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It is investigated why the root-mean-square radius of the point neutron distribution is
smaller by about 0.1 fm in non-relativistic mean-field models than in relativistic ones. The
difference is shown to stem from the different values of the product of the effective mass
and the strength of the one-body potential in the two frameworks. The values of those
quantities are constrained by the Hugenholtz–Van Hove theorem. The neutron skin is not
a simple function of the symmetry potential, but depends on the nucleon effective mass.
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1. Introduction
Recently much has been written on the neutron distribution in nuclei [1–5]. It is one of the most
fundamental problems in nuclear physics together with the proton distribution [1,6]. The neu-
tron distribution, however, has not been well determined experimentally so far. This is because
the neutron density has been studied through hadron probes, where the ambiguity as to the
interaction and the reaction mechanism is not avoidable yet [3].

In contrast to the neutron distribution, the proton distribution has been widely investigated
throughout the periodic table of stable nuclei theoretically [6] and experimentally [7]. The rela-
tionship between the point proton and charge density distributions is defined unambiguously
[6,8]. The latter is deduced from electron scattering cross sections rather model independently
[7], compared with the strong interaction, since the electromagnetic interaction is well under-
stood, and is so weak that the density distribution of the nuclear ground state is not disturbed
[6,9].

It has been believed for a long time that electron scattering is useless in the study of neu-
tron distribution in nuclei [6,10]. Recently, the present authors have proposed a new way to
deduce the neutron distribution from electron scattering data [8]. They have derived an exact
expression for the nth-order moment of the nuclear charge distribution and shown that the
mean-square radius (msr) of the charge distribution (R2

c) is dominated by the msr of the point
proton distribution (R2

p) and is independent of the neutron’s msr (R2
n), but that the nth-order

(n ≥ 4) moment of the charge density depends on the (n − 2)th-order moment of the neutron
distribution [8]. For example, the fourth-order moment of the charge density (Q4

c) depends on
R2

n. Their relationship is uniquely defined, and the value of Q4
c is well determined in electron

scattering experiments [7,11]. The value of R2
n, however, is not separated from Q4

c experimen-
tally. In order to deduce the value of R2

n from the experimental value of Q4
c , it is necessary to
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rely on a model-dependent analysis. One advantage of using Q4
c for deducing the value of R2

n is
that we need not be concerned with assumptions about the interaction and reaction mechanism
in electron scattering, but are able to focus on the model dependence on nuclear structure.

At present, the nuclear structure is not investigated without invoking phenomenological mod-
els. Moreover, most of the models are constructed for different purposes independently. Hence,
it is not appropriate for the separation of R2

n from Q4
c to choose one model among the many

existing models. The present authors [4] have proposed the least-squares analysis (LSA) for the
separation by employing as many previous models as possible together. Through the LSA, they
explore the constraints that are inherent in the framework of the nuclear models. The proce-
dure of the separation is as follows. First R2

n and Q4
c are calculated using several models in the

same framework, and then the least-square line (LSL) for those values is obtained in the R2
n–

Q4
c plane. Next, the value of R2

n in the framework is determined by the cross point of the LSL
and the line of Q4

c corresponding to its experimental value. In order to confirm the obtained
result, the LSA of R2

n against the other moments has also been performed. The estimated val-
ues of R2

n are not model independent, but are derived on the basis of the data from the well
known electromagnetic probe, utilizing the knowledge on the phenomenological models accu-
mulated over a long time in nuclear physics. A similar method has been proposed for analyzing
parity-violating electron scattering [2], and actually employed in the analysis of the recent JLab
experiment [5,12].

In Ref. [4], the values of R2
n in 40Ca, 48Ca, and 208Pb have been estimated, for which exper-

imental values of Q4
c are available at present. They have arbitrarily chosen 11 relativistic and

9 non-relativistic models among more than 100 versions accumulated over the last 50 years
[13–16]. These models well reproduce fundamental nuclear properties within the mean-field
framework, assuming some nuclei to be doubly closed shell nuclei. The LSL is obtained with a
small standard deviation and the values of R2

n are determined within the 1% error including the
experimental one [4]. In this analysis, it has been shown that the relativistic and non-relativistic
frameworks yield different values of R2

n from each other in 48Ca and 208Pb. The value of Rn

in the non-relativistic models is smaller by about 0.1 fm than that in the relativistic models in
both nuclei. Since, in those mean-field models, the values of Rp are fixed so as to reproduce the
experimental values, the neutron skin defined by δR = Rn − Rp differs by about 0.1 fm in the
two frameworks. The difference is not between the models but between the two frameworks, so
that the result is apparently understood to reflect an essential difference between the structures
of the two mean-field approximations.

It should be noted that 0.1 fm is not small for the neutron skin itself. As seen later, e.g.,
in 208Pb, δR is 0.275 and 0.162 fm in the relativistic and non-relativistic models, respectively.
Understanding the 0.1 fm difference may be important for the study of nuclear fission and
fusion phenomena, which are sensitive to the structure of the nuclear surface [1,17]. Recent
detailed calculations [18] may not neglect an order of 0.1 fm difference in describing asymmetric
nuclei. The 0.1 fm difference has also been pointed out to be crucial in neutron star physics
[3,18].

The purpose of the present paper is to investigate why the value of R2
n in the non-relativistic

mean-field models is smaller than in the relativistic ones. The difference will be shown to stem
mainly from the difference between the products of the effective mass and the strength of the
one-body potential in the two frameworks. These two quantities are constrained in each frame-
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work by the Hugenholtz–Van Hove (HVH) theorem [19–21]. This theorem has been proved in
the mean-field approximation in the non-relativistic framework for symmetric nuclear matter.
As will be shown in the present paper, the theorem also holds in asymmetric nuclear matter in
both relativistic and non-relativistic models, and is also numerically maintained in the mean-
field approximation for finite nuclei.

In Section 2, the root msr R in the one-body potential will be discussed in order to derive an
analytical expression of R in terms of the strength of the potential and the nucleon effective
mass, using the Woods–Saxon and harmonic potentials. In Section 3, the equations of motion in
the relativistic models will be shown to have the same structure as the Schrödinger equation in
the non-relativistic models. In Section 4, the HVH theorem will be extended to asymmetric
nuclear matter. In Section 5, the complexity of the mean-field models due to a large variety
of interaction parameters will be simplified by using the Woods–Saxon-type function, aiming
to make clear the difference between the relativistic and non-relativistic models. In Section 6,
the difference between δR in the two frameworks will be investigated in detail, according to the
HVH theorem. The final section will be devoted to a brief summary of the present paper.

2. The nuclear radius in the one-body potential
Many phenomenological models have been proposed with various interaction parameters
[13,16]. Whether the nuclear radius (R) is Rn or Rp, it may be a complicated function of their
parameters, and the function would be different from one model to another. The radius, how-
ever, is one of the most fundamental quantities that determine the structure of the nucleus, and,
hence, Rc is used as an input to fix the free parameters of the models. This fact implies that the
relationship of R with other key quantities of nuclei like those in the one-body potential must
be almost the same in the mean-field models, although those key quantities may also depend
on the parameters in complicated ways.

Such relationships of R with other key quantities should hold even in simplified one-body
potential models, if they describe well the gross properties of nuclei [1]. As a simple example,
the Woods–Saxon (WS) potential is most widely used in the literature [1]. It may also become
a guide for the present purpose, if we have an analytical formula for the relationship between
R and the parameters of the one-body Hamiltonian with the WS potential:

H = p2

2M
+ Vws(r), Vws(r) = Vws

1 + e(r−Rws)/aws
. (1)

Aiming to have an analytical expression of the relationship, we require the help of the harmonic
oscillator (HO) potential,

VH(r) = k
2

(
r2 − R2

H

)
, k = Mω2, (2)

RH being a constant that determines the value of VH(0). Bohr and Mottelson have shown that
the single-particle wave functions in the WS potential, which determine the value of R, are well
reproduced by those of the HO potential [1]. In the HO potential, the dimension analysis yields
the expression of the radius Rho as

Rho = C
(Mk)1/4

(3)

with C denoting a constant. For the above exact formula, let us search for the expression of
Rho in terms of the WS parameters by minimizing the following quantity with respect to the
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variables, k and RH:

Fn(k, RH) =
∫ RH

0
dr rn(VH(r) − Vws(r))2, (4)

where n is considered to be 0 for the surface integral and 2 for the volume integral. The value
of n is chosen by referring to Ref. [1], which shows a similarity of the wave functions in the
two potentials with ω = 8.6 MeV and VH(0) = −55 MeV and with Vws = −50 MeV, Rws = 5.8
fm, and aws = 0.65 fm. The numerical method yields the minimum values of Fn for the same
WS parameters at ω = 8.63 MeV and VH(0) = −55.20 MeV for n = 0, and at ω = 9.66 MeV
and VH(0) = −62.65 MeV for n = 2. Comparing these values with those in Ref. [1], it may be
reasonable to employ n = 0, rather than n = 2, for reproducing the wave functions in the WS
potential.

Once we determine the value of n, it is possible to derive an analytical formula for the ap-
proximate relationship between Rho and the WS parameters. Equation (4) for n = 0 is written
as

F0(k, RH) =
∫ RH

0
dr(VH(r) − Vws(r))2 = 2

15
k2R5

H + FH + FV,

where we have defined

FH = −2
∫ RH

0
drVH(r)Vws(r) = −kVws

∫ ∞

0
dr

r2 − R2
H

1 + e(r−Rws)/aws
+ δFH, (5)

FV =
∫ RH

0
drV 2

ws(r) = V 2
ws

∫ ∞

0

dr
(1 + e(r−Rws)/aws )2

+ δFV, (6)

with

δFH = kVws

∫ ∞

RH

dr
r2 − R2

H

1 + e(r−Rws)/aws
, δFV = −V 2

ws

∫ ∞

RH

dr
(1 + e(r−Rws)/aws )2

. (7)

Using the identity for a general function g(r),∫ ∞

RH

dr
g(r)

(1 + e(r−Rws)/aws )n
= Δnaws

∫ ∞

0
dx

g(awsx + RH)e−nx

(1 + Δe−x)n
, Δ = e−(RH−Rws)/aws,

we can neglect δFH and δFV in Eqs. (5) and (6), assuming Δ � 1. Then, FV in Eq. (6) is inde-
pendent of k and RH, and it is enough to minimize only the first term on the rightmost side of
Eq. (5). The integral of the first term is performed with the use of Sommerfeld expansion. In
neglecting contributions of relative order e−Rws/aws [1], it is written as∫ ∞

0
dr

g(r)
1 + e(r−Rws)/aws

=
∫ Rws

0
dr g(r) + π2a2

ws

6
g′(Rws) + 7π4a4

ws

360
g′′′(Rws) + · · · .

Since g
′′′
(r) = 0 for Eq. (5), we have

F0(k, RH) = 2
15

k2R5
H + kVws

(
R2

HRws − 1 + bws

3
R3

ws

)
, bws =

(
πaws

Rws

)2

.

