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The compactification of Eg x Eg heterotic string theory on orbifolds
of the form T°/Zy produces a 4D spectrum of untwisted states and twisted
states. Unlike the untwisted states, the twisted states are confined to the
fixed points of the Zy action and can be charged under subgroups of both
Eg gauge groups simultaneously. While insignificant in the string theory case,
dualizing to heterotic M-theory yields a peculiar phenomenon. Specifically,
in heterotic M-theory the Eg gauge groups are isolated from each other by an
extra dimension with 11D supergravity in the bulk between them. Determining
how states can be charged across this bulk becomes a highly nontrivial problem
to solve. We propose a procedure that utilizes deconstruction to probe these
fixed points and build the appropriate states in the continuum limit. We then

analyze and apply this procedure to the Zs, Z4, Z¢_;, and Z7 orbifolds.
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Chapter 1

Introduction

There has long been a rich history of dualities between string theories.
These connections manifested fully, however, with the seminal work of Edward
Witten [1]. Here he introduced the concept of M-theory, a mysterious theory of
which all string theories and 11D supergravity are limiting cases. The dualities
are then simple underlying transforms in this mysterious theory. Under this
proposal, type-I and SO(32) heterotic string theories are S-dual, so that the
weak-coupling limit of one is the strong-coupling limit of the other. Type-
IIB string theory is actually self-dual in this respect, though it’s relationship
with type-ITA string theory was well established [2,3] and type-I is simply
an orientifold projection of type-IIB. One of the biggest surprises, however,
was that the strong coupling limit of type-IIA string theory was found to be
dual to 11D supergravity compactified on a circle, where the size of this extra
dimension was related to the coupling. Despite all of this, the paper concluded
without a proper conjecture for the strong coupling limit of the last remaining

theory, Fg x FEg heterotic string theory.

In subsequent work by Hotrava and Witten [14, 15], this strong coupling

limit was explored in more depth and it was found to be related to 11D super-



gravity again. This time, however, they found that the 11D theory needed to
be compactified on an interval with particular boundary conditions on the su-
pergravity multiplet fields. Consistency with anomalies due to these boundary
conditions then forced the presence of 10D FEg gauge fields fixed at each of the
boundaries. This theory reduces to heterotic supergravity as the size of the
interval vanishes, so yet again the size of this extra dimension can be related
to the string coupling. To be consistent, one would expect phenomena in one
of the theories to have a dual explanation in the other. One such example
of particular interest here is the compactification of the heterotic string on

orbifolds and the resulting spectrum.

Orbifolds are interesting compactification structures [4, 5]. Constructed
by twisting a torus by some group action, orbifolds carry most of the conve-
niences of tori in terms of compactification but with many more desirable
features, such as a realistic amount of supersymmetry. Furthermore, they can
also be interpreted as singular limits of Calabi-Yau manifolds, so that much of
the associated machinery for them can be applied directly or adapted to orb-
ifolds. As advantageous as these compactifcation schemes are in string theory,
and specifically Eg x Eg heterotic string theory, one major point of interest
would be to translate them to the dual 11D supergravity theory and study the

theory across this transition.

As it turns out, this transition is fairly clean for much of the theory.
This is a reflection of the relative simplicity of the geometry and the result-

ing ease in solving the string worldsheet theory to generate the perturbative



spectrum for such models. Much of the geometry in the string theory simply
carries over to the 11D supergravity theory and so their is little to explore.
However, upon inspection of the individual models, there are certain instances
in which states are produced in the string picture that do not have trivial du-
alizations into the 11D supergravity theory. These states have gauge charges
under subgroups of each Eg, a unimpressive feat in the string theory interpre-
tation. However, upon dualization to the 11D theory, the Fg gauge groups
become separated by the extra dimension, and so any state charged under
both must somehow be charged across the bulk of the interval. The bulk the-
ory is simply 11D supergravity, and so one is forced to conclude that either
supergravity is able to mediate between the gauge groups at these points of
singular curvature to charge states locally across the bulk, or else the local
states on the string theory side have nonlocal origins on the 11D supergravity
side. As it turns out, both of these options will end up holding some validity,

depending on the dimension of the orbifold.

This work is organized as follows. First, we will discuss some general
features of these orbifolds, including the procedure for forming them and the
resulting spectra. Next, we will present a more detailed account of the duality
between the heterotic string and 11D supergravity, which we will simply refer
to as M-theory and the compactified theory as heterotic M-theory for conve-
nience. Our main goal throughout this work will be to reverse the order of
compactification so that we first compactify on the orbifold, then the interval.

As is often the case, this is simpler when compactified to 6D rather than 4D, so



we next introduce this case with a pertinent example and describe the solution
in terms of brane engineering. We will find that this machinery does not easily
translate to 4D, as the effective theory being compactified on an interval is no
longer simply a 7D gauge theory. Instead, it will be a 5D superconformal field
theory, as we will discuss. Throughout our discussion of 5D field theory, we
will begin building our procedure for forming the twisted states in question,
bringing in toric diagrams and dual brane webs to develop 5D gauge theories
at the resolved fixed points. To compactify these theories, we will introduce
another method, deconstruction, that lends itself quite well to this. We then
have a standard method with which to tackle each orbifold fixed point: re-
solve the singularity, look at the resulting toric diagram, dualize to a brane
web, deconstruct the resulting gauge theory, set the deconstruction quiver on
an interval rather than a circle, and observe the resulting 4D spectrum as we
approach the appropriate limits of parameter/moduli space. We then apply
this to the Zs, Z4, Zg_1, and Z; orbifolds.

Before we proceed however, there are two main caveats to this work
that we must address. First, it is important to note that there are additional
consistent orbifolds to which we will not apply this procedure. The Zg_y,
Zg_ 1, Zs_11, Z1o_1, and Zio_rr orbifolds have the unfortunate property that,
unlike the orbifolds we do consider, they all have multiple resolutions of their
fixed points. These resolutions are all related to each other by flop transitions,
and flops are captured by the deconstruction procedure, so it seems reasonable

that these theories could be described within our framework. However, one



must crawl before they can walk, and so we restrict ourselves to the simpler

analyses.

The second major caveat has to deal with the presence of anomalous
U(1)’s in the compactified 4D theories. These anomalies are canceled by a 4D
remnant of the Green-Schwarz mechanism [6]. However, the presence of this
term in 4D causes a quadratically-divergent Fayet-Iliopoulos term to arise at
one-loop order [7]. This introduces D-terms which can force VEV’s on fields
and actually drive us away from the very fixed points we are trying to study,
rendering our analysis inapplicable [8]. As a result, we will only focus on

models that present twisted states of interest and have no anomalous U(1)’s.



Chapter 2

Orbifolds

The orbifolds of interest for our model building are constructed from
6D tori. Starting with C3, we ask that its coordinates 2™, m = 1,2,3, be

invariant under a specific set of complex translations,
2" = 2" o™, (2.1)

We will be considering specific examples in which these translations form 6D
root lattices A of (combinations of) Lie groups, so that we are essentially
modding by A,

T% = C*/A. (2.2)
This is important to the construction, because only a few root lattices can
consistently lend themselves to our orbifolds. When performing the orbifolding
procedure to follow, we will assume that we have already identified the correct

root lattice for a specific orbifold.

Given the proper torus, we can now attempt to “fold” it. This is
achieved by twisting the torus by the action of some group G, known as the
point group. The twists 6 (along with the tori translations v) act on the
coordinates of C? as

2" = g ™, (2.3)



and so an orbifold must necessarily be invariant under this action. This re-

quires that we mod the torus by G,
T°/G = (C*/N)/G. (2.4)

In this manner, it is clear to see why not just any A will work; A and G must

be consistent to ensure that their actions are not coprime on C3.

The orbifolds considered here have point groups
G=Zy={heC:h" =1} (2.5)

We can choose the coordinate basis so as to diagnolize the corresponding twists

0. They then take the rather simple form
grm — gm — 6(2ﬂi¢m), ¢m L (26)

for some vector of integers 7. This vector is known as the twist vector for
the point group, while gz; is known as the normalized twist vector. A specific
choice of this twist vector for given Zy does not seem obvious from what we
have done so far. In fact, there is no specific choice from a geometric point
of view. However, consistency with heterotic string theory will impose some
very tight constraints on the forms allowed for 7, and limit us to only a few
viable cases. Since we must discuss the heterotic string theory implications,

let’s first discuss how this twisting can act on the gauge group present.

The heterotic string is a combination of a right-moving type-II super-

string and a left-moving bosonic string. The extra sixteen dimensions in the



left-moving string are wrapped on an Eg x Eg root lattice to form a 16D
torus, so we can imagine the twisting group acting on these dimensions as
well. While it can act on it trivially, preserving the whole Eg x Eg gauge
symmetry, in general it will break this gauge symmetry to some subgroup. We
can use the generators A\* of the Cartan subalgebra U(1)'® as coordinates in

C1¢, then ask that they be invariant under Zy gauge twists:

AE €2ﬂiﬁk)\K, Bk = SFK (27)

for some 16-vector of integers s known as the gauge shift vector (5 would be

the normalized gauge shift vector).

We now have two piece of information to parametrize the action of the
point group on a torus: a twist vector ¥ and a gauge shift vector §. These
must act similarly on the worldsheet fields 2™, Jm, and A%, as well as their
resulting modes. Specifically, for the modes of the R sector of Jm, the mode

numbers altered by these shifts!:

L T R /L S (2.8)

Because the R sector is in the spinor representation, it will have eigenvalue

> bm. (2.9)

N | —

IThis shift in mode numbers actually extends across all worldsheet oscillators, but we
are only concerned with the R sector for our purposes. Consult [5] for a fuller treatment.



A similar argument for the R sector of AX in the current algebra yields an

eigenvalue in each Fg:

18 1o
52 Bk 5D B (2.10)
K=1 K=9
For Zx to properly twist the theory, we must demand
13 138 1 Je
§Z¢m=§ZﬁK=§ Bk =0 mod 1. (2.11)

Without getting too far into the underlying string theory, a slightly more
intensive argument involving the level-matching condition [5] gives another

constraint on the allowed forms of 7 and s*

3

16
> b — > Bk =0mod 2N. (2.12)
K=1

m=1
Equipped with these equations, egs. (2.11) and (2.12), we can now define all
possible orbifolds. Table 2.1 contains a full list of consistent T°/Zy’s, along

with the necessary root lattice for the corresponding 7°°.

2.1 Untwisted Sector

To see how the gauge shift vectors act on each Eg gauge group, we will
first need to consider the root system. This can be generated in R® as the set
of all 8-vectors with length squared equal to 2, coordinates either all integers

or all half-integers, and sum of the coordinates even. The case with all integer



Point

Group Normalized Twist Vector Root Lattice Group
Z3 (%, %, —%) SU(3) x SU(3) x SU(3)
Zy (3,4,-2) SO(5) x SO(5) x SU(2) x SU(2)
Zo—1 (3.3 —2) Gy x Gy x SU(3)
Ze—11 (3,2,-3 Gy x SU(3) x SU(2) x SU(2)
z: (.2.-2) SU)
Zs_1 (3,2,-9 SO(5) x SO(9)
Zs_11 (%, 2, —%) SO(9) x SU(2) x SU(2)
Zao-1 (L,4,-3) Fy x SU(3)
Do 11 (5,3, —2) Fy x SU(2) x SU(2)

Table 2.1: The point group, normalized twist vector, and root lattice group
for each allowable orbifold. Technically, there are actually more root lattices
allowed for some of the Zy point groups. However, these can be seen as specific
subcases with tighter constraints on the Wilson lines [37]. The root lattices
listed here are the most general.

coordinates must have the form

Rootp, :  (+1,+1,0°),

(+1,-1,0%,

2.13
(_1»+1706>7 ( )
(=1,-1,0%,

where the underline denotes permutations of the entries. This generates 4 x
(3) = 112 roots, which form the root system for Dy = SO(16). The remaining

roots must have all half-integer coordinates that sum to an even number. This

10



is only achieved if there is an even number of positive entries, so these must

have the form

18
Spinorp, : (—1—5 ),
16 12
(+§ 7_5 )a
14 14
12 16
(+§ 75 )

There are (g) + (2) + (i) + (g) + (g) = 128 of these roots? for a total of 240
roots. Along with the rank(Fg) = 8 Cartan generators, these form the 248-
dimenstional adjoint representation of Fg under which the 10D gauge fields

transform.

The 16D gauge shift vector can actually be broken up into two 8D shift
vectors, one corresponding to each Fg. Taking one of these vectors, §;, we can

now act on all of the roots B of the Eg root system by
8
§i-R=> s,k (2.15)
i=1

From a geometric point of view, we generically have no preferential direction
in R® for the Eg root system. The shift vector establishes a preference and
then asks how much of each root vector is along that direction by using the

dot product. This now distinguishes the roots from each other and breaks the

2These actually form the spinor representation of SO(16).

11



gauge symmetry based on the values of this dot product. Resulting products
that are integers are perpendicular to this direction and so survive as the
remaining gauge symmetry. Roots with products that are not integers project
onto the shift vector direction, and form chiral fields that are charged under
the preserved gauge symmetry. These chiral fields are not twisted by the
orbifold, simply projected down onto the preferential direction that the orbifold
established by acting on the gauge bundle nontrivially. As a result, these states

are referred to as the untwisted sector of the spectrum.

2.2 Twisted Sector

In addition to untwisted matter descended from the 10D theory, there
are states that are true, lower-dimensional states generated by the orbifolding
procedure. From a physical point of view, this can be viewed as open strings
on the torus. The point group of the orbifold identifies points on the torus, so
an open string on the torus stretched between two points identified under the
point group action will be a closed string on the orbifold. The closed string
then generates massless states which we identify as the twisted sector of the

spectrum.

From a string worldsheet point of view, this can be seen as the re-
sult of the modified mode numbers for the oscillators, allowing them to form
new massless combinations that are normally not so with their original mode
numbers. These states have zero momentum in the compactified directions of

the orbifold because they are stuck at the fixed points, but propogate in the

12



noncompact dimensions. For a treatment of the calculation of the spectra for

each orbifold, consult [38].

One natural extension of the above arguments is to k-twists. Specifi-
cally, consider an element h € Zy. By definition, we know A" = 1, but this
implies that

RN = p3N = pAN — = pN-UN — (2.16)

In other words, the twist can be applied multiple times and still maintain
the necessary consistency condition. As it turns out, each k-twisted sector
is capable of having its own spectrum for k € [1, N — 1], though the k- and
(N — k)-twisted sectors are chiral conjugates of each other. Also, the 0-twisted
sector and N-twisted sector are equivalent and correspond to the untwisted

sector.

We will see later in specific examples that these various twisted sectors
can have complicated overlying fixed structures. On top of the fixed points
that are invariant under the action a k-twist, there can be fixed tori or fixed
lower-dimensional orbifolds under a different k-twist. These lower-dimensional
orbifolds can have the fixed points of the original k-twist as its fixed points as
well, introducing geometric complexity. From a string theory point of view,
however, these are all equally simple spectra to calculate, and a brief investi-

gation of the geometry reveals the multiplicity of each state.

13



Chapter 3

Heterotic M-theory

It has been well established that, similar to type IIA supergravity, the
strong coupling limit of Eg X FEg heterotic supergravity can be related to an
11D supergravity theory [14, 15]. The bosonic part of the action for this theory
takes the simple form

1
Ssg = —— V—9g(R+G-G+CANGANG), (3.1)

262 )y,
where C'is a 3-form in the graviton supermultiplet with field strength G' = dC'.
This supergravity theory is interpreted as an effective field theory in the low-
energy limit of M-theory, just as 10D supergravity theories correspond to string
theories. Out of convenience, we will refer to this 11D supergravity theory as

M-theory henceforth.

