P'I-EP Prog. Theor. Exp. Phys. 2022 023D03(32 pages)
DOI: 10.1093/ptep/ptac008

The mean-square radius of the neutron distribution in
the relativistic and non-relativistic mean-field models

Haruki Kurasawa! and Toshio Suzuki?*

' Department of Physics, Graduate School of Science, Chiba University, Chiba 263-8522, Japan
2 Research Center for Electron Photon Science, Tohoku University, Sendai 982-0826, Japan

*E-mail: kt.suzuki2th@gmail.com

Received October 14, 2021; Revised December 27, 2021; Accepted January 11, 2022; Published January 14, 2022

It is investigated why the root-mean-square radius of the point neutron distribution is
smaller by about 0.1 fm in non-relativistic mean-field models than in relativistic ones. The
difference is shown to stem from the different values of the product of the effective mass
and the strength of the one-body potential in the two frameworks. The values of those
quantities are constrained by the Hugenholtz—Van Hove theorem. The neutron skin is not
a simple function of the symmetry potential, but depends on the nucleon effective mass.

Subject Index D11, D12

1. Introduction

Recently much has been written on the neutron distribution in nuclei [1-5]. It is one of the most
fundamental problems in nuclear physics together with the proton distribution [1,6]. The neu-
tron distribution, however, has not been well determined experimentally so far. This is because
the neutron density has been studied through hadron probes, where the ambiguity as to the
interaction and the reaction mechanism is not avoidable yet [3].

In contrast to the neutron distribution, the proton distribution has been widely investigated
throughout the periodic table of stable nuclei theoretically [6] and experimentally [7]. The rela-
tionship between the point proton and charge density distributions is defined unambiguously
[6,8]. The latter is deduced from electron scattering cross sections rather model independently
[7], compared with the strong interaction, since the electromagnetic interaction is well under-
stood, and is so weak that the density distribution of the nuclear ground state is not disturbed
[6,9].

It has been believed for a long time that electron scattering is useless in the study of neu-
tron distribution in nuclei [6,10]. Recently, the present authors have proposed a new way to
deduce the neutron distribution from electron scattering data [8]. They have derived an exact
expression for the nth-order moment of the nuclear charge distribution and shown that the
mean-square radius (msr) of the charge distribution (R?) is dominated by the msr of the point
proton distribution (Rf,) and is independent of the neutron’s msr (R2), but that the nth-order
(n > 4) moment of the charge density depends on the (n — 2)th-order moment of the neutron
distribution [8]. For example, the fourth-order moment of the charge density (Q%) depends on
R2. Their relationship is uniquely defined, and the value of Q% is well determined in electron
scattering experiments [7,11]. The value of R2, however, is not separated from Q% experimen-

no

tally. In order to deduce the value of R2 from the experimental value of O, it is necessary to
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rely on a model-dependent analysis. One advantage of using Q% for deducing the value of R? is
that we need not be concerned with assumptions about the interaction and reaction mechanism
in electron scattering, but are able to focus on the model dependence on nuclear structure.

At present, the nuclear structure is not investigated without invoking phenomenological mod-
els. Moreover, most of the models are constructed for different purposes independently. Hence,
it is not appropriate for the separation of R2 from Q% to choose one model among the many
existing models. The present authors [4] have proposed the least-squares analysis (LSA) for the
separation by employing as many previous models as possible together. Through the LSA, they
explore the constraints that are inherent in the framework of the nuclear models. The proce-
dure of the separation is as follows. First R? and Q? are calculated using several models in the
same framework, and then the least-square line (LSL) for those values is obtained in the R2—
O plane. Next, the value of R2 in the framework is determined by the cross point of the LSL
and the line of Q% corresponding to its experimental value. In order to confirm the obtained
result, the LSA of R2 against the other moments has also been performed. The estimated val-
ues of R2 are not model independent, but are derived on the basis of the data from the well
known electromagnetic probe, utilizing the knowledge on the phenomenological models accu-
mulated over a long time in nuclear physics. A similar method has been proposed for analyzing
parity-violating electron scattering [2], and actually employed in the analysis of the recent JLab
experiment [5,12].

In Ref. [4], the values of R2 in *°Ca, *¥Ca, and 2®Pb have been estimated, for which exper-
imental values of Q% are available at present. They have arbitrarily chosen 11 relativistic and
9 non-relativistic models among more than 100 versions accumulated over the last 50 years
[13-16]. These models well reproduce fundamental nuclear properties within the mean-field
framework, assuming some nuclei to be doubly closed shell nuclei. The LSL is obtained with a
small standard deviation and the values of R? are determined within the 1% error including the
experimental one [4]. In this analysis, it has been shown that the relativistic and non-relativistic
frameworks yield different values of R2 from each other in ¥Ca and 2°Pb. The value of R,
in the non-relativistic models is smaller by about 0.1 fm than that in the relativistic models in
both nuclei. Since, in those mean-field models, the values of R, are fixed so as to reproduce the
experimental values, the neutron skin defined by 6R = R, — R, differs by about 0.1 fm in the
two frameworks. The difference is not between the models but between the two frameworks, so
that the result is apparently understood to reflect an essential difference between the structures
of the two mean-field approximations.

It should be noted that 0.1 fm is not small for the neutron skin itself. As seen later, e.g.,
in 2%8Pb, §R is 0.275 and 0.162 fm in the relativistic and non-relativistic models, respectively.
Understanding the 0.1 fm difference may be important for the study of nuclear fission and
fusion phenomena, which are sensitive to the structure of the nuclear surface [1,17]. Recent
detailed calculations [18] may not neglect an order of 0.1 fm difference in describing asymmetric
nuclei. The 0.1 fm difference has also been pointed out to be crucial in neutron star physics
[3,18].

The purpose of the present paper is to investigate why the value of R2 in the non-relativistic
mean-field models is smaller than in the relativistic ones. The difference will be shown to stem
mainly from the difference between the products of the effective mass and the strength of the
one-body potential in the two frameworks. These two quantities are constrained in each frame-
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work by the Hugenholtz—Van Hove (HVH) theorem [19-21]. This theorem has been proved in
the mean-field approximation in the non-relativistic framework for symmetric nuclear matter.
As will be shown in the present paper, the theorem also holds in asymmetric nuclear matter in
both relativistic and non-relativistic models, and is also numerically maintained in the mean-
field approximation for finite nuclei.

In Section 2, the root msr R in the one-body potential will be discussed in order to derive an
analytical expression of R in terms of the strength of the potential and the nucleon effective
mass, using the Woods—Saxon and harmonic potentials. In Section 3, the equations of motion in
the relativistic models will be shown to have the same structure as the Schrodinger equation in
the non-relativistic models. In Section 4, the HVH theorem will be extended to asymmetric
nuclear matter. In Section 5, the complexity of the mean-field models due to a large variety
of interaction parameters will be simplified by using the Woods—Saxon-type function, aiming
to make clear the difference between the relativistic and non-relativistic models. In Section 6,
the difference between § R in the two frameworks will be investigated in detail, according to the
HVH theorem. The final section will be devoted to a brief summary of the present paper.

2. The nuclear radius in the one-body potential

Many phenomenological models have been proposed with various interaction parameters
[13,16]. Whether the nuclear radius (R) is R, or R,, it may be a complicated function of their
parameters, and the function would be different from one model to another. The radius, how-
ever, is one of the most fundamental quantities that determine the structure of the nucleus, and,
hence, R. is used as an input to fix the free parameters of the models. This fact implies that the
relationship of R with other key quantities of nuclei like those in the one-body potential must
be almost the same in the mean-field models, although those key quantities may also depend
on the parameters in complicated ways.

Such relationships of R with other key quantities should hold even in simplified one-body
potential models, if they describe well the gross properties of nuclei [1]. As a simple example,
the Woods—Saxon (WS) potential is most widely used in the literature [1]. It may also become
a guide for the present purpose, if we have an analytical formula for the relationship between
R and the parameters of the one-body Hamiltonian with the WS potential:

2
H= 204 Vi), Vasl) = H(/)(Vfwm/ (1)
Aiming to have an analytical expression of the relationship, we require the help of the harmonic
oscillator (HO) potential,

Va(r) = g ( — RY)., k= Mo?, )

Ry being a constant that determines the value of F(0). Bohr and Mottelson have shown that
the single-particle wave functions in the WS potential, which determine the value of R, are well
reproduced by those of the HO potential [1]. In the HO potential, the dimension analysis yields
the expression of the radius Ry, as
C
Koo = Gt

with C denoting a constant. For the above exact formula, let us search for the expression of
Ry, in terms of the WS parameters by minimizing the following quantity with respect to the

3)
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variables, k and Ry:
Ry
Fy(k, Ry) = dr"(Via(r) — Vas(r))*, 4)
0

where 7 is considered to be 0 for the surface integral and 2 for the volume integral. The value
of n is chosen by referring to Ref. [1], which shows a similarity of the wave functions in the
two potentials with w = 8.6 MeV and Vy(0) = —55 MeV and with Vs = —50 MeV, Rys = 5.8
fm, and aws = 0.65 fm. The numerical method yields the minimum values of F), for the same
WS parameters at w = 8.63 MeV and V(0) = —55.20 MeV for n = 0, and at w = 9.66 MeV
and Vy(0) = —62.65 MeV for n = 2. Comparing these values with those in Ref. [1], it may be
reasonable to employ n = 0, rather than n = 2, for reproducing the wave functions in the WS
potential.

