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Abstract. The symmetric and antisymmetric exponential functions of two variables, based on
the permutation group S2, are considered. Explicit formulas for the corresponding families of the
orthogonal polynomials are derived and the properties of these orthogonal polynomials, such as
their generating functions, continuous and discrete orthogonality, are presented. A connection
of these polynomials with characteristic polynomials of some particular matrices is shown.

1. Introduction
The complex valued functions on the Euclidean space Rn, symmetric or antisymmetric with
respect to the permutation group Sn, are dealt with in quantum theory or theory of integrable
systems. The functions considered in this paper form a family of special functions called the
symmetric/antisymmetric exponential functions. They are introduced in general for any integer
n in [9]. By bringing forward the construction of the associated orthogonal polynomials, we
extend the study of their two dimensional case from [5]. After recalling the symmetric and
antisymmetric exponential functions of two variables, we focus on families of the associated
symmetric and antisymmetric orthogonal polynomials. A detailed study of the properties of the
three variable exponential functions and the corresponding orthogonal polynomials is contained
in the forthcoming paper [2].

Note that families of orthogonal polynomials of a similar construction are also explored
elsewhere — see for example [1, 3, 7, 8, 14, 15, 19, 20, 21]. The symmetric and antisymmetric
exponential functions are closely related to the symmetric [11], antisymmetric [12] and E−orbit
functions [13] and to the corresponding orthogonal polynomials [4, 12, 16, 17, 18]. Through the
inclusion of the alternaning subgroup Altn ⊂ Sn, they are also related to alternating exponential
functions [6, 10].
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2. Two dimensional symmetric exponential functions and corresponding
orthogonal polynomials
The two dimensional symmetric exponential functions E+

(k,l) : R2 → C, with k, l ∈ Z and k ≥ l,

are defined by the formula

E+
(k,l)(x, y) =

∣∣∣ e2πikx e2πiky
e2πilx e2πily

∣∣∣+ = e2πi(kx+ly) + e2πi(ky+lx). (1)

Due to their periodicity and symmetry, the functions E+
(k,l) can be considered on the closure of

the fundamental domain F (Saff
2 ) only ([9]), where

F (Saff
2 ) = {(x, y) ∈ (0, 1)× (0, 1) | x > y} .

For detailed properties of these functions, we refer to the paper [5].
An explicit calculation of the corresponding orthogonal polynomials is based on the

observation that multiplying two symmetric exponential functions gives a decomposition rule

E+
(k,l)(x, y)E+

(m,n)(x, y) =E+
(k+m,l+n)(x, y) + E+

(k+n,l+m)(x, y). (2)

Introducing the following substitution for the two symmetric exponential functions,

X = E+
(1,0), Y = E+

(1,1), (3)

two–variable polynomials P+
(k,l)(X,Y ) labeled by the pairs (k, l), with k ≥ l and k, l ≥ 0, are

determined by the equation

P+
(k,l)(X(x, y), Y (x, y)) = E+

(k,l)(x, y).

Using the decomposition rule (2), we obtain the following table for the several lowest
polynomials P+

(k,l)(X,Y ):

P+
(0,0) = 2, P+

(3,2) =
1

4
XY 2,

P+
(1,0) = X, P+

(3,3) =
1

4
Y 3,

P+
(1,1) = Y, P+

(4,0) = X4 − 2X2Y +
1

2
Y 2,

P+
(2,0) = X2 − Y, P+

(4,1) =
1

4
XY (2X2 − 3Y ),

P+
(2,1) =

XY

2
, P+

(4,2) =
1

4
Y 2(X2 − Y ),

P+
(2,2) =

Y 2

2
, P+

(4,3) =
1

8
XY 3,

P+
(3,0) = X3 − 3

2
XY, P+

(4,4) =
1

8
Y 4.

P+
(3,1) =

1

2
Y (X2 − Y ),

Below we determine directly the explicit formula and the generating function for the polynomials
P+

