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The compactification of E8 × E8 heterotic string theory on orbifolds

of the form T 6/ZN produces a 4D spectrum of untwisted states and twisted

states. Unlike the untwisted states, the twisted states are confined to the

fixed points of the ZN action and can be charged under subgroups of both

E8 gauge groups simultaneously. While insignificant in the string theory case,

dualizing to heterotic M-theory yields a peculiar phenomenon. Specifically,

in heterotic M-theory the E8 gauge groups are isolated from each other by an

extra dimension with 11D supergravity in the bulk between them. Determining

how states can be charged across this bulk becomes a highly nontrivial problem

to solve. We propose a procedure that utilizes deconstruction to probe these

fixed points and build the appropriate states in the continuum limit. We then

analyze and apply this procedure to the Z3, Z4, Z6−I , and Z7 orbifolds.
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Chapter 1

Introduction

There has long been a rich history of dualities between string theories.

These connections manifested fully, however, with the seminal work of Edward

Witten [1]. Here he introduced the concept of M-theory, a mysterious theory of

which all string theories and 11D supergravity are limiting cases. The dualities

are then simple underlying transforms in this mysterious theory. Under this

proposal, type-I and SO(32) heterotic string theories are S-dual, so that the

weak-coupling limit of one is the strong-coupling limit of the other. Type-

IIB string theory is actually self-dual in this respect, though it’s relationship

with type-IIA string theory was well established [2, 3] and type-I is simply

an orientifold projection of type-IIB. One of the biggest surprises, however,

was that the strong coupling limit of type-IIA string theory was found to be

dual to 11D supergravity compactified on a circle, where the size of this extra

dimension was related to the coupling. Despite all of this, the paper concluded

without a proper conjecture for the strong coupling limit of the last remaining

theory, E8 × E8 heterotic string theory.

In subsequent work by Hořava and Witten [14, 15], this strong coupling

limit was explored in more depth and it was found to be related to 11D super-
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gravity again. This time, however, they found that the 11D theory needed to

be compactified on an interval with particular boundary conditions on the su-

pergravity multiplet fields. Consistency with anomalies due to these boundary

conditions then forced the presence of 10D E8 gauge fields fixed at each of the

boundaries. This theory reduces to heterotic supergravity as the size of the

interval vanishes, so yet again the size of this extra dimension can be related

to the string coupling. To be consistent, one would expect phenomena in one

of the theories to have a dual explanation in the other. One such example

of particular interest here is the compactification of the heterotic string on

orbifolds and the resulting spectrum.

Orbifolds are interesting compactification structures [4, 5]. Constructed

by twisting a torus by some group action, orbifolds carry most of the conve-

niences of tori in terms of compactification but with many more desirable

features, such as a realistic amount of supersymmetry. Furthermore, they can

also be interpreted as singular limits of Calabi-Yau manifolds, so that much of

the associated machinery for them can be applied directly or adapted to orb-

ifolds. As advantageous as these compactifcation schemes are in string theory,

and specifically E8 × E8 heterotic string theory, one major point of interest

would be to translate them to the dual 11D supergravity theory and study the

theory across this transition.

As it turns out, this transition is fairly clean for much of the theory.

This is a reflection of the relative simplicity of the geometry and the result-

ing ease in solving the string worldsheet theory to generate the perturbative
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spectrum for such models. Much of the geometry in the string theory simply

carries over to the 11D supergravity theory and so their is little to explore.

However, upon inspection of the individual models, there are certain instances

in which states are produced in the string picture that do not have trivial du-

alizations into the 11D supergravity theory. These states have gauge charges

under subgroups of each E8, a unimpressive feat in the string theory interpre-

tation. However, upon dualization to the 11D theory, the E8 gauge groups

become separated by the extra dimension, and so any state charged under

both must somehow be charged across the bulk of the interval. The bulk the-

ory is simply 11D supergravity, and so one is forced to conclude that either

supergravity is able to mediate between the gauge groups at these points of

singular curvature to charge states locally across the bulk, or else the local

states on the string theory side have nonlocal origins on the 11D supergravity

side. As it turns out, both of these options will end up holding some validity,

depending on the dimension of the orbifold.

This work is organized as follows. First, we will discuss some general

features of these orbifolds, including the procedure for forming them and the

resulting spectra. Next, we will present a more detailed account of the duality

between the heterotic string and 11D supergravity, which we will simply refer

to as M-theory and the compactified theory as heterotic M-theory for conve-

nience. Our main goal throughout this work will be to reverse the order of

compactification so that we first compactify on the orbifold, then the interval.

As is often the case, this is simpler when compactified to 6D rather than 4D, so
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we next introduce this case with a pertinent example and describe the solution

in terms of brane engineering. We will find that this machinery does not easily

translate to 4D, as the effective theory being compactified on an interval is no

longer simply a 7D gauge theory. Instead, it will be a 5D superconformal field

theory, as we will discuss. Throughout our discussion of 5D field theory, we

will begin building our procedure for forming the twisted states in question,

bringing in toric diagrams and dual brane webs to develop 5D gauge theories

at the resolved fixed points. To compactify these theories, we will introduce

another method, deconstruction, that lends itself quite well to this. We then

have a standard method with which to tackle each orbifold fixed point: re-

solve the singularity, look at the resulting toric diagram, dualize to a brane

web, deconstruct the resulting gauge theory, set the deconstruction quiver on

an interval rather than a circle, and observe the resulting 4D spectrum as we

approach the appropriate limits of parameter/moduli space. We then apply

this to the Z3, Z4, Z6−I , and Z7 orbifolds.

Before we proceed however, there are two main caveats to this work

that we must address. First, it is important to note that there are additional

consistent orbifolds to which we will not apply this procedure. The Z6−II ,

Z8−I , Z8−II , Z12−I , and Z12−II orbifolds have the unfortunate property that,

unlike the orbifolds we do consider, they all have multiple resolutions of their

fixed points. These resolutions are all related to each other by flop transitions,

and flops are captured by the deconstruction procedure, so it seems reasonable

that these theories could be described within our framework. However, one
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must crawl before they can walk, and so we restrict ourselves to the simpler

analyses.

The second major caveat has to deal with the presence of anomalous

U(1)’s in the compactified 4D theories. These anomalies are canceled by a 4D

remnant of the Green-Schwarz mechanism [6]. However, the presence of this

term in 4D causes a quadratically-divergent Fayet-Iliopoulos term to arise at

one-loop order [7]. This introduces D-terms which can force VEV’s on fields

and actually drive us away from the very fixed points we are trying to study,

rendering our analysis inapplicable [8]. As a result, we will only focus on

models that present twisted states of interest and have no anomalous U(1)’s.
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Chapter 2

Orbifolds

The orbifolds of interest for our model building are constructed from

6D tori. Starting with C3, we ask that its coordinates zm, m = 1, 2, 3, be

invariant under a specific set of complex translations,

zm → zm + vm. (2.1)

We will be considering specific examples in which these translations form 6D

root lattices Λ of (combinations of) Lie groups, so that we are essentially

modding by Λ,

T 6 = C3/Λ. (2.2)

This is important to the construction, because only a few root lattices can

consistently lend themselves to our orbifolds. When performing the orbifolding

procedure to follow, we will assume that we have already identified the correct

root lattice for a specific orbifold.

Given the proper torus, we can now attempt to “fold” it. This is

achieved by twisting the torus by the action of some group G, known as the

point group. The twists θ (along with the tori translations v) act on the

coordinates of C3 as

zm → θmnzn + vm, (2.3)

6



and so an orbifold must necessarily be invariant under this action. This re-

quires that we mod the torus by G,

T 6/G = (C3/Λ)/G. (2.4)

In this manner, it is clear to see why not just any Λ will work; Λ and G must

be consistent to ensure that their actions are not coprime on C3.

The orbifolds considered here have point groups

G = ZN = {h ∈ C : hN = 1}. (2.5)

We can choose the coordinate basis so as to diagnolize the corresponding twists

θ. They then take the rather simple form

θmm = θm = e(2πiφm), φm =
rm
N

(2.6)

for some vector of integers ~r. This vector is known as the twist vector for

the point group, while ~φ is known as the normalized twist vector. A specific

choice of this twist vector for given ZN does not seem obvious from what we

have done so far. In fact, there is no specific choice from a geometric point

of view. However, consistency with heterotic string theory will impose some

very tight constraints on the forms allowed for ~r, and limit us to only a few

viable cases. Since we must discuss the heterotic string theory implications,

let’s first discuss how this twisting can act on the gauge group present.

The heterotic string is a combination of a right-moving type-II super-

string and a left-moving bosonic string. The extra sixteen dimensions in the
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left-moving string are wrapped on an E8 × E8 root lattice to form a 16D

torus, so we can imagine the twisting group acting on these dimensions as

well. While it can act on it trivially, preserving the whole E8 × E8 gauge

symmetry, in general it will break this gauge symmetry to some subgroup. We

can use the generators λK of the Cartan subalgebra U(1)16 as coordinates in

C16, then ask that they be invariant under ZN gauge twists:

λK → e2πiβKλK , βK =
sK
N

(2.7)

for some 16-vector of integers ~s known as the gauge shift vector (~β would be

the normalized gauge shift vector).

We now have two piece of information to parametrize the action of the

point group on a torus: a twist vector ~r and a gauge shift vector ~s. These

must act similarly on the worldsheet fields zm, ψ̃m, and λK , as well as their

resulting modes. Specifically, for the modes of the R sector of ψ̃m, the mode

numbers altered by these shifts1:

ψ̃m : n→ n− φm, ψ̃m : n→ n+ φm. (2.8)

Because the R sector is in the spinor representation, it will have eigenvalue

1

2

3∑
m=1

φm. (2.9)

1This shift in mode numbers actually extends across all worldsheet oscillators, but we
are only concerned with the R sector for our purposes. Consult [5] for a fuller treatment.
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A similar argument for the R sector of λK in the current algebra yields an

eigenvalue in each E8:

1

2

8∑
K=1

βK ,
1

2

16∑
K=9

βK . (2.10)

For ZN to properly twist the theory, we must demand

1

2

3∑
m=1

φm =
1

2

8∑
K=1

βK =
1

2

16∑
K=9

βK = 0 mod 1. (2.11)

Without getting too far into the underlying string theory, a slightly more

intensive argument involving the level-matching condition [5] gives another

constraint on the allowed forms of ~r and ~s:

3∑
m=1

φ2
m −

16∑
K=1

β2
K = 0 mod 2N. (2.12)

Equipped with these equations, eqs. (2.11) and (2.12), we can now define all

possible orbifolds. Table 2.1 contains a full list of consistent T 6/ZN ’s, along

with the necessary root lattice for the corresponding T 6.

2.1 Untwisted Sector

To see how the gauge shift vectors act on each E8 gauge group, we will

first need to consider the root system. This can be generated in R8 as the set

of all 8-vectors with length squared equal to 2, coordinates either all integers

or all half-integers, and sum of the coordinates even. The case with all integer
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Point
Group

Normalized Twist Vector Root Lattice Group

Z3

(
1
3
, 1

3
,−2

3

)
SU(3)× SU(3)× SU(3)

Z4

(
1
4
, 1

4
,−2

4

)
SO(5)× SO(5)× SU(2)× SU(2)

Z6−I
(

1
6
, 1

6
,−2

6

)
G2 ×G2 × SU(3)

Z6−II
(

1
6
, 2

6
,−3

6

)
G2 × SU(3)× SU(2)× SU(2)

Z7

(
1
7
, 2

7
,−3

7

)
SU(7)

Z8−I
(

1
8
, 2

8
,−3

8

)
SO(5)× SO(9)

Z8−II
(

1
8
, 3

8
,−4

8

)
SO(9)× SU(2)× SU(2)

Z12−I
(

1
12
, 4

12
,− 5

12

)
F4 × SU(3)

Z12−II
(

1
12
, 5

12
,− 6

12

)
F4 × SU(2)× SU(2)

Table 2.1: The point group, normalized twist vector, and root lattice group
for each allowable orbifold. Technically, there are actually more root lattices
allowed for some of the ZN point groups. However, these can be seen as specific
subcases with tighter constraints on the Wilson lines [37]. The root lattices
listed here are the most general.

coordinates must have the form

RootD8 : (+1,+1, 06),

(+1,−1, 06),

(−1,+1, 06),

(−1,−1, 06),

(2.13)

where the underline denotes permutations of the entries. This generates 4 ×(
8
2

)
= 112 roots, which form the root system for D8 = SO(16). The remaining

roots must have all half-integer coordinates that sum to an even number. This
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is only achieved if there is an even number of positive entries, so these must

have the form

SpinorD8
: (+

1

2

8

),

(+
1

2

6

,−1

2

2

),

(+
1

2

4

,−1

2

4

),

(+
1

2

2

,−1

2

6

)

(−1

2

8

).

(2.14)

There are
(

8
8

)
+
(

8
6

)
+
(

8
4

)
+
(

8
2

)
+
(

8
0

)
= 128 of these roots2 for a total of 240

roots. Along with the rank(E8) = 8 Cartan generators, these form the 248-

dimenstional adjoint representation of E8 under which the 10D gauge fields

transform.

The 16D gauge shift vector can actually be broken up into two 8D shift

vectors, one corresponding to each E8. Taking one of these vectors, ~s1, we can

now act on all of the roots ~R of the E8 root system by

~s1 · ~R =
8∑
i=1

s1,iR
i. (2.15)

From a geometric point of view, we generically have no preferential direction

in R8 for the E8 root system. The shift vector establishes a preference and

then asks how much of each root vector is along that direction by using the

dot product. This now distinguishes the roots from each other and breaks the

2These actually form the spinor representation of SO(16).
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gauge symmetry based on the values of this dot product. Resulting products

that are integers are perpendicular to this direction and so survive as the

remaining gauge symmetry. Roots with products that are not integers project

onto the shift vector direction, and form chiral fields that are charged under

the preserved gauge symmetry. These chiral fields are not twisted by the

orbifold, simply projected down onto the preferential direction that the orbifold

established by acting on the gauge bundle nontrivially. As a result, these states

are referred to as the untwisted sector of the spectrum.

2.2 Twisted Sector

In addition to untwisted matter descended from the 10D theory, there

are states that are true, lower-dimensional states generated by the orbifolding

procedure. From a physical point of view, this can be viewed as open strings

on the torus. The point group of the orbifold identifies points on the torus, so

an open string on the torus stretched between two points identified under the

point group action will be a closed string on the orbifold. The closed string

then generates massless states which we identify as the twisted sector of the

spectrum.

From a string worldsheet point of view, this can be seen as the re-

sult of the modified mode numbers for the oscillators, allowing them to form

new massless combinations that are normally not so with their original mode

numbers. These states have zero momentum in the compactified directions of

the orbifold because they are stuck at the fixed points, but propogate in the

12



noncompact dimensions. For a treatment of the calculation of the spectra for

each orbifold, consult [38].

One natural extension of the above arguments is to k-twists. Specifi-

cally, consider an element h ∈ ZN . By definition, we know hN = 1, but this

implies that

h2N = h3N = h4N = ... = h(N−1)N = 1. (2.16)

In other words, the twist can be applied multiple times and still maintain

the necessary consistency condition. As it turns out, each k-twisted sector

is capable of having its own spectrum for k ∈ [1, N − 1], though the k- and

(N−k)-twisted sectors are chiral conjugates of each other. Also, the 0-twisted

sector and N -twisted sector are equivalent and correspond to the untwisted

sector.

We will see later in specific examples that these various twisted sectors

can have complicated overlying fixed structures. On top of the fixed points

that are invariant under the action a k-twist, there can be fixed tori or fixed

lower-dimensional orbifolds under a different k-twist. These lower-dimensional

orbifolds can have the fixed points of the original k-twist as its fixed points as

well, introducing geometric complexity. From a string theory point of view,

however, these are all equally simple spectra to calculate, and a brief investi-

gation of the geometry reveals the multiplicity of each state.
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Chapter 3

Heterotic M-theory

It has been well established that, similar to type IIA supergravity, the

strong coupling limit of E8 × E8 heterotic supergravity can be related to an

11D supergravity theory [14, 15]. The bosonic part of the action for this theory

takes the simple form

SSG = − 1

2κ2

∫
M11

√
−g (R +G ·G+ C ∧G ∧G) , (3.1)

where C is a 3-form in the graviton supermultiplet with field strength G = dC.

This supergravity theory is interpreted as an effective field theory in the low-

energy limit of M-theory, just as 10D supergravity theories correspond to string

theories. Out of convenience, we will refer to this 11D supergravity theory as

M-theory henceforth.

