using the Lagrangians after the nonlocal transformations, that is, by

using (D.6) and (D.11).
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det
(
∂2
− + µ2

)2 (
∂2

+ + µ2
)2 because

det
(
∂2
± + µ2

)
= det (∂± + iµ) det (∂± − iµ)

= det
(
e−iµτ∂±e

iµτ
)
det
(
eiµτ∂±e

−iµτ) ,
and the exponential factors cancel out in the determinant. One can confirm that the unphysical factor

cancels with those of the Jacobian arising from the transformation (4.16) and quantum fluctuations

found in the other WZW term in (4.20). Hence the total bosonic contribution to the one-loop partition

function is obtained by collecting the determinant of the physical fluctuations,

Z(1B) = Z
(1B)
A Z

(1B)
S =

( [
det
(
∂+∂− + 2κ2 − µ2

)]2 [det
(
∂+∂− + µ2

)]4
×det

(
∂2

+∂
2
− + µ2

(
∂2
−∂

2
+

)
+
(
4κ2 − 2µ2

)
∂+∂−

) )−1/2
,

(4.126)

which will be used to compute the total one-loop correction to the partition function.

Fermionic fluctuations

Given the agreement in the bosonic sector, the original string theory result for the fermionic fluctua-

tions should be recovered in the reduced theory in the approach based on the PW identity.

Constant-coefficient Lagrangian is derived also in the fermionic sector if we define component fields of

the fermionic fluctuations in the following way,

ΨR =

 0 XR

YR 0

 , ΨL =

 0 XL

YL 0

 , (4.127)

where

XR =



0 0 (α1 + iα2)f+ (α3 + iα4)f+

0 0 (−α3 + iα4)f∗+ (α1 − iα2)f∗+

(α5 + iα6)f+ (α7 − iα8)f+ 0 0

(α7 + iα8)f∗+ (−α5 + iα6)f∗+ 0 0


, (4.128)
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YR =



0 0 (−α6 − iα5)f∗+ (−α8 − iα7)f+

0 0 (α8 − iα7)f∗+ (−α6 + iα5)f+

(α2 + iα1)f∗+ (α4 − iα3)f+ 0 0

(α4 + iα3)f∗+ (−α2 + iα1)f+ 0 0


, (4.129)

and

XL =



0 0 (β1 + iβ2)f∗− (β3 + iβ4)f∗−

0 0 (β3 − iβ4)f− (−β1 + iβ2)f−

(β5 + iβ6)f∗− (−β7 + iβ8)f∗− 0 0

(β7 + iβ8)f− (β5 − iβ6)f− 0 0


, (4.130)

YL =



0 0 (−β6 − iβ5)f− (−β8 − iβ7)f∗−

0 0 (−β8 + iβ7)f− (β6 − iβ5)f∗−

(β2 + iβ1)f∗− (−β4 + iβ3)f− 0 0

(β4 + iβ3)f∗− (β2 − iβ1)f− 0 0


, (4.131)

where all component fields are real Grassmann and f± = e
iκ2τ±ℓ2σ

2µ . The extra factors are introduced

in both ΨR and ΨL such that all coefficients in the Lagrangian become constant. The resulting

Lagrangian is

LF = 2
[

8∑
i=1

(αi∂−αi + βi∂+βi) − µ (α1α2 + α3α4 + α5α6 − α7α8 − β1β2 − β3β4 − β5β6 + β7β8)

+2κ (α1β4 + α2β3 − α3β2 − α4β1 − α5β8 + α6β7 + α7β6 − α8β5)
]
,

(4.132)

which describes fermionic fluctuations with frequencies (up to trivial shift),

√
n2 + κ2 . (4.133)

They are the same as the fermionic frequencies in the original string theory [69]. The determinant for

the fermionic fluctuations is

det
(
∂2

+∂
2
− + 2∂+∂−κ

2 +
1
4
(
∂2

+ + ∂2
−
)
µ2 +

1
16
(
4κ2 − µ2

)2)
. (4.134)
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Again, by the same argument as in (4.69), this functional determinant is reduced into the from[
det(∂+∂− + κ2)

]2.
The final expression for the one-loop partition function is thus the same as in string theory [90]. In

the µ→ 0 limit we get the familiar result [89] (see (4.11))

Γ(1) =
1
2
V̄2

∫
d2q

(2π)2
[
ln(q2 + 4κ2) + 2 ln(q2 + 2κ2) + 5 ln q2 − 8 ln(q2 + κ2)

]
= 2κ2V̄2

(
I[4] + I[2] − 2I[1]

)
=

1
2π

a1V2 , a1 = −3 ln 2 . (4.135)

4.4.2 Two-loop computation

In this section we will discuss the two-loop computation using the fluctuation Lagrangians (4.23),

(4.24) and (4.25) for the reduced AdS5 ×S5 theory. First we will study the contributions of diagrams

which involve only bosonic propagators. In this case the system is the direct sum of the AdS5 sector

and the S5 sector. Next we will discuss diagrams containing fermionic propagators. Then tadpole

contributions will be evaluated, where we will find that the reduced model gives the nonvanishing

tadpole contributions of both bosonic and fermionic loops. Finally the results of the bosonic, fermionic

and tadpole contributions will be combined. Throughout this section we will use the Euclidean

signature on the worldsheet.

Bosonic 1PI contributions

The bosonic contributions are described by the Lagrangians (4.28), (4.29) and (4.30). These fluctuation

Lagrangians show that the two-loop contributions to the two-loop partition function are given by the

Feynman diagrams of the topologies shown in Figure 4.1.

To compute the two-loop diagrams we shall derive the bosonic propagator. In the AdS5 sector, as

shown in the discussion on the one-loop computation in section 4.4.1 and appendix D.1, the quadratic

terms contain the off-diagonal mixing terms of physical and unphysical fields, which can be diagonalized

by the nonlocal transformation. However, the diagonalization is not necessarily useful in the two-loop

computation because this transformation produces a complicated nonlocal Lagrangian. Thus we shall

consider all of the fluctuations and compute the diagrams for the 10+10 fields (4+4 physical and 6+6
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unphysical fluctuations) rather than the block-diagonalization of the system such that the physical

part and the unphysical part are decoupled. It is useful to make a set of O(2) transformations of the

unphysical fluctuations in the AdS5 sector in (D.3) and (D.9) in appendix D.1 to obtain four decoupled

subsectors. Once we denote the bosonic fluctuation fields as

ΦI = {ΦA i,ΦS j} (4.136)

where we reordered the bosonic fields in the AdS5 sector in ΦA i

ΦA i = {a1, c2, c3, a2, c5, c6, a3, a4, c1, c4} , ΦS i = {b1, . . . , b4, d1, . . . , d6} , (4.137)

then the bosonic propagator for the AdS5 sector is written as

△−1
A (q) =



M1(q) 0 0 0

0 M1(q) 0 0

0 0 M2(q) 0

0 0 0 1
2q2


, (4.138)

where M1(q) and M2(q) are 3 × 3 matrices,

M1(q) = 1
D1


−

4κ̂4−4κ̂2µ̂2+µ̂2
(
q2
+

+µ̂2
)

4µ̂2
(
q2−+µ̂2

) κ̂
√
κ̂2−µ̂2(2κ̂2−µ̂2)

√
2µ̂2
(
q2
+

+µ̂2
) − κ̂

√
κ̂2−µ̂2q+√

2µ̂
(
q2
+

+µ̂2
)

κ̂
√
κ̂2−µ̂2(2−µ̂2)

√
2µ̂2
(
q2
+

+µ̂2
) −

4κ̂2(κ̂2−µ̂2)
(
q2−+µ̂2

)
+µ̂2(q4−µ̂4)

2µ̂2(q4+2µ̂2q2−4µ̂2q20+µ̂4)
κ̂2q+

(
q2−+µ̂2

)
+iq1µ̂2(q2−µ̂2)

µ̂(q4+2µ̂2q2−4µ̂2q20+µ̂4)

κ̂
√
κ̂2−µ̂2q+√

2µ̂
(
q2
+

+µ̂2
) −

κ̂2q+

(
q2−+µ̂2

)
+iq1µ̂2(q2−µ̂2)

µ̂(q4+2µ̂2q2−4µ̂2q20+µ̂4)
q4−µ̂4

2(q4+2µ̂2q2−4µ̂2q20+µ̂4)


,

M2(q) = 1
D2


− q2

4 − κ̂2q−+iq1µ̂2

2µ̂

κ̂q−

√
κ̂2−µ̂2

√
2µ̂

κ̂2q−+iq1µ̂2

2µ̂

q+

(
q2
+
µ̂2−4κ̂2(κ̂2−µ̂2)

)
4q− µ̂

2 −
√

2κ̂
√
κ̂2−µ2(κ̂2q−+iq1µ̂2)

q+ µ̂
2

− κ̂q−

√
κ̂2−µ̂2

√
2µ̂

−
√

2κ̂
√
κ̂2−µ̂2(κ̂2q−+iq1µ̂2)

q+ µ̂
2

q4µ̂2−4(q1µ̂2−iκ̂2q−)2

2q2µ̂2

 ,

q± = q0 + iq1 , q2 = q20 + q21 , D1 = q2 + 2κ̂2 − µ̂2 , D2 = q4 + 4κ̂2q2 − 4µ̂2q1
2 ,

(4.139)
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and the propagator for the S5 sector is

△−1
S (q) = diag

(
− 1

4 (q2 + µ̂2)
,− 1

4 (q2 + µ̂2)
,− 1

4 (q2 + µ̂2)
,− 1

4 (q2 + µ̂2)
,− 1

2q2
, . . . ,− 1

2q2

)
, (4.140)

where we have omitted the overall factor 8π
k which will be restored later.

Below we shall evaluate the two-loop contributions diagram by diagram. One particle irreducible

contributions of the bosonic fluctuations are given by the bosonic sunset (Figure 4.1(a)) and bosonic

double-bubble (Figure 4.1(b)). It should be emphasized that the main difference between the present

case and the AdS3×S3 case in section 4.3.1 is the appearance of the Catalan’s constant as a consequence

of involving the bosonic fluctuations transverse to the AdS3 subspace in the AdS5 sector.

Similar to the original string theory computation in the light-cone gauge [97, 100], the bosonic fluc-

tuations also provide the nonvanishing tadpole contributions, which will be discussed later together

with tadpoles containing fermionic propagators (Figure 4.3).

Note that the µ̂ → 0 (µ → 0) limit can be smoothly taken once we simplify the integrands of the

two-loop integrals. In this limit we have κ = ℓ then κ̂→ 1. We will explicitly show the two-loop PRT

partition function only for µ̂→ 0. The two-loop computation for a general µ̂ in the reduced theory is

still an open problem.

