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Doctor of Philosophy

Gravitational Radiation and the formation of Neutron Star Thermo-elastic Mountains

by Thomas James Hutchins

Advancing sensitivity of LIGO-Virgo-KAGRA gravitational-wave instruments has led to much
anticipation for the first detection of quasi-monochromatic continuous gravitational radiation
from single, rapidly rotating neutron stars. This thesis is concerned with one specific scenario
to facilitate gravitational radiation from such stars: the development of a non-axisymmetric
quadrupolar deformation of the solid crust. In accreting systems in particular, deformations
may manifest as so-called ‘thermal mountains’; whereby the mass distortion is supported by
elastic strains sourced via large-scale non-axisymmetric temperature gradients misaligned from
the star’s rotation axis.

In this work we present for the first time a fully self-consistent calculation of the size of neutron
star thermal mountains. In doing so, we will introduce a new class of deformations that we term
‘thermo-elastic’ mountains, in which we consider different sources of temperature-dependence in
the crustal equation of state than the conventional picture of the so-called ‘wavy electron capture
layer’. Over the course of this thesis, we shall present a scheme to develop a mechanism to source
a temperature perturbation in the accreted crust, compute the associated density perturbations,
and calculate the resultant mass quadrupole moment.

Models of the hydrostatic structure of spherically-symmetric accreting neutron stars are con-
structed using realistic equations of state. The thermal structure of these stars is then computed,
assuming them to be accreting steadily. Temperature perturbations are subsequently introduced
onto the homogeneous background via the insertion of a weak internal quadrupolar magnetic
field, restricting the flow of heat orthogonal to the field lines and establishing a non-axisymmetric
temperature distribution within the star. Such a calculation requires a detailed description of
relevant heat generation, neutrino cooling, and heat transport mechanisms, each of which are
discussed. The elastic readjustment of the crust in response to the aforementioned temperature
asymmetry is then calculated. A piece of the crustal pressure that is generated by the ionic lattice
is identified, and shown to have some temperature dependence. Perturbations of this ‘thermal
lattice pressure’ are necessarily tied to the star’s elastic phase, and not easily convected away.
We find that the mountains sustained by the lattice in response to anisotropic heat conduction
are small, and unlikely to be dictating the spin-equilibrium of rapidly rotating neutron stars, but
may still be playing a contributory role in determining the long-term spin-evolution of accreting
systems.
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Notation and Conventions

Before we begin, we will briefly outline a number of general notation rules and conventions that
pertain to any and all subsequent symbols, definitions, and calculations of physical quantities.
This serves to reduce ambiguity, as well as reduce the need for repetition of said conventions in
subsequent chapters. A list of acronyms is also provided, which also serves to avoid repetition
of common phrases, as well as frequently cited works.

Indices

Spacetime indices run from 0 to 3 and are denoted by ‘early’ Latin letters in italic typeset, e.g.
𝑎, 𝑏, 𝑐, ... etc. Spatial indices on the other hand run from 1 to 3 and are denoted by the ‘late’
Latin letters (also in italic typeset) 𝑖, 𝑗 , 𝑘 ... etc.

As is customary in the theory of general relativity, we shall adopt the Einstein summation
convention. For any arbitrary four-vector 𝑢𝑎 or three-vector 𝑣𝑖 , repeated indices are assumed to
imply a summation over all possible values of said index, i.e.

𝑢𝑎𝑢𝑎 =

3∑︁
𝑎=0

𝑢𝑎𝑢𝑎 = 𝑢0𝑢
0 + 𝑢1𝑢

1 + 𝑢2𝑢
2 + 𝑢3𝑢

3 ,

𝑣𝑖𝑣𝑖 =

3∑︁
𝑖=1

𝑣𝑖𝑣𝑖 = +𝑣1𝑣
1 + 𝑣2𝑣

2 + 𝑣3𝑣
3 .

There is a fundamental distinction between raised and lowered indices, which determines the
covariance and contravariance of the vector. Consider, for example, the four-vector 𝑢𝑎. To obtain
the covector 𝑢𝑎, one need contract with the space-time metric 𝑔𝑎𝑏, such that

𝑔𝑎𝑏𝑢
𝑏 = 𝑢𝑎 .

Similarly, contracting the covector 𝑢𝑎 with the inverse metric 𝑔𝑎𝑏 gives a vector

𝑔𝑎𝑏𝑢𝑏 = 𝑢
𝑎 .

As a matter of choice, the signature of the space-time metric 𝑔𝑎𝑏 is taken to be (−,+,+,+),
leading to time-like four-vectors having negative lengths.
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Latin and Greek indices in a roman typeset, e.g. n, p, e, ... etc. are constituent indices. They
are placed either ‘upstairs’ or ‘downstairs’ at convenience and do not conform to any type of
summation convention.

Covariant and partial derivatives

The covariant derivative is a generalization of the gradient operator of conventional vector
calculus. Covariant derivatives with respect to some coordinate basis 𝑥𝑎 are written as ∇𝑎. In
much of this work we shall specialise to spherical polar coordinates (see Fig. 1), where, for
example 𝑥𝑎 = (𝑡, 𝑟 , 𝜃, 𝜑), with 𝑥𝑡 = 𝑡, ... etc.

For an arbitrary scalar quantity 𝑓 , the covariant derivative reduces to just the partial derivative
for scalars, i.e. ∇𝑎 𝑓 = 𝜕𝑎 𝑓 . For brevity, we may sometimes write down radial derivatives with a
prime, e.g. 𝑓 ′ = 𝜕𝑟 𝑓 , and occasionally write down temporal derivatives with a dot, i.e. ¤𝑓 = 𝜕𝑡 𝑓 .

Spherical Harmonics

One exception to the rule of italic Latin indices are the symbols ℓ and 𝑚, which are reserved
solely to denote the degree and order of the spherical harmonics𝑌ℓ𝑚(𝜃, 𝜑). Spherical harmonics
are a set of special functions that are defined on the surface of a sphere. In Euclidean flat-space,
the spherical harmonics appear as solutions to Laplace’s equation. Laplace’s equation requires
that the Laplacian (∇2) of an arbitrary scalar field 𝑓 is zero.

The multipole expansion of any scalar function 𝑓 may be written as

𝑓 (𝑟, 𝜃, 𝜑) =
∞∑︁
ℓ=0

ℓ∑︁
𝑚=−ℓ

𝑓ℓ𝑚(𝑟)𝑌ℓ𝑚(𝜃, 𝜑) .

Similarly, any arbitrary vector field also admits a multipole expansion. Vector spherical harmon-
ics are an extension of the scalar spherical harmonics, and may be written

Yℓ𝑚 = 𝑌ℓ𝑚r̂ ,

Ψℓ𝑚 = 𝑟∇𝑌ℓ𝑚 ,

Φℓ𝑚 = r × ∇𝑌ℓ𝑚 ,

where r̂ is the radial unit vector in spherical polar coordinates and r is the vector along the radial
direction defined as r = 𝑟 r̂.

The multipole expansion of any vector field 𝐹 may be written as
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Figure 1: Representation of the spherical polar coordinate system with unit vectors e𝑟 , e𝜃 and
e𝜑 . The variable 𝑟 represents the distance from the origin, 𝜃 is the polar angle, and 𝜑 is the

angle of longitude (azimuthal angle). Image credit: Wikipedia, author Ag2gaeh.

𝐹 =

∞∑︁
ℓ=0

ℓ∑︁
𝑚=−ℓ

(
𝑈ℓ𝑚(𝑟)Yℓ𝑚 +𝑉ℓ𝑚(𝑟)Ψℓ𝑚 +𝑊ℓ𝑚(𝑟)Φℓ𝑚

)
,

where 𝑈ℓ𝑚(𝑟) is the radial component of the vector field, while 𝑉ℓ𝑚(𝑟) and 𝑊ℓ𝑚(𝑟) represent
its transverse components (with respect to r).





xxi

Acronyms

AC Accreted crust.
AMXP Accreting millisecond X-ray pulsar.

CPBF Cooper pair breaking and formation.

DCH Deep crustal heating.
Durca Direct URCA.

EDF Energy-density functional.
EoS Equation of state.

F+18 Fantina et al. (2018).

GC Ground state crust.
GC20 Gusakov and Chugunov (2020).
GR General relativity.
GRB Gamma-ray burst.
GS Ground state.
GW Gravitational-wave.

HM High-mass.
HZ08 Haensel and Zdunik (2008).

HZ90 Haensel and Zdunik (1990a).

LIGO Laser Interferometer Gravitational-
Wave Observatory.

LM Low-mass.
LMXB Low-mass X-ray binary.

Murca Modified URCA.

NS Neutron star.

OCP One-component Plasma.
ODE Ordinary differential equation.
OJ20 Osborne and Jones (2020).

SCH Shallow crustal heating.

TOV Tolmann-Oppenheimer-Volkoff equation.

UCB Ushomirsky et al. (2000).
ULX Ultraluminous X-ray source.

VSH Vector spherical harmonic.
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Nomenclature

Physical Constants

𝑐 Speed of light in a vacuum 2.997 924 58 × 1010 cm s−1

ℎ Planck constant 6.62607015 × 10−27 erg s

ℎ̄ Reduced Planck constant 1.05457266 × 10−27 erg s

𝐺 Newtonian Gravitational constant 6.67430 × 10−8 cm3 g−1 s−2

𝑒 Elementary charge 4.8032047 × 10−10 cm3/2 g1/2 s−1

𝑘𝐵 Boltzmann constant 1.380649 × 10−16 erg K−1

𝜎 Stefan-Boltzmann constant 5.6704 × 10−5 g s−3K−4

𝑚b Baryon mass 1.67377585 × 10−24 g

𝑚𝜇 Muon mass 1.8835327 × 10−25 g

𝑚e Electron mass 9.1093897 × 10−28 g

𝜌0 Nuclear saturation mass density 2.8 × 1014 g cm3

𝑛0 Nuclear saturation density 0.16 fm−3

𝛼 Fine-structure constant 7.297352 × 10−3

𝐺𝐹 Fermi weak interaction constant 1.496 × 1049 erg cm3

Astronomical Units

𝑀⊙ Solar mass 1.9891 × 1033 g

¤𝑀 Eddington accretion rate 2 × 10−8 M⊙ yr−1

pc Parsec 3.08567758 × 1018 cm

yr Year 3.156 × 107 s

erg 1 cm2 g s−2
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Motivation

This thesis begins with a characterisation of the phenomenon of gravitational-waves (GWs), with
a specific focus on the role that rotating neutron stars (NSs) play in their creation. Section 1.2
presents scenarios in which these stars may generate different types of gravitational radiation,
followed in Section 1.3 with a review of different potential sources of continuous gravitational
radiation from rotating NSs, known as pulsars. In Section 1.4 we shall then present an outline
of what is to come in the remainder of the thesis.

1.1 Introduction: A brief history

Gravitation is one of the four fundamental interactions that describe our Universe (alongside the
electromagnetic, strong, and weak interactions). The field equations of the general theory of
relativity, derived by Albert Einstein over a century ago, represents a defining moment in our
understanding of gravitational theory. This seminal work (Einstein, 1915a,b,c)1 superseded the
long-standing interpretation held by Sir Isaac Newton in his Philosophiae Naturalis Principia
Mathematica that gravity manifests as the geometry of a curved, four-dimensional spacetime,
rather than as a physical ‘force’.

The sophistication of general relativity (GR) predicts a number of more subtle effects of gravity
than we experience in our day-to-day lives here on planet Earth. Indeed, to further understand
his theory, Einstein himself proposed three initial tests (Einstein, 1915d) which would establish
observational evidence for his theoretical predictions. These tests were:

– i) the ‘anomalous’ precession of the perihelion of Mercury,

– ii) the bending of light in gravitational fields,
1English translation of these works may be found here: https://einsteinrelativelyeasy.com/index.

php/einstein/83-the-einstein-field-equations-series.

https://einsteinrelativelyeasy.com/index.php/einstein/83-the-einstein-field-equations-series
https://einsteinrelativelyeasy.com/index.php/einstein/83-the-einstein-field-equations-series
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– iii) gravitational redshifting.

By the end of 1954, each of these tests had been successfully verified (see e.g. Bambi, 2018),
leading to further probes of the theory in the so-called ‘weak-field limit’, and beyond.

Soon after the initial publications, Einstein posited the existence of gravitational-waves, a gravi-
tational analogue of electromagnetic waves. This idea was not unique to Einstein, though, having
been first discussed by Heaviside (1893), and later by Poincaré (1905)2, who also proposed that
gravity might be transmitted as a ‘wave’. Einstein, was, however, the first to write down the
potential existence of these waves through the mathematical framework of GR.

The reception to this conjecture, however, was met with varied criticism - not least by Einstein
himself who doubted the legitimacy of his own proposal - and the question of the existence of
GWs would plague the relativity community for decades. Einstein had, for a time, believed he
had found a solution to his field equations that predicted three different kinds of GWs. Yet,
soon after, Eddington argued that two of these waves were simply ‘geometric artifacts’ of the
coordinate system Einstein had used and not really waves at all (Eddington, 1922). Later, in
1936, Einstein wrote to Max Born claiming

”I arrive at the interesting result that gravitational-waves do not exist, though they
have been assumed a certainty to the first approximation”.

The issue of the legitimacy of these waves would not be settled until Felix Pirani used the
coordinate-independent Riemann curvature tensor to prove their existence (Pirani, 1956). A
year later, at the Chapel Hill conference in North Carolina, Pirani went on further to argue the
physical significance of such waves, postulating that a pair of freely falling particles subjected
to a GW would experience genuine motions with respect to one another.

The outcome of the Chapel Hill conference would be to unite the relativity community in
agreement of the theoretical existence of GWs. Yet, proving their existence experimentally
was a much more challenging prospect. Compared to the other three fundamental interactions,
gravitation is very much the ‘weakest’, particularly at the atomic scale. Gravitational-waves
interact with matter so weakly that only the most cataclysmic of astrophysical events are likely
to produce gravitational radiation at a level where one might hope to detect them.

It would in fact not be too long before the first detection of GWs would be announced by Joseph
Weber. Resonant-mass bar detectors - large cylinders of aluminium (roughly one meter thick and
two meters in length) - were purported to act as GW antennae (Weber, 1969). In the presence
of passing GWs, these ‘Weber bars’ would (theoretically) ring out, akin to an oversized tuning
fork. Weber asserted that the probability of false-detection was ‘incredibly small’. Yet, other

2English translation available here: https://en.wikisource.org/wiki/Translation:On_the_Dynamics_
of_the_Electron_(July).

https://en.wikisource.org/wiki/Translation:On_the_Dynamics_of_the_Electron_(July)
https://en.wikisource.org/wiki/Translation:On_the_Dynamics_of_the_Electron_(July)
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Figure 1.1: The observed orbital decay of the Hulse-Taylor pulsar (PSR B1913+16). Data
points indicate the observed change in the epoch of periastron in time, whilst the curve indicates
the equivalent theoretical change in epoch due to the emission of gravitational-waves. Image

credit: reproduced from Weisberg and Taylor (2004).

independent groups at the time failed to replicate Weber’s results with similar equipment, and
the claim would ultimately fall into disrepute.

The existence of GWs in Nature would instead be first demonstrated indirectly, following the
discovery of the Hulse-Taylor binary pulsar system PSR B1913+16 (Hulse and Taylor, 1975).
Monitoring of the system over several years showed an incredible agreement between the observed
change in the epoch of periastron of the system over time, and the theoretically expected change
predicted by GR due to the loss of energy and angular momentum from the system through
gravitational radiation (Taylor et al., 1979; Taylor and Weisberg, 1982), as shown in Fig. 1.1.

This indirect ‘confirmation’ led to a fever of excitement amongst the community, and shortly
afterwards proposals for long-baseline broadband laser interferometers began to surface. Among
them, the Laser Interferometer Gravitational-Wave Observatory (LIGO) group emerged by the
end of the 20th century as the first group to most likely to experimentally verify their existence.

Indeed, on the 14th September 2015, after a century of painstaking theoretical (and experimental!)
turmoil, LIGO made scientific history. The twin H1 and L1 detectors, located in Hanford,
Washington and Livingston, Louisiana in the United States respectively observed a GW signal
that matched extraordinarily well the waveforms predicted by GR for the inspiral and merger
of two orbiting black holes (Abbott et al., 2016c). The signal, dubbed GW150914 lasted ∼ 0.2
seconds and had a peak strain in the H1 and L1 detectors of ∼ 10−21 (see Fig. 1.2). The passing
of the GW resulted in a fractional change in the lengths of the two 4km arms of the LIGO
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Figure 1.2: The landmark gravitational-wave event GW150914 as observed by the LIGO
Hanford (H1, left column panels) and Livingston (L1, right column panels) interferometers.
The top panels show the strain data in the H1 and L1 detectors. The bottom panels show the
gravitational-wave strain projected onto each detector in the 35 − 350 Hz band. The solid red
(left) and solid blue (right) lines indicate a numerical relativity waveform for a system with
parameters consistent with those recovered from GW150914 (Mroué et al., 2013). The dark grey
shaded regions show models of the signal using binary black hole template waveforms (Abbott
et al., 2016b). The light gray shaded regions show models that do not use an astrophysical
model, but instead calculates the strain signal as a linear combination of sine-Gaussian wavelets
(Cornish and Littenberg, 2015; Abbott et al., 2016a). Image credit: adapted from Figure 1 of

Abbott et al. (2016c).

interferometers of the order 10−18 m, a thousandth the width of a single proton. To put such a
feat into perspective, it was equivalent to measuring a change in the distance to the nearest star
outside our Solar System (40,208,000,000,000 km), Proxima Centauri, by just the width of a
single hair. Enter, the modern era of gravitational-wave astronomy.

The ‘advanced’ interferometers have completed three observing runs to-date, with the collabo-
ration fast approaching its 100th detection of a GW signal. Within this exhaustive catalog, on the
17th August 2017, a particularly exceptional event occurred. Within a few seconds of an initial
gravitational-wave trigger, the Gamma-ray Burst Monitor atop NASA’s Fermi space telescope
detected a burst of 𝛾-rays. At the time, the origin of short 𝛾-ray bursts (GRBs) had remained a
mystery, but now it appeared that the answer to this question may lie buried deep within the data
of the twin LIGO interferometers.

This signal, since dubbed GW170817 was quite unlike any other that had been seen in the
detectors up to that point. Binary black hole mergers produce what is commonly referred to as a
‘chirp’ in a small region of the detector’s sensitivity band (∼ 50− 350 Hz), lasting a fraction of a
single second (see the right-column panels in Fig. 1.3). In the case of GW170817, however, the
‘chirp’ lasted∼ 100 seconds, sweeping through a greater frequency range of detector’s sensitivity
band (see the left-column panels in Fig. 1.3). Initial matched-filtering of the signal against a
bank of theoretical waveforms suggested that the masses of the progenitors were likely too small
to be black holes, and instead in the range of another type of compact object - two neutron stars
(Abbott et al., 2017b). It had been suspected for decades that GRBs might be powered by the
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Figure 1.3: Time-frequency plots as observed by the LIGO Hanford (H1, left column panels)
and Livingston (L1, right column panels) interferometers. The top panels show data containing
GW170817 in the H1 and L1 detectors. The bottom panels show the data containing GW150914
in the H1 and L1 detectors. Image credit: adapted from Figure 1 of Abbott et al. (2017b) and

Figure 1 of Abbott et al. (2016c).

collisions of NSs (Blinnikov et al., 1984; Eichler et al., 1989; Berger et al., 2013), and thus the
near-simultaneous temporal and spatial observations of the GW trigger and GRB appeared to be
conclusive proof (Abbott et al., 2017c).

The detection of GW170817 also benefited from the incorporation of the ‘Virgo’ GW interfer-
ometer, hosted by the European Gravitational Observatory and located in Pisa, Italy, that joined
the LIGO network just two weeks before the detection was made. Though less sensitive than
either L1 or H1, improved sky localisation of the signal allowed it to be pinpointed to have
originated from the galaxy NGC 4993. In the days following the initial GW and GRB trigger,
a host of observations across the electromagnetic spectrum from radio to X-rays were made
from the galaxy. Such detections were unprecedented, with the marriage of gravitational and
conventional astronomy spawning a new era of multi-messenger astronomy.

The union of gravitational and electromagnetic astronomy has facilitated a number of significant
scientific breakthroughs since GW170817, underlining the importance that NSs have to play in
advancing our understanding of a host of different astronomical phenomena. Such examples
include providing an independent method to estimate the Hubble Constant (Abbott et al., 2017a,
2023); placing constraints on the equation of state of dense matter (e.g. Abbott et al., 2018);
providing further probes of fundamental aspects of GR, including Lorentz invariance and the
equivalence principle (Abbott et al., 2017c); as well as identifying that NSs are Nature’s very
own alchemists, with merger events now thought to be responsible for producing the majority of
the Universe’s precious metals (Kasen et al., 2017).

A further milestone of the collaboration would be achieved during the third observing run (O3),
coinciding with the additional incorporation of the Japanese ‘KAGRA’ GW interferometer into
the LIGO-Virgo network. In January 2020, during the first half of O3, two neutron star-black
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Figure 1.4: Graphic displaying the different types of gravitational-wave emission thought to
be produced in the Universe, together with the associated signal that would likely be seen in
the LIGO-Virgo-KAGRA detectors. Modelled sources (i.e. transient and continuous) are those
that have specific mechanisms which generate them. Image credit: adapted from Shanika

Galaudage.

hole collisions were observed just 10 days apart (Abbott et al., 2021a). With the fourth observing
run currently underway at the time of writing, detections of binary mergers are becoming all but
too frequent, owing to continuing advancements in the sensitivity of the instruments. Amongst
all these successes, there is now much anticipation for the first detection of a GW signal that
originates from something other than compact binary coalescence. If this does indeed occur,
then it is likely that neutron stars will have some role to play in its discovery.

1.2 Types of gravitational-wave emission

In principle, any accelerating source of matter will produce gravitational radiation. This means
that we humans, our cars, planes, etc. generate GWs to some degree. It is just the case however
that they are far too small to be seen through the eyes of any detectors. To find ones that aren’t,
one must look beyond the Earth, and as we saw from the last section, even beyond the solar
system.

Broadly speaking, there are four categories of GW signal that any accelerating massive object
will fall into. These are: Transient, Continuous, Stochastic and Burst. A graphic displaying
potential sources of these types of emission is shown in Fig. 1.4, as well as example illustrations
of the associated signal that would be seen in the LIGO-Virgo-KAGRA detectors.

Neutron stars in particular are unique objects in the context of GWs in the sense that they possess
(at least in theory) the ability to facilitate each of these types of emission, as we shall now discuss.
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1.2.1 Transient gravitational-waves

Of the almost 100 signals detected thus far by LIGO-Virgo-KAGRA, each one has been an
example of transient gravitational-waves; a class of powerful, short-lived signals generated as a
result of the inspiral and merger of compact objects such as black holes and NSs. So far, three
types of compact binary systems have been observed - binary black hole, binary neutron star,
and neutron star - black hole binaries (Fig. 1.5).

In reference to Fig. 1.2, there are three distinct phases of a transient GW signal. The inspiral, the
merger, and the so-called ‘ringdown’. During inspiral, the orbit of the binary gradually shrinks
as the system loses angular momentum to the emission of GWs. This process of emitting GWs
and orbiting closer and closer leads to an irreversible, runaway spiraling of the two objects until,
eventually, they collide and merge.

The aftermath of the collision depends on the nature of the progenitors. For example, two
orbiting NSs may form a heavier neutron star after they collide. Or, perhaps more likely, a black
hole is formed after the collision. The emitted GWs are strongest during the merger, but what
remains, in the case of a black hole remnant, is one that very distorted. Similar to a struck
bell, the distortions of the black hole are quickly radiated away as further GWs (hence the term
‘ringdown’), leaving behind a stable black hole in the aftermath.

Each binary system has its own unique GW signature, determined by a range of different
parameters. These include (amongst others) the mass of the progenitors, their spins, and their
orientations3. Generally speaking, a more-massive black hole binary will move through its final
inspiral phase much more rapidly than less-massive NSs. This leads to a much shorter merger
signal for a binary black hole system than that of a binary neutron star system (recall Fig. 1.3).

1.2.2 Continuous gravitational-waves

A stark contrast to transient signals are continuous gravitational-waves, a class of long-lived,
quasi-monochromatic signals (that will in fact form the focal point of this thesis). Sources of
continuous GWs produce considerably weaker signals that vary in both amplitude and frequency
over much longer timescales than transient signals. This type of emission is yet to be detected,
but is thought to be most likely sourced by singular, rapidly spinning compact objects - neutron
stars. Much like a singer holding a single note, if the spin-rate of the NS is constant, then any
GWs that are emitted will do so continuously at some multiple4 of the spin-frequency.

3A circular binary of two point objects is usually described by a fifteen-dimensional parameter vector ®𝜆 =

{M, 𝜂, 𝑑L, 𝑡c, 𝜙c, 𝛼, 𝛿d, 𝑙, 𝜙p, 𝑎spin1, 𝜃spin1, 𝜙spin1, 𝑎spin2, 𝜃spin2, 𝜙spin2}, where M is the chirp mass, 𝜂 is the
symmetric mass ratio, 𝑑L is the luminosity distance to the source; 𝜙c is an integration constant that defines the phase
of the GW at time 𝑡c of coalescence, 𝛼 and 𝛿d are the right ascension and declination of the source which determines
its position in the sky; 𝑙 defines the inclination of the binary with respect to the line of sight; and 𝜙p is the polarisation
angle of the waveform. The quantities 𝑎spin1, 2 are dimensionless spin magnitudes, and 𝜃spin1,2, 𝜙spin1,2 are the angles
of their orientations (Raymond, 2012).

4This multiple depends on the mechanism which sources it, and will be discussed in Section 1.3.
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Figure 1.5: Graphic displaying the masses (in solar units) of compact objects in the ‘Stellar
Graveyard’. Black holes measured by gravitational-wave observations are marked in orange,
whilst black holes detected through electromagnetic observations are marked in green. Neutron
stars measured with electromagnetic observations are given in dark blue, and masses of neutron
stars measured from gravitational-wave observations are labelled in light blue. Two neutron
star - black hole mergers are highlighted with shaded arrows. Image credit: adapted from

LIGO-Virgo/Aaron Geller/Northwestern

For a NS to generate continuous gravitational radiation, it must develop, and sustain, some form
of axial asymmetry. There are a number of different candidate mechanisms thought to be able
to generate the required asymmetry, including:

– i) fluid instabilities (particularly the excitation of the inertial r-mode) - Section 1.3.1;

– ii) free precession - Section 1.3.2;

– iii) non-axisymmetric quadrupolar deformations - Section 1.3.3.

1.2.3 Stochastic gravitational-waves

Unlike the two previous categories, stochastic gravitational-waves are not thought to be generated
from any one event or mechanism in particular. It is likely, for example, that many rapidly
spinning, non-axisymmetric NSs exist in the cosmos, but the vast majority of these stars will
produce GWs that are much too small to be seen individually. Relatively speaking, it is expected
that there are few significant sources of either transient or continuous GWs that might be
singularly identified. Instead, a ‘stochastic background’, formed through the culmination of
numerous individually-undetectable GWs, all mixed together at random (hence stochastic),
therefore likely permeates the Universe.

Very recently, the North American Nanohertz Observatory for Gravitational Waves (NANOGrav)
collaboration published evidence for a stochastic background of extremely low frequency GWs
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(i.e. with periods of years to decades; Agazie et al., 2023a). As part of a 15-year data release,
the NANOgrav team identified (quadrupolar) correlations in the arrival times of electromagnetic
radiation from a system of 68 millisecond pulsars (Agazie et al., 2023b). Though too faint to
have the origin of the signal singularly identified, possible sources favoured by collaborators
include the slow orbital decay of pairs of supermassive black holes (Agazie et al., 2023c).

It is also possible that a stochastic background might have developed from cosmological sources
rather than astrophysical ones. Analogous to the cosmic microwave background, GWs generated
during the early inflationary period could provide unique insights into the nature of the Universe in
its earliest moments (Guzzetti et al., 2016). Perhaps more speculatively, a stochastic background
of GWs generated via cosmic strings (topological defects produced by phase transitions in the
early universe) could also lead to a deeper understanding of the Universe beyond the Standard
Model (Kamada and Yamada, 2015).

1.2.4 Burst gravitational-waves

The final type of GW though to permeate the Universe are burst gravitational-waves. Similar
to the stochastic background, this category largely represents our agnosticism regarding aspects
of GW theory; incorporating signals from sources that we either do not yet know about, or are
unsure how to model theoretically.

These signals are the most challenging to search for from a data-analysts perspective. Searches
for transient GWs, for example, rely on the ability to match data from the interferometers (after
accounting for various sources of noise) to that of a bank of template signals generated from
solving the field equations of GR (e.g. Owen and Sathyaprakash, 1999; and recall Fig. 1.2). Put
simply, it is difficult to find something if you are not sure what it is exactly you are looking for.

This is not to say that theories for potential sources do not exist, however. The most promising are
those that might arise as a result of core-collapse supernovae, the explosive and cataclysmic last
evolutionary stage of massive stars. Once the nuclear fuel of such a star has been exhausted, there
is nothing left but the degeneracy pressure of Fermions to counteract the inward gravitational
force as the outer layers of the star collapse into the center. Exactly what the GW signal from
such a process might look like, however, is unknown (though progress on this issue has been
made in recent years; e.g. Radice et al., 2019). What is left behind after such an explosion,
though, is certainly of interest in the search for GWs. These supernova explosions are thought
to be the birthplaces of a particular compact remnant, responsible for transient, continuous, and
stochastic GWs alike: neutron stars.

1.3 Neutron stars as sources of continuous gravitational radiation

Neutron stars clearly play an incredibly important and diverse role in the production of GWs
throughout the Universe; from burst GWs potentially produced as a result of their birth, to
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transient GWs produced as a result of their timely demise through binary inspiral. In this
thesis, however, we consider specifically the role NSs have to play in the intermediate periods
of their lives, during the time that they may act as continuous GW emitters. As highlighted in
Section 1.2.2, there are three primary mechanisms that are thought to generate continuous-wave
emission: fluid instabilities, free precession, and non-axisymmetric quadrupolar deformations.

1.3.1 Gravitational-waves from fluid instabilities

The first type of asymmetry-inducing mechanism that may exist within NSs are unstable modes
of oscillation. Oscillation modes are the set of preferred frequencies at which the star ‘vibrates’
at when it is perturbed in some way. There are a number of different oscillation modes that NSs
are capable of supporting. For example, perturbations of the pressure in fluid regions of the star
may generate so-called ‘p-modes’ of oscillation. Discontinuities in the density profile of the star
(which can arise due to changes in the chemical composition of the star) on the other hand may
lead to ‘g-modes’, generating oscillations which are driven by buoyancy forces.

If these oscillations are non-axisymmetric with respect to the star’s rotation axis, then whey will
generate GWs. However, for most modes of oscillation, gravitational radiation will quickly damp
any type of perturbation - be it in the density profile or otherwise - as the initial energy of the
mode is quickly converted into gravitational energy (and any other energy losses inside the star,
such as viscosity). One type of oscillation mode, however, is actually expected to be amplified
by the gravitational radiation reaction, rather than be damped by it. These modes are known as
unstable r-modes.

R-modes are a type of toroidal mode, supported by Coriolis forces, that may be generated
both on the surface, and throughout the interior, of rotating NSs (Andersson, 1998, 2003).
These modes are of particular importance since they are unstable to a phenomenon known as
the Chandrasekhar–Friedman–Schutz instability (Chandrasekhar, 1970; Friedman and Schutz,
1978). Consider a NS that is initially stationary, and perturbed in such a way that it excites an
oscillation mode that deforms the star and travels with non-zero angular momentum in a positive
(anti-clockwise) direction.

Assuming the oscillation mode is non-axisymmetric, the mode will lose energy via the emission
of GWs, carrying with it positive angular momentum from the star. Positive angular momentum
is necessarily subtracted from the positive angular momentum of the mode, causing the amplitude
of the mode to shrink until it has dissipated completely. Through symmetry, there must also
exist a non-axisymmetric mode that moves in the opposite sense, travelling with negative angular
momentum in the clockwise direction. This mode will emit negative angular momentum in the
form of GWs, which also must be subtracted from the negative angular momentum of the mode
causing the amplitude of the mode to shrink as well.

Whilst this may seem intuitive (and uninteresting for GW emission), consider what happens to
the mode once the star is set into rotation (assumed to be in the positive, anti-clockwise direction).
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Figure 1.6: Schematic picture of the Chandrasekhar–Friedman–Schutz instability in a neutron
star, assumed to be rotating in an anti-clockwise direction. Retrograde (clockwise) propagating
modes are dragged forward by the anti-clockwise rotation of the star. R-modes on a rotating
neutron star are therefore retrograde in the co-moving frame, but prograde in the inertial frame.

Image credit: adapted from C. Hanna and B. Owen

Once rotating, the retrograde (clockwise) propagating modes are necessarily dragged forward by
the rotation. From the perspective of the star’s rotating frame, this retrograde mode continues
to move backwards. However, in the inertial frame, if the star is rotating fast enough, then it
will appear to be prograde, moving anti-clockwise and losing energy to GWs carrying positive
angular momentum. This positive angular momentum must still be subtracted from the negative
angular momentum of the mode (it is still moving backwards in the rotating frame), causing the
amplitude of the mode to grow. As it grows, the mode continues to emit more and more positive
angular momentum, creating a positive-feedback loop that only grows the size of the mode.

Simply put, for rotation rates typical of NSs, r-modes are retrograde in the co-moving rotating
frame, but prograde in the inertial frame (see Fig. 1.6), and therefore generically unstable to the
Chandrasekhar–Friedman–Schutz instability. If the NS were a perfect fluid, then this instability
would grow unabated. However, real NSs are not perfect fluids, and viscosity effects in the
interior will, to some degree, damp the system. The amplitude of an excited r-mode is therefore
a competition between the GWs that amplify the oscillation amplitude, and the viscous damping
that acts to suppress it. It is thought there exists an ‘instability window’ for which GW emission
dominates over viscous dissipation in a small region of parameter space covering both the spin
period and temperature of the star (Fig. 1.7). In cold NSs (∼ 108 K) viscous damping is
dominated by frictional shear viscosity, whilst in hot NSs (∼ 1010 K) dissipation is dominated
by bulk viscosity.

For a NS that is rotating at a given frequency 𝜈𝑠, the frequency of the emitted GWs will depend
on the mechanism that sources it. In the case of an excited r-mode, such a long-lasting oscillation
mode will generate GWs at 𝑓𝐺𝑊 ∼ 4/3𝜈𝑠 (e.g. Idrisy et al., 2015). Searches for continuous
GWs from unstable r-modes have been made, though none have been successful thus far (e.g.
Rajbhandari et al., 2021; Fesik and Papa, 2020; Abbott et al., 2021b; Covas et al., 2022).
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Figure 1.7: R-mode instability window for a typical neutron star (𝑀 = 1.4𝑀⊙ and 𝑅 = 10 km).
Image credit: reproduced from Kokkotas and Ruoff (2003).

1.3.2 Gravitational-waves from free-precession

In general, the rotation axis of a pulsar need not coincide exactly with one of its principal axes.
This can occur in NSs that develop a deformation that is misaligned from its rotation axis. This
can cause the star to begin to precess around the direction of the total angular momentum vector,
with angular frequency ¤𝜙 (e.g. Zimmermann and Szedenits, 1979; Jones and Andersson, 2001).

The precession could be sourced in a variety of ways, including (amongst others) accretion
torques, electromagnetic torques, or glitches. These deformations may then be sustained either
by elastic strains built up in the solid crust, or by magnetic strains sourced by the presence of
strong internal magnetic fields (this will be discussed in greater detail in Section 1.3.3). The
amount of precession is determined by the so-called ‘wobble angle’ 𝜃W, defined as the angle
between the deformation axis nd (dependent on the size of the elastic or magnetic strains) and
the fixed angular momentum axis J. A schematic illustration of the precession effect may be
seen in Fig. 1.8.

In the absence of any dissipative effects, the NS would precess forever. However, much like the
presence of viscosity that will damp the inertial r-mode, there are a number of damping effects
that will cause the star to halt its precession and return to its original, unperturbed state (Jones
and Andersson, 2002). How quickly the precession is damped depends on the nature of the
deformation, and the corresponding asymmetry in the moment of inertia tensor (Δ𝐼𝑑 = 𝐼3 − 𝐼1).
Consider, for example, a deformation that is built up by magnetic strains. Magnetic fields within
NSs are expected to have both a poloidal and toroidal structure (e.g. Rädler et al., 2001). A
poloidal magnetic field will result in an oblate (Δ𝐼𝑑 > 0) deformation, whilst a toroidal magnetic
field will result in a prolate (Δ𝐼𝑑 < 0) deformation (e.g. Lander and Jones, 2009).
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Figure 1.8: Schematic picture of a body (such as a deformed rotating neutron star with angular
velocity Ω) undergoing free precession. The angle between the deformation axis nd and the
fixed angular momentum axis J is known as the ‘wobble angle’, 𝜃W. Image credit: reproduced

from Andersson (2019).

The evolution of the wobble angle is approximately ¤𝜃 ∝ ¤𝐸/Δ𝐼𝑑 , with ¤𝐸 being the energy lost (and
therefore always negative) due to dissipation of mechanical energy into either heat or radiation
(Andersson, 2019). It therefore follows that an oblate deformation will tend to decrease the
wobble angle (since Δ𝐼𝑑 > 0), whilst a prolate deformation will tend to increase the wobble
angle of the star. However, only strong internal toroidal magnetic fields (1012 − 1013 G) are
thought to be able to produce significant prolate deformations, and elastic strains built up in the
crust are thought to almost always lead to oblate deformations only (Jones and Andersson, 2002).

Regardless of the nature of the deformation, GW emission always leads to a decreasing of
the wobble angle (Cutler and Jones, 2000). A non-spherical NS that is freely precessing will
radiate GWs at three frequencies (Zimmermann, 1980), which can be approximated to be (i)
the precession frequency ( 𝑓𝐺𝑊 = ¤𝜙), (ii) twice the precession frequency ( 𝑓𝐺𝑊 = 2 ¤𝜙), and (iii)
twice the spin-frequency of the star ( 𝑓𝐺𝑊 = 2𝜈𝑠). Additionally, freely-precessing NSs should be
visible not just through the lens of GW detectors, but in radio telescopes as well. In theory, free
precession should introduce modulations in the timing (and width) of the radio signal received
from known pulsars. However, such impressions are not typically brought out by observations,
with very few pulsars exhibiting radio timing variability consistent with precession effects.

1.3.3 Gravitational-waves from non-axisymmetric deformations: Mountains

Whilst it appears that most neutron stars that we see in the Cosmos do not undergo extended
periods of free-precession, it is possible that non-axisymmetric deformations of the NS (which
themselves may lead to the precession) may persevere for much longer periods of time.

Quasi-persistent deformations of rigidly rotating NSs are more usually referred to as ‘mountains’,
and will radiate GWs continuously at twice the spin frequency ( 𝑓𝐺𝑊 = 2𝜈𝑠) of the star. As
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already alluded to, mountains can be divided into two categories. There are so-called ‘magnetic
mountains’, whereby a mass distortion is supported by Lorentz forces associated with a non-
axisymmetric magnetic field , and ‘elastic mountains’, where the mass distortion is supported by
elastic strains which develop in the star’s solid crust.

1.3.3.1 Magnetic mountains

Magnetic mountains may be formed in almost any type of neutron star, ranging from isolated
magnetars (those with exceedingly strong ∼ 1015 G magnetic fields), to accreting systems where
the magnetic field is thought to be relatively weak (∼ 109 G; Sec. 2.4).

In strongly magnetised stars, the resulting shape of the deformation is related to the structure of
the magnetic field. As mentioned in Section 1.3.2, a purely poloidal field will tend to deform
the star into an oblate shape, whilst a purely toroidal field will tend to deform the NS into a
prolate shape (see e.g. Glampedakis and Gualtieri, 2018). It follows that a magnetic field that
is a mixture of both components will produce a deformation that has both negative and positive
contributions, with the relative contributions of the poloidal and toroidal components depending
on the exact geometry of the field.

