
The Pion Mass Difference in the 
Nambu-Jona-Lasinio Model 

We present the results of a gauge- and chirally invariant calculation of the elec­
tromagnetic mass splitting of the pion in the chiral limit. The calculation is done 
in the two-flavor version of the original Nambu-Jona-Lasinio mode!, in the Hartree 
approximation. We elucidate the special role which the electromagnetic contri­
butions to the gap equation play in satisfying Dashen's theorem. Specifically, the 
neutral pion is unshifted from its Goldstone limit of zero mass by electromagnetic 
interactions. Reversing the conventional procedure, we determine the quark vac­
uum condensate value (qq) = -(260 ± 1 MeV)3 from the observed pion mass 
difference and the radiatively corrected pion weak decay constant fn· We discuss 
the role of the pion electromagnetic form factor Fn(q2

) in our result for the mass 
shift. The space-like region of Fn(q2

) is shown to reproduce the data reasonably 
well. Implications for the short- and medium-range behavior of the pion charge 
distribution are discussed. Finally, we compare our results with those of meson­
theoretic models and other, more recent, quark models. 

Key Words: pion mass difference, Nambu-Jona-Lasinio mode/, Dashen's theorem, 
e/ectromagnetic pion form factor 

1. INTRODUCTION 

The mass squared difference between the charged and neutral pion 
is one of the accurately known experimental numbers for the pion 
system. This difference is measured1 as 

m;~ - m;o = [35.55 ± 0.02 MeV]2 . 
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The problem of trying to understand this mass difference theo­
retically is an old one in hadron physics. 2- 5 lt has already been 
addressed in a number of models based on meson degrees of free­
dom, with a great deal of phenomenological success. The expla­
nation of the pion mass difference was one of the major triumphs 
of the (chiral) current algebra method3 which was repeated by the 
(phenomenological) effective Lagrangian approach. 4 This success 
has left the lasting (and correct) impression that the underlying 
approximate chiral symmetry plays a very important role in the 
problem. lt has also been known since the work of Ref. 2 that 
essentially ail of the pion mass difference can be attributed to the 
electromagnetic self-energy, in stark contrast to the K° - K-z and 
the n - p mass differences, 1•2 for which even the sign of the mass 
difference is opposite to the Coulomb energy of the quarks and 
antiquarks involved. 

The development of the quark mode! of hadrons revived interest 
in urïOerstanding this mass shift, but this time in terms of the 
underlying quark degrees of freedom. 6 The isospin-violating mass 
splittings of the heavy (charmed and heavier) pseudoscalar mesons 
have been studied in nonrelativistic potential quark models with 
considerable success. 7 These models are obviously inadequate for 
the light pseudoscalar mesons, such as the TI and K, due to the 
nonrelativistic nature of the models and the absence of the chiral 
symmetry, which is an essential feature of the dynamics of the light 
pseudoscalar mesons, in those models. 

Severa! new attempts at solving the pion mass difference prob­
lem have been recorded in recent years. 8 - 10 Most of these efforts 
are based on some form of the pion chiral dynamics, or equivalently 
current algebra, in the "long distance" regime, and perturbative 
QCD in the "short distance" regime. There has even been one 
recent calculation in the "bosonized" version of the extended NJL 
model, 11 which turns out to be completely equivalent to the purely 
meson-theoretic calculation of Ref. 4 and is therefore of little 
interest here. We will try to compare the results of these calcu­
lations with those of ours12 where possible. 

In recent years we have seen remarkable progress in the under­
standing of the mass spectrum of the pseudoscalar meson nonet13 

in a relativistic, chiral quark mode! with dynamic constituent quark 
mass generation, the so-called Nambu-Jona-Lasinio (NJL) model. 14 
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This Comment is concerned with the mass splitting between the 
charged and neutral pions in the minimal two-flavor version of the 
NJL mode!. In fact our analysis will shed as much light on the 
pion mass difference problem itself as on the structure of the NJL 
mode!. We discuss the exact, closed form results of a gauge and 
chirally invariant pion mass difference calculation in the chiral limit 
(current quark masses, and therefore the non-electromagnetic pion 
mass, equal to zero) of the NJL mode! within the Hartree ap­
proximation, to O(a), where a = e214'1T = 11137 is the fine structure 
constant. We leave the full discussion of the small non-chiral cor­
rections for another occasion. As possible downsides of this cal­
culation, we ought to emphasize that the NJL mode! does not 
describe the quark confinement, and secondly that the Hartree 
approximation and the chiral invariance force us to keep only one­
qq-pair intermediate states in our calculation. At the hadronic 
level this would mean keeping only intermediate states involving 
single pions. Thus there is plenty of room for future improvements. 
In order to make this Comment equally accessible to the non­
specialist and the expert in chiral models, we have included general 
introductions to the NJL mode! and to the problem of isospin­
violating mass differences. Then we discuss our calculation in de­
tail: firstly the construction of the gauge invariant set of Feynman 
graphs, then their evaluation and finally our numerical results and 
their interpretation. As the final piece of new work we talk about 
the EM self-mass of the neutral pion in this mode! and show the 
important role the modified gap equation plays in keeping the 
mode! self-consistent in the presence of an electromagnetic field, 
in accord with Dashen's theorem. 15 

II. THE TWO-FLA VOR NJL MODEL IN THE HARTREE 
APPROXIMATION 

This section is concerned with the definition of the mode! and of 
the approximations used, as well as the proof of gauge invariance 
of the result. One of the most important features of this mode! is 
its chiral symmetry and its spontaneous breakdown induced by the 
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dynamics, rather than by fiat. Our starting point is the two-flavor 
NJL Lagrangian, 