By plugging the bosonic fluctuation fields (4.114) and (4.115) into L(3) in (4.24) one finds vertices for

the sunset diagrams in Figure 4.1(a). We shall make use of the fact that the AdS5 part decouples

from the S5 part as the case of the one-loop computation, and first discuss the complicated AdS5

sector where the Catalan’s constant will arise. Corresponding to the three propagators in the sunset

diagrams, the two-loop integral for the diagrams can be characterized by three mass parameters, mi,

mj and mk,

Im2
im

2
jm

2
k

=
∫
d2qi d

2qj d
2qj

(2π)4
F(qi, qj , qk)

qni
i q

nj

j q
nk
k (q2i +m2

i )(q
2
j +m2

j )(q
3
k +m2

k)
, (4.141)

where we symbolically denote a polynomial function of q as F(qi, qj , qk). In the AdS5 sector the

vertices contained in the fluctuation Lagrangian are of the three types. The first type includes the

vertices VA ijk with (i, j, k) = ({7, 8, 9}, {1, 2, 3}, {1, 2, 3}) or (i, j, k) = ({7, 8, 9}, {4, 5, 6}, {4, 5, 6}). In

the µ → 0 limit we have D1 → q2 + 2 and D2 → (q2 + 4)q2, so using these vertices we obtain the

integral I422 containing the Catalan’s constant given by the type of integral I[4, 2, 2]. The vertices
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VA ijk with (i, j, k) = ({7, 8, 9}, {7, 8, 9}, {7, 8, 9}) lead to the integral I444. For the agreement with

the string theory result, the nontrivial integral I[4, 4, 4] contained in I444 should not appear. The last

type is VA ijk with (i, j, k) = (10, {1, 2, 3}, {4, 5, 6}) yielding the integral I022.

The two-loop integrals, I422, I444 and I022, respectively, are simplified as

I422 = 2I[4, 2, 2] − 1
2I[2]I[0] − 3

2I[4]I[2] ,

I444 = −1
4I[4]I[0] − 1

4I[4]I[4] ,

I022 = −1
2I[2]I[2] ,

(4.142)

where we included the combinatorial factor −1/12 and used the notation introduced in (4.35).

The computation in the S5 sector is trivial since the S5 part of the classical solution in the reduced

theory (4.113) is the vacuum. The S5 part of Γ(3) in (4.33) in the µ̂→ 0 limit is given by the following

integral, ∫
d2qi d

2qj
(2π)4

[
q+i q

−
j − q−i q

+
j

q2i q
2
j q

2
k

+
q+i q

−
j − q−i q

+
j

q2i q
2
j q

2
k

+ (permutation of (i, j, k))

]
. (4.143)

Due to obvious symmetry of the momentum-space integral under interchange i↔ j, we find that each

term vanishes separately.

For the diagrams 4.1(b), the integral is characterized by two mass parameters, mi and mj , correspond-

ing to the two propagators with the momenta qi and qj ,

Im2
im

2
j

=
∫
d2qi d

2qj
(2π)4

F(qi, qj)
qni
i q

nj

j (q2i +m2
i )(q

2
j +m2

j )
. (4.144)

In the AdS5 part the nonvanishing elements are I22 and I44. After simplification, they are written as

I22 = −1
2I[2]I[2] ,

I44 = −1
4I[4]I[0] − 1

4I[4]I[4] ,
(4.145)

where the combinatorial factor 1/8 is included. Although the quartic terms for the S5 sector are

found in the fluctuation Lagrangian, the corresponding two-loop integrals do not lead to nontrivial

contribution.

By summing up (4.142) and (4.145) we find that the bosonic contribution to the quantum partition
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function is

Jboson = 2I[4, 2, 2] − 1
2
I[2]I[0] − 1

2
I[4]I[0] − I[2]I[2] − 3

2
I[4]I[2] − 1

2
I[4]I[4] . (4.146)

The nontrivial finite part of the bosonic contribution is 2I[4, 2, 2],

2I[4, 2, 2] =
1

8π2
K , (4.147)

where K is the Catalan’s constant. Note that the two-loop contributions from the other WZW term

LWZW(U−1Ũ) lead to power-divergent terms, which should cancel with power-divergent terms from

other diagrams.

Fermionic 1PI contributions

The fermionic contributions of the cubic and quartic interaction terms are given by the diagrams of the

two topologies depicted in Figure 4.2. As done for the bosonic contributions, the two-loop integrals are

written in terms of Im2
im

2
jm

2
k

for the sunset diagram in Figure 4.2(a) and Im2
im

2
j

for the double-bubble

diagram in Figure 4.2(b).

As the fermionic fluctuations have the mass κ̂ = 1 in the µ̂ → 0 limit, the integrals arising from the

fermionic sunset are the type of Im211, where m is the mass of the bosonic fluctuation. We find that

the nonvanishing contributions are

I011 = 9I[1][0] − 9
2I[1]I[1] ,

I211 = −2I[2, 1, 1] + I[1]I[1] − 2I[2]I[1] ,

I411 = I[4]I[1] − 1
2I[1]I[1] .

(4.148)

Here we obtained the Catalan’s constant, I[2, 1, 1]. It is also important that the integral of the I[4, 1, 1]

type is not derived from I411. This is consistent with the original theory result.

The fermionic double-bubble diagrams give the Im21 type, where the mass of the bosonic field m2 can
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be 0, 2 or 4. They are summarized as

I01 = −9I[1]I[0] ,

I21 = 6I[2]I[1] ,

I41 = I[1]I[0] + 2I[4]I[1] .

(4.149)

Combining (4.148) and (4.149) we obtain the total fermionic contribution,

Jfermion = −2I[2, 1, 1] + I[1]I[0] − 4I[1]I[1] + 4I[2]I[1] + 3I[4]I[1] . (4.150)

The finite part −2I[2, 1, 1] is rewritten as

−2I[2, 1, 1] = − 1
4π2

K , (4.151)

where K is the Catalan’s constant. More importantly, this value is −2 of the Catalan’s constant

obtained in the bosonic sector (4.147). This is exactly the same as the observation in the original

string theory (4.3).

Combining the bosonic (4.146) and the fermionic (4.150) 1PI contributions together we find

J1PI = − 1
8π2

K − 1
2
(
I[4] + I[2] − 2I[1]

)(
I[4] + 2I[2] + I[0] − 4I[1]

)
. (4.152)

We observe that as in the AdS3 × S3 reduced theory case (4.81), the second term in (4.152) is UV

finite but IR divergent and is proportional to the same combination I[4] + I[2] − 2I[1] which appears

in the one-loop result (4.135).

Tadpole contributions and total result for the two-loop coefficient

The non-1PI diagram relevant in the present case is shown in Figure 4.3. The loops can be bosonic

or fermionic, and the intermediate line connecting the two loops is bosonic.

When computing this diagram, we should note that it is not allowed to set the momentum for the

intermediate line to be zero initially. M2(q) of the bosonic propagator in (4.138) and (4.139) vanishes

by setting q = 0, but this part of the propagator contains the physical degrees of freedom and
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may contribute to the two-loop corrections. Thus we shall start with nonzero momentum for the

intermediate line and take the zero momentum limit after the integration in the two loops integrals is

done.

Since the tadpole contributions are necessarily written as a product of the one-loop integral (4.35),

the nontrivial finite integral is not obtained from this sector. The non-1PI diagrams with two bosonic

loops give

Jboson−boson tadpole = −1
8

(
−4

3
I[2]I[0] − 4

3
I[4]I[0] − 4I[2]I[2] − 20

3
I[4]I[2] − 8

3
I[4]I[4]

)
. (4.153)

The contributions of non-1PI diagrams with one bosonic loop and one fermionic loop are

Jboson−fermion tadpole =
1
8

(
−8

3
I[1]I[0] − 16I[2]I[1] − 40

3
I[4]I[1]

)
. (4.154)

Also we obtain the contribution of the non-1PI diagrams with two fermionic loops

Jfermion−fermion tadpole = −1
8

(−16I[1]I[1]) . (4.155)

Hence the total tadpole contribution is

Jtadpole =
1
6
(
I[4] + I[2] − 2I[1]

)(
2I[4] + 3I[2] + I[0] − 6I[1]

)
. (4.156)

Combining together (4.152) and (4.156) we find the following expression for the coefficient in the

two-loop effective action,

Γ(2) =
8π
k
V2

∑
n

Jn , (4.157)

where

∑
n

Jn = J1PI + Jtadpole = J̄ + J̃ , J̄ = − 1
8π2

K , (4.158)

J̃ = −1
6
(
I[4] + I[2] − 2I[1]

)(
I[4] + 3I[2] + 2I[0] − 6I[1]

)
. (4.159)

The resulting two-loop coefficient contains, ā2 = −K, ã2 = 8π2J̃ = −5
4(ln 2)2 − ln 2 lnm0 which is IR

divergent.
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Recalling that the I[4]I[4] term in the tadpole contribution disturbs the IR finite result in approach I

for reduced AdS3 × S3 theory due to the subtlety in how the tadpole contribution was computed, it

is natural to expect that the same subtlety arises in the AdS5 × S5 case. Indeed, the results in the

reduced AdS3 × S3 and reduced AdS5 × S5 theories are in direct agreement in what concerns I[4]I[4]

contributions coming from the 1PI graphs: this term enters (4.152) with the same coefficient −1
2 as

in (4.81) or (4.104). If we accept the prescription employed in the AdS3 × S3 case where I[4] in the

second factor in the tadpole contribution (4.82) is replaced by I[0], here I[4] in the second factor in

(4.159) should be replaced by I[0], then the tadpole contribution becomes

J ′
tadpole =

1
6
(
I[4] + I[2] − 2I[1]

)(
3I[2] + 3I[0] − 6I[1]

)
=

1
2
(
I[4] + I[2] − 2I[1]

)(
I[2] + I[0] − 2I[1]

)
, (4.160)

and the sum of (4.152) and (4.160) leads to the finite integral. Then ã2 is finite and again proportional

to the square of the one-loop coefficient,

J̃ = −1
2
(
I[4] + I[2] − 2I[1]

)2
, i.e. ã2 = 8π2J̃ = −1

4
(a1)2 = −9

4
(ln 2)2 . (4.161)



Chapter 5

Summary and future directions

In this thesis we discussed quantum aspects of the Pohlmeyer-reduced form of the AdS5 × S5 GS

superstring theory. The Pohlmeyer reduction is a technique to eliminate unphysical degrees of freedom

at the level of equations of motion preserving the Lorentz symmetry and the integrability. In the

context of string theory in AdS5 × S5, these are great advantages because of the breaking of the 2d

Lorentz invariance by a straightforward way of gauge fixing in the AdS5 × S5 GS action.

After the review of the Pohlmeyer reduction of AdS3 × S1 bosonic string theory and the AdS5 × S5

GS superstring theory in chapter 2, the one-loop computations for homogeneous and inhomogeneous

backgrounds were considered in chapter 3 (and also in appendix C). We demonstrated that the reduced

theory partition function is the same as the string theory one for the respective string configurations

at one-loop level. The two-loop relation between these two theories was explored in chapter 4. We

found a strong indication that the AdS5 × S5 GS superstring and its Pohlmeyer-reduced form are

closely related at the quantum level: the reduced AdS5×S5 superstring theory correctly produces the

same nontrivial constant as the original string theory, i.e., the Catalan’s constant, under the specific

identification of the coupling constants of the two theories.

Nevertheless, the two-loop partition function in the reduced theory also contains a finite term pro-

portional to the square of the one-loop result. Also, our final result in the AdS5 × S5 case is inferred

by the comparison between the two approaches in the AdS3 × S3 case. A natural suggestion is that

we could perform the two-loop computation for AdS5 × S5 based on approach II of AdS3 × S3, while

integrating out A+, A− first and gauge-fixing g also leads to more involved fluctuation action than the

109
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AdS3 × S3 case.

