The Pion Mass Difference in the
Nambu-Jona-Lasinio Model

We present the results of a gauge- and chirally invariant calculation of the elec-
tromagnetic mass splitting of the pion in the chiral limit. The calculation is done
in the two-flavor version of the original Nambu-Jona-Lasinio model, in the Hartree
approximation. We elucidate the special role which the electromagnetic contri-
butions to the gap equation play in satisfying Dashen’s theorem. Specifically, the
neutral pion is unshifted from its Goldstone limit of zero mass by electromagnetic
interactions. Reversing the conventional procedure, we determine the quark vac-
uum condensate value (§g) = —(260 = 1 MeV)? from the observed pion mass
difference and the radiatively corrected pion weak decay constant f,. We discuss
the role of the pion electromagnetic form factor F,(g?) in our result for the mass
shift. The space-like region of F,(g?) is shown to reproduce the data reasonably
well. Implications for the short- and medium-range behavior of the pion charge
distribution are discussed. Finally, we compare our results with those of meson-
theoretic models and other, more recent, quark models.

Key Words: pion mass difference, Nambu—Jona-Lasinio model, Dashen’s theorem,
electromagnetic pion form factor

I. INTRODUCTION

The mass squared difference between the charged and neutral pion
is one of the accurately known experimental numbers for the pion
system. This difference is measured® as

mi. — mi. = [35.55 + 0.02 MeV]2.
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The problem of trying to understand this mass difference theo-
retically is an old one in hadron physics.?=5 It has already been
addressed in a number of models based on meson degrees of free-
dom, with a great deal of phenomenological success. The expla-
nation of the pion mass difference was one of the major triumphs
of the (chiral) current algebra method® which was repeated by the
(phenomenological) effective Lagrangian approach.* This success
has left the lasting (and correct) impression that the underlying
approximate chiral symmetry plays a very important role in the
problem. It has also been known since the work of Ref. 2 that
essentially all of the pion mass difference can be attributed to the
electromagnetic self-energy, in stark contrast to the K° — K* and
the n — p mass differences,!? for which even the sign of the mass
difference is opposite to the Coulomb energy of the quarks and
antiquarks involved.

The development of the quark model of hadrons revived interest
in understanding this mass shift, but this time in terms of the
underlying quark degrees of freedom.® The isospin-violating mass
splittings of the heavy (charmed and heavier) pseudoscalar mesons
have been studied in nonrelativistic potential quark models with
considerable success.” These models are obviously inadequate for
the light pseudoscalar mesons, such as the m and K, due to the
nonrelativistic nature of the models and the absence of the chiral
symmetry, which is an essential feature of the dynamics of the light
pseudoscalar mesons, in those models.

Several new attempts at solving the pion mass difference prob-
lem have been recorded in recent years.?~1° Most of these efforts
are based on some form of the pion chiral dynamics, or equivalently
current algebra, in the “long distance” regime, and perturbative
QCD in the “short distance” regime. There has even been one
recent calculation in the “bosonized” version of the extended NJL
model,!! which turns out to be completely equivalent to the purely
meson-theoretic calculation of Ref. 4 and is therefore of little
interest here. We will try to compare the results of these calcu-
lations with those of ours!? where possible.

In recent years we have seen remarkable progress in the under-
standing of the mass spectrum of the pseudoscalar meson nonet!?
in a relativistic, chiral quark model with dynamic constituent quark
mass generation, the so-called Nambu-Jona-Lasinio (NJL) model.**
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This Comment is concerned with the mass splitting between the
charged and neutral pions in the minimal two-flavor version of the
NJL model. In fact our analysis will shed as much light on the
pion mass difference problem itself as on the structure of the NJL.
model. We discuss the exact, closed form results of a gauge and
chirally invariant pion mass difference calculation in the chiral limit
(current quark masses, and therefore the non-electromagnetic pion
mass, equal to zero) of the NJL model within the Hartree ap-
proximation, to O(a), where a = ¢%/4w =~ 1/137 is the fine structure
constant. We leave the full discussion of the small non-chiral cor-
rections for another occasion. As possible downsides of this cal-
culation, we ought to emphasize that the NJL model does not
describe the quark confinement, and secondly that the Hartree
approximation and the chiral invariance force us to keep only one-
qq-pair intermediate states in our calculation. At the hadronic
level this would mean keeping only intermediate states involving
single pions. Thus there is plenty of room for future improvements.
In order to make this Comment equally accessible to the non-
specialist and the expert in chiral models, we have included general
introductions to the NJL model and to the problem of isospin-
violating mass differences. Then we discuss our calculation in de-
tail: firstly the construction of the gauge invariant set of Feynman
graphs, then their evaluation and finally our numerical results and
their interpretation. As the final piece of new work we talk about
the EM self-mass of the neutral pion in this model and show the
important role the modified gap equation plays in keeping the
model self-consistent in the presence of an electromagnetic field,
in accord with Dashen’s theorem.

II. THE TWO-FLAVOR NJL MODEL IN THE HARTREE
APPROXIMATION

This section is concerned with the definition of the model and of
the approximations used, as well as the proof of gauge invariance
of the result. One of the most important features of this model is
its chiral symmetry and its spontaneous breakdown induced by the
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dynamics, rather than by fiat. Our starting point is the two-flavor
NJL Lagrangian,

£ = V(i — m) + Gl(bb)* + (biysmb)’] 2.1)

where m° is the “current” quark mass, G is a dimensional coupling
constant and 7 are (Pauli) isospin matrices. The first and foremost
property of this & is the equivalence of its internal flavor sym-
metries to those of the QCD Lagrangian. Specifically the symmetry
group is Uy (1) ® SU.(2) ® SUg(2) for m® = 0, where the U, (1)
expresses the baryon conservation and SU;(2) ® SUg(2) repre-
sents the isospin symmetry of the left- and right-handed quarks,
respectively. Note that the U,(1) symmetry is explicitly broken
(in the maximal fashion) such that the “fourth” T = 0 pseudoscalar
bound state completely disappears. Such “maximal” U,(1) sym-
metry breaking is nicely illustrated in the model defined by Eq.
(2.10) of Ref. 13. In the limit when the coupling constants of the
two terms appearing in that equation approach each other, the
mass of the “fourth” pseudoscalar particle moves to infinity and
completely decouples from the remaining pseudoscalars. The main
point here is that there is no U,4(1) problem with the ¥ defined
by Eq. (2.1) and that its removal has been accomplished in full
accord with the QCD analysis of 't Hooft.'® This fact clearly in-
dicates the connection to QCD proper.