It should be noticed that there is no higher-order contribution from the diffuseness parameter.
The partial differentials of the above equation F0 with respect to k and RH yield its minimum
value at

k = −3
(

3
5

)3/2 Vws

R2
ws(1 + bws)3/2

,

R2
H = 5

3
(1 + bws)R2

ws, VH(0) = 3
2

√
3
5

Vws√
1 + bws

. (8)
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When employing the values Vws = −50 MeV, Rws = 5.8 fm, and aws = 0.65 fm in Ref. [1], the
above equations provide ω = 8.49 MeV and VH(0) = −54.80 MeV, which reproduce almost the
same values obtained by the numerical method mentioned above.

Finally, inserting Eq. (8) into Eq. (3), Rho is described approximately in terms of the WS
parameters as

Rho ≈ B
(

− R2
ws

m∗Vws

)1/4

(1 + bws)
3/8 , (9)

B being a constant. In the above equation, the nucleon mass has been replaced by the effective
mass, M∗ = Mm∗. Equation (9) expresses well our expectation such that the value of R increases
with Rws, and decreases with increasing ( − Vws) and m∗. Indeed, the first parenthesis on the
right-hand side may be derived in the square-well potential with the depth Vws and the width
Rws. Equation (9) shows that the diffuseness parameter contributes to the radius in the form of
(aws/Rws)2.

If the neutron potential, Vn, and effective mass, m∗
n, are different from Vp and m∗

p of the
proton, the value of Rn may be different from that of Rp. In the same way, if Vn and m∗

n in
one model are different from those in another model, their Rn are different from each other.
When comparing the nuclear radius R1 in one framework with R2 in another one, the following
expression is useful:

R1

R2
=

(
m∗

2Vws,2

m∗
1Vws,1

)1/4 (
Rws,1

Rws,2

)1/2 (
1 + bws,1

1 + bws,2

)3/8

. (10)

3. Equations of motion of the mean-field models
Equations (9) and (10) are simple enough to understand the relationship between Rho and the
key quantities of the one-body potential. The effective mass and the one-body potential are
well defined quantities in the mean-field models. Expecting that such a simple relationship also
holds approximately in those phenomenological models, let us investigate how they appear in
the equations of motion in the relativistic and non-relativistic models.

In the relativistic nonlinear σ–ω–ρ model, the nuclear Lagrangian is given, using the nota-
tions in the literature [14,16,22], by

L = ψ

(
iγμ∂μ − M − gσ σ − gωγμωμ − gργμτ ·bμ − eγμAμ 1 + τ3

2

)
ψ

+ 1
2

(∂μσ )2 − m2
σ

2
σ 2 − g3

3
σ 3 − g4

4
σ 4 − 1

4
ωμνω

μν + m2
ω

2
ωμωμ + c4

4
(ωμωμ)2

− 1
4

bμν ·bμν + m2
ρ

2
bμ ·bμ + λg2

ρbμ ·bμg2
ωωνω

ν − 1
4

AμνAμν. (11)

Then, the Euler–Lagrange equation provides us with the equations of motion for the static
mean field:

(−iα · ∇ + γ0(M + Vσ ) + V0)ψ = (E + M )ψ, (12)

(−∇2 + m2
σ

)
Vσ = −g2

σ

(
ρS + g3

g3
σ

V 2
σ + g4

g4
σ

V 3
σ

)
, (13)

(−∇2 + m2
ω

)
Vω = g2

ω

(
ρ − c4

g4
ω

V 3
ω − 2λVωV 2

ρ

)
, (14)
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Table 1. The root msr of the point neutron (Rn) and proton (Rp) distributions calculated with NL3 for
48Ca and 208Pb. The numbers are given in units of fm, except for those in parentheses, which denote the
ratio to Rτ . For details, see the text.

Rn (Rn)G (Rn)N Rp (Rp)G (Rp)N

48Ca 3.6050 3.5736(0.991) 3.6082(1.001) 3.3789 3.3522(0.992) 3.3846(1.002)
208Pb 5.7405 5.6888(0.991) 5.7522(1.002) 5.4600 5.4135(0.991) 5.4656(1.001)

(−∇2 + m2
ρ

)
Vρ = g2

ρ

(
ρp − ρn − 2λV 2

ωVρ

)
, (15)

−∇2Vc = e2ρp. (16)

In Eqs. (12)–(16), we have defined ψ as a single-particle wave function and used the following
notations: Vσ = gσ σ, Vω = gωω0, Vρ = gρb0

3, and Vc for the Coulomb potential, Vc = eA0.
Moreover, V0 is given by

V0(r) = Vω(r) + Vρ (r)τ3 + Vc(r)
1 + τ3

2
(17)

with τ 3 = +1( − 1) for protons (neutrons), and the nucleon densities are

ρS(r) =
∑

α

ψα(r)ψα(r), ρτ (r) =
∑
α∈τ

ψ†
α(r)ψα(r), ρ(r) = ρn(r) + ρp(r),

with τ = p for protons and τ = n for neutrons.
Equation (12) represents two coupled equations for the upper component, ψu(r), and the

lower two components, ψd (r), of ψ (r). One of them gives

ψd (r) = − 1
2M∗

τ (r)
iσ ·∇ψu(r) , (18)

writing the effective nucleon mass, M∗
τ (r), as

M∗
τ (r) = 2M + E + Vσ (r) − V0(r)

2
. (19)

By inserting Eq. (18) into the other equation of Eq. (12), we obtain the Schrödinger-like equa-
tion as(

−∇ 1
2M∗

τ (r)
·∇ + Vτ (r) + Vc(r)

1 + τ3

2
− i

(
∇ 1

2M∗
τ (r)

)
·(∇×σ )

)
ψu(r) = Eψu(r). (20)

In the above equation, the nuclear potential, Vτ (r), is defined by

Vτ (r) = Vσ (r) + Vω(r) + Vρ (r)τ3. (21)

We note that the effective mass, M∗
τ (r), is written approximately as

M∗
τ (r) ≈ M + 1

2

(
Vσ (r) − Vω(r) − Vρ (r)τ3 − Vc(r)

1 + τ3

2

)
, (22)

using the fact that 2M + E ≈ 2M. For 208Pb, the values of the potentials around the center
of the nuclear density are about Vσ ≈ −380 MeV, Vω ≈ 306 MeV, and Vρ ≈ −6 MeV [22].
It should be noted that the effective mass in the relativistic models is almost isoscalar, and is
dominated by Vσ and Vω in the same way as the spin–orbit potential in the last term on the
left-hand side in Eq. (20).

The root msrs of the point proton and neutron distributions calculated with NL3 [22] are
listed in Table 1. They are defined as
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R2
τ = 1

Nτ

∑
α∈τ

∫ ∞

0
dr r2(G2

α(r) + F 2
α (r)

)
, (Rτ )2

G = 1
Nτ

∑
α∈τ

∫ ∞

0
dr r2G2

α(r),

(Rτ )2
N = 1

Nτ

∑
α∈τ

∫ ∞

0
dr r2 G2

α(r)
nG

, nG =
∫ ∞

0
dr G2

α(r) ,

where Gα(r)/r and Fα(r)/r denote the radial part of the large and small components of ψα(r),
respectively, with the normalization

∫ ∞
0 dr(G2

α(r) + F 2
α (r)) = 1. Moreover, we have defined Nτ

= N(Z) for τ = n(p), and nG for the normalization of the upper component used in (Rτ )2
N .

Table 1 also shows the ratios of (Rτ )G and (Rτ )N to Rτ in the parentheses. As seen from (Rτ )G

in Table 1, the contribution of the lower component to Rτ is about 1%, and it is absorbed into
(Rτ )N, which is calculated with the renormalized large component Gα(r)/

√
nG. Similar results

are obtained in other relativistic models. According to these results, we will use the renormalized
large component, ignoring the small component, when comparing the relativistic models with
the non-relativistic ones below.

We note that, in principle, the two-component framework equivalent to the four-component
one should be derived by the Foldy–Wouthuysen unitary transformation [9]. In order to ob-
tain the normalized two-component wave functions, Eq. (20) will only be used in the present
paper for comparison with non-relativistic models, for simplicity and transparency. In Ref. [4],
calculations of the msr in the relativistic models were performed within the four-component
framework.

In the Skyrme–Hartree–Fock approximation in the non-relativistic models, the Schrödinger
equation is written as [23,24](

−∇ 1
2M∗

τ (r)
·∇ + Vτ (r) + Vc(r)

1 + τ3

2
− iWτ (r)· (∇×σ )

)
ϕ(r) = Eϕ(r), (23)

where, using the same notations as in Ref. [24], M∗
τ (r), Vτ (r), and Wτ (r) are given as

1
M∗

τ (r)
= 1

M
+ t1(2 + x1) + t2(2 + x2)

4
ρ(r) + t2(1 + 2x2) − t1(1 + 2x1)

4
ρτ (r) , (24)

Vτ (r) = t0

2
((2 + x0)ρ(r) − (1 + 2x0)ρτ (r)) + t3

24
(2 + x3)(2 + α)ρα+1(r)

− t3

24
(2x3 + 1)

[
2ρα(r)ρτ (r) + αρα−1(r)

(
ρ2

p(r) + ρ2
n (r)

)]
+ t1(2 + x1) + t2(2 + x2)

8
K (r) + t2(1 + 2x2) − t1(1 + 2x1)

8
Kτ (r)

+ t2(2 + x2) − 3t1(2 + x1)
16

∇2ρ(r) + 3t1(1 + 2x1) + t2(1 + 2x2)
16

∇2ρτ (r)

− W0

2
∇ · (J (r) + Jτ (r)), (25)

Wτ (r) = W0

2
∇(ρ(r) + ρτ (r)) + t1 − t2

8
Jτ (r) − t1x1 + t2x2

8
J (r)

≈ W0

2
∇(ρ(r) + ρτ (r)). (26)

In Eq. (25), K (r) = Kn(r) + Kp(r) has been defined with Kτ (r) = ∑
α∈τ |∇ϕα(r)|2, and J (r) =

Jn(r) + Jp(r), where Jτ (r) denotes the spin density given in Ref. [24].
It is seen that Eq. (23) in the non-relativistic models has the same structure as Eq. (20) in

the relativistic models. They are composed of four parts, M∗
τ (r), Vτ (r), Vc(r), and the spin–
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orbit potential. If the strengths and the coordinate dependences of these parts were the same
in the two frameworks, one could not distinguish one framework from another, in spite of their
complicated parameter sets. Among the four parts, the last two are expected to play a minor
role in the present purpose to explore the difference between δR in the two frameworks. The
Coulomb potential is almost the same, and the strengths of the spin–orbit potentials reproduce
experimental values of the single-particle energy levels in both frameworks [14,25]. In contrast
to these, the first two parts are strongly model dependent. The values of the effective masses
are spread out over a wide range [13]. Similarly, there is no reason why the one-body potentials
are almost the same in all the mean-field models. Hence, the 0.1 fm difference between δR may
be related to M∗

τ (r) and Vτ (r) depending on the different interaction parameters.
This observation is consistent with Eqs. (9) and (10), which clearly indicate that the difference

problem is related to the effective mass and one-body potential. It is also apparent that they are
not independent of each other. On the one hand, the product of M∗

p (r) and Vp(r) is constrained
by hand so as to reproduce the experimental value of Rc in both relativistic and non-relativistic
models. On the other hand, there is not a similar constraint on the neutron distribution, but
both frameworks predict values of Rn that are distributed within a narrow range around each
average value [4]. If the difference between δR is actually related to the effective mass and the
one-body potential, there should be another constraint on the variations of these two quantities
that works differently in the relativistic and non-relativistic models.

