13

TOPICS IN HIGH ENERGY PERTURBATIVE QCD

INCLUDING INTERACTIONS WITH NUCLEAR MATTER
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Abstract

In these lectures some current topics in QCD are discussed. These topics include:
(i) Form factors and elastic scattering. (ii) Nuclear A-dependence of QCD cross sections.
(iii) Heavy particle production at high energy. (iv) Soft hadron production in QCD jets.
(v) Soft gluons and factorization in p-pair production.
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I. Form Factors and Elastic Scattering

The study of elastic form factors and wide angle elastic scattering in perturbative QCD
has led to a very satisfying picture of these processes.] At present it is felt that a relatively
complete description of the large momentum transfer dependence has been obtained. Perhaps
even more importantly, a very simple physical picture has emerged. On the negative side,
however, it appears very hard to get truly quantitative tests of QCD from exclusive processes.

Let me begin by first giving the physical picture which now appears to describe large mo-
mentum transfer exclusive processes. Then I would like to briefly discuss a possible experiment
which could be used to test this physical picture, and which at the same time gives information

on some nuclear properties not easily obtained by other means.

A. Meson Form Foctor52-7

As an example of a form factor at large momentum transfer consider the process shown in
Fig. 1 where a 1 of momentum p is hit by a hard virtual photon and turns into a pion of mo-
mentum p' . We suppose that Q2= (; - ;‘ )2 = 2;2(] - cos 0) with 0 fixed as Q2 be-
comes large. A straightforward interpretation of QCD calculations leads to the following pic-
ture of the process.

(i) The quark-antiquark pair making up the w begin to contract to a small transverse size
at atime t= Tiq - p/|.,|2 before the hard photon hits the m. If the x has virtual gluons or
sea quark-antiquark pairs present, these begin to be absorbed around the time t = Ti . This
contraction continues until the quark-antiquark pair is within a size | Ax | £1/Q just be-
fore the hard photon hits.

(ii) At t =0 the hard photon hits either the quark or the antiquark in the w. After the
quark, say, ishit it begins to separcte from the antiquark. Withina time t = 1/Q there oc-
curs a hard interaction between the quark and the antiquark in order that they not separate
giving an inelastic reaction. After the hard interaction the quark and antiquark are moving
parallel to each other.

(iii) After t= O(1/Q) until t= Tf o p/p2 the quark-antiquark system expands to a nor-
mal transverse size. When the quark-antiquark pair has attained a transverse size of order
1/p, with p = 350 MeV, gluons and additional quark-antiquark pairs appear. This system
corresponds to the normal wave function of the .

In terms of a formula
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The % factor comes from stage (i), the hard scattering. A factor of
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Q%2 N
fn[] + Z CN(In ) :l comes from the collapse of the w wave function in stage (i) and
an identical factor comes from stage (iii). The Yy ore positive and calculable. The CN re-
flect details of how the pion wave function matches onto the QCD evolving quark-antiquark

system and are only calculable dfter detailed assumptions about non-perturbative QCD are made.

B. Wide Angle Elastic Scattering

As an example of wide angle elastic scattering I shall discuss m-m scattering. Let me be-
gin by discussing the contrasting power counting rules suggested by Brodsky and FOI’I’GI’S and by
Landshoff.”

In the Brodsky-Farrar picture, elastic scattering proceeds much as in the picture we have
just outlined for the pion form factor. Refer to the graph shown in Fig. 2. According to Brod-
sky and Farrar, before the scgﬂeriné the valence quark-antiquark pair (3, 4) in the pion comes
within a transverse distance | Ax | £1//5 as does the pair (1, 2). The Fock states of the
two pions, in the center of mass system, are supposed to consist only of their quark-antiquark
valence pairs just before the hard collision. Upon colliding, two interactions between the pi-
ons are necessary in order to turn both the quark and the antiquark through an angle 6. A
simple counting of variables then indicates the necessity of a further hard interaction in order
that the outgoing quark-antiquark systems have low masses. Dimensional counting for these

various hard scatterings, three of them, gives do —> 1 f(o) .
It o8

0 fixed

In the Landshoff picture, see Fig. 3, the pions also consist of only their quark-antiquark
valence pairs. However, now one views the quark and the antiquark in a particular pion as
not being close together in transverse coordinate space. (In momentum space this means that
the quark and antiquark are not very far off mass shell.) There are supposed to occur two
scatterings of almost identical angles which turn the pairs through an angle 8, leaving them
in low mass systems. That is 6(1,1') T 6(2,2') =~ 0(3,3') <~ 0(4,4') . A power counting for
such scatterings leads to d—: —_ 5—15 e .

dt s~
0 fixed

Thus the Landshoff type of scattering would seem to dominate wide angle elastic scatter-
ing. However, there is yet another effect in the Landshoff picture. The valence pairs in the
pions are not so close together and hence do not form a locally neutral system in color. Thus
it is unlikely that collinear and soft gluons will be absent before the hard scatterings. How-
ever, gluons must be absent if the scattering is to be purely elastic. In general the price one
pays for picking out a particular piece of the wave function having no collinear or soft gluons
is a Sudakov factor. (In the Brodsky-Farrar type of scattering the pairs in each pion are close

together and so form a local color singlet. A color singlet does not need to have a gluon
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cloud and so one expects no Sudakov suppression in that case.
In fact there are Sudakov corrections to the Landshoff graphs. They have the effect of

forcing the valence pairs to be close together, though not quite so close as in the original

1 do 1 -4cln T—4CH
Brodsky-Farrar picture. It turnsout that Frantie i ¢, as far as power dependen-
s
4cF
ces are concerned, with c = The final physical picture is very close to the view
1M-%n
37

of Brodsky and Farrar.

C. Almost Elastic Nuclear Reactions: w+ A = 7'+ P*+ (A-1)

I would now like to discuss an example of wide angle elastic scattering in a peculiar con-
text. The reaction involves the scattering of, say, a w of momentum K ona nucleus, A,
The final state is supposed to be a © of momentum K, a proton of momentum ;‘ and a nu-
cleus, A-1. Itisnot necessary that the nucleus, A -1, be in its ground state, but it is re-
quired that there be no nuclear breakup and that no soft pions be produced. In effect, then,
we are looking at an elastic reaction n(k-.) + Nucleon (;) - n(E") + P(;‘) with the nucleus
playing no role at all except as a source of Nucleon (;) . Such areaction would seem diffi-
cult to realize. One might expect the incoming pion, or even the outgoing pion and proton,
to strongly interact with the nucleus producing many pions along with a complete breakup of
the nucleus.