5P, = ~(i~ - m0 )ljl + G[(tÎJl\1)2 + (~i-YsTl\1)2] (2.1) 

where m0 is the "current" quark mass, Gis a dimensional coupling 
constant and T are (Pauli) isospin matrices. The first and foremost 
property of this 5P, is the equivalence of its interna! flavor sym­
metries to those of the QCD Lagrangian. Specifically the symmetry 
group is Uv(l) ® SUL(2) ® SUn(2) for m 0 = 0, where the Uv(l) 
expresses the baryon conservation and SU L(2) ® SU n(2) repre­
sents the isospin symmetry of the left- and right-handed quarks, 
respectively. Note that the UA(l) symmetry is explicitly broken 
(in the maximal fashion) such that the "fourth" T = 0 pseudoscalar 
bound state completely disappears. Such "maximal" UA(l) sym­
metry breaking is nicely illustrated in the model defined by Eq. 
(2.10) of Ref. 13. In the limit when the coupling constants of the 
two terms appearing in that equation approach each other, the 
mass of the "fourth" pseudoscalar particle moves to infinity and 
completely decouples from the remaining pseudoscalars. The main 
point here is that there is no UA(l) problem with the 5P, defined 
by Eq . (2.1) and that its removal has been accomplished in full 
accord with the QCD analysis of 't Hooft. 16 This fact clearly in­
dicates the connection to QCD proper. 

Note that the NJL Lagrangian of Eq. (2.1) contains a four­
fermion contact interaction, very much like the old Fermi theory 
of weak interactions, which is not renormalizable in 3 + 1 di­
mensions. This means that in the one-loop approximation we will 
need at least one new arbitrary constant in order to make the 
amplitudes finite; this is equivalent to setting the mass scale of the 
theory. There are infinitely many ways of choosing this new con­
stant, which is not apparent in the Lagrangian, and the way we 
will do it here is by cutting off the quark (Euclidean) four-mo­
mentum integrals at some eut-off value A. Since the Hartree pro­
cedure is a "one-loop" calculation, we end up with two free di­
mensional parameters that need fixing in the chiral Iimit: G and 
A. Neither of these quantities is an observable, so we are left with 
the task of finding two independent pion observables, and ex­
pressing them in terms of these two parameters. The standard 
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choice for one of them has been the pion decay constant f-rr· The 
other one is usually taken to be either the constituent quark mass 
or the quark condensate value (the two are simply related in the 
Hartree approximation). Neither is a true observable (the quarks 
are confined and we have no way of knowing their masses) and 
both of them are very model-dependent. Another candidate for 
the second observable is the charge radius of the pion. In the NJL 
m de l this qu anlity turn out l b a runctio n of [,,. on/y, s il is 
not uitablc for o ur purpose • . A llb( ugh the N.IL mode l rcsults ro r 
f n m and th , cond nsa te d n ity a re s i wl y varying fonctions o f 
the cul- ff. lhus implying a re lative ins nsitivity of the prcdicrjons 
of the mo 1 1 untlc r cha nge of tbis free para m te r , w will sec lhal 
one can fix both of the free parameters with a great deal of accuracy 
using our analysis. 

We next turn to the phenomenon of spontaneous chiral sym­
mc try-breaking in the NJL mod 1 within the s If-consistent H a rtree 
approximation . T his lcads t a non-pe rturba li e s ·he m d rined 
by Iwo intcgral cqua tions of the Schwing ·r- Dyson typ : (i) Lhe 
>n ·-body e lf-consis tc ncy (gap) equa tion (Fig . 1 (a)). (ii) th · two­
body (Bethe- a lpete r) bound ta te quatio n (Fig. J (b)) . Jlow­
>ver, before e mbarking o n such som what f rma l consitl rati ns 

la) 

(bl 

FI U RE 1 T he Schwingcr- Dy~ua Cl(UHliom; th li Llclïn ' the 1-lnrtrcc upprnxi nm1 1on 
to the NJL modc l : (a) The onc-l)()dy (g11p) cquat icm. (hJ T he IW<)-hmJy (Ilct lw­
Salpc tcr) cquation. T he bold-faccd solid lin<: <leno tcs n " <lrc~scd" ' (co11s1i1ucnt. 
quark , 1hc 1hi11 soli<l llrw ùc cribcs ::i ··))an:" (cu rrent ) quurk, but only in "Fig. l(a) : 
in atl suhscquenl diagrnms the thln solid lin · Stanùs for 11 Ll r ·ssed 1111ark. ·n1c solid 
<lot rcprcsi.: 111s one o[ th · two four-poi111 inl ' ril tiun terms appc~r ing in lhc J 1. 
Lagrn11gia11 Eq . (2 . 1). ;1ml 1hc shadcd · ·!Jn lloon" in (b) dcnotcs t h ~ bound-~ i a le 
(1î.q) propagri lor spct:i lïcd by Eq . (2.7) . 
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that will be needed la ter, we want to point out that the salient 
features of chiral symmetry-breaking can be understood rather 
simply in the following way: Replace ;;>, in Eq. (2.1) by its ap­
proximate linearised equivalent 

Y!, = lfi(i~ - m 0 + 2Gns)lj! (2.2) 

where ns is the quark condensate density 

n, = (o l lfi(x) lj!(x) 1 o) 

in the interacting vacuum state Io). Notice that the structure of Io) 
does not have to be known at this stage . However, it has to be 
more complicated than the non-interacting vacuum since otherwise 
the condensate density would vanish. Notice also that in obtaining 
Eq. (2.2) the assumption (ollfi(x)i')'5Tlji(x)lo) = 0 has been intro­
duced, i.e . , that Io) has good isospin and parity. 