It may be natural to expect the symmetry energy [2] to be one such candidate. The symmetry
energy coefficient, a4 [26], is composed of potential and kinetic parts [1], which are given in the
present relativistic and non-relativistic mean-field models, respectively, as [13]

a4,rel = k2
F

6
√

k2
F + M2

σ

+ ρ

2

g2
ρ

m2
ρ + 2λg2

ρV 2
ω

, Mσ = M + Vσ , (27)

a4,non =
(

3π2

2

)2/3 (
ρ2/3

6M
+ −3t1x1 + t2(5x2 + 4)

24
ρ5/3

)
− 2x0 + 1

8
t0ρ − 2x3 + 1

48
t3ρ

α+1,

(28)

where kF denotes the Fermi momentum and ρ the nucleon density in the nuclear matter. Ac-
tually, they are related to the difference between the neutron and proton potentials in Eqs. (21)
and (25), and the effective mass in Eqs. (19) and (24). The relationship of a4 with δR, however,
does not seem to be described explicitly. In fact, there is more a fundamental restriction on
the relationship between the potential and the effective mass. It is known as the Hugenholtz–
Van Hove (HVH) theorem [19–21], which holds in any mean-field model for symmetric nuclear
matter.

4. Hugenholtz–Van Hove theorem
According to the HVH theorem, the binding energy per nucleon is equal to the Fermi energy in
symmetric nuclear matter. Both relativistic and non-relativistic models have been constructed so
as to satisfy the theorem at values of the binding energy of the nucleon of about −16 MeV and
of the Fermi momentum of about 1.3 fm−1. These values are used as inputs in order to fix their
free parameters in the nuclear interactions. The Fermi energy is given by the sum of the kinetic
and potential energy, so that the strength of the potential and the value of the effective mass
are constrained by these inputs. Since the HVH theorem has only been proved for symmetric
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nuclear matter [19–21], however, we will extend the theorem to relativistic and non-relativistic
asymmetric nuclear matter and utilize the theorem as a guide to the analysis of δR in neutron-
rich finite nuclei.

4.1 HVH theorem in symmetric nuclear matter
Hugenholtz and Van Hove have shown that the following equation holds in the non-relativistic
mean-field model for symmetric nuclear matter [19–21]:

ε

ρ
= EF, when

d
dρ

ε

ρ
= 0, (29)

where ε stands for the total energy density of the system and EF the Fermi energy. The value of
ε/ρ represents the binding energy per nucleon, EB, to be written in the non-relativistic models,
as

EB = EF = k2
F

2m∗M
+ V. (30)

In the relativistic models, ε/ρ and EF contain the nucleon rest mass. Hence, EB and EF are given
by

EB = ε

ρ
− M = EF − M .

In the present relativistic models, EF in the symmetric nuclear matter is written as [14]

EF =
√

k2
F + M2

σ + Vω, Mσ = M + Vσ .

In setting

EB = K + V, K =
√

k2
F + M2

σ − Mσ , V = Vσ + Vω,

K is described as

K = k2
F

2M∗ (1 − δ) ≈ k2
F

2M∗ , (31)

with M∗ = M + (Vσ − Vω )/2 from Eq. (22). We have defined

δ = 1 − 2M∗

k2
F

(√
k2

F + M2
σ − Mσ

)
, (32)

and used the fact that δ � 1 in taking the values of Ref. [22] for the right-hand side. Thus, in
the relativistic models also, EB is expressed in the form of Eq. (30). Finally, in both relativistic
and non-relativistic models, the nuclear potential is inversely proportional to the effective mass,
according to the HVH theorem. In the case of Eq. (30), we have

V = a
m∗ + b, (33)

where a ≈ −35 MeV and b ≈ −16 MeV for kF ≈ 1.3 fm−1 and EB ≈ −16 MeV.
Indeed, it is verified that all the relativistic and non-relativistic models employed in the present

paper satisfy Eq. (29) explicitly. In the non-relativistic models, we have for the protons and
neutrons, separately,

∂ε

∂ρτ

= k2
Fτ

2M∗
τ

+ Vτ = EFτ , (34)

while, in the relativistic σ–ω–ρ models,
∂ε

∂ρτ

=
√

k2
Fτ

+ M2
σ + Vω + τVρ = EFτ . (35)
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In the above equations, the total energy density in the non-relativistic models is written as
[23,24]

ε = Kp

2M∗
p

+ Kn

2M∗
n

+ t0

4

(
(2 + x0)ρ2 − (2x0 + 1)

(
ρ2

p + ρ2
n

))

+ t3

24

(
(2 + x3)ρα+2 − (2x3 + 1)ρα

(
ρ2

p + ρ2
n

))
,

where we have defined Kτ = 3k2
Fτ ρτ /5 with kFτ = (3π2ρτ )1/3. In the relativistic models, it is

given by

ε = εK + Vωρ + Vρ (ρp − ρn) + Uσ − U0,

using the abbreviations

εK = 2
(2π )3

∫ kFp

0
d3k

√
k2 + M2

σ + 2
(2π )3

∫ kFn

0
d3k

√
k2 + M2

σ ,

Uσ = m2
σ

2g2
σ

V 2
σ + g3

3g3
σ

V 3
σ + g4

4g4
σ

V 4
σ , U0 = m2

ω

2g2
ω

V 2
ω + c4

4g4
ω

V 4
ω + m2

ρ

2g2
ρ

V 2
ρ + λV 2

ωV 2
ρ , (36)

which satisfy the equations of motion for the mesons:

∂Uσ

∂Vσ

= m2
σ

g2
σ

Vσ + g3

g3
σ

V 2
σ + g4

g4
σ

V 3
σ = −ρS, ρS = ∂εK

∂Mσ

,

∂U0

∂Vω

= m2
ω

g2
ω

Vω + c4

g4
ω

V 3
ω + 2λVωV 2

ρ = ρ ,
∂U0

∂Vρ

= m2
ρ

g2
ρ

Vρ + 2λV 2
ωVρ = ρp − ρn.

In both relativistic and non-relativistic models, ∂ε/∂ρτ = EFτ holds at any value of ρ or kF,
so that we have, for ρp = ρn = ρ/2,

dε

dρ
= 1

2

(
∂ε

∂ρp
+ ∂ε

∂ρn

)
= EFn + EFn

2
= EF, ρ

d
dρ

ε

ρ
= dε

dρ
− ε

ρ
= EF − ε

ρ
,

as we should. The last equation yields Eq. (29) for (d/dρ)(ε/ρ) = 0. Thus, in the mean-field
models, Eqs. (34) and (35), which hold for protons and neutrons separately, are essential for the
HVH theorem to be valid.

4.2 HVH theorem in asymmetric nuclear matter
In order to discuss neutron-rich nuclei using the HVH theorem as a guide, we have to extend
the theorem so as to be applicable to relativistic and non-relativistic asymmetric nuclear matter.

One of the naive ways to do this may be to minimize the total energy per nucleon, assuming
ρn = νρ and ρp = (1 − ν)ρ for a fixed value of ν [1,13,24]. This choice is not, however, ap-
propriate for the present purpose, since EFn and EFp remain as in Eqs. (34) and (35) without
the Coulomb energy. Moreover, if ρn(r) = νρ(r) and ρp(r) = (1 − ν)ρ(r) were realized in finite
nuclei, one would have δR = 0 even for N �= Z nuclei. In order to extend the HVH theorem for
asymmetric nuclear matter, it is be better to avoid these defects. For this purpose, without using
the parameter ν, we make a model for the neutron and proton system taking into account the
effects of the “Coulomb potential” explicitly, as below.

We require, for asymmetric nuclear matter,
∂

∂ρτ

εasym

ρ
= 0, (37)

adding vcρp as the “Coulomb term” to the total energy density [27],

εasym = ε + vcρp, (38)
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where vc is a constant. The above equation is assumed in order to make a model that may be
used just as a guide for the following discussions on the stable finite nucleus where the Fermi
energies of neutrons and protons are the same and the Coulomb potential is necessary. We will
see later that the final results of this paper listed in Table 12 do not depend on the above form
of the “Coulomb term” and its strength vc. Then, since Eqs. (34) and (35) still hold, we have
the expression for the binding energy,

EB = EFτ = k2
Fτ

2M∗
τ

+ Vτ + 1 + τ3

2
vc, (39)

in the non-relativistic models, while, in the relativistic models,

EB = EFτ − M =
√

k2
Fτ

+ M2
σ − Mσ + Vτ + 1 + τ3

2
vc

= (1 − δτ )
k2

Fτ

2M∗
τ

+ Vτ + 1 + τ3

2
vc, (40)

where δτ is given by Eq. (32) with kFτ and M∗
τ instead of kF and M∗, respectively, while Vτ and

M∗
τ are given by Eqs. (21) and (22). The Coulomb potential in Eq. (22) is neglected here, since

its role is expected to be small, compared to that from (Vσ (r) − Vω(r) − Vρ (r)) in Eq. (22).
The value of (Vσ (r) − Vω(r) − Vρ (r)) at r = 0 is about −680 MeV, as noted below Eq. (22).
Equations (39) and (40) are accepted as the HVH theorem in asymmetric nuclear matter, and
imply a relationship between Vτ and m∗

τ as in Eq. (33),

Vτ = aτ

m∗
τ

+ bτ , aτ = −(1 − δτ )
k2

Fτ

2M
, bτ =

{
EB, τ = n
EB − vc, τ = p,

(41)

where δτ = 0 in the non-relativistic models, while in the relativistic models |δτ | � 1 is almost
constant. The values of k2

Fτ , which provide the values of ρτ in the relativistic and non-relativistic
models, are determined by the two equations in Eq. (37), once vc is given by hand.

For simplicity, for both relativistic and non-relativistic models, we take vc from the strength
at r = 0 of the Coulomb potential for a uniformly charged sphere of radius rcA1/3:

vc = 3
2

Zα

rcA1/3
. (42)

This yields vc = 22.144 MeV for 208Pb with rc = 1.350 fm. In employing this value, we obtain
Fig. 1 for the 1/m∗

τ –Vτ relationship corresponding to Eq. (41). The black circles indicate the
values from the 11 relativistic models, the red ones those from the 9 non-relativistic models.
These models have been employed in Ref. [4]. Each circle is accompanied by a number that
shows the model used. The numbering is according to Ref. [4]: 1.L2 [15], 2.NLB [15], 3.NLC
[15], 4.NL1 [28], 5.NL3 [22], 6.NL-SH [29], 7.NL-Z [30], 8.NL-S [31], 9.NL3II [22], 10.TM1
[32], and 11.FSU [16] for the relativistic nuclear models, and 1.SKI [25], 2.SKII [25], 3.SKIII
[33], 4.SKIV [33], 5.SkM∗ [34], 6.SLy4 [24], 7.T6 [35], 8.SGII [36], and 9.Ska [37] for the non-
relativistic models. This numbering will be used throughout the present paper.