Once we determine the value of n, it is possible to derive an analytical formula for the ap-
proximate relationship between Ry, and the WS parameters. Equation (4) for n = 0 is written

as
Ru

2
Fy(k, Ry) = dr(Va(r) = Vis(r))* = Bszil + Fi + Ry,
0

where we have defined

Fiu==2 [ dr Ve Vs) ==k [ e o 0
Ru ) , [ dr
FV = 0 dr VWS(V) = VWS /(; (1 + e(l’—Rws)/aws)z + SFV, (6)
with
$Ey = ks [ dr " Ri SFy = —V2 / h dr )
= r —_— = — .
H ws RH 1 + e(r—Rws)/aws v ws RH (1 + e(r—Rws)/aws)z
Using the identity for a general function g(r),
* dr g(}") — Anaws /OO dx g(awsx + RH)e_nx’ A= e_(RH_RWS)/aWS,
Ru (1 + e(r_Rws)/aws)n 0 (1 + Ae_x)n

we can neglect §Fy and §Fy in Eqgs. (5) and (6), assuming A < 1. Then, Fy in Eq. (6) is inde-
pendent of k£ and Ry, and it is enough to minimize only the first term on the rightmost side of
Eq. (5). The integral of the first term is performed with the use of Sommerfeld expansion. In
neglecting contributions of relative order e~Rw/@s [1], it is written as

* g(r) _ Fos Nza%vs / 77T4Clévs 1
Since g' () = 0 for Eq. (5), we have
2 1+ by, ws)?
Foll, Rit) = KRSy + Vs ( RiRys — —25R3 ), bye = (22
15 3 Ry

It should be noticed that there is no higher-order contribution from the diffuseness parameter.
The partial differentials of the above equation Fy with respect to k and Ry yield its minimum

value at
3\ 2 Vi
e () e
5 RZ (1 + bys)

5 3 /3 W
Riy = =(1 + bys)R, T0) = =/ = ——. 8
H 3( + S) WS H() 2 Sm ()
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When employing the values Vys = —50 MeV, Ry = 5.8 fm, and a5 = 0.65 fm in Ref. [1], the
above equations provide w = 8.49 MeV and V' (0) = —54.80 MeV, which reproduce almost the
same values obtained by the numerical method mentioned above.

Finally, inserting Eq. (8) into Eq. (3), Ry, is described approximately in terms of the WS
parameters as

b 1/4
Ruo ~ B (——W) (14 bus) S ©)

m* Vs

B being a constant. In the above equation, the nucleon mass has been replaced by the effective
mass, M* = Mm*. Equation (9) expresses well our expectation such that the value of R increases
with Ry, and decreases with increasing ( — V) and m™*. Indeed, the first parenthesis on the
right-hand side may be derived in the square-well potential with the depth Vs and the width
Rys. Equation (9) shows that the diffuseness parameter contributes to the radius in the form of
(Qws! Rys)?.

If the neutron potential, ¥, and effective mass, m, are different from V), and my of the
proton, the value of R, may be different from that of R,. In the same way, if V, and m in
one model are different from those in another model, their R, are different from each other.
When comparing the nuclear radius R; in one framework with R, in another one, the following

expression is useful:
R _ (m;sz,z>1/4 (Rws,l)”z (1 +bws,1>3/8 (10)
R, I’I/IT sz,l Rws,2 1+ bws,Z .

3. Equations of motion of the mean-field models

Equations (9) and (10) are simple enough to understand the relationship between Ry, and the
key quantities of the one-body potential. The effective mass and the one-body potential are
well defined quantities in the mean-field models. Expecting that such a simple relationship also
holds approximately in those phenomenological models, let us investigate how they appear in
the equations of motion in the relativistic and non-relativistic models.

In the relativistic nonlinear o—w—p model, the nuclear Lagrangian is given, using the nota-
tions in the literature [14,16,22], by

— /(. I+ w3
L= <%3" - M —g,0 — gy — gy, T-b" — ey, A" > ) v

1 m> 1 m2 c
+ z(aﬂa)2 - 7"02 - %03 - %404 - Zw,wa)’” + Twa)ua)“ + f(a) ")
1 m; 1
= b ¥ + 7”1;,,1;“ + A by b g w0 — 7Am A" (11)

Then, the Euler-Lagrange equation provides us with the equations of motion for the static
mean field:

(—iat- V 4+ (M + V,) + Vo)y = (E + M)y, (12)
(=V*+ml)V, = —g. (ps + j—ij + j—jvj) , (13)
(-V24md) V=2 <,0 - ;—jVj - 2,\vap2) , (14)
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Table 1. The root msr of the point neutron (R,) and proton (R),) distributions calculated with NL3 for
48Ca and 2% Pb. The numbers are given in units of fm, except for those in parentheses, which denote the
ratio to R,. For details, see the text.

Rn (Rn)G (Rn)N Rp (Rp)G (Rp)N

“8Ca 3.6050  3.5736(0.991)  3.6082(1.001)  3.3789  3.3522(0.992)  3.3846(1.002)
08P 57405 5.6888(0.991)  5.7522(1.002)  5.4600  5.4135(0.991)  5.4656(1.001)

(_V2 + mi) V, = gi(pp — Pp— 2AV£Vp), (15)

—Vch =ezpp. (16)

In Egs. (12)-(16), we have defined v as a single-particle wave function and used the following
notations: V, = gy0, V, = g,0°, V, = gpbg, and V, for the Coulomb potential, V, = eA4°.
Moreover, V) is given by
1+ 3

2
with 73 = 4+1( — 1) for protons (neutrons), and the nucleon densities are

ps(r) =D Vo (MWa(r),  pe(r) =Y YLWalr),  p(r) = pu(r) + py(r),

oEeT

Vo(r) = Vo(r) + V()T + Ve(r) (17)

with T = p for protons and t = n for neutrons.
Equation (12) represents two coupled equations for the upper component, v,(r), and the
lower two components, ¥,(r), of ¥ (r). One of them gives

Va(r) = = 5o V), a8)

writing the effective nucleon mass, M} (r), as

DM+ E+V,(r)— Vo(r)
. : (19)

By inserting Eq. (18) into the other equation of Eq. (12), we obtain the Schrodinger-like equa-
tion as

1 l+7
(‘Vzmw VAV OVl (V zM:(r)) (v XG>) Yulr) = EY(r). (20)

In the above equation, the nuclear potential, V;(r), is defined by
Ve(r) = Vo (r) + V(1) + V,(r)ts. 1)

We note that the effective mass, M7 (r), is written approximately as

M (r) =

M0~ M (Vg(r) V) V) — Vi) 2’3) , (22)

using the fact that 2M + E ~ 2M. For 2%®Pb, the values of the potentials around the center
of the nuclear density are about V, ~ —380 MeV, V,, ~ 306 MeV, and V, ~ —6 MeV [22].
It should be noted that the effective mass in the relativistic models is almost isoscalar, and is
dominated by V, and V,, in the same way as the spin—orbit potential in the last term on the
left-hand side in Eq. (20).

The root msrs of the point proton and neutron distributions calculated with NL3 [22] are
listed in Table 1. They are defined as
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Z_L - 2(2 2 2 _i = 22
RT—NTZfO drr(Ge(n + (), (Rr) _NTZ/O dri*GA(r),

aET oeT

00 2 00
(R,)%V= Ni,;/() drrzG}‘;‘—g), nG=/0 eri(r),

where G, (r)/r and F,(r)/r denote the radial part of the large and small components of 1, (r),
respectively, with the normalization [, dr(GZ(r) + F2(r)) = 1. Moreover, we have defined N,
= N(Z) for t = n(p), and ng for the normalization of the upper component used in (R;)3.
Table 1 also shows the ratios of (R;)s and (R;)y to R; in the parentheses. As seen from (R;)g
in Table 1, the contribution of the lower component to R; is about 1%, and it is absorbed into
(R:)n, which is calculated with the renormalized large component G, (r)//ng. Similar results
are obtained in other relativistic models. According to these results, we will use the renormalized
large component, ignoring the small component, when comparing the relativistic models with
the non-relativistic ones below.

We note that, in principle, the two-component framework equivalent to the four-component
one should be derived by the Foldy—Wouthuysen unitary transformation [9]. In order to ob-
tain the normalized two-component wave functions, Eq. (20) will only be used in the present
paper for comparison with non-relativistic models, for simplicity and transparency. In Ref. [4],
calculations of the msr in the relativistic models were performed within the four-component
framework.

In the Skyrme—Hartree—Fock approximation in the non-relativistic models, the Schrodinger
equation is written as [23,24]

1 1
(_VW.V-FVT(V)-FVC(V) —;T3 _iWr(r)'(an)) @(r) = Ep(r), (23)
where, using the same notations as in Ref. [24], M (r), V;(r), and W (r) are given as
1 1 02+ x1)+ 02+ x) H(1 4 2x2) — 11(1 + 2xy)
= - T k] 24
e . pr) + ; per), (24

Ve(r) = Z50((2 + x0)p(r) — (1 + 2x0)p: (1)) + 2%(2 F )2+ @)t (1)

= s+ D204 per) + ap (030 + p2()]

+l1(2+xl)+l2(2+X2)K 0(1 4 2x2) — 11(1 + 2x1)

: )+ . K.()
) Q) ) 2 2
-2V )+ ), (25)
W) = 20V o) et + ) - P g

~ 209 () + o). 26)

In Eq. (25), K(r) = K,(r) + K,(r) has been defined with K, (r) =)
J,(r) + J,(r), where J;(r) denotes the spin density given in Ref. [24].

It is seen that Eq. (23) in the non-relativistic models has the same structure as Eq. (20) in
the relativistic models. They are composed of four parts, M} (r), Vz(r), V.(r), and the spin—

Vo (r)?, and J(r) =

aET

7132
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orbit potential. If the strengths and the coordinate dependences of these parts were the same
in the two frameworks, one could not distinguish one framework from another, in spite of their
complicated parameter sets. Among the four parts, the last two are expected to play a minor
role in the present purpose to explore the difference between §R in the two frameworks. The
Coulomb potential is almost the same, and the strengths of the spin—orbit potentials reproduce
experimental values of the single-particle energy levels in both frameworks [14,25]. In contrast
to these, the first two parts are strongly model dependent. The values of the effective masses
are spread out over a wide range [13]. Similarly, there is no reason why the one-body potentials
are almost the same in all the mean-field models. Hence, the 0.1 fm difference between § R may
be related to M} (r) and V;(r) depending on the different interaction parameters.