A moments thought, however, convinces one that it is not necessary to have nuclear break-
up, at least if the view of wide angle elastic scattering presented earlier in this section is cor-
rect. The nuclear scattering is viewed to proceed, in the rest system of the nucleus, in the fol-
lowing manner. Before the w(k) reaches the nucleus it is supposed to become a quark-anti-
quark pair of small transverse size. We know that the probability of that happening is not small.
The quark-antiquark system should be able to freely pass through nuclear matter because it is
color neutral in a fairly local way. Thus the n(l_<.) moves into the nucleus and at some point
a hard scattering occurs. (The hard scattering penetrates to such short transverse distances
that the w no longer looks color neutral.) Immediately after the elastic scattering a quark-
antiquark system of momentum K' heads out of the nucleus. This pair is of small transverse
size after the hard scattering and is only supposed to obtain the nomal size of a pion, which
it becomes, after it has left the nucleus. A three quark system, also small in size, leaves the
hard scattering and expands to the size of a nomal proton outside the nucleus giving the final
proton of momentum ;‘ . For example, if the incoming pion is a * and the final pion isa
T we might expect do do 4+

,
do _ Wp i'p
ar Z 3 @
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though we shall see a little later that Eq. (2) must be modified to take into account Fermi-mo-
tion effects.

What are the essential ingredients for such a reaction to work? (i) The initial momentum,
k , of the pion must be large enough that the collapse of the = to a small quark-antiquark sys-
tem takes place outside the nucleus. In the rest system of the m such a collapse takes a time

>>2R

T = 1/p with =350 MeV. The time dilatation factor leads to the requirement g
b

or k>3 GeV for a large nucleus. (ii) The final pion momentum must also obey k'>> 3 GeV .

(iii) The requirement that the three quark system stay small until it gets outside the nucleus

‘]
gives the most stringent condition, mpp >> 2R or p'>> 25 GeV. (iv) The momentum transfer

must be much larger than the inverse of a normal hadronic size.” Momentum transfers of more
than 3-4 GeV should certainly be sufficient while momentum transfers of 1 GeV or so may al-
ready be large enough. What is required here is simply that the various neutral quark systems
be small enough so that nuclear matter is transparent. We need not require that the hard scat-
tering be described by any particular QCD formula. The above constraints can be met at a
pion laboratory momentum of perhaps 50 GeV or so for a large nucleus. For smaller nuclei the
necessary incident momentum can be much less.

There is perhaps another reason for considering such reactions, in addition to the insight
they may add concerning QCD. Let us suppose that K is along the z-axis. If k, p' and the
angles at which k' and ;‘ come from the collision center can be measured to within o few
percent, one can reconstruct the momentum ; of the struck nucleon in the nucleus. Then the

formula which should result is

40N g &)

r :I fe) @)

where s = (p‘: + kp')2 , t= (kp' - |<p)2 , | ; | =p and f(p) is the probability that a nucleon

do(p, k%K) do
— = [ +(A-2)

PP (s:t)
dt z dt

of momentum p be found in the nucleus. We have used the normalization S d3; fp)=1.
Depending on the initial and final pion charges, one or the other of the two terms on the right
hand side of Eq. (3) may be zero.

For small p, f(p) isbelieved to be fairly well understood. If it turns out that Eq. @)
works well for small p, then it is natural to use this equation to determine f(p) for larger
values of p, say a GeV orso. So faras I know, f(p) has not been well determined for large
values of p. Thusone can use the above reaction to measure the distribution of nucleon mo-

menta in the nucleus.
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II. Nuclear A-Dependence of Cross Sections and Jet Evolution in Nuclear Matter

A. A-Dependence of Structure Functions

It has been known for many years that the cross section for high energy photons to interact
with nuclei does not vary as A times the photon nucleon cross section. At high energies

Aeff/A X 0.6-0.7 for a lead target. However, until recently there was no evidence for shad-

owing of virtual photons in the deeply inelastic region. Such evidence has now been f*'ound]0
which indicates that virtual photons exhibit as much shad owing as real photons in the Fermilab
energy regime so long as Q2 £2-3 GeVz. The range of strong shadowing, Aeff/A <06,
corresponds to x £ 0,01 . Whether this shadowing is only a function of x or whether there is
a Qz-dependence is not known at present, but could be determined ot Fermilab in the next
few years.

There are two distinct, but presumably equivalent, ways to view shadowing effects in
deeply inelastic scattering off nuclei. Let us begin by taking the nucleus at rest. If P isthe
nuclear momentum, then P= (M, 0, 0, 0) and p, the momentum per nucleon, is given by
p=(M/A 0,0,0) =~ (m, 0,0, 0) with m the nucleon rest mass. For large Q2 and small x
the photon momentum takes the form q < (q - mx, 0, 0, q) where x isdefined with respect
to the nucleon momentum. When x is small the virtual photon has a relatively long time

1

scale for interaction in this frame. -4 We may estimate this time scale, = , by equating +
to the inverse of the energy difference between the virtual photon energy and the energy of a
real photon having the same three-momentum. This is a standard uncertainty principle argu-

ment, One finds
1 1

The virtual photon can either be in a state of one bare photon or in a virtual hadronic
state. The typical time for changing from one such state to another is + . If the virtual pho-
ton is in the state consisting of a bare photon when it reaches the front of the nucleus, there
will be no interaction at all if —ﬁ]? > 2R . If the photon is in a virtual hadron state, S ,

then the cross section for the process will be proportional to the cross section for the state S

to interact with the nucleus. Thus one may wrife,”_M see Fig. 4,
in _ 2 in
A = L1610 gy

where cyin is the inelastic virtual photn-nucleus cross section, S is any hodronic state di-
rectly communicating with the photon, and | (S | ¥) |2 represents the probabi lity that the

virtual photon is in the hadronic state S . O'SA” is the inelastic cross section for the virtual
hadronic state S to interact with the nucleus, A. (The calculation of l (S l Y) '2 is non-



trivial and will not be discussed in detail in these lectures.)

Whether %A is proportional to A or whether there is strong shadowing depends on the
transverse size of the state S. If S is small, then that state will interact weakly with nu-
cleons and there will be little shadowing. If S has a transverse size comparable to that of a
physical hadron, there should be considerable shadowing. We shall return soon to a more de-
tailed discussion asto how much shadowing is to be expected.

Let us now look at deeply inelcsﬁc scattering off nuclei in a frame where the nucleus is
going very fast. We take p = (p+ m /2p, 0,0 p) cnd q= (qo, g, 0) with p large and
g2 = Q2 . In oddition 9 is determined to be 9= Q /2px «| Q [ In this standard infin-
ite momentum frame, illustrated in Fig. 5 the wrfuol phofon simply measures the quark distri~
bution functions of the nucleus. vW (x, Q )* z E x Ol(x, Qz) where 2 isthe
charge of the a-quark or antiquark cmd P (x,Q ) is fhe number density of c:'quorks in the

nucleus. If there isno shadowing

2

(x,Q)+(A z)p (x Q) .

profon

P:(x' QZ) B neufron
For small x, the only region for which shadowing is possible, shadowing means that there is a
depletion in the number density of sea quarks and antiquarks from the number density one
would get by adding the contributions from all the nucleons independently. Thus shadowing
measurements are direct measurements of the sea quark components of the nuclear wave func-
tion.
(1) The Naive Parton Model

In the naive parton model one can definitively answer the question as to how much shad-
owing should be present in deeply inelastic scattering experiments, Let me give the argument
in terms of both of the frames which have been considered so far. In the nuclear infinite mo-
mentum frame the valence quarks occupy a longitudinal size sz = 2R g as illustrated in
Fig. 6. The iongifudincl size of a gluon or sea quark of momentum k is Az = 'I/kz . When