In order to make contact between M-theory and heterotic string theory,
we must compactify the extra dimension present in M-theory. The choice
of surface to compactify on must break half of the supersymmetry present,
otherwise the 11D AN = 1 supersymmetry will compactify to 10D N = 2
supersymmetry instead of NV = 1 as needed for heterotic supergravity. The
simplest manner in which to achieve this is to compactify M-theory on an

interval, S'/Z,. Here Zs acts on S by 21® — —2!°. For this to be a symmetry

14



of the action, it is required that C' also be odd under the Z, action, C' — —C,
while the metric ¢ must be even. In terms of components, these conditions
take the form:

917, 910,10, Crio — grr, 910,10, Crio,

(3.2)
91,10, Crax — —9g1.10, —Crik,

where the indices I, J, K, ... = 0, ...,9 denote the ten dimensions perpendicular

to the compactified dimension, z'°.

The action of Zy on S* has two fixed points, {0, 7R}, corresponding to
the ends of the interval. These 10D surfaces must have boundary conditions
for the fields that are consistent with the the Z, action on them. This implies
that there will be 10D zero modes for the even fields, but not for the odd fields
which must vanish at the boundaries. Unfortunately, the presence of these
modes at the boundaries introduces anomalies to our theory, which we would
hope to cancel with the addition of other fields. Since the theory in the bulk
of the interval is just 11D supergravity, it is anomaly free there and there are
no 11D fields that can be added to cancel the anomaly. Since the anomaly
is concentrated at the 10D boundaries, it makes sense to try adding matter
specifically to these boundaries, namely 10D vector multiplets. There are 248
vector multiplets needed at each boundary to cancel the anomaly, which is
the dimension of the adjoint representation of Eg. Thus, we conclude that
each boundary has an Eg gauge multiplet present on it. Because these 10D
surfaces are important and mentioned quite frequently, we will err on the side
of convenience and refer to them as M9-branes, which will be slightly more in

line with our discussion of M-branes below.

15



There are further complications that arise from this anomaly cancel-
lation, requiring the mixing of gauge and gravity terms at the MO9-branes,
specifically in the Bianchi identity for G. However, as these considerations are
beyond our scope, we can just focus on the relatively simple picture before us.
At strong coupling, heterotic string theory looks like M-theory compactified
on an interval. There are two 10D Ey gauge multiplets, one at each boundary
separated by the 11D bulk. As the coupling becomes weak, the size of this in-
terval becomes small and the two boundaries become coincident. In this limit,
the theory looks ten-dimensional with a gauge group Fg x Fjg, as is required

for the heterotic theory.

The orbifold models we have considered above now have an M-theory
interpretation: we compactify it on an interval, drive the interval width to
zero, compactify this theory on the 6D orbifold of our choice, and then observe
the resulting spectrum. This interpretation need not be the only path to our
spectrum, though. There is nothing to stop us from instead compactifying M-
theory on the 6D orbifold first and then the interval. Our spectrum should not
depend on the order in which these steps are taken, so it would be interesting to
investigate this alternative method and confirm its consistency. This procedure

comes with a two major issues, however, and we must address each one.

3.1 Orbifold limits of Calabi-Yau manifolds

The first major concern involves the orbifolds themselves. In string the-

ory terms, orbifolds are simple geometries with well-defined worldsheet confor-

16



mal field theories and hence are perfectly consistent. However, geometrically
we cannot compactify M-theory on an orbifold; since it has points of singular
curvature, it does not even qualify as a manifold! Thus, in order to consider
this situation we must first define what we even mean by “compactifying M-
theory on an orbifold.” Let’s illustrate this with an example with which we
will become quite familiar: the Zs orbifold. The origin of this orbifold as a T
with some Zs action suggests that it has zero curvature away from the fixed
points, and 27 fixed points with singular curvature. Since the root lattice and
point group actions commute, it is easy to see that the fixed points of T°/Z3
have the same structure as the single fixed point of C3/Zs, namely that of a
complex projective plane CP? blown down to a point (for a good review and
applications, see [32]). Blowing this point back up to a CP? has the effect
of smearing the singular curvature, and blowing up all of the points of the
orbifold in this manner results in a smooth Calabi-Yau threefold on which we
can geometrically compactify M-theory. The sizes of these blown-up CP?’s are
tunable parameters, and driving them back down to zero returns our original
orbifold. Thus, as we discuss “compactifying M-theory on an orbifold” what
we actually mean is “compactifying M-theory on a Calabi-Yau threefold that
has as an orbifold as its singular limit when certain parameters are varied ap-
propriately.” We shall return to this topic in more depth later, after having

discussed some of the features of the resulting 5D theories that can arise.

17



3.2 (Gauge mediation across the bulk

The other major issue to consider is how the emergence of this bulk
dimension at strong coupling will effect the gauge charging of states. Specifi-
cally, anomaly cancellation requires that their be an Eg gauge theory confined
to each M9-brane at the end of the interval, while in the bulk between these
theories we simply have 11D supergravity. Therefore, the gauge fields are com-
pletely isolated from each other, with only gravity playing mediator between
them. Any state charged under one of the Fg’s or some subgroup of it will
reasonably be localized to that end of the interval, as is clear when consider-
ing the untwisted sectors of the orbifold models. However, when we attempt
to transfer this logic to the twisted sector of these same orbifold models, we
find an immediate obstruction: there are states present that are charged un-
der (subgroups of) both Eg’s! On which end are these states localized? Are
they localized at all? and how are they capable of being mysteriously charged
across the bulk? These are the questions that we seek to answer as we carry

on through this work.

It is worth noting one important feature of this interpretation. Just like
its string theory counterparts, M-theory has extended objects, or branes, that
couple to the 3-form C' and it’s dual 6-form *C, namely the M2-brane and
Mb5-brane. The M2-branes are capable of wrapping on any (real) 2-cycles in
the blown-up fixed point geometry to create electrically-charged particles with
masses proportional to the size of the blow-up. Similarly, the M5-branes are

capable of wrapping on the entire 4-cycle of the blown-up fixed point to create
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magnetically-charged strings with tension proportional to the square of the
size. Thus, as we approach the orbifold limit, the particles become massless
and the strings become tensionless. The presence of these massless states is
interesting, but they are not capable of accounting for the curious states in

the spectra that we find in the string theory case.

As it turns out, the case of M-theory compactified on T*/Zy and its
corresponding 6D theory has already been studied in [21,22]. Due to its ease
and the relevence of some of its results, we will review this presentation for

the specific case where N = 2. For more examples, see the references.
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Chapter 4

Heterotic Orbifold Models in 6D

4D orbifolds start with a rank-4 root lattice acting on C? to produce
a torus. This torus is then acted on by a twist to further identify points.
For a Zj twist, we need the SU(2)* root lattice, and normalized twist vector
5 = (%, %) Each complex dimension has four fixed points under this twist and

root lattice action, for a total of 4 x 4 = 16 fixed points on the whole orbifold.

(a) SU(2) x SU(2) (b) SU(2) x SU(2)

Figure 4.1: The root lattice for each coordinate z*. The gray region signifies
the fundamental domain of the torus in each complex dimension. The solid
points are the fixed points of the Z, action.

The only consistent Eg gauge symmetry breaking patterns are Fg —

E;x SU(2) and Eg — SO(16). The gauge shift vectors and modular invariant
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combinations of gauge groups are listed in Table 4.1, along with the twisted
and untwisted spectra for each model. From this table we can see that there is
a state charged under both Eg’s, meaning it will somehow need to be charged

across the bulk in the heterotic M-theory picture.

Normalized Gauee Grou Untwisted
Shift Vector & P Spectrum

$(12,0%),3(0°%) | BrxSU2)x Ey | (56,2;1) | 3(56,1;1) 4 4(1,2;1)

E; xSU2) x | (56,2;1) +
SO(16) (1,1;128,)

Twisted Spectrum

$(12,09), 3(2,07) 3(1,2;16)

Table 4.1: The gauge shift vectors and modular invariant combinations of
gauge groups. The twisted and untwisted spectra for each model are also
included.

In M-theory, it is known that compactification on a K3 surface with
type Ay_; singularity, such as T*/Zy, results in an SU(N) gauge theory on
the resulting 7D theory. Compactification of these theories on S'/Z, forces
one to impose boundary conditions unnaturally on the resulting fields in order
to acquire the proper spectra [21]. Fortunately, there is a chain of dualities
that prove to be quite useful in this case and allows a more natural derivation

of the twisted states charged across the bulk.

Specifically, up to this point we have mentioned two compactifications
of M-theory related to string theory. We know that M-theory compactified on
an S has type-ITA supergravity as a small radius limit [1,9]. We have also

discussed at length that M-theory compactified on an S'/Z, yields Fg x Fg
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heterotic supergravity as a small radius limit. What if instead we were to
consider the case in which M-theory is compactified on S} x S3/Z,;? For
Ry > Ry, We would simply see the Fg x Fg heterotic theory compactified on
S1, which is a relatively simple model to investigate. However, in the limit
that R; < Ry, we have what appears to be the type-IIA theory compactified
on Si/Zs. This theory, known as type-I’ string theory [33], is a much less

trivial model to investigate, so let’s look at some of the qualitative features.

4.1 Type-I’ String Theory

In type-I’ string theory, the Si/Z, acts as an orientifold of the theory
(due to the boundary conditions imposed on the Kalb-Ramond 2-form B de-
scending from the boundary conditions imposed on the parent 3-form C'). As
a result, the boundary surfaces of the interval must be orientifold 8-planes.
These two O8-planes have D-brane charge —8, for a total charge of —16. The
theory necessarily needs to be charge-neutral, so to counter this charge we
must insert 16 D8-branes along the interval. The positions of these branes is
arbitrary in the sense of charge neutrality, but the configuration of the D8-
branes has nontrivial effects on the resulting gauge symmetry of the theory.
For instance, if all of the branes are in distinct locations in the bulk, then each
D8-brane contributes its own U(1) gauge symmetry and we have U(1)®. This
is the equivalent of turning on Wilson lines and breaking the Fg x FEg gauge
symmetry down to its Cartan subgroup in the heterotic picture. As we con-

tinue to vary the positions of the D8-branes, we similarly vary the Wilson line
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parameters in the heterotic picture, allowing us to reach points of enhanced
gauge symmetry. For instance, when k of the D8-branes are coincident at a

point in the bulk, then the gauge symmetry is enhanced,
U)F = U(k). (4.1)

There are additional symmetry enhancements when D8-branes are coincident
with one of the O8-planes. Specifically, for k D8-branes coincident on an

O8-plane, the resulting gauge symmetry is enhanced,
U1 — SO(2k). (4.2)

These two conditions properly summarize all attainable Eg subgroups except
for the exceptional ones: Fg, E7, and Fy itself. To account for these groups, it
is necessary for the gauge coupling at the O8-plane in question to be infinite.
This is achievable when the D8-branes away from the O8-plane are arranged
in specific, fixed configurations. At these critical positions, the coupling at
the boundary becomes infinite, and the fixing of the center of mass of the
specifically arranged D8-branes effectively removes a U(1) from their relative

gauge group, which is then used to enhance the gauge group at the boundary:

Thus, by considering Eg x Eg heterotic string theory compactified on a circle,
we are able to use M-theory and some duality arguments to transform our

nontrivial questions into questions of brane dynamics in type-1" string theory.
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4.2 (Multi-)Taub-NUT Geometry

The mission of this section is to investigate the twisted states of 6D
orbifold theories. These twisted states are localized at the fixed points of the
Zx action on the T* under consideration, so for simplicity’s sake let’s focus on
the spectrum at a single fixed point. Locally, any one of these fixed points is
indistinguishable from the sole fixed point of C*/Zy, or any other geometry
with a similar singularity structure, SU(2) holonomy, and simple asymptotics.
In order for us to make contact with the type-I’ theory discussed previously, we
are particularly interested in flat R? x S! asymptotics rather than R*, which

is why we invoke the powerful multi-Taub-NUT geometry below.

The multi-Taub-NUT geometry of N Kaluza-Klein monopoles (denoted

T'Ny) has metric

(dy — A(x)dx)?

ds® = dx? 4.4
s° = V(x)dx* + ) : (4.4)
where y is periodic with radius R, y =y + 27 R,
Ren 1
V x VV,and V +3 ;:1 x| (4.5)

When all N monopoles are located at distinct x;, the geometry of the multi-
Taub-NUT is smooth. However, when k of the monopoles coincide, there is a
resulting C? /Z,, singularity located at that point. For the specific case in which
all N monopoles are at the same point, we have a C?/Zy singularity, and the

multi-Taub-NUT geometry is simply an orbifolding of a basic Taub-NUT,
TNy =TN;/Zy. (4.6)
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In the limit that R — oo, the T'N; curvature becomes negligible and T'N; ~

C?. Thus, we see that in this limit

TNy ~ C?*/Zy. (4.7)

4.3 Brane-Engineering the Fixed Points

Approximating our orbifold fixed point as a TNy with its R? x S?
asymptotics means that we can now consider M-theory with a dimension com-
pactified on an S'. For our approximation to be valid, we required that the
radius of the S* be large, R — oo. However, in order for M-theory compacti-
fied on an S* to dualize to type-IIA theory, the opposite is actually necessary,
R — 0. The issue we hope to avoid is that everything we do in our type-
ITA (or type-I') theory is invalidated when we try adapt it to the fixed point
in question. Luckily, we know that the massless twisted spectrum is chiral
and hence is independent of continuous parameters such as R. This assures us
that the following construction will consistently describe states in the opposite

regime of R.

We’ve now transformed our problem into one of brane engineering.
The Fg x Fg heterotic theory compactified on T*/Zy is dual to heterotic M-
theory compactified on the same orbifold. The fixed points of this orbifold
are locally indistinguishable from the fixed point of the T'Ny discussed above,
so we can use this geometry to explore the spectrum instead. By letting
the radius of the TNy become small (much smaller than the width of the

S1/Z,), we are able to dualize our theory once again, this time to type-I’
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string theory. It was shown in [9] that the Kaluza-Klein monopoles introduced
above dualize to D6-branes stretching across the bulk in the type-I’ theory,
and thus N coincident monopoles will similarly correspond to N coincident
D6-branes. These D6-branes will have enhanced gauge symmetry, producing a
7D U(N) SYM theory on the resulting world-volume. However, in this gauge
symmetry there is a U(1) that parametrizes the center-of-mass position. This
is actually nothing more than an artifact of the fact that we are considering
a non-compact geometry near the fixed point, when in fact the orbifold as a
whole is compact. In the actual compact theory this U(1) is absent, and so as
we continue discussing the brane-engineering procedure, we will refer to the

compact SU(N) symmetry instead.

Now let’s focus on the specific case of interest, the T /Z, orbifold dis-

cussed above where the gauge symmetry is broken as
Eg x Ey — E; x SU(2) x SO(16)". (4.8)

This orbifold model has a simple interpretation in the type-I’ picture, see Fig.
4.2. On the left O8-plane, there are 6 D8-branes stacked on top of each other,
while away from the boundary there are 2 D8-branes coincident. Naively, this
would yield a model with SO(12) x U(2) gauge symmetry. However, the two
branes situated away from the boundary are in fact fixed at the critical point
that causes infinite coupling at the O8-plane. Thus, the gauge symmetry is
enhanced:

SO(12) x U(2) — Er x SU(2). (4.9)
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The remaining 8 D8-branes are all coincident at the right O8-plane, and so
the resulting gauge group on this boundary would be SO(16), as we expect

from the orbifold.

