SLAC-R-639

UMI-96-11987-mc
RX-1557

A Determination of the Neutron Spin Structure Function

David Michael Kawall

Sanford Linear Accelerator Center, Sanford University, Sanford, CA 94309

Work supported by Department of Energy contract DE-AC03-76SF00515.



A DETERMINATION OF THE NEUTRON SPIN
STRUCTURE FUNCTION

A DISSERTATION
SUBMITTED TO THE DEPARTMENT OF PHYSICS
AND THE COMMITTEE ON GRADUATE STUDIES
OF STANFORD UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

David Michael Kawall
September 1995



© Copyright by David Kawall 1995
All Rights Reserved

.o



Abstract

We report the results of the experiment E142 which measured the spin dependent
structure function of the neutron, g¢f(z,Q?). The experiment was carried out at
the Stanford Linear Accelerator Center by measuring an asymmetry in the deep
inelastic scattering of polarized electrons from a polarized 3He target, at electron
energies from 19 to 26 GeV. The structure function was determined over the kinematic
range 0.03 < Bjorken £ < 0.6 and 1.0 < Q% < 5.5 (GeV/c)?. An evaluation of
the integral [ g7(z,Q%)dz at fixed Q2 = 2 (GeV/c)? yields our final result T T =
—-0.032 % 0.006 (stat.) + 0.009 (syst.). This result, when combined with the
integral of the proton spin structure function measured in other experiments, confirms
the fundamental Bjorken sum rule with O (a2) corrections to within one standard
deviation. This is a major success for perturbative Quantum Chromodynamics.

Some ancillary results include our findings that the Ellis-Jaffe sum rule for the
neutron is violated at the 2 o level, and that the total contribution of the quarks to
the helicity of the nucleon is 0.36 %+ 0.10. The strange sea polarization is estimated
to be small and negative, As = —0.07 + 0.04.
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Chapter 1

Theoretical Introduction

1.1 Introduction

The work represented in this thesis is one of the first attempts to determine experimen-
tally the spin structure function, g}, of the neutron. The basis of the measurement is
the scattering of longitudinally polarized high energy electrons from a longitudinally
polarized 3He target (which we may consider as a model for a polarized neutron). By
measuring a difference in the scattering cross sections between the cases in which the
beam and target spins are parallel and antiparallel, we reveal information about the
underlying spin distributions of the quarks and gluons composing a neutron. This
information is intrinsically interesting, and plays an important role in tests of our
understanding of the theory of Quantum Chromodynamics (QCD).

This work was carried out by the E142 collaboration at the Stanford Linear Ac-
celerator Center (SLAC).

1.2 Spin Dependent Deep Inelastic Scattering

The electromagnetic interaction of a charged lepton with a nucleon is described at
lowest order the single virtual photon exchange Feynman diagram in Figure 1.1.
In inclusive scattering experiments, like the one described in these pages, the final
hadronic states are not detected, and the process is written as | + N — [ + X.
The kinematic variables and Lorentz invariants used to describe the scattering of an



Variable | Description Value in Lab Frame

s Incident lepton spin four-vector ;}l—(|l-c‘|, 0,0, F)

S Target nucleon spin four-vector (0, § )

k Incident lepton four-momentum (E, k)

K Scattered lepton four-momentum (E', k')

P Target nucleon four-momentum (M, 6)

q Virtual photon four-momentum transfer g=k-k =4

0 Scattering angle of lepton

Invariants | Description Value in Lab Frame

@? = —¢® | Four momentum transfer squared ~ 4EE'sin*(0/2)
Energy of virtual photon P-gM=E~F

z Bjorken scaling variable —q-q/2P-q=Q%*/2Mv

w? Invariant mass of final hadronic state (P+q)2=M242Mv —Q*

Table 1.1: Kinematic variables and invariants in lepton-nucleon scattering.

incident lepton of mass m and energy E from a target nucleon of mass M are shown
in Table 1.1. ! With these definitions, we can write the double differential cross
section for the process in Figure 1.1 as

d*o 40 E'

— e — (4
g - g W (1.1)

where a is the fine structure constant? and the tensors L,, and W* describe the
leptonic and hadronic currents respectively. Experimentally this is measured by de-
tecting the leptons of energy E’ at an angle @ scattered from a nuclear target. The
leptonic tensor can be calculated from the Feynman rules, and summed over final

spins s, takes the form :

L = Y a(k,s)vu(k,s)alk, synu(k',s')

s

- %Tr[( F+myn(F+m)a1 + s Am)

1The odd form of s is a consequence of the requirement that s> = —1 and s - k£ = 0.
2The running of a is accounted for by performing radiative corrections to experimental cross

sections.
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Figure 1.1: Feynman diagram for charged lepton-nucleon scattering in the approxi-

mation of a single virtual photon exchange.

kik, + kky — gu k' -k + iMe,aps®q’
= L, +il}, (1.2)

where g is the metric tensor and e is the antisymmetric Levi-Civita tensor. Three ob-
servations should be made at this point. First, the tensor has a part, Lf,,, symmetric
under g « v, and an antisymmetric part, L;‘}y, where only the latter part contains the
spin of the lepton. Second, the antisymmetric part, L4, = me,,ap5*¢” is not propor-
tional to the lepton mass since s* « 1/m. Finally, the leptonic tensor is completely
determined so the upper vertex in Figure 1.1 can be considered as understood. It is
the lower, hadronic vertex which contains the unknown hadronic structure we wish
to investigate. In NN scattering the upper vertex would also be complicated by nu-
clear structure, explaining the continuing appeal of lepton scattering for investigating
nucleon structure.

The hadronic tensor we wish to investigate can be written in terms of the com-
mutator of the hadronic electromagnetic current, j5™, where we will drop the em
henceforth. Similar to the lepton current, it is decomposed into a spin dependent and

spin independent part [1, 4]:

1 . . .
W = o / d*ze"*(P, S|[jmu(z), 5, (0)]| P, S)
= W& +iwe (1.3)



The symmetric part has the decomposition in terms of two spin independent structure
functions W;(v, Q?) and Wy(v,Q?) :

s P. P
W5u=_<guu Qqq )W1+H2_(Pu q2qqu) (Pu qzqq )W (1.4)

Similarly, the antisymmetric part is written in terms of two spin dependent structure
functions, G1(v, @?) and Gs(v, Q?) [2, 4]:

1
W5 = Me™q55G1(1,Q) + 3¢ qul(P - 0)S5 = (- ) PalGa(, Q). (L5)

This term changes sign when the nucleon spin is reversed. Such a decomposition of

the hadronic tensor into four unknown structure functions is possible because the
form of the tensor is constrained to be invariant under parity and time reversal, as
well as being hermitian; W* = W¥#*, and it must satisfy the current conservation
constraint g, W*’ = ¢ W* =0 [3].

In order to investigate the spin dependent structure functions, G; and G, it
is necessary to use both a polarized beam and a polarized target since Lﬂ,,W_f;“’ =
L3, W4 =0, and only the combinations L5, W', and L4,W}4" are nonvanishing.

We will now restrict ourselves to the case in which the lepton is polarized along
its direction of motion and the nucleon spin lies in the plane defined by the incident
and scattered lepton three-momentum vectors. Under these restrictions, we examine
the difference in cross sections when a positive helicity lepton scatters from a nucleon
polarized at an angle ¢ + 7 with respect to the incident lepton momentum compared
to the cross section when the nucleon spin is at an angle ¢. Summing over final lepton
spin states and over all hadronic final states yields [4]
d?ol¢t™  P2g'* 4’ E'

dOdE'  dOdE' T Q2 E

(E cos ¢+ E' cos(0—¢)) MG, —2EE'(cos ¢—cos(0—¢))G2]

(1.6)

where the T symbolizes the positive helicity of the lepton. For the specific case where
¢ = 0 in which the target is polarized along the beam direction, we find :

d&?c  dPe' 4o’ E'

dOdE' T dQdE' T Q7 E

where we have used {} ({) to indicate that the target spin is parallel(antiparallel) to

[(E + E'cos 0)MG, — chz] (1.7)

the beam direction. We can also recover the unpolarized cross section via :
1( ol + d’ot 4012
2\dQdE’ " dOdE') T Q¢

[fzw1 sin? 10 + W, cos? Lo] (1.8)



Another interesting case is the difference in cross sections when the target is polarized

transversely at ¢ = 7 /2 in equation (1.6)

d’c'¢  d?¢'™ 40’ E”?
0dE — d0dE" = E—E— sin e[MGl + 2EG2]- (1'9)

We can gain some insight into the physical meaning of these cross sections by con-
sidering their relation to the cross sections for forward virtual Compton scattering,
v*+N — 4*+ N [5, 6]. The absorptive part of the forward cross section is related by
the optical theorem to the total photoabsorption cross section, which has the form :

iria .
0410~ Teil'OWweﬂp (110)

where K is the flux for virtual photons (which the Hand convention specifies as K=v —
@%/2M). The € are the polarization vectors of the virtual photons :

—=(
€1 = \/5
0 = ﬁ(\/quuz,o,o,u) (1.12)

where the €4, denotes transversely polarized photons, and ¢ is for scalar photons.
These can be combined with equations (1.4) and (1.5) in (1.10) to get expressions
for the cross sections as follows. Denoting by Tjag—...) the forward virtual Compton
amplitude for scattering a photon with spin projection (along the direction of the

photon) a from a nucleon with spin projection 3, yielding final spin projections uv,

0,1,+i,0) (1.11)

we can then write all of the possible transitions [6, 7]:

4mlq

Im T[l%-q%] x 033 = 7% W1 + MvG, — Q*G,]
Im Ty oy X 012 = 4’;;"‘[W, — MyG, + Q%G|
Im Tioy oy o 01 = 4’;"[%(1 + 12/Q%) - Wy

Im Typ_y_yy < o1, = 47;;0\/&[MG1 +vG) (1.13)

where we have written o3/, (0y/2) for the total cross section when the total spin projec-
tion along the virtual photon direction is 3/2 (1/2). The cross section for longitudinal

5



(scalar) photons is written oy, o7y is an helicity flip interference amplitude, and we
define or = 4(01/2 + 03/2). Time reversal invariance relates Tio-1-1y 0 Tyyz o 1
so we see that only four amplitudes are needed to describe polarized photon-nucleon
scattering and hence four structure functions are required, Wi, W,, G1, and G; [6).
It is useful at this point to define the ratio of longitudinal to transverse cross sections

o W, ( v )
= === — ) —1. .14
R or W, 1+ 5Ma 1 (1.14)
Now consider the virtual photon-nucleon asymmetries
_ _ 02
A = g1/2 — 03/2 - MvG, — Q°G, (1.15)
o1/2 + 0372 Wi
wnd [MG: +vGy]
= 9TL _ [p2 M T vGrg] 1.1
A2 a'T Q W] * ( * 6)

These asymmetries satisfy the bounds [4;] < 1 and |A;| < VR [8], and can be related
to the lepton-nucleon asymmetries formed from equations (1.7), (1.8) and (1.9) by:
ol _ it

A

and
ol® —of=

AL = m (1.18)
through the relations

A" = D(A1 + 77A2). (119)

and

Here we have defined the factors

—
!
S
(o)

D = ,

+
o

a
I
)

, and

=
I
S}
|
&3
2]

(1.21)

N
Il
-3
N
>
N+
(2,
N’



where

e=[1+2(1+12/Q* tan’ (30)] " (1.22)
is the ratio of longitudinal to transverse photon fluxes. The factors n and ¢ are
small, so that A >~ DA, and A; ~ dA;. The factor D, which is < 1, has the
interpretation of being the depolarization of the virtual photon, making the lepton-
nucleon asymmetry, Ay, less than the pure photon-nucleon asymmetry, A;. One
source of this effect is that the virtual photon interacts at an angle with respect to
the spin of the nucleon, so the projection of its spin is diluted. Also, the virtual photon
may be longitudinally polarized instead of transversely polarized, so its scattering will
be insensitive to the spin of the nucleon and will dilute the measured lepton-nucleon
asymmetry.

In experiments we measure the lepton-nucleon asymmetries, Aj and Ay, of equa-
tions (1.17) and (1.18), but it is the photon-nucleon asymmetries A4; and A, (1.15)
and (1.16) which are of physical significance. This is clear since the lepton-nucleon
asymmetries measured depend directly on quantities such as spectrometer angle and
beam energy. In contrast, we note that the virtual photon asymmetries are expressed
in terms of invariants and structure functions, and thus are likely to yield a physical
interpretation. In preparation for the analysis of the experiment, we write the photon
asymmetries in terms of the lepton asymmetries actually measured. These equations

will be drawn upon heavily in the analysis.

_ A 1AL
A= Bt T d+on (1.23)
(A AL

Az (1.24)

D(1+¢n) * d(1 +(n)

1.3 Quark Parton Model

In the quark parton model of Bjorken, Feynman and Paschos [9, 10, 11] a nucleon of
momentum P is considered to be composed of point-like constituents (partons), each
carrying a fraction of momenta ¢; of the total nucleon momentum, where Y&=1
and 0 < £ <1 [12). When viewed in a frame in which P is large, the interactions of
the constituents are time dilated, and at very high momentum appear not to interact
at all. In this limit we can ignore the transverse motion of the constituents. Now

7



~N~—> (1-8p
—= -9
\§P+q

Figure 1.2: Deep inelastic scattering in the quark-parton model.

consider what happens when one of the partons with initial momentum ¢P is struck
by a virtual photon of four momentum q. For sufficiently large Q2, during the short
lifetime of the virtual photon ~ 1/(Q?)!/? the partons appear to be quasi-free. The
scattered parton has a large momentum compared to the other constituents and is also
quasi-free. Then we can consider this deep inelastic scattering (DIS) as incoherent

and elastic, so we can write

(EP +q)*=m® (1.25)

where m is the mass of the parton. For large momentum transfer compared to the

parton mass, we find
2

€=2MV=

so we associate the Bjorken scaling variable z with the fraction of the parent nucleon

z (1.26)

momentum carried by the parton before scattering The process is shown in Figure 1.2.
In the parton model, the structure functions are predicted to scale, so that in the
Bjorken limit, @2 — oo and ¥ — oo with z = Q@%/2Mv constant, the structure
functions were predicted to lose their dependence on Q? and become functions of
alone. This leads to the behavior [12]

MW, (v, Q%) — Fi(z)
VWz(V, Qz) b Fz(x)
M*vGy(1,Q%) = gi(z)
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Mv*Ga(v, Q?) — ga(z). (1.27)

In the scaling limit we can rewrite the structure functions as :

P (14 Q%/v?)

B = 2z [1 + R]
F V@
"= R+ R [A‘+ A]
F2 14
92 = m [Azﬁ - Al] . (1.28)

If we consider deep inelastic scattering as the incoherent sum of elastic scattering

from spin 1/2 constituents, we can interpret the structure functions as [12]
F](-’E) = Z ez[qt + ql ]
Fy(z) = zzez[q, (@) + gi(2)]

gl(x) = zez[qt (.’B) qx :L‘)]

n(@) +a(@) = T emilal (@) - o7 (z) (1:29)

where ¢} (z) (¢}(z)) is the probability of finding a quark or antiquark of flavor i with
a fraction z of the total nucleon momentum with its spin parallel (antiparallel) to the
spin of the parent nucleon. Transverse polarizations are indicated by T. Now we can

rewrite the photon-nucleon asymmetries in the scaling limit :

. 2z(1 + R)
pd = “hE 9@
: V@ g1(z) + 92(2)
imd: = 13707 eMaF(z) " ° (1.30)
e Fiz) Fi(z)
. 2(T 2/, 2y 2 z)
I}BIPR—’21:F,($)(1+Q [v*) 1_’21171(1:) 1-0. (1.31)
We can substitute this last equation into our expression for A,, to yield
.e2gl(z) - ¢}
Tiellgi (z) + gi(2))
9(z)
Fi(z) (1.33)
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This has the immediate interpretation as the sum of the polarizations of the quarks
along the spin direction of the nucleon, weighted by their charge squared. Thus
the photon-nucleon asymmetry, A,, shows us how the spin is distributed within the
nucleon.

As an example of what A; might look like, we consider the static SU(6) model of
the proton composed of three constituent quarks [22]. The probabilities for finding an
up quark with its spin parallel to the proton spin is 5/9, which we’ll denote u! = 5/9.
Similarly, we can write
1
9
The spin for the neutron are related to those of the proton by isospin symmetry
u « d. Substituting these probabilities into (1.33) we find [22]

(! ) + 3! = d)
(ul +ul) + 3(dT + dY)

ul = 1 , d =

, u dt = g. (1.34)

N-JJ;
O =

Af = = g (1.35)

O L |O b

and for the neutron A} = 0. Naively, we might expect these values to be observed at

z ~ 0.3 where the struck quark behaves like it is 1/3 of a nucleon.

1.4 Sum Rules

1.4.1 Bjorken Sum Rule

One of the motivating factors to perform the experiment E142 was to test for the first
time the Bjorken sum rule, derived in 1966 [13]. Based on current algebra, isospin
symmetry and using the standard assignments for the quark charges, it is regarded
as fundamental and on firm theoretical ground. This remarkable sum rule relates the
difference of the integrals of the proton and neutron spin structure functions to the
ratio of axial to vector couplings, ga4/gv, observed in beta decay. This robust sum
rule is an interesting coupling of seemingly disaparate high energy electromagnetic
phenomena and low energy nuclear decay phenomena. In the Bjorken limit it is
written

94

1
/ [6%(2) - g7(z))dz = ~|#A| = 0.210 + 0.002. (1.36)
0 6|gv

10



The sum rule has since been rederived® in the framework of the Operator Product
Expansion [14] and perturbative QCD corrections have calculated to order a2, so that

the modern form of the sum rule for three quark flavors is [15]
2 2 2
/01 l97(z) — g1(2)]dz = % [1 —~ a’(f ) _3, 5833( (@ )) - 20. 2153( «(Q ))
- 0(130)(9@)—)4]. (1.37)

The corrections are critical for enabling the sum rule to be tested at the finite Q?

g4
gv

accessible to experiments. The sum rule is not expected to fail.

1.4.2 Ellis-Jaffe Sum Rule

A less rigorous set of sum rules was derived for the proton and neutron separately,
assuming an exact SU(3) symmetry in the baryon octet decays. Coupled with the
further assumption that the polarization of the strange sea quarks is zero, yields the
Ellis-Jaffe sum rules [17]

1 53F — D
/ i(z)de = 35|7 [+ +§F+D] (1.38)
' 1 |ga 53F — D
/o gi(=)de = 33|, [ 1t3 F+D] (1.39)

where F and D are the symmetric and antisymmetric constants describing the baryon
octet decay, and have the values F=0.459 + 0.008 and D=0.798 + 0.008 [18]. The F
and D constants can be expressed in terms of the quark spins :
Au—Ad = F+D
Au+Ad—-2As = 3F-D
Au+ Ad+ As = AL (1.40)
Then we can rewrite the Ellis-Jaffe equations in terms of the individual quark con-

tributiuons to the nucleon spin. Decomposing the spin structure function first mo-
ments into their individual quark contributions, we find :

o= % (%Au + %Ad+ éAs)

3A derivation is presented in the Appendix
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= %(gAu+ SAd+ gAs)
rd = 1(158A + 58Ad+EAs) (1.41)
where we have used the definitions :
vV = /0 ' dzg¥(z, 07 (1.42)
8q = [ delon(e) = g-(2) + 84le) ~ 7). (143)

Further decomposing into singlet (Au+ Ad+ As) and non-singlet components (Au —
Ad, Au + Ad — 2As), and including perturbative QCD corrections yields :

I} = —o(Au—Ad)Ca + 35 (B + Ad — 285)Cp, + %(Au + Ad+ As)C,
r o= +%(A — Ad)Co, + 36(Au+Ad 2A5)Chy + (Au+Ad+ As)C,
I{ = 3 6(Au + Ad — 2As)Crs + 9(Au + Ad + As)C,

(1.44)

where the perturbative QCD singlet C, and non-singlet corrections C,, take the
form [16] :

Cos = 1—(-“—’(”&2)) 35833(“(Q2)) 202153(“@2)) 0(130)( (Qz))
G = 1‘(%%@) 05495(0@2)) (1.45)
(1.46)

These perturbative corrections allow us to make a meaningful test of the Ellis-Jaffe
sum rules with experimental data taken at finite Q2.
We know turn our attention to expected behavior of the asymmetries and structure

functions at high and low z.

1.5 Highx

The behavior of the structure functions at large Bjorken z has been predicted using
perturbative QCD arguments. Essentially, as ¢ — 1 one parton is seen to be carrying

12



N
N

Figure 1.3: The exchange of two hard gluons can lead to one quark carrying a large

fraction, x, of the nucleon momentum.

all of the momentum of the nucleon. Such highly off-shell partons are observed
primarily when the three valence quarks exchange two hard gluons such that two of
the valence quarks are stopped, and the third receives all of the momentum. One
diagram contributing to this process is shown in Figure 1.3. The gluons exchanged
have a large invariant mass, k% &~ m?/(1 — z), where m? is the invariant mass of the
stopped quarks, implying that the relevant strong coupling for the gluon emission,
a,(k?), is small. This suggests that the quark and gluon distributions at large = can
be extracted perturbatively. From these considerations, the quark distributions take

the form [19]
g(z) ~ (1 — g)Pn-14245: (1.47)

where n is the number of spectator quarks and AS, is the absolute difference be-
tween the quark and hadron helicities; AS,=0 for parallel quark and hadron helici-
ties, AS.=1 for antiparallel helicities. We expect that n = 2 in baryons : states with
more quarks will be suppressed as £ — 1 because more hard gluons would have to be
exchanged in order to stop the additional constituents. Thus the QCD counting rules
suggest the high z behavior ¢4(z) ~ (1 — z)? and ¢_(z) ~ (1 — z)® for quark and
baryon helicities parallel and antiparallel respectively. The fact that the antiparallel
distribution is suppressed by (1 — z)? is reasonable since the helicity dependent split-

ting functions have the approximate form Pi_.p4(z) ~ Pyyepi(2)(1 — 2)?, where p

13



is the parent, d is the daughter parton, and z is the fraction of the parent momentum
transferred to the daughter. The implication is that the sign of the helicity of the
parent parton is preferentially transferred to the daughter parton having the larger
momentum fraction [20, 19], so at high z we can expect the quarks to carry the
helicity of the baryon.

Some insight into the high z behavior is given by Farrar and Jackson [21] who
considered the behavior of the two stopped quarks. In order to exchange a hard
transverse gluon requires that the two quarks have opposite spin to conserve angular
momentum. The exchange of a longitudinal gluon does not entail a spin flip, but
this process is kinematically suppressed. Since the two quarks can form either a spin
singlet S=0, or S=1, the argument suggests that in either case S,=0 is preferred, and
the energetic quark carries the spin of the nucleon. Close further suggests that the
S=1 pairing may be suppressed since spin-spin forces prefer the spin singlet state {22].

Additional contributions to the structure functions at high = can come from the
strange quarks and gluons. The leading contribution to the gluon distribution and
strange quark distributions are expected to be (1 —z)* and (1 — z)° respectively [19],
so the dominant behavior as £ — 1 will come from the valence quarks. This suggests

that the asymmetry
A
lim A, ~ 29(2)
=1 q(z)
From these considerations, it is also expected that

—1. (1.48)

lirr;gl ~(1-2z)% (1.49)

That the leading valence quark behavior varies as (1 — z)® is a consequence of the
Drell-Yan-West relation [22, 23, 24], which is another application of counting the
number of spectator constituents. The relation correlates the high Q2 behavior of the

elastic form factor, F', with the £ — 1 behavior of the structure function F; :
leim FQH)~ Q)" = lim Fy(z) ~ (1 - z)?N-1, (1.50)

For the proton and neutron, the elastic form factors drop as Q~*, so we extract the
value N=2 and find Fy(z — 1) ~ (1 — z)3.

14



1.6 Low x

From our discussions of the high z behavior of the parton distributions, we observed
that in QCD processes such as ¢ — gg when a quark radiates a gluon, and ¢ — Gq in
which a gluon splits into two quarks, the helicity information of the original parton is
preferentially retained by the more energetic of the two partons found after splitting.
This suggests that the low momentum partons, corresponding to small values of
Bjorken x, will have helicities which are mostly uncorrelated with the nucleon as a
whole, and the asymmetry measured at low z should tend to zero; A; — 0 as z — 0.

The behavior of the spin structure functions and asymmetries are important at
low z since the integrals of g; over the full z range z € (0, 1) are needed to test the
sum rules. Since the experiments measure g; over a limited range in x, theoretical
guidance is needed to perform the integral extrapolations at low and high z.

The detailed low z behavior of the asymmetries and spin structure functions has
usually been extracted using Regge theory (25, 26]. In the Regge limit the center of
mass energy is taken to be much greater than the momentum transfers and masses
involved, s 3> @Q? where s is the center of mass energy squared. Since s is related to
the invariant mass of the hadronic system, s = W? = M? + 2my — Q?, the Regge
limit is equivalent to 2Mv > Q2. To ensure the process is deep inelastic, we have
the additional requirements of large v and Q% 3> Aqcp. In this case, the Regge limit
corresponds to the small z region = = Q*/2Mv ~ Q?/s =~ 1/s [26].

Regge theory suggests that the scattering amplitudes at high energies in DIS can

be written as :
A(s, 1) ~ s (1.51)

where ¢ is the momentum transfer. The optical theorem relates the forward, ¢ = 0,

part of the amplitude to the total cross section via :
ImA(SaO) =S8 Otot = Otot =X g!-=0) (1.52)

suggesting that the high energy behavior of the cross section at low z depends on z
like a power law, controlled by the Regge intercept a(0) [26]. For the specific case of
91, the low x behavior is expected to behave as the sum of a few Regge terms [28]:

9\ (z) 2 Y fiz= (1.53)
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where the sum is over the intercepts of the a;(1270), f(1285), and f;(1420) trajecto-
ries. Not much is known about the intercepts, but they are expected to be close in
value so the leading behavior is expected to be described by a single power law [25, 28]:

g7 (z = 0) >z~ (1.54)

where Heimann [25] suggests for the leading intercept value a,,(0) = —0.14, which
lies inside the range a,,(0) € (—0.5,0.0), suggested by Ellis and Karliner based on
results from 7P scattering [28].

The low z behavior of both the spin dependent and spin independent structure
functions has undergone a great deal of study recently, especially in light of the new
data from HERA suggesting a dramatic increase in the magnitude of F; [29]. Several
new forms for g; have been suggested, including g;(z — 0) ~ (1+2log z) [30], g1(z —
0) ~ alog(1/z), and g;(z — 0) ~ [Fy(z)]V? [27) which imply larger contributions to
the low z extrapolation than those based on Regge theory. More precise data on g1 are
clearly needed to constrain the models and reduce the large theoretical uncertainties

involved with the low z extrapolation.

1.7 Modeling the Neutron

We can combin~ our discussions of the previous sections and make a simple prediction
for the form of Af. Our SU(6) model suggested that for z ~ 0.3 we expect AT ~0.
The asymmetry at low z is supposed to go to 0, and at high z it’s expected to go to 1.
A model which manifests this basic behavior by Schifer is shown in Figure 1.4 [31].