As a consequence of the absence of the unphysical modes, one virtue in studying the reduced model

instead of the original theory is its simpler one-loop structure (see chapter 3). In addition to several

string configurations in AdS3 × S1 which we discussed in this thesis, there are various kinds of solu-

tions localized in pure AdS3. It was pointed out in [66, IWA] that the reduced AdS3 theory is not

embedded in the full reduction of the AdS5 × S5 GS superstring theory at the level of the classical

Lagrangian. However, our investigation in the semiclassical expansions in chapter 3 shows that the

one-loop computation for strings in AdS3 can be studied in the full reduction by starting with their

generalized solutions in AdS3 ×S1 and eventually taking the limit where stretching and motion in S1

are eliminated. In particular, it is allowed to take such limit in the fluctuation Lagrangian if one fixes

the H gauge nicely. This statement is expected to be true for general solutions in AdS3 × S1 by the

argument analogous to [66]. Let us discuss it briefly. By the replacement ϕA → ϕA + ln µ√
2
, θA → 1

2µθA

in the fluctuation Lagrangian of the tanh model (3.2), the µ → 0 limit becomes well-defined in the

fluctuation Lagrangian. After the limit and a further replacing ϕA → ϕA − 1
4 ln ∂+θA∂−θA , the resulting

Lagrangian is

Ltanh (2) = ∂+δϕA∂−δϕA + ∂+δθA∂−δθA − 2 cosh 2ϕA

√
∂+θA∂−θA(δϕA)2 . (5.1)

One can confirm that this is the correct fluctuation Lagrangian by plugging the counterpart of the

folded string solution in AdS3,

∂±θA = 2wκ , ϕA =
1
2

ln 2ρ′2 − 1
4

ln ∂+θA∂−θA , (5.2)

and finding that it describes one massless fluctuation and one massive fluctuation with the coefficient

of mass term
2(w2κ2+ρ′4)

ρ′2 , which agrees with (3.21) and [89]. This prescription also works for the full

reduction in the decoupling gauge; one gets four massless fluctuations and two massive fluctuations

with m2 = 2ρ′2 for bosons and the correct fermionic modes as in [89].

One possible application of this technique is to study semiclassical expansions around the minimal

area of an open string ending on n-cusp null Wilson loop on the conformal boundary of AdS3 [61, 62].

Since it is very hard to reconstruct the corresponding string theory solution from the reduced theory

solution which was found in [61, 62], computing the one-loop corrections to the area in the reduced
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theory leads to much simplification while the one-loop computation on the string theory side involves

a problem of the IR regulator [98].

Although the Pohlmeyer-reduced form of the AdS5 × S5 GS superstring is integrable, the integrable

structure is different from the one found in the original string theory. The integrability property in

the classical reduced theory was studied in [105] in terms of Poisson structure and the realization of

the quantum integrability was discussed perturbatively [75]. As one might expect that the relation

of quantum partition functions of the two theories could directly come from that of the integrable

structures, it would be interesting to uncover the nontrivial relation between these two forms of the

integrability.

Another open problem is the classical relation between the reduced AdSn theory and the reduced

AdSn × S1 theory. While the limit where string has no stretching or momentum in S1, i.e., µ → 0,

can be smoothly taken in the original string theory, the corresponding limit in the reduced theory

is nontrivial especially at the classical level (the semiclassical case was discussed in chapter 3 and

appendix C). This situation is very similar to the algebraic curve approach to the finite-gap solution;

there is no simple limit connecting the structures of AdS3 × S1 strings and AdS3 strings [106]. Only

the n = 3 case was discussed in [66] where the authors rescaled the complex sinh-Gordon fields first,

then took the limit in order to obtain the reduced AdS3 theory from the reduced AdS3 × S1 theory.

Beyond this case the situation is unclear, but it may be possible to find an analog of [107], where the

strong/weak duality between 2d integrable theories in terms of their S-matrices was found.

A related problem is that the µ→ 0 limit in the deformed gWZW model (2.31), (2.32) is not yet under-

stood. If one naively takes the limit, the potential terms µ2STr(g−1TgT ), µSTr
(
g−1ΨLgΨR

)
disappear

from the Lagrangian.

Finally, one straightforward extension of our work is to compute the three-loop corrections to the

reduced theory partition function. It would be very interesting if we obtain terms such as a1a2, (a1)3

in the three-loop coefficients. However, the three-loop computation should be first completed in the

original string theory following the qualitative argument given in [70].

We hope that further study of the Pohlmeyer-reduced version of string theory in AdS5 ×S5 may lead

to important insights into the structure of underlying quantum theory.



Appendix A

Matrix superalgebra

In this appendix we will summarize the superalgebra and its parameterization for the cases of psu(2, 2|4)

and psu(1, 1|2).1 We will first review the psu(2, 2|4) superalgebra, then explain the psu(1, 1|2) super-

algebra by a slight modification of the psu(2, 2|4) case.

We shall start with the su(2, 2|4) superalgebra as it is spanned by 8 × 8 supermatrices f. In general f

is expressed in terms of 4 × 4 matrices,

f =

 A X

Y D

 , (A.1)

where the matrices A, D are Grassmann even and X, Y are Grassmann odd. The superalgebra

su(2, 2|4) requires that the matrix f should vanish by taking the supertrace,

STrf ≡ trA − trD = 0 , (A.2)

and satisfy the reality condition,

f†H +Hf = 0 , (A.3)

1In this paper we follow the notation of [64].
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with a Hermitian matrix H. It is convenient to choose H to be the following form,

H =

Σ 0

0 1

 , (A.4)

where Σ is expressed as

Σ =



1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1


, (A.5)

and 1 is the 4×4 identity matrix. With this choice of H, the reality condition (A.3) gives the relations,

A† = −ΣAΣ , D† = −D , Y = −X†Σ . (A.6)

So we see that the bosonic matrix A belongs to u(2, 2) and the other bosonic matrices D belong to

u(4). The only one combination of each u(1) generator, i1, satisfies the reality condition (A.3) and

supertraceless condition (A.2). Hence the bosonic subalgebra of su(2, 2|4) is decomposed as

su(2, 2) ⊕ su(4) ⊕ u(1) . (A.7)

The superalgebra psu(2, 2|4) is defined as the quotient algebra of su(2, 2|4) over this u(1) factor.

One important property of the psu(2, 2|4) superalgebra is that it admits a Z4 automorphism such that

the condition Z4(f) = f determines the subgroup G = Sp(2, 2) × Sp(4) of F = PSU(2, 2|4). Define

the automorphism f → Ω(f) by

Ω(f) = −

KAtK −KYtK

KXtK KDtK

 , (A.8)
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where the 4 × 4 matrix K is chosen to be

K =



0 −1 0 0

1 0 0 0

0 0 0 −1

0 0 1 0


, (A.9)

which satisfies K2 = −1, then any matrix in psu(2, 2|4) can be decomposed as

f = f0 ⊕ f1 ⊕ f2 ⊕ f3 , (A.10)

where fk are eigenstates of Ω,

Ω(fk) = ikfk , (A.11)

and given by

f0 =
1
4
(
f + Ω(f) + Ω2(f) + Ω3(f)

)
=

1
2

A −KAtK 0

0 D −KDtK

 ,

f1 =
1
4
(
f − iΩ(f) − Ω2(f) + iΩ3(f)

)
=

1
2

 0 X − iKYtK

Y + iKXtK 0

 ,

f2 =
1
4
(
f − Ω(f) + Ω2(f) − Ω3(f)

)
=

1
2

A +KAtK 0

0 D +KDtK

 ,

f3 =
1
4
(
f + iΩ(f) − Ω2(f) − iΩ3(f)

)
=

1
2

 0 X + iKYtK

Y − iKXtK 0

 .

(A.12)

They satisfy the following commutation relation,

[fi, fj ] ⊂ fi+j mod 4 . (A.13)

Let us denote g = f0 and p = f2. Then g is the algebra of the subgroup G of F defining the coset F/G,
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and p corresponds to the bosonic coset component. The other two components, f1, f3, are fermionic

parts.

Now let us discuss a further Z2 decomposition, which defines the group H and the coset G/H. Here

we shall introduce an element T of the maximal Abelian subalgebra of p by

T =
i

2
diag (1, 1, −1, −1, 1, 1, −1, −1) . (A.14)

The Z2 decomposition is then given by

f∥r = − [T, [T, fr]] , f⊥r = −{T, {T, fr}} . (A.15)

It should be noted that this is an orthogonal decomposition, that is

f = f∥ ⊕ f⊥ ,

STr(f∥f⊥) = 0 .
(A.16)

and they form the following commutation relation,

[
f⊥, f⊥

]
⊂ f⊥ ,

[
f⊥, f∥

]
⊂ f∥ ,

[
f∥, f∥

]
⊂ f⊥ . (A.17)

Identify h = f⊥0 , m = f
∥
0, a = f⊥2 , n = f

∥
2. In fact a is the maximal Abelian subspace of p, and the

algebra h of the subgroup H of G is defined as the stabilizer of T in g, i.e., [h, T ] = 0. Together with

the commutation relations (A.13) and (A.17), one finds these elements satisfy

[a, a] ⊂ 0 , [a, h] ⊂ 0 , [h, h] ⊂ h , [m,m] ⊂ h , [m, h] ⊂ m , [m, a] ⊂ n , [n, a] ⊂ m .

(A.18)

For the specific choice of the matricesH, K and T in (A.4), (A.9) and (A.14), respectively, then one can

uniquely express general elements of m, h, a, n, f
∥
1, f⊥1 , f

∥
3 and f⊥3 in terms of their matrix components.

The following four components are relevant when we determine the fluctuation Lagrangian of the



116 Appendix A. Matrix superalgebra

reduced theory. The subspace m of g corresponds to physical fluctuations in the reduced theory,

m =

 mA 0

0 mS

 ,

mA =



0 0 a1 + ia2 a3 + ia4

0 0 a3 − ia4 −a1 + ia2

a1 − ia2 a3 + ia4 0 0

a3 − ia4 −a1 − ia2 0 0


,

mS =



0 0 b1 + ib2 b3 + ib4

0 0 −b3 + ib4 b1 − ib2

−b1 + ib2 b3 + ib4 0 0

−b3 + ib4 −b1 − ib2 0 0


.

(A.19)

Unphysical fluctuations lie in the subspace h of g , which should be gauged away or integrated out

from the fluctuation Lagrangian of the reduced theory,

h =

 hA 0

0 hS

 ,

hA =



ic1 c2 + ic3 0 0

−hc + ic3 −ic1 0 0

0 0 ic4 c5 + ic6

0 0 −c5 + ic6 −ic4


,

hS =



id1 d2 + id3 0 0

−d2 + id3 −id1 0 0

0 0 id4 d5 + id6

0 0 −d5 + id6 −id4


.