10

Figure 4.2: Type-I’ brane configuration corresponding to the T*/Z, orbifold.
The dashed lines correspond to D6-branes, while the solid lines correspond to
D8-branes.

The Zs fixed point corresponds to N = 2 coincident monopoles, and
hence 2 D6-branes coincident at this point in the type-I’ picture. The last
consideration we must make is for the boundary conditions of these D6-branes

when they reach the boundary on either side. On the SO(16) side, the D6-
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brane must terminate at the O8-plane since all D8-branes are coincident on it.
Since the orientifold plane acts as a mirror, the gauge symmetry on a stack of

N D6-branes at this junction must be broken as
SU(N) — Sp(N/2). (4.10)

For our simple case of N = 2, we have SU(2) — Sp(1) = SU(2), i.e., there
is no gauge symmetry breaking (this should seem reasonable since SU(2) is
pseudoreal). At the D6-D8 junction, open strings form hypermultiplets with
charges (2;16) under SU(2) x SO(16) (the intersection of the D6- and D8-
branes has a 6D world-volume). Being at the O8-plane, half of the hyper-
multiplet is projected out, so the final state present is a half-hypermultiplet,
1(2;16).

At the other boundary, there are a couple of possibilities for terminating
the D6-branes. It is possible for the D6-branes to cross the bulk D8-branes and
terminate on the O8-plane . However, the strings there are at infinite coupling
so this is not a desirable option. Instead, we consider the two D8-branes away
from the boundary as a terminus for the D6-branes. By locking the D6 gauge

fields onto the D8 gauge fields via boundary conditions,

D D
Ag Nz =q) = AELQ )(x =0), (4.11)

the combined gauge group SU(2) ps X SU(2) pg is broken to a diagonal subgroup

SU(2)giag". Thus, the resulting half-hypermultiplet at the other boundary,

lthere is an elegant derivation of this using T-duality in [22].
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5(2;16), is not charged under the initial SU(2)pg but under the surviving
SU(2)giag- In this way, the D6-branes carry the quantum numbers of one
boundary across the bulk (in a mixed fashion) and create states localized at
the other boundary. Dualizing back to heterotic M-theory and then going to
weak heterotic string coupling so that the bulk vanishes, these states appear
to be charged under just the original SU(2) x SO(16) subgroup of the Eg x Eg

gauge symmetry, as is calculated perturbatively.

In developing the machinery to solve the mystery of these mixed twisted
states in 6D, we relied heavily on a few tools. It was absolutely necessary that
we be able to find a geometry with similar fixed-point structure, SU(2) holon-
omy, and R? x S! asymptotics, in order to dualize from heterotic M-theory to
type-1’ string theory. From here, we were able to use brane dynamics to prove
the existence of 7D SU(N) SYM theories at the fixed points stretched across
the bulk. These SYM theories were able to carry quantum numbers across the
bulk and create charged localized states on the opposite side. Unfortunately,
there is no clear generalization of these tools from 6D to 4D. To start, there
is no known 4D equivalent of the multi-Taub-NUT space (a geometry with
orbifold fixed point structure, SU(3) holonomy, and R® x S' asymptotics).
What’s worse, however, is that even if we were to find such a geometry, we
already know that the 5D theories at these orbifold fixed points are highly
nontrivial. As we will discuss in the next section, in the 4D case we will no
longer be dealing with finitely coupled SYM theories at the fixed points as we

did in 6D, but with infinitely-coupled 5D superconformal theories [17].
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Chapter 5

5D Field Theory

As 5D gauge theory will be intricately involved in our solution to the
4D cases we consider, it is important that we discuss it in some detail. Mini-
mal supersymmetry in five dimensions requires eight supercharges and, upon
dimensional reduction, is related to the 4D N' = 2 superalgebra. There are two
massless representations in 5D, corresponding to the vector multiplet, which
has one real scalar field, and the hypermultiplet, which has four real scalar
fields. When dimensionally reduced to 4D, the component of the vector field
along the reduced dimension combines with the real scalar to form the complex
scalar of a 4D N = 2 vector multiplet, and the hypermultiplet reduces simply

to a 4D hypermultiplet.

This relationship between 5D A/ = 1 and 4D N = 2 gauge theories is
important because we know that the Lagrangian of the 4D theory along its
Coulomb branch must satisfy special geometry, and thus the same applies to
the 5D theory. Specifically, this Lagrangian must be derived by a prepotential

that is locally a function of the vector superfields A*:
i 1 i L i 15 Ak
F = Co + (Cl)i.A + 5(62)ijA .A] + 6(03)¢jk./4 .AJ.A . (51)
We know that the prepotential is at most cubic in the vector superfields be-
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cause the 4D invariance condition on the scalars A} — A’ + a’ translates to
a similar condition in 5D, A" — A’ + ia’. As ¢y and ¢; do not affect the
Lagrangian, we will simply set them to zero and concern ourselves solely with

¢y and c3.

Let’s specialize to the case with gauge group SU(2). It is clear to see
that the coefficient of the quadratic term of the prepotential corresponds to
the bare gauge coupling, tg = g%. The cubic term corresponds to a Chern-
Simons term, and it is important to note that for this term to be nonzero
classically, the gauge group in question must have a cubic invariant. This is
not the case for SU(2), so classically ¢ = 0. However, there is the possibility
of quantum corrections to this term at the 1-loop level. This calculation was

performed for gauge group SU(2) and Ny massless flavors in [10], and the

resulting Chern-Simons coefficient takes the form:
c3 = 2(8 — Ny). (5.2)

We can then derive the gauge coupling of the effective theory on the Coulomb
branch of the moduli space. At a generic point in the moduli space, the SU(2)
gauge group is broken to U(1) and the Coulomb branch is parametrized by
the VEV of a real scalar ¢ € R/Zy = RT. The coupling is then

0*F(¢)

tepr = 0 to +2(8 — Ny)¢ (5.3)

This theory has the common SO(2Ny) global symmetry associated to SU(2)

gauge theory with N; flavors.
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The above expression can be generalized to include masses for the fla-
vors, as well. It is worth discussing a few caveats about the parameters before
doing so, however. First, as discussed in [10], the masses of these hypermul-
tiplets in the effective Lagrangian can be analytically continued to include
negative masses. The only importance is in preserving the relative sign of
hypermultiplet masses. Their presence is significant, though, as it will in fact

enrich the phase structure of our parameter/moduli space.

Second, the bare coupling parameter ¢y, actually has a physical inter-
pretation that should be considered. Specifically, there exists a current that is

always conserved in 5D gauge theories,
j=x(FAF). (5.4)

This is the instanton current and corresponds to a U(1); global symmetry. In
5D an instanton is a BPS state, and its mass depends on the bare coupling.
Thus, we can interpret ¢, as the mass of a particle in some sense, and there is

an additional U(1); global symmetry as a result.

Now we can continue on toward generalizing eq. (5.3) to include massive
flavors. However, with this generalization comes a complicated structure of
global symmetries. In order to clearly illustrate this structure, let’s use the
familiar method of brane dynamics in type-I' string theory to discuss the

different phases of the gauge theory.
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5.1 5D (Gauge Theories from Type-I’ String Theory

In the section on 6D orbifold theories, we introduced the background of
type-I’ string theory. Consisting of an interval with O8-planes at the bound-
aries, the —8 D-brane charges associated to each OS8-plane forces us to in-
troduce 16 D8-branes to ensure D-brane charge neutrality. For the sake of
interest, let’s situate the D-branes so that N, of them are near one boundary
(R = 0) and N; = 16 — N, are near the opposite boundary (R = L). We
discussed the different possible arrangements of the D8-branes and resulting
gauge groups earlier in this work, but what we’d like to do now is probe these
brane configurations with a D4-brane (parallel to the D8-branes in the bulk
direction) and study the resulting 5D gauge theory on the D4 world-volume.

Most of this presentation is similar to that presented in [33, 34].

Consider the D4-brane in the vicinity of the R = 0 boundary, far from
the R = L boundary. In parameter terminology, the distance of the D4-brane
from the boundary corresponds to the Coulomb branch scalar VEV, and the
position of each D8-brane corresponds to the mass m; of a hypermultiplet in
the SU(2) gauge theory ( at ¢ = 0) formed by open strings between it and the
D4-brane. This implies that we will be considering configurations with general
constraints

ml,...,mNO,qb<<mN0+1,...,m16, (55)

so that n = N; of the flavors are very heavy and can be integrated out. The
gauge symmetry of any given brane configuration manifests as a global symme-

try on the D4 world-volume theory. Additionally, as the D4-brane approaches
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the boundary (¢ — 0), states due to open strings between it and its mir-
ror image in the orientifold plane become light. When the D4-brane meets the
boundary (¢ = 0), these states become massless and the U(1) gauge symmetry

on the world-volume is enhanced to Sp(1) = SU(2), as expected.

To begin, let Ny D8-branes be stacked on the O8-plane, N, — Ny of
the D8-branes in the bulk away from the boundary, and ¢ small. Near the
boundary the world-volume theory is SU(2) gauge theory with Ny flavors and

from eq. (5.3), we know that the corresponding effective coupling is simply
terr =to +2(8 — No)o. (5.6)

As ¢ increases and approaches the first D8-brane away from the boundary at
my, the hypermultiplet associated to that D8-brane is becoming massless. For
¢ > m;, the effective coupling gains a linear correction based on the coupling
at that D8-brane:

tegr = terp(ma) +2(8 = No —1)¢

(5.7)

As the D4-brane continues to pass D8-branes, the effective coupling picks up

corrections in a similar fashion. This behavior can be generally expressed as

Ny Ny
tops = to+ 166 — Y |¢—mi| — Y |¢+mil. (5.8)
i=1 i=1
As a quick note, notice that for the case N, =8 and ¢ > my,, we have

tesr = to, (5.9)
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so in a way we can view this bare coupling (the mass of the instanton) as the
asymptotic value for large ¢ with eight flavors. Thus, in order to maintain
t > 0, it is necessary for ¢y > 0. Beyond eight flavors, ¢ is necessarily bounded

above by t,.

Let’s consider the specific case of Ny flavors on the boundary, and one
flavor out in the bulk at mg. For ¢ > mg, we know from eq. (5.8) that the

effective coupling has the form
tefr =to+2(8 — Ny —1)¢. (5.10)

As we cross over the D8-brane in the bulk, so that ¢ < mg, we can use eq.

(5.8) once again to generate the effective coupling,
teff:t0—2m0+2(8—Nf)¢:t6+2(8—Nf)¢, (5.11)

where we have define t{, = ¢ty — 2my as a “corrected” bare coupling of sorts
for the SU(2) gauge theory at the boundary. This formalism sheds light on
something mentioned above, namely that there is a critical position of the
brane in the bulk such that the coupling diverges at the boundary, my = %to.
This divergence corresponds to an enhancement of the gauge symmetry in the
brane configuration, i.e., an enhanced global flavor symmetry on the 4D world-
volume theory near the boundary. At such strong coupling, the notion of a
particle is not well-defined, and at ¢ = 0 the theory is a nontrivial interacting
conformal field theory with global symmetry SO(2Ny)xU(1); — Ey, 11, where

the U(1); is the global symmetry for the instanton current. Put another way,
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we can associate t{, with (some simple redefinition of) the instanton mass, so
the symmetry enhancement occurs when the instanton becomes massless, for

a total of Ny + 1 massless states to generate the Ey, 1 global symmetry.

Finally, let’s return to the idea that the masses need not be positive
and specify Ny = 1 for our personal interests. The 5D theory at the boundary
(¢ = 0) has trivial flavor symmetry for generic values of mg, but the flavor
symmetry is enhanced to Fy = SU(2) x U(1) at the critical value of my.
Allowing the flavor hypermultiplet to gain a mass m > 0 with my fixed will
result in a theory that is still infinitely coupled, now with £y = SU(2) global

symmetry and effective coupling
tepr =to — 2my — 2m = —2m. (5.12)

Allowing m to return to 0 and then go negative, we see that there is a new

phase in the effective gauge coupling:
terr = (to — 2mgo — 2m) + 4m. (5.13)

We now see an additional superconformal fixed point in the effective coupling
along the locus in which tg —2mg—2m > 0 and m < 0 but tqg—2mgy+2my = 0.
At this fixed point the theory has an E =U (1) global symmetry corresponding
to this single parameter. If we additionally allow for ¢, 4+ 2m < 0, then the
theory flows to an isolated superconformal fixed point with Ej, i.e. trivial,

global symmetry.

The brane dynamics behind these theories involve a major change in

the structure. In the regime mg > 0 studied thus far, we have been able
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to consider the classic moduli space of the type-I’ string theory, and left the
infinite-coupling dynamics as limiting cases. The E; and Ey theories, however,
require that we go beyond the classical limit and consider excited O8-planes
[17], denoted O8*-planes. These have D-brane charge —9 instead of —8. As
the mass parameter m approaches zero and then turns negative, the D8-brane
enters the O8-plane and goes “behind it.” Thus, its image exists on the actual
physical interval. The image has mass parameter m’ = to—2my+2m and hence
the El fixed point corresponds to the D8-brane and its image coinciding at
the boundary, m’ = m = 0. Open strings between the D6-brane and D8-brane
thus create a massless hypermultiplet here. Allowing m’ < 0 corresponds to
dropping the original D8-brane further into the image, and hence its image
D8-brane leaves the O8*-plane, the hypermultiplet gaining mass |m/| in the

process. The resulting theory at the O8*-plane is the Ey SCFT.

5.2 M-theory and Calabi-Yau Threefolds

We mentioned previously that “compactifying M-theory on an orbifold”
is really an abbreviation for “compactifying M-theory on a Calabi-Yau three-
fold and considering the singular limit in which it approaches an orbifold.” In
light of the above discussion of 5D field theory, consider such a compactifica-
tion of M-theory. There is a wealth of literature on this topic, [11-13], but we
will be concerned chiefly with the singular structures of these constructions
[10,17]. Specifically, we want to consider the case in which only a proper

subset of the Calabi-Yau threefold vanishes. This subset forms an imbedded
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surface of lower dimension in the threefold. In the proceeding, we are trying to
make contact with the SU(2) gauge theories discussed above. As the moduli
space of these gauge theories are one-dimensional, we wish to only vary one
parameter to shrink these surfaces. This limits us to complex codimension-one

surfaces.

To illustrate, consider the case in which the subset of interest is the
Hirzebruch surface Fy, which is isomorphic to CP? blown up at one point.
This surface contains one 2-cycle corresponding to the blow-up CP' and one
4-cycle, namely the entire F;. Wrapping an M2-brane on the 2-cycle creates a
BPS state with mass proportional to its volume. Blowing this CP' down then
corresponds to a massless particle. At this wall of the Kéhler cone there is a
possible flop transition to “negative volume” under which the 4-cycle becomes
a CP?. Shrinking this 4-cycle yields the Ey SCFT from earlier, while instead
shrinking the [y yields the E; SCFT. Each orbifold fixed point we will consider
has a corresponding blown up 4-cycle in this general fashion that we wish to
blow down, so we see that the complications associated to these 5D SCFT’s
will be prevelant going forward. The strategy we employ to make them more

manageable begins with the brane web construction of 5D gauge theories.