This observation is consistent with Egs. (9) and (10), which clearly indicate that the difference
problem is related to the effective mass and one-body potential. It is also apparent that they are
not independent of each other. On the one hand, the product of M (r) and V,(r) is constrained
by hand so as to reproduce the experimental value of R, in both relativistic and non-relativistic
models. On the other hand, there is not a similar constraint on the neutron distribution, but
both frameworks predict values of R, that are distributed within a narrow range around each
average value [4]. If the difference between SR is actually related to the effective mass and the
one-body potential, there should be another constraint on the variations of these two quantities
that works differently in the relativistic and non-relativistic models.

It may be natural to expect the symmetry energy [2] to be one such candidate. The symmetry
energy coefficient, a4 [26], is composed of potential and kinetic parts [1], which are given in the
present relativistic and non-relativistic mean-field models, respectively, as [13]

U S S M, =M+V, 27)
4,1‘61 6\/@ 2 m% + 2)\’g2p V(g ’ o (o)
32\ [ p23 3 1(5x> + 4 2xo + 1 2xs + 1
A4 non = o P I 1x1 + 1(5x2 + ),05/3 ~ 2xo+ fop — X3+ (it
2 6M 24 8 43
(28)

where kr denotes the Fermi momentum and p the nucleon density in the nuclear matter. Ac-
tually, they are related to the difference between the neutron and proton potentials in Egs. (21)
and (25), and the effective mass in Eqgs. (19) and (24). The relationship of a4 with § R, however,
does not seem to be described explicitly. In fact, there is more a fundamental restriction on
the relationship between the potential and the effective mass. It is known as the Hugenholtz—
Van Hove (HVH) theorem [19-21], which holds in any mean-field model for symmetric nuclear
matter.

4. Hugenholtz—Van Hove theorem

According to the HVH theorem, the binding energy per nucleon is equal to the Fermi energy in
symmetric nuclear matter. Both relativistic and non-relativistic models have been constructed so
as to satisfy the theorem at values of the binding energy of the nucleon of about —16 MeV and
of the Fermi momentum of about 1.3 fm~!. These values are used as inputs in order to fix their
free parameters in the nuclear interactions. The Fermi energy is given by the sum of the kinetic
and potential energy, so that the strength of the potential and the value of the effective mass
are constrained by these inputs. Since the HVH theorem has only been proved for symmetric
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nuclear matter [19-21], however, we will extend the theorem to relativistic and non-relativistic
asymmetric nuclear matter and utilize the theorem as a guide to the analysis of §R in neutron-
rich finite nuclei.

4.1 HVH theorem in symmetric nuclear matter
Hugenholtz and Van Hove have shown that the following equation holds in the non-relativistic
mean-field model for symmetric nuclear matter [19-21]:
- Er, when ii =0, (29)
o dp p
where ¢ stands for the total energy density of the system and Er the Fermi energy. The value of
el p represents the binding energy per nucleon, Eg, to be written in the non-relativistic models,

as
2

4&=Jk=2m;1+V (30)

In the relativistic models, ¢/p and Ef contain the nucleon rest mass. Hence, Eg and Ef are given
by

Ey=S - M=E—M.
o

In the present relativistic models, Er in the symmetric nuclear matter is written as [14]

Ep =k + M2 +V,, My =M+V,.

In setting
Eg=K+V, K= ki+M2—M,, V=V,+V,,
K is described as
k? k?
K=-—2(1-8)~—L, 31
A ( ) A (1)

with M* = M + (V, — V,,)/2 from Eq. (22). We have defined

2M*
5=1- %(J@+wﬁ—Aay (32)

and used the fact that § < 1 in taking the values of Ref. [22] for the right-hand side. Thus, in
the relativistic models also, Ep is expressed in the form of Eq. (30). Finally, in both relativistic
and non-relativistic models, the nuclear potential is inversely proportional to the effective mass,
according to the HVH theorem. In the case of Eq. (30), we have

V=21 (33)
m*

where a ~ —35 MeV and b ~ —16 MeV for kr ~ 1.3 fm~! and Eg ~ —16 MeV.

Indeed, it is verified that all the relativistic and non-relativistic models employed in the present
paper satisfy Eq. (29) explicitly. In the non-relativistic models, we have for the protons and
neutrons, separately,

- + VT = EF‘L’! (34)

while, in the relativistic c—w—p models,
de
. =k, + M2+ V,+ 1V, =Ep,. (35)
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In the above equations, the total energy density in the non-relativistic models is written as
[23.,24]
K, K,

+
2M; " 2M;;

e — + %0((2 +x0)p” — (2x0 + 1)(0, + 07))

& a a
+ ﬁ(@ +x3)p" " — (2x3 + D)p (,012, +02)),
where we have defined K, = 3k}_p, /5 with kg, = (372p,)". In the relativistic models, it is
given by
e=¢eg+Vop+ Vp(pp — o) + Uy — U,

using the abbreviations

kF’ an
3 3
(2n)3f Pl K2+ M3+ 5 )3/ kK2 + M2,

¢k =
m; 2 3 4 myoa e g Mo 212
U =5+ V+4g4Va, Uy = 73V +?V +—2V + A2V, (36)
o w p
which satisfy the equatlons of motion for the mesons:
U, _my . &2 8 ;3 dek
:_Vo— —V —V = — s = —,
e e T T,
oy m2 4 s 5 o, 5
— =V, + -V, + 2V, V:i=0p, — = —=V,+2AV:V, = p, — pu-
W, & g ? v, & " ere T

In both relativistic and non-relativistic models, d¢/dp, = Eg, holds at any value of p or kg,
so that we have, for p, = p, = p/2,
de 1 [/ de de Ex, + Eg, d £ de ¢ €
— =\ = ———— = EF, — — ——=LF——,
dp  2\0p, 0pu 2 dop dp p P
as we should. The last equation yields Eq. (29) for (d/dp)(e/p) = 0. Thus, in the mean-field
models, Egs. (34) and (35), which hold for protons and neutrons separately, are essential for the

HVH theorem to be valid.

4.2  HVH theorem in asymmetric nuclear matter
In order to discuss neutron-rich nuclei using the HVH theorem as a guide, we have to extend
the theorem so as to be applicable to relativistic and non-relativistic asymmetric nuclear matter.

One of the naive ways to do this may be to minimize the total energy per nucleon, assuming
pn =vp and p, = (I — v)p for a fixed value of v [1,13,24]. This choice is not, however, ap-
propriate for the present purpose, since Er, and Ef, remain as in Eqs. (34) and (35) without
the Coulomb energy. Moreover, if p,(r) = vp(r) and p,(r) = (1 — v)p(r) were realized in finite
nuclei, one would have § R = 0 even for N # Z nuclei. In order to extend the HVH theorem for
asymmetric nuclear matter, it is be better to avoid these defects. For this purpose, without using
the parameter v, we make a model for the neutron and proton system taking into account the
effects of the “Coulomb potential” explicitly, as below.

We require, for asymmetric nuclear matter,

a Easym

ap. p
adding v.p, as the “Coulomb term” to the total energy density [27],

=0, (37)

Easym = € + VePp, (38)
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where v, is a constant. The above equation is assumed in order to make a model that may be
used just as a guide for the following discussions on the stable finite nucleus where the Fermi
energies of neutrons and protons are the same and the Coulomb potential is necessary. We will
see later that the final results of this paper listed in Table 12 do not depend on the above form
of the “Coulomb term” and its strength v.. Then, since Egs. (34) and (35) still hold, we have
the expression for the binding energy,

k%, 1+ 13
T Vet —

in the non-relativistic models, while, in the relativistic models,

I+
Ep = Eye — M = [k}, + M2 = My + V; + — 2y,

Ep = Ep; =

Ve, (39)

kz 1+‘L’3
=(1-8,)—L 4+, o 40
( )zM;+ +— (40)

where §- is given by Eq. (32) with kr, and M} instead of kr and M*, respectively, while V; and
M are given by Egs. (21) and (22). The Coulomb potential in Eq. (22) is neglected here, since
its role is expected to be small, compared to that from (V,(r) — V,(r) — V,(r)) in Eq. (22).
The value of (V,(r) — V,(r) — V,(r)) at r = 0 is about —680 MeV, as noted below Eq. (22).
Equations (39) and (40) are accepted as the HVH theorem in asymmetric nuclear matter, and
imply a relationship between V; and m as in Eq. (33),
ar k3., Eg, T=n

V: = — + b, a; =—(1 — (Sr)ma b, = Ep —ve, T = p, (41)
where §; = 0 in the non-relativistic models, while in the relativistic models |§,| < 1 is almost
constant. The values of kéf, which provide the values of p. in the relativistic and non-relativistic
models, are determined by the two equations in Eq. (37), once v, is given by hand.

For simplicity, for both relativistic and non-relativistic models, we take v. from the strength
at r = 0 of the Coulomb potential for a uniformly charged sphere of radius r.4'3:

3 Za

This yields v. = 22.144 MeV for 2%Pb with r, = 1.350 fm. In employing this value, we obtain
Fig. 1 for the 1/m}—V; relationship corresponding to Eq. (41). The black circles indicate the
values from the 11 relativistic models, the red ones those from the 9 non-relativistic models.
These models have been employed in Ref. [4]. Each circle is accompanied by a number that
shows the model used. The numbering is according to Ref. [4]: 1.L2 [15], 2.NLB [15], 3.NLC
[15], 4.NL1 [28], 5.NL3 [22], 6.NL-SH [29], 7.NL-Z [30], 8. NL-S [31], 9.NL3II [22], 10.TM1
[32], and 11.FSU [16] for the relativistic nuclear models, and 1.SKI [25], 2.SKII [25], 3.SKIII
[33], 4.SKIV [33], 5.SkM* [34], 6.SLy4 [24], 7.T6 [35], 8.SGII [36], and 9.Ska [37] for the non-
relativistic models. This numbering will be used throughout the present paper.

