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Abstract 

In these lectures some current topics in QCD are discussed. These topics include: 
(i) Form factors and elastic scatteri ng. (ii ) Nuclear A-dependence of QCD cross sections. 
(iii) Heavy particle production at high energy. (iv) Soft hadron production in QCD jets. 
(v) Soft gluons and factorization in fl-pair production. 
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I. Fonn Factors and Elastic Scattering 

The study of elastic fonn factors and wide angle elastic scattering in perturbative QCD 

has led to a very satisfying picture of these processes.1 At present it is felt that a relatively 
complete description c;if the large momentum transfer dependence has been obtained. Perhaps 
even more importantly, a very simple physical picture has emerged. On the negative side, 
however, it appears very hard to get truly quantitative tests of QCD from exclusive processes. 

Let me begin by first giving the physical picture which now appears to describe large mo­
mentum transfer exclusive processes. Then I would like to briefly discuss a possible experiment 
which could be used to test this physical picture, and which at the same time gives information 
on some nuclear properties not easily obtained by other means. 

A. Meson Form Factors2-7 

As an example of a form factor at large momentum transfer consider the process shown in 
Fig. 1 where a 1T of momentum p is hit by a hard virtual photon and turns into a pion of mo-

2 - - 2 -2 2 mentum p' . We suppose that Q = ( p - p 1 ) = 2 p (1 - cos 9) with 9 fixed as Q be-
comes large. A straightforward interpretation of QCD calculations leads to the following pic­
ture of the process. 

(i) The quark-antiquark pair making up the 1T begin to contract to a small transverse size 
at a time t = T. a - p/µ2 before the hard photon hits the 1T .  If the 1T has virtual gluons or 

I 

sea quark-anti quark pairs present, these begin to be absorbed around the time t � Ti . This 
contraction continues until the quark-antiquark pair is within a size I �I � 1/Q just be­
fore the hard photon hits. 

(ii) At t = 0 the hard photon hits either the quark or the anti quark in the 1T. After the 
quark, say, is hit it begins to separate from the antiquark. Within a time t ;::: 1 /Q there oc­
curs a hard interaction between the quark and the antiquark in order that they not separate 
giving an inelastic reaction. After the hard interaction the quark and antiquark are moving 
para I lei to each other. 

(iii) After t = 0(1 /Q) until t = Tf a p/l the quark-antiquark system expands to a nor­
mal transverse size. When the quark-antiquark pair has attained a transverse size of order 
1 /fl, with fl:::: 350 MeV, gluons and additional quark-antiquark pairs appear. This system 
corresponds to the nonnal wave function of the 1T • 

In tenns of a fonnula 
2 00 2 -y 2 

F (02) ____,, 161T f 2 · n(Q ) [ 1 + L C (In §-- ) NJ 1T Q2-ao 1T '02 
N=2,4,6 N fl 

The a(02) f f ( h � actor comes rom stage ii), t e hard scattering. A factor of 

(1) 
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2 - y  J f 11[ 1 + L CN(ln 7) N 
comes from the collapse of the 11 wave function :n stage (i) and 

an identical factor comes from stage (iii). The yN are positive and calculable. The CN re­
flect details of how the pion wave function matches onto the QCD evolving quark-antiquark 
system and are only calculable after detailed assumptions about non-perturbative QCD are made. 

B. Wide Angle Elastic Scattering 
As an example of wide angle elastic scattering I shall discuss 11-11 scattering. Let me be­

gin by discussing the contrasting power counting rules suggested by Brodsky and Farrar8 and by 
Landshoff. 9 

In the Brodsky-Farrar picture, elastic scattering proceeds much as in the picture we have 
just outlined for the pion form factor. Refer to the graph shown in Fig. 2. According to Brod­
sky and Farrar,' before the scatterin� the valence quark-antiquark pair (J, 4) in the pion comes ,, 
within a transverse distance I � I � 1//5 as does the pair (1, 2). The Fock states of the 
two pions, in the center of mass system, are supposed to consist only of their quark-antiquark 
valence pairs just before the hard collision. Upon colliding, two interactions between the pi­
ons are necessary in order to turn both the quark and the antiquark through an angle Q. A 
simple counting of variables then indicates the necessity of a further hard interaction in order 
that the outgoing quark-antiquark systems have low masses. Dimensional counting for these 
various hard scatterings, three of them, gives ;; -;> { f(Q) .  

s-oo s 
Q fixed 

In the Landshoff picture, see Fig. 3, the pions also consist of only their quark-antiquark 
valence pairs. However, now one views the quark and the antiquark in a particular pion as 
not being close together in transverse coordinate space. ( In momentum space this means that 
the quark and anti quark are not very far off mass shell.) There are supposed to occur two 
scatterings of almost identical angles which turn the pairs through an angle Q, leaving them 
in low mass systems. That is G( l, 1') ::::: 9( 2,2') :::: 9(3,3') ::::: 9(4,4') . A power counting for 

h • I ad du 1 -f (n) sue scatten ngs e s to -d ----7> <! " • t s-ro s-' 
9 fixed 

Thus the Landshoff type of scattering would seem to dominate wide angle elastic scatter­
ing. However, there is yet another effect in the Landshoff picture. The valence pairs in the 
pions are not so close together and hence do not form a locally neutral system in color. Thus 
it is unlikely that collinear and soft gluons will be absent before the hard scatterings. How­
ever, gluons must be absent if the scattering is to be purely elastic. In general the price one 
pays for picking out a particular piece of the wave function having no collinear or soft gluons 
is a Sudakov factor. (In the Brodsky-Farrar type of scattering the pairs in each pion are close 
together and so form a local color singlet. A mlor singlet does not need to have a gluon 
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cloud and so one expects no Sudakov suppression in that case. 

In fact there are Sudakov corrections to the Landshoff graphs. They have the effect of 

forcing the valence pairs to be close together, though not quite so close as in the original 

4ctl 
Brodsky-Farrar picture. It turns out 

1 
that 

d 
CT - _!_ s-4c In --;rc- , as far as power dependen-

ces are concerned, with c = 

of Brodsky and Farrar. 

d t s5 

The final physical picture is very close to the view 

C. Almost Elastic Nuclear Reactions: ir+ A - ir' + P' + (A - 1) 
I would now like to discuss an example of wide angle elastic scattering in a peculiar con­

text. The reaction involves the scattering of, say, a ir of momentum k on a nucleus, A . 

The fina l state is supposed to be a ir of momentum k' , a proton of momentum p' and a nu­

cleus, A - 1 . It is not necessary that the nucleus, A - 1 , be in its ground state, but it is re­

quired that there be no nuclear breakup and that no soft pions be produced. In effect, then, 

we are looking at an elastic reaction ir( k) + Nucleon (p) - ir(k' ) + P(p') with the nucleus 

playing no role at al I except as a source of Nucleon {p) . Such a reaction would seem diffi­

cult to realize. One might expect the incoming pion, or even the outgoing pion and proton, 

to strongly interact with the nucleus producing many pions along with a cpmplete breakup of 

the nucleus. 

A moment� thought, however, convinces one that it is not necessary to have nuclear break­

up, at least if the view of wide ang le elastic scattering presented earlier in this section is cor­

rect. The nuclear scattering is viewed to proceed, in the rest system of the nucleus, in the fo l­

lowing manner. Before the ir(k) reaches the nucleus it is supposed to become a quark-anti­

quark pair of ,small transverse size. We know that the probabil ity of that happening is not sma l l .  

The quark-antiquark system should be  able to freely pass through nuclear matter because it is 

color neutral in a fairly local way. Thus the ir(k) moves into the nucleus and at some point 

a hard scattering occurs. {The hard scattering penetrates to such short transverse d istances 

that the ir no longer looks color neutral . )  Immediately ofter the elastic scattering a quork­

ontiquork system of momentum k' heads out of the nucleus. This pair is of sma l l  transverse 

size after the hard scattering and is only supposed ro obtain the normal size of a pion, which 

it becomes, ofter it hos left the nucleus. A three quark system, also smal I in size, leaves the 

hard scattering and expands to the size of a normal proton outside the nucleus giving the final 

proton of momentum p' . For example, if the incoming pion is a ir+ and the final pion is a 

ir+ we might expect 
du 
dt (2) 



though we shall see a little later that Eq. (2) must be modified to take into account Fermi-mo­
tion effects. 