In accreting systems on the other hand, the mountain is more a ‘localised deformation’ than a
global deformation of the star like in a magnetar. They are formed by the accretion of matter
onto the NS surface that is sustained in an asymmetric way by the magnetic field via a process
known as magnetic burial (Payne and Melatos, 2004; Melatos and Payne, 2005; Vigelius and
Melatos, 2009; Suvorov and Melatos, 2018; Rossetto et al., 2023). Material that is accreted onto
the neutron star accumulates in a column at the polar caps. Intense gravitational fields on the
surface of the star act to spread this accreted material down from the poles over the equator. Such
a process creates fluctuations in the structure of the magnetic field between the top and base of
the accretion column as the magnetic field is compressed into a narrow belt (also referred to
as a magnetic ‘tutu’ in Payne and Melatos, 2004) at the magnetic equator (see Fig. 1.9). Over
time, this belt restricts further accreted material from reaching the equator, eventually confining
it to the magnetic poles and leading to a build up of accreted matter. If the magnetic poles
are misaligned from the axis of rotation, then this will lead to the build up of material in a
non-axisymmetric way, leading to GW emission as the star rotates.

1.3.3.2 Elastic mountains

It is expected that neutron stars, much like the Earth, form a solid crust close to their surface.
This crust is thought to exhibit elastic properties which, in theory, could allow the NS to
sustain a non-axisymmetric deformation through elastic strains. Assuming the crust is able to
support significant stresses before cracking, elastic mountains could be a promising source of
continuous gravitational radiation. In assessing the likelihood of detecting GW emission from



1.3. Neutron stars as sources of continuous gravitational radiation 15

Figure 1.9: Schematic illustration of the formation of a magnetic mountain on an accreting
neutron star. The magnetic field lines before and after the onset of accretion are denoted by the
dashed and solid lines respectively, with the mountain forming in the region bounded by the red

curve and the stellar surface. Image credit: reproduced from Suvorov and Melatos (2018).

such mountains, there are, generally speaking, two important considerations one need make: (i)
what is the largest possible mountain that the neutron star crust could feasibly maintain? (ii)
what physical processes within the NS might be capable of building the necessary asymmetries
in the first place?

Many studies have sought to answer this first question in recent years (Ushomirsky et al., 2000;
Owen, 2005; Haskell et al., 2006; Johnson-McDaniel and Owen, 2013; Gittins et al., 2021;
Gittins and Andersson, 2021). The latter of these studies sought to revisit the approach of
Ushomirsky et al. (2000) (hereafter UCB), who calculated the maximum mountain by obtaining
the strain tensor associated with the point whereby the entire crust is forced to its elastic yield
point (i.e. where it is maximally strained). Both Gittins et al. (2021) and Gittins and Andersson
(2021) argued this procedure to be unphysical, since it implies non-zero components of the strain
tensor at transitions between the elastic crust and fluid core and ocean, which violates continuity
of the traction vector. By introducing a fiducial force to source the mountain instead, Gittins
et al. (2021) found that the largest ellipticity (the fractional difference in the star’s moments of
inertia; Eq. (3.37)) the NS could sustain was ≲ 10−7, an order of magnitude or so smaller than
in previous works.

Very recently, Morales and Horowitz (2022) again revisited this problem, seeking to extend the
Gittins et al. (2021) formalism by adopting a different forcing function that was chosen to act
primarily in the transverse direction. Such a force was shown to be capable of straining the
deep crust, whilst not breaking the more fragile outer crust. The maximum ellipticity obtained
from this calculation was 7.4 × 10−6, larger than obtained by Gittins et al. (2021), and in fact
consistent with the original calculation by Ushomirsky et al. (2000).

The requirement of some fiducial force leads naturally to the second important question, how
exactly might the star be driven away from sphericity? The nature of this problem was not
explicitly addressed by Gittins et al. (2021) (or Morales and Horowitz, 2022), who simply
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introduced the deforming force as a means to give the star a non-spherical shape. One possible
physical source for the elastic strains are thought to arise from the formation of large-scale
temperature asymmetries within the star. For accreting systems in particular, the presence of
non-axisymmetric temperature gradients have been shown to alter reaction thresholds for nuclear
interactions induced by the compression of accreted material, a process we shall explore in greater
depth later on in Section 3.2.2.1. This ‘subtype’ of elastic mountains are known more commonly
as ‘thermal mountains’.

1.3.3.2.1 Thermal mountains

The structure of isolated neutron stars and those that accrete are markedly different. Accreted
matter (mostly hydrogen, helium, and other light elements) settles on the star’s surface and is
subsequently buried under ever-increasing amounts of freshly accreted matter. These layers of
hydrogen and helium eventually ignite, and the resulting thermonuclear burning leads to the
formation of a layer of nuclear ashes consisting of mostly iron-peak nuclides (Schatz et al.,
1999). Continual accretion from the companion star leads to further compression of these heavy
nuclides that subsequently sink into the crust, replacing the original crust after ∼ 5 × 107 years
(assuming constant accretion at a rate, ¤𝑀 / 10−9 𝑀⊙ yr−1; Ushomirsky et al., 2000).

The accreted crust is defined by a series of density-dependent, non-equilibrium reactions (electron
captures, pycnonuclear reactions and neutron emissions) that irreversibly changes the compo-
sition of the primordial crust (Sec. 2.4.2). Despite being primarily density-dependent, the
threshold energy 𝐸cap - which determines when a given electron capture event takes place -
has also been shown to have weak temperature sensitivity too (Bildsten and Cumming, 1998).
Consequently, in the regions of the crust that are hotter on average, electron-capture events can
take place at lower density (i.e. closer to the star’s surface) than colder regions. Any temperature
asymmetry in the accreted crust therefore results in ‘wavy’ electron capture layers (Bildsten,
1998) as depicted in Fig. 1.10. If the temperature asymmetry happens to be misaligned with
the rotation axis, then the mass distribution itself can inherit the non-axisymmetry and hence
develop the mountain.

A description of how the NS might inherit such a non-axisymmetric temperature profile in
the first place, however, has been lacking, and motivates this thesis. Indeed, the origin of
the required temperature gradients were not given by Bildsten (1998). To reconcile this issue,
Osborne and Jones (2020) recently sought to provide substantiation to the ‘wavy capture layer’
idea by developing a mechanism for which an accreting NS might naturally inherit the necessary
temperature gradients. The authors exploited the likely weak internal magnetic fields of these
stars to perturb the thermal conductivity tensor, thus rendering it anisotropic (this is to be explored
in much greater detail in Chap. 5). By confining their calculation to the accreted crust only,
they estimated that large internal crustal toroidal magnetic fields (𝐵 ∼ 1013 G) - four orders of
magnitude larger than inferred (𝐵 ∼ 109 G) external field strengths of accreting neutron stars
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Figure 1.10: Schematic illustration of the formation of a thermal mountain on an accreting
neutron star. The dashed line indicates the location of the temperature-sensitive capture bound-
ary between two layers (𝐴1, 𝑍1) → (𝐴2, 𝑍2) in a thermally symmetric neutron star. In the
presence of a lateral temperature gradient ∇𝑇 , the capture boundary shifts closer to the surface
in locally hotter regions, and closer to the core in locally colder regions. Image credit: adapted

from Emma Osborne.

- were required in order to produce deformations large enough to facilitate GW emission at a
significant level.

Estimates of the size of the induced deformations were made through means of a simple fitting
formula (which we will discuss later in Sec. 5.6) to the results of Ushomirsky et al. (2000), who
calculated the mass quadrupole assuming that there is an elastic readjustment of the solid crust
to pre-existing temperature gradients (i.e. those that were assumed present, like Bildsten (1998),
a priori) as the ‘wavy’ capture layer is formed. Exactly how these temperature perturbations
translate into a perturbation in the star’s density profile (this will be the focus of Chap. 6) were
assumed to enter through a temperature dependence on the electron mean molecular weight 𝜇e

(where 𝐸cap ≡ 𝜇e) in a two-parameter equation of state whereby 𝑃 = 𝑃[𝜌, 𝜇𝑒 (𝜌,𝑇)] (this will
be explained in greater detail in Sec. 6.1).

Osborne and Jones (2020) used their fitting formula to estimate the ellipticity from a single value
of the temperature perturbation 𝛿𝑇 in the inner crust at 𝜌 = 1012 g cm−3. However, although
this simplified their calculations greatly, the fitting formula inherently relies on the existence of
capture layers in the deep crust beyond what is predicted by modern crustal equations of state
(we will discuss this in greater depth later in Sec. 6.3.2), and therefore likely overestimates the
size of the mountains produced from these kinds of temperature asymmetry. The ultimate goal
of this thesis is therefore to complete the work initially set out by Osborne and Jones (2020), and
compute the ellipticity from the full function 𝛿𝑇 (𝑟) that arises from anisotropic heat conduction.
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1.4 This thesis

In this thesis we shall indeed develop a scheme to produce the first fully self-consistent calculation
of the size of neutron star (thermal/thermo-elastic) mountains, bridging the gap between Osborne
and Jones (2020), who modelled the formation of non-axisymmetric temperature variations
only, and Ushomirsky et al. (2000), who modelled the formation of non-axisymmetric density
variations only.

We focus on providing a physically-motivated estimate for the level of temperature asymmetry
that might be realistically developed in the crust, by further developing the Osborne and Jones
(2020) mechanism. We shall then discuss, and subsequently implement, a procedure for which
these temperature gradients may then generate pressure perturbations, which ultimately result in
an elastic readjustment of the crust and form the mountain. A schematic flowchart highlighting
the critical stages of our calculation is shown in Fig. 1.11. Each stage of the workflow diagram
will be discussed in turn in the relevant chapters indicated in the upper-left corner of each panel
in the workflow. The chapters that comprise this thesis are briefly summarised below.

Chapter 2 contains a review of the general structure of neutron stars (and in particular the crust)
as they are currently understood. We introduce the concept of the equation of state, and discuss
how accretion from a binary companion can irreversibly change the structure of primordial NSs.
We outline a method in which one may create analytical representations of realistic accreted
equations of state (the light blue panel in Fig. 1.11), and show how they may be used to
determine both the microscopic and macroscopic properties of these stars. The equations of
stellar structure in Newtonian and relativistic gravity are also presented, and a method to build
spherically symmetric stellar models is described (the dark blue panel of Fig. 1.11).

In Chapter 3 we begin with outlining some basic gravitational-wave theory, before discussing
the role GWs could be playing in determining the spin-evolution of accreting neutron stars.
Specifically, we shall consider different scenarios that may generate spin-up and spin-down
torques on the star, and how the presence of thermal mountains may be contributing to the
so-called ‘torque balance limit’ of rapidly rotating neutron stars, whereby spin-equilibrium (i.e.
the observed spin-rate) of the star is achieved through balancing accretion torques from its main
sequence companion.

Following this discussion we move into Chapter 4 where we begin our original work. We discuss
existing observations of accreting neutron stars, and how they may be used to infer their internal
thermal structure. We then outline how the steady-state thermal profile of such stars may be
constructed in a Newtonian framework (the light green panel in Fig. 1.11). This requires a
detailed description of relevant heating and cooling processes, as well as a description of the
star’s thermal conductivity, all of which are discussed. The implications of baryon superfluidity
on each of these processes is also presented. The parameter space of accretion rate, crustal
impurities, as well as observationally-inferred shallow-crustal heating is then explored, where
we show that our steady-state model is compatible with other theoretical works in the literature.



1.4. This thesis 19

Construct analytical 
representations of the 

equation of state 
Fix the hydrostatic structure 

of the neutron star

Compute the spherically 
symmetric background 

thermal structure of steadily 
accreting neutron stars

Introduce non-axisymmetric 
temperature variations 

through anisotropic heat 
conduction

Calculate the crust’s elastic 
readjustment to perturbations 
in the thermal pressure of the 

solid ionic lattice

Chapter 2 Chapter 2

Chapter 4 Chapter 5

Chapter 6

Figure 1.11: Workflow diagram for constructing models of thermo-elastic mountains on ac-
creting neutron stars as presented in this thesis.

We continue in Chapter 5 by introducing anisotropy into our model for the thermal background
through the addition of a weak magnetic field (the dark green panel in Fig. 1.11). This work
was originally developed by Osborne and Jones (2020) to investigate if significant temperature
asymmetries can develop in the presence of crustal magnetic fields, as discussed in Section
1.3.3.2.1. We revisit and improve various aspects of this mechanism; allowing for the possibility
of the magnetic field to permeate the core, with the expectation that non-vanishing temperature
perturbations at the crust-core transition will lead to greater asymmetries in the deep crust.

In Chapter 6 we then take one step further the work of Osborne and Jones (2020) and compute
self-consistently the mass quadrupole moment generated as a result of temperature gradients
sourced by the magnetic field (the purple panel in Fig. 1.11). A small contribution to the
pressure within the crust of the star from the Coulomb crystal lattice is identified, and shown
to have some temperature dependence. This results in the formation of non-negligible pressure
perturbations in regions of the crust that are locally hotter on average, leading to a readjustment
of the crustal matter and hence the formation of the mountain.

Finally, we conclude in Chapter 7 by summarising the headline results presented in this thesis,
and reviewing some of the finer details of the model. We do this in order to better understand its
current limitations, and outline ways in which, in future work, it might be further refined.
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2

The Structure of Neutron Stars

In order to understand how mountains form, one must first be armed with an intuitive sense of
how neutron stars behave. In this chapter we begin in Section 2.1 by reviewing the different
regions that constitute a typical neutron star, followed up with an introduction to the concept of
the equation of state (EoS) in Section 2.2. We shall then delve deeper into the structure of the
crust in Section 2.3, before discussing how accretion of material from a binary companion can
irreversibly change the original composition in Section 2.4. We then continue in Section 2.5 by
constructing analytical expressions of unified equations of state based on the Brussels-Montreal
energy-density functionals BSk19, BSk20, and BSk21, and show how the parameterised EoS
can be used to determine various microscopic properties of the star. Finally, in Section 2.6 we
construct both the Newtonian and general relativistic structure equations for a non-rotating, fluid
stars and compare the hydrostatic structures of both accreting and non-accreting stars.

2.1 General structure of neutron stars

Neutron stars are among the densest manifestations of matter in the known Universe. With masses
typically in the region 1 − 2𝑀⊙ (where 𝑀⊙ = 2 × 1030 kg is the solar mass), and diameters of
just 20 − 30 km, they are extremely compact objects. To put a typical NS into perspective, the
Sun’s 1𝑀⊙ is contained within a body 1.4 million km in diameter.

First theorised by Baade and Zwicky (1934a,b), the majority of neutron stars are the remnants
of medium-sized (8 ≤ 𝑀 ≤ 20𝑀⊙) main-sequence stars that end their life in the explosive and
cataclysmic furnace of a type II supernova explosion1. Supported against further collapse into
a black hole by neutron-degeneracy pressure, NSs consist primarily of closely packed neutrons,
together with a small fraction of protons and electrons.

1Neutron stars may also be formed as a result of Type 1a or electron-capture supernovae, though this is much
more uncommon.
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From the surface down to the center, there are believed to be a number of distinct regions that
make up the star’s internal structure (see e.g. Haensel et al., 2007). Generally speaking, the
layers of a typical NS (see Fig. 2.1, and note the approximate thicknesses of each layer) are:

- The atmosphere: A thin gaseous layer surrounding the exterior of the star at densities
𝜌 ≲ 106 g/cm3 composed of ions, atoms, and molecules.

- The ocean: A thin liquid layer that sits atop the surface of the star. Not to be confused with
the oceans on Earth, the neutron star ocean is composed of a plasma of strongly coupled
electrons and nuclei, which behaves as a fluid.

- The outer crust: When the Coulomb interaction energy between the ions is greater than
the thermal energy, the ocean solidifies. This is referred to as the ‘crystallization-point’,
with a crust comprised of a Coulomb lattice of heavy neutron-rich nuclei on a background
of relativistic free-electrons being formed.

- The inner crust: Neutrons within the nuclei of the crystal lattice become less and less
bound with depth (Sec. 2.3.2). Eventually, some neutrons are able to ‘drip out’ from
the nuclei entirely, forming a lattice of neutron-rich nuclei on a background of both free
neutrons and ultra-relativistic electrons. The outer and inner crust is therefore demarcated
by the so-called neutron drip point, occurring at ∼ 4 × 1011 g cm−3.

- The mantle: Sitting just below the Coulomb lattice at densities ∼ 1014 g cm−3 is the
mantle, a thin layer that is thought to contain a series of nuclear structures with peculiar
geometries. At these densities, nuclei are theorised to undergo a series of transitions into
so-called ‘pasta’ phases, taking on various shapes including cylinders and plane-parallel
plates, often refereed to as (comically) the ‘spaghetti’ and ‘lasagna’ phases respectively.

- The outer core: At densities exceeding 1014 g cm−3 it is not energetically favourable for
protons to cluster to form nuclei, and instead matter becomes a homogeneous plasma of
neutrons, protons, and electrons (maybe muons as well), with some neutrons (protons)
also expected to be in a superfluid (superconducting) state.

- The inner core: The central region of the star (𝜌 > 1015 g cm−3) is known as the inner core.
Matter at such densities far exceeds what is achievable on Earth, and thus the composition
of the inner core is largely unknown. It is speculated that anything from exotic particles
such as hyperons, pions or kaons may exist, to mixed phases of both hadronic matter and
deconfined quarks.

2.2 The equation of state

To a first approximation, stellar material may be described very well by a perfect fluid. For
simplicity, one may think of this fluid as a series of many small fluid elements, with each fluid
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Figure 2.1: Schematic illustration of the structure of a typical neutron star, consisting of the
exterior layers (blue), the crust (green) and the core (pink). Reproduced from Harpole (2018).

element itself comprised of a large number of individual particles that constitute the star2. If
the mean-free path of the individual particles (i.e the average distance travelled by a particle
in-between collisions) is much less than the characteristic length scales of the flow, then the fluid
may be viewed as a continuum. In such an instance, the principles of mass, momentum, and
energy conservation can be used to describe fluid behavior, which is far more tractable.

Indeed, quantities such as the pressure of the (perfect) fluid can be determined by the local
thermodynamic state of the system. For a many-particle-species system (e.g. electrons, neutrons,
protons, etc.), the First Law of thermodynamics takes the form

𝑑𝑄 = 𝑃𝑑

(
1
𝑛b

)
+ 𝑑

(
𝜖

𝑛b

)
−
∑︁

x
𝜇x𝑑𝑌x , (2.1)

where 𝑑𝑄 is the change in energy (in this case measured per baryon), 𝑃 is the pressure, 𝑛b is the
number density of baryons, 𝜖 is the energy density (i.e. including rest-mass energy), 𝜇x is the
chemical potential of particle species x, and 𝑌x is the fraction of species x in the fluid element,
defined as

𝑌x =
𝑛x
𝑛b

. (2.2)

The Second Law of thermodynamics states that, in general, any process that occurs inside the
fluid element must also obey the condition that

2Though, keep in mind the true picture of a neutron star is complicated by the presence of the solid (elastic) crust.
This treatment must also be refined when one considers additional physics such as heat transport, strong magnetic
fields, as well as baryon superfluidity.
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𝑑𝑄 ≤ 𝑇𝑑𝑆 , (2.3)

where 𝑇 is the temperature and 𝑆 is the entropy per baryon. Combining Eqs (2.1) - (2.3), the
First Law may be written as

𝑑

(
𝜖

𝑛b

)
≤ −𝑃𝑑

(
1
𝑛b

)
+𝑇𝑑𝑆 +

∑︁
x
𝜇x𝑑𝑌x . (2.4)

The energy density can be seen to depend on the volume per baryon and entropy per baryon of
the system, as well as the relative amounts of each particle species. In equilibrium (see below),
we have an equation of state for the system, parameterised as 𝜖 (𝑌x, 𝑛b, 𝑆), from which one extract
each of the quantities

𝑃 ≡ 𝑛2
b
𝜕 (𝜖/𝑛b)
𝜕𝑛b

����
𝑆,𝑌x

, 𝑇 ≡ 𝜕 (𝜖/𝑛b)
𝜕𝑆

����
𝑛b,𝑌x

, 𝜇x ≡ 𝜕 (𝜖/𝑛b)
𝜕𝑌x

����
𝑆, 𝑛b,𝑌z

, (2.5)

as required, where the sub-scripted variables following a vertical bar indicate that they are being
held constant3. These relations are crucial, as it allows one to connect the microphysics and
thermodynamics to that of the fluid dynamics.

In the context of neutron stars, matter is indeed most often assumed to be in total thermodynamic
equilibrium, as well as cold. This is referred to commonly as the cold-catalyzed matter hypothesis,
where the matter is assumed to be in its ground-state at 𝑇 = 0 K. Of course, this is only an
approximation. First and foremost, it is not possible for the interior of the star to be exactly 0 K
(in fact, it is expected to be hundreds of millions of degrees; Sec. 4.8). Rather, the ‘cold’ in this
statement refers to the fact that the kinetic thermal energy of the nuclei (108 K ≃ 0.01 MeV) is
actually much less than that of the so-called Fermi temperature. Neutron stars are sufficiently
dense that there is a non-negligible energy associated with the confinement of atomic nuclei.
Under intense gravitational compression, ‘squeezing’ of the nuclei increases its total energy,
with the Fermi energy (∼ 10 − 100 MeV) acting as a pressure, usually referred to (as in Section
1.2.4) as degeneracy pressure.

In order to remain in total thermodynamic equilibrium, any nuclear interactions that occur within
a given matter element are balanced by their inverse (which occurs equally rapidly) and therefore
the concentration of each species remains constant. The First Law (2.4) in this instance simplifies
to

𝑑

(
𝜖

𝑛b

)
+ 𝑃𝑑

(
1
𝑛b

)
= 0 . (2.6)

3The additional term 𝑌z denotes the set of particle fractions which exclude 𝑌x.



2.3. The crust 25

Now, rather than an EoS that depends on all three state variables 𝑛b, 𝑆, 𝑌x, the energy density
now depends solely on just the baryon-number density, and thus 𝜖 = 𝜖 (𝑛b).

Since all thermodynamic quantities are related by the First Law, it is also equally valid to express
the EoS in terms of the pressure 𝑃. The pressure inside a NS composed of cold-catalyzed matter
is therefore 𝑃 = 𝑃(𝜖) ≡ 𝑃(𝑛b). This latter definition is commonly referred to as a barotropic
equation of state, and features prominently in many neutron star calculations. For reasons that
will become clear in Section 2.5, it is most practical to consider the situation whereby equilibrium
within the star is achieved at constant pressure. In this specific case, Eq. (2.6) implies that

𝑑𝑔 = 0 , (2.7)

where 𝑔 is known as the Gibbs free energy per baryon (the mean chemical potential), given by
(Shapiro and Teukolsky, 1983)

𝑔 =
𝜖 + 𝑃
𝑛b

. (2.8)

In the outer regions of the star which are comprised of nuclei (with mass number 𝐴 and atomic
number 𝑍), electrons (and potentially free neutrons), the equilibrium nucleus at a fixed pressure
𝑃 is determined from the condition that the Gibbs free energy 𝑔 be minimised at that pressure
(this will be discussed in greater detail in the next section).

Determining the EoS is a therefore a two-fold endeavour: one must first determine the equilibrium
nuclide present at a given pressure 𝑃, and then compute the corresponding density 𝑛b to determine
the pressure-density 𝑃(𝑛b) relation. The term ‘equation of state’ can therefore refer to either
the pressure-density 𝑃(𝑛b) relation and/or the composition (the run of (𝐴, 𝑍) with density) of
the matter, assuming some underlying microphysical model. In this Chapter (Chap. 2) we shall
refer to the pressure-density relation specifically when we talk about the EoS, rather than the
composition. From Chapter 4 onward however, we will in general refer to both the pressure-
density relation and the composition when we talk about the EoS.

2.3 The crust

The crust constitutes just ∼ 1% of the total mass of the neutron star, and has a radius typically
less than one-tenth of the total radius (See Sec. 2.6.4). Yet despite this, the crust plays a pivotal
role in determining the evolution and dynamics of the star, as well as generating a plethora of
different observational phenomena. These include: oscillations of strongly magnetized NSs
(Lander et al., 2010; Leung et al., 2022); quiescent X-ray spectra after periods of accretion from
a companion star; energetic type I X-ray explosions (See Sec. 4.1); as well as pulsar glitches
(sudden increases in the star’s observed spin frequency; e.g. Zhou et al., 2022) and more. Each
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of these events provides a unique opportunity to probe the inner structure that would otherwise
remain a mystery.

Much of the observed phenomena are indeed attributed to intense magnetic fields which emanate
from the top of the crust. The magnetic field evolution of NSs has been a central topic of research
for decades, with three main effects thought to influence the dynamics of the evolution. These
are (i) Ohmic decay, (ii) Hall drift, and (iii) ambipolar diffusion4. Ohmic decay, for example,
results as a consequence of finite electrical conductivity (determined by both the structure and
composition of the crust), which leads to dissipation of the magnetic field and the conversation
of magnetic energy into heat energy. The presence of magnetic fields in the crust can also
generate temperature gradients (as a result of anisotropic heat conduction), with the thermal
conductivity also being determined by the composition of the crust (Sec. 4.4). This is precisely
the mechanism we will explore later on in Chapter 5 to source our mountains.

As described in Section 1.3.3.2.1, the crystalline nature of the crust also makes it a promising
source of (continuous) GWs. A solid crust should, in theory, be capable of supporting elastic
stresses, which can then build elastic strain as the star undergoes changes in its evolution (perhaps
due to temperature gradients induced by magnetic fields, for example!). If these strains do develop
in an asymmetric way, then the resulting deformation can produce a time-varying quadrupole
moment as the star rotates (Sec. 3.1.2).

2.3.1 The outer crust

The outer crust begins at the crust-ocean interface when the ratio of Coulomb energy to thermal
energy,

ΓCoul =
𝑍2𝑒2

𝑘B𝑇

(
4𝜋𝑛b

3

)1/3
, (2.9)

exceeds the canonical value 175 (and is solid wherever ΓCoul ≥ Γm = 175; Haensel et al., 2007).
In the above, 𝑍 is the atomic number (nuclear charge), 𝑒 is the elementary charge, and 𝑘B is the
Boltzmann constant.

It is generally assumed (for simplicity) that matter in the outer crust forms a perfect crystal, with
a single nuclear species at each lattice site. This is generally referred to as the one component
plasma (OCP) approximation. In reality however, the crustal layers are expected to contain a
number of impurities, violating the OCP approximation (this will be discussed in greater detail
in Sec. 4.4). The melting temperature for a multi-component plasma can be ≲ 20% greater than
the canonical value implied by the OCP (corresponding to Γm = 175) for a given crustal layer
(Fantina et al., 2020). For a typical NS, the melting temperature is in the region 108 − 109 K.

4Rather than go into details here, the interested reader is referred to Gourgouliatos et al. (2022) for a comprehensive
review of the current progress on understanding magnetic field evolution.
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The squared-dependence of the nuclear charge in Eq. (2.9) indicates that the state of the matter
in the crust strongly depends on composition. Almost all models of the outer crust trace their
origins to the seminal paper of Baym et al. (1971). Perhaps the most essential input of this
model is the ground-state masses of the nuclei that occupy the lattice sites at a given density. In
the low density regions of the crust, these masses can be determined from terrestrial laboratory
measurements (e.g. Wang et al., 2017).

The equilibrium values of 𝐴 and 𝑍 at a given pressure are those that minimise the Gibbs free
energy (2.8). In the Wigner-Seitz (W-S) approximation, the Gibbs energy of the W-S cell is
often written (e.g. Haensel and Pichon, 1994)

𝐺cell(𝐴, 𝑍) = 𝑊N(𝐴, 𝑍) +𝑊L(𝑍 , 𝑛N) + [𝜖𝑒 (𝑛e) + 𝑃]/𝑛N , (2.10)

where 𝑊N is the energy of the nucleus (obtained from a table of known ground-state masses),
𝑊L is the body-centred cubic lattice energy (given by Eq. (3) of Baym et al., 1971), 𝜖e is the
electron energy density and 𝑛e, 𝑛N are the electron and nuclei number densities respectively. At
a given pressure, the latter quantities 𝑛e, 𝑛N are determined from the relations

𝑛e = 𝑍𝑛N ,

𝑃 = 𝑃e(𝑛e, 𝑍) + 𝑃L(𝑛N, 𝑍) .
(2.11)

Experimental nuclear data has come quite a long way since Baym et al. (1971), and the masses of
many new neutron-rich isotopes have been measured. A recent review by Chamel and Haensel
(2008), for example, state that, at the time of writing, the maximum density at which nuclei have
been studied experimentally was 𝜌exp

max ∼ 1011 g cm−3, up from around 𝜌exp
max ∼ 1010 g cm−3 at the

time the Baym et al. (1971) article was written (Haensel and Pichon, 1994). The composition of
the outer crust at densities ≲ 4× 1011 g cm−3 for a particular recent model is shown in Tab. 2.1,
where nuclides with experimentally-measured masses are indicated in boldface.

Beyond this density however, the nuclei are so neutron-rich that there is almost no experimental
information. The composition of the rest of the outer crust can only be determined from
theoretical extrapolations, and therefore the nuclei predicted to exist in these dense layers becomes
model dependent.

2.3.2 The inner crust

As the density inside the crust increases, the (ground-state) value 𝑍/𝐴 of nuclei decreases5. As
it does so, there is a corresponding reduction of the net chemical potential 𝜇n of neutrons within
the nuclei. The neutrons become less and less bound, until eventually, 𝜇n = 0 and the neutrons

5See the final column of Table 2.1.
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Table 2.1: Composition (atomic number 𝑍 , neutron number 𝑁 , and atomic mass number 𝐴)
of the outer crust of a non-accreted neutron star. The maximum density at which each element
appears is indicated in the fourth column. Nuclides with experimentally measured masses are

indicated in boldface. Adapted from Table VII of Rüster et al. (2006).

Element 𝑍 𝑁 𝜌max (g cm−3) 𝑍/𝐴

56Fe 26 30 8.02 × 106 0.464
62Ni 28 34 2.71 × 108 0.452
64Ni 28 36 1.33 × 109 0.438
66Ni 28 38 1.50 × 109 0.424
86Kr 36 50 3.09 × 109 0.419
84Se 34 50 1.06 × 1010 0.405
82Ge 32 50 2.79 × 1010 0.390
80Zn 30 50 6.07 × 1010 0.375

82Zn 30 52 8.46 × 1010 0.366
128Pd 46 82 9.67 × 1010 0.359
126Ru 44 82 1.47 × 1011 0.349
124Mo 42 82 2.11 × 1011 0.339
122Zr 40 82 2.89 × 1011 0.327
120Sr 38 82 3.97 × 1011 0.316
118Kr 36 82 4.27 × 1011 0.305

Figure 2.2: Schematic illustration of the ground-state structure of neutron stars as a function
of density. Reproduced from Newton (2013).

begin to ‘drip out’ of the nuclei entirely6. The layers of the inner crust therefore consist of
exceptionally neutron-rich nuclei that are immersed in a gas of dripped neutrons. The system is
strongly coupled, and subsequently the constituent layers of the inner crust are more commonly
identified as nuclear clusters rather than ‘individual nuclei’ like in the outer crust, in order to
account for the presence of the neutron gas.

In principle, the method to compute the equilibrium composition of the inner crust is the same as
in the outer crust; one must minimise the Gibbs energy (2.8) at fixed pressure. The total Gibbs

6One may think of this as a reduction of the energy required to liberate a neutron from a filled sea of degenerate
Fermions.
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energy of a Wigner-Seitz sphere in the inner crust however is different to that of the outer crust
(Eq. (2.10)), instead given by (Haensel and Zdunik, 1990a)

𝐺cell(𝐴, 𝑍) =𝑊N(𝐴, 𝑍 , 𝑛n) +𝑊L(𝑍 , 𝑛N)

+ [𝜖e(𝑛e) + (1 − 𝑛N𝑉𝑁 )𝜖n(𝑛n) + 𝑃]/𝑛N , (2.12)

and includes two additional quantities which account for the presence of dripped neutrons in the
Wigner-Seitz sphere. These are 𝑉N and 𝜖n, which represent the volume of the nucleus and the
energy density of the neutron gas respectively. At a given pressure in the inner crust, the values
of 𝑛e, 𝑛N, 𝑛n are determined from the three relations

𝑛e = 𝑍𝑛N ,

𝑃 = 𝑃e(𝑛e, 𝑍) + 𝑃L(𝑛N, 𝑍) + 𝑃n(𝑛n, 𝑍) ,

𝐴cell = 𝐴 + 𝑛n(1/𝑛N −𝑉N) .

(2.13)

The additional complication of solving for the equilibrium nuclei in the inner crust are two-fold:
(i) the contribution to the total energy density of the neutron gas must be accounted for, and (ii)
one must construct a theoretical framework in which to calculate the nuclear masses for a given
(𝐴, 𝑍) in the absence of experimental data.

Indeed, recreating a system anything like that of the inner crust in a terrestrial laboratory is far
beyond current capabilities. Generally speaking, there are three different theoretical approaches
to computing the structure of the inner crust. In order of increasing complexity, they are:

– i) a purely classical approach using the ‘Compressible Liquid Drop Model’ (CLDM),

– ii) a semi-classical treatment using the ‘Extended Thomas-Fermi’ approximation ,

– iii) a purely quantum mechanical treatment using the Hartree-Fock approximation.

The details of such methods are beyond the scope of this thesis, but a comprehensive introductory
description of each method can be found in Sections 3.2.1 - 3.2.3 of Chamel and Haensel (2008).
To highlight the differences that can arise for different models, the predicted composition of the
inner crust as calculated by Negele and Vautherin (1973) (an older calculation) and Baldo et al.
(2007a,b) (a more recent calculation) is given in Table 2.2.

2.4 Accreting neutron stars

The narrative of this chapter thus far has pertained specifically to the structure of single, isolated
neutron stars. It is the case, however, that many NSs are known to reside in binary systems
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Table 2.2: Composition (atomic number 𝑍 , neutron number 𝑁) of nuclear clusters in the inner
crust of a non-accreted neutron star calculated by Negele and Vautherin (1973) (left) and Baldo
et al. (2007a,b) (right). In contrast to Table 2.1, 𝑁 is a sum of the number of neutrons bound
in nuclei and of those forming a neutron gas, per nucleus (i.e. the number of neutrons in a

Wigner–Seitz sphere).

Element 𝑍 𝑁 𝜌max (g cm−3) 𝑍/𝐴cell

180Zr 40 140 4.67 × 1011 0.222
200Zr 40 160 6.69 × 1011 0.200
250Zr 40 210 1.00 × 1012 0.160
320Zr 40 280 1.47 × 1012 0.125
500Zr 40 460 2.66 × 1012 0.080
950Sn 50 900 6.24 × 1012 0.052
1100Sn 50 1050 9.65 × 1012 0.046
1350Sn 50 1300 1.49 × 1013 0.038
1800Sn 50 1750 3.41 × 1013 0.028
1500Zn 40 1460 7.94 × 1013 0.027
982Ge 32 950 1.32 × 1014 0.033

Element 𝑍 𝑁 𝜌max (g cm−3) 𝑍/𝐴cell

212Te 52 160 4.52 × 1011 0.325
562Xe 54 508 1.53 × 1012 0.106
830Sn 50 780 3.62 × 1012 0.064
1020Pd 46 974 7.06 × 1012 0.047
1529Ba 56 1473 1.22 × 1013 0.038
1351Pd 46 1305 1.94 × 1013 0.035
1269Zr 40 1229 2.89 × 1013 0.033
636Cr 20 616 4.12 × 1013 0.031
642Ca 20 622 5.65 × 1013 0.031
642Ca 20 622 7.52 × 1013 0.031
633Ca 20 613 9.76 × 1013 0.032

alongside a lower-mass companion. It is believed that around 100 of such systems exist in the
Milky Way alone (Liu et al., 2007), and are known as low mass X-ray binaries7 (LMXBs) since
they are visible primarily in the X-ray region of the electromagnetic spectrum.

2.4.1 Neutron stars in low-mass X-ray binaries

Low mass X-ray binaries are thought to be very long-lived, typically approaching 1010 years.
Over their lifetime, the NSs in these systems accrete hydrogen, helium and other light elements
from their sub-solar companion via a process known as Roche lobe overflow (Sec. 3.2.1) at rates
typically of the order 10−11 < ¤𝑀 < 10−8 M⊙ yr−1. This forms an accretion disk around the
NS, whereby matter may then fall onto the star’s surface (see Fig. 2.3). This process releases
gravitational binding energy, most of which is radiated away as X-rays, for which the system is
named.

Thermonuclear burning of accreted matter via rapid proton capture (rp) processes generates a
layer of mostly iron-peak nuclides (𝐴 ∼ 60 − 100) that settle at the base of the ocean (Fig. 2.4).
If the rate of accretion onto the star is low, the burning of helium is unstable, leading to a series
of thermonuclear flashes known as type I X-ray bursts8. The nature of type I X-ray bursts can
vary from system to system. Some are quasi-periodic, occurring every few hours/days at a time;
whilst others are more transient in nature, occurring over days/weeks. In the latter case, the
bursts are separated by extended periods of quiescence, where there is little to no accretion (see
Sec. 4.1).

7An LMXB system may also contain a black hole rather than a NS, though these are not of relevance for GW
emission.

8There are also type II X-ray bursts, but these are not released from the NS itself, but from the accretion disk as a
result of instabilities in the accretion flow.
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Figure 2.3: Schematic diagram of a low-mass X-ray binary. A compact object such as a black
hole or neutron star accretes matter from a low-mass companion star leading to characteristic

X-ray emission from the accretion disk. Image credit: astro.ufl.edu

Figure 2.4: Schematic illustration of the outer structure of an accreting neutron star, showing
the depths at which thermonuclear burning occurs. Image credit: Harpole (2018).

2.4.2 Composition of accreting neutron stars

An isolated neutron star is assumed to comprise matter in its ground-state, in complete thermo-
dynamic equilibrium. In the later stages of the star’s evolution, however, it is possible that the
matter might be shifted away from this equilibrium state. Such is the case for an old accreting NS,
with the process of accreting matter over millions years replacing the primordial crust. During
extended periods of accretion, the nuclear ashes produced as a result of thermonuclear burning
sink into the crust under the compressive weight of freshly accreted matter. Assuming constant
accretion at a rate ¤𝑀 / 10−9 𝑀⊙ yr−1, such a process should occur within ∼ 108 years, well
within the lifespan of a typical LMXB.

The composition of accreted NS crusts has been considered by many authors (e.g. Haensel
and Zdunik, 1990a; Haensel and Zdunik, 2003; Haensel and Zdunik, 2008; Gupta et al., 2008;

astro.ufl.edu
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Lau et al., 2018; Fantina et al., 2018; Gusakov and Chugunov, 2020). The general procedure
for calculating the composition is to follow the evolution of nuclear ashes (usually pure 56Fe;
assuming the one component plasma approximation) as they undergo compression. Inside
the crust, the ‘cold’ nature of the matter restricts further thermonuclear burning due to high
Coulomb barriers. Instead, a ‘reshuffling’ of the nucleons can only be achieved via electron
captures, neutron emissions, and pycnonuclear reactions.

Compression of matter increases the magnitude of the Fermi energy 𝐸𝐹 of free electrons, to the
point whereby an electron capture on a nucleus

(𝐴, 𝑍) + 𝑒− → (𝐴, 𝑍 − 1) + 𝜈e (2.14)

is energetically favourable. A nucleus (𝐴, 𝑍) is transformed into a nucleus (𝐴, 𝑍 − 1), ac-
companied by the emission of an electron neutrino. The process occurs as soon as the pres-
sure reaches the critical value 𝑃𝛽 , such that 𝑔(𝐴, 𝑍 , 𝑃𝛽) = 𝑔(𝐴, 𝑍 − 1, 𝑃𝛽), with 𝑔 being the
Gibbs energy of the nucleus Eq. (2.8) - related to the Gibbs free energy of the W-S cell Eqs
(2.10) and (2.12) as 𝑔 = 𝐺cell/𝐴 (Fantina et al., 2018). Further captures on the daughter nu-
cleus continue until the most energetically favourable nucleus 𝑍𝛼 is produced, occurring when
𝑔(𝐴, 𝑍𝛼, 𝑃𝛽) < 𝑔(𝐴, 𝑍𝛼 − 1, 𝑃𝛽). Much like the case of the ground-state crust, this corresponds
to a local minimum of 𝑔 at the pressure 𝑃𝛽 , except with an additional constraint that the mass
number 𝐴 be fixed to that of the assumed ashes of nuclear burning (Fig. 2.5).