In Fig. 1, the least-square lines (LSLs) of these circles are shown by black ones for the rela-
tivistic models and red ones for the non-relativistic models. The LSLs for neutrons and protons
are well separated from each other in both the relativistic and non-relativistic models. The effec-
tive mass and the one-body potential are complicated functions of the interaction parameters
whose values are different from one another between the mean-field models. Nevertheless, as
seen in Fig. 1, all the circles are almost on their own LSLs.

Ve (42)
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Fig. 1. The relationship between the effective mass and the one-body potential for neutrons (tr = n) and
protons (r = p) in the mean-field models for asymmetric nuclear matter. The black circles show the values
calculated by the 11 relativistic models, while the red ones show those by the 9 non-relativistic models.
Each circle is accompanied by a number that indicates the model used, specified in the text. The least-
square lines are shown for the four groups. The two black lines are obtained from the black circles for
neutrons and protons, respectively, and the red lines from the red circles.

*
T,0°

On the one hand, the circle at (m* ;, V; ;) of model i is given by

Vr,i = ar,i/m;j + br,i» (43)
according to Eq. (41) by the HVH theorem. On the other hand, the LSL satisfies
Vi = ag i+ b (44)

where b and bt denote the slope and intercept of the LSL, respectively. In writing the average
value of Eq. (43) as (V;;) and that of Eq. (44) as (Vt%,.), they are equal to each other by the
definition of the LSL, (Vz,) = (V}%), yielding

(aci/me )+ (be) = ak(1/m? )+ br. (45)
Hence, if the following approximation is valid,
(av,i/m? )~ (ac ) /(mE,),  (1/mE,) ~ 1/(m? ), (46)
then we have
(mi)(Ve) = (ar) + (bo)m?) ~ ar + be(m?) (47)

by writing (Ve,) = (V2), (@) = (ac), (be) = (be), and (m3) = (m?).
In Table 2 are listed the values of the slope aL and intercept b of the LSL. The average values
of a,; and b, ; calculated by each model are tabulated as (a.) and (b,). The average values of
the effective mass (m}) and of the strengths of the one-body potentials (V7) are also listed,
together with the average values of p,; as (p;).
The difference between the values of (a;) in the relativistic and non-relativistic models is

related to those of (p.) through the Fermi momentum. The values of (b.) are almost the same
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Table 2. The values of the gradient (a%) and the intercept (bL) of the least-square lines in units of MeV for
the relationship between 1/m? and V- in Fig. 1. The average values of the coefficients in Eq. (43) are also
listed as (@, ) and (b, ), together with those of the effective masses, the strengths of the one-body potentials
(MeV), and the nuclear matter densities (fm~? ) in the relativistic (Rel) and non-relativistic (Non) models.
The notations of n and p indicate that the values in the corresponding rows are for neutrons and protons,
respectively. For details, see the text.

ay by (ar) (be) (m7) (Vo) (pr)
Rel n —41.059 —1.176 —38.011 —5.918 0.6426 —65.160 0.0832
p —36.489 —20.421 —31.530 —28.063 0.6488 —76.742 0.0611
Non n —36.743 —10.069 —39.927 —5.840 0.7524 —61.219 0.0903
p —29.960 —29.656 —31.168 —27.984 0.7217 —73.256 0.0623

Table 3. The product of the mean values of the effective mass (m}) and the one-body potential (V7). The
numbers are given in units of MeV. For details, see the text.

(mz) (V) ay + b (my) (ac) 4 (be)(m7)
Rel n —41.872 —41.815 —41.814
V4 —49.790 —49.738 —49.737
Non n —46.061 —44.319 —44.321
V4 —52.869 —51.363 —51.364

between the two frameworks, since (b, ) satisfies the relationships (Eg) = (b,) and v. = (b,) —
(bp), where (Eg) denotes the average value of Ep;, according to Eq. (41).

The values of a and b. depend on the distributions of the points (m} ,, Vz ;) and have no
simple relationship with (p.), (Eg), and v.. They, however, are implicitly constrained by the
HVH theorem through Eq. (47). Since the values of v. and (Eg) are almost the same in the
relativistic and non-relativistic models, Eq. (47) provides the relationship between the effective
mass, the strength of the one-body potential, and the nucleon density. This fact implies that the
LSL coefficients a- and b- are dominated by (p,) implicitly.

Equation (47) is rewritten as a- — (a.) &~ ((b,) — b-)(m*), which provides the relationship
at > (a;) for b < (b,), and a- < (a,) for bL > (h,). The non-relativistic models obey the first
case, the relativistic ones the second case. The value of |bL| is made much smaller by the small
(m?) in the relativistic models, compared to that in the non-relativistic ones.

In Table 3, the value of each term in Eq. (47) is listed. It shows that the values of (m?)(V7)
are a little larger than those of (a;) + (b;)(m*) and ab + bL (m*) in the non-relativistic models,
because the approximations in Eq. (46) are a little worse in the non-relativistic models than in
the relativistic models. This difference, however, is not essential for the present discussions on
SR.

In finite nuclei, Eq. (9) indicates that the radius depends on (—(m*)(V;))~!/4. Table 3 implies
a possibility that R, is larger in the relativistic models than in the non-relativistic ones, if the
same tendency maintains in finite nuclei. In the mean-field models for finite nuclei, however,
the effective mass and one-body potential may have complicated coordinate dependences. In
order to confirm the above implications for finite nuclei, we need a way to extract from them the
values of the effective mass and the strength of the one-body potentials that are appropriate
for use in Eq. (9). Moreover, it is desirable to explore whether or not they are constrained by
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the HVH theorem as in asymmetric nuclear matter. Although we do not have for finite nuclei
an equation like Eq. (37) to yield the HVH constraint in asymmetric nuclear matter, Eq. (47)
may be helpful for understanding the roles of the HVH theorem in finite nuclei. Bearing these
facts in mind, we proceed to discuss finite nuclei from the next section.

5. Simplification of the mean-field models

One of the ways to find a common structure of the models is to simplify them without losing
their main characteristics. By defining the effective mass and the one-body potential in such a
way, we may find their relationships with R and a restriction between them like the HVH lines,
which are hidden in the complexity of the calculated results of the mean-field models for finite
nuclei.

In this section, we will analyze the structure of the relativistic and non-relativistic models
by simplifying their descriptions as much as possible. As mentioned in Section 3, R; may be
a functional of Vi (r), M}(r), V.(r), and the spin—orbit potential, V; .(r), but among them,
it is expected that V.(r) and Vi, (r) play a minor role in the difference between §R in the two
frameworks, R[V;, M, Ve, Vis.] &~ SR[V;, M}]. Using these facts as a guide, let us express ap-
proximately all the Hamiltonians in both frameworks, using the same basis.

5.1 Nuclear potential and effective mass

The fundamental properties of nuclei are well described with the WS potential [1], and its struc-
ture is clear for the present purpose to discuss SR, as in Eq. (10). Hence, we approximate the
mean-field potential, V;(r), and the effective mass, M;(r), in both frameworks by using the
WS-type function,

1

()= fe(rn R, a.) = s 48
S = 1 Res @) = G — Royyan) (48)
1.e.,
Vi (}’) ~ sz,tf(n Rws,r» aws,r)’ (49)
Lt (mig , — 1) f(r Rl dlhg ) — 50158 (Rel)
m*(r) ~ My, I Ryyg 75 Qs ¢ oM 2 cl), (50)
! Lt (. = 1) S (n Ry o0 @) (Non),

where mi(r) = M} (r)/M is defined, and Rel and Non indicate the relativistic and non-
relativistic models, respectively. The three parameters on the right-hand sides of the above
equations are determined by minimizing, e.g., for V,(r), the following quantity with respect
to Vs, 1, Rwszr, and ays 7

o0
[ P00 = Ve £ R )P (s1)
Here, the volume integral has been chosen in order to minimize the above deviation, since both
Vi(r)and Vi f(r, Rysz, awsr) are expected to have a similar shape to that of the nuclear density
whose volume integral value is constrained by the nucleon number. In deriving Eq. (9), we have
used n = 0 in Eq. (4), since there is not such a constraint on the HO potential, but since it is
important to keep the similarity of the wave functions in the HO and WS potentials.
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5.2 Coulomb potential

In the relativistic models, the Coulomb energy is calculated by taking into account the only
direct term of the interaction in the same way as for other interactions, while the exchange
term is also included in the non-relativistic models. The Coulomb interaction, however, plays
a minor role in the present purpose on § R, so that we simply express it by that of the uniform
charge distribution with the radius, Reoy:

Zao ( r? ) R
— % | » 7 < Lcouls
V((l”) ~ Vsph(r)’ Vsph(r) = QZ'RCOM Rgoul (52)
o
) r> Rcoul~
r

The radius Ry is determined by minimizing the deviation:

f " dr P — Vi (D)
0

The value of R, of each model will be shown later.

5.3 Spin—orbit potential
We express the spin—orbit potential in the form:

1.df.
Vls,r(r) = VKS,I_ f (r)e‘a- (53)
rodr
In the relativistic models, it is written from Eq. (20) as
1d 1 1 1 1dmi(r)
Vi o (r) = —— o= —— T,
b (r) rdr2Mx(r) ? M m(ryr  dr ’

l=mi o1 1d
T 2M m2(r)rdr
neglecting V.(r) in Eq. (50). In the calculations, a further approximation has been used, m}(r) ~
MRy ) = (14+ mi /2.
In the non-relativistic models, the spin—orbit potential of Eq. (26) is approximated as

W() d W(),O() Nr 1d
Vsr = A 7 T o~ 1 — ]~ aRena en L ’ 55
1) = S22 () + pea ~ = (14 25 )~ £ (5 R, dan) 0, (55)

where the value of W is fixed at 120 MeV fm> and we have written the nuclear density as

p(}") = pp(r) + pn(r) ~ ,Oof(l”, Rien, aden) s

f(r R, s e, (54)

WS, T

with
47.['00_/. drrzf(r, Ryen, aden) =A.
0

The details of the calculation of the nuclear density will be mentioned in Section 5.6.