In order to make contact between M-theory and heterotic string theory,

we must compactify the extra dimension present in M-theory. The choice

of surface to compactify on must break half of the supersymmetry present,

otherwise the 11D N = 1 supersymmetry will compactify to 10D N = 2

supersymmetry instead of N = 1 as needed for heterotic supergravity. The

simplest manner in which to achieve this is to compactify M-theory on an

interval, S1/Z2. Here Z2 acts on S1 by x10 → −x10. For this to be a symmetry
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of the action, it is required that C also be odd under the Z2 action, C → −C,

while the metric g must be even. In terms of components, these conditions

take the form:
gIJ , g10,10, CIJ10 → gIJ , g10,10, CIJ10,

gI,10, CIJK → −gI,10,−CIJK ,
(3.2)

where the indices I, J,K, ... = 0, ..., 9 denote the ten dimensions perpendicular

to the compactified dimension, x10.

The action of Z2 on S1 has two fixed points, {0, πR}, corresponding to

the ends of the interval. These 10D surfaces must have boundary conditions

for the fields that are consistent with the the Z2 action on them. This implies

that there will be 10D zero modes for the even fields, but not for the odd fields

which must vanish at the boundaries. Unfortunately, the presence of these

modes at the boundaries introduces anomalies to our theory, which we would

hope to cancel with the addition of other fields. Since the theory in the bulk

of the interval is just 11D supergravity, it is anomaly free there and there are

no 11D fields that can be added to cancel the anomaly. Since the anomaly

is concentrated at the 10D boundaries, it makes sense to try adding matter

specifically to these boundaries, namely 10D vector multiplets. There are 248

vector multiplets needed at each boundary to cancel the anomaly, which is

the dimension of the adjoint representation of E8. Thus, we conclude that

each boundary has an E8 gauge multiplet present on it. Because these 10D

surfaces are important and mentioned quite frequently, we will err on the side

of convenience and refer to them as M9-branes, which will be slightly more in

line with our discussion of M-branes below.
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There are further complications that arise from this anomaly cancel-

lation, requiring the mixing of gauge and gravity terms at the M9-branes,

specifically in the Bianchi identity for G. However, as these considerations are

beyond our scope, we can just focus on the relatively simple picture before us.

At strong coupling, heterotic string theory looks like M-theory compactified

on an interval. There are two 10D E8 gauge multiplets, one at each boundary

separated by the 11D bulk. As the coupling becomes weak, the size of this in-

terval becomes small and the two boundaries become coincident. In this limit,

the theory looks ten-dimensional with a gauge group E8 × E8, as is required

for the heterotic theory.

The orbifold models we have considered above now have an M-theory

interpretation: we compactify it on an interval, drive the interval width to

zero, compactify this theory on the 6D orbifold of our choice, and then observe

the resulting spectrum. This interpretation need not be the only path to our

spectrum, though. There is nothing to stop us from instead compactifying M-

theory on the 6D orbifold first and then the interval. Our spectrum should not

depend on the order in which these steps are taken, so it would be interesting to

investigate this alternative method and confirm its consistency. This procedure

comes with a two major issues, however, and we must address each one.

3.1 Orbifold limits of Calabi-Yau manifolds

The first major concern involves the orbifolds themselves. In string the-

ory terms, orbifolds are simple geometries with well-defined worldsheet confor-
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mal field theories and hence are perfectly consistent. However, geometrically

we cannot compactify M-theory on an orbifold; since it has points of singular

curvature, it does not even qualify as a manifold! Thus, in order to consider

this situation we must first define what we even mean by “compactifying M-

theory on an orbifold.” Let’s illustrate this with an example with which we

will become quite familiar: the Z3 orbifold. The origin of this orbifold as a T 6

with some Z3 action suggests that it has zero curvature away from the fixed

points, and 27 fixed points with singular curvature. Since the root lattice and

point group actions commute, it is easy to see that the fixed points of T 6/Z3

have the same structure as the single fixed point of C3/Z3, namely that of a

complex projective plane CP2 blown down to a point (for a good review and

applications, see [32]). Blowing this point back up to a CP2 has the effect

of smearing the singular curvature, and blowing up all of the points of the

orbifold in this manner results in a smooth Calabi-Yau threefold on which we

can geometrically compactify M-theory. The sizes of these blown-up CP2’s are

tunable parameters, and driving them back down to zero returns our original

orbifold. Thus, as we discuss “compactifying M-theory on an orbifold” what

we actually mean is “compactifying M-theory on a Calabi-Yau threefold that

has as an orbifold as its singular limit when certain parameters are varied ap-

propriately.” We shall return to this topic in more depth later, after having

discussed some of the features of the resulting 5D theories that can arise.
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3.2 Gauge mediation across the bulk

The other major issue to consider is how the emergence of this bulk

dimension at strong coupling will effect the gauge charging of states. Specifi-

cally, anomaly cancellation requires that their be an E8 gauge theory confined

to each M9-brane at the end of the interval, while in the bulk between these

theories we simply have 11D supergravity. Therefore, the gauge fields are com-

pletely isolated from each other, with only gravity playing mediator between

them. Any state charged under one of the E8’s or some subgroup of it will

reasonably be localized to that end of the interval, as is clear when consider-

ing the untwisted sectors of the orbifold models. However, when we attempt

to transfer this logic to the twisted sector of these same orbifold models, we

find an immediate obstruction: there are states present that are charged un-

der (subgroups of) both E8’s! On which end are these states localized? Are

they localized at all? and how are they capable of being mysteriously charged

across the bulk? These are the questions that we seek to answer as we carry

on through this work.

It is worth noting one important feature of this interpretation. Just like

its string theory counterparts, M-theory has extended objects, or branes, that

couple to the 3-form C and it’s dual 6-form ∗C, namely the M2-brane and

M5-brane. The M2-branes are capable of wrapping on any (real) 2-cycles in

the blown-up fixed point geometry to create electrically-charged particles with

masses proportional to the size of the blow-up. Similarly, the M5-branes are

capable of wrapping on the entire 4-cycle of the blown-up fixed point to create
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magnetically-charged strings with tension proportional to the square of the

size. Thus, as we approach the orbifold limit, the particles become massless

and the strings become tensionless. The presence of these massless states is

interesting, but they are not capable of accounting for the curious states in

the spectra that we find in the string theory case.

As it turns out, the case of M-theory compactified on T 4/ZN and its

corresponding 6D theory has already been studied in [21, 22]. Due to its ease

and the relevence of some of its results, we will review this presentation for

the specific case where N = 2. For more examples, see the references.
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Chapter 4

Heterotic Orbifold Models in 6D

4D orbifolds start with a rank-4 root lattice acting on C2 to produce

a torus. This torus is then acted on by a twist to further identify points.

For a Z2 twist, we need the SU(2)4 root lattice, and normalized twist vector

~φ = (1
2
, 1

2
). Each complex dimension has four fixed points under this twist and

root lattice action, for a total of 4× 4 = 16 fixed points on the whole orbifold.

 

𝜋

2
 

(a) SU(2)× SU(2)

 

𝜋

2
 

(b) SU(2)× SU(2)

Figure 4.1: The root lattice for each coordinate zi. The gray region signifies
the fundamental domain of the torus in each complex dimension. The solid
points are the fixed points of the Z2 action.

The only consistent E8 gauge symmetry breaking patterns are E8 →

E7×SU(2) and E8 → SO(16). The gauge shift vectors and modular invariant
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combinations of gauge groups are listed in Table 4.1, along with the twisted

and untwisted spectra for each model. From this table we can see that there is

a state charged under both E8’s, meaning it will somehow need to be charged

across the bulk in the heterotic M-theory picture.

Normalized
Shift Vector

Gauge Group
Untwisted
Spectrum

Twisted Spectrum

1
2
(12, 06), 1

2
(08) E7×SU(2)×E ′8 (56,2;1) 1

2
(56,1;1) + 4(1,2;1)

1
2
(12, 06), 1

2
(2, 07)

E7 × SU(2)×
SO(16)′

(56,2;1) +
(1,1;128s)

1
2
(1,2;16)

Table 4.1: The gauge shift vectors and modular invariant combinations of
gauge groups. The twisted and untwisted spectra for each model are also
included.

In M-theory, it is known that compactification on a K3 surface with

type AN−1 singularity, such as T 4/ZN , results in an SU(N) gauge theory on

the resulting 7D theory. Compactification of these theories on S1/Z2 forces

one to impose boundary conditions unnaturally on the resulting fields in order

to acquire the proper spectra [21]. Fortunately, there is a chain of dualities

that prove to be quite useful in this case and allows a more natural derivation

of the twisted states charged across the bulk.

Specifically, up to this point we have mentioned two compactifications

of M-theory related to string theory. We know that M-theory compactified on

an S1 has type-IIA supergravity as a small radius limit [1, 9]. We have also

discussed at length that M-theory compactified on an S1/Z2 yields E8 × E8
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heterotic supergravity as a small radius limit. What if instead we were to

consider the case in which M-theory is compactified on S1
1 × S1

2/Z2? For

R1 � R2, We would simply see the E8 × E8 heterotic theory compactified on

S1
1 , which is a relatively simple model to investigate. However, in the limit

that R1 � R2, we have what appears to be the type-IIA theory compactified

on S1
2/Z2. This theory, known as type-I’ string theory [33], is a much less

trivial model to investigate, so let’s look at some of the qualitative features.

4.1 Type-I’ String Theory

In type-I’ string theory, the S1
2/Z2 acts as an orientifold of the theory

(due to the boundary conditions imposed on the Kalb-Ramond 2-form B de-

scending from the boundary conditions imposed on the parent 3-form C). As

a result, the boundary surfaces of the interval must be orientifold 8-planes.

These two O8-planes have D-brane charge −8, for a total charge of −16. The

theory necessarily needs to be charge-neutral, so to counter this charge we

must insert 16 D8-branes along the interval. The positions of these branes is

arbitrary in the sense of charge neutrality, but the configuration of the D8-

branes has nontrivial effects on the resulting gauge symmetry of the theory.

For instance, if all of the branes are in distinct locations in the bulk, then each

D8-brane contributes its own U(1) gauge symmetry and we have U(1)16. This

is the equivalent of turning on Wilson lines and breaking the E8 × E8 gauge

symmetry down to its Cartan subgroup in the heterotic picture. As we con-

tinue to vary the positions of the D8-branes, we similarly vary the Wilson line
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parameters in the heterotic picture, allowing us to reach points of enhanced

gauge symmetry. For instance, when k of the D8-branes are coincident at a

point in the bulk, then the gauge symmetry is enhanced,

U(1)k → U(k). (4.1)

There are additional symmetry enhancements when D8-branes are coincident

with one of the O8-planes. Specifically, for k D8-branes coincident on an

O8-plane, the resulting gauge symmetry is enhanced,

U(1)k → SO(2k). (4.2)

These two conditions properly summarize all attainable E8 subgroups except

for the exceptional ones: E6, E7, and E8 itself. To account for these groups, it

is necessary for the gauge coupling at the O8-plane in question to be infinite.

This is achievable when the D8-branes away from the O8-plane are arranged

in specific, fixed configurations. At these critical positions, the coupling at

the boundary becomes infinite, and the fixing of the center of mass of the

specifically arranged D8-branes effectively removes a U(1) from their relative

gauge group, which is then used to enhance the gauge group at the boundary:

SO(2k)→ Ek+1. (4.3)

Thus, by considering E8×E8 heterotic string theory compactified on a circle,

we are able to use M-theory and some duality arguments to transform our

nontrivial questions into questions of brane dynamics in type-I’ string theory.
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4.2 (Multi-)Taub-NUT Geometry

The mission of this section is to investigate the twisted states of 6D

orbifold theories. These twisted states are localized at the fixed points of the

ZN action on the T 4 under consideration, so for simplicity’s sake let’s focus on

the spectrum at a single fixed point. Locally, any one of these fixed points is

indistinguishable from the sole fixed point of C2/ZN , or any other geometry

with a similar singularity structure, SU(2) holonomy, and simple asymptotics.

In order for us to make contact with the type-I’ theory discussed previously, we

are particularly interested in flat R3 × S1 asymptotics rather than R4, which

is why we invoke the powerful multi-Taub-NUT geometry below.

The multi-Taub-NUT geometry of N Kaluza-Klein monopoles (denoted

TNN) has metric

ds2 = V (x)dx2 +
(dy −A(x)dx)2

V (x)
, (4.4)

where y is periodic with radius R, y = y + 2πR,

∇×A = ∇V , and V = 1 +
R

2

N∑
i=1

1

|x− xi|
. (4.5)

When all N monopoles are located at distinct xi, the geometry of the multi-

Taub-NUT is smooth. However, when k of the monopoles coincide, there is a

resulting C2/Zk singularity located at that point. For the specific case in which

all N monopoles are at the same point, we have a C2/ZN singularity, and the

multi-Taub-NUT geometry is simply an orbifolding of a basic Taub-NUT,

TNN = TN1/ZN . (4.6)
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In the limit that R → ∞, the TN1 curvature becomes negligible and TN1 ≈

C2. Thus, we see that in this limit

TNN ≈ C2/ZN . (4.7)

4.3 Brane-Engineering the Fixed Points

Approximating our orbifold fixed point as a TNN with its R3 × S1

asymptotics means that we can now consider M-theory with a dimension com-

pactified on an S1. For our approximation to be valid, we required that the

radius of the S1 be large, R→∞. However, in order for M-theory compacti-

fied on an S1 to dualize to type-IIA theory, the opposite is actually necessary,

R → 0. The issue we hope to avoid is that everything we do in our type-

IIA (or type-I’) theory is invalidated when we try adapt it to the fixed point

in question. Luckily, we know that the massless twisted spectrum is chiral

and hence is independent of continuous parameters such as R. This assures us

that the following construction will consistently describe states in the opposite

regime of R.

We’ve now transformed our problem into one of brane engineering.

The E8 × E8 heterotic theory compactified on T 4/ZN is dual to heterotic M-

theory compactified on the same orbifold. The fixed points of this orbifold

are locally indistinguishable from the fixed point of the TNN discussed above,

so we can use this geometry to explore the spectrum instead. By letting

the radius of the TNN become small (much smaller than the width of the

S1/Z2), we are able to dualize our theory once again, this time to type-I’
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string theory. It was shown in [9] that the Kaluza-Klein monopoles introduced

above dualize to D6-branes stretching across the bulk in the type-I’ theory,

and thus N coincident monopoles will similarly correspond to N coincident

D6-branes. These D6-branes will have enhanced gauge symmetry, producing a

7D U(N) SYM theory on the resulting world-volume. However, in this gauge

symmetry there is a U(1) that parametrizes the center-of-mass position. This

is actually nothing more than an artifact of the fact that we are considering

a non-compact geometry near the fixed point, when in fact the orbifold as a

whole is compact. In the actual compact theory this U(1) is absent, and so as

we continue discussing the brane-engineering procedure, we will refer to the

compact SU(N) symmetry instead.

Now let’s focus on the specific case of interest, the T 4/Z2 orbifold dis-

cussed above where the gauge symmetry is broken as

E8 × E ′8 → E7 × SU(2)× SO(16)′. (4.8)

This orbifold model has a simple interpretation in the type-I’ picture, see Fig.

4.2. On the left O8-plane, there are 6 D8-branes stacked on top of each other,

while away from the boundary there are 2 D8-branes coincident. Naively, this

would yield a model with SO(12)× U(2) gauge symmetry. However, the two

branes situated away from the boundary are in fact fixed at the critical point

that causes infinite coupling at the O8-plane. Thus, the gauge symmetry is

enhanced:

SO(12)× U(2)→ E7 × SU(2). (4.9)
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The remaining 8 D8-branes are all coincident at the right O8-plane, and so

the resulting gauge group on this boundary would be SO(16), as we expect

from the orbifold.

 a 

𝑥10 → 

Figure 4.2: Type-I’ brane configuration corresponding to the T 4/Z2 orbifold.
The dashed lines correspond to D6-branes, while the solid lines correspond to
D8-branes.

The Z2 fixed point corresponds to N = 2 coincident monopoles, and

hence 2 D6-branes coincident at this point in the type-I’ picture. The last

consideration we must make is for the boundary conditions of these D6-branes

when they reach the boundary on either side. On the SO(16) side, the D6-
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brane must terminate at the O8-plane since all D8-branes are coincident on it.