5.3 Brane Webs

Part of the S-dual nature of type-IIB string theory is the existence
of two extended objects of the same dimension: the D5-brane and the NS5-

brane. We wish to study the resulting gauge theories of certain configurations
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of these branes. These configurations, called brane webs [18,19], are built
out of D5-branes whose world-volumes fill 2°, ..., 2%, ° and NS5-branes filling
20, ..., 2% 2% We will consider combinations of p of these D5-branes and ¢
NS5-branes, referred to as (p,q)-branes. These branes’ world-volumes share
2°,...,2* where we will build our nontrivial 5D theories. The rest of the

(p, q)-branes fill a plane whose coordinates we will label as (z,y).

Type-1IB also contains a complex scalar field that transforms under
SL(2,R),

T=x+ie ?, (5.14)

where @ is the dilaton whose exponentiated VEV gives the string coupling,

<eq’> = A, and y is the RR scalar, also known as the axion. In this notation,

the tension of a (p, ¢)-brane is written as

T = Ip+ 74| Tps, (5.15)

where Tps is the D5-brane tension. Additionally, these (p,q)-branes are al-

lowed to form vertices as long as the RR- and NSNS-charges are conserved,

Zpi = Z%‘ =0. (5.16)

As far as supersymmetry is concerned, it is possible to preserve 8 of the 32

supercharges (which we want for 5D N = 1) by demanding [35]
Azr + T7Ay — p+ 7q, (5.17)

i.e., the (p, ¢)-branes are required to “have a slope” in the (z, y)-plane parametrized
by p and ¢. For ease of drawing, we will normalize so that 7 = ¢, meaning that

a (1,1)-brane will have a slope of 1.
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Knowing that these (p, q)-branes can form vertices in the (z,y)-plane
implies that they can be semi-infinite with one end terminating at a vertex
or finite with both ends terminating at vertices. Combining (p, ¢)-branes in
this fashion forms the basis of the brane webs we will be considering. Fig. 5.1
contains some examples of such configurations. Looking at these brane webs,
we see two obvious forms of deformations that we would like to associate to
parameters. Namely, we can think of deformations that have no effect on the
asymptotic structure and deformations that do. For reasons that will soon
become obvious, we will refer to these as local deformations and global defor-
mations, respectively. This first type, local deformations, refers to breathing
modes of closed surfaces on the (z, y)-plane, as is denoted with the dashed line
in Fig. 5.1a. The parameter associated to this breathing mode corresponds to
the VEV of a real scalar field in a BPS vector multiplet formed by a funda-
mental string stretched between two parallel D5-branes ((1,0)-branes). These
states are the familiar U(1) gauge fields associated to strings on D-branes.
When the VEV is zero so that the two D5-branes are coincident, we have

gauge symmetry enhancement in the usual fashion.

For the second type of deformation, global deformations, we must be
careful so as not to overcount actual relevant deformations. Naively, we count
one generator for every semi-infinite (p, q)-brane; let’s say there are ngen,; of
them. However, not all of these are linearly independent. For example, our
resulting 5D theory should not care about relative translations of the brane

web in the z- or y-directions, so two combinations of generators are in fact
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(a) (b)

Figure 5.1: Brane webs for flavorless SU(2) SYM (a) and Ny = 2 SU(3) gauge
theory (b).

irrelevant. Additionally, charge conservation at each vertex has the global
effect of fixing one vertex uniquely if all others are designated, so another
generator is irrelevant. Thus, the number of generators of global deformations
we end up with is

Nglobal = MNsemsi — 37 (518)

and there is a corresponding global symmetry of rank ngeme. Specifically, for
the brane web in Fig. 5.1a, there is ngopa = 4 — 3 = 1 generator correspond-
ing to the width of the brane web. This U(1); global symmetry is just the
symmetry associated to the instanton current, and the BPS instanton state
follows from stretching a D1-string to connect the two parallel NS5-branes
((0,1)-branes) in the web. As discussed earlier, the mass of the instanton
is associated with the bare coupling of the 5D gauge theory, so we can thus

associate the width of the brane web with this bare coupling.

The brane web in Fig. 5.1b has a significant increase in intricacy. First,
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we have two closed surfaces in the (z,y)-plane, signifying a U(1)? gauge sym-
metry. Following the logic above, one should be able to see that when these
surfaces both collapse so that 3 D5-branes are coincident, the gauge symme-
try is enhanced to SU(3). The semi-infinite D5-branes have a less immediate
interpretation, however. We know from above that they should generate some
global symmetry. The symmetry in question is actually a flavor symmetry, and
thus these branes must generate BPS states, as well. These states correspond
to strings that connect these semi-infinite branes to other D5-branes but are
along the (p, ¢)-branes instead of in the empty space of the (z, y)-plane. These
strings not fundamental strings or D1-strings, but instanton strings of the 6D
world-volume theory on the (p, ¢)-brane. These are thus usually referred to as

(p, q)-strips as opposed to strings [18].

Finally, we can have combinations of fundamental strings and D1-
strings that can meet at vertices and form towers of BPS states. For instance,
consider both brane webs in Fig. 5.2. They are two different phases of SU(2)
SYM that we will discuss below, but for now we just want to take notice that
the BPS instanton-like state in Fig. 5.2b cannot be constructed as simply as

the one in Fig. 5.2a, but must be a bound state from multiple (p, ¢)-strings.

The brane webs in Fig 5.2 demonstrate another key point about these
configurations. Let’s first consider a slightly different example in which we
have SU(3) gauge symmetry instead of SU(2), as in Fig. 5.3. All of these
models have the same Coulomb branch, but differ in their BPS spectra. This

is a consequence of the Chern-Simons coupling in each model, and the differ-
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(a) (b)
Figure 5.2: Instanton-like states for SU(2) SYM, # =0 (a) and § = = (b).

ent brane webs correspond to a distinct Chern-Simons number, & [18]. Any
additional brane webs are related to these by an SL(2,7Z) transformation or

have negative k, which produces identical BPS spectra. Extending this rela-

(c) (d)

Figure 5.3: Brane webs for SU(3) SYM with (a) k=3, (b) k=2, (¢c) k=1,
and (d) k = 0.

tionship to SU(2) is met with some difficulty. On one hand, it is obvious that

there are multiple pure SU(2) SYM brane webs, as in Fig. 5.4. On the other
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hand, SU(2) has no cubic invariant, so it has no Chern-Simons term. How-
ever, similar to 4D where m3(SU(2)) = Z leads to a vacuum #-angle that can
take values in {27Z}, in 5D we have 74(SU(2)) = Z, which leads to a §-angle
that can take values {0, 7 mod 27Z}. We thus have two SU(2) SYM theories,
differing by the value of a #-angle. These different phases are represented in
the various brane webs in Fig. 5.4. It’s curious that from the field theory point
of view, § = 0 and 6 = 27 should be identical. However, the brane webs in
Fig. 5.4a and Fig. 5.4c appear to be quite different. As it turns out, they do
produce the same spectra as long as the bare coupling does not vanish. As it
approaches zero, 6D strings stretched across the semi-infinite NS5-branes in

Fig. 5.3a become tensionless, and the physics here is less understood [18].

()

Figure 5.4: Brane webs for SU(2) SYM with (a) § = 2w, (b) 6 = 7, and (c)
0=0.
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As demonstrated above, brane webs are extremely useful for construct-
ing 5D SU(N) gauge theories (though it is not explicitly presented, brane
webs properly reproduce our results for the effective coupling). Their particu-
lar usefulness in our case, though, comes from their relationship to toric data
[18]. Specifically, we will be able to make use of the toric diagrams associated
to the resolution of singularities in each orbifold we consider!. Toric diagrams
and brane webs are in some sense “dual” to each other. Consider, for example,
the toric diagram in Fig. 5.5b. This can be derived from the brane web in Fig.
5.5a (and vice versa) by (1) replacing each face (open or closed) with a point,
(2) replacing each vertex with a triangular face, and (3) rotating each line by
90° to connect the points and act as the edges of the triangular faces. With

some resizing, you can see this overlayed in Fig. 5.5¢

This translation between toric data and 5D gauge theories allows us to
consider M-theory compactified on (blown-up) orbifolds. It is an important
step for us to take, but it is still far from sufficient. As elegant as brane webs are
for constructing 5D gauge theories, they are poorly suited for compactifying
on S'/Z, to make contact with the heterotic theory. Luckily, we will see that
there is another method for studying these theories, namely deconstruction,

that lends itself quite well to compactification on an interval.

LA useful primer on toric diagrams and the “Inverse Algorithm” for extracting gauge
theory information from toric data is [36].
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Figure 5.5: The brane web for SU(2) SYM with § = 0 from above (a), its dual
toric diagram (b), and the two overlayed (c).
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Chapter 6

Deconstruction

In deconstruction, the 5D theory is compactified on a circle, and then
this compactified dimension is latticized [31]. Being that 5D gauge theories are
nonrenormalizable, this latticization acts as a necessary UV-cutoff. These lat-
tice sites can be interpreted as nodes of a quiver, and the resulting description
is a 4D N = 1 quiver gauge theory. The quiver theory can be quite compli-
cated, but enables the use of 4D calculation methods and (as we will discuss
later) simplifies the process of compactifying on S'/Z,. The deconstruction
of general 5D SU(N.) SYM was derived in [23], and general SQCD with Ny

flavors and Chern-Simons level k was derived in [25].

6.1 Deconstructing SQCD on S*

We will begin with a 4D, N' = 1 quiver gauge theory with gauge group

=

G =TT su). (6.1)

=1
At each node, there are Ny quark chiral superfields Qg in the fundamental
representation of SU(N.), and Ny antiquark chiral superfields Qvg in the an-

tifundamental representation. Between the nodes are bifundamental linking
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chiral superfields ®, in the fundamental representation of the (¢ + 1)th node
and the antifundamental representation of the /th node. Making the identi-
fication ¢ — ¢ + L, we see that ®, links the Lth node to the first node. In
this way, the quiver can be arranged in a circle as in Fig. 6.1. To complete
the description of the quiver, we note that the gauge couplings at each node
must be equal, g, = g V/. This is necessary for translation invariance in the

x-direction.

For this quiver theory to deconstruct 5D SU(N.) SQCD, it is necessary
to introduce a couple of superpotential terms. The first of these is the usual
"hopping” superpotential,

L Ny
Wiy =73 3 (QL1®Qf - 1,011 . (6.2)
=1 f=1
which allows the quark fields to propagate in the latticized x*-direction. Here,

to ensure that the speed of light for quarks and gluons is the same, it is

necessary to impose that the Yukawa coupling v be equal to the gauge coupling,

=g (6.3)

The second superpotential term that is needed is the O’Raifeartaigh superpo-

tential

Wy =B oy (det (®) — ™) (6.4)

where v > 0 is a constant and we have introduced the singlet chiral superfields

oy as Lagrange multipliers. Running along with the link fields in the quiver
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Figure 6.1: Deconstructive quiver. Each circle is a gauge group SU(N.),
and each line is a chiral superfield. An ingoing arrow signifies that the chiral
superfield is in the fundamental representation under SU (V. ), and an outgoing
arrow is in the antifundamental representation. Hence, the lines between nodes
are the bifundamental link fields, while the ingoing (outgoing) arrows at each
node represent the quarks (antiquarks); Ny = 1 above.

diagram, they have the effect of turning each link field into an SL(N,, C) linear
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sigma model with the on-shell condition
det (®;) = v™e. (6.5)
Thus, we can define the scalar part of ®, as

a(f+1)
Py(2)]ggeg = v X Pexp (/ dz* (1A (x) + gb(x))) : (6.6)

¢
where ¢ is the real scalar superpartner of the 5D vector field A, p = 0,1,2, 3,4
and a is the lattice spacing. For ¢ = A4 = 0, eq. (6.5) constrains the VEV of

the scalars in the ®, fields to satisfy
(D) = v xInxn, W (6.7)

which breaks the 4D gauge symmetry to the diagonal SU(N.) of G. This
quiver theory correctly reproduces the spectrum of 5D SQCD with gauge group

SU(N,) and N flavors compactified on a circle with the conditions

a

27R = La. (6.8)

gl
For the masses of the quarks to deconstruct properly, the quiver masses fif
must be related to the 5D masses my as

pp = ve™. (6.9)
Thus, for there to be light 5D quarks, it is necessary that 1 ~ v, and massless
5D quarks correspond to py = v.

The quiver theory also properly deconstructs the Coulomb branch of

the 5D theory. To see this, note that the D-term constraints for each SU(N,)
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gauge group combine to give
CI)ZCI)E — @4—1@2_1 X ]INCXNC‘ (610)

Along with eq. (6.5), these constraints force the &, VEV’s to be equal (modulo
an (-dependent gauge transformation). These matrices can be simultaneously

diagonalized to take the form
(®y) = v diag (%1, ™2, ..., e¥Ne) (6.11)

with complex ¢’s subject to X = 0. From eq. (6.6), we conclude that the

r’s can be identified as

(¢) + i (Ag) = diag(p1, 2, ..., Pn,)- (6.12)

This is exactly as expected for a 5D vector multiplet compactified on a circle.

Finally, it is possible to deconstruct the Chern-Simons coupling of 5D
SQCD. The details are tedious, but have been worked out in [25]. For our
purposes, it is only necessary to consider the case where the masses of the
4D quarks are py = 0. As discussed earlier, it is necessary for puy ~ v for
the 5D quarks to have light modes. When py > v, the 5D quarks have a
large positive mass and actually decouple above the deconstruction threshold.
However, when py < v, the 5D quarks are within the deconstruction threshold
but have a large negative 5D mass and can be integrated out. This is the case
for pf = 0 (my — —o0), which has the benefit of decoupling the ®, linear

sigma models from each other. If this occurs, then the resulting Wess-Zumino
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couplings of these link fields deconstruct the Chern-Simons coupling of the 5D

theory, and we find
1 1
k= Ne—#{f iy < v} = S#Lf i pgm ok = Ne— AF = _Nyp, - (613)

where AF' symbolizes the number of quark flavors that have no light 5D modes

but still affect k.

6.2 Deconstructing SQCD on S'/Z,

The deconstruction procedure on S! above already highlights most of
the machinery we need to extend to S'/Z,. In fact, everything we discussed
applies to the bulk nodes of our interval quiver. It is only the boundary nodes
that need to be properly defined. Specifically, recall from eq. (3.2) that some
of the components of the 3-form field C' in M-theory have even boundary

conditions under the Z, action while others have odd:

Cry10 = Cri0,
(6.14)
Crixk = —Crik.

Wrapping this C' on 2-cycles in the Calabi-Yau threefold on which we’re com-
pactifying produces the 5D gauge fields that we are deconstructing. We there-
fore must carry these boundary conditions down to the descendent gauge fields.
The components perpedicular to the interval, C';x, compactify on the 2-cycles
to produce the 4D gauge fields in the low-energy effective action. However,
being odd under the Z, action means that these gauge fields cannot have zero

modes at the fixed points. We are thus forced to conclude that the gauge
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symmetry vanishes at the boundaries. In terms of our quiver, it is necessary
that there be no gauge symmetry on the boundary nodes. Instead, there is a
surviving global symmetry acting on any chiral fields that were charged under
the now-absent gauge symmetry. For example, consider the quiver associated
to SU(N.) SQCD with N; = 1 compactified on an S in Fig. 6.1. The same

theory compactified on S!/Z, would have a quiver of the form in Fig. 6.2.

OO O

Figure 6.2: The deconstructive quiver for the model. The circular nodes are
SU(N.) gauge groups and the square nodes are SU(N,) global groups. All
nodes have Ny = 1.