What ore the essential ingredients for such a reaction to work? (i) The initial momentum, 
k ,  of the pion must be large enough that the collapse of the 11 to a small quork-ontiquork sys­
tem tokes place outside the nucleus. In the rest system of the 11 such o collapse takes o time 
T ;::: 1/fl with fl :::: 350 MeV. The time dilatation factor leads to the requirement _k_ » 2R m'I! fl 
or k »3 GeV for o large nucleus. (ii) The final pion momentum must also obey k'>> 3 GeV . 
(iii) The requirement that the three quark system stay smol I until it gets outside the nucleus 

I 
gives the most stringent condition, J-- >> 2R or p' » 2 5 GeV. (iv) The momentum transfer 
must be much larger than the inverse �j o normal hodronic size.I lv'omentum transfers of more 
than 3-4 GeV should certainly be sufficient while momentum transfers of 1 GeV or so may al­
ready be large enough. What is required here is simply that the various neutral quark systems 
be small enough so that nuclear matter is transparent. We need not require that the hard scat­
tering be described by any particular QCD formula. The above constraints con be met at o 
pion laboratory momentum of perhaps 50 GeV or so for o large nucleus. For smol ler nuclei the 
necessary incident momentum con be much less. 

There is perhaps another reason for considering such reactions, in addition to the insight 
they may odd concerning QCD. Let us suppose that k is along the z-oxis. If k, p' and the 
angles at which k' and p' come from the collision center con be measured to within o few 
percent, one con reconstruct the momentum p of the struck nucleon in the nucleus. Then the 
formula which should result is 

dcr(p1,k1;k) 
dt 

[ da P-'lr'P(s,t) da N- 'P(s,t) J Z 11 dt + ( A- Z) 11 
d; f(p) (3) 

where s = (p ' + k 1)2 , t = (k ' - k )2 , Ip I= p and f(p) is the probability that o nucleon fl fl fl fl 
of momentum p be found in the nucleus. We hove used the normalization J d3p f(p) = 1 . 
Depending on the initial and final pion charges, one or the other of the two terms on the right 
hand side of Eq. (3) may be zero. 

For small p ,  f(p) is believed to be fairly well understood. If it turns out that Eq. (3) 

works well for small p ,  then it is natural to use this equation to determine f(p) for larger 
values of p ,  soy o GeV or so. So for as I know, f(p) hos not been well determined for large 
values of p . Thus one con use the above reaction to measure the distribution of nucleon mo­
menta in the nucleus . 

17 



18 

IL Nuclear A - Dependence of Cross Sections and Jet Evo lution in Nuclear Matter 

A. A - Dependence of Structure Functions 

It h as been known for many years that the cross section for h igh energy photons to interact 

with nuclei does not vary as A times the photon nucleon cross section. At high energies 

A ff/A :::::: 0.6-0.7 for a lead target. However, until recent ly there was no evidence for shad­

o:ing of virtual phoh;ns in the deeply inel astic region. Such evidence h as now been found 1 O 

which indicates that virtual photons exhibit as much shadowing as real photons in the Fenni l ab 

energy regime so long as 02 � 2-3 GeV2. The range of strong shadowing, Aeff/ A::::; 0.6 , 

corresponds to x � 0.01 . Whether this shadowing is only a function of x or whether there i s  

a 02-dependence is not known at  present, but could be  detennined at Fenni l ab i n  the next 

few years. 

There are two d istinct, but presumab ly equivalent, ways to view shadowing effects i n  

deeply inel astic scattering off nuclei. Let us begin by  taking the nucleus at rest. If P is the 

nuclear momentum, then P = (M, 0, 0, 0) and p ,  the momentum per nucleon, is given by 
2 p = (M/ A, 0, 0, 0) :::::: (m, 0, 0, 0) with m the nucleon rest mass. For l arge 0 and smal I x 

the photon momentum takes the form q ::::; (q - mx, 0, 0, q) where x is defined with respect 

to the nucleon momentum. When x is small the virtual photon has a re l atively long time 

I ' · · · h" f l l -14 W · h "  • I b • sea e ror interactron rn t rs rame. e may estrmate t rs trme sea e, ,. , y equati ng ,. 

to the inverse of the energy difference between the virtual photon energy and the energy of a 

real photon having the same t�ree-momentum. This is a standard uncertainty princi ple argu­

ment. One finds 

T q - (q - mx) mx 

The virtual photon can either be in a state of one bare photon or in a virtual hadronic 

state. The typical time for chang ing from one such state to another is ,. . If the virtual pho­

ton is in the state consisting of a bare photon when it reaches the front of the nucleus, there 

wil l  be no interaction at al l if �x > 2R . If the photon is in a virtual h adron state, S , 

then the cross section for the process wil l  be proportional to the cross section for the state S 
• t "th h I Th • l l -14 F" 4 to rnterac wr t e nuc eus. us one moy wrrte, see rg . , 

where a 1n is the ine lastic virtual photn-nucleus cross section, S is any h adronic state di­

rectly co�municating with the photon, and I (S I y) 1 2 represents the probability that the 

v irtual photon is in the h adronic state S .  asln is the ine lastic cross section for the v irtual 

hadronic state S to interact with the nucleus, A .  (The calculation of I (S I y) 12 is non-



trivial and wil l not be discussed in detail in the>e lectures.) 

Whether aSA is proportional to A or whether there is strong shadowing depends on  the 

transverse size of the state S .  If S is smal l, then that state wil l  interact weakly with nu­

cleons and there will be l ittle shadowing. If S has a transverse size comparable to that of a 

physical hadro n, there should be co nsiderable shadowing. We shall return soo n to a more de­

tailed discussion as to how much shadowing is to be expected. 

Let us now look at deeply inel astic scattering off nuclei in a frame where the nucleus is 

go ing very fast. We take p::::; (p  + m2 /2p , 0, 0, p) and q = (q0 , g_, 0) with p l arge and 

r} = o2 . In addition q0 is determined to be q0 = 02 /2px <.<I !1- I . In this standard infin­

ite momentum frame, il lustrated in Fig. 5, the virtual photon simply measures the quark distri-
A 2 "' 2 a 2 bution functions of the nucleus. vW2 (x, Q ) = 'a 2

0 
x PA (x, Q ) where 2 0 is the 

charge of the a - quark or anti quark and P: (x, Q2) is the number density of a-quarks in the 

nucleus. If there is no shadowing 

pAa(x, Q2) = Z P a
t (x, Q2)+ (A - Z) pa

t (x, Q2) . pro on neu ron 

For smal l x ,  the only region  for which shadowing is possible, shadowing means that there is a 

depletion in the number density of sea quarks and antiquarks from the number density one 

would get by adding the contributions from al l the nucleo ns independently. Thus shadowing 

measurements are direct measurements of the sea quark components of the nucl ear wave func­

tion. 