Note that the NJL Lagrangian of Eq. (2.1) contains a four-
fermion contact interaction, very much like the old Fermi theory
of weak interactions, which is not renormalizable in 3 + 1 di-
mensions. This means that in the one-loop approximation we will
need at least one new arbitrary constant in order to make the
amplitudes finite; this is equivalent to setting the mass scale of the
theory. There are infinitely many ways of choosing this new con-
stant, which is not apparent in the Lagrangian, and the way we
will do it here is by cutting off the quark (Euclidean) four-mo-
mentum integrals at some cut-off value A. Since the Hartree pro-
cedure is a “one-loop’ calculation, we end up with two free di-
mensional parameters that need fixing in the chiral limit: G and
A. Neither of these quantities is an observable, so we are left with
the task of finding two independent pion observables, and ex-
pressing them in terms of these two parameters. The standard
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choice for one of them has been the pion decay constant f,.. The
other one is usually taken to be either the constituent quark mass
or the quark condensate value (the two are simply related in the
Hartree approximation). Neither is a true observable (the quarks
are confined and we have no way of knowing their masses) and
both of them are very model-dependent. Another candidate for
the second observable is the charge radius of the pion. In the NJL
model this quantity turns out to be a function of [ only. so it is
not suitable for our purposes. Although the NJL model results for
[ m and the condensate density are slowly varying functions of
the cut-off, thus implying a relative insensitivity of the predictions
of the model under change of this free parameter, we will see that
one can fix both of the free parameters with a great deal of accuracy
using our analysis.

We next turn to the phenomenon of spontaneous chiral sym-
metry-breaking in the NJL. model within the self-consistent Hartree
approximation. This leads to a non-perturbative scheme defined
by two integral equations of the Schwinger—Dyson type: (i) the
one-body self-consistency (gap) equation (Fig. 1(a)). (ii) the two-
body (Bethe—Salpeter) bound state equation (Fig. 1(b)). How-
ever, before embarking on such somewhat formal considerations

(a)

g X 2=

FIGURE | The Schwinger— Dyson equations that define the Hartree approximation
to the NJL model: (a) The one-body (gap) equation, (b) The two-body (Bethe-
Salpeter) equation. The bold-fuced solid line denotes a “dressed™ (constituent)
quark, the thin solid line deseribes a “bare™ (current) quark, but only in Fig. I(a);
in all subsequent diagrams the thin solid line stands for a dressed quark. The solid
dot represents one of the two four-point interaction terms appearing in the NJL
Lagrangian Eq. (2.1), and the shaded “balloon™ in (b) denotes the bound-state
(w.0) propagator specilied by Eq. (2.7).
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that will be needed later, we want to point out that the salient
features of chiral symmetry-breaking can be understood rather
simply in the following way: Replace & in Eq. (2.1) by its ap-
proximate linearised equivalent

L = (i — m°® + 2Gn ) (2.2)
where n, is the quark condensate density

ny = (o[ b(x) (x)|o)

in the interacting vacuum state |o). Notice that the structure of |o)
does not have to be known at this stage. However, it has to be
more complicated than the non-interacting vacuum since otherwise
the condensate density would vanish. Notice also that in obtaining
Eq. (2.2) the assumption (o|U(x)iysT¥(x)|0) = 0 has been intro-
duced, i.e., that |o) has good isospin and parity.

The approximate Lagrangian of Eq. (2.2) now describes a free
quark again, but with a modified, or constituent, mass

m = m° — 2Gn;. (2:3)

A non-vanishing n, thus signals the spontaneous dynamical break-
ing of chiral symmetry in the ground state, as opposed to the
“mechanical,” or explicit, breaking caused by inserting a non-zero
current quark mass m° “‘by hand” into the Lagrangian. So from
now on we will drop m° and concentrate on dynamical symmetry-
breaking. Recalling'? that the condensate density is determined by
the trace of the quark propagator S(x, x") over all its flavor, color
and Dirac intrinsic variables, we rewrite Eq. (2.3) as

m = 2iG TrS(x, x) = 2iG Tr f (2:54 S(p). (2.4)

A second basic approximation enters at this point, viz. that the
propagator S is determined by the same Lagrangian that led to the
relation (2.3) between m and n,. This is obviously the self-con-
sistency requirement that the mass determined by n, is the same

76



mass that enters S and thus determines n, and m. The momentum
space form of S is thus that of a free Dirac particle of mass m,

S(p) = (p — m + ie)~! (2.5)
and Eq. (2.4) becomes, for m # 0,

& d'p 1

1= SlGNCNf W}m

(2.6)

after cancelling a common factor of m. This relation, which de-
termines m self-consistently and non-perturbatively in G, is orig-
inally due to Nambu and Jona-Lasinio'* and is called the NJL gap
equation because of its formal similarity with the BCS gap equation
for a superconductor. At this point the anticipated divergence in
the model has also emerged explicitly in the divergence of the
integral on the right-hand side of Eq. (2.6), which we therefore
will have to regularize in some way.