1/1( > 2R p‘ or x < all sea quarks having such x values, at a fixed impact param-

1
2Rm
eter, overlap spatially. (For lead x < Rm Mmeans x £0.01.) Such sea quarks are really o
property of the nucleus rather than of the individual nucleons. If one were to assume that the
number density of such sea quarks is obtained simply by adding the number densities of the in-
dividual nucleons a number density proportional to A]/s, for a fixed impact parameter, would
be obtained, the case of no shadowing. But, physically thisis very unreasonable! How can
one make the numbar density become larger and larger, by increasing A, without having the
quarks and antiquarks disappear through annihilation? (If the sea quarks and antiquarks had

a very small transverse spread they would interact only weakly, and very large number den-

sities would be possible. However, in the naive parton model the transverse spread of a given

19
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quark is about 1/350 MeV, not a small number.) One would naturally expect a limit to the
number density of sea quarks in the regime x ~ 1/2mR as A increases, and this limit should
be determined only by the quark and gluon properties independently of the parent nucleons.

In the rest frame of the nucleus we may view deeply inelastic scattering in the naive par-
ton model as shown in Fig. 7. Let us write the state S', which the virtual photon first goes in-

to, as a quark of momentum K and an antiquark of momentum q- K. The energy of that

state is |(2+ m2 k2+ m2
. [7 2.2 =22 ~ . - =
ES'_ /(q k)Y +m +\/k +m ~q+2(q—k)+T

The energy of the virtual photon is Eq =q-mx . The energy denominator which occurs in

evaluating the transition probability for the photon to go into the quark antiquark state is

1 1

P R J S T S
S'q G Fgmy v ™

Now in the parton model 52 is limited, say by m2 . I k «m/x the state S is suppressed
due to the growth of the energy denominator. If k » m/x the contribution is suppressed due
to the small scattering cross section of k on the target. Thus, k = m/x .

We may view the deeply inelastic cross section as a probability, of order one, for the
creation of a quark-antiquark state times the cross section for the quark to scatter on the nu-
c|eus.15 (The antiquark, which we have chosen to be the fastest of the quark-antiquark pair,
cannot interact with the nucleus (in a light cone axial gauge) due to the slowing of the anti-
quark's rate of interaction caused by its large momentum. This time dilation factor is the
source of interactions with the q - k line, higher twist contributions, being down by a power
of QZ.) The transverse momentum of the quark, k , is limited in the parton model which
means that the transverse spread of the quark isof order 1/m. I x <1/2Rm the state S' is
formed before the virtual photon reaches the nucleus and a cross section proportional to rrR2
is expected as the quark should act much like a hadron.

In the naive porton model it is clear that one expects strong shadowing when x <1/2Rm .
Shadowing should begin when x <1/dm with d a typical intranuclear spacing. Thus for
heavy nuclei one expects considerable shadowing when x < 0.01 . This view is strongly sup-

ported by the experiment of Goodman et al.

(2) Deeply Inelastic Scattering in QCD
Our discussion of nuclear deeply inelastic scattering in terms of the parton model relied

heavily on having a limited transverse momentum for quarks and gluons. For example, in the
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fast nuclear frame, there would be no difficulty in having sea quarks and antiquarks overlap in
the longitudinal direction if their spread in transverse space is small enough (large enough trans-
verse momentum) so that they overlap little in three-dimensional space. A thorough theoretical
discussion of shadowing in QCD is too complex to be presented here; however a qualitative dis-
cussion may give some insight into the issues which are involved. We should emphasize, though,
that the naive parton model should give a reasonable guide as to what to expect experimentally.
The QCD discussion should be a refinement, but not a negation, of the predictions of the parton
model.

We begin by considering the Altarelli-Parisi equation

9 2 _ e VA2 x 2,2
aanz PA(X'Q)—'){'XI—PA(XrQ)Y(FIS(Q)) 4)

for the nuclear parton number densities. In general y is a matrix whose rows and columns rep-

resent gluons and the various flavors of quarks and antiquarks. A solution to Eq. (@) is given by

Ppbe Q) = f & pyi, QA K, 0% QD )
where K may be represented as Q? d)\
-f2 ye®02)
K, Q% QP = e [Pe 2 B ©)

In Eq. (6) T stands for a )\2 path ordering of the operator y. In oddition to being a matrix

in quark flavor and gluon space, y is an operator in x space such that
2 ! 2,2
W 120D [0 = o -1 v%, ¢ 0) . ?)

It is possible to gain an intuitive picture of Eq. (6) if we view y as an imaginary time
Hamiltonian. K can be written as a sum over all paths, x(Qz) , much as is often done for a
one~dimensional quantum mechanical problem. In Fig. 7 some typical paths are shown. The
paths shown there in In 1/x* versus In )\2 are monatonic because of the step function in Eq,
(7). If these paths are read from left to right they correspond to the evolution of quarks and
gluons from some non- perturbcﬁve distribution, A(x, Q ), in the nucleus to a final parton
distribution PA(x, Q ) which is measured by the virtual photon in a deeply inelastic scatter-
ing. (This is a description in the fast nuclear reference frame.) For example, following path
@ from left to right in Fig. 7, a valence quark in the nucleus evolves to large Q2 while re-
maining at large values of x . Then, after having reached large values of Q2~, it evolves to

small values of x at which point it is struck by the hard virtual photon. In following such an
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evolution the quarks and gluons first become small in transverse size before they overlap in
longitudinal space. No shadowing is expected from an evolution following a path like @
Path @, on the other hand, corresponds to beginning with a gluon or sea quark at Q02 and at
very small x . This quanta then evolves to large Q2 and is struck by the virtual photon. If
Q02 21 GeV2 we expect considerable spatial overlap before the evolution to small size occurs.
Path @ should correspond to strong shadowing. We can also interpret path @ by reading
Fig. 7 from right to left. In this case we take the frame where the nucleus is at rest. In this
frame the photon first turns into a quark-antiquark pair. Path @ follows the evolution of the
quark which finally strikes the nucleus. This quark has a mass Qo and momentum proportional
to Qo/x‘ when it is considered to scatter off the nucleus. (x' is the point where path (2) in-
tersects the line In )\2 =In Q02 in Fig. 7.) Since a nearly on-shell quark having large momen-
tum should have strong shadowing, we again expect path @ to exhibit considerable shadowing.
The process as viewed in the rest frame of the nucleus, and evolving along path @ , is shown
in Fig. 8.

Let us write Eq. (5) as
1

2, _ 2 x 2 2
Pabs @) = S Pp, QG K Q7 Qg)
P @(B)@
dx! : A2 x 2 2 _
+{( ?PA(X'QO)K(—)F'Q'QO)_PA+PA'

The term whose integral runs between 1/2Rm and 1, PA® , should show little shadowing,
while PA should show considerable shadowing. In QCD shadowing is not simply a function
of x versus R asitisin the parton model. Nevertheless, it is clear that we should expect
shadowing even for large values of Q2 when x issmall. A detailed quantitative discussion
of shadowing on nuclei requires a knowledge of y(x, 92) when x is small and a knowledge of

2 2
PA(x, QO ) when Qo x 2 GeV2, say.