(1 ) The Naive P arton M:>del 

In the naive parto n model one can definitively answer the question as to how much shad­

owing should be present in deeply inel astic scattering experiments. Let me give the argument 

in terms of both of the frames which have been considered so far. In the nuclear infinite mo­

mentum fran: the valence quarks occupy a longitudinal size .6.zv::::; 2R � as il lustrated in 

Fig. 6. The longitudinal size of a g luon  or sea quark of momentum k is .6.z ::::; 1 /kz . When 

1/kz > 2R ;.. or x < 2� al l  sea quar�s having such x val ues, at a fixed impact param­

eter, overlap spatial ly. (For lead x � 2Rm means x � 0. 01 . )  Such sea quarks are real ly a 

property of the nucleus rather than of the individual nucleons. If one were to assume that the 

number density of such sea quarks is obtained simply by adding the number densities of the in­

dividual nucleons a number density proportional to A1 /.3, for a fixed impact parameter, would 

be obtained, the case of no shadowing. But, physical ly th is is very unreasonable�  How can 

one make the numbar density betome l arger and l arger, by increasing A ,  without having the 

quarks and antiquarks disappear through annihil ation? (If the sea quarks and antiquarks had 

a very smal l transverse spread they would interact only weakly, and very l arge number den­

sities would be possible .  However, in the naive parton model the transverse spread of a given 
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quark is about 1/350 MeV, not a small number. ) One would naturally expect a limit to the 

number density of sea quarks in the regime x - 1/2mR as A increases, and this limit should 

be determined only by the quark and gluon properties independently of the parent nucleons. 

In the rest frame of the nucleus we may view deeply inelastic scattering in the naive par­

ton model as shown in Fig. 7. Let us write the state S', which the virtual photon first goes in­

to, as a quark of momentum k and an antiquark of momentum q - k . The energy of that 

state is 

J- - 2  2 (q - k )  + m + J- 2  2 k + m ::::: q + 
k
2 2 + m  k

2 2 
+m 

-- + 2(q-k) 

The energy of the virtual photon is E = q - mx . The energy denominator which occurs in q 
evaluating the transition probability for the photon to go into the quark antiquark state is 

I 
(Es-E/ k2t m2 k2+ m2 2 

(� + i(q-k) + mx) 

Now in the parton model �
2 is limited, say by m2 . If k «m/x the state S' is suppressed 

due to the growth of the energy denominator. If k » m/x the contribution is suppressed due 

to the smal I scattering cross section of k on the target. Thus, k ::::: m/x . 

We may view the deeply inelastic cross section as a probability, of order one, for the 

creation of a quark-antiquark state times the cross section for the quark to scatter on the nu­

cleus.
15 (The antiquark, which we have chosen to be the fastest of the quark-antiquark pair, 

cannot interact with the nucleus (in a light cone axial gauge) due to the slowing of the anti­

quark's rate of interaction caused by its large momentum. This time dilation factor is the 

source of interactions with the q - k line, higher twist contributions, being down by a power 

of o2.) The transverse momentum of the quark, � , is limited in the parton model which 

means that the transverse spread of the quark is of on:ler 1/m . If x � 1/2Rm the state S' is 

formed before the virtual photon reaches the nucleus and a cross section proportional to rrR2 

is expected as the quark should act much like a hadron. 

In the naive porton model it is dear that one expects strong shadowing when x � 1/2Rm . 

Shadowing should begin when x � l/dm with d a typical intranuclear spacing. Thus for 

heavy nuclei one expects considerable shadowing when x � 0.01 . This view is strongly sup­

ported by the experiment of Goodman.!!: 9.J.. 

(2) Deeply Inelastic Scattering In QCD 

Our discussion of nuclear deeply inelastic scattering in terms of the parton model relied 

heavily on having a limited transverse momentum for quarks and gluons. For example, in the 



fast nuclear frame, there would be no di ffi culty in having sea quarks and antiquarks overlap in 

the longitudinal direction if  their spread in  transverse space is smal l enough (l arge enough trans­

verse momentum) so that they overlap little in th ree-dimensional space. A thorough theoretical 

discussion of shadowing in QCD is too complex to be presented here; however a qual itative dis­

cussion may give some insight into the issues which are involved . We should emphasize, though, 

that the naive parton model should give a reasonable guide as to what to expect experimentally. 

The QCD discussion should be a refinement, but not a negation, of the predictions of the parton 

model. 

We begin by considering the Altare l l i-Parisi equation 

8 2 

8 In Q2 
p A (x, Q ) 

l -J dx' (, 2) ( x 2(Q
2) )  7 PA x ,  Q Y7, g  

x 
(4) 

for the nuclear parton number densities. In general y is a matrix whose rows and columns rep­

resent g luons and the various flavors of quarks and antiquarks. A solution to Eq. (4) is given by 

2 1 dx' 2 x 2 2 PA(x, Q) =!)(I PA(x', Q
o
) K(7, Q 'Q

o
) 

whe re K may be represented as 

x 2 2 K (7, Q' Qo
) = (x' 

(5) 

(6) 

In Eq. (6) 1? stands for a >.2 path ordering of the operator y. In addition to being a matrix 

in quark flavor and gluon space, y is an operator in x space such that 

I 2 2 I x' x 2 2 (x' y(g (>. ) ) x) = ©(- - l )  y(-; , g (>. ) ) • x x (7) 

It is possible to gain an intuitive picture of Eq. (6) if we view y as an imaginary time 

Hamiltonian. K can be written as a sum over al l paths, x (Q2) ,  much as is often done for a 

one-dimensional quantum mechanical problem. In Fig. 7 some typi cal paths are shown. The 

paths shown there in  In l/x• versus In >.2 are monotonic because of the step function in Eq, 

(7). If these paths are read from left to right they correspond to the evolution of quarks and 

g l uons from some non-perturbative di stribution, PA (x, 00
2) ,  in the nucleus to a final parton 

distribution PA (x, 02) which is measured by the virtual photon in a deeply ine lastic scatter­

ing. (This is a description in the fast nuclear reference frame. )  For example, fol lowing path 

CD from left to right in Fig. 7, a valence quark in the nucleus evolves to l arge o2 while re­

maining at l arge values of x . Then, after having reached l arge values of o2; it evolves to 

small values of x at which point it is  struck by the hard virtual photon. In fol lowing such an 
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evolution the quarks and gluons first become small in transverse size before they overlap in 
longitudinal space. No shadowing is expected from an evolution following a path like (D. 
Path ®, on the other hand, corresponds to beginning with a gluon or sea quark at O� and at 
very small x . This quanta then evolves to large 02 and is struck by the virtual photon. If 
00

2 � 1 Gev2 we expect considerable spatial overlap before the evolution to small size occurs. 
Path W should correspond to strong shadowing. We can also interpret path @ by reading 
Fig. 7 from right to left. In this case we take the frame where the nucleus is at rest. In this 
frame the photon first turns into a quark-antiquark pair. Path @ follows the evolution of the 
quark which finally strikes the nucleus. This quark has a mass o0 and momentum proportional 
to o0 /x' when it is considered to scatter off the nucleus. (x' is the point where path ® in­
tersects the line In >..2 = In 00

2 in Fig. 7.) Since a nearly on-shell quark having large momen­
tum should have strong shadowing, we again expect path Cl) to exhibit considerable shadowing. 
The process as viewed in the rest frame of the nucleus, and evolving along path (?) , is shown 
in Fig. 8. 

Let us write Eq. (5) as 
2 PA(x, 0 )  

1 
f 
1 

2Rm 

I 2 X 2 2 PA(x , Oo ) K(7 ' o 'Oo ) 
1 

2Rm dx1 I 2 X 2 2 
+ f 7 PA (x ' 0o ) K ( J<i ' 0 ' 0o ) x 

(B) 
PGJ P CV A + A . 

The term whose integral runs between 1/2Rm and 1, P A
(j), should show little shadowing, 

while P<}J should show considerable shadowing. In OCD shadowing is not simply a function 
of x versus R as it is in the parton model. Nevertheless, it is clear that we should expect 
shadowing even for large values of o2 when x is small. A detailed quantitative discussion 
of shadowing on nuclei requires a knowledge of y(x, g2) when x is small and a knowledge of 

2 2 . .2 PA (x, o0 ) when o0 :::: 2 GeY-, say. 