In Fig. 1, the least-square lines (LSLs) of these circles are shown by black ones for the rela-
tivistic models and red ones for the non-relativistic models. The LSLs for neutrons and protons
are well separated from each other in both the relativistic and non-relativistic models. The effec-
tive mass and the one-body potential are complicated functions of the interaction parameters
whose values are different from one another between the mean-field models. Nevertheless, as
seen in Fig. 1, all the circles are almost on their own LSLs.
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Fig. 1. The relationship between the effective mass and the one-body potential for neutrons (τ = n) and
protons (τ = p) in the mean-field models for asymmetric nuclear matter. The black circles show the values
calculated by the 11 relativistic models, while the red ones show those by the 9 non-relativistic models.
Each circle is accompanied by a number that indicates the model used, specified in the text. The least-
square lines are shown for the four groups. The two black lines are obtained from the black circles for
neutrons and protons, respectively, and the red lines from the red circles.

On the one hand, the circle at (m∗
τ,i,Vτ,i) of model i is given by

Vτ,i = aτ,i/m∗
τ,i + bτ,i, (43)

according to Eq. (41) by the HVH theorem. On the other hand, the LSL satisfies

V L
τ,i = aL

τ /m∗
τ,i + bL

τ , (44)

where aL
τ and bL

τ denote the slope and intercept of the LSL, respectively. In writing the average
value of Eq. (43) as 〈Vτ ,i〉 and that of Eq. (44) as 〈V L

τ,i〉, they are equal to each other by the
definition of the LSL, 〈Vτ,i〉 = 〈V L

τ,i〉, yielding〈
aτ,i/m∗

τ,i

〉 + 〈bτ,i〉 = aL
τ

〈
1/m∗

τ,i

〉 + bL
τ . (45)

Hence, if the following approximation is valid,〈
aτ,i/m∗

τ,i

〉 ≈ 〈aτ,i〉/
〈
m∗

τ,i

〉
,

〈
1/m∗

τ,i

〉 ≈ 1/
〈
m∗

τ,i

〉
, (46)

then we have 〈
m∗

τ

〉〈Vτ 〉 ≈ 〈aτ 〉 + 〈bτ 〉
〈
m∗

τ

〉 ≈ aL
τ + bL

τ

〈
m∗

τ

〉
(47)

by writing 〈Vτ ,i〉 = 〈Vτ 〉, 〈aτ ,i〉 = 〈aτ 〉, 〈bτ ,i〉 = 〈bτ 〉, and 〈m∗
τ,i〉 = 〈m∗

τ 〉.
In Table 2 are listed the values of the slope aL

τ and intercept bL
τ of the LSL. The average values

of aτ ,i and bτ ,i calculated by each model are tabulated as 〈aτ 〉 and 〈bτ 〉. The average values of
the effective mass 〈m∗

τ 〉 and of the strengths of the one-body potentials 〈Vτ 〉 are also listed,
together with the average values of ρτ ,i as 〈ρτ 〉.

The difference between the values of 〈aτ 〉 in the relativistic and non-relativistic models is
related to those of 〈ρτ 〉 through the Fermi momentum. The values of 〈bτ 〉 are almost the same
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Table 2. The values of the gradient (aL
τ ) and the intercept (bL

τ ) of the least-square lines in units of MeV for
the relationship between 1/m∗

τ and Vτ in Fig. 1. The average values of the coefficients in Eq. (43) are also
listed as 〈aτ 〉 and 〈bτ 〉, together with those of the effective masses, the strengths of the one-body potentials
(MeV), and the nuclear matter densities ( fm−3 ) in the relativistic (Rel) and non-relativistic (Non) models.
The notations of n and p indicate that the values in the corresponding rows are for neutrons and protons,
respectively. For details, see the text.

aL
τ bL

τ 〈aτ 〉 〈bτ 〉 〈m∗
τ 〉 〈Vτ 〉 〈ρτ 〉

Rel n − 41.059 − 1.176 − 38.011 − 5.918 0.6426 − 65.160 0.0832
p − 36.489 − 20.421 − 31.530 − 28.063 0.6488 − 76.742 0.0611

Non n − 36.743 − 10.069 − 39.927 − 5.840 0.7524 − 61.219 0.0903
p − 29.960 − 29.656 − 31.168 − 27.984 0.7217 − 73.256 0.0623

Table 3. The product of the mean values of the effective mass 〈m∗
τ 〉 and the one-body potential 〈Vτ 〉. The

numbers are given in units of MeV. For details, see the text.

〈m∗
τ 〉〈Vτ 〉 aL

τ + bL
τ 〈m∗

τ 〉 〈aτ 〉 + 〈bτ 〉〈m∗
τ 〉

Rel n −41.872 −41.815 −41.814
p −49.790 −49.738 −49.737

Non n −46.061 −44.319 −44.321
p −52.869 −51.363 −51.364

between the two frameworks, since 〈bτ 〉 satisfies the relationships 〈EB〉 = 〈bn〉 and vc = 〈bn〉 −
〈bp〉, where 〈EB〉 denotes the average value of EB,i, according to Eq. (41).

The values of aL
τ and bL

τ depend on the distributions of the points (m∗
τ,i,Vτ,i) and have no

simple relationship with 〈ρτ 〉, 〈EB〉, and vc. They, however, are implicitly constrained by the
HVH theorem through Eq. (47). Since the values of vc and 〈EB〉 are almost the same in the
relativistic and non-relativistic models, Eq. (47) provides the relationship between the effective
mass, the strength of the one-body potential, and the nucleon density. This fact implies that the
LSL coefficients aL

τ and bL
τ are dominated by 〈ρτ 〉 implicitly.

Equation (47) is rewritten as aL
τ − 〈aτ 〉 ≈ (〈bτ 〉 − bL

τ )〈m∗
τ 〉, which provides the relationship

aL
τ � 〈aτ 〉 for bL

τ � 〈bτ 〉, and aL
τ � 〈aτ 〉 for bL

τ � 〈bτ 〉. The non-relativistic models obey the first
case, the relativistic ones the second case. The value of |bL

n | is made much smaller by the small
〈m∗

n〉 in the relativistic models, compared to that in the non-relativistic ones.
In Table 3, the value of each term in Eq. (47) is listed. It shows that the values of 〈m∗

τ 〉〈Vτ 〉
are a little larger than those of 〈aτ 〉 + 〈bτ 〉〈m∗

τ 〉 and aL
τ + bL

τ 〈m∗
τ 〉 in the non-relativistic models,

because the approximations in Eq. (46) are a little worse in the non-relativistic models than in
the relativistic models. This difference, however, is not essential for the present discussions on
δR.

In finite nuclei, Eq. (9) indicates that the radius depends on (−〈m∗
τ 〉〈Vτ 〉)−1/4. Table 3 implies

a possibility that Rn is larger in the relativistic models than in the non-relativistic ones, if the
same tendency maintains in finite nuclei. In the mean-field models for finite nuclei, however,
the effective mass and one-body potential may have complicated coordinate dependences. In
order to confirm the above implications for finite nuclei, we need a way to extract from them the
values of the effective mass and the strength of the one-body potentials that are appropriate
for use in Eq. (9). Moreover, it is desirable to explore whether or not they are constrained by
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the HVH theorem as in asymmetric nuclear matter. Although we do not have for finite nuclei
an equation like Eq. (37) to yield the HVH constraint in asymmetric nuclear matter, Eq. (47)
may be helpful for understanding the roles of the HVH theorem in finite nuclei. Bearing these
facts in mind, we proceed to discuss finite nuclei from the next section.

5. Simplification of the mean-field models
One of the ways to find a common structure of the models is to simplify them without losing
their main characteristics. By defining the effective mass and the one-body potential in such a
way, we may find their relationships with R and a restriction between them like the HVH lines,
which are hidden in the complexity of the calculated results of the mean-field models for finite
nuclei.

In this section, we will analyze the structure of the relativistic and non-relativistic models
by simplifying their descriptions as much as possible. As mentioned in Section 3, Rτ may be
a functional of Vτ (r), M∗

τ (r), Vc(r), and the spin–orbit potential, V�s, τ (r), but among them,
it is expected that Vc(r) and V�s, τ (r) play a minor role in the difference between δR in the two
frameworks, δR[Vτ , M∗

τ ,Vc,V�s,τ ] ≈ δR[Vτ , M∗
τ ]. Using these facts as a guide, let us express ap-

proximately all the Hamiltonians in both frameworks, using the same basis.

5.1 Nuclear potential and effective mass
The fundamental properties of nuclei are well described with the WS potential [1], and its struc-
ture is clear for the present purpose to discuss δR, as in Eq. (10). Hence, we approximate the
mean-field potential, Vτ (r), and the effective mass, M∗

τ (r), in both frameworks by using the
WS-type function,

fτ (r) = fτ (r, Rτ , aτ ) = 1
1 + exp((r − Rτ )/aτ )

, (48)

i.e.,

Vτ (r) ≈ Vws,τ f (r, Rws,τ , aws,τ ), (49)

m∗
τ (r) ≈

{
1 + (

m∗
ws,τ − 1

)
f
(
r, R∗

ws,τ , a∗
ws,τ

) − Vc(r)
2M

1+τ3
2 , (Rel),

1 + (
m∗

ws,τ − 1
)

f
(
r, R∗

ws,τ , a∗
ws,τ

)
, (Non),

(50)

where m∗
τ (r) = M∗

τ (r)/M is defined, and Rel and Non indicate the relativistic and non-
relativistic models, respectively. The three parameters on the right-hand sides of the above
equations are determined by minimizing, e.g., for Vτ (r), the following quantity with respect
to Vws, τ , Rws,τ , and aws,τ :

∫ ∞

0
dr r2(Vτ (r) − Vws,τ f (r, Rws,τ , aws,τ ))2. (51)

Here, the volume integral has been chosen in order to minimize the above deviation, since both
Vτ (r) and Vws,τ f(r, Rws,τ , aws,τ ) are expected to have a similar shape to that of the nuclear density
whose volume integral value is constrained by the nucleon number. In deriving Eq. (9), we have
used n = 0 in Eq. (4), since there is not such a constraint on the HO potential, but since it is
important to keep the similarity of the wave functions in the HO and WS potentials.
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5.2 Coulomb potential
In the relativistic models, the Coulomb energy is calculated by taking into account the only
direct term of the interaction in the same way as for other interactions, while the exchange
term is also included in the non-relativistic models. The Coulomb interaction, however, plays
a minor role in the present purpose on δR, so that we simply express it by that of the uniform
charge distribution with the radius, Rcoul:

Vc(r) ≈ Vsph(r), Vsph(r) =

⎧⎪⎪⎨
⎪⎪⎩

Zα

2Rcoul

(
3 − r2

R2
coul

)
, r < Rcoul,

Zα

r
, r > Rcoul.

(52)

The radius Rcoul is determined by minimizing the deviation:∫ ∞

0
dr r2(Vc(r) − Vsph(r))2.