The approximate Lagrangian of Eq . (2 .2) now describes a free 
quark again, but with a modified, or constituent, mass 

m = m 0 
- 2Gn5 • (2.3) 

A non-vanishing n, thus signais the spontaneous dynamical break­
ing of chiral symmetry in the ground state, as opposed to the 
"mechanical," or explicit, breaking caused by inserting a non-zero 
current quark mass m0 "by hand" into the Lagrangian. So from 
now on we will drop m0 and concentrate on dynamical symmetry­
breaking. Recalling13 that the condensate density is determined by 
the trace of the quark propagator S(x, x') over all its flavor, color 
and Dirac intrinsic variables, we rewrite Eq. (2.3) as 

. . f d4p 
m = 21G TrS(x, x) = 21G Tr (

2
1T)4 S(p). (2.4) 

A second basic approximation enters at this point, viz. that the 
propagator Sis determined by the same Lagrangian that led to the 
relation (2.3) between m and n5 • This is obviously the self-con­
sistency requirement that the mass determined by ns is the same 

76 



mass that enters S anc{ thus determines ns and m. The momentum 
space form of S is thus that of a free Dirac particle of mass m, 

S(p) = (jJ - m + iE) - 1 (2.5) 

and Eq. (2.4) becomes , for m -f 0, 

(2.6) 

after cancelling a common factor of m. This relation, which de­
termines m self-consistently and non-perturbatively in G, is orig­
inally due to Nambu and Jona-Lasinio14 and is called the NJL gap 
equation be cause of its formai similarity with the BCS gap eq uation 
for a superconductor. At this point the anticipated divergence in 
the mode! has also emerged explicitly in the divergence of the 
integral on the right-hand side of Eq. (2.6), which we therefore 
will have to regularize in some way. 

We now have the necessary background to approach the problem 
of dynamical symmetry-breaking more formally from the point of 
view of the Schwinger-Dyson equations shown pictorially in Fig. 
1. The first Schwinger-Dyson equation (Fig. l(a)) gives the in­
tegral equation for the quark propagator in momentum space, and 
is solved by the expression for S(p) given in Eq. (2 .5) above, where 
mis given by 

. f d4p . 
-im = (-1) 21G Tr (

2
1T)4 1S(p) 

in the one loop approximation. This obviously reproduces Eq. (2.4) 
again and thus leads us back to the transcendental equation (2.6) 
for the constituent quark mass. 

The second Schwinger-Dyson equation (Fig. l(b)) is an inho­
mogeneous Bethe-Salpeter equation describing the scattering of 
quarks and antiquarks. Due to the contact nature of our interne-
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tion, the solution of this integral equation is given by the geometric 
progression 

. ( 2 _ 2iG 
-iM k) - 1 - 2Gil(k2) (2.7) 

for a momentum transfer squared k2 where 

-ill(k2) = J (~~4 Tr[i-y5T: S(p + k) i-y5T,,S(p)] (2.8) 

is the lowest order irreducible pseudoscalar polarisation diagram. 
Here T,, = (-r1 ± i-r2)/Y2 or -r3 are the projection operators onto 
the 1T"' or 1T0 channels. 

The position of the potes in the two-body propagator M(k2) 

determines the mass of the bound states in the theory, and the 
residue at these poles, the coupling of the bound states to the 
quarks. From Eq. (2. 7) these residues are 

[ J
-1 

2 _ an 
8irqq - akz 

pole 

(2.9) 

In our case there is only one pole in the isotriplet-pseudoscalar 
channel; this pole lies at k2 = 0, in agreement with Goldstone's 
theorem17 and corresponds to a degenerate isotriplet of massless 
pions in the NJL mode!. One sees this directly by computing the 
denominator in Eq. (2.7): 

1 - 2Gil(k2
) = [ 1 -

2~G TrS(x, x) J + [4iGNcN1I(k2 )]k2 

(2.10) 

where il(k2 ) is defined by the expression 

1 (
1 

[ k2 J 
= il(O) + (41T)2 Jo dx ln 1 - m2 x(l - x) (2.11) 
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The factor 1(0) contains the divergence that is present in the pion 
polarization loop at zero momentum transfer. 

The first term on the right-hand side of Eq. (2.10) vanishes on 
account of the gap relation [Eqs. (2.4) or (2.6)] fixing m. Thus 
M(k2) has a pole at k2 = 0, as anticipated. The coupling constant 
of the quarks to this mode is 

(2.12) 

This relation allows one to recast the scattering amplitude as 

(2.13) 

where we have defined 

F"(k2
) = J(k2)/J(O). (2.14) 

We indicate later that F"(k2) is identical to the electromagnetic 
form factor of a chiral (i.e., massless) pion within our scheme. 
Together, Eqs. (2.13) and (2.14) constitute the two essential in­
gredients for understanding the electromagnetic mass difference 
of pions. We discuss this problem next. 