Since the orientifold plane acts as a mirror, the gauge symmetry on a stack of

N D6-branes at this junction must be broken as

SU(N)→ Sp(N/2). (4.10)

For our simple case of N = 2, we have SU(2) → Sp(1) = SU(2), i.e., there

is no gauge symmetry breaking (this should seem reasonable since SU(2) is

pseudoreal). At the D6-D8 junction, open strings form hypermultiplets with

charges (2;16) under SU(2) × SO(16) (the intersection of the D6- and D8-

branes has a 6D world-volume). Being at the O8-plane, half of the hyper-

multiplet is projected out, so the final state present is a half-hypermultiplet,

1
2
(2;16).

At the other boundary, there are a couple of possibilities for terminating

the D6-branes. It is possible for the D6-branes to cross the bulk D8-branes and

terminate on the O8-plane . However, the strings there are at infinite coupling

so this is not a desirable option. Instead, we consider the two D8-branes away

from the boundary as a terminus for the D6-branes. By locking the D6 gauge

fields onto the D8 gauge fields via boundary conditions,

A(7D)
µ (x10 = a) = A(9D)

µ (x = 0), (4.11)

the combined gauge group SU(2)D8×SU(2)D6 is broken to a diagonal subgroup

SU(2)diag
1. Thus, the resulting half-hypermultiplet at the other boundary,

1there is an elegant derivation of this using T-duality in [22].
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1
2
(2;16), is not charged under the initial SU(2)D6 but under the surviving

SU(2)diag. In this way, the D6-branes carry the quantum numbers of one

boundary across the bulk (in a mixed fashion) and create states localized at

the other boundary. Dualizing back to heterotic M-theory and then going to

weak heterotic string coupling so that the bulk vanishes, these states appear

to be charged under just the original SU(2)×SO(16) subgroup of the E8×E8

gauge symmetry, as is calculated perturbatively.

In developing the machinery to solve the mystery of these mixed twisted

states in 6D, we relied heavily on a few tools. It was absolutely necessary that

we be able to find a geometry with similar fixed-point structure, SU(2) holon-

omy, and R3× S1 asymptotics, in order to dualize from heterotic M-theory to

type-I’ string theory. From here, we were able to use brane dynamics to prove

the existence of 7D SU(N) SYM theories at the fixed points stretched across

the bulk. These SYM theories were able to carry quantum numbers across the

bulk and create charged localized states on the opposite side. Unfortunately,

there is no clear generalization of these tools from 6D to 4D. To start, there

is no known 4D equivalent of the multi-Taub-NUT space (a geometry with

orbifold fixed point structure, SU(3) holonomy, and R5 × S1 asymptotics).

What’s worse, however, is that even if we were to find such a geometry, we

already know that the 5D theories at these orbifold fixed points are highly

nontrivial. As we will discuss in the next section, in the 4D case we will no

longer be dealing with finitely coupled SYM theories at the fixed points as we

did in 6D, but with infinitely-coupled 5D superconformal theories [17].
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Chapter 5

5D Field Theory

As 5D gauge theory will be intricately involved in our solution to the

4D cases we consider, it is important that we discuss it in some detail. Mini-

mal supersymmetry in five dimensions requires eight supercharges and, upon

dimensional reduction, is related to the 4D N = 2 superalgebra. There are two

massless representations in 5D, corresponding to the vector multiplet, which

has one real scalar field, and the hypermultiplet, which has four real scalar

fields. When dimensionally reduced to 4D, the component of the vector field

along the reduced dimension combines with the real scalar to form the complex

scalar of a 4D N = 2 vector multiplet, and the hypermultiplet reduces simply

to a 4D hypermultiplet.

This relationship between 5D N = 1 and 4D N = 2 gauge theories is

important because we know that the Lagrangian of the 4D theory along its

Coulomb branch must satisfy special geometry, and thus the same applies to

the 5D theory. Specifically, this Lagrangian must be derived by a prepotential

that is locally a function of the vector superfields Ai:

F = c0 + (c1)iAi +
1

2
(c2)ijAiAj +

1

6
(c3)ijkAiAjAk. (5.1)

We know that the prepotential is at most cubic in the vector superfields be-
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cause the 4D invariance condition on the scalars Ai4 → Ai4 + ai translates to

a similar condition in 5D, Ai → Ai + iai. As c0 and c1 do not affect the

Lagrangian, we will simply set them to zero and concern ourselves solely with

c2 and c3.

Let’s specialize to the case with gauge group SU(2). It is clear to see

that the coefficient of the quadratic term of the prepotential corresponds to

the bare gauge coupling, t0 = 1
g2

. The cubic term corresponds to a Chern-

Simons term, and it is important to note that for this term to be nonzero

classically, the gauge group in question must have a cubic invariant. This is

not the case for SU(2), so classically c3 = 0. However, there is the possibility

of quantum corrections to this term at the 1-loop level. This calculation was

performed for gauge group SU(2) and Nf massless flavors in [10], and the

resulting Chern-Simons coefficient takes the form:

c3 = 2(8−Nf ). (5.2)

We can then derive the gauge coupling of the effective theory on the Coulomb

branch of the moduli space. At a generic point in the moduli space, the SU(2)

gauge group is broken to U(1) and the Coulomb branch is parametrized by

the VEV of a real scalar φ ∈ R/Z2 = R+. The coupling is then

teff =
∂2F(φ)

∂φ2
= t0 + 2(8−Nf )φ (5.3)

This theory has the common SO(2Nf ) global symmetry associated to SU(2)

gauge theory with Nf flavors.
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The above expression can be generalized to include masses for the fla-

vors, as well. It is worth discussing a few caveats about the parameters before

doing so, however. First, as discussed in [10], the masses of these hypermul-

tiplets in the effective Lagrangian can be analytically continued to include

negative masses. The only importance is in preserving the relative sign of

hypermultiplet masses. Their presence is significant, though, as it will in fact

enrich the phase structure of our parameter/moduli space.

Second, the bare coupling parameter t0 actually has a physical inter-

pretation that should be considered. Specifically, there exists a current that is

always conserved in 5D gauge theories,

j = ∗(F ∧ F ). (5.4)

This is the instanton current and corresponds to a U(1)I global symmetry. In

5D an instanton is a BPS state, and its mass depends on the bare coupling.

Thus, we can interpret t0 as the mass of a particle in some sense, and there is

an additional U(1)I global symmetry as a result.

Now we can continue on toward generalizing eq. (5.3) to include massive

flavors. However, with this generalization comes a complicated structure of

global symmetries. In order to clearly illustrate this structure, let’s use the

familiar method of brane dynamics in type-I’ string theory to discuss the

different phases of the gauge theory.
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5.1 5D Gauge Theories from Type-I’ String Theory

In the section on 6D orbifold theories, we introduced the background of

type-I’ string theory. Consisting of an interval with O8-planes at the bound-

aries, the −8 D-brane charges associated to each O8-plane forces us to in-

troduce 16 D8-branes to ensure D-brane charge neutrality. For the sake of

interest, let’s situate the D-branes so that Nr of them are near one boundary

(R = 0) and Nl = 16 − Nr are near the opposite boundary (R = L). We

discussed the different possible arrangements of the D8-branes and resulting

gauge groups earlier in this work, but what we’d like to do now is probe these

brane configurations with a D4-brane (parallel to the D8-branes in the bulk

direction) and study the resulting 5D gauge theory on the D4 world-volume.

Most of this presentation is similar to that presented in [33, 34].

Consider the D4-brane in the vicinity of the R = 0 boundary, far from

the R = L boundary. In parameter terminology, the distance of the D4-brane

from the boundary corresponds to the Coulomb branch scalar VEV, and the

position of each D8-brane corresponds to the mass mi of a hypermultiplet in

the SU(2) gauge theory ( at φ = 0) formed by open strings between it and the

D4-brane. This implies that we will be considering configurations with general

constraints

m1, ...,mN0 , φ� mN0+1, ...,m16, (5.5)

so that n = Nl of the flavors are very heavy and can be integrated out. The

gauge symmetry of any given brane configuration manifests as a global symme-

try on the D4 world-volume theory. Additionally, as the D4-brane approaches
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the boundary (φ → 0), states due to open strings between it and its mir-

ror image in the orientifold plane become light. When the D4-brane meets the

boundary (φ = 0), these states become massless and the U(1) gauge symmetry

on the world-volume is enhanced to Sp(1) = SU(2), as expected.

To begin, let N0 D8-branes be stacked on the O8-plane, Nr − N0 of

the D8-branes in the bulk away from the boundary, and φ small. Near the

boundary the world-volume theory is SU(2) gauge theory with N0 flavors and

from eq. (5.3), we know that the corresponding effective coupling is simply

teff = t0 + 2(8−N0)φ. (5.6)

As φ increases and approaches the first D8-brane away from the boundary at

m1, the hypermultiplet associated to that D8-brane is becoming massless. For

φ > mi, the effective coupling gains a linear correction based on the coupling

at that D8-brane:

teff = teff (m1) + 2(8−N0 − 1)φ

= t0 + 2(8−N0)m1 + 2(8−N0 − 1)φ.
(5.7)

As the D4-brane continues to pass D8-branes, the effective coupling picks up

corrections in a similar fashion. This behavior can be generally expressed as

teff = t0 + 16φ−
Nr∑
i=1

|φ−mi| −
Nr∑
i=1

|φ+mi|. (5.8)

As a quick note, notice that for the case Nr = 8 and φ > mNr , we have

teff = t0, (5.9)
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so in a way we can view this bare coupling (the mass of the instanton) as the

asymptotic value for large φ with eight flavors. Thus, in order to maintain

t ≥ 0, it is necessary for t0 ≥ 0. Beyond eight flavors, φ is necessarily bounded

above by t0.

Let’s consider the specific case of Nf flavors on the boundary, and one

flavor out in the bulk at m0. For φ > m0, we know from eq. (5.8) that the

effective coupling has the form

teff = t0 + 2(8−Nf − 1)φ. (5.10)

As we cross over the D8-brane in the bulk, so that φ < m0, we can use eq.

(5.8) once again to generate the effective coupling,

teff = t0 − 2m0 + 2(8−Nf )φ = t′0 + 2(8−Nf )φ, (5.11)

where we have define t′0 = t0 − 2m0 as a “corrected” bare coupling of sorts

for the SU(2) gauge theory at the boundary. This formalism sheds light on

something mentioned above, namely that there is a critical position of the

brane in the bulk such that the coupling diverges at the boundary, m0 = 1
2
t0.

This divergence corresponds to an enhancement of the gauge symmetry in the

brane configuration, i.e., an enhanced global flavor symmetry on the 4D world-

volume theory near the boundary. At such strong coupling, the notion of a

particle is not well-defined, and at φ = 0 the theory is a nontrivial interacting

conformal field theory with global symmetry SO(2Nf )×U(1)I → ENf+1, where

the U(1)I is the global symmetry for the instanton current. Put another way,
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we can associate t′0 with (some simple redefinition of) the instanton mass, so

the symmetry enhancement occurs when the instanton becomes massless, for

a total of Nf + 1 massless states to generate the ENf+1 global symmetry.

Finally, let’s return to the idea that the masses need not be positive

and specify Nf = 1 for our personal interests. The 5D theory at the boundary

(φ = 0) has trivial flavor symmetry for generic values of m0, but the flavor

symmetry is enhanced to E2 = SU(2) × U(1) at the critical value of m0.

Allowing the flavor hypermultiplet to gain a mass m > 0 with m0 fixed will

result in a theory that is still infinitely coupled, now with E1 = SU(2) global

symmetry and effective coupling

teff = t0 − 2m0 − 2m = −2m. (5.12)

Allowing m to return to 0 and then go negative, we see that there is a new

phase in the effective gauge coupling:

teff = (t0 − 2m0 − 2m) + 4m. (5.13)

We now see an additional superconformal fixed point in the effective coupling

along the locus in which t0−2m0−2m > 0 and m < 0 but t0−2m0 +2m0 = 0.

At this fixed point the theory has an Ẽ1 = U(1) global symmetry corresponding

to this single parameter. If we additionally allow for t′0 + 2m0 < 0, then the

theory flows to an isolated superconformal fixed point with E0, i.e. trivial,

global symmetry.

The brane dynamics behind these theories involve a major change in

the structure. In the regime m0 ≥ 0 studied thus far, we have been able
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to consider the classic moduli space of the type-I’ string theory, and left the

infinite-coupling dynamics as limiting cases. The Ẽ1 and E0 theories, however,

require that we go beyond the classical limit and consider excited O8-planes

[17], denoted O8*-planes. These have D-brane charge −9 instead of −8. As

the mass parameter m approaches zero and then turns negative, the D8-brane

enters the O8-plane and goes “behind it.” Thus, its image exists on the actual

physical interval. The image has mass parameter m′ = t0−2m0+2m and hence

the Ẽ1 fixed point corresponds to the D8-brane and its image coinciding at

the boundary, m′ = m = 0. Open strings between the D6-brane and D8-brane

thus create a massless hypermultiplet here. Allowing m′ < 0 corresponds to

dropping the original D8-brane further into the image, and hence its image

D8-brane leaves the O8*-plane, the hypermultiplet gaining mass |m′| in the

process. The resulting theory at the O8*-plane is the E0 SCFT.

5.2 M-theory and Calabi-Yau Threefolds

We mentioned previously that “compactifying M-theory on an orbifold”

is really an abbreviation for “compactifying M-theory on a Calabi-Yau three-

fold and considering the singular limit in which it approaches an orbifold.” In

light of the above discussion of 5D field theory, consider such a compactifica-

tion of M-theory. There is a wealth of literature on this topic, [11–13], but we

will be concerned chiefly with the singular structures of these constructions

[10, 17]. Specifically, we want to consider the case in which only a proper

subset of the Calabi-Yau threefold vanishes. This subset forms an imbedded
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surface of lower dimension in the threefold. In the proceeding, we are trying to

make contact with the SU(2) gauge theories discussed above. As the moduli

space of these gauge theories are one-dimensional, we wish to only vary one

parameter to shrink these surfaces. This limits us to complex codimension-one

surfaces.

To illustrate, consider the case in which the subset of interest is the

Hirzebruch surface F1, which is isomorphic to CP2 blown up at one point.

This surface contains one 2-cycle corresponding to the blow-up CP1 and one

4-cycle, namely the entire F1. Wrapping an M2-brane on the 2-cycle creates a

BPS state with mass proportional to its volume. Blowing this CP1 down then

corresponds to a massless particle. At this wall of the Kähler cone there is a

possible flop transition to “negative volume” under which the 4-cycle becomes

a CP2. Shrinking this 4-cycle yields the E0 SCFT from earlier, while instead

shrinking the F1 yields the Ẽ1 SCFT. Each orbifold fixed point we will consider

has a corresponding blown up 4-cycle in this general fashion that we wish to

blow down, so we see that the complications associated to these 5D SCFT’s

will be prevelant going forward. The strategy we employ to make them more

manageable begins with the brane web construction of 5D gauge theories.

5.3 Brane Webs

Part of the S-dual nature of type-IIB string theory is the existence

of two extended objects of the same dimension: the D5-brane and the NS5-

brane. We wish to study the resulting gauge theories of certain configurations
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of these branes. These configurations, called brane webs [18, 19], are built

out of D5-branes whose world-volumes fill x0, ..., x4, x5 and NS5-branes filling

x0, ..., x4, x6. We will consider combinations of p of these D5-branes and q

NS5-branes, referred to as (p, q)-branes. These branes’ world-volumes share

x0, ..., x4, where we will build our nontrivial 5D theories. The rest of the

(p, q)-branes fill a plane whose coordinates we will label as (x, y).