The Zs-even part of C, Cr.19, descends to the x*-component of the 5D
gauge field that gets compactified on the interval. Being even, this field does
have zero modes on the boundary. It is also charged under the gauge sym-
metry of the immediate bulk mode, so it forms an SU(N.)gauge X SU(Ne)giobal
bifundamental chiral field. The superpotential terms that we introduced sur-
vive, also, and give these states nontrivial interactions with the gauge singlet
states on the boundaries. Now that we have all of the necessary tools to begin

handling some of these models, let’s investigate the T°/Zs orbifold.
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Chapter 7

Zs Orbifold

As previously mentioned, the Zs orbifold starts with a torus. The torus
in this case is constructed by taking the complex three-plane C* and modding
by the SU(3) x SU(3) x SU(3) root lattice Agy(s)s. This 6D root lattice can be
decomposed into the product of three 2D root lattices Agy(3) X Asu3) X Asu(s),

where each identifies points on C by
1, e el (7.1)

Fig. 7.1 illustrates each individual complex dimension under this action. From

here, we act on this torus with a Zs twist. As discussed earlier, the consistent
twist vector is 7 = (1,1, —2)!. This acts on the coordinates of the torus by
identifying points under

2t — eZmri/3 41, (7.2)

ISince the twist vector components act on the coordinates as z — e(7™)7i/327 they
are invariant under shifts r; — r; + 3. Thus, the shift vector could instead be written as
7 = (1,1,1), so we see that it actually acts identically on all complex coordinates of the
torus.
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Figure 7.1: The SU(3) root lattice on C. The gray region signifies the funda-
mental domain of the torus in one complex dimension.

Looking at one complex coordinate of the torus, we see that there are three

fixed points of the action on it?:

1 s} 2 s}

Z;iwed - 07 %6?, ﬁe? (73)

A fixed point on the T°/Zs; must be a fixed point on each of the complex
coordinates. This implies that there are 3* = 27 fixed points of the twist
on the T, one for each combination of fixed points on the torus coordinates.

Table 7.2 shows the fundamental domain of each coordinate after orbifolding.

*There is only one fixed point on C, 2%;,., = 0. The other two fixed points on the torus
require the action of the root lattice, eq. (7.1).
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Figure 7.2: The orbifold action on a complex coordinate of the torus. The
fixed points are labeled. The lighter region signifies the fundamental domain
of the orbifold on the SU(3) root lattice. The action of the point group of
the torus identifies the fixed point at the origin with both of the remaining
corners of this region, so they must be identified. The orbifold is folded across
the dashed line as a result.

Next, we need to investigate the possible values for the gauge shift
vector 5. Along with 7, this must satsify egs. (2.11) and (2.12). Breaking §
into two 8-vectors §; and S, eq. (2.11) limits the possible gauge shift vectors.
We can check the roots of the Eg root system to see which ones do not project
onto this shift vector and preserve some of the gauge symmetry. We can
also check to see which do project onto the shift vector, corresponding to the

untwisted sector. The results of this are in Table 7.1. When the unbroken
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gauge groups are (appropriately) combined, the untwisted sectors of the Fg

subgroups make up the total untwisted sector of the model.

gﬁgﬂigjﬁi Gauge Symmetry Untwisted Spectrum
(0%) Eg -
(3,3,—2,0°) Es x SU(3) 3(27,3)
(5035,0°) Er x U(1) 3(56, + 1_y)
(3,3,3,35.—3,0%) SU(9) 3(84)
(2,07 SO(14) x U(1) 3(64_; + 14,)

Table 7.1: The allowable normalized shift vectors, along with their correspond-
ing unbroken gauge symmetries and untwisted spectra. Subscripts denote U(1)
charges.

The breaking of Fg x Eg must be consistent with eq. (2.12). This highly
constrains which of the Eg subgroups in Table 7.1 are able to combine with
each other. The combinations that meet these criteria are listed in Table 7.2.
The twisted spectra for these models are also given. A copy of each spectrum

is localized at each fixed point, so the multiplicity of states is 27.

In the twisted spectra presented in Table 7.2, there is a pecularity in
model 2 similar to what we alluded to earlier. Namely, there is a single state
that is charged by subgroups of each Eg group. This state is perfectly rea-
sonable from the string theory point of view, but must somehow be charged

across the bulk in the M-theory picture. This is an example of the situation
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’ \ Gauge Symmetry \ Twisted Spectrum \ Anamolous

1 Eg x SU(3) x E} (27,1:1) +3(1,3; 1) No

2 | EsxSU3)x EgxSU(3) (1,3;1,3) No

g | Brx U(l) x SO(14) x | (1;14)p0+ (1,1)._4 + Yes
Uy 3(1,1)40

4 | SU(9) x SO(14) x U(1) (9;1)_4/3 Yes

Table 7.2: The Modular invariant models with Z3 twisted states charged under
subgroups of both Eg’s. For each model, there are 27 states (one at each fixed
point). Subscripts denote U(1) charges. The U(1) gauge anomalies are also
indicated.

we wish to explain. Our standard procedure as we investigate each orbifold
with states posing this predicament will be to use the toric diagram for the
resolved fixed point to build the corresponding brane web. We can then use
this brane web to identify key details about the 5D gauge theory, such as the
gauge group, matter content, and Chern-Simons number. This allows us to
deconstruct this gauge theory, modify the boundaries to reflect compactifica-
tion on S'/Z,, and look at the spectrum as we drive the moduli/parameters

toward the corresponding blow-down limit in the geometry.

7.1 Deriving the Brane Web

The blown-up fixed point of the C3/Zs orbifold can be identified with a
CP?, and has a toric diagram of the form in Fig. 7.3. We can see the procedure
for finding the corresponding brane web in Fig. 7.4. Compared to our earlier

examples, this brane web has a very peculiar structure. First, there are only
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Figure 7.3: The toric diagram for the C?/Z, (resolved) fixed point.

three external legs, so eq. (5.18) would imply that the rank of the global
symmetry in the theory is ngoa = 3 —3 = 0, i.e., there is no global symmetry
Second, we recognize a breathing mode for the closed surface in Fig. 7.4c, but
since this closed face is a triangle, it collapes to a point rather than a line, and
we find no gauge symmetry enhancement. At this point, the effective coupling
diverges and we have the previously mentioned Ey SCF'T. Thus, the resolved
orbifold singularity corresponds to this theory deformed away from its fixed
point, along its Coulomb branch. Due to its significance to the situation at
hand, it is worthwhile to explore some of the features of this theory in more

detail.

7.2 The Fy SCFT

The Ey SCFT is difficult to study due to its isolated nature. There is

no gauge theory that flows to the Ey SCFT by itself. The best we can do is
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Figure 7.4: Converting the toric diagram to a brane web: (a) the toric dia-
gram, (b) an overlay of the conversion, and (c) the brane web with blow down
indicated by the dashed line.

flow to it with the assistance of additional matter. To see this, consider SU(2)
SYM with # = 7 along its Coulomb branch with brane web in Fig. 5.4b. The
theory has two parameters to vary: the breathing mode corresponding to the
modulus ¢ that breaks the gauge symmetry SU(2) — U(1) for ¢ # 0 and
the width of the D5-branes at ¢ = 0 corresponding to the bare coupling/mass

of the SU(2) instanton t;. We can vary these parameters and explore the
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different limits that result. Starting at ty > 0, ¢ > 0 as in Fig. 7.5a, we can
let tg — 0. At ¢ty = 0, the quantum corrected coupling is still positive, so
the theory is still SU(2) SYM with § = x, as in Fig. 7.5b. Continuing into
negative to®, we eventually reach a point ¢ty = ¢, where the coupling diverges
and a quark becomes massless (the mass depends on the length of the bottom
brane, which goes to zero at tg,,, Fig. 7.5¢). Past this point, there is a flop
transition as seen in Fig. 7.5d. This new phase has a massive quark with a
mass proportional to ty. In the low energy effective theory, we only care about
the massless spectrum, so we neglect this massive quark. The resulting theory
represented by the brane web in Fig. 7.5e is the Ej theory along its Coulomb
branch. Its massless spectrum consists of a single U(1) vector multiplet whose
scalar field quﬁ, a linear combination of ¢ and ty, characterizes the breathing
mode of the resulting triangle. There is no possible global deformation, so
there is no global symmetry in the Ej theory, as stated earlier. When gg =0
as in Fig. 7.5f, the coupling diverges and we reach the Ey SCFT point in the

moduli space.

7.3 Deconstructing the Fixed Point Theory

From above, we can see that to make contact with the Fy SCFT, we
will need to deconstruct SU(2) SYM with 6 = m. We've already mentioned

that, unlike for N, > 2, their is no cubic invariant for SU(2), so there is no

3There is no inconsistency in letting ¢y go negative here. One way to have § = 7 is to
add a flavor to SU(2) with 6 = 0, let it become heavy (m > ¢), and then integrate it out.
Then our “bare coupling” has the form ty — 2m, i.e., it can be negative.
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(d) () (f)

Figure 7.5: Brane webs for SU(2) SYM with 6 = 7. (a) to > 0, ¢ > 0, (b)
tg = O, ¢ > 0, (C) tyg = tflop < O, ¢ > O, (d) ty < tflop < O, ¢ > 0, (e) Ey SCFT
along its Coulomb branch, ¢ > 0, (f) Ey SCFT, ¢ = 0.

Chern-Simons term. However, by starting with SU(3) SQCD and Higgsing
down to SU(2), it is easy to see that the SU(2) f-angle is related to the
SU(3) Chern-Simons coupling (mod 2) [25]. Thus, the proper quiver theory
to deconstruct Fy will have N. =2, Ny =0, and AF = 1.

The chiral ring of this quiver has already been analyzed in [24] and the
Seiberg-Witten spectral curve in [25], so we will focus instead on the relevant
results. According to the deconstruction dictionary, the coupling at the origin

of the Coulomb branch has the following form:

3 v
to = —log ( ; ) ) (7.4)
a 7]z A
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where A is the dimensional transmutant introduced by instanton effects. For
to > 0, the low energy effective gauge coupling along the Coulomb branch has

the proper form with Ny =0 [17]
tegr = 2to + 89, (7.5)

with SU(2) restoration at ¢ = 0.4

For ty < 0 the structure of the Coulomb branch is more complicated.
In the regime ¢ > (—tg) > 0, the gauge coupling still has the same form as for
to > 0, eq. (7.5). As ¢ — —ty, a quark is becoming light and becomes massless
at ¢ = —tp. This is reflected in the fact that the gauge coupling abruptly
transitions to

lefr = 3ty + 9¢ (76)

for (—to) > ¢ > (—to/3). In this regime, it is convenient to define ¢ = ¢+(to/3)
so that we can rewrite eq. (7.6) as te;; = 9(5 and consider what happens as
ngS — 0. It is clear that the theory is approaching a fixed point, t.;y — 0, and
it can be identified as the Fj fixed point. In light of this, it becomes clear
that the regime (—ty) > ¢ > (—t¢/3) deconstructs the Coulomb branch of
the E, theory. Note that all of these phases identified in the deconstructed
theory match the phases identified using the brane web techniques illustrated

in Fig. 7.5. The last regime, (—ty/3) > ¢ > 0, has no corresponding brane

4This is true up to some arbitrary redefinitions of parameters that we neglect in order
to keep with [25].
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web because it is a nongeometric phase that disappears as the fifth dimension

is decompactified.

Let us examine this £y modulus ¢Z in more detail. We rewrite the VEV’s

of the link fields in the form

(@) = v ( egq; ePaw ) = ( °‘(’)1 32 ) . (7.7)

Since ¢ = Re(y) o log(|w;/v]), for our current purposes we can simply con-

sider w; to be real. This allows us to cleanly write quS in the form:

A 1 w1 1 3 (%
= Zlog () 4+ 221
¢ aog<v>+3<a Og(h]é/\))

(7.8)

Written in this way, it becomes evident that the Coulomb modulus gg is actually
independent of v! Originally, v was necessarily nonzero in order to deconstruct
the SU(2) SYM theory. After the flop transition, however, the sole parameter,
namely the modulus (;3, does not depend on v, signalling that v > 0 is really
just a relic from the fact that we approached the Ej fixed point from this
parent theory. By sending v — 0, we are sending t, — —oo according to
eq. (7.4), isolating the Ey theory from the SU(2) SYM phase as we did with
the brane webs. Thus, we will proceed to set v = 0 for the remainder of this

section.
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7.4 Spectrum at Blow-down

Consider the first gauged node, ¢ = 1. The superpotential terms that

contain fields charged under SU(2), are
Wiree.im1 = Q1P0Qo + oo det (®g) + Q281Qy + oy det (D1), (7.9)

where we have rescaled ’yée — @g, Boy — oy for simplicity. Let us now
temporarily relax the constraint that all gauge couplings be equal and, in the
spirit of [30], assume that Ay > A, V¢ # 1. In this limit, the effective theory
looks like SU(2); gauge theory with SU(2)s a global symmetry (the fields at
all other nodes are decoupled singlets under the gauge symmetry so we neglect
them). Thus, the SU(2); x SU(2), bifundamental field ®1(,4), @ = 1,2 and
& = 1,2, now represents two doublets under the gauge group just like ®guq).
Additionally, éua) now represents two singlets of the gauge group. Noting

that det(®,) = %@g(ad)eaﬁed5¢g(ﬁg), we can repackage the fields as

D1 (a1) @2(1)
Ql(a) = (I)l(a2) ) 81 = Qz(z) : (7-10)
Ql(a) 01

Similarly, we can make the definitions

~ Qvl(a) _ 0o
Ql(a) = Do) ) S = Qo(1) (7.11)
Dp(a2) Q0(2)
so that we can cleanly write
Wtree,é:l = €ijk8i le Qlf + Eijk:gi é{ é’f (712)
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Thus, we have an effective theory with gauge group SU(2) and Ny = 3. Asin
[29], we see that this induces an effective superpotential:

1

Wers =

(det M, — Bl,iM?El,j) , (7.13)
where Bl,i = Eiij{ If7 gl,i = eijké]i Qvlf, and ij = Qil @]1

In this form, the &;’s and S’s act as Lagrange multipliers, imposing

the moduli constraint B, = gl = 0. Thus, the superpotential takes the form

1
Weff ~ —3det/\/l1. (714)
Ay
F-flatness requires that agVTeflf = (0 at this fixed point, or in other words
————det My = (adj M,) ., = 0. 7.15
a(-/\/ll)ij € 1 (a J 1)]1 ( )

This constraint is only possible if the rank of M is at most 1. Also, the D-
terms constrain the VEV’s of Q; and Q; to be equal up to a flavor symmetry

transformation, taking the form

Qiz(g>, Ol =(h 0) (7.16)

with all other Q¢, Q% = 0 so that

h: 0
Mi=| 0 0 (7.17)
00

o O O

i.e., only M1 is nonzero. In the region M1 < O (A?) (we want to send

h — 0), the theory confines and the appropriate degrees of freedom to consider
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are the composite fields. In the absence of Wi,e =1, the mesons, baryons, and
antibaryons transform together under the antisymmetric 15 representation of
SU(6). However, Wyee =1 breaks SU(6) to SU(3) x SU(3) and gives masses
to By, g1,i, 8!, and g{ Thus, the only massless degrees of freedom are the
My’s.