III. ISOSPIN-VIOLATING MASS DIFFERENCES 

Formally the shift in the pole of M(k2) due to isospin-violating 
contributions determines the mass splitting of the pions. In QCD, 
however, there are only two known sources of isospin-violation: 

(a) the current quark mass differences, 
(b) the electro-weak interaction, 

and the same is true in the NJL, or any other quark mode!. The 
first item on this list, which we call the "mechanical" mass differ­
ence, contributes 2% of the total mass shift and thus allows us to 
work in the chiral limit without making an obviously bad approx-
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FIGURE 2 A schematic illustration of the non-relativistic Coulomb energy E.., Eq. 
(3.1 ). of a two-body bound-state, e.g .. the TI. The wiggly line denotes the Coulomb 
gauge photon, the solid lines are the constituents and the dashed line is the bound­
state . The shaded ovals , together with the constituent lines, represent the Schrô­
dinger wave functions t!J(r) , which , in turn, determine the charge density Pn(r) . 

imation. The reason for this mechanical mass difference being sa 
small is that it has ta be at least quadratic* in the current quark 
mass difference as a consequence of the isospin structure of the 
pions and the model-independent Gell-Mann, Oakes and Renner 
(GMOR) relation .18 The coefficient of proportionality of the quad­
ratic term is mode! dependent, and in our case turns out ta be 
very close ta unity. This fact, plus the commonly accepted values19 

of the current quark masses m~ = 5.2 MeV and md = 1.8 m~, 
lead immediately ta our assertion about the size of the mechanical 
mass difference: ta the lowest non-vanishing order one has 
[iim;]mcch = (m~ - md)2 = (4.2 MeV)2

. 

The second item on the list can be divided into two subclasses: 
the weak and the electromagnetic contributions. The weak inter­
action's contribution is O(GF), where GF = 10- 5M,y 2 is the Fermi 
weak coupling constant , and hence it is negligible. We are thus 
left with only one important term: the electromagnetic interaction. 
However, before launching into the complexities of a fully gauge 
and Lorentz invariant calculation of the pionic electromagnetic 
(EM) self-energy, it is instructive ta approach the problem on a 
more elementary level by looking at the Coulomb energy of two 
charged particles, in our case a quark and an anti-quark, that form 
a bound pair due ta the strong interaction. The calculation is el­
ementary (see Fig. 2), the exchanged photon being in the Coulomb 
gauge, and gives 

E = e2 J d3 Jd3 ' fJn(r)p,/r') = e2 J d3q F;,( - q2) 
c 2 r r 41Tlr - r'] 2 (21T)3 q2 (3.1) 

*This is not the case for strange and charmed meson mass differences . 
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where p.,/r) is the charge density normalised to the total charge 
in units of the proton charge e, and F"'(q2

) its Fourier transform. 
The Coulomb energy of a two-body bound state is clearly positive 
for two charges of equal sign (making up the 1T±), and negative 
for two oppositely charged particles (the 1T0

). This simple consid­
eration tells us without further ado that the charged versus neutral 
pion mass difference will be positive, as observed. This formulais 
not meant to describe the complete result for the non-relativistic 
EM self-energy of a bound state (for that see Friar20), but rather 
to indicate that the Coulomb energy has something to do with an 
integral over the EM form factor of the bound state. For com­
parison, the fully covariant field theoretic analog of Eq. (3.1) is 
the following expression3 : 

where jµ(x) is the EM current operator, T* denotes the covariant 
time ordered product that includes "sea-gull" terms if they are 
necessary for the EM gauge invariance, and Djv is the photon's 
Feynman propagator in configuration space. 

An early attempt at a momentum space version of Eq. (3.2) was 
given by Barger and Kazes5 ; they came up with the following 
formula: 

(3.3) 

which for a monopole F"'(q2
) (see below) leads to Llm; = 

3am~/41T = (32 MeV)2 , indeed close to experiment. Formula (3.3) 
is completely equivalent to the EM self-energy calculated from a 
scalar point-particle forward Compton amplitude multiplied by the 
square of the elastic on-shell form factor. However, it is clear that 
the intermediate-state pion in Fig. 3 is off-shell and that therefore 
the exactness of this formula is questionable. We will argue later 
that this expression is only correct for special kinds of pion EM 
interactions (vector meson dominance, or VMD, models), and that 
in the general case it violates the Ward-Takahashi identities. 21 
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[a) [b) 

FIGURE 3 Two Feynman diagrams depicting the pion EM self-energy in the 
Barger-Kazes approach, Eq. (3.3). (a) The "sea-gull" diagram, (b) the pion-pole 
diagram. The wiggly line denotes a photon in an arbitrary gauge, the dashed line 
stands for a pion. The two pion-one-photon vertex is multiplied by Fn(q2

) , whereas 
the two-pion-two-photon vertex is multiplied by F~(q2). The factor 1/2 in front of 
the graph in Fig . 3(a) is the appropriate symmetry number. 

We thus suspect that the formula in Eq. (3.3) may be inapplicable 
to our problem and leave it for now. In the next section we obtain 
the exact gauge invariant quark-antiquark EM self-energy to O(u) 
in the JP = o-, T = 1 channel. 

IV. THE PION ELECTROMAGNETIC SELF-ENERGY IN 
THE NJL MODEL 

We start out by minimally coupling the electromagnetic gauge field 
to the NJL Lagrangian by substituting 

i~ ---'> il/> = i~ - e~ (4.1) 

in Eq. (2.1) where eq is the quark charge, equal to ~e and -le for 
the u and d quarks, respectively. Note that the EM interaction 
explicitly breaks both SUL(2) and SUn(2) flavor symmetries . This 
means that not only do the pions acquire a mass, but they do so 
in an isospin asymmetric way. We compute the magnitude of this 
mass shift to O(u) by including the additional gauge invariant set 
of diagrams in the pion self-energy to the same order in u. As in 
Ref. 12 we call this additional contribution Il ~tt(k 2 ) where T3 = 

± 1 or 0 refers to the TI "' or the TI0
• The qij scattering amplitude 

in the presence of EM interactions then reads 

2iG 
(4.2) 

1 - 2G[Il(k2
) + Il~ti(k2)] 
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in place of Eq. (2. 7) , with the non-electromagnetic part of the self­
energy still being given by Eq. (2.8). 