Type-IIB also contains a complex scalar field that transforms under

SL(2,R),

τ = χ+ ie−Φ, (5.14)

where Φ is the dilaton whose exponentiated VEV gives the string coupling,〈
eΦ
〉

= λ, and χ is the RR scalar, also known as the axion. In this notation,

the tension of a (p, q)-brane is written as

T(p,q) = |p+ τq|TD5, (5.15)

where TD5 is the D5-brane tension. Additionally, these (p, q)-branes are al-

lowed to form vertices as long as the RR- and NSNS-charges are conserved,∑
i

pi =
∑
i

qi = 0. (5.16)

As far as supersymmetry is concerned, it is possible to preserve 8 of the 32

supercharges (which we want for 5D N = 1) by demanding [35]

∆x+ τ∆y → p+ τq, (5.17)

i.e., the (p, q)-branes are required to “have a slope” in the (x, y)-plane parametrized

by p and q. For ease of drawing, we will normalize so that τ = i, meaning that

a (1, 1)-brane will have a slope of 1.
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Knowing that these (p, q)-branes can form vertices in the (x, y)-plane

implies that they can be semi-infinite with one end terminating at a vertex

or finite with both ends terminating at vertices. Combining (p, q)-branes in

this fashion forms the basis of the brane webs we will be considering. Fig. 5.1

contains some examples of such configurations. Looking at these brane webs,

we see two obvious forms of deformations that we would like to associate to

parameters. Namely, we can think of deformations that have no effect on the

asymptotic structure and deformations that do. For reasons that will soon

become obvious, we will refer to these as local deformations and global defor-

mations, respectively. This first type, local deformations, refers to breathing

modes of closed surfaces on the (x, y)-plane, as is denoted with the dashed line

in Fig. 5.1a. The parameter associated to this breathing mode corresponds to

the VEV of a real scalar field in a BPS vector multiplet formed by a funda-

mental string stretched between two parallel D5-branes ((1, 0)-branes). These

states are the familiar U(1) gauge fields associated to strings on D-branes.

When the VEV is zero so that the two D5-branes are coincident, we have

gauge symmetry enhancement in the usual fashion.

For the second type of deformation, global deformations, we must be

careful so as not to overcount actual relevant deformations. Naively, we count

one generator for every semi-infinite (p, q)-brane; let’s say there are nsemi of

them. However, not all of these are linearly independent. For example, our

resulting 5D theory should not care about relative translations of the brane

web in the x- or y-directions, so two combinations of generators are in fact
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(a) (b)

Figure 5.1: Brane webs for flavorless SU(2) SYM (a) and Nf = 2 SU(3) gauge
theory (b).

irrelevant. Additionally, charge conservation at each vertex has the global

effect of fixing one vertex uniquely if all others are designated, so another

generator is irrelevant. Thus, the number of generators of global deformations

we end up with is

nglobal = nsemi − 3, (5.18)

and there is a corresponding global symmetry of rank nglobal. Specifically, for

the brane web in Fig. 5.1a, there is nglobal = 4 − 3 = 1 generator correspond-

ing to the width of the brane web. This U(1)I global symmetry is just the

symmetry associated to the instanton current, and the BPS instanton state

follows from stretching a D1-string to connect the two parallel NS5-branes

((0, 1)-branes) in the web. As discussed earlier, the mass of the instanton

is associated with the bare coupling of the 5D gauge theory, so we can thus

associate the width of the brane web with this bare coupling.

The brane web in Fig. 5.1b has a significant increase in intricacy. First,
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we have two closed surfaces in the (x, y)-plane, signifying a U(1)2 gauge sym-

metry. Following the logic above, one should be able to see that when these

surfaces both collapse so that 3 D5-branes are coincident, the gauge symme-

try is enhanced to SU(3). The semi-infinite D5-branes have a less immediate

interpretation, however. We know from above that they should generate some

global symmetry. The symmetry in question is actually a flavor symmetry, and

thus these branes must generate BPS states, as well. These states correspond

to strings that connect these semi-infinite branes to other D5-branes but are

along the (p, q)-branes instead of in the empty space of the (x, y)-plane. These

strings not fundamental strings or D1-strings, but instanton strings of the 6D

world-volume theory on the (p, q)-brane. These are thus usually referred to as

(p, q)-strips as opposed to strings [18].

Finally, we can have combinations of fundamental strings and D1-

strings that can meet at vertices and form towers of BPS states. For instance,

consider both brane webs in Fig. 5.2. They are two different phases of SU(2)

SYM that we will discuss below, but for now we just want to take notice that

the BPS instanton-like state in Fig. 5.2b cannot be constructed as simply as

the one in Fig. 5.2a, but must be a bound state from multiple (p, q)-strings.

The brane webs in Fig 5.2 demonstrate another key point about these

configurations. Let’s first consider a slightly different example in which we

have SU(3) gauge symmetry instead of SU(2), as in Fig. 5.3. All of these

models have the same Coulomb branch, but differ in their BPS spectra. This

is a consequence of the Chern-Simons coupling in each model, and the differ-
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(a) (b)

Figure 5.2: Instanton-like states for SU(2) SYM, θ = 0 (a) and θ = π (b).

ent brane webs correspond to a distinct Chern-Simons number, k [18]. Any

additional brane webs are related to these by an SL(2,Z) transformation or

have negative k, which produces identical BPS spectra. Extending this rela-

(a) (b)

(c) (d)

Figure 5.3: Brane webs for SU(3) SYM with (a) k = 3, (b) k = 2, (c) k = 1,
and (d) k = 0.

tionship to SU(2) is met with some difficulty. On one hand, it is obvious that

there are multiple pure SU(2) SYM brane webs, as in Fig. 5.4. On the other
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hand, SU(2) has no cubic invariant, so it has no Chern-Simons term. How-

ever, similar to 4D where π3(SU(2)) = Z leads to a vacuum θ-angle that can

take values in {2πZ}, in 5D we have π4(SU(2)) = Z2 which leads to a θ-angle

that can take values {0, π mod 2πZ}. We thus have two SU(2) SYM theories,

differing by the value of a θ-angle. These different phases are represented in

the various brane webs in Fig. 5.4. It’s curious that from the field theory point

of view, θ = 0 and θ = 2π should be identical. However, the brane webs in

Fig. 5.4a and Fig. 5.4c appear to be quite different. As it turns out, they do

produce the same spectra as long as the bare coupling does not vanish. As it

approaches zero, 6D strings stretched across the semi-infinite NS5-branes in

Fig. 5.3a become tensionless, and the physics here is less understood [18].

(a) (b)

(c)

Figure 5.4: Brane webs for SU(2) SYM with (a) θ = 2π, (b) θ = π, and (c)
θ = 0.
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As demonstrated above, brane webs are extremely useful for construct-

ing 5D SU(N) gauge theories (though it is not explicitly presented, brane

webs properly reproduce our results for the effective coupling). Their particu-

lar usefulness in our case, though, comes from their relationship to toric data

[18]. Specifically, we will be able to make use of the toric diagrams associated

to the resolution of singularities in each orbifold we consider1. Toric diagrams

and brane webs are in some sense “dual” to each other. Consider, for example,

the toric diagram in Fig. 5.5b. This can be derived from the brane web in Fig.

5.5a (and vice versa) by (1) replacing each face (open or closed) with a point,

(2) replacing each vertex with a triangular face, and (3) rotating each line by

90◦ to connect the points and act as the edges of the triangular faces. With

some resizing, you can see this overlayed in Fig. 5.5c

This translation between toric data and 5D gauge theories allows us to

consider M-theory compactified on (blown-up) orbifolds. It is an important

step for us to take, but it is still far from sufficient. As elegant as brane webs are

for constructing 5D gauge theories, they are poorly suited for compactifying

on S1/Z2 to make contact with the heterotic theory. Luckily, we will see that

there is another method for studying these theories, namely deconstruction,

that lends itself quite well to compactification on an interval.

1A useful primer on toric diagrams and the “Inverse Algorithm” for extracting gauge
theory information from toric data is [36].

45



(a) (b)

(c)

Figure 5.5: The brane web for SU(2) SYM with θ = 0 from above (a), its dual
toric diagram (b), and the two overlayed (c).
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Chapter 6

Deconstruction

In deconstruction, the 5D theory is compactified on a circle, and then

this compactified dimension is latticized [31]. Being that 5D gauge theories are

nonrenormalizable, this latticization acts as a necessary UV-cutoff. These lat-

tice sites can be interpreted as nodes of a quiver, and the resulting description

is a 4D N = 1 quiver gauge theory. The quiver theory can be quite compli-

cated, but enables the use of 4D calculation methods and (as we will discuss

later) simplifies the process of compactifying on S1/Z2. The deconstruction

of general 5D SU(Nc) SYM was derived in [23], and general SQCD with Nf

flavors and Chern-Simons level k was derived in [25].

6.1 Deconstructing SQCD on S1

We will begin with a 4D, N = 1 quiver gauge theory with gauge group

G =
L∏
`=1

SU(Nc)`. (6.1)

At each node, there are Nf quark chiral superfields Qf
` in the fundamental

representation of SU(Nc)` and Nf antiquark chiral superfields Q̃f
` in the an-

tifundamental representation. Between the nodes are bifundamental linking
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chiral superfields Φ` in the fundamental representation of the (` + 1)th node

and the antifundamental representation of the `th node. Making the identi-

fication ` → ` + L, we see that ΦL links the Lth node to the first node. In

this way, the quiver can be arranged in a circle as in Fig. 6.1. To complete

the description of the quiver, we note that the gauge couplings at each node

must be equal, g` = g ∀`. This is necessary for translation invariance in the

x4-direction.

For this quiver theory to deconstruct 5D SU(Nc) SQCD, it is necessary

to introduce a couple of superpotential terms. The first of these is the usual

”hopping” superpotential,

Whop = γ
L∑
`=1

Nf∑
f=1

(
Q̃f
`+1Φ`Q

f
` − µfQ̃

f
`Q

f
`

)
, (6.2)

which allows the quark fields to propagate in the latticized x4-direction. Here,

to ensure that the speed of light for quarks and gluons is the same, it is

necessary to impose that the Yukawa coupling γ be equal to the gauge coupling,

γ = g. (6.3)

The second superpotential term that is needed is the O’Raifeartaigh superpo-

tential

WΣ = β

L∑
`=1

σ`
(
det (Φ`)− vNc

)
(6.4)

where v > 0 is a constant and we have introduced the singlet chiral superfields

σ` as Lagrange multipliers. Running along with the link fields in the quiver
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Figure 6.1: Deconstructive quiver. Each circle is a gauge group SU(Nc)`
and each line is a chiral superfield. An ingoing arrow signifies that the chiral
superfield is in the fundamental representation under SU(Nc)` and an outgoing
arrow is in the antifundamental representation. Hence, the lines between nodes
are the bifundamental link fields, while the ingoing (outgoing) arrows at each
node represent the quarks (antiquarks); Nf = 1 above.

diagram, they have the effect of turning each link field into an SL(Nc,C) linear
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sigma model with the on-shell condition

det (Φ`) = vNc . (6.5)

Thus, we can define the scalar part of Φ` as

Φ`(x)|θ=θ=0 = v × P exp

(∫ a(`+1)

a`

dx4 (iA4(x) + φ(x))

)
, (6.6)

where φ is the real scalar superpartner of the 5D vector field Aµ, µ = 0, 1, 2, 3, 4

and a is the lattice spacing. For φ = A4 = 0, eq. (6.5) constrains the VEV of

the scalars in the Φ` fields to satisfy

〈Φ`〉 = v × INc×Nc ∀` (6.7)

which breaks the 4D gauge symmetry to the diagonal SU(Nc) of G. This

quiver theory correctly reproduces the spectrum of 5D SQCD with gauge group

SU(Nc) and Nf flavors compactified on a circle with the conditions

a =
1

g|v|
, 2πR = La. (6.8)

For the masses of the quarks to deconstruct properly, the quiver masses µf

must be related to the 5D masses mf as

µf = veamf . (6.9)

Thus, for there to be light 5D quarks, it is necessary that µf ≈ v, and massless

5D quarks correspond to µf = v.

The quiver theory also properly deconstructs the Coulomb branch of

the 5D theory. To see this, note that the D-term constraints for each SU(Nc)
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gauge group combine to give

Φ†`Φ` − Φ`−1Φ†`−1 ∝ INc×Nc . (6.10)

Along with eq. (6.5), these constraints force the Φ` VEV’s to be equal (modulo

an `-dependent gauge transformation). These matrices can be simultaneously

diagonalized to take the form

〈Φ`〉 = v diag (eaϕ1 , eaϕ2 , ..., eaϕNc ) (6.11)

with complex ϕk’s subject to Σkϕk = 0. From eq. (6.6), we conclude that the

ϕk’s can be identified as

〈φ〉+ i 〈A4〉 = diag(ϕ1, ϕ2, ..., ϕNc). (6.12)

This is exactly as expected for a 5D vector multiplet compactified on a circle.

Finally, it is possible to deconstruct the Chern-Simons coupling of 5D

SQCD. The details are tedious, but have been worked out in [25]. For our

purposes, it is only necessary to consider the case where the masses of the

4D quarks are µf = 0. As discussed earlier, it is necessary for µf ≈ v for

the 5D quarks to have light modes. When µf � v, the 5D quarks have a

large positive mass and actually decouple above the deconstruction threshold.

However, when µf � v, the 5D quarks are within the deconstruction threshold

but have a large negative 5D mass and can be integrated out. This is the case

for µf = 0 (mf → −∞), which has the benefit of decoupling the Φ` linear

sigma models from each other. If this occurs, then the resulting Wess-Zumino
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couplings of these link fields deconstruct the Chern-Simons coupling of the 5D

theory, and we find

k = Nc −#{f : µf � v} − 1

2
#{f : µf ≈ v} = Nc −∆F − 1

2
Nf , (6.13)

where ∆F symbolizes the number of quark flavors that have no light 5D modes

but still affect k.

6.2 Deconstructing SQCD on S1/Z2

The deconstruction procedure on S1 above already highlights most of

the machinery we need to extend to S1/Z2. In fact, everything we discussed

applies to the bulk nodes of our interval quiver. It is only the boundary nodes

that need to be properly defined. Specifically, recall from eq. (3.2) that some

of the components of the 3-form field C in M-theory have even boundary

conditions under the Z2 action while others have odd:

CIJ10 → CIJ10,

CIJK → −CIJK .
(6.14)

Wrapping this C on 2-cycles in the Calabi-Yau threefold on which we’re com-

pactifying produces the 5D gauge fields that we are deconstructing. We there-

fore must carry these boundary conditions down to the descendent gauge fields.

The components perpedicular to the interval, CIJK , compactify on the 2-cycles

to produce the 4D gauge fields in the low-energy effective action. However,

being odd under the Z2 action means that these gauge fields cannot have zero

modes at the fixed points. We are thus forced to conclude that the gauge
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symmetry vanishes at the boundaries. In terms of our quiver, it is necessary

that there be no gauge symmetry on the boundary nodes. Instead, there is a

surviving global symmetry acting on any chiral fields that were charged under

the now-absent gauge symmetry. For example, consider the quiver associated

to SU(Nc) SQCD with Nf = 1 compactified on an S1 in Fig. 6.1. The same

theory compactified on S1/Z2 would have a quiver of the form in Fig. 6.2.

Figure 6.2: The deconstructive quiver for the model. The circular nodes are
SU(Nc) gauge groups and the square nodes are SU(Nc) global groups. All
nodes have Nf = 1.

The Z2-even part of C, CIJ10, descends to the x4-component of the 5D

gauge field that gets compactified on the interval. Being even, this field does

have zero modes on the boundary. It is also charged under the gauge sym-

metry of the immediate bulk mode, so it forms an SU(Nc)gauge×SU(Nc)global

bifundamental chiral field. The superpotential terms that we introduced sur-

vive, also, and give these states nontrivial interactions with the gauge singlet

states on the boundaries. Now that we have all of the necessary tools to begin

handling some of these models, let’s investigate the T 6/Z3 orbifold.
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Chapter 7

Z3 Orbifold

As previously mentioned, the Z3 orbifold starts with a torus. The torus

in this case is constructed by taking the complex three-plane C3 and modding

by the SU(3)×SU(3)×SU(3) root lattice ΛSU(3)3 . This 6D root lattice can be

decomposed into the product of three 2D root lattices ΛSU(3)×ΛSU(3)×ΛSU(3),

where each identifies points on C by

zi ∼ zi + 1, zi ∼ zi + e
πi
3 . (7.1)

Fig. 7.1 illustrates each individual complex dimension under this action. From

here, we act on this torus with a Z3 twist. As discussed earlier, the consistent

twist vector is ~r = (1, 1,−2)1. This acts on the coordinates of the torus by

identifying points under

zi → e(2πi)ri/3zi. (7.2)

1Since the twist vector components act on the coordinates as zi → e(2πi)ri/3zi, they
are invariant under shifts ri → ri + 3. Thus, the shift vector could instead be written as
~r = (1, 1, 1), so we see that it actually acts identically on all complex coordinates of the
torus.
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𝜋

3
 

Figure 7.1: The SU(3) root lattice on C. The gray region signifies the funda-
mental domain of the torus in one complex dimension.