Within the ultra-dense environment of these stars, it is required that nuclei must contain even
numbers of protons and neutrons in order to be stable (Haensel and Zdunik, 1990a). In the outer
crust (i.e. before the neutron drip point), this condition necessitates a two-step electron capture
process such that

(𝐴, 𝑍) + 𝑒− → (𝐴, 𝑍 − 1) + 𝜈e (2.15)

(𝐴, 𝑍 − 1) + 𝑒− → (𝐴, 𝑍 − 2) + 𝜈e + 𝜖nuc , (2.16)

each time the threshold pressure 𝑃𝛽 for a single electron capture is reached. The total number
of nucleons in the nuclei does not change as a result of electron capture, but does lead to a
systematic decrease in 𝑍 with increasing density. The first electron capture (2.15) occurs in
quasi-equilibrium, taking place very close to the threshold 𝜇𝑒 ≈ 𝐸{𝐴, 𝑍 − 1} − 𝐸{𝐴, 𝑍}9 and
leads to negligible heat release. The daughter nucleus, however, being ‘odd-odd’ (referring to
the numbers of protons and neutrons) is unstable, and subsequently captures a second electron
in a non-equilibrium way, since the pressure 𝑃𝛽 (the threshold pressure for the first 𝑒− capture)
is significantly above the threshold pressure on the odd-odd nucleus. As a result, this second

9This is essentially just the mass difference between the parent and daughter nuclei.
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electron capture releases heat energy, equivalent to the change in the Gibbs free-energy per
nucleus as

𝜖nuc ≡ Δ𝑔 =
[
𝐺cell(𝐴, 𝑍 − 1, 𝑃𝛽) −𝐺cell(𝐴, 𝑍 − 2, 𝑃𝛽)

]
/𝐴 . (2.17)

As matter is compressed deeper and deeper into the crust, nuclei become progressively more
neutron-rich as a result of successive electron captures. Beyond the neutron-drip point, further
captures may be accompanied by the spontaneous emission of free neutrons

(𝐴, 𝑍) + 𝑒− → (𝐴, 𝑍 − 1) + 𝜈e (2.18)

(𝐴, 𝑍 − 1) + 𝑒− → (𝐴 − Δn, 𝑍 − 2) + Δn + 𝜈e + 𝜖nuc , (2.19)

and a nucleus (𝐴, 𝑍) is transformed into nucleus (𝐴 − Δn, 𝑍 − 2) with the emission of Δn
neutrons and an electron neutrino. Since these reaction chains cannot be experimentally verified,
the number of emitted neutrons can vary depending on both the chosen nuclear-mass model and
assumed composition of X-ray burst ashes. The possibility of neutron emission results in much
more complicated reaction chains in the inner crust than the two-step electron captures in the outer
crust. For example, Haensel and Zdunik (1990a) predict that electron capture on a 52S nucleus
triggers a series of neutron emissions and further electron captures. Like in the outer crust,
captures continue until minimisation of the Gibbs free-energy 𝑔(𝐴, 𝑍𝛼, 𝑃𝛽) < 𝑔(𝐴, 𝑍𝛼 − 1, 𝑃𝛽)
is achieved10.

Minimisation of the Gibbs free energy on a 52S nucleus in the inner crust as calculated by Haensel
and Zdunik (1990a) yields the result

52S →46 Si + 6n + 2𝑒− + 2𝜈e , (2.20)

with the entire chain of reactions consisting of

52S + 𝑒− →52 P + 𝜈e ,
52P →51 P + n ,
51P →49 P + 2n ,
49P + 𝑒− →49 Si + 𝜈e ,
49Si →48 Si + n ,
48Si →46 Si + 2n .

(2.21)

10Though, remember that in the inner crust one must account for the presence of the neutron gas.



34 2. The Structure of Neutron Stars

Ordinarily, large Coulomb barriers in non-accreting NSs prohibits nucleus-nucleus interactions.
However, consecutive electron captures in accreting systems successively lowers the Coulomb
barrier (since Z decreases). At the same time, the compression of matter also squeezes the nuclei
into a smaller and smaller volume. This, combined with the associated increase of the zero-point
vibration energy of nuclei at each lattice site, may eventually trigger so-called pycnonuclear
reactions; whereby two identical nuclei tunnel through the depleted Coulomb barrier and fuse
to form a single nucleus (e.g. Shapiro and Teukolsky, 1983). Following an electron capture in
the inner crust (via the sequence of interactions (2.18) - (2.19)), the pycnonuclear fusion of two
nuclei may occur as

(𝐴, 𝑍 − 2) + (𝐴, 𝑍 − 2) → (2𝐴, 2𝑍 − 4) + 𝜖nuc . (2.22)

The resulting nucleus is usually unstable, and is accompanied by significant energy release (as
well as neutron emission) as the daughter nucleus de-excites:

(2𝐴, 2𝑍 − 4) → (2𝐴 − Δn, 2𝑍 − 4) + Δn + 𝜖nuc . (2.23)

The seminal description of the evolution of compressed accreted matter was calculated by Haensel
and Zdunik (1990a) (henceforth HZ90). They calculated the composition and full sequence of
nuclear interactions using the compressible liquid drop model, assuming ashes of stable nuclear
burning to be pure 56Fe. This model was later extended by the same authors (Haensel and
Zdunik, 2008; henceforth HZ08) to calculate the composition of the accreted crust assuming
X-ray ashes of 106Pd rather than 56Fe, in response to results obtained from newer X-ray burst
simulations by Schatz et al. (2001), which utilized a much larger network of nuclei than previous
works.

More recently, the composition of accreted NS crusts was considered by Fantina et al. (2018)
(henceforth F+18). Rather than use utilize the compressible liquid-drop model, F+18 follow a
more microscopic approach; based on self-consistent nuclear energy-density functional (EDF)
theory (e.g. Bender et al., 2003; Stone and Reinhard, 2007), utilizing the Brussels–Montreal
EDFs BSk19, BSk20, and BSk21 (for which the composition of the crust of non-accreting NSs
has already been calculated; Pearson et al., 2011, 2012).

The improvements of the F+18 model compared to the HZ90/HZ08 models are twofold:

– i) the use of more recent experimental atomic mass measurements,

– ii) the inclusion of nuclear shell effects.

In Fig. 2.5 we show the run of atomic number 𝑍 (solid lines) and mass number 𝐴 (dashed lines)
with density for each of the HZ90, HZ08 and F+18 models. In the outer crust, the composition
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Figure 2.5: Atomic number 𝑍 (dashed lines) and mass number 𝐴 (solid lines) of nuclear
clusters in the crust of an accreting neutron star as a function of the density for the EoS models
BSk19-21 (F+18), HZ90, and HZ08 indicated near the curves. The location of pycnonuclear
reactions are marked by stars, and colored arrows denote the transition from the outer to the

inner crust (i.e. the neutron drip point).

is strongly tied to the assumed ashes of nuclear burning. The HZ08 model (which assumes ashes
of 106Pd) predicts a highly stratified crust, with approximately twice as many electron captures
occurring as the HZ90 model (which both assume the compressible liquid drop model). The
F+18 model - the more microscopic calculation - also predicts an identical (𝐴, 𝑍) composition
to the HZ90 model in the outer crust (both assume ashes of pure 56Fe), differentiated only by the
densities at which nuclei first appear.

The structure of the inner crust is also notably different between the three models. Firstly, Fig. 2.5
indicates that once pycnonuclear fusion becomes possible (𝜌 ∼ 1012 g cm−3); the compositions
of the HZ90 and HZ08 models converge, suggesting that the composition in the inner crust
(1012 − 1013 g cm−3) is largely independent of the burst ashes in the liquid-drop approach. Both
HZ90 and HZ08 predict the inner crust to be far more stratified than the micropscopic F+18
approach, however, which instead predicts a freezing of the nuclear composition at 𝑍 = 14; a
result that may be attributed to the inclusion of the proton shell effects. Analogous to that of the
atomic shell model (where filled orbital electron shells results in better stability), it is expected
that specific numbers of nucleons correspond to complete shells within atomic nuclei. Since the
successive electron captures leads to the systematic decrease in 𝑍 with density, there are certain
points where the binding energy of the next nucleus in the capture sequence is significantly
less than the last one; corresponding to nuclei that contain a complete shell. Such a result also
corroborates predictions made by Dutta et al. (2004), who suggest that 𝑍 = 14 is a magic proton
number in neutron star matter, whereby the protons are arranged into a complete shell and thus
more stable against both electron captures and pycnonuclear reactions.
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Figure 2.6: Pressure versus mass-energy density of the crust (left panel) and core (right panel)
of accreted (AC) and non-accreted (GS) NSs for EoSs based on the EDFs BSk19, BSk20, and
BSk21. Vertical dotted lines indicate the approximate location of nuclear transitions across

each EoS model.

Pycnonuclear reactions in the inner crust are marked as stars in Fig. 2.5, that (along with
individual electron captures) release heat locally in the crust during periods of active accretion.
These reactions are thought to source the X-rays observed from LMXBs during later periods of
quiescence, as the star cools and heat is transported to the surface (Sec. 4.1). How exactly these
non-equilibrium interactions dictate the thermal structure will be discussed in greater detail in
Chapter 4.

2.5 Analytical representations of the equation of state: BSk19,
BSk20, and BSk21

The equation of state is the fundamental input for many neutron star calculations. In Fig. 2.6 we
plot the pressure-density relations calculated from the EDFs BSk19, BSk20, and BSk21 in the
crust (left panel) and core (right panel) of both accreted and non-accreted neutron stars11.

Throughout the star, it is required that the pressure vary continuously (Baym et al., 1971).
Because of this, at a transition (𝐴, 𝑍) → (𝐴′, 𝑍 ′) between two nuclear species, the pressure
must also be continuous (Haensel and Zdunik, 1990a). This fact necessitates abrupt density
discontinuities every time there is a change of nuclear species, which can be seen clearly in
Fig. 2.6. In the outer crust, relativistic electrons supply most of the pressure, indicating that the
electron number density 𝑛e must also be continuous at each transition. For the accreted crust,
the decrease in 𝑍 as a result of double electron capture indicates that the baryon number density
must change by an amount (Baym et al., 1971)

11The BSk equation of state tables themselves are freely available from the Centre de Données astronomiques
de Strasbourg at https://vizier.cds.unistra.fr/viz-bin/VizieR?-source=J/A+A/665/A74 for the ac-
creted crust, and https://vizier.cds.unistra.fr/viz-bin/VizieR?-source=J/A+A/559/A128 for the
non-accreted crust.

https://vizier.cds.unistra.fr/viz-bin/VizieR?-source=J/A+A/665/A74
https://vizier.cds.unistra.fr/viz-bin/VizieR?-source=J/A+A/559/A128
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𝑛′b − 𝑛b ≈ 𝑛e

(
𝐴′

𝑍 ′ −
𝐴

𝑍

)
, (2.24)

which corresponds to a fractional change in the rest mass density 𝜌 = 𝜖/𝑐2 as

Δ𝜌

𝜌
≈ Δ𝑛b

𝑛b
≈ 𝑍/𝐴
𝑍 ′/𝐴′ − 1 . (2.25)

The increase in density at each interface Δ𝜌/𝜌 in the accreted crust for each of the BSk19,
BSk20, and BSk21 equations of state can be found in the fifth columns of the composition tables
A.1 - A.3, reproduced (for convenience) from Fantina et al. (2018) in Appendix A.112.

These density discontinuities can introduce an array of difficulties in numerical calculations at
points in the crust where discontinuities occur. This is especially true of calculations that involve
derivatives of the mass density 𝜌 (such as the adiabatic index; Sec. 2.5.2.1), or integrals over the
density profile of the crust (Sec. 6.2.1.2).

An approximation of the EoS, however, may be implemented to (partially) circumvent these diffi-
culties. To this end, we shall follow a method outlined by Potekhin et al. (2013) who approximated
the BSk19-21 EoSs for non-accreted NSs, with a fully analytical function which ‘smoothly’
interpolates across the jumps. By introducing two variables 𝜁 = log10(𝑃/dyne cm−2) and
𝜉 = log10(𝜌/g cm−3) - which we shall henceforth label as 𝜒 in order to avoid future confusion
of 𝜉𝑖 with a displacement vector field (Sec. 6.2) - the authors were able to parameterise the
pressure-density relation 𝑃(𝜌) of non-accreted neutron stars as (cf. their Eq. (3))

𝜁 =
𝑎1 + 𝑎2𝜒 + 𝑎3𝜒

3

1 + 𝑎4𝜒
{exp[𝑎5(𝜒 − 𝑎6)] + 1}−1

+ (𝑎7 + 𝑎8𝜒){exp[𝑎9(𝑎6 − 𝜒)] + 1}−1

+ (𝑎10 + 𝑎11𝜒){exp[𝑎12(𝑎13 − 𝜒)] + 1}−1

+ (𝑎14 + 𝑎15𝜒){exp[𝑎16(𝑎17 − 𝜒)] + 1}−1

+ 𝑎18

1 + [𝑎19(𝜒 − 𝑎20)]2 + 𝑎21

1 + [𝑎22(𝜒 − 𝑎23)]2 ,

(2.26)

where the values of the parameters 𝑎𝑖 for the (non-accreted) BSk19, BSk20, and BSk21 EoSs
are given in Table 2 of Potekhin et al. (2013).

In order to parameterise the accreted EoS, we use the Python Scipy routine curve fit to
create a non-linear least squared fit to the analytic function 𝜁 using tabulated data specific to the
accreted BSk19-21 equations of state. Initial guesses for 𝑎1−23 were constructed by fixing them
to that of values given in Table 2 of Potekhin et al. (2013) for the corresponding non-accreted

12We reproduce the tables here since we will make use, and refer back to, these tables a number of times at various
points throughout this thesis.
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Table 2.3: Values of 𝑎𝑖 that parameterise the analytical fit Eq. (2.26) for the accreted equations
of state BSk19, BSk20 and BSk21 (see Fig. 2.7).

𝑖 BSk19 BSk20 BSk21
𝑎𝑖

1 3.790 3.916 4.843
2 7.461 7.436 6.989
3 0.00759 0.00766 0.00712
4 0.20818 0.20799 0.19326
5 3.913 3.588 4.078
6 12.260 12.263 12.242
7 13.284 13.752 10.523
8 1.3734 1.3336 1.5900
9 3.898 3.578 4.108
10 - 13.026 - 23.342 - 28.724
11 0.9307 1.6281 2.0854
12 5.91 4.99 4.85
13 14.387 14.191 14.303
14 16.652 23.575 22.880
15 - 1.0530 - 1.5222 - 1.7717
16 2.489 2.135 0.999
17 15.405 14.980 15.329
18 - 0.026 - 0.018 0.035
19 2.25 6.67 4.64
20 11.44 11.64 11.74
21 - 0.028 - 0.031 - 0.082
22 20.3 15.0 10.0
23 14.20 14.19 14.15

EoS. The new (optimal) values of 𝑎𝑖 were then found by enforcing that the sum of the squared
residuals of 𝜁 [𝜒(𝜌), 𝑎𝑖] − 𝑃, be minimized. The optimal parameters for the accreted EoSs are
given in Table 2.3.

In the upper panels of Fig. 2.7 we show BSk19 (left), BSk20 (center), and BSk21 (right),
together with their analytical representations. Crosses in the upper panels show rarefied (for
clarity) tabulated data for the accreted crust (AC), and the colored lines show the analytical fits
computed via Eq. (2.26) and Table 2.3. To aid comparison, we also include the analytic fits
for the non-accreted (ground-state) crust (GC) computed via Eq. (2.26) and Table 2 in Potekhin
et al. (2013). We plot the function 𝜁 − 1.4𝜒 as a function of the density, since this allows for a
better inspection of the fit in the crust, which we care most about.

Though the tabular data is rarefied, one can easily identify the density jumps Δ𝜌/𝜌 with the aid
of the vertical dotted lines in the lower panel of Fig. 2.7, which indicate the location of each
capture layer in density space across each EoS (see the second columns in Tables A.1 - A.3).
The lower panel shows the relative percentage difference between the fits and the tabulated data
(of the accreted star). The typical error in the fits is ≈ 0.3%, a similar level of accuracy to the
fit of the non-accreted EoSs obtained by Potekhin et al. (2013). The maximum error we obtain,
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Figure 2.7: Upper panels: Analytical fits to the pressure-density relations predicted by the
EDFs BSk19 (left), BSk20 (centre) and BSk21 (right) for ‘AC’ accreted (coloured lines; Fantina
et al., 2018, 2022) and ‘GC’ ground-state non-accreted (black lines; Goriely et al., 2010; Pearson
et al., 2011, 2012) neutron stars. Symbols denote (rarefied) tabular data points. Coloured lines
indicate the analytic fits to the accreted crust obtained via Eq. (2.26) and Table 2.3. Black
lines indicate the analytic fits to the non-accreted crust obtained via Eq. (2.26) and Table 2 in
Potekhin et al. (2013). Lower panel: Relative percentage difference between the tabulated data
and analytic fit of the accreted crust. Vertical dotted lines indicate the location of each capture

layer from Tables A1 - A3 of Fantina et al. (2018).

however, is 26% (for BSk21), and occurs at 𝜌 = 1.2 × 1012 g cm−3, corresponding to a density
jump Δ𝜌/𝜌 = 0.68 at the location of a pycnonuclear reaction in the inner crust (Table A.3).
Such a large discontinuity is challenging for the least-squares fit, which attempts to smoothly
interpolate between the two points either side of the jump.

In what follows, we shall proceed with the analytical representations of the BSk19-21 equations
of state obtained via Eq. (2.26), using the values of 𝑎𝑖 given in Table 2.3 for the accreted crust
(and values of 𝑎𝑖 given in Table 2 of Potekhin et al. (2013) when making use of the non-accreted
EoS). The fits do not make any appreciable difference to the hydrostatic and thermal profiles of
the star as compared to using only tabulated data (the average error in the fits is ≲ 1%). Any
slight losses in accuracy in the thermal calculation, will, in any case, be far outweighed by the
fact that we achieve much better numerical convergence when solving the elastic perturbation
equations (Sec. 6.2.1) when using the analytical fit as compared to the tabulated data.

2.5.1 Fermion number fractions

Most of the physical parameters inside neutron stars are functions of position. In the accreted
crust, many of these parameters are determined by the composition, which also varies with depth
(Fig. 2.5). The F+18 composition tables A.1 - A.3 provide a wealth of data, including the values
of atomic number 𝑍 , mass number 𝐴, and the mass fraction of free neutrons 𝑋n that comprise the
different layers of the crust. From these parameters, a number of other useful density-dependent
quantities can be derived.
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Firstly, the number density of the nuclei of particular species (𝐴, 𝑍) within a given crustal layer
can be computed as

𝑛N =
𝜌

𝐴𝑚b
(1 − 𝑋n) , (2.27)

where 𝑚b = 1.67 × 10−24 g is the average baryon mass. From this quantity, the number of
electrons per unit volume may be obtained via

𝑛e = 𝑛𝑁 𝑍 =
𝑍

𝐴

𝜌

𝑚b
(1 − 𝑋n) . (2.28)

Similarly, past the neutron drip point, the number of free neutrons in the inner crust per unit
volume is calculated as

𝑛n = 𝑛b𝑋n , (2.29)

where the baryon number density 𝑛b is given by

𝑛b =
𝜌

𝑚b
. (2.30)

It is assumed that the cores of both accreting and non-accreting neutron stars are the same
(Fantina et al., 2022). The EDFs BSk19-21 predict a npe𝜇 matter composition in the core, as
calculated by Pearson et al. (2011, 2012). The number densities of these particles are given by

𝑛x = 𝑛b𝑌x , (2.31)

where𝑌x = 𝑌n ,𝑌p ,𝑌e ,𝑌𝜇 are the number fractions of the neutrons, protons, electrons, and muons
respectively. Alongside the analytical expressions for the EoS, convenient fitting formulae for
calculating the lepton fractions𝑌𝑒 and𝑌𝜇 in the core were also obtained by Potekhin et al. (2013)
(cf. their Eq. (9)), and are given by

𝑌e, 𝜇 =
𝑞
(e, 𝜇)
1 + 𝑞 (e, 𝜇)

2 𝑛b + 𝑞 (𝑒, 𝜇)
3 𝑛4

b

1 + 𝑞 (e, 𝜇)
4 𝑛

3/2
b + 𝑞 (e, 𝜇)

5 𝑛4
b

exp(−𝑞 (e, 𝜇)
6 𝑛5

b) , (2.32)

where the parameters 𝑞 (𝑒, 𝜇)
𝑖

are given in Table 2.4 (reproduced from Table 6 of Potekhin et al.,
2013). The core is usually assumed to be electrically neutral, and so the proton and neutron
fractions therefore follow from Eq. (2.32) as
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𝑌p = 𝑌e +𝑌𝜇 , (2.33)

and

𝑌n = 1 −𝑌p . (2.34)

It is possible for Eq. (2.32) to return a negative value, in which case it should be replaced by zero
(Potekhin et al., 2013). Such a scenario is possible for the muons, in regions of the core where
they are forbidden (i.e where the muon chemical potential exceeds than of the electron chemical
potential; 𝜇𝜇 > 𝜇𝑒).

As we shall see, in order to determine the thermal properties of the crust, it is useful to know
the Fermi momentum of these particles. Irrespective of whether they are relativistic or not, the
Fermi momentum of each of the constituent particles can be calculated from their respective
number densities as

𝑝F = ℎ̄(3𝜋2𝑛x)1/3 , (2.35)

where x = e, 𝜇, n, p denotes the particle of interest. In the crust, the number densities of free
electrons and free neutrons are given by Eqs (2.28) and (2.29) respectively. In the core, the
number densities of each particle are obtained from Eqs. (2.32) - (2.34). The particle fractions
per baryon 𝑌e, 𝜇, n, p in both the crust and core of an accreting neutron star are shown in Figs 2.8
and 2.9 respectively, as a function of the baryon density for each of BSk19, BSk20, and BSk21.

If required, to check how relativistic the Fermions are, one can compute the so-called relativity
parameter 𝑥r, which for a Fermi gas, is

𝑥r =
𝑝F
𝑚x𝑐

=
ℎ̄

𝑚x𝑐
(3𝜋2𝑛x)1/3 . (2.36)

In general, electrons are relativistic for all but the lowest density regions of the crust, whilst
muons are relativistic in the core. The neutrons on the other hand are very much non-relativistic
in the crust, but can become (along with the protons) mildy-relativistic in the inner core. When
relativistic-effects are important, the rest-mass of the particle (𝑚e = 9.1 × 10−28 g, 𝑚n ≈ 𝑚p =

𝑚b) must be necessarily replaced by the effective mass of the particle

𝑚∗
x =

√︄
𝑚2

x +
𝑝2

F
𝑐2 . (2.37)
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Table 2.4: Values of 𝑞 (𝑒,𝜇)
𝑖

which determine the particle fractions (2.32) for the equations of
state BSk19, BSk20 and BSk21. Reproduced from Table 6 of Potekhin et al. (2013).

i BSk19 BSk20 BSk21
𝑞
(e)
𝑖

1 - 0.0157 - 0.0078 0.00575
2 0.9063 0.075 0.4983
3 0.0 0.508 9.673
4 26.97 22.888 16.31
5 106.5 0.449 38.383
6 5.82 0.00323 0.0

𝑞
(𝜇)
𝑖

1 - 0.0315 - 0.0364 - 0.0365
2 0.25 0.2748 0.247
3 0.0 0.2603 11.49
4 12.42 12.99 24.55
5 72.4 0.0767 48.544
6 19.5 0.00413 0.0
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Figure 2.8: Left panel: Number fraction of electrons 𝑌e in the crust of an accreting neutron
star (relative to the number of nucleons) as a function of the baryon number density 𝑛b for the
three accreting equations of state BSk19, BSk20, and BSk21. Right panel: Number fraction of
free neutrons 𝑌n in the crust. In both panels the vertical dotted lines denotes the (approximate)

neutron drip point across each EoS model.
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Figure 2.9: Left panel: Number fractions of electrons 𝑌e (solid lines) and muons 𝑌𝜇 (dashed
lines) in the core of a neutron star as functions of the baryon number density 𝑛b as computed
via Eq. (2.32) and Table 2.4. Right panel: Number fractions of protons 𝑌p and neutrons 𝑌n in

the core.
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2.5.2 Microphysical structure of the accreted crust

Having described the composition and equation of state (i.e. the pressure-density relation), there
are two more additional pieces of physics (that are determined by EoS) that we require in order
to complete the ‘physical’ picture of the accreted crust. These are the adiabatic index Γ, and
shear modulus 𝜇, which we shall now discuss in turn.

2.5.2.1 The adiabatic index

From the analytical expressions Eq. (2.26), differentiation with respect to the mass density 𝜌
allows us to compute the adiabatic index, defined by (Potekhin et al., 2013)

Γ =
𝑛b
𝑃

𝑑𝑃

𝑑𝑛b
=

[
1 + 𝑃

𝜌𝑐2

]
𝜌

𝑃

𝑑𝑃

𝑑𝜌
. (2.38)

The run of Γ with density for each of BSk19 (left), BSk20 (center), and BSk21 (right) (Fig. 2.7)
is given in Fig. 2.10. First, let us compare the adiabatic index of the accreted crust obtained
via finite difference methods (solid lines), with that of the non-accreted EoS (dashed lines; as
obtained from the analytical fit). In both cases the pressure in the outer layers is supplied almost
entirely by ultra-relativistic electrons, and thus Γ ≈ 4/3. At densities 1011 ≲ 𝜌 ≲ 1013 g cm−3,
however, the adiabatic index of the accreted crust ΓAC is significantly different from that of the
ground-state crust ΓGC.

Specifically, the adiabatic index in the two types of crust quickly diverge at the neutron drip
point (𝜌 ∼ 4.5 × 1011 g cm−3). This behavior can be understood in the following way. In the
shallowest layers of the inner crust (i.e. where the number fraction of free neutrons is low), the
adiabatic index may be approximated as (Fantina et al., 2022)

Γ ≈ 𝜕 log(𝑃)
𝜕 log(𝑛b)

����
𝑍/𝐴cell

+ 𝜕 log(𝑃)
𝜕 log(𝑍/𝐴cell)

����
𝑛b

𝑑 log(𝑍/𝐴cell)
𝑑 log(𝑛b)

≈ 4
3

[
1 + 𝑑 log(𝑍/𝐴cell)

𝑑 log(𝑛b)

]
, (2.39)

and the pressure may be assumed to still be dominated largely by the electrons. The number
density of electrons in the crust is 𝑛𝑒 ∝ 𝑍/𝐴 (i.e. ensuring charge neutrality). In the inner accreted
crust, the ratio 𝑍/𝐴cell (𝐴cell referring to the fact that ‘clusters’ of nuclei form in the inner crust)
can only change at a transition (𝐴1, 𝑍1) → (𝐴2, 𝑍2), and thus 𝑑 (𝑍/𝐴cell)/𝑑 log(𝑛b) = 0. The
value of ΓAC therefore begins to push slightly above 4/3 with depth as the number of free neutrons
in the crust increases (the fraction of free neutrons at each capture layer is given in the 4th column
of Tables A.1 - A.3). In the catalysed crust however, where there are no electron captures, there
is a drastic continuous fall in 𝑍/𝐴cell (and therefore 𝑑 (𝑍/𝐴cell)/𝑑 log(𝑛b) < 0; cf. Fig. 4 of
Fantina et al., 2018), leading to a correspondingly drastic fall in ΓGC at on the onset of neutron
drip.
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At densities exceeding that of the heat producing region in the accreted crust (𝜌 ≳ 1013 g cm−3),
note that the EoSs merge as the fraction of free neutrons 𝑋n increases and neutrons become
overwhelmingly the dominant source of pressure in both types of crust (Fig. 2.7 and see Fantina
et al., 2022). This leads to a merging of Γ at high density, where they become very similar near
the crust-core transition.

Now compare these results with our analytical fit to the accreted EoS (dotted lines), which shows
a strong softening compared to that of the tabulated data. Softening occurs since the fit smooths
out the density discontinuities that occur at each capture layer (particularly those that occur at
∼ 1012 − 1013 g cm−3). This smoothing of the discontinuities leads to what would otherwise
indicate an effective continuous decrease in the ratio 𝑍/𝐴cell, and a corresponding decrease in
ΓAC, to the point whereby the analytic fit to the accreted EoS largely resembles that of a non-
accreted crust.

This is not to say we should be dismissive of our analytical fit, however. On the contrary, a more
recent study by Gusakov and Chugunov (2020) indicates that actually the EoS of the accreted
inner crust should be very close to that of the ground-state (nonaccreted) EoS (cf. their Fig.
1). Unlike the picture of the accreted crust sketched out in Sec. 2.4.2, Gusakov and Chugunov
(2020) argue that the treatment of the inner crust in the F+18 model (and by extension HZ90
and HZ08) is thermodynamically inconsistent, since it is predicated on the notion that unbound
neutrons move together with nuclei as accreted matter is compressed through the inner crust.
The so-called neutron Hydrostatic and Diffusion (nHD) model, which allows free neutrons to
filter through different layers of the crust, in fact predicts a dramatic softening of the accreted
EoS, and therefore consistent with the analytic representations of the accreted crust derived in
the previous section.

The composition of the accreted crust as predicted by the nHD model is not the same as that
predicted by the Fantina et al. (2018) model (see Fig. 5 of in Gusakov and Chugunov, 2020).
There is therefore some systematic error in pairing the compositional information given in Tables
A1 - A3 in Fantina et al. (2018) with the analytical fit to the EoS shown in Fig. 2.7 (and Fig.
2.10). Though, given that our analytical fits produce an adiabatic index ΓFit

AC that lies somewhere
in the region between the accreted (ΓAC) and ground-state (ΓGC) crust, we note that the errors
are still within bounds set by both the Gusakov and Chugunov (2020) and Fantina et al. (2022)
models.

It would, in future, be worthwhile repeating all of the calculations which are to be presented in
this thesis using the GC20 model (alongside the BSk19-21 models we are already considering).
At the time of writing, however, the EoS for GC20 model is not readily available, as well as
the compositional information having only recently been made available in Tables 1 and 2 of
Potekhin et al. (2023)13.

13We will, however, briefly make use of their composition tables when estimating the mass quadrupole moment
generated from capture layer shifts for different equation of state models in Sec. 6.3.2.
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Figure 2.10: Adiabatic index Γ = 𝜕 ln 𝑃/𝜕 ln 𝜌 corresponding to the pressure-density relations
given in Fig. 2.7. Solid lines indicate Γ obtained via finite difference methods on tabulated data
of the accreted equations of state BSk19 (left), BSk20 (centre), and BSk21 (right), while dotted
and dashed lines were obtained via differentiation of Eq. (2.26) for the analytical representations

of the accreted (AC) and ground-state (GC; non-accreted) equations of state respectively.

2.5.2.2 Shear modulus

The crust is usually assumed to be an isotropic, body-centered cubic Coulomb crystal with an
effective shear modulus 𝜇. To further complete the picture of our accreted crust, we use the
result of Zdunik et al. (2008) (their Eq. (18)) obtained from the original calculation by Ogata
and Ichimaru (1990), which we write as

𝜇 = 7.8 × 1028
(

𝜌

1013 g cm−3

)4/3 (103(1 − 𝑋n)
𝐴

)4/3 (
𝑍

40

)2
dyne cm−2. (2.40)

We apply this formula to describe the shear modulus everywhere in the accreted crust. This
choice is only an approximation, however, since Eq. (2.40) is (strictly speaking) only valid for
point-like nuclei (Zdunik et al., 2008). Recall that the deepest layers of the crust likely contain
the series of finite-sized ‘nuclear pastas’ discussed in Section 2.3.2 (recall Fig. 2.2) which, in
principle, should be modelled differently (see e.g. Caplan et al., 2018 and references therein).
We neglect the existence of pasta phases here, however, since the BSk19-21 EoSs assume purely
spherical nuclei exist down to the crust-core transition (Pearson et al., 2012; Fantina et al., 2022).

The run of 𝜇 with pressure in the accreted crust is shown in the bottom panel of Fig. 2.11. It can
be seen that the shear modulus is small relative to the pressure (𝜇/𝑃 ∼ 10−3 − 10−2), which is
indicative of how large a deformation can be supported by the crust (Ushomirsky et al., 2000).
A series of (smoothed) discontinuities in the shear modulus are also observed at the location of
each capture layer as (𝐴1, 𝑍1) → (𝐴2, 𝑍2) due to steps in both 𝑍 and 𝐴 (as shown in the top
two panels).
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Figure 2.11: The run of atomic number 𝑍 (upper panel), mass number 𝐴 (middle panel) and
shear modulus 𝜇/𝑃 (bottom panel) with depth in the crust of an accreted neutron star for the
equations of state BSk19 (red solid line), BSk20 (blue dashed line) and BSk21 (green dotted

line). Data is taken from Tables 1 and A1 - A3 of Fantina et al. (2018).

2.6 The stellar structure equations

In this section we derive both the Newtonian and relativistic equations of stellar structure for
a non-rotating, spherically-symmetric body in static equilibrium. We will see how the EoS is
the crucial ingredient for building spherical, fluid stars, and discuss the differences in the global
structure of neutron stars composed of accreted and catalysed matter.

2.6.1 Newtonian stars

Neutron stars are often modelled as an ideal fluid. By definition, ideal (perfect) fluids have zero
shear stresses, zero viscosity, and are isotropic in the sense that they exert pressure equally in
all directions. In Newtonian theory, the fundamental equations of fluid dynamics (for a perfect
fluid) are the continuity equation

𝜕𝑡 𝜌 + ∇𝑖 (𝜌𝜈𝑖) = 0 , (2.41)
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and the Euler equation

𝜌(𝜕𝑡 + 𝜈 𝑗∇ 𝑗)𝜈𝑖 = −∇𝑖𝑃 − 𝜌∇𝑖Φ , (2.42)

where 𝜌, 𝑃, 𝜈 are the rest-mass, (isotropic) pressure, and velocity of the fluid respectively, and
Φ is the gravitational potential, given by Poisson’s equation

∇2Φ ≡ ∇𝑖 (∇𝑖Φ) = 4𝜋𝐺𝜌 , (2.43)

where 𝐺 is the gravitational constant. The continuity equation is a mathematical statement of
mass conservation; the rate of change of mass in a fixed volume is equal to flux of mass through
that volume. For a spherically-symmetric body, the total mass 𝑀 is

𝑀 ≡
∫ 𝑅

0
4𝜋𝑟2𝜌(𝑟)𝑑𝑟 , (2.44)

where 𝑅 is the radius of the body.

Similarly, the Euler equation is a mathematical statement of momentum conservation derived
from Newton’s second law; acceleration of the fluid (given by the time derivative of 𝜈 on the
LHS of Eq. (2.42)) is sourced by the presence of a pressure gradient and a gravitational field
on the RHS of Eq. (2.42). The gravitational field itself is determined from Eq. (2.43), and is
derived from Gauss’s law for gravity which states that the gravitational flux through any closed
surface is proportional to the enclosed mass.

Objects such as stars are self-gravitating bodies - the individual constituents of the star are held
together by the combined gravity of the object as a whole. Stable stars are also assumed to be in
equilibrium, as well as static. In this instance, the velocity in the fundamental equations (2.41) -
(2.42) vanishes, leading to a trivial solution of the continuity equation (2.41) and the reduction
of the Euler equation (2.42) to just

∇𝑖𝑃 = −𝜌∇𝑖Φ , (2.45)

which is commonly referred to as the equation for hydrostatic equilibrium of a static, non-rotating
fluid body. In this state, it is supported against gravitational collapse by just the fluid pressure
gradient.

A static, non-rotating body that is perfectly spherical has a total mass given by Eq. (2.44). If we
define 𝑚(𝑟) as the mass enclosed within some radius 𝑟 < 𝑅, then it follows that

𝑑𝑚(𝑟)
𝑑𝑟

= 4𝜋𝑟2𝜌(𝑟) . (2.46a)
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Similarly, the equation for hydrostatic balance (2.45) for a spherically symmetric body (i.e. one
that depends only on the radial coordinate) can be written

𝑑𝑃(𝑟)
𝑑𝑟

= −𝜌 𝑑Φ(𝑟)
𝑑𝑟

, (2.46b)

where the latter term on the RHS may be obtained simply by integrating Poisson’s equation to
give

𝑑Φ(𝑟)
𝑑𝑟

=
𝐺𝑚(𝑟)
𝑟2 . (2.46c)

The coupled equations (2.46) are the Newtonian equations of stellar structure. However, as they
currently stand, these equations cannot be solved. In order to close this system, we need the
equation of state; the pressure-density relation introduced in Section 2.2.

The Newtonian structure equations (2.46) are often used to model celestial objects such as
main-sequence stars. The high-density regions of NSs, however, are not well described by these
equations due to their compactness (an estimate of the significance of relativistic effects on
a celestial object). A description of the core of a NS requires full general relativity in order
to produce accurate results. This is not to say that Newtonian models are useless, however.
Newtonian calculations are much easier to construct that those in general relativity, and may still
be applicable in low-density regions like the crust.

Indeed, in this thesis we shall employ both a relativistic, as well as a Newtonian framework in
order build thermal mountains. Specifically, we shall use the relativistic hydrostatic equations
(which are to be discussed in the following section) in order to construct our background model,
but make use of the Newtonian heat equations (Sec. 4.2) in order to compute our thermal
model, as well as a modified form of the Newtonian Euler equation (2.42) (i.e. with the inclusion
of a term involving the shear modulus 𝜇) to compute the elastic response of the crust due to
lateral temperature gradients (Sec. 6.2.1). We do this chiefly in order to make our calculations
simpler, but so that we may still make use of realistic equations of state in our calculations,
which would otherwise lead to grossly unphysical density profiles in Newtonian theory. Given
the compactness of a typical neutron star is 𝑀/𝑅 ∼ 0.2, however, we should expect fractional
errors in the thermal structure and the elastic calculation when neglecting general relativity.
Nonetheless, we shall proceed in this manner in order to simplify the overall problem and focus
on prescribing a realistic source term (Sec. 6.2.1) that has, until now, been absent in the literature.

2.6.2 Relativistic stars

As we have now seen, the equilibrium structure of a fluid star results from the balance between the
‘inwards pull’ of gravity and the ‘outwards push’ of the fluid pressure. Deriving the hydrostatic
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structure equations in a relativistic framework is, in principle, not vastly different from that of
the Newtonian procedure, except in one important regard.

The Euler equation (2.42) is, by construction, predicated on the fundamental premise of Newton’s
second law of motion. The existence of a gravitational acceleration ∇𝑖Φ in Eq. (2.42) is
necessarily associated with a ‘force’ that results in the acceleration of the fluid element. The term
‘gravitational acceleration’ under the description of general relativity, however, is a misnomer.
In a Newtonian sense, gravitational acceleration is truly an acceleration of an object in free fall
due to some gravitational force. In a relativistic description, though, such a force is fictitious.

Indeed, in general relativity, space and time are unified to into a single four-dimensional con-
tinuum. Whilst space in Newtonian gravity is necessarily flat, this is not the case in general
relativity. The presence of matter results in a ‘warping’ of this so-called spacetime, with gravity
manifesting as the geometric impression and objects in free fall traveling along geodesics in
the spacetime. How exactly the matter shapes the geometry of the spacetime is dictated by the
relativistic field equations14

𝐺𝑎𝑏 ≡ 𝑅𝑎𝑏 −
1
2
𝑅𝑔𝑎𝑏 =

8𝜋𝐺
𝑐4 𝑇𝑎𝑏 , (2.47)

where𝐺𝑎𝑏 is known as the Einstein tensor, 𝑅𝑎𝑏 is the Ricci tensor and 𝑅 is the Ricci scalar; both
of which are determined by the spacetime metric 𝑔𝑎𝑏, which represents gravity. The energy-
density and pressure within the system is then encoded in the energy-momentum tensor 𝑇𝑎𝑏.

Solving Eq. (2.47) is, by any stretch of the imagination, a formidable task. Unabridged, the
Einstein field equations are a system of ten, highly non-linear, coupled second-order partial
differential equations. Indeed, finding exact solutions to Eq. (2.47) may only be achieved by
exploiting various symmetries to simplify the problem.

One such symmetry we may seek to exploit is that of the (assumed) spherical symmetry of
neutrons stars that we adopted in order to derive the Newtonian stellar structure equations
(2.46a) - (2.46c).

In analogy with the previous section, we begin with the Bianchi identity, which tells us that

∇𝑎𝐺𝑎𝑏 = 0 , (2.48)

and therefore that the divergence of the stress-energy tensor (via Eq. (2.47)) also vanishes, such
that

∇𝑎𝑇𝑎𝑏 = 0 . (2.49)
14Note that relativists often tend to use so-called geometrized units, where 𝐺 = 𝑐 = 1 in order to simplify the

equations.
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The above represents the law for conservation of both energy and momentum in GR, and may
be loosely interpreted as the equations of motion for a relativistic fluid.