B. A- Dependence of µ- Pair Production 16 

Consider massive µ- pair production in a hadron-nucleus collision as illustrated in Fig. 9. 
In the OCD improved parton model we expect 

(9) 

f'°(x, 02) is the number density for quarks of type a in the hadron while P :(x, 02) is the 
number density for quarks in the nucleus. x1 and x2 are the usual momentum fractions carried 



by the quark and antiquark which annihilate to give the µ-pair. The question we wish to dis­
cuss here is at what values of x. and o2 should we expect Eq. {9) to hold and at what values I 
of the parameters should we expect shadowing to occur. 

It is clear that we cannot expect Eq. (9) to be correct when R is very large and p
l and 

p2 are fixed. In such a circumstance the hadron sees only the front encl of the nucleus with 
which it collides. View the reaction in the rest system of the nucleus. In this frame we would 
like the process to take place by the line k1 reaching into the center of the nucleus and strik­
ing a line k2 to produce the µ-pair. 0, in case x2 is smal I, the link k1 first emits the 
µ-pair and then turns into the line - k2 which subsequently interacts with the nucleus. How­
ever, we know such a simple description cannot be completely correct. Even when k1 is large 
it may interact via soft gluon exchange with the nucleus if kl is not large. It will be argued 
in Sec. V that such interactions likely violate factorization, 1 even for hadron+ hadron -
µ+ + µ- + X, in perturbation theory though these non-factorizing effects should be suppressed 
by Sudakov factors at large 02 . Besides interacting by means of soft gluon exchanges, the 
line k1 has the possibility of turning into a hadronic system which can be absorbed by the nu­
cleus. The line k1 can completely change its character on a time scale 

I r1 I --
2
-T ( 1 0) 

Kl 
However, in order that k1 change into an hadronic system which can be absorbed by the nu­
cleus, it is necessary that K/ "=' ,/ = (350 MeV)2 since normal hadronic interactions do not 
involve hard scatterings which would be required to make K 1

2 ;,/ » 1 . Thus T "=' k1 / ,/ 
= x1 p1 /µ2 . Now 02 = 2x1 x2 p1 m so that the requirement that the k1 line not turn into 
an hadro ni c system which can interact strongly with the nucleus is -r ;;:, 2R or 

Q2 
2 .G 4Rm x2 . (1 1) 
µ 

For x2 = � and for lead this requires o2 � l 0 Gev2. 
Our result, Eq. ( 1 1  ), is somewhat different than the conclusion of Ref. 1 6 where o2 

� canst A2/3 is required before radiation induced by the passage of the k1 line through the 
nucleus is small. The source of this difference is easy to see. Bodwin, Brodsky and Lepage 
(BBL) argue that the k1 line, as it passes through the nucleus, picks up a transverse momentum 
and a mass �/a K1

2 from random soft multiple scatterings and that this causes K1
2 to become 

as large as Al/.3 . Such an effect would immediately give an additional Al/.3 on the right 
hand side of our Eq. (1 1  ). However, as shall be discussed in more detail a little later on, an 

·off-shell line interacts only weakly with nuclear matter, the strength of the interaction 
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decreasing as a power of the off-shel lness. Thus we feel that a quark, o r  gluon, line cannot be 

pushed far off shell by a series of soft scatterings since the soft scatterings become very weak as 

the quark, or gluon, line goes more than a little off-shell. 

Given ( 1 1 )  for the validity of Eq. (9), the amount of shadowing present then follows direct­

ly from our discussion of deeply inelastic scattering since the P A0(x, 02) is exactly the one 

discussed there. Strong shadowing should occur when x2 is small, say x2 ,$ 0.01 . 

C. Jet Evolution in Nuclear Matter 

In this section we shall briefly discuss the evolution of OCD jets in nuclear matter. As a 

preliminary to this discussion I would like to indicate, in the context of deeply inelastic scat­

tering off nucleons, a frame which separates current jets from fragmentation jets in a particular­

ly transparent way. To this end take p � (0/2x, 0, 0, 0/2x) , q = (0, 0, 0, -0). Then Ster­

man-Weinberg current jets are defined by requiring that an amount of energy greater than 

(1 - E) 0/2 go into a cone of half-angle 5 opening along the negative z-axis while frogmen-
. · d f" ed b · · f h (1 ) l-x 0 · 

tation Jets are e in y requ1 ring an amount o energy greater t an - £ )( y go into 

a cone of half-angle 5 opening along the positive z-axis as shown in Fig. 1 0. The cross sec­

tion for producing current jets or fragmentation jets is completely calculable as a function of 

5 and E in terms of the total deeply inelastic cross section. In the discussion to follow we 

shall concentrate on the evolution of current jets as they pass through nuclear matter. 

Consider now the evolution of a current jet through nuclear matter in the rest frame of the 

struck nucleus. The process is illustrated in Fig. 1 1  where possible final state interactions of 

the current jet with the nucleus are shown. We know that even in a vacuum the quark struck 

l:iy the current begins to fragment long before the jet measurement is made. With a jet meas­

urement as described earlier in this section, the mass of the state which the q + k line evolves 

into is unrestricted up to 0 5 . This means (q + k)2 � 0252 . The time scale for the evolution 

of the q + k line into a state of mass 0 5  is ,. � q+k/02
52:;::: 1 /mx52 . For x and 5 not 

too smal I the evolution of the jet begins in the nuclear matter. 

The lowest order perturbative modification of the current jet as it passes through nuclear 

matter is shown in Fig. 1 2. p1 represents a nucleon in the nucleus. Choose an axial gauge 

where n = ( 1 ,  0, 0, 1 )  and p � (p + m2/2p , 0, 0, p) . Then one easily finds 

Q n + Q n y. p y y. (p - Q) r g - a @ @ (1 J ,,,, a - a@ Q. n_ ( 1 2) 

where 1 /Q = �( � + �) . Now the denominator corresponding to the line p - � is - x. +1c x. - 1c. 

(p - Q )2 + iE - m2 ;::,
-

p2 - m2
-
- Q 2 - 2p Q + iE . One sees that there is a trapping of the Q - - + 



contour between the points Q. = p
2
- m

2
- Q. 

2 
/ 2p + ie and Q. = - ie . Q. 

2 
is limited by nor-- - + 

mal hadronic masses. If p2 = O(m
2

) the final state scattering is effective. Of course, in the 

P
2 __ m

2 n 2 n 2 example we are considering and x. of Eq. (12) is exactly cancelled by the x. in 

the (p - Q. )
2 

denominator. 

However, a further point becomes clear. If I p
2

/m
2 I >> 1 we will obtain a factor 2

2
/p

2 

= O(m2 /p2) for interaction of the off-shell quark line with nuclear matter. This is a norm:) 

factor which suppresses higher twist effects. We can thus conclude that current jets do suffer 

final state interactions with the nucleus, but that these interactions can only modify momentum 

distributions by a few hundred MeV. As soon as a quark or gluon line obtains a mass of a GeV 

or so it ceases to interact with the nuclear matter. 

Thus, for all practical purposes, we may say that a current jet does net significantly interact 

with a nucleus in which it is produced. This is a rather striking result and tests should be iiossi­

ble in deeply inelastic scattering on heavy nuclei. Of course we should emphasize that our 

whole discussion presumes that the current quark jets have a momentum in the nuclear rest sys­

tem larger than 2Rµ 
2 

as we described earlier in our discussion of the A -dependence of µ-pair 

production. 

III. Heavy Particle Production at High Energy 

The production of heavy particles at high energy, either in hadron-hadron collisions or in 

deeply inelastic lepton reactions, should be predictable to a reasonable extent by perturbative 

QCD. In this discussion I shall always suppose the heavy particle is chann, though predictions 

shou Id be even better for b - parti c I es. 