The value of Rcoul of each model will be shown later.

5.3 Spin–orbit potential
We express the spin–orbit potential in the form:

V�s,τ (r) = V�s,τ
1
r

dfτ (r)
dr

�·σ. (53)

In the relativistic models, it is written from Eq. (20) as

V�s,τ (r) = 1
r

d
dr

1
2M∗

τ (r)
�·σ = − 1

2M
1

m∗2
τ (r)

1
r

dm∗
τ (r)

dr
�·σ

≈ 1 − m∗
ws,τ

2M
1

m∗2
τ (r)

1
r

d
dr

f
(
r, R∗

ws,τ , a∗
ws,τ

)
�·σ, (54)

neglecting Vc(r) in Eq. (50). In the calculations, a further approximation has been used, m∗
τ (r) ≈

m∗
τ (R∗

ws,τ ) = (1 + m∗
ws,τ )/2.

In the non-relativistic models, the spin–orbit potential of Eq. (26) is approximated as

V�s,τ (r) = W0

2r
d
dr

(ρ(r) + ρτ (r))�·σ ≈ W0ρ0

2

(
1 + Nτ

A

)
1
r

d
dr

f (r, Rden, aden) �·σ, (55)

where the value of W0 is fixed at 120 MeV fm5 and we have written the nuclear density as

ρ(r) = ρp(r) + ρn(r) ≈ ρ0 f (r, Rden, aden) ,

with

4πρ0

∫ ∞

0
dr r2 f (r, Rden, aden) = A.

The details of the calculation of the nuclear density will be mentioned in Section 5.6.
In fact, the spin–orbit potentials are expected not to play an important role in understanding

the difference of δR between the relativistic and non-relativistic models, since their strengths
are similar and the isospin dependences are small, in addition to the reason mentioned before.

5.4 A few examples
Before summarizing the results of the present section, let us compare Vτ (r), ρτ (r), and m∗

τ (r)
from the exact mean-field calculations with those of the corresponding simplified Hamiltonian,
by taking a few examples. After minimizing Eq. (51), the only values of Vws,n for the relativistic
WS potentials have been multiplied by 0.99, so as to reproduce well the values of Rn in the
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Fig. 2. The one-body potentials, the effective masses, and the densities for neutrons (τ = n) and protons
(τ = p) in 208Pb. The solid curves are obtained by the relativistic mean-field model with NL3, the dashed
ones by its simplified Hamiltonian.

exact relativistic mean-field calculations. This factor makes the mean value of Rn from the WS
potential smaller by about 0.015 fm.

Fig. 2 shows the results of the one-body potentials, the effective masses, and the neutron and
proton densities for 208Pb calculated with NL3. The solid curves are obtained by full calcula-
tions, the dashed ones by simplified Hamiltonians. All other relativistic models yield similar
results. In non-relativistic models, we show the results for SkM∗ in Fig. 3. These results of
SKM∗ are similar to those of other models except for the effective mass in SLy4. In SLy4, the
coordinate dependences of the effective mass are similar to those in Fig. 3, but the relation
of the magnitude between m∗

ws,p and m∗
ws,n is opposite to that in other non-relativistic models.

It is seen that all the results using simplified versions well reproduce the corresponding ones
obtained with full calculations.

5.5 Results using the simplified models
Table 4 shows the root msrs of the point neutron distributions in 48Ca and 208Pb determined
in Ref. [4]. Those of the point proton distributions obtained in a similar way are also listed.
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Fig. 3. The one-body potentials, the effective masses, and the densities for neutrons (τ = n) and protons
(τ = p) in 208Pb. The solid curves are obtained by the non-relativistic mean-field model with SkM∗, the
dashed ones by its simplified Hamiltonian.

Table 4. The results of the least-squares analysis in Ref. [4]. The numbers in the parentheses denote
the error that is obtained taking account of the experimental error and the standard deviation of the
calculated values from the least-square line. All the numbers are given in units of fm. For details, see the
text.

Rn Rp δR

Rel 3.597(0.021) 3.378(0.005) 0.220(0.026)
48Ca Non 3.492(0.028) 3.372(0.009) 0.121(0.036)

Rel 5.728(0.057) 5.454(0.013) 0.275(0.070)
208Pb Non 5.609(0.054) 5.447(0.014) 0.162(0.068)

The errors in the parentheses are given by taking into account the experimental error and the
standard deviation of the LSL. Since both relativistic and non-relativistic models employ ex-
perimental values of the msrs of the nuclear charge distributions as an input, the values of Rp

in the two frameworks are almost equal to each other, while the values of Rn are larger by about
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Fig. 4. The strength of the one-body potentials for neutrons (τ = n) and protons (τ = p) in 208Pb. On the
left-hand side, the relativistic and non-relativistic models are indicated. The black circles represent the
strengths of the neutron potentials, the red ones those of the proton potentials, and the blue ones the
differences between their two strengths. The vertical lines stand for the average values of the correspond-
ing circles in the relativistic and non-relativistic models, separately. The scale along the bottom shows the
strengths of the potentials, that along the top the difference between the strengths of the neutron and
proton potentials.

0.1 fm in the relativistic models than in the non-relativistic ones in both 48Ca and 208Pb. The
purpose of the present paper is to understand this difference between Rn.

We note that the new data from JLab have been reported in Ref. [5], according to the parity-
violating electron scattering experiment. These provide δR in 208Pb as 0.283 ± 0.071 fm. This is
almost the same as the value of δR in Table 3 in the relativistic models, and is not incompatible
with the non-relativistic one taking into account their errors. The analysis of the JLab data [5]
is model dependent as in Ref. [4], and Ref. [38] has obtained δR = 0.19 ± 0.02 fm from the JLab
data on the basis of the different model analyses.

Let us summarize the results in the present section for 208Pb. Fig. 4 shows the values of Vws,τ in
Eq. (49) for the relativistic and non-relativistic models. The strengths of the neutron potentials
are shown by the black circles, those of the proton ones by the red circles. It is seen that the
non-relativistic ones are distributed over a wide range, as expected, in contrast to those of
relativistic models. The straight vertical lines show their average values. The difference between
Vws,n − Vws,p, however, is almost equal, independent of the models, as shown by the blue circles
and the straight lines indicating their average values. Thus, the difference is only a little larger
in the relativistic models than in the non-relativistic ones. This fact implies that the difference
between δR in the two frameworks may not be due to the symmetry potentials only.

Fig. 5 shows the values of Rws,τ in a similar way to Fig. 4. The black and red circles for
the non-relativistic models are again distributed over a wide region, compared to those of the
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Fig. 5. The radius parameters of the Woods–Saxon potentials for neutrons (τ = n) and protons (τ =
p) in 208Pb obtained from the relativistic and non-relativistic mean-field models. On the left-hand side,
the relativistic and non-relativistic models used are indicated. The black circles represent the values of
the radius parameter Rws,n, the red ones those of Rws,p. The blue ones stand for the values of the radius
parameters of the Coulomb potentials. The vertical lines indicate the average values of the corresponding
circles in the relativistic and non-relativistic models, separately.

Table 5. The mean values of the Woods–Saxon parameters, the strengths of the one-body potentials, and
the effective masses in the relativistic and non-relativistic models. The numbers of 〈Rws,τ 〉 and 〈aws,τ 〉 are
given in units of fm, those of 〈Vws,τ 〉 in units of MeV. For details, see the text.

〈Rws,n〉 〈Rws,p〉 〈aws,n〉 〈aws,p〉 〈Vws,n〉 〈Vws,p〉 〈m∗
ws,n〉 〈m∗

ws,p〉
Rel 7.046 7.153 0.733 0.719 −66.376 −78.888 0.6321 0.6387
Non 7.096 7.239 0.630 0.632 −61.368 −72.759 0.7508 0.7207

relativistic ones, although their regions overlap. The solid lines express the mean values of the
corresponding circles. It is seen that the value of the difference 〈Rws,p〉 − 〈Rws,n〉 in the relativistic
models is rather smaller than that in the non-relativistic models as in Table 5. Thus, the spread of
the values of Rws,τ in the non-relativistic models does not seem to cause the difference between
δR in the two frameworks. The values of Rcoul are indicated by the blue circles for reference.

Fig. 6 shows the values of aws,τ . The straight lines stand for their average values. Those of
the relativistic and non-relativistic models are distributed similarly over a wide region, but are
small compared to Rws,τ , as (aws,τ /Rws,τ )2 ≈ 0.01. The difference between δR in the relativistic
and non-relativistic models may not be due to these distributions of aws,τ .

In Fig. 7 are shown the values of m∗
ws,τ . The black circles represent those of the neutrons, the

red circles the protons. The straight lines indicate their average values, which in the relativistic
models are 〈m∗

ws,n〉 ≈ 0.6321 and 〈m∗
ws,p〉 ≈ 0.6387, and in the non-relativistic models 〈m∗

ws,n〉 ≈
0.7508 and 〈m∗

ws,p〉 ≈ 0.7207. As seen in the figure, the circles of the relativistic models are
almost at the same value and the ratio, 〈m∗

ws,p〉/〈m∗
ws,n〉, is about 1.010, while those of the non-

19/32

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2022/2/023D

03/6507566 by D
eutsches Elektronen Synchrotron D

ESY user on 23 M
arch 2022



PTEP 2022, 023D03 H. Kurasawa and T. Suzuki

Fig. 6. The diffuseness parameters of the Woods–Saxon potentials for neutrons (τ = n) and protons (τ
= p) in 208Pb obtained from the relativistic and non-relativistic mean-field models. On the left-hand side,
the relativistic and non-relativistic models used are indicated. The black circles represent the values of
the diffuseness parameter aws,n, the red ones those of aws,p. The vertical lines indicate the average values
of the corresponding circles in the relativistic and non-relativistic models, separately.

Fig. 7. The effective mass of neutrons (τ = n) and protons (τ = p) in 208Pb obtained from the relativistic
and non-relativistic mean-field models. On the left-hand side, the relativistic and non-relativistic models
used are indicated. The black circles represent the values of the effective masses of neutrons, the red ones
those of protons. In T6, the value for neutrons is the same as that for protons. The vertical lines indicate
the average values of the corresponding circles in the relativistic and non-relativistic models, separately.
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Table 6. The mean values of the parameters for the Fermi-type neutron (n) and proton (p) distributions.
They are obtained by approximating the densities in the relativistic and non-relativistic mean-field models
for 208Pb. The values of ρ0,τ are given in units of fm−3 and those of aden,τ and Rden,τ are in fm. For the
definition of ε, see the text.

ρ0,τ aden,τ Rden,τ ε

Rel n 0.0860 0.553 6.903 0.1044
p 0.0625 0.454 6.692

Non n 0.0911 0.554 6.766 0.0556
p 0.0628 0.475 6.672

Table 7. The mean values of the root msrs of the neutron (Rn) and proton (Rp) distributions and their
difference (δR = Rn − Rp) obtained by the three approximations for 208Pb. MF indicates the mean values
in the relativistic and non-relativistic mean-field models, WS the ones obtained by approximating the
mean-field potentials by Woods–Saxon potentials. Equation (57) stands for the equation number in the
text used for the calculations of Rτ and δR given in that row. All the values are listed in units of fm. For
details, see the text.