The energy-momentum tensor for an ideal fluid as given in Andersson and Comer (2021) is (their
Eq. (5.11))

𝑇𝑎𝑏 = (𝜖 + 𝑃)𝑢𝑎𝑢𝑏 + 𝑃𝑔𝑎𝑏 = 𝜖𝑢𝑎𝑢𝑏 + 𝑃 ⊥𝑎𝑏 , (2.50)

where 𝜖 is the total energy density (related to the rest-mass density 𝜌 as 𝜖 = 𝜌𝑐2 at 𝑇 = 0 K)
as measured - along with the isotropic pressure 𝑃 - by an observer co-moving with the fluid
with four-velocity 𝑢𝑎. In the final term on the RHS of Eq. (2.50), the projection operator
⊥𝑎𝑏≡ 𝑢𝑎𝑢𝑏 + 𝑔𝑎𝑏 is introduced in order to express the components of 𝑇𝑎𝑏 into the timelike and
spacelike directions of an inertial observer.

Following Andersson and Comer (2021), contracting Eq. (2.49) along 𝑢𝑎 yields

𝑢𝑎∇𝑎𝜖 + (𝜖 + 𝑃)∇𝑎𝑢𝑎 = 0 . (2.51)

This result, with 𝜌 replaced with (𝜖 + 𝑃) - i.e the inertial mass per unit volume - is the relativistic
analogue of the continuity equation (2.41). Similarly, by projecting (2.49) along ⊥𝑎𝑏, one may
obtain

(𝜖 + 𝑃)𝑢𝑏∇𝑏𝑢𝑎 = − ⊥ 𝑏
𝑎 ∇𝑏𝑃 , (2.52)

which may be identified as the relativistic analogue to the Euler equation (2.42).

2.6.2.1 The Tolman-Oppenheimer-Volkov equation

Having outlined the procedure for determining the equations of motion for a relativistic fluid
(2.51) - (2.52), we now turn our attention back to the problem of hydrostatic equilibrium in
general relativity15.

Recall that we are considering the case of a static, non-rotating NS that is built of a perfect fluid.
As a consequence, the only non-vanishing component of the fluid four-velocity 𝑢𝑎 is the time
component 𝑢0. In much the same way as we proceeded in the Newtonian case, the static nature
of the fluid means that the relativistic conservation equation (2.51) is trivially satisfied, and the
relativistic Euler equation (2.52) is reduced to

15The interested reader may also want to consult a number of textbooks relating to the derivation of the general
relativistic structure equations, including Maggiore (2007); Andersson (2019); Hartle (2021), to name a few.
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∇𝑖𝑃 = −1
2
(𝜖 + 𝑃)∇𝑖𝜈 , (2.53)

where 𝜈 is now a function of the radial position 𝑟 that is determined from the spacetime metric
𝑔𝑎𝑏. The metric is a tool that encapsulates the geometric and causal structure of spacetime;
akin to generalized Pythagorean theorem that also includes a temporal component. Birkhoff’s
theorem indicates that the Schwarzschild solution is the most general description of spacetime
outside of a non-rotating, spherically symmetric star. Inside the star however, one need consider
a more general metric, appropriate to that of a body with a static density and pressure profile.
Distances in spacetime are measured by the line element, which for our spherically-symmetric
NS (again in geometrized units 𝑐 = 𝐺 = 1; but will restore the dependence later on) is

𝑑𝑠2 = 𝑔𝑎𝑏𝑑𝑥
𝑎𝑑𝑥𝑏 = −𝑒𝜈𝑑𝑡2 + 𝑒𝜆𝑑𝑟2 + 𝑟2(𝑑𝜃2 + sin2 𝜃𝑑𝜙2) , (2.54)

where 𝑑𝑥𝑎 is the infinitesimal change in 𝑥𝑎. Like the function 𝜈, 𝜆 is also a function of position,
and both are often referred to appropriately as the metric functions. If one chooses the proper
boundary conditions for this interior metric to match that of the Schwarzchild metric at the surface
of the star (the empty space outside the star is exactly that described by the Schwarzschild metric),
then 𝜈 and 𝜆 outside of the star are given by

𝑒𝜆 ≡ 1
1 − 2𝑀/𝑟 , (2.55)

𝑒𝜈 ≡ 1 − 2𝑀/𝑟 . (2.56)

By comparing the relativistic Euler equation (2.52) to that of its Newtonian counterpart (2.41), it
can be inferred that the function 𝜈(𝑟) has the physical interpretation as the relativistic analogue
to the Newtonian potential Φ. For our spherically symmetric NS, the equation for hydrostatic
balance in relativity Eq. (2.51) can be written more explicitly as

𝑑𝑃

𝑑𝑟
= −1

2
(𝜖 + 𝑃) 𝑑𝜈

𝑑𝑟
. (2.57)

In order to proceed, we require an expression analogous to (2.46c) obtained from Possion’s
equation. To do this, one must go back to the Einstein equations (2.47) for a perfect fluid (i.e.
using Eq. (2.50)). The stress-energy tensor is diagonal (in a spherical coordinate system), with
eigenvalues of energy density and pressure

𝑇 𝑡𝑡 = 𝜖 , (2.58)
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𝑇
𝑗

𝑖
= 𝛿

𝑗

𝑖
𝑃 . (2.59)

The only non-zero components of the Einstein tensor are therefore 𝐺 𝑡
𝑡 and 𝐺 𝑟

𝑟 . Inserting Eqs
(2.58) and (2.59) into the Einstein equation (2.47) yields

𝐺 𝑡
𝑡 = 8𝜋𝑇 𝑡𝑡 = 8𝜋𝜖𝑒𝜈 −→ 𝑑𝑚

𝑑𝑟
= 4𝜋𝑟2𝜖 , (2.60)

𝐺 𝑟
𝑟 = 8𝜋𝑇 𝑟𝑟 = 8𝜋𝑃𝑒−𝜈 −→ 𝑑𝜈

𝑑𝑟
=

2(𝑚 + 4𝜋𝑟3𝑃)
𝑟 (𝑟 − 2𝑚) , (2.61)

where, upon finally eliminating 𝑑𝜈/𝑑𝑟 from Eqs. (2.57) and (2.61) (and restoring the values of
𝐺 and 𝑐), one may obtain the relativistic equation for hydrostatic equilibrium as

𝑑𝑃

𝑑𝑟
= −𝐺𝜖 (𝑟)𝑚(𝑟)

𝑐2𝑟2

[
1 + 𝑃(𝑟)

𝜖 (𝑟)

] [
1 + 4𝜋𝑟3𝑃(𝑟)

𝑚(𝑟)𝑐2

] [
1 − 2𝐺𝑚(𝑟)

𝑐2𝑟

]−1
. (2.62)

Collectively, Eqs (2.60) - (2.62) are more famously referred to as the Tolman-Oppenheimer-
Volkoff equations (TOV; Tolman, 1939; Oppenheimer and Volkoff, 1939).

2.6.3 Solutions to the Tolmann-Oppenheimer-Volkoff equations

The relativistic stellar structure equations (2.60) - (2.62), when appended with an appropriate
barotropic equation of state, can be solved numerically for the quantities 𝑃(𝑟), 𝑚(𝑟) and 𝜈(𝑟)
for a non-rotating, spherically symmetric neutron star. The system is a set of 2 coupled ordinary
differential equations (ODEs) in (2.60) and (2.62) (one may see from Eqs (2.60) - (2.62) that the
metric potential 𝜈 decouples from the other two equations), which constitutes a boundary value
problem with a set of inner and outer boundary conditions:

Inner Boundary: At the centre of the star, the enclosed mass at 𝑚(𝑟0) must vanish. Strictly
speaking, the integration should begin at 𝑟0 = 0, with suitable initial values 𝑃c ≡ 𝑃(𝑟0) =
𝑃(𝜖c) and 𝜈c ≡ 𝜈(𝑟0) specified16. However, the TOV equations in spherical coordinates
are singular at the origin, and hence one must start at some small value 𝑟 ≠ 0 away from
the origin. A leading-order series expansion of Eq. (2.60) at small radius yields

𝑚(𝑟) ≈ 4/3 𝜋 𝜖c 𝑟
3
0 , (2.63)

16The central pressure can be obtained simply via an interpolation of a chosen central density 𝜖c = 𝜌c𝑐2. As for the
metric potential, since it decouples from (2.60) - (2.62), one is free to simply set 𝜈(𝑟 = 0) with an arbitrary constant,
and then correct it at the surface via a suitable outer boundary condition.
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Table 2.5: Comparison of the maximum mass configurations for different equations of state
listed in Haensel (2003) (cf. their Table 2) and those obtained using the Python ODE solver

solve ivp.

EoS Maximum Mass Configurations (Haensel, 2003) Maximum Mass Configurations (solve ivp)
𝑀max (𝑀⊙) R (km) 𝑀max (𝑀⊙) R (km)

SLy 2.05 9.99 2.05 9.98
FPS 1.80 9.27 1.80 9.25

BPAL12 1.46 9.00 1.45 9.01
BGN1H1 1.64 9.38 1.63 9.34

BBB2 1.92 9.49 1.92 9.49

for an initial radius 0 < 𝑟0 ≪ 𝑅 and central density 𝜌𝑐 ≡ 𝜌(𝑟0), which may be freely
specified.

Outer Boundary: At the surface one must have 𝑃(𝑅) = 0 as the pressure outside the star
vanishes. One must also ensure consistency in matching the metric function 𝜈(𝑟) in the
interior, to that of the exterior of the star given by the Schwarzchild solution (2.56) such
that 𝑒𝜈 (𝑅) = 1 − 2𝑀/𝑅, with 𝑀 = 𝑀 (𝑅) the total mass-energy of the star.

In order to fix the hydrostatic structure, one may arbitrarily chose the central density 𝜌𝑐 and
integrate from the center of the star (𝑟 ≈ 0) outward to where the pressure drops to zero. The
TOV equations may be readily solved in this manner as an initial value problem using the Python
programming language and the ODE solver scipy.integrate.solve IVP, implementing an
explicit Runge-Kutta method of order O(ℎ4) with error estimation of the order O(ℎ5). The
fidelity of the integrator allows for automatic adjusting of the step size of the integration, which
is advantageous since the domain of the integration is not known a priori. The solver returns an
accurate value of 𝑟 at which the condition 𝑃(𝑅) = 0 is met, which is achieved via a root-finding
algorithm to find the radial point corresponding to a sign change as 𝑃(𝑟) → 0.

For a given EoS, the solution of the TOV equations depends solely on the central density.
Modifying the starting value of 𝜖𝑐 produces a corresponding one-parameter family of equilibrium
configurations. The spectrum of masses and radii [𝑀 (𝜖𝑐), 𝑅(𝜖𝑐)] for multiple equations of state
may be depicted graphically to produce the famed mass-radius (M-R) diagrams. To test the
suitability of the scipy.integrate.solve IVP method, Fig. 2.12 gives the characteristic
M-R curves solved in Python for a number of different EoSs listed in Haensel (2003).

It should be emphasised however that not all equilibrium solutions that may appear in the M-
R diagram are stable solutions. Such unstable solutions are indicated by the dashed portions
of the various curves in Fig. 2.12. In these regions, any density perturbations in the fluid
would grow unabated (exponentially) in time, causing the NS to either expand, or collapse into
a black hole. The maximum mass17 (i.e. the largest stable solution, where 𝑑𝑀/𝑑𝑅 = 0) and
corresponding radius for each EoS are listed of each in Table 2 of Haensel (2003), and therefore

17The existence of a ‘maximum mass’ is a relativistic phenomenon which manifests in the denominator of Eq.
(2.61) which insists that 𝑚 < 𝑟/2.
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Figure 2.12: Gravitational mass 𝑀 as function of the neutron star radius 𝑅 for a number of
different EoS models given in Haensel (2003). The maximum mass on each curve is indicated
by a filled circle. Configurations to the left of the maximum (dashed lines) are unstable with
respect to small radial perturbations. The shaded band corresponds to the measured mass of

the millisecond pulsar PSR J0740+6620; 𝑀68% = 2.08 ± 0.07𝑀⊙ (Miller et al., 2021).

can be cross-referenced against solve IVP to gauge its suitability for use in subsequent work.
This comparison is summarised in Table 2.5, which shows good agreement across all candidates.

The uncertainty in the true nature of the interactions of matter beyond nuclear saturation leads
to much speculation about the exact dependence of the pressure on density. The choice of EoS
(such as those included in Figure 2.12) leads to differing predictions for the maximum mass
that neutron stars may support. Since a plethora of different EoSs have been put forward, it is
common to categorise them using a measure of so-called stiffness.

The stiffness qualitatively describes how quickly the pressure increases with density. The steeper
this dependence, the ‘stiffer’ the EoS is said to be. Stiffness has the physical interpretation as
follows: The stiffer the EoS, the more difficult it is to compress the constituent fluid, making it
more stable against gravitational collapse. It is therefore the case that stiffer EoSs can support
larger masses than their ‘softer’ counterparts, which experience a greater amount of compression
at an equivalent density.

Determining the true EoS of dense matter is certainly a candidate for the ‘holy grail’ of NS
astrophysics. And though whilst many differing ideas have been put forward, there are couple of
constraints that all realistic EoSs must satisfy. The two most notable restrictions are:

– i) the speed of sound 𝑐𝑠 (in geometric units) at any point within the fluid must be less than
1 in order to respect causality,

– ii) that the speed of sound in the fluid be greater than zero, so that the fluid is thermody-
namically stable.
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Table 2.6: The baryon number density 𝑛b, rest-mass density 𝜌, and pressure 𝑃 at the crust-core
transition predicted by the equations of state BSk19, BSk20, and BSk21. Adapted from Table

II of Pearson et al. (2012).

EoS 𝑛crust−core 𝜌crust−core 𝑃crust−core

BSk19 0.0885 1.497 × 1014 6.850 × 1032

BSk20 0.0854 1.444 × 1014 5.844 × 1032

BSk21 0.0809 1.367 × 1014 4.302 × 1032

These constraints are not particularly restrictive, however, and there is significant leeway in the
regime 0 < 𝑐𝑠 < 1. In practise, narrowing down the true EoS comes down to a combination of
both terrestrial experiments (e.g. measurements of the neutron skin thickness - PREX/CREX;
Adhikari et al., 2021), as well as measurements of NS masses and radii through direct astrophys-
ical (e.g. the Neutron Star Interior Composition Explorer Mission - NICER; Riley et al., 2021)
and gravitational-wave observations (e.g. Abbott et al., 2018).

Indeed, the maximum mass may be inferred from astrophysical observations of both thermal
and non-thermal emissions from the NS surface, which may then be cross referenced with a
suitably large mass-radius diagram. Recent analysis of NICER XTI and XMM-Newton data
on the millisecond pulsar PSR J0740+6620, for example, indicates the star has a gravitational
mass 𝑀68% = 2.08± 0.07𝑀⊙ (Miller et al., 2021). Any EoS candidate that predicts a maximum
mass of 𝑀max ≲ 2𝑀⊙ is therefore likely too soft to be viable. In reference to Fig. 2.12, such a
result indicates that only the SLy model is stiff enough to be viable amongst those sampled from
Haensel (2003).

2.6.4 Hydrostatic structure of isolated and accreting neutron stars: BSk19,
BSk20, and BSk21

The HZ90 model is the seminal description of the accreted crust, and has been used in many
numerical simulations of accreting NSs since its original inception. One caveat to the model,
however, is that the pressure-density table was only computed for the region of the crust where
non-equilibrium reactions occur (∼ 3× 107 − 2× 1013 g cm−3). Therefore, to model an accreting
NS as a whole, one is required to ‘bolt on’ this EoS to a separate one that describes the
innermost part the crust; which itself must then be joined to a third EoS that describes the core.
Constructing such a ‘jury-rigged’ pressure-density relation can, however, lead to systematic
errors in the macroscopic structure of the star (e.g. the mass and radius) if the different pieces of
the EoS are thermodynamically inconsistent (Fortin et al., 2016; Suleiman et al., 2021).

The EDFs BSk19, BSk20, and BSk21 on the other hand, are capable of modelling all of the
outer crust, the neutron-rich clusters (together with the neutron liquid) of the inner crust, as well
as homogeneous matter in the core in a thermodynamically consistent way. These EoSs are
therefore said to provide a unified treatment of all regions of an accreted NS. Since unified EoSs
for cold-catalysed matter can also be predicted by the BSk19-21 EDFs as well (Sec 2.5), this
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Figure 2.13: Mass-radius relations for accreted (AC) and non-accreted (GS) neutron stars for
equations of state based on the energy-density functionals BSk19, BSk20, and BSk21. The
maximum mass on each curve is indicated by a filled circle. The shaded band corresponds to
the measured mass of the millisecond pulsar PSR J0740+6620; 𝑀68% = 2.08± 0.07𝑀⊙ (Miller

et al., 2021).

allows for a direct comparison between the global properties of both accreting and non-accreting
NSs (see also Fantina et al., 2022).

The accreted crust is noticeably stiffer than that of its ground-state counterpart, particularly in
the region 1011 − 1013 g cm−3 (Figs 2.6 and 2.10). To further investigate the properties of the
two types of crust, we solve the TOV equations for both the ground-state (Goriely et al., 2010)
and accreted (Fantina et al., 2022) BSk19-21 EoSs, for a range of different central densities
to create the familiar M-R curves. The result is shown in Fig. 2.13, where the difference in
stiffness can be seen in the difference in radii between the two crusts. The largest masses in
Fig. 2.13 are 1.86, 2.14, and 2.27 𝑀⊙ for the BSk19-21 EoSs respectively. For BSk19 and
BSk21, these correspond to maximum TOV neutron star mass as calculated by Potekhin et al.
(2015) (the maximum mass is effectively the same for both accreted and catalysed neutron
stars). For BSk20, however, the largest mass is not the ‘maximum’ mass (i.e. where the star is
hydrostatically stable), but rather the mass of the star at which the EoS becomes superluminal
(i.e. where 𝑑𝑃/𝑑𝜌 > 𝑐2). As noted in Potekhin et al. (2015), configurations with higher 𝜌𝑐
(corresponding to 2.14 𝑀⊙ < 𝑀 < 2.16𝑀⊙) should not be trusted as the innermost regions of
the core will be superluminal. The publicly-available data tables have been truncated at the point
whereby either the limit of hydrostatic stability is reached, or the EoS becomes superluminal,
whichever occurs first (cf., Fig. 8 of Potekhin et al. (2015) and surrounding text).

The softening of the ground-state EoS implies that its crust is thinner than that of a crust composed
of processed material. To determine the actual thickness of the crust, one need know precisely
the location of the crust-core transition (where the lattice structure disappears and the system
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Figure 2.14: Thickness 𝑅crust (left panel) and mass 𝑀crust (right panel) of the crust of accreted
(AC) and non-accreted (GS) neutron stars for equations of state based on the energy-density

functionals BSk19, BSk20, and BSk21.

changes to a liquid phase of homogeneous matter), which can only be done accurately if the inner
crust and the core are treated within the same physical framework. The location of the crust-core
transition for the BSk19-21 EoSs - which is the same for both accreted and non-accreted crusts
(Fantina et al., 2022) - are given in Table 2.6.

With the location of the crust-core transition known, one can determine the size of the core by
integrating the TOV equations outwards from the chosen central density 𝜌c, up to the core-crust
transition (i.e. when the condition 𝑃(𝑅) = 𝑃crust−core is met) and computing the corresponding
mass 𝑀core and radius 𝑅core. The crust mass 𝑀crust and crust thickness 𝑅crust is then obtained
by subtracting 𝑀core and radius 𝑅core from the result whereby 𝑝(𝑅) = 0, corresponding to the
surface of the star. In Fig. 2.14 we show the results of such a calculation, plotting the crustal
thickness 𝑅crust and crustal mass 𝑀crust as a function of the total mass 𝑀 . It is evident that whilst
the respective masses of the two types of crust remain almost identical, the accreted crust is
indeed thicker than its ground-state counterpart, at least within the Fantina et al. (2018, 2022)
framework.
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3

Gravitational-waves from Thermal
Mountains

Having formally described the interior structure of spherically-symmetric neutron stars, in this
chapter we shall discuss in greater detail one particular mechanism in which the neutron star may
be driven away from this assumed perfect sphericity. We begin in Section 3.1 by summarising
how exactly gravitational-waves emerge within the framework of general relativity, before moving
on to discuss the rate at which energy is carried away by these waves from an arbitrary source.

In Section 3.2 we examine the rate at which GWs are radiated away specifically from a rigidly
rotating neutron star with a sustained quadrupolar deformation. In Bildsten (1998) it was
suggested that GW torques from a sufficiently large mountain could be limiting the spin period
of accreting NSs; whereby angular momentum transferred from the accretion disk is balanced by
the loss of angular momentum due to gravitational radiation. This equilibrium value has since
been come to be known as the ‘torque balance limit’, and is discussed in greater detail in Section
3.2.1. We then conclude this chapter by describing the particular Bildsten (1998) mechanism
to generate the required mountain - so-called ‘wavy’ electron capture layers - which form in the
presence of an sufficiently anisotropic internal temperature distribution.

3.1 The Einstein equation revisited

As briefly mentioned at the top of Section 1.2, gravitational-waves are generated by any massive
accelerating object. Akin to waves which ripple on the surface of a pond when disturbed, the
motion of such objects creates ripples in the spacetime in which they inhabit.

The ‘size’ of these ripples is related to the amount of curvature of the spacetime. And, as we
saw in Fig. 1.4, there is an abundance of astrophysical sources of gravitational radiation in
the Universe. The strongest and most rapidly varying curvatures of spacetime occur in regions
occupied by merging black holes and neutron stars. Though, even in this regime, predictions of
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the resulting gravitational radiation (such as the waveform in Fig. 1.2) may still only be achieved
through full, computationally intensive numerical simulation of the Einstein Equation

𝐺𝑎𝑏 ≡ 𝑅𝑎𝑏 −
1
2
𝑅𝑔𝑎𝑏 =

8𝜋𝐺
𝑐4 𝑇𝑎𝑏 , (3.1)

and in fact finding exact solutions may only be achieved in a number of idealised cases.

3.1.1 Gravitational-waves in linearised theory

A far more tractable problem is to consider the regime of weak spacetime curvature, such as
the case for the motion of a pair of orbiting black holes or neutron stars well-before the point
of merger. Any gravitational radiation from such a source may be idealised as a series of plane
waves, originating as small perturbations on an otherwise flat spacetime which propagate away
from the source at the speed of light.

Rather than solve the full Einstein equation, one assumes that the waves generated by the stress-
energy tensor 𝑇𝑎𝑏 are sufficiently weak that the metric 𝑔𝑎𝑏 may be written as

𝑔𝑎𝑏 = 𝜂𝑎𝑏 + ℎ𝑎𝑏 , (3.2)

where 𝜂𝑎𝑏 is the metric of flat spacetime (the Minkowski metric), given in Cartesian coordinates
as

𝜂𝑎𝑏𝑑𝑥
𝑎𝑑𝑥𝑏 = −𝑑𝑡2 + 𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2 , (3.3)

and ℎ𝑎𝑏 is the metric perturbation (considered ‘weak’ in the sense that |ℎ𝑎𝑏 | ≪ 1 for all 𝑎 and
𝑏).

The result obtained by evaluating the Einstein tensor 𝐺𝑎𝑏 to first order in the perturbed metric
(3.2) is known as the linearised theory of gravity. Deeper insights into the theory of GWs may be
found in a number of textbooks (Misner et al., 1973; Maggiore, 2007; Andersson, 2019; Hartle,
2021; to name a few), and so in this chapter will generally only summarise important results.
In reproducing the linearised theory of gravity for our purposes, we start with the so-called
trace-reversed metric perturbation

ℎ̄𝑎𝑏 = ℎ𝑎𝑏 −
1
2
𝜂𝑎𝑏ℎ . (3.4)

The form of this perturbation is inspired by the form of the Einstein tensor itself (Eq. (3.1)), and
reverses the sign of the trace as
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ℎ̄𝑎𝑎 = ℎ
𝑎
𝑎 −

1
2
ℎ𝑏𝑏𝛿

𝑎
𝑎 = ℎ

𝑎
𝑎 − 2ℎ𝑏𝑏 = −ℎ𝑎𝑎 , (3.5)

such that one may retrieve the original perturbation back as

¯̄ℎ𝑎𝑏 = ℎ̄𝑎𝑏 −
1
2
𝜂𝑎𝑏 ℎ̄

𝑐
𝑐 = ℎ𝑎𝑏 −

1
2
𝜂𝑎𝑏ℎ

𝑐
𝑐 +

1
2
𝜂𝑎𝑏ℎ

𝑐
𝑐 = ℎ𝑎𝑏 . (3.6)

Inserting the trace-reversed perturbation (3.4) into the Einstein tensor, after a little algebra one
finds that

𝐺𝑎𝑏 = −1
2
(□ℎ̄𝑎𝑏 + 𝜂𝑎𝑏𝜕𝑐𝜕𝑑 ℎ̄𝑐𝑑 − 𝜕𝑐𝜕𝑏 ℎ̄𝑎𝑐 − 𝜕𝑐𝜕𝑎 ℎ̄𝑏𝑐) , (3.7)

where □ ≡ 𝜕𝑎𝜕𝑎 is the flat-space wave operator. Though, in its current form, this result remains
rather daunting. General relativity is formulated in such a way however that ones choice of
coordinates is, in some sense, arbitrary, and it is possible to simply choose a coordinate system
in which the above may be simplified. The presence of the d’Alembert operator in the linearised
Einstein tensor (3.7) leads one to seek a set of coordinates, or a gauge, which transforms (3.7) into
that of a wave equation. Clearly, this could be achieved if the (trace-reversed) metric perturbation
were to satisfy the condition

𝜂𝑎𝑏𝜕
𝑐𝜕𝑑 ℎ̄𝑐𝑑 − 𝜕𝑐𝜕𝑏 ℎ̄𝑎𝑐 − 𝜕𝑐𝜕𝑎 ℎ̄𝑏𝑐 = 0 . (3.8)

One such condition is given by the requirement that

𝜕𝑏 ℎ̄𝑎𝑏 = 0 , (3.9)

a set of four conditions which determine what is commonly known as the Lorenz gauge, due to
its analogy with that of the equations of electromagnetism. In the Lorenz gauge, each of the 2nd,
3rd, and 4th terms in Eq. (3.7) immediately vanish, leaving us with the final result

𝐺𝑎𝑏 = □ℎ̄𝑎𝑏 = −16𝜋𝐺
𝑐4 𝑇𝑎𝑏 . (3.10)

3.1.2 Energy loss from gravitational-waves

Given the necessary conditions for their creation, GWs carry away energy from the system that
produces them. Though, it is by no means a trivial task to quantify the energy associated with
these waves. A central tenet of the theory of GR is the equivalence principle, which determines
that gravitational effects ‘vanish’ in a local inertial frame. This is to say that one can always
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find a frame in which spacetime is flat in the neighbourhood of some other given point. The
direct consequence of the equivalence principle is therefore that one cannot localise the effect of
a passing GW, nor localise its energy.

It turns out that computing the rate of energy loss due to gravitational radiation (within the
GR framework) requires going beyond that of the first-order perturbation of the Einstein tensor
introduced in the previous section. The details of such a calculation are beyond what we require
here, though the interested reader is directed to, for example, Andersson (2019) for a more
concrete derivation.

If, for now, we remain in the regime of weak spacetime curvature, it is possible that one may
find an approximate solution to Eq. (3.10) in terms of a formal expansion away from Newtonian
gravity. This leads to the so-called quadrupole formula, which, in the absence of a strict
derivation, can ultimately be anticipated from some more simple physics and a few dimensional
arguments. What follows is based loosely on similar descriptions laid out in both Andersson
(2019) and Hartle (2021).

To begin, recall that the (linearised) Einstein equation (3.10) is set of ten equations for each of
the components of the (trace-reversed) metric perturbation ℎ̄𝑎𝑏, with each component obeying a
separate (sourced) flat-space wave equation of the form

−𝜕
2 𝑓 (𝑥)
𝜕𝑡2

+ ®∇2 𝑓 (𝑥) = 𝑗 (𝑥) . (3.11)

The general solution to the above wave equation is obtained via a (retarded) Green’s function1

𝑓 (®𝑥, 𝑡) = − 1
4𝜋

∫ [ 𝑗 (®𝑥′, 𝑡′ = 𝑡 − |®𝑥 − ®𝑥′ |)]
|®𝑥 − ®𝑥′ | 𝑑3𝑥′ . (3.12)

In keeping with the notion of ‘weak’ spacetime curvatures, it is natural to consider the form of
the above solution at a distance far away from the (correspondingly weak) source. In this regime,
one may assume that

𝑡′ = 𝑡 − |®𝑥 − ®𝑥′ | ≈ 𝑡 − 𝑟 , (3.13)

where 𝑟 is the distance to the centre of the source; and so the general solution (3.12) is,
asymptotically,

𝑓 (®𝑥, 𝑡) −−−−→
𝑟→∞

− 1
4𝜋𝑟

∫
𝑗 (®𝑥′, 𝑡 − 𝑟) 𝑑3𝑥′ . (3.14)

1Strictly speaking, the most general solution to Eq. (3.11) includes an incoming wave 𝑂 (®𝑥′, 𝑡 + |®𝑥 − ®𝑥′ |), as well
as an outgoing wave 𝑗 (®𝑥′, 𝑡 − |®𝑥 − ®𝑥′ |). However, only the latter is physically relevant for the specific case of a
gravitational-wave, and thus only the retarded, or casual, solution is required.
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The asymptotic amplitude of a passing GW a large distance from a weak source (determined by
the stress-energy tensor 𝑇𝑎𝑏; Eq. (3.10)) is (in geometrized units), therefore

ℎ̄𝑎𝑏 (®𝑥, 𝑡) −−−−→
𝑟→∞

4
𝑟

∫
𝑇𝑎𝑏 (®𝑥′, 𝑡 − 𝑟) 𝑑3𝑥′ . (3.15)

This result is essentially an affirmation of what we set out to prove at the beginning of Section
3.1.1; that the GWs Eq. (3.15) are plane-waves at sufficiently large distances away from their
source. In order to proceed, we need a way of evaluating the integral (3.15). To do this, one need
make use of the equations of motion (2.49) which determine the conservation laws for energy
and momentum in general relativity (respectively) as

𝜕𝑡𝑇𝑡𝑡 + 𝜕 𝑗𝑇𝑡 𝑗 = 0 ,

𝜕𝑡𝑇𝑗𝑡 + 𝜕𝑘𝑇𝑗𝑘 = 0 ,
(3.16)

in order to show (Andersson, 2019; Hartle, 2021)

∫
𝑇𝑗𝑘 𝑑

3𝑥 =
1
2
𝜕2
𝑡

∫
𝑇𝑡𝑡𝑥 𝑗𝑥𝑘 𝑑

3𝑥 . (3.17)

In this ‘near-Newtonian’ scenario, the component of the stress-energy tensor𝑇𝑡𝑡 will be dominated
by the rest-mass density 𝜌 of the source, and thus it is convenient to define the RHS of the above
in terms of the mass quadrupole moment tensor

𝐼 𝑗𝑘 ≡
∫

𝜌(𝑡, ®𝑥) 𝑥 𝑗𝑥𝑘 𝑑3𝑥 , (3.18)

which allows us to write the asymptotic gravitational wave amplitude (3.15) more succinctly as

ℎ̄ 𝑗𝑘 (®𝑥, 𝑡) −−−−→
𝑟→∞

2
𝑟
¥𝐼 𝑗𝑘 (𝑡 − 𝑟) . (3.19)

With this result in hand, we now return to the issue of energy in gravitational-waves. Being a
plane-wave, we should expect (as in the case of electromagnetism) that the energy density of
the GW is proportional to the square of its amplitude. As it happens, Eq. (3.19) dictates that
the GW amplitude far from its source is proportional to the second time derivative of the mass
quadrupole moment 𝐼 𝑗𝑘 . This tells us that the GW luminosity, i.e. the total power radiated from
the source per unit time, should therefore be quadratic in the time derivatives of 𝐼 𝑗𝑘 .

Exactly which time derivative of 𝐼 𝑗𝑘 is required in order to compute the GW luminosity may
then be inferred on dimensional grounds. Working in geometrized units, both mass and time
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have units of length. The mass quadrupole moment, through Eq. (3.18), therefore has units of
(length)3. The luminosity, on the other hand, is

𝐿GW ≡
(
𝑑𝐸

𝑑𝑡

)
GW

∼
[
𝑀𝐿2

𝑇2

]
1
𝑇

∼ 𝐿

𝐿
(3.20)

and thus dimensionless. It therefore follows that the luminosity must be a quadratic in 𝐼 𝑗𝑘 , the
third time-derivative of the mass quadrupole moment tensor.

It turns out that a full derivation of the GW luminosity, obtained by computing the GW stress-
energy tensor to second order, follows our intuition and yields the result (with values of 𝐺 and 𝑐
reinstated)

𝐿GW =
1
5
𝐺

𝑐5

〈
𝐼̈ 𝑗𝑘 𝐼̈

𝑗𝑘〉 , (3.21)

where the angled brackets ⟨...⟩ denotes a time-average of one period of the new quantity 𝐼̈,
defined as

𝐼̈ 𝑗𝑘 ≡ 𝐼 𝑗𝑘 −
1
3
𝛿𝑖 𝑗 𝐼

𝑘
𝑘 . (3.22)

The final result is expressed in terms of this trace reduced mass quadrupole moment tensor
(hence the bar notation, in corollary with the trace-reversed metric perturbation (3.4)) since it
makes explicit the fact that the GW luminosity vanishes for spherically symmetric sources (in
Cartesian coordinates 𝑥, 𝑦, and 𝑧 will be identical). This is a general result in GR that is made
explicit through Birkoff’s thereom, which states that any spherically symmetric solution of the
(vacuum) field equations must be both stationary (i.e. does not vary in time) and asymptotically
flat (i.e. have vanishing curvature) and thus there can be no gravitational waves.

The result Eq. (3.21) will be required in the following section in order to determine the GW
luminosity from the specific case of a rigidly rotating neutron star supporting a mountain, and
in-turn understanding the role mountains could potentially play in dictating the spin-equilibrium
of accreting neutron stars in LMXB systems.

3.2 Gravitational-waves from accreting neutron stars

Accreting neutron stars have long been considered to be possible sources of (continuous)
gravitational-waves in order to solve a problem in the realm of observational astronomy. Prevail-
ing theory suggests that the observed population of the most rapidly rotating (millisecond) pulsars
stems from LMXB systems (Bhattacharya and van den Heuvel, 1991). A ‘recycling’ scenario
posits angular momentum from an accretion disk is transferred to the neutron star (via external
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magnetic fields), leading to spin-up torques (Ghosh et al., 1977; Ghosh and Lamb, 1979a,b; Dai,
H.-L. and Li, X.-D., 2006). Such a process occurs over extraordinarily long timescales, gradually
spinning the NS up until it has accreted all the available matter from its sub-solar companion.

In principle, extended accretion should have no difficulty spinning up these NSs to that of the
centrifugal break-up frequency (∼ 1-2 kHz; Lattimer and Prakash, 2007). Yet, the fastest-
observed millisecond pulsar to-date, PSR J1748-2446ad, rotates at just 716 Hz (Hessels, 2006).
The lack of observations of sub-millisecond accreting millisecond pulsars within the galaxy are
therefore indicative of some additional (as yet) unknown braking torque preventing the spin up
of these stars to the centrifugal break-up limit. The natural problem to consider then is exactly
what physical processes could be responsible for removing angular momentum from these stars
and preventing them from reaching sub-millisecond periods.

In recent years, the interaction between the NS’s external magnetic field and the accretion disk,
as well as the emission of GWs, have been invoked to explain this observation puzzle. In
favour of the former suggestion, it has been suggested by Patruno et al. (2012) that an external
magnetic field strength of ∼ 108 G could be enough to explain lack of observed spin-rates of
AMXPs exceeding ∼ 700 Hz. However, a more recent study by Bhattacharyya and Chakrabarty
(2017) implies that such a result may only be true of steadily accreting NSs. For systems
which transiently accrete, evidence suggests that a field strength of 108 G might not sufficient to
reproduce observation.

3.2.1 The torque-balance limit: Accretion in low-mass X-ray binaries

The various torques which act on the NS over the course of its lifetime dictate its spin evolution.
In the case of an LMXB, this spin evolution is of course dominated by the process of matter
accretion. If one recalls the schematic picture Fig. 2.3, mass transfer from the companion
star occurs via Roche-lobe overflow. The Roche lobe itself is simply the region around a star
within which orbiting material is gravitationally bound to it. Over an extended period of time,
the surface of the companion star expands outwards and eventually beyond that of its Roche
lobe. Any material from the companion star which lies outside of the Roche lobe may then be
‘transferred’ into the NS’s own Roche lobe, through the inner Lagrange point (Fig. 3.1).

This transfer of mass between the two binary components leads to a transfer of angular momentum
between the two stars as well. However, this angular momentum cannot be transferred directly
to the NS, and instead an accretion disk forms around it. Exactly how matter is transported from
the disk to the surface will be determined by the presence of a magnetic field. If magnetic field
lines, which emanate from the crust, permeate into the accretion disk, then matter from the disk
will likely be channelled onto the magnetic poles of the NS along the field lines. This is then
the point at which then an accreted particle gives up its angular momentum upon arriving at
the surface, spinning the star up. The material torque on the star from the accretion is usually
approximated as (Ghosh and Lamb, 1979b)
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Figure 3.1: Schematic illustration of the process of mass transfer via Roche-lobe overflow.
Mass is transferred from the lower-mass star 𝑀2 to the higher-mass star 𝑀1 through the inner
Lagrangian point 𝐿1 and forms an accretion disk. Image credit: reproduced from Andersson

(2019).

𝑁acc = ¤𝑀
√︁
𝐺𝑀𝑅𝑀 , (3.23)

where 𝑅𝑀 is the magnetosphere radius, defined at the point whereby the magnetic pressure
begins to dominate the fluid pressure.

The picture is complicated, however, due to the fact there is likely some differential rotation
between the NS and the accretion disk. This can cause the field lines to become twisted and
misaligned. As a result, the coupling between the NS’s rotation, its external magnetic field
strength, and the mass accretion rate can lead to torques that actually either spin up or spin down
the star. The possibility of accretion leading to spin-down torques means that the net torque on
the star is the sum of these two contributions, leading to a modification of Eq. (3.23) as (Ho
et al., 2013)

𝑁acc = ¤𝑀
√︁
𝐺𝑀𝑅𝑀 (1 −𝜔) . (3.24)

The sign of the torque (i.e. whether the NS is spun up or down), is determined by𝜔, the so-called
fastness parameter, defined by

𝜔 =
Ω∗

Ω𝐾 (𝑟)
=

(
𝑅𝑀

𝑅𝑐

)3/2
, (3.25)

where Ω∗ is the angular frequency of the star and Ω𝐾 is the angular velocity of a particle in
a Keplerian orbit. For the most simple case whereby matter falls radially onto the star, the
magnetospheric radius 𝑅𝑀 is

𝑅𝑀 =

(
𝜇4

mag

2𝐺𝑀 ¤𝑀2

)1/7
≈ 7.8

(
𝐵

108G

)4/7 (
𝑅

108km

)12/7 (
𝑀

1.4𝑀⊙

)−1/7 ( ¤𝑀
¤𝑀Edd

)−2/7
km , (3.26)
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where 𝜇mag ∼ 𝐵𝑅3 is the magnetic dipole moment and ¤𝑀Edd = 2× 10−8𝑀⊙ yr−1 is the Eddington
mass accretion limit, the point at which the outward radiation pressure is balanced by the inwards
gravitational attraction of the in-falling matter. The final quantity 𝑅𝑐 is known as the co-rotation
radius

𝑅𝑐 ≈ 17
(
(2𝜋/Ω∗)

1ms

)2/3 (
𝑀

1.4𝑀⊙

)1/3
km , (3.27)

and is defined as the point at which matter inside the disk rotates at same velocity as the NS
magnetosphere.