B. A- Dependence of y- Pair Producﬁon]é

Consider massive p- pair production in a hadron-nucleus collision as illustrated in Fig. 9.

In the QCD improved parton model we expect

do do 2 8ma 2 2 a 2
= dgq = e “[x, Py @)%, P x,, Q)
@2 3n_(Q27 L S LT b Sl by

Py, QD) x,p b, D] ©)

P (x, Qz) is the number density for quarks of type o in the hadron while PAq(x, QZ) is the

number density for quarks in the nucleus. X and x, are the usual momentum fractions carried



by the quark and antiquark which annihilate to give the p-pair. The question we wish to dis-
cuss here is at what values of x, and Q2 should we expect Eq. (?) to hold and at what values
of the parameters should we expect shadowing to occur.

It is clear that we cannot expect Eq. (?) to be correct when R is very large and Py and
p, are fixed. Insuch a circumstance the hadron sees only the front end of the nucleus with
which it collides. View the reaction in the rest system of the nucleus. In this frame we would
like the process to take place by the line k] reaching into the center of the nucleus and strik-

ing a line k2 to produce the p=-pair. Or, in case x, issmall, the link k] first emits the

p-pair and then turns into the line - |<2 which subseguenfly interacts with the nucleus. How-
ever, we know such a simple description cannot be completely correct. Even when k] is large
it may interact via soft gluon exchange with the nucleus if k 2 is not large. It will be argued
in Sec. V that such interactions likely violate i’acforizcnfion,1 even for hadron + hadron —

p+ +p + X, in perturbation theory though these non-factorizing effects should be suppressed
by Sudakov factors at large Q2 . Besides interacting by means of soft gluon exchanges, the
line k] has the possibility of turning into a hadronic system which can be absorbed by the nu-

cleus. The line k‘ can completely change its character on a time scale

(10)

However, in order that k] change into an hadronic system which can be absorbed by the nu-
cleus, it is necessary that K]2 & p2 = (350 MeV)2 since normal hadronic interactions do not
involve hard scatterings which would be required to make |<]2/}_|2 >>1. Thus » = k] / p2

=Py /HZ . Now Q2 = 2xyX pym 0 that the requirement that the k] line not turn into

172
an hadronic system which can interact strongly with the nucleus is * 2 2R or
2
Q
;2— Z 4Rm Xy - (1)

For %, =3 and for lead this requires Q2 210 GeVz.

Our result, Eq. (11), is somewhat different than the conclusion of Ref. 16 where Q2
2 const A2/3 is required before radiation induced by the passage of the k] line through the
nucleus is small. The source of this difference is easy to see. Bodwin, Brodsky and Lepage
(BBL) argue that the k] line, as it passes through the nucleus, picks up a transverse momentum
and a mass E] a |<]2 from random soft multiple scatterings and that this causes K12 to become
as large as Al/3 | Such an effect would immediately give an odditional AV3 on the right

hand side of our Eq. (11). However, as shall be discussed in more detail a little later on, an

- off-shell line interacts only weakly with nuclear matter, the strength of the interaction
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decreasing as a power of the off-shellness. Thus we feel that a quark, or gluon, line cannot be
pushed far off shell by a series of soft scatterings since the soft scatterings become very weak as
the quark, or gluon, line goes more than a little off-shell.

Given (11) for the validity of Eq. (9), the amount of shadowing present then follows direct-
ly from our discussion of deeply inelastic scattering since the PA“ (x, QZ) is exactly the one

discussed there. Strong shadowing should occur when x_ is small, say x, <0.01 .

2 2

C. Jet Evolution in Nuclear Matter

In this section we shall briefly discuss the evolution of QCD jets in nuclear matter. As a
preliminary to this discussion I would like to indicate, in the context of deeply inelastic scat-
tering off nucleons, a frame which separates current jets from fragmentation jets in a particular-
ly transparent way. To this end take p = (Q/2x, 0, 0, Q/2x), q= (0, 0, 0, -Q). Then Ster-
man-Weinberg current jets are defined by requiring that an amount of energy greater than
(1 - €) Q/2 go into a cone of half-angle & opening along the negative z-axis while fragmen-
% go into
a cone of half-angle & opening along the positive z-axis as shown in Fig. 10. The cross sec-

tation jets are defined by requiring an amount of energy greater than (1 - ¢) %x

tion for producing current jets or fragmentation jets is completely calculable as a function of
S8 and € in tems of the total deeply inelastic cross section. In the discussion to follow we
shall concentrate on the evolution of current jets as they pass through nuclear matter.

Consider now the evolution of a current jet through nuclear matter in the rest frame of the
struck nucleus. The processﬁis illustrated in Fig. 11 where possible final state interactions of
the current jet with the nucleus are shown. We know that even in a vacuum the quark struck
by the current begins to fragment long before the jet measurement is made. With a jet meas-
urement as described earlier in this section, the mass of the state which the q+ k line evolves
into is unrestricted up to Q& . This means (q + k)2 £ Q262 . The time scale for the evolution
of the q+ k line into a state of mass Q8 is v = q+k/(3262 = 1/mx62. For x and & not
too small the evolution of the jet begins in the nuclear matter.

The lowest order perturbative modification of the current jet as it passes through nuclear

matter is shown in Fig. 12, P represen'rs a nucleon in the nucleus, Choose an axial gauge

where =(,0,01) and pXT(p+m /2p , 0,0, p). Then one easily finds
R 2?
Y'pvav-(P-R)[gGB-—“—i—;—Lu] ¥ Y P9 (12)
where 1/0_= %( Q ! T ) . Now the denominator corresponding to the line p -~ £ is
- 2)2+ ie - m2 z- P m2 2_ - 2p_2,_+ie. One sees that there is a trapping of the 2 _



contour between the points §_= p2 m2 ') /2p +ie and £_=-ie. _2 is limited by nor-
mal hadronic masses. If p2 = O(m ) the fmal state scattering is effective. Of course, in the
example we are considering p2 = m2 and !_Z_ of Eq. (12) is exactly cancelled by the 9;2 in
the (p - 2)2 denominator.

However, a further point becomes clear, If I p2/m2 | >>1 we will obtain a factor 2_2/p2
= O(mz/pz) for interaction of the off-shell quark line with nuclear matter. This is a normal
factor which suppresses higher twist effects. We can thus conclude that current jets do suffer
final state interactions with the nucleus, but that these interactions can only modify momentum
distributions by a few hundred MeV. As soon as a quark or gluon line obtains a mass of a GeV
or so it ceases to interact with the nuclear matter.