(k,l). Note that in view of (2) we have, for any admissible n and k,

P+
(n,k)P

+
(0,0) = P+

(n,k) + P+
(n,k) = 2P+

(n,k),

P+
(1,1)P

+
(n−1,k−1) = P+

(n,k) + P+
(n,k) = 2P+

(n,k),
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therefore P+
(n,k) =

Y

2
P+

(n−1,k−1). Iterating this relation, we see that

P+
(n,k) =

(Y
2

)k
P+

(n−k,0). (4)

The recurrence relation (4) gives us

P+
(n+1,0)P

+
(1,0) = P+

(n+1,1) + P+
(n+2,0) =

Y

2
P+

(n,0) + P+
(n+2,0),

and thus the polynomials P+
(k,l) fulfill the following two-step recurrence relations

P+
(n+1,0)X =

Y

2
P+

(n,0) + P+
(n+2,0). (5)

The equation (5) is a linear difference equation for P+
(n,0) with constant coefficients and satisfying

initial conditions P+
(0,0) = 2, P+

(1,0) = X. The polynomial

P+
(n,0)(X,Y ) =

1

2n

((
X −

√
X2 − 2Y

)n
+
(
X +

√
X2 − 2Y

)n)

is an explicit solution of the difference equation (5). Now we can derive the following explicit
formula for the polynomials P+

(n,k),

P+
(n,k)(X,Y ) =

Y k

2n

((
X −

√
X2 − 2Y

)n−k
+
(
X +

√
X2 − 2Y

)n−k)
.

Applying the formulae for the symmetric polynomials given in (4) and (5), we obtain the
generating function G+ for P+

(n,k)

G+(X,Y, r, s) =
+∞∑
n=0

+∞∑
k=0

P+
(n,k)(X,Y )rnsk =

4(Xr +Xs− rsY − 2)

(r2Y − 2rX + 2)(−s2Y + 2sX − 2)
. (6)

Note that the Jacobian J of the mapping (3) is equal to

J(x, y) = −8π2e2iπ(x+y)(e2iπx − e2iπy).

By changing the variables, the Jacobian J may be expressed as

J(X,Y ) = −4π2Y
√
X2 − 2Y .

Using the continuous orthogonality of the E+
(k,l) functions [5, 9], the continuous orthogonality

of the polynomials P+
(n,k) follows,∫

F2

P+
(n,k)(X,Y )P+

(n′,k′)(X,Y )
1

−4π2Y
√
X2 − 2Y

dXdY = G+
nkδnn′δkk′ , (7)

where the symbol G+
kl is defined by

G+
nk =

{
2, n = k
1, otherwise,
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and F2 is the transformed fundamental region F (Saff
2 ) via injective mapping (3):

F2 = {(X,Y ) ∈ C2||Y | = 2, 2X = Y X, |X| < 2}.

Similarly, the discrete orthogonality relation from [5] yields the following formula for the discrete
orthogonality of the polynomials P+

(n,k), P
+
(n′,k′) with n, k, n′, k′ ∈ {0, 1, . . . , N − 1},

N−1∑
{
r,s=0
r≥s

}(G+
rs)
−1P+

(n,k)

(
e2πi

r
N + e2πi

s
N , 2e2πi(

r
N +

s
N )
)
P+

(n′,k′)

(
e2πi

r
N + e2πi

s
N , 2e2πi(

r
N +

s
N )
)

=

= G+
nkN

2δnn′δkk′ .

Note an interesting connection of the polynomials P+
(n,k) with the characteristic polynomials

of the following matrix. Let us consider n× n matrix A(n) with entries

A
(n)
ij = min{2i− 1, 2j − 1}, i.e. A(n) =


1 1 1 1 ...
1 3 3 3 ...
1 3 5 5 ...
1 3 5 7 ...
... ... ... ... ...

 .