In fact, the spin—orbit potentials are expected not to play an important role in understanding
the difference of § R between the relativistic and non-relativistic models, since their strengths
are similar and the isospin dependences are small, in addition to the reason mentioned before.

5.4 A few examples

Before summarizing the results of the present section, let us compare V- (r), p.(r), and mZ(r)
from the exact mean-field calculations with those of the corresponding simplified Hamiltonian,
by taking a few examples. After minimizing Eq. (51), the only values of Vs, for the relativistic
WS potentials have been multiplied by 0.99, so as to reproduce well the values of R, in the

15/32

Z20Z Yale\ €2 U0 Jasn AS3Q U0Jj0Iyoukg usuoipialg sayosineq Aq 9952069/£0A€Z0/2/2Z0z/elonie/derd/wod dnoolwspede//:sdiy wolj pepeojumo(d



PTEP 2022, 023D03 H. Kurasawa and T. Suzuki

05 1 \ 1 1 \
0 5 5 (fm) 10

0.10 o] |
’ j - ~pn('f’) NL3 i
T F ]
e |
= 0.05 —
L 4

e

N i

0.00 :

10

Fig. 2. The one-body potentials, the effective masses, and the densities for neutrons (¢t = n) and protons
(r = p) in ®Pb. The solid curves are obtained by the relativistic mean-field model with NL3, the dashed
ones by its simplified Hamiltonian.

exact relativistic mean-field calculations. This factor makes the mean value of R, from the WS
potential smaller by about 0.015 fm.

Fig. 2 shows the results of the one-body potentials, the effective masses, and the neutron and
proton densities for 2°®Pb calculated with NL3. The solid curves are obtained by full calcula-
tions, the dashed ones by simplified Hamiltonians. All other relativistic models yield similar
results. In non-relativistic models, we show the results for SkM* in Fig. 3. These results of
SKM* are similar to those of other models except for the effective mass in SLy4. In SLy4, the
coordinate dependences of the effective mass are similar to those in Fig. 3, but the relation
of the magnitude between my , and my, , is opposite to that in other non-relativistic models.
It is seen that all the results using simplified versions well reproduce the corresponding ones
obtained with full calculations.

5.5 Results using the simplified models
Table 4 shows the root msrs of the point neutron distributions in “*Ca and 2°*Pb determined
in Ref. [4]. Those of the point proton distributions obtained in a similar way are also listed.
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0.00
0

Fig. 3. The one-body potentials, the effective masses, and the densities for neutrons (¢ = n) and protons
(r = p) in 2%Pb. The solid curves are obtained by the non-relativistic mean-field model with SkM*, the
dashed ones by its simplified Hamiltonian.

Table 4. The results of the least-squares analysis in Ref. [4]. The numbers in the parentheses denote
the error that is obtained taking account of the experimental error and the standard deviation of the
calculated values from the least-square line. All the numbers are given in units of fm. For details, see the
text.

R, R, SR

Rel 3.597(0.021) 3.378(0.005) 0.220(0.026)

#BCa Non 3.492(0.028) 3.372(0.009) 0.121(0.036)
Rel 5.728(0.057) 5.454(0.013) 0.275(0.070)

208py, Non 5.609(0.054) 5.447(0.014) 0.162(0.068)

The errors in the parentheses are given by taking into account the experimental error and the
standard deviation of the LSL. Since both relativistic and non-relativistic models employ ex-
perimental values of the msrs of the nuclear charge distributions as an input, the values of R,
in the two frameworks are almost equal to each other, while the values of R, are larger by about
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Fig. 4. The strength of the one-body potentials for neutrons (¢ = n) and protons (z = p) in 2Pb. On the
left-hand side, the relativistic and non-relativistic models are indicated. The black circles represent the
strengths of the neutron potentials, the red ones those of the proton potentials, and the blue ones the
differences between their two strengths. The vertical lines stand for the average values of the correspond-
ing circles in the relativistic and non-relativistic models, separately. The scale along the bottom shows the
strengths of the potentials, that along the top the difference between the strengths of the neutron and
proton potentials.

0.1 fm in the relativistic models than in the non-relativistic ones in both ¥*Ca and 2°Pb. The
purpose of the present paper is to understand this difference between R,,.

We note that the new data from JLab have been reported in Ref. [5], according to the parity-
violating electron scattering experiment. These provide § R in 2%®Pb as 0.283 4 0.071 fm. This is
almost the same as the value of § R in Table 3 in the relativistic models, and is not incompatible
with the non-relativistic one taking into account their errors. The analysis of the JLab data [5]
is model dependent as in Ref. [4], and Ref. [38] has obtained §R = 0.19 £ 0.02 fm from the JLab
data on the basis of the different model analyses.

Let us summarize the results in the present section for 2 Pb. Fig. 4 shows the values of Vi, in
Eq. (49) for the relativistic and non-relativistic models. The strengths of the neutron potentials
are shown by the black circles, those of the proton ones by the red circles. It is seen that the
non-relativistic ones are distributed over a wide range, as expected, in contrast to those of
relativistic models. The straight vertical lines show their average values. The difference between
Viwsn — Vwsp, however, is almost equal, independent of the models, as shown by the blue circles
and the straight lines indicating their average values. Thus, the difference is only a little larger
in the relativistic models than in the non-relativistic ones. This fact implies that the difference
between § R in the two frameworks may not be due to the symmetry potentials only.

Fig. 5 shows the values of Ry, in a similar way to Fig. 4. The black and red circles for
the non-relativistic models are again distributed over a wide region, compared to those of the
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Rws,nv Rws,py I{tjtm] (fm)

Fig. 5. The radius parameters of the Woods—Saxon potentials for neutrons (t = n) and protons (r =
p) in 2%Pb obtained from the relativistic and non-relativistic mean-field models. On the left-hand side,
the relativistic and non-relativistic models used are indicated. The black circles represent the values of
the radius parameter Rys,, the red ones those of Ry ,. The blue ones stand for the values of the radius
parameters of the Coulomb potentials. The vertical lines indicate the average values of the corresponding
circles in the relativistic and non-relativistic models, separately.

Table 5. The mean values of the Woods—Saxon parameters, the strengths of the one-body potentials, and
the effective masses in the relativistic and non-relativistic models. The numbers of (Rys ;) and (ays.) are
given in units of fm, those of (V) in units of MeV. For details, see the text.

(Rws,n> (RWS,p> (aws,n> (aws,p> ( sz,n) ( sz,p> <m:k)vs,n) (m:;;s,p)
Rel 7.046 7.153 0.733 0.719 —66.376 —78.888 0.6321 0.6387
Non 7.096 7.239 0.630 0.632 —61.368 —72.759 0.7508 0.7207

relativistic ones, although their regions overlap. The solid lines express the mean values of the
corresponding circles. It is seen that the value of the difference (Rys,) — (Rws,) in the relativistic
models is rather smaller than that in the non-relativistic models as in Table 5. Thus, the spread of
the values of Ry, in the non-relativistic models does not seem to cause the difference between
3R in the two frameworks. The values of R . are indicated by the blue circles for reference.

Fig. 6 shows the values of ays.. The straight lines stand for their average values. Those of
the relativistic and non-relativistic models are distributed similarly over a wide region, but are
small compared to Ry, as (@ws.e/Rys<)* ~ 0.01. The difference between 8 R in the relativistic
and non-relativistic models may not be due to these distributions of ays .

In Fig. 7 are shown the values of m

*
WS, T*

red circles the protons. The straight lines indicate their average values, which in the relativistic
models are (m ) ~ 0.6321 and (mj ») A 0.6387, and in the non-relativistic models (2 ) ~
0.7508 and (my, ») A~ 0.7207. As seen in the figure, the circles of the relativistic models are
almost at the same value and the ratio, (my; ,)/{(mys ), is about 1.010, while those of the non-

The black circles represent those of the neutrons, the
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Qs - (fm)

Fig. 6. The diffuseness parameters of the Woods—Saxon potentials for neutrons (t = n) and protons (¢
= p) in 2%Pb obtained from the relativistic and non-relativistic mean-field models. On the left-hand side,
the relativistic and non-relativistic models used are indicated. The black circles represent the values of
the diffuseness parameter ays,, the red ones those of ays,. The vertical lines indicate the average values
of the corresponding circles in the relativistic and non-relativistic models, separately.

Fig. 7. The effective mass of neutrons (t = n) and protons (z = p) in 2°*Pb obtained from the relativistic
and non-relativistic mean-field models. On the left-hand side, the relativistic and non-relativistic models
used are indicated. The black circles represent the values of the effective masses of neutrons, the red ones
those of protons. In T6, the value for neutrons is the same as that for protons. The vertical lines indicate
the average values of the corresponding circles in the relativistic and non-relativistic models, separately.
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Table 6. The mean values of the parameters for the Fermi-type neutron (n) and proton (p) distributions.
They are obtained by approximating the densities in the relativistic and non-relativistic mean-field models
for 2%Pb. The values of p . are given in units of fm~ and those of @gen; and Ryen , are in fm. For the
definition of e, see the text.

Lo,z Aden,t Rden,r €
Rel n 0.0860 0.553 6.903 0.1044
P 0.0625 0.454 6.692
Non n 0.0911 0.554 6.766 0.0556
4 0.0628 0.475 6.672

Table 7. The mean values of the root msrs of the neutron (R,) and proton (R,) distributions and their
difference (SR = R, — R,) obtained by the three approximations for 2’Pb. MF indicates the mean values
in the relativistic and non-relativistic mean-field models, WS the ones obtained by approximating the
mean-field potentials by Woods—Saxon potentials. Equation (57) stands for the equation number in the
text used for the calculations of R, and §R given in that row. All the values are listed in units of fm. For
details, see the text.