(A.20)

The κ-symmetry allows us to set fermionic fields to take values in f∥,

f
∥
1 =

 0 X1

Y1 0

 , f
∥
3 =

 0 X3

Y3 0

 , (A.21)
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where

X1 =



0 0 α1 + iα2 α3 + iα4

0 0 −α3 + iα4 α1 − iα2

α5 + iα6 α7 − iα8 0 0

α7 + iα8 −α5 + iα6 0 0


, (A.22)

Y1 =



0 0 −α6 − iα5 −α8 − iα7

0 0 α8 − iα7 −α6 + iα5

α2 + iα1 α4 − iα3 0 0

α4 + iα3 −α2 + iα1 0 0


, (A.23)

and

X3 =



0 0 β1 + iβ2 β3 + iβ4

0 0 β3 − iβ4 −β1 + iβ2

β5 + iβ6 −β7 + iβ8 0 0

β7 + iβ8 β5 − iβ6 0 0


, (A.24)

Y3 =



0 0 −β6 − iβ5 −β8 − iβ7

0 0 −β8 + iβ7 β6 − iβ5

β2 + iβ1 −β4 + iβ3 0 0

β4 + iβ3 β2 − iβ1 0 0


. (A.25)

When we derive the fluctuation Lagrangian for fermionic fluctuations, we rescale components of ΨR ∈

f
∥
1 and ΨL ∈ f

∥
3.

Now we shall discuss the psu(1, 1|2) superalgebra by modifying the above argument for the psu(2, 2|4)

superalgebra. In the psu(1, 1|2) case, the matrix f in (A.1) is a 4 × 4 supermatrix spanned by 2 × 2

matrices, A, B, X and Y. Also, H, Σ in (A.4), (A.5) and K in (A.9) should be replaced by

H =

Σ 0

0 12×2

 , with Σ = K =

 1 0

0 −1

 , (A.26)
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whereas T in (A.14) for the further Z2 decomposition should be chosen as

T =
i

2
diag (1, −1, 1, −1) . (A.27)

Hence general elements of m, h, a, n, f
∥
1, f⊥1 , f

∥
3 and f⊥3 in psu(1, 1|2) are expressed explicitly. The

following four components are relevant when we determine the fluctuation Lagrangian of the reduced

theory.

m =

 mA 0

0 mS

 ,

mA =

 0 a1 + ia2

a1 − ia2 0

 , mS =

 0 b1 + ib2

b1 − ib2 0

 ,

(A.28)

which lie in the subspace m of g corresponding to physical fluctuations in the reduced theory and

h =

 hA 0

0 hS

 ,

hA =

 ic 0

0 −ic

 , hS =

 id 0

0 −id

 ,

(A.29)

which are unphysical fields taking value on the subspace h of g.

Among the fermionic currents, we use the following two currents,

f
∥
1 =

 0 X1

Y1 0

 , f
∥
3 =

 0 X3

Y3 0

 , (A.30)

where

X1 =

 0 α1 + iα2

α3 + iα4 0

 , Y1 =

 0 −iα3 − α4

iα1 + α2 0

 , (A.31)

and

X3 =

 0 β1 + iβ2

β3 + iβ4 0

 , Y3 =

 0 −iβ3 − β4

iβ1 + β2 0

 , (A.32)
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When we derive the fluctuation Lagrangian for fermionic fluctuations, we rescale components of ΨR ∈

f
∥
1 and ΨL ∈ f

∥
3.



Appendix B

Parametrization of PSU(2, 2|4) in terms

of embedding coordinates

Here we shall discuss the relation between the embedding coordinates in AdS5×S5 and parametrization

of the PSU(2, 2|4) coset elements (see [85] for details).

Let us define six real coordinates Y P on R4,2 (P = 0, 1, . . . , 5) and six real coordinates XM on R6

(I = 1, 2, . . . , 6). To define AdS5 and S5 embedded in R4,2 and R6 we impose

ηPQY
PY Q = −1 , ηMNX

MXN = 1 ,

η = diag (−1, −1, 1, 1, 1, 1) , δ = diag (1, 1, 1, 1, 1, 1) .
(B.1)

and define another set of unconstrained coordinates, t, yi on AdS5 and θA , xi on S5, i = 1, 2, 3, 4:

Y 1 + iY 2 =
y1 + iy2

1 − y2

4

, Y 3 + iY 4 =
y3 + iy4

1 − y2

4

, (B.2)

Y 0 + iY −1 =
1 + y2

4

1 − y2

4

eit ,

X1 + iX2 =
x1 + ix2

1 + x2

4

, X3 + iX4 =
x3 + ix4

1 + x2

4

, (B.3)

X5 + iX6 =
1 − x2

4

1 + x2

4

eiθA .
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such that y2 = yiyi and x2 = xixi. The corresponding metrics of AdS5 and S5 in terms of t, yi, θA , xi

are

η4,2
MNdY

MdY N = −
(

1+ y2

4

1− y2

4

)2

dt2 + dyidyi(
1− y2

4

)2 ,
η6,0
IJ dX

IdXJ =
(

1−x2

4

1+ x2

4

)2

dθ2
A

+ dxidxi(
1+ x2

4

)2 .
(B.4)

A suitable choice of bosonic coset element f would be such that STr
(
f−1df

)2 coincides with the sum

of the two metrics in (B.4). This allows us to relate the embedding coordinates with the bosonic coset

element directly:

f =

 fA 04

04 fS



=

 exp
(
i
2 tγ5

)
04

04 exp
(
i
2θAγ5

)



1√
1− y2

4

(
14 + 1

2yiγi
)

04

04
1√

1+ x2

4

(
14 + i

2xiγi
)


. (B.5)

Here γk are the so (5) Dirac matrices chosen as

γ1 =



0 0 0 −1

0 0 1 0

0 1 0 0

−1 0 0 0


, γ2 =



0 0 0 i

0 0 i 0

0 −i 0 0

−i 0 0 0


, γ3 =



0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0


, (B.6)

γ4 =



0 0 −i 0

0 0 0 i

i 0 0 0

0 −i 0 0


, γ5 =



1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1


.



Appendix C

One-loop computation: strings in

R × S5

Supplementary to chapter 3, we shall perform the one-loop computation in the reduced theory for

strings in R×S5. We have three examples; the pulsating string in R×S2, the circular two-spin string

in R×S3 and the short two-spin string in R×S5. In all the cases, the one-loop results in the original

string theory are reproduced.

C.1 Pulsating string in R × S2

The equivalence of equations of motion for the quadratic fluctuations in the original string theory in

conformal gauge and in the reduced theory was shown for an arbitrary classical solution localized in

the AdS2 × S2 subsector in [HIT]. In this sector there are many classical string configurations; the

pointlike string moving along a big circle of S2, the unstable wrapping static string and inhomogeneous

solutions such as pulsating strings, folded strings and magnons, e.g., [46, 47, 48, 109, 110, 111, 112]. In

this appendix we shall consider the pulsating string in R×S2 as a nontrivial example in this subsector,

and derive the Lagrangian for its quadratic fluctuations which should be directly compared with the

fluctuation Lagrangian found by perturbing the Nambu action in the original string theory.

In section 3.1 we showed that the fluctuations from the Nambu action are related to those of the tanh
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model by the T-duality transformation and the same as those of the coth model. This variety in the

reduced theory originates from the freedom in introducing the second field, i.e., θA for the tanh model

or χA for the coth model. Since bosonic string theory in R × S2 is reduced to the sin-Gordon model

which possesses a single field ϕS , it is expected that the Lagrangians in the original theory and in the

reduced theory exactly match.

The pulsating string solution in S2 studied in [109, 111] is expressed in terms of the embedding

coordinates for AdS5 × S5,

Y0 + iY5 = eiκτ , Y1 = Y2 = 0 ,

X1 +X2 = sinψ(τ)eimσ , X3 = cosψ(τ) , X4 = X5 = X6 = 0 ,
(C.1)

where m is the winding number on S2. The Virasoro constraints give one nontrivial constraint,

ψ̇2 +m2 sin2 ψ(τ) = κ2 , (C.2)

and the equation of motion is also derived by its derivative,

ψ̈2 +
m2

2
sin 2ψ(τ) = 0 , (C.3)

where the dot represents the derivative with respect to τ .

The detail of the reduction for the case of theAdS2×S2 subsector is described in [HIT]. In the deformed

gWZW model the AdS5 part of the corresponding element in G takes a trivial form, diag(i,−i, i,−i),

while the S5 part is given by

g =



i cosϕS 0 0 i sinϕS

0 −i cosϕS i sinϕS 0

0 i sinϕS i cosϕS 0

i sinϕS 0 0 −i cosϕS


, (C.4)

where

∂+Xa∂−X
a = κ2 cos 2ϕS . (C.5)

Here we used the fact the mass scale of the reduced theory is µ = κ. One can check that the classical
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gauge fields A±0 totally vanish by solving the gauge field equation (2.29). Substituting (C.1) into

(C.5), then we obtain the classical solution in the S5 sector,

g0 =



iψ̇
κ 0 0 i

√
1 − ψ̇2

κ2

0 − iψ̇
κ i

√
1 − ψ̇2

κ2 0

0 i

√
1 − ψ̇2

κ2
iψ̇
κ 0

i

√
1 − ψ̇2

κ2 0 0 − iψ̇
κ


, A±0 = 0 . (C.6)

C.1.1 Bosonic fluctuations

Let us first discuss the bosonic fluctuations. As the AdS5 part of the classical solution takes the trivial

form in the present case, the bosonic fluctuations in the AdS5 sector are massive fields with m2
B = κ2.

Then their Lagrangian is

L1 = 2
4∑
i=1

(
∂+ai∂−ai − κ2a2

i

)
. (C.7)

Introduce the components fields of the S5 part of the physical fluctuation η∥ as follows,1

η∥ =



0 0 b1 + ib2 b3 + ib4

0 0 −b3 + ib4 b1 − ib2

−b1 + ib2 b3 + ib4 0 0

−b3 + ib4 −b1 − ib2 0 0


. (C.8)

As shown in [HIT] one can partially fix the H gauge such that the physical fields decouple from the

unphysical fields. Then the resulting Lagrangian for the physical fluctuations is,

L2 = 2

[
3∑
i=1

(
∂+bi∂−bi −

(
2ψ̇2 − κ2

)
b2i

)
+ ∂+b4∂−b4 − κ2

(
1 − 2m2

κ2 − ψ̇2

)
b24

]
. (C.9)

The sum of these two Lagrangians in the reduced theory, L1+L2, is exactly the same as the Lagrangian

for the quadratic fluctuations found by perturbing the Nambu action in the original string theory [108].

1Both the AdS5 and S5 subsectors of H are [SU(2)]2. Hence component fields of the unphysical parts, η⊥

and δA±, are introduced in the same way as the case of AdS3 × S1 in (3.13) and (3.14).
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C.1.2 Fermionic fluctuations

The agreement of the bosonic fluctuations in the original theory and reduced theory requires that of

fermionic fluctuations. So we shall next check this for completeness. We write down the fermionic

fluctuation Lagrangian in terms of the component fields of the fermionic fluctuations introduced in

(3.24) - (3.28) with v = 1,

LF = 2
[∑8

i=1 (αi∂−αi + βi∂−βi)

+2ψ̇ (−α2β1 + α1β2 + α4β3 − α3β4 + α6β5 − α5β6 − α8β7 + α7β8)
]
.