When 𝑅𝑀 < 𝑅𝑐, matter in the disk enveloped by the magnetosphere spins faster than the NS. A
particle that is funnelled onto the NS therefore has a greater specific angular momentum than the
star itself, and so imparts some of the excess when it hits the surface. This results in a positive
torque on the NS, spinning it up. On the other hand, if 𝑅𝑀 > 𝑅𝑐, then the magnetic field lines
will rotate faster than the local Keplerian speed of matter in the disk. This ‘propeller regime’ can
cause the accretion flow to be centrifugally inhibited, resulting in accreted matter being expelled
from the disk, and ultimately resulting in a negative torque on the NS, spinning it down.

An equilibrium between these two competing effects may be achieved at the point whereby
𝑅𝑀 = 𝑅𝑐, at which point the equilibrium spin frequency will be

𝜈eq =
Ω

eq
∗

2𝜋
≈ 530

(
𝐵

108G

)−6/7 (
𝑅

10km

)−18/7 (
𝑀

1.4𝑀⊙

)5/7 ( ¤𝑀
¤𝑀Edd

)3/7
Hz , (3.28)

and has since been come to be known as the ‘torque balance limit’.

A combination of a weak external magnetic field and high rate of mass accretion are required
to generate spin frequencies typical of observed LMXBs (i.e a few hundreds of Hz). For a
canonical 10 km, 1.4 𝑀⊙ neutron star, Andersson et al. (2005) showed that the inferred strengths
of the magnetic fields for LMXBs accreting at ≲ 10−2 ¤𝑀Edd are consistent with those estimated
for millisecond radio pulsars. This suggests that the magnetic-torque phenomenon can explain
quite well the observed spin-rate of many LMXB systems. One caveat to this model however is
that it does not predict sensible magnetic field strengths for NSs accreting close to the Eddington
limit. It is possible that this could perhaps hint towards additional spin-down mechanisms in
sufficiently rapidly accreting systems, though this is by no means certain.

One reason for this is that the exact nature of the interaction between the accretion disk and the
NS is not clear. The description presented above may certainly be improved, but at the cost of
introducing additional parameters characterised by poorly understood physics. One important
piece that is missing from current models is an understanding of the viscosity of the disk, which
determines how effectively energy and angular momentum may be dissipated.
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3.2.2 Additional spin-down torques? Gravitational-waves from a quadrupolar
deformation

All this is to say that current observations cannot uniquely attribute the observed spin-rates of
accreting neutron stars to that of the magnetic spin equilibrium model alone. For example,
statistical analysis by Patruno et al. (2017) of the spin-distribution of LMXBs suggests evidence
for two distinct sub-populations. The majority of the NSs exhibit, on average, a ‘low’ spin
frequency (𝜈̄𝑠 ≈ 300 Hz). There are a small minority of stars, however, which exhibit much
higher spin frequencies (𝜈̄𝑠 ≈ 575 Hz). The curious nature of this observation is that if there is
indeed an additional braking mechanism present in the system, then it must set in sharply once
a star reaches a given spin rate.

It just so happens that, in the case of a deformed (rotating) NS, the rate of angular momentum
lost via GW emission scales as a steep (fifth) power of the star’s spin frequency (see Eq. (3.35)
below). The idea that GW torques from mountains may be dictating the spin-equilibrium period in
LMXBs was popularised by Bildsten (1998). The idea echoed earlier discussions by Papaloizou
and Pringle (1978) & Wagoner (1984), that equilibrium might be achieved via gravitational-
wave emission from rotational instabilities. Encouragingly, recent timing observations of the
pulsar PSR J1023+0038 has shown that the NS spins down ∼ 27% faster during episodes of
active accretion than in periods of quiescence (Haskell and Patruno, 2017). This result can, at
least qualitatively, be explained by the presence of gravitational-wave torques from a transient
‘mountain’ inside the star that forms during phases of accretion.

Recall that the quadrupole moment tensor vanishes for a spherically symmetric system. Consider,
therefore, a NS that has been perturbed away from sphericity by some density perturbation
𝛿𝜌 ≡ R{𝛿𝜌ℓ𝑚(𝑟)𝑌ℓ𝑚(𝜃, 𝜙)}2. For our purposes, we are interested only in the ℓ = 𝑚 = 2
component, since this will give rise to quadrupolar gravitational radiation. This perturbation
deforms the star, creating a mountain which will radiate GWs continuously at twice the spin
frequency (i.e. 𝑓GW = 2𝜈𝑠; Sec. 1.3.3). The rate at which angular momentum is radiated away by
the deformed NS (rotating about the 𝑧-axis) is determined by the gravitational-wave luminosity
Eq. (3.21) as

𝑁GW =
1
Ω∗

𝑑𝐸

𝑑𝑡
=
𝐿GW
Ω∗

=
1

5Ω∗

𝐺

𝑐5

〈
𝛿𝐼 2
𝑥𝑥 + 𝛿𝐼 2

𝑥𝑦 + 𝛿𝐼 2
𝑦𝑥 + 𝛿𝐼 2

𝑦𝑦

〉
, (3.29)

where, in the case of our perturbed star, we have

𝐼̈ 𝑗𝑘 ≡ 𝛿𝐼 𝑗𝑘 =
∫

𝛿𝜌 𝑥 𝑗𝑥𝑘 𝑑
3𝑉 . (3.30)

2In general the spherical harmonics 𝑌ℓ𝑚 are complex. We need only consider the real part since all physical
quantities must be real.
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In spherical polar coordinates (Fig. 1), the quadrupolar density perturbation may be written
more explicitly as

𝛿𝜌22 = R{𝛿𝜌22(𝑟)𝑌22 [𝜃, 𝜙(𝑡)]}

=
1
4

√︂
15
2𝜋

𝛿𝜌22(𝑟) sin2𝜃 cos
(
2[𝜙 −Ω∗𝑡]

)
,

(3.31)

and thus the required components of the quadrupole moment tensor are

𝛿𝐼𝑥𝑥 ≡ −𝛿𝐼𝑦𝑦 =
√

30
√
𝜋

15
cos(2Ω∗𝑡)

∫
𝛿𝜌22(𝑟)𝑟4𝑑𝑟 , (3.32)

𝛿𝐼𝑥𝑦 ≡ 𝛿𝐼𝑦𝑥 =
√

30
√
𝜋

15
sin(2Ω∗𝑡)

∫
𝛿𝜌22(𝑟)𝑟4𝑑𝑟 , (3.33)

where the final quantity is the mass quadrupole moment scalar, defined in terms of the pertur-
bation’s multipole moments as (Ushomirsky et al., 2000)

𝑄ℓ𝑚 =

∫
𝛿𝜌ℓ𝑚(𝑟)𝑟ℓ+2 𝑑𝑟 . (3.34)

The nature of the density perturbation, and what physical processes within the star might generate
it are the focus of Chapters 5 and 6 (and indeed the motivation behind this entire thesis!). For now,
though, we shall just assume that this density perturbation exists and explore its consequences.

Through inserting Eqs (3.32) - (3.33) into the angular momentum equation (3.29), and using the
definition (3.34), it may be shown that a rigidly rotating deformed NS has

𝑁GW =
𝐿GW
Ω∗

=
256𝜋

75
𝐺

𝑐5 Ω5
∗𝑄

2
22 =

512𝜋2

75
𝐺

𝑐5 𝜈
5
𝑠 𝑄

2
22 , (3.35)

and that the GW torque on the star is parameterised by both the spin frequency 𝜈𝑠 of the star as
well as the size of the quadrupole moment 𝑄22.

The next logical step is attempt to ascertain exactly how large a mass-quadrupole is required
in order for GW emission to play a significant role in determining the spin-evolution. If one
assumes, for simplicity, that GW emission is responsible for 100% of the spin down torques
acting on the star, then the quadrupole moment required such that GW emission balances the
accretion torque (3.23) is (Bildsten, 1998; Ushomirsky et al., 2000)
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𝑄̃eq ≈ 3.5 × 1037 g cm−3
(

𝑀

1.4𝑀⊙

)1/4 (
𝑅

10 km

)1/4 ( ¤𝑀
10−9𝑀⊙yr−1

)1/2 (300Hz
𝜈𝑠

)5/2
. (3.36)

Mass accretion rates of LMXBs are typically in the region 10−11 ≲ ¤𝑀 ≲ 10−8 M⊙ yr−1, with
many of the NSs rotating with frequencies 300 < 𝜈𝑠 < 700 Hz. Such considerations imply
that 𝑄̃eq ≈ 1037−39 g cm2 is required in order to attain torque balance (assuming gravitational
radiation is the only source of spin-down energy loss).

Though, whilst we now have a tangible number on which to work with, the mass quadrupole
itself is not a particularly intuitive measure of how big a deformation (or mountain) is required
in order to dictate the spin-equilibrium of the star. Instead, the non-sphericity is more normally
associated with the neutron star ellipticity, and is related to the size of 𝑄22 as

𝜀 =
(𝛿𝐼𝑥𝑥 − 𝛿𝐼𝑦𝑦)

𝐼𝑧𝑧
=

√︂
8𝜋
15
𝑄22
𝐼𝑧𝑧

. (3.37)

For the sake of simplicity, we can assume that 𝐼𝑧𝑧 = 2/5𝑀𝑅
2 ∼ 1045 g cm−3 (i.e. the moment

of inertia of a spherically symmetric, constant density canonical NS)3. Using Eq. (3.36), the
required ellipticity for torque balance at the critical frequency 𝜈𝑠 = 300 Hz is

𝜀 ≈ 5 × 10−8
( ¤𝑀
10−9𝑀⊙yr−1

)1/2 (300Hz
𝜈𝑠

)5/2
, (3.38)

for a star with 𝑀 = 1.4𝑀⊙ and 𝑅 = 10 km. Such a result indicates that in order to balance
the accretion torque, one requires an ellipticity 𝜀 ∼ 10−8 − 10−9. For context, the most recent
search for continuous GWs (at the time of writing), targeting directly 20 AMXP, has constrained
the upper limit of the ellipticity of IGR J00291 + 5934 to be 𝜀95% = 3.1 × 10−7 (Abbott et al.,
2022a). It is also much smaller (two or three orders of magnitude) than the theoretically-predicted
maximum (elastic) mountain that the star could possibly sustain (𝜀 ∼ 10−6; Sec. 1.3.3.2), and
similar in magnitude to the predictions of a recent population-based analysis by Woan et al.
(2018), which suggests that the minimum ellipticity of millisecond pulsars is of the order 10−9.

Additionally, in the more realistic scenario of an accreting NS with an external magnetic field,
recall that this may affect the net torque acting on the system. The required mass quadrupole 𝑄̃eq

would be proportionately larger or smaller than the value given in (3.36) depending on the sign
of the fastness parameter 𝜔 in Eq. (3.24), and whether the magnetic field is providing spin-up or
spin-down torques to the star. Depending on ones point of view, this fact can be either a blessing
or curse. On the one hand, additional spin-down torques supplied by the magnetic field reduces
the minimum size of the mass quadrupole (and hence the size of the mountain) one needs to

3In principle, though, this value may vary by a factor of a few for different real stars - see e.g. Fig. 4 of Fantina
et al. (2022) for calculations of 𝐼 assuming the BSk19, BSk20, and BSk21 EoSs.
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achieve torque balance, which alleviates the dependence on nature being able to facilitate the
construction of sufficiently large mountains. Yet, on the other hand, by this same token such
smaller mountains are inherently harder to detect, and require GW interferometers with greater
sensitivities beyond current (and possibly near-future) capabilities.

3.2.2.1 The ‘wavy capture layer’

In coming this far, the pertinent question that remains to be addressed is that, assuming neutron
stars do emit gravitational-waves to some degree, what possible physical processes might be
causing it? We saw briefly in Section 1.3 that a host of phenomena could potentially generate
gravitational radiation. But, in the context of accreting NSs (which provide the most encouraging
qualitative evidence for their existence), the story of how large-scale deformations in the form
of the conventional ‘thermal mountain’ might develop begins with the seminal paper of Bildsten
(1998) and the formation of the so-called ‘wavy capture layers’.

To understand how this phenomenon may occur, we return to the discussion in Section 2.4.2,
restricting ourselves to the outer crust4. The Fermi energy of free electrons increases as accreted
matter is compressed into the crust. Once the Fermi energy equals that of the binding energy 𝐸𝑑
of a particular nuclear species at a given depth, electron capture becomes energetically favourable
leading to the transformation

(𝐴, 𝑍) + 𝑒− → (𝐴, 𝑍 − 1) + 𝜈e . (3.39)

From the Fermi energy distribution, Bildsten (1998) estimated that the pressure in the outer crust
generated by the relativistic degenerate electrons was

𝑃(𝐸F) = 1.42 × 1030erg cm−3
(

𝐸F
30MeV

)4
. (3.40)

In these low density regions, the mass of a shell above a given capture layer can be approximated
by the condition for (Newtonian) hydrostatic equilibrium (2.46a) - (2.46b) and Eq. (3.40) as

𝑀crust(𝐸F) =
4𝜋𝑅2𝑃

𝑔
≈ 5 × 10−5 𝑀⊙

𝑅4
6

𝑀1.4

(
𝐸F

30 MeV

)4
, (3.41)

where 𝑔 = 𝐺𝑀/𝑅2.

In Section 2.4.2, it was assumed that electron captures occur instantaneously once 𝐸F > 𝐸𝑑

making the process solely density dependent. However it had been previously shown by Bildsten
4Bildsten (1998) did not consider capture layers in the inner crust in his original work, but did later extend the

idea to deeper regions in Ushomirsky et al. (2000).
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and Cumming (1998) that actually this is only true of cold, weakly accreting NSs. For those that
strongly accrete, and with temperatures exceeding ∼ 108 K, the capture rates are in fact sensitive
to the local temperature, with captures permitted out on the thermal tail of the Fermi distribution
at physical points in the crust where 𝐸F ≲ 𝐸𝑑 . Consequently, in the regions of the crust that
are hotter on average, electron-capture events can take place at lower density (closer to the star’s
surface) than colder regions (recall Fig. 1.10).

Such a phenomenon led Bildsten (1998) to conclude that the presence of a transverse temperature
gradient in the outer regions of the crust would therefore lead to density asymmetries with an
associated mass quadrupole Δ𝑀 ≈ 4𝜋𝑅2Δ𝜌Δ𝑠𝑐, where Δ𝑠𝑐 is the difference in physical depth of
the capture layer. Through perturbing the Fermi energy in Eq. (3.41) and introducing a non-zero
temperature such that electrons with a Fermi energy Δ𝐸F ≈ 10𝑘𝐵Δ𝑇 may still be captured,
Bildsten (1998) estimated that the mass quadrupole generated within a single capture layer is

Δ𝑀 ≈ 5.8 × 10−7𝑀⊙ Δ𝑇8
𝑅4

6
𝑀1.4

(
𝐸F

30 MeV

)3
. (3.42)

It is worth noting that the prefactor 5.8 × 10−7 is an order of magnitude larger than the value
given in Eq. (3) of Bildsten (1998), and likely a typo in the original manuscript.

To better understand this result, one can make a back-of-the-envelope approximation of the
induced ellipticity as a result of a single capture layer as

𝜀 ≈ 𝑄

𝐼
≈ Δ𝑀

𝑀
∼ 10−8 . (3.43)

Given that there are many electron capture layers in the outer crust (Tables A.1 - A.3), such a
result suggests that, at least in this simple analysis, the GWs generated in the outer crust should
be sufficient to counteract the spin-up torques provided by accretion.

3.2.2.1.1 Sourcing a temperature gradient

One crucial caveat to the Bildsten (1998) estimate however is that a lateral temperature gradient
of 108 K is assumed to be present in Eq. (3.42). A description for the origin of the required
temperature gradients themselves were not given, and thus the true extent of the mass quadrupole
generated by these wavy-capture layers is uncertain.

In a follow-up paper, Ushomirsky et al. (2000) (hereafter UCB) sought to further substantiate the
Bildsten (1998) mechanism by considering two possibilities to source the necessary temperature
gradients. They argued that lateral variations in the crustal composition of the accreted crust due
to asymmetric burning could (i) lead to asymmetries in heat energy released in the crust, and
(ii) lead to anisotropies in the thermal conductivity due to varying charge-to-mass (𝑍2/𝐴) ratios.
UCB found that temperature asymmetries of the percent level (i.e. 𝛿𝑇/𝑇 ∼ 1%) could lead to
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the formation of mass quadrupoles large enough to balance accretion torques. However, UCB
were also unable to justify the origin of either the compositional or nuclear heating asymmetries,
instead simply assuming their existence a priori at the level of 10%.

More recently, Singh et al. (2020) also took the UCB argument one step further and explored
the possibility of asymmetric accretion leading to quadrupolar deformations of the crust. The
authors used the likely presence of (weak) magnetic fields of accreting neutron stars to model
the flow of accreted matter onto the polar caps. They computed the temperature perturbations
in the crust as a result of the build up of accreted matter, and calculated the corresponding mass
quadrupole as per the results of UCB for the physical shifts of the capture layers. Their results
focused on the particular pulsar PSR J1023+0038, since an observed increase in its spin-down
rate during active episodes of accretion (∼ 27%) is well documented (Sec. 3.2.2). Unfortunately
however, the mass quadrupoles generated from such a mechanism were, in general, too small to
explain the spin-down rate of PSR J1023+0038, unless significant amounts of shallow crustal
heating (Sec. 4.3.2) is present in the outermost layers of the crust.

Additionally, Osborne and Jones (2020) also sought to try and help complete the picture originally
laid out by Bildsten (1998) (and UCB) by providing a first-principles calculation for sourcing
large-scale temperature asymmetry in the accreted crust. They also exploited the presence of
weak magnetic fields (∼ 109 G) of NSs in LMXBs to compute temperature asymmetries, but via
a different mechanism. They modelled the anisotropic heat conduction of relativistic electrons
in the accreted crust as a result of internal crustal magnetic fields. They concluded that the
1% asymmetry required by UCB to attain torque balance was unlikely to be produced from this
mechanism, though, finding that asymmetries of the order ∼ 10−5% could be produced in the
deep crust by a 109 G field.

Over the course of the next two chapters, we will seek to revisit and improve various aspects of
the Osborne and Jones (2020) mechanism for building a temperature asymmetry in the crust.
Namely, we will also assume the star to be threaded with an internal magnetic field, but extend
the computational domain to include a self-consistent calculation of the thermal structure of the
core. In doing so, we shall allow for the possibility of the magnetic field to penetrate the core,
with the expectation that non-vanishing temperature perturbations at the crust-core transition
will lead to greater asymmetries in the deep crust.
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4

Thermal Structure of Accreting
Neutron Stars

In this chapter we shall construct the steady-state background thermal profile of a non-rotating,
spherically symmetric and steadily accreting neutron star. We begin in Section 4.1 by discussing
recent observations of accreting NSs within our galaxy, before presenting both the Newtonian and
general relativistic heat equations which describe the thermal evolution in Section 4.2. Solving
these equations requires accurate descriptions of the different components that comprise the heat
equation, each of which are discussed in turn. The relevant contributions to crustal heating
(Sec. 4.3), thermal conductivity (Sec. 4.4), neutrino cooling (Sec. 4.5), and effects of baryon
superfluidity (superconductivity; Sec. 4.6) shown in this chapter are a collation of many results
of a large number of other published works in the literature. The purpose is to give the reader an
intuitive sense of how the many different components combine in order to be able to solve the
heat equations and accurately predict the thermal structure.

In Section 4.7 we describe how the heat equations that determine the steady-state thermal profile
are solved, and discuss the relevant boundary conditions. In Section 4.8 we then present results
of our model for steadily accreting NSs, taking into account a range of different input parameters
that reflect observations of different LMXBs. We then compare the results of our model with
other works in the literature (Sec. 4.9), and discuss any differences between models.

4.1 Observations of accreting neutron stars

The first source of X-rays to be identified from outside the Solar System was the neutron star
LMXB Scorpius X-1, discovered as far back as 1962 (Giacconi et al., 1962). Among all
previous and current space-borne observatories, approximately 350 X-ray sources from within
the galaxy have either been confirmed, or are suspected to be, LMXBs (Avakyan, A. et al., 2023).
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Observational inferences suggest that many of these systems contain a neutron star, whilst others
accommodate a more compact black hole.

A small percentage of these NS-LMXBs belong to the class of rapidly rotating accreting mil-
lisecond X-ray pulsars described in Section 3.2.1 (see Table 1 of Salvo and Sanna, 2022 for the
full list). In general, AMXPs fall into two categories: (i) those that are almost always accreting
(persistent systems), and (ii) those that accrete periodically (transient systems). In the latter
case, transient systems may exhibit frequent swings in their X-ray luminosity, whereby outbursts
of active accretion are separated by - in some cases quite long - periods of quiescence, where
there is little to no accretion.

Indeed, transient systems typically present a low luminosity, in the region 1031−34 erg s−1, but
occasionally exhibit a sudden rise of their luminosity to that of 1036−39 erg s−1 for brief periods of
time. The steady flow of gas from the companion star during quiescence leads to an enlargement
of the NS’s accretion disk. Once the disk reaches a critical mass, it can trigger instabilities in
the disk that results in an abrupt increase in the accretion rate from the disk to the surface of
the star by many orders of magnitude, leading to an ‘outburst’. The duration of these outbursts
may last anywhere from days to years, but cease once the accretion disk has donated a sufficient
amount of material. At this point the system returns to pre-outburst levels, where the process of
accumulating matter in the accretion disk can begin again.

It is worth bearing in mind however that there is no hard-and-fast rule as to what delineates
between a persistent and transient AMXP. Rather, they are simply ‘considered’ transient if their
X-ray luminosity changes by a factor of ∼ 1000 over a short period (Bahramian and Degenaar,
2023). As such, it not surprising that there a number of systems that fall somewhere between a
transient and persistent system. If an AMXP exhibits extended outburst episodes that last on the
time-scale of years, but still switch between active and inactive periods of accretion, then they
may be referred to as quasi-persistent systems. The light curves (i.e. the brightness over a period
of time) for three different LMXBs obtained by the Rossi X-ray Timing Explorer is shown in
Figure 4.1.

Some AMXPs also exhibit phenomenon referred to commonly as type I X-ray bursts during their
accretion phases. These bursts manifest as sharp, rapid rises in the luminosity followed by a
slow and gradual decrease. They produce distinctive light curves, which in general are split into
three distinct phases:

– the rise (∼ 1− 10 s): A thermonuclear flash caused by the ignition of accumulated helium
spreads across the surface.

– the peak: The ocean ignites and explosive thermonuclear burning takes place.

– the decay (∼ 20 − 200 s): The flux begins to decrease once the helium fuel is spent and
burning ceases.
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Figure 4.1: Observed light curves obtained from the Rossi X-ray Timing Explorer for three
different X-ray transients indicated near the curves. Image credit: reproduced from Wijnands

(2004).

Figure 4.2: The average light curve of 20 type-I X-ray bursts from the ‘rapid burster’ system
MXB 1730-335. Image credit: reproduced from in’t Zand et al. (2017).

The ‘average light curve’ of 20 type-I X-ray bursts from the so-called rapid burster system MXB
1730-335 can be seen in Figure 4.2.

The absence of accretion in periods of quiescence implies that the observed emission from these
systems (1032−34 erg s−1) cannot be sourced from thermonuclear burning in the ocean. Instead,
prevailing theory suggests that low-level quiescent emission originates from thermal radiation
generated inside the neutron star, which is then radiated away from its surface later on. The
thermal state of accreting NSs has been studied by many authors, with the first works on thermal
emission from NSs dating back to as early as the initial detection of Scorpius X-1 in the 1960’s
(e.g. Chiu and Salpeter, 1964; Morton, 1964). The relation between the surface and internal
temperature was first identified by Tsuruta and Cameron (1966), who are credited with laying
out the foundations for so-called cooling theory, allowing one to track the thermal evolution over
successive outburst and quiescent cycles.
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Cooling theory remains an active area of research today, with the expected crust cooling being
observed from seven systems (Wijnands et al., 2017). Observing runs of these systems over
several years has provided a wealth of data, allowing for the construction of the so-called cooling
curves for these systems. This information has subsequently led to the development of a number
of theoretical models that can track (and predict) the thermal evolution. These codes assume a
variety of different heating and cooling processes, which can be adjusted in order to match the
observations of cooling crusts, which in turn provide useful opportunities to constrain various
crustal properties. Indeed, how the thermal evolution of transiently accreting NSs changes over
successive outbursts depends on a range of factors; including how efficiently heat is stored, on the
temperature of the core, as well as on a number of other crustal properties such as its thickness,
the thermal conductivity, as well as the composition (see e.g. Potekhin et al., 2023 for a very
recent calculation, as well as any references therein).

4.2 The heat equation

The thermal evolution of a spherically symmetric star is determined by (without GR correction
terms) the energy balance equation

𝜌𝐶𝑃
𝜕𝑇

𝜕𝑡
+ ∇ · 𝑭 = 𝑄 , (4.1)

where 𝜌 is the mass density, 𝐶𝑃 is the specific heat capacity (at constant pressure), 𝑇 is temper-
ature, 𝑭 is the heat flux and, 𝑄 is the net rate of production of heat per unit time, given by

𝑄 = 𝑄h −𝑄𝜈 , (4.2)

where 𝑄h is the local heat energy deposited (per unit volume per unit time) inside the star, and
𝑄𝜈 is energy loss due to neutrino emission.

In Section 2.6 we calculated the hydrostatic structure of a non-rotating, spherically-symmetric
NS in static equilibrium. If one further assumes that the NS-LMXB is steadily accreting, then
the temperature of the star can be presumed to be (to a reasonable approximation) unchanging
in time (as well being spherically symmetric). A steady-state solution to the heat equation (4.1)
results in the vanishing of the time derivative, and therefore the heat flux is related to the amount
of heat energy generation as

∇ · 𝑭 = 𝑄 , (4.3)

with the heat flux being related to the temperature 𝑇 via Fourier’s law as
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𝑭 = −𝜅 · ∇𝑇 , (4.4)

where 𝜅 is the thermal conductivity. For a spherically symmetric system (as is the case for a NS
built from the TOV equations; recall Sec. 2.6.2), the luminosity 𝐿 is related to the heat flux via
𝐿 = 4𝜋𝑟2𝐹, with 𝐹 = |𝑭 |. From this, one can derive a system of two coupled ODEs for 𝐿 and
𝑇 , with respect to the radial coordinate 𝑟, as

𝑑𝐿

𝑑𝑟
= 4𝜋𝑟2𝑄 , (4.5)

𝑑𝑇

𝑑𝑟
= −1

𝜅

𝐿

4𝜋𝑟2 . (4.6)

To compute the temperature inside the NS requires integrating the heat transport equations (4.5)
- (4.6) over the entire star. Such a calculation requires an accurate description of the heating term
𝑄ℎ, neutrino cooling 𝑄𝜈 , and thermal conductivity 𝜅 in the different regions of the star (recall
Fig. 2.1), as well as a set of inner and outer boundary conditions at each end of the integration.
These are to be discussed in detail in the following sections.

It is worth pointing out, however, that the intense gravitational fields associated with ultra-dense
NSs, in principle, modifies the heat flow. The relativistic heat equation (applicable to neutron
stars and black-holes) was derived by Thorne (1967) (and later reformulated in Thorne, 1977)
and reads

𝐶𝑃𝑒
𝜈/2 𝜕𝑇

𝜕𝑡
+ ∇ · (𝑒𝜈𝑭) = 𝑒𝜈𝑄 , (4.7)

with the relativistic form of Fourier’s law being written as

𝐹 = −𝑒−𝜈/2𝜅 · ∇(𝑒𝜈/2𝑇) . (4.8)

Modelling of the thermal evolution of accreting NSs is done using general relativistic cooling
codes such as NSCool (Page and Reddy, 2013); a one-dimensional code (i.e. one which assumes
perfect spherical symmetry) that solves Eqs (4.7) - (4.8) once supplied with the relevant micro-
physical inputs.

In the rest of this thesis however, we shall employ just the Newtonian formulation (4.5) - (4.6)
to compute the thermal structure. We make this choice since we aim to connect our temperature
perturbations (Chap. 5) with the calculations of the NS ellipticity obtained by Ushomirsky et al.
(2000) and Osborne and Jones (2020), who worked in an entirely Newtonian framework.
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Table 4.1: Heat per accreted nucleon (in MeV) deposited in the outer and inner crust of an
accreting neutron star predicted by the energy-density functionals BSk19, BSk20, and BSk21

of Fantina et al. (2018) and the ‘liquid drop’ model of Haensel and Zdunik (1990a).

EoS Outer crust Inner crust Total
BSk19 0.152 1.499 1.651
BSk20 0.144 1.471 1.615
BSk21 0.125 1.410 1.535
HZ90 0.09 1.36 1.45

4.3 Sources of crustal heating

As accreted material falls onto the surface, large amounts of gravitational binding energy (∼ 200
MeV per accreted nucleon) is released. Only a fraction of the heat generated by gravitational
energy release (or thermonuclear burning at the base of the ocean; ∼ 5 MeV per accreted
nucleon) will flow inwards towards the core, and it is therefore unlikely that these mechanisms
are responsible for heating up the core to temperatures high enough to reproduce the quiescent
X-ray spectra. This suggests there must be additional sources of heating within the interior of
the star itself.

4.3.1 Deep crustal heating

Heat energy equivalent to the change in Gibbs-free energy is released each time the threshold for
non-equilibrium electron-capture and pycnonuclear reactions is reached in the crust (recall Sec.
2.4.2). This ‘deep crustal heating’ (DCH), which begins during outburst as accreted material is
compressed into the crust, propagates around the interior, including the core, heating it up. This
mechanism, in principle, explains how the star is able to stay warm even after the outburst has
ended, as heat at late times is transported from the cooling core back up to the surface, producing
the thermal emission observed during quiescence.

The total amount of heat released per accreted nucleon in each of the F+18 and HZ90 models
is shown in Table 4.1. How much of this heat is deposited in each of the capture layers with
increasing density is shown in Fig. 4.3. The amount of heat generated is largely similar
across each model, with most of the heat being generated within the inner crust at densities
𝜌 ∼ 1012 − 1013 g cm−3. Notably however, almost twice the amount of heat is produced in
the BSk models (∼ 1.4 MeV) due to pycnonuclear fusion than in the HZ90 model (0.86 MeV),
indicating that individual electron-captures do not play a significant role in heating the crust
when nuclear shell effects are taken into account (Sec. 2.4.2).

The role that DCH reactions play in determining the thermal evolution of the star depends on the
type of LMXB system:
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Figure 4.3: Heat deposited (per accreted nucleon) in the crust of an accreted neutron star as
a function of the density for BSk19-21 (F+18; Tables A.1 - A.3) and HZ90 (Tables 1 and 2
of Haensel and Zdunik, 1990a). The step-like features represent our choice to smear the heat
released at each transition over shells of constant (A, Z). Locations of pycnonuclear reactions
are marked by stars, and the vertical dotted and dash-dotted lines refer to the outer to inner crust

transition (neutron drip) for F+18 and HZ90 respectively.

Transient systems: in transient systems, DCH reactions occurring over the course of the
accretion outburst will be conducted down through the crust and into the core. This heat
is then later transported back up through the crust during periods of quiescence where it
is released from the surface.

Quasi-persistent systems: in quasi-persistent systems (such as the AMXP KS 1731-260; Rut-
ledge et al., 2002), the large amount of heat generated from DCH reactions can lead the
crust to become much hotter than the equilibrium core temperature. If the length of the
outburst exceeds the thermal diffusion time, then the quiescent luminosity after the out-
burst has ended will be dominated by the crust cooling rather than the core.

Persistent systems: if the accretion remains constant over a period years, then a steady-state
can be reached in the crust. In this scenario, the amount of heat generated from DCH
reactions is sufficiently large to compensate the heat loss via neutrinos from the core (Page
and Reddy, 2013).

4.3.2 Shallow crustal heating

Though the DCH scenario explains very well the quiescent X-ray spectra of many transients,
several NS-LMXB sources have been observed to be far hotter than what is theoretically predicted
for the first 100 days or so of quiescence (Ootes et al., 2018). These light curves show a significant
difference in the initial temperature of the crust at the end of outburst compared to that of the
temperature at late times, when the crust and core of the star are brought back into thermal
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equilibrium. Such a phenomenon indicates the presence of some as-yet unknown additional heat
sources in the outer layer (𝜌 ≤ 1010 g cm−3) of the crust (e.g. Chamel et al., 2020).

The average amount of additional heating required by cooling simulations to replicate the
observational data is around 1 − 2 MeV per accreted nucleon (Ootes et al., 2018), roughly the
same amount of heat released from DCH (Table. 4.1). Proposed explanations of this ‘shallow
crustal heating’ (SCH) vary, including uncertainties in both the accretion rate (Ootes et al.,
2016) and envelope constitution (Ootes et al., 2018), convection in the liquid ocean (Medin and
Cumming, 2015), and differential rotation between the ocean and solid crust (Inogamov and
Sunyaev, 2011).

In this work we shall follow the prescription of Osborne and Jones (2020) and smear the heat
deposited in each capture layer over shells of constant (𝐴, 𝑍), with the width of the shell being
defined by the density region between two consecutive capture layers (see Fig. 4.3). The amount
of heat deposited in each layer (per unit volume per unit time) is a function of the accretion rate
¤𝑀 only. By smearing the deposited heat over whole shells, the local energy deposited in each

shell is

𝑄h = 𝑄nuc +𝑄S =
¤𝑀𝜖nuc

4
3𝜋(𝑟

3
𝑖
− 𝑟3

𝑖+1)
+𝑄S , (4.9)

where 𝜖nuc is the heat deposited from DCH reactions per nucleon in a given capture shell (Eq.
(2.17); and see the 7th columns in Tables A.1 - A.3), and 𝑟𝑖 , 𝑟𝑖+1 are the radii at the 𝑖th capture
layer. In Eq. (4.9),𝑄S is the shallow heating term which affects only the lowest-density regions of
the crust (𝜌S ≤ 1010 g cm−3). At densities 𝜌 < 𝜌S, we add an extra 0.5 MeV per nucleon in each
of three compositional shells defined by the densities 𝜌 = 1.00 × 107 g cm−3 (the approximate
location of the base of the H/He layer), and 𝜌 = 1.38 × 109 g cm−3, 𝜌 = 1.81 × 1010 g cm−3,
𝜌 = 7.37 × 1010 g cm−3 (corresponding to the lowest-density compositional shells, which are
the same across each of the BSk models; Tables A.1 - A.3) to give a total of 1.5 MeV per
accreted nucleon of SCH. Accordingly, at densities whereby 𝜌 > 𝜌S, we set𝑄S = 0, and the heat
deposited into the crust is then supplied solely by the relevant DCH reactions.

4.4 Thermal conductivity

How efficiently the heat produced from SCH and DCH processes propagates around the star is
determined by the thermal conductivity 𝜅 of the constituent matter. The primary carriers of heat
inside NS crusts are relativistic electrons. In the core, the heat can be transported by electrons,
muons (if available), as well as neutrons1. The thermal conductivity is temperature dependent,
where, assuming the relaxation-time approximation, is given by (Yakovlev and Urpin, 1980)

1Protons also contribute to heat conduction in the core, though their contribution is negligible compared to
neutrons and the leptons, since they are much fewer in number; Fig. 2.9.
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𝜅x =
𝜋2𝑘B 𝑛x

3𝑚∗
x

𝑇𝜏x , (4.10)

where 𝑛x is the number density of the heat carrier (denoted by the subscript x, i.e. x = e, 𝜇,
n), 𝑚∗

x is its effective mass, and 𝜏x is the effective collision relaxation time. The total thermal
conductivity is then a linear sum of the individual contributions from each carrier, i.e.

𝜅 =
∑︁

x
𝜅x = 𝜅e + 𝜅𝜇 + 𝜅n . (4.11)

4.4.1 Heat conduction in the accreted crust

There is a lack of definitive agreement within the literature concerning the prevalent scattering
processes (i.e. the conduction mechanisms) in the accreted crust. In the context of thermal
mountains, in the seminal paper by Bildsten (1998), it was assumed that electron-phonon inter-
actions are the dominant scattering mechanism. In the later model developed by Ushomirsky
et al. (2000), it was assumed that (following Brown, 2000) a combination of both electron-ion
and electron-electron interactions are responsible for the majority of the heat conduction. More
recent publications modelling the thermal structure, however (e.g. Geppert et al., 2004; Page
et al., 2007; Aguilera et al., 2008; Osborne and Jones, 2020) all follow the formalism originally
described in Yakovlev and Urpin (1980): the outer crust of the star dominated by electron-phonon
interactions, and the inner crust dominated by electron-impurity scattering.

The effective relaxation time in the crust is simply the inverse of the sum of the collision
frequencies of the individual scattering mechanisms. In regions where the crust is liquefied
(ΓCoul < 175; Eq. (2.9)),

𝜏 =
1
𝜈
=

1
𝜈eQ

, (4.12)

and in regions where the crust is solid (ΓCoul ≥ 175),

𝜏 =
1
𝜈
=

1
𝜈ep + 𝜈eQ

, (4.13)

where 𝜈ep and 𝜈eQ are the scattering frequencies from electron-phonon and electron-impurity
collisions respectively (see the appendix of Brown and Cumming, 2009). Strictly speaking, there
is also a contribution to 𝜏 from electron-electron (𝜈ee) collisions. However, strong degeneracy
of the (relativistic) electrons in the crust restricts the available phase space, and therefore has a
negligible contribution to the overall thermal conductivity (Brown, 2000; Brown and Cumming,
2009).
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At temperatures 𝑇 < 𝑇𝑚 (i.e. Γ > 175) the crust is expected to form a solid, body-centred cubic
lattice of bare nuclei (we shall discuss this in greater detail later in Section 6.1.1). Free electrons
in the crust frequently collide with this lattice, transferring energy and momentum with each
interaction. Such collisions create excitations in the lattice, corresponding to the creation and
absorption of phonons (i.e. vibrations of the lattice), which in turn scatter the electrons.

When the temperature is above that of the Debye temperature2, the scattering frequency is
approximately (Brown and Cumming, 2009)

𝜈ep =
13𝑒2𝑘𝐵𝑇

ℎ̄2𝑐
. (4.14)

In the description of the accreted crust in Section 2.4.2, it was assumed that each layer of the
crust is a shell of constant (𝐴, 𝑍), as depicted in Fig. 2.5. Both the BSk19-21 (F+18) and
HZ90 models assume the ashes of X-ray bursts at the bottom of the envelope consist of pure
56Fe only, and also go on to make the one-component plasma approximation. In reality however,
nuclei far beyond the iron group with masses A ∼ 60 – 100 are expected to be formed during
hydrogen/helium burning as a result of rapid proton captures via the rp-process (Schatz et al.,
1999). It is therefore possible that the layers of the crust will be to some degree an admixture of
different nuclei as the heavier elements sink into the crust (e.g. Chamel et al., 2020). The exact
distribution of these nuclei in the different crustal layers however is largely unknown.

Instead, the likely presence of other nuclear species is usually incorporated into simulations via
the so called ‘impurity factor’ Qimp, defined as (e.g. Brown and Cumming 2009)

𝑄imp ≡ 1
𝑛ion

∑︁
𝑖

𝑛𝑖 (𝑍𝑖 − ⟨𝑍⟩)2 , (4.15)

where the sum 𝑖 is over all the different species of ions, with atomic number 𝑍𝑖 and mean
atomic number ⟨𝑍⟩. If the crust is impure, then the thermal conductivity will be dominated by
this electron-impurity scattering. The scattering is a function of the impurity parameter, with
𝑄imp ≪ 1 indicating the crust is very pure and𝑄imp ≫ 1 suggesting the crust is very disordered.

For simplicity reasons it is common to assume that the transition between capture layers in the
accreted crust occurs in an infinitely thin layer (Sec. 2.4.2). However, in real NSs they will
have some finite thickness (Ushomirsky et al., 2000). Thermal broadening of the Fermi surface
can cause electron captures to occur before their respective threshold densities (note that this
is the motivation behind the ‘wavy capture layer’ model discussed in Sec. 3.2.2.1), in some
cases even causing the layers to be thickened to sizes of the order of the width between separate
layers. This fact is of particular significance in the inner crust where the number of capture
layers per unit depth increases significantly. There is a possibility that, in the deep crust, thermal

2Below this temperature, scattering must be treated in a quantum manner (rather than classically) due to the
absorption and emission of individual phonons (Baiko and Yakovlev, 1996), and Eq. (4.14) breaks down.
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broadening effects can actually lead to the capture layers overlapping with one another (Brown,
2000; Ushomirsky et al., 2000). If the capture layers do overlap, then the mixing of the layers
will produce a 𝑄imp value greater than unity and lead to significant disorder. For simplicity,
since the zero-temperature BSk equations of state (i.e. the F+18 model) assume capture layers to
be infinitely thin, we shall follow Osborne and Jones (2020) and ignore the thermal broadening
effects, so as to avoid the mixing of the capture layers and assume the transition layers to be
infinitely sharp.