Looking at one complex coordinate of the torus, we see that there are three

fixed points of the action on it2:

zifixed = 0,
1√
3
e
πi
6 ,

2√
3
e
πi
6 (7.3)

A fixed point on the T 6/Z3 must be a fixed point on each of the complex

coordinates. This implies that there are 33 = 27 fixed points of the twist

on the T 6, one for each combination of fixed points on the torus coordinates.

Table 7.2 shows the fundamental domain of each coordinate after orbifolding.

2There is only one fixed point on C, zifixed = 0. The other two fixed points on the torus
require the action of the root lattice, eq. (7.1).
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Figure 7.2: The orbifold action on a complex coordinate of the torus. The
fixed points are labeled. The lighter region signifies the fundamental domain
of the orbifold on the SU(3) root lattice. The action of the point group of
the torus identifies the fixed point at the origin with both of the remaining
corners of this region, so they must be identified. The orbifold is folded across
the dashed line as a result.

Next, we need to investigate the possible values for the gauge shift

vector ~s. Along with ~r, this must satsify eqs. (2.11) and (2.12). Breaking ~s

into two 8-vectors ~s1 and ~s2, eq. (2.11) limits the possible gauge shift vectors.

We can check the roots of the E8 root system to see which ones do not project

onto this shift vector and preserve some of the gauge symmetry. We can

also check to see which do project onto the shift vector, corresponding to the

untwisted sector. The results of this are in Table 7.1. When the unbroken
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gauge groups are (appropriately) combined, the untwisted sectors of the E8

subgroups make up the total untwisted sector of the model.

Normalized
Shift Vector

Gauge Symmetry Untwisted Spectrum

(08) E8 −

(1
3
, 1

3
,−2

3
, 05) E6 × SU(3) 3(27,3)

(1
3
, 1

3
, 06) E7 × U(1) 3(562 + 1−4)

(1
3
, 1

3
, 1

3
, 1

3
,−2

3
, 03) SU(9) 3(84)

(2
3
, 07) SO(14)× U(1) 3(64−1 + 142)

Table 7.1: The allowable normalized shift vectors, along with their correspond-
ing unbroken gauge symmetries and untwisted spectra. Subscripts denote U(1)
charges.

The breaking of E8×E8 must be consistent with eq. (2.12). This highly

constrains which of the E8 subgroups in Table 7.1 are able to combine with

each other. The combinations that meet these criteria are listed in Table 7.2.

The twisted spectra for these models are also given. A copy of each spectrum

is localized at each fixed point, so the multiplicity of states is 27.

In the twisted spectra presented in Table 7.2, there is a pecularity in

model 2 similar to what we alluded to earlier. Namely, there is a single state

that is charged by subgroups of each E8 group. This state is perfectly rea-

sonable from the string theory point of view, but must somehow be charged

across the bulk in the M-theory picture. This is an example of the situation
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Gauge Symmetry Twisted Spectrum Anamolous

1 E6 × SU(3)× E ′8 (27,1;1) + 3(1,3;1) No

2 E6×SU(3)×E ′6×SU(3)′ (1,3;1,3) No

3
E7 × U(1)× SO(14)′ ×

U(1)′
(1;14)0;2 + (1,1)0;−4 +

3(1,1)4;0
Yes

4 SU(9)× SO(14)′ ×U(1)′ (9;1)−4/3 Yes

Table 7.2: The Modular invariant models with Z3 twisted states charged under
subgroups of both E8’s. For each model, there are 27 states (one at each fixed
point). Subscripts denote U(1) charges. The U(1) gauge anomalies are also
indicated.

we wish to explain. Our standard procedure as we investigate each orbifold

with states posing this predicament will be to use the toric diagram for the

resolved fixed point to build the corresponding brane web. We can then use

this brane web to identify key details about the 5D gauge theory, such as the

gauge group, matter content, and Chern-Simons number. This allows us to

deconstruct this gauge theory, modify the boundaries to reflect compactifica-

tion on S1/Z2, and look at the spectrum as we drive the moduli/parameters

toward the corresponding blow-down limit in the geometry.

7.1 Deriving the Brane Web

The blown-up fixed point of the C3/Z3 orbifold can be identified with a

CP2, and has a toric diagram of the form in Fig. 7.3. We can see the procedure

for finding the corresponding brane web in Fig. 7.4. Compared to our earlier

examples, this brane web has a very peculiar structure. First, there are only
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Figure 7.3: The toric diagram for the C3/Z2 (resolved) fixed point.

three external legs, so eq. (5.18) would imply that the rank of the global

symmetry in the theory is nglobal = 3− 3 = 0, i.e., there is no global symmetry

Second, we recognize a breathing mode for the closed surface in Fig. 7.4c, but

since this closed face is a triangle, it collapes to a point rather than a line, and

we find no gauge symmetry enhancement. At this point, the effective coupling

diverges and we have the previously mentioned E0 SCFT. Thus, the resolved

orbifold singularity corresponds to this theory deformed away from its fixed

point, along its Coulomb branch. Due to its significance to the situation at

hand, it is worthwhile to explore some of the features of this theory in more

detail.

7.2 The E0 SCFT

The E0 SCFT is difficult to study due to its isolated nature. There is

no gauge theory that flows to the E0 SCFT by itself. The best we can do is
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(a) (b)

(c)

Figure 7.4: Converting the toric diagram to a brane web: (a) the toric dia-
gram, (b) an overlay of the conversion, and (c) the brane web with blow down
indicated by the dashed line.

flow to it with the assistance of additional matter. To see this, consider SU(2)

SYM with θ = π along its Coulomb branch with brane web in Fig. 5.4b. The

theory has two parameters to vary: the breathing mode corresponding to the

modulus φ that breaks the gauge symmetry SU(2) → U(1) for φ 6= 0 and

the width of the D5-branes at φ = 0 corresponding to the bare coupling/mass

of the SU(2) instanton t0. We can vary these parameters and explore the
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different limits that result. Starting at t0 > 0, φ > 0 as in Fig. 7.5a, we can

let t0 → 0. At t0 = 0, the quantum corrected coupling is still positive, so

the theory is still SU(2) SYM with θ = π, as in Fig. 7.5b. Continuing into

negative t0
3, we eventually reach a point t0 = tflop where the coupling diverges

and a quark becomes massless (the mass depends on the length of the bottom

brane, which goes to zero at tflop, Fig. 7.5c). Past this point, there is a flop

transition as seen in Fig. 7.5d. This new phase has a massive quark with a

mass proportional to t0. In the low energy effective theory, we only care about

the massless spectrum, so we neglect this massive quark. The resulting theory

represented by the brane web in Fig. 7.5e is the E0 theory along its Coulomb

branch. Its massless spectrum consists of a single U(1) vector multiplet whose

scalar field φ̂, a linear combination of φ and t0, characterizes the breathing

mode of the resulting triangle. There is no possible global deformation, so

there is no global symmetry in the E0 theory, as stated earlier. When φ̂ = 0

as in Fig. 7.5f, the coupling diverges and we reach the E0 SCFT point in the

moduli space.

7.3 Deconstructing the Fixed Point Theory

From above, we can see that to make contact with the E0 SCFT, we

will need to deconstruct SU(2) SYM with θ = π. We’ve already mentioned

that, unlike for Nc > 2, their is no cubic invariant for SU(2), so there is no

3There is no inconsistency in letting t0 go negative here. One way to have θ = π is to
add a flavor to SU(2) with θ = 0, let it become heavy (m > φ), and then integrate it out.
Then our “bare coupling” has the form t0 − 2m, i.e., it can be negative.
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(a) (b) (c)

(d) (e) (f)

Figure 7.5: Brane webs for SU(2) SYM with θ = π. (a) t0 > 0, φ > 0, (b)
t0 = 0, φ > 0, (c) t0 = tflop < 0, φ > 0, (d) t0 < tflop < 0, φ > 0, (e) E0 SCFT

along its Coulomb branch, φ̂ > 0, (f) E0 SCFT, φ̂ = 0.

Chern-Simons term. However, by starting with SU(3) SQCD and Higgsing

down to SU(2), it is easy to see that the SU(2) θ-angle is related to the

SU(3) Chern-Simons coupling (mod 2) [25]. Thus, the proper quiver theory

to deconstruct E0 will have Nc = 2, Nf = 0, and ∆F = 1.

The chiral ring of this quiver has already been analyzed in [24] and the

Seiberg-Witten spectral curve in [25], so we will focus instead on the relevant

results. According to the deconstruction dictionary, the coupling at the origin

of the Coulomb branch has the following form:

t0 ≡
3

a
log

(
v

|γ| 13 Λ

)
, (7.4)
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where Λ is the dimensional transmutant introduced by instanton effects. For

t0 > 0, the low energy effective gauge coupling along the Coulomb branch has

the proper form with Nf = 0 [17]

teff = 2t0 + 8φ, (7.5)

with SU(2) restoration at φ = 0.4

For t0 < 0 the structure of the Coulomb branch is more complicated.

In the regime φ > (−t0) > 0, the gauge coupling still has the same form as for

t0 > 0, eq. (7.5). As φ→ −t0, a quark is becoming light and becomes massless

at φ = −t0. This is reflected in the fact that the gauge coupling abruptly

transitions to

teff = 3t0 + 9φ (7.6)

for (−t0) > φ > (−t0/3). In this regime, it is convenient to define φ̂ = φ+(t0/3)

so that we can rewrite eq. (7.6) as teff = 9φ̂ and consider what happens as

φ̂→ 0. It is clear that the theory is approaching a fixed point, teff → 0, and

it can be identified as the E0 fixed point. In light of this, it becomes clear

that the regime (−t0) > φ > (−t0/3) deconstructs the Coulomb branch of

the E0 theory. Note that all of these phases identified in the deconstructed

theory match the phases identified using the brane web techniques illustrated

in Fig. 7.5. The last regime, (−t0/3) > φ > 0, has no corresponding brane

4This is true up to some arbitrary redefinitions of parameters that we neglect in order
to keep with [25].

63



web because it is a nongeometric phase that disappears as the fifth dimension

is decompactified.

Let us examine this E0 modulus φ̂ in more detail. We rewrite the VEV’s

of the link fields in the form

〈Φ〉 = v

(
eaϕ 0
0 e−aϕ

)
=

(
ω1 0
0 ω2

)
. (7.7)

Since φ = Re(ϕ) ∝ log(|ω1/v|), for our current purposes we can simply con-

sider ω1 to be real. This allows us to cleanly write φ̂ in the form:

φ̂ =
1

a
log
(ω1

v

)
+

1

3

(
3

a
log

(
v

|γ| 13 Λ

))

=
1

a
log

(
ω1

|γ|
1
3 Λ

)
.

(7.8)

Written in this way, it becomes evident that the Coulomb modulus φ̂ is actually

independent of v! Originally, v was necessarily nonzero in order to deconstruct

the SU(2) SYM theory. After the flop transition, however, the sole parameter,

namely the modulus φ̂, does not depend on v, signalling that v > 0 is really

just a relic from the fact that we approached the E0 fixed point from this

parent theory. By sending v → 0, we are sending t0 → −∞ according to

eq. (7.4), isolating the E0 theory from the SU(2) SYM phase as we did with

the brane webs. Thus, we will proceed to set v = 0 for the remainder of this

section.

64



7.4 Spectrum at Blow-down

Consider the first gauged node, ` = 1. The superpotential terms that

contain fields charged under SU(2)2 are

Wtree,`=1 = Q̃1Φ0Q0 + σ0 det (Φ0) + Q̃2Φ1Q1 + σ1 det (Φ1) , (7.9)

where we have rescaled γQ̃` → Q̃`, βσ` → σ` for simplicity. Let us now

temporarily relax the constraint that all gauge couplings be equal and, in the

spirit of [30], assume that Λ1 � Λ` ∀` 6= 1. In this limit, the effective theory

looks like SU(2)1 gauge theory with SU(2)2 a global symmetry (the fields at

all other nodes are decoupled singlets under the gauge symmetry so we neglect

them). Thus, the SU(2)1 × SU(2)2 bifundamental field Φ1(αα̇), α = 1, 2 and

α̇ = 1, 2, now represents two doublets under the gauge group just like Φ0(αα̇).

Additionally, Q̃1(α̇) now represents two singlets of the gauge group. Noting

that det(Φ`) = 1
2
Φ`(αα̇)ε

αβεα̇β̇Φ`(ββ̇), we can repackage the fields as

Q1(α) =

 Φ1(α1)

Φ1(α2)

Q1(α)

 , S1 =

 Q̃2(1)

Q̃2(2)

σ1

 . (7.10)

Similarly, we can make the definitions

Q̃1(α) =

 Q̃1(α)

Φ0(α1)

Φ0(α2)

 , S̃1 =

 σ0

Q0(1)

Q0(2)

 (7.11)

so that we can cleanly write

Wtree,`=1 = εijkS i1Q
j
1Qk1 + εijkS̃ i1Q̃

j
1Q̃k1. (7.12)
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Thus, we have an effective theory with gauge group SU(2) and Nf = 3. As in

[29], we see that this induces an effective superpotential:

Weff =
1

Λ3
1

(
detM1 − B1,iMij

1 B̃1,j

)
, (7.13)

where B1,i = εijkQj1Qk1, B̃1,i = εijkQ̃j1Q̃k1, and Mij
1 = Qi1Q̃

j
1.

In this form, the S1’s and S̃1’s act as Lagrange multipliers, imposing

the moduli constraint B1 = B̃1 = 0. Thus, the superpotential takes the form

Weff ∼
1

Λ3
1

detM1. (7.14)

F-flatness requires that
∂Weff

∂M1
= 0 at this fixed point, or in other words

∂

∂(M1)ij
detM1 = (adj M1)ji = 0. (7.15)

This constraint is only possible if the rank of M1 is at most 1. Also, the D-

terms constrain the VEV’s of Q1 and Q̃1 to be equal up to a flavor symmetry

transformation, taking the form

Q1
1 =

(
h
0

)
, Q̃1

1 =
(
h 0

)
(7.16)

with all other Qi1, Q̃i1 = 0 so that

M1 =

 h2 0 0
0 0 0
0 0 0

 , (7.17)

i.e., only M11
1 is nonzero. In the region M11

1 < O (Λ2
1) (we want to send

h→ 0), the theory confines and the appropriate degrees of freedom to consider
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are the composite fields. In the absence of Wtree,`=1, the mesons, baryons, and

antibaryons transform together under the antisymmetric 15 representation of

SU(6). However, Wtree,`=1 breaks SU(6) to SU(3)× SU(3) and gives masses

to B1,i, B̃1,i, S i1, and S̃ i1. Thus, the only massless degrees of freedom are the

M1’s.

Assume now that Λ2 � Λ` , so that SU(2)2 is gauged while the other

SU(2)’s are global symmetries. We can see that the M1’s do not have the

same charge under SU(2)2. In terms of the constituent fields, the mesons

(Φ1Q̃i1) are doublets under SU(2)2 while the remaining mesons (Q1Q̃i1) are

singlets. Thus, in the effective field theory the second gauged node appears to

be the first gauged node, with three doublets

Q̃i2 =
1

Λ1

(Φ1Q̃i1) (7.18)

and three singlets

S̃ i2 =
1

Λ1

(Q1Q̃i1). (7.19)

By repackaging the remaining fields in the same fashion as eqn. (7.10)

Q2 =

 Φ2(α1)

Φ2(α2)

Q2

 , S2 =

 Q̃3(1)

Q̃3(2)

σ2

 , (7.20)

we see that we have the same situation we started with for the first gauged

node. Integrating out the massive fields from the first gauged node gives an

effective tree-level superpotential for the second gauged node:

Wtree,`=2 = εijkS i2Q
j
2Qk2 + εijkS̃ i2Q̃

j
2Q̃k2, (7.21)
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and the previous analysis can be carried out again. This is performed induc-

tively from node to node until finally we reach the last gauged node, ` = L, in

which we are left with a composite field:

ML =

(
Q̃1

L−1∏
`=1

Φ`QL

)
, (7.22)

where we have conveniently defined

QL =

 QL

ΦL(α1)

ΦL(α2)

 . (7.23)

This field transforms in the bifundamental representation of an SU(3)×SU(3)

global symmetry (for h = 0) with an effective superpotential of the form

Weff ∼
1

Λ3L
detML. (7.24)

By the same argument in eq. (7.15), ML must be rank 1. Thus, it appears

thatML/Λ
L has the properties we seek for the twisted state at the fixed point

for the model of interest.