R, R, SR
Rel MF 5.749 5.466 0.283
WS 5.740 5.457 0.283

Eq. (57) 5.728 5.451 0.277

Non MF 5.617 5.455 0.161
WS 5.621 5.462 0.159

Eq. (57) 5.629 5.460 0.169

relativistic models are spread out, as in nuclear matter, but the ratio in each model is almost the
same and is on average (mj ,)/(mj ,) =~ 0.9601.

Table 5 lists the mean values of the WS parameters, the strengths of the one-body potentials,
and the effective masses in the present simplified models for the relativistic and non-relativistic
mean-field ones, respectively. It should be noticed that the values of (m ) and (Vys.) are

almost the same as those of (m}) and (V) in Table 2.

5.6  The proton and neutron distributions

It may be useful to see directly how the difference between § R is caused in terms of the neutron
and proton densities. We approximate the neutron and proton distributions, p.(r), in the mean-
field models by the Fermi-type function, which is widely employed [1,7]. The approximation is
performed for

pws,r(r) ~ pO,rfr(Va Rden,rv aden,r), (56)
in the same minimization method as in Eq. (51). Since the obtained function satisfies the nor-
malization f d3r,ows,,(r) = N, with a small error of about 0.5%, we slightly correct Rgen; to
satisfy the normalization. We note that the correction by pg . instead of Rgen . yields almost
the same values as those that will be seen in Tables 6 and 7. The minimization under the con-

straint on the nucleon number also yields similar results.
The mst, R?, by Eq. (56) is given as [1]

3/ 3N, \*
RZ ~ = T 2.2 57
5 (471/00,r> T Gaenro 67
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which provides the relationship between R} and R, as

R — 72242 7
R — 14 den,p 2 2 ’ -1 _pO,n. 58
n (1 _ 6)2/3 +7 Aden,n € N P0.p ( )
When keeping order up to O(e), the difference, R = R, — R, is written as
T

€ T~ “den,n den, p
SR~ -R, + ————=. 59
373 R, >

Table 6 lists the average values of the parameters for the Fermi-type densities in Eq. (56) in
the present relativistic and non-relativistic models. Table 7 shows the values of Eq. (57) using
the results in Table 6. The average values of R, and S8R in the mean-field models and their
simplified versions are also listed in the rows called MF and WS, respectively. It is seen that the
values in Eq. (57) and in WS almost reproduce the results of the mean-field models.

The values of the two terms on the right-hand side of Eq. (59) are given as

8Rye1 = 0.190 4- 0.091 = 0.280 fm, 8 Rnon =~ 0.101 4+ 0.074 = 0.175 fm. (60)

Thus the difference of about 0.1 fm between §R in the relativistic and non-relativistic models
mainly comes from the first terms € R,/3, and the diffuseness parameters yielding the second
terms play a rather minor role. It should be noticed that the first term proportional to € disap-
pears when pg, = (N/A)p and po, = (Z/A)p.

Since the values of R, and pg, in the relativistic and non-relativistic models are almost the
same, the difference between §R in Eq. (59) comes from py, in €. Table 6 provides

(pO,n)rel — 0.944, (pO,p)rel

(/OO,n)non (pO,p)non
The 5.6% decrease of (p¢,,)r1 provides the increase of (R,).e by 0.944713 = 1.019, yielding the
0.1 fm difference that we are discussing. Fig. 2 shows qualitatively such a broadening of the
neutron density in NL3, in comparison with that in Fig. 3.

In Table 2 are listed the mean values of the neutron and proton densities for the nuclear mat-
ter obtained by Eq. (37). Those values are almost the same as the corresponding ones in Table 6.
They provide values of € in Eq. (58) of 0.1138 and 0.0567 for the relativistic and non-relativistic
models, respectively, which are comparable with the values for 2*Pb in Table 6. Thus, the vari-
ous parameters including (m*) and (V) at r = 0 for 2°Pb are similar to those for nuclear matter.

It may be noticed that the values listed in the MF rows in Table 7 are a little different from
those of LSA in Table 4, since the former is the mean values of R, calculated by the models,
while the latter has been obtained by a least-squares analysis of the calculated values compared
with the experimental data [4].

= 0.995.

6. The HVH lines in 2Pb

In the previous section, we have shown that the mean values of (mZ), (V7;), and (p,) in Table 2
for nuclear matter are almost the same as the corresponding ones in Tables 5 and 6 for 2°*Pb. In
order to explore the reason why § R in the relativistic and non-relativistic schemes are different
from each other, the contributions from Ry, and ays, in Figs. 5 and 6 to R, should also be
examined, in addition to those from Vy, . and my,  in Figs. 4 and 7.

In the present section, first, it will be discussed that similar equations to Egs. (9) and (10)
hold for the dependence of R, on the WS parameters and m;, , with the values in Figs. 4-7.

Second, the value of § R will be shown to be dominated by my, , and Vys ., rather than by Rys.
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Table 8. The mean values of the proportional constant B; between the root msr and the function of the
Woods—Saxon parameters in Eq. (61). The standard deviation o is given in parentheses. WS indicates the
mean values using R, of the simplified models, while MF shows for reference those using R, of the full
mean-field approximation. The numbers are written in units of (fm>MeV)"*. For details, see the text.

(B:) (o)
WS MF
Rel n 5.295 (0.0063) 5.304 (0.0076)
) 5.243 (0.0151) 5.253(0.0151)
Non n 5.288 (0.0217) 5.283 (0.0273)
» 5.268 (0.0801) 5.261 (0.0685)

and ays .. Third, it will be investigated whether or not the constraint on the values of mj , and

Vs by the HVH theorem holds in the same way as in Fig. 1 for the nuclear matter. Finally, the
difference between 6 R between the two schemes will be explained in terms of m, . and V.

WS, T

We discuss R, of the finite nucleus 2°*Pb on the basis of Eqgs. (9) and (10). For this purpose,
first we examine if it is appropriate for Egs. (9) and (10) to employ mz;, , and Vs, defined in

Eqgs. (50) and (49). When R, calculated by the simplified models is expressed in terms of m
and Vs, as

*
WS, T

:’;vs,r VWSJ’ Rws,r

then the value of the coefficient B; corresponding to B in Eq. (9) should be almost constant
independently of the various interaction parameters of the mean-field models. In order to es-
timate the value of B;, both sides except for B; of the above equation are calculated for each
model, according to Section 5. The results are listed on the left-hand side headed WS in Table §,
where the mean values of B, are shown as (B;) in units of (fm*MeV)" in the relativistic and
non-relativistic models, separately. The table shows that the values of the standard deviation
(o) are small enough for our purpose.

The meaning of B, may be qualitatively understood according to Ref. [1], where the values
of Cin Eq. (3) are estimated by summing a single particle radius over the occupied orbits in the
HO potential. Their approximations yield values that are of the same order of magnitude as
those of B, in Table 8, B, ~ 5.44 for N = 126 and B, ~ 5.07 for Z = 82 in units of (fm>MeV)""4.

We note that the values of o for protons are larger than those for neutrons in both models.
This fact may be due to the Coulomb potential, which is not explicitly taken into account on
the right-hand side in Eq. (61). If v. = 22 MeV is added to Vs, by hand for reference, the
values of o for protons become comparable with those for neutrons: 0.0089 and 0.0217 in
the relativistic and non-relativistic models, respectively. We expect, however, that these results
do not change the following discussions on the difference between SR in the relativistic and

R2 1/4 ra 2
Rr ~ Br <_L> (1 +bws,r)3/8’ bws,r = ( WS,T) ) (61)

non-relativistic models.
It should also be ensured that the 0.1 fm difference between § R is not due to the enhancement
of R, by the factor B, .. The equation corresponding to Eq. (10) is described as
Rn _ Bn m:vs,p VWSJJ 174 Rws,n 12 1 + bws,n 3/8 (62)
R, a B, (mé‘vs,n Vivs.n ) <Rws,p) ( 1+ bws,p) '
Since § Ris written as S R = R,(R,/R, — 1) and the value of R, is almost fixed due to the fitting in
both relativistic and non-relativistic models, the difference between § R in the two frameworks
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stems from their values of R,/R,. Table 8 provides the ratio of ((B,)/(B)))ret/({B)/(By))non =
1.0061. On the right-hand side of Table 8, the values of (B;) in using R, from the mean-field
calculations in Eq. (61) are listed. The table shows that the WS calculations yield almost the
same results as those of the mean-field ones, ((B,)/(B}))rel/({B,)/{B,))non = 1.0055. These values
imply that the factor B; is not enough to explain the 0.1 fm difference. Thus, it is reasonable to
use Vys. and mj ; defined in Egs. (49) and (50) in the analysis of R in 2**Pb.

Assuming that Eq. (62) holds for the mean values in Table 5, we have
* 1/4
R, ~ & <mWS’P><VWSvP> ((Rws,n> ) 1/2 <was,n>>3/8 2 (63)
By \ (Vi) (Rus.p) Lt (bwsp) )7

With (bys) = (7T (s )/ {Rys-))*. Using the values in Tables 5 and 8, the above equation provides
for the relativistic and non-relativistic models, respectively, as

Ryl ® 1.0517 R, 1, Rynon & 1.0274 R}, o - (64)

If we put the numbers of R, obtained by the WS approximation in Table 7 into the right-hand
sides of Eq. (64), then we have the values of R, &~ 5.739 fm and R, non &~ 5.612 fm. It is
seen that they are almost the same values as those of the WS approximation in Table 7. Thus,
Eq. (62) holds well also for the mean values in Tables 5 and 8.