Long ago Georgi-Politzer
17 and Witten18 argued that chann production in deeply inelastic 

scattering could be calculated using perturbative QCD. Let me outline crudely how their argu­

ments can be simply understood. Suppose we consider a proton, a bound uud system, moving 

rapidly. At some instant in time one of the quarks in the proton emits a gluon which then goes 

into a c-c system as shown in Fig. 13. We may estimate the lifetime of the c-c pair by cal­

culating the difference, in old-fashioned perturbation theory, between the incoming energy of 

the proton, E , and the energy of the intennediate state containing the c-c pair E _ . p 2 2 1 .. 2 2 c-c 
One finds E <:: p and E � p + (M +Q. f2Q. + vv• +(k-Q.) /2(k-Q.) when p c-1:! c - z c - - z 
M 

2 » m 
2

, md
2 

. If the charmed quarks carry a finite fraction of the momentum in the proton c u 
the lifetime of the c-c states is "t" _ "' p/M 

2 
. The lifetime for a nonnal light quark-

antiquark fluctuation in the proton is 
c-�O � p/µ"1. where µ .,.350 MeV. Thus c-1:! fluctua­

tions always live a very short time compared to nonnal light quark and gluon fluctuations. 

( Interactions which could make the c-c system survive on a time scale long compared to 

25 
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p/M 2 would require o strength s2 M 2;/ . )  Now if the c-c fluctuotion lives only a short c c 
time it is clear that the c and c never separate. The c-c fluctuation is then a short dis-

tance and short time effect, exactly the sort of quantity which should be calculable by pertur­

botive QCD. 

If a charmed quark is measured in deeply inelastic scattering or if the charmed quark de­

coys into a D by picking up light ontiquorks from the vacuum, we may estimate the relevant 

x-distribution simply by power oounting. One finds, from Fig. 14, a charmed quark distribution 

which goes like (1-x)
5 

as x goes near 1 . This corresponds to central production in on had­

ronic oollision. Such a distribution is a purely perturbative effect and should be reliable to the 
2 2 extent that fl /Mc «. 1. 

There ore of oourse other graphs than that shown in Fig. 14 which contribute to c-c pro­

duction. For example the graph of Fig. 15 is a oontribution which is certainly not included in 

most perturbotive QCD calculations. A power oounting analysis of that graph yields a behavior 

(1-x)\,2/M 2)
2

. The extra (//M 2)
2 

comes about because the extra interactions with the r c c 
c-c system must occur in a time of size p/M 2 while their natural time scale is of size p/l . c 

We conclude that for a single c inclusive reaction, as measured in deeply inelastic scat-

tering or in production of D or i\ , perturbation theory should give a reasonable prediction 
c 

so long as fl 2 /M 2 terms are not important. We also conclude that c production probabilities c 
should decrease ot least as quickly as (1-x)

5 
as x - 1 . In fact leading logarithmic oorrec-

tions to the Born graphs we hove oonsidered here wi II tend to further suppress the x near 1 

behavior. 

The x dependence, near x = 1 , of I\ production or of D production in proton-proton 

oollisions is easily ascertained. For example for 15° production near x = 1 we simply need 

the oonvolution of the probability for a u - quork in the proton to carry almost all the proton's 

momentum with the probability for that u- quark to emit a c-c pair with the c - quork carry­

ing only a fraction 1 - x of the u - quark's momentum. The process is shown in Fig. 16. This 

immediately leads to a (1-x)4 behavior. For central 15 production, the gluon-gluon fusion 

model should be accurate. For I\ production, illustrated in Fig. 17, near x = 1 the rele­

vant probability is given simply 'by the product of the probability that one of the u - quarks in 

the proton hos a fraction of the proton's momentum of order 1 - x times the probability that 

the other u - quark in the proton emits a c-c pair with the c having a fraction 1 - x of the 

momentum of the parent quark. One finds a Ac production oorss section behaving like 
2 (1-x) as x-l. 

The x near 1 distributions for charmed quarks ore much more strongly depressed than 

appears necessary to fit the !SR data on /\ production.19 Assuming for the moment that this c 



data is not misleading, what are possible ways out of our analysis? (i) Perhaps non-perturba­
tive effects are important. This would be very surprising since M 2 furnishes a mass large c 
enough for us to believe perturbation theory at least to within a foctor of two or so. (ii) Per-
haps the (1-x)n behavior we have derived from perturbation theory does not apply unti I x is 
extremely close to one. I have examined perturbation graphs and cannot find any effect sug­
gesting that one must be closer to x = l in order to apply counting rules here than is neces­
sary for processes without charmed particles. In each of these cases the conclusions are neces­
sarily tentative. One really cannot say with certainty that //M 2 effects are necessarily c 
small. 

The two most common models dealing with these processes are the intrinsic charm model of 
Brodsk/O and collaborators and the flavor excitation model of Barger, Halzen and Keung.21 

In each case these models, which are in many ways similar, are phenomenological. The essen­
tial ingredient is a moderately hard charm distribution in the proton. If the Ac data is correct 
then these models may well have the correct physics in their assumptions. Unfortunately, as I 
have spent the earlier part of this section emphasizing, perturbation theory does not allow a 
hard enough charm distribution to be consistent with these models. In particular, perturbation 
theory says the cc component does not live long enough to use the Bjorken22-Suzuki23 argu­
ment in this circumstance. Thus if the /I. data from the !SR are correct, perturbation theory c 

2 2 must not be applicable because of large µ /Mc effects. 
N. Soft Hadron Production in QCD Jets 

When x - 0 single particle inclusive annihilation cross sections in e+ e - collisions are 
no longer governed by a straightforward application of the renormalization group. This shows 
up, for example, in a series of the form 

2 en 2 r-1 
.Yn(g2) - �-l L er(�) +less singular terms 

r=l (n-1) 
(13) 

24-27 for the anomalous dimension matrix. Several people have suggested that a complete so-

lution to the axial gauge ladder graphs might be a way to go beyond the renormalization group 
and obtain small-x results . Such an approach has been successful in obtaining Sudakov effects 
as x - l . Following this suggestion one obtains an average multiplicity of produced hadrons 
growing like an exponential of {ln"Q2 .  Such an increase comes from a square root branch 
point of y (g2) in n after summing the leading terms in the series indicated in (13). n 

However, in con'trast to the x - l case, it now appears that the above procedure gives 
the correct form of y n , but not the correct values of the parameters appearing in the square 
root. The origin of this difficulty is that non-planar graphs are just as important as planar 
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graphs. We may understand this in the following way. The average multiplicity is determined 

by 

(14) 

or l 
J 2E du xdx 
2P/Q d3p 

(15) 

where du/ip is the inclusive cross section for producing a particle of momentum p and 

mass P . p corresponds to a fraction, x , of the maximum possible momentum of the produced 

particle. In (15) factors of 1// lnr l/x in 2E(du/ip) get changed into lnn+l Q/P factors 

in ii . Thus terms which are non-leading in 2E(d u/d3 p) as far as powers of In 02 are concerned 

may have additional powers of In l/x and be part of the leading series in In 02 as far as 

ii(Q2) is concerned. This is P.Xactly what happens for non-planar graphs. 

A • · • • 28 h h rd 6 • I t I d' • • n exp11c1t computation t roug o er g gave a sing e anoma ous 1mens1on cons1s-

tent with 
1 [ I 2 Ba cA J yn = 4 -(n-1)+ V(n-1) + -"- (16) 

(Planar graphs give a similar result except that the 4 and 8 in (16) are replaced by 2 and 4 

respectively.) Recently, 29 it has been shown that Eq. (16) correctly gives al I the terms in the 

leading series of powers of g2 /(n-1 )2 in QCD. It is an important task to show that non-lead­

ing terms preserve the square root form of the anomalous dimension so that one may have real 
2 confidence that Eq. (16) represents the actual values of the anomalous dimension when g and 

n-1 are smal I. Before briefly describing how the result of Ref. 29 was obtained, let me first 

give the physics results which fol low from (16). 