1.8 Polarized 3He as a Polarized Neutron

In the experiment E142 we extracted the spin structure function of the neutron from
that measured with a polarized *He target. The use of polarized *He as a polarized
neutron has its origin in a few observations. In the crudest model of 3He, the nucle-
ons are in a spatially symmetric S state. The Pauli principle constrains the overall
wavefunction to be antisymmetric, so the spin-isospin wavefunction must then be anti-
symmetric. Exchanging the two protons must yield a symmetric isospin wavefunction,
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Figure 1.4: A model of Schéfer for A}(z) showing A}(z — 0) = 0, A%(z — 1) = 1
and A}(z — 0.3) = 0.
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-94
Proton Proton 7587A8

Figure 1.5: Pure S wave model of 3He in which the proton spins cancel and the

neutron is 100% polarized.

implying that the protons’ spins are paired antisymmetrically in a spin singlet. In
this picture, the protons have no net contribution to the spin of 3He, which is carried
exclusively by the neutron. Some support to prove that this is not drastically wrong
comes from noting that the magnetic moment of 3He is -2.12 nuclear magnetons,
which is close to that of a free neutron, p,=-1.91 [32]. In such a model we would
picture a 3He nucleus as in Figure 1.5. A more realistic approach will include other
components of the wavefunction. As an example, Blankleider and Woloshyn [35] used
the wavefunctions computed by Afnan and Birrell, who had solved the Faddeev equa-
tion with a Reid soft-core potential [33]. Using an L-S coupling scheme of Derrick and
Blatt [34] they decomposed the solution into components with the neutron and proton
spins in particular directions [35]. The dominant partial wave components from [35]
are given in Table 1.2. Here P}(-) is the number of neutrons aligned (antialigned)
with the *He spin. The B} (=) refer to the protons, where P} + Py = 2. The last
column gives the percentage of each partial wave component, P(S), P(S'), and the
average of the D state components, P(D), in the *He wavefunction. The S$' compo-
nent has its origin in the small difference between the tensor T=0 and T=1 forces
distorting the primary S wave configuration [32]. P wave components are suppressed
in the *He wavefunction since they are of opposite (positive) parity.

In this modc! the net neatron polarization, p, = (P} — P7)/(P} + P;) is 86.3%,
and each proton is 2.3% antialigned with the 3He spin. Thus in a realistic model, the
neutron is slightly depolarized, and the proton has a small negative contribution.
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Partial Wave |L | S | P} |P7 |PY | By | %
S 0l1/2] 1 | o | 1] 1 |86
5 0|1/2|2/3|1/3|4/3|2/3| 1.5
D 2| 3/2|1/3|2/3|2/3|4/3]837

Table 1.2: The dominant partial wave components of 3He are listed.

A general scheme was devised by Friar et al. to allow the relative neutron and

proton polarizations to be extracted from other models [32]. Denoting

Pt = 1-A
P7 = A, where A =[P(S')+2P(D)]/3 (1.55)
and
1
Py = 3~ A
P = % + A’, where A’ = [P(D) — P(S5")]/6 (1.56)
allows us to write p, = 1 —2A and p, = —2A’, where the effects of realistic wavefunc-

tions are included in A and A’. We now discuss increasingly sophisticated models for
3He.
In the simplest model, a pure S wave, A = A’ = 0, so the neutron is 100%
polarized. This implies
H F7(z)
A= e+ 2
To incorporate more realistic wavefunctions, the quantities A and A’ were extracted
from many models, and a fit yielded the averages A = 0.07 £ 0.01 and A’ = 0.014 +
0.002 where the errors are a subjective estimate of the spread of the model results
[32]. The best fit average nucleon polarizations were calculated by Friar et al. to be
Pn = 0.86 £ 0.02 and p, = —0.027 + 0.004. Ignoring other nuclear effects such as

Fermi motion and binding effects, we can write the asymmetry and spin structure

A}(z) and g;"(z) = g} (). (1.57)

function as [36]

F}(z)
[Fp(zx) + 2F% (z))]

2F!(z)
[Fp(z) + 2F%(z)]

Ae(z) = pAYz)  (1.58)

PaAT(z) +
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and
9:7%(2) = pagl(z) + 2ppg% (). (1.59)

This model incorporates the effective nuclear polarizations and suggests that the
largest effect on AiH" from the protons comes at high x where the proton asymmetry
is large.

Another level of sophistication was added in order to investigate the effects of
Fermi motion and binding. In the Bjorken limit we can write g{! for a nucleus in

terms of its constituent nucleons as [36]
11
gt@)~ Y [ do=gl'(c/2) [ dE [ dp|Pi(p, B) - Py(p, B)|é(z — p* /M) (1.60)
N I

where z is the nucleon light cone momentum fraction, p* is the light cone momentum
component, and the P;(_) are the spectral functions describing the probability of
finding a nucleon, N, with energy E and momentum p with helicity parallel (antipar-

allel) to the nucleus. The spectral functions are normalized such that
[ 2 [ do[P(p, B) — Pi(p, E)] = pw (161)

is the net nucleon polarization,

The equations (1.58) and (1.59) correspond to setting z = 1 above. After the
complete calculation in (1.60), for x<0.9 the results were within 5% of those in equa-
tion (1.59), suggesting that Fermi motion and binding effects have only a limited
effect [36]. The individual contributions of the proton and neutron to g, can be
seen in Figure 1.6 taken from Woloshyn [37]. The dominance of the neutron contri-
bution is clearly seen. Other nuclear effects such as meson exchange currents have
not been investigated, but as these make only a modest contribution to the magnetic
moment of 3He [32], it would be surprising if they had a large effect in spin dependent
DIS. The repercussions of final state interactions have not been investigated.

The results above suggest that the dominant nuclear effects (modulo the unknown
effects of final state interactions and meson exchange currents) come from the small
S" and D wave components which change the effective nucleon polarizations inside the
nucleus. This effect is small and independent of the shape of the constituent nucleon

spin structure, g). Thus a reasonably accurate picture of polarized 3He sees it as
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Figure 1.6: The neutron and proton contributions to gi"e are shown in this plot from

Woloshyn.

an 86% polarized neutron with two protons polarized 2.7% in the opposite direction
to the 3He spin. We conclude that g1 can be extracted reliably from the measured
g17¢ using equation (1.59), if we include a 5% systematic error to account for Fermi
motion and binding effects [36]. Thus polarized 3He serves us very well as a polarized

neutron.

1.8.1 The Axial Anomaly and other Complications

The expectation is that the nucleon spin can be decomposed into components :

3= 55+ 80(Q7) + L(@Y) (1.62)
where L, is the orbital angular momenta, and Ag is the gluon contribution to the spin.
The latter quantity may be substantial since gluons are known to carry roughly 50%
of the momentum. The SU(3) considerations suggest that ¥ is 0.6, which contrasted
sharply with the shocking result of EMC that £ was consistent with zero. A part of
the resolution of this puzzle was the recognition of a gluon component which mixed
in with the quark spin. Naively one expects the gluon contribution to vanish as a,,

but the anomalous dimension was found to be -1, so that Ag varied as log(Q?) [38].
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This axial anomaly gave rise to a new interpretation of the spin measured in deep

inelastic scattering :

~ o 2
Ag=ag- 2P py@n) (1.63)

The product of o and Ag is non-vanishing to leading order as Q2 evolves, leading to a
finite reduction seen in the measured spin of the quarks. An interesting observation is
that since o, decreases rapidly with increasing @2, then the gluon contribution must
grow. In equation (1.62) this implies that the orbital angular momentum must grow
large and negative to compensate [39)].

Higher twist terms in the integral, of the form C,/(Q?%™ can also make contri-
butions to the spin structure function integrals, especially at the low Q? at SLAC.
Estimates of these terms are difficult to make, and controversial, but the most recent

results suggest that they are small [40].
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Chapter 2

Experiment Apparatus

2.1 Experiment Overview

The experiment E142 took data for six weeks starting in November of 1992 at the
Stanford Linear Accelerator Center (SLAC). The essence of the experiment was to ac-
celerate polarized electrons in the two mile long linear accelerator to energies of 22.66
GeV, and then divert them to End Station A (ESA) which contained the polarized
3He target. A fraction of the electrons scattered from the target were detected in two
independent magnetic spectrometers located at 4.5° and 7.0° away from the incident
beam direction in ESA. The experiment ran predominantly in two configurations, one
in which the spins of the electron beam and 3He were parallel, the second in which
they were antiparallel. By measuring the difference in scattering rates from the two
cases, the asymmetry, A7(z,Q?), and spin dependent structure function, g}(z, Q?)
were extracted. A schematic of the experimental setup is shown in Figure 2.1. In

Polarized
Pulsed 3He Target Magnetic
Beam —> Spectrometer
e —» >
19-26 GeV
12-93
T588A24

Figure 2.1: The layout of the experiment E142 is shown.
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this chapter we will describe the hardware used to perform the measurement, starting
from the polarized electron source, and ending in the counting house (CHA) where

the data acquisition computers were located.

2.2 Polarized Electron Source

The polarized electrons were produced by photoemission from an AlGaAs photocath-
ode, in a manner fully described by Woods et al. [41, 42]. Initiating the process was
a Candela Ti:sapphire flash lamp pumped dye laser. This laser used Oxazine 720
dye to produce 0.9-1.4 us long pulses of light at 715 nm. The width of the pulses
was controlled with SLC’s Laser Pulse Chopper (LPC) and the peak intensity was
kept uniform with the Top Hat Pulse Shaper (TOPS). From here, a Beam Intensity
Control (BIC) system regulated the overall intensity of the light on the photocathode
as a means of controlling the current. A schematic of the polarized source is presented
in Figure 2.2.

After passing through BIC, the initially linearly polarized light was converted to
99% circularly polarized light by a Pockels cell. By applying a positive or negative
voltage to the cell we could produce either left or right hand circularly polarized light
on a pulse-to-pulse basis. This circularly polarized light illuminated a photocathode
consisting of a 0.3 pm thick active layer of Alg12GaggsAs doped with Be at 6x10'8
cm~3. The photocathode was placed in Diode Gun 1 and operated at 0°C and 60
kV. The addition of 12% Al served to increase the bandgap of GaAs from 1.43 eV
to 1.63 eV, which has the advantage that the peak polarization was achieved using
light at ~ 710 nm which is readily available. Laser light at 760 nm required by pure
GaAs photocathodes [43] is more difficult to produce. In Figure 2.3 we show the
band structure of pure GaAs. Positive helicity light (left hand circularly polarized)
around 1.43 eV excites the transitions from the valence band to the conduction band
with the probability for a |3/2,~3/2 >— [1/2,—1/2 > transition favored by a factor
of 3 over [3/2,-1/2 >— [1/2,1/2 > [44]. This implies that positive helicity photons
will preferentially photoemit electrons with spin opposite to the incident photons.
However, since the electrons are emitted in a direction opposite to that of the photons,
we see that positive helicity photons will produce, theoretically, a 50% polarized
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Figure 2.2: Schematic of the polarized electron source used by E142.
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Figure 2.3: Here we show the band structure of pure, unstrained GaAs. The ar-
rows denote the transitions occurring when illuminated with positive helicity 1.43 eV

photons. The numbers reflect the relative transition probabilities.

sample of positive helicity electrons [45]'.

After photoemission the electrons were accelerated across the 60 kV potential of
the gun, creating a 0.9-1.4 s pulse of ~ 0.5-2.5x 10! electrons which were captured
by the pre-buncher, after which they were bunched and accelerated down the linac.
We note that although the source operated at 120 Hz, E142 only used the first 119
pulses. The 120th pulse was a short, 2 ns pulse used for accelerator diagnostics and
tuning.

Throughout the six week run, the quantum efficiency of the system remained
stable between 0.7% and 0.9%, and the gun was not re-cesiated.

2.2.1 Beam Acceleration and Transport

The electrons created at the source were bunched and then entered the 3.2 km linear
accelerator. The accelerator structure consists of 30 sectors, each containing eight
klystrons, steering dipoles, a quadrupole, and additional elements for monitoring the
beam position and current. Each of the 240 klystrons feed microwave radiation at
2856 MHz into copper cavities, in which the crests of the RF field accelerate the
electrons for an average energy gain of 6 MeV/m over the length of the linac [49).

1Since E142, the introduction of strained lattice GaAs photocathodes has removed the j=3/2
valence band degeneracy to make 100% polarization possible. In fact, >85% polarizations have
already been achieved [46].
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Figure 2.4: The main elements of the A-line beam transport system are shown.

At the end of the linac, the beam is diverted by pulsed magnets located in the Beam
Switch Yard (BSY) into the A-line, which transports the beam to the target and
detectors located in End Station A (ESA). The A-line consists of eight identical 3 m
long dipole magnets (B10-B17) operated in series, each of which bent the beam by
3.0° from the linac towards ESA. Interspersed were seven quadrupoles (Q10-14 and
Q20-21) used to control the beam divergence and spot size at the target.

2.2.2 Beam Monitoring
Beam Energy

The energy of the beam was monitored continuously and recorded every five minutes
using a flip-coil located in one of the dipoles. The current induced in this rotating coil
is proportional to the magnetic field strength of the dipoles. In turn, the magnetic
field strength determines the momentum of the electrons passing through the A-line
to about 0.1%. The energy spread of the beam, AE/E, entering ESA was restricted
to 0.7% full width by using three adjustable slits SL10F, SL10R and SL11 located in
the A-line. A schematic of the A-line is presented in Figure 2.4.

Beam Current

On a pulse-to-pulse basis the beam charge was measured with two independent fer-
romagnetic toroids, with one located about 38 m upstream of the target, and the
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second a few meters upstream. As the beam passed through the ferrite core of the
toroid, a signal was induced in a loop of wire wrapped around the toroid, which in
turn was connected to a resonant LC circuit. The current induced was amplified
and integrated, with the total charge being proportional to the beam current [50].
Each toroid was calibrated by dumping the charge from a precisely charged capacitor
through the toroid and measuring the induced charge. From this, calibration coef-
ficients were extracted daily for each toroid, enabling the total beam charge of each

spill to be measured to about 0.5%.

Beam Position and Steering

The beam position and width were monitored with a set of & — § wire arrays placed
2.5 m upstream and 7.5 downstream of the target. Each of the 24 wires in & and §
were made of 0.127 mm diameter CuBe, with a spacing of 0.635 mm in the upstream
wire array, and 1.0 mm in the downstream array. The wire arrays were read out on
a pulse-to-pulse basis by our Beam Control System (BCS) and this information was
used to perform minor steering corrections to the beam. The fine adjustments were
made by controlling the current of four vernier steering magnets, A10 (horizontal
corrector) A1l (vertical corrector) located 168 m upstream of the target, and A12-
A13 located 120 m upstream. The steering corrections were the only part of the beam
controlled by the experimenters in ESA.

Two mylar roller screens, coated with fluorescent ZnS and observed with television
monitors, were rotated into the beam and allowed a coarse centering and focusing of
the beam. This was of use primarily after we changed targets, or when the beam
was being reintroduced to ESA after a stoppage. These were removed before taking
data. Additional information, used by the Main Control Center (MCC) to adjust the
beam, came from two paddles of scintillator. The first piece was located upstream of
the target beside the beampipe and was sensitive to beam halo and scraping. The
second piece was downstream of the target, several meters away from the beampipe.
Since it was sensitive to debris created at the target, it served as a good indicator of
the time structure of the beam. Other monitors of the beam included two microwave
cavities located & 50 m upstream of the target. One cavity produced an RF signal
proportional to the deviation of the beam from the horizontal center of the cavity,
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the second was sensitive to vertical displacements. A final system used for beam
monitoring and target protection was a secondary emission monitor (SEM) made of
an aluminum foil with a circular aperture for the beam, placed immediately upstream
of the target. Large signals from the SEM indicated dangerous excursions of the
beam and would trigger a shutdown without operator intervention. This prevented
the beam from hitting the thick side walls of the target.

2.2.3 Spin Precession

The helicity of the electrons entering the linac is the same as that of the photons
hitting the photocathode (to the extent that the beam is polarized). Acceleration in
the linac did not alter the helicity of the electrons, which remained constant up to the
end of the linac. Here, pulsed bending magnets deflected the beam 0.5° north into
the A-Line, and the set of eight dipole bending magnets each bent the beam another
3.0° north into ESA. In the course of being deflected into ESA, the electrons’ spin

precessed by an amount

A0Prec¢:ssi<:nn = 7A0bend [92;2 (21)

where Afpena=24.5°, and g=2.002319304 is the gyromagnetic ratio of the electron [51].
For beam energies which are an even multiple of 3.23742 GeV, the electron helicity at
the target in ESA will be the same as it was at the source. This was the case for the
E142 runs using Epeam of 19.42 and 25.90 GeV. For the majority of the data which
were taken at 22.66 GeV, which is an odd multiple, the helicity of the electron as it

entered ESA was opposite to that at the source.

2.2.4 Electron Beam Helicity Reversal

The ability to reverse the beam polarization on a pulse-to-pulse basis with the Pock-
els cell was very important for reducing systematic errors. Possible false asymmetries
due to slow changes in spectrometer acceptance were averaged out by the rapid beam
helicity reversals. Also, by changing the target polarization direction, we could fur-
ther average over asymmetries induced by possible helicity-dependent differences in
the beam properties. During E142, a positive voltage applied to the Pockels cell
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Figure 2.5: The polarization of the beam was set pulse-to-pulse by a pseudo-random

number generator, using a simple feedback scheme illustrated here.

would produce positive helicity photons, while a negative voltage yielded negative
helicity light [48]. The absolute helicity of the light was determined using a technique
involving total internal reflection in a prism [47], and the helicity of the electrons was
verified by Mgller scattering [48].

On a pulse-to-pulse basis, the beam helicity was chosen using a pseudo-random
bit generator. The sequence began when a 32 bit random number was chosen, with
the last (32nd) bit determining the helicity of the beam. For the next pulse, the 19th
and 32nd bits were XORed with the result being put in the place for the 1st bit, after
the remaining bits had been shifted up. The new 32nd bit determined the helicity
of this pulse, and the cycle was repeated. A schematic of this operation is shown
in Figure 2.5. The polarization state of the beam was sent to the Counting House
computers via three physically distinct pathways, termed the Mach line, Pockels
Cell High Voltage Line, and the Veto Bits. Each pathway consisted of a pair of
cables each carrying either a high or low level, where the combination 01’ referred
to positive helicity photons (hence positive helicity electrons at the source), and ’10’
meant that the photons incident on the photocathode were of negative helicity. Any
other combination of bits signaled an error. The integrity of this system is discussed
in Chapter Three.
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2.3 Mpgller Polarimeter

2.3.1 Apparatus

A single arm Mgller polarimeter was constructed to measure the electron beam po-
larization in ESA. The target consisted of a foil holder which could move any of three
thin ferromagnetic foils into the beamline. The foils were 20 pm, 30 ym, and 50 pm
thick, and composed of Permendur (49% Fe, 49% Co, 2% Va). Magnetizing a thin
foil mounted at 90° to the beam requires impractically large fields, so the foils were
inclined at 20° with respect to the beam and magnetized along the beam direction by
a 100 G field from a set of Helmholtz coils. This target assembly was placed in the
alcove of ESA upstream of the 3He target. To restrict the rates in the Mgller detector,
a 20 radiation length tungsten mask was placed 7.11 m downstream of the target.
This septum had a 31.75 mm diameter hole for the electron beam to pass through,
and a 48 mm x 10.2 mm aperture for the Mgller electrons, defining an angular
scattering range in 8 of 4.35 to 11.15 mrad. Momentum selection was accomplished
with a dipole magnet, 18D72, whose magnetic center was 8.70 m from the target.
The dipole operated at 91 kG with an [ B - dl of 14.5 kG-m to select electrons with
momenta 10.0 GeV/c % 2.9%, which were bent vertically downwards by 53 mrad.
These Mgller scattered electrons were detected in an instrumented lead brick 22.4 m
from the target foils. The detector had an active area of 108 mm x 36 mm and
consisted of 35 2.38 mm thick brass proportional tubes of 4 mm diameter arranged
in two staggered rows, yielding a final @ acceptance from 5.0 to 10.5 mrad. To reduce
the soft 4 background and to amplify the response, a 6 radiation length lead plate was
positioned in front of the tubes. Each tube subtended 4 mm/22.4 m = 0.18 mrad to
image a Mpller peak whose width was o =~ 0.26 mrad. A schematic of the apparatus

is shown in Figure 2.6.

2.3.2 Mpgller Asymmetry
The cross section for polarized e”e™ scattering is fully calculable in QED, and in the
CM frame takes the form [52]

do _ o® (3 + cos%0)?
dQ s sin 40

(7 + cos 26) sin %0
(3 + cos 20)?

[1 — PEPT A,(6)], where A,(0) = (2.2)
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Figure 2.6: Side view and top view of the Moller polarimeter apparatus



Here 6 is the CM scattering angle, PB(PT) is the beam (target foil) longitudinal
polarization. By measuring the Mgller scattering rate for the electron beam and

target spins aligned, 77, and antialigned, o'!, we can form the asymmetry [54]

1T 514

A= Crom

The target polarization at saturation can be estimated from the approximation that
2 of the 3d (M shell) electrons in Fe are aligned with the external field and the re-
maining 24 are unpolarized, yielding 2/26=7.7% polarization. The E142 polarimeter
operated at a CM angle of 97° (backgrounds were too large at 90°), corresponding
to A.(6)=0.76. Using a beam polarization of ~ 35% we can estimate the Mgller

= PBPTA,(9). (2.3)

asymmetry as roughly 2%. The laboratory frame scattering angle, 6y, is given by

2m,. sind
Eyeam 1 + cosé

tanf; = = 0 = 7.6 mrad. (2.4)

2.3.3 Foil Polarization

In practice the foil polarization is determined by measuring its magnetization, M.
Ramping the external field, H, will induce a voltage in a pickup coil wound around the
foil due to the changes in magnetic flux, [ Vdt = ¢; — ¢;. The flux has contributions

from the foil and air :
¢ = Neurns X [Broil - Aot + H - (Acoit — Agoin)]- (2.5)

By integrating the induced voltage with and without the foil, and noting that By, =
H + 47M, we find [53]

1
= ———— - 9
47r,M| Ntumsl-‘tfoil' [ / vt ./ th] ’ (-'6)

foil in foil out

The magnetization is related to the foil polarization by

. e — 11 M|
PT=[ Je _get ] 2.7
? (gc - 1) Geff nup ( )

where the gyromagnetic ratio of the electron, g. = 2.002319304, the gyromagnetic
ratio of Permendur, g.q = 1.885+0.005, n is the number density of electrons, and UB
is the Bohr magneton [55).
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Source of Uncertainty Contribution
Gyromagnetic ratio of Permendur, g.qs 0.3%
Air flux measurement reproducibility 2%

Foil thickness uncertainty 2%
Background subtraction 2%
Difference in results from 20 and 30 um foils 1%
Levchuk effect 2%
Total Systematic Error 4.1%

Table 2.1: Sources of systematic error in determining the beam polarization.

2.3.4 Systematic Errors

The systematic errors on the polarization measurement are estimated as follows. Un-
certainty in ges contributes a 0.3% error to 47|M|. The [ .. Vdt air flux measure-
ments taken before and after E142 showed a 2% variation. Foil thickness uncertainty
contributes another 2%. Subtraction of the radiative Mgller and other backgrounds
adds 2%. The 20p¢m and 30pm foils yielded results for the beam polarization that
differed by 1% which we also add in quadrature with the other factors. Finally, the
motion of bound electrons in the target foils smears the lab frame scattering angle (the
Levchuk effect [56]) by a maximum amount tan fmeareq & tan Ounsmearedy/1 ~ |P|/m.,
where |P| is the momentum of the struck electron = y/2m,|E,| where E; is the bind-
ing energy. For the K-shell of Fe, |Ey| ~ 7.13 keV, so the scattered K-shell electrons
are smeared out by 9%. The lineshapes of the different shells and hence the unpo-
larized and polarized electrons in the foil are affected differently. Experimentally, the
consequences of this effect depend on how much of the Mgller peak is detected. As
the fraction of the peak which is detected gets smaller, the measured asymmetry will
get larger since the relative contribution of events from the unpolarized, inner shell
electrons will decrease. Modeling this effect contributes a further 2% uncertainty.
Finally we quote a total relative systematic error of 4.1% on the beam polarization.
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2.3.5 Beam Polarization Results of the Mgller Runs

Mgller data were taken daily, for a total of 200 runs. Each run consisted of roughly
15000 spills (with the polarization reversed randomly on a pulse-to-pulse basis). The
proportional tubes were attached to ADCs, and the total charge accumulated in a
channel per spill was proportional to the number of electrons hitting the tube. Non-
linear behavior of the ADCs at low charges was observed and appropriate corrections
were made. About 100 electrons were detected per spill. To determine the scattering
asymmetry, the average signal in each detector channel was calculated for each helicity
of the beam. Unpolarized background and the radiative Mgller tail were subtracted
and then an asymmetry was formed channel by channel, as in Figure 2.7. After cor-
recting the observed asymmetry for the Levchuk effect, the beam polarization was
inferred from equation (2.2). The Mgller data suggest there was no variation of the
beam polarization during the 22.66 and 19.42 GeV runs (see Figure 2.8), which is to
be expected since the electron gun was not re-cesiated during the experiment so the
gun quantum efficiency and polarization were expected to be stable. For the 22.66
and 19.42 GeV runs, we quote a final beam polarization of 35.8 +0.3(stat) & 1.5(sys).
The 25.51 GeV runs had a slightly lower, but still stable polarization of 32.5%, since
we were forced by problems with the A-line magnets to run below the energy of
25.896 GeV which is optimal for integral spin precession in the arcs. This had been
the highest energy ever run into ESA.

2.4 Polarized *He Target

This experiment was made possible by recent developments in constructing high den-
sity polarized *He targets. Whereas techniques for polarizing *He by metastability
exchange [57] and spin exchange with optically pumped alkali vapor [58] have been
known since the early 1960s, elucidation and control of the relevant experimental
factors to produce sufficient density and polarization have taken 30 years [59, 60, 61,
62, 63, 64, 65).

The E142 target target was a two-chambered 30 cm long glass cell holding *He at
densities of 2.3 x 10%° atoms/cm3. The cell sat in a 30 G holding field and ~ 33%
polarization was achieved by spin exchange with optically pumped Rb vapor. The
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Figure 2.8: The beam polarization measured from the Mgller runs is shown here for
the three beam energies used during E142. The negative sign of the polarization for
the Epeam=22.66 GeV/c runs indicates the helicity of the beam at the Mgller target

is opposite to that at the source due to spin precession in the arcs.

target is fully described by Middleton [66] so only a few details are presented here for

completeness.

2.4.1 Optical Pumping and Spin Exchange

High density targets can be achieved most easily using the technique of optical pump-
ing. In our case, positive helicity (for example) circularly polarized laser light at 794.7
nm excites the 55,/ (m, = —1/2) ground state to the 5P/, (m, = +1/2) in rubidium
vapor (the D1 line). Radiative decays to the ground state favor the 55/, (m, = —1/2)
state over 55y/2 (m, = +1/2) state by a factor of two. Then, for every three photons
absorbed, we would increase the population of the 55/, (m, = +1/2) by one. By
adding 65 torr of N, as in our target cells, the 5P, (m, = £1/2) are collisionally
mixed at a rate exceeding the radiative decay. The relaxation into the 55, /2 ground
states now occurs equally into the two magnetic substates, and only two photons are
required to increase the 55/, (m, = +1/2) population by one [67]. The pumping
scheme is shown in Figure 2.9. The polarization of the valence electrons of Rb com-
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Figure 2.9: The optical pumping scheme is illustrated for positive helicity circularly
polarized light. For every two photons absorbed, the m, = +1/2 population increases

by one.

petes with several depolarizing mechanisms, the most important of which are spin
destruction from Rb-Rb and Rb-3He collisions (the latter is dominant at high pres-
sures), as well as Rb-target cell wall interactions. However, with an optically thick
Rb vapor (10" atoms/cm?®) and sufficient laser power, the optical pumping rate of
1/Top = 107¢ s dwarfs the competing 1/T'sq &~ 1072 s rate of spin destruction, so Rb
polarizations of = 100% can be achieved.