To construct the gauge-invariant pion EM self-energy in the NJL 
mode! we start from the Feynman graphs depicted in Figs . 4(a)-
4(c) . The first one describes the Coulomb interaction that we saw 
earlier in Fig . 2; the other two are the quark and antiquark EM 
self-energies, respectively. At first sight one might think that these 
three diagrams are the only ones of interest to O(a). This is not 
so. One finds that their sum is only gauge invariant for the neutral 
pion but not for the charged ones, so we are missing something. 
To find the missing diagrams we recall that one can have "vertex 
corrections" of the kind depicted in Fig. 4( d). Clearly, there are 
infinitely many such irreducible diagrams. Fortunately they can be 
summed to reproduce the exact qij scattering amplitude - iM(k2 ) 

of Eq . (2.7) again, and yield a single Feynman diagram (Fig . 5) . 

<D-- 0 - ---0 --
(a) (b) (c) 

(d) 

FIGURE 4 Feynman diagrams showing various parts of the pion 's proper EM self­
energy insertions in the NJL mode!. (a) The "Coulomb" graph , corresponding to 
the nonrelativistic graph shown in Fig. 2, (b) the quark and (c) antiquark EM self­
.:: ncrgies , (d) two. of infinitcly many, incducihlc diagram s thal cont ribute to the 
clrn rgcd pion E M sc tr .. cncrgy. The solid d rclcs deno Le the e ffecti ve 'ffqq interaction 
with a coupling consrn nt g~,N dc terminecl by · q. (2 . 12). and the open ci rd es denote 
" minimall y couplccl" (se · Section IV) 'l lfl/ - M vcrti es. 

FIGURE 5 A single "dumbbell" diagram which sums up ail of the graphs of the 
type shown in Fig . 4(d) . Three other dumbbell graphs, with other possible mo­
mentum routings, enter the charged pion EM self-energy. 
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There are three other topologically equivalent diagrams with the 
charge flow in different directions. 

The Feynman rules for calculating all these diagrams can be read 
off by installing Eq. (4.1) in the Lagrangian, Eq. (2.1). Working 
in an arbitrary gauge parametrized21 by X., both the gauge de­
pendent and the gauge independent parts of these diagrams are 
expressed in closed form, as follows, in the chiral limit k2 = 0: 

with 

The last term in the expression (4.3) for the EM self-energy of the 
pion is the contribution from Fig. 5. We have implicitly assumed 
that ail quark loops have been regulated via the Pauli-Villars 
prescription21 which respects the Ward-Takahashi identities. 

We are now in a position to check the gauge invariance of the 
pion's EM self-energy explicitly. The common charge factor mul­
tiplying the gauge dependent piece proportional to (1 - X. - 1) in 
Eq. (4.3) is 
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by direct calculation. Thus the EM self-energy is fully gauge in­
variant. Note the regulatory role that the "dumbbell" diagram of 
Fig. 5 has played in maintaining the gauge invariance in ail three 
pion channels. Without this term, which provides for the last factor 
to cancel out the pion's charge e~ in Eq. (4.4), only the neutral 
pion channel would have been gauge invariant. 

We return to the qq scattering amplitude in Eq. ( 4.2) and identify 
the pion masses m }, in the presence of EM interactions from the 
pales of this expression that lie at the roots, in k2 , of 

1 - 2c [ n (k2
) + Ofti (k2

) J = o. 

Since the shift of the m }, away from the zero mass Goldstone 
mode limit is O(a), we expand the left-hand side of the above 
expression about k2 = 0 to find that 

2 _ 2 OT' (Q) m T3 - - g 'fTqq EM (4.5) 

after using the relation (2.9) again. The minus sign in this expres­
sion in the T3 = 0 channel (the 1T0

) is ominous since we already 
know that n~M must be positive. We return to this point later on. 
For the pion mass squared difference itself, we obtain the following 
exact formula from Eqs. ( 4.5) and ( 4.3), expressed as an integral 
over the photon four-momentum q, 

(4.6) 

Ali gauge dependent and/or isoscalar pieces have cancelled ex­
plicitly. Note that the elastic electromagnetic form factor F'fT(q2 ) 

of the pion appears in this formula, but with only a single power,* 
as opposed to the Barger-Kazes formula, Eq. (3.3), in whjch it 

*It is interesting that Bijnens and de Rafael (Ref. 10) have corne up with an 
essentially equivalent formula in an entirely different mode!. 
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appears squared. Note also that the appearance of the elastic form 
factor is something of a surprise, because the diagrams involve the 
inelastic, or half-off-shell, EM vertex. In this case, due to the 
extreme simplicity of the NJL model and the chiral limit, we find 
that the on- and off-shell vertices entering our calculation are 
equivalent. The question remains: why only single power? The 
answer to this question is provided by the form that the exact qtj 
scattering amplitude assumes in terms of the elastic form factor as 
given in Eq. (2.13); while the diagrams in Figs. 4(a) through 4(c) 
turn out to be proportional to the pion form factor, the diagram 
in Fig . 5 contains two factors of F'IT(q2). The inverse dependence 
of M(k2

) on F'IT(k2 ) cancels one of these that appear in the nu­
merator of the dumbbell diagram, and we are left with the linear 
dependence shown in Eq. (4.6). We add the comment without 
proof that ail of the EM vertices satisfy the relevant Ward-Tak­
ahashi identities, thereby confirming the gauge invariance in a 
more general way. 