Assume now that Ay > A, , so that SU(2), is gauged while the other
SU(2)’s are global symmetries. We can see that the M;j’s do not have the
same charge under SU(2),. In terms of the constituent fields, the mesons
(#,Q!) are doublets under SU(2), while the remaining mesons (Q;Q%) are
singlets. Thus, in the effective field theory the second gauged node appears to

be the first gauged node, with three doublets

. 1 -
2= 1 (91Q1) (7.18)
1
and three singlets
-1 -
Sy = (@1 Q). (7.19)
1

By repackaging the remaining fields in the same fashion as eqn. (7.10)

P3a1) @3(1)
D=1 P2 |, o= Q3 | > (7.20)
Q2 02

we see that we have the same situation we started with for the first gauged
node. Integrating out the massive fields from the first gauged node gives an

effective tree-level superpotential for the second gauged node:
Wireep=2 = Eijksé Qé Q’; + Eijkgé é% @5, (7.21)
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and the previous analysis can be carried out again. This is performed induc-
tively from node to node until finally we reach the last gauged node, £ = L, in

which we are left with a composite field:

L—1
My = <Q1 H CI)ZQL) ; (7.22)
=1
where we have conveniently defined

QL
QL= Pr@y |- (7.23)
P (a2)

This field transforms in the bifundamental representation of an SU(3) x SU(3)

global symmetry (for h = 0) with an effective superpotential of the form

1
Weff ~ EdetML (724)

By the same argument in eq. (7.15), M must be rank 1. Thus, it appears

that My /AF has the properties we seek for the twisted state at the fixed point

for the model of interest.

If instead we were in the regime M} = h? > O(A?), the effective
theory would be perturbative and the constituent fields would be the proper
degrees of freedom to consider. As it turns out, all of the singlet fields become
massive due to quantum effects. Consider, for instance, the first node. By
perturbing the superpotential with a baryon mass term W,.ss = bB1 1 —1—51?171,
integrating them out, and taking b,g — 0, we find an effective potential term
of the form

_ A

Ws = ﬁsllsv}. (7.25)
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Remembering that S = @2(1) and §11 = 0y, we see that these constituent fields
gain masses. At a general node, this can also be achieved by adding mass terms
Winasse = PeMeQp + @g+1]%+1(13g+1, integrating out the singlet composite
fields, and taking My, ]\ZH — 0. Along with the Higgs mechanism eating or
giving mass to fields, we find that the only remaining massless fields in the
spectrum for A > O(A) are the modulus £, link fields ®g(q1) and Pg(a2), and link
fields ®7,(q1) and Pp42). These fields have the same transformation properties
as the fields in eq. (7.32). Hence, we see the same symmetry breaking pattern

conjectured in [20].

In fact, we can actually see this transition by considering the Kahler
potential. We do not have a firm grasp on the quantum corrections, but
assuming they are reasonably under control we can qualitatively analyze the

Kahler potential, which should have the form

K~ (L 1) (B0) 4 (MM, ) = (7.26)
We see from eq. (7.22) that (M) = hE*1. Thus, the two regimes of interest,
h > O(A) and h < O(A), correspond to drastically different Kéhler potentials.
This is important because the corresponding Kahler metric Z corrects the

effective superpotential (7.24). This superpotential gives the M, components

containing ®o(a1), Po(az), Pr(a1) and Pr(2) a bare mass

Bl
Mpare = % (727)
For h > O(A),
T 1
K~ (L 1) (i (MM ) = 2 e (7.28)
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and we see that the physical mass,

m h — mbare — |h|L+1 | |2L — |h|3L+1 (729)
phys 7 |A|3L |A|3L )
is very large. On the other hand, for h < O(A),
B tr <MTLML> 1
(AA) (AA)
and the physical mass,
Miare |h|L-‘rl oL |h|L+1
.= - AI7” = , 31
Miphy 7 [T x |Al AP (7.31)

is very small. Thus, for large M /AL (MI/AE = REHL /AL > O(A)), there
are no light composite fields involving @ya1), Po2), Pria1) and Pr(a2), and
the only massless field across the bulk is M /AL which we can associate
with the E, modulus ¢. At M /AL ~ O(A), there is a sharp transition,
and below this point the Mp’s involving ®ga1), Po(a2), Pr(a1) and Pr(ag) are
light, becoming massless at M1!/AL = 0. This is where there is symmetry
restoration SU(2), x SU(2)g x U(1) — SU(3), x SU(3)r with the massless

state ¥ = M /AL transforming bifundamentally.

7.5 Interpretation

With the construction of the state complete, we can now discuss how
it is applied to the theory in question. In the continuum limit, the product
of bifundamental fields forms a Wilson line stretched from one boundary to

the other. Thus, the state at each fixed point is a bound state of quarks from
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either boundary with a Wilson line connecting them. Because the U(1) gauge
field in the Coulomb branch originates from the 11D supergravity three-form
C, it appears that supergravity somehow mediates the interaction between
the two boundaries, becoming strongly coupled and, hence, confining at the
blow-down limit to generate the composite state. Also, note that this state is
nonlocal in 5D, and is only localized in the 4D limit where the extra dimension

shrinks to zero size and the heterotic string description is restored.

Now, let us discuss the symmetry breaking pattern in more detail.
We’ve shown that the deconstructed theory predicts that chiral fields at the
boundaries confine and form a bifundamental field charged under (at the very
least) a global symmetry, SU(3)iobat X SU(3)gi0bai- When the Ej theory is
deformed away from its fixed point, however, we see that the theory is no longer
confined and there is a doublet at either boundary charged under individual
SU(2)giobar’s. These doublets are also oppositely charged under the U(1)gquge

that is present in the Coulomb branch of Ej,. Thus we have states with charges

X (2,1)s, Y (1,2) (7.32)

_3
2

under SU(Q)global X SU<2)global X U(1>gauge-5

This decomposition seems highly irregular; somehow a global SU(3) jiobar X

SU(3)giobar 1s broken to a mixed global-gauge SU(2) giobat X SU(2) giobat X U (1) gauge -

®The original symmetry breaking is to SU(2)giobar X SU(2) giobar X U (1) giobar X U (1) gauge-
However, the VEV in the perturbative regime is not invariant under U (1) giopq; but a mixture
of U(1)giobar and U(1)gquge Which we refer to simply as U(1)gquge above. See [20] for more
detail.
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The issue is that anomaly consistency at the fixed point is satisfied with only a
global symmetry, but the blow-up procedure is not. The Ey Coulomb branch
is one-dimensional, so in order to blow up the fixed point along the Coulomb
branch, there must necessarily be a U(1) gauge field. The only symmetry
breaking consistent with the superpotential is the one above, so this particular
resolution of the orbifold requires that the boundary SU(3)’s be gauged. Thus,
we are led to the conclusion that the state with the above symmetry breaking
pattern will occur uniquely for the orbifold with Eg x SU(3) x Ef x SU(3)
gauge symmetry, as this is the only orbifold with SU(3) gauge symmetries on

both boundaries.

It is important to note that the presence of the bound state alone
does not require that the SU(3)’s be gauged; it is the symmetry-breaking
pattern that requires gauged SU(3)’s. The state is simply the product of an Ey
SCFT, necessarily present at the blow-down limit of a CP?, being compactified
on S'/7Zy. These blown-down CP?’s describe the fixed points of any 7°/Z;
orbifold, regardless of how the gauge symmetries are broken. However, if there
are no SU(3) gauge groups following the orbifold symmetry breaking, then
there is no way to charge the state under the boundary gauge fields. Thus,
we believe the state decouples from the boundaries and is not present when

deriving the spectrum using heterotic string theory.

Following our line of reasoning, there may in fact be another instance
of this state. Specifically, the spectrum of the Eg x SU(3) x E} orbifold theory

contains an interesting twisted state, with charge 3(1,3;1). The presence
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of this state might indicate that the global symmetries of the state we have
created are capable of being gauged on any boundary where the Fg there
is broken to an SU(3) subgroup. As only one side has its gauge symmetry
broken in such a way, the other SU(3) remains global. Note, however, that
this state is not consistent with the superpotential derived above that breaks
the symmetry to SU(2) x SU(2) x U(1). Thus, while a fixed point of the
orbifold can be resolved, it will not be along the Coulomb branch of Ey. Other
scalar fields present in the spectrum must be given nonzero VEV’s to resolve

it, and the analysis above is not applicable.
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Chapter 8

Z, Orbifold

From Table 2.1, the root lattice needed to build the necessary torus
for the Z, orbifold is SO(5) x SO(5) x SU(2) x SU(2). Similar to the case
of Agy(s), we can plot Agoi) and Agy2)xsu(z) since they both have rank 2.
This is done in Fig. 8.1. On the first two dimensions z!, 22, the root lattice of

SO(5) identifies points on C by
e+l 2~ (8.1)

where 7 = e, On 2° the SU(2) x SU(2) root lattice identifies points on

BBl Al red =210 (8.2)

This torus can then be orbifolded by acting with the Z, twist listed in Table
2.1:

2 — emiri/Ay, (8.3)

The necessary twist vector for the Z4 orbifold is 7= (1,1, —2). Unlike in the

Zs case, the coordinates here are not treated uniformly by the twist; the first

two coordinates receive a quarter-twist, while the third receives a half-twist.

The first two coordinates have fixed points at

. 1
ipea =0, 5, i=12 (8.4)
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(a) SO(5) (b) SO(5)

(¢) SU(2) x SU(2)

Figure 8.1: The root lattice for each coordinate 2?. The gray region signifies
the fundamental domain of the torus in each complex dimension. The solid
points are the fixed points of the Z, action on each 72, while the lightly colored
x’s mark the Zj fixed points of the 2-twist. Note that the entire SU(2) x SU(2)
root lattice is fixed under the 2-twist.

The third coordinate has fixed points at

1+1
T2

Z;imed = 07 ’ (85)

DN —
N | .

There are thus 2 x 2 x 4 = 16 fixed points on this orbifold.

The Zs3 orbifold only had one independent twisted sector, as the 1-

twisted sector and 2-twisted sector are conjugates. In the Z, case, however, the
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1-twisted sector is conjugate to the 3-twisted sector, and there is an additional
self-conjugate 2-twisted sector. We thus have two twisted sectors that we
must consider. The 2-twisted sector will have twist vector 75 = 2(1,1,—-2) =

(2,2,—4). This then acts on the coordinates as
(zl,zQ,z?’) — (e”zl,e“izZ,e’Q”izg) = (—zl, —22,23) ) (8.6)

The 2-twist acts like a Z, twist on z' and 22, while acting trivially on z3. This
is essentially just a compactification on T*/Zy x T?, and so we are really dealing
with a 6D orbifold compactified to 4D on a T?! On T*/Z,, there are 16 fixed
points corresponding to 2f;,cq: Zfizea € 10, 1/2,7/2, (14+7)/2}. Upon compact-
ification to 4D, these become the location of fixed tori corresponding to the
Z3-direction. However, we cannot neglect the action of the entire Z, on these
fixed tori. Four of them are invariant under the twist, 2f;,.4, 27izea € 10,1/2}.
This is only possible if they are in fact orbifolded themselves, T?%/Z,. Each of

these has four Z, fixed points corresponding to those in the z3-direction.

The remaining 12 tori have 2j;,.q, 27ipeq € {7/2,(1 + 7)/2}. The 1-
twist identifies 7/2 — (1 4 7)/2, so these tori are pairwise identified with
each other. This creates a much more complicated fixed point structure than
in the Z3 case. There are four fixed T?/Z,’s with four Z, fixed points each.
There are no isolated fixed points; all fixed points are located on these smaller-
dimensional fixed surfaces. Additionally, there are 12/2 = 6 independent fixed

T?’s with no fixed points.

On the fixed surfaces, the 2-twist on the coordinates must be met with
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a similar double action in the gauge shift. The only possible gauge groups on
T*/Zy are Eg, E; x SU(2), and SO(16), and so every possible Z, gauge group
found from shifting by § must be a subgroup of the corresponding Z, gauge
group found after shifting by 25. These gauge groups for all consistent shift
vectors are listed in Table 8.1. The untwisted spectra of these groups consist
of the untwisted spectra from 6D (in representations of the 4D gauge group),
as well as the residual states from the breaking of the 6D gauge group to the

subgroup in 4D.

Going further, the total gauge groups consistent with eq. (2.12) must
also be consistent in the 6D gauge groups. Specifically, the allowed com-
binations of gauge groups on 7°/Z, must descend from one of the allowed
combinations of gauge groups on the T*/Z, orbifold, E; x SU(2) x E} or
E; x SU(2) x SO(16)". The 2-twisted spectra are simply derived from the
twisted spectra of the corresponding 6D model, in appropriate representations
of the broken gauge group. The 1-twisted spectra, however, must be calcu-
lated using the methods alluded to earlier. The results are tabulated in Table
8.2. We can once again identify peculiar states charged across the bulk. In
the 1-twisted sector, models 4, 9, and 12 all contain such states. In the case of
model 4, however, there is an anomalous U (1) gauge symmetry so, as discussed
earlier, we will not consider it any further. In addition, there are 2-twisted
states in models 5 and 6 that are charged across the bulk. Unlike the 1-twisted
states, however, these are not localized at the fixed points. Rather, they pro-

pogate across all of the fixed T%’s and T?/Z,’s. Due to the individual nature
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Normalized
: T%/Z,y Gauge | T*/Zy Gauge .
\/Selzlfgr Group Group Untwisted Spectrum
1(0%) Eq Eqg 0
2(22,09) E; x SU(2) Fy (56,2)
1(12,06) Er x U(1) By x SU2) | 2(56); + (1)2 + (1)
Lie 19 a5 Eg x SU(2) x 2((27,2); + (1,2) 3] +
32, 15,0°) U(1) ErxSUQ) | a7 1) 5+ (27,1)
1(4,07) SO(16) Eg 128.
1(2,07) SO(14) x U(1) SO(16) 2(64,)1+(14,)2+(14,)
2[(32,,1)_; +
1 6 SO(12) x
1(3,1,0%) B x SU2) | (12,,2)1] + (32,,1)0 +
SU((2) x U(1) ! (1) + (1.1)
L(23,0°%) | SO(10) x SU(4) SO(16) 2(16.,4) + (10,,6)
1(3,1°,0%) | SU(B) x SU(2) | E; x SU(2) 2(28,2) + (70,1)
L1721y | SsU®) xU() | So(ie) Q[E;gg; N E%BL+

Table 8.1: Possible normalized shift vectors satisfying the constraint in eq.
(2.11). For each normalized shift vector, the gauge group and the original
6D gauge group in the 2-twisted sector are listed, along with the untwisted

spectrum.

of these situations, we shall consider them separately. First let’s analyze the

1-twisted states using our devised scheme.
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Gauge Group 1-Twisted (77) | 2-Twisted (75) | Anomalous
, (1 141;)%;_1 + (1;14,)10 +
1 b x U(ll)fasg"O(M) 8 (1; 1)_%1 + (1;1)42+ Yes
5(1;1)1, (1;1)1,2
5 | Br x U(1) x SO(10)' x (1;16.,1)1 + | (1;10,,1), + Vs
SU(4) 2(1;1,4), (1;1,6),
5| 80(12) x SU(2) x (12,,1;1)1, + <(1 5 14))10++ Ves
U(l) x SO(14) xU1) | 2(1,2;1).1, (1’ 1. )12
2’ ) 1;-2
SO(12) x SU(2) x (1,1;10,,1)4+
1,2;1,4): Y
Y rayxsoaoyxsuy | LELYE 11 e), Yes
(17 27 1)-%,2 +
5 Eb ; S<(])( ) ( () ) (17 1;8)%;—1 + (17235)0;-1 Yes
2(17 17 1)%;2
SU(8) x SU(2) x . '
6 SU(S)/ % U(l)/ (8:1u1)2 (1,2,8)1 Yes
7| EgxSU(2)xU(1) x E (ﬁ,l;l)_% + (1,1;1).5 + No
5(1,1;1)5 2(1,2;1)o
o | Eox Sgg()lg)/U(l) X (1,1,16,); (1110 + Vos
2(172; 1)0
o | Fax SUQ@)xU(M)x | (L2L2)s+ (<217’1¥?11’11) -f .
/ / y Ly 4y 1+)3
EL x SU(2) 2(1,1; 12)% 2(1,2:1,1),
, 2(8,1;1) + (28,1;1) +
10| SU(8) x SU(2) x Ej (8,2:1) 2(1,2:1) No
SU(8) x SU(2) x (28,1;1) +
1 SO(16) 0 2(1,2;1) No
SU(8) x SU(2) x Ef x _ (28,1;1,1) +
12 SU@) (8,1;1,2) 2 2:1,1) No

Table 8.2: Twisted spectra of all Z, models. Each model has 16 T} states
(one at each fixed point), 6 Ty and 6 T, states (from the fixed T?’s), and an
additional 4 T, states (from the fixed 72/Zy’s). The other 4 T, states are
projected out by the Zy action. The U(1) gauge anomalies are also indicated.
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8.1 Deriving the Brane Web

The resolution of the fixed points for the Z, orbifold is a Hirzebruch

surface, Fy, with a toric diagram of the form in Fig. 8.2. The dual brane

Figure 8.2: The toric diagram for the C*/Z; (resolved) fixed point.

web is derived in Fig. 8.3. This brane web corresponds to SU(2) SYM with
0 = 2m. This is the theory we discussed before with “maximum Chern-Simons
number” for SU(2). From a field theory point of view, it should flow to a 5D
fixed point with E; = SU(2) global symmetry. However, the point at which
this occurs in the moduli/parameter space, namely ¢ = t, = 0, is also the
point at which the parallel seminfinite legs in Fig. 8.3¢ become coincident, and
the 6D physics here is nontrivial as strings become tensionless. The nontrivial
6D physics occurring in our model at this point is the blow-down of 6D Z, fixed
points, and so we see ty corresponds with this blow-down parameter, while ¢
corresponds to the blow-down of the 4D Z, fixed points on these fixed surfaces

upon compactification from 6D to 4D. The deconstruction data gathered from
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Figure 8.3: Converting the toric diagram to a brane web: (a) the toric dia-
gram, (b) an overlay of the conversion, and (c¢) the brane web with blow down
indicated by the dashed line.

this brane web indicates the model will have N, = 2, Ny =0, and AF = 0.