Rn Rp δR

Rel MF 5.749 5.466 0.283
WS 5.740 5.457 0.283

Eq. (57) 5.728 5.451 0.277
Non MF 5.617 5.455 0.161

WS 5.621 5.462 0.159
Eq. (57) 5.629 5.460 0.169

relativistic models are spread out, as in nuclear matter, but the ratio in each model is almost the
same and is on average 〈m∗

ws,p〉/〈m∗
ws,n〉 ≈ 0.9601.

Table 5 lists the mean values of the WS parameters, the strengths of the one-body potentials,
and the effective masses in the present simplified models for the relativistic and non-relativistic
mean-field ones, respectively. It should be noticed that the values of 〈m∗

ws,τ 〉 and 〈Vws,τ 〉 are
almost the same as those of 〈m∗

τ 〉 and 〈Vτ 〉 in Table 2.

5.6 The proton and neutron distributions
It may be useful to see directly how the difference between δR is caused in terms of the neutron
and proton densities. We approximate the neutron and proton distributions, ρτ (r), in the mean-
field models by the Fermi-type function, which is widely employed [1,7]. The approximation is
performed for

ρws,τ (r) ≈ ρ0,τ fτ (r, Rden,τ , aden,τ ), (56)

in the same minimization method as in Eq. (51). Since the obtained function satisfies the nor-
malization

∫
d3rρws,τ (r) = Nτ with a small error of about 0.5%, we slightly correct Rden,τ to

satisfy the normalization. We note that the correction by ρ0,τ instead of Rden,τ yields almost
the same values as those that will be seen in Tables 6 and 7. The minimization under the con-
straint on the nucleon number also yields similar results.

The msr, R2
τ , by Eq. (56) is given as [1]

R2
τ ≈ 3

5

(
3Nτ

4πρ0,τ

)2/3

+ π2a2
den,τ , (57)
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which provides the relationship between R2
n and R2

p as

R2
n =

R2
p − π2a2

den,p

(1 − ε)2/3
+ π2a2

den,n, ε = 1 − Z
N

ρ0,n

ρ0,p
. (58)

When keeping order up to O(ε), the difference, δR = Rn − Rp, is written as

δR ≈ ε

3
Rp + π2

2

a2
den,n − a2

den,p

Rp
. (59)

Table 6 lists the average values of the parameters for the Fermi-type densities in Eq. (56) in
the present relativistic and non-relativistic models. Table 7 shows the values of Eq. (57) using
the results in Table 6. The average values of Rτ and δR in the mean-field models and their
simplified versions are also listed in the rows called MF and WS, respectively. It is seen that the
values in Eq. (57) and in WS almost reproduce the results of the mean-field models.

The values of the two terms on the right-hand side of Eq. (59) are given as

δRrel ≈ 0.190 + 0.091 = 0.280 fm, δRnon ≈ 0.101 + 0.074 = 0.175 fm. (60)

Thus the difference of about 0.1 fm between δR in the relativistic and non-relativistic models
mainly comes from the first terms εRp/3, and the diffuseness parameters yielding the second
terms play a rather minor role. It should be noticed that the first term proportional to ε disap-
pears when ρ0,n = (N/A)ρ and ρ0,p = (Z/A)ρ.

Since the values of Rp and ρ0,p in the relativistic and non-relativistic models are almost the
same, the difference between δR in Eq. (59) comes from ρ0,n in ε. Table 6 provides

(ρ0,n)rel

(ρ0,n)non
= 0.944,

(ρ0,p)rel

(ρ0,p)non
= 0.995.

The 5.6% decrease of (ρ0,n)rel provides the increase of (Rn)rel by 0.944−1/3 = 1.019, yielding the
0.1 fm difference that we are discussing. Fig. 2 shows qualitatively such a broadening of the
neutron density in NL3, in comparison with that in Fig. 3.

In Table 2 are listed the mean values of the neutron and proton densities for the nuclear mat-
ter obtained by Eq. (37). Those values are almost the same as the corresponding ones in Table 6.
They provide values of ε in Eq. (58) of 0.1138 and 0.0567 for the relativistic and non-relativistic
models, respectively, which are comparable with the values for 208Pb in Table 6. Thus, the vari-
ous parameters including 〈m∗

τ 〉 and 〈Vτ 〉 at r = 0 for 208Pb are similar to those for nuclear matter.
It may be noticed that the values listed in the MF rows in Table 7 are a little different from

those of LSA in Table 4, since the former is the mean values of Rτ calculated by the models,
while the latter has been obtained by a least-squares analysis of the calculated values compared
with the experimental data [4].

6. The HVH lines in 208Pb
In the previous section, we have shown that the mean values of 〈m∗

τ 〉, 〈Vτ 〉, and 〈ρτ 〉 in Table 2
for nuclear matter are almost the same as the corresponding ones in Tables 5 and 6 for 208Pb. In
order to explore the reason why δR in the relativistic and non-relativistic schemes are different
from each other, the contributions from Rws,τ and aws,τ in Figs. 5 and 6 to Rτ should also be
examined, in addition to those from Vws,τ and m∗

ws,τ in Figs. 4 and 7.
In the present section, first, it will be discussed that similar equations to Eqs. (9) and (10)

hold for the dependence of Rτ on the WS parameters and m∗
ws,τ with the values in Figs. 4– 7.

Second, the value of δR will be shown to be dominated by m∗
ws,τ and Vws,τ , rather than by Rws,τ
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Table 8. The mean values of the proportional constant Bτ between the root msr and the function of the
Woods–Saxon parameters in Eq. (61). The standard deviation σ is given in parentheses. WS indicates the
mean values using Rτ of the simplified models, while MF shows for reference those using Rτ of the full
mean-field approximation. The numbers are written in units of (fm2MeV)1/4. For details, see the text.

〈Bτ 〉 (σ )
WS MF

Rel n 5.295 (0.0063) 5.304 (0.0076)
p 5.243 (0.0151) 5.253 (0.0151)

Non n 5.288 (0.0217) 5.283 (0.0273)
p 5.268 (0.0801) 5.261 (0.0685)

and aws,τ . Third, it will be investigated whether or not the constraint on the values of m∗
ws,τ and

Vws,τ by the HVH theorem holds in the same way as in Fig. 1 for the nuclear matter. Finally, the
difference between δR between the two schemes will be explained in terms of m∗

ws,τ and Vws,τ .
We discuss Rτ of the finite nucleus 208Pb on the basis of Eqs. (9) and (10). For this purpose,

first we examine if it is appropriate for Eqs. (9) and (10) to employ m∗
ws,τ and Vws,τ defined in

Eqs. (50) and (49). When Rτ calculated by the simplified models is expressed in terms of m∗
ws,τ

and Vws,τ as

Rτ ≈ Bτ

(
− R2

ws,τ

m∗
ws,τVws,τ

)1/4

(1 + bws,τ )3/8, bws,τ =
(

πaws,τ

Rws,τ

)2

, (61)

then the value of the coefficient Bτ corresponding to B in Eq. (9) should be almost constant
independently of the various interaction parameters of the mean-field models. In order to es-
timate the value of Bτ , both sides except for Bτ of the above equation are calculated for each
model, according to Section 5. The results are listed on the left-hand side headed WS in Table 8,
where the mean values of Bτ are shown as 〈Bτ 〉 in units of (fm2MeV)1/4 in the relativistic and
non-relativistic models, separately. The table shows that the values of the standard deviation
(σ ) are small enough for our purpose.

The meaning of Bτ may be qualitatively understood according to Ref. [1], where the values
of C in Eq. (3) are estimated by summing a single particle radius over the occupied orbits in the
HO potential. Their approximations yield values that are of the same order of magnitude as
those of Bτ in Table 8, Bn ≈ 5.44 for N = 126 and Bp ≈ 5.07 for Z = 82 in units of (fm2MeV)1/4.

We note that the values of σ for protons are larger than those for neutrons in both models.
This fact may be due to the Coulomb potential, which is not explicitly taken into account on
the right-hand side in Eq. (61). If vc = 22 MeV is added to Vws,p by hand for reference, the
values of σ for protons become comparable with those for neutrons: 0.0089 and 0.0217 in
the relativistic and non-relativistic models, respectively. We expect, however, that these results
do not change the following discussions on the difference between δR in the relativistic and
non-relativistic models.

It should also be ensured that the 0.1 fm difference between δR is not due to the enhancement
of Rn,rel by the factor Bn,rel. The equation corresponding to Eq. (10) is described as

Rn

Rp
= Bn

Bp

(m∗
ws,pVws,p

m∗
ws,nVws,n

)1/4 (
Rws,n

Rws,p

)1/2 (
1 + bws,n

1 + bws,p

)3/8

. (62)

Since δR is written as δR = Rp(Rn/Rp − 1) and the value of Rp is almost fixed due to the fitting in
both relativistic and non-relativistic models, the difference between δR in the two frameworks
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stems from their values of Rn/Rp. Table 8 provides the ratio of (〈Bn〉/〈Bp〉)rel/(〈Bn〉/〈Bp〉)non =
1.0061. On the right-hand side of Table 8, the values of 〈Bτ 〉 in using Rτ from the mean-field
calculations in Eq. (61) are listed. The table shows that the WS calculations yield almost the
same results as those of the mean-field ones, (〈Bn〉/〈Bp〉)rel/(〈Bn〉/〈Bp〉)non = 1.0055. These values
imply that the factor Bτ is not enough to explain the 0.1 fm difference. Thus, it is reasonable to
use Vws,τ and m∗

ws,τ defined in Eqs. (49) and (50) in the analysis of δR in 208Pb.
Assuming that Eq. (62) holds for the mean values in Table 5, we have

Rn ≈ Bn

Bp

(〈
m∗

ws,p

〉〈Vws,p〉〈
m∗

ws,n

〉
Vws,n〉

)1/4 ( 〈Rws,n〉
〈Rws,p〉

)1/2 (
1 + 〈bws,n〉
1 + 〈bws,p〉

)3/8

Rp (63)

with 〈bws,τ 〉 = (π〈aws,τ 〉/〈Rws,τ 〉)2. Using the values in Tables 5 and 8, the above equation provides
for the relativistic and non-relativistic models, respectively, as

Rn,rel ≈ 1.0517 Rp,rel , Rn,non ≈ 1.0274 Rp,non . (64)

If we put the numbers of Rp obtained by the WS approximation in Table 7 into the right-hand
sides of Eq. (64), then we have the values of Rn,rel ≈ 5.739 fm and Rn,non ≈ 5.612 fm. It is
seen that they are almost the same values as those of the WS approximation in Table 7. Thus,
Eq. (62) holds well also for the mean values in Tables 5 and 8.