If instead we were in the regime M11
1 = h2 > O(Λ2

1), the effective

theory would be perturbative and the constituent fields would be the proper

degrees of freedom to consider. As it turns out, all of the singlet fields become

massive due to quantum effects. Consider, for instance, the first node. By

perturbing the superpotential with a baryon mass term Wmass = bB1,1 + b̃B̃1,1,

integrating them out, and taking b, b̃→ 0, we find an effective potential term

of the form

WS =
Λ3

1

h2
S1

1 S̃1
1 . (7.25)
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Remembering that S1
1 = Q̃2(1) and S̃1

1 = σ0, we see that these constituent fields

gain masses. At a general node, this can also be achieved by adding mass terms

Wmass,` = Φ`M`Q` + Q̃`+1M̃`+1Φ`+1, integrating out the singlet composite

fields, and taking M`, M̃`+1 → 0. Along with the Higgs mechanism eating or

giving mass to fields, we find that the only remaining massless fields in the

spectrum for h > O(Λ) are the modulus h, link fields Φ0(α1) and Φ0(α2), and link

fields ΦL(α1) and ΦL(α2). These fields have the same transformation properties

as the fields in eq. (7.32). Hence, we see the same symmetry breaking pattern

conjectured in [20].

In fact, we can actually see this transition by considering the Kähler

potential. We do not have a firm grasp on the quantum corrections, but

assuming they are reasonably under control we can qualitatively analyze the

Kähler potential, which should have the form

K ∼ (L+ 1)
((

ΛΛ
)L+1

+ tr
(
M†

LML

)) 1
L+1

. (7.26)

We see from eq. (7.22) that 〈ML〉 = hL+1.Thus, the two regimes of interest,

h > O(Λ) and h < O(Λ), correspond to drastically different Kähler potentials.

This is important because the corresponding Kähler metric Z corrects the

effective superpotential (7.24). This superpotential gives theML components

containing Φ0(α1), Φ0(α2), ΦL(α1) and ΦL(α2) a bare mass

mbare =
|h|L+1

Λ3L
. (7.27)

For h > O(Λ),

K ∼ (L+ 1)
(

tr
(
M†

LML

)) 1
L+1 ⇒ Z =

1(
hh
)L , (7.28)
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and we see that the physical mass,

mphys =
mbare

Z
=
|h|L+1

|Λ|3L
× |h|2L =

|h|3L+1

|Λ|3L
, (7.29)

is very large. On the other hand, for h < O(Λ),

K ∼ (L+ 1)
(
ΛΛ
)

+
tr
(
M†

LML

)
(
ΛΛ
)L ⇒ Z =

1(
ΛΛ
)L , (7.30)

and the physical mass,

mphys =
mbare

Z
=
|h|L+1

|Λ|3L
× |Λ|2L =

|h|L+1

|Λ|L
, (7.31)

is very small. Thus, for large M11
L /Λ

L (M11
L /Λ

L = hL+1/ΛL > O(Λ)), there

are no light composite fields involving Φ0(α1), Φ0(α2), ΦL(α1) and ΦL(α2), and

the only massless field across the bulk is M11
L /Λ

L, which we can associate

with the E0 modulus φ̂. At M11
L /Λ

L ∼ O(Λ), there is a sharp transition,

and below this point the ML’s involving Φ0(α1), Φ0(α2), ΦL(α1) and ΦL(α2) are

light, becoming massless at M11
L /Λ

L = 0. This is where there is symmetry

restoration SU(2)L × SU(2)R × U(1) → SU(3)L × SU(3)R with the massless

state Ψ =ML/Λ
L transforming bifundamentally.

7.5 Interpretation

With the construction of the state complete, we can now discuss how

it is applied to the theory in question. In the continuum limit, the product

of bifundamental fields forms a Wilson line stretched from one boundary to

the other. Thus, the state at each fixed point is a bound state of quarks from
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either boundary with a Wilson line connecting them. Because the U(1) gauge

field in the Coulomb branch originates from the 11D supergravity three-form

C, it appears that supergravity somehow mediates the interaction between

the two boundaries, becoming strongly coupled and, hence, confining at the

blow-down limit to generate the composite state. Also, note that this state is

nonlocal in 5D, and is only localized in the 4D limit where the extra dimension

shrinks to zero size and the heterotic string description is restored.

Now, let us discuss the symmetry breaking pattern in more detail.

We’ve shown that the deconstructed theory predicts that chiral fields at the

boundaries confine and form a bifundamental field charged under (at the very

least) a global symmetry, SU(3)global × SU(3)global. When the E0 theory is

deformed away from its fixed point, however, we see that the theory is no longer

confined and there is a doublet at either boundary charged under individual

SU(2)global’s. These doublets are also oppositely charged under the U(1)gauge

that is present in the Coulomb branch of E0. Thus we have states with charges

X : (2, 1) 3
2
, Y : (1, 2)− 3

2
(7.32)

under SU(2)global × SU(2)global × U(1)gauge.
5

This decomposition seems highly irregular; somehow a global SU(3)global×

SU(3)global is broken to a mixed global-gauge SU(2)global×SU(2)global×U(1)gauge.

5The original symmetry breaking is to SU(2)global×SU(2)global×U(1)global×U(1)gauge.
However, the VEV in the perturbative regime is not invariant under U(1)global but a mixture
of U(1)global and U(1)gauge which we refer to simply as U(1)gauge above. See [20] for more
detail.
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The issue is that anomaly consistency at the fixed point is satisfied with only a

global symmetry, but the blow-up procedure is not. The E0 Coulomb branch

is one-dimensional, so in order to blow up the fixed point along the Coulomb

branch, there must necessarily be a U(1) gauge field. The only symmetry

breaking consistent with the superpotential is the one above, so this particular

resolution of the orbifold requires that the boundary SU(3)’s be gauged. Thus,

we are led to the conclusion that the state with the above symmetry breaking

pattern will occur uniquely for the orbifold with E6 × SU(3) × E ′6 × SU(3)′

gauge symmetry, as this is the only orbifold with SU(3) gauge symmetries on

both boundaries.

It is important to note that the presence of the bound state alone

does not require that the SU(3)’s be gauged; it is the symmetry-breaking

pattern that requires gauged SU(3)’s. The state is simply the product of an E0

SCFT, necessarily present at the blow-down limit of a CP2, being compactified

on S1/Z2. These blown-down CP2’s describe the fixed points of any T 6/Z3

orbifold, regardless of how the gauge symmetries are broken. However, if there

are no SU(3) gauge groups following the orbifold symmetry breaking, then

there is no way to charge the state under the boundary gauge fields. Thus,

we believe the state decouples from the boundaries and is not present when

deriving the spectrum using heterotic string theory.

Following our line of reasoning, there may in fact be another instance

of this state. Specifically, the spectrum of the E6×SU(3)×E ′8 orbifold theory

contains an interesting twisted state, with charge 3(1,3;1). The presence
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of this state might indicate that the global symmetries of the state we have

created are capable of being gauged on any boundary where the E8 there

is broken to an SU(3) subgroup. As only one side has its gauge symmetry

broken in such a way, the other SU(3) remains global. Note, however, that

this state is not consistent with the superpotential derived above that breaks

the symmetry to SU(2) × SU(2) × U(1). Thus, while a fixed point of the

orbifold can be resolved, it will not be along the Coulomb branch of E0. Other

scalar fields present in the spectrum must be given nonzero VEV’s to resolve

it, and the analysis above is not applicable.

73



Chapter 8

Z4 Orbifold

From Table 2.1, the root lattice needed to build the necessary torus

for the Z4 orbifold is SO(5) × SO(5) × SU(2) × SU(2). Similar to the case

of ΛSU(3), we can plot ΛSO(5) and ΛSU(2)×SU(2) since they both have rank 2.

This is done in Fig. 8.1. On the first two dimensions z1, z2, the root lattice of

SO(5) identifies points on C by

zi ∼ zi + 1, zi ∼ zi + τ, (8.1)

where τ = 1√
2
e
π
4
i. On z3 the SU(2) × SU(2) root lattice identifies points on

C by

z3 ∼ z3 + 1, z3 ∼ z3 + e
π
2
i = z3 + i. (8.2)

This torus can then be orbifolded by acting with the Z4 twist listed in Table

2.1:

zi → e(2πi)ri/4zi. (8.3)

The necessary twist vector for the Z4 orbifold is ~r = (1, 1,−2). Unlike in the

Z3 case, the coordinates here are not treated uniformly by the twist; the first

two coordinates receive a quarter-twist, while the third receives a half-twist.

The first two coordinates have fixed points at

zifixed = 0,
1

2
, i = 1, 2. (8.4)
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(c) SU(2)× SU(2)

Figure 8.1: The root lattice for each coordinate zi. The gray region signifies
the fundamental domain of the torus in each complex dimension. The solid
points are the fixed points of the Z4 action on each T 2, while the lightly colored
x’s mark the Z2 fixed points of the 2-twist. Note that the entire SU(2)×SU(2)
root lattice is fixed under the 2-twist.

The third coordinate has fixed points at

z3
fixed = 0,

1

2
,
i

2
,

1 + i

2
(8.5)

There are thus 2× 2× 4 = 16 fixed points on this orbifold.

The Z3 orbifold only had one independent twisted sector, as the 1-

twisted sector and 2-twisted sector are conjugates. In the Z4 case, however, the
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1-twisted sector is conjugate to the 3-twisted sector, and there is an additional

self-conjugate 2-twisted sector. We thus have two twisted sectors that we

must consider. The 2-twisted sector will have twist vector ~r2 = 2(1, 1,−2) =

(2, 2,−4). This then acts on the coordinates as

(
z1, z2, z3

)
→
(
eπiz1, eπiz2, e−2πiz3

)
=
(
−z1,−z2, z3

)
. (8.6)

The 2-twist acts like a Z2 twist on z1 and z2, while acting trivially on z3. This

is essentially just a compactification on T 4/Z2×T 2, and so we are really dealing

with a 6D orbifold compactified to 4D on a T 2! On T 4/Z2, there are 16 fixed

points corresponding to z1
fixed, z

2
fixed ∈ {0, 1/2, τ/2, (1+τ)/2}. Upon compact-

ification to 4D, these become the location of fixed tori corresponding to the

z3-direction. However, we cannot neglect the action of the entire Z4 on these

fixed tori. Four of them are invariant under the twist, z1
fixed, z

2
fixed ∈ {0, 1/2}.

This is only possible if they are in fact orbifolded themselves, T 2/Z2. Each of

these has four Z4 fixed points corresponding to those in the z3-direction.

The remaining 12 tori have z1
fixed, z

2
fixed ∈ {τ/2, (1 + τ)/2}. The 1-

twist identifies τ/2 → (1 + τ)/2, so these tori are pairwise identified with

each other. This creates a much more complicated fixed point structure than

in the Z3 case. There are four fixed T 2/Z2’s with four Z4 fixed points each.

There are no isolated fixed points; all fixed points are located on these smaller-

dimensional fixed surfaces. Additionally, there are 12/2 = 6 independent fixed

T 2’s with no fixed points.

On the fixed surfaces, the 2-twist on the coordinates must be met with
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a similar double action in the gauge shift. The only possible gauge groups on

T 4/Z2 are E8, E7×SU(2), and SO(16), and so every possible Z4 gauge group

found from shifting by ~s must be a subgroup of the corresponding Z2 gauge

group found after shifting by 2~s. These gauge groups for all consistent shift

vectors are listed in Table 8.1. The untwisted spectra of these groups consist

of the untwisted spectra from 6D (in representations of the 4D gauge group),

as well as the residual states from the breaking of the 6D gauge group to the

subgroup in 4D.

Going further, the total gauge groups consistent with eq. (2.12) must

also be consistent in the 6D gauge groups. Specifically, the allowed com-

binations of gauge groups on T 6/Z4 must descend from one of the allowed

combinations of gauge groups on the T 4/Z2 orbifold, E7 × SU(2) × E ′8 or

E7 × SU(2) × SO(16)′. The 2-twisted spectra are simply derived from the

twisted spectra of the corresponding 6D model, in appropriate representations

of the broken gauge group. The 1-twisted spectra, however, must be calcu-

lated using the methods alluded to earlier. The results are tabulated in Table

8.2. We can once again identify peculiar states charged across the bulk. In

the 1-twisted sector, models 4, 9, and 12 all contain such states. In the case of

model 4, however, there is an anomalous U(1) gauge symmetry so, as discussed

earlier, we will not consider it any further. In addition, there are 2-twisted

states in models 5 and 6 that are charged across the bulk. Unlike the 1-twisted

states, however, these are not localized at the fixed points. Rather, they pro-

pogate across all of the fixed T 2’s and T 2/Z2’s. Due to the individual nature
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Normalized
Shift

Vector

T 6/Z4 Gauge
Group

T 4/Z2 Gauge
Group

Untwisted Spectrum

1
4
(08) E8 E8 ∅

1
4
(22, 06) E7 × SU(2) E8 (56,2)

1
4
(12, 06) E7 × U(1) E7 × SU(2) 2(56)1 + (1)2 + (1)−2

1
4
(2, 12, 05)

E6 × SU(2)×
U(1)

E7 × SU(2)
2[(27,2)1 + (1,2)−3] +

(27,1)−2 + (27, 1)2

1
4
(4, 07) SO(16) E8 128c

1
4
(2, 07) SO(14)× U(1) SO(16) 2(64s)1+(14v)2+(14v)−2

1
4
(3, 1, 06)

SO(12)×
SU(2)× U(1)

E7 × SU(2)
2[(32s,1)−1 +

(12v,2)1] + (32c,1)0 +
(1,1)2 + (1,1)−2

1
4
(23, 05) SO(10)× SU(4) SO(16) 2(16c,4) + (10v,6)

1
4
(3, 15, 02) SU(8)× SU(2) E7 × SU(2) 2(28,2) + (70,1)

1
4
(17,−1) SU(8)× U(1) SO(16)

2[(56)1 + (8)−3] +
(28)2 + (28)−2

Table 8.1: Possible normalized shift vectors satisfying the constraint in eq.
(2.11). For each normalized shift vector, the gauge group and the original
6D gauge group in the 2-twisted sector are listed, along with the untwisted
spectrum.

of these situations, we shall consider them separately. First let’s analyze the

1-twisted states using our devised scheme.
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Gauge Group 1-Twisted (T1) 2-Twisted (T2) Anomalous

1
E7 × U(1)× SO(14)′ ×

U(1)′

(1;14v) 1
2

;-1 +

(1;1)- 3
2

;1 +

5(1;1) 1
2

;1

(1;14v)1;0 +
(1;1)-1,2 +
(1;1)-1,-2

Yes

2
E7 × U(1)× SO(10)′ ×

SU(4)′
(1;16c,1) 1

2
+

2(1;1,4) 1
2

(1;10v,1)-1 +
(1;1,6)1

Yes

3
SO(12)× SU(2)×

U(1)×SO(14)′×U(1)′
(12v,1;1) 1

2
;1 +

2(1,2;1)- 1
2

;1

(1,1;14v)1;0 +
(1,1;1)-1;2 +
(1,1;1)-1;-2

Yes

4
SO(12)× SU(2)×

U(1)×SO(10)′×SU(4)′
(1,2;1,4) 1

2

(1,1;10v,1)-1+
(1,1;1,6)1

Yes

5
E6 × SU(2)× U(1)×

SU(8)′ × U(1)′

(1,2;1)- 3
2

;2 +

(1,1;8) 3
2

;-1 +

2(1,1;1) 3
2

;2

(1,2;8)0;-1 Yes

6
SU(8)× SU(2)×
SU(8)′ × U(1)′

(8,1;1)2 (1,2;8)1 Yes

7 E6×SU(2)×U(1)×E ′8

2(1,2;1)- 3
2

+

(27,1;1)- 1
2

+

5(1,1;1) 3
2

(27,1;1)1 +
(1,1;1)-3 +
2(1,2;1)0

No

8
E6 × SU(2)× U(1)×

SO(16)′
(1,1;16v) 3

2

(27,1;1)1 +
(1,1;1)-3 +
2(1,2;1)0

Yes

9
E6 × SU(2)× U(1)×

E ′7 × SU(2)′
(1,2;1,2)- 3

2
+

2(1,1;1,2) 3
2

(27,1;1,1)-1 +
(1,1;1,1)3 +
2(1,2;1,1)0

No

10 SU(8)× SU(2)× E ′8
2(8,1;1) +

(8,2;1)
(28,1;1) +
2(1,2;1)

No

11
SU(8)× SU(2)×

SO(16)′
∅ (28,1;1) +

2(1,2;1)
No

12
SU(8)× SU(2)× E ′7 ×

SU(2)′
(8,1;1,2)

(28,1;1,1) +
2(1,2;1,1)

No

Table 8.2: Twisted spectra of all Z4 models. Each model has 16 T1 states
(one at each fixed point), 6 T2 and 6 T 2 states (from the fixed T 2’s), and an
additional 4 T2 states (from the fixed T 2/Z2’s). The other 4 T 2 states are
projected out by the Z2 action. The U(1) gauge anomalies are also indicated.
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8.1 Deriving the Brane Web

The resolution of the fixed points for the Z4 orbifold is a Hirzebruch

surface, F2, with a toric diagram of the form in Fig. 8.2. The dual brane

Figure 8.2: The toric diagram for the C3/Z4 (resolved) fixed point.

web is derived in Fig. 8.3. This brane web corresponds to SU(2) SYM with

θ = 2π. This is the theory we discussed before with “maximum Chern-Simons

number” for SU(2). From a field theory point of view, it should flow to a 5D

fixed point with E1 = SU(2) global symmetry. However, the point at which

this occurs in the moduli/parameter space, namely φ = t0 = 0, is also the

point at which the parallel seminfinite legs in Fig. 8.3c become coincident, and

the 6D physics here is nontrivial as strings become tensionless. The nontrivial

6D physics occurring in our model at this point is the blow-down of 6D Z2 fixed

points, and so we see t0 corresponds with this blow-down parameter, while φ

corresponds to the blow-down of the 4D Z4 fixed points on these fixed surfaces

upon compactification from 6D to 4D. The deconstruction data gathered from
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(a) (b)

(c)

Figure 8.3: Converting the toric diagram to a brane web: (a) the toric dia-
gram, (b) an overlay of the conversion, and (c) the brane web with blow down
indicated by the dashed line.

this brane web indicates the model will have Nc = 2, Nf = 0, and ∆F = 0.