V. THE ELECTROMAGNETIC PROPERTIES OF THE 
NJL PION 

The essential ingredient in ail these expressions for the pion mass 
splitting is the pion's electromagnetic form factor. In this section 
we calculate this form factor for a chiral pion in NJL, and compare 
the result both with experiment and with the empirical monopole 
form. A direct bonus of the NJL model is that one obtains a closed 
form expression for F'IT(q2 ) from which the charge distribution of 
the NJL pion may readily be calculated as described below. Let 
us start with F'IT(q2). This form factor is related to the sum of the 
two Feynman diagrams shown in Fig. 6. A direct calculation shows 

---k' 

FIGURE 6 Gauge invariant Feynman diagrams describing the pion EM form factor 
in the NJL mode! and the Hartree approximation. 
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that F-rr(q2 ) is exactly equal to the ratio I(k2 )/I(O) in the chiral limit 
as already stated in Eq. (2.14). Performing the integral explicitly, 
one finds the closed form 

3m
2 

[ F-rr( - Q2) = 1 + 2'TT2j; 1 -
~ ...;1-i-QZ 

X in (2~ + Jl + 4:;2)] (5.1) 

for space-like momentum transfers q2 = - Q2 :S O. One can check 
that F-rr(O) = 1, as it should. In obtaining this answer, use has been 
made of the Goldberger-Treiman relation m = f-rrg'TTqq• which is 
automatically satisfied in the NJL mode!, to eliminate the quark­
pion coupling constant in favor of the pion weak decay constant 

f-rr· 
The square of the expression (5.1) is plotted in Fig. 7 and com­

pared with experiment and the empirical monopole form 

(5.2) 

where mv = mP = 770 MeV is the rho meson mass. Note the 
closeness of the chiral, the non-chiral F-rr(q2) 2 and the monopole 
fit to the experimental data close to the origin. In particular, the 
calculated slope of the NJL F-rr(q2 ) at the origin reproduces Tar­
rach's chiral limit result22 for the pion charge radius squared, 
(r;) = 3/(27rf-rr)2 = (0.59 fm)2 that compares well with the measured 
value (0.657(12) fm)2 of this quantity .23b Thus Eq. (5 .1) essentially 
agrees with the monopole fit to the form factor and describes F-rr(q2 ) 

very acceptably at low momentum transfer. At higher Q2 values 
we see significant discrepancies, most notably the zero in the form 
factor at - q2 = 3( Ge V)2 , signalled by the change to a positive 
slope in Fig. 7. Ali of this goes to show that the NJL mode! is a 
good approximation to nature only at low energies. The NJL form 
factor finally diverges logarithmically as Q2 goes to infinity and 
the pion mass difference, as given by Eq. (4.6), diverges accord­
ingly. 
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, and not Fn(q2 ), enters the relevant cross-section from which it is determined experimentally. The solid curve is our result for 
a non-vanishing current quark mass (m 0 = 5 MeV), while the short-dashed curve stands for our chiral-limit result, Eq. (5.1). Also 
shown is the empirical monopole fit (long-dashed curve), Eq. (5.2). 



The same divergence problem can be seen from another point 
of view in configuration space, where the analogous quantities are 
the charge density and the Coulomb energy. The charge density 
can be calculated from the dispersive version of the form factor, 
which is readily obtained from our explicit form of I(k2 ) in Eq. 
(2.11), and methods familiar from Serber and Uehling's analysis24 

of the vacuum polarization diagram in QED. As opposed to that 
case, we find a closed form expression. The result is 

p1T(r) [ 
1 f X dt ] 3m3 

1 1 - - - ImF1T(t) ô(r) + 
4 3] 2 2 K1(2mr) 

'TT 4m2 t 'TT 1T r 
(5.3) 

where K1 is a modified cylindrical Bessel fonction. In view of the 
relation of F1T(k2) to I(k2 ) in Eq. (2.11), one can read off from the 
latter that the dispersive integral in Eq. (5.3) starts at the qq 
threshold 4m2 , in direct conflict with confinement, as expected. 

One can verify that this p1T(r) is properly normalized to the total 
pionic charge consistent with F1T(O) = 1. In Fig. 8 we plot the 
radial charge distribution 41Tr2p1T(r). For comparison we have also 
plotted the charge distribution due to the empirical monopole form 
for F1T( -Q 2

) given above in Eq. (5.2): 

mz 
P1T(r) - ______!'. e-mv' 

- 41Tr · (5.4) 

The expression (5.4) shows the typical exponential decay for large 
r that is controlled by the vector meson mass mv. In Fig. 8(a) we 
see that the result (5.4) is similar to Eq. (5.3) for r between 0.3 
and 3 fm, despite the absence of explicit vector mesons in our 
Lagrangian. We see from Fig. 8(b) that the NJL model is unable 
to account for the interior region (r :S 0.3 fm) of the pion, while 
reproducing the medium-range behavior reasonably well. This in­
adequacy cornes from the small argument behavior of K1(2mr) 
which goes like (2mr)- 1 and thus causes the integral of the radial 
charge density to diverge like ln(mr) at r ~ O. This again leads to 
an infinite EM mass difference. 
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VI. EVALUATION OF THE PION MASS DIFFERENCE 