Second, the value of δR will be shown to be dominated by m∗
ws,τ and Vws,τ , rather than by Bτ ,

Rws,τ , and aws,τ , with the use of their mean values. One way to show this fact is by taking the
numbers in Eq. (64) that imply that Rn,rel > Rn,non, when Rp,rel ≈ Rp,non, indicating the 0.1 fm
difference problem. Those numbers have been obtained by

1.0517 ≈ 1.0468 × 1.0047 , 1.0274 ≈ 1.0329 × 0.9947 , (65)

where the first numbers on the right-hand sides of the above equations come from the factor
(〈m∗

ws,p〉〈Vws,p〉/〈m∗
ws,n〉Vws,n〉)1/4, the second numbers the rest of the factors in Eq. (63). Thus,

the difference between Rn and Rp is mainly due to the first number coming from the values of
〈m∗

ws,τ 〉 and 〈Vws,τ 〉 in both the relativistic and non-relativistic schemes. The second numbers
from Bτ , 〈Rws,τ 〉, and 〈aws,τ 〉 play a minor role in their differences. This fact also implies that the
distribution of Rws,τ and aws,τ over a wide region in Figs. 5 and 6 is not worrisome for the 0.1
fm problem. The minor role of aws,τ is consistent with the results of Eq. (60).

It may be seen in another way qualitatively that, compared to Bτ , 〈Rws,τ 〉, and 〈bws,τ 〉, 〈m∗
ws,τ 〉

and 〈Vws,τ 〉 play an important role in δR of the two frameworks. We write Eq. (61) in terms of
the mean values,

Rτ,rel ≈ Bτ,rel(−(〈m∗
ws,τ 〉〈Vws,τ 〉)rel)−1/4(〈Rws,τ 〉rel )1/2(1 + 〈bws,τ 〉rel)3/8, (66)

for the relativistic scheme. In the above equation, keeping the values of Bτ ,rel, 〈Rws,τ 〉rel, and
〈bws,τ 〉rel, we replace (〈m∗

ws,τ 〉〈Vws,τ 〉)rel by that of the non-relativistic one, (〈m∗
ws,τ 〉〈Vws,τ 〉)non.

Then, the values of Rτ ,rel of the WS approximation in Table 7 and the mean values of Table 5
provide

Rτ,rel

( (〈
m∗

ws,τ

〉〈Vws,τ 〉
)

rel(〈
m∗

ws,τ

〉〈Vws,τ 〉
)

non

)1/4

=
{

5.607 fm, τ = n,

5.403 fm, τ = p.
(67)

The above equation yields δR = 5.607 − 5.403 = 0.204 fm, which should be compared to δR
= 0.159 fm in WS for the non-relativistic models in Table 7. The difference between δR in
the two frameworks is reduced from 0.283 − 0.159 = 0.124 fm to 0.204 − 0.159 = 0.045 fm
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Fig. 8. The relationship between the effective mass and the one-body potential for neutrons (τ = n) and
protons (τ = p) in the mean-field models for 208Pb. The black circles show the values calculated by the 11
relativistic models, the red ones those by the 9 non-relativistic models. The least-square lines are shown
for the four groups. The two black lines are obtained from the black circles for neutrons and protons,
respectively, and the red lines from the red circles.

by 64%. Thus, it is seen that the 0.1 fm problem is closely related to the difference between
(〈m∗

ws,τ 〉〈Vws,τ 〉)rel and (〈m∗
ws,τ 〉〈Vws,τ 〉)non in Rτ .

Third, let us investigate whether or not there is a constraint on m∗
ws,τ and Vws,τ in 208Pb, as in

nuclear matter. In Fig. 8 are plotted the values of Vws,τ in Fig. 4 and those of m∗
ws,τ in Fig. 7

in the 1/m∗
ws,τ –Vws,τ plane. The black circles show the values for neutrons and protons in the

relativistic models, the red circles those in the non-relativistic models. The numbers attached to
each circle indicate the model used, according to the numbering mentioned in Section 4.2. A
pair of the same number represents the values for neutrons and protons calculated by the same
model.

The slanting lines are obtained by the least-squares method for the values of each group. The
upper and lower black lines represent neutrons and protons in the relativistic models, respec-
tively, the upper and lower red lines the non-relativistic models. It is remarkable that the values
of each group follow the corresponding line well, and that the four lines are well separated
from one another, as in Fig. 1 for nuclear matter. We notice that the only FSU(11) [16] among
the relativistic models yields a point on the neutron line for the non-relativistic models. This
may reflect the fact that FSU has added two additional parameters to the Lagrangian of, e.g.,
NL3(5) [22], so as to reduce the value of Rn. The values of the gradient (aL

ws,τ ) and the intercept
(bL

ws,τ ) of the LSL,

Vws,τ = aL
ws,τ /m∗

ws,τ + bL
ws,τ , (68)
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Table 9. The values of the gradient (aL
ws,τ ) and the intercept (bL

ws,τ ) of the least-square line for the re-
lationship between the depth of the one-body potential and the nucleon effective mass in Fig. 8. The
numbers of aL

ws,τ and bL
ws,τ are given in units of MeV. The values of the correlation coefficient, r, are also

listed. For details, see the text.

Rel Non
aL

ws,τ bL
ws,τ r aL

ws,τ bL
ws,τ r

n −40.120 −2.795 0.958 −38.609 − 7.438 0.997
p −34.933 −24.098 0.937 −32.588 − 25.215 0.997

Table 10. The values for the combination composed of the effective mass and the coefficients of the
least-square line for asymmetric nuclear matter (the first column) and for 208Pb (the third column) in the
relativistic and non-relativistic models. The values of the product of the effective mass and the strength
of the one-body potential are also listed in the second column for 208Pb. All the numbers are given in
units of MeV. For details, see the text.

〈aτ 〉 + 〈bτ 〉〈m∗
τ 〉 〈m∗

ws,τ 〉〈Vws,τ 〉 aL
ws,τ + bL

ws,τ 〈m∗
ws,τ 〉

Rel n −41.814 −41.956 −41.887
p −49.737 −50.386 −50.324

Non n −44.321 −46.075 −44.193
p −51.364 −52.437 −50.760

are listed in Table 9 for relativistic (Rel) and non-relativistic (Non) models. The values of the
correlation coefficient, r, are also shown, which are nearly equal to 1.

In Fig. 8, it is seen that the variation of the effective mass and the strength of the one-body
potential in finite nuclei is also constrained in a similar way to that in Fig. 1 for nuclear matter.
Equation (68) has the same form as Eq. (44) from the HVH theorem. Thus, the HVH theorem
seems to be inherent in the mean-field approximation for finite nuclei too. From now on, we
will refer to the LSL of 208 Pb as the HVH line.

We compare the coefficients of the HVH line for 208Pb in Table 9 to those of Eq. (44) for
nuclear matter listed in Table 2. The coefficients of Eq. (44) are shown to be constrained by the
HVH theorem through Eq. (47). It is seen in Tables 2 and 9 that the values of the corresponding
coefficients are not the same as each other, but the magnitude relations of the corresponding two
values are almost the same as those of the other pair. More important values for the present
discussion are those in Eq. (47). In the first column in Table 10 is listed one of the values in
Eq. (47), 〈aτ 〉 + 〈bτ 〉〈m∗

τ 〉, and the corresponding values obtained from Tables 5 and 9 are given
in the second and the last columns. It is seen that the values for nuclear matter in the first column
are almost the same as those for 208Pb in the other columns. Since the values in the first column
are nothing but the results due to the HVH theorem, it is confirmed that those in the second
and third columns also reflect the constraint by the theorem.

We note that the values of the first column have been obtained by introducing a model with
vc in Eq. (38). This is done so as to provide neutrons and protons with the same average bind-
ing energies by Eq. (37), as in stable nuclei. The value of vc is employed that approximately
corresponds to the energy of the Coulomb potential for 208Pb in Eq. (42). Although the model
has been used as a guide for discussions of the finite nucleus, Table 10 shows conversely that
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Table 11. The neutron (n) and proton (p) potentials at the mean value of the effective mass. The numbers
are given in units of MeV. For details, see the text.

V rel
ws,τ (〈m∗

τ 〉rel ) V non
ws,τ (〈m∗

τ 〉rel ) V non
ws,τ (〈m∗

τ 〉non)

n −66.264 −68.517 −58.865
p −78.792 −76.238 −70.434
Vn − Vp 12.528 7.721 11.569

such a simple model almost reproduces the results for finite nuclei and is useful for describing
asymmetric nuclear matter.

In Fig. 8, it should be noticed that, on the one hand, the distance between the two black lines
for the relativistic models is about 12.5 MeV at a fixed value of 1/m∗

ws,τ , as listed in Table 11.
This is almost the same as the mean value of V3 = Vws,n − Vws,p in Fig. 4. This is because of
m∗

ws,n ≈ m∗
ws,p in the relativistic models. On the other hand, in the non-relativistic models, the

distance between the two red lines for the same value of 1/m∗
ws,τ is about 7.7 MeV, in spite of

the fact that V3 ≈ 11.6 MeV as in Table 11. This is because, in the non-relativistic models, the
value of the neutron effective mass is larger than that of the proton one, except for SLy4(6)
[24], as in Fig. 7. The value of V3 ≈ 11.6 MeV is approximately kept by providing neutrons and
protons with different effective masses. As seen below, it is essential for understanding the 0.1
fm difference that the values of the effective mass for neutrons are different from the ones for
protons in the non-relativistic models, while those in the relativistic models are almost the same.

So far, understanding the dependence of Rτ on m∗
ws,τ and Vws,τ is simply based on their mean

values as in Eqs. (65) and (67), aiming to emphasize their roles in the 0.1 fm problem. Finally,
we investigate the roles of of m∗

ws,τ and Vws,τ in Rτ by using their values themselves, together
with the HVH line in Fig. 8.

Equation (67) has been obtained by replacing the mean values (〈m∗
ws,τ 〉〈Vws,τ 〉)rel by

(〈m∗
ws,τ 〉〈Vws,τ 〉)non. In order to explore in more detail how the value of Rτ in the relativistic

scheme approaches that in the non-relativistic one by changing m∗
ws,τ and Vws,τ , we replace

the values of m∗
ws,τ and Vws,τ in Rτ in each relativistic model by 〈m∗

ws,τ 〉non and 〈Vws,τ 〉non. The
replacement will be made keeping the values of Rws,τ and bws,τ in each model, and using the
HVH line in Fig. 8. By this procedure, we will see the roles of m∗

ws,τ and Vws,τ in Rτ separately,
as follows.

In Fig. 9 is shown Rτ as a function of m∗
ws,τ in the case of NL3(5) as an example. The closed

and open circles indicate the values of Rτ in the full mean-field calculation and in the simplified
one in Section 5, respectively, at the value of m∗

ws,τ for NL3. The solid curves are calculated by
keeping the values of Rws,τ and aws,τ of NL3 and using Vws,τ given by the HVH line for the
relativistic models in Fig. 8. The closed and open circles are seen to be almost on the curves.
The dashed curves also show Rτ , but using Vws,τ given by the HVH line for the non-relativistic
models in Fig. 8.