Second, the value of § R will be shown to be dominated by m . and Vs, rather than by B.,
Rys:, and ays -, with the use of their mean values. One way to show this fact is by taking the
numbers in Eq. (64) that imply that R, rej > Ry non, When R, i & R, non, indicating the 0.1 fm

difference problem. Those numbers have been obtained by
1.0517 ~ 1.0468 x 1.0047, 1.0274 ~ 1.0329 x 0.9947 , (65)

where the first numbers on the right-hand sides of the above equations come from the factor
((my, 2 Vas,p)/ (m;"vsyn)sz,n))l/ 4 the second numbers the rest of the factors in Eq. (63). Thus,
the difference between R, and R, is mainly due to the first number coming from the values of
(my ) and (Vys.) in both the relativistic and non-relativistic schemes. The second numbers
from B;, (Rys:), and (aws ;) play a minor role in their differences. This fact also implies that the
distribution of Rys; and ays, over a wide region in Figs. 5 and 6 is not worrisome for the 0.1
fm problem. The minor role of ays is consistent with the results of Eq. (60).

It may be seen in another way qualitatively that, compared to By, (Rys ), and (bysz), (my )
and (V) play an important role in § R of the two frameworks. We write Eq. (61) in terms of

the mean values,

Rr,rel ~ Bt,rel(_(<m:vs,f><sz,r>)rel)_1/4(<Rws,r)rel)l/z(l + <bws,r>rel)3/8’ (66)

for the relativistic scheme. In the above equation, keeping the values of B; rej, (Rwsr)rel, and
(bys,r et We teplace ((mg ) (Vis,r) et Dy that of the non-relativistic one, ((my ;) (Vis.) non-
Then, the values of R; . of the WS approximation in Table 7 and the mean values of Table 5
provide

1/4
. VWS T . -
R ( ((35,0) (Vi) ) _ { 5.607fm, © = n, @

(<I’}’I\>‘;vs,r><sz,r>)non B 5403 fm, T=)p

The above equation yields SR = 5.607 — 5.403 = 0.204 fm, which should be compared to § R
= 0.159fm in WS for the non-relativistic models in Table 7. The difference between SR in
the two frameworks is reduced from 0.283 — 0.159 = 0.124fm to 0.204 — 0.159 = 0.045 fm
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Fig. 8. The relationship between the effective mass and the one-body potential for neutrons (tr = n) and
protons (T = p) in the mean-field models for 2°* Pb. The black circles show the values calculated by the 11
relativistic models, the red ones those by the 9 non-relativistic models. The least-square lines are shown
for the four groups. The two black lines are obtained from the black circles for neutrons and protons,
respectively, and the red lines from the red circles.

by 64%. Thus, it is seen that the 0.1 fm problem is closely related to the difference between

((m:vs,fMsz,t))rel and ((m;kvsf> (sz,r>)non in Rt-

Third, let us investigate whether or not there is a constraint on m;, ;. and Vs, in 208pp, as in
nuclear matter. In Fig. 8 are plotted the values of Vy;, in Fig. 4 and those of my , in Fig. 7
in the 1/mj —Vys. plane. The black circles show the values for neutrons and protons in the
relativistic models, the red circles those in the non-relativistic models. The numbers attached to
each circle indicate the model used, according to the numbering mentioned in Section 4.2. A
pair of the same number represents the values for neutrons and protons calculated by the same
model.

The slanting lines are obtained by the least-squares method for the values of each group. The
upper and lower black lines represent neutrons and protons in the relativistic models, respec-
tively, the upper and lower red lines the non-relativistic models. It is remarkable that the values
of each group follow the corresponding line well, and that the four lines are well separated
from one another, as in Fig. 1 for nuclear matter. We notice that the only FSU(11) [16] among
the relativistic models yields a point on the neutron line for the non-relativistic models. This
may reflect the fact that FSU has added two additional parameters to the Lagrangian of, e.g.,
NL3(5) [22], so as to reduce the value of R,. The values of the gradient (ak. .) and the intercept

(bL. ) of the LSL, ’

WS, T

Vst = ak /4 bk

WS, T WS, T wS,T°?

(68)
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Table 9. The values of the gradient (a&. ) and the intercept (b ) of the least-square line for the re-

WS, T WS, T

lationship between the depth of the one-body potential and the nucleon effective mass in Fig. 8. The

numbers of ak, . and bl , are given in units of MeV. The values of the correlation coefficient, r, are also

listed. For details, see the text.

Rel Non
Ay - Biys < r Ay - blis < r
n —40.120 —2.795 0.958 —38.609 —7.438 0.997
p —34.933 —24.098 0.937 —32.588 —25.215 0.997

Table 10. The values for the combination composed of the effective mass and the coefficients of the
least-square line for asymmetric nuclear matter (the first column) and for 2°®Pb (the third column) in the
relativistic and non-relativistic models. The values of the product of the effective mass and the strength
of the one-body potential are also listed in the second column for 2°®Pb. All the numbers are given in
units of MeV. For details, see the text.

(az) + (br)(m3) (myys o) (Vws.z) Uy o+ by o (M 1)
Rel n —41.814 —41.956 —41.887
p —49.737 —50.386 —50.324
Non n —44.321 —46.075 —44.193
D —51.364 —52.437 —50.760

are listed in Table 9 for relativistic (Rel) and non-relativistic (Non) models. The values of the
correlation coefficient, r, are also shown, which are nearly equal to 1.

In Fig. 8, it is seen that the variation of the effective mass and the strength of the one-body
potential in finite nuclei is also constrained in a similar way to that in Fig. 1 for nuclear matter.
Equation (68) has the same form as Eq. (44) from the HVH theorem. Thus, the HVH theorem
seems to be inherent in the mean-field approximation for finite nuclei too. From now on, we
will refer to the LSL of 2*® Pb as the HVH line.

We compare the coefficients of the HVH line for 2*®Pb in Table 9 to those of Eq. (44) for
nuclear matter listed in Table 2. The coefficients of Eq. (44) are shown to be constrained by the
HVH theorem through Eq. (47). It is seen in Tables 2 and 9 that the values of the corresponding
coefficients are not the same as each other, but the magnitude relations of the corresponding two
values are almost the same as those of the other pair. More important values for the present
discussion are those in Eq. (47). In the first column in Table 10 is listed one of the values in
Eq. (47), (a;) + (b;)(m?), and the corresponding values obtained from Tables 5 and 9 are given
in the second and the last columns. It is seen that the values for nuclear matter in the first column
are almost the same as those for 2Pb in the other columns. Since the values in the first column
are nothing but the results due to the HVH theorem, it is confirmed that those in the second
and third columns also reflect the constraint by the theorem.

We note that the values of the first column have been obtained by introducing a model with
v. in Eq. (38). This is done so as to provide neutrons and protons with the same average bind-
ing energies by Eq. (37), as in stable nuclei. The value of v, is employed that approximately
corresponds to the energy of the Coulomb potential for 2*®Pb in Eq. (42). Although the model
has been used as a guide for discussions of the finite nucleus, Table 10 shows conversely that
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Table 11. The neutron (n) and proton (p) potentials at the mean value of the effective mass. The numbers
are given in units of MeV. For details, see the text.

va,gr (M7 )re1) V\Bs(flrl (M) re1) V\:}S?I; (M7 )non)
n —66.264 —68.517 —58.865
D —78.792 —76.238 —70.434
Ve—=1V, 12.528 7.721 11.569

such a simple model almost reproduces the results for finite nuclei and is useful for describing
asymmetric nuclear matter.

In Fig. 8, it should be noticed that, on the one hand, the distance between the two black lines
for the relativistic models is about 12.5 MeV at a fixed value of 1/my ., as listed in Table 11.
This is almost the same as the mean value of V3 = Vi, — Vs, in Fig. 4. This is because of
;kvs,n ~ m:;vs,p
distance between the two red lines for the same value of 1/m_ _ is about 7.7 MeV, in spite of

WS, T
the fact that '3 ~ 11.6 MeV as in Table 11. This is because, in the non-relativistic models, the
value of the neutron effective mass is larger than that of the proton one, except for SLy4(6)
[24], as in Fig. 7. The value of V3 ~ 11.6 MeV is approximately kept by providing neutrons and
protons with different effective masses. As seen below, it is essential for understanding the 0.1
fm difference that the values of the effective mass for neutrons are different from the ones for
protons in the non-relativistic models, while those in the relativistic models are almost the same.

So far, understanding the dependence of R, on my, . and Vys, is simply based on their mean
values as in Egs. (65) and (67), aiming to emphasize their roles in the 0.1 fm problem. Finally,
we investigate the roles of of my, . and Vi, in R, by using their values themselves, together
with the HVH line in Fig. 8.

Equation (67) has been obtained by replacing the mean values ({my ) (Vws))el by
({(ms ) (Viws.2)Jnon- In order to explore in more detail how the value of R; in the relativistic
scheme approaches that in the non-relativistic one by changing m,, . and V., we replace
the values of mj . and Vys. in R, in each relativistic model by (m non and (Vs )non. The
replacement will be made keeping the values of Ry, and by, in each model, and using the
HVH line in Fig. 8. By this procedure, we will see the roles of my, . and Vys, in R; separately,

m in the relativistic models. On the other hand, in the non-relativistic models, the

*
WS, T

;kvs,r>

as follows.

In Fig. 9 is shown R, as a function of nj _ in the case of NL3(5) as an example. The closed
and open circles indicate the values of R, in the full mean-field calculation and in the simplified
one in Section 5, respectively, at the value of m , for NL3. The solid curves are calculated by
keeping the values of Ry, and ays, of NL3 and using Vs, given by the HVH line for the
relativistic models in Fig. 8. The closed and open circles are seen to be almost on the curves.
The dashed curves also show R;, but using V. given by the HVH line for the non-relativistic
models in Fig. 8.

In Fig. 9, we have specified six points on the curves, where X,,, Y,,, and Z,, are for the neutrons,
and others for the protons. The points X, indicate the positions of the open circles. The points
Y. and Z; are on the dashed curves. The former indicates the place where NL3 provides m; .,

and the latter the place of mj, ., = (m

WS, T
of my . and Vs, in NL3 by (m non and (Vs z)non 1S made by using the values at point Z,.