The Hamiltonian for spin exchange between the electrons of Rb and the nucleus of
3He has the form of a dipole-dipole interaction between the ith Rb electron’s magnetic

moment, ugS;, and the 3He nuclear magnetic moment, s y.un1;

[I -8 —3(I-5)(S: - 1)

8T _,.
Hsg = —2vspepnpiB Z - —315(1)1 : Si]- (2.8)

Rb electron i

7
Here r; is the distance between the ith Rb electron and 3He nucleus, up and py are
the Bohr and nuclear magnetons, and y:y. = 3.243 kHz/G is the gyromagnetic ratio
of 3He. The Fermi contact term in the hyperfine Hamiltonian corresponds to the
overlap of the Rb electron with the 3He nucleus. This hyperfine interaction which
transfers angular momentum from the valence electron to the 3He nucleus, is enhanced
in noble gases [68, 69] and dominates the spin exchange cross section which is & 10-24
cm? [59] . The spin exchange rate, I'sg, will be proportional to the relative velocity

21t is clear now why alkali metals are used, and interesting to note that in muonic 3He this cross
section goes up by 10 orders of magnitude. Rubidium is a suitable alkali to use because lasers to
pump the D1 line are readily available.
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between the *He and Rb, v, and to the number density of Rb, [Rb];
I'sg =< osgv > [Rb] (2.9)

where the velocity averaged cross section is & 1.2x107!® cm?/s [70]. With [Rb] ~ 104
cm™3, polarization times for *He are of the order of hours, 1 /T'se = 25 — 40 hours.
There are diminishing returns on increasing the spin exchange rate by increasing
the rubidium density, since for fixed laser intensity, the volume of Rb which can be
polarized eventually decreases. As before, various processes will act to depolarize the
3He atoms. Collisions between 3He atoms can cause the exchange of nuclear spin and
orbital angular momentum. This bulk relaxation rate, I'bux = 1/Toux = 1/1000 hours.
Paramagnetic impurities, both gaseous and embedded in the cell walls contribute

further to the overall relation of the cell,

1 1 1 1
S N I (2.10)
Teell Thulk Tgas  Twall

Factors external to the cell also play a role. Polarized 3He diffusing through regions
in which the holding field is inhomogeneous will precess about the local field and the
spin direction will be randomized. By keeping the gradients perpendicular to the
alignment field small, <20 mG/cm, this relaxation effect became insignificant for us,
Tvp > 300 hours.

A final contribution results from the effects of ion production in the cell by the
electron beam (71, 72]. The beam will produce *Het and 3He] ions at a rate

AFEionization  €lectrons ~7x10-2

o €lectrons
~ ——
on ~~ ¢ ” .

ionization energy second second

I, (2.11)

in our cells, where AE is the energy lost by ionization of an electron traversing
the target, and the ionization energy has been taken as 42 eV [73]. Each ion will
depolarize an average of n *He atoms, before being neutralized, by coupling the
nuclear to the unpaired electron spin, or to the rotational angular momentum in the
case of the molecular ion, yielding Mbeam = nlion. At the high densities in our target
nis < 1 [71, 74, 72], and for our highest beam currents of 2 x 10'! electrons/spill
at 120 Hz, Theam = 1/Tbeam > 170 hours. Magnetic field gradients created by the
beam will contribute even less than this to the depolarization of the cell [72]. The
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cumulative effect of these relaxation processes can be characterized by

1 1 1 1

e . 2.12
Teell + TVB + Tbeam 58 + 5hours ( )

Th =

We note that since the diffusion time in these cells is of the order of seconds, if
there were large unforeseen relaxation effects due to the beam, the cells would have
depolarized quickly, which was not observed.

A simple model of the spin exchange and relaxation processes yields a time de-
pendent polarization of 3He given by

Poyge(t) = — L Pay(1 — exp(—(1sE + Tr)t)) (2.13)
e+ Tr

where Psy(0) = 0 and Pgy, is the steady state polarization of Rb = 100%. Given our
I'r and vsg estimates, Pspe(t — oo) = 35% which is close to the observed average

polarization of 33% over the entire experiment.

2.4.2 Target Apparatus

The target was made of Corning 1720 aluminosilicate glass, which has low 3He per-
meability. It used an innovative two chamber design where the upper, pumping cell
was a 70 cm® volume containing 3He and a few tens of mg of Rb. This chamber was
enclosed in a plastic oven and heated to 160-165 C to create a Rb vapor density of
about 2 x 10! atoms/cm3. A laser hut was constructed adjacent to the target to con-
tain Five Spectra Physics Model 240 Beam Loc argon ion lasers each pumping one of
five Spectra Physics Model 3900S Ti:Sapphire lasers. The lasers pumped the target
continuously, resulting in a total of 20 watts of power at 795 nm on the pumping
cell. The light from each laser passed through various optical components including
a A/4 plate to produce circularly polarized light, before reaching the pumping cell
which was about 3 m away. The system was quite stable and required retuning only
after several days. A schematic of the target is shown in Figure 2.10. Our discussion
before suggests that high polarized Rb densities will yield large vsg and hence high
Psy.. With 20 watts of power we could have operated the pumping cell at 180 C but
the Nylotron plastic oven began to leak at these temperatures (we had three oven
failures) so we ran suboptimally at the lower Rb density found at 160-165 C. Due to
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Figure 2.10: Schematic of the E142 3He target

the problems with the ovens, three separate target cells were used, known affection-
ately as Minnehaha, Hiawatha and Gore. The characteristics of these cells were very
similar (Exact dimensions are given in the Dilution Factor section 3.6.6).

The polarized *He polarized in the upper cell diffused through a 60 mm long by
9 mm inner diameter transfer tube to the lower, target cell, with a time constant
of about 10 minutes. This cell was a cylinder 30 cm long, 1 cm in radius, with 0.1
mm thick endcaps which were roughly spherical. Jets of ‘He were directed at these
endcaps to ease the thermal stress caused by the beam. Endcap temperatures were
monitored with a pyrometer, and the rest of the target cell with 6 Resistive Thermal
Devices (RTDs). The target cell remained at 65£7 C and had a residual Rb density
of the order 10" atoms/cm3, which is insignificant in comparison to the 2.3x10%
atoms/cm® of 3He and the 1.8x10'® molecules/cm® of N, which were the primary
components of the target cell. A large scattering chamber enclosed the oven and two
chamber cell assembly, and was evacuated to a few mtorr.

Outside of the scattering chamber was a set of 1.4 m diameter Helmholtz coils
which produced a 29 G field to align the *He nuclear spins. Smaller secondary coils
were added to allow polarizations transverse to the beam, and to facilitate the reversal
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of the target spin along the beam direction.

Another feature of the apparatus was the stepper which moved the target. By
moving the cell through the beamline and leaving it where the event rate was a
minimum, we maximized the fraction the events coming from 3He. The target could
be removed and reinserted to the same position with submillimeter accuracy. The
stepper was also used to move an empty reference cell into the beamline which we filled
with known pressures of ®He for systematic studies (see the section on the Dilution
Factor 3.6.6).

2.4.3 Target Polarimetry and Polarization Results

The *He polarization was determined by adiabatic fast passage NMR. [66]. A set of
45.72 cm diameter Helmholtz drive coils above and below the target (distinct from
the longitudinal and transverse holding field coils) provided a 100 mG RF field at 92
kHz, while the main holding field was swept from 19 G to 39 G, through the Larmor
resonance at 29 G. The field sweep rate of 1.27 G/s arose from the conditions that the
sweep rate be slow enough for the nuclear spins to follow the changing field, but fast
enough to avoid the spins dephasing while passing through the resonance. The result-
ing nuclear spin flip induced a signal in a set of 200 turn copper pickup coils, wound
on a 76.2 mm by 25.4 mm teflon form and centered around the target cell. These
coils had their long axis parallel to the target, and were separated from each other
by 25.4 mm. Using a 100 pF capacitor, an LC resonant circuit was formed, with the
resonance at 100 kHz. From here a Stanford Research Systems SRS560 preamplifier,
located close to the target, amplified the signal and sent it to the Counting House.
In Figure 2.11 we show the layout of the target electronics. A Stanford Research Sys-
tems SRS530 lock-in amplifier subtracted the 92 kHz modulation, and the resulting
NMR signal was proportional to the *He polarization. The proportionality constant
is determined from the thermal equilibrium Boltzmann polarization of protons in a
water sample. This polarization is calculated from

P, = tanh (’;';—]?) (2.14)

where [B| is 21.61 G for a proton resonance at 92 kHz. The proton signals were small
compared to the *He signals (few xV versus 200 mV), but large enough that there
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Figure 2.11: Schematic of the NMR electronics used to determine 3He polariation in
the E142 target.
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Figure 2.12: In the plot on the right we show the average of 25 proton NMR-AFP
signals, which are used to calibrate the polarization of the much larger 3He signals

seen on the left.

was no need to incur the greater costs of higher fields and frequencies needed for a
larger proton signal. These signals can be related to 3He polarization if the number

densities and cell radii, R, of the water cell and 3He cell are known, via

Pye _ Popp (7] ( R, )2
= 2.15
Sspe  Spine [2He] \ Ry, (2.15)

where S is the signal size. The proton signal was determined by averaging and
fitting about 200 sweeps taken before E142, and 100 taken afterwards. From this
data, the calibration factor for the 3He signal was determined to be 15.07+1.07%
polarization per 100 mV signal. Examples of a proton and *He NMR signal are
shown in Figure 2.12. The dominant errors contributing to this 7.1% uncertainty in
3He polarization are from a 5.6% uncertainty in the proton signal size (resulting from
uncertainty in the background noise under the resonance signal), a 1.5% error in our
knowledge of the thermal equilibrium polarization of the protons, a 2.6% error from
uncertainty in the target cell radius?, and a 2.5% error in the number density of 3He.
Since the proton and *He measurements were taken at different temperatures, the
resonance circuitry behaves differently (since the resistance of the coils will change,
so the Q of the circuit will change). The error from correcting for these effects, and
due the uncertainty in the water cell radius and proton number density adds another
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Source of Uncertainty Contribution
Proton signal size 5.6%
Proton thermal equilibrium polarization 1.5%
Cell radii® 2.6%
Number density of 3He 2.5%
Temperature effects on NMR circuitry 1.9%
Total Systematic Error 7.1%

Table 2.2: Sources of systematic error in determining the target polarization.

1.9%. In fact, individual calibration constants were used for each of the three targets
employed during the experiment. These constants were different primarily because
the *He number density varied by a few percent between the cells.

We note that since the diffusion times are of the order of seconds, measuring the
polarization at the center of the cell is a measure of the polarization throughout the
entire cell.

Over the course of the experiment the target performed very well, with an average
polarization of about 33%. The plot in Figure 2.13 shows both the polarization and
helicity of the target for the data runs used to extract the spin structure function.

2.4.4 3He Polarization Direction

The 3He polarization direction was determined in two ways [66]. Liquid crystal cir-
cular polarizers determined the laser helicity, which determines the angular momen-
tum transferred to the 3He nuclei, and hence the polarization direction. A second
method uses the sign of the NMR signals. Protons and 3He have magnetic moments
of opposite sign, so if their spins are in the same direction initially and are swept
through a resonance with d|B|/dt of the same sign, the NMR resonance signals will
be of opposite sign. This determines the 3He’s polarization direction with respect
to the proton’s, which statistical mechanics suggests is preferentially aligned parallel
to the external field. So, by measuring the magnetic field direction with a gauss-
meter, fluxgate magnetometer and finally from knowledge of the current direction in
the Helmholtz coils (all three results were consistent) we determined the polarization
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Figure 2.13: The target polarization and helicity are plotted for the data runs used
in the asymmetry analysis. The first arrow indicates the occurrence of a leak in the
target oven, the second of a migration of the rubidium into the transfer tube, both
necessitating changes of the target cell. The third arrow indicates the onset of a leak
in one of the cells. The fourth arrow points to the drop in polarization which occurred
when we ran the target with transverse polarization - a configuration in which the cell
could not be pumped. Finally, there was a small decrease in polarization observable
in the final set of runs at beam energies of 25.5 GeV due to the increased ionization
in the target caused by the higher beam currents used.
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direction of the protons and of 3He.

2.5 Magnetic Spectrometers and Detectors

E142 used two independent magnetic spectrometers at 4.5° and 7.0° to detect the
electrons scattered from the target. Two spectrometers were used simply to increase
the statistical precision of our measurement; they were not used in coincidence.

The magnets directed charged particles with a restricted range of momenta into
our detector huts. Inside the detector huts were three types of detectors which were
used to detect the electrons and determine their energy. The detector layout in
each spectrometer arm was identical, and consisted of a 2.2 m long gas threshold
Cerenkov detector operating at a pion threshold of 9 GeV /c, followed by three planes
of scintillator hodoscopes. Downstream from the hodoscopes was a second, 4.2 m
Cerenkov detector operating at a pion threshold of 13.0 GeV/c, followed by another
three planes of hodoscopes. Two planes of lucite each equipped with two phototubes
and covering the entire acceptance followed the hodoscopes. The last element in the
detector package was a total absorbing lead glass calorimeter. A schematic of the
spectrometer and detector package is shown in Figure 2.14

The philosophy behind the detector set up is straightforward. Electrons pass-
ing through the magnets and entering the detector huts will produce signals in both
Cerenkov detectors, and fire some of the fingers of the hodoscopes. When the electron
hits the lead glass counter it produces an electromagnetic shower and is totally ab-
sorbed. Thus whenever there is a triple coincidence of activity in the two Cerenkovs
and shower counter it is a good sign that an electron is present. This triple coinci-
dence, called the Main Trigger, is used to gate the rest of the electronics so we can
record the energy of the electron from the shower counter, and its momenta from the
track left in the hodoscopes.

The principle background in the experiment were pions. These would not cause a
Main Trigger triple coincidence since their momenta was usually below the 13 GeV /c
threshold of the second Cerenkov, and so would never fire this detector.

Before giving a more detailed description of the spectrometer elements, we describe
the coordinate system used. Each spectrometer has it own right hand coordinate
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Figure 2.14: The layout of the magnets and detectors used in E142 is shown in this

plot (the lucite counters are not shown).

system, with the origin being the center of the 3He target. The line along 4.5° (or
7.0°) is taken to be the Z direction. The horizontal line perpendicular to the Z direction
defines the & direction, and 7 is in the vertical direction. The spectrometer dipoles
bend the particles in the vertical direction, defining the bend plane. Angles in the
bend plane are denoted by ¢. The non-bend plane is parallel to the ground, and
angles in this plane are denoted by 8. The coordinates are illustrated in Figure 2.15.

To cover a range in Bjorken x from 0.03 to 0.6, our momentum acceptance had to
extend from 6 to 18 GeV/c with a large solid angle to ensure a reasonable event rate.
A second design consideration was to have enough bends in the system to prevent the
large photon background from bremsstrahlung, radiative Mgller and 7° decay from
entering our detectors. Finally, we required the system to have sufficient momentum
resolution to determine x to ~ 10%. The spectrometer system developed to achieve
these aims has been described by Petratos et al. [97).

The solution adopted to the constraints listed above involved a novel reverse bend
design in which two dipoles bent the scattered electrons first downwards and then
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Incident Electrons

Figure 2.15: The coordinate system used to describe the spectrometer elements is

shown.

upwards. This configuration increased the solid angle compared to more conventional
designs, and ensured that photons could only reach the detectors after having bounced
twice in the magnets’ interiors3. The 4.5° was further equipped with a quadrupole be-
tween the two large dipoles. This served the dual purposes of increasing the spread of
particles (reducing the possibility of overlapping events) in the nominally non-bend
plane (particles were defocussed in %) while introducing a momentum dependent
correlation between position and divergence (focusing in §) which improved the mo-
mentum resolution. A third advantage afforded by this system came about because
the increased separation of the dipoles almost created a three bounce system [97].
The final momentum bite, d=(p-p.)/p. for momentum p and central momentum
Pc, ranged from dpin=-0.45 to dmax ~ 0.55. The large range of particle momenta
accepted allowed us to collect data over a large range in Bjorken x. The angular range
at the target of particles making it through the magnets is given in Table 2.3, as well
as the peak solid angle. In Figures 2.16 & 2.17 we show the solid angles of the two
spectrometers versus momentum, with the acceptance from a few other experiments

for comparison. The magnet parameters and settings used for the majority of the

3In fact this was not fully achieved in the 7.0° spectrometer where part of our detectors were
illuminated by photons which had bounced only once in the magnets.
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Acceptance (mrads) | fmin | Omax | @min | Pmax | Imax(s7)
4.5° Spectrometer -76 | +76 | -20 | 20 0.097
7.0° Spectrometer -14 | 414 | -20 15 0.435

Table 2.3: Spectrometer acceptance limits

0-|2 r| LB I ¥ L] L L I L] LIRS T I L § LEERLS I T T"—lj L ':
o0 - e —
008 — -
5 —-E142 DQD 4.5 Spec. ]
Pos | [ SLAC 20 GeV/e Spez. -
e - ]
4 o ]
I |~ —
5 N N
w B -
002 | ]
C ]
I S P I N B L N P D
5 75 10 125 15 17.5 20

Momentum (GeV/c)

Figure 2.16: The acceptance of the 4.5° spectrometer system is shown, along with
that of the SLAC 20 GeV spectrometer for comparison. The large gain in momentum
acceptance compared to previous designs allowed us to detect events with a large

range in Bjorken x.

22.66 GeV/c runs are given in Table 2.4. The stability of the magnetic fields was
monitored throughout the experiment with a set of NMR probes in the dipoles, and
a Hall probe in the quadrupole. By regulating the current, the magnetic fields were
kept stable to about 0.1%. The specifics of the magnetic field measurements have
been described by Dunne [76].

The trajectories of the electrons in the bend plane as they pass through the spec-
trometer magnets are shown in Figures 2.18 & 2.19. In the 7.0° we see that at the
shower counter the divergence of the particles is strongly related to their momentum,
but that their position is only weakly coupled. Conversely, in the 4.5°, position is
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Figure 2.17: The acceptance of the E142 7.0° is shown to cover a large momentum

range in comparison with previous spectrometer configurations.

4.5° Spectrometer 7.0° Spectrometer

Parameter B204 | Q203 | B82 | B202 B 81

Length (m) 2.997 |1.3385 | 3.454 | 2.997 3.454
Gap (m) (2) 0.1803 | 0.1937 | 0.3505 | 0.3759 | 0.3505
Width (m) (3) 0.3150 | 0.1937 | 0.5588 | 0.3150 | 0.5588
Bend Angle (degrees) -5.6 — 4+9.6 | -5.6 +9.6

Radius of curvature (m) | 30.678 | — | 20.643 | 30.678 | 20.643
JB-dl (kGauss - m) 37.477 | 43.1 |[64.190 | 40.735 | 69.968
Current (amps) 1334.4 | 1335.8 | 1942.5 | 1424.3 | 2152.1

Table 2.4: Magnet operating parameters for a central momentum of 11.5 GeV/c in
the 4.5° spectrometer and 12.5 GeV/c in the 7.0° spectrometer.
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setting of 11.5 GeV/c.
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also correlated with momentum which improved our resolution.

2.6 Cerenkov Detectors

Performing the asymmetry measurement required us to identify the scattered elec-
trons from the pions and other debris created in the collisions at the target. The
lead glass array and Cerenkov detectors were the principal tools used for electron
identification and pion rejection. The /e ratio varied from about 10 at 7 GeV/c
to about 0.2 at 13 GeV/c, so a single N, threshold Cerenkov counter operating at
a 13.0 GeV/c threshold would be sufficient for us. Second detectors operating in
coincidence at 9.0 GeV/c thresholds were used to add redundancy and cleanliness to
our electron trigger, as well as for systematics studies. The four Cerenkov tanks all
worked under the same mechanism; electrons passing through the detectors produced
Cerenkov radiation which was reflected by mirrors to a photomultiplier tube coated
with wavelength shifter located outside of the path of the electrons.

2.6.1 Detector Design

The pion threshold, P,, determines the index of refraction, n, of the gas in the counter

through the relations

1
cosl, = — <
¢ nﬂe nox

=cosf, =1
where 8 is the angle of emission of Cerenkov photons with respect to the trajectory
of the charged particle of velocity 5. We can rewrite this as

n= 1+[%”]. (2.16)

For a 9.0 GeV/c pion threshold (n — 1) = 1.202x107*, and for a pion threshold
Pr=13.0 we find (n — 1) = 5.763x10~5. In both cases it is easiest to achieve these
indices of refraction using a gaseous radiator. We chose to use nitrogen because of
its excellent transmission of Cerenkov radiation from 150 nm to 700 nm, its low é
production rate, tolerable scintillation rate, and because it was readily available at
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4.5° Spectrometer 7.0° Spectrometer
Parameter C1 C2 C1 C2
Interior Length 225 cm 422 cm 219 cm 422 cm
Interior Radius 52.7 cm 80 cm 52.7 cm 80 cm
Window Thickness 0.15 cm 0.1 cm 0.15 cm 0.1 cm
Effective Length 200 cm 400 cm 200 cm 400 cm
No. of Mirrors 2 3 2 3
Mirror Size (£ x §) | 51 x 39 cm? | 71 x 44 cm? | 51 x 39 cm? | 71 x 44 cm?
Radii of Curvature 120 cm 163 cm 120 cm 163 cm
Active Area 44 x 44 cm® | 60 x 107 cm? | 44 x 53 cm? | 59 x 99 cm?
Pion Threshold 9.0 GeV/c | 13.0 GeV/c | 9.0 GeV/c | 13.0 GeV/c
N2 Pressure (22°C) | 6.24 psia 2.99 psia 6.24 psia 2.99 psia

Table 2.5: The Cerenkov detector dimensions are given in this table.

extremely high purity. Since the amount of Cerenkov light produced by the passage
of an electron is roughly proportional to the detector length (we must also consider
absorption) we made the tanks as long as could be accommodated in the detector
huts. Each detector was made of an aluminum cylinder with 1.27 cm thick side
walls, and very thin end windows. The interiors were treated with a mild acid etch
and steam-cleaned to remove the aluminum oxide and other surface contaminants, as
part of a general effort to keep the devices clean. We list the dimensions and other
parameters in Table 2.6.1, where for convenience we have called the 2 m long 9.0
GeV/c threshold tanks “C1” and the 4 m long 13.0 GeV/c tanks “C2”. The two
end windows of the C2 tanks deserve special mention. Normally in vacuum vessels
one uses windows 1/1000" thick for every inch in diameter, which would have meant
using 1.5 mm thick windows for a tank this size. However, by hydroforming a disk of
2024-T3 aluminum at 30 psi, the stress was reduced on the window and it could be
made 1 mm thick instead, without compromising safety, and reducing problems due
to 6 production and multiple scattering.

The envelope of Cerenkov radiation expected in the detectors was too large to be
covered easily with a single mirror, so two spherical mirrors were used in each 2 m
tank, and three spherical mirrors in the 4 m tanks. All of the mirrors were kindly
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Characteristic Hamamatsu R1584-01
Spectral Response 200 nm - 640 nm

Peak Quantum Efficiency 21% at 370 nm
Photocathode Bialkali, 120 mm useful diameter
Dynode Structure 14 stages, linear focused
Operating Voltage -2500 V

Anode Pulse Risetime 2.2 ns

Transit Time Spread 1.2 ns

Gain ~ 3x107

Table 2.6: Properties of Hamamatsu R1584-01 PMTs

manufactured for us at CERN by slumping a 3 mm thick 836 mm diameter disk of
float glass into a stainless steel mold [78]. The glass was cut, cleaned, then coated with
80 nm of Al followed by a protective coating of 30 nm MgF, (which is transparent
down to 115 nm [79]). Measurements of the reflectivities of our ten mirrors yielded
an average of 80% at 160 nm and 89% at 200 nm. Image sizes at the focal point were
estimated to be <3 mm in diameter. The mirrors were held at the sides by aluminum
clamps cut to the curvature of the mirrors. The clamps squeezed pieces of tubing
around the edges of the mirror and held them rigidly. In turn, the clamps were held
in an aluminum frame mounted 19 cm upstream of the downstream end window. A
schematic of one of the 4 m tanks is presented in Figure 2.20.

Mirror positions were optimized to focus all of the light onto a single 5" photo-
multiplier tube, without the use of a Winston cone. Such a configuration maximized
the signal/noise in our detectors. Hamamatsu 5” R1584-01 UV glass photomultiplier
tubes (PMTs), specially selected by the manufacturer for high quantum efficiency
were used. Some characteristics of these PMTs are given in Table 2.6. The mag-
netic shielding provided by Hamamatsu was supplemented with an additional layer
of Permendur to reduce the losses caused by the fringe fields of the dipole magnets
(primarily a concern for C1 in the 7.0° where the fields were close to 10 G). In addi-
tion, the C1 tanks were wrapped with a few layers of Permendur to reduce the fringe
fields of the dipoles in the tanks.

To capture the abundance of Cerenkov photons in the UV, we coated our tubes
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Figure 2.20: The layout of one of the 4 m Cerenkov tanks is shown here. The electrons
enter from the left and produce Cerenkov radiation which is reflected by the three
mirrors at the end of the tank onto the phototube at the side.
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Figure 2.21: The resistor chain and dimensions of the 5” phototubes used in our

Cerenkov detectors are shown here.

with 2430 nm (0.3 mg/cm?) of p-terphenyl wavelength shifter, followed by a pro-
tective coating of 25 nm of MgF, [81]. Film thicknesses were controlled during the
vacuum deposition with a crystal thickness monitor. The fluorescence maximum of
p-terphenyl is about 370 nm [80] which is well matched to the region of high quantum
efficiency of our PMTs. Also, the short 1-2 ns decay time of this emission [80] enabled
us to retain accurate timing information from the Cerenkovs. This was crucial for
forming our trigger and for subtracting the pion background.

In advance of E142 a test of one of the 2 m tanks was undertaken at Brookhaven
National Laboratory. From a comparison of coated versus uncoated tubes we con-
cluded that the use of p-terphenyl on our PMTs resulted in a gain of &~ 90% in the
number of photoelectrons produced. To exploit fully this gain, the gas used in the
tanks must have high transmission in the UV to ensure a large flux photons for con-
version. The use of gases such as O; or CO, then becomes inappropriate because of
their strong absorption of photons with wavelengths smaller than 190 nm. N, is a
good radiator because its transmission extends down to 150 nm.
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2.6.2 Predicted Cerenkov Response to Electrons

The number of photoelectrons, Ny, produced in our counters due to Cerenkov radi-

ation can be estimated from

1
Npe = 627l'aLeff// [1 - ﬂ2n2

Ben(A)>1

] R,@ ) exp [—G(A)”L”—AM‘K] C(A, N)QE(N)dAdN

(2.17)
where o(A) is the absorption cross section of Ny, N4y is Avogadro’s number, A is
the molecular mass of Nz, n(JA) is the index of refraction, p is the gas density, Leg is
the effective length of the detector (200 or 400 cm), L, is the average path length of
a Cerenkov photon, QE()) is the quantum efficiency of out PMT, and R()) is the
mirror reflectivity. The effect of the wavelength shifter is accounted for by the function
C(A, X'). P-terphenyl will absorb photons ranging from 115 nm to 310 nm and re-emit
them around A, ~ 370 nm with o, ~ 30 nm [80]. The quantum efficiency for this
process, ¢, is around 85% [83] and for thicknesses > 1000 nm is roughly wavelength
independent [82]. Above 310 nm the conversion efficiency drops off rapidly [82], and
above 350 nm the incident photons pass through the wavelength shifter unconverted
with a small absorption loss estimated to be less than 6% [80]. Thus C(A, X) takes

the very approximate form :

€r€ P U
c(\ ) = ﬁexp [—-( p ) },for A € [110nm, 310nm)

= 0.95 éxx for A € [310nm,640nm].  (2.18)

Here ¢, is a geometrical factor reflecting the fact that the re-emission is isotropic, so
naively we expect ¢; = 0.5. However, total internal reflection can occur at the N,/p-
terphenyl boundary. Only scintillation photons emitted back towards the N, with
0 < Ocritical = 45° will be lost directly. This is a fraction %(1 — €058 Ocritical) = 15% of the
total solid angle. The remaining photons either pass to the photocathode or bounce
in the wavelength shifter towards the photocathode. A similar situation occurs at the
interface between the PMT glass and the photocathode (where n &~ 3). Because of this
potential for the Cerenkov photons to interact multiple times with the photocathode,
the effective quantum efficiency is enhanced and ¢, lies somewhere between 0.55 and
0.75 [79). The factor € in front of (2.17) reflects inefficiencies such as absorption in the
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Figure 2.22: The mirror reflectivity and phototube quantum efficiency are plotted
with the spectrum of Cerenkov radiation. High reflectivity and quantum efficiency
are desirable at low wavelengths where the bulk of the Cerenkov photons are produced.