We may now use factorization, which states 

and the renormalization group, which gives 
o2 

d>-.2 - 2 2 ] 

to find 

!2 >;2 Yn lg (A) 
E (Q2) = e µ 
n 2 Q d>-.2 2 2 

(17) 

(18) 

- 2 
J 

2 7° Y1 [g (A J] 
n (Q ) oc e fJ (19) 

Although y1 )92) does not make sense order by order in perturbation theory, the form (16) does 

make sense evaluated at n = l , so one gets y110/)= ./a.cA/2rr. One easily finds 



(2 0) 

33 - 2nf with b= � One may also use (16) to solve for do/dx at small x. The result which 
emerges is 

do x dx oc 

I 2cA 2 
�ln Q 

e 

Jin3/2 02 
e 

/BcA -3 J � 
(2 1 ) 

1 2 1 2 2 2 so long as (4 In Q - In;) / In Q « 1 . Perhaps at LEP the decrease in x (do/dx) when 

In � > } In 02 will be seen. This would be most striking. 
Let me now outline how Eq. (1 6) is obtained. One works with x(do/dx). The leading 

singularities in yn come completely from gluonic interactions. As a device to get these sin­
gularities, without having to discuss fermions at al I, it is convenient to introduce a gauge in­
variant current j(x) = F (x) F (x) which is used to produce the jets in which the particle of 

µ.> µ.> 
momentum fraction x is measured. One writes 

do x­d x  
a:> 2r-1 2r-Q.-1 L <s/{ L c (In 02/r2) (In ..!_)2. 
r=l Q.=0 Q. x (22) 

for the most singular terms as x - 0 and o2 
- oo . (Re cal I that In !. oc In o2 in the region x 

of dominant particle production.) Suppose, at a given order in perturbation theory, that N+ 1 
particles (gluons) of momenta p, k1 , k2' 

... kN are produced. The results which lead to (16) 
are first that p is the smallest momentum in the overall center of mass system, and second if 

(23a) 
then 

as far as the region of phase necessary for calculating the leading singularities is concerned. 
The above angular ordering was suggested independently in Ref. 28 and Ref. 30, and was 
proved for all leading terms in Ref. 29. Once (23) is known it follows immediately that the 
leading terms in x (do/dx) are obtained by taking the ladder graphs of Fig. 18 and evaluating 
them with the constraints (23). It should be emphasized that the above constraints do not fol­
low from kinematic considerations alone, but are dynamical restrictions outside the ladder 
graphs themse Ives. 

The general proof of (23) given in Ref. 29 is quite intri cote. However the idea ls 

2 9  
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relatively simple. Let m e  state the idea o f  the proof in a few words. 

In order to get the maximum singularity at a given order in perturbation theory a l l  momenta, 
both real ond virtual, must be strongly ordered. (In the leading singularity approximation virtual 

l i nes are not very far from mass she l l .  Strong ordering for these l ines can be donE! either in  ener­

gy or in momentum since there is no difference in the resulting orderings.) A g l u"n of momentum 

ki can be emi tted from a l i ne harder than itself and con emit l i nes with softer momentum. (In a 

region of strongly ordered momenta we need only consider tri l inear g luon coupl in:gs. ) Suppose a 

l i ne k. is emitted from a l ine k. , k. << k. of course. The vertex for this emission is shown in I J I J 
Fig. 1 9. If we i nclude 1/ffE factors for the emitting l ine, the dominant term in the vertex is 

given by (2k. /2k. ) gr.\ igTb
a in axial gauge. This vertex factor is the number density cur-Ja JO r-Y c 

rent of the l ine k. multipl ied by a color rotation factor (c I Q0 I b) . If a soft l ine k. makes J I 
an angle 9. I with a set of hard l ines k.e I which is larger than the ang les, 9 .. , , between the I J JJ 
l i nes i n  I then it is c lear that the l i ne ki measures, and color rotates, the total co lor current 

of the l i nes i n  I when k .  i nteracts with those l ines. I 
Recal l  that the tota l cross section a(02) has only logarithms coming from a (02) . The 

higher logarithms in x (da/dx) ,  soft and co l l i near logarithms, are caused by the d1�tection of 

the l i ne p .  Thus if the p l i ne can be viewed as measuring the color charge of those hard 

l ines with whi ch it makes a large ang le, the emission of the p l ine wi l l  be i neffectua l in pro­

ducing co l li near singularities. (This is exactly the way a Sterman-Weinberg jet cross section 

works. In such a jet a conserved quantity, energy, is the l imiting factor determining what is a 

jet event. Such a measurement is insensitive to co l l i near emission of g luons and so only loga­
rithms from the running coupl i ng appear. A simi lar 5ituation occurs here. If the total co lor cur­

rent of a set of gl uons, I , is being measured by o l ine p ,  then o l l  co l l inear log,�rithms in I 
wi l l  be lost. ) To get the maximum number of co l l i near and soft emission logarithms it is neces­

sary that the softest g luons make the smal lest angles with each other. This is exactly what Eq. 

(23) states. 

V. Soft Gluons and Factorization in µ - Pair Production 

One of the most widely discussed topics in QCD in the past year or so has been the ques­

tion of factorization in µ- pair production. A few years ago calculations done in quark-anti­

quark - /+ µ- + X showed3 1,32 that at high energy factori zation worked through the two­

loop level at least as far as logarithmic terms are concerned. Recently, however, Ebdwi n, 

Brodsky and Lepage (BBL) 16 suggested that such a factorization would break down in quark-

/ hadron scattering at the two-loop level in soft g luon corrections. It was later sugg•ested that 

Sud k • • h h" f • • 33 a ov corrections m1g t suppress t I S  non- actori zat1on. 



In these lectures I am taking the position that the BBL discussion is correct in perturbation the­

ory. I shal I then show why I feel Sudakov corrections should ultimately suppress this non-fac­

torization, though at what values of o2 is not completely clear. The reader should be warned, 

however, that many QCD theorists are not ready to accept either of the above statements on the 

basis of the arguments that have so far been given. Before discussing the fl-pair situation, let me 

go back a few steps and talk about other processes where soft gluon effects might come in, but 

where in fact they cancel order by order in perturbation theory. 

A. Soft Gluon Cancellations in e+- e- Collisions
34 

Consider a two-jet process in an /-e - collision as illustrated in Fig. 20. I n  that figure 

the particles of the jet ore the two blobs, while soft gluons ore shown connecting the two jets. 

We imagine working in an axial gauge with n2 f 0 and grouping the quarks and gluons into 

four categories. (i) Quarks and gluons collinear with the positive z-axis, jet (i); (ii) A similar 

grouping fur the opposite going jet; (iii) Hard gluons, which have been reduced to a point; 

3 1  

(iv) Soft gluons, shown connecting jet (i) and jet (i i ). Let p l b e  a light-like vector along the 

(i) jet direction. Then p1
2 

= 0 ,  pl+ f 0 .  Let f>2 be a similar vector for the (ii) jet. A soft 

gluon hooking into jet (i) measures the charge of that jet and picks up a factor p1()(. . Other 

than the charge and direction of the jet, the soft gluon is insensitive to the jet properties. Now 

in a jet process one does not need to require that physical hadrons be formed in order to measure 

the jet energy distribution. This means that a jet fonmation is a short time process. In the center­

of-mass system it takes a time of order c/Q to properly define the jet. (This constant c de­

pends in detail on our demand of angular resolution. This is the same ambiguity in what we have 

called a collinear gluon in (i) and (ii) above. In this heuristic discussion I shall not make the 

discussion more precise and so c must be left somewhat ill-defined.) But, such a short time 

process cannot involve soft gluons at all. Thus the different cuts through the soft gluons shown 

in Fig. 20 must cancel. 

Let us now consider the slightly more complicated process of / + e - - hadron (p1) + hadron 

(p2) + x as shown in Fig. 21. Now we show the pl line with its accompanying jet of collinear 

particles, the p2 line with its accompanying jet of collinear particles and the soft gluon con­

nections. We suppose that pl and p2 are almost back to back, but are integrated over small 

angular regions about the ±. z-axis. This is a two-jet event where specific particles, neutral in 

color, are measured in jet (i) and jet (ii). The soft gluon connections to the jets are exactly the 

same as in our previous discussion where the hadrons, pl and p2 , were absent. (Recall that 

these connections depend only on the direction and color of the jets.) Thus soft gluons must also 

cancel in this process.3
4 

Now, however, the cancellation is very non-trivial in that a long time 

process is involved in order to define the hadrons as on-mass-shell particles. The above is a 
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rough description of the concellotion first discussed by Collins ond Stermon. 