8.2 Deconstructing the Fixed Point Theory

Using the data from above, we know that the appropriate quiver for
the 5D theory at the Z, fixed point must have the form in Fig. 8.4. The lines
between nodes in the quiver represent bifundamental fields ®, in the (2,2)
of SU(2)y x SU(2)¢+1. The spectral curve for this theory was analyzed in
[23], so we will focus on the relevant results. According to the deconstruction

dictionary, the bare coupling at the origin of the Coulomb branch has the
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Figure 8.4

form!

: (8.7)

fo= 21 |2

= — |0 —_—
L &1A
where again A is the dimensional transmutant introduced by instanton effects.

We will be interested in the theory in the blow-down limit ¢y — 0, so eq. (8.7)

implies that we will be considering v — A.

ITechnically, h = glog ‘A% ‘7 where V = v+ O(A3}). In the continuum limit, however, the

quantum correction is overwhelmed and the relation V = v becomes exact.
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Similar to the previous analysis for Zsz, we would like to deconstruct
this theory on an interval. Boundary conditions dictate that the quiver should

look like:

8.3 Spectrum at Blow-down

Relaxing the condition that all of the gauge couplings be equal, we
can consider the limit in which Ay > Ay, V¢ # 1. In this regime, only the
symmetry on the £ = 1 node is gauged, and the rest are global. Neglecting all
noninteracting singlets under this gauge symmetry, our matter content consists
of gauge doublets @y, $; charged under individual global symmetries SU(2)o,
SU(2), as well as their companion singlets g, 0. Upon rescaling So, — oy,

the superpotential in eq. (6.4) takes the form

Wireeu=1 = 0o (det @g — v*) + o (det D1 — v*)
_ (8.8)
= 0y (15’1 - "02) + o1 (—81 — 112> ,

AT

Where we have deﬁned Q{a = (‘I)o(l)(a) q)o(g)(a)), la — (q)l(a)(z) (bl(a)(l))7

By = 9,9, and B; = ©,Q;. We thus have an effective theory with gauge
group SU(2) and Ny = 2. We can use the analysis in [29] to determine an

effective superpotential

Weff = ./41 (det/\/ll — Blgl — A?) s (89)
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where M; = O, @1 and A; is simply a singlet field introduced as a Lagrange
multiplier. Along with eq. (8.8), this superpotential imposes the following

constraints on the VEV’s:

(By) = — <l§1> =7, (8.10)
(det M) = AT — ™. (8.11)

In general, these VEV’s result in chiral symmetry breaking: SU(2)qx SU(2) X
U(l)p — U(1)y. As mentioned before, though, we are interested in driving
the 5D theory to strong coupling. This is achieved when v = A;, at which

point the constraints take the convenient form
(Bi) = — <l§1> = A}, (8.12)
det (M) = 0. (8.13)
Up to global symmetry transformations, this constrains M to take the form
h? 0

where h is the modulus. For h? = 0, the theory confines and the composite
fields My, By, and B, are the appropriate degrees of freedom. There is now
chiral symmetry breaking (there always is in the quantum-corrected theory),
but it is only SU(2)qx SU(2)a xU(1)p — SU(2)o x SU(2)3. The total effective

superpotential at v = A; looks like

VVtot ~ ./41 det ./\/ll. (815)
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Now assume Ay > A, so that the composite fields M; form two gauge
doublets under SU(2), with global symmetry SU(2)o. Since we will be in-
terested in the limit in which v — Ay now, we no longer have v = Ay, but
v > A;. Thus, the constraint in eq. (8.11) is once again general, and we can

impose it with an effective superpotential for M of the form

1 Al
Wtot ~ .Al <—§ det Ml + 1}—21 — U2) — .Al (—BQ — 712) , (816)

v>A1
(<I>2(a)(2) ®2(a)(1)), and By = 9,0, so that the total effective superpotential for

fields charged under SU(2), can be written similar to eq. (8.8):
Wtree,f:Q = Al (_62 - U2) + 09 (det (I)z — 1]2)
~ (8.17)
= ./41 (_62 — ’U2) + 09 (BQ — 1}2> .
We can then set v = Ay and repeat the previous analysis. This procedure
can be performed inductively from node to node until finally we reach the last

gauge node, £ = L, in which we are left with a composite field at the strong

coupling threshold v = A:

L L
1 1
M: UL_i_lHq)g:mH@g. (818)
=0 =0
This final composite state M has charge SU(2). x SU(2)g, one SU(2) at each

boundary. It has an effective superpotential
Weff N.Adet./\/l, (819)
which imposes the constraint

det (M) = 0. (8.20)
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Up to a global transformation, (M) thus has the form

(M) = ( %2 X ) | (8.21)

For ¢ # 0, the symmetry is broken SU(2); x SU(2)g — U(1)y, while it
is restored at ¢? = 0. Following similar arguments from the Zs case, in the
broken phase the theory is perturbative and there are no light composite fields
aside from the modulus. the constituent fields for this modulus, ®;;) and

(1), are charged under the residual U(1)gquge X U(1)y symmetry as
(I)l(l) . (1, 1), (I)L(l) . (-17 —1) (822)

In the blown-up phase corresponding to this broken symmetry, the VEV’s
of ®; and &, are not invariant under U(1)y. We can compensate it with a
gauge transformation, defining a new gauge charge Qnew = Qgauge — Qv; the
states are then singlets under U(1),e,. As with the Zj case, we see that we
now have global-to-gauge symmetry breaking, which seems to indicate that
while the symmetries at the boundaries need only be global for the sake of
deconstruction, they should be gauged to consistently blow up the fixed points
alon the VEV of this scalar.

8.4 Interpretation

Looking at the models in Table 8.2 it is pretty simple to see the potential
for this state. For instance, model 9 has a (2;2) state in it from the SU(2)’s

in Eg x SU(2) x U(1) x EL x SU(2)". This is an obvious candidate for the

86



composite state we have built. Additionally, model 12 there is an (8;2) state
charged under SU(8) x SU(2) x £ x SU(2)". While this theory does not have
the precise state in which we are interested, it is still possible that this could be
related to the composite state. To see this, consider the non-Abelian anomalies
as in [39]. The only gauge group that is not automatically anomaly free is the
SU(8). The local 4D contributions to its anomaly come from uniquely 4D
untwisted states, 2-twisted states, and 1-twisted states. The first of these
is local to the M9-brane, while the second is simply inherited from the 6D
orbifold theory. In order to cancel these anomalies, it is required that there
be two states charged under the 8 of SU(8). Assume the states formed a
doublet localized on the M9-brane, (8,2;1,1). Then along with the (2;2)
composite state, at this boundary there would be 8 + 2 = 10 total SU(2)
doublets. This would have the low energy effective theory of SU(2) gauge
theory with Ny = 5 flavors. For N; = 5, the theory is conjectured to flow
into an interacting conformal field theory [29]. The physics in this case is
highly nontrivial, but the gauge singlet state formed from these would then
transform under the remaining gauge symmetries as (8,1;1,2), as desired.
This is only a conjecture, and would not be applicable if the states were not
charged under SU(2), but it is still promising. There are currently no other
“obvious” mechanisms with which to impart SU(8) charge on the (2;2) in a

natural way.

There are also 2-twisted states that seem to be charged across the bulk,

namely those in models 5 and 6. These 2-twisted states descend from the 6D
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orbifold theory on T*/Z,. In both cases, the 6D theory has gauge group
E; x SU(2) x SO(16)". In fact, this is simply the 6D theory we considered
earlier with a state charged across the bulk, the (1, 2;16,) half-hypermultiplet.
This state has been explained using brane engineering and so poses no quandry.

Upon compactification to 4D, the 6D 1-twisted state S; decomposes as
Sl — T2 —I—TQ (823)

In both cases, the 2-twisted state in 75 is charged under SU(2) x SU(8)’, either
(2;8) or (2;8). This is consistent with eq. (8.23), where

(2;16,) — (2;8) + (2;8). (8.24)

These states are thus uninteresting from 4D point of view.
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Chapter 9

Ze—_; Orbifold

There are two Zg orbifolds that yield consistent 4D theories, labeled
Zeg_1 and Zg_rr. The first of these orbifolds, Zg_;, requires a torus built from
the Go x Gy x SU(3) root lattice acting on C3. The fundamental domains
for this construction are given in Fig. 9.1. On 2! and 2? the G5 root lattice

identifies points on C by
el e~ (9.1)

where here 7 = \/ige%i. As before, the SU(3) root lattice identifies points on
C for 22 by

BBl BB est (9.2)

The orbifold action on this 7° is a Zg twist:
2 — e/, (9.3)

The appropriate twist vector for this orbifold is 7 = (1,1, —2). Like the Z,
case before, the coordinates are not treated equally under the twist. The first

two receive a 1/6-twist, under which only the origin is fixed:
Zipea =0 =12 (9.4)
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(a) Go (b) G2

(¢) SU(3)

Figure 9.1: The root lattice for each coordinate 2?. The gray region signifies
the fundamental domain of the torus in each complex dimension. There is only
one fixed point of the Zg_; action on each Go torus and three on the SU(3)
torus, symbolized with solid points, while the lightly colored x’s mark the Zg
fixed points of the 2-twist. The white diamonds mark the Z, fixed points of
the 3-twist. Note that the entire SU(3) root lattice is fixed under the 3-twist.

For 23, however, the orbifold only acts as a 1/3-twist, which on the SU(3) root

lattice has fixed points as in the Zs case:

1 i 2 m
Fivea € {0, Z56%, ¥} (95)
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There is thus a total of 1 x 1 x 3 = 3 fixed points of the total action on the

TS,
Under two twists, the normalized twist vector becomes ¢ = 2x (%, %, —%)

(%, %, —%) In other words, the 2-twist is simply the Zs3 orbifolding that we dis-

D=

cussed earlier! On the G5 root lattice, this Zs twist has fixed points at

1 2

3 3} (9.6)

Zfza:ed S {0

The 2-twist action on 2% has the same fixed points as the 1-twist action, as

they are just conjugate actions:

Zfzaced € {O \/— \/— } (97)

This would naively give 3 x 3 x 3 = 27 fixed points again. However, as in
the Z4 case we must see how the 1-twist acts on these fixed points. On the
SU(3) root lattice, these points are still distinct since the 1-twist and 2-twist
produce identical fixed points. On the G5 root lattice the Zg action identifies
the fixed point at z = 1/3 with the one at z = 2/3. These points are thus
not distinct. The fixed point at the origin is not identified with another fixed
point and remains distinct. Thus, of the original 27 fixed points, three distinct
points remain at the origin while the remaining 24 fixed points are pairwise

identified with each other, for a total of 3 +24/2 = 15 fixed points.

Finally, there is a 3-twist with normalized twist vector 7 = 3% (¢, ¢, —3)
(3,3,—2). This acts on the coordinates as
(zl,zz,z3) — (67”21 e 2 6747Ti23) = (—zl, —z2,23), (9.8)
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i.e., this is the same action as the 2-twist of the Z, orbifold in the previous
section! Specifically, this acts as a Zy twist on the first two coordinates while
leaving the third invariant. This has the appearance of a T*/Z, orbifold that
is further compactified on a torus. On the G5 root lattice, the Z, action has

four fixed points:

i 1 7 1+71
Zfixed € {07 5? 57 9 }7 (99)

while the entire SU(3) root lattice is fixed under the twist. This naively gives
4 x 4 = 16 fixed points of the T*/Z, which then become fixed tori on T°/Zg_;.
Once again, however, we must check how the full Zg twist acts on the fixed
structures. On the (G5 root lattice, the fixed point at z = 0 is invariant under
the full twist. This implies that the torus present at z%? = 0 must itself be
orbifolded, T2/Zs. There are three fixed points of this orbifold, and in fact
we have already seen what it looks like in Table 7.2. The fixed points of this
2D orbifold are actually simultaneously Z3 and Zg fixed points in the full 6D

orbifold, further complicating the singular structure.

The remaining 15 tori are not invariant under the full twist. There is a
sequence of identities for the Z, fixed points on the G5 root lattice under the

full Zg action,
'1_>1+7'_>7'_>1
2 2 2 2

(9.10)

so that the fixed tori form triplets under identification. Thus, there are only
15/3 = 5 independent fixed T?’s in addition to the fixed T?/Zs. The total

fixed structure is given in Table 9.1.
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Independent

k-twist Fixed Structures o
k=1 3 Zg fixed point 1
k=2 27 Zs fixed point 15
k=3 15 Z, fixed T2 5
1 Z fixed T?/Zs3 1

Table 9.1

As with the Z4 case, the fixed tori mentioned above support 6D fields
from the original Z, theory on them in appropriate representations of the
unbroken gauge groups. For Zg orbifolds, there are 26 such 4D gauge groups
with appropriate gauge shift vectors, but all of these gauge groups descend
from either Eg, SO(16), or E7 x SU(2) in the 6D Z, orbifold. In fact, each
Zg gauge group also has a corresponding Zs gauge group from the 2-twist
sector, corresponding to the gauge groups in Table 7.1. Rather than listing
all of these groups or all of the spectra for the consistent Fg x Eg subgroups
(there are 58 of them), we will simply mention interesting examples as they
become relevant. For tables with all of these models (with U(1) charges largely
neglected), consult [38]. For a more in-depth exploration of individual models,

the orbifolder has proven quite useful as well [40].
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9.1 Deriving the Brane Web

The resolution of the fixed points for the Zg_; orbifold has a toric

diagram of the form in Fig. 9.2.