Thus, for all practical purposes, we may say that a current jet does nat significantly interact
with a nucleus in which it is produced. This is a rather striking result and tests should be possi-
ble in deeply inelastic scattering on heavy nuclei. Of course we should emphasize that our
whole discussion presumes that the current quark jets have a momentum in the nuclear rest sys-
tem larger than 2Rp2 as we described earlier in our discussion of the A-dependence of p-pair

production,

IIL Heavy Particle Production at High Energy

The preduction of heavy particles at high energy, either in hadron-hadron collisions or in
deeply inelastic lepton reactions, should be predictable to a reasonable extent by perturbative
QCD. In this discussion I shall always suppose the heavy particle is charm, though predictions
should be even better for b - particles.

Long ago Georgi-PoIitzer” and Wiﬂen]8 argued that charm production in deeply inelastic
scattering could be calculated using perturbative QCD. Let me outline crudely how their argu-
ments can be simply understood. Suppose we consider a proton, a bound uud system, moving
rapidly. At some instant in time one of the quarks in the proton emits a gluon which then goes
into a c-c system as shown in Fig. 13. We may estimate the lifetime of the c-c pair by cal-
culating the difference, in old-fashioned perturbation theory, between the incoming energy of
the proton, Ep , and the energy of the intermediate stafe oontomlng the c-c pair E e
One finds E > p ond . p+(M 2e0%2n_+ 2 )% 20c- 2), when
M';2 » mu2 , md2 . If the charmed quarks carry a finite fraction of the momentum in the proton
the lifetime of the c-c statesis « g p/M 2 . The lifetime for a normal light quark-
antiquark fluctuation in the proton is T = p/u° where pw~ 350 MeV. Thus c-Z fluctua-
tions always live a very short time compared to normal light quark and gluon fluctuations.

(Interactions which could make the c-c system survive on a time scale long compared to
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p/Mc2 would require a strength 92 Mcz/p2 .) Now if the c-c fluctuation lives only a short
time it is clear that the ¢ and ¢ never separate. The c-C fluctuation is then a short dis-
tance and short time effect, exactly the sort of quantity which should be calculable by pertur-
bative QCD.

If a charmed quark is measured in deeply inelastic scattering or if the charmed quark de-
caysinto a D by picking up light antiquarks from the vacuum, we may estimate the relevant
x—distribution simply by power counting. One finds, from Fig. 14, a charmed quark distribution
which goes like (1-x)” as x goes near 1. This corresponds to central production in an hod-
ronic collision. Such a distribution is a purely perturbative effect and should be reliable to the
extent that }_12/Mc2 <«

There are of course other graphs than that shown in Fig. 14 which contribute to ¢c-& pro-
duction. For example the graph of Fig. 15 is a contribution which is certainly not included in
most perturbative QCD calculations. A power counting analysis of that graph yields a behavior
(1 _X)S(PZ/MCZ)Z . The extra (|_12/Mc2)2 comes about because the extra interactions with the
c-c system must occur in a time of size p/Mc2 while their natural time scale is of size p/p2 .

We conclude that for a single ¢ inclusive reaction, as measured in deeply inelastic scat-
tering or in production of D or A , perturbation theory should give a reasonable prediction
so long as |_12/Mc2 terms are not im;or‘tant, We also conclude that ¢ production probabilities
should decrease at least as quickly as ('I—x)5 as x = 1. In fact leading logarithmic correc-
tions to the Born graphs we have considered here will tend to further suppress the x near 1
behavior.

The x dependence, near x =1, of /\c production or of D production in proton-proton
oollisions is easily ascertained. For example for _DO production near x = 1 we simply need
the convolution of the probability for a u-quark in the proton to carry almost all the proton's
momentum with the probability for that u-quark to emit a c-c pair with the c-quark carry-
ing only a fraction 1 - x of the u-quark's momentum. The process is shown in Fig. 16. This
immediately leads to a (1 -x)4 behavior. For central D production, the gluon-gluon fusion
model should be accurate. For /\c production, illustrated in Fig. 17, near x = 1 the rele-
vant probability is given simply by the product of the probability that one of the u= quarks in
the proton has a fraction of the proton's momentum of order 1 - x times the probability that
the other u- quark in the proton emiks a c-¢ pair with the ¢ having a fraction 1 - x of the
momentum of the parent quark. One finds a Ao production corss section behaving like
(l-x)2 as x—+1.

The x near 1 distributions for charmed quarks are much more strongly depressed than

appears necessary to fit the ISR data on /\c production.w Assuming for the moment that this



data is not misleading, what are possible ways out of our analysis? (i) Perhaps non-perturba-
tive effects are important. This would be very surprising since Mcz furnishes a mass large
enough for us to believe perturbation theory at least to within a factor of two or so. (i) Per-
haps the (1 -x)" behavior we have derived from perturbation theory does not apply until x is
extremely close to one. I have examined perturbation graphs and cannot find any effect sug-
gesting that one must be closer to x =1 in order to apply counting rules here than is neces-
sary for processes without charmed particles. In each of these cases the conclusions are neces-
sarily tentative. One really cannot say with certainty that pz/Mc2 effects are necessarily
small.

The two most common models dealing with these processes are the intrinsic charm model of
Brodsky20 and collaborators and the flavor excitation model of Barger, Halzen and Keung.2]
In each case these models, which are in many ways similar, are phenomenological. The essen-
tial ingredient is a moderately hard charm distribution in the proton. If the Ac data is correct
then these models may well have the correct physics in their assumptions. Unfortunately, as I
have spent the earlier part of this section emphasizing, perturbation theory does not allow a
hard enough charm distribution to be consistent with these models. In particular, perturbation
theory says the c€ component does not live long enough to use the Bjorl<en22—5uzu.1ki23 argu-
ment in this circumstance. Thus if the /\c data from the ISR are correct, perturbation theory
must not be applicable because of large |.12/Mc2 effects.

IV. Soft Hadron Production in QCD Jets

When x = 0 single particle inclusive annihilation cross sections in e'e collisions are
no longer governed by a straightforward application of the renormalization group. This shows
up, for example, in a series of the form

2 2= g2 r-1 .
'yn(g ) = P Z cr( ——2) + less singular terms (13)
r=1 (n-1)

for the anomalous dimension matrix. Several peop|e24_27 have suggested that a complete so-
lution to the axial gauge ladder graphs might be a way to go beyond the renormalization group
and obtain small-x results. Such an approach has been successful in obtaining Sudakov effects
as x = 1. Following this suggestion one obtains an average multiplicity of produced hadrons
growing like an exponential of VYlIn QZ . Such an increase comes from a square root branch
point of yn(gz) in n after summing the leading terms in the series indicated in (13).

However, in contrast to the x = 1 case, it now appears that the above procedure gives
the correct form of Ty but not the correct values of the parameters appearing in the square

root. The origin of this difficulty is that non-planar graphs are just as important as planar
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graphs. We may understand this in the following way. The average multiplicity is determined
by

3
_ 2 do d'p
AQY e = f2ESC 2P (4)
3. %
or ~ 2 1
4“(Q2) = S X %‘— xclx (15)
"Q ?»/Q &

where da/d3p is the inclusive cross section for producing a particle of momentum p and
mass P. p corresponds to a fraction, x , of the maximum possible momentum of the produced
particle. In (15) factors of l/x2 fIn 1/x in 2E(do/d3p) get changed into |nn+1 Q/P factors
in n. Thus terms which are non-leading in 2E(da/d3p) as far as powers of In Q2 are concerned
may have additional powers of In 1/x and be part of the leading series in [n Q2 as far as
E(Qz) is concerned. This is exactly what happens for non-planar graphs.