In Fig. 9, we have specified six points on the curves, where Xn, Yn, and Zn are for the neutrons,
and others for the protons. The points Xτ indicate the positions of the open circles. The points
Yτ and Zτ are on the dashed curves. The former indicates the place where NL3 provides m∗

ws,τ ,
and the latter the place of m∗

ws,τ = 〈m∗
ws,τ 〉non as shown by the vertical lines. The replacement

of m∗
ws,τ and Vws,τ in NL3 by 〈m∗

ws,τ 〉non and 〈Vws,τ 〉non is made by using the values at point Zτ .
We made, however, the replacement in two steps according to the curves in Fig. 9. In the first
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Fig. 9. The root msr as a function of the effective mass for τ = n and τ = p in NL3. The closed circles are
obtained by the full mean-field approach, and the open ones by the simplified Hamiltonian of NL3. The
solid curves are calculated by using the least-square lines for the relationship between m∗

ws,τ and Vws,τ in
the relativistic models in Fig. 8, the dashed ones by using those in the non-relativistic models. The top
two lines are for neutrons, and the bottom two ones for the protons. In these curves, the values of the
Woods–Saxon parameters, Rws,τ and aws,τ , are taken from those determined by NL3. The vertical lines
indicate the average values of the effective masses for neutrons (〈m∗

ws,n〉non) and protons (〈m∗
ws,p〉non) in

the non-relativistic models. The point Xn indicates the place of the open circle for the neutrons, Yn the
point on the dashed curve at the same value of m∗

ws,n as that for Xn. The point Zn shows the intersection
point between the dashed curve and the vertical line for 〈m∗

ws,n〉non. The points Xp, Yp, and Zp are given
in a similar way. The blue and green arrows are used for discussions in the text.

step, the values at Xτ are replaced by those at Yτ , and in the second step the values at Yτ are
replaced by those at Zτ . This process is shown in Fig. 9 by the arrows. The blue arrow indicates
the first step, the green one the second step. In this way, we may see how Rτ in NL3 varies by
m∗

ws,τ and Vws,τ separately and approaches Rτ in the non-relativistic scheme.
Fig. 9 shows that the value of Rn is decreased in the first step, because Vws,n becomes deeper

as seen in Fig. 8. From Yn to Zn, the potential becomes shallower, but the value of the effective
mass is increased and the role of the kinetic part as a repulsive potential declines. As a result,
the value of Rn further shrinks, as in Fig. 9. The decrease of Rτ from Yτ to Zτ with increasing
m∗

ws,τ is understood qualitatively by Eqs. (61) and (68), which yield

m∗
ws,τ = − 1

bL
ws,τ

(
aL

ws,τ + B4
τ

R4
τ

R2
ws,τ (1 + bws,τ )3/2

)
. (69)

Thus, the value of Rn in the relativistic models approaches that in the non-relativistic models,
following the path under the constraint of the HVH theorem on Vws,τ and m∗

ws,τ .
With respect to Rp, Fig. 9 shows its increase from Xp to Yp, because of the decreasing strength

of |Vws,p|. From Yp to Zp, the value of Rp decreases in the same way as that of Rn from Yn to Zn,
according to Eq. (69). The final value of Rp at the point Zp almost returns to its original value
at Xp, since the value of Rp at Xp for the relativistic model is fixed by the experimental value of
Rc as an input, while the value at Zp is almost equal to the values of Rp for the non-relativistic
models that are fixed in the same way.

In the above analysis, it should be noticed that the value of 〈m∗
ws,n〉non is larger than that of

〈m∗
ws,p〉non in Table 5. Owing to this fact, the path from Yn to Zn is longer than that from Yp to

Zp as seen in Fig. 9. This difference also works to make Rn smaller in the path from Yn to Zn.
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Fig. 10. The root msr Rτ of 208Pb calculated in the relativistic and non-relativistic models. On the left-
hand side, the models used are indicated. The black closed and open circles are obtained by the full
mean-field approximations for the neutrons (τ = n) and protons (τ = p), respectively. The red ones are
obtained by the simplified Hamiltonian for each model. The blue ones are obtained through the first step
discussed in the text, the green ones by the second step. The vertical lines show the average values of the
same color circles, respectively. For details, see the text.

Fig. 10 shows the values of Rτ that are obtained by the same procedure as in Fig. 9 for all
the relativistic mean-field models taken in the present paper. The black and red circles show
the results of the full mean-field calculations and the simplified ones in Section 5, respectively,
where the closed circles are for neutrons and the open circles for protons. The vertical lines
indicate their mean values. It is seen that the simplified calculations reproduce well the values of
Rτ by the full calculations. Those for the non-relativistic models are also shown in the same way.

The blue circles are obtained by the first step from Xτ to Yτ mentioned in Fig. 9, the green
ones by the second step. All the models show a similar change of Rτ to that in Fig. 9 such that
the values of Rn decrease by two steps, while those of Rp come back to almost the same values
by the second step from Yτ to Zτ .

Fig. 11 shows the values of δR, using the same designating symbols as in Fig. 10. The values
from the two steps shown by the green circles are almost the same as the blue ones obtained by
the first step, since the values of Rp return to the original ones by the second step.

The results of Rτ and δR in Figs. 10 and 11 are summarized in Table 12 in units of fm. The
mean values of Rτ in the relativistic models are listed in the columns headed Red, Blue, and
Green according to the colors of those figures. From Red to Green, the value of Rn decreases,
while that of Rp increases from Red to Blue and decreases from Blue to Green, up to almost
the Red one, as shown in the figures. In changing the values Vτ and m∗

τ in the relativistic models
following the HVH lines, the value of δR shrinks from 0.283 fm to 0.193 fm, which should be
compared to 0.159 fm for the non-relativistic models. The difference between δR in the rela-
tivistic and non-relativistic models becomes smaller by 73%, changing its value from 0.124 fm
to 0.034 fm.
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Fig. 11. The difference between the root msrs of the neutron and proton distributions in 208Pb calculated
in the relativistic and non-relativistic models. On the left-hand side, the models used are indicated. The
black closed circles are obtained by the full mean-field approximations, and the red ones by the simplified
Hamiltonian for each model. The blue ones are obtained through the first step, the green ones through
the second step discussed in the text. The vertical lines show the average values of the same color circles,
respectively. For details, see the text.

Table 12. The average values of the root msr of the proton and neutron distributions in the relativistic
(Rel) and non-relativistic (Non) models in various approximations. Red, Green, and Blue indicate the
average values corresponding to those in Figs. 10 and 11, respectively. All the numbers are given in units
of fm. For details, see the text.

Rel Non
Red Blue Green Red

Rn 5.740 5.691 5.645 5.621
Rp 5.457 5.493 5.452 5.462
δR 0.283 0.197 0.193 0.159

It is concluded that most of the 0.1 fm difference between δR in the relativistic and non-
relativistic models is attributed to the difference between the values of their Vτ and m∗

τ , which
are constrained by ρ0,τ through the HVH theorem. The remaining difference may be caused
by the sum of many small contributions, in addition to those from Rws,τ , aws,τ , and Bτ , from
the approximations used. The exchange term of the Coulomb force, the center of mass correc-
tion, the small component of the wave functions, etc., are also managed differently in the two
frameworks. Discussions of these effects, however, are beyond the present purpose.

7. Summary
Reference [4] has pointed out that the neutron skin thickness defined by δR = Rn − Rp in
208Pb is larger by about 0.1 fm in the relativistic mean-field models than in the non-relativistic
ones. Here, Rn and Rp represent the root msr (mean-square-radius) of the point neutron and
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proton distributions in the nucleus, respectively. The value of the charge radius Rc of 208Pb
is about 5.503 fm. The 0.1 fm difference is small for neither nuclear physics [1,10,17,18], nor
astrophysics [3,5,18]. In this paper, we have investigated why the difference is avoidable in the
present mean-field models, even though both relativistic and non-relativistic models are con-
structed phenomenologically with free parameters to be fixed by experimental values.

The value of Rp is one of the most important inputs, together with the binding energy per
nucleon and the Fermi momentum in nuclear matter in all of the phenomenological models
[14,24]. The relationship between Rp and Rc is unambiguously defined theoretically [8], and the
latter is observed experimentally through electromagnetic probes, whose reaction mechanisms
are well understood [6,7,9]. Hence, the 0.1 fm problem is due to the difference between the
values of Rn in the two frameworks.

It is shown that the values of Rτ are dominated by those of (−m∗
τVτ )−1/4, as in Eq. (61), where

m∗
τ and Vτ represent the effective mass in units of M and the strength of the one-body potential

near the center of the nucleus (r ≈ 0), respectively, and the subscript indicates τ = p for protons
and τ = n for neutrons. Although m∗

τ and Vτ are complicated functions of the interaction
parameters in the phenomenological models, they are not independent of each other. Their
variations are constrained together with the nucleon density ρτ at r ≈ 0 by the Hugenholtz–
Van Hove (HVH) theorem [19–21].

In writing the average values of m∗
τ and Vτ in each framework as 〈m∗

τ 〉 and 〈Vτ 〉, respectively,
their product is approximately expressed by the HVH equation as 〈m∗

τ 〉〈Vτ 〉 ≈ aτ + bτ 〈m∗
τ 〉,

where aτ and bτ are constants. The values of aτ and bτ depend on the average values of ρτ (〈ρτ 〉),
the binding energy per nucleon EB, and Coulomb energy vc of the corresponding asymmetric
nuclear matter with N and Z. Since the values of EB and vc are almost the same in the relativis-
tic and non-relativistic models, the difference between the two frameworks on the right-hand
side of the HVH equation is attributed to the difference between the values of 〈ρτ 〉 and 〈m∗

τ 〉.
Indeed, the values of 〈ρτ 〉 and 〈m∗

τ 〉 in the nuclear matter in Table 2 are almost the same as those
for 208Pb in Tables 5 and 6. The difference on the right-hand side of the HVH equation for the
two frameworks is expressed by 〈m∗

τ 〉〈Vτ 〉 on the left-hand side, which induces the difference of
Rn between the relativistic and non-relativistic models, according to Eq. (61).

Table 10 provides their average values as (〈m∗
n〉〈Vn〉)non = −46.075 MeV for the non-

relativistic models against (〈m∗
n〉〈Vn〉)rel = −41.956 MeV for the relativistic models. The ratio

of these values yields

(46.075/41.956)1/4 = 1.0237,

which is comparable to the value showing the 0.1 fm difference of Rn as

Rn,rel/Rn,non = 5.740/5.621 = 1.0212

in Table 7. This comparison assumes the same relationship between the average values of Rn and
(−m∗

nVn)−1/4 as in Eq. (61). The results of the more detailed analysis without using the average
values are summarized in Table 12, which shows that about 70% of the 0.1 fm difference is
explained according to the HVH theorem.

We note that the 0.1 fm problem is observed using the limited number of Skyrme-type inter-
actions and relativistic mean-field models in Ref. [4], so the problem has been investigated with
the same models in the present paper. It may be interesting to explore other phenomenolog-
ical models [2] to identify whether or not there is a similar difference problem and the HVH
theorem is useful for understanding the difference.
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The 0.1 fm difference has also been observed in 48Ca in Ref. [4]. It could be discussed in a
similar way to 208Pb in the present paper, but a new method must be devised for comparing the
results for 48Ca with those for nuclear matter in the mean-field models.
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