The divergent natures of F"( - Q2
) at large space-like momenta, 

or of pTT(r) at small r, that formally lead to an infinite EM mass 
difference for the pion, are of course symptoms of the same dis­
ease: the divergent nature of the NJL model. Fortunately we have 
forgotten one crucial point: the limitations set on the quark (Eu­
clidean) four momenta in order to regularize the NJL mode! also 
constrain the photon momenta by momentum conservation; if the 
absolute values of the Euclidean quark momenta squared are lim­
ited by A2 , then the momentum squared carried by the photon 
cannot exceed 4A2 • Equivalently, one must eut off the radial charge 
density at r 0 = (2A)- 1 , so that the inadequacy of the NJL form 
for p7T(r) near the origin in Fig. 8(b) cornes as no surprise. In other 
words, if we regularise the quark loops, the photon loops are 
automatically rendered finite without introducing yet another cut­
off. Using this constraint, the evaluation of the integral expressing 
the mass difference is straightforward. After a Wick rotation of 
the photon four-momentum in Eq. (4.6) one finds 

Note that ô.m~ only depends on the behavior of the form factor 
in the space-like region. The remaining integration is elementary 
when the NJL form of F7T(q2), Eq. (5.1), is used, and 

3cx {( 3 ) A
2 

~ m 2 = - m 2 1 + - ~ -
7T 1T 2 m2 

1 A [ A A J + mA
2

2
]} - - ~ sh- 1 - sh- 1 - + 2 - 1 

2 m m m 
(6.1) 

where ~ = 3m2/(21T 2f~). This is our final result. We discuss its 
evaluation and how it impacts on NJL predictions of other physical 

91 



quantities in a moment. However, before doing so, we would like 
to devote a few lines to the comparison with the result of Barger 
and Kazes. We have already asserted that the Barger-Kazes result 
violates bath Ward-Takahashi identities, although the complete 
Compton amplitude is gauge invariant. But explicit calculations of 
Lee and Nieh4 show that this is exactly the gauge invariant result 
one obtains from the simplest vector dominance mode!. Then how 
can it violate Ward identities? This apparent conflict is resolved 
as follows: in the VMD model the pion acquires an EM form factor 
due to the mixing between the photon and the neutral isovector 
vector meson, not because it (the pion) has an intrinsic structure. 
Hence the pion propagator remains the free one and the free Ward 
identities are satisfied due to the gauge invariant Lagrangian pre­
scription of Kroll, Lee and Zumino,25 and not due to the modi­
fication of the pion propagator. In the NJL mode!, on the other 
hand, the pion is a bound state with an intrinsic size and structure 
due its spatial extension. This structure substantially changes the 
propagation of the pion, and its Feynman propagator becomes 
significantly modified [compare with Eq. (2.13)] as compared with 
the free one. Here, the Ward identities are satisfied due to the 
inclusion of a complete set of gauge invariant Feynman diagrams. 
The first form of gauge invariance (VMD) leads to the Barger­
Kazes mass formula, the second to our "linear in F"(q2)" mass 
formula. 

Now let us evaluate tlm;: in order to do so we need to know 
the two parameters of the NJL mode!: GA2 and A. Up to now it 
has been customary to fix these by requiring that the quark con­
densate density (l)iljJ) = (üu) + (dd) = 2(qq) and the pion weak 
decay constant f-rr corne out right. One typically has (üu) = (dd) 
= - (250 ± 50 Me V)3 and f-rr = 93 Me V from experiment1 (or, 
more accurately, f-rr = 92.4 ± 0.2 MeV, if O(a) EM corrections 
are considered26). 

The details of the regularization of the quark loops enter at this 
point and we devote a few words to discussing the regularization 
problem. There are two quark Ioops to be regulated: the Hartree 
loop giving the condensate density or gap equation, and the pion 
self-energy loop. The divergence of the latter appears at zero mo­
mentum in the piece iJ(O), which determines g;;q2

q. If we employ 
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Pauli-Villars regularization in order to stay consistent with our 
proof of gauge invariance, then one finds (see Ref. 13 for details) 

(qq) - !~: [(1 + 2x2)ln(l + 2x2
) - 2(1 + x2)1n(l + x2

)], 

(6.2) 

with x = AP!m, where AP is the Pauli-Villars regulating mass. We 
remark that it makes very little difference in practice if these 
expressions are replaced by their corresponding forms using a co­
variant eut-off, since the latter scheme with a eut-off A2 = 
(2 ln2)A~ is essentially equivalent to the Pauli-Villars one with 
eut-off A~. We exploit this feature to express the covariant eut-off 
appearing in the expression for 6. m; in Eq. ( 6 .1) in terms of x 
also, and then plot this togetherwith (qq) and m from Eqs. (6.2) 
and (6.3) as functions of x at fixed frr· 

These plots are shown in Fig. 9. Notice that the experimental 
range of quark condensate values is actually wider than that de­
picted in Fig. 9. In other words, the predicted range of the pion 
mass squared difference is at least (10-45 Me V)2

. This is a very 
wide range indeed and it clearly covers the experimental point at 
(35 .55 Me V)2 • However, since we are dealing with an exact ana­
lytical expression for the mass difference in the Hartree approxi­
mation we realise that we can reverse the procedure and determine 
the quark condensate value from the experimental value of 6.m; 
andfn, instead of vice versa. We have thus found the "second pion 
observable" necessary for the complete determination of the free 
constants in the NJL model. These are now given by 

A= 1088 MeV, 

GA2 = 3.82, 
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so that 

m 225 MeV, 

(qq) -(260 ± 1 MeV)3 • 

We have used the EM corrected value fn = 92.4 ± 0.2 MeV 
mentioned previously and the measured value of .:im; = (35.55 
± 0.02 MeV)2 to make this determination. The "error" shown on 
the quark condensate reflects only the experimental errors in f"' 
and the pion mass difference. It is interesting to note that (qq) 
falls nicely within the expected range for the quark condensate 
density. Furthermore, bath the quark mass and the eut-off take 
on reasonable values for these parameters. Since the NJL pion 
form factor, which, as we have seen, gives a good description of 

94 



the data, is central to these calculations, we draw the conclusion 
that the electromagnetic and weak decay properties of the pion 
provide an accurate method of determining quantities related to 
the breaking of chiral symmetry in the quark vacuum. 