B. Soft Gluon Interactions with Jets in Nuclear Matter 
Earlier in Sec. II we have discussed the evolution of a current jet in nuclear matter. We 

concluded there that soft gluon interactions between the jet and the nuclear matter were small. 
In this section I would like to argue this result in a slightly different and in a more technical 
way. To that end consider the graph shown in Fig. 22 contributing to the time-ordered deeply 
inelastic amplitude. We suppose the target is a nucleus, A , and that P = {Am, 0, 0, 0) = Ap .  
We a Isa take q = {q-mx, 0, 0, q) so that q is large and q_ = - xp _ with x the conven-fl + ' 
tional Bjorken variable. Finally we choose a light cone axial gauge with ri,+ = 1 , ri, _ = !l, = 0. 

Consider the denominators associated with the line through which the q momentum runs. We 
may write 

[(qcrk)2+ie ] [(qcrk+.ll/+ ie ]  [(qcrk+Jlt ll/+ ie ]  

1 

We may normally choose k_ so that -xp_ + k_ , -xp_ + k_ + .1!1_ and -xp_ + k_ + £ 1 _ + £2_ 
are not particularly small. Thus the addition of the two gluons gives an additional 

-;-- oc -1-2 factor. The only way to conpensate this factor is to get q+ numerator factors. 
"+ (Q2) 
But, the axial gauge propagator is proportional to 

g -a� 
'la Jl l@+'l@ .Il l a.  'Y/_

. Jl 

which vanishes when a = - . Thus we have reached a standard conclusion that there are no 
gluonic corrections to one of the fermionic lines connecting the two currents in deeply inelas­
tic scattering at the dominant twist level. 

OJr argument for the smallness of the amplitude has so far been only for the time-ordered 
product. However, the structure functions are given by the imaginary part of the time-ordered 
product so the lack of gluonic corrections, in fact, holds also for the structure functions arising 
from three separate terms, shown in Fig. 23. The first observation to note is that the separate 
discontinuities of Fig. 23 are not small. The point being that a denominator like 

coming from the cut across the (qcrk)2 line can be trapped by the 1/2 1 _- ie coming from the 



axial gauge denominator. If the 2 1_ contour is used to pick up the 2 1 _= 0 po le, say, then the 
l/(q+k+ 2 1 )

2 denominator becomes l/k_2 - �+ �/+ ie which is not large in general .  We con­
clude that the soft g luoni c corrections cancel in the various intermediate states contributing to 
the structure function, but that they may make a contribution to a definite cut in  a particular 
graph. 

If, for example, we require that the current jet consist of only a sing le  quark with zero 
transverse momentum it is �asy fo see that the different cuts contributing to that cross secthn 
do not cancel .  The problem here is that a zero transverse momentum requires � sma l l  in a l l  
the cuts and the translations of transverse momentum, by �l and �2 , necessary to get the 
zero measured transverse momentum to not give the same relative contributions as the integrated 
distributions which occur in the total cross section. However, if we al low the measured fermion 
in the current jet to have a transverse momentum J � J < Q0 , then the cancel lation among the 
various cuts is effective up to a correction of size µ2/o0

2 with µ the typical size of J � J . 
In a jet measurement one fixes an angular cone in which particles are measured. In our example 
this is the same as a restri ct ion on J k. J . In fact a normal Sterman-Weinberg jet corresponds -f 
to restricting the transverse momentum of the measured quark, in our example, to be less than a 
fraction of Q . Thus we see that for a jet measurement soft g luonic corrections do not give 
any but higher twist contributions. This confirms our previous concl usion that current jets pass 
through nuclear matter without interaction with that matter. 

C. Soft Gluon Corrections in the Drel l -Yan Process 
Fo l lowing Bodwin, Brodsky and Lepage (BBL)

1 6 we sha l l  consider quark-hadron scattering 
as shown in Fig. 24. For simplicity we consider the solid lines to be scalar parti cles and the 
dotted l ine a point scalar. We begin by considering a soft g l uon correction, the l ine 2 in  

2 Fig. 24. We suppose p1 = (pl + ;;, , 0, 0, pl ) and we use a light cone gauge with I\, 
= v-! (1 , 0, 0, l ) . Then our discussiJn in part B of this section has shown that there is a non­
trivial contribution from this soft g luon exchange, due to the trapping of the contours in the 2 
plane coming from the factors l/2p1+ 2 _- �2+ ie. and 1/2_- ie corresponding to the denomi-

­

nator of the p1 + 2 - l ine and the axial gauge denominator respectively. Let us go through 
this expl i citly. We first note that in the axial gauge projection, d0�= g0�-("-a_2�+ ) 2J/2 · ri.. 
the a = - term is absent. Since the � index must be + in order not to have a sma l l  result 

ri. 2 + 'l 2 I for the graph of Fig. 24, we may write d aA - - 0 @2 @ 0 • Now we sha l l  see in a 
I"' - a -I  -

moment that the p - k + 2 l i ne wi l l  be put on-shel l  by contour distortion so the 2 term may 

'1. 

2 I � 
be dropped. Thus d0� - - � • The 2_ denominator is taken to be a principal 

r d -
'1. 

2 I value. Only -!(1/2_-lE ) is effective, so we may write d A- --! n @_;i- -' n}J x._ IE a ; -

3 3  
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Now we distort the 2 contour i n  the lower half plane so as to pick up the singularity a t  2 

= �2/2pl+
. Now tha; the (p1 + 2 )  line has been put on-shel l we can write 

.e 
d 11- -! � + ! l],11 'ii'. with r( =)-(1, 0, 0, -1 ) and the 2 term can be dropped to give 
at' " - t' ct a. 

d 11 - ! ll, 'i], = d 11 with the understanding that only the pole term (p1 + 2 )
2 

= 0 is to be 
at' � a at' 

taken. Now the 2 
+ 

oo ntour can be done by distorting the contour into the lower half plane to 
pick up the singularity at 2 = (k-2 )

2 
/2(p-k) - (p-k) . Final ly, let us write the ful l  answer 

+ - - - + 
for the graph in Fig. 24 bearing in mind that al l  particles except the gluons are scalars. We 
have found 

G = i
>.2g2 J iki.e (2p1+.e v2p-2k+.e )

@
dt:1

@
(.e ) 2'11'5( (p-k)2) f((p1+k)

2
) 

(2Tr)8 [.e
2
+ ie] [(p1+.e )

2
+ie] [(p-k+.e )

2
+iE] [(k-.e )

2
+ iE] (k

2
+ ie )  

Thus 

G 

¥t J d4ki� 2p1/(p-k)
@
da@ 

2Tr5 ( (p-k)
2
) f((p1+k)

2) 

(2Tr) .e
2 

4pl . (p-k) (k-.e )2 k
2 

2Tr5( (p-k)
2
) f( (pl+k)

2
) 

k
2
(k-.e )

2 

(24) 

(25) 

2 2 where f represents the vacuum polarization involving the µ - pair and k and (k-p) are to 
be evaluated using the mass shell conditions determining 2 . We need go no further in eval-±. 
uating G because it is clear G is purely imaginary in which case it is exactly cancel led by 
a graph identi cal to that in  Fig. 24 except that the gluon correction comes to the right of the 
cut. Thus, for one soft g luon there is a cancel lation of soft effects in the cross section. 