It is important to point out that this assumption should not lead to any major issues further down
the line. The method we shall explore in order to compute thermal mountain sizes in Chapter 6
will not explicitly rely on the capture layers themselves3, and will not follow the ‘wavy capture
layer’ mechanism proposed by Bildsten (1998). In any case, even if we were to follow the same
method, Ushomirsky et al. (2000) also showed that the individual quadrupole moments due to
the different capture layers add linearly, and so in principle any overlapping layers can be dealt
with via superposition.

In the absence of thermal broadening effects, the electron-impurity scattering frequency is given
by (Brown and Cumming, 2009)

𝜈eQ =
4𝜋𝑄imp𝑒

4𝑛ion

𝑝2
F𝜈F

Λimp , (4.16)

where Λimp is known as the logarithmic Coulomb factor, with a value ≈ 2 (Brown and Cumming,
2009) and 𝑝2

F, 𝜈𝐹 are the (electron) Fermi momentum (2.35) and Fermi velocity respectively.

Initially, it was believed that rapid proton captures at the base of the ocean would lead to
an almost amorphous accreted crust (i.e. 𝑄imp ≫ 1). However, analysis of light curves from
transient systems indicate that actually the crust of accreted NSs should be relatively well ordered.
Specifically, many of these stars have been observed to cool down rather quickly during the first
∼ 100 days after outburst (Wijnands, 2004). Such rapid cooling can only be explained by an
accreted crust with high conductivity, since large amounts of heat must have been conducted
downwards through the crust in a relatively short amount of time. This suggests that the crustal
lattice actually contains very few impurities, contrary to the notion that nuclei far beyond the iron
group are formed as a result of thermonuclear burning. In fact, modelling of these transiently
accreting LMXBs suggests that Qimp is likely of the order ∼ 1 - 10 for most systems, but can
sometimes reach as high as Qimp ∼ 100 in regions of the deep crust where pasta phases occur
(see e.g. Ootes et al., 2018 and references therein).

If the impurity parameter is sufficiently small, then the electron-phonon scattering will determine
the thermal conductivity in the crust. If, however, the non-equilibrium reactions which take
place in the crust do not reduce 𝑄imp from its large value at the base of the ocean (i.e. in the

3We will instead be exploring density perturbations sourced via a contribution to the total pressure in the crust
from the crystal lattice itself (Sec. 6.1.1).
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Figure 4.4: Phase-space diagram for electron-phonon 𝜈ep and electron-impurity 𝜈eQ scattering
in the accreted crust assuming BSk21. The curves indicate the temperature Eq. (4.17) at which
𝜈ep = 𝜈eQ, as a function of density for different values of the impurity parameter 𝑄imp indicated
in the legend. Temperatures above the curves indicate electron-phonon dominance, whilst
temperatures below the curve indicate electron-impurity dominance. The dashed horizontal

line at 𝑇 = 3 × 108 K indicates a fiducial temperature of a typical crust.

hydrogen/helium burning shell; Fig. 2.4), then heat transport will instead be dictated by the
electron-impurity scattering (Brown, 2000).

By equating the electron-impurity (4.16) and electron-phonon scattering (4.14) frequencies, one
may derive a parameterised formula for how the temperature relates to the divide in dominance
between electron-phonon and electron-impurity scattering within the crust as

𝑇𝜈 =
4𝜋 ℎ̄2 𝑒2 𝑛N𝑄imp

13𝑘B 𝑝F 𝜈F
K . (4.17)

In Figure 4.4 we show a phase-space diagram for the crust scattering frequencies 𝜈ep and 𝜈eQ.
The temperatures at which 𝜈ep ≡ 𝜈eQ (Eq. (4.17)) are given as a function of density (assuming the
EoS BSk21) in the crust for different values of the impurity parameter𝑄imp. Crustal temperatures
above that of a given curve (i.e a crust with a given 𝑄imp) indicate electron-phonon scattering
is the dominant process, whilst crustal temperatures below that curve indicate electron-impurity
scattering is dominant. For temperatures 𝑇 = 3 × 108 K, typical of that of accreting NSs,
electron-phonon scattering is the dominant process in ordered (𝑄imp ∼ 1) crusts.

Also note that if the value of𝑄imp happens to be very large (i.e. of the order 𝑍2), then the impurity
relaxation may be approximated by the so-called electron-ion relaxation time, whereby the heat
conduction is then mediated by the scattering of electrons on bare nuclei. The electron-ion
scattering frequency is (Yakovlev and Urpin, 1980)
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𝜈ei =
4𝜋𝑍2𝑒4𝑛N

𝑝2
𝐹
𝜈𝐹

Λei , (4.18)

where Λei = ln
[
(2𝜋𝑍/3)1/3(1.5 + 3/ΓCoul)1/2] − 1.

4.4.2 Heat conduction in the core

Matter in the outer core typically consists of a sea of neutrons, with a small number of protons
and electrons present. Deeper in the core, other particles, including muons, hyperons, pion
condensates, and even deconfined quarks may then appear. What particles may or may not
appear in the inner core are EoS dependent. Since we are assuming the BSk19-21 family of
EoSs, we shall restrict ourselves to the fairly standard model of npe𝜇 composition. Inside the
core, the electrons are assumed to form a free, ultra-relativistic gas. Muons are also assumed
to be free, however are assumed to be non-relativistic where they first appear, becoming more
relativistic with increasing density. The baryons, on the other hand, are assumed to exist in a
strongly coupled non-relativistic fluid.

We include in our model the contributions to the thermal conductivity from the electrons,
muons and neutrons. Interactions between electrons and muons are mediated by Coulomb forces
between themselves and other charged particles, whilst the strength of interactions involving
neutrons is determined by the strong interaction. The following two Sections 4.4.2.1 and 4.4.2.2
are a collation (i.e. not derived) of the fundamental information and relevant equations obtained
by Gnedin and Yakovlev (1995) and Baiko et al. (2001) respectively, which are required in order
to solve the Newtonian heat equations (4.5) - (4.6) in the core.

4.4.2.1 Lepton conduction

The relationship between relaxation times and scattering frequencies is more complex in the core
than it is in the crust (recall Eqs (4.12) - (4.13)). For the leptons, the total effective electron and
muon scattering frequencies are

𝜈e =
∑︁
𝑖

𝜈e𝑖 = 𝜈ep + 𝜈ee + 𝜈e𝜇 , (4.19)

𝜈𝜇 =
∑︁
𝑖

𝜈𝜇𝑖 = 𝜈𝜇p + 𝜈𝜇𝜇 + 𝜈𝜇e , (4.20)

respectively, where 𝑖 is a particular charged particle (i.e. for leptons 𝑖 = 𝑒, 𝜇 and for baryons
𝑖 = 𝑝). The exact relationship between the scattering frequency 𝜈 and the effective relaxation
time 𝜏 in the core has been shown to be (c.f. Eq. (17) of Gnedin and Yakovlev, 1995)
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𝜏e =
𝜈𝜇 − 𝜈′e𝜇

𝜈e𝜈𝜇 − 𝜈′e𝜇𝜈′𝜇e
, 𝜏𝜇 =

𝜈e − 𝜈′𝜇e

𝜈e𝜈𝜇 − 𝜈′e𝜇𝜈′𝜇e
. (4.21)

The additional collision frequencies 𝜈′e𝜇 and 𝜈′𝜇e in Eq. (4.21) are known as partial effective
cross-collision frequencies, and couple the heat transport between the electrons and the muons.
The complete calculations which determine the different scattering frequencies derive from
a system of Boltzmann kinetic equations which demand multi-dimensional integrals over the
momenta of the colliding particles.

The exact nature of these calculations are beyond the scope of this work. As mentioned previously,
the full detailed evaluation of the collision integrals can be found in Gnedin and Yakovlev
(1995) (and references therein). In this thesis we shall just include the final results of these
detailed calculations, and present the relevant formulae in forms which are suitable for numerical
calculation.

Firstly, the approximate collision frequencies of the leptons with charged baryons (i.e. protons;
𝜈ep and 𝜈𝜇p) are

𝜈ep ≈ 1.15 × 1012
(
𝑝Fe

𝑞0

)3 (𝑚∗
p

𝑚p

)2 (
𝑛0
𝑛e

)
𝑇2

8 Rp s−1 , (4.22)

𝜈𝜇p = 𝜈ep

(
𝑛e
𝑛𝜇

)1/3
, (4.23)

where Rp is a quantity which takes into account the possibility that the protons are supercon-
ducting and describes an associated reduction in the collision rate4, and

𝑞2
0 =

4𝑒2

𝜋ℎ̄

∑︁
𝑖

𝑚∗
𝑖 𝑝F𝑖

, (4.24)

is known as the squared static screening momentum, and arises due to the fact interactions (via
Coulomb forces) between individual charged particles in a system of many particles are damped
by the presence of other charge carriers. It is usually assumed that the effect of this screening is
weak in most situations, leading to the so called ‘weak-screening’ approximation, in which Eq.
(4.24) may be approximated as

𝑞2
0

𝑝2
F𝑒

≈ 0.00929
[
1 +

(
𝑛𝜇

𝑛e

)1/3
+ 2.83

(
𝑚∗

p

𝑚p

) (
𝑛p𝑛0

𝑛2
e

)1/3
Zp

]
, (4.25)

4One may think of Rp as a suppression factor. If the protons are superconducting, then Rp < 1. The superflu-
id/superconducting nature of NSs will be explored in greater detail in Section 4.6; and we shall consider the specific
form of Rp in Section 4.6.4.1.
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where Zp is an additional suppression factor which describes the reduction of the screening
momentum when the protons are in a superconducting state (again see Sec. 4.6.4.1).

Next, we shall consider the effective collision frequencies for electron-muon and muon-electron
interactions. Again in the weak-screening approximation, these collision frequencies may be
approximated as

𝜈e𝜇 = 1.43 × 1011
(
𝑝Fe

𝑞0

)3 (
𝑛0
𝑛e

)1/3 [
1 + 1

2

(
𝑛𝜇

𝑛e

)2/3]
𝑇2

8 s−1 , (4.26)

𝜈𝜇e = 𝜈e𝜇

(
𝑛e
𝑛𝜇

)1/3
, (4.27)

along with the associated cross-scattering frequencies 𝜈′e𝜇 and 𝜈′𝜇e expressed as

𝜈′e𝜇 ≈ 1.43 × 1011
(
𝑝F𝑒

𝑞0

)3 (
𝑛0
𝑛e

)1/3 (𝑛𝜇
𝑛e

)2/3
𝑇2

8 s−1 , (4.28)

𝜈′𝜇e = 𝜈
′
e𝜇

(
𝑛e
𝑛𝜇

)
. (4.29)

Finally, the electron-electron and muon-muon collision frequencies 𝜈ee and 𝜈𝜇𝜇 are approximated
as

𝜈ee = 3.58 × 1011
(
𝑝Fe

𝑞0

)3 (
𝑛0
𝑛e

)1/3
𝑇2

8 s−1 , (4.30)

𝜈𝜇𝜇 = 𝜈ee

(
𝑛𝜇

𝑛e

) [
1 + 6

5

(
𝑚𝜇𝑐

𝑝F𝜇

)2/3
+ 2

5

(
𝑚𝜇𝑐

𝑝F𝜇

)4/3]
, (4.31)

where 𝑚𝜇 = 1.88 × 1025 g ≈ 206𝑚𝑒 is the muon rest-mass.

The left-hand panel of Fig. 4.5 shows the relative frequencies of the different Coulomb scattering
interactions (as a function of the density) in the core assuming the BSk21 EoS model a constant
temperature 3 × 108 K. When the effects of proton superconductivity are ignored, as is shown
in Fig. 2.9, the lepton-proton interactions 𝜈ep, 𝜈𝜇p have the largest scattering frequencies, and
therefore dominate the thermal conductivity. If any regions of the core are superconducting
however, then this will suppress 𝜈ep, 𝜈𝜇p, and the lepton-lepton collisions will dominate the
conductivity (this will be explored in Sec. 4.6.4.1).

The right-hand panel of Fig. 4.5 then shows the density dependence of the electron, muon,
and total lepton thermal conductivities (𝜅𝑒, 𝜅𝜇, and 𝜅𝑒+𝜇 respectively) in the core (this time for



90 4. Thermal Structure of Accreting Neutron Stars

1 2 3 4 5 6 7 8
/ 0

1013

1014

1015

1016

ii (
s

1 )
 

ep

ee

p

e

e

′
e

′
e

1 2 3 4 5 6 7 8
/ 0

1023

1024

1025

 (e
rg

 c
m

1  s
1  K

1 )
 

BSk19

BSk20

BSk21

Lep

e

Figure 4.5: Left panel: Magnitude of the Coulomb scattering frequencies 𝜈𝑖 𝑗 as a function of
density (𝜌0 = 2.8× 1014 g cm−3) in the core of a non-superconducting neutron star, assuming the
equation of state BSk21 at a constant temperature 𝑇 = 3 × 108 K. Right panel: Corresponding
thermal conductivity contributions 𝜅𝑒, 𝜅𝜇, and 𝜅Lep = 𝜅𝑒 + 𝜅𝜇 for BSk21. Also included are the
thermal conductivity contributions from the BSk19 and BSk20 equations of state, as indicated

near the curves.

each of the BSk19-21 equations of state) assuming a constant core temperature 3 × 108 K and
ignoring the effects of proton superconductivity. The shapes of the curves are determined by the
number densities of electrons and muons (recall Fig. 2.9), which explains the drop of 𝜅 at high
density in the BSk19 model. In any region of the core where muons are absent (i.e where the
muon chemical potential exceeds than of the electron chemical potential; 𝜇𝜇 > 𝜇e), then only
the electron contribution to the lepton thermal conductivity remains, and Eq. (4.21) reduces to
just 𝜏e = 1/𝜈e, with 𝜏𝜇 = 0.

4.4.2.2 Baryon conduction

In contrast to the leptons, the heat conduction via neutrons is mediated by the strong interaction.
The heat transport via neutrons is effectively independent from the Coulomb-scattering leptons,
and the relationship between the relaxation time and the effective nucleon-nucleon scattering
frequencies is

𝜏n =
1

𝜈nn + 𝜈np
, (4.32)

where 𝜈nn and 𝜈np correspond to the frequency of neutron-neutron and neutron-proton interactions
respectively.

Much like the calculations performed by Gnedin and Yakovlev (1995), the full evaluation of the
collision integrals between the neutrons and protons is beyond the scope of this thesis. Instead,
we shall simply present here the results of Baiko et al. (2001) so that they may be used to compute
the background thermal profile. The approximate collision frequencies 𝜈nn and 𝜈np in the core
are
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𝜈nn ≈ 3.48 × 1015
(
𝑚∗

n
𝑚n

)3
𝑇2

8

{
S (0)

n2 𝐾n2Rn2 + 3S (0)
n1 𝐾n1 [Rn1 − Rn2]

}
s−1 , (4.33)

𝜈np ≈ 3.48 × 1015
(
𝑚∗

n
𝑚n

) (
𝑚∗

p

𝑚p

)2
𝑇2

8

{
S (0)

p2 𝐾p2Rp2 + 0.5𝐾p1Sp1 [3Rp1 − Rp2]
}

s−1 . (4.34)

The quantities S (0)
𝛼 (𝛼 = n1, n2, p1, p2) are scattering cross sections5, the quantities R𝛼 are

superfluid reduction factors (Sec. 4.6.4.2) and 𝐾𝛼 are terms that account for in-medium effects
(see below). Analytical fits for the in-vacuum integrals S (0)

𝛼 may be shown to be (Baiko et al.,
2001)

S (0)
n1 =

14.57
𝑘1.5

Fn

[1 − 0.0788 𝑘Fn + 0.0883 𝑘2
Fn

1 − 0.1114 𝑘Fn

]
, (4.35a)

S (0)
n2 =

7.880
𝑘2

Fn

[1 − 0.2241 𝑘Fn + 0.2006 𝑘2
Fn

1 − 0.1742 𝑘Fn

]
, (4.35b)

S (0)
p1 =

0.8007 𝑘Fp

𝑘2
Fn

[
(1 + 31.28 𝑘Fn − 0.0004285 𝑘2

Fn
+ 26.85 𝑘Fn + 0.08012 𝑘2

Fn
)

· (1 − 0.5898 𝑘Fn + 0.2368 𝑘2
Fn
+ 0.5838 𝑘2

Fp
+ 0.884 𝑘Fn𝑘Fp)−1

]
, (4.35c)

S (0)
p2 =

0.3830 𝑘4
Fp

𝑘5.5
Fn

[
(1 + 102.0 𝑘Fp − 53.91)

· (1 − 0.7087 𝑘Fn + 0.2537 𝑘2
Fn
+ 9.404 𝑘2

Fp
+ 1.589 𝑘Fn𝑘Fp)−1

]
, (4.35d)

where 𝑘Fn , 𝑘Fp = (3𝜋2𝑛n, p)1/3 are the Fermi wave-vectors of the protons and neutrons respec-
tively, computed from the number fractions (2.32) - (2.34) (𝑛n, p = 𝑌n, p 𝑛b) as described in Section
2.5.1.

In addition to considering the nucleon-nucleon interactions in vacuum, Baiko et al. (2001)
also considered the form of scattering cross sections in medium. They found that many-body
effects can be rather significant, reducing the scattering cross sections by up to 100 − 500%.
The quantities 𝐾𝛼 in Eqs (4.33) - (4.34) describe these in-medium effects, with analytical fits
expressed as6

5Strictly speaking these quantities are evaluated as multi-dimensional integrals over the momenta of colliding
bare particles in vacuum.

6These equations, are, however, quite rudimentary and are strictly only valid in the regime whereby 𝑚∗
n = 𝑚∗

p ≡
0.8𝑚b.
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𝐾n1 =

(
𝑚b
𝑚∗

n

)2 [
0.4583 + 0.892 𝑢2

n1 − 0.5487 𝑢3
n1 − 0.06205 𝑘Fn

+ 0.04022 𝑘2
Fn
+ 0.2122 𝑢n1 𝑘Fn

]
, (4.36a)

𝐾n2 =

(
𝑚b
𝑚∗

n

)2 [
0.4891 + 1.111 𝑢2

n2 − 0.2283 𝑢3
n2 + 0.01589 𝑘Fn

− 0.02099 𝑘2
Fn
+ 0.2773 𝑢n2 𝑘Fn

]
, (4.36b)

𝐾p1 =

(
𝑚b
𝑚∗

p

)2 [
0.04377 + 1.100 𝑢2

p1 + 0.1180 𝑢3
p1 + 0.1626 𝑘Fp

+ 0.3871 𝑢p1 𝑘Fp − 0.2990 𝑢4
p1

]
, (4.36c)

𝐾p2 =

(
𝑚b
𝑚∗

p

)2 [
0.0001313 + 1.248 𝑢2

p2 + 0.2403 𝑢3
p2 + 0.3257 𝑘Fp

+ 0.5536 𝑢p2 𝑘Fp − 0.3237 𝑢4
p2 + 0.09786 𝑢2

p2 𝑘Fp

]
, (4.36d)

where

𝑢n1 = 𝑘Fn − 1.665 , (4.37a)

𝑢n2 = 𝑘Fn − 1.556 , (4.37b)

𝑢p1 = 𝑘Fp − 2.126 , (4.37c)

𝑢p2 = 𝑘Fp − 2.116 . (4.37d)

To determine the relative effectiveness of the heat conduction via the different carriers, Fig. 4.6
shows the density dependence of the lepton (dashed lines), baryon (dotted lines), and total (solid
lines) thermal conductivities (𝜅𝑒+𝜇, 𝜅𝑛, and 𝜅tot = 𝜅𝑒+𝜇+𝑛 respectively) in the non-superfluid core
for each of the EoSs BSk19-21, assuming a constant 𝑇 = 3 × 108 K. The BSk20 and BSk21
models predict that the thermal conductivity from the leptons is always the dominant source of
heat conduction in the core. In the BSk19 model however, the vanishing of the electrons and
muons at high density (Fig. 2.9) means that the neutrons can become the dominant source of
heat conduction in the innermost regions.

4.5 Sources of neutrino emission

Heat that is generated in the crust via DCH and SCH processes is conducted around the star
through the variety of interactions discussed in the previous section. This propagation of heat
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Figure 4.6: Thermal conductivity contributions from leptons 𝜅e+𝜇, baryons 𝜅n, and the total
thermal conductivity 𝜅tot = 𝜅e + 𝜅𝜇 + 𝜅n assuming each of the BSk19, BSk20, and BSk21
equations of state. The core is assumed to be non-superconducting, at constant temperature

𝑇 = 3 × 108 K.

around the star drives another wide variety of interactions that result in the generation of neutrinos,
which carrying away energy and cool down the star.

This neutrino luminosity is, in most cases, vastly dominated by interactions that take place inside
the core. This should not be too surprising, given the core compromises ∼ 99% of the star’s total
mass (recall the right-hand panel of Fig. 2.14). Reactions involving free neutrons and protons,
are, however, significantly influenced by the presence of baryon superfluidity; suppressing the
neutrino emissivities (as well as actually giving rise to a unique neutrino emission mechanism
in the form of Cooper pair breaking and formation; Sec. 4.6.2.4) in a manner similar to that of
thermal conduction involving baryons.

The principle neutrino emission mechanisms in the crusts and cores of NSs were famously
reviewed by Yakovlev (2001). Convenient fitting formulae for the neutrino emissivity for each
interaction as a function of density and temperature were collated (see their Sections 2 and 3),
allowing for easy integration of many different neutrino processes into codes that compute the
thermal structure of accreting and non-accreting NSs. In the rest of this section, we shall briefly
describe these processes, presenting the fitting formulas necessary to compute the total neutrino
luminosity 𝑄𝜈 required to solve the heat equations (4.5) - (4.6) and compute the background
thermal profile.
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4.5.1 Neutrino emission in the accreted crust

In weakly-magnetised NSs (𝐵 ≲ 1013 G), the principle neutrino mechanisms in the crust are
the decay of plasmons (quanta of the electromagnetic field within a plasma) into a neutrino-
antineutrino pair

𝛾 → 𝜈 + 𝜈̄ , (4.38)

and neutrino bremsstrahlung from the collisions of electrons with atomic nuclei

𝑒(𝐴, 𝑍) → 𝑒(𝐴, 𝑍) + 𝜈 + 𝜈̄ . (4.39)

The efficiency of electron-ion bremsstrahlung is determined by the state of the ions in the crust.
In regions of the crust where the ions are crystallised (ΓCoul ≥ 175; Eq. 2.9), the neutrino
emmisivity is suppressed due to separation of electron energy bands (Yakovlev and Kaminker,
1996). However, if significant heat is deposited into the crust via DCH and SCH processes,
then in regions of the crust which melt and the ions are liquefied (ΓCoul < 175), collisions of
relativistic degenerate electrons with atomic nuclei in the Coulomb liquid allow for more efficient
neutrino emission (Haensel et al., 1996).

The neutrino luminosity (per unit volume per unit time) due to electron-ion bremsstrahlung was
calculated in the solid and liquid phases by Yakovlev and Kaminker (1996) & Haensel et al.
(1996) respectively, and may be written

𝑄br = 3.229 × 1011 𝑍
2

𝐴
(1 − 𝑋N) 𝜌12 𝑇

6
8 𝐿 erg s−1 cm−3 , (4.40)

where 𝐿 is a dimensionless parameter known as the Coulomb parameter which distinguishes
between the two possible states of the crust. Loosely speaking, when the ions are crystallised,
then 𝐿 ∼ 0.2, whilst in regions of the crust that are liquefied, one has 𝐿 ∼ 17.

If significant portions of the crust were to be melted, then it is likely the crust will be at
temperatures close to, or exceeding 109 K. At these temperatures, the interactions of free
electrons with plasma microfields can also become a significant source of neutrinos. Several
types of plasmons are thought to exist in NS matter, and they can, in theory, emit neutrinos of
any flavor. The neutrino luminosity generated by the decay of plasmons is given by Yakovlev
(2001) as

7Strictly speaking, 𝐿 is a slowly-varying function of density, temperature, and composition. An analytic fit for the
Coulomb parameter was proposed by Haensel et al. (1996) (their Eq. (25)), but it does not change appreciably in the
context of the parameter space explored here.
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𝑄pl ≈
𝐺2

F
96𝜋4 ℎ̄𝛼f

(
𝑚𝑒𝑐

ℎ̄

)9
(𝐼l + 𝐼t)

∑︁
𝜈

𝐶2
𝑉 , (4.41)

where 𝐺F = 1.496 × 1049 erg cm3 is known as the Fermi weak interaction constant, 𝛼f ≡
𝑒2/( ℎ̄𝑐) ≈ 1/137 is the fine structure constant, and 𝐶𝑉 are normalized vector constants which
account for the fact that the decay process can produce neutrino pairs of any flavor (i.e. 𝜈e𝜈̄𝑒,
𝜈𝜇 𝜈̄𝜇, 𝜈𝜏 𝜈̄𝜏).

The final quantities 𝐼l, 𝐼t are dimensionless functions which describe the contributions of both
longitudinal and transverse plasmons (recall that they are essentially quanta of the electromag-
netic field), respectively. Reliable analytic fits to these dimensionless functions were obtained
by Yakovlev (2001), given as

𝐼l + 𝐼t = 𝐼pl ≈ 𝑡9r (16.23 𝑓 6
p + 4.604 𝑓 15/2

p ) exp(− 𝑓p) , (4.42)

where 𝑡𝑟 ≡ 𝑘B𝑇/(𝑚𝑒𝑐2) is a dimensionless relativistic temperature, and 𝑓p is referred to as the
‘dimensionless plasma parameter’, given by

𝑓p =
ℎ̄𝜔pe

𝑘B𝑇
=

1
𝑡r

[
4𝛼f𝑥

3
r

3𝜋
√︁

1 + 𝑥2
r

]1/2
, (4.43)

where 𝑥r is the relativity parameter (2.36).

Figure 4.7 shows a phase-space diagram for the neutrino luminosity 𝑄𝜈 due to plasmon decay
and electron-ion bremsstrahlung processes in the crust. There is an enormous variation in the
values of 𝑄𝜈 (∼ 14 orders of magnitude) that are covered in the 𝜌 − 𝑇 space, ranging from
𝑇 = 107 − 5× 109 K, and 𝜌 ∼ 109 − 1014 g cm−3. Such variations result as a consequence of the
strong temperature dependence of the different processes. The coloured regions indicate where
the plasma (green) and bremsstrahlung (crystalline [light red] or liquefied [dark red]) processes
dominate. Electron-ion bremsstrahlung in the solid phase can be seen to be the dominating the
emissivity over the majority of the crust for most temperatures typical of that of accreting NSs
due to its high melting temperature (the dotted line).

4.5.2 Neutrino emission in the core

Neutrino emission in the core is determined by numerous different nuclear reactions that often
scale with density, as well as (to a steep power) the temperature. Loosely speaking, these
mechanisms can be subdivided into two categories: fast and slow processes. In general, the fast
processes are much more efficient neutrino emitters than the slow processes, but have density
thresholds that restricts their presence to only the innermost region of the most massive NSs. In
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Figure 4.7: Phase-space diagram showing the neutrino luminosity 𝑄𝜈 in the accreted crust of
a weakly-magnetized neutron star due to plasmon decay and electron-ion bremsstrahlung pro-
cesses. The assumed equation of state model is BSk21. Contour lines are the magnitude of the
total neutrino luminosity 𝑄𝜈 +𝑄pl, and are labelled by the value of log10 [𝑄𝜈 (erg cm−3 s−1)].
The coloured regions indicate where the plasma, or bremsstrahlung (either crystalline or liq-
uefied) processes dominate. The dashed line indicates the position in the phase-space diagram
whereby the processes are equal in magnitude, and the dotted line corresponds to the melting

temperature 𝑇m, whereby ΓCoul (𝜌) = 175; Eq. (2.9).

the next few sections we will discuss the strongest of these reactions; direct URCA, modified
URCA, and nucleon-nucleon bremsstrahlung.

The total neutrino emissivity from the sum of these processes is illustrated in the left- (assuming
the EoS BSk20) and right-hand panels (assuming BSk21) of Fig. 4.8. One may immediately
notice the huge range in𝑄𝜈 between the different processes (spanning ∼ 22 orders of magnitude
in the right-hand panel) as a consequence their strong temperature dependence. Over the course
of the next few sections we shall take the time to discuss each of these processes in turn.

4.5.2.1 Direct URCA processes

By far the most powerful emission mechanism is the direct URCA (Durca) process. In simple
npe matter the process is simple, and consists of successive reactions of beta decay and electron
capture:

n → p + e− + 𝜈̄e , p + e− → n + 𝜈e . (4.44)

These reactions ensure that nucleons in the core remain in a state of beta-equilibrium, whereby
the chemical potentials of the matter satisfies the equality 𝜇n = 𝜇p + 𝜇e . In equilibrium, both
reactions proceed at equivalent rates, and the composition of core remains constant. Equally,
if the system is brought out of equilibrium for whatever reason, one of the two reactions is
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Figure 4.8: Left panel: Density dependence of the neutrino luminosity 𝑄𝜈 of modified
URCA (Sec. 4.5.2.2) and nucleon-nucleon bremsstrahlung (Sec. 4.5.2.3) in the core of a
non-superfluid neutron star assuming the BSk20 equation of state at 𝑇 = 3 × 108 K (note direct
URCA processes are forbidden; Sec. 4.5.2.1). Right panel: Same as left panel but assuming
the BSk21 equation of state (whereby direct URCA processes are permitted). Direct URCA
processes are so dominant that its luminosity curve lies beneath the black curve denoting the

total neutrino luminosity.

enhanced/suppressed such that the proton/neutron fractions once again return to their respective
equilibrium values. The neutrino emissivity due to Durca processes in the core of NSs was
obtained by Lattimer et al. (1991), and may be approximated as

𝑄
(Durca)
𝜈 = 4.00 × 1027

(
𝑛e
𝑛0

)1/3 𝑚∗
n𝑚

∗
p

𝑚2
n
𝑇6

9 Θnpe erg cm−3 s−1 , (4.45)

where Θnpe is a step function such that Θnpe = 1 if the Fermi momenta 𝑝Fn , 𝑝Fp and 𝑝Fe satisfies
the so-called triangle condition (see below) and Θnpe = 0 otherwise.

The reactions (4.44) may proceed only when the energies of the reacting particles (electrons,
protons, and neutrons) are approximately equal to that of their respective Fermi energies (Potekhin
et al., 2015). The triangle inequality is a statement of momentum conservation that the Fermi
momenta of each particle must be smaller than the sum of the other two. Neutrons are by far
the most abundant particle in the core (Fig. 2.9), and so 𝑝Fn is much larger than both 𝑝Fp and
𝑝Fe . The Durca triangle condition implies 𝑝Fn ≤ 𝑝Fp + 𝑝Fe (or equivalently 𝑛1/3

n ≤ 𝑛
1/3
p + 𝑛1/3

e ).
Charge neutrality in the core also requires that 𝑛e = 𝑛p, which implies that 𝑛n ≤ (2𝑛1/3

p )3 ≤ 8𝑛p.
Defining the proton fraction to be 𝑌p = 𝑛p/(𝑛n + 𝑛p), one finds that the critical proton fraction
must be 𝑌cp ≥ 1/9 ∼ 11%. The quantity Θnpe therefore acts as a threshold, whereby Durca
reactions may only proceed at a given density if the proton fraction there exceeds ∼ 11%. Given
that the number densities of each particle is EoS dependent, so too is the Durca threshold.

If permitted by the EoS, then the Durca process includes contributions from muons as well, via
the interactions

n → p + 𝜇 + 𝜈̄𝜇, p + 𝜇 → n + 𝜈𝜇 . (4.46)
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Figure 4.9: Proton fractions inside the core as a function of the density for each of the BSk19-
21 equations of state. The BSk19 model forbids direct URCA processes to take place at any
density, but permits modified URCA processes to proceed at densities exceeding 1.66𝑀⊙ as
indicated by the filled circle (see Sec. 4.5.2.2) . The BSk20 equation of state also forbids
direct URCA processes from taking place, but does allow for modified URCA processes at
all densities. The BSk21 model also permits modified URCA processes at all densities, but
has minimum threshold densities at which electron and muon direct URCA may proceed as

indicated by the + and × markers respectively.

In regions of the core where electrons and muons coexist, the processes occur in parallel, with
the emissivity of the muon contribution being identical to Eq. (4.45) if 𝑚∗

𝜇 = 𝑚∗
e. Given

the condition of beta equilibrium implies 𝜇𝜇 = 𝜇e, this is a reasonable assumption. The only
difference is the condition on the step function Θnpe, which need be replaced by Θnp𝜇. The
presence of muons will increase the threshold by several percent (Potekhin et al., 2015), and
muon Durca will open at a slightly higher density, determined by the number density of muons
predicted by the EoS.

In figure 4.9 we re-plot the number fractions of protons 𝑌p in the core for each of BSk19-21
(recall Fig. 2.9). The triangle condition is satisfied only for the accreting EoS BSk21, with
the electron 𝑛Durca, e and muon 𝑛Durca, 𝜇 thresholds being (to 2 s.f.) 0.46 fm−3 and 0.51 fm−3

respectively, and are marked by a × and + in Fig. 4.9. These densities equate to electron and
muon Durca becoming a contributory (or even dominant) cooling mechanism in stars (assuming
the EoS BSk21) with masses greater than 1.60 and 1.78 𝑀⊙ respectively.

4.5.2.2 Modified URCA processes

If Durca processes are forbidden, then the next most efficient neutrino processes in NS cores are
the modified URCA (Murca) reactions:

n + N → p + e− + 𝜈̄e + N, (4.47)
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where N is a ‘spectator’ nucleon that ensures that momentum conservation is always satisfied.
This additional nucleon implies the reaction may go through two ‘channels’, either

n + n → p + n + e− + 𝜈̄e, p + n + e− → n + n + 𝜈e (4.48)

or

n + p → p + p + e− + 𝜈̄e, p + p + e− → n + p + 𝜈e, (4.49)

which are referred to as the neutron and proton ‘branches’ respectively. In standard CGS units,
the neutrino emissivity of the neutron branch can be approximated as (Yakovlev, 2001)

𝑄
(Murca; n-branch)
e = 8.1 × 1021

(
𝑚∗

n
𝑚n

)3𝑚∗
p

𝑚p

(
𝑛p

𝑛0

)1/3
𝑇8

9 𝛼n𝛽n erg cm−3 s−1, (4.50)

where 𝛼n is a quantity that describes momentum transfer in the Born approximation, and 𝛽n

includes non-Born corrections. It was assumed by Yakovlev and Levenfish (1995) that 𝛽n = 0.68,
and that 𝛼n is (taken from results obtained by Friman and Maxwell, 1979)

𝛼n = 1.76 − 0.63
(
𝑛0
𝑛n

)2/3
. (4.51)

Similarly, the neutrino emissivity of the proton branch of the Murca process was given by
Yakovlev (2001) as

𝑄
(Murca; p-branch)
e = 𝑄

(𝑀n )
e

(
𝑚∗

p

𝑚∗
n

)2 ( (𝑝Fe + 3𝑝Fp − 𝑝Fn)2

8𝑝Fe 𝑝Fp

)
Θ

(Murca; p-branch)
e erg cm−3 s−1 . (4.52)

Unlike the neutron branch, the proton branch contains the threshold factor Θ(Murca; p-branch)
e . In

ordinary npe matter, the triangle condition for the proton Murca branch requires 𝑝Fn < 3𝑝Fp + 𝑝Fe ,
indicating that the proton fraction must exceed 𝑌𝑝 ∼ 0.015 in order for the proton branch to
proceed (Yakovlev, 2001). In reference to Fig. 2.9, the triangle condition for Murca is satisfied
at every point in the core of the star in the BSk20 and BSk21 models, but 𝑄 (Murca; p-branch)

e is
forbidden by the BSk19 model at number densities 𝑛𝑏 > 0.6, as indicated in Fig. 4.9.

Much like the Durca process, if muons are present then there will also be muon Murca processes
occurring in parallel. The emissivities of both the neutron and proton branches are analogous to
that of their electron counterparts and are given, respectively, by
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𝑄
(Murca; n-branch)
𝜇 = 8.1 × 1021
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9 𝛼n𝛽n erg cm−3 s−1 (4.53)

and

𝑄
(Murca; p-branch)
𝜇 = 𝑄

(Murca; n-branch)
e

(
𝑛𝜇

𝑛e

)1/3 (𝑚∗
p

𝑚∗
p

)2

×
( (𝑝F𝜇

+ 3𝑝Fp − 𝑝Fn)2

8𝑝F𝜇
𝑝Fp

)
Θ(Murca; p-branch)𝜇 erg cm−3 s−1 ,

(4.54)

where we have made the substitutions Θ(Murca; p-branch)
e → Θ

(Murca; p-branch)
𝜇 and 𝑝Fe → 𝑝F𝜇

. Also
note the additional factor (𝑛𝜇/𝑛e)1/3 added for both the neutron and proton branches.

The involvement of 5 degenerate Fermions (compared to the three involved in the Durca process)
means the phase space is relatively limited. Specifically, it is reduced by a factor of the order
𝑇2. It is this addition of the spectator nucleon that gives the observed temperature dependence
𝑄 (Durca) ∝ 𝑇6 in the Direct case and 𝑄 (Murca) ∝ 𝑇8 in the modified process. Under typical NS
core conditions, the neutrino production rate is ∼ 6 orders of magnitude for Durca than Murca
(Fig. 4.8). And so whilst the Durca process is far more efficient than Murca, the fact the threshold
for the latter process is much lower (Fig. 4.9), it is the case that Murca is often the dominant
cooling mechanism in a non-superfluid core, except in the highest density regions of the heaviest
stars.

4.5.2.3 Neutrino bremsstrahlung

Whilst the Murca process is ubiquitous within the cores of most NSs, there are certain circum-
stances, such as in extreme superfluidity, whereby the process can be significantly suppressed
Yakovlev (2001). In the absence of both Durca and Murca processes, the neutrino luminosity
inside the core is determined by neutrino bremsstrahlung radiation that arises from the set of
nucleon-nucleon interactions

n + n → n + n + 𝜈 + 𝜈̄ , (4.55)

n + p → n + p + 𝜈 + 𝜈̄ , (4.56)

p + p → p + p + 𝜈 + 𝜈̄ . (4.57)

The most important characteristic of these interactions is that, contrary to both the URCA
processes, nucleon-nucleon bremsstrahlung interactions do not involve a change in composition.
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Consequently, these processes operate at all densities, and there are no thresholds associated
with momentum conservation.

The presence of muons in the core has no influence on nucleon-nucleon interactions, and the
neutrino emissivities of the bremsstrahlung interactions (4.55) - (4.57) may be approximated as
(Yakovlev, 2001)

𝑄 (nn) = 7.5 × 1019
(
𝑚∗

n
𝑚n

)4 (
𝑛n
𝑛0

)1/3
𝑇8

9 𝛼nn𝛽nnN𝜈 erg cm−3 s−1 , (4.58)

𝑄 (np) = 1.5 × 1020
(
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)2 (𝑚∗
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)2 (𝑛p

𝑛0

)1/3
𝑇8

9 𝛼np𝛽npN𝜈 erg cm−3 s−1 , (4.59)

𝑄 (pp) = 7.5 × 1019
(
𝑚∗

p

𝑚p

)4 (
𝑛n
𝑛0

)1/3
𝑇8

9 𝛼pp𝛽ppN𝜈 erg cm−3 s−1 , (4.60)

respectively, where N𝜈 accounts for the fact that the interactions are permitted to produce
neutrinos of any flavour (𝜈e𝜈̄e, 𝜈𝜇 𝜈̄𝜇, 𝜈𝜏 𝜈̄𝜏 ; and so N𝜈 = 3). The quantities 𝛼NN and 𝛽NN are
analogous to their Murca counterparts, and have values 𝛼nn = 0.59, 𝛼np = 1.06, 𝛼pp = 0.11;
𝛽nn = 0.56, 𝛽np = 0.66, 𝛽pp ≈ 0.7.