We now have the necessary background to approach the problem
of dynamical symmetry-breaking more formally from the point of
view of the Schwinger—Dyson equations shown pictorially in Fig.
1. The first Schwinger—Dyson equation (Fig. 1(a)) gives the in-
tegral equation for the quark propagator in momentum space, and
is solved by the expression for S(p) given in Eq. (2.5) above, where
m is given by

—im = (-1) 2iG Trféi%iS(p)

in the one loop approximation. This obviously reproduces Eq. (2.4)
again and thus leads us back to the transcendental equation (2.6)
for the constituent quark mass.

The second Schwinger—Dyson equation (Fig. 1(b)) is an inho-
mogeneous Bethe—Salpeter equation describing the scattering of
quarks and antiquarks. Due to the contact nature of our interac-

77



tion, the solution of this integral equation is given by the geometric
progression

2iG

—IM(K) = T 56T

(2:7)

for a momentum transfer squared k? where

-in(e) = | S TS + 0 TS 8)

is the lowest order irreducible pseudoscalar polarisation diagram.
Here T, = (1, * i1,)/\V/2 or 75 are the projection operators onto
the = or m° channels.

The position of the poles in the two-body propagator M(k?)
determines the mass of the bound states in the theory, and the
residue at these poles, the coupling of the bound states to the
quarks. From Eq. (2.7) these residues are

—1
oIl
g%rqq = I:W] (29)

pole

In our case there is only one pole in the isotriplet-pseudoscalar
channel; this pole lies at k> = 0, in agreement with Goldstone’s
theorem!” and corresponds to a degenerate isotriplet of massless
pions in the NJL model. One sees this directly by computing the
denominator in Eq. (2.7):

1 — 2GI(K?) = [1 - % TrS(x, x)] + [4iGN, N I(k?))k>

(2.10)

where il(k?) is defined by the expression

d*p [
@m)* [(p + k)? — m?][p* — m?]

ik =

2

= {I(0) + (4#‘")2[0 dx In ,:1 - ’%x(l = x)] (2.11)
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The factor I(0) contains the divergence that is present in the pion
polarization loop at zero momentum transfer.

The first term on the right-hand side of Eq. (2.10) vanishes on
account of the gap relation [Egs. (2.4) or (2.6)] fixing m. Thus
M(K?) has a pole at k? = 0, as anticipated. The coupling constant
of the quarks to this mode is

8240 = —[2INNA(0)] 1. 2.12)

This relation allows one to recast the scattering amplitude as

o e § o
M(k?) = Lkz——— (2.13)
where we have defined
F.(k?) = I(k?*)/1(0). (2.14)

We indicate later that F,_(k?) is identical to the electromagnetic
form factor of a chiral (i.e., massless) pion within our scheme.
Together, Egs. (2.13) and (2.14) constitute the two essential in-
gredients for understanding the electromagnetic mass difference
of pions. We discuss this problem next.

III. ISOSPIN-VIOLATING MASS DIFFERENCES

Formally the shift in the pole of M(k?) due to isospin-violating
contributions determines the mass splitting of the pions. In QCD,
however, there are only two known sources of isospin-violation:

(a) the current quark mass differences,
(b) the electro-weak interaction,

and the same is true in the NJL, or any other quark model. The
first item on this list, which we call the “mechanical’” mass differ-
ence, contributes 2% of the total mass shift and thus allows us to
work in the chiral limit without making an obviously bad approx-
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FIGURE 2 A schematic illustration of the non-relativistic Coulomb energy E,, Eq.
(3.1), of a two-body bound-state, e.g., the 7. The wiggly line denotes the Coulomb
gauge photon, the solid lines are the constituents and the dashed line is the bound-
state. The shaded ovals, together with the constituent lines, represent the Schro-
dinger wave functions Y(r), which, in turn, determine the charge density p,(r).

imation. The reason for this mechanical mass difference being so
small is that it has to be at least quadratic* in the current quark
mass difference as a consequence of the isospin structure of the
pions and the model-independent Gell-Mann, Oakes and Renner
(GMOR) relation.'® The coefficient of proportionality of the quad-
ratic term is model dependent, and in our case turns out to be
very close to unity. This fact, plus the commonly accepted values!'®
of the current quark masses m% = 5.2 MeV and m$ = 1.8 mg,
lead immediately to our assertion about the size of the mechanical
mass difference: to the lowest non-vanishing order one has
(A2 e = (M3 — m3)? = (4.2 MV

The second item on the list can be divided into two subclasses:
the weak and the electromagnetic contributions. The weak inter-
action’s contribution is O(G ), where G =~ 10~°My? is the Fermi
weak coupling constant, and hence it is negligible. We are thus
left with only one important term: the electromagnetic interaction.
However, before launching into the complexities of a fully gauge
and Lorentz invariant calculation of the pionic electromagnetic
(EM) self-energy, it is instructive to approach the problem on a
more elementary level by looking at the Coulomb energy of two
charged particles, in our case a quark and an anti-quark, that form
a bound pair due to the strong interaction. The calculation is el-
ementary (see Fig. 2), the exchanged photon being in the Coulomb
gauge, and gives

fd3 fd3 , Pa(0)pa(r') 6_2 d’q Fi(-¢q) 3.1)

Ee = inlr -] 2 @ny @

*This is not the case for strange and charmed meson mass differences.
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where p,(r) is the charge density normalised to the total charge
in units of the proton charge e, and F,(g?) its Fourier transform.
The Coulomb energy of a two-body bound state is clearly positive
for two charges of equal sign (making up the ==), and negative
for two oppositely charged particles (the m°). This simple consid-
eration tells us without further ado that the charged versus neutral
pion mass difference will be positive, as observed. This formula is
not meant to describe the complete result for the non-relativistic
EM self-energy of a bound state (for that see Friar?®), but rather
to indicate that the Coulomb energy has something to do with an
integral over the EM form factor of the bound state. For com-
parison, the fully covariant field theoretic analog of Eq. (3.1) is
the following expression®:

_ 7 f f d*xdy (m| T*(j,(0)j,0)) ™ DE(x — y)  (3.2)

where j,(x) is the EM current operator, T* denotes the covariant
time ordered product that includes “sea-gull” terms if they are
necessary for the EM gauge invariance, and D%’ is the photon’s
Feynman propagator in configuration space.