By taking into account a suitable multiple of characteristic polynomials of A(n) multiplied by
scalar X2 in variable Y , a modified characteristic polynomial Pn(X,Y ) may be expressed as

Pn(X,Y ) =
1

2n−1
det(X2A(n) − Y I),

where I is the n× n identity matrix. Computing several first Pn’s, we obtain

P1(X,Y ) = X2 − Y = P+
(2,0)(X,Y ),

P2(X,Y ) = 1
2(2X4 − 4X2Y + Y 2) = P+

(4,0)(X,Y ),

P3(X,Y ) = 1
4(4X6 − 12X4Y + 9X2Y 2 − Y 3) = P+

(6,0)(X,Y ), etc.

From (2), by induction, we can derive the relation

Pn(X,Y ) = P+
(2n,0)(X,Y ), n ≥ 0.

3. Two dimensional antisymmetric exponential functions and the corresponding
orthogonal polynomials
The two dimensional antisymmetric exponential functions E−(k,l) : R2 → C, with k, l ∈ Z and

k > l, are defined similarly to the symmetric case by the formula

E−(k,l)(x, y) =
∣∣∣ e2πikx e2πiky
e2πilx e2πily

∣∣∣ = e2πi(kx+ly) − e2πi(ky+lx).

Due to their periodicity and antisymmetry, the functions E−(k,l) can be considered on the

fundamental domain F (Saff
2 ) only. For detailed properties of these functions, we refer to the

paper [5].
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The corresponding orthogonal polynomials are constructed in a similar manner as in
the symmetric case. Note that the antisymmetric exponential functions fulfill the similar
decomposition rule as the symmetric functions

E−(k,l)(x, y)E−(m,n)(x, y) =E+
(k+m,l+n)(x, y)− E+

(k+n,l+m)(x, y). (8)

Two–variable polynomials P−(k,l) with the elementary variables (3) are labeled by the pairs

(k, l), with k > l and k, l ≥ 0, and determined by the equation

P−(k,l)(X(x, y), Y (x, y)) =
E−(k,l)(x, y)

E−(1,0)(x, y)
.

Below we present a list of several lowest antisymmetric polynomials P−(k,l):

P−(1,0) = 1, P−(4,2) =
XY 2

4
,

P−(2,0) = X, P−(4,3) =
Y 3

8
,

P−(2,1) =
Y

2
, P−(5,0) =

1

4

(
4X4 − 6X2Y + Y 2

)
,

P−(3,0) = X2 − Y

2
, P−(5,1) =

1

2
XY

(
X2 − Y

)
,

P−(3,1) =
XY

2
, P−(5,2) =

1

8
Y 2
(
2X2 − Y

)
,

P−(3,2) =
Y 2

4
, P−(5,3) =

XY 3

8
,

P−(4,0) = X3 −XY, P−(5,4) =
Y 4

16
.

P−(4,1) =
1

4
Y
(
2X2 − Y

)
,

Applying similar arguments as in Section 2, one can derive the explicit formula for the
polynomials P−(k,l),

P−(k,l)(X,Y ) =
Y l

2k
√
X2 − 2Y

((√
X2 − 2Y +X

)k−l
−
(
X −

√
X2 − 2Y

)k−l)
.

Their generating function, an analogy of (6), has the form

G−(X,Y, r, s) =

+∞∑
k=0

+∞∑
l=0

P−(k,l)(X,Y )rksl =
4(s− r)

(r2Y − 2rX + 2) (−s2Y + 2sX − 2)
.

The antisymmetric polynomials P−(k,l) are continuously orthogonal with respect to the scalar

product ∫
F2

P−(k,l)(X,Y )P−(k′,l′)(X,Y )

√
X2 − 2Y

2π2Y 2
dXdY = δkk′δll′

and their discrete orthogonality relation, for k, l, k′, l′ ∈ {0, 1, . . . , N − 1}, is expressed by the
following formula
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N−1∑
{
r,s=0
r>s

}P−(k,l)
(
e2πi

r
N + e2πi

s
N , 2e2πi(

r
N +

s
N )
)
P−(k′,l′)

(
e2πi

r
N + e2πi

s
N , 2e2πi(

r
N +

s
N )
)
×

(
−e−2iπ( rN + s

N )(e 2iπr
N − e

2iπs
N
)2)

= N2δkk′δll′ .
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