VII. DASHEN'S THEOREM 

Let us note that it is not only 1T± which acquires a mass due to 
electromagnetism, but also the neutral pion. For the 1T0 all of this 
EM mass cornes from the first three (effective sea-gull) diagrams 
in Fig. 4: the " Coulomb" graph (Fig. 4(a)) and the quark and 
antiquark EM elf-energies (F1gs. 4(b) and 4( c)). Hence it is not 
surprising that thi EM ma. s squared shift of the 1T0 is negative 
because it is dominated by the negative Coulomb graph for all 
-reasonable values of the eut-off. Evaluating Eq. ( 4.5) explicitly for 
the neutral pion one finds 

where x = AP/m again. Numerically this 1T0 (mass)2 shift equals 
-(43 MeV)2 for the parameters established above. Since we started 
from a massless neutral pion, we seem to have obtained a tach­
yon- a clear sign of an instability in the tbe ry. 

This cata')trophe is automatically and exactly rem di ed, in the 
chiral limit , by an additional gauge invariant F ynmaa diagram: 
the M correction to the gap equa6 n (Fi . 10). We hav already 
seen in Section IV how the qq scattering amplitude M(k2 ) is mod-

e 
FIGURE 10 The constituent quark EM self-energy, to O(cx), in the NJL model 
and the Hartree approximation. Ali lines and vertices are as defined in Fig. 
l(b)-Fig. 6. 
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ified by the pion EM self-energy. As a consequence the mass of 
the neutral pion is shifted to an unphysical value below k2 = 0 
according to Eq. (7 .1). So there is still a fundamental inconsistency 
in the calculation, or we have overlooked something again. What 
we in fact have overlooked is that the gap equation for the quark 
mass also contains EM corrections. This contribution to the quark 
self-energy is described by the (separately gauge invariant) diagram 
in Fig. 10. Calling this contribution IEM, one finds by direct cal­
culation that 

Inclusion of this graph into the gap equation exactly cancels the 
EM self-energy of the neutral pion! In detail, 

This apparent miracle is a consequence of a deeper principle at 
work: the chiral symmetry. Roger Dashen has shown15 on very 
general grounds that in the chiral limit of a chirally symmetric 
theory, the neutral pion must not acquire a mass due to EM self­
interactions. We see that the corrected "gap" equation restores 
the self-consistency of the theory. The zero mass of the neutral 
pion cornes about due to a cancellation of two separately gauge 
invariant sets of Feynman diagrams, as anticipated by Cabbibo and 
Maiani27 in the linear sigma mode!. Note also that the magnitude 
of this additional term in Fig. 10 is O(cxGA2), i.e., a product of 
the EM and strong interactions, so that it cannot be treated per­
turbatively as an O(cx) correction, but has to be included as a part 
of the self-consistent quark self-energy, as was done here. It is 
important to realise that Dashen's theorem is a consequence of 
the exact chiral symmetry; if the symmetry is no longer exact, due 
to, e.g., the finite current quark masses, even by a "small" amount, 
then the cancellation is not exact either, as can be explicitly shown 
in our mode!. This is not obvious from the general proof of the 
Dashen theorem: a simple-minded application of the same argu­
ments to the non-chiral case seems to imply that the GMOR mass 
relation and the EM (mass)2 are linearly additive. The cause of 
the breakdown of Dashen's theorem is, as anticipated by B. W. 
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Lee,28 the presence of O(Ea) terms, where E = m 0 /f.,,, which violate 
the theorem, but are not manifest in the above "derivation". These 
terms can be traced back to the violation of the basic assumption 
that, to lowest approximation, the axial current is conserved. In 
this sense our calculation is an example of chiral perturbation 
theory applied to our problem. 

VIII. CONCLUSIONS AND OUTLOOK 

We have presented here the results of a gauge invariant and chirally 
invariant calculation of the electromagnetic mass splitting of the 
pion in the chiral limit. The calculation was done in the two-flavor 
version of the original NJL mode! in the Hartree approximation. 
In agreement with Dashen's theorem, the (massless) neutral pion 
remains unshifted by electromagnetic interactions due to a subtle 
cancellation between two separately gauge invariant sets of Feyn­
man diagrams, one of them being the electromagnetic modification 
of the gap equation. In order to obtain our main result for the 
pionic mass splitting, we also needed to calculate the electromag­
netic form factor FTf(q2) of the pion. Only the space-like region of 
F.,.(q2 ) contributes to the pionic mass shift; our result for F.,.(q2) 

reproduces experimental data surprisingly well. Consequently we 
obtain the pion charge radius within 10%. The medium-range be­
havior of the pion charge distribution p.,.(r) is not inconsistent with 
that obtained in the p-dominance mode! (VMD). 

There are several obvious tasks for the future: 

(a) Include the (small) current quark mass effects into the cal­
culation of the electromagnetic self-energy of the pion. 

(b) Obtain a better description of the time-like F.,.(q2). 

(c) Extend the mode! calculation to three flavors in order to ex­
amine both pion and kaon mass splittings. 

(d) Go beyond the Hartree approximation. 
( e) Include confinement. 

The first four problems, formidable as they might be, are perhaps 
of a more manageable nature; (e) is a fondamental problem . In 
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either case they are likely to remain challenging for a long time 
to corne. 

V. DMITRASINOVIé, R. H. LEMMER and R. TEGEN 
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