An expiicit compufohon28 through order g~ gave a singlet anomalous dimension consis-

8ac
Y, = ]z[-(nl \/(nl A] : (16)

(Planar graphs give a similar result except that the 4 and 8 in (16) are replaced by 2 and 4

tent with

respectively.) Recenfly,29 it has been shown that Eq. (16) correctly gives all the terms in the
leading series of powers of 92/(n—1 )2 in QCD. It is an important task to show that non-lead-
ing terms preserve the square root form of the anomalous dimension so that one may have real
confidence that Eq. (16) represents the actual values of the anomalous dimension when 92 and
n-1 are small. Before briefly describing how the result of Ref. 29 was obtained, let me first
give the physics results which follow from (16).

We may now use factorization, which states

2
@) s 23 ax —> A E@Y 7)
d”p Q-
and the renormalization group, which gives
Q
, s, x2 v [s*0)]
EQ) = e “2 (18)
Q 2 2
to find f2 %7] (o 0\2)]
FQ%) o e M a9)

Although yl)g ) does not make sense order by order in perturbation theory, the form (16) does
make sense evaluated at n= 1, so one gets N (g )= vac, /27 . One easily finds
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2cA 2
|
Vg @

E(QZ) oc e (20)
33 - 2ng
with b= Vr . One may also use (16) to solve for do/dx at small x . The result which
emerges is
1 2 1.2
]?cA 'nQ2 " N (ZInQ-ln;)
b b 3/2 .2
do e In™ " Q
Xqw € ————— e (21)
x 372 2
In Q

2
so long as (‘Z In Q2- In ;](—-) /|n2Q2 << 1. Perhaps at' LEP the decrease in x(do/dx) when

Inl— > ;— In 02 will be seen. This would be most striking.

Let me now outline how Eq. (16) is obtained. One works with x(do/dx). The leading
singularities in Y, come completely from gluonic interactions. As a device to get these sin-
gularities, without having to discuss fermions at all, it is convenient to introduce a gauge in-
variant current j(x)=F (x) F(x) which is used to produce the jets in which the particle of
momentum fraction x is measured. One writes

e} r-1 -0-
x:—i - Y&y 2@ ¢ (In 02/P2)2r . ](In iy 22)
r=1 2=0
for the most singular terms as x—~ 0 and Q2 —~ o . (Recall that In )]? oc In Q2 in the region
of dominant particle production.) Suppose, at a given order in perturbation theary, that N+ 1

particles (gluons) of momenta p, k'l’ k2,"' k,, are produced. The results which lead to (16)

N
are first that p is the smallest momentum in the overall center of mass system, and second if
P kg Ky Kk Kk = Q2 (Ba)

then

0F, kp) << Oy, k) << << By _p s Ky ) << 0Ky k) (3b)
as far as the region of phase necessary for calculating the leading singularities is concerned.
The above angular ordering was suggested independently in Ref. 28 and Ref. 30, and was
proved for all leading terms in Ref. 29. Once (23) is known it follows immediately that the
leading terms in x(do/dx) are obtained by taking the ladder graphs of Fig. 18 and evaluating
them with the constraints (23). It should be emphasized that the above constraints do not fol-
low from kinematic considerations alone, but are dynamical restrictions outside the lodder
graphs themselves.

The general proof of (23) given in Ref. 29 is quite intricate. However the idea is
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relatively simple. Let me state the idea of the proof in a few words.

In order to get the maximum singularity at a given order in perturbation theory all momenta,
both redl and virtual, must be strongly ordered. (In the leading singularity approximation virtual
lines are not very far from mass shell. Strong ordering for these lines can be done: either in ener-
gy or in momentum since there is no difference in the resulting orderings.) A gluon of momentum
ki can be emitted from a line harder than itself and can emit lines with softer mcmentum. (In a
region of strongly ordered momenta we need only consider trilinear gluon couplings.) Suppose a
line |<i is emitted from a line k,, ki << k. of course. The vertex for this emission is shown in
Fig. 19. If we include 1/VZE factors for the emitting line, the dominant term in the vertex is
given by (Zk'a/ijo) g y igTb: in axial gauge. This vertex factor is the number density cur-
rent of the line kj multiplied by a color rotation factor (c | Q° | b). If a soft line ki makes

an angle Gi with a set of hard lines k.eI which is larger than the angles, ©.., , between the

linesin I f|I1en it is clear that the line ki measures, and color rotates, the total color current
of the linesin [ when k'. interacts with those lines.

Recall that the total cross section o(Qz) has only logarithms coming from g(Qz) . The
higher logarithms in x(do/dx), soft and collinear logarithms, are caused by the detection of
the line p. Thusif the p line can be viewed as measuring the color charge of those hard
lines with which it makes a large angle, the emission of the p line will be ineffectual in pro-
ducing collinear singularities. (This is exactly the way a Sterman-Weinberg jet cross section
works. In such a jet a conserved quantity, energy, is the limiting factor determining what is a
jet event. Such a measurement is insensitive to collinear emission of gluons and so only loga-
rithms from the running coupling appear. A similar situation occurs here. If the total color cur-
rent of a set of gluons, I , is being measured by a line p, then all collinear logarithms in I
will be lost.) To get the maximum number of collinear and soft emission logarithms it is neces-

sary that the softest gluons make the smallest angles with each other. This is exactly what Eq.

(23) states.
V. Soft Gluons and Factorization in - Pair Production

One of the most widely discussed topics in QCD in the past year or so has been the ques-
tion of factorization in - pair production. A few years ago calculations done in quark-anti-

31,32 that at high energy factorization worked through the two-

quark ~ }_.++ p_ + X showed

loop level at least as far as logarithmic terms are concerned. Recently, however, Bodwin,

Brodsky and Lepage (BBL)16 suggested that such a factorization would breck down in quark-
/ hadron scattering at the two-loop level in soft gluon corrections. It was later suggested that

Sudakov corrections might suppress this non-facforizai‘icm.33
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In these lectures I am taking the position that the BBL discussion is correct in perturbation the-
ory. Ishall then show why I feel Sudakov corrections should ultimately suppress this non-fac-
torization, though at what values of Q2 is not completely clear. The reader should be warned,
however, that many QCD theorists are not ready to accept either of the above statements on the
basis of the arguments that have so far been given. Before discussing the p-pair situation, let me
go back a few steps and talk about other processes where soft gluon effects might come in, but

where in fact they cancel order by order in perturbation theory.