Now consider the graph shown in Fig. 25. Exactly as before we may replace d 11 (2 1 ) 
al t'l  

by ! C[ � = d with the understanding that the 2 1 _ contour encloses the pole  at 
al �1 al� l 

2 N 
2 l -

= -�l /2pl+ and replace d 
°'2�2 

(2 2
) by d 

a.2�2 
where the contour in the 2 

2
_ encloses 

2 2 the pole at .e
2
_ = �l /2pl+ 

- (!_1+!_2) /2pl+ . Now, however, the argument for these replace­
'l. ,2 + 'ln ,2 

d (.e ) - - 02 �2 "P2 a2 ments is more subtle. We begin by realizing that 
0.2�2 2 .e 

Further only the .e2
_ - i£ part of the principal value is effective so 

2-

�r.2� + 'l� ,e a I d 11 - -! "- 2 • 2 2 . Now we distort the .e2 
contour to pick up the 

°2t'2 22- - • e  ct2 I - -

pole at .e2
_ 

= -.e 1 _ - (�1+ �2f/2pl+ . Next we distort the .e 1+ 
contour to pick up the pole 
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i n  (p-k+ l! i + l! 2i2_ At this point we have isolated an on-shel l  scattering as shown in Fig. 26. 
Now this on-she l l  scattering has a real and an imaginary part. The real part must cancel be­
tween the present graph, Fig. 25, and the graph where the two l ines appear to 'the right of the 
cut, much as for the single g l uon exchange. The imaginary part of the graph in Fig. 26 is deter­
mined by the rule Im = - i/2 disc where one now uses Cutkosky rules to evaluate disc . The 
effect of taking the imaginary part is equal to a factor of 1/2 times the result of distorting the 
2 1 _  contour so as to pick up only the pole at 2 1 _  = - �}/2pl+ and distorting the 22+ con­
tour so as to pick up only the pole 2 2+= -(p-k)+ - �-�2)2/2 (p-k)_ . After a l l  this has been 
done we find that we have set 

f d.Q.1+ dl!l _d.Q.2+de2- (2pl+ l! 1 la1 (2p1+2.Q.1+ l!2)a2 (2p-2k+2.Q.t l!2)�1 (2p-2k+ .Q.2)�2 dal �l(.Q. 1 )da2�P2l 

j!1
2

j!2
2 [(p+.Q./+ iE.J [{pl+ J!l+ J!/+ iEJ f (p-k+ .Q./+ iE.J [{p-k+ .Q. l+ j!/ + i� J 

1 (2ir)4 
2 4.Q. 2.Q. 2 

-1 -2 
(26) 

Now we consider also the graph shown in Fig. 27. The evaluation of this graph proceeds as 
for the graph of Fig. 24. We find that effectively we have made the same replacement as in Eq. 
(26) except for an additional factor of 2 and a - sign. Now we add the contribution of the 
graph in Fig. 25. Begin by supposing that we are dealing with abelian g luons. Then there would 
be a cancel lation if the l ines involvi ng k were equal . That is we need 

1 1 

(k-e/ (k+ 2/ 
If we a l low the translation � - � + �2 on the left hand side, this is a correct equation as can 
be verified by using the appropriate 5 - functions for the graphs in question. That is, for the 
graph in Fig. 25 one uses 

and 

2 P_ 2P+k- - �- �1- �2) (p-k)_ 

2 P_ 
2p+k- - �- �1 ) (p-k)_ 

2 P-2p+ k- - �+ �2) (p-k"[ 

for the graph in Fig. 27. Thus for an abe lian theory we have verified that the graphs i n  Fig. 25 
and Fig. 27 cance l .  



3 6  

In the non-obelion case the calculation i s  identical except for color factors. The color 
factors ore most easily seen by considering the " hard part• of the graph as shown in Fig. 28. 
We may write the co lor indices in terms of a singlet exchange, 50b5cd , and an octet ex­
change, (>./2)ba (>./2)dc , where we have gone back to a case with fermions in the funda­
mental representation for the co lor factors. The singlet exchange behaves exactly as in the 
abel ian model as the co lor factors are the same for the graph of Fig. 25 as they are for the 
graph of Fig. 27. However, the octet case is different and the two graphs do not cancel .  This 
is the non-factorization of (BBL). It is physical ly clear, however, that one cannot have a high 
energy reaction which involves a co lor exchange, the octet exchange we have just been discus­
sing, which is not suppressed due to an incomplete cancel lation between real and virtual hard 
co l linear g luons. Thus we expect this non-factorizing part of the Dre I I-Yan process to be sup­
pressed by a Sudakov factor. Whether this suppression is effective at present energies is at this 

h I • I • 16 moment a p enomeno ogrca question. 
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Figure Captions 

Fig. 1 .  Quark evo lution i n  the pion form factor. 

Fig. 2. Elastic scattering in the Brodsky-Farrar picture. 

Fig. 3 .  The Landshoff graph . 

Fig. 4. The hadronic fluctuation of a photon interacting with a nucleus. 

Fig. 5. The nuclear structure function in the co - momentum frame of the nucleus. 
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Fig. 6.  The longitudinal size of the valence quarks in a nucleus. 

Fig. 7. Different paths of evo lution of quarks in the nuclear structure function. 

Fig. 8. Path ® as viewed in the rest frame of the nucleus. 

Fig. 9. µ - pair production on a nucleus, A . 

Fig. 1 0. Separation of current and fragmentation jets. 

Fig. 1 1 .  The possible interactions of a current jet as it goes through a large nucleus. 

Fig. 1 2. A sing le interaction of an outgoing quark with a nucleus. 

Fig. 13. A c-c fluctuation in a proton. 

Fig. 1 4. The c - distribution in the proton. 

Fig. 15. A higher twist contribution to the c - distribution in the proton. 

Fig. 16. D production near x = 1 . 

Fig. 1 7. I\ production near x = 1 . 

Fig. 1 8. Gluon ladders i nduced by a current 

Fig. 1 9. A QCD vertex. 

Fig. 20. Soft g luon interactions between two jets. 

Fig. 2 1 .  Soft gluon interactions in 2++ 2 - - k (p1 ) +  k (p2) + .X: .  

Fig. 22. A two g luon exchange in deeply inelastic scattering. 

Fig. 23. Different cuts of Fig. 22. 

Fig. 24. An active-spectator interaction in µ - pair production. 

Fig. 25. A two gluon active-spectator interaction. 

Fig. 26. An elastic quark-quark scattering. 

Fig. 27. A two soft gluon correction to µ - pair production. 

Fig. 28. The " hard part• of the µ - pair production. 



39 

1 6x 1 � l/Q 

.,,. gets smaller 

Fig. 1 

4 4' 4 4' 

3 3' 3 3' 

1 ' 1 '  

P1 2 2' 2 2 ' 

Fig. 2 Fig. 3 

�} s 

Fig. 4 Fig. 5 



4 0  

p 
-

(.6z)volence = 2R m/p 

Fig. 6 

q 

In 1/x 

f In l/x12 
In 1/x11 

In l/x11 

kz  oc µIn l/x1 

Fig. 8 
20 

...---... VE >  ( 1 - E )  Q /2 

j�E > O - •  ) J -x /x Q/2 
u 

Fig. 10 

1-1-������--"'---
l n Q o 2 

ln>..2 -

Fig. 7 

Fig. 9 

Fig. 1 1  

lnQ2 



p 

Fig.  1 2  

Fig. 1 4  

u ------------
d -------------

u
- } 00 

u ----.. -'<�c 
c 

Fig. 1 6  

:u 

\3/( I -c 

Fig.  1 3  

Fig. 15 

Fig. 17  

4 1  



4 2  

p 

p 

Fig. 18  

Fig .  20 

k 

k 

Fig. 22 

' 
... , ' 

" 
q 

Fig. 1 9  

Fig. 2 1  



l2 
11 

k1 q 

F ig. 230 Fig. 

F ig. 24 

F ig. 26 

Fig. 28 

12 

11 
k1 q 

23b 

Fig. 25 

p-k 
Fig. 27 

F ig. 

4 3  

23c 