We made, however, the replacement in two steps according to the curves in Fig. 9. In the first

Jnon as shown by the vertical lines. The replacement

;ﬁvs,r>
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0.5 0.6 0.7 0.8 0.9

mWS,T

Fig. 9. The root msr as a function of the effective mass for t = n and r = p in NL3. The closed circles are
obtained by the full mean-field approach, and the open ones by the simplified Hamiltonian of NL3. The
solid curves are calculated by using the least-square lines for the relationship between mj, . and Vs, in
the relativistic models in Fig. 8, the dashed ones by using those in the non-relativistic models. The top
two lines are for neutrons, and the bottom two ones for the protons. In these curves, the values of the
Woods—Saxon parameters, Ry, and ays ., are taken from those determined by NL3. The vertical lines
indicate the average values of the effective masses for neutrons ((my ,)non) and protons ((my ,)non) In
the non-relativistic models. The point X, indicates the place of the open circle for the neutrons, Y,, the
point on the dashed curve at the same value of my , as that for X,,. The point Z, shows the intersection
point between the dashed curve and the vertical line for (m; ,)non. The points X,,, Y, and Z, are given
in a similar way. The blue and green arrows are used for discussions in the text.

step, the values at X, are replaced by those at Y, and in the second step the values at Y, are
replaced by those at Z.. This process is shown in Fig. 9 by the arrows. The blue arrow indicates
the first step, the green one the second step. In this way, we may see how R, in NL3 varies by
my, . and Vi, separately and approaches R; in the non-relativistic scheme.

Fig. 9 shows that the value of R, is decreased in the first step, because Vs, becomes deeper
as seen in Fig. 8. From Y, to Z,, the potential becomes shallower, but the value of the effective
mass is increased and the role of the kinetic part as a repulsive potential declines. As a result,

the value of R, further shrinks, as in Fig. 9. The decrease of R; from Y, to Z, with increasing
*

my,s . 18 understood qualitatively by Egs. (61) and (68), which yield
* ! B!
mws,t = - bL (a\l;/s,t + FR\ZVS,‘E(I + bws,r)3/2) . (69)

Thus, the value of R, in the relativistic models approaches that in the non-relativistic models,

k
WS, T*

With respect to R, Fig. 9 shows its increase from X, to Y, because of the decreasing strength
of [Vyspl. From Y, to Z,, the value of R, decreases in the same way as that of R, from Y, to Z,,
according to Eq. (69). The final value of R, at the point Z, almost returns to its original value
at X, since the value of R, at X, for the relativistic model is fixed by the experimental value of
R, as an input, while the value at Z, is almost equal to the values of R, for the non-relativistic
models that are fixed in the same way.

In the above analysis, it should be noticed that the value of (m

following the path under the constraint of the HVH theorem on Vs, and m

ws.n)non 18 larger than that of

ws. p)non in Table 5. Owing to this fact, the path from Y, to Z,, is longer than that from Y, to
Z, as seen in Fig. 9. This difference also works to make R, smaller in the path from Y, to Z,,.

(m
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Fig. 10. The root msr R, of 2Pb calculated in the relativistic and non-relativistic models. On the left-
hand side, the models used are indicated. The black closed and open circles are obtained by the full
mean-field approximations for the neutrons (r = n) and protons (t = p), respectively. The red ones are
obtained by the simplified Hamiltonian for each model. The blue ones are obtained through the first step
discussed in the text, the green ones by the second step. The vertical lines show the average values of the
same color circles, respectively. For details, see the text.

Fig. 10 shows the values of R, that are obtained by the same procedure as in Fig. 9 for all
the relativistic mean-field models taken in the present paper. The black and red circles show
the results of the full mean-field calculations and the simplified ones in Section 5, respectively,
where the closed circles are for neutrons and the open circles for protons. The vertical lines
indicate their mean values. It is seen that the simplified calculations reproduce well the values of
R, by the full calculations. Those for the non-relativistic models are also shown in the same way.

The blue circles are obtained by the first step from X, to Y, mentioned in Fig. 9, the green
ones by the second step. All the models show a similar change of R; to that in Fig. 9 such that
the values of R, decrease by two steps, while those of R, come back to almost the same values
by the second step from Y, to Z,.

Fig. 11 shows the values of § R, using the same designating symbols as in Fig. 10. The values
from the two steps shown by the green circles are almost the same as the blue ones obtained by
the first step, since the values of R, return to the original ones by the second step.

The results of R; and §R in Figs. 10 and 11 are summarized in Table 12 in units of fm. The
mean values of R; in the relativistic models are listed in the columns headed Red, Blue, and
Green according to the colors of those figures. From Red to Green, the value of R, decreases,
while that of R, increases from Red to Blue and decreases from Blue to Green, up to almost
the Red one, as shown in the figures. In changing the values V; and m in the relativistic models
following the HVH lines, the value of § R shrinks from 0.283 fm to 0.193 fm, which should be
compared to 0.159 fm for the non-relativistic models. The difference between §R in the rela-
tivistic and non-relativistic models becomes smaller by 73%, changing its value from 0.124 fm
to 0.034 fm.
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R, — R, (fm)

Fig. 11. The difference between the root msrs of the neutron and proton distributions in 2°Pb calculated
in the relativistic and non-relativistic models. On the left-hand side, the models used are indicated. The
black closed circles are obtained by the full mean-field approximations, and the red ones by the simplified
Hamiltonian for each model. The blue ones are obtained through the first step, the green ones through
the second step discussed in the text. The vertical lines show the average values of the same color circles,
respectively. For details, see the text.

Table 12. The average values of the root msr of the proton and neutron distributions in the relativistic
(Rel) and non-relativistic (Non) models in various approximations. Red, Green, and Blue indicate the
average values corresponding to those in Figs. 10 and 11, respectively. All the numbers are given in units
of fm. For details, see the text.

Rel Non

Red Blue Green Red

R, 5.740 5.691 5.645 5.621
R, 5.457 5.493 5.452 5.462
SR 0.283 0.197 0.193 0.159

It is concluded that most of the 0.1 fm difference between §R in the relativistic and non-
relativistic models is attributed to the difference between the values of their V; and m, which
are constrained by po . through the HVH theorem. The remaining difference may be caused
by the sum of many small contributions, in addition to those from Ry, dws:, and B;, from
the approximations used. The exchange term of the Coulomb force, the center of mass correc-
tion, the small component of the wave functions, etc., are also managed differently in the two
frameworks. Discussions of these effects, however, are beyond the present purpose.

7. Summary

Reference [4] has pointed out that the neutron skin thickness defined by R = R, — R, in
208Pp is larger by about 0.1 fm in the relativistic mean-field models than in the non-relativistic
ones. Here, R, and R, represent the root msr (mean-square-radius) of the point neutron and
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proton distributions in the nucleus, respectively. The value of the charge radius R, of 2%Pb
is about 5.503 fm. The 0.1 fm difference is small for neither nuclear physics [1,10,17,18], nor
astrophysics [3,5,18]. In this paper, we have investigated why the difference is avoidable in the
present mean-field models, even though both relativistic and non-relativistic models are con-
structed phenomenologically with free parameters to be fixed by experimental values.

The value of R, is one of the most important inputs, together with the binding energy per
nucleon and the Fermi momentum in nuclear matter in all of the phenomenological models
[14,24]. The relationship between R, and R, is unambiguously defined theoretically [8], and the
latter is observed experimentally through electromagnetic probes, whose reaction mechanisms
are well understood [6,7,9]. Hence, the 0.1 fm problem is due to the difference between the
values of R, in the two frameworks.

Itis shown that the values of R, are dominated by those of (—m*V;)~1/4 asin Eq. (61), where
m and V7 represent the effective mass in units of M and the strength of the one-body potential
near the center of the nucleus (r & 0), respectively, and the subscript indicates t = p for protons
and t = n for neutrons. Although m? and V; are complicated functions of the interaction
parameters in the phenomenological models, they are not independent of each other. Their
variations are constrained together with the nucleon density p, at r =~ 0 by the Hugenholtz—
Van Hove (HVH) theorem [19-21].

In writing the average values of m? and V; in each framework as (m¥) and (V7 ), respectively,
their product is approximately expressed by the HVH equation as (m})(V;) ~ a, + b, (m7),
where a, and b, are constants. The values of a, and b, depend on the average values of p.({0:)),
the binding energy per nucleon Eg, and Coulomb energy v, of the corresponding asymmetric
nuclear matter with N and Z. Since the values of Eg and v, are almost the same in the relativis-
tic and non-relativistic models, the difference between the two frameworks on the right-hand
side of the HVH equation is attributed to the difference between the values of (p.) and (m}).
Indeed, the values of (p.) and (m?) in the nuclear matter in Table 2 are almost the same as those
for 2%8Pb in Tables 5 and 6. The difference on the right-hand side of the HVH equation for the
two frameworks is expressed by (m?) (V) on the left-hand side, which induces the difference of
R, between the relativistic and non-relativistic models, according to Eq. (61).

Table 10 provides their average values as ((m})(V;))non = —46.075MeV for the non-
relativistic models against ((n2))(V}))re = —41.956 MeV for the relativistic models. The ratio
of these values yields

(46.075/41.956)"/* = 1.0237,
which is comparable to the value showing the 0.1 fm difference of R, as
Rn,rel/Rn,non = 5740/5621 =1.0212

in Table 7. This comparison assumes the same relationship between the average values of R, and
(—mV,)~V*as in Eq. (61). The results of the more detailed analysis without using the average
values are summarized in Table 12, which shows that about 70% of the 0.1 fm difference is
explained according to the HVH theorem.

We note that the 0.1 fm problem is observed using the limited number of Skyrme-type inter-
actions and relativistic mean-field models in Ref. [4], so the problem has been investigated with
the same models in the present paper. It may be interesting to explore other phenomenolog-
ical models [2] to identify whether or not there is a similar difference problem and the HVH
theorem is useful for understanding the difference.
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The 0.1 fm difference has also been observed in ¥*Ca in Ref. [4]. It could be discussed in a
similar way to 2*Pb in the present paper, but a new method must be devised for comparing the
results for “*Ca with those for nuclear matter in the mean-field models.
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