An early attempt at a momentum space version of Eq. (3.2) was
given by Barger and Kazes®; they came up with the following
formula:

2 a2 | 4% FU@)
= 3e? @n)i g7 + de (3:3)

which for a monopole F,(¢?) (see below) leads to Am?2 =
3am?/4w = (32 MeV)?, indeed close to experiment. Formula (3.3)
is completely equivalent to the EM self-energy calculated from a
scalar point-particle forward Compton amplitude multiplied by the
square of the elastic on-shell form factor. However, it is clear that
the intermediate-state pion in Fig. 3 is off-shell and that therefore
the exactness of this formula is questionable. We will argue later
that this expression is only correct for special kinds of pion EM
interactions (vector meson dominance, or VMD, models), and that
in the general case it violates the Ward—Takahashi identities.?!
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(a) (b)

FIGURE 3 Two Feynman diagrams depicting the pion EM self-energy in the
Barger—Kazes approach, Eq. (3.3). (a) The “sea-gull” diagram, (b) the pion-pole
diagram. The wiggly line denotes a photon in an arbitrary gauge, the dashed line
stands for a pion. The two pion—one-photon vertex is multiplied by F,_(¢?), whereas
the two-pion—two-photon vertex is multiplied by F2(g?). The factor 1/2 in front of
the graph in Fig. 3(a) is the appropriate symmetry number.

We thus suspect that the formula in Eq. (3.3) may be inapplicable
to our problem and leave it for now. In the next section we obtain
the exact gauge invariant quark—antiquark EM self-energy to O(a)
inthe J* = 0=, T = 1 channel.

IV. THE PION ELECTROMAGNETIC SELF-ENERGY IN
THE NJL MODEL

We start out by minimally coupling the electromagnetic gauge field
to the NJL Lagrangian by substituting

ig — i) = if — e, A (4.1)

in Eq. (2.1) where e, is the quark charge, equal to 3¢ and —3e for
the u and d quarks, respectively. Note that the EM interaction
explicitly breaks both SU,(2) and SUR(2) flavor symmetries. This
means that not only do the pions acquire a mass, but they do so
in an isospin asymmetric way. We compute the magnitude of this
mass shift to O(a) by including the additional gauge invariant set
of diagrams in the pion self-energy to the same order in a. As in
Ref. 12 we call this additional contribution T1%,(k?) where T; =
+1 or 0 refers to the w= or the w°. The gq scattering amplitude
in the presence of EM interactions then reads

2iG
1 — 2G[II(k?) + I R(k?)]

—iMr(k?) = 4.2)
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in place of Eq. (2.7), with the non-electromagnetic part of the self-
energy still being given by Eq. (2.8).

To construct the gauge-invariant pion EM self-energy in the NJL
mode] we start from the Feynman graphs depicted in Figs. 4(a)-
4(c). The first one describes the Coulomb interaction that we saw
earlier in Fig. 2; the other two are the quark and antiquark EM
self-energies, respectively. At first sight one might think that these
three diagrams are the only ones of interest to O(«). This is not
so. One finds that their sum is only gauge invariant for the neutral
pion but not for the charged ones, so we are missing something.
To find the missing diagrams we recall that one can have ‘“‘vertex
corrections” of the kind depicted in Fig. 4(d). Clearly, there are
infinitely many such irreducible diagrams. Fortunately they can be
summed to reproduce the exact g4 scattering amplitude —iM(k?)
of Eq. (2.7) again, and yield a single Feynman diagram (Fig. 5).

R

fa) {b) (c)

X e O

(d)

FIGURE 4 Feynman diagrams showing various parts of the pion’s proper EM self-
energy insertions in the NJL model. (a) The “Coulomb” graph, corresponding to
the nonrelativistic graph shown in Fig. 2, (b) the quark and (c) antiquark EM self-
energies, (d) two, of infinitely many, irreducible diagrams that contribute to the
charged pion EM self-energy. The solid circles denote the effective wqq interaction
with a coupling constant g, determined by Eq. (2.12), and the open circles denote
“minimally coupled™ (see Section 1V) ygqg EM vertices.

~

FIGURE 5 A single “‘dumbbell” diagram which sums up all of the graphs of the
type shown in Fig. 4(d). Three other dumbbell graphs, with other possible mo-
mentum routings, enter the charged pion EM self-energy.
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There are three other topologically equivalent diagrams with the
charge flow in different directions.

The Feynman rules for calculating all these diagrams can be read
off by installing Eq. (4.1) in the Lagrangian, Eq. (2.1). Working
in an arbitrary gauge parametrized?! by \, both the gauge de-
pendent and the gauge independent parts of these diagrams are
expressed in closed form, as follows, in the chiral limit k? = 0:

dq 1
@m) g% + e

X [4 - <1 - %)j, + Tr(ei{T,, T+}) [% (1 — %) F.(q%)

= 12ig$,qq11(q2)] + e2F,(g°) [1 = (1 = %)]} (4.3)

[T5 (k2 = 0) = ig22, {TY(TI e, Tne)) Fr(q?)

with

- [ 4P 2p-(p + q) — 4m*
W0 = | G G G

The last term in the expression (4.3) for the EM self-energy of the
pion is the contribution from Fig. 5. We have implicitly assumed
that all quark loops have been regulated via the Pauli-—Villars
prescription®! which respects the Ward—Takahashi identities.