The general structure of these expressions are markedly similar to that of Murca. Most notably, the
temperature dependence is the same. Notice, however, that the numerical coefficients are approx.
two orders of magnitude smaller for the bremsstrahlung processes than for the Murca. As we
shall, whilst in non-superfluid matter the bremsstrahlung emmisivity is relatively inconsequential
(Fig. 4.8), it turns out that nucleon-nucleon interactions can actually dominate the Murca if the
superfluidity it strong enough.

4.6 Superfluidity in neutron stars

Despite the numerous advancements in both experimental and theoretical techniques for probing
the interiors of neutron stars, it is no secret that the properties of the ultra-dense core remain very
much uncertain. At a minimum, the core can be described as a mixture of interacting neutrons,
protons, and electrons (plus muons). With the separations between particles being so small, it is
possible that at a particular temperature, the attractive part of the nuclear potential can lead to
the formation of ‘correlated pairs’ of nucleons. This can lead to a gap in the energy spectrum of
these nucleons, and the transition to a state of so-called superfluidity (or superconductivity).

The idea that superfluids may be present in the interiors of NSs was first proposed by Migdal
(1959), soon after the development of the microscopic theory of superconductivity by Bardeen
et al. (1957). As a result, the influence of neutron superfluidity/proton superconductivity on heat
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conduction and neutrino processes (and therefore on the thermal evolution) quickly became an
active area of research. For all of the fervent excitement surrounding NS superfluids, evidence
for such a phenomenon might only come in the form of cooling observations.

Indeed, the supernova remnant Cassiopeia A is thought to contain a young (∼ 330 year old)
neutron star, which has recently showed a noticeable, unexpected decline of ∼ 4% in its effective
surface temperature over a 10 year period (Heinke and Ho, 2010). It so happens that this decline
could, in theory, be explained by additional neutrino emission due to the breaking/formation of
so-called Cooper pairs (see below, and more specifically Sec. 4.6.2.4), accelerating the cooling
if (at least some of) the neutrons are indeed superfluid (Shternin et al., 2011).

The temperature at which nucleons transition to at superfluid/superconducting state is relatively
unknown (Sec. 4.6.1), as well as the effects these states of matter have on the relevant heat con-
duction and neutrino emission mechanisms. The analysis of cooling curves, however, can allow
for the constraining of both of these phenomena, which would otherwise be left to speculation.
In the particular case of Cassiopeia A, Shternin et al. (2011) were able to draw the following
conclusions from the observations:

– The maximum critical temperature for neutron pairing in the core must be 𝑇cn, max ≈
(7 − 9) × 108 K.

– The range of densities in which the neutrons are superfluid (see Fig. 4.10) must be quite
large in order for the neutrino emissivity from the formation and breaking of Cooper pairs
to be sufficiently strong.

– The neutrino emission from the core of Cassiopeia A before the decline in surface tem-
perature must have been suppressed by a factor 30 − 100 than that of standard Murca
processes in ordinary matter (i.e. the emissivity of Murca presented in Sec. 4.5.2.2).

In the following sections, we shall discuss theoretical attempts to predict the amount of sup-
pression of the various neutrino processes involving baryons that operate in the core. We shall
present formulae for the reduction factors R of each mechanism, so that they may be applied to
our numerical code for computing the thermal background of our steadily-accreting NS. In the
interest of transparency, the formulae presented are (mostly) a collation of the results originally
reviewed in Section 4 of Yakovlev (2001), rather than derived.

4.6.1 The superfluid energy gap and critical transition temperature

The phenomenon of superfluidity occurs as a result of Cooper pairing of nucleons, whereby
the attractive piece of the interaction between particles can lead to the formation of ‘pairs’ of
bound nuclei8. These Cooper pairs may form once the temperature of the system falls below the

8For a more technical description of the pairing phenomenon (specific to applications relating to neutron stars),
see the recent review by Haskell and Sedrakian (2018).
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Figure 4.10: Critical temperatures of singlet neutron (left panel), triplet neutron (middle panel),
and singlet proton (right panel) pairing in the inner crust and core of a neutron star, for different
superfluidity models marked near the curves: AO (Amundsen and Østgaard, 1985a,b), AWP2
(Ainsworth et al., 1989), BCLL (Baldo et al., 1992), BEEHS (Baldo et al., 1998), BS (Baldo and
Schulze, 2007), CCDK (Chen et al., 1993), GIPSF (Gandolfi et al., 2008), MSH (Margueron
et al., 2008), SFB (Schwenk et al., 2003), TTav and TToa (Takatsuka and Tamagaki, 2004).

Image credit: reproduced from Potekhin et al. (2015).

so-called ‘critical temperature’, 𝑇c, which denotes the transition from the normal to superfluid
state. In the normal state, the dispersion relation of Fermions is continuous. In the superfluid
state however, a discontinuity develops, resulting in an energy gap Δgap(𝑇)9 .

In standard npe𝜇 matter, superfluidity is typically thought to manifest in terms of the pairing
of protons, and the pairing of neutrons. Neutrons in the inner crust and protons in the core are
thought to pair in the singlet (1𝑆0) state (Wolf, 1966), while neutrons in the core, on the other
hand, are expected to pair in a triplet (3𝑃2) state (Hoffberg et al., 1970; Tamagaki, 1970). The
exact nature of the pairing gap inside NSs is still the subject of active research (e.g. Potekhin
et al., 2015), and there remains a degree of uncertainty in both the exact range of densities
for which the protons and neutrons can be superfluid, but also on their respective transition
temperatures. The critical temperatures depend on the inclusion of in-medium effects, and rely
heavily on the assumed model for the nuclear interactions. Many authors (e.g. Amundsen and
Østgaard, 1985a,b; Ainsworth et al., 1989; Baldo et al., 1992, 1998; Baldo and Schulze, 2007;
Chen et al., 1993; Gandolfi et al., 2008; Margueron et al., 2008; Schwenk et al., 2003; Takatsuka
and Tamagaki, 2004) have all attempted to model the transition temperatures of either the singlet-
state/triplet-state neutrons or singlet-state protons, each to differing results. The results of these
calculations were summarised and plotted as a function of the mass density by Potekhin et al.
(2015), which we show here in Figure 4.10.

Many of the calculations of the critical temperatures lack convenient fitting formulae in terms
of the density. Therefore, in order to be able to introduce effects of superfluidity into this work,

9The subscript ‘gap’ serves to distinguish the energy gap from the Lagrangian perturbationΔ that we will encounter
in Chapter 6.
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Table 4.2: Parameters to calculate proton superconducting and neutron superfluid critical
transition temperatures. Reproduced from Table 2 of Brown (2000).

Pairing type 𝑇c0 [MeV] 𝑘0 [fm−3] Δ𝑘 [fm−3]
neutron 1𝑆0 0.802 0.7 1.2
proton 1𝑆0 0.345 0.7 1.0
neutron 3𝑃2 0.0076 2.0 1.6
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Figure 4.11: Superfluid transition temperatures 𝑇c as a function of the density for the BSk19.
BSk20, and BSk21 equations of state as obtained from Eq. (4.61) and Table 4.2. The left-hand
and right-hand panels show neutron 3𝑃2 and proton 1𝑆0 pairing in the core respectively. The
shaded region under each curve represents the range of temperatures whereby the nucleons will
be superfluid/superconducting. The dashed horizontal line indicates a typical temperature of

3 × 108 K.

we follow the prescription of Brown (2000). It can be shown that the critical temperatures are
(approximately) quadratic functions of the Fermi wavevector 𝑘n, p = (3𝜋2𝑛n,p)1/3, with 𝑛n,p being
the number density of neutrons and protons respectively (computed as per Sec. 2.5.1). Brown
(2000) gives the functional form of 𝑇𝑐 for each of the 1𝑆0 proton, 1𝑆0 neutron and 3𝑃2 neutron
states as

𝑇𝑐 (n,p) = 𝑇𝑐0

[
1 −

(𝑘n,p − 𝑘0)2

(Δ𝑘/2)

]
, (4.61)

where 𝑇𝑐0, 𝑘0, and Δ𝑘 are parameters chosen to reproduce the critical transition temperatures
calculated by Amundsen and Østgaard (1985a,b) for the 1𝑆0 singlet and Amundsen and Østgaard
(1985b) 3𝑃2 triplet states respectively10. The parameters 𝑇𝑐 0, 𝑘0, and Δ𝑘𝑛, 𝑝 are listed in Table
4.2, and are valid for the regime whereby 𝑘𝑛, 𝑝 < Δ𝑘𝑛, 𝑝 , with 𝑇𝑐 vanishing outside this range.

The critical transition temperatures (in units of 109 K) for singlet-state 1𝑆0 proton and triplet-state
3𝑃2 neutron pairing in the core11 (obtained via Eq. (4.61) and Table 4.2) as a function of the
mass density can be seen in Figure 4.11. Note that the maximum critical temperatures for the

10Notice that in Fig. 4.10, only the critical transition temperature for triplet-state neutrons predicted by Amundsen
and Østgaard (1985b) reproduces the maximum critical temperature for neutron pairing in the core (7 − 9 × 108 K)
inferred from cooling observations of Cassiopeia A (Sec. 4.6).

11The singlet-state 1𝑆0 neutron pairing in the crust will be discussed later in Section 4.6.2.4.
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protons are an order of magnitude larger than for the neutrons, and that each EoS model predicts
a cutoff whereby superfluidity/superconductivity is destroyed. This occurs when the condition
𝑘𝑛, 𝑝 < Δ𝑘𝑛, 𝑝 is no longer satisfied, determined by the number density of baryons 𝑛b in the core,
as per Fig. 2.9.

Typically, the energy gap Δgap(𝑇) is assumed to be much smaller than the chemical potential of
the paired nuclei (Yakovlev, 2001). In this case the superfluid phenomenon only really affects
processes involving nucleons which take place near the Fermi surface; such as heat transport
and neutrino emission12. In order to understand the effects superfluidity may have on the
microphysics, it is convenient to introduce the quantity

𝜈gap =
Δgap(𝑇)
𝑘B𝑇

, (4.62)

known as the dimensionless gap amplitude. This parameter depends on the type of superfluidity
(i.e. the type of pairing). For both the 1𝑆0 singlet state and the 3𝑃2 triplet states, Levenfish and
Yakovlev (1994) proposed the analytical fits

𝜈
gap
1 =

√︁
1 − 𝜏gap

[
1.456 − 0.157

√
𝜏gap

+ 1.764
𝜏gap

]
, (4.63)

𝜈
gap
2 =

√︁
1 − 𝜏gap

[
0.7893 + 1.188

𝜏gap

]
, (4.64)

with the subscripts 1 and 2 referring to 1𝑆0 and 3𝑃2 pairing respectively, and where 𝜏gap is a
dimensionless temperature

𝜏gap =
𝑇

𝑇c
, (4.65)

with 𝑇c being the superfluid critical temperature Eq. (4.61).

In Fig. 4.12 the dimensionless gap parameter Eq. (4.62) for both singlet-state (4.63) and triplet-
state (4.64) pairing is plotted as a function of the density. It may be seen that 𝜈gap

1 > 𝜈
gap
2 over

most of the core, since the critical temperatures for protons in the (1𝑆0) state are much higher
than those of the neutrons in the (3𝑃2) state (Fig. 4.11). Such a result has implications for the
structure of the expressions of the superfluid reductions factors that describe the suppression of
the various neutrino mechanisms, which we shall now discuss.

12The superfluid phenomenon likely also affects the heat capacity as well. We do not consider such effects here,
however, since we are only interested interest in the steady-state thermal structure of accreting neutrons stars, in which
case the time derivative (which includes the specific heat capacity 𝐶P) in the heat equation (4.1) vanishes.
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Figure 4.12: The dimensionless gap parameter Eq. (4.62) as a function of the density (𝜌0 =

2.8 × 1014 g cm−3) for each of the BSk19, BSk20, and BSk21 equations of state, for both
singlet-state (4.63) and triplet-state (4.64) pairing. A constant core temperature 𝑇 = 3 × 108 K

is assumed.

4.6.2 Superfluid suppression of neutrino processes

We are now in a position to evaluate how the presence of an energy gap in the baryon energy
spectrum affects the neutrino emission from accreting NSs. Most generally, the neutrino emis-
sivity 𝑄𝜈 of any baryonic process in the presence of superfluidity can be written as

𝑄
(process)
𝜈 = 𝑄

(process)
𝜈0 R (process)

(pairing type) , (4.66)

where𝑄 (process)
𝜈0 is the emissivity of the particular neutrino mechanism (be it Durca, Murca, ect.)

in non-superfluid matter (Sec. 4.5) and 𝑅 (process)
(pairing type) is the corresponding appropriate superfluid

reduction factor13, with the subscript referring to which of the particles involved in a given
interaction are superfluid/superconducting (Table 4.2).

Indeed, in order to assess how the neutrino emissivity (4.66) is affected for each neutrino
mechanism, one need consider the reduction coefficient R in four different scenarios, when:

– i) the protons are superconducting and the neutrons are normal,

– ii) the neutrons are superfluid and the protons are normal,

– iii) the protons and neutrons are both superconducting/superfluid,

– iv) neither of the protons or neutrons are superconducting/superfluid.
13In general R ≤ 1, with R ≡ 1 being, by definition, the reduction factor in non-superfluid matter.
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In each of these cases, we shall be in a regime whereby the superfluidity is not too strong (i.e.
𝜈gap ≲ 20; Fig. 4.12). This is because in accreting NSs the internal temperature is 𝑇 ∼ 108 − 109

K, and often not as cold as isolated NSs. In the following sections, we shall, in turn, discuss
the appropriate reduction factors associated with the different core neutrino mechanisms (Durca,
Murca, and nucleon-nucleon bremsstrahlung) considered in Section 4.5.2 in each of the scenarios
outlined above.

4.6.2.1 Superfluid suppression: Superconducting protons and normal neutrons

Direct URCA:

Assuming an npe𝜇 composition in the core, the electron and muon Durca processes Eqs (4.44)
& (4.46) are suppressed identically, and R (Durca; e) ≡ R (Durca; 𝜇) .

When only the protons are superconducting (scenario i), the reduction factor is determined by
Eq. (4.63) since they pair in the singlet 1𝑆0 state, and may be approximated as (Yakovlev and
Levenfish, 1995)

R (Durca)
p =

[
0.2312 +

√︃
(0.7688)2 +

(
0.1438 𝜈gap

1
)2
]5.5

× exp
[
3.427 −

√︃
(3.427)2 +

(
𝜈

gap
1

)2
]

,
(4.67)

where 𝜈gap
1 is the singlet-state pairing gap (4.63).

Modified URCA:

For Murca processes, the problem is treated in much the same as the Durca mechanism, with the
reduction factors derived in a similar fashion (Yakovlev and Levenfish, 1995; Yakovlev, 2001).
The only difference to consider in the modified case is that we have two separate sequences of
reactions; the neutron and proton branches. Just as in the Durca case, the suppression factors
apply equally to Murca processes mediated by muons as they do electrons, since the superfluidity
phenomenon only affects baryons.

For the first case whereby the protons are superconducting and the neutrons are normal (scenario
i), for intermediate values of 𝜈gap, the suppression factors for the neutron and proton branches
are, respectively

R (Murca; n-branch)
p =

𝑎7.5 + 𝑏5.5

2
exp

[
3.4370 −

√︃
(3.4370)2 +

(
𝜈

gap
1

)2
]
, (4.68)

𝑎 = 0.1477 +
√︃
(0.8523)2 +

(
0.1175 𝜈gap

1
)2, (4.69)
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𝑏 = 0.1477 +
√︃
(0.8523)2 +

(
0.1297 𝜈gap

1
)2, (4.70)

and

R (Murca; p-branch)
p = 𝑐7 exp

[
5.339 −

√︃
(5.339)2 +

(
2𝜈gap

1
)2
]
, (4.71)

𝑐 = 0.2414 +
√︃
(0.7586)2 +

(
0.1318 𝜈gap

1
)2. (4.72)

Nucleon-nucleon bremsstralung:

The relevant suppression factors for the neutrino-pair emission via baryon bremsstrahlung pro-
cesses were also collated by Yakovlev (2001). In analogy with Durca and Murca reactions,
formulae for the case of singlet-state proton superconductivity alone were obtained by Yakovlev
and Levenfish (1995). The suppression factors for the np, pp, and nn interactions (4.55) at
intermediate values of 𝜈gap are

R (np)
p =

1
2.732

{
𝑎 exp

[
1.306 −

√︃
(1.306)2 +

(
𝜈

gap
1

)2
]

+ 1.7372 𝑏7 exp
[
3.303 −

√︃
(3.303)2 + 4

(
𝜈

gap
1

)2
]}

,
(4.73)

𝑎 = 0.9982 +
√︃
(0.0018)2 +

(
0.3815 𝜈gap

1
)2 , (4.74)

𝑏 = 0.3949 +
√︃
(0.6051)2 +

(
2.666 𝜈gap

1
)2 , (4.75)

R (pp)
p =

1
2

{
𝑎2 exp

[
4.228 −

√︃
(4.228)2 + 4

(
𝜈

gap
1

)2
]

+ 𝑏7.5 exp
[
7.762 −

√︃
(7.762)2 + 9

(
𝜈

gap
1

)2
]}

,
(4.76)

𝑎 = 0.1747 +
√︃
(0.8253)2 +

(
0.07933 𝜈gap

1
)2 , (4.77)

𝑏 = 0.7333 +
√︃
(0.2667)2 +

(
0.1678 𝜈gap

1
)2 , (4.78)

with
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R (nn)
p = 1.0 (4.79)

since the neutron-neutron interactions (4.55) will not be affected by proton superconductivity.

4.6.2.2 Superfluid Suppression: Superfluid neutrons and normal protons

Direct URCA:

When only the neutrons are superfluid (scenario ii), the reduction factor for the Durca process is
determined by Eq. (4.64) since they pair in the triplet 3𝑃2 state, and is given by (Yakovlev and
Levenfish, 1995)

R (Durca)
n =

[
0.2546 +

√︃
(0.7454)2 +

(
0.1284 𝜈gap

2
)2
]5

exp
[
2.701 −

√︃
(3.427)2+

(
𝜈

gap
2

)2
]
. (4.80)

Modified URCA:

In scenario ii, the reduction factor specific to the Murca proton branch is (Yakovlev and Levenfish,
1995)

R (Murca; p-branch)
n =

𝑎7 + 𝑏5

2
exp

[
2.399 −

√︃
(2.398)2 +

(
𝜈

gap
2

)2
]
, (4.81)

𝑎 = 0.1612 +
√︃
(0.8388)2 +

(
0.1177 𝜈gap

2
)2, (4.82)

𝑏 = 0.1612 +
√︃
(0.8388)2 +

(
0.1274 𝜈gap

2
)2. (4.83)

The reduction factor at intermediate values of the dimensionless energy gap parameter were
not, however, given by Yakovlev and Levenfish (1995) for the Murca neutron branch. Instead,
the authors calculated only the asymptote of the reduction factor R (Murca; n-branch)

n in the limit
𝜏gap ≪ 1 (i.e. when 𝑇 ≪ 𝑇𝑐).

This is a problem, since the critical temperatures of the 3𝑃2 triple-state neutrons predicted
by Amundsen and Østgaard (1985b) (Fig. 4.10) indicate it is unlikely that one will enter
the regime 𝑇 ≪ 𝑇𝑐 for a typical accreting NS (whereby 𝑇 ∼ 108 − 109) K. This issue was
later addressed in Yakovlev (2001), suggesting that, in cases of moderate superfluidity (i.e.
𝜈gap ∼ 10), the suppression factor of the neutron branch of the modified Urca process due to
neutron superfluidity should not deviate strongly from the suppression factor of the proton branch
due to proton superfluidity, and so
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R (Murca; n-branch)
n ≈ 𝑅 (Murca; p-branch)

p (𝜈gap
2 ) , (4.84)

whereby one simply makes the substitution 𝜈gap
1 → 𝜈

gap
2 in Eq. (4.71).

This issue is something that has featured in other codes seeking to solve the full time-dependent
heat equation such as NSCool, used in other published works on NS cooling (e.g. Page, 1997;
Page and Reddy, 2006; Page et al., 2006). Indeed, within the source code of NSCool, the
suppression factor of the neutron branch is approximated as14

R (Murca; n-branch)
n = 𝑅

(Murca; p-branch)
p

[
39.1 𝜏gap exp

(
−1.188
𝜏gap

)]
, (4.85)

where the exponential term has been added such that 𝑅 (Murca; n-branch)
n ≈ 𝑅

(Murca; p-branch)
n in the

limit 𝜏 ≪ 1.

Nucleon-nucleon bremsstralung:

A further complication arises from the fact that Yakovlev and Levenfish (1995) also restricted
themselves to considering only the single-state (1𝑆0) pairing of protons for bremsstrahlung
interactions. Therefore, for the case of the triplet-state pairing of the neutrons, we again follow
Yakovlev (2001), as well as what can be inferred from NSCool, who take the suppression factors
for neutron superfluidity alone (scenario ii) at intermediate values of 𝜈gap to be

R (nn)
n ≈ 𝑅pp

p (𝜈gap
2 ), (4.86)

𝑅
(np)
n ≈ 𝑅np

p (𝜈gap
2 ), (4.87)

with
R (pp)

n = 1.0, (4.88)

since this time any proton-proton interactions will not affected by neutron superfluidity.

4.6.2.3 Superfluid suppression: Superconducting protons and superfluid neutrons

Direct URCA:

Lastly, in the presence of simultaneous proton superconductivity and neutron superfluidity
(scenario iii), the reduction factor for Durca processes takes the form (Yakovlev, 2001)

14The source code is freely available at http://www.astroscu.unam.mx/neutrones/NSCool/.

http://www.astroscu.unam.mx/neutrones/NSCool/
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R (Durca)
pn, np =

104 − 2.839
(
𝜈

gap
2

)4 − 5.022
(
𝜈

gap
1

)4

104 + 757.0
(
𝜈

gap
2

)2 + 1494
(
𝜈

gap
1

)2 + 211.1
(
𝜈

gap
1 𝜈

gap
2

)2 + 0.4832
(
𝜈

gap
1 𝜈

gap
2

)4 . (4.89)

The above formula is strictly valid only in the regime of intermediate superfluidity whereby√︃
𝜈2

1 + 𝜈
2
2 ≲ 5). In reference to Fig. 4.12, it may be seen that this condition is far exceeded in

the lowest density regions of the core, pushing the boundaries of the applicability of Eq. (4.89)
in most regions of the core. In regions of the core where both superfluidities are strong, it was
estimated by Levenfish and Yakovlev (1994) that the reduction factor may be approximated as

R (Durca)
pn, np ∼ min

(
R (Durca)

p , 𝑅 (Durca)
n

)
, (4.90)

where R (Durca)
p and R (Durca)

n are of course the respective reduction factors (4.67) and (4.80) for
either type of superfluidity acting alone.

Modified URCA:

The corresponding case (scenario iii) for Murca processes were also not considered in Yakovlev
and Levenfish (1995). However, in a subsequent publication by the same authors (Levenfish and
Yakovlev, 1996), it was argued that the expression for the reduction factor of both the neutron and
proton branches of Murca in the presence of proton superconductivity and neutron superfluidity
would not differ significantly from the equivalent expression for the Durca process Eq. (4.89).
These expressions are, as given in Yakovlev (2001),

R (Murca; p-branch)
pn, np (𝜈gap

2 , 𝜈gap
1 ) ≈

[
𝑅
(Durca)
pn, np (𝜈gap

2 , 2𝜈gap
1 )

𝑅
(Durca)
n

]
𝑅
(Murca; p-branch)
n , (4.91)

R (Murca; n-branch)
pn, np (𝜈gap

2 , 𝜈gap
1 ) ≈

[
𝑅
(Durca)
pn, np (2𝜈gap

2 , 𝜈gap
1 )

𝑅
(Durca)
p

]
𝑅
(Murca; n-branch)
p . (4.92)

Nucleon-nucleon bremsstralung:

The final case we must consider is then scenario iii for the bremsstrahlung interactions. This
formulae, as obtained by Yakovlev (2001), is

R (np)
pn ≈

[
𝑅
(Durca)
pn, np (𝜈gap

2 , 𝜈gap
1 )

𝑅
(Durca)
p

]
𝑅
(np)
p . (4.93)
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4.6.2.4 Cooper pair breaking and formation

So far, we have discussed the influence of baryon superfluidity in the context of suppression
of the neutrino emissivity of Durca, Murca and bremsstrahlung processes that would already
be present in the core of a non-superfluid accreting NSs. Yet, at the onset of superfluidity (i.e.
when a NS becomes sufficiently cool), the baryon dispersion relation near the Fermi surface is
sufficiently distorted that the following reaction

N → N + 𝜈x + 𝜈̄x , (4.94)

where x = e, 𝜇, 𝜏, may be opened up, and is associated with the formation of the Cooper
pairs themselves (Cooper pair breaking and formation; CPBF). An expression for the total
neutrino emissivity of this process was obtained by Yakovlev et al. (1999), and may be written
as (Yakovlev, 2001)

𝑄 (CPBF) = 1.170 × 1021
(
𝑚∗

n
𝑚n

) (
𝑝FN

𝑚N𝑐

)
N 𝑎 𝐹 (𝜈gap) 𝑇7

9 erg cm−3 s−1 , (4.95)

where the quantity 𝑎 is a numerical factor which depends on the type of superfluidity as

𝑎p = 0.0064

𝑎n𝜈1
= 1

𝑎n𝜈2
= 4.17 .

(4.96)

The quantity 𝐹 (𝜈gap) is a function that also depends on the type of superfluidity, with convenient
fitting formulas obtained by Yakovlev et al. (1999) in the regime of moderate superfluidity as

𝐹1(𝜈gap
1 ) =

(
0.602

(
𝜈

gap
1

)2 + 0.5942
(
𝜈

gap
1

)4 + 0.288
(
𝜈

gap
1

)6
)

×
(
0.5547 +

√︃
(0.4453)2 + 0.0113

(
𝜈

gap
1

)2
)1/2

× exp
[
−
√︃

4
(
𝜈

gap
1

)2 + (2.245)2 + 2.245
] (4.97)

and



4.6. Superfluidity in neutron stars 113

𝐹2(𝜈gap
2 ) =

(
1.204

(
𝜈

gap
1

)2 + 3.733
(
𝜈

gap
1

)4 + 0.3191
(
𝜈

gap
1

)6
)

1 + 0.3511
(
𝜈

gap
1

)2

×
(
0.7591 +

√︃
(0.2409)2 + 0.3145

(
𝜈

gap
1

)2
)1/2

× exp
[
−
√︃

4
(
𝜈

gap
1

)2 + (0.4616)2 + 0.4616
]

.

(4.98)

Unlike the suppression behaviour of the other neutrino interactions, the strength of the Cooper
pairing emissivity sharply increases as the temperature falls below that of 𝑇c – reaching some
maximum at 𝑇 ∼ 𝑇c/5 before decreasing again (Yakovlev, 2001). Under certain circumstances,
it is possible for the neutrino emission from the formation of Cooper pairs to be comparable in
magnitude to that of Murca processes (Sec. 4.6.3). Even more interesting, such a mechanism is
not confined to just the core of the star, with Cooper pair formation of neutrons in the inner crust
taking place under the right conditions.

The density dependence of the neutrino emissivities in the accreted crust of a weakly-magnetized
NS (assuming the BSk21 EoS) in the presence of singlet-state 1𝑆0 neutron superfluidity is shown
in the right-hand panel of Fig. 4.13. The critical temperature of the neutrons as a function of the
density are also shown in the left-hand panel.

The CPBF process appears after the onset of neutron-drip (𝜌 ∼ 4 × 1011 g cm−3), and is
competitive with the emissivity due to plasmon decay in the density range 1012 − 1013 g cm−3.
Even at 𝑇 = 109 K, however, electron bremsstrahlung remains the dominant neutrino process
over the majority of the crust. It can also be seen that there are two peaks in the Cooper-pair
spectrum; one near the neutron drip point, and a second much narrower peak just before the
core-crust transition (𝜌 ∼ 1.4 × 1014 g cm−3) where the CPBF mechanism briefly dominates
over the electron bremsstrahlung.

4.6.3 Leading reactions in superfluid neutron star cores

In Fig. 4.14, the superfluid reduction factors of Durca, Murca, and nucleon-nucleon bremsstrahlung
processes due to superfluidity of neutrons and/or protons is plotted as a function of the density.
We assume two models, one with the BSk20 EoS (whereby Durca processes are forbidden; Fig.
4.9), and the other with BSk21 (whereby Durca processes are permitted), both at a constant
core temperature 𝑇 = 3 × 108 K. For the BSk20 model, it can be seen that neutrino emission
via neutron-neutron bremsstrahlung is largely unaffected by the neutron superfluidity, whilst the
proton-proton bremsstrahlung is heavily suppressed over much of the core. The cause of this
behavior may be identified through a combination of Figs 4.11 & 4.12. The stronger superfluidity
associated with the protons (due to having a much higher critical temperature than the neutrons)
correspondingly leads to greater suppression.
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Figure 4.13: Left panel: Superfluid transition temperatures 𝑇c as a function of the density for
singlet state (1𝑆0) pairing of neutrons in the inner crust. Right panel: Density dependence of the
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Figure 4.14: Left panel: Superfluid reduction factors of modified URCA and nucleon-nucleon
bremsstrahlung processes due to superfluidity of neutrons and/or protons, assuming BSk20 and
a constant core temperature 𝑇 = 3× 108 K. Right panel: Same as left, but instead assuming the

BSk21 equation of state where direct URCA processes are permitted.

In the BSk21 model, the behavior is largely similar. Though, again in reference to Fig. 4.11, it
may be seen that proton superconductivity is destroyed in the core at densities ∼ 4𝜌0. Beyond
these densities, only the neutrons are (weakly) superfluid (Fig. 4.12), and so the reduction factors
begin to converge towards their non-superfluid limits at R = 1, where the neutron superfluidity
is also destroyed at ∼ 10𝜌0.

Of course however, the magnitude of the reduction factors alone does not tell the full story as
to how the neutrino emission is affected by baryon superfluidity. As an illustration of how the
presence of baryon superfluidity affects the total neutrino luminosity in the core, in Fig. 4.15
we re-plot Fig. 4.8, this time showing the density dependence of the neutrino luminosity 𝑄𝜈 in
superfluid matter (dashed lines), as well as when superfluid effects are ignored (solid lines). The
shaded regions labelled i - iv indicate the particular superfluidity scenario at that point in the
core (recall the discussion at the beginning of this section). For example, the light grey regions
(scenario iii) are where the both neutrons are superfluid and protons are superconducting.
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Figure 4.15: Density dependence of the neutrino luminosity 𝑄𝜈 in superfluid (dashed lines)
and non-superfluid (solid lines) matter in the core of a neutron star. The left panel assumes the
BSk20 equation of state (where Durca processes are forbidden), and the right panel assumes
the BSk21 equation of state where direct URCA processes are permitted. Both panels assume
a constant core temperature 𝑇 = 3 × 108 K. The shaded regions labelled (i) - (iv) indicate the
particular superfluidity scenario at that point in the core (Recall the discussion at the beginning

of this section).

In the non-superfluid case, Murca processes dominate in the BSk20 model over the full density
range, and dominate in the BSk21 model in the outer core until Durca reactions kick-in. However,
when correcting for the possibility for superfluidity/superconductivity in the core, both electron
and muon Murca processes are heavily suppressed in the low-density regions. In fact, the
dominant source of neutrinos in the outer regions of the core in both the BSk20 and BSk21
models is the formation and breaking of the Cooper pairs. In the BSk20 model, CPBF dominates
until the point whereby the neutron superfluidity is destroyed (notice the transition from scenario
iii to scenario i), at which point Murca processes once again become the dominant source of
neutrino emission. A similar scenario persists in the BSk21 model also, with CPBF dominating
in the outer regions of the core until the threshold density for Durca processes is reached (∼ 4𝜌0),
at which point Durca then supplies the majority of neutrinos emitted from the star.

4.6.4 Superfluid suppression of the thermal conductivity

4.6.4.1 Superfluid suppression of the lepton conductivity

Baryon superfluidity also affects how efficiently heat may be transported around the star. Recall
that the heat conduction via leptons may be mediated in a variety of ways (Fig. 4.5). Two of
these pertain to that of the interactions between electrons/muons and the protons. The effects
of superfluidity/superconductivity (in this section we shall use the two interchangeably) on
heat conduction involving protons are two-fold: (i) a reduction in the collision frequency of
interactions between protons and charged leptons, and (ii) a reduction in screening momentum
(recall the additional reduction factor Zp in Eq. (4.25)).
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Much like the neutrino emissivity of any baryonic process in the presence of superfluidity, the
collision frequencies between leptons and charged baryons (protons in npe𝜇 matter) including
superfluidity effects can be written as

𝜈𝑖p = 𝜈
(0)
𝑖p Rp, (4.99)

where 𝜈 (0)
𝑖p is the electron/muon-proton scattering frequency in non-superfluid matter (Eqs (4.22)

and (4.23)) and Rp is the superfluidity suppression factor. For protons in the 1𝑆0 state, the
suppression factor for intermediate values of 𝜈gap is given by (Gnedin and Yakovlev, 1995)

Rp =

{
0.7694 +

√︃
(0.2306)2 +

(
0.07207 𝜈gap

1
)2

+
(
27.00

(
𝜈

gap
1

)2 + 0.1476
(
𝜈

gap
1

)4
)

exp
(
−
√︃
(4.273)2 +

(
𝜈

gap
1

)2
)

+ 0.5051
[
exp

(
4.273 −

√︄
4.2732 +

(
𝜈

gap
1

)2
)
− 1

]}
× exp

(
1.187 −

√︃
(1.187)2 +

(
𝜈

gap
1

)2
)

.

(4.100)

Recall also that the squared static screening momentum (4.24) is written as

𝑞2
0 =

4𝑒2

𝜋ℎ̄

(
𝑚∗

e𝑝Fe +𝑚∗
𝜇𝑝F𝜇

+
∑︁

b
𝑚∗

b𝑝FbZb

)
, (4.101)

where Zb is the suppression factor, in this case associated specifically with the proton screening
momentum (i.e. b = p). Gnedin and Yakovlev (1995) proposed a fit for Zp for intermediate
values of 𝜈gap as

Zp =

[
0.9443 +

√︃
(0.0557)2 +

(
0.1886 𝜈gap

1
)2
]1/2

× exp
(
1.753 −

√︃
(1.753)2 +

(
𝜈

gap
1

)2
)

.
(4.102)

At temperatures 𝑇 < 𝑇cp (Fig. 4.11), the formation of proton-proton pairs leads to a decrease
in the density of available heat carriers. At the same time, this leads to a reduction in the
proton screening, as other charged particles effectively ‘see’ fewer protons since they are paired-
up and can no longer interact with other particles. How these two effects impact the overall
thermal conductivity can be understood from Fig. 4.16, which shows the density dependence of
the scattering frequencies of the various Coulomb interactions (left-panel) and the total lepton
contribution to the thermal conductivity (right-hand panel), assuming both superfluid matter
(dashed lines) and normal matter whereby superfluid effects are ignored (solid lines).



4.6. Superfluidity in neutron stars 117

1 2 3 4 5 6 7 8
/ 0

108

1010

1012

1014

1016

ii (
s

1 )
 ep

ee

p

e

e

′
e

′
e

ep

ee

p

e

e

′
e

′
e

1 2 3 4 5 6 7 8
/ 0

1022

1023

1024

1025

 (e
rg

 c
m

1  s
1  K

1 )
 

BSk19

BSk20BSk21

Lep

LepR 1

Figure 4.16: Left panel: Magnitude of the Coulomb scattering frequencies 𝜈𝑖 𝑗 in supercon-
ducting matter (dashed lines) and normal non-superconducting matter (solid lines), assuming
the BSk21 equation of state at a constant temperature𝑇 = 3× 108 K. Right panel: Thermal con-
ductivity from electrons and muons in normal and superconducting matter for each of BSk19,

BSk20, and BSk21.

In regimes of moderate to strong superfluidity (𝜈gap ≳ 10), the proton screening is suppressed,
and the total screening momentum (4.101) is just

𝑞2
0 ≈ 4𝑒2

𝜋ℎ̄

(
𝑚∗
𝑒𝑝F𝑒

+𝑚∗
𝜇𝑝F𝜇

)
. (4.103)

This is an important result, since all of the different scattering frequencies scale as 𝜈𝑖 𝑗 ∝ 𝑞−3
0

(Sec. 4.4.2.1). As Zp → 0, the reduction in the total screening momentum ultimately enhances
the scattering frequencies of all interactions. For the two specific interactions involving protons,
however, the scattering frequencies scale as 𝜈𝑖p ∝ 𝑞−3

0 Rp, and account for the additional ‘direct’
consequence of the reduction in available heat carriers. Therefore, although 𝜈𝑖p is enhanced as
Zp → 0, at the same time it is decreased ‘faster’ as Rp → 0. The overall effect is to enhance the
scattering frequency of interactions involving just leptons (i.e. 𝜈ee, 𝜈𝜇𝜇, etc.), but decrease the
scattering frequencies of both 𝜈ep and 𝜈𝜇p.

This behavior may be observed directly in the left-hand panel of 4.16. Note the increase in
𝜈ee, 𝜈𝜇𝜇, etc. (the dotted lines) and the decrease in 𝜈𝑖p (at low density), relative to the solid lines
which ignore superfluid effects. The total thermal conductivity due to electrons and muons is
then plotted in the right-hand panel of Fig. 4.16 (the dotted lines also represent 𝜅 in superfluid
matter, whilst the solid lines ignore superfluid effects). The thermal conductivity is suppressed at
low density relative to non-superfluid matter, as 𝜅 is dominated almost entirely by the enhanced
collisions between electrons and muons (since 𝜅 ∝ 1/𝜈, where 𝜈 = 𝜈e + 𝜈𝜇 are given in Eqs
(4.19) - (4.20)). At high density, once the superconductivity is destroyed15, the dashed and solid
curves merge as Zp → 1 and Rp → 1.

15The exact density at which the superconductivity is destroyed is of course EoS dependent; see Fig. 4.11
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4.6.4.2 Superfluid suppression of the baryon conductivity

Heat conduction via neutrons is mediated by the strong interaction, and is also sensitive to the
state of the matter in the core and whether or not the nucleons are superfluid/superconducting.
The overall effect of baryon superfluidity on the collision integrals (and thus the scattering
frequencies introduced in Sec. 4.4.2.2) was also calculated by Baiko et al. (2001).

Recall that the approximate scattering frequencies for 𝜈nn and 𝜈pp collisions are (Eqs (4.33) -
(4.34))

𝜈nn ≈ 3.48 × 1015
(
𝑚∗

n
𝑚n

)3
𝑇2

8

{
S (0)

n2 𝐾n2Rn2 + 3S (0)
n1 𝐾n1 [Rn1 − Rn2]

}
s−1 , (4.104)

𝜈np ≈ 3.48 × 1015
(
𝑚∗n
𝑚n

) (
𝑚∗

p

𝑚p

)2
𝑇2

8

{
S (0)

p2 𝐾p2Rp2 + 0.5𝐾p1Sp1 [3Rp1 − Rp2]
}

s−1 , (4.105)

where 𝑆 (0)𝛼 (𝛼 = n1, n2, p1, p2) are the scattering cross sections, 𝐾𝛼 are coefficients which
describe in-medium effects, and R𝛼 are the suppression factors. Unlike the effect of baryon su-
perfluidity on lepton conduction, the nature of the suppression of the neutron conductivity, much
like the neutrino emission, depends on different combinations of superfluid/normal particles.
The possible scenarios to be considered are (Sec. 4.6.2).

– i) the protons are superconducting and the neutrons are normal,

– ii) the neutrons are superfluid and the protons are normal,

– iii) the protons and neutrons are both superconducting/superfluid,

– iv) neither of the protons or neutrons are superconducting/superfluid.

In the latter case, one of course simply has R𝛼 ≡ 1 and the thermal conductivity is as described
in Section 4.4.2.2.

Superfluid Suppression: Superfluid neutrons and normal protons

Consider first the effects of superfluidity on the scattering frequency between just neutrons
(𝜈nn). The relevant reductions factors that appear in Eq. (4.104) are Rn1 and Rn2. Analytical
representations of these reduction factors fitted to numerical results were obtained by Baiko et al.
(2001) as
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Rn1(𝜈gap
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(4.106)

and

Rn2(𝜈gap
2 ) = 1

2

[
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gap
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)2
]3
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(
𝜈

gap
2

)2
]

.