(C.10)

This Lagrangian can be separated into four parts and each of them is rewritten in terms of a real four

component spinor Ψ,

Lf = Ψ̄γa∂aΨ − ψ̇Ψ̄Γ2Ψ . (C.11)

Thus we find that the fermionic fluctuations have the mass term with a coefficient ψ̇, which again

agrees with the string theory result [108].

C.2 Circular two-spin string in R × S3

One example of a simple string theory solution we shall consider here is the rigid circular two-spin

string on S3 in S5 discussed in [92, 93, 101, 102]. Using the embedding coordinates in appendix B,

i.e. YP (P = −1, 0, . . . , 4) of R4,2 for the AdS5 part and XM (M = 1, 2, . . . , 6) of R6 for the S5

part, this bosonic string solution is

Y0 + iY−1 = eiκτ , Y1 = Y2 = Y3 = Y4 = 0 ,

X1 + iX2 = 1√
2
eiωτ+imσ , X3 + iX4 = 1√

2
eiωτ−imσ . X5 = X6 = 0 ,

(C.12)

The Virasoro constraints imply that the three parameters, κ, ω and m, are related by

κ2 = m2 + ω2 . (C.13)
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Using the parameterizations discussed in appendix B we obtain the corresponding bosonic coset ele-

ment f ,

f =

 fA 0

0 fS

 ,

fA =



e
iκτ
2 0 0 0

0 e
iκτ
2 0 0

0 0 e−
iκτ
2 0

0 0 0 e−
iκτ
2


,

fS =



1√
2

0 i
2e

−iωτ+imσ − i
2e

−iωτ−imσ

0 1√
2

i
2e
iωτ+imσ i

2e
iωτ−imσ

i
2e
iωτ−imσ i

2e
−iωτ−imσ 1√

2
0

− i
2e
iωτ+imσ i

2e
−iωτ+imσ 0 1√

2


.

(C.14)

The corresponding solution of the reduced theory is 2

g0 =

 gA 0

0 gS

 , V ≡ ei
κ2−m2

κ
τ , (C.15)

gA =



i 0 0 0

0 −i 0 0

0 0 i 0

0 0 0 −i


, gS =



0 ω
κV −imκ V 0

−ω
κV

∗ 0 0 imκ V
∗

imκ V 0 0 −ω
κV

0 −imκ V
∗ ω

κV
∗ 0


,

ΨR0 = ΨL0 = 0 , (C.16)

and the gauge equations are solved by

A± 0 =

 0 0

0 A±S

 ,

A+S = i
(
m2

κ − κ
2

)
diag (1,−1, 1,−1) , A−S = −iκ2diag (1,−1, 1,−1) .

(C.17)

2The µ parameter of the reduced theory here is identified as κ.
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Note that the point-like string (BMN vacuum) solution is a particular case of (C.12), that is when

m = 0 and ω = κ. In the reduced theory the corresponding limit of (C.15) is the vacuum solution in

a specific gauge.

C.2.1 Bosonic fluctuations

Since the classical fermionic fields vanish, the bosonic AdS5 sector, the bosonic S5 sector and the

fermionic sector all decouple at the level of the action and we will discuss them separately.

Here the AdS5 part of g0 lives in H and is constant.3 This is a vacuum solution of this sector. The

resulting fluctuation Lagrangian in the bosonic AdS5 sector is

LA = STr
[
1
2
∂+η∂−η − δA−∂+η + δA+g0∂−ηg

−1
0 + δA+δA− − g−1

0 δA+g0δA− + κ2
(
ηηT 2 − ηTηT

)]
(C.18)

We partially fix the H gauge symmetry by setting the diagonal components of η⊥ to zero.4 After

integrating out δA± the Lagrangian describing only the physical fluctuations is

LA = STr
[
1
2
∂+η

∥∂−η
∥ + κ2

(
η∥η∥T 2 − η∥Tη∥T

)]
. (C.19)

Let us introduce the component fields of η∥ as

η∥ =



0 0 a1 + ia2 a3 + ia4

0 0 a3 − ia4 −a1 + ia2

a1 − ia2 a3 + ia4 0 0

a3 − ia4 −a1 − ia2 0 0


. (C.20)

Then (C.19) becomes

LA = 2
4∑
i=1

(
∂+ai∂−ai − κ2a2

i

)
, (C.21)

which describes four bosonic fluctuations with frequency
√
n2 + κ2.

3In the AdS5 case we shall assume that the field is just in the top left 4 × 4 matrix of the original (8 × 8)
field and similarly for the S5 case the field will be just in the bottom right 4 × 4 matrix.

4This is to completely remove the degeneracy of expanding around this vacuum.
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Now let us consider the S5 sector. We introduce the following parametrization of η∥, η⊥ and δA±,

η∥ =



0 0 b1 + ib2 b3 + ib4

0 0 −b3 + ib4 b1 − ib2

−b1 + ib2 b3 + ib4 0 0

−b3 + ib4 −b1 − ib2 0 0


, (C.22)

η⊥ =



ih1 h2 + ih3 0 0

−h2 + ih3 −ih1 0 0

0 0 ih4 h5 + ih6

0 0 −h5 + ih6 −ih4


, (C.23)

δA+ =



ia+1 (a+2 + ia+3) v2 0 0

− (a+2 − ia+3) v∗2 −ia+1 0 0

0 0 ia+4 (a+5 + ia+6) v2

0 0 − (a+5 − ia+6) v∗2 −ia+4


,

δA− =



ia−1 a−2 + ia−3 0 0

−a−2 + ia−3 −ia−1 0 0

0 0 ia−4 a−5 + ia−6

0 0 −a−5 + ia−6 −ia−4


.

(C.24)

When we substitute this into the bosonic part of the quadratic fluctuation Lagrangian, (3.4) the

fields decouple into two smaller sectors. These are, firstly, a sector containing b3, b4 and the diagonal

components of η⊥, δA±, which has a Lagrangian with constant coefficients, and secondly, a sector

containing b1,b2 and the off-diagonal components of η⊥, δA±. The coefficients in this sector have some

τ dependence, arising from the δA+δA− term, (v defined in (C.15) depends on τ).

If the gauge field fluctuations are integrated out first, we end up with a Lagrangian that has τ -

dependent coefficients. To avoid this complication, i.e. to construct an action containing only physical
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fluctuations and having constant coefficients we choose the following partial gauge fixing

h1 + h4 = const ,

κ(a−2 − a−5) − κ2(h3 − h6) − ∂−(a+3 − a+6) − κ∂−(h2 − h5) = 0 ,

κ(a−3 + a−6) + κ2(h2 + h5) − ∂−(a+2 + a+5) − κ∂−(h3 + h6) = 0 .

(C.25)

Then we can easily integrate out the diagonal components of δA± to get a Lagrangian for b3 and b4

in the desired form. The second two gauge constraints are chosen to decouple b1 and b2 from the

unphysical fluctuations. By using the remaining gauge freedom one should be able to ensure that the

unphysical fields give only trivial contributions to the partition function.

The resulting Lagrangian for this sector is then

LS =2
[ 4∑
i=1

∂−bi∂+bi +
2∑
i=1

(2m2 − κ2)b2i + 4m2b24 + 2κ(b4∂+b3 + b4∂−b3)
]
. (C.26)

This Lagrangian describes two decoupled fluctuations, b1, b2, with frequencies

√
n2 + κ2 − 2m2 , (C.27)

and two coupled fluctuations, b3, b4, with frequencies

√
n2 + 2κ2 − 2m2 ± 2

√
n2κ2 + (m2 − κ2)2 . (C.28)

They agree with the string theory result.

C.2.2 Fermionic fluctuations

The fermionic sector is described by

LF = STr
(

1
2δΨR [T , ∂−δΨR + [A0−, δΨR ]]

+1
2δΨL [T , ∂+δΨL + [A0+, δΨL ]] + κg−1

0 δΨLg0δΨR

)
.

(C.29)

To make coefficients in this Lagrangian constant we may rotate some of the fermionic fields to cancels

the contribution of g0 and g−1
0 in the “Yukawa” interaction term. This can be achieved by parame-
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terizing the matrix components of δΨR and δΨL as follows

δΨR =

 0 XR

YR 0

 , δΨL =

 0 XL

YL 0

 , (C.30)

where

XR =



0 0 α1 + iα2 α3 + iα4

0 0 −α3 + iα4 α1 − iα2

α5 + iα6 α7 − iα8 0 0

α7 + iα8 −α5 + iα6 0 0


, (C.31)

YR =



0 0 −α6 − iα5 −α8 − iα7

0 0 α8 − iα7 −α6 + iα5

α2 + iα1 α4 − iα3 0 0

α4 + iα3 −α2 + iα1 0 0


, (C.32)

XL =



0 0 (β1 + iβ2)V ∗ (β3 + iβ4)V

0 0 (β3 − iβ4)V ∗ (−β1 + iβ2)V

(β5 + iβ6)V ∗ (−β7 + iβ8)V 0 0

(β7 + iβ8)V ∗ (β5 − iβ6)V 0 0


, (C.33)

YL =



0 0 (−β6 − iβ5)V (−β8 − iβ7)V

0 0 (−β8 + iβ7)V ∗ (β6 − iβ5)V ∗

(β2 + iβ1)V (−β4 + iβ3)V 0 0

(β4 + iβ3)V ∗ (β2 − iβ1)V ∗ 0 0


. (C.34)
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Here αk and βk are 8+8 real anticommuting functions and V is defined in (C.15). The Lagrangian

(C.29) then takes the form

LF = 2
[∑8

i=1 (αi∂−αi + βi∂+βi)

+
√
κ2 +m2 (−α1α2 + α3α4 − α5α6 − α7α9 + β1β2 − β3β4 + β5β6 + β7β8)

+
√
κ2 −m2 (α1β3 + α3β1 − α5β7 − α7β5 − β2α4 + β4α2 + β6α8 − β8α6)

]
,

(C.35)

which describes 8 fermionic fluctuations with 4+4 sets of the frequencies,

√
n2 −m2 +

5κ2

4
±
√
κ4 + n2κ2 −m2κ2 . (C.36)

The characteristic frequencies found above directly from the reduced theory action are exactly the

same as found [92, 103] from the AdS5 × S5 string theory action expanded near the solution (C.12).5

We conclude that expanding the superstring action near the homogeneous 2-spin solution in R × S3

and expanding the reduced theory action near its counterpart in the reduced theory one finds the same

set of characteristic frequencies and thus the same one-loop contribution to the respective partition

functions.

C.3 Short two-spin string in R × S5

Let us consider the two-spin “short-string” solution in S5 discussed in [101, 113, 114]. In the conformal-

gauge string theory, the solution takes the form,

Y0 + iY−1 = eiκτ , Y1 = Y2 = Y3 = Y4 = 0 ,

X1 + iX2 = sin γ0e
i(τ+σ) , X3 + iX4 = sin γ0e

i(τ−σ) . X5 + iX6 = cos γ0 ,
(C.37)

where the Virasoro constraints relate the two parameters as κ2 = 2 sin γ2
0 . Setting γ0 = π/2 is allowed

if κ2 ≥ 2, in which the solution reduces to a special case of a two-spin solution in R × S3 discussed

in [101, 113, 92, 102] in the original string theory and in [HIT] (appendix C.2) in the reduced theory.