We are now in a position to check the gauge invariance of the
pion’s EM self-energy explicitly. The common charge factor mul-
tiplying the gauge dependent piece proportional to (1 — A~1!) in
Eq. (4.3) is

—~ T T e T,e) + %Tr(eé{T;, T.}) — €2
5 1/10
= —|Z 2 — 2 Z | —e2 — 2 =
<9e e,,) +2<9e) ez =0 (44
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by direct calculation. Thus the EM self-energy is fully gauge in-
variant. Note the regulatory role that the “dumbbell”” diagram of
Fig. 5 has played in maintaining the gauge invariance in all three
pion channels. Without this term, which provides for the last factor
to cancel out the pion’s charge e¢2 in Eq. (4.4), only the neutral
pion channel would have been gauge invariant.

We return to the g4 scattering amplitude in Eq. (4.2) and identify
the pion masses m%, in the presence of EM interactions from the
poles of this expression that lie at the roots, in k2, of

1—2Gh1w%+ﬂamw]=u

Since the shift of the m%, away from the zero mass Goldstone
mode limit is O(a), we expand the left-hand side of the above
expression about k& = 0 to find that

mi, =~ —82., | 15(0) (4.5)

after using the relation (2.9) again. The minus sign in this expres-
sion in the T; = 0 channel (the «°) is ominous since we already
know that IIg,, must be positive. We return to this point later on.
For the pion mass squared difference itself, we obtain the following
exact formula from Egs. (4.5) and (4.3), expressed as an integral
over the photon four-momentum ¢,

d*q F,(q*)
2m)* g% + i€

2

m2. — m2., = Am2 = 3e%

(4.6)

All gauge dependent and/or isoscalar pieces have cancelled ex-
plicitly. Note that the elastic electromagnetic form factor F, (¢?)
of the pion appears in this formula, but with only a single power,*
as opposed to the Barger—Kazes formula, Eq. (3.3), in which it

*It is interesting that Bijnens and de Rafael (Ref. 10) have come up with an
essentially equivalent formula in an entirely different model.
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appears squared. Note also that the appearance of the elastic form
factor is something of a surprise, because the diagrams involve the
inelastic, or half-off-shell, EM vertex. In this case, due to the
extreme simplicity of the NJL. model and the chiral limit, we find
that the on- and off-shell vertices entering our calculation are
equivalent. The question remains: why only single power? The
answer to this question is provided by the form that the exact g
scattering amplitude assumes in terms of the elastic form factor as
given in Eq. (2.13); while the diagrams in Figs. 4(a) through 4(c)
turn out to be proportional to the pion form factor, the diagram
in Fig. 5 contains two factors of F,(g?). The inverse dependence
of M(k*) on F,(k?) cancels one of these that appear in the nu-
merator of the dumbbell diagram, and we are left with the linear
dependence shown in Eq. (4.6). We add the comment without
proof that all of the EM vertices satisfy the relevant Ward—Tak-
ahashi identities, thereby confirming the gauge invariance in a
more general way.

V. THE ELECTROMAGNETIC PROPERTIES OF THE
NJL PION

The essential ingredient in all these expressions for the pion mass
splitting is the pion’s electromagnetic form factor. In this section
we calculate this form factor for a chiral pion in NJL, and compare
the result both with experiment and with the empirical monopole
form. A direct bonus of the NJL model is that one obtains a closed
form expression for F,(g?) from which the charge distribution of
the NJL pion may readily be calculated as described below. Let
us start with F_(g?). This form factor is related to the sum of the
two Feynman diagrams shown in Fig. 6. A direct calculation shows

LA

AN, i Y
et ) -~ .- ( “}— -
k' ‘\‘_,,/ k k' N k
FIGURE 6 Gauge invariant Feynman diagrams describing the pion EM form factor
in the NJL model and the Hartree approximation.
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that F,(q?) is exactly equal to the ratio I(k?)/1(0) in the chiral limit
as already stated in Eq. (2.14). Performing the integral explicitly,
one finds the closed form

B [ g gyt
F(=0) = 1+5 55 [1 L+ 57

x In (% + 1+ 4Q—r;>] (5.1)

for space-like momentum transfers g> = — Q? = 0. One can check
that F_(0) = 1, as it should. In obtaining this answer, use has been
made of the Goldberger-Treiman relation m = f,g.,,, Which is
automatically satisfied in the NJL model, to eliminate the quark—
pion coupling constant in favor of the pion weak decay constant
f

The square of the expression (5.1) is plotted in Fig. 7 and com-
pared with experiment and the empirical monopole form

Fuq) = [ - "—] (5.2)

my

where my, =~ m, = 770 MeV is the rho meson mass. Note the
closeness of the chiral, the non-chiral F,(g?)?* and the monopole
fit to the experimental data close to the origin. In particular, the
calculated slope of the NJL F,(g?) at the origin reproduces Tar-
rach’s chiral limit result?? for the pion charge radius squared,
(r2) = 3/(2nf,,)? = (0.59 fm)? that compares well with the measured
value (0.657(12) fm)? of this quantity.?*® Thus Eq. (5.1) essentially
agrees with the monopole fit to the form factor and describes F,(4?)
very acceptably at low momentum transfer. At higher Q? values
we see significant discrepancies, most notably the zero in the form
factor at —g? = 3(GeV)?, signalled by the change to a positive
slope in Fig. 7. All of this goes to show that the NJL model is a
good approximation to nature only at low energies. The NJL form
factor finally diverges logarithmically as Q? goes to infinity and
the pion mass difference, as given by Eq. (4.6), diverges accord-

ingly.
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The same divergence problem can be seen from another point
of view in configuration space, where the analogous quantities are
the charge density and the Coulomb energy. The charge density
can be calculated from the dispersive version of the form factor,
which is readily obtained from our explicit form of I(k?) in Eq.
(2.11), and methods familiar from Serber and Uehling’s analysis?*
of the vacuum polarization diagram in QED. As opposed to that
case, we find a closed form expression. The result is

pa(r) = [1 L & ImFT,(t)] a(r) + 437%1 % K, (2mr)