PMT glass and losses during photoelectron transit from the photocathode to the first
and subsequent dynodes (this latter inefficiency is not quoted as part of the quantum
efficiency of the tube). Estimates of € vary, but it is seldom ever greater than 0.7, and
often 0.5 or less [79]. The variations in efficiency across the face of a single tube can
easily be 20% or more. In applications where only a small portion of the phototube
is illuminated, it would be wise to map out the collection efficiency of the phototube
beforehand to find the regions of maximum collection efficiency.

Performing the integrals in (2.17) using the inputs seen in Figures 2.22-2.25, we
predict N, = 8.8 £ 1.5 in each of our detectors, where the error comes from letting
the unmeasured factors vary over a reasonable range. Doing the calculation assuming
there is no wavelength shifter yields Ny, = 5.1 + 0.8.

2.6.3 Predicted Cerenkov Response to Pions

Pions with momenta above the 9 and 13 GeV /c thresholds will start to produce some

Cerenkov radiation. The average number of photoelectrons, N,, expected from a
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Figure 2.23: The variation of the index of refraction of nitrogen versus wavelength is
shown at a fixed pressure (values below 200 nm are from an extrapolation). The small
rise seen at lower wavelengths implies that the momentum threshold for producing

Cerenkov radiation is not sharply defined
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Figure 2.24: The transmission curve for 1 atm-meter of nitrogen is shown versus
wavelength. Nitrogen transmits well down to 150 nm and so is a good gas for Cerenkov

detectors.
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Figure 2.25: This plot shows the effects of the wavelength shifter on the response of
the phototube to Cerenkov light. The height of each curve reflects the number of
photoelectrons produced from light of a particular wavelength. The response at small

wavelengths is seen to improve when a wavelength shifter is used.

pion of momentum P, can be written :
N;. =Nz (1-PYP))O(P-P) (2.19)

where N;_ is the average number of photoelectrons produced by an electron, and P,
is the pion threshold of the detector.

Since the index of refraction is a function of wavelength (see Figure 2.23), the
pion threshold depends on wavelength. At smaller wavelengths the index is larger,
and pions can often produce Cerenkov light below the nominal threshold, which was
defined in our tanks at about 250 nm. This subthreshold behavior is counterbalanced
by having discriminator cuts at 1 photoelectron or higher, so the effective pion thresh-
old should be close to the nominal value. The observed response to pions is discussed
briefly in Chapter 3.
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2.6.4 Gas System

Ultra high purity nitrogen (> 99.999% pure) was delivered to the tanks in 12.7 mm
diameter electropolished stainless steel tubing, after having passed through a Math-
eson 462 oil and water filter and a Nupro mesh filter. The filling and evacuating
of the tanks was controlled remotely from the Counting House, and used a 50 cu-
bic feet per minute pump equipped with a molecular sieve and liquid nitrogen trap.
Such measures were necessary to minimize the possibility of oxygen, water and oil
contaminating the vessels and absorbing the Cerenkov photons.

To set the pion threshold we measured the pressure and temperature in each tank.

The index of refraction was then inferred from the Lorenz-Lorentz relation,

n(A)?—1

T K(\)p (2.20)

where for N; K (A=546 nm) = 0.163 cm3/g [85]. Pressure in the 2 m tanks was mon-
itored with Setra Model 270 pressure transducers accurate to +0.1%, and in the 4 m
tanks by TransMetric Model P21A transducers, also accurate to £+0.1%. The tem-
perature was monitored with Yellow Springs Instruments Model 4320 Thermilinear
thermometers, good to +0.1°C. At 22°C, the 4 m tanks operated at 2.99 psia, and
the 2 m tanks at 6.24 psia. The tanks were partially evacuated and refilled once in
the experiment to maintain a constant threshold to within a percent or so. Leak-up

rates were from 30-60 mtorr/day.

2.6.5 Cerenkov Electronics

The pressure and temperatures in the tanks were read out by Slow Analog Monitors
(SAMs) every five minutes and written to tape. Each PMT output went to the
Counting House through fast Heliax 50Q (3=0.96) cables, and was then split eight
ways using LeCroy (LRS) 428F fan-outs. Four of these outputs were delayed and
then went to our ADCs, with one output for each of our four crates. The remaining
four went to LRS 821 discriminators. Here, signals passing a low threshold of 50
mV (just above one photoelectron) went on to form a part of the Main Trigger and
hodogate (see section 2.9). The times of such events were recorded in the C1L or
C2L TDC channel as appropriate. Cerenkov signals passing a 70 mV threshold were
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Figure 2.26: The signals from each Cerenkov were split 8 ways. Some of the outputs
were used to form various triggers, and the others were digitized. In the offline

analysis, Cerenkov pulse heights could be used to differentiate pions from electrons.

recorded as C1M or C2M in the TDCs, and formed part of the efficiency triggers.
High and very high thresholds were set at 90 and 120 mV and recorded in the TDCs
but were not used for any of the triggers. A schematic of the electronics is presented
in Figure 2.26. LEDs were installed in each tank to be used in conjunction with those
in the hodoscopes to facilitate timing the electronics. In addition, they were useful

for determining the effect of the dipole magnet fields on our PMTs.

2.7 Hodoscopes

While the primary e~ identification came from the Cerenkov counters and lead glass
array, a scintillator hodoscope tracking system was used to :

a) provide the initial energy calibration of the lead glass array.
b) verify that there was a track consistent with the Cerenkov and Pb glass
data for each event.

c) assess possible systematic errors in the Cerenkov and Pb glass.
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d) determine the pion asymmetry.

The hodoscope system has been described fully by Xu [86].

2.7.1 Geometrical Considerations

The angular resolution required of the hodoscope system was estimated according to

!
‘i—”” - Ei (%) %%d;» + cot (g) 8. (2.21)
To achieve 10% resolution in Bjorken x from our momentum dispersion (dE'/ E')/d¢
~ 2.2%/mr, we find the required angular resolution to be d¢ and df ~ few mrads,
and the momentum resolution dE'/E’ =~ 2% [87]. By overlapping our fingers by
1/3 as shown in Figure 2.27, we doubled the spatial resolution. Then, given an area
AX x AY to be covered by the fingers, and a plane separation of AZ, the required

number of overlapping fingers, N, to achieve a resolution, d¢, is determined from :

1 1 AYFrant ) 2 (AYRcar ) 2
__ L1 SXRear )" 22
d¢ \/EAZJ (ZNF'ront * 2NRear (2 )

The layout was similar in each spectrometer. A total of 188 fingers grouped into 6

planes was used in the 4.5° spectrometer, and 182 fingers in 6 planes in the 7.0°. The
six planes were denoted H1X, H2Y, H3Y, H4X, H5Y, and HGU where the second index
is the plane number and the third index is the axis parallel to the fingers (U denotes
a 45° angle). Each plane was oriented perpendicular to the central trajectory (2
direction). The H1X, H2Y and H3Y planes were placed in front of the 4 m Cerenkov,
and the H4X, H5Y and H6U planes at the other end, just in front of the Pb glass
array. The resolution achieved with this system 0.8 mrads in ¢ and 6. The salient

features are given in Table 2.7.

2.7.2 Construction Details

Given the large pion background, good timing resolution was required to minimize
tracking ambiguities. For this reason, fast photomultiplier tubes (PMTs) and scintil-
lators were selected. The fingers in the H1X, H2Y, H4X, H5Y planes were made of
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Plane | Fingers | Width | Length | Thickness Active Area Distance to
(mm) | (mm) (mm) | Z(mm)x g(mm) | Target (mm)
H1X 34 20 589 6.35 410 x 470 23471
H2Y 31 30 430 6.35 410 x 470 23490
H3Y 20 48 356 6.35 410 x 470 23621
H4X 27 30 1070 6.35 510 x 1050 28214
H5Y 55 30 510 6.35 510 x 1050 28233
H6U 21 75 | 200-820 10.0 510 x 1050 28420
H1X 23 30 690 6.35 400 x 560 18526
H2Y 36 30 430 6.35 400 x 560 18544
H3Y 20 48 483 6.35 400 x 560 18679
H4X 27 30 1070 6.35 500 x 950 23337
H5Y 55 30 510 6.35 500 x 950 23356
H6U 21 75 | 200-820 10.0 490 x 950 23543

Table 2.7: The dimensions of the 4.5° spectrometer (upper table) and 7.0° spectrom-

eter (lower table) hodoscopes are listed.

A i I

Figure 2.27: Hodoscope 1/3 finger overlap
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Characteristic Bicron BC404
Density 1.032 g/cm?®
Refractive Index 1.58
Light Output 68% of Anthracene

Rise Time 0.7 ns

Pulse Width 2.2 ns FWHM
Light Attenuation Length 140 cm
Wavelength of Maximum Emission 408 nm

Table 2.8: The properties of the hodoscope scintillator are listed.

Characteristic Hamamatsu R4014
Spectral Response | 300 to 650 nm (max. at 420 nm)
Photocathode Bialkali, 10 mm useful diameter
Dynode Structure 10 stages, linear focused
Operating Voltage 1100 V
Anode Pulse Risetime 1.1 ns
Transit Time Spread 0.5 ns

Table 2.9: The properties of the hodoscope phototubes are listed.

Bicron BC404 scintillator (described in Table 2.8). The PMTs used in these planes
were 1/2"” Hamamatsu R4014 (described in Table 2.9). The H3Y and H6U planes
used 2” tubes and played only a secondary role in the tracking, since their timing
and spatial resolutions were less fine. The tubes were tested and those with lowest
quantum efficiency were matched with the shortest fingers, in which light attenuation
is a minimum. The PMTs were attached to a cylindrical light guide 2.54 cm long
and 1.27 cm in diameter, which in turn was connected to a wedge shaped light guide
attached to the scintillator. No optical grease was used, instead the tube and light
guide were held rigidly by heat shrink tubing, fiberglass and electrical tape. A piece
of black lucite was glued to the end of the finger to prevent reflections, then the whole
finger was wrapped with Al foil and electrical tape. Completed H1X, H2Y, and H3Y
planes were mounted in one Al frame, and the H4X, H5Y, and H6U planes in an-
other. Within each plane, the fingers were mounted with a positional uncertainty of
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Lightguide and Photomuliiplier

Figure 2.28: Schematic of a hodoscope plane

< 0.08 mm. Each three plane assembly was equipped with tooling balls so they could
be located in the spectrometer hut with sub-millimeter accuracy. A schematic of a
completed finger and plane is shown in Figure 2.28. To help determine the relative
timing of fingers within a plane, the H1X, H2Y, H4X and H5Y planes were equipped
with LEDs, driven by a common 0.4 ns risetime pulser. The interplane timing and
final adjustments of the timing constants came from a careful analysis of the data

taken during the run.

2.7.3 Hodoscope Electronics

The LeCroy 4032 high voltage supply for the PMTs was located in the Counting
House and connected by 75 m of SHV cable. The output of the phototubes went to
LeCroy 4413 discriminators located in the detector huts. Each signal passing a 50 mV
threshold resulted in a 30 ns wide ECL logic signal. The logic signal passed via ribbon
cable 48.8 m to a set of repeater cards. Here the logic pulses were reshaped as they
had been broadened and attenuated. After another 48.8 m the signals entered the
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Figure 2.29: Hodoscope Electronics

Characteristic Schott F2 Pb Glass Block

Composition Pb 41.8%, O 29.7%, Si 21.5%, Na 3.7%, K 3.3%, Ce 0.35%
Dimensions 62 mm %62 mmx 750 mm

Radiation Length 3.17 cm

Index of Refraction 1.58

Table 2.10: Properties of the Pb glass blocks

Counting House and were reshaped a second time. These repeater cards were gated
by the Hodogate (see section 2.9) to reduce the event size. After an ECL—NIM
conversion, the signals passed to LeCroy 2277 multihit TDCs, with one channel per
finger. Each channel has 16 bit resolution (65 us in 1 ns bins) and could record up
to 16 hits with a timing resolution of 0.75 ns. Only hits separated by > 20 ns could
be distinguished. A schematic of the electronics is presented in Figure 2.29.

2.8 Shower Counter

2.8.1 Apparatus

Each spectrometer was equipped with an electromagnetic calorimeter to measure the
scattered electrons’ energies and to provide a tool for pion-electron discrimination.
The calorimeters of each spectrometer were identical in design, each consisting of a
10x20 fly’s eye array of extruded Schott F2 lead glass blocks. Some properties of the
blocks are listed in Table 2.10. These blocks were originally part of the ASP detector
of the PEP storage ring at SLAC [88]. They were fine for our use since they had been
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treated with cerium to improve their radiation hardness and so were still in good
condition. Also, being 23.7 radiation lengths long ensured that the electron shower
would be completely contained.

The 400 best blocks from ASP were selected and wrapped with aluminum foil and
two layers of 20 mil Calpico (black tape). At the downstream end was an Amperex
XP2212PC 12 stage photomultiplier tube attached with Stycast 6061 optical epoxy.
The active array of these 2" tubes covered 42% of the block. No extra material was
placed between the blocks when they were stacked, however there were &~ 2 mm air
gaps between the bars due to mm scale ripples in the Pb glass. When stacked, the
entire array covered an area 635 mm x 1280 mm, with the long axis of the blocks
almost parallel to the spectrometer axis. The assembly was placed in an aluminum
box, which presented a 0.8 mm thickness to the incident electrons. To eliminate the
possibility of electrons propagating entirely through the small gaps between blocks,
the array was inclined with respect to the central trajectory. The 4.5° (7.0°) detector
was rotated 4° (4.0°) counterclockwise in % and 2.26° (1.3°) counterclockwise in y. A
schematic of one of the calorimeters is presented in Figure 2.30. The shower counter
has been described in more detail by Roblin [89].

2.8.2 Shower Counter Electronics

The bases for the shower photomultipliers were on 60 mm x 60 mm printed circuit
boards located at the back of each tube, making the blocks easy to stack. The output
of each block went via 502 foam cables about 90 m to the Counting House where the
analog signal was split into 5 parts, each & 17% of the original. Four of the signals
were delayed 200 ns by a solid state chip so that the signals would fall inside our
ADC gate. Each of the four signals went to a separate crate of ADCs, where the first
crate was gated by the first trigger formed, the second crate by the second trigger,
and so on. In this manner the ADC information for up to four triggers per spill could
be recorded. Digitizing the signals was accomplished with LeCroy 2282 12 bit ADCs,
with each crate controlled by a LeCroy 2280 processor. The fifth outputs of all 200
blocks were summed in a series of LeCroy 628 Linear Fan-Ins. This summed output
went to a discriminator with five threshold settings, with each threshold having its
own TDC channel so we could record the time of each event [90]. The thresholds and
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Figure 2.30: Schematic of the electromagnetic calorimeter with the first stage of its

electronics.
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their associated TDC names were : very low at 30 mV (called ShVL), low at 50 mV
(ShL), medium at 115 mV (ShM), high at 156 mV (ShH), and very high at 180 mV
(ShVH). Figure 2.31 shows the layout of the shower electronics.

Since electrons would surpass the ShL threshold with >95% efficiency, signals
passing this threshold were used as an element in our Main Trigger?. Outputs from
the ShVL discriminator were used in the PionOr pion trigger, while signals passing a
medium threshold, ShM, were used in the efficiency triggers.

2.8.3 Xenon Lamp Calibration

Fiber optic cables were attached to each block and coupled to a Hamamatsu L2360
Xe flash lamp. The initial intention was to use this system to aid in the calibration
of the shower counter, however the transmission coefficients and coupling of the 200
fibers to the blocks were not uniform and showed large fluctuations. Instead the
system was used to check that the hardware of each lead glass block was functioning

properly during the experiment.

2.9 [E142 Triggers and Data Acquistion

The triggers for each spectrometer were identical in design, but operated indepen-

dently. They were designed to :

a) provide rapid electron identification.
b) trigger on events useful for determining detector and trigger efficiency.

c) permit sampling of the pion background in our experiment.

2.9.1 The Main Trigger

The majority of the data written to tape, ~ 97%, was selected with our Main Trigger.
This consisted of a triple coincidence, denoted by C1L-C2L-ShL, between signals
passing the low thresholds of each Cerenkov and the low threshold of the shower

“The trigger used for recording electron data
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Figure 2.31: The output of each block was fanned out five ways (see Figure 2.30),
and one of these was combined with the output of all other blocks through a series
of LRS 628 fan-ins. This sum of all activity in the calorimeter was fanned out to five

discriminators, and signals passing the thresholds were used to form various triggers.

73



counter (where - denotes a 20 ns coincidence). Each Cerenkov component of the
trigger was > 99% efficient at detecting electrons, and the shower component was
~ 98% efficient. Reducing the shower threshold would have increased its efficiency, at
the expense of being contaminated by more pions. With this setup, electrons scattered
through our spectrometers caused a Main Trigger to be formed with >96% efficiency.
In principle, from here we needed only to record the ADC information of the shower
counter to reconstruct the energy of the electron, and repeat the process about 300
million times. In practice, we need to record timing information to help separate
background events, and we need to use other triggers to investigate backgrounds and
efficiencies. The trigger and electronics have been described by Spengos [90].

2.9.2 ADC Gating

Coincidence widths set in the electronics were 20 ns wide, and the coincidence units
themselves were of the “updating”/“extendable” variety to reduce the losses in ef-
ficiency from noise in the inputs. This choice also made it easier to calculate the
electronics deadtime of the system. Qutput from the Main Trigger coincidence unit
did not directly gate the electronics, but was sent to the MainOr. The MainOr
was the logical OR of its inputs, which included the Main Trigger, as well auxiliary
triggers used to measure detector and trigger element efficiencies (called Efficiency
Triggers), and finally a trigger used to detect pions (called the PionOr). Output from
the MainOr was sent to the trigger divider. Upon being triggered once, this device
would send an output to a gate generator, which in turn would gate the LeCroy 2280
processor controlling the first crate of LeCroy 2282 12 bit ADCs. The ADCs were
used to record pulse heights from the lead glass blocks and from the phototubes of
the Cerenkovs. The FWHM of this ADC gate was about 97 ns and easily overlapped
the signals from the detectors. A second trigger to the trigger divider would gate the
second crate of ADCs and so on up to 4 triggers/spill. The trigger divider was reset
at the end of each spill and had a deadtime of 5 ns. This system was devised because
each ADC in a crate shared the same gate (the one gating the 2280 processor), and
only one gate per processor was allowed per spill. The processor performed pedestal
subtraction and zero-suppression so only useful information was written to tape. A
schematic of the E142 triggers is presented in Figure 2.32.
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2.9.3 TDC Gating and the Hodogate

All TDCs were ungated except for those connected to the hodoscopes. Ungated
TDCs were attached to the Cerenkovs so the times of events passing any of four
different thresholds could be recorded. Similarly, the times that the summed shower
output passed different thresholds was also recorded. The times of coincidences used
in forming the trigger were likewise recorded. The hodoscope TDCs, however, could
not be run ungated because the event size became unmanageably large. Instead, the
TDCs of the hodoscope were gated with a trigger element called the “hodogate”.
A separate gate apart from the ADC gate was required because, unlike the ADCs,
the hodoscope signals going to the TDCs were not delayed so their gate had to be
formed more quickly. Since the summed shower signal was the slowest element to
form, the hodogate was formed without the shower counter. To replace it, a charged
particle signal, S, was formed from a triple coincidence of two planes of lucite (L1
and L2) and the signal resulting if the summed output of one of the hodoscope planes
exceeded a threshold (the H2X (H2Y) plane was used in the 4.5° (7.0°) spectrometer),
so § = H2-Ll-L2. The lucite counters were single sheets of lucite covering the
entire acceptance, placed after the last plane of hodoscopes. Two phototubes on
opposite corners of the sheets responded to Cerenkov light produced by the passage
of a charged particle. The lucite outputs, summed output of one hodoscope plane,
and the Cerenkov signals all came to the Counting House by fast Heliax 50 cables
(8=0.96) to allow the hodogate to be formed quickly. The hodogate was formed
from an OR of any of a C1L-C2L coincidence, a prescaled coincidence of one of the
Cerenkov low signals and the signal S, or just a prescaled output from S. The hodogate
was 100 ns wide and allowed us to record the hodoscope hits during the time in which

the ADCs were gated. Every Main Trigger was accompanied by a hodogate.

2.9.4 Efficiency Triggers

A variety of coincidences were formed to aid in our estimation of trigger element
and detector efficiencies. The major ones were C1IM-ShM-S/N4 (N4 is a prescale fac-
tor, which we set to 1), C2M-ShM-S/N4, and C1M-C2M-S/N4. We use the medium
thresholds to reduce the effects of noise since we want the triggers to fire only on
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real events. The outputs of these coincidences went to the MainOr. Note that these
triggers and the Main Trigger were not exclusive, usually 35% of Main Trigger coinci-
dences were accompanied by at least one efficiency trigger coincidence (the rate was

not higher because the lucite component of S was <50% efficient).

2.9.5 PionOr Trigger

The trigger CIM-ShM-S/N4 could be fired by a pion whose momentum surpasses the
9 GeV/c threshold of the first Cerenkov (C1). However, to sample the majority of the
pions (which have momenta less than 9 GeV /c) we formed a PionOr trigger which was
the OR of S/N1, ShVL-S/N2, and ShL-S/N3. During E142 we set all of the prescale
factors N1, N2, and N3 to 64, so the pion trigger was effectively S/N1=S/64. This
trigger would of course be fired by electrons, but it had the virtue of not excluding

any pions, unlike all of the other triggers.

2.9.6 Data Acquisition

The data acquisition cycle was initiated by the A2N accelerator timing pulse which
arrives 2.5 us before the spill, at 120 Hz. (E142 actually ran at 119 Hz since the
120th pulse was used by the linac operators to monitor the beam and for another
experiment, E146, running coincidentally.) The A2N went to our beam gate generator
which would form a 6 us long beam gate starting 2 us before the beam hit the target,
and overlapping the beam spills which were typically 1-1.4 us long. If we were in a run
state, the pVax 4000-200 (known locally as ESAU6) would issue a high output called
the “run level”. The run level and beam gate went to the beam gate switchbox which
generated the gate to enable the trigger and electronics. If the computer was busy,
beam gate generation was suppressed. The run level/beam switch box scheme allowed
us to run with or without computer control of the electronics, or even continuously.
The latter were useful for taking calibration data for the shower counter with the
xenon lamp, or for special runs with a pulser used to determine timing constants
for the hodoscopes. In a normal run state, a delayed output from the beam gate
generator was used to generate an interrupt. This interrupt came long after the
beam crossing and was serviced by our uVax 4000-200 running VaxELN, a realtime
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operating system. The interrupt initiated the CAMAC read and data transfer of
the beam and spectrometer information from the spill. The data were read in the
following order : beam data, 4.5° spectrometer TDC data, 7.0° TDC data, 4.5° ADC
data, 7.0° ADC data. There were three sets of beam polarization information to be
written. The polarization bits from the Mach line and Pockels Cell High Voltage
were ready 300 s after the A2N, and were written in the headers of the beam and
spectrometer data. The polarization bits from the Veto module arrived 1.5 ms after
the A2N, too late to be included in the beam header but usually ready by the time the
spectrometer data were read out. To decrease the reading time, the TDC data for each
spectrometer were read with one DMA. Separate TDC modules were distinguished
by sending a pulse to the last channel of each module 8 us after the beam gate
opened. The resulting TDC hits were clearly separated in time from the TDC stops
occurring during the spill, and allowed the divisions between modules to be made
unambiguously. The data were sent by DECnet to a Vax 4000-60 (ESAU7) which
buffered the data and wrote it to 8 mm tape. The maximum writing speed to tape was
250 kB/s which corresponds to a sustained rate of 2100 bytes/spill. Typically there
were 324 bytes of beam data, 800 bytes of 4.5° spectrometer data and 500 bytes of
7.0° data (averaging = 550 bytes/electron). The computers ESAU6 and ESAUT were
separated from the rest of the ESA LAN by a bridge to minimize network traffic that
could interfere with data taking. The buffered event data on ESAU7 were sampled
by two Vax 4000-60 workstations, one for each spectrometer arm, allowing 5-10% of
the data to be processed online. The primary intent of the online system was to
monitor the detectors and not to extract an asymmetry measurement. Beam control
was the responsibility of a dedicated pVaxII running VaxELN. This system performed
beam steering and recorded information from the wire arrays, position and energy
cavities, as well as the toroids used to measure beam current. The beam information
was transferred to ESAU6 before being sent to ESAU7 to be recorded. The beam
control computer was also used to recalibrate the toroids (done daily) and measure
the ADC pedestals of the wire arrays and toroids. Auxiliary programs needed to
run the experiment all ran from a Vax 4000-300 (ESA). These tasks included control
programs for the Mgller and spectrometer magnets, control of the NMR and Hall
probes monitoring the magnets, monitoring crate voltages, controlling the LeCroy
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4032 HV chassis, recording SAM and scaler information, as well as logging the data
from the target computer.
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Chapter 3

Data Analysis

3.1 Overview

The experiment E142 ran for six weeks starting in November of 1992. Data were taken
at three beam energies, 19.42, 22.66 and 25.51 GeV, resulting in about 250 Gbytes of
data written on 100 8 mm tapes. The data were composed of ~ 300 runs dedicated to
measuring the longitudinal asymmetry, 11 transverse asymmetry runs, 10 runs with
the magnets’ polarities reversed to measure charge symmetric backgrounds, and 32
reference cell runs for measuring the dilution factor. A run consisted of about 500 000
beam spills and required close to 1% hours (though reference cell runs were typically
100 000 spills). The average event rate in the 4.5° spectrometer was 2 electrons per
spill, while in the 7° it was 0.8, with a total of ~ 400 million possible events for the
asymmetry analysis before any cuts.

The analysis chain was straightforward. The 8 mm tapes were read back and runs
passing cuts on beam, target and detector stability were selected for the asymmetry
analysis. In these runs, spills passing cuts on beam quality were further examined for
electron candidates. The energies of the electron candidates were reconstructed and
the results binned in E’ and 8. These summaries of the data were written out for each
run, resulting in a large disk file synopsis of the experiment. From here, a second
program was used to extract the asymmetry from the summary files and ultimately

produce a value for I'}(Q?).
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3.2 Run Selection

Not all of the data taken during E142 were of sufficient quality that they could be used

to extract the spin structure function. Some of the reasons that runs were discarded

are :

1 Runs were discarded in which more than 30% of the spills were rejected because
the beam failed to pass our beam cuts (see below). This cut removed 12 runs

from the analysis.

2 Five runs were removed because they had been cut short due to accelerator or

beam steering problems and had fewer than 50 000 spills.

3 Six runs in which one of the dipoles of the 7.0° spectrometer kept losing power

were removed from the 7.0° data set.

4 One of the target cells used in the experiment apparently began to leak 3He
after a few runs as evidenced by a decline in event rate and decrease in the size
of the 3He NMR signal. Because the dilution factor and polarization of this cell
could not be reliably extracted for these runs, they were dropped. This resulted

in the loss of 26 longitudinal asymmetry runs and 2 transverse asymmetry runs.

In the remaining runs the beam, target and detectors were sufficiently stable for the
asymmetry analysis. In Figure 3.2 we show the event rates in the two spectrometers
versus run number. The event rate for these runs remained stable at the percent
level and drifted primarily as the beam wandered over a 0.5 mm diameter area on
the target, and as the beam spot changed from 1.5 to 3 mm? in area.