8.2 Deconstructing the Fixed Point Theory

Using the data from above, we know that the appropriate quiver for

the 5D theory at the Z4 fixed point must have the form in Fig. 8.4. The lines

between nodes in the quiver represent bifundamental fields Φ` in the (2, 2)

of SU(2)` × SU(2)`+1. The spectral curve for this theory was analyzed in

[23], so we will focus on the relevant results. According to the deconstruction

dictionary, the bare coupling at the origin of the Coulomb branch has the
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Figure 8.4

form1

t0 =
4

a
log
∣∣∣ v
Λ

∣∣∣ , (8.7)

where again Λ is the dimensional transmutant introduced by instanton effects.

We will be interested in the theory in the blow-down limit t0 → 0, so eq. (8.7)

implies that we will be considering v → Λ.

1Technically, h = 4
a log

∣∣∣ VΛ2

∣∣∣, where V = v+O(Λ4
2). In the continuum limit, however, the

quantum correction is overwhelmed and the relation V = v becomes exact.
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Similar to the previous analysis for Z3, we would like to deconstruct

this theory on an interval. Boundary conditions dictate that the quiver should

look like:

8.3 Spectrum at Blow-down

Relaxing the condition that all of the gauge couplings be equal, we

can consider the limit in which Λ1 � Λ` ∀` 6= 1. In this regime, only the

symmetry on the ` = 1 node is gauged, and the rest are global. Neglecting all

noninteracting singlets under this gauge symmetry, our matter content consists

of gauge doublets Φ0, Φ1 charged under individual global symmetries SU(2)0,

SU(2)2, as well as their companion singlets σ0, σ1. Upon rescaling βσ` → σ`,

the superpotential in eq. (6.4) takes the form

Wtree,`=1 = σ0

(
det Φ0 − v2

)
+ σ1

(
det Φ1 − v2

)
= σ0

(
B1 − v2

)
+ σ1

(
−B̃1 − v2

)
,

(8.8)

where we have defined QT1α =
(
Φ0(1)(α) Φ0(2)(α)

)
, Q̃T1α =

(
Φ1(α)(2) Φ1(α)(1)

)
,

B1 = Q1Q1, and B̃1 = Q̃1Q̃1. We thus have an effective theory with gauge

group SU(2) and Nf = 2. We can use the analysis in [29] to determine an

effective superpotential

Weff = A1

(
detM1 − B1B̃1 − Λ4

1

)
, (8.9)
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where M1 = Q1Q̃1 and A1 is simply a singlet field introduced as a Lagrange

multiplier. Along with eq. (8.8), this superpotential imposes the following

constraints on the VEV’s:

〈B1〉 = −
〈
B̃1

〉
= v2, (8.10)

〈detM1〉 = Λ4
1 − v4. (8.11)

In general, these VEV’s result in chiral symmetry breaking: SU(2)0×SU(2)2×

U(1)B → U(1)V . As mentioned before, though, we are interested in driving

the 5D theory to strong coupling. This is achieved when v = Λ1, at which

point the constraints take the convenient form

〈B1〉 = −
〈
B̃1

〉
= Λ2

1, (8.12)

det 〈M1〉 = 0. (8.13)

Up to global symmetry transformations, this constrains M1 to take the form

〈M1〉 =

(
h2 0
0 0

)
, (8.14)

where h is the modulus. For h2 = 0, the theory confines and the composite

fields M1, B1, and B̃1 are the appropriate degrees of freedom. There is now

chiral symmetry breaking (there always is in the quantum-corrected theory),

but it is only SU(2)0×SU(2)2×U(1)B → SU(2)0×SU(2)2. The total effective

superpotential at v = Λ1 looks like

Wtot ∼ A1 detM1. (8.15)
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Now assume Λ2 � Λ` so that the composite fieldsM1 form two gauge

doublets under SU(2)2 with global symmetry SU(2)0. Since we will be in-

terested in the limit in which v → Λ2 now, we no longer have v = Λ1, but

v � Λ1. Thus, the constraint in eq. (8.11) is once again general, and we can

impose it with an effective superpotential for M1 of the form

Wtot ∼ A1

(
− 1

v2
detM1 +

Λ4
1

v2
− v2

)
→
v�Λ1

A1

(
−B2 − v2

)
, (8.16)

whereQT2α = 1
v2

(
M1(1)(α) M1(2)(α)

)
and B2 = Q2Q2. We can also define Q̃T2α =(

Φ2(α)(2) Φ2(α)(1)

)
, and B̃2 = Q̃2Q̃2 so that the total effective superpotential for

fields charged under SU(2)2 can be written similar to eq. (8.8):

Wtree,`=2 = A1

(
−B2 − v2

)
+ σ2

(
det Φ2 − v2

)
= A1

(
−B2 − v2

)
+ σ2

(
B̃2 − v2

)
.

(8.17)

We can then set v = Λ2 and repeat the previous analysis. This procedure

can be performed inductively from node to node until finally we reach the last

gauge node, ` = L, in which we are left with a composite field at the strong

coupling threshold v = Λ:

M =
1

vL+1

L∏
`=0

Φ` =
1

ΛL+1

L∏
`=0

Φ`. (8.18)

This final composite stateM has charge SU(2)L×SU(2)R, one SU(2) at each

boundary. It has an effective superpotential

Weff ∼ A detM, (8.19)

which imposes the constraint

det 〈M〉 = 0. (8.20)
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Up to a global transformation, 〈M〉 thus has the form

〈M〉 =

(
φ2 0
0 0

)
. (8.21)

For φ2 6= 0, the symmetry is broken SU(2)L × SU(2)R → U(1)V , while it

is restored at φ2 = 0. Following similar arguments from the Z3 case, in the

broken phase the theory is perturbative and there are no light composite fields

aside from the modulus. the constituent fields for this modulus, Φ1(1) and

ΦL(1), are charged under the residual U(1)gauge × U(1)V symmetry as

Φ1(1) : (1, 1), ΦL(1) : (−1,−1). (8.22)

In the blown-up phase corresponding to this broken symmetry, the VEV’s

of Φ1 and ΦL are not invariant under U(1)V . We can compensate it with a

gauge transformation, defining a new gauge charge Qnew = Qgauge − QV ; the

states are then singlets under U(1)new. As with the Z3 case, we see that we

now have global-to-gauge symmetry breaking, which seems to indicate that

while the symmetries at the boundaries need only be global for the sake of

deconstruction, they should be gauged to consistently blow up the fixed points

alon the VEV of this scalar.

8.4 Interpretation

Looking at the models in Table 8.2 it is pretty simple to see the potential

for this state. For instance, model 9 has a (2;2) state in it from the SU(2)’s

in E6 × SU(2) × U(1) × E ′7 × SU(2)′. This is an obvious candidate for the
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composite state we have built. Additionally, model 12 there is an (8;2) state

charged under SU(8)×SU(2)×E ′7×SU(2)′. While this theory does not have

the precise state in which we are interested, it is still possible that this could be

related to the composite state. To see this, consider the non-Abelian anomalies

as in [39]. The only gauge group that is not automatically anomaly free is the

SU(8). The local 4D contributions to its anomaly come from uniquely 4D

untwisted states, 2-twisted states, and 1-twisted states. The first of these

is local to the M9-brane, while the second is simply inherited from the 6D

orbifold theory. In order to cancel these anomalies, it is required that there

be two states charged under the 8 of SU(8). Assume the states formed a

doublet localized on the M9-brane, (8,2;1,1). Then along with the (2;2)

composite state, at this boundary there would be 8 + 2 = 10 total SU(2)

doublets. This would have the low energy effective theory of SU(2) gauge

theory with Nf = 5 flavors. For Nf = 5, the theory is conjectured to flow

into an interacting conformal field theory [29]. The physics in this case is

highly nontrivial, but the gauge singlet state formed from these would then

transform under the remaining gauge symmetries as (8,1;1,2), as desired.

This is only a conjecture, and would not be applicable if the states were not

charged under SU(2), but it is still promising. There are currently no other

“obvious” mechanisms with which to impart SU(8) charge on the (2;2) in a

natural way.

There are also 2-twisted states that seem to be charged across the bulk,

namely those in models 5 and 6. These 2-twisted states descend from the 6D
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orbifold theory on T 4/Z2. In both cases, the 6D theory has gauge group

E7 × SU(2) × SO(16)′. In fact, this is simply the 6D theory we considered

earlier with a state charged across the bulk, the (1,2;16v) half-hypermultiplet.

This state has been explained using brane engineering and so poses no quandry.

Upon compactification to 4D, the 6D 1-twisted state S1 decomposes as

S1 → T2 + T 2. (8.23)

In both cases, the 2-twisted state in T2 is charged under SU(2)×SU(8)′, either

(2;8) or (2;8). This is consistent with eq. (8.23), where

(2;16v)→ (2;8) + (2;8). (8.24)

These states are thus uninteresting from 4D point of view.
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Chapter 9

Z6−I Orbifold

There are two Z6 orbifolds that yield consistent 4D theories, labeled

Z6−I and Z6−II . The first of these orbifolds, Z6−I , requires a torus built from

the G2 × G2 × SU(3) root lattice acting on C3. The fundamental domains

for this construction are given in Fig. 9.1. On z1 and z2 the G2 root lattice

identifies points on C by

zi ∼ zi + 1, zi ∼ zi + τ, (9.1)

where here τ = 1√
3
e
π
6
i. As before, the SU(3) root lattice identifies points on

C for z3 by

z3 ∼ z3 + 1, z3 ∼ z3 + e
π
3
i. (9.2)

The orbifold action on this T 6 is a Z6 twist:

zi → e(2πi)ri/6zi. (9.3)

The appropriate twist vector for this orbifold is ~r = (1, 1,−2). Like the Z4

case before, the coordinates are not treated equally under the twist. The first

two receive a 1/6-twist, under which only the origin is fixed:

zifixed = 0 i = 1, 2. (9.4)
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(c) SU(3)

Figure 9.1: The root lattice for each coordinate zi. The gray region signifies
the fundamental domain of the torus in each complex dimension. There is only
one fixed point of the Z6−I action on each G2 torus and three on the SU(3)
torus, symbolized with solid points, while the lightly colored x’s mark the Z3

fixed points of the 2-twist. The white diamonds mark the Z2 fixed points of
the 3-twist. Note that the entire SU(3) root lattice is fixed under the 3-twist.

For z3, however, the orbifold only acts as a 1/3-twist, which on the SU(3) root

lattice has fixed points as in the Z3 case:

z3
fixed ∈ {0,

1√
3
e
πi
6 ,

2√
3
e
πi
6 }. (9.5)
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There is thus a total of 1 × 1 × 3 = 3 fixed points of the total action on the

T 6.

Under two twists, the normalized twist vector becomes ~φ = 2×(1
6
, 1

6
,−2

6
) =

(1
3
, 1

3
,−2

3
). In other words, the 2-twist is simply the Z3 orbifolding that we dis-

cussed earlier! On the G2 root lattice, this Z3 twist has fixed points at

zifixed ∈ {0,
1

3
,

2

3
}. (9.6)

The 2-twist action on z3 has the same fixed points as the 1-twist action, as

they are just conjugate actions:

z3
fixed ∈ {0,

1√
3
e
πi
6 ,

2√
3
e
πi
6 }. (9.7)

This would naively give 3 × 3 × 3 = 27 fixed points again. However, as in

the Z4 case we must see how the 1-twist acts on these fixed points. On the

SU(3) root lattice, these points are still distinct since the 1-twist and 2-twist

produce identical fixed points. On the G2 root lattice the Z6 action identifies

the fixed point at z = 1/3 with the one at z = 2/3. These points are thus

not distinct. The fixed point at the origin is not identified with another fixed

point and remains distinct. Thus, of the original 27 fixed points, three distinct

points remain at the origin while the remaining 24 fixed points are pairwise

identified with each other, for a total of 3 + 24/2 = 15 fixed points.

Finally, there is a 3-twist with normalized twist vector ~r = 3×(1
6
, 1

6
,−2

6
) =

(1
2
, 1

2
,−2). This acts on the coordinates as

(
z1, z2, z3

)
→
(
eπiz1, eπiz2, e−4πiz3

)
=
(
−z1,−z2, z3

)
, (9.8)
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i.e., this is the same action as the 2-twist of the Z4 orbifold in the previous

section! Specifically, this acts as a Z2 twist on the first two coordinates while

leaving the third invariant. This has the appearance of a T 4/Z2 orbifold that

is further compactified on a torus. On the G2 root lattice, the Z2 action has

four fixed points:

zifixed ∈ {0,
1

2
,
τ

2
,

1 + τ

2
}, (9.9)

while the entire SU(3) root lattice is fixed under the twist. This naively gives

4×4 = 16 fixed points of the T 4/Z2 which then become fixed tori on T 6/Z6−I .

Once again, however, we must check how the full Z6 twist acts on the fixed

structures. On the G2 root lattice, the fixed point at z = 0 is invariant under

the full twist. This implies that the torus present at z1,2 = 0 must itself be

orbifolded, T 2/Z3. There are three fixed points of this orbifold, and in fact

we have already seen what it looks like in Table 7.2. The fixed points of this

2D orbifold are actually simultaneously Z3 and Z6 fixed points in the full 6D

orbifold, further complicating the singular structure.

The remaining 15 tori are not invariant under the full twist. There is a

sequence of identities for the Z2 fixed points on the G2 root lattice under the

full Z6 action,

z :
1

2
→ 1 + τ

2
→ τ

2
→ 1

2
(9.10)

so that the fixed tori form triplets under identification. Thus, there are only

15/3 = 5 independent fixed T 2’s in addition to the fixed T 2/Z3. The total

fixed structure is given in Table 9.1.
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k-twist Fixed Structures
Independent

#

k = 1 3 Z6 fixed point 1

k = 2 27 Z3 fixed point 15

k = 3 15 Z2 fixed T 2 5

1 Z2 fixed T 2/Z3 1

Table 9.1

As with the Z4 case, the fixed tori mentioned above support 6D fields

from the original Z2 theory on them in appropriate representations of the

unbroken gauge groups. For Z6 orbifolds, there are 26 such 4D gauge groups

with appropriate gauge shift vectors, but all of these gauge groups descend

from either E8, SO(16), or E7 × SU(2) in the 6D Z2 orbifold. In fact, each

Z6 gauge group also has a corresponding Z3 gauge group from the 2-twist

sector, corresponding to the gauge groups in Table 7.1. Rather than listing

all of these groups or all of the spectra for the consistent E8 × E8 subgroups

(there are 58 of them), we will simply mention interesting examples as they

become relevant. For tables with all of these models (with U(1) charges largely

neglected), consult [38]. For a more in-depth exploration of individual models,

the orbifolder has proven quite useful as well [40].
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9.1 Deriving the Brane Web

The resolution of the fixed points for the Z6−I orbifold has a toric

diagram of the form in Fig. 9.2.