T Jam?2 |
(5.3)

where K, is a modified cylindrical Bessel function. In view of the
relation of F,(k?) to I(k?) in Eq. (2.11), one can read off from the
latter that the dispersive integral in Eq. (5.3) starts at the ¢4
threshold 4m?, in direct conflict with confinement, as expected.

One can verify that this p,(7) is properly normalized to the total
pionic charge consistent with F_(0) = 1. In Fig. 8 we plot the
radial charge distribution 4mr?p_(r). For comparison we have also
plotted the charge distribution due to the empirical monopole form
for F_(—Q?) given above in Eq. (5.2):

m%
= — —myr
oulr) = g e, (5.4)

The expression (5.4) shows the typical exponential decay for large
r that is controlled by the vector meson mass my,. In Fig. 8(a) we
see that the result (5.4) is similar to Eq. (5.3) for r between 0.3
and 3 fm, despite the absence of explicit vector mesons in our
Lagrangian. We see from Fig. 8(b) that the NJL. model is unable
to account for the interior region (r = 0.3 fm) of the pion, while
reproducing the medium-range behavior reasonably well. This in-
adequacy comes from the small argument behavior of K,(2myr)
which goes like (2mr)~1 and thus causes the integral of the radial
charge density to diverge like In(mr) at r ~ 0. This again leads to
an infinite EM mass difference.
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VI. EVALUATION OF THE PION MASS DIFFERENCE

The divergent natures of F,(— Q?) at large space-like momenta,
or of p_(r) at small r, that formally lead to an infinite EM mass
difference for the pion, are of course symptoms of the same dis-
ease: the divergent nature of the NJL model. Fortunately we have
forgotten one crucial point: the limitations set on the quark (Eu-
clidean) four momenta in order to regularize the NJL model also
constrain the photon momenta by momentum conservation; if the
absolute values of the Euclidean quark momenta squared are lim-
ited by A?, then the momentum squared carried by the photon
cannot exceed 4A2. Equivalently, one must cut off the radial charge
density at r, = (2A)~!, so that the inadequacy of the NJL form
for p,(r) near the origin in Fig. 8(b) comes as no surprise. In other
words, if we regularise the quark loops, the photon loops are
automatically rendered finite without introducing yet another cut-
off. Using this constraint, the evaluation of the integral expressing
the mass difference is straightforward. After a Wick rotation of
the photon four-momentum in Eq. (4.6) one finds

ami = 2 [ agor, (- o),

4at Jo

Note that Am?2 only depends on the behavior of the form factor
in the space-like region. The remaining integration is elementary
when the NJL form of F, (q?), Eq. (5.1), is used, and

3a 3 A?
2 2 . sl
Am? - m {(1 + 2[3) 3

Lo gad| gy A\/ A
2Bsh [sh m+2m 1+m2 (6.1)

m

where B = 3m?(2w2f2). This is our final result. We discuss its
evaluation and how it impacts on NJL predictions of other physical
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quantities in a moment. However, before doing so, we would like
to devote a few lines to the comparison with the result of Barger
and Kazes. We have already asserted that the Barger—Kazes result
violates both Ward—Takahashi identities, although the complete
Compton amplitude is gauge invariant. But explicit calculations of
Lee and Nieh* show that this is exactly the gauge invariant result
one obtains from the simplest vector dominance model. Then how
can it violate Ward identities? This apparent conflict is resolved
as follows: in the VMD model the pion acquires an EM form factor
due to the mixing between the photon and the neutral isovector
vector meson, not because it (the pion) has an intrinsic structure.
Hence the pion propagator remains the free one and the free Ward
identities are satisfied due to the gauge invariant Lagrangian pre-
scription of Kroll, Lee and Zumino,? and not due to the modi-
fication of the pion propagator. In the NJL model, on the other
hand, the pion is a bound state with an intrinsic size and structure
due its spatial extension. This structure substantially changes the
propagation of the pion, and its Feynman propagator becomes
significantly modified [compare with Eq. (2.13)] as compared with
the free one. Here, the Ward identities are satisfied due to the
inclusion of a complete set of gauge invariant Feynman diagrams.
The first form of gauge invariance (VMD) leads to the Barger—
Kazes mass formula, the second to our “linear in F, (g?)” mass
formula.

Now let us evaluate Am?2: in order to do so we need to know
the two parameters of the NJL model: GA? and A. Up to now it
has been customary to fix these by requiring that the quark con-
densate density (Jny) = (du) + (dd) = 2(gq) and the pion weak
decay constant f,. come out right. One typically has (iu) = (dd)
= —(250 = 50 MeV)? and f, = 93 MeV from experiment! (or,
more accurately, f,, = 92.4 = 0.2 MeV, if O(a) EM corrections
are considered?®).