A. Soft Gluon Cancellations in e-e Co”isions34

Consider a two-jet process in an e -e” collision as illustrated in Fig. 20. In that figure
the particles of the jet are the two blobs, while soft gluons are shown connecting the two jets.
We imagine working in an axial gauge with 7L2 # 0 and grouping the quarks and gluons into
four categories. (i) Quarks and gluons collinear with the positive z-axis, jet (i); (ii) A similar
grouping for the opposite going jet; (iii) Hard gluons, which have been reduced to a point;

(iv) Soft gluons, shown connecting jet (i) and jet (ii). Let fJ] be a light-like vector along the
(i) jet direction. Then ;3]2 =0, sz #0. Let 52 be a similar vector for the (ii) jet. A soft
gluon hooking into jet (i) measures the charge of that jet and picks up a factor ﬁ]u . Other
than the charge and direction of the jet, the soft gluon is insensitive to the jet properties. Now
in a jet process one does not need to require that physical hadrons be formed in order to measure
the jet energy distribution. This means that a jet formation is a short time process. In the center-
of-mass system it takes a time of order ¢/Q to properly define the jet. (This constant ¢ de-
pends in detail on our demand of angular resolution. This is the same ambiguity in what we have
called a collinear gluon in (i) and (ii) above. In this heuristic discussion I shall not make the
discussion more precise and so ¢ must be left somewhat ill-defined.) But, such a short time
process cannot involve soft gluons at all. Thus the different cuts through the soft gluons shown
in Fig. 20 must cancel.

Let us now consider the slightly more complicated process of e+ e = hadron (p]) + hodron
(p2) + x as shown in Fig. 21. Now we show the P line with its accompanying jet of collinear
particles, the Py line with its accompanying jet of collinear particles and the soft gluon con-
nections. We suppose that P and p, are almost back to back, but are integrated over small
angular regions about the + z-axis. This is a two-jet event where specific particles, neutral in
color, are measured in jet (i) and jet (ii). The soft gluon connections to the jets are exactly the
same as in our previous discussion where the hadrons, P and py + Were cblsenf. (Recall that
these connections depend only on the direction and color of the jets.) Thus soft gluons must also
cancel in this prot:ess.34 Now, however, the cancellation is very non-trivial in that a long time

process is involved in order to define the hadrons as on-mass-shell particles. The above is a
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rough description of the cancellation first discussed by Collins and Sterman.

B. Soft Gluon Interactions with Jets in Nuclear Matter

Earlier in Sec. I we have discussed the evolution of a current jet in nuclear matter. We
concluded there that soft gluon interactions between the jet and the nuclear matter were small.
In this section I would like to argue this result in a slightly different and in a more technical
way. To that end consider the graph shown in Fig. 22 contributing to the time-ordered deeply
inelastic amplitude. We suppose the target is a nucleus, A , and that P=(Am, 0, 0, 0)= Ap .
We also take q = (q-mx, 0, 0, q) so that q, is large and q_ = - xp_ with x the conven-
tional Bjorken variable. Finally we choose a light cone axial gauge with n, = 1,n_= n= 0.
Consider the denominators associated with the line through which the q momentum runs. We
may write

1
[(q+k)2+i¢] [(q+k+!l])2+ ie ] [(q-\-k+!l,.|+ q2)2+ ie ]
1

R

L2, Cxp_+k )=k ie] [2a, (oxp_tk +2, -Gty ie] [29, (xp_vk +2_+2, )-(er2y v, i) '

We may nomnally choose k_ so that -xp_+k_, -xp_+k_+ &, and -xp +k_+ 2, +2

1 - 72-

are not particularly small. Thus the addition of the two gluons gives an additional

1 . .
— o ——]—-2 factor. The only way to conpensate this factor is to get q, numerator factors.

a; @)
But, the axial gauge propagator is proportional to

B n-2
which vanishes when o =- . Thus we have reached a standard conclusion that there are no
gluonic corrections to one of the fermionic lines connecting the two currents in deeply inelas-
tic scattering at the dominant twist level.

Qur argument for the smallness of the amplitude has so far been only for the time-ordered
product. However, the structure functions are given by the imaginary part of the time-ordered
product so the lack of gluonic corrections, in fact, holds also for the structure functions arising
from three separate terms, shown in Fig. 23. The first observation to note is that the separate

discontinuities of Fig., 23 are not small. The point being that a denominator like

1 1

2q+(-xp_+ k_+ Z.I_)-—(E+&)2+ie 2q+2'|--(k+9;)2+_|§2+ie

coming from the cut across the (q*rk)2 line can be trapped by the 1/9.1_- ie coming from the



axial gauge denominator. If the 2,_contour is used to pick up the 2. = 0 pole, say, then the

1/(q+k+!l])2 denominator becomes 1/52-(E+ g_)z+ ie which is not Icr;e in general. We con-
clude that the soft gluonic corrections cancel in the various intermediate states contributing to
the structure function, but that they may make a contribution to a definite cut in a particular
graph.

If, for example, we require that the current jet consist of only a single quark with zero
transverse momentum it is easy to see that the different cuts contributing to that cross section
do not cancel. The problem here is that a zero transverse momentum requires k small in all
the cuts and the translations of transverse momentum, by 2_ and 9.2 , necessary to get the
zero measured transverse momentum to not give the same relative contributions as the integrated
distributions which occur in the total cross section. However, if we allow the measured fermion
in the current jet to have a transverse momentum l 'ﬁ. | <Q0 , then the cancellation among the
various cuts is effective up to a correction of size pz/G)O2 with u the typical size of | 2, |.
In a jet measurement one fixes an angular cone in which particles are measured. In our example
this is the same as a restrictionon | E' | . In fact a nomal Sterman-Weinberg jet corresponds
to restricting the transverse momentum of the measured quark, in our example, to be less than a
fraction of Q. Thus we see that for a jet measurement soft gluonic corrections do not give

any but higher twist contributions. This confirms our previous conclusion that current jets pass

through nuclear matter without interaction with that matter.

C. Soft Gluon Corrections in the Drell-Yan Process

Following Bodwin, Brodsky and Lepage (BBL)M we shall consider quark-hadron scattering
as shown in Fig. 24. For simplicity we consider the solid lines to be scalar particles and the
dotted line a point scalar. We begin by considering a soft gluon correction, the line 2 in
Fig. 24. We suppose Py = (p] ,0,0, p]) and we use a light cone gauge with n,
=y3(1,0,0,1). Then our dlscusslon in part B of this section has shown that there is a non-
trivial contribution from this soft gluon exchange, due to the trapping of the contours in the ¢_
plane coming from the factors l/2p.|+2_- &2+ ie and 1/0_-ie corresponding to the denomi-
nator of the P + ¢ = line and the axial gauge denominator respectively. Let us go through
this explicitly. We first note that in the axial gauge projection, ch= gaﬁ-(qug'ﬁ+ rlﬁlla)/ll -n

the a =~ tem is absent. Since the B index must be + in order not to have a small result

n gt n,t
for the graph of Fig. 24, we may write dGB - - ——“—%—M 2 . Now we shall see in a
- af -
moment that the p -k + 2 line will be put on-shell by contour distortion so the 2 _ term may
gl P
be dropped. Thus d , —~ - —;& . The &_ denominator is taken to be a principal
ap S PR
value. Only %(1/2_-1e) is effective, so we may write d 6" %—% 4
o -
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Now we distort the 2_ contour in the lower half plane so as to pick up the singularity at & _