On the other hand, the string with κ2 < 2 lies in the S5 and this is the case we will discuss hereafter.

5Starting with the string solution in the form (C.12) used in [92] one finds that the fermions are naturally
periodic [102].
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Using the parameterizations discussed in appendix B, we obtain the corresponding bosonic coset

element f ,

f =

 fA 0

0 fS

 , fA =



e
iκτ
2 0 0 0

0 e
iκτ
2 0 0

0 0 e−
iκτ
2 0

0 0 0 e−
iκτ
2


,

fS = 1√
5−3 cos γ0



√
1 + cos γ0 0 ie−i(τ−σ) sin γ0

2 −ie−i(τ+σ) sin γ0
2

0
√

1 + cos γ0 iei(τ+σ) sin γ0
2 iei(τ−σ) sin γ0

2

iei(τ−σ) sin γ0
2 ie−i(τ+σ) sin γ0

2

√
1 + cos γ0 0

−iei(τ+σ) sin γ0
2 ie−i(τ−σ) sin γ0

2 0
√

1 + cos γ0


.

(C.38)

After fixing the H ×H gauge symmetry such that the classical gauge fields solve the gauge equations,

we find that the corresponding solution of the reduced theory is

g0 =

 gA 04

04 gS

 , gA =



i 0 0 0

0 −i 0 0

0 0 i 0

0 0 0 −i


,

gS = 1
B



e
iB2σ

2 e
iB2τ

2 cos γ0 −ie
iB2σ

2 cos γ0 −ie
iB2τ

2

−e−
iB2τ

2 cos γ0 e−
iB2σ

2 −ie−
iB2τ

2 ie−
iB2σ

2 cos γ0

−e
iB2σ

2 cos γ0 e
iB2τ

2 ie
iB2σ

2 −ie
iB2τ

2 cos γ0

−e−
iB2τ

2 −e−
iB2σ

2 cos γ0 −ie−
iB2τ

2 cos γ0 −ie−
iB2σ

2


.

where we defined the constant Bn by

Bn =
√
n+ cos 2γ0 . (C.39)

There are several ways of partially fixing the H×H gauge. The advantage in taking the present choice

is that classical gauge fields vanishes,

A0− = A0+ = 0 , (C.40)
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It is obvious that the fermionic fields are zero directly from the vanishing classical fermions in the

original string theory,

ΨR0 = ΨL0 = 0 . (C.41)

For the reduced-theory solution (C.3), it is not possible to decouple the physical fields from the

unphysical fields by imposing a gauge condition on the fluctuation fields. Hence, unlike the previous

two cases, we shall use the PW identity to eliminate the degrees of freedom of the gauge fields A±.

From the vanishing gauge fields (C.40), it turns out that the transformation A0± → U, Ũ in (4.16) is

trivial, U = Ũ = 18×8, which means that the classical background g does not change,

g̃0 = g0 . (C.42)

Finding that this is a good starting point of perturbation in the Lagrangian (4.19) in the sense that

g̃0 solves the equation of motion derived from the classical Lagrangian, then we shall consider the

Lagrangian for quadratic fluctuations (4.23).

C.3.1 Bosonic fluctuations

It is a general property of the reduced theory that the bosonic sector decouples into two subsectors,

the AdS5 sector and the S5 sector at one-loop level.

Let us define component fields of the bosonic fluctuation η in the following way,

η∥ =

 η
∥
A 0

0 η
∥
S

 , η
∥
A =



0 0 a1 + ia2 a3 + ia4

0 0 a3 − ia4 −a1 + ia2

a1 − ia2 a3 + ia4 0 0

a3 − ia4 −a1 − ia2 0 0


,

η
∥
S =



0 0 b1 + ib2 (b3 + ib4)eiB3
τ−σ

2

0 0 (−b3 + ib4)e−iB3
τ−σ

2 b1 − ib2

−b1 + ib2 (b3 + ib4)eiB3
τ−σ

2 0 0

(−b3 + ib4)e−iB3
τ−σ

2 −b1 − ib2 0 0


(C.43)
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which correspond to physical fields in m coming from the coset part G/H, and

η⊥ =

 η⊥A 0

0 η⊥S

 , η⊥A =



ic1 c2 + ic3 0 0

−c2 + ic3 −ic1 0 0

0 0 ic4 c5 + ic6

0 0 −c5 + ic6 −ic4


,

η⊥S =



id1 (d2 + id3)eiB3
τ−σ

2 0 0

(−d2 + id3)e−iB3
τ−σ

2 −id1 0 0

0 0 id4 (d5 + id6)eiB3
τ−σ

2

0 0 (−d5 + id6)e−iB3
τ−σ

2 −id4


,

(C.44)

where we introduced the rotations such that the fluctuation Lagrangian become constant. The constant

B3 is defined in (C.39).

By substituting the solution (C.42), i.e., (C.3) and the fluctuation fields (C.43), (C.44) into the

Lagrangian (4.23), we obtain the Lagrangian for quadratic fluctuations expressed in terms of the

component fields. As the AdS5 sector of the classical solution is the vacuum, the Lagrangian for the

bosonic fluctuations in the AdS5 sector takes the simple form,

L = 2
4∑
i=1

(
∂+ci∂−ci − κ2c2i

)
−

6∑
j=1

∂+dj∂−dj , (C.45)

from which we find characteristic fluctuations of 4 massive fluctuations ci,

√
n2 + κ2 . (C.46)

This agrees with the string theory result in [101, 113, 114]. The unphysical fluctuations dj are totally

massless.

The S5 sector exhibits the involved structure reflecting the fact that all the components in the clas-

sical solution (C.42) (and (C.3)) are nonvanishing. The resulting Lagrangian contains four physical

fluctuations bi and six unphysical fluctuations dj which complicatedly couple with each other. Two of



C.3. Short two-spin string in R × S5 135

the physical fluctuations are massive with frequencies,

√
4 + n2 − κ2 ±

√
16n2 − 4n2κ2 + κ4 , (C.47)

and the other two physical fluctuations are massless, in agreement with the string the result [101, 113,

114]. Together with the 6 unphysical fluctuations the massless frequencies receive shift due to the

nontrivial rotation in (C.43) and (C.44),

4 × n ,

2 × n±
√

4 − κ2 .

(C.48)

Note that we used the relation κ2 = 2 sin γ2
0 in order to eliminate γ0.

C.3.2 Fermionic fluctuations

Fermionic sector

As done in the case of the homogeneous solution in S3, in order to achieve the fluctuated action with

constant coefficients, we rescale δΨL only,

δΨR =

 0 XR

YR 0

 , δΨL =

 0 XL

YL 0

 , (C.49)

where

XR =



0 0 (α1 + iα2)v∗+ (α3 + iα4)v+

0 0 (−α3 + iα4)v∗+ (α1 − iα2)v+

(α5 + iα6)v∗+ (α7 − iα8)v+ 0 0

(α7 + iα8)v∗+ (−α5 + iα6)v+ 0 0


, (C.50)

YR =



0 0 (−α6 − iα5)v+ (−α8 − iα7)v+

0 0 (α8 − iα7)v∗+ (−α6 + iα5)v∗+

(α2 + iα1)v+ (α4 − iα3)v+ 0 0

(α4 + iα3)v∗+ (−α2 + iα1)v∗+ 0 0


, (C.51)
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and

XL =



0 0 (β1 + iβ2)v∗− (β3 + iβ4)v−

0 0 (β3 − iβ4)v∗− (−β1 + iβ2)v−

(β5 + iβ6)v∗− (−β7 + iβ8)v− 0 0

(β7 + iβ8)v∗− (β5 − iβ6)v− 0 0


, (C.52)

YL =



0 0 (−β6 − iβ5)v− (−β8 − iβ7)v−

0 0 (−β8 + iβ7)v∗− (β6 − iβ5)v∗−

(β2 + iβ1)v− (−β4 + iβ3)v− 0 0

(β4 + iβ3)v∗− (β2 − iβ1)v∗− 0 0


, (C.53)

v± =
i

4

√
3 + 2 cos 2γ0 (τ ± σ) , (C.54)

where αk and βk are 8+8 real anticommuting functions. Plugging δΨR and δΨL into the fermionic

part of (4.23), we obtain the Lagrangian for quadratic fermionic fluctuations. The Lagrangian again

contains constant coefficients only. Characteristic frequencies derived from the resulting Lagrangian

are √
n2 + 1 +

κ2

4
±
√

(4 − κ2)n2 + κ2 , (C.55)

where we used the constraint κ2 = 2 sin γ2
0 . These frequencies again agree with the result in [101, 113,

114].
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Details of computation in chapter 4

D.1 Comments on one-loop computation in section 4.4

The quadratic fluctuation Lagrangian in section 4.4.1 looks different from the corresponding one in

AdS5×S5 string theory but these two Lagrangians lead to equivalent sets of characteristic frequencies

and the one-loop determinants. Here we shall comment on the structure of subsectors of the bosonic

fluctuation Lagrangian (4.118). Let us start with L(2)
1 in (4.118) containing a1 and a2. Integrating

out c2, c3, c5 and c6 gives1

L̃(2)
1 = 2

∑
i=1,2

[
∂+ai∂−ai −

(
2κ2 − µ2

)
a2
i + 4M2

1ai
∂+∂− + 2κ2 − µ2

∂2
+ +M2

2

ai

]
. (D.1)

This looks different from the fluctuation Lagrangian found from the corresponding string action,

L1 = 2
∑
i=1,2

[
∂+ai∂−ai −

(
2κ2 − µ2

)
a2
i

]
, (D.2)

but the two Lagrangians are closely related as one can factorize the operator ∂+∂−+2κ2−µ2 in (D.1).

The Lagrangians L(2)
1 in (4.118) and L1 in (D.2) are, in fact, related by a nonlocal transformation. To

1The resulting determinant of the operator O = ∂2
+ + M2

2 is equivalent to the (square of) massless operator
determinant.
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see this, it is useful to perform the following O(2) rotations,

c2 → 1√
2
(c2 − c6) , c3 → 1√

2
(c3 + c5) , c5 → 1√

2
(c2 + c6) , c6 → 1√

2
(c3 − c5) . (D.3)

Then L(2)
1 splits into smaller subsectors. One contains a1, c2 and c3,

L(2)
a1 = 2

[
∂+a1∂−a1 −

(
2κ2 − µ2

)
a2

1

]
− 4M1 (µc2 + ∂−c3) a1

−
∑
j=2,3

[
∂+cj∂−cj + (2κ2 − µ2)c2j

]
− 2 (µ∂+c3 +M2∂−c3) c2 . (D.4)

Another contains a2, c5 and c6 with a similar Lagrangian. To decouple a1 from c2, c3 we may apply

the nonlocal transformation

a1 → a1 −
√

2κ
√
κ2 − µ2

∂+∂− + 2κ2 − µ2
c2 −

√
2κ
√
κ2 − µ2∂−(∂2

− + µ2)
µ(∂2

+∂
2
− − µ4)

c3 ,

c2 → c2 +
∂+µ

2
(
∂+∂− + 2κ2 − µ2

)
+ ∂−

((
2κ2 − µ2

)
∂+∂− + µ4

)
µ
(
∂2

+∂
2
− − µ4

) c3 , (D.5)

leading to

L(2)
a1 = 2

[
∂+a1∂−a1 −

(
2κ2 − µ2

)
a2

1

]
+ 2c2

∂2
+∂

2
− − µ4

∂+∂− + 2κ2 − µ2
c2 + c3

(
∂+∂− + 2κ2 − µ2

) (
∂2
− + µ2

) (
∂2

+ + µ2
)

∂2
+∂

2
− − µ4

c3 . (D.6)

The physical part of this Lagrangian is the same as (D.2). The product of determinants resulting

from integrating out c2 and c3 contains only trivial massless factors. The same is true in the a2, c5,

c6 sector.