The details of the regularization of the quark loops enter at this
point and we devote a few words to discussing the regularization
problem. There are two quark loops to be regulated: the Hartree
loop giving the condensate density or gap equation, and the pion
self-energy loop. The divergence of the latter appears at zero mo-

mentum in the piece i/(0), which determines g.2. If we employ
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Pauli—Villars regularization in order to stay consistent with our
proof of gauge invariance, then one finds (see Ref. 13 for details)

G = _iTmz [(1 + 2)In(1 + 2x2) — 2(1 + ¥)In(l + x?)],
(6.2)

-3 f;_ = ‘% [2In(1 + 2 - In(1 + 23] (6.3)

8wqq

with x = A /m, where A,, is the Pauli—Villars regulating mass. We
remark that it makes very little difference in practice if these
expressions are replaced by their corresponding forms using a co-
variant cut-off, since the latter scheme with a cut-off A? =
(2 In2)A?Z is essentially equivalent to the Pauli-Villars one with
cut-off A2. We exploit this feature to express the covariant cut-off
appearing in the expression for Am?2 in Eq. (6.1) in terms of x
also, and then plot this together with (§g) and m from Eqs. (6.2)
and (6.3) as functions of x at fixed f.

These plots are shown in Fig. 9. Notice that the experimental
range of quark condensate values is actually wider than that de-
picted in Fig. 9. In other words, the predicted range of the pion
mass squared difference is at least (1045 MeV)?. This is a very
wide range indeed and it clearly covers the experimental point at
(35.55 MeV)?. However, since we are dealing with an exact ana-
lytical expression for the mass difference in the Hartree approxi-
mation we realise that we can reverse the procedure and determine
the quark condensate value from the experimental value of Am?2
and f,., instead of vice versa. We have thus found the “second pion
observable” necessary for the complete determination of the free
constants in the NJL model. These are now given by

A = 1088 MeV,

GA? = 3.82,
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FIGURE 9 The pion EM mass difference, constituent quark mass m, and quark
condensate — (4g)'? in MeV, versus (A,/m), as in Ref. 12. The pion weak decay
constant is fixed at f, = 92.4 MeV. Note that the vertical scale on the right-hand
side refers to the quark mass and condensate, whereas the left-hand side scale
refers to the pion mass difference. The experimental point (Am2)¥2 = 35.55 MeV
is indicated by a cross.

so that

m = 225 MeV,

(Gq) = —(260 = 1 MeV)>.

We have used the EM corrected value f,, = 92.4 = 0.2 MeV
mentioned previously and the measured value of Am2 = (35.55
+ 0.02 MeV)? to make this determination. The “error” shown on
the quark condensate reflects only the experimental errors in f,
and the pion mass difference. It is interesting to note that (Gg)
falls nicely within the expected range for the quark condensate
density. Furthermore, both the quark mass and the cut-off take
on reasonable values for these parameters. Since the NJL pion
form factor, which, as we have seen, gives a good description of
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the data, is central to these calculations, we draw the conclusion
that the electromagnetic and weak decay properties of the pion
provide an accurate method of determining quantities related to
the breaking of chiral symmetry in the quark vacuum.

VII. DASHEN’S THEOREM

Let us note that it is not only w= which acquires a mass due to
electromagnetism, but also the neutral pion. For the =° all of this
EM mass comes from the first three (effective sea-gull) diagrams
in Fig. 4: the “Coulomb™ graph (Fig. 4(a)) and the quark and
antiquark EM self-energies (Figs. 4(b) and 4(c)). Hence it is not
surprising that this EM mass squared shift of the ©° is negative
because it is dominated by the negative Coulomb graph for all
‘reasonable values of the cut-off. Evaluating Eq. (4.5) explicitly for
the neutral pion one finds

10 5
m2, = -<9—:> BA2 [1 = (sh-lx)z] (7.1)

where x = A,/m again. Numerically this w° (mass)? shift equals
— (43 MeV)? for the parameters established above. Since we started
from a massless neutral pion, we seem to have obtained a tach-
yon—a clear sign of an instability in the theory.

This catastrophe is automatically and exactly remedied, in the
chiral limit, by an additional gauge invariant Feynman diagram:
the EM correction to the gap equation (Fig. 10). We have already
seen in Section IV how the gg scattering amplitude M(k?) is mod-

FIGURE 10 The constituent quark EM self-energy, to O(a), in the NJL model
and the Hartree approximation. All lines and vertices are as defined in Fig.
1(b)-Fig. 6.
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ified by the pion EM self-energy. As a consequence the mass of
the neutral pion is shifted to an unphysical value below k? = 0
according to Eq. (7.1). So there is still a fundamental inconsistency
in the calculation, or we have overlooked something again. What
we in fact have overlooked is that the gap equation for the quark
mass also contains EM corrections. This contribution to the quark
self-energy is described by the (separately gauge invariant) diagram
in Fig. 10. Calling this contribution 3y, one finds by direct cal-
culation that

EEM = 2GmH%M(O).

Inclusion of this graph into the gap equation exactly cancels the
EM self-energy of the neutral pion! In detail,

Mmio = —8rg[IEm(0) — (2Gm)™'Zpy] = 0.

This apparent miracle is a consequence of a deeper principle at
work: the chiral symmetry. Roger Dashen has shown!® on very
general grounds that in the chiral limit of a chirally symmetric
theory, the neutral pion must not acquire a mass due to EM self-
interactions. We see that the corrected “‘gap” equation restores
the self-consistency of the theory. The zero mass of the neutral
pion comes about due to a cancellation of two separately gauge
invariant sets of Feynman diagrams, as anticipated by Cabbibo and
Maiani?’ in the linear sigma model. Note also that the magnitude
of this additional term in Fig. 10 is O(aGA?), i.e., a product of
the EM and strong interactions, so that it cannot be treated per-
turbatively as an O(a) correction, but has to be included as a part
of the self-consistent quark self-energy, as was done here. It is
important to realise that Dashen’s theorem is a consequence of
the exact chiral symmetry; if the symmetry is no longer exact, due
to, e.g., the finite current quark masses, even by a “small’’ amount,
then the cancellation is not exact either, as can be explicitly shown
in our model. This is not obvious from the general proof of the
Dashen theorem: a simple-minded application of the same argu-
ments to the non-chiral case seems to imply that the GMOR mass
relation and the EM (mass)? are linearly additive. The cause of
the breakdown of Dashen’s theorem is, as anticipated by B. W.
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Lee,?® the presence of O(ea) terms, where € = m°/f_, which violate
the theorem, but are not manifest in the above “derivation”. These
terms can be traced back to the violation of the basic assumption
that, to lowest approximation, the axial current is conserved. In
this sense our calculation is an example of chiral perturbation
theory applied to our problem.