= &2/2P]+ . Now that the (pl + 2) line has been put on-shell we can write

d '3“' -3 H’%fa' +3 qﬁ Eq with 0 =4&(1, 0, 0, -1) and the Qq term can be dropped to give
a -

dGB -3 rLB "ri‘a = 505 with the understanding that only the pole term (p] + 2)2 =0 isto be
taken. Now the 2, contour can be done by distorting the contour into the lower half plane to
pick up the singularity at g, = (E-g_)2/2(p-l<)_ - (p-k)+ . Finally, let us write the full answer
for the graph in Fig. 24 bearing in mind that all particles except the gluons are scalars. We
have found

2,2 ety (oy0) (2o-2kr2)d (9) 2180 -k K+

ok 6
(_2—1r)§ [22+ ie] [(p.|+9.)2+ie:| [(p-k+2)2+ie_] [(-2 )2+ ie] (k2+ie)
4 2 o 2 2
) -i)‘zgz dha’y 20y 26K o 2080600 H(py+k))) 2
(20) 2 4py ) k27K
™
- 22 s 2080k Hpyk)
G = =% f—p 72 5)
(2m) 20 k2(k-2)

where f represents the vacuum polarization involving the - pair and |<2 and (k-p)2 are to
be evaluated using the mass shell conditions determining Et . We need go no further in eval-
uating G because it is clear G is purely imaginary in which case it is exactly cancelled by
a graph identical to that in Fig. 24 except that the gluon correction comes to the right of the
cut. Thus, for one soft gluon there is a cancellation of soft effects in the cross section.

Now consider the graph shown in Fig. 25. Exactly as before we may replace d 8
L |

by 3§ 7§ =4 with the understanding that the 2, contour encloses the pole at
By by

(2,)

— 02 5 s
21_ = 2_1 /2Pl+ and replace dq2ﬂ2(22) by dqzﬂz where the contour in the 9.2_ encloses

the pole at 112_ =2 '2/2p]+ - (9_._]+g _2)2/ 2;:']+ . Now, however, the argument for these reploce-
n 2+ ]
(1))~ 22 P2 2
2

29 “27("

ments is more subtle. We begin by realizing that d
a

B

Further only the £, - ie part of the principal value is effective so

2-
28+ Ng.?
d - -3 _qg_‘_Bz___EZ_G_Z . Now we distort the £ 2. contour to pick up the
i) Ro- e ‘ag # -

pole at 22_ = -2]_ - (&I+&2)2/2pl+ . Next we distort the 2]+ contour to pick up the pole



in (p—k+2.|+22)2. At this point we have isolated an on-shell scattering as shown in Fig. 26,
Now this on-shell scattering has a real and an imaginary part. The real part must cancel be-
tween the present graph, Fig. 25, and the graph where the two lines appear to the right of the
cut, much as for the single gluon exchange. The imaginary part of the graph in Fig. 26 is deter-
mined by the rule Im = -i/2disc where one now uses Cutkosky rules to evaluate disc. The
effect of taking the imaginary part is equal to a factor of 1/2 times the result of distorting the
2]_ contour so as to pick up only the pole at 9. =-2 /2p‘ and distorting the Q , con-
tour so as to pick up only the pole 2,= = =(p- k) - k- 9.2)2/2(p-k) After all this has been

done we find that we have set

d21+ 1
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de, do, do, (% +2, )a](2p]+2!l+!l) (2-2k+ 20 2,)g, @p-2k+ ) d oy (2 ) g (1)

Q] 9,2 [(p+9,]) + ie] [:(p‘+ 9,]+2 |e] [(p-k+2 m] [(p-k+g +9, 2 + ie ]

1 e
2 152,72
4L,

Now we consider also the graph shown in Fig. 27. The evaluation of this graph proceeds as

(26)

for the graph of Fig. 24. We find that effectively we have made the same replacement as in Eq.
(26) except for an additional factor of 2 and a - sign. Now we add the contribution of the
graph in Fig. 25. Begin by supposing that we are dealing with abelian gluons. Then there would

be a cancellation if the lines involving k were equal. That is we need

1 1 1
Khe-n,-2,) k2% (e )

If we allow the translation k - k + &2 on the left hand side, this is a correct equation as can
be verified by using the appropriate & - functions for the graphs in question. That is, for the
graph in Fig. 25 one uses

2= 2p k- k2 o]

e9-0) = 2ok - (o2 L) o
and 2 2 P
o2 = 2k - eny o
("”12)2 = 2pk_- (“”2) (=" k)

I

for the graph in Fig. 27. Thus for an abelian theory we have verified that the graphs in Fig. 25
and Fig. 27 cancel.
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In the non-abelian case the calculation is identical except for color factors. The color
factors are most easily seen by considering the *hard part® of the graph as shown in Fig. 28.
We may write the color indices in terms of a singlet exchange, 6°b6°d , and an octet ex-
change, ()‘i /2)b° (Xi/Z)dc , where we have gone back to a case with fermions in the funda-
mental representation for the color factors. The singlet exchange behaves exactly as in the
abelian model as the color factors are the same for the graph of Fig. 25 as they are for the
graph of Fig. 27. However, the octet case is different and the two graphs do not cancel. This
is the non-factorization of (BBL). It is physically clear, however, that one cannot have a high
energy reaction which involves a color exchange, the octet exchange we have just been discus-
sing, which is not suppressed due to an incomplete cancellation between real and virtual hard
collinear gluons. Thus we expect this non-factorizing part of the Drell-Yan process to be sup-
pressed by a Sudakov factor. Whether this suppression is effective at present energies is at this

moment a phenomenological question.
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Figure Captions
Fig. 1. Quark evolution in the pion form factor.
Fig. 2. Elastic scattering in the Brodsky-Farrar picture.
Fig. 3. The Landshoff graph.
Fig. 4. The haodronic fluctuation of a photon interacting with a nucleus.

Fig. 5. The nuclear structure function in the oo - momentum frame of the nucleus.
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The longitudinal size of the valence quarks in a nucleus.

Different paths of evolution of quarks in the nuclear structure function.
Path @ as viewed in the rest frame of the nucleus.

p~-pair production on a nucleus, A.

Separation of current and fragmentation jets.

. The possible interactions of a current jet as it goes through a large nucleus.

A single interaction of an outgoing quark with a nucleus.

. A c-c fluctuation in a proton.
. The c-distribution in the proton.

. A higher twist contribution to the c=-distribution in the proton.

D production near x = 1.

8 /\c production near x = 1.

Gluon ladders induced by a current (Fw)2 .

. A QCD vertex.

Soft gluon interactions between two jets.

. Soft gluon interactions in 2t g7 k(p]) + k(p2) +X.
. A two gluon exchange in deeply inelastic scattering.

23.
24,
25.
26.
27.
28.

Different cuts of Fig. 22.

An active-spectator interaction in p-pair production.
A two gluon active-spectator interaction.

An elastic quark-quark scattering.

A two soft gluon correction to - pair production.

The *hard part* of the u-pair production.
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