3.3 Spill Selection

Once runs had been selected for the asymmetry analysis, criteria were developed for
selecting or rejecting spills within a run. The only spills accepted for analysis were
those in which the beam position, width and charge passed some simple quality checks,
in addition to the requirement that the helicity of the beam be well determined.
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Figure 3.1: The stability of the event rate of the runs selected for the asymmetry
analysis are shown. The steps in event rate were caused by : (1) Experiment started
at 22.66 GeV beam energy. (2) Target cell changed from Minnehaha to Hiawatha. (3)
Target position changed. (4) Target changed from Hiawatha to Gore, and the central
momentum setting of the 4.5° spectrometer was changed form 12.5 to 11.5 GeV/c.
(5) Target changed from Gore to Minnehaha. (6) Beam energy changed from 22.66
to 19.42 GeV. (7) Target position changed. (8) Central momentum setting of the 4.5°
spectrometer changed from 8.6 to 11.5 GeV/c. (9) Beam energy changed from 19.42
to 25.51 GeV.
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Figure 3.2: This figure shows the change in event rate as the target is swept through
the beam. The change in rate is well described by a quadratic and is attributed
to the beam passing through increasingly thick parts of the target endcaps. During
data-taking the target is positioned at the event rate minimum.

3.3.1 Beam Cuts

Variations in the beam position and spatial distribution at the target will have an
impact on the measured asymmetry. This occurs primarily by affecting the ratio of
events coming from *He to those coming from the glass endcaps of the target (the
dilution factor) because the endcap thickness increases away from the center while
the path length in ®He remains roughly constant. If the ratio fluctuates in a manner
dependent on the beam helicity then the measured asymmetry will be biased. Our
saving grace is that target polarization reversals allowed us to average over possible
helicity dependencies in the beam parameters so over the whole experiment the av-
erage dilution factor will be the same for the o, /2 and 03/, measurements. We can
estimate limits on acceptable values of the beam position and size () by looking at
the event rate as the target is swept through the beam. Such a sweep is shown in
Figure 3.2 in which the event rate/incident charge is seen to rise quadratically as the
beam is moved away from the thinnest region of the target endcaps. The jate of
rise in the 4.5° and 7.0° is consistent with a <2% change in rate for a 1 mm change
in beam position away from the center. We can then determine that beam induced
false asymmetries will be insignificant if the left and right handed beams hit the tar-
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Beam Parameter | Left (L) | Right (R) (L-R) (L-R)/(L+R)
charge/spill (10° e~) | 131.1559 | 131.1273 | 4+0.028600 [ +0.000109
x (mm) 0.009144 | 0.008864 | -0.000281
y (mm) 0.177184 | 0.176689 | +0.000494 —_—
oz (mm) 1.652138 | 1.652549 | -0.000411 -0.000124
o, (mm) 1.335076 | 1.335148 | -0.000072 | -0.000027

Table 3.1: Important beam quantities averaged over the experiment.

get at the same position within 0.002 mm (given a true counting rate asymmetry of
~ 5x107*). In Table 3.1 we show the values averaged over the experiment of the
important beam parameters for the two beam helicity states (where Right refers to
positive helicity electrons at the target). The differences between the left and right
handed beams are well below the level at which they would generate a significant
false asymmetry (this is confirmed by another method). Note that the absolute x and
y positions of the beam on the target are arbitrary, only the helicity dependence of
the difference is meaningful. Having confirmed that the beam helicity dependencies
are innocuous, we still needed to implement cuts to ensure that the beam hits the
target in the center and that the beam conditions remain stable. To this end, the
spills in which the beam position or width varied by more than 4o from its average
value in the run were excluded. If the incident charge fluctuated by more than 50
then these spills were discarded. An example of the cuts is seen in Figure 3.3. These
cuts were relatively loose and were useful for removing the small fraction of spills with
properties far from the average. This ensured the stability of the dilution factor and
prevented large fluctuations in rate within a run which would distort our detection
efficiency due to rate dependent effects. As noted above, over the whole experiment
the beam was kept centered on an area about 0.5 mm in diameter on the target, and
the spot size varied from 1.5 to 3 mm?, ensuring that the dilution factor was stable

from run to run.
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Figure 3.3: The effects of the beam cuts on spill selection can be seen in these plots.
Solid lines represent the acceptable range of beam parameters for this particular run.
It is seen that the cuts, which are purposefully loose, serve to remove the aberrant

spills only.
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3.3.2 Polarization Determination

Another criterion for accepting or rejecting a spill was that we know the polarization
of the beam for that particular spill. Although there were three separate sets of beam
polarization information (see sections 2.9.6 and 2.2.4), the Veto bits demonstrated a
serious timing problem so that they were not read out reliably by the data acquisition
system and could not be used for the asymmetry analysis. Instead, a spill was selected
if the Mach line and Pockels cell high voltage line both independently indicated the
same helicity state for the beam. The two systems were in disagreement for only 24
out of more than 300 million spills, suggesting an error rate at or below the level of
1077,

As a check on the integrity of the system, several tests were performed in which
beam of predominantly or entirely one helicity was sent to the end station. The
pattern of beam helicity recorded in our data acquisition was then checked with that
issued at the source and found to agree. In principle there was a final check we could
perform on the integrity of the beam polarization determination. Since the beam
polarization on a spill to spill basis was determined with a known algorithm, it could
be predicted from one spill to the next based on the helicity of the previous 33 spills
(see section 2.2.4). In practice this was difficult to achieve because the polarization
information of every 120th spill was not retrieved by our data acquisition (this spill
was used for accelerator tuning and didn’t enter the end station). This caused the
predicting algorithm to lose synchronization with the beam every 120 pulses, but in
a regular fashion from which we could recover from by counting beam pulses, looking
at the time of the spill from a real clock, and by looking for a spill using the same
time slot as the previous spill. Another difficulty was that each run was paused from
ten to twelve times to write out diagnostic information from the detectors and beam
monitors. The exact timing and duration of these checkpoints were not synchronized
with the beam so the polarization of at least several hundred spills could not be
predicted while the predictor got back in synchronization with the beam. Any other
pauses in the run would also disrupt the prediction of the polarization bits. Given
these exceptions we expected the predictor to be perfectly accurate for the remaining
99.9%+ of the spills composing a run, which was confirmed in random test cases. This
success gave us further confidence that the Mach line and Pockels cell high voltage
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line were valid, especially considering their mutual agreement to better than a part

in ten million.

3.4 Trigger Selection

Having selected a run to be analyzed, and the spills within the run, the next step
was to isolate particular triggers within a spill for further study. The Cerenkov and
shower counter responses of these selected triggers were examined for evidence of an
electron as we describe below. It is at this stage that the analysis of each spectrometer
becomes independent since they were each triggered separately.

In each spectrometer separately, the gates of the shower counter and Cerenkov
ADCs were opened by the output of a coincidence unit called the Main Or. Each
Main Or in turn was activated by any of five different triggers, each of which had a
different efficiency for triggering on electrons (see section 2.9.2). For this analysis we
only examined spills for which the Main Trigger; C1L-C2L-ShL representing a triple
coincidence between the two Cerenkovs and the shower counter, had fired within
+10 ns of the Main Or. The Cerenkov components of the trigger were 99% efficient
at detecting electrons, and the shower component was 98%, for an overall trigger
efficiency of 96% (see section 2.9.1). A further criterion for accepting a trigger for
analysis was that the ADC of each Cerenkov had to exceed 25, which was slightly
above the one photoelectron threshold. This reduced our sensitivity to noise in the
Cerenkovs and removed a few of the triggers caused by pions above the 13 GeV/c
Cerenkov threshold. The rate dependence of the trigger efficiency and its implications
for the asymmetry measurement are discussed in section 3.6.5 on electronic deadtime

effects.

3.5 Electron Identification

Identifying deep inelastically scattered (DIS) electrons and determining their energy
was the next essential step in extracting g7(z, Q?) from the raw detector data written
to tape. The primary background to be disentangled came from pions created by
photoproduction at the target. These were rejected at the trigger level by requiring

87



the formation of a Main Trigger, which required that both Cerenkovs fired. Since
very few pions had momenta greater than 13 GeV/c, only a small fraction could fire
the Cerenkovs and set off the Main Trigger. The result is that by requiring a Main
Trigger and demanding that the Cerenkov ADCs be >25, we were almost guaranteed
that an electron had entered the spectrometer. It remained to identify the electron

in the lead glass calorimeter and determine its energy.

3.5.1 Observed Cerenkov Response to Electrons

Since the Cerenkov detectors were an integral part of our trigger, it is helpful to discuss
their response to electrons in order to understand our electron identification scheme.
Although a great deal of information about the charged particles traversing a detector
is contained in the Cerenkov signal, we will focus our discussion on the number of
photoelectrons produced, since this quantity is closely related to the electron detection
efficiency. The average number of photoelectrons in our counters was estimated using
the efficiency triggers. To test the large C2 detector, we select events with triggers
caused by a CIM-ShM:S coincidence and verified that there was a track and shower
cluster present with [E/p — 1| < 0.15 and a neural network response >0.95 (see
section 3.5.4). This defines a good electron in a manner completely independent of
the response of C2 (we can do the same for C1 by using C2 in the trigger selection
instead). After plotting the ADC response to such events we can extract the number
of photoelectrons, N,., by several techniques. If the fluctuations in PMT output
are dominated by Poissonian variations at the photocathode, then the probability
of having zero photoelectrons produced is P(0) = exp(—Npe). This null response,
smeared by pedestal fluctuations is visible in Figures 3.4-3.5. A second commonly
used technique is to assume that the gain at the first few dynodes is very high so
that the electron multiplication in the dynodes can be considered noise-free. Then
Npe = (p/0)?, where p is the mean and o2 is the variance of the ADC spectrum. If we
take into account the statistical fluctuations (assumed Poissonian) occurring during

multiplication, then

(5)2=:gﬁ; (31)

1=1 ;=1
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Figure 3.5: ADC Response of C1 and C2 of the 7.0° spectrometer.

89



Spec. | Npe in C1 | Np in C2 | Np in C1 (Npe em™1) | Ny in C2 (N, em™1)
4.5° | 8.1+05 | 7.3+0.3 169 + 10 158 + 6
7.0° | 74+04 | 72404 154 + 8 156 + 8

Table 3.2: Cerenkov Detector Photoelectron Yields

where k is the number of dynodes and g; is the gain of the jth dynode [91]. Evaluating
this factor for our PMTs yields Ny, ~ 1.16 x (u/0)?. Fitting the top half of the ADC
spectra with Gaussians suggests that N,. = 9.5 4 1.5 for C1 of the 4.5°, and 8.0+ 1.5
for the others. These results are strongly dependent on the fitted range and the x2/df
were typically 2-4.5.

A Monte Carlo of the multiplication process at the photocathode and first four
dynodes with several different Polya distributions showed that the most accurate in-
formation about N, least dependent on the statistics of dynode multiplication, is
gleaned by estimating P(0). This seems reasonable since with high first gain dynodes,
g1 > 10 as in our PMTs, the probability of events with more than one photoelectron
at the photocathode yielding a null output are < 10~%. The results of this ap-
proach, which we take to be accurate reflections of the detector response, are shown
in Table 3.2, where the errors reflect the uncertainty in P(0). The discrepancy in
photoelectrons with the peak fitting method is not serious because the ADC spectra
are clearly non-Gaussian, and using the mean and sigma of the ADC distribution is
only an approximation. The non-Gaussian behavior can result from non-uniformity
in gain of the dynodes, and from variations in the collection efficiency across the face
of the PMT. The response is better described by a Polya distribution (effectively the
sum of Poisson distributions of different means). The effects due to non-uniformity
are at a maximum for us because we use the full face of the PMT for light collection.

A common measure of Cerenkov response is the value Ny, which is defined by
Nye = NoLsin? 0. These are given in Table 3.2 and average to = 160 cm™!, which is
a good level of performance for a detector of this type. If we estimate our efficiency,
1, from n = 1 — exp(—N,.), we find 7 > 99.9%. In practice, the most useful measure
of efficiency depends on the cuts. In our analysis we have required the Cerenkov
ADCs to be a minimum of 25 channels. This corresponds to a cut of slightly more
than 1 photoelectron for which our expected efficiency is ~ 99.4%. The efficiencies
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Spec. | Efficiency (ADC>25) in C1 | Efficiency (ADC>25) in C2
4.5° 0.99880 + 0.00006 0.9963 + 0.0001
7.0° 0.9944 + 0.0003 0.9959 + 0.0002

Table 3.3: Cerenkov efficiencies after an ADC cut of 25

after this cut are shown in Table 3.3. An asymmetry measurement only requires that
the detector efficiency be the same for both helicity configurations, so in principle
wild variations in detector response over the acceptance are innocuous. In practice,
the efficiency after cuts of all detectors is rate dependent, and since measuring an
asymmetry is the same as measuring a difference in rates, the asymmetry measured
is necessarily biased at some level. If the detector response is not uniform, the rate
dependence will vary with position and be difficult to account for. Though these
effects may be small, we are obviously better off if the detector response is uniform.
Apart from a seldom hit corner of C1 of the 7.0°, the efficiencies were &~ 99.5% and
uniform below the one percent level. We also note here that the cut at 25 falls in a part
of the ADC spectra that is not too-steeply rising and so is only weakly sensitive to
variations in the phototube output caused by temperature fluctuations (< 0.2%/°C)
and instabilities in the high voltage.

3.5.2 Observed Cerenkov Response to Pions

The response of the detectors to pions is shown Figure 3.6. The lines on the scatterplot
are the theoretical prediction of section 2.6.3 and are seen to match the data well.

3.5.3 Shower Counter Response to Electrons

The response of electromagnetic calorimeters to high energy electrons has been fully
described and studied elsewhere [92, 93, 94, 95] so in the following discussion we only
introduce the ideas needed to explain our treatment of the calorimeter data.
Electrons impacting the blocks of the shower counter will lose their energy ini-
tially by bremsstrahlung. The resultant high energy photons subsequently undergo
pair production and the cascade continues until the energies of the secondary elec-
trons and positrons is so low that excitation and ionization become the dominant
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Figure 3.6: The Cerenkov response to pions is shown in this scatterplot of Cerenkov
ADC versus particle momentum. The onset of light production above the momentum

threshold matches the prediction, shown as a solid line.
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energy loss mechanisms. The energy at which radiation and collisional losses become
equal is called the critical energy (Rossi has an alternate but similar definition [92])
and is around 15 MeV in our Pb glass calorimeter. The development of the shower
depends mostly on the density of electrons in the calorimeter, characterized by the
radiation length which was 3.17 cm. Since our lead glass blocks were almost 24 radi-
ation lengths we expected the secondary particles to be at least 99% contained in the
detector. The transverse radius of the electromagnetic cascade is typically 2 Moliére
radii or about 8 cm in our case for 90% containment. With these simple estimates
we expect the electrons to deposit all of their energy in about nine of our blocks.
Since the secondaries lose energy by more than one mechanism (ionization, excita-
tion, emitting Cerenkov radiation, ...) we don’t directly measure all of the incident
energy but instead detect the Cerenkov radiation produced by the secondaries, which
is taken to be proportional to total energy deposited. The relation is not exact be-
cause secondaries below the Cerenkov threshold of <1 MeV do not contribute to the
signal detected, and for the particles close to the critical energy the competing loss
mechanisms distort both the number of secondaries and the amount of Cerenkov light
produced. These latter effects are ultimately what determines the energy resolution
of the calorimeter. In the next section we apply these ideas to the response of our

calorimeter.

Energy Calibration

The obvious purposes of the calorimeter were to allow us to both detect the DIS
electrons and determine their energy. The process began during data-taking with
the formation of a trigger. This opened the gates of the ADCs connected to the
photomultipliers of the shower counter for 100 ns. In any PMTs which fired the
total charge, which was proportional to the amount of Cerenkov light produced in
the block, was digitized then written to tape. In the offline analysis the patterns of
charge collected in the calorimeter were examined trigger by trigger for clusters of
hit blocks we could associate with single incident particles. The remaining task was
then to relate the total charge output of the PMTs in a cluster to the energy of the
incident particle.

The charge output of a PMT belonging to a block in a cluster was proportional
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to the gain of the PMT as well as to the energy deposited in that particular block
(nonlinearity of the ADCs and PMTs in the range in which they were operated were
negligible). Each block had four separate calibration constants relating charge to
energy corresponding to each of the four triggers. Four constants were necessary
because the splitters which divided the signals of each shower block into five parts
(one for each crate of ADCs and one to form the shower component of the trigger)
didn’t necessarily divide the signals evenly. Also, the four ADCs associated with a
single block had slightly different gains.

Before describing the details of the final calibration of the shower counter, we
need to discuss the NPI engineering run and hodoscope tracking, both of which were

important elements in the calibration procedure.

NPI Run

An initial calibration of the blocks came from a week-long test run one month prior
to E142. This run used the Nuclear Physics Injector (NPI) at SLAC to produce an
unpolarized 4.99 GeV beam which hit a hydrogen gas target. The elastic scattering
peak was easily seen in each shower counter and provided us with an absolute energy
scale. By adjusting the spectrometer magnets’ fields we swept the elastic peak across
the face of the calorimeter so that many blocks could be calibrated. The NPI run also
allowed us to confirm that the passage of electrons through the magnetic spectrome-
ters was understood by comparing the position of the elastic peak in the calorimeter
with that predicted from the TRANSPORT matrix elements describing the magnet
optics. The momentum resolution of the hodoscope tracking system was sufficiently
good (see section 3.5.3) that this was a meaningful test of the spectrometer system.
While the NPI run was quite successful in these regards, it indicated that we needed
to adjust the voltages of some of the shower PMTs to reduce or expand their dy-
namic range as required. This meant that the calibration coefficients from the NPI
were not used in the end, but we had certainty that the lead glass could be calibrated
by tracking the electrons and reconstructing their momenta with the reverse matrix

elements describing the magnet optics.
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Hodoscope Tracking

To reconstruct the particle momentum from its trajectory after it had passed through
the spectrometer magnets, we used the particle’s track position at the final plane of
hodoscopes (x¢, ys) and its angles in the non-bend and bend planes (8y, ¢;). These
values were converted using fifth order in y; and ¢; reverse-order TRANSPORT
matrix elements to initial positions and angles at the target (xo, yo, 6o, #o) as well as
yielding the particle’s momentum [96, 97]. The intrinsic momentum resolution of the
fifth order reconstruction was <0.3%, well below the actual momentum resolution set
by the granularity of the hodoscope tracking system and multiple scattering [97].
Particle tracks were identified with a simple algorithm which examined the TDCs
of the hodoscopes spill by spill. The sixth, H6U, plane was dropped from the analysis
to make the algorithm faster. Since these fingers were quite broad and consequently
noisy, the resulting losses in momentum resolution and tracking efficiency were neg-
ligible. To form a track we were obligated to find an x-y pair of hits in the front
and rear planes of hodoscopes; in the front planes we required an H1X and H2Y or
H3Y hit, and in the rear plane an H4X and H5Y hit. The main steps in the tracking

algorithm were :

1 Hodoscope finger times were first corrected for a time slewing effect arising
from electronic crosstalk in the ribbon cables and electronics of the hodoscope

system. These corrections were usually of the order of a nanosecond.

2 Hits which were 20 ns earlier or 15 ns later than the Hodogate were excluded
since they were the result of electronic pileup (resulting from the finite risetime
of the Hodogate).

3 Pairs of adjacent fingers which fired within 7 ns of each other were grouped

together and considered as single hits.

4 Starting from each H1X hit, the other planes were searched for hits which
coincided with the H1X hit within 12 ns (having adjusted for the time of flight).
When enough hits in the other planes were found to form a track candidate,
the combination of hits was stored in a table, and the searched resumed until
all possible track candidates had been identified.
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5 Each combination of hits composing a track candidate was then fit, and those
which did not pass phase space cuts, or which didn’t point to a cluster in the

shower counter were dropped.

6 The remaining candidates were refit with the x and y position of the cluster
they pointed to being considered as a point on the track (The uncertainty in a

cluster’s x or y position was estimated as 10 mm).

7 The timing and spatial x? of each track were then examined, having accounted
for the light propagation speed in the scintillator of 143 mm/ns, and tracks
with x2/df > 4 were dropped. The timing resolution of most of the hodoscope

fingers was between 1-2 nanoseconds.

If at this stage if there was more than one track pointing to a cluster, then we de-
cided from amongst these tracks using an argument based on phase space probability.
Given that the bend angle and particle momentum were correlated, if the particle
we were tracking was an electron then by examining the shower energy we could in-
fer a preferred bend angle. To decide from amongst the remaining acceptable track
candidates we selected the one with the favored bend angle. This procedure was
not used during the calibration of the shower counter, where we instead chose the
track candidate with the smallest x2/df. The two approaches selected the same track
> 90% of the time, and only differed when there was a lot of noise in the hodoscopes.
In these cases the relative difference in momentum of the tracks was less than 5%
and the absolute difference usually less than 0.5 GeV. Note that the two approachs
would have yielded the same tracks had we made the x% and phase space cuts more
restrictive, at the expense of efficiency.

The tracking efficiency averaged to about 90% in the 4.5° spectrometer and 80%
in the 7.0° spectrometer, with the inefficiency being due to noise in the hodoscope
fingers. A charged particle passing through a hodoscope finger which had a noise hit
within the previous ~25 ns would be unable to register a second hit due to electronics
deadtime. The resulting pattern of hodoscope hits would often not allow a track to be
reconstructed. In the 7.0° spectrometer a significant number of one bounce photons
made their way through the dipoles and inundated the lower half of the first x-y plane
of hodoscopes, reducing the tracking efficiency further. It is important to note that
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the hodoscope system was intended primarily to calibrate the lead glass calorimeter,
so high tracking efficiency was never required for the success of the experiment.

Shower Calibration Algorithm

The shower counter was calibrated with the deep inelastic scattering data collected
during the experiment. Runs which were selected for use in the calibration were
examined spill by spill. Every trigger within a spill which was a Main Trigger was
searched for electron cluster candidates by first looking for a block having more energy
than its eight nearest neighbors, using preliminary calibration values for each block.
Then a total energy for the cluster was formed by summing up the energy of the
nine blocks. If a track was found pointing to the cluster, then the ratio of energy, E,
to momentum, p, was accumulated in a histogram for the central block if this block
received more than 65% of the total energy of the cluster. Separate histograms were
kept for each trigger since the calibration constants were expected to vary slightly
from trigger to trigger for each block. At the end of the run the histograms were
fitted with Gaussians and the the calibration constant for each trigger of each block
was divided by the mean value of the fit in order to center E/p on 1. This process was

repeated until the calibration constants changed by less than 1% between iterations.

Improved Cluster Identification

Following the initial energy calibration of the shower counter we implemented a
slightly more sophisticated technique to recognize clusters in the lead glass calorime-
ter. The reasons behind this were to improve our ability to separate partially overlap-
ping clusters, and to accommodate the fewer than 5% of all electron clusters in which
the cluster spread beyond a central block and its eight nearest neighbors. GEANT
simulations suggest that in the sixteen blocks surrounding the core of nine blocks,
<0.5 GeV would be deposited, and from the data we observed an average of 0.6
GeV [98]. In an effort to recover this lost energy the following cluster recognition

algorithm was employed [98]:

1 Consider any block (called the peak block) which has mere energy than any
of its eight nearest neighbors and associate it with it them to form a cluster.
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Figure 3.7: The left figure shows the energy deposited in 30 blocks of the calorimeter.
Applying the clustering algorithm identifies the two clusters seen on the right.

A block which neighbors two peak blocks is associated with the cluster of the
higher energy peak block.

2 Examine the sixteen next nearest neighbors of each peak block. If any of these
sixteen blocks have non-zero energy and are not already associated with a clus-

ter, then they join the cluster of the peak block.

An example of the clustering algorithm is shown in Figure 3.7. Blocks with less than
200 MeV of energy deposited are ignored in this algorithm.

Systematic Effects in the Shower Counter

The clustering and tracking routines used initially to calibrate the shower counter were
different from those used in the final analysis of the data. For internal consistency,
a second set of calibration coefficients were derived using a consistent set of tracking
and clustering routines. During the recalibration, a systematic dependence of the
E/p ratio on the position of the electron hit within a block was addressed. The effect
is seen in Figure 3.8 and has been reproduced with moderate success in GEANT [99).

Two mechanisms are thought to be at work to produce this effect, and both are
caused by the 2 mm of black tape (which we can consider as graphite) and ~ 2 mm
of air separating the blocks. The first effect is related to the attenuation of Cerenkov
light in the blocks and comes about when electrons hit close to the gaps. Many of
the high energy electrons and positrons composing the initial stage of the shower
will propagate in the gaps between the blocks without much additional showering,
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Figure 3.8: A systematic dependence of E/p upon the position of the hit in the lead
glass calorimeter is seen in this plot. The peaks in E/p fall exactly on the boundaries

between blocks.

and carry their energy deeper into the adjacent blocks before the shower resumes.
The Cerenkov light from these particle is produced closer to the PMT and is more
likely to be detected than had it been produced earlier in the block. The second
effect is caused by a reduction in the energy detected when an electron hits near
the center of a block. In this case, the low energy halo from the later stages of the
shower is what is propagated from the central block to the adjacent ones. These
electrons and positrons with energies of the order of a few MeV and below experience
a large increase in critical energy (from 15 to ~ 80 MeV) in the gap. Since they
traverse the gap at shallow angles they see several cm of carbon and air and lose a
large fraction of their energy from collisional losses and drop below the threshold to
produce Cerenkov radiation [100, 101]. The energy of these particles is lost and we
then underestimate the energy of the shower. Both effects conspire to make edge hits
leave more detectable Cerenkov radiation in the cluster than central hits.

To treat these systematic effects we used two energy dependent corrections, with
one applied to the energy in the central block to treat attenuation effects, and the
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Figure 3.9: On the left we see the systematic rise in E/p as the energy deposited in
the outer blocks increases (corresponding to the hit being closer to a block boundary),
and the softening of the effect after the correction, on the right. The extreme behavior

at high energies is due to overlapping clusters.

second applied to the total energy propagated to the surrounding blocks, accounting
for attenuation and transition effects. The energy corrections took the form of cubic
fits to the dependence of E/p on energy, the results of which are seen in Figures 3.9
and 3.10. The improvement in energy resolution is clearly visible in Figure 3.11 where
we have plotted E/p for identical events with and without the energy correction. The
reduced width of the distribution after correction indicates that the energy has been
determined with greater accuracy. It is important to note that the treatment of these
systematic effects did not cause us to cut or gain any data (except at the limits of
our acceptance). The implication is that the asymmetry measurement is unaffected

except for having improved our resolution in x.

Energy and Momentum Resolution

The energy resolution of the shower counter was measured in a test beam at CERN to
be dE/E=0.025+0.065/vE [102). The momentum resolution is calculated from the
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Figure 3.10: After implementing an energy dependent correction to the cluster energy,
the large variation in E/p across block boundaries seen in Figure 3.8 has been reduced

to a 2% effect.

angular resolution of 0.8 mrads in the hodoscope system coupled with the dp/d¢ spec-
trum of electrons after passing through the magnets, seen in Figures 3.12 and 3.13.