Figure 9.2: The toric diagram for the C3/Z6−I (resolved) fixed point.

This has a dual brane web as derived in Fig. 9.3. The brane web is that of

SU(3) SYM with maximal Chern-Simons number k = 3. There are three

parameters in this theory corresponding to the bare coupling t0 and the two

moduli of the SU(3) gauge group φ1, φ2. As with the Z4 case, driving the

parameter t0 → 0 corresponds to blowing down the fixed tori in the 3-twist

sector, while φ1, φ2 → 0 corresponds to the Z6−I and Z3 fixed points. The

superconformal theories at the fixed points of generic SU(N) gauge theories
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(a) (b)

(c)

Figure 9.3: Converting the toric diagram to a brane web: (a) the toric dia-
gram, (b) an overlay of the conversion, and (c) the brane web with blow down
indicated by the dashed line.

were discussed in [41], but we will not need much of this content so we can

instead focus on the deconstruction of this theory. The brane web corresponds

to a deconstruction with Nc = 3, Nf = 0, and ∆F = 0.

9.2 Deconstructing the Fixed Point Theory

Using the data from above, we know that the appropriate quiver for

the 5D theory at the Z6−I fixed point must have the form in Fig. 9.4. The
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Figure 9.4

nodes represent SU(3) gauge symmetries, and the lines between nodes repre-

sent bifundamental fields (3,3) charged under SU(3)` × SU(3)`+1. Through

analysis of the spectral curve [23], we find that the bare coupling t0 takes the

form

t0 =
6

a
log
∣∣∣ v
Λ

∣∣∣ , (9.11)

and the 6D Z2 blow-down at t0 = 0 corresponds to v = Λ.

We modify the quiver in the same fashion as before to deconstruct com-
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pactification on an interval. The quiver corresponds to

where the circular nodes are gauged SU(3)’s, while the squares represent global

SU(3)’s.

9.3 Spectrum at Blow-down

The analysis that follows is very reminiscent of that for the Z4 orbifold.

Relaxing the condition that all of the gauge couplings be equal, we can con-

sider the limit in which Λ1 � Λ` ∀` 6= 1. In this regime, only the symmetry

on the ` = 1 node is gauged, and the rest are global. Neglecting all non-

interacting singlets under this gauge symmetry, our matter content consists

of gauge triplets Φ0, Φ1 charged under individual global symmetries SU(3)0,

SU(3)2, as well as their companion singlets σ0, σ1. Upon rescaling βσ` → σ`,

the superpotential in eq. (6.4) takes the form

Wtree,`=1 = σ0

(
det Φ0 − v3

)
+ σ1

(
det Φ1 − v3

)
= σ0

(
B1 − v3

)
+ σ1

(
−B̃1 − v3

)
,

(9.12)

following similar definitions to the Z4 example. This is another case with

Nf = Nc, so we once again have an effective superpotential

Weff = A1

(
detM1 − B1B̃1 − Λ6

1

)
, (9.13)
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where A1 is simply a singlet field introduced as a Lagrange multiplier. Along

with eq. (9.12), this superpotential imposes the following constraints on the

VEV’s:

〈B1〉 = −
〈
B̃1

〉
= v3, (9.14)

〈detM1〉 = Λ6
1 − v6. (9.15)

In general, these VEV’s result in chiral symmetry breaking: SU(3)0×SU(3)2×

U(1)B → U(1)V . As mentioned before, though, we are interested in driving

the 5D theory to strong coupling. This is achieved when v = Λ1, at which

point the constraints take the convenient form

〈B1〉 = −
〈
B̃1

〉
= Λ3

1, (9.16)

det 〈M1〉 = 0. (9.17)

Up to global symmetry transformations, this constrains M1 to take the form

〈M1〉 =

 h2
1 0 0

0 h2
2 0

0 0 0

 , (9.18)

where h1, h2 are the moduli. For h2
1 = h2

2 = 0, the theory confines and the

composite fieldsM1, B1, and B̃1 are the appropriate degrees of freedom. There

is now chiral symmetry breaking, but it is only SU(3)0 × SU(3)2 × U(1)B →

SU(3)0 × SU(3)2. The total effective superpotential at v = Λ1 looks like

Wtot ∼ A1 detM1. (9.19)

Now assume Λ2 � Λ` so that the composite fields M1 form three

gauge triplets under SU(3)2 with global symmetry SU(3)0. Since we will be
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interested in the limit in which v → Λ2 now, we no longer have v = Λ1, but

v � Λ1. Thus, the constraint in eq. (9.15) is once again general, and we can

impose it with an effective superpotential for M1 of the form

Wtot ∼ A1

(
− 1

v3
detM1 +

Λ6
1

v3
− v3

)
→
v�Λ1

A1

(
−B2 − v3

)
, (9.20)

where Q2 is built from theM1’s as in the Z4 case and B2 = Q2Q2Q2. We can

also define Q̃2 with the Φ2’s so that the total effective superpotential for fields

charged under SU(3)2 can be written similar to eq. (9.12):

Wtree,`=2 = A1

(
−B2 − v3

)
+ σ2

(
det Φ2 − v3

)
= A1

(
−B2 − v3

)
+ σ2

(
B̃2 − v3

)
.

(9.21)

We can then set v = Λ2 and repeat the previous analysis. This procedure

can be performed inductively from node to node until finally we reach the last

gauge node, ` = L, in which we are left with a composite field at the strong

coupling threshold v = Λ:

M =
1

vL+1

L∏
`=0

Φ` =
1

ΛL+1

L∏
`=0

Φ`. (9.22)

Thus, we have a final composite state M with charge SU(3)L × SU(3)R, one

SU(3) at each boundary.

9.4 Interpretation

The effective superpotential for this composite state looks similar to

that of the Z4 case,

Weff ∼ A detM, (9.23)
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but the implications in this case are quite different. This superpotential im-

poses the constraint

det 〈M〉 = 0, (9.24)

so that 〈M〉 must have the form (up to global transformations)

〈M〉 =

 φ2
1 0 0

0 φ2
2 0

0 0 0

 , (9.25)

i.e., it must be at most rank 2. As it turns out, this rank has an interpretation

in terms of the fixed structures of the orbifold. We have already mentioned

that letting t0 → 0 as we have corresponds to blowing down the fixed tori

of the 3-twist, but we can also consider the case where φ2 → 0 along with

t0 while φ1 remains arbitrary. At this locus of the moduli space, the theory

looks just like the Z3 model along its Coulomb branch. The VEV of M is

rank 1, so the global symmetry is SU(2)L × SU(2)R × U(1)V for φ1 6= 0 and

enhances to SU(3)L × SU(3)R for φ1 = 0 as before. This is a reflection of the

fact that there are Z3 fixed points coincident with the Z6−I fixed points under

study. For generic φ1, φ2 6= 0, The symmetry is broken to U(1)V ′×U(1)V with

enhancement to the full SU(3)L × SU(3)R when φ1 = φ2 = 0.

Unfortunately, the increased fixed structure complexity comes with in-

creased complexity in the spectra of these models as well. One such occurence

is the E7 × SU(2)× SO(16)′ model with twisted spectrum in Table 9.2. The

3-twist spectrum consists of 5(1,2;16v), one for each of the 5 fixed tori. This

is a reflection of the origin of these (2;16v) twisted states. One would expect

an additional state for the remaining independent fixed point of the 6D Z2
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action. However, this is not simply a torus but is instead an orbifolded torus,

T 2/Z3. This Z3 action on the torus projects out the 6D states everywhere but

at the fixed points where it acts invariantly. At these points, the states seem

to survive as 1-twisted states at the fixed points. This suggests that the origin

of these twisted spectra is more intricate than in the previous cases.

Gauge Group 1-twist 2-twist 3-twist

E7×SU(2)×SO(16)′ 3(1,2;16v) 123(1,1;1) 5(1,2;16v)

Table 9.2

Perhaps more perplexing than the example above is the fact that no

single model has a 1-twisted spectrum with a charge (3;3) state! The simplest

model to illustrate this is the E7 × SU(2)× E ′6 × SU(3)′ model in Table 9.3.

This model is clearly a Z2 twist on the first E8 with the second left alone and

a Z3 twist on the second E8 with the first left alone. It thus has no obvious

states from its 2-twisted or 3-twisted sectors to lend to its 1-twisted sector,

and so we expect its 1-twisted state charged across the bulk to be explained

by the composite state constructed above. This state, however, does not have

charge (3;3) as we would expect from the state we built, but (2;3) instead.

Focusing on just a single fixed point, we see that we have the spectrum

2(1,3;1,2) + (27,1;1,1) + (1,3;1,1) + 2(1,1;1,2). (9.26)

The composite state above cannot explain this on its own and is open to fur-

ther investigation.
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Gauge Group 1-twist 2-twist 3-twist

E6×SU(3)×E ′7×SU(2)′ 6(1,3;1,2)
15(27,1;1,1)+

39(1,3;1,1)
5(1,1;56,1) +
22(1,1;1,2)

Table 9.3

The last model worth mentioning is in Table 9.4. This model has a

lot of features similar to the Z4 model with the (2;8) state. Namely, there

is SU(3) × SU(3)′ gauge symmetry present but a state in the (6,1;3) of

SU(6)× SU(3)× SU(3)′. This may have a potential bound state interpreta-

tion like that conjectured for the Z4 model, but would require further analysis

beyond what was presented here through deconstruction.

Gauge Group 1-twist 2-twist 3-twist

E6× SU(3)× SU(6)′×
SU(3)′ × SU(2)′

3(1,3;6,1,1) 15(1,3;1,3,1)

5(1,1;20,1,1)+
5(1,1;6,3,1) +
6(1,1;6,3,1) +
22(1,1;1,1,2)

Table 9.4

With this level of obscurity, it is important to emphasize that while

these spectra are not simply described by the composite state as in the previous

orbifolds, it is still in fact present. It is a product of blowing down the Z6−I

fixed point regardless of the gauge groups present at the boundaries. It may

be a question of boundary conditions with this state and these gauge fields,
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or perhaps some nontrivial combination of this state and the compactified 6D

twisted state.

103



Chapter 10

Z7 Orbifold

The final orbifold that we consider is the Z7 orbifold. There is still

much to be done with it, but it is extremely interesting so we will discuss

current progress. To start, we need a root lattice of rank 6 on which to wrap

C3 for the initial torus; in this case the lattice of choice is SU(7). Unlike the

previous cases, this root lattice does not decompose into three lattices of rank

2, so it cannot be simply represented on individual complex dimensions. In

terms of xi ∈ R6, this root lattice acts as

xi → xi+1, i = 1, ..., 5

x6 → −x1 − x2 − x3 − x4 − x5 − x6.
(10.1)

To orbifold this torus, we apply the appropriate twist vector, ~r =

(1, 2,−3). Like the Z3 case, the Z7 orbifold is a prime orbifold and the only

fixed structures are isolated fixed points, seven in all. However, unlike the Z3

case, there are multiple twisted sectors for the Z7 orbifold. Conventionally,

the twisted sectors considered are the 1-twist, the 2-twist, and the 4-twist1,

with the other k-twisted sectors being conjugate to these.

1The 4-twist is the chiral conjugate of the 3-twist, but has nicer properties with the
1-twist and 2-twist
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10.1 Deriving the Brane Web

The resolution of the fixed points for the Z7 orbifold has a toric diagram

of the form in Fig. 10.1. It has a dual brane web as in Fig. 10.2. The toric

Figure 10.1: The toric diagram for the C3/Z7 (resolved) fixed point.

diagram and brane web are full of interesting features. First, the brane web

clearly has three semi-infinite external branes. This corresponds to 3− 3 = 0

global symmetries at the fixed point. Thus, the theory appears to be isolated

like the other prime orbifold Z3, but there is more structure present. The toric

diagram reveals that the three internal points are actually Hirzebruch surfaces

F2 as in the Z4 case, and this is reflected in the dual brane web. as Fig. 10.3

demonstrates, the same brane web present in the Z4 fixed point resolution is

present three times in the Z7 resolution (up to an SL(2,Z) transformation).

The major difference is that the global parameter associated to the bare cou-

pling in the Z4 case now acts as the VEV of the modulus along the Coulomb
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Figure 10.2: The brane web corresponding to theZ7 fixed point toric diagram.

branch of another SU(2) gauge symmetry! In the end, this demonstrates an

SU(2)×SU(2)×SU(2) gauge theory along its Coulomb branch with no global

symmetry, so there is no way to un-Higgs the individual SU(2)’s. Instead, the

coupling associated with each SU(2) is a combination of all three VEV’s, and

the theory does not have enhanced gauge symmetry before reaching the super-

conformal fixed point at the origin of the moduli space. Additionally, consider

the different k-twisted sectors. The 1-twist has twist vector ~r = (1, 2,−3), so

acting repeatedly with it gives

~r = (1, 2,−3),

~r 2 = (2, 4,−6) = (2,−3, 1),

~r 4 = (4, 8,−12) = (−3, 1, 2).

(10.2)
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(a) (b)

Figure 10.3: The brane web for (a) the Z7 fixed point compared to that of (b)
the Z4 fixed point.

We see then that the various k-twists just rotate the Z7 action on C3! This is

reflected in the E8 breaking as well [38], where the shift vectors form triplets

with identical untwisted spectra.2 The individual shift vectors in these triplets

pair with different shift vectors to consistently break the full E8×E8, however,

so they produce unique twisted spectra. In fact, no two shift vectors from one

triplet will ever simultaneously pair with two shift vectors from another triplet.

There can only be at most one shift vector from a triplet that pairs with at

most one shift vector from another triplet.

Unfortunately, we have yet to build a means with which to deconstruct

this theory; it may be the case that the addition of matter that is then made

2There are a few exceptions to this. The triplets actually exchange which untwisted
states have

∑
Risi/7 = 1/7, 2/7, or 4/7 (mod 1). The exceptions are shift vectors which

have the same states for each
∑
Risi/7, and so are self-dual in this regard.
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heavy is necessary, as in the Z3 case. In that instance, the field was necessary

to set a scale for the deconstruction threshold and could be discarded following

the phase transition to the isolated E0 SCFT. There is still a lot of analysis

necessary to devise a similar strategy, as all of the 5D SU(2) gauge groups must

still be tangled with each other no matter how much matter is added to the

model. It is important to note, however, that there is no model that has states

charged across the bulk without an anomalous U(1). It is not obvious what

an analysis of this fixed point will uncover, but the theory there is certainly

interesting and worthy of exploration regardless.
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Chapter 11

Future Directions

We would like to conclude this work with a collection of open problems

that encourage future research.

• As the Z6−I orbifold demonstrated, the complexity of the fixed structures

can quickly become overwhelming. There are models with twisted states

charged across the bulk for this orbifold, and yet none of them seem to

have a simple explanation in line with the Z3 and Z4 orbifolds. The

fact that there are Z6−I , Z3, and compactified 6D Z2 states all present

at these fixed points certainly lends plenty of intricacy with which to

investigate further and attempt to substantiate all relevant models.

• The final orbifold that we studied, the Z7 orbifold, had a particularly

interesting 5D field theory. As Z3 and Z7 are the only allowable prime

orbifolds, it is easy to see that fixed points that are isolated and do not

rest on 6D fixed tori correspond to SCFT’s that are isolated and do not

exist as limits of 5D gauge theories (without the addition of matter).

Unlike the E0 SCFT at the Z3 fixed point, however, there appears to

be little study of this Z7 SCFT. Simply learning anything about this

SCFT would be worthwhile, but we would be particularly interested
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in designing the proper deconstruction quiver and studying the moduli

space in some detail. In this light, our treatment of it here has been

more of a “tip of the iceberg” than a comprehensive analysis.

• The orbifolds with multiple resolutions (Z6−II , Z8−I , Z8−II , Z12−I , and

Z12−II) are also open fields for study.In these cases, the difficulties aris-

ing from overlapping fixed structures in the Z6−I orbifold will only be

magnified. For instance, for the Z6−II orbifold there are Z6 fixed points

located at the intersections of Z2 fixed tori in the z3 direction with Z3

fixed tori in the z2 direction. Thus, the theory has to account for in-

tersecting compactified 6D states and 4D fixed point states. It would

likely be advantageous to first solve the issues with the Z6−I orbifold so

that the interaction of these fixed structures is better understood before

tackling the models with multiple resolutions.
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