Similar observations apply in the sector containing a3 and a4 described by the Lagrangian L(2)
2 in

(4.118). Integrating out c3, c4 directly leads to

L̃(2)
2 = 2

∑
i=3,4

∂+ai∂−ai + 4 (µ∂+a4 +M2∂−a4) a3 + 8M2
1a3

∂−
∂+
a3 , (D.7)

which looks different from the string theory counterpart,

L2 = 2
∑
i=3,4

∂+ai∂−ai + 4
(
κ2 − µ2

)
a2

3 + 4µ (∂+a3 + ∂−a3) a4 . (D.8)
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To find a transformation between L(2)
2 and (D.8) let us apply an O(2) rotation

c1 → 1√
2
(c1 + c4) , c4 → 1√

2
(c1 − c4) , (D.9)

and the following redefinition

c1 → c1 + 2
√

2κ
√
κ2−µ2

µ
1
∂+
a3 , a4 → −a4 − 2κ

2−µ2

µ
1
∂+
a3 . (D.10)

Then we get

L(2)
a3,a4

= 2
∑
i=3,4

∂+ai∂−ai + 4
(
κ2 − µ2

)
a2

3 + 4µ (∂+a3 + ∂−a3) a4 −
∑
j=1,4

∂+cj∂−cj , (D.11)

where the physical part is the same as in (D.8).

D.2 One-loop computation in δA+ = 0 gauge

In this appendix we will perform the one-loop computation in the δA+ = 0 gauge. This gauge was used

in [73, 74, 75] to study S-matrices in the reduced theory by perturbing the deformed gWZW model

around the BMN vacuum. A great advantage in the δA+ = 0 gauge is that varying the fluctuation

Lagrangian by δA− yields an equation for η⊥ (gauge equation) leading to the Lagrangian which involves

only physical degrees of freedom once the gauge equation is solved. Although the solution of the gauge

equation is expressed as a nonlocal function of the physical fields, the nonlocality disappears from the

resulting Lagrangian in the case of the BMN vacuum. This makes it drastically easier to deal with the

cubic and quartic terms. For the (S, J) folded string, however, we can not eliminate the nonlocality

from the fluctuation Lagrangian, and the structure of the functional determinant contribution of the

gauge equation for η⊥ is complicated at higher orders. Hence it is still a challenging problem to carry

out the two-loop computation in the δA+ = 0 gauge.

Recall the classical solution in the reduced theory in (4.109) and (4.110). One can also set the

coefficients of the fluctuation Lagrangian constant at one-loop level in the δA+ = 0 gauge once we

introduce fluctuation fields appropriately.
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Consider fluctuations around a classical solution, g0, A0± with vanishing fermions, as follows

g = g0e
η = g0(1 + η + 1

2η
2 + O(η3)) , η ∈ f0

A+ = A+0 + δA+ , A− = A−0 + δA− ,

(D.12)

and fermionic fluctuations ΨR ,ΨL . The gauge condition we impose is δA+ = 0. Then the quadratic

fluctuations are described by the Lagrangian,

L(2) = STr
[

1
2D+η∂−η − D+ηδA− + 1

2 [η,D+η]A−0 − µ2

2

[
η, g−1

0 Tg0
]
[η, T ]

+1
2ΨR [T , ∂−ΨR + [A0−,ΨR ]] + 1

2ΨL [T , ∂+ΨL + [A0+,ΨL ]] + µg−1
0 ΨLg0ΨR

]
,

(D.13)

where D+ = ∂+ +
[
g−1
0 ∂+g0 + g−1

0 A+g0,
]
.

The Lagrangian (D.13) shows that the bosonic fluctuations and fermionic fluctuations are decoupled.

First we will discuss the bosonic sector. By solving the gauge equation for the unphysical fields

described above, we will derive the fluctuation Lagrangian containing only the physical fluctuations,

and determine the functional determinant contributions to the partition function. Then we will derive

the fluctuation Lagrangian and evaluate the one-loop contribution in the fermionic sector. Combining

the results of these two sectors, we will show that the result obtained by using the PW identity is

reproduced in the δA+ = 0 gauge. Finally a brief comment on the two-loop computation in the

δA+ = 0 gauge will be given.

Bosonic fluctuations

Variation of the fluctuation Lagrangian by δA− yields an equation for η⊥ and its solution is a nonlocal

function of η∥. This implies that nonlocal terms appear in the resulting fluctuation Lagrangian, which

is also observed in appendix D.1. In fact, the bosonic Lagrangians we will obtain here are the same

as those found in appendix D.1.

Since (4.109) is the parameterization such that g−1
0 ∂+g0 and g−1

0 Tg0 are constants, any rotation

for bosonic fluctuations is not needed. Then we will introduce the component fields of the bosonic
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fluctuations,

η∥ =

 η
∥
A 0

0 η
∥
S

 ,

η
∥
A =



0 0 a1 + ia2 a3 + ia4

0 0 a3 − ia4 −a1 + ia2

a1 − ia2 a3 + ia4 0 0

a3 − ia4 0 0


,

η
∥
S =



0 0 b1 + ib2 b3 + ib4

0 0 −b3 + ib4 b1 − ib2

−b1 + ib2 b3 + ib4 0 0

−b3 + ib4 −b1 − ib2 0 0


,

(D.14)

which correspond to physical fields in the reduced theory, and

η⊥ =

 η⊥A 0

0 η⊥S

 ,

η⊥A =



ic1 c2 + ic3 0 0

−c2 + ic3 −ic1 0 0

0 0 ic4 c5 + ic6

0 0 −c5 + ic6 −ic4


,

η⊥S =



id1 d2 + id3 0 0

−d2 + id3 −id1 0 0

0 0 id4 d5 + id6

0 0 −d5 + id6 −id4


,

(D.15)

which are unphysical fields in the reduced theory, and will be eliminated from the fluctuation La-

grangian by solving the equation δL(2)

δδA−
= 0.

As shown in other approaches in this thesis, the AdS5 sector and the S5 sector are decoupled at

one-loop level. As the S5 part of the classical solution is the vacuum, the Lagrangian for the quadratic
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fluctuations in the S5 sector takes the simple form,

L(2)
S5 = STr

[
1
2
∂+ηA∂−ηA − ∂+ηAδA− − µ2

2
([ηA, T ])2

]
. (D.16)

We can integrate out the unphysical fields by solving the equation, which is derived by varying this

Lagrangian by δA−,

∂+η
⊥
S = 0 , (D.17)

which eliminates the kinetic term for the unphysical fields. Recalling
[
η⊥, T

]
= 0, then we find that

the potential term does not contain the unphysical fields. Hence the resulting Lagrangian contains

only the physical fluctuations η⊥A ,

L(2)
S5 = STr

[
1
2
∂+η

∥
A∂−η

∥
A − µ2

2

([
η
∥
A, T

])2
]
. (D.18)

In terms of the component fields introduced in (D.14), the Lagrangian is written as

L(2)
S5 = 2

4∑
i=1

(
∂+bi∂−bi − µ2b2i

)
. (D.19)

This shows that the four physical fields are massive fluctuations with characteristic frequencies,

√
n2 + µ2 , (D.20)

which agrees with the string theory result [69].

Let us discuss the AdS5 sector. First we shall integrate out the unphysical fields. Varying the

fluctuation Lagrangian (D.13) by δA− yields the following equation,

(D+η)
⊥ = 0 . (D.21)

This equation can be solved once we rewrite it in terms of the component fields, (D.14) and (D.15),

∂+c1 − 2M1a3 = 0 , ∂+c2 − 2M1a2 −M2c3 = 0 , ∂+c3 + 2M1a1 +M2c2 = 0 ,

∂+c4 − 2M1a3 = 0 , ∂+c5 + 2M1a2 −M2c6 = 0 , ∂+c6 + 2M1a1 +M2c5 = 0 ,
(D.22)
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where M1 and M2 are constants,

M1 =
κ
√
κ2 − µ2

µ
, M2 =

2κ2 − µ2

µ
. (D.23)

The solution is

c1 = c4 = 2M1
1
∂+
a3 , c2 = 2M1

M2
2 +∂2

+
(∂+a2 −M2a1) , c3 = 2M1

M2
2 +∂2

+
(−∂+a1 −M2a2) ,

c5 = 2M1

M2
2 +∂2

+
(−∂+a1 −M2a2) , c6 = 2M1

M2
2 +∂2

+
(−∂+a1 +M2a2) .

(D.24)

After solving the gauge equation (D.21) the Lagrangian takes the following form,

L(2)
AdS5

= STr
[

1
2

(
∂+η

∥ +
[
A+, η

∥]) (∂−η∥ +
[
A−, η

∥])− µ2

2

[
η∥,
(
g−1
0 Tg0

)⊥] [
η∥, T

]
−1

2

[
A∥

+, ∂−η
∥ +

[
A−, η

∥]] η⊥ + µ2

2

[[
η∥, T

]
,
(
g−1
0 Tg0

)∥]
η⊥

]
,

(D.25)

where A+ = g−1
0 ∂+g0+g−1

0 A+0g0. For the choice of g0 and A+0 in (4.109), A+ has nonzero components

in both the m and h spaces, and A⊥
+ is equal to A+0 by definition.

Plugging (D.14) and (D.15) with (D.24) into the Lagrangian (D.25), then we get the fluctuation

Lagrangian expressed in terms of the physical component fields only. The fluctuation fields decouple

into two smaller subsectors. The first subsector, containing a1 and a2, is described by the Lagrangian,

L1 = 2
∑
i=1,2

[
∂+ai∂−ai − (2κ2 − µ2)a2

i + 4M2
1ai

∂+∂− + (2κ2 − µ2)
M2

2 + ∂2
+

ai

]
, (D.26)

where M1 and M2 are defined in (D.23). Due to the existence of the nonlocal terms, this Lagrangian

is different form the fluctuation Lagrangian found by perturbing the Nambu action [IWA, 97],

L1 = 2
∑
i=1,2

[
∂+ai∂−ai − (2κ2 − µ2)a2

i

]
. (D.27)

However, the Lagrangian (D.26) yields the correct fluctuation frequencies,
√
n2 + 2κ2 − µ2, which

agree with the string theory result [69]. The reason for this result is as follows. The present Lagrangian

(D.26) is rewritten as

L1 = −2
∑
i=1,2

aiO1O2ai , O1 = ∂+∂− + (2κ2 − µ2) , O2 = 1 − 4M2
1

M2
2 + ∂2

+

. (D.28)
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We have det(O1O2) = detO1 detO2 and O1 is the operator found in the string theory result (D.27). In

the present case detO2 gives a trivial contribution, then the frequencies derived from the Lagrangian

(D.26) are the same as the frequencies obtained by solving detO1 = 0. Note also that the µ→ 0 limit

where the classical string is not stretching in S5 is well-defined only in the Lagrangian (D.27).