In Figures 3.14 and 3.15 we show the expected momentum and energy resolution
of our detectors, where the 0.3% intrinsic uncertainty in the momentum reconstruc-
tion as well as the effects due to multiple scattering are included. The momentum
resolution is everywhere below 2.5% and is better than the shower counter energy
resolution over the whole range of our data. Also shown on the plot are the expected
and observed width of E/p. The discrepancy between the two is due to errors in
tracking, overlapping clusters distorting the energy measurement, and the effects of
energy straggling as the electrons traverse about 0.1 radiation lengths of material
in the target and detectors before reaching the calorimeter. These effects, and the
residual systematic dependence of energy on hit position in the lead glass will con-
tribute to a reduction in resolution. In Figures 3.16 and 3.17 we show the observed
energy distribution of electron events in the 4.5° and 7.0° spectrometers. Marked on

the plots are the scattered electron energies corresponding to the particular values of
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Figure 3.11: The ratio E/p is plotted on the left for a sample of electron events,
and fitted with a Gaussian. On the right, an energy correction is applied to the
same events which mitigates the effects of the gaps between the shower blocks. The

resulting E/p spectrum is narrower, indicating that the energy has been measured
more accurately.
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Figure 3.12: This figure shows the momentum dispersion of the tracks after having
passed through the 4.5° spectrometer magnets at a central momentum setting of 11.5
GeV /c. The best momentum resolution occurs at low E’ where dp/d¢ is smallest.
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GeV/c. The best momentum resolution occurs at low E', as in the 4.5°.
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tum setting of 11.5 GeV /c is shown with that expected from the shower counter. Qur
observed width of the ratio E/p is somewhat worse than that predicted using simple

models of the detectors’ response, but adequate for our measurement.
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tum setting of 12.5 GeV /c is shown with that expected from the shower counter. The
expected and observed width of the ratio E/p is also plotted.

Bjorken r defining the x bins used in our analysis. We will use data from the 4.5°
spectrometer coming from x=0.03 up to x=0.4. The 7.0° data will be taken from
x=0.06 to x=0.6. It is seen that these z bins are at least 1 GeV wide, so all that is
required is energy resolution of a similar order. The observed energy resolution of the

shower counter is then seen to be quite adequate for this experiment.

3.5.4 Neural Network for Particle Identification

A neural network was employed to help distinguish pions from electrons in the shower
counter for systematic studies [103]. Essentially, the neural network combines at-
tributes of a cluster in the shower counter in a non-linear manner to yield a figure of
merit between -1 and +1, where +1 corresponds to a high probability that the clus-
ter was made by an electron, -1 to a pion. Typically electrons would yield a neural
network response > 0.95, and pions < —0.5.

Attributes of the cluster which were important for distinguishing pions from elec-
trons include the total energy of the cluster, the total number of blocks hit in the
cluster, the ratio of energy in the peak block (highest energy block) to that in the
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beam energy was 22.66 GeV/c2.
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Figure 3.18: The electron identification efficiency of the neural network versus rate
is plotted for the 4.5° spectrometer on the left, and for the 7.0° on the right for
the three incident beam energies, averaged over all cluster energies. The small rate
dependence seen would bias the overall measured asymmetry by less than 5% on
average, however the rate dependence was worse at lower cluster energies, precisely

where the pion/electron separation must be made.

3 x 3 array of blocks containing the peak block, and the total energy deposited in
the 16 next-to-nearest neighbors of the peak block. Pion clusters have their energy
spread out more evenly and over more blocks than electron clusters, so an electron
cluster overlapped by another cluster will tend to look like a pion cluster.

While electron identification with the neural network was an excellent tool for
systematic studies, it is not obvious that it is suitable for an asymmetry measurement.
Since differentiating between pions and electrons depends heavily on the activity in
the 16 next-to-nearest neighbors of the peak block, the neural network is sensitive to
background rates. If the background has a spin dependence, we will accept or reject
clusters in a spin dependent manner, and certainly in a rate dependent manner since
we have more overlapping clusters at higher rates. To test the magnitude of these
effects a plot of the neural network rate dependence is shown in figure 3.18; it is seen
to be small. The next issue to address is whether the neural network is necessary.
Distinguishing pions from electrons is most important in the x=0.035 bin of the 4.5°
spectrometer where the possibility of misidentifying pions as electrons is highest. For
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these low energy clusters, cutting on a neural network response > 0.95 yields an almost
pure sample of electrons, but it also rejects a large number of good electrons. Using
equation (3.6) we estimated the uncertainty in the electron asymmetry determined
with and without a neural network used cut to identify electrons. The results showed
that higher electron statistics (albeit with greater pion contamination) was preferred
over a more pure, but smaller sample of electrons passing a neural network cut. On
these grounds, the neural network was not used to identify electrons for the asymmetry

analysis.

3.5.5 Final Event Selection

We now list the procedure followed to identify electrons for our asymmetry measure-

ment.

1 Runs were selected in which the beam, target and detectors were all observed
to be stable.

2 Within these good runs, spills in which the beam passed simple cuts on quality

were further examined for electron candidates.

3 The data taken during each of these good spills were examined for evidence
that the Main Trigger had fired, indicating that an electron may have entered
the spectrometer. Each spectrometer was handled separately at this point since

they were triggered separately.

4 For each Main Trigger found within a good spill, the two Cerenkovs were checked
to see if the ADC values were greater than 25, which was true about 99.5% of

the time.

5 The ADCs of the shower which were gated during the trigger were then exam-

ined for clusters.

6 Clusters which were centered on the outer blocks of the calorimeter and which

may not have been fully contained were dropped from further analysis.

7 ‘Ghost’ clusters were also dropped from further analysis. These were false clus-

ters which appeared when a second electron event came more than 30 ns later
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than a previous event, but less than 100 ns later. In these cases, the second
electron would cause a second trigger to be issued, so the ADCs of the shower
counter were gated. However, the second gate would enclose some of the energy
of the first electron and it would appear as if a low energy electron had hit
during the second gate. These ghost clusters were excluded from the analysis.

Clusters which were affected by malfunctioning shower blocks (there were three)
were dropped from further analysis since we couldn’t determine the cluster

energy accurately for these events.

Of any remaining clusters the highest energy cluster was taken as our electron
candidate. This cluster had to have a energy, E', greater than 5.5 GeV.

The position of the cluster within the calorimeter was used to determine the

scattering angle, 8, of the event.

The event was binned in E’ bins 0.5 GeV wide and 8 bins which were 3.65 mrads
wide in the 4.5° spectrometer, and 6.5 mrads wide in the 7.0° spectrometer.

After binning the event the next trigger or spill was processed. Once all of the
spills in a run had been processed a summary file was written out, and the next

run was analyzed.

We note that a maximum of one electron event was selected from each Main
Trigger. Occasionally there were two electrons within a single trigger so the above
algorithm will fail, but the correction for this effect is straightforward.

Despite its simplicity the algorithm described above for event reconstruction was

perfectly adequate since the cluster of the electron causing the Main Trigger was

usually trivial to find in the calorimeter. Clusters caused by pions entering the spec-
trometer at the same time were easily separated since pions deposit much less energy
in the calorimeter and only rarely more than 5.5 GeV. Taking the highest energy
cluster almost guaranteed that the electron would be selected whenever both a pion
and electron cluster appeared in the calorimeter at the same time. In Figure 3.19 we

demonstrate the effectiveness of this algorithm.
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Figure 3.19: In the plots on the left we show the ratio E/p of events detected in the
shower counters of the 4.5° and 7.0° spectrometers. The electrons are visible as a
peak centered around E/p=1, whereas the pions, which deposit much less energy in
the calorimeter, are visible as a tail at values of E/p<0.8. By selecting the highest
energy clusters and requiring a Main Trigger, we get the event sample seen in the
right hand plots, which is a > 99% pure sample of electrons. These are the events

used in our analysis.
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3.6 Asymmetry Analysis

Once the tapes had been spun through, the summary files were used to extract the
asymmetry, AiHc(x,Qz). The starting point was the raw counting rate asymmetry,

2%, which was extracted from every run in each spectrometer separately :

I
- N1/2(33)/Q1/2 — Na/z(fb‘)/Qa/z (3.2)
Nyj2(2)/Q1/2 + Naja(z)/ Q32

where N(x)/Q is the number of events passing our cuts normalized by incident charge,
with Bjorken z being determined from the E’ and 6 of the events. The subscript 1/2
refers to data taken with antiparallel beam and target spins, and 3/2 to parallel beam

A (2)

and target spins.

The raw asymmetry in (3.2) must undergo many corrections before it can be
interpreted as A;H¢(z). First, not all of the events which pass our cuts are the DIS
electrons in which we are interested, so a background subtraction must be performed.
We will write the raw counting rate asymmetry for these DIS electrons as AP e
Second, the electron beam and target were not 100% polarized, and further, not all
of the events coming from the target came from scattering off of *He since a large
fraction came from the glass endcaps. Correcting for these effects, we can write a

more meaningful asymmetry
Araw e~

e= _ 7l
[ — P,P.f (3.3)

where P, is the beam polarization, P, is the target polarization and f, the dilution fac-
tor, is the fraction of all events originating from scattering off of 3He. This asymmetry
is still not in a form that enables us to extract any physics results. A resolution correc-
tion must first be applied to account for the fact that we cannot measure the energy
of the scattered electrons perfectly. Also, effects due to deadtime in the electronics
will bias the measured asymmetry and must be corrected for. Another complication
to be considered before we can get extract A;He is that the DIS electrons we detect

are not all the result of the single virtual photon exchange process we would like to

determine, so radiative corrections must be made to the measured results. Finally,
there is a small contribution from the transverse asymmetry, A; which enters into
AjFe. The final expression we will use to go from the raw asymmetry to A;H¢ takes
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the form :

SHe _
Al —

I [(A.’,"e‘ ) POV [ 2]y
D +nQ)|” BRPRS di+70) | RRf ]
where Ay, is the deadtime correction, and Apc are the radiative corrections. The
remaining kinematic factors #, ¢, D and d were discussed in Chapter 1.

We will now examine each of the corrections in greater detail.

3.6.1 Resolution Correction

Our calorimeter has a finite energy resolution so an electron of energy FEyne will
usually appear with a slightly different energy, Fops. If we systematically mismeasure
the energy then events will be placed in the wrong Bjorken z bins, and the kinematic
factors will be evaluated incorrectly.

The range in energy of the detected electrons is determined at low energy by the
spectrometer acceptance and at high energy by the steep decrease in cross section.
In our low energy bins are many higher energy particles which have leaked down due
to fluctuations in the calorimeter response. Since there is no compensating influx
of lower energy events (due to the spectrometer acceptance cutoff) we expect that
at low energies we systematically underestimate the energy of the electrons. The
converse is true for the highest energy electrons we detect. Given an estimate of the
true energy spectrum of detected electrons, F(E), and the shower counter energy
resolution, 6( E'), we can calculate the correction factor to be applied to electrons of

observed energy Eobs :

Emas B .
/ EF(E)exp [-%(Ea—(g—") }dE/\/ﬁs(E)
Etrue - EEm.',. (35)
Eobs i 1/F— Eobs 2
| EanF(E)exp [-5(—75)—) ]dE/\/2—7ré(E)
Erin

where the limits of integration are determined by our acceptance. The results of this
calculation are shown in Figure 3.20. As a test of our understanding of the resolution
we can take a model of the true electron energy spectrum and by folding in the finite
energy resolution of the shower counter, make a prediction for the observed energy
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Figure 3.20: The plots show the ratio of true energy to observed energy for the six

spectrometer settings of E142. We use dashed lines to indicate the range of electron

energies used in the analysis, which shows that the resolution correction has little

impact except on about 15% of the 4.5 low = data where the electron energies are

modified by 4-8%, and in the low energy region of the 7.0° spectrometer. The wiggle in

the 4.5° data around 9 GeV is due to a region of reduced efficiency in the calorimeter

which was fixed before we went to a beam energy of 25 GeV.
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Figure 3.21: This plot shows the effects of finite shower counter energy resolution
on the observed energy spectrum. The true energy spectrum is determined from the
momentum spectrum of electrons returned by our hodoscope tracking system. For
these low energies, the momentum resolution is at or below 1% and so provides a
good model of the true energy spectrum. Taking the same events, and accounting for
energy smearing in the calorimeter we can predict the energy spectrum for the same
events in the shower counter. The prediction compares favorably with the observed

spectrum.
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spectrum. An example of the results of such a test is shown in Figure 3.21. In the
analysis of the asymmetry we account for the shower resolution effects by scaling the
observed energy, E’, by the ratio determined in (3.5) above, and use this corrected
energy to determine the value of Bjorken . This has essentially no impact except on
the first « bins used in each of the 4.5° and 7.0° spectrometers.

3.6.2 Backgrounds

The events passing our cuts and used to form the asymmetry are not a pure sample
of deep inelastically scattered (DIS) electrons, so our expression (3.2) for the total
counting rate asymmetry must be modified to extract the DIS electron counting rate
asymmetry. Some of the electrons we detect have their origin in charge symmetric
processes such as 7% — 2y — ete~ete™, where the 7° are photoproduced in the
target. Furthermore, charged pions and at a lesser rate kaons and muons, entered
our detectors and occasionally were misidentified as electrons. Any spin dependence
in these background event rates will corrupt our measurement directly, and at a
minimum will dilute the DIS electron asymmetry. Denoting the event rates, summed
over polarization, of DIS electrons by e, of electrons from charge symmetric processes
by e*, and of the hadronic and other backgrounds by 7, we can decompose the total

measured asymmetry in event rate, A*"(z) as :

raw __ graw e e” +Araw et 6+ +Ara.w F ot T
” - II e~ _.l. e+ + T ” e~ + e+ + T “ e + e+ + T
(3.6)
where we have suppressed the r dependence and AI’I“‘"" is the asymmetry in event

rate from the ith particle type. In order to extract AR ¢ (z) from the measured

asymmetry, Aj*(z), we require measurements of the other quantities.

3.6.3 Pion Background

The number of 7~ misidentified as electrons in our analysis was estimated by exam-
ining the E/p spectra of our events. The fraction of events with E/p<0.8 was taken
to be the contamination ratio 7~ /(e~ + e* 4+ 7~) and used in (3.6). The part of the
pion spectrum having E/p>0.8 and the tail of the electron spectrum with E/p<0.8
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Beam Energy x=0.035 x=0.050 x=0.080
22.66 GeV 0.030 £ 15% | 0.014 + 15% | 0.007 + 15%
25.51 GeV 0.031 + 15% | 0.018 + 15% | 0.008 + 15%

Table 3.4: Fraction of pions 7~ /(e~ + e* + ™) misidentified as electrons in the 4.5°

spectrometer.

were roughly equal and canceled. In Table 3.4 we list the contamination ratio for the
z bins in the 4.5° spectrometer most affected by the pion background. In the remain-
ing x bins of the 4.5° the contamination was less than 0.5%. The 7.0° spectrometer
was affected by pions only in the first x bin used, x=0.08, where the average pion
contamination was estimated as 1.5%. In the remaining bins the background was well
below 1%.

These background rates were confirmed with a second approach employing strin-
gent cuts on particle identification characteristics to identify a sample of electron and
pions, independently of any E/p information. These contamination rates, estimated
using particles of which we were quite certain of their identity, deviated from the first
by <15%, which we take as our uncertainty.

Apart from diluting the electron asymmetry, misidentified pions can introduce a
new asymmetry into the data, A™ (z). This asymmetry was measured using the Pion
Or trigger; fired by a triple coincidence of the two planes of lucite and one plane of
hodoscopes. Any charged particle will fire the Pion Or, so to reduce the electron
background it was required that the Main Trigger not fire in coincidence. Pions
were identified by requiring a track pointing to a cluster having a neural network
response <-0.5, which was a good indicator that the particle was a pion. Using the
momentum returned from the track to determine Bjorken z, the asymmetry results
are shown in Figure 3.22. The average asymmetry of the subset of pions depositing
enough energy in the calorimeter to be mistaken for an electron, E, > 5.5 GeV,
was (A7) = 0.031 £ 0.032. This result is consistent with zero, and implies that
the small fraction of misidentified pions does not carry a significant bias into our
electron asymmetry measurement. While there are no theoretical reasons for the pion
asymmetry to be exactly zero (certainly for electroproduced pions the asymmetry will
be non-zero), we will use Aj*™ ™ (z) = 0 in (3.6), since it is consistent with the data,
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Figure 3.22: A plot of Afj (z) = A" ™ /(P P.f) where Aj™ ™ where is the raw
counting rate asymmetry of pions, P, and P, are the beam and target polarizations,
and f is the *He dilution factor. The asymmetry shown has been corrected for

electronic deadtime and is consistent with zero (x2/df = 0.6).

and allows us to avoid introducing the statistical fluctuations of the pion asymmetry
measurement into our determination of the electron asymmetry. The uncertainty in
the pion asymmetry measurement will be taken as a systematic error in our final

results.

3.6.4 Charge Symmetric Background

The event rate of electrons coming from charge symmetric processes was determined
by reversing the spectrometer magnets’ polarities. This allowed the positron compo-
nent of the background into our detectors at the same rate that electrons would enter
under normal magnet polarities.

A total of nine runs was taken, including six using the polarized target, to measure
et and A" **(z). The ratio e*(z)/(e*(z) + e~ (z)) extracted, shown in Figure 3.23,
was substituted in (3.6). The largest contamination rate is in the £ = 0.035 bin of
our 25.5 GeV data set. Here the rate from charge symmetric processes is 7% of the
DIS electron rate. In all other bins used the rate is less than 3.2%.

In Figure 3.24 we show the results of our measurement of Aﬁ+. This was extracted
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Figure 3.23: The background ratio e*(z)/(e*(z) + e (z)) from charge symmetric
processes is shown for the two spectrometers and three beam energies used in E142.
No positron data were taken during our short run at 19 GeV, so the background
rate was estimated by scaling the data at 22.7 and 25.5 GeV beam energies as 25.5 :
22.7 = 22.7 : 19.4. The uncertainty in the ratio ranges from 5% at low z to 25% at
high z.
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Figure 3.24: The asymmetry in the positron background is shown, where we have
defined Aﬁ+ = AR * |(P,P,f) where AR ¢* is the raw positron counting rate asym-
metry, P, and P, are the beam and target polarizations, and f is the 3He dilution
factor. The asymmetry is consistent with zero (x? = 5.9 for 8 degrees of freedom).

using identical event selection as in the electron asymmetry extraction, with the
addition of a neural network cut to reduce the potentially large 7% contamination
in our event sample!. The average asymmetry, (Aﬁ+) = —0.088 £ 0.14 is consistent
with zero so we substitute Aj™ *(z) = 0 into (3.6). It would be surprising if this
asymmetry were much larger than the charged pion asymmetry, so we will assign
the same uncertainty, 6Aﬁ+ = A" when calculating systematic errors due to this

background.

3.6.5 Deadtime Correction

From the measurements of the backgrounds we can solve (3.6) for AR e (z). Still,
this is not the “true” counting rate asymmetry for DIS electrons. Two characteristics
of the electronics introduce small biases into the measured raw asymmetry. The first,
called the “>4 correction”, occurs because we were limited to recording a maximum of

4 events/spill/spectrometer. Since the left and right handed electron scattering rates

'When running with the magnet polarities reversed, the x*+ and e* rates are comparable, so
additional cuts are needed to remove the pions.
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are different, we lose a larger fraction of events from one polarization state than the
other. A second bias is introduced due to deadtime effects in the trigger electronics.
An event falling < 32 ns after a previous event will not cause a second trigger to be
issued. Since we accept only one event per trigger in our analysis, then we expect the
measured asymmetry to be biased because different fractions of events are lost from
each helicity configuration. Accepting only one event per trigger makes it easier to
correct for deadtime effects in the electronics since this effectively allows us to define
the limiting deadtime.

Analytic corrections to the two effects are nearly impossible to achieve due to
some complicating factors. Firstly, the electronics deadtime was not strictly 32 ns,
but varied according to the timing precision achieved for the particular lead glass
blocks hit in the event (so we should properly write 32+5 ns). Secondly, the electron
intensity incident on the target was not uniform within the spill but exhibited a finite
risetime and falltime, as well as 10% variations in intensity within the nominally flat
part of the spill. A final complicating factor occurs because not only was the charge
intensity not constant within a spill, but it varied from spill to spill. Periods with
high incident charge are more affected by deadtime effects than low charge periods.
These effects are highly specific to this experiment and cannot be treated easily in
full generality. Analytic calculations thus are of limited utility, instead serving as
benchmarks for detailed modeling.

Before calculating the deadtime correction we note that since we could register
the times of up to 16 Main Or triggers per spill, the trigger distribution observed in
the TDCs is unaffected by the >4 correction, and is only affected by the electronic
deadtime. Ultimately, however, we are interested in the loss of events, which is
affected by both the deadtime and the >4 correction. Our approach then is to first
determine the loss in triggers due to deadtime and from this calculate the loss in
events.

To formulate a correction to the asymmetry one should be able to start with a
Poisson distribution of triggers per spill, simulate the losses due to deadtime and
replicate the observed distribution of triggers. Since the probability of having zero
triggers in a spill is independent of electronic losses, it can be used to estimate the
true rate. Taking into account the spill to spill variation of the charge within a run,
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we can write the probability of zero triggers per spill as
Qmaz
P(0) = [ F(@)e%Q (37)
where F(Q) is the normalized fraction of spills within the run having charge Q inci-
dent on the target, P(n) is the observed fraction of spills having n events, and « is
the proportionality constant we seek relating incident charge to numbers of triggers.
Using the charge distribution accepted during a run and solving for a, we can then

estimate the ratio of true to observed event rates, R, as

R = True Rate / Observed Rate (3.8)
00 maz 4
= 3 [ nF(Qe%(aQ) dQ/n! / 3> nP(n) (3.9)
n=0 Qmm n=0
4
= /Q'"”F(Q)anQ / fjnp(n); where Y P(n)=1.  (3.10)
Qmin n=0 n=0

The precision of this result is limited by the statistical uncertainty of P(0) which
was typically & £ 0.1%. To take advantage of the full statistics of the run, we then
examined small variations of the parameter . Starting from a Poisson distribution
of triggers whose mean is determined by our choice of a, we simulated the effects of
the electronics on twenty million spills to predict an observed distribution of triggers
per spill, for every run. The triggers were chosen in a manner consistent with the
distribution of charge/spill incident during the run and with the temporal variations
of beam intensity observed within single spills. This prediction for the trigger distri-
bution was then compared with the observed distribution, and o was optimized to
minimize this difference. In all cases, the final value for o derived from the Monte
Carlo differed by less than 1% from the original estimate using only P(0). The results
of the simulation for a single run are show in Figure 3.25. With knowledge of the
mechanisms by which events are lost, and their rate dependence, we can calculate the
ratio of true to observed event rates, R, for every run. R will be slightly different for
o172 and 03, since the event rates are slightly different. Extracting Ry;; and Rsy,
using the data and Monte Carlo for each run, and using these values in a deadtime
correction suffers because the statistical errors on the P(n) from each beam helicity
are comparable in magnitude to the asymmetry, and so are inadequate for determin-
ing a correction to the asymmetry. Instead we consider the average unpolarized event
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Figure 3.25: The solid histogram on the left shows the distribution of triggers/spill
observed in the 4.5° spectrometer during a run. The dotted line is the prediction of
the Monte Carlo which starts from a Poisson distribution of Main Or triggers using
one free parameter and then simulates the losses in the electronics to yield an observed
trigger distribution. The two histograms are consistent within statistical errors. The

right hand plot shows the same distributions on a logarithmic scale.

rates. Barring pathologies, we can always write

( Observed Rate ) = i Bn ( True Rate ) (3.11)
n=1
where we denote the observed average unpolarized event rate by { Observed Rate ).
The coefficients, B,, are the same for each helicity configuration, and depend only
on the spill structure during the run and characteristics of the electronics. In the
case that §; = 1 and 8,5, = 0, then it is straightforward to show that the true and
observed raw event rate asymmetries are related by

_ ( True Event Rate ) o
Atrue = Aobserve X ( Observed Event Rate ) ~ Aobserved X (R). (3.12)

The conditions on /3, are satisfied for our experiment, as shown in Figure 3.26, so
we can use (3.12) to estimate the effects of electronic losses on the asymmetry.

In the 4.5° spectrometer a typical value for (R) is 1.10, meaning that 10% of both
the events and asymmetry are lost in the electronics. In the 7.0° spectrometer this
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Figure 3.26: The open circles indicate the relationship between observed and true
event rates, as determined by the Monte Carlo. The solid line, which is an approx-
imation of the form Observed Rate=True Ratex[l-8;xTrue Rate], is a reasonable

model of the deadtime losses.

Figure 3.27: Here we show the distribution of triggers (solid line) before losses in
the electronics are considered, and the distribution after electronic deadtime losses
(dotted line). In this run roughly 9% of the triggers and 12% of the events were lost.

123



number is about 2.5%. For later convenience we rewrite the deadtime correction to
the raw asymmetry, which is calculated separately for each run and spectrometer, as

an additive quantity, Ay, :
Alrue = Aobserved + Ag:  Where Agi = Aobserved ((R) - 1) . (313)

The truncation of events beyond 4/spill reduces the statistical fluctuations observed
of the overall asymmetry from that expected from Poisson statistics, but the effect is
reasonably small and is ignored in this analysis. The values of Ay averaged over the
whole experiment were -3.7x107°40.7x107% in the 4.5°, and -1.9%10~%4+0.4x10~% in
the 7.0°. To estimate our error we have used bounds on Ay, calculated using R, /2 and
R3/; determined strictly from the data, and also from a simple analytic computation.
These deadtime corrections modify the raw counting rate asymmetries, which were
roughly -3.7x10~* in the 4.5° spectrometer, and -7.1x10~4 in the 7.0° spectrometer,
by about 10% and 2.5% respectively.
One other factor must be computed before we can extract the electron asymmetry
from 3He : _
Aty = LT+ 200, (3.14)
b P: f
Here P, is the beam polarization, and P, is the target polarization. The dilution

factor, f, is the subject of the next section.

3.6.6 Dilution Factor
Dilution Factor Theoretical Results

To extract gf from the data we are required to know the fraction of all events which

have originated from scattering off of polarized *He. Since the target polarization

changes it is more useful to calculate for each target the constant fraction, fsy.(z,Q?),

of all events coming from polarizable 3He. This number is & 1/3, where the remainden
of the events have their origin in the glass endcaps, and from N, which comprises

about 0.8% of the molecules in the target cell. Using the subscript H to signify 3He,

g for glass, and N for Nj, our dilution factor then takes the form :

_ nyoy(z,Q?)
Ju(, @) = nyon(z, Q) + nyoy(z, Q%) + nyon(z, Q%) (3.15)
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where n; is the total number of nucleons found in species ; and o; is the average

experimental cross section per nucleon :

(2,0 = A 200,81+ (A= Z)onte )] (316)

where we have included the EMC effect using the parameterization given in [104].
Given that to within 1% the number of protons and neutrons is the same in the
Corning 1720 glass of the target (which has the approximate composition 57% SiO,,
20.5% Al;03, 12% MgO, 5.5% CaO0, 4% B;03, 1% Na;) we can rewrite the dilution

factor as :

(3.17)

fin(2,Q) = T .
1+ 3(1+F}/F. )[EMCg RCg ng + EMCy RCy ny
2(2+F2"/F2 JLEMCy RCy ny EMCy RCy ny

where we have used the experimental result that the ratio of longitudinal to transverse
cross sections, R = o /ar is the same for protons and neutrons, R, = R, [105], so we
can replace o with F, provided we include radiative corrections to the cross section
in the factor RC. The ratio F}'/F] depends only weakly on Q? ( the dependence is
roughly F7'/F} o« —0.0146log(@?) [106]) so the only reason for the dilution factor
to be different for the two spectrometers is that the radiative corrections are different.
More details on F, and R are included in the next section.

The important parameters of the polarized targets used to calculate the dilution
factor are given in Table 3.5.. The window thicknesses given in the table were mea-
sured with a dial-head indicator before the cells were assembled. As a consistency
check, several windows from our reference cells were also measured using a coordi-
nate measuring machine in the precision measurements shop at SLAC, verifying the
accuracy of the indicator to 7.5%.