VIII. CONCLUSIONS AND OUTLOOK

We have presented here the results of a gauge invariant and chirally
invariant calculation of the electromagnetic mass splitting of the
pion in the chiral limit. The calculation was done in the two-flavor
version of the original NJL. model in the Hartree approximation.
In agreement with Dashen’s theorem, the (massless) neutral pion
remains unshifted by electromagnetic interactions due to a subtle
cancellation between two separately gauge invariant sets of Feyn-
man diagrams, one of them being the electromagnetic modification
of the gap equation. In order to obtain our main result for the
pionic mass splitting, we also needed to calculate the electromag-
netic form factor F,(g?) of the pion. Only the space-like region of
F.(g?) contributes to the pionic mass shift; our result for F, (q?)
reproduces experimental data surprisingly well. Consequently we
obtain the pion charge radius within 10%. The medium-range be-
havior of the pion charge distribution p,() is not inconsistent with
that obtained in the p-dominance model (VMD).

There are several obvious tasks for the future:

(a) Include the (small) current quark mass effects into the cal-
culation of the electromagnetic self-energy of the pion.

(b) Obtain a better description of the time-like F, (g?).

(c) Extend the model calculation to three flavors in order to ex-
amine both pion and kaon mass splittings.

(d) Go beyond the Hartree approximation.

(e) Include confinement.

The first four problems, formidable as they might be, are perhaps
of a more manageable nature; (e) is a fundamental problem. In
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either case they are likely to remain challenging for a long time
to come.

V. DMITRASINOVIC, R. H. LEMMER and R. TEGEN
Nuclear and Particle Theory Group,

Physics Department,

University of the Witwatersrand,

P.O. WITS 2050,

Johannesburg, South Africa

References

24.
25.
26.

98

. Particle Data Group, K. Hikasa et al., Review of Particle Properties, Phys.

Rev. D 45, S1 (1992).

. ). ). Sakurai, Currents and Mesons (University of Chicago Press, Chicago,

1969); R. P. Feynman, Photon—Hadron Interactions (Benjamin, Reading, MA,
1972); W. N. Cottingham, Ann. Phys, 25, 424 (1963); D. J. Gross and H,
Pagels, Phys. Rev. 172, 1381 (1968).

. T. Das e al., Phys. Rev. Lett. 18, 759 (1967).

B. W. Lee and H. T. Nich, Phys. Rev. 166, 1507 (1968).
V. Barger and E. Kazes, Nuovo Cimento 28, 385 (1963).

. A. De Rujula, H. Georgi and S. L. Glashow, Phys. Rev. Lett. 37, 398 (1976).
. K. Lane and S. Weinberg, Phys. Rev. Lett. 37, 717 (1976); W. Celmaster,

Phys. Rev. Lett, 37, 1042 (1976).

. R. D. Peceei and I, Sola, Nucl. Phys. B 281, 1 (1987).

. W. A. Bardeen ef al., Phys. Rev. Lett. 62, 1343 (1989).

. 1. Bijnens and E. de Rafael, Phys. Lett. B273, 483 (1991),

. M. Wakamatsu, Ann, Phys. 193, 287 (1989).

. V. Dmitradinovi€¢, R. H. Lemmer and R. Tegen, Phys. Lett. B284, 201.(1992),
- S. R. Klevansky, Rev. Mad. Phys. 64, 649 (1992),

. Y. Nambu and G. Jona-Lasinio, Phys. Rev. 122, 345 (1961), ibid. 124, 246

(1961).

. R. Dashen, Phys. Rev. 183, 1245 (1969).

. G. ’t Hooft, Phys. Rev. D 14, 3432 (1976), (E) ibid. 18, 2199.

. J. Goldstone, Nuovo Cimento 19, 154 (1961).

. M. Gell-Mann, R. J. Oakes and B. Renner, Phys. Rev. 175, 2195 (1968).

. J. Gasser and H. Leutwyler, Phys. Rep. 87, 77 (1982).

. J. L. Friar, Ann. Phys. 96, 158 (1976).

. C. Itzykson and J. B. Zuber, Quantum Field Theory (McGraw-Hill, New York,

1980).

. R. Tarrach, Z. Phys. C 2, 221 (1979).
. (a) C. J. Bebek et al., Phys. Rev. D 17, 1693 (1978); S. R. Amendolia et al.,

Phys. Lett. B146, 116 (1984). (b) S. R. Amendolia et al., Nucl. Phys. B 277,
168 (1986).

R. Serber, Phys. Rev. 48, 49 (1935); E. A. Uehling, ibid. 48, 55 (1935).

N. M. Kroll, T. D. Lee and B. Zumino, Phys. Rev. 157, 1376 (1967).

B. Holstein, Phys. Lett. B244, 83 (1990).



27. N. Cabbibo and L. Maiani, Phys. Rev. D 1, 707 (1970). (In Ref. 12 we er-
roneously credited B. W. Lee with this insight; actually Lee himself refers to
Cabbibo and Maiani in a comment at the end of the chapter.)

28. B. W. Lee, “Chiral Dynamics,” p. 1, in Cargese Lectures in Physics, Vol. 5,
ed. D. Bessis (Gordon and Breach, New York, 1972).

99