(4.107)

Similarly, for the effects on the scattering frequency between the protons and neutrons (𝜈np) when
only the neutrons are superfluid, the relevant reductions factors from Eq. (4.105) are Rp1 and
Rp2. Analytic fits for these reduction factors may be approximated as

Rp1(𝜈gap
2 , 0) =

[
0.4459 +

√︃
(0.5541)2 + 0.03016

(
𝜈

gap
2

)2
]2

× exp
[
2.1178 −

√︃
(2.1178)2 +

(
𝜈

gap
2

)2
]

,
(4.108)

Rp2(𝜈gap
2 , 0) =

[
0.801 +

√︃
(0.199)2 + 0.04645

(
𝜈

gap
2

)2
]2

× exp
[
2.3569 −

√︃
(2.3569)2 +

(
𝜈

gap
2

)2
]

.
(4.109)

Superfluid suppression: Superconducting protons and normal neutrons

When only the protons are superconducting, the only branch of the neutron conductivity that
is affected is of course the interactions between the protons and the neutrons. In this case, the
appropriate forms of the reductions factors Rp1 and Rp2 are
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Rp1(0, 𝜈gap
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(4.110)

Rp2(0, 𝜈gap
1 ) = 0.0436

[√︃
(4.345)2 + 19.55
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𝜈

gap
1

)2 − 3.345
]

× exp
[
2.0247 −

√︃
(2.0247)2 + 4
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)2]
+ 0.891 exp

[
9.627 −

√︃
(9.627)2 + 9

(
𝜈

gap
1

)2] .

(4.111)

Superfluid Suppression: Superfluid neutrons and superconducting protons

The final case we need then consider is the affects on the scattering between collisions of protons
and neutrons when both the particles are superfluid/superconducting. Unlike the cases whereby
only one of the particles are superfluid/superconducting, the fits which determine Rp1 and Rp2

in which neutrons and protons are superfluid were only fitted to numerical results in regimes of
moderate superfluidity whereby 𝜈gap

1 ≡ 𝜈gap
2 ≤ 12. The fit to Rp1 reads (Baiko et al., 2001)

Rp1(𝜈gap
2 , 𝜈gap

1 ) = (0.7751 + 0.4823 𝑢n + 0.1124 𝑢p + 0.04991 𝑢2
n + 0.08513 𝑢n𝑢p

+ 0.01284 𝑢2
n𝑢p) exp (−𝑢+ − 𝑢−) + (0.2249 + 0.3539 𝑢+

− 0.2189 𝑢− − 0.6069 𝑢n𝑢− + 0.7362 𝑢p𝑢+) exp (−2𝑢+) ,

(4.112)

where

𝑢𝛼 =

√︃(
𝜈

gap
𝛼

)2 + (1.485)2 − 1.485 𝛼 = +, −, n, p , (4.113)

with

𝜈gap
− = min(𝜈gap

2 , 𝜈gap
1 ), 𝜈

gap
+ = max(𝜈gap

2 , 𝜈gap
1 ) . (4.114)

The fit to Rp2, on the other hand, is given by
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Rp2(𝜈gap
2 , 𝜈gap

1 ) = (1.1032 + 0.8645 𝑢n + 0.2042 𝑢p + 0.07937 𝑢2
n + 0.1451 𝑢n𝑢p

+ 0.01333 𝑢2
n𝑢p) exp (−𝑢+ − 𝑢−) + (−0.1032 + 0.2340 𝑢+

+ 0.06152 𝑢n𝑢+ + 0.7533 𝑢n𝑢− + 1.007 𝑢p𝑢+) exp (−2𝑢+) ,

(4.115)

where

𝑢𝛼 =

√︃(
𝜈

gap
𝛼

)2 + (1.761)2 − 1.761 𝛼 = +, −, n, p , (4.116)

with

𝜈gap
− = min(𝜈gap

2 , 𝜈gap
1 ), 𝜈

gap
+ = max(𝜈gap

2 , 𝜈gap
1 ) . (4.117)

It is the case, however, that 𝜈gap
1 ∼ 20 in the low density regions of the core when 𝑇 = 3 × 108

K (Fig. 4.12). The maximum error in both Rp1 and Rp2 obtained by Baiko et al. (2001) are
said to be 14%, occurring at the maximum value of 𝜈gap

1 = 12 sampled from the numerical
data. It is therefore worth bearing in mind that the neutron-proton scattering is possibly over-
suppressed in our model when 𝜈gap

1 ∼ 20. However, even when 𝜈gap
1 = 12, Rp1 Rp2 are said

by Baiko et al. (2001) to be exponentially small. Therefore, since the contribution to the total
thermal conductivity from the leptons is typically greater than that of the neutron contribution
at low density regions in non-superfluid matter anyway (Fig. 4.6), it is unlikely this will have a
significant impact on the overall picture.

In addition, the expression which determines the thermal conductivity itself (4.10) (due to strong
interactions) is modified in the presence of neutron superfluidity as

𝜅𝑛 =
𝜋2𝑘B 𝑛n RC

2

3𝑚∗
n

𝑇𝜏n , (4.118)

and contains an additional factor RC
2, which accounts for the fact that the presence of neutron

superfluidity also affects the neutron heat flux directly. Baiko et al. (2001) provide another
convenient fitting formula for this additional reduction factor, given as

R𝐶 (𝜈gap
2 ) =

[
0.647 +

√︃
(0.353)2 + 0.109

(
𝜈

gap
2

)2
]1.5

× exp
[
1.39 −

√︃
(1.39)2 +

(
𝜈

gap
2

)2
]

,
(4.119)

and is valid in regimes of both weak and strong superfluidity.
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Figure 4.17: Left panel: Magnitude of the nucleon scattering frequencies 𝜈𝑖 𝑗 in supercon-
ducting matter (dashed lines) and normal non-superconducting matter (solid lines), assuming
the BSk21 equation of state at a constant temperature 𝑇 = 3 × 108 K. Right panel: Thermal
conductivity from neutrons in normal (dotted) and superconducting (dash-dotted) matter for

each of BSk19, BSk20, and BSk21.

In Fig. 4.17, the left-hand panel shows the density dependence (at 𝑇 = 3× 108 K) of the 𝜈nn and
𝜈np scattering frequencies in both normal (i.e when superfluid effects are ignored) and superfluid
matter (solid and dashed lines respectively). The right-hand panel also shows the neutron thermal
conductivity in both normal and superfluid matter (dotted and dash-dotted lines respectively). In
the previous section, the overall effect of proton superconductivity was to suppress the thermal
conductivity contribution from the leptons, due to a reduction in the proton screening momentum,
which enhances the scattering frequencies of collisions involving just electrons and muons (Sec.
4.6.4.1).

The opposite effect is now observed in Fig. 4.17, however, with proton superconductivity
enhancing the thermal conductivity contribution from the neutrons. This seemingly strange
behavior can be explained in the following way: In the low density regions where 𝑇cp > 𝑇cn the
np collisions are necessarily suppressed as Rp1 → 0 and Rp2 → 0, which directly enhances 𝜅n.
However, once the proton superconductivity is destroyed, then one enters the regime whereby
𝑇cn > 𝑇cp and the thermal conductivity starts to fall due to the decrease in the density of available
heat carriers. As the density continues to increase, 𝜅n continues to decrease as 𝑇 → 𝑇cn, until
the point whereby neutron superfluidity is also destroyed and 𝜅n approaches that of the thermal
conductivity in non-superfluid matter.

Finally, in Fig. 4.18, we plot for comparison in the left-hand panel the neutron thermal conduc-
tivity in both normal and superfluid matter (dotted and dash-dotted lines respectively), as well as
the lepton thermal conductivity in both normal and superfluid matter (solid and dash-dotted lines
respectively). Once again, it can be seen that the lepton conductivity is the dominant source of
heat conduction in BSk20 and BSk21 over all densities. However, neutrons can again become the
dominant source of heat conduction in the innermost regions of NS cores assuming the BSk19
EoS (recall Fig. 4.6). For completeness, the right-hand panel of Fig. 4.18 then shows the sum
of these two contributions, giving the total thermal conductivity in the core of both superfluid
and non-superfluid NSs.
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Figure 4.18: Left panel: Thermal conductivity via neutrons (𝜅n) in normal and superfluid
matter (solid and dashed lines respectively), as well as leptons (𝜅lep; dotted and dash-dotted
lines respectively) for each of the BSk19, BSk20, and BSk21 equations of state. Right panel:
Total thermal conductivity 𝜅tot = 𝜅lep + 𝜅n for each of BSk19, BSk20, and BSk21 in normal
(solid lines) and superfluid matter (dashed lines). Both panels assume a core temperature

𝑇 = 3 × 108 K.

4.7 Solving the heat equation

Supplied with the relevant microphysics detailed in the preceding sections, we are now in a
position to compute the background thermal structure of an accreting NS. As we have already
seen, both theoretical, as well as observational considerations, imply that the neutrino lumi-
nosity, thermal conductivity, etc. are extremely large. To ensure the numerical computation is
both as accurate and efficient as possible, is it therefore convenient for Eqs (4.5) - (4.6) to be
non-dimensionalised. The simplest method of non-dimensionalisation is to simply divide all
quantities that appear in the heat equations by some ‘characteristic value’ appropriate to that of
the interior.

Therefore, in order to non-dimensionalise Eqs (4.5) - (4.6), we start by defining the following
relations

𝑇 =
𝑇

𝑇typ
,

𝜅 =
𝜅

𝜅typ
,

𝑅̂ =
𝑅

𝑅typ
,

(4.120)

where ‘ˆ’ is the non-dimensionalised parameter.

The value of the ‘typical’ parameter is largely arbitrary. The easiest choice to make is that of
𝑅typ, the typical NS radius, which can be specified to be the edge of the star (computed from the
TOV solution; Sec. 2.6.2.1), such that if 𝑅typ = 𝑅OB, then 𝑟 ≤ 1 within star. Another simple
choice to make is that of 𝑇typ, the typical NS temperature. Most observational evidence indicates
their temperatures to be of the order 108 − 109 K, and thus 𝑇typ = 109 K is an acceptable choice.
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The choice for 𝜅typ, the typical NS thermal conductivity, however, is a little more arbitrary. As
we have seen over the course of this chapter, the thermal conductivity can vary upwards of 10
orders of magnitude between the crust and core of the star. We shall therefore choose a value that
is approximately half-way (logarithmically) between the lowest value of the crust and highest
value in the core; and assume 𝜅typ = 1021 erg s−1 K−1 in the remainder of this thesis.

From Fourier’s law and the relations (4.120), an expression for a typical flux, 𝐹typ, can be defined
as

𝐹typ =
𝜅typ𝑇typ

𝑅typ
, (4.121)

from which a typical luminosity, 𝐿typ is then defined as

𝐿typ = 𝐹typ𝑅
2
typ = 𝜅typ𝑇typ𝑅typ . (4.122)

With these relations, the pair of ODEs (4.5) - (4.6) may be expressed in dimensionless form as

𝑑𝐿̂

𝑑𝑟
= 4𝜋𝑟2𝑄

𝑅3
typ

𝐿typ
, (4.123)

𝑑𝑇

𝑑𝑟
= −1

𝜅

𝐿̂

4𝜋𝑟2 𝜅typ . (4.124)

and will be the form of the ODEs solved in the following sections.

4.7.1 Boundary conditions and method of solution

The system of ODEs (4.123) - (4.124) is a boundary value problem with a set of outer and inner
boundary conditions. The outer boundary is set by the interface whereby the crust meets the
accreted material falling onto the star. For simplicity, we set the interface at the approximate
location of the bottom of the hydrogen/helium burning layer at 𝜌 = 107 g cm−3 (see, for example,
Fig. 19 in Chamel and Haensel, 2008). When thermonuclear burning in the envelope is stable,
we follow the prescription of Ushomirsky et al. (2000) and assume that the outer boundary
condition is fixed by the temperature at the base of this layer. This temperature at the base of the
ocean was computed by Schatz et al. (1999), and is given by

𝑇OB = 5.3 × 108K
(

¤𝑚
¤𝑚Edd

)2/7
, (4.125)



4.7. Solving the heat equation 125

where ¤𝑚 is the local accretion rate and ¤𝑚Edd is the local Eddington limit. In the calculations that
follow, we will henceforth assume uniform accretion over the surface of the star, and therefore
parameterise our results in terms of ¤𝑀 , the global rate of mass accretion.

Burning is assumed to stable when the NS is accreting at a level ¤𝑀 = 0.1 − 1 ¤𝑀Edd ( ¤𝑀Edd =

2 × 108 𝑀⊙ yr−1; Schatz et al., 1999). If the accretion rate is much lower, however, then burning
in the upper atmosphere can lead to type I X-ray bursts (Sec. 4.1). These bursts produce a rapid
increase in the observed luminosity as burning of the accreted material quickly breaks out into
thermonuclear runaway (Fig. 4.2).

Since we seek only a steady-state solution to our background thermal equations, we will also
interpret ¤𝑀 as a time-averaged accretion rate. On a timescale much larger than that of an
individual burst, we can average over all of the bursts in a given accretion episode. Such a choice
allows us to apply Eq. (4.125) even at low accretion rates, as we can effectively assume a constant
𝑇OB even if burning in the upper atmosphere is unstable.

To obtain the boundary condition at the centre of the star, initially one might naively set 𝐿 |𝑟=0 = 0
for the centre of the star. However, much like the TOV equations, the heat equations are also
singular at the origin due to the use of spherical coordinates. We therefore expand all variables
via Taylor series about the center in order to obtain an approximate solution of the coupled ODEs
at small radii. Our variables for the thermal background are 𝑇 , 𝐿, 𝜅, and 𝑄. For each of these
quantities we shall use an expansion of the form

𝑞(𝑟) = 𝑞0 + 𝑞1𝑟 +
1
2
𝑞2𝑟

2 + O(𝑟3), (4.126)

where the subscripts on 𝑞 denote the order of the coefficient within the Taylor expansion. These
expressions lead to polynomial expressions in 𝑟 on both sides of the heat equations. The condition
for each coefficient is found simply by equating coefficients of the same power in 𝑟 on both sides.
Strictly speaking, both the net rate of production of heat 𝑄 and thermal conductivity 𝜅 are
functions of both density and pressure, and thus

𝑄 = 𝑄(𝜌,𝑇) ,

𝜅 = 𝜅(𝜌,𝑇) .
(4.127)

As such, we additionally require an expansion on the background quantity 𝜌(𝑟) as well. Formally,
this involves Taylor expanding the TOV equations about the origin as well. However, this would
require the use of the Taylor expansion on the exponential metric factors. This is unnecessary
here since Eqs (4.123) - (4.124) are the Newtonian forms of the heat equation. We will therefore
treat 𝜌(𝑟) in terms of the Newtonian form of hydrostatic balance. The background density 𝜌(𝑟)
can be expanded in exactly the same way as in Eq. (4.126), given by
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𝜌(𝑟) = 𝜌0 +
1
2
𝜌2𝑟

2 , (4.128)

with the zeroth-order coefficient simply being the value of the density at the centre of the star (i.e.
𝜌0 ≡ 𝜌cent), which is a known quantity (Tab. 2.6). Using this result, the first and second-order
coefficients of 𝑄 and 𝜅 are given by

𝑄1 =
𝜕𝑄0
𝜕𝑇

𝑇1 , (4.129a)

𝜅1 =
𝜕𝜅0
𝜕𝑇

𝑇1 , (4.129b)

𝑄2 =
𝜕𝑄0
𝜕𝜌

𝜌2 +
𝜕2𝑄0

𝜕𝑇2 𝑇
2
1 + 𝜕𝑄0

𝜕𝑇
𝑇2 , (4.129c)

𝜅2 =
𝜕𝜅0
𝜕𝜌

𝜌2 +
𝜕2𝜅0

𝜕𝑇2 𝑇
2
1 + 𝜕𝜅0

𝜕𝑇
𝑇2 . (4.129d)

Substituting these quantities into the Taylor expanded ODEs, we find that

𝐿 (𝑟) = 4
3
𝜋𝑄0(𝜌0, 𝑇0)𝑟3 + O(𝑟4) ,

𝑇 (𝑟) = 𝑇0 −
1
6
𝑄0(𝜌0, 𝑇0)
𝜅0(𝜌0, 𝑇0)

𝑟2 + O(𝑟3) .
(4.130)

Both 𝑄 and 𝜅 are functions of 𝜌 and 𝑇 only. Given that 𝜌0 is just the central density, the result
Eq. (4.130) for both the luminosity and temperature at the origin is therefore a one-parameter
family of solutions, parameterised by the central temperature 𝑇0 ≡ 𝑇cent = 𝑇 (𝜌cent).

To obtain the unknown value of 𝑇cent, we use the Python ODE solver solve BVP, which imple-
ments a 4th order collocation algorithm as outlined by Kierzenka and Shampine (2001) to obtain
the value of 𝑇cent that satisfies the outer boundary condition Eq. (4.125). An initial guess for
the integration is constructed by fixing the temperature throughout the entire star to that of 𝑇OB,
which is a function of the predetermined accretion rate only.

4.8 Thermal structure of accreting neutron stars

In this section we present results for the computation of the thermal structure of non-rotating,
spherically symmetric and steadily accreting neutron stars. The hydrostatic properties of the
stars that we shall consider are listed in Table 4.3, whereby the mass and radii were obtained
by integrating the TOV equations (2.60) - (2.62), from the central density listed in column 2,
outward to where the pressure drops to zero (as per the prescription laid out in Sec. 2.6.3).
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Table 4.3: Central density 𝜌𝑐, total mass 𝑀 , crustal mass 𝑀crust, radius 𝑅, crust thickness
𝑅crust and total heat released per accreted nucleon 𝑄tot, for four different neutron star models:

three low mass (LM) BSk19-21 models and one high mass (HM) BSk21 model.

Model 𝜌𝑐 [1015 g cm−3] 𝑀 [𝑀⊙] 𝑀crust [𝑀⊙] 𝑅 [km] 𝑅crust [km] 𝑄tot [MeV]
BSk19 (LM) 1.321 1.40 0.014 10.80 0.83 1.535
BSk20 (LM) 0.924 1.40 0.018 11.81 1.00 1.615
BSk21 (LM) 0.732 1.40 0.018 12.64 1.11 1.651
BSk21 (HM) 1.284 2.10 0.009 12.16 0.52 1.651
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Figure 4.19: Temperature profiles (in units of 108 K) of the low-mass neutron star models listed
in Table 4.3 as a function of density, accreting at ¤𝑀 = 10−10 M⊙ yr−1 (Left), ¤𝑀 = 10−9 M⊙
yr−1 (center), and ¤𝑀 = 10−8 M⊙ yr−1 (Right). In all cases we assume𝑄imp = 1,𝑄S = 1.5 MeV.
The solid lines indicate fluid regions of the star, whilst dashed lines indicate regions where the
star forms a solid Coulomb lattice. The crust begins at the point where the Coulomb parameter
ΓCoul = 175 (assuming a one component plasma; Eq. 2.9), and ends at the crust-core transition

(Table. 2.6).

There are four different BSk19-21 models listed in Table 4.3: three low-mass (LM) 1.4𝑀⊙ stars,
and one high-mass (HM) 2.1𝑀⊙ star, such that we may determine the effects of Durca emission
on the thermal structure. In Fig. 4.19, we show the temperature profiles of each of the LM
models as a function of the density, for three different accretion rates (10−10, 10−9, and 10−8 𝑀⊙

yr−1), as indicated in each panel. In this figure we are assuming an impurity parameter𝑄imp = 1,
and shallow heating term 𝑄S = 1.5 MeV, taken as averages from experimental observations (e.g.
Ootes et al., 2016).

For all considered accretion rates, the radial temperature gradient (𝑑𝑇/𝑑𝑟) may be observed to
change from positive in the inner crust to negative in the outer crust, becoming steeper as ¤𝑀
increases. The temperature gradient is negative when heat flows to the surface, and positive
when the heat is conducted down into the core. Over the majority of the crust, heat is mostly
conducted into the core where it is then radiated away as neutrinos.

In Fig. 4.20, we plot the temperature profiles for the HM model as a function of the density,
for the same three accretion rates considered in Fig. 4.19. In contrast to the LM stars, the
temperature gradient is positive over the entire crust, whereby heat is overwhelmingly conducted
down through the crust into the core. Clearly, the HM model produces a much cooler star than
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Figure 4.20: Temperature profiles (in units of 108 K) of the high-mass neutron star model
listed in Table 4.3 as a function of density, accreting at ¤𝑀 = 10−10 M⊙ yr−1 (green), ¤𝑀 = 10−9

M⊙ yr−1 (blue), and ¤𝑀 = 10−8 M⊙ yr−1 (red). The solid lines indicate fluid regions of the star,
whilst dashed lines indicate regions where the star forms a solid Coulomb lattice. The crust
begins at the point where the Coulomb parameter ΓCoul = 175 (assuming a one component

plasma; Eq. 2.9), and ends at the crust-core transition (Table. 2.6).

any of the LM models. This is due to the presence of Durca emission, which more effectively
radiates away heat conducted down into the core (recall Fig. 4.15).

The accretion of matter onto the NS may cause parts of the crust to melt (Brown, 2000). Any
such molten regions will not be able to contribute to building an elastic mountain (thermal or
otherwise) due to the vanishing of any existent shear stresses. The solid regions of the crust (i.e.
whereby ΓCoul ≥ 175) are indicated by the dashed regions of each of the curves in Figs. 4.19 -
4.20. When Durca reactions are active, the cooler crust is entirely solid (ΓCoul ≥ 175) over the
heat producing region (109 ≲ 𝜌 ≲ 1014 g cm−3) for all considered accretion rates. In the hotter
LM stars, the inner crust is also solid for each model at each accretion rate, but can become
liquid at densities 𝜌 ≲ 1011 g cm−3 in the outer crust. In all cases, the very outer-most layers
(107 − 108 g cm−3) just below the envelope are liquid.

In the analysis of their own deformation producing mechanism, Ushomirsky et al. (2000) found
that it is the deeper capture layers that contribute the most to the formation of the mass quadrupole.
The increased density, together with a greater shear modulus in the inner crust allow this portion
of the crust to support greater stresses than the outer layers. Therefore, as long as the heat
producing region of our crust is solid, then we are likely in a regime whereby the crust can
sustain a mountain developed from a non-axisymmetric temperature distribution.

Before determining how exactly the temperature asymmetry may be introduced, though, we
shall first consider the implications of some of the background parameters, namely the impurity
parameter Qimp and shallow heating term QS, on the star’s thermal structure.
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Figure 4.21: Temperature profiles for the low-mass BSk21 model in Table 4.3, for different
values of shallow heating 𝑄S (left panel) and impurity parameter 𝑄imp (right panel) indicated
in the legend. In the left panel, a fixed value 𝑄imp = 1 is assumed. In the middle panel a fixed
value𝑄S = 1.5 MeV is assumed. The solid lines indicate fluid regions of the star, whilst dashed
lines indicate regions where the star forms a solid Coulomb lattice, as per the right-hand panel

which shows the corresponding values of the Coulomb parameter computed via Eq. (2.9).

In producing Figs 4.19 - 4.20, 𝑄imp and 𝑄S were assumed to be 1.0, and 1.5 MeV respectively,
taken as averages from observational constraints. However, these quantities can, in principle, be
much larger. For example,𝑄imp may exceed 100 at the end of stable burning (Schatz et al., 1999),
and 𝑄S may be required to be as much as 17 MeV per accreted nucleon to fit observational data
from some soft X-ray transients (see e.g. Table 1 of Chamel et al., 2020). In the left-hand and
centre panels of Fig. 4.21, we show how the background temperature profile depends upon the
value of 𝑄S and 𝑄imp respectively, for the low-mass BSk21 model, assuming a fixed accretion
rate of ¤𝑀 = 10−9𝑀⊙ yr−1.

In the left-hand panel of Fig. 4.21 we vary the shallow crustal heating parameter𝑄S from 0− 10
MeV per accreted nucleon, with the impurity parameter fixed at𝑄imp = 1.0. The increased levels
of heat deposited in the outer layers of the star naturally leads to a hotter crust. This introduces
steeper temperature gradients, as the outer boundary condition at the base of the H/He layer is
fixed by that of the accretion rate, and independent of 𝑄S.

In the centre panel, we vary the impurity parameter over three orders of magnitude, noting that
the temperature profile is largely insensitive to the impurity parameter when 𝑄imp ≲ 1, but see
large differences when 𝑄imp = 100. Such a result is interpreted as follows. As the impurity
parameter increases, the thermal conductivity in the crust decreases, with 𝜅e ∝ 1/𝑄imp in the
regime where electron-impurity scattering dominates over electron-phonon scattering. This
leads to less conduction of heat from the crust into the core, raising the crust temperature, with
increased cooling from crustal neutrino emission.

For completeness, we have also plotted in the right-hand panel of Fig. 4.21 the corresponding
values of the Coulomb parameter, to check whether increased amounts of electron-impurity
scattering or shallow crustal heating can melt the crust. Increasing the value of 𝑄imp does not
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make an appreciable difference to the state of the ions in the crust, and even an additional 10
MeV per nucleon of SCH does not melt the inner crust of the star, melting only the outer crust
at densities 𝜌 ∼ 1010 g cm−3.

4.9 Comparison with the literature

To place these results into context, we take the time to compare these results with that of previous
authors who have sought to model the thermal structure of an accreted NS crust in order to
generate thermal mountains; namely Ushomirsky et al. (2000) (UCB) and Osborne and Jones
(2020) (OJ20). We shall take a step-by-step approach to consider the similarities and differences
between the models, beginning with the background hydrostatic structure used by both UCB and
OJ20:

Ushomirsky et al. (2000): The accreted crust was constructed using the Newtonian equations
of mass conservation and hydrostatic balance (2.46a) - (2.46b), supplemented with an EoS
in the inner crust obtained by Negele and Vautherin (1973), and composition taken from
Haensel and Zdunik (1990a). The crust obtained from these conditions was 1.1 km thick,
with a mass 𝑀crust = 0.06𝑀⊙.

Osborne and Jones (2020): The authors here adopted the same approach as Ushomirsky et al.
(2000), constructed using the Newtonian formulation with the EoS and composition taken
from Haensel and Zdunik (1990a,b). This time, the crust was found to be 1.45 km thick,
with a mass 𝑀crust = 0.09𝑀⊙.

Both these models adopt a similar approach to what has been attempted here, save for the method
to compute the hydrostatic background structure of the star. As a reminder, the NSs we have
considered thus far have the properties listed in Table 4.3, obtained by solving the fully general-
relativistic TOV equations (2.60) - (2.62), supplemented with the more modern accreted EoSs
obtained by Fantina et al. (2022). The discussion that follows in this section is therefore not a
direct comparison with previous results, but will still give a good indication of how these new
results place with other well received pieces in the literature, for reasons which we shall now
discuss.

Both UCB and OJ20 computed the thermal structure of the accreted crust in a Newtonian setting
(the same approach taken in this thesis), solving the heat equations16 (4.5) - (4.6), rather than
the general relativistic structure equation (2.49). Since the EoS is usually calculated at zero
temperature, it may be assumed to be temperature independent17. The calculation of the star’s
hydrostatic structure is therefore often separated from the thermal calculation, allowing for a

16Strictly speaking these authors solved the Newtonian heat equations for the flux rather than the luminosity, but
the two are trivially related as 𝐿 = 4𝜋𝑟2 𝐹.

17We will, however, in Chap. 6, consider some finite temperature corrections to the EoS using perturbation theory.
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more meaningful comparison between the results obtained here and those obtained by UCB and
OJ20.

Before looking at the structure of the background thermal profiles, it is also worth looking at
some of the intricacies of the UCB and OJ20 models, and in particular at some of the assumptions
made about the microphysics of the heat conduction and neutrino emissivity:

Ushomirsky et al. (2000): The crustal microphysics implemented in this model follows, for
the most part, from Brown (2000) (except for the treatment of the deep crustal heating
reactions, which will be discussed in greater depth shortly). Most significantly, UCB
assumed the accreted crust to be very impure; and as such assumed neutrino emission to
be largely dominate by liquid-phase electron-ion bremsstrahlung (Eq. (4.40); and recall
the discussion in Sec. 4.5.2.3), and the thermal conductivity to be dominated by electron-
ion scattering (Eq. (4.18); i.e. Eq. (4.16) when 𝑄imp ∼ 𝑍2).

Osborne and Jones (2020): The crustal microphysics implemented in this model differs from
UCB in some important regards. Namely, OJ20 assumed the opposite to be true, that the
accreted crust was actually relatively pure. It was assumed that the neutrino emissivity
is dominated by solid-phase (crystallised) electron-ion bremsstrahlung Eq. (4.40), and
that the thermal conductivity is determined by a mixture of electron-phonon and electron-
impurity scattering (recall the phase-space diagram Fig. 4.4 for where each mechanism
dominates).

In this thesis we have expanded greatly upon the crustal microphysics used by either UCB or
OJ20, and have included elements of both models in order to build a more realistic crust. The
real difference between the models of UCB and OJ20 and the one constructed here, however,
is the treatment of the core. Indeed, both UCB and OJ20 modelled only the crust of the NS.
As such, there was no self-consistent calculation of the neutrino emissivity in the core, nor was
there any description of the heat conduction, either.

Instead, the inner boundary condition at the base of the crust was obtained by equating the flux
flowing into the core to the neutrino luminosity of the core as

−4𝜋𝑅2
IB𝐹IB = 𝐿core(𝑇IB) , (4.131)

where the core neutrino luminosity 𝐿core was assumed to be provided solely by Murca processes,
following a formula given in Shapiro and Teukolsky (1983) as

𝐿 = 5.31 × 1039 erg s−1 𝑀

𝑀⊙

(
𝜌0
𝜌

)
𝑇9

8 exp
[−Δgap

𝑘B𝑇

]
. (4.132)

This formula led both UCB and OJ20 to consider two possibilities; one where the core was
strongly superfluid, and one where the core was ‘normal’. In the case of the former, the
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Figure 4.22: Background temperature (top row panels), heat flux (middle row panels), neutrino
luminosity and nuclear heating profiles (bottom row panels) in the crust of an accreting neutron
star as obtained by the model presented in this thesis (left column panels), as well as the
models of Osborne and Jones (2020) (middle column panels) and Ushomirsky et al. (2000)
(right column panels). The latter two models do not include a self-consistent model of the
core, and instead use Eq. (4.132) to model neutrino emission. Both Osborne and Jones (2020)
and Ushomirsky et al. (2000) assume a superfluid core in this figure, with Δgap = 1 MeV. The
accretion rate is 10−8𝑀⊙ yr−1 in all models, with an assumed impurity parameter 𝑄imp = 100
and shallow heating term 𝑄S = 0 MeV in our model and the model of Osborne and Jones
(2020), in order to reproduce the microphysics of Ushomirsky et al. (2000) (see surrounding

text).

suppression of the Murca processes is accounted for by the factor exp(−Δgap/𝑘B𝑇) (notice this
is the definition of the dimensionless gap amplitude 𝜈gap (4.62)). For practical purposes, it was
assumed that Δgap ≡ 0 if the core was composed of only normal matter, or Δgap ≡ 1 MeV if it
was superfluid.

The background temperature and flux profiles, as well as the heat generation from DCH reactions
and total crustal neutrino emissivity for a star with a superfluid core for the models of UCB (right-
hand panel), OJ20 (centre panel) and the model presented in this thesis (left-hand panel; assuming
the BSk21 EoS) is shown in Fig. 4.22. In all models it is assumed that the crust is very impure
(𝑄imp = 100 in ours and the OJ20 model), that the accretion rate is ¤𝑀 = 10−8 𝑀⊙ yr−1, and that
there are no shallow heating sources present.

The first thing to notice in these plots is the difference in the form of the curves describing the
heat generation 𝑄h. The differences arise from the choice in which we (and OJ20) have made in
depositing the heat into each of the capture layers. In our model, recall that capture layers are
assumed to be infinitely thin, and thus it was chosen to smear the heat over each capture ‘shell’
of constant 𝐴 and 𝑍 (Sec. 4.3). In the UCB model, however, the finite width of each individual
capture layer was calculated, leading to heat release over narrow pressure/density ranges.

The second significant point to make is that ours and the UCB models show a steep decline in
the heat flux (i.e. becoming large and negative) at 𝑃 ∼ 1030 erg s−1 cm−3, as a result of increased
neutrino emission in the inner crust where most of the heat is produced via DCH reactions (Table



4.9. Comparison with the literature 133

Figure 4.23: Same as Fig. 4.22, but showing the results of Osborne and Jones (2020) and
Ushomirsky et al. (2000) when assuming the core to be normal (i.e. no superfluidity), with
Δgap = 0 MeV in Eq. (4.132), The left panel (i.e the model presented in this thesis) is the same

as in Fig. 4.22, since the superfluidity is computed self-consistently.

4.1). Specifically, in our model the flux drops rapidly at 2.5 × 1030 erg s−1 cm−3, corresponding
to the location of a pycnonuclear reaction in the inner crust where 908 keV of heat energy is
released (which actually is the largest single release of heat from any capture layer in the BSk
models; Tables A.1 - A.3). In the UCB model on the other hand, rather than a smooth drop in
the flux profile, a series of step-like features are observed. These steps arise from the choice of
implementing the Haensel and Zdunik (1990b) EoS, which predicts a more stratified inner crust
than the BSk models (Fig. 2.5), and where heat is deposited into the crust more evenly across
the individual capture layers (Fig. 4.3).

One difference in the UCB model however is that the flux begins to rise (i.e. becomes less
negative, approaching zero) at high pressure beyond the heat-producing region, whereas in the
OJ20 model and our own the flux simply plateaus. This rise in the UCB model is a consequence
of the (assumed) strong superfluidity in the core. When Δgap = 1 in Eq. (4.132), one effectively
has 𝐹IB = 0 in Eq. (4.131) and the neutrino luminosity is suppressed at the crust-core boundary.
Hopefully, however, it is clear from the lengthy discussion in Section 4.6.2 that the formula
(4.132) is a gross simplification of the influence of superfluidity on the core microphysics. Not
only is the superfluid energy gapΔgap itself a function of the temperature, but Murca processes are
not the only neutrino process taking place in the core. In fact, in regimes of strong superfluidity,
although Murca processes are indeed suppressed, the enhancement of neutrino emission by the
formation of Cooper pairs (CPBF) can actually result in greater neutrino emission from the core
(Fig. 4.15) when it is superfluid.

Finally, we shall compare our model with that of the UCB and OJ20 models in the crust of an
accreting NS when the core is assumed to be composed of normal matter. These results are
summarised in Fig. 4.23, assuming the same parameters as in Fig. 4.22. When the core is
assumed to be non-superfluid (in their models), it can be seen that the OJ20 model now also
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predicts a dramatic fall in the heat flux in the deep crust, similar to our own model. Equally
interesting is the UCB model, which while exhibiting the familiar drop in the heat flux at 𝑃 ∼ 1030

erg s−1 cm−3, does not recover like it did in the superfluid case, instead plateauing at pressures
beyond the heat producing region. The reason for this behavior is clear, with more efficient
neutrino emission in the normal core case leading the shallower temperature gradients in the
deep crust.

The take-away message from this comparison is to highlight the need for an accurate description of
the core in order to produce accurate models of the crust. By approximating the neutrino emission
from the core solely by Murca processes (as per Eq. (4.132)), one can grossly overestimate the
effects of superfluidity on the thermal profile of the star. The inclusion of superfluid effects in
the UCB and OJ20 models leads to temperatures in the deep crust that are 1.5 − 2x larger than
those produced from the model presented in this thesis. This is significant, since (as we shall
see later on) that it is the denser regions of the crust that contribute most to the formation of
the mass quadrupole. And, given that it is the perturbations of the background thermal profile
which source the thermal mountains to begin with (which we shall go on to discuss now), it is
of the utmost importance to have an accurate description of the background temperature profile
in these regions.
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5

Temperature Asymmetry in Accreting
Neutron Stars

In this chapter we outline how large-scale temperature variations deviating from the spherically-
symmetric thermal background computed in Chap. 4 might be introduced via the addition of an
internal magnetic field. We begin in Section 5.1 by discussing how the presence of a magnetic
field can influence heat conduction within neutron stars. This phenomenon has been studied
by a number of authors, including Yakovlev and Urpin (1980); Geppert et al. (2004); Pons and
Geppert (2007); Page et al. (2007); Aguilera et al. (2008), who have shown that the temperature
distribution of highly magnetised neutron stars (𝐵 ∼ 1015 G) is anisotropic.

Due to external inferences placing limits on the magnetic field of neutron stars in LMXBs to just
108 − 109 G, however, in Section 5.2, we outline how the presence of such weak magnetic fields
may generate small perturbations in the heat flow, and derive a set of first-order coupled ODEs
which describes the perturbed thermal structure. The functional form of the magnetic field is
then described in Section 5.3, where we shall discuss how one may model fields that are confined
to the crust of the star, as well as those that may extend into the core.

We continue in Section 5.4 by discussing how the perturbation equations may then be solved,
and critique the boundary conditions used by Ushomirsky et al. (2000) and Osborne and Jones
(2020) in previous calculations of the perturbed thermal structure. The discussed methods are
then followed up in Section 5.5 where we present results for the level of temperature asymmetry
(𝛿𝑇/𝑇) introduced by the magnetic field on the unperturbed background (recall Sec. 4.8). In
Section 5.6 we then place these results into the context of wider continuous GW searches,
discussing how the expected level of temperature asymmetry calculated here can be used to
make simple estimates of NS ellipticity based on the results of UCB1.

1We will, however, of course go on to compute the ellipticity self-consistently afterwards in Chapter 6.
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5.1 Thermal conductivity in the presence of a magnetic field

Free electrons are responsible for most of the heat conduction in the crust. In the presence of
a magnetic field, the classical Larmor rotation of the electrons would act to convert the thermal
conductivity (which has been treated thus far as a scalar quantity) into a directional-dependent
tensor, and lead to anisotropic heat flow (Page et al., 2007).

5.1.1 The thermal conductivity tensor

Fourier’s law (including contributions from each of the heat carriers) in tensorial form is written
as

𝐹𝑖 = −
∑︁

x
𝜅
𝑖 𝑗
x ∇ 𝑗𝑇 , (5.1)

where 𝜅𝑖 𝑗x is the thermal conductivity tensor, and x denotes the heat carrier involved (x = e, 𝜇,
n). The heat flux including contributions from the magnetic field were derived by Yakovlev and
Urpin (1980). For a magnetic field B = Bb, the heat flux carried by species x can be written in
vectorial form as

Fx = − 𝜅⊥x
[
∇𝑇 + (𝜔x

𝐵𝜏x)2(b · ∇𝑇) · b +𝜔x
𝐵𝜏x(b × ∇𝑇)

]
, (5.2)

where 𝜅⊥x is the component of the thermal conductivity tensor perpendicular to the magnetic
field, b is the unit vector of the magnetic field (pointing in the direction of the magnetic field) and
𝜔x
𝐵
𝜏x is known as the ‘magnetisation parameter’. The magnetisation parameter is the product

of the (already familiar; Eqs (4.12) - (4.13) and (4.21)) effective relaxation time 𝜏x, with the
electron/muon gyrofrequency 𝜔x

𝐵
(which determines the angular frequency of the motion of an

electron perpendicular to the magnetic field), and is defined as

𝜔x
𝐵 =

𝑒𝐵

𝑚∗
x𝑐

. (5.3)

For the neutrons in the core, their contribution to the heat flux is unaffected by the addition of the
magnetic field (since they are electrically neutral; 𝜔x

𝐵
= 0 when x = n) and Eq. (5.2) is simply

Fn = −𝜅0
n ∇𝑇 , (5.4)

where 𝜅0
n is the neutron part of the scalar conductivity (given by Eq. (4.10) when x = n).
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In the core, nuclear equilibrium considerations imply the equality of the electron and muon
chemical potentials, and therefore that the gyrofrequency of the two charge carriers are the same
(i.e. 𝑚∗

𝑒 = 𝜇𝑒/𝑐2 = 𝜇𝜇/𝑐2 ≡ 𝑚∗
𝜇). In the calculations that follow, we therefore assume the same

𝜔𝐵 for both muons and electrons.

The addition of the magnetic field deflects a piece of the heat flux in the direction orthogonal to
both the temperature gradients and the local magnetic field (a thermal analogue of the Hall effect),
as can be seen from the final term in Eq. (5.2). In spherical polar coordinates, specifying that
the polar axis coincides with the magnetic field’s symmetry axis, the electron/muon contribution
to the thermal conductivity can be written as

𝜅x
𝑖 𝑗 = 𝜅⊥

 𝐼𝑖 𝑗 + (𝜔𝐵𝜏x)2 