Figure 9.2: The toric diagram for the C?/Zg_ (resolved) fixed point.

This has a dual brane web as derived in Fig. 9.3. The brane web is that of
SU(3) SYM with maximal Chern-Simons number k& = 3. There are three
parameters in this theory corresponding to the bare coupling ¢, and the two
moduli of the SU(3) gauge group ¢1, ¢o. As with the Z4 case, driving the
parameter t, — 0 corresponds to blowing down the fixed tori in the 3-twist
sector, while ¢1,»s — 0 corresponds to the Zg_; and Zs fixed points. The

superconformal theories at the fixed points of generic SU(N) gauge theories
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Figure 9.3: Converting the toric diagram to a brane web: (a) the toric dia-
gram, (b) an overlay of the conversion, and (c¢) the brane web with blow down
indicated by the dashed line.

were discussed in [41], but we will not need much of this content so we can
instead focus on the deconstruction of this theory. The brane web corresponds

to a deconstruction with N, = 3, Ny =0, and AF = 0.

9.2 Deconstructing the Fixed Point Theory

Using the data from above, we know that the appropriate quiver for

the 5D theory at the Zg_; fixed point must have the form in Fig. 9.4. The



Figure 9.4

nodes represent SU(3) gauge symmetries, and the lines between nodes repre-
sent bifundamental fields (3,3) charged under SU(3), x SU(3),1. Through
analysis of the spectral curve [23], we find that the bare coupling ¢, takes the

form

6

v
to = —log
a

A Y
and the 6D Z, blow-down at ty = 0 corresponds to v = A.

(9.11)

We modify the quiver in the same fashion as before to deconstruct com-
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pactification on an interval. The quiver corresponds to

where the circular nodes are gauged SU (3)’s, while the squares represent global

SU(3)’s.

9.3 Spectrum at Blow-down

The analysis that follows is very reminiscent of that for the Z, orbifold.
Relaxing the condition that all of the gauge couplings be equal, we can con-
sider the limit in which Ay > A, V¢ 2 1. In this regime, only the symmetry
on the ¢/ = 1 node is gauged, and the rest are global. Neglecting all non-
interacting singlets under this gauge symmetry, our matter content consists
of gauge triplets ®g, ®; charged under individual global symmetries SU(3)o,
SU(3)2, as well as their companion singlets og, oy. Upon rescaling So, — oy,

the superpotential in eq. (6.4) takes the form

Wireeu=1 = 0o (det @g — v*) + o (det &1 — v*)

~ (9.12)
= 0y (15’1 - "03) + o (—81 — 113> ,

following similar definitions to the Z, example. This is another case with

Ny = N,, so we once again have an effective superpotential

Weff = ./41 (det ./\/11 — Blgl - A?) s (913)
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where A; is simply a singlet field introduced as a Lagrange multiplier. Along
with eq. (9.12), this superpotential imposes the following constraints on the
VEV’s:

<&>=—<@>=v? (9.14)

(det M) = AV — 2O, (9.15)
In general, these VEV’s result in chiral symmetry breaking: SU(3)qx SU(3)2 X
U(l)p — U(1)y. As mentioned before, though, we are interested in driving
the 5D theory to strong coupling. This is achieved when v = A4, at which

point the constraints take the convenient form
<BQ:—<E>:A1 (9.16)

det (M) = 0. (9.17)

Up to global symmetry transformations, this constrains M; to take the form

h: 0 0
M= 0 n2ol, (9.18)
0 0 0

where hy, hy are the moduli. For h? = h3 = 0, the theory confines and the
composite fields My, By, and gl are the appropriate degrees of freedom. There
is now chiral symmetry breaking, but it is only SU(3)y x SU(3)2 x U(1)p —
SU(3)p x SU(3). The total effective superpotential at v = Ay looks like

VVtot ~ Al det Ml‘ (919)

Now assume A, > A, so that the composite fields M; form three

gauge triplets under SU(3)s with global symmetry SU(3)y. Since we will be
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interested in the limit in which v — Ay now, we no longer have v = Ay, but
v > A;. Thus, the constraint in eq. (9.15) is once again general, and we can

impose it with an effective superpotential for M; of the form

1 A®
Wtot ~ .Al <—5 det Ml + 1}—31 — U3) — .Al (—BQ — 713) s (920)

v>A

where Qs is built from the Mj’s as in the Z, case and By = Q29595. We can
also define Oy with the ®,’s so that the total effective superpotential for fields

charged under SU(3)s can be written similar to eq. (9.12):

Wtree,ﬂ:Q = Al (_82 - Ug) + 02 (det (I)Q — ’US)

~ (9.21)
= Al (_82 — U3) + 092 (82 — U3> .

We can then set v = Ay and repeat the previous analysis. This procedure

can be performed inductively from node to node until finally we reach the last

gauge node, ¢ = L, in which we are left with a composite field at the strong

coupling threshold v = A:

1 1
M= [[e = N 112 (9.22)

Thus, we have a final composite state M with charge SU(3) x SU(3)g, one
SU(3) at each boundary.

9.4 Interpretation

The effective superpotential for this composite state looks similar to
that of the Z4 case,
Weff ~ Adet M, (923)
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but the implications in this case are quite different. This superpotential im-

poses the constraint

det (M) =0, (9.24)

so that (M) must have the form (up to global transformations)

¢ 0 0
My=1 0 ¢3 0 |, (9.25)
0 0 0

i.e., it must be at most rank 2. As it turns out, this rank has an interpretation
in terms of the fixed structures of the orbifold. We have already mentioned
that letting ¢y — 0 as we have corresponds to blowing down the fixed tori
of the 3-twist, but we can also consider the case where ¢ — 0 along with
to while ¢; remains arbitrary. At this locus of the moduli space, the theory
looks just like the Zz model along its Coulomb branch. The VEV of M is
rank 1, so the global symmetry is SU(2), x SU(2)g x U(1)y for ¢; # 0 and
enhances to SU(3), x SU(3)g for ¢, = 0 as before. This is a reflection of the
fact that there are Zs fixed points coincident with the Zg_; fixed points under
study. For generic ¢1, ¢o # 0, The symmetry is broken to U(1)y, x U(1)y with
enhancement to the full SU(3), x SU(3)r when ¢ = ¢9 = 0.

Unfortunately, the increased fixed structure complexity comes with in-
creased complexity in the spectra of these models as well. One such occurence
is the E7 x SU(2) x SO(16)" model with twisted spectrum in Table 9.2. The
3-twist spectrum consists of 5(1,2;16,), one for each of the 5 fixed tori. This
is a reflection of the origin of these (2;16,) twisted states. One would expect

an additional state for the remaining independent fixed point of the 6D Zy
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action. However, this is not simply a torus but is instead an orbifolded torus,
T?/Zs. This Z3 action on the torus projects out the 6D states everywhere but
at the fixed points where it acts invariantly. At these points, the states seem
to survive as 1-twisted states at the fixed points. This suggests that the origin

of these twisted spectra is more intricate than in the previous cases.

Gauge Group 1-twist 2-twist 3-twist

E; x SU(2) x SO(16)' | 3(1,2;16,) | 123(1,1;1) | 5(1,2;16,)

Table 9.2

Perhaps more perplexing than the example above is the fact that no
single model has a 1-twisted spectrum with a charge (3; 3) state! The simplest
model to illustrate this is the E; x SU(2) x E§ x SU(3)" model in Table 9.3.
This model is clearly a Zy twist on the first Eg with the second left alone and
a Zs twist on the second Eg with the first left alone. It thus has no obvious
states from its 2-twisted or 3-twisted sectors to lend to its 1-twisted sector,
and so we expect its 1-twisted state charged across the bulk to be explained
by the composite state constructed above. This state, however, does not have
charge (3;3) as we would expect from the state we built, but (2;3) instead.

Focusing on just a single fixed point, we see that we have the spectrum
2(1,3;1,2) + (27,1;1,1) + (1,3;1,1) + 2(1,1; 1, 2). (9.26)

The composite state above cannot explain this on its own and is open to fur-

ther investigation.
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Gauge Group 1-twist 2-twist 3-twist

15(27,1;1,1)+ | 5(1,1;56,1) +
39(1,3:1,1) | 22(1,1;1,2)

Egx SU3)x ELxSU(2) | 6(1,3;1,2)

Table 9.3

The last model worth mentioning is in Table 9.4. This model has a
lot of features similar to the Z, model with the (2;8) state. Namely, there
is SU(3) x SU(3)" gauge symmetry present but a state in the (6,1;3) of
SU(6) x SU(3) x SU(3)". This may have a potential bound state interpreta-
tion like that conjectured for the Z4 model, but would require further analysis

beyond what was presented here through deconstruction.

Gauge Group 1-twist 2-twist 3-twist
5(1,1;20,1,1)+
Eg x SU(3) x SU(6) x ' 513 5(1,1;6,3,1) +
SU(B)/ % SU(Q)/ 3(173a6a171) 15(173a173a1) 6(1,1,6,3,1) +
22(1,1;1,1,2)

Table 9.4

With this level of obscurity, it is important to emphasize that while
these spectra are not simply described by the composite state as in the previous
orbifolds, it is still in fact present. It is a product of blowing down the Zg_;
fixed point regardless of the gauge groups present at the boundaries. It may

be a question of boundary conditions with this state and these gauge fields,
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or perhaps some nontrivial combination of this state and the compactified 6D

twisted state.
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Chapter 10

Z- Orbifold

The final orbifold that we consider is the Z; orbifold. There is still
much to be done with it, but it is extremely interesting so we will discuss
current progress. To start, we need a root lattice of rank 6 on which to wrap
C3 for the initial torus; in this case the lattice of choice is SU(7). Unlike the
previous cases, this root lattice does not decompose into three lattices of rank
2, so it cannot be simply represented on individual complex dimensions. In

terms of ' € RS, this root lattice acts as

o= i=1,..,5

(10.1)

ZL‘6—>—JZ1—{L‘2—ZE3—JZ4—ZL‘5—ZE6.

To orbifold this torus, we apply the appropriate twist vector, ©¥ =
(1,2,—-3). Like the Z3 case, the Z; orbifold is a prime orbifold and the only
fixed structures are isolated fixed points, seven in all. However, unlike the Z3
case, there are multiple twisted sectors for the Z, orbifold. Conventionally,
the twisted sectors considered are the 1-twist, the 2-twist, and the 4-twist!,

with the other k-twisted sectors being conjugate to these.

!The 4-twist is the chiral conjugate of the 3-twist, but has nicer properties with the
1-twist and 2-twist
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10.1 Deriving the Brane Web

The resolution of the fixed points for the Z; orbifold has a toric diagram
of the form in Fig. 10.1. It has a dual brane web as in Fig. 10.2. The toric

Figure 10.1: The toric diagram for the C?/Z; (resolved) fixed point.

diagram and brane web are full of interesting features. First, the brane web
clearly has three semi-infinite external branes. This corresponds to 3 —3 =0
global symmetries at the fixed point. Thus, the theory appears to be isolated
like the other prime orbifold Zs, but there is more structure present. The toric
diagram reveals that the three internal points are actually Hirzebruch surfaces
F5 as in the Z,4 case, and this is reflected in the dual brane web. as Fig. 10.3
demonstrates, the same brane web present in the Z, fixed point resolution is
present three times in the Z; resolution (up to an SL(2,7Z) transformation).
The major difference is that the global parameter associated to the bare cou-

pling in the Z, case now acts as the VEV of the modulus along the Coulomb

105



Figure 10.2: The brane web corresponding to theZ, fixed point toric diagram.

branch of another SU(2) gauge symmetry! In the end, this demonstrates an

SU(2) x SU(2) x SU(2) gauge theory along its Coulomb branch with no global

symmetry, so there is no way to un-Higgs the individual SU(2)’s. Instead, the

coupling associated with each SU(2) is a combination of all three VEV’s, and

the theory does not have enhanced gauge symmetry before reaching the super-

conformal fixed point at the origin of the moduli space. Additionally, consider

the different k-twisted sectors. The 1-twist has twist vector = (1,2, —3), so

acting repeatedly with it gives

7= (1,2,-3),
7?=(2,4,-6) = (2,-3,1), (10.2)
7Pt =(4,8,—-12) = (-3,1,2).
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(b)

Figure 10.3: The brane web for (a) the Z; fixed point compared to that of (b)
the Z, fixed point.

We see then that the various k-twists just rotate the Z; action on C3! This is
reflected in the Eg breaking as well [38], where the shift vectors form triplets
with identical untwisted spectra.? The individual shift vectors in these triplets
pair with different shift vectors to consistently break the full Eg x Fg, however,
so they produce unique twisted spectra. In fact, no two shift vectors from one
triplet will ever simultaneously pair with two shift vectors from another triplet.
There can only be at most one shift vector from a triplet that pairs with at

most one shift vector from another triplet.

Unfortunately, we have yet to build a means with which to deconstruct

this theory; it may be the case that the addition of matter that is then made

2There are a few exceptions to this. The triplets actually exchange which untwisted
states have - R's; /7T = 1/7, 2/7, or 4/7 (mod 1). The exceptions are shift vectors which
have the same states for each > R's;/7, and so are self-dual in this regard.
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heavy is necessary, as in the Z3 case. In that instance, the field was necessary
to set a scale for the deconstruction threshold and could be discarded following
the phase transition to the isolated Ey SCFT. There is still a lot of analysis
necessary to devise a similar strategy, as all of the 5D SU(2) gauge groups must
still be tangled with each other no matter how much matter is added to the
model. It is important to note, however, that there is no model that has states
charged across the bulk without an anomalous U(1). It is not obvious what
an analysis of this fixed point will uncover, but the theory there is certainly

interesting and worthy of exploration regardless.
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Chapter 11

Future Directions

We would like to conclude this work with a collection of open problems

that encourage future research.

e Asthe Zg_; orbifold demonstrated, the complexity of the fixed structures
can quickly become overwhelming. There are models with twisted states
charged across the bulk for this orbifold, and yet none of them seem to
have a simple explanation in line with the Zs and Z, orbifolds. The
fact that there are Zg_;, Zs3, and compactified 6D Z, states all present
at these fixed points certainly lends plenty of intricacy with which to

investigate further and attempt to substantiate all relevant models.

e The final orbifold that we studied, the Z; orbifold, had a particularly
interesting 5D field theory. As Zs and Z; are the only allowable prime
orbifolds, it is easy to see that fixed points that are isolated and do not
rest on 6D fixed tori correspond to SCFT’s that are isolated and do not
exist as limits of 5D gauge theories (without the addition of matter).
Unlike the Ey SCFT at the Zs fixed point, however, there appears to
be little study of this Z; SCFT. Simply learning anything about this

SCFT would be worthwhile, but we would be particularly interested
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in designing the proper deconstruction quiver and studying the moduli
space in some detail. In this light, our treatment of it here has been

more of a “tip of the iceberg” than a comprehensive analysis.

The orbifolds with multiple resolutions (Z¢_s7, Zs_1, Zs—11, Z12—1, and
Z1s_11) are also open fields for study.In these cases, the difficulties aris-
ing from overlapping fixed structures in the Zg_; orbifold will only be
magnified. For instance, for the Zg_; orbifold there are Zg fixed points
located at the intersections of Z, fixed tori in the 23 direction with Zs
fixed tori in the z? direction. Thus, the theory has to account for in-
tersecting compactified 6D states and 4D fixed point states. It would
likely be advantageous to first solve the issues with the Zg_; orbifold so
that the interaction of these fixed structures is better understood before

tackling the models with multiple resolutions.
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