The dilution factor calculation for the three target cells is estimated to be accurate
to 8%. Significant contributions to the uncertainty derive from a 7% uncertainty from
the window thicknesses, 2% from uncertainty in the number density of the gases in
the target, and 3% from the radiative corrections. Other contributions to the error
from the EMC effect, and F, are negligible in comparison.
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Parameter Minnehaha Hiawatha Gore

Runs Used 1000-1117,1320-1771 1118-1181 1182-1319
Length (mm) 29512 29742 303+2
Front Window (um) 110£7.5% 110£7.5% 110+7.5%
Rear Window (um) 124+7.5% 107£7.5% 110£7.5%
Glass Density(g/cm®) 2.52+1% 2.52+1% 2.52+1%
3He Density(amagats) 8.63+2.5% 8.90+2.0% 8.74+2.0%
N; Density(amagats) 0.070+1.7% 0.069+1.8% 0.082+1.8%
3He Density (cm™3) 2.32x10%°+2.5% | 2.39x10%°+2.0% | 2.35%x10204+2.0%
N Density (¢cm™3) 1.88x10"%+1.7% | 1.85x10'8+1.8% | 2.20x10'8+1.8%

Table 3.5: Polarized target parameters used in calculating the dilution factor. (An

amagat is the density of 1 mole of gas at 0°C and 1 atmosphere pressure.)

Dilution Factor Experimental Results

A nice feature of the experiment was the ability to determine the dilution factor
experimentally. Empty glass reference cells of similar length, L, and thickness to the
target cells were moved into the beam, and known densities of *He were introduced.
By measuring the event rate versus 3He pressure, P, we could extract the dilution
factor. At zero pressure the events are due solely to the glass endcaps, and the
additional events resulting when the cell was filled were due to 3He :

Event Rate(z,Q?) _ [ 2, 3NavLP . ]
Incident Charge ~ N|ngoo(z, Q%) + RT on(z, Q%) (3.18)

where N is a proportionality constant, and R is the gas constant. When we set
P = Pracges cen then 3Ny LP/RT = ny as in (3.15). If we plot event rate for events
falling into a selected z bin versus reference cell pressure, as in Figure 3.28, then we
observe a straight line. The slope, a, can be interpreted as N ngo (2, Q%)/ Prarget el
and intercept, b, as Nnyo,(z,Q?). Then we extract :

2y _ __ @Pragecen
E’He(z,Q ) N (aPTarget Cell + b). (319)

In practice the result had to be scaled to take into account the fact that the reference
cell windows were thicker than the target cells, and that N, was absent from the
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Figure 3.28: This data comes from a sequence of reference cell runs. The dependence

of event rate on pressure is used to extract the dilution factor.

reference cells. The main experimental difficulty of the technique was to properly
account for the rate dependence efficiencies of our event selection, knowledge of which

is important for the asymmetry analysis.

Final Dilution Factor Results

In Figure 3.29 we show the results of a theoretical calculation of the dilution factor
of one of the reference cells with the experimental observations. The two approaches
yield similar answers for the dilution factor, which differed at most by 7%. The 9%
uncertainty in the theoretical dilution factor of the reference cells is larger than that
for the real target cells because the density of gas in the reference cells was not known
with the same precision. Given the good agreement between the measurement and
the theory for the reference cells, we use the theoretical calculation from (3.17) to
determine the *He dilution factor for the target cells, and quote an uncertainty of
8%. A plot of the dilution factor for one of the target cells used in the asymmetry

analysis is shown in Figure 3.30.
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Figure 3.29: The theoretical and experimental results of the dilution factor of a

reference cell are shown, using a *He pressure of 147 psia. The maximum difference

between the two results is 7%.
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Figure 3.30: This plot shows the results of a theoretical calculation of the dilution fac-

tor. These results are used in the asymmetry analysis, with an estimated uncertainty

of 8%.
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3.6.7 Fy(x,Q?) and R(x, Q?)

Calculating the dilution factor and extracting A} and g} requires knowledge of the un-
polarized structure functions Fg, F3He, as well as the ratio of longitudinal to transverse
virtual photon cross sections, R?(z, Q?) = o} (z, Q?)/o%}(z,@?%) and R® = 07 /0%. The
New Muon Collaboration, amongst others, found that experimentally R? and RP are
the same [105], so we will not distinguish between R? and R™. The central values and
errors on R(z,@?) in the analysis are taken from Whitlow’s fit [106].

Since there are no free neutron targets, F} is derived from DIS cross section data on
proton and deuterium targets {107, 108, 109, 110, 111]. The measured F} is smeared
using a model of the deuteron wavefunction and subtracted from the measured FZ.
The smeared F} resulting is then input into the deuteron model and iterated until
a stable, unsmeared F} can be extracted. In the region x<0.45 of this experiment,
the ratio of Fermi smeared to unsmeared structure functions for both the proton and
neutron deviate from 1 by less than 0.5% [112, 110]. Then for our purposes it will be
sufficient to take FJt = 2x F? — F} where the proton and deuteron structure functions,
per nucleon, are taken from the NMC fits [111] to the SLAC [109], BCDMS [107] and
NMC data. Since no errors are included in the NMC fit, we will use the errors from
Whitlow’s fit [110] to the SLAC data since these dominate our region of interest in
the NMC fit. We include a normalization uncertainty from the SLAC data of 2.1%
for F} and 1.7% for FP. Further, we include a 2% uncertainty for the proton and
0.6% on the deuteron arising from the maximum deviation of the SLAC and NMC
fits in the range 0.08 <x< 0.6. For x < 0.08 there is very little data from SLAC, so a
4.5% error is placed on the NMC structure functions in this range, coming from the
maximum deviation of the NMC data from the NMC fit.

The systematic errors returned by Whitlow’s fit, as well as the normalization un-
certainties are assumed to be completely correlated between the proton and deuteron,
reflecting the manner in which the structure functions were measured. For z < 0.08,
50% of the error is assumed to be correlated.

The 3He structure function is then calculated as :

FY(z,Q%) = EMC(2)[2 x F{(2,Q°) + F(=,@*)/3 (3:20)
where EMC(x) is an estimate of the EMC effect in *He from [104], and differs from
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unity by less than 2% in our kinematic range. The nuclear effects are expected to
be small because of the small nuclear removal energy in *He [113]. We will assign an
additional 1% uncertainty on F3H¢ apart from that coming from F} and F? due to
the EMC effect.

3.6.8 Radiative Corrections

Another correction that must be made to the measured asymmetry in equation (3.4)
comes from radiative effects. These are traditionally divided into two categories,
‘internal’ and ‘external’. The internal effects are those occurring at the nucleus where
the inelastic scattering occurs. The external effects are those which modify the energy
of the electron by bremsstrahlung and ionization losses from interactions with other

atoms before or after the DIS event.

Internal Radiative Corrections

The structure function gf(z) and asymmetry A}(z) are defined in the limiting case of
a single virtual photon exchange. However, experimentally observed lepton-nucleon
scattering includes contributions from virtual processes, elastic, quasielastic and in-
elastic tails, in addition to the Born level process in which we are interested. Since
the contributions from these tails are not identical for the two orientations of lepton-
nucleon spin, the measured asymmetry is different from the Born asymmetry and
must be corrected. The formalism for calculating the radiative corrections (RC) to
spin dependent deep inelastic scattering (DIS) has been well developed by Kukhto,
Shumeiko and Akushevich [114, 115] and implemented in their Fortran code POLRAD
1.4 [115].

The measured DIS cross section can be decomposed into components (with spin

indices suppressed) :
a
Om(2,9) = 00(2,3) Z(6E + Buer + Shae + 81ac) +05(@9) + 0z, 4) + 0u(z,y) (3:21)

where oy, is the measured differential cross section d?c/dzdy, o, is the Born level
cross section of interest, §5? is the correction due to soft photon emission, &, is the

lepton vertex correction, 8.,, is the lepton vacuum polarization, & _ is the hadronic

vac
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vacuum polarization, o7, is the infrared divergence-free part of the inelastic radiative
tail, and oy and oo are the quasielastic and elastic tail contributions respectively.
Since the soft photon and virtual corrections to the cross section are insensitive to
the spin of the interaction, these contributions factorize and the RC to the measured
asymmetry come from the elastic, quasielastic and inelastic tails. In the case of E142,
the latter two dominate as we now discuss.

With the emission of a hard photon by the incident electron before scattering, the
E and Q? of the event are lowered. Since the electric and magnetic form factors of
the constituent protons and neutron in *He (loosely speaking) rise as ~ 1/Q*, the
probability of scattering quasielastically is enhanced. Again speaking loosely, since the
nucleons are polarized within polarized 3He, there will be a spin dependent asymmetry
in this scattering, expressible in term proportional to GGy and G%, [116, 117, 118].
Radiative effects thus mix in this asymmetry with the DIS asymmetry in which we are
interested. The magnitude of this contribution increases as we move to lower z and Q2.
Nuclear structure details of 3He are important here for predicting the polarizations
of the nucleons, and the modification of the electric and magnetic form factors of
the constituent nucleons in the nuclear environment. Predictions for the D and S’
percentages of the ®He wavefunction are used to determine the small quasielastic
asymmetry contribution from the protons in 3He, which is otherwise due solely to
the neutron. The quasielastically scattered electrons constitute as much as 8% of the
events measured in the z = 0.035 bin of the 4.5° spectrometer, and less in all other
bins. Electrons which have scattered elastically from 3He are less likely, and compose
fewer than 1% of the events we detect.

The inelastic tail contribution arises in a similar manner. Electrons entering our
spectrometers having undergone hard photon emission before (after) scattering will
have their E (E’) over(under)estimated, and in both cases will be assigned a lower
value of Bjorken r than the true z of the event. In this way, DIS asymmetries from
higher z are mixed into the asymmetry measured at lower z.

For E142, the internal radiative corrections were determined using the POLRAD
code. Specifically, a smooth fit to A;H¢(z) was made from the data, from which a

model for g;H¢(z) was constructed. Radiative corrections were calculated to AjHe
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using POLRAD :
ABom(z) = gmeasured( 1) _ A A, (g) (3.22)

where AA;(z) is the radiative correction to the asymmetry [115]. From this, a new

model of g;H¢ was constructed

(n) _ Fg((L‘,Qz) measured __ (n-1)
91 _2.7:(1+R($,Q2))(A1 - AT (3:23)

where the index, n, reflects the number of iterations performed. Convergence occurs

after about three iterations.

While there are theoretical and experimental uncertainties in the models used to
calculate the elastic and inelastic tails, these contributions are independent of the
shape of the input continuuum spectrum, which is determined by F,, R, and Ai”e.
However, a further model dependency arises from the comparatively low beam energy
available to E142. At high z, with the emission of a hard photon before scattering, the
small Q2 of the event entails that the missing mass squared, W2 = M2+ Q?*(1/z—1),is
low and the resonance structure of the nucleon is being probed. The spin dependence
of the structure functions in the resonance region have not yet been measured, so a
theoretical model of Lu and Burkert (unpublished) was inserted into POLRAD.

The final results are presented after a discussion of the external radiative correc-

tions.

External Radiative Corrections

In addition to the ‘internal’ radiative effects occurring during DIS, the electrons will
lose a small amount of energy by ionization, and potentially a much larger amount by
bremsstrahlung interactions with other target nucleii before and after the DIS event.
Like the ‘internal’ effects, these ‘external’ effects make the uncorrected measured
asymmetry a convolution of asymmetries from a large kinematic space, and are an
important consideration in electron scattering since the bremsstrahlung cross section
is so large. To unravel the effects of finite target thickness on the measured asymmetry
we use the procedures outlined by Mo and Tsai [119, 120].

Electrons entering the target first pass through the front glass endcap, which is
only 0.001 radiation lengths long and has a small effect on the final cross section.
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Spectrometer | Fraction of Events | Radiation Lengths (tou:)
4.5° 36.50% 0.001

54.55% 0.085

6.85% 0.169

2.10% 0.291
7.0° 23.39% 0.001

48.36% 0.055

18.75% 0.269

9.50% 0.399

Table 3.6: Radiation lengths, tou, seen by electrons exiting the target.

Radiative losses in the 0.0005 radiation length 3He gas part of the target are even
more negligible. The main effect occurs as the DIS electrons exit the target and
pass at shallow angles through various thicknesses of glass, and sometimes parts of
the target’s NMR pickup coils (composed of teflon and copper). Table 3.6 shows
the the radiation lengths seen in exiting the target by electrons scattered at different
points within the target. We will neglect ionization losses. The measured polarized
cross sections, op,), can be expressed in terms of the internally radiated polarized
cross sections (uncorrected cross sections measured if the target had no thickness,

calculated by POLRAD), 0§, as :

Oport(Esy Ep) = /E I;wp) dE, /E f” = dE,I(E,, E,, tin)o 8 (Es, EL)I(EL, Epytow)

(3.24)
where E,, E, are the assumed initial and final electron energies, and I(E;n, Eoy,t) is
the probability that an electron of energy E;, will have an energy E,,, after having
passed through ¢ radiation lengths of material. The function I is a solution of the
diffusion equation for electron energy straggling. The limits of integration are deter-
mined from elastic scattering conditions, so that E™*(E,) = E,/(1— E,(1—cos §)/M)
is the minimum incident energy required to produce a scattered electron with E,.
EZ7**(E,) is the maximum scattered energy if the incident energy is E!. The param-
eter 1, is the thickness in radiation lengths traversed by an average electron before
scattering. For our target ¢;, is 0.00125, which is the thickness of the target entrance

133



window plus half of the 3He radiation length. The electrons exit the target through
four discrete sections, so that (3.24) is actually the sum over the four values of toy,
in Table 3.6. The function I(E;,, E,u,t) is sharply peaked when E;, ~ E,,, and

singular for £;, = Eoy :
I(Einanutat) = I(Eim E;, — - w, t)

= 'r(llTbt)(E )Mﬁf‘”(E—,,)’ (3:25)

where the bremsstrahlung spectrum is given by

() - 2 () 1))

and

_ 4 Z+1 —1/3\"1 _ -2/3 -1/3
b = 3[1+12 T ](log184.15Z )7, 7=1log119427%/3[log 188152172,

Here Z is the average Z of the target material. The peaked behavior of I allows us to
separate the double integral (3.24) into parts (introducing a few percent error). To
handle the singularity of the integrand we will introduce a cutoff at A = 15 MeV, and
then integrate analytically, using the reasonable assumption that the cross section is

constant over the cutoff range :

E, , ’ A btin IR
Jogoniy B Eortin) ot (B BB, m (5) " obRaEur By) +
E,-A
Jogi LB B tin)otha (B4, E,)dE(3.26)

With these approximations, the expression for calculating the effects of external

bremsstrahlung in the target becomes :

m A btin A blou
FaslBoy) = (5) (F)  othalBny)+

AN Btin EP*(E}) , , ,
(_ / pol:!:(E 3y Ep)I(E;n E,,, taut)dEp +

E, Ep+4

A\btowt [E,-A

il I(E,, ”tin IR . ' .
( ) Jomg, B EotiotBu(BL B)EL (327)
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By solving this equation for each polarization we can form an asymmetry from the
measured polarized cross sections, o7.,, which we compare with the asymmetry
formed from the internally radiated, zero target length polarized cross sections of,.

The difference is then the additive correction we make to AH¢, denoted A% :

1 IR _ IR
AHe _ [Upol+ pol—]
! D(1+9¢) |olB, +olR_
1 Opol+ — 03&—] .
= + ASE. 3.28
D(1 +¢) [a;':,H +op ) TR (3.28)

Statistical Errors and Radiative Corrections

Radiative corrections complicate our calculation of the statistical uncertainty of our
measurement. To see this, first consider the problem of the internal radiative correc-
tions to a zero radiation length target in the peaking approximation [119]. Then we
can relate the measured cross section o™ = d?¢™/dQUdE, to the Born cross section

with virtual corrections, 08V by :

aBV(E,,E,,) = o"(E,, Ep)
— (7% dE'pu(E, E!/E)0PY (B!, B,)
E:"“‘(EP) sYl Py s s s ~p
Em&l(E')
— |7 dE\gou(Es, Ey/ E})o®Y (E,, EL) (3.29)
Ep+A

(Paraphrasing Tsai's equation (IV.2) [119]) where E,, E, are the assumed initial and
final electron energies, and A is a small energy cutoff. The functions 1, which are
positive, parameterize the probability of internal bremsstrahlung before and after the
scattering event, mixing the cross sections o(E,, E,) and o(E}, E,) with the measured
cross section o™(E,, E,). It is this mixing which we wish to undo. To Oth order we
can solve (3.29) by replacing o8V (E;, E;) by o™(E, E;) :

”BV(EHEp) r o™ (E, Ep)
- . ! oby: ! m(
ooy CEv0in(En, B4 En)o™ (B, Ey)
Ep*8(E)) o ,
- dEpwout(ElsEp/Ep)a (E,,Ep). (330)
Ep+A



In this form we see explicitly that oBY depends on knowledge of the cross section
in a large region of (E;, E}) space. In addition, we see that the proper calculation
of the statistical uncertainty of the Born cross section depends on the uncertainty
of the measured cross section over the same (Ej, E,) space, introducing complicated
correlations.

Fortunately, for our asymmetry measurement the situation is less complicated
because the unpolarized cross sections are considered to be known. If we write the
spin dependent DIS electron cross sections in terms of the unpolarized cross section
and the 3He asymmetry, 02}, = 02¥ (1 + DA 1He) then we can rewrite (3.29) as

UpBo‘l/:!:(EsaEp) = opois(Es, Ep)
E,-A
= Jopings,) LB+ bin( B Eof Bl & DAT)(Ey, By)
é;naK(E‘) , , 3y ,
— dE 1/’ouz\E5,Ep/E )Uunpol( + DA,)E,, E,)
Ep+4
= O';L&(E,,Ep)— unpol(ES’E) ;?:l;{:(EsaEp) (331)

where ol comes from the first part of each integral, and o'Al, from the second.

Since g4k | comes entirely from known unpolarized data, it is completely uncorrelated
with the measured cross section, and can be treated as a pure background subtraction
n (3.31). However, the polarized tail component will introduce correlations between
0poix and the asymmetry from other kinematic regions when extracting z)'poli in (3.31).

The statistical error will then be expressed as :
2 2 \2 4 \2 .
(&IPO&) = (60{,’3&) + (60&‘,‘,"',01) + (50;2'111:) — 2covar(fo., 60t ).  (3.32)

Two observations are necessary to proceed, first since A,(Ej, E;) is predominantly

of one sign for the regions of integration, then 6oty =~ /|0, ;:'IU Second, the data

and models indicate roughly that o%3l, < 0.2 x ol and ol | < 0.25 x Opol»
so that the covariance term in the statistical error is less than 5% of the total error
and can reasonably be ignored. The same argument applies to the external radiative
corrections so we can express the total effect of radiative corrections on the statistical

error by :

80PV (E,, Ep) = 66™(Ey, Ep)\/1 + fa + fauet + finel + Jexs (3.33)
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where the fs are the absolute values of the fractions of the total measured cross
section coming from elastic, quasielastic and inelastic tails, and the background frac-
tion leaking in due to external radiative corrections (polarization indices have been
suppressed). The more detailed radiative correction procedure actually employed
will not disturb our conclusion that we can treat the radiative tails as a background

subtraction for the purposes of calculating statistical errors.

Radiative Corrections Systematic Errors

The radiative corrections are sensitive to the cross section shapes. As an estimate
of the sensitivity, we input a flat asymmetry into POLRAD as a model for AiHe,
and then a quadratic fit to the data with weak constraints at low and high x. From
the variation of the results, we estimate a 25% uncertainty in the internal and ex-
ternal radiative corrections to the 7.0° spectrometer data, and 25% uncertainty in
the internal correction of the 4.5°. This also reflects uncertainties arising from the
cross section models used within POLRAD, and in particular our uncertainty in the
resonance region. The external corrections to the 4.5° were particularly sensitive to
the cross section shape at high x, which decreases very rapidly. This correction is

assigned a 35% uncertainty.

Radijative Corrections Final Results

In Table 3.7 and Figure 3.34 we present the additive internal radiative corrections,
int., and the external corrections, ARE, to be made to the asymmetry, AJR¢. The fs
in the table are the fractions of events coming from elastic, quasielastic, and inelastic

tails, as well as the fraction of events leaking in due to external radiative effects.

3.6.9 AjMe(x Q?)

At this point the last remaining correction to A:H°(z,Q2) in equation (3.4) is that
coming from the transverse asymmetry, A;. Having only limited beam time, a high
statistics measurement of A; could not be performed. Instead the intent of the 9

transverse asymmetry runs taken was to place a better bound on A2 than VR (see
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z

int
AR

ext
RC

f elas

f quel

finel

fext

0.035
0.050
0.080
0.125
0.175
0.250
0.350

-0.0025
-0.0031
-0.0035
-0.0038
-0.0040
-0.0039
-0.0032

-0.0002
-0.0007
-0.0017
-0.0026
-0.0030
-0.0033
-0.0024

0.003
0.001
0.000
0.000
0.000
0.000
0.000

0.079
0.042
0.017
0.007
0.004
0.003
0.002

0.148
0.128
0.099
0.067
0.040
0.008
-0.019

0.100
0.082
0.077
0.077
0.050
0.038
0.017

0.080
0.125
0.175
0.250
0.350
0.466

-0.0042
-0.0039
-0.0040
-0.0039
-0.0032
-0.0015

-0.0012
-0.0024
-0.0032
-0.0030
-0.0020
-0.0001

0.001
0.000
0.000
0.000
0.000
0.000

0.038
0.013
0.006
0.002
0.001
0.000

0.112
0.069
0.036
0.003
-0.033
-0.063

0.089
0.094
0.061
0.045
0.016
0.005

Table 3.7: The radiative corrections to A;H¢(z) are tabulated here, with the correc-
tions to the 4.5° spectrometer given first, then those of the 7.0°. The As are the
additive corrections to be made to the asymmetry, and the fs are the fractions of

events in a particular bin coming from elastic, quasielastic, and inelastic tails, as well

as from external radiative effects.
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Figure 3.31: The asymmetry A;He is plotted. The results are consistent with zero

(x*/df = 0.6).
Chapter 1). As a first step, we examine the asymmetry A;H" :

(3.34)

(1+10) [dRPf " DAPf
where we have omitted deadtime and radiative corrections since they were not cal-
culated. The experimental results on this asymmetry are shown in Figure 3.31. The
results are consistent with zero (x2/df = 0.6) so in the rest of the analysis we will
set A, = 0. Note that from equation (3.34) this determines A, in terms of Aj.
The uncertainty on A;, which enters into our determination of Ai"", will be taken
as either the statistical uncertainty on A, coming from the nine transverse runs, or
from the bound A3 < V'R, whichever is smaller. No algorithms for extracting A} from
A3H¢ have been published, so we will use the simple ansatz that AJe = Fp Az FyHep,
where p,, is the polarization of the neutron within 3He. The result of these consider-
ations is that the uncertainty on our measurement of A, is a better bound than VR
except for in the last two z bins, x=0.35 and x=0.47.
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Figure 3.32: The results for A;H¢(z) from both spectrometers are plotted. In the five
z bins that they overlap the results are reasonably consistent. The errors shown are

statistical.

3.6.10 Final Results
Results on AjHe

The values for A:;H" of both spectrometers from the ~ 270 parallel asymmetry runs
were averaged together, assuming that A;H is independent of Q2, and having deter-
mined A, under the assumption that A;He = 0. The results from the two spectrom-
eters individually are seen in Figure 3.32. In order to compare the spectrometers we

define the difference

Al(z) - A}¥(z)
A =
=) V82 Al(z) + 62415(z)

where A} is the asymmetry in spectrometer i and 6 A} is the statistical error. Making

(3.35)

the assumption that the spectrometers should agree with each other, we would expect
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that in the region where the spectrometers overlap the differences observed should
be normally distributed in a Gaussian with a mean of 0 and width of 1. With
this hypothesis, the probability of observing by chance the mean difference seen in
Figure 3.32 is a little more than 50%. Testing the hypothesis that the width of
the distribution of differences is 1, we find that the probability of observing our
results by chance is 13%. This may be considered as a lower bound on the level
of agreement because some of the systematic errors in each spectrometer, such as
the deadtime correction, are calculated separately and probably should be added in
quadrature before comparing the spectrometers. It appears on these grounds that we
can consider the 4.5° and 7.0° spectrometers to be reasonably consistent with each
other. Averaging the two spectrometers together we have the final result for AJH¢(z)

in Figure 3.33. The asymmetry is seen to be small and negative.

Results on A}

3 .
To extract A} from A;H¢ we use the expression :

P 2F2ppp
1 F;He

n F;pﬂ
1 3IH,
F,Re

AHe = 4 +A (3.36)
where p, = ~0.027 £+ 0.004 is the polarization of the protons in He, and the asym-
metry A7 is taken from the recent measurement of E143 [128]. The results for A" are

shown in Figure 3.35.

False Asymmetry

One of the strengths of this experiment was that the frequent beam and target spin
flips enabled us to average over false asymmetries. If the properties of the beam
were slightly different for the two helicities, or if there were slow changes in the
spectrometer acceptance, the effects should average out over the entire data set. As
a test of the magnitude of possible false asymmetries we can subtract the asymmetry
determined from data taken with the target spin pointed one direction from the
asymmetry measured when the target was pointed in the opposite direction. Ideally,
the result will be consistent with zero. In Figure 3.36 we plot the false asymmetry, and
find an average value of 0.019 £0.027. The probability of observing this distribution
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Figure 3.33: The asymmetry A:“‘(:c) averaged over both spectrometers is plotted.
The error bars are statistical, with the enclosed region at the bottom indicating the

systematic errors.
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Figure 3.34: Here we show the evolution of the asymmetry A;" as the internal and
then internal+external radiative corrections are added. The statistical error is shown

for comparison.
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Figure 3.35: The asymmetry A} is seen to be small and negative. The error bars are
statistical, with the systematic errors indicated by the enclosed region at the bottom
of the plot.
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Figure 3.36: The asymmetry determined with the target pointed in one direction
is subtracted from the asymmetry found when the target spin is in the opposite

direction. The difference is consistent with zero.

assuming that there are no false asymmetries, is 20%. This may be taken to mean

that there were no large false asymmetries.

Results on A} versus @?

If we extract A} separately from the two spectrometers and three beam energies used
by E142, we obtain A} at six different values of Q2. Over this modest range of Q?
and within the statistical errors, we find that A} is consistent with being independent

of @2, as seen in Figure 3.37.

Results on g;"* and g7

We can extract g;H¢ from A3He by :

s SHe 2 s T s
(0,08 = i ot (e, Q1) + LB AT w, 02| (30
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Figure 3.37: The asymmetry A} for five values of Bjorken z is plotted versus Q2. The

results are consistent with 4} being independent of Q2.
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where Q2 is the Q% at which the data point was taken. We will use A; = 0, and

evaluate F; and R at the average Q? of E142, Q2 = (Q?) = 2 (GeV/c)?. The result
is shown in Figure 3.38. Finally, we can extract g} using :

67z, Q8) = pin[gi‘“e(x,oz) — p,g%(z, QD) (3.38)

where p, is the proton polarization in *He, and ¢ is taken from the measurement
of E143 [128]. The result is calculated at a fixed @% = 2 (GeV/c)? and plotted in
Figure 3.39. Table of the results are given below.

3.6.11 Systematic Errors

The systematic uncertainties affecting the primary quantities, A7 and g} extracted
from this experiment have been discussed in the previous sections. For convenience
we will summarize the results in Table 3.8.

The resulting uncertainties on our measurement of A} coming from each of the
systematic errors listed above, are shown in Table 3.9. The systematic errors on g7
are given in Table 3.10.

The final results for A;%¢(z) and g;7¢(z, Q?) evaluated at Q% = 2 (GeV/c) are
given in Table 3.11. Also shown are the range of each z bin and the average z and
Q? of the data within the bin. The results for AP(z) and g}(z,Q?) evaluated at
@* =2 (GeV/c) are found in Table 3.12.