The other subsector contains a3 and a4 and is described by the Lagrangian,

L2 = 2
[ ∑
i=3,4

∂+ai∂−ai + 4M2
1a3

∂−
∂+
a3 + 2a3 (M2∂− + µ∂+) a4

]
. (D.29)

Again this Lagrangian is different from the Lagrangian found in [IWA, 97],

L2 = 2
∑
i=3,4

∂+ai∂−ai − 4
(
κ2 − µ2

)
a2

3 + 4µ (∂+a3 + ∂−a3) a4 . (D.30)

These two Lagrangian have the same foundational determinant and then give the same set of charac-

teristic frequencies, √
n2 + 2κ2 ± 2

√
κ4 + n2µ2 , (D.31)

At the level of the Lagrangian, the two Lagrangians (D.29) and (D.30) are related by a nonlocal

transformation; by replacing a4 → a4 − 2κ
2−µ2

µ
1
∂+
a3 in (D.29) we obtain the Lagrangian (D.30).

Let us evaluate the functional determinant in the bosonic sector. From the Lagrangian (D.26) and

(D.29) we find that the functional determinant contribution of the physical fluctuations. Here we

should also take into account the functional determinant contributions from the equations (D.17),

(D.22), and the nonvanishing contributions arising from fixing the H gauge, δA+ = 0. Then the total

functional determinant in the bosonic sector is given by

([
det
(
∂2

+ +M2
2

)]2)1/2 ( [
det
(
∂+∂− + 2κ2 − µ2

)]2 [det
(
∂+∂− + µ2

)]4
×
[
det
(
∂2

+∂
2
− +

(
∂2

+ + ∂2
−
)
µ2 + 2∂+∂−

(
2κ2 − µ2

))] [
det
(
∂2

+ + µ2
)]2 )−1/2

,

(D.32)

where the physical contributions are correctly reproduced. The unphysical part in this functional

determinant is
([

det
(
∂2

+ +M2
2

)]2 / [det
(
∂2

+ + µ2
)]2)1/2

. By the same argument as the treatment of

the shift in (4.69), one can confirm that the shifts M2
2 , µ2 are eliminated, then the unphysical part

totally vanishes. Hence our result in the bosonic sector in the δA+ = 0 gauge agrees with that found

in the approach based on the PW identity in chapter 4.



D.2. One-loop computation in δA+ = 0 gauge 145

Fermionic fluctuations

As the fermionic sector does not contain the fluctuations of the gauge fields δA−, the computation is

straightforward. We define component fields of the fermionic fluctuations in the following way,

ΨR =

 0 XR

YR 0

 , ΨL =

 0 XL

YL 0

 , (D.33)

where

XR =



0 0 α1 + iα2 α3 + iα4

0 0 −α3 + iα4 α1 − iα2

α5 + iα6 α7 − iα8 0 0

α7 + iα8 −α5 + iα6 0 0


, (D.34)

YR =



0 0 −α6 − iα5 −α8 − iα7

0 0 α8 − iα7 −α6 + iα5

α2 + iα1 α4 − iα3 0 0

α4 + iα3 −α2 + iα1 0 0


, (D.35)

and

XL =



0 0 (β1 + iβ2)v∗ (β3 + iβ4)v∗

0 0 (β3 − iβ4)v (−β1 + iβ2)v

(β5 + iβ6)v∗ (−β7 + iβ8)v∗ 0 0

(β7 + iβ8)v (β5 − iβ6)v 0 0


, (D.36)

YL =



0 0 (−β6 − iβ5)v (−β8 − iβ7)v∗

0 0 (−β8 + iβ7)v (β6 − iβ5)v∗

(β2 + iβ1)v (−β4 + iβ3)v∗ 0 0

(β4 + iβ3)v (β2 − iβ1)v∗ 0 0


, (D.37)
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where all component fields are real Grassmann. The extra factor vτ = exp(iκ2τ/µ) is introduced in

XL and YL such that all coefficients in the Lagrangian become constant. The resulting Lagrangian is

LF = 2
[

8∑
i=1

(αi∂−αi + βi∂+βi) − µ (α1α2 + α3α4 + α5α6 − α7α8 − β1β2 − β3β4 − β5β6 + β7β8)

+2κ (α1β4 + α2β3 − α3β2 − α4β1 − α5β8 + α6β7 + α7β6 − α8β5)
]
,

(D.38)

from which one can derive characteristic frequencies of the fermionic fluctuations. They agree with

the string theory result [69] up to certain trivial shift and exactly agree with the result obtained by

using the PW identity in (4.133). Then the functional determinants also match (cf. (4.134)),

det
(
∂2

+∂
2
− + 2∂+∂−κ

2 +
1
4
(
∂2

+ + ∂2
−
)
µ2 +

1
16
(
4κ2 − µ2

)2)
. (D.39)

Directly from the agreement of (D.32) and (D.39) with the results in section 4.4.1, we find that the

one-loop contribution to the partition function is given by (4.135).

Let us comment on the two-loop computation in this approach. The δA+ = 0 gauge does work properly

at one-loop order, but is not expected to be useful in the two-loop computation. The primary reason

for this is the difficulty in dealing with the nonlocality which can not be eliminated in the case of the

(S, J) folded string. The nonlocality enters when we solve the gauge equation derived by varying the

fluctuation Lagrangian by δA−. Up to quartic order, the gauge equation is written as

(
D+η −

1
2

[η,D+η] − 2ΨRΨRT +
1
6

[η, [η,D+η]]
)⊥

= 0 . (D.40)

Since it is hard to solve it exactly, we shall solve this equation order by order. First we shall consider

the following expansion,

η⊥ = η⊥(1) + η⊥(2) + η⊥(3) + · · · , (D.41)

where the index (i) represents the i-th order of the physical fluctuations η∥. At the leading order the

equation takes the form,

∂+η
⊥
(1) +

[
A+, η

⊥
(1)

]
+
[
A∥

+, η
∥
]

= 0 . (D.42)

which was already solved by (D.24) and the solution contains nonlocal terms. Next we shall solve the
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equation for η⊥(2) using the first order solution. The equation for η⊥(2) is expressed by using η⊥(1),

∂+η
⊥
(2) +

[
A+, η

⊥
(2)

]
− 1

2

[
η∥, ∂+η

∥ +
[
A+, η

∥
]

+
[
A∥

+, η
⊥
(1)

]]
− 2ΨRΨRT = 0 . (D.43)

Once the leading order solution η⊥(1) is substituted, the latter two terms in this equation contain only

the physical field η∥. Then the form of the equation (D.43) is the same as that of (D.42), and can be

in principle solved for η⊥(2) by rewriting the equation in terms of the component fields.

The obstacle in redoing the computation for higher orders is the nonlocality of the solution; the solution

involves nonlocal terms such as 1
∂+

(
ai

∂+
B2+∂2

+
aj

)
, and the nonlocality will be more complicated if we

discuss quartic terms in the fluctuation Lagrangian. As a result, the fluctuation Lagrangian containing

higher order terms looks almost intractable in this approach.

D.3 Two-loop computation in vacuum case

In chapter 4 we studied two-loop corrections near the folded string with large spin S in AdS3 taking

the limit µ→ 0 in which the angular momentum in S5 vanishes. Here we shall check that the two-loop

correction vanishes in the opposite limit of the trivial reduced theory solution corresponding to the

BMN vacuum, i.e. in the case when

κ→ µ , ℓ→ 0 . (D.44)
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In this case it is useful to define the “S” part of fluctuation fields with an additional rescaling by

w = eiµτ as follows (cf. (4.114) )

η
∥
S =



0 0 b1 + ib2 (b3 + ib4)w

0 0 (−b3 + ib4)w∗ b1 − ib2

−b1 + ib2 (b3 + ib4)w 0 0

(−b3 + ib4)w∗ −b1 − ib2 0 0


,

η⊥S =



id1 (d2 + id3)w 0 0

(−d2 + id3)w∗ −id1 0 0

0 0 id4 (d5 + id6)w

0 0 (−d5 + id6)w∗ −id4


.

(D.45)

Also, the component fields of the fermionic fluctuations are to be defined as (cf. (4.128))

XR =



0 0 (α1 + iα2)t1+ (α3 + iα4)t2+

0 0 (−α3 + iα4)t∗2+ (α1 − iα2)t∗1+

(α5 + iα6)t1+ (α7 − iα8)t2+ 0 0

(α7 + iα8)t∗2+ (−α5 + iα6)t∗1+ 0 0


, (D.46)

YR =



0 0 (−α6 − iα5)t∗1+ (−α8 − iα7)t2+

0 0 (α8 − iα7)t∗2+ (−α6 + iα5)t1+

(α2 + iα1)t∗1+ (α4 − iα3)t2+ 0 0

(α4 + iα3)t∗2+ (−α2 + iα1)t1+ 0 0


, (D.47)

XL =



0 0 (β1 + iβ2)t∗2− (β3 + iβ4)t∗1−

0 0 (β3 − iβ4)t1− (−β1 + iβ2)t2−

(β5 + iβ6)t∗2− (−β7 + iβ8)t∗1− 0 0

(β7 + iβ8)t1− (β5 − iβ6)t2− 0 0


, (D.48)
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YL =



0 0 (−β6 − iβ5)t2− (−β8 − iβ7)t∗1−

0 0 (−β8 + iβ7)t1− (β6 − iβ5)t∗2−

(β2 + iβ1)t2− (−β4 + iβ3)t∗1− 0 0

(β4 + iβ3)t1− (β2 − iβ1)t∗2− 0 0


, (D.49)

where

t1± = e
i

ℓ2(τ±σ)
2µ , t2± = e

i
(ℓ2+2µ2)τ±ℓ2σ

2µ . (D.50)

Taking the limit (D.44) in the two-loop diagrams one finds cancellations between A and S sectors in

each type of diagrams leading to the vanishing two-loop correction.

One can also check this cancellation directly, by expanding near the reduced theory counterpart of

the BMN vacuum

g0 = I8×8 , A± = 0 . (D.51)

In this case the τ, σ-dependent rescalings of fluctuations are not needed and 2d Lorentz invariance of

the perturbation theory is manifest. One then finds for the individual diagram contributions to the

coefficient in the two-loop effective action2

bosonic sunset : JA = −JS = −3
2
I[1]I[1] ,

bosonic double − bubble : JA = − JS = −1
2
I[1]I[1] ,

fermionic sunset : JA = −JS = −6I[0]I[1] + 3[1]I[1] ,

fermionic double − bubble : JA = −JS = −6I[0]I[1] − 4I[1]I[1] ,

tadpole : JA = −JS = 0 . (D.52)

We conclude again that the sum of the A and S sector contributions vanishes.

2As above, here A and S stand for contributions from the fluctuations corresponding to reduced theory
counterparts of the AdS5 and S5 sectors.
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