3.6.12 Integral of gl(x, Q?)

The integral of the neutron spin structure function, fy ¢7(z,@?)dz, is of fundamental
interest since it appears in tests of the Bjorken and Ellis-Jaffe sum rules. We will
evaluate the integral at a fixed Q2 = 2 (GeV/c)? which is the g weighted average Q?
of the experiment. We find the integral in the measured region by

K 8
L[ gile @iz = 3 g7(z0 @A, 5.39)

i=1

where the sum is over the eight data points, and the Az; are the bin widths. The
quantities g7 (zi, Q3) are calculated from equation (3.38). The statistical errors are
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Figure 3.38: The spin dependent structure function, g:"", is shown evaluated at a
fixed Q5 = 2 (GeV/c)®. The error bars show the statistical uncertainty, while the
systematic errors are shown at the bottom of the plot.
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Figure 3.39: The spin dependent structure function of the neutron, gt, is shown
evaluated at a fixed Q* = 2 (GeV/c)?. The error bars show the statistical uncertainty,
while the systematic errors are shown at the bottom of the plot.
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Parameter Systematic Uncertainty

Beam Polarization P, 4.1%

Target Polarization P, 7.1%

3He Dilution Factor f 8.0%

4.5° Deadtime Correction Ay Agi~~3.7Tx 1075 +0.7 x 10~°

7.0° Deadtime Correction Ay Ag~—-19%x10"%+04 x 105

4.5° Radiative Corrections Agg 25% on internal, 35% on external

7.0° Radiative Corrections Agc 25% on internal, 25% on external
R(x,Q?) ~ 30%

F(x,Q%) ~ 4%

Neutron Polarization in *He p, pn = 0.87 £ 0.02

Proton Asymmetry Subtraction A} | Errors from E143 [128]

Proton Polarization in 3He p, pp = —0.027 + 0.004

Ay Measured uncertainty or bound from VR
A" Measured uncertainty from Figure 3.22
Ac? Same uncertainty as A"

Nuclear Structure Effects 5% of A} or g7

Table 3.8: The uncertainties in some of the parameters used in extracting A} and g}
are listed in this table.
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Parameter | x=.035 | x=.05 | x=.08 | x=.125 | x=.175 | x=.25 { x=.35 | x=.47
P, .0036 | .0031 | .0042 | .0063 .0067 | .0048 | .0010 | .0030
P, .0063 | .0054 | .0072 | .0110 0117 | .0083 | .0018 | .0052
f 0071 | .0061 | .0081 | .0124 .0131 | .0093 | .0020 | .0059
Ag .0010 | .0011 | .0012 | .0012 .0013 | .0015 | .0019 | .0013
Aprc .0026 | .0039 | .0055 | .0068 .0079 | .0082 | .0068 | .0022
R .0038 | .0034 | .0038 | .0051 .0055 | .0035 | .0006 | .0021
F, .0061 | .0054 | .0070 | .0063 .0072 | .0051 | .0073 | .0090
Pn .0021 | .0019 | .0025 | .0037 .0039 | .0026 | .0012 | .0001
A? .0021 | .0018 | .0017 | .0019 .0024 | .0035 | .0058 | .0116
Pp .0010 | .0013 | .0019 | .0027 .0036 | .0051 | .0076 | .0131
A .0082 | .0093 | .0122 | .0189 .0334 | .0518 | .1062 | .1053
A™ .0079 | .0037 | .0024 { .0000 | .0000 | .0000 | .0000 | .0000
At .0123 | .0044 | .0030 | .0033 .0006 | .0000 | .0000 | .0000
Nucl.Eff. .0046 | .0041 | .0054 | .0081 .0085 | .0057 | .0025 | .0003
Total .0218 | .0166 | .0209 | .0298 .0415 | .0552 | .1072 } .1075

Table 3.9: Table of systematic uncertainties on each point of A}
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Parameter | x=.035 | x=.05 | x=.08 | x=.125 | x=.175 | x=.25 | x=.35 | x=.47
P .0120 | .0072 { .0057 | .0056 { .0040 | .0018 | .0002 | .0003
P, .0207 | .0125 | .0099 | .0097 | .0069 | .0031 | .0003 | .0005
f .0233 | .0141 | .0112 | .0109 | .0077 | .0035 | .0003 | .0006
Ag .0034 | .0027 | .0017 | .0011 .0008 | .0006 | .0004 | .0002
Apc .0089 | .0093 | .0078 | .0061 .0047 | .0031 | .0014 | .0002
R .0200 | .0130 | .0102 | .0077 | .0054 | .0024 | .0014 | .0009
E, .0131 | .0085 | .0047 | .0039 | .0028 | .0013 | .0000 | .0002
Dn .0071 | .0045 | .0035 | .0033 | .0023 | .0010 | .0002 | .0000
A? .0061 | .0039 | .0024 | .0018 | .0015 | .0014 | .0012 | .0011
Pp .0028 | .0028 | .0026 | .0025 | .0022 | .0020 | .0016 | .0012
Al .0310 | .0165 | .0096 | .0074 | .0068 | .0050 | .0047 | .0023
A™ .0268 | .0087 | .0035 | .0000 | .0000 | .0000 { .0000 | .0000
At .0413 | .0104 | .0045 | .0029 | .0000 | .0000 | .0000 { .0000
Nucl.Eff. .0155 | .0098 | .0076 | .0072 | .0050 | .0021 | .0005 | .0000
Total .0742 | .0366 | .0255 | .0222 | .0163 | .0089 | .0055 | .0031

Table 3.10: Table of systematic uncertainties on each point of g}

xrange | (z) | ( Q%) | A+ 6(stat) + 6(sys) | g;He + 8(stat) + 6(sys)
(GeV/c)?
0.03-0.04 | 0.035 1.08 —0.026 +.013 +.006 | —0.284 + .140 + .062
0.04-0.06 | 0.050 1.25 —0.024 +.009 + .004 | —0.184 & .065 £ .030
0.06-0.10 | 0.081 1.75 —0.031 +.007 £.005 | —0.146 & .034 £ .021
0.10-0.15 | 0.124 2.28 —0.045 +.007 £ .007 | -0.138 +.024 £ .018
0.15-0.20 | 0.174 2.74 —0.046 +.009 +.009 | -0.100 % .021 £.013
0.20-0.30 | 0.245 3.15 -0.033 +£.010 £ .012 —0.048 £ .016 + .007
0.30-0.40 | 0.341 3.57 ~0.000 £.017+.022 | —0.000 £ .017 £ .004
0.40-0.60 | 0.466 5.45 —0.014 £.029 £ .020 | —0.007 + .016 + .002

Table 3.11: The final results on A;H* and g;H* are presented, where g;H¢ has been
evaluated at Q? = 2 (GeV/c)%
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xrange | (z) | (@) | AT+ é(stat)8(sys) | g7 + 6(stat) £ 6(sys)
(GeV/c)?
0.03-0.04 | 0.035 1.08 —0.092 £+ .047 £ .022 | —0.311 +.160 - .074
0.04-0.06 | 0.050 1.25 —0.082 £ .031 £ .017 | —0.195 £ .075 £ .037
0.06-0.10 | 0.081 1.75 —0.109 £+ .027 £ .021 | —0.151 £ .039 £ .026
0.10-0.15 | 0.124 2.28 —0.162 £+ .030 £ .030 | —0.143 £ .028 & .022
0.15-0.20 | 0.174 2.74 —0.170 £ .039 £ .042 | —0.099 & .025 £ .016
0.20-0.30 | 0.245 3.15 —0.113 £+.043 £ .055 | —0.042 + .018 £ .009
0.30-0.40 | 0.341 3.57 +0.050 &+ .081 &+ .107 | +0.010 £ .020 £ .006
0.40-0.60 | 0.466 5.45 +0.006 £ .153 &+ .108 | +0.000 £+ .019 + .003

Table 3.12: The final results on A} and g7 are presented, where g} has been evaluated

at Q% =2 (GeV/c)2

added in quadrature since they are uncorrelated from one z bin to the next. This

allows us to write

6(stat) = \'i (6:(stat)Az;)? (3.40)

i=1
where 6;(stat) is the statistical error on g7 in the ith bin. The total statistical error
is given by é(stat) = 0.056.
Unlike the statistical errors, each systematic effect is likely to move all of the data
points up or down at the same time. The total error on the integral coming from the

Jjth systematic uncertainty, 6’(sys), can be estimated as

8 .
8 (sys) = Y 8i(sys)Az; (3.41)

i=1
where &/(sys) is the systematic error in the sth z bin due to the jth systematic error.
The total systematic error then comes by adding the §’(sys) in quadrature, since the
systematic errors from different source should be uncorrelated. The contributions of
the dominant systematic errors to the integral are given in Table 3.13 resulting in a
total systematic error on the integral of 0.0060. Finally we have the result for the

integral of g7 in the measured region :

0.6
/o L 97z, Q8)dz = ~0.0284 + 0.0056 (stat) % 0.0060 (sys). (3.42)
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P, P, f Apc R F; A7 Pr A, | Nucl.Eff
.0012 | .0021 | .0024 | .0016 | .0021 | .0010 | .0009 | .0010 | .0032 | .0015

Table 3.13: The contributions of the dominant systematic errors to the integral are

listed above. The total error on the integral coming from systematic uncertainties is
0.0060.

Low z Extrapolation

We will estimate the integral in the unmeasured region, 0 < z < 0.03, by assuming
the Regge-inspired form ¢;(z — 0) = 7%, using the leading intercept value a,, =
0 [122, 123]. Unfortunately, the data suffer from large statistical uncertainties at low
T, so rather than base the extrapolation solely on the value of ¢} in our lowest z bin,
we will take a weighted average of g7 in our first two bins to reduce the statistical

uncertainties. This yields the result

0.03
[ i@ hds = 0.03x —0.216
o]
= —0.0065 + 0.006. (3.43)

The error on the extrapolation is given by the variation in the result under different
assumptions. Specifically, using the alternative form g7 ~ alog(1/z) [124] and per-
forming the extrapolation using the first data point only, yields a low z contribution
of -0.012. The assigned error of 0.006 encompasses this result, statistical errors on

the low x points, and the result if we use a range in Regge intercept a,, € (—0.5,0).

High z Extrapolation

To determine the integral at high x>0.6, we fit our results for A} with the constraint
that A} — 1 as ¢ — 1. A reasonable fit to the data is given by

AM(z) = 3.722(1 — z) + z(3.81z — 2.81). (3.44)

The high z contribution to g} is then determined from

! n — ! n Fn(z’QZ)
/o 9i(e)dz = /O.GA,(z)zz [11 R(z:’ Il (3.45)
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The NMC structure functions are not valid for this range of z and @2, which falls
into the resonance region. Instead we will use the F results from Whitlow [106] in
the high z integral. The result is

1
/ g7(z, Q2)dz = +0.003 = 0.003. (3.46)
0.6

Total Integral of g}(z,Q?)

Combining all of the previous results, we find
1
T™(Q2) = /0 g (z,Q2)dz = —0.032 + 0.006 (stat) + 0.009 (sys).  (3.47)

where the average Q2=2.0 (GeV/c)>.
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Chapter 4
Results and Discussion

The major finding of this work is that the spin structure function of the neutron,
97(z,Q?), is small and predominantly negative [125]. Most solid theoretical predic-
tions deal with the first moment of the spin structure function, so in this section
we will determine the impact of our findings on various QCD sum rules and other

predictions.

4.1 Testing the Bjorken Sum Rule

The most prominent and rigorous sum rule to be tested is the Bjorken sum rule, which
requires knowledge of the proton and neutron first moments, I'}, and I'}, evaluated at
the same Q2. The experimental data span a significant range in Q? and their evolution
to a common value requires that some assumptions be made. In the following we will
assume that A} is independent of Q2 and that A7 is consistent with zero, assumptions
which -~re consistent with current experimental results. This allows us to determine
g7 at fixed Q3 as :

n 2
57(2,08) = A(e, Qi) g (4.1)

where szp is the @ at which the data were taken. To test the Bjorken sum rule
we could use the excellent proton and deuteron data available from the Spin Muon
Collaboration taken at CERN [126, 127]. One drawback is that their proton data
are at significantly larger Q* than E142 (Q? range from 1.3 to 58 (GeV/c)?, with an
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Sum Rule Experimental Data | Theoretical Prediction Difference
Bjorken I'} - I'7 0.161 £ 0.015 0.171 £ 0.008 0.010 £ 0.017
Ellis-Jaffe I'} -0.034 £ 0.011 -0.011 + 0.005 0.023 £+ 0.012

Table 4.1: Here we summarize the results of our tests of the Bjorken and Ellis-Jaffe

sum rules.

average of 10 (GeV/c)?). To reduce the range in @ over which we are required to
evolve the experimental data, we will instead use the recent and precise determination
of I' of the E143 collaboration taken at an average Q? of 3.0 (GeV/c)? [128].
Evaluated at a Q3 = 3 (GeV/c)?, the E142 neutron result is I'* = —0.034 £ 0.011,
and the E143 proton result is I'j = 0.127 +0.011 [128], leading to I'} — I'? = 0.161 +
0.015. This is to be compared with the Bjorken sum rule prediction, I'Y — T’ T =
0.171 3 0.008. Here we have evaluated the QCD corrections to the sum rule to third
order in ,(Q3) (see Chapter 1), using a,(Q3 = 3 (GeV/c)?) = 0.035 + 0.05 [130].
Failure to include the QCD corrections would lead to a false 3 o violation of the sum
rule, indicating the importance of the perturbative corrections in our region of small
average @%. Our major result, which has been anticipated for almost 30 years, is
that the fundamental Bjorken sum rule is seen to be verified within 10% of its value.
The implication is that perturbative QCD provides an excellent description of spin

dependent deep inelastic scattering.

4.2 Testing the Ellis-Jaffe Sum Rule

The Ellis-Jaffe prediction for the neutron integral is ['}(Qo = 3 (GeV/c)?) = —0.011+
0.005, which is about 2 o away from the experimental result. Coupled with the
larger violations of the Ellis-Jaffe proton and deuteron predictions [128, 129], the data
sugggest that the underlying assumptions of SU(3) flavor symmetry in the baryon

octet decays, and As = 0 may be in error.
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Figure 4.1: This plot illustrates the good agreement between the E142 and E143
data with the Bjorken sum rule. The Ellis-Jaffe sum rule, in contrast, is in clear

disagreement with the experimental results.
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4.3 Quark Contributions to the Spin

From the system of equations (1.44) of Chapter 1, we can also extract the contribu-

tions of the quarks to the spin of the nucleon. We find :

Au = +0.84 +0.04

Ad = —041+0.04
As = —0.07+0.04
AT = Au+ Ad+ As=0.36 £0.10. (4.2)

These last quantities should be compared with the assumption As = 0 of Ellis-Jaffe,
and the total spin contribution A = Au+ Ad =3F -~ D =0.579+0.032 if As =0
and SU(3) flavor symmetry is assumed in the decays of the baryon octet.

Combining these results with those of E143, as in Figure 4.2, we see a consistent
picture emerging. The total quark contribution to the spin averages to Ag = 0.31 +
0.04 and the strange sea polarization is small and negative, As = —0.09 + 0.02.

4.4 Future Work

In the six weeks that E142 took data, a great deal was learned about the spin struc-
ture of the neutron. However, many questions remain unresolved and in need of

experimental input. We might ask :

a) What is the low z behavior of g;7 Does it diverge?

b) Does A;(z — 1) — 1 as suggested by QCD counting rules and valence quark
models?

c) Will the Bjorken sum rule survive more precise tests?

d) What are the gluon and orbital angular momentum contributions to the spin?

e) What is the Q? dependence of the asymmetries? Will the proton asymmetry
change sign as @* — 0 as suggested by the Drell-Hearn-Gerasimov sum rule?

f) What does g, look like?

g) Does the axial U(1) anomaly explain why the quark spin contribution of 30%
is so low?

h) What is the magnitude of the higher twist corrections?
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Figure 4.2: The first moments I'f, T}, and I'¢ were used to extract the total quark
contribution to the spin of the nucleon, Ag, and the strange sea contribution, As.
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The answers to these questions will have a broad impact in high energy physics.
Precision measurements of I'}, I}, and '}, assuming the validity of the Bjorken sum
rule, can be used to determine the strong coupling constant e, and even can be used
to set limits on parameters involved in dark matter searches [131].

The ambitious experimental programs of the next few years should shed some light
on these issues. The HERMES experiment at DESY will cover a similar kinematic
region to the recent SLAC experiments, with the advantage of having pure gas targets
with dilution factor close to unity [132]. Measurements of semi-inclusive asymmetries
by HERMES may yield additional information on Ag and As.

The SLAC program will continue with experiments E154 and E155 which seek to
measure the spin structure functions with a 50 GeV/c beam [133, 134]. The increase
in precision and kinematic range of the data should be substantial.

The SMC experiment at CERN will continue to collect data in 1995 and 1996,
improving in particular the precision of the low z spin structure function data. Some
time will also be dedicated to measuring g,.

At CEBAF, experiments will be underway within the next few years to test the
Drell-Hearn-Gerasimov sum rule, and determine the high = behavior of the asymme-
try, Ay [135, 136)].

In the not-too-distant future, DESY may operate with polarized protons, which
will extend the kinematic range of the spin structure functions by orders of magnitude.
Polarized proton collisions at RHIC hold out the possibility of determining Ag.

The future of spin physics looks very exciting, and will be followed with great

interest by the author.

161



Appendix A

The Bjorken and Ellis-Jaffe Sum
Rules

In this appendix we will derive the Bjorken and Ellis-Jaffe sum rules in the framework
of the operator product expansion. Most of the elements in the derivation can be
found in the literature [137, 138, 139, 140].

The starting point is to consider the expansion of the time-ordered product of two
vector current operators. The current operator is given by the sum over flavors ¢,
J* = ¥ Qigiv*q;. Dropping the flavor index and quark charge, Q; for convenience,
we then use Wick’s theorem to expand the time ordered product :

T{J*(z)J*(0)] = —Tr[(0|T[q(0)q(=)]|0)7*(0IT [¢(z)g(0)][0)y"] +
:4(2)7.(0IT [q () 3 (0)]10).g (0) : +
:4(0)7.(0IT [g(0) 4 (z)]I0)vuq (=) : +
+4(2)7uq(2)7{0) 1.9 (0) : . (A1)
Following Shuryak and Vainshtein [140], we use Schwinger’s coordinate representation

for the propagator. In the limit of massless quarks we can write the Dirac equation
in the form ¢@g = 0, so that the free fermion propagator takes the form

. - 1
{0|T [q(=) 3 ()] 10) = G(z,y) = ($|§ly)- (A.2)
which formally satisfies the requirements for a Green’s function :
19G(z,y) = (zly) = 6%(z - y). (A3)
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Using [Py, €9"] = —q,e'?® which implies e P, = (P, + ¢,) ¢, and €"%|0) = |0),
then we can write the momentum space representation of the propagator as

Glg) = / dzeir?(z|

- /d"m(le 1 410

= [d'al (:g:j)z 10). (Ad)

The leading contributions to the time ordered product in (A.1) come from the second
and third terms in the expansion. Using the results above for the propagator, the

momentum space expansion of these terms, which constitutes the forward virtual

Compton scattering amplitude, takes the form :

™ =

[ dtaer= [ 7(-5)
/ d'ze = [g(+£)n (0T [9(+£)d(-5)] 0)vq(-5) +

/d‘m

/du{

(-5 01T [9(-£)d(+)] 10)7u9(+5)]
e+i025(2 ) (OIT [a(+2)a(-2)] 0)}na(-3) +
G+ HMAOIT [a(+5)(-5)] 10)ma(-5)]

Al g -50a-5) + 2D E -5 ma(-5)

r-Et*za*'#uz-zvip_éuz".r.z
/d‘z W ! A3 + a6 o= q(—z)]5 (5--%)
— p i = v lp_‘d “
g(0)* Gt “q(0) + 4(0)y o—qr ¢(0). (A-5)

This last expression corresponds to the two diagrams in Figure A.1. In the limit of

large momentum transfer, we can expand the denominator of the propagator as

1 +2ig-d — 0%\"
(10 Q?E,( Q? )
z (:i:2zq 6) (A.6)
n—O
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Figure A.1: The two lowest order diagrams in virtual Compton scattering contributing

to the current operator product are shown.

so that that the expansion takes the form :
2zq A\" o "y v i)]
™ = Z [(:8a + ga) (Y*7*7") + (=1)" (i0a — ga) (**7°¥*)] 4.
n=0
If we substitute the identity y#y*y" = g#y¥ + g"*y# — g*¥~4® 4 i€#**Py5v5 then

- G EE

n=0

[(ia# +¢")7" + (10" + ¢)v* ~ g* (if + ) + ie**? (10 + ¢a) 15715 +
(10" — ¢*) 7" + (0 - ¢") v — g* (iP — ¢) -
i€ (i6a — ga) vm]]q. (A7)

The Dirac equation implies (for massless quarks) that g#*“iflg = 0. The terms like
Gie**P18,747sq are proportional to e#**?p,ps and vanish, leaving the simplified ex-

pression :

2iq-0 naf. . }
™ = —qQZZ( iy ) [[1+ ][za“'r“ﬂa”v“+ze“"°”qa‘ms]+

n=0

(1= (-17) g7 + 9°7* = ¢4l q (A8)

We now restrict our attention to the antisymmetric part of the expansion. Replacing

0 by the gauge-invariant iD, and defining the local spin n + 1 operator

e;ﬂ:zm;‘n - 26(0)7“75isz'D#2 e iD“"q(O) (Ag)

164



we find

v 2 1 2' * n ny - va e fin
T = Z_% Qu(‘gz) 9u [[1+(_1) ]ie* ﬁQa@ﬁlpm u]

2 ad 2"g G, Qun [
- £ 9 H1 92 tn [zeuuaﬁq 0};1#2 l‘n]
QZ n=0,2,4,... (Qz)ﬂ * p

1492y

_ f: 22"Q#2qu32 n *Qu, [icuuaﬂqaeizﬁlla-..yn]
n=1,3,5,... (Q )
— 2", Gy - . pvaf 3/12/,.2 B2U3
= 2T 1€, Co(Q°/1*, ;) Ol4% .
n=1,3,5,...

In the last line we have introduced the Wilson coefficients, C2. These terms incorpo-
rate the effects of higher order diagrams, and are dependent on the renormalization
scale, u?, at which the operators are defined. A straightforward dimensional analysis
shows that the leading contributions to the scattering amplitude come from the oper-
ators of lowest twist, where the twist is given by the dimension-spin of the operator.
The matrix elements of the operators, @, are not known, but they will at least be
functions of the tensors P, Sa, gaye, and the invariants we can make from them.

This suggests that placing the operator between nucleon states yields the general form
(P, Sl@45°*|P,S) =
= 1—12-A,, [SpP*2 P¥3 .. P¥n 4 S¥2 PgP¥s | Pén 4 S PHs Py PEr .. +

B [Spg PPPM . Pon 4. ]
n--1

Q

AnSzPHPHs .. Phn _ ( )A,,S,,Pﬂzpm Py

%[SMP,,PM .. Ptn g SEmpHE P, | i .. ] (A.10)

where the expression is symmetric in the y;, and the coefficients A and B will be
functions of the invariants. In going to the last equation we have neglected the
contributions of the trace terms, known as the target mass corrections. This is justi-
fiable since their contribution to the matrix elements is suppressed by terms of order
P?/Q* = M?/Q? compared to the leading terms. Substituting this matrix element
into the expansion for TA‘" yields :

00

T =
PV 2y

n—1

0 C3[AnSy (P — (21 4.5 (P +
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Figure A.2: Contour path integral used in the complex w plane

(*57) AnPas-a (Pay?]

= —2——ie""°ﬁqo, >, ¢ [SpA,.w" — [Sg - Pﬁﬂ] (n_;l) A,,w"]

P'q n=1,3,5,... P.q
= —l—ic“""’”qa Segr + |Sp — Pg-sl gz - (A.11)
Pgq P
where w = 2P-q/Q? and we have defined the two structure functions
= Y 20w, G= Y (1 — %) 263 A (A.12)
n=135,.. n=135,. * "

The series converge for |w] < 1, corresponding to a kinematically unphysical and
inaccessible region. To make contact with the physical region we need to use the
optical theorem and the analyticity of the virtual Compton amplitude. Consider the

contour integral in Figure A.2. Using the crossing relation T4"(~w) = —T%"(w) we
find :
| dw, w _ 2 [®dw .., . v .
%fmeA = 27”,'/l — T4 (w + ie) = T4 (w - ie)]
- /R) v
= 4/l =Wy (A.13)
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Here we have used the optical theorem to relate W** to the absorptive part of the

forward virtual Compton amplitude via
Wy = —Ab Ty = —-—[ “(w+1ie) — T (w — i€)]. (A.14)

Now consider the L.H.S. of equation (A.13) which takes the form :

= _.1_ ﬂi uvof 3 S-q| A3 n(l—n)
= 21rifw"‘P iemvoby, Z[SﬁCAnw +[55—Pﬁp ]annw —

- Pi-qiewaﬁq"’ Z [SﬁCr?An‘sm,nH + [SB - S q] CSA (1 n n) 6m,n+l}A.].5)

n

where we have used the result that
L, 'd—w—wn = m,n+l- (A.16)
21 J wm

Setting z = 1/w, we can rewrite the R.H.S. of (A.13) as

1
— W5 = mo2yyhy Al
4 / 4 /0 dzz™ W (A.17)
Setting m = 2 in equation (A.15) and using
v 1 g v, 1
Wi = p e [S"g‘+—p.q [Ss(P-q) ~ Ps(S-9)lgz|,  (A.18)

yields the famous result

/ ' dzgy(z,Q7) = %Ci’(Qz/yz,a,)A,. (A.19)

The interpretation of this result is straightforward. Re-inserting the sum over quark
flavors, and including the quark charge squared (which we dropped initially) we can

write the matrix element for the proton :

1. 1
§d'y“75d+ 557“’753|P, S)
1 4, i
= 5 (RSlglar(1+ Y)u—ay*(1 - %)) +
1 - _
ol (L +7°)d — dy*(1 - °)d) +

%[51“(1 +7°)s — 3v*(1 — 7°)s]|P, S)

25*A;, = (P, Slgﬁ'y”'ysu +
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4 1 - -
= - (P, 5|§[ﬁ37“uﬂ —apytur] + §[dR’Y”dR —drytdr] +

2
1
§[§R‘)’”3R - §L’7”SL]|P, S)
174 1 1
=+ [FAu+—Ad+ = A2
= [gAu+9Ad+9As] (A.20)

In terms of the parton model, we can write the Aq in terms of parton distributions :

Ag= [ dzlay(a) - a-(@) + G (z) ~ 2-(2)). (A.21)

Now we can turn our attention to the sum rules. The singlet and non-singlet com-
binations of the Ag can be written in terms of the F and D constants measured in
the decays of the baryon octet. The non-singlet combination Au — Ad measured in

neutron beta decay is given by the axial vector decay corstant, g.:
Au-—~-Ad=F+D =g, (A.22)

Isospin symmetry allows us to write :

[ [#.@) - a0, Q0] ds = 0X@NgAu+ gad+ sAs -
1 4 1
§Au - §Ad - §As]
= 0@ [Au-Ad
= -;-lgAICf‘(Qz) (A.23)

which is the famous Bjorken sum rule ( gy is traditionally taken as unity). The QCD
radiative corrections to the sum rule, C3, are given in Chapter One.

If we make the further assumptions that SU(3) flavor symmetry is upheld in the
baryon octet decays, and that the strange sea is unpolarized, As = 0, we can derive
the Ellis-Jaffe sum rules for the proton and neutron. Using the definitions for the

non-singlet and singlet terms

Au+Ad—-2As = 3F-D
Au+ Ad + As AY (A.24)
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yields the sum rules for the proton and neutron
1 1 1 1
|} 9i(e,Q%)z = CH@®) [+55(F + D) + 36F - D)| + 5CX@)AT

36
[ 62(2,@%z = @) [~ 55(F + D) + 2-(3F - D)) + Lopi@hiaz

(A.25)

where the singlet and non-singlet QCD radiative corrections, C and C?, are given in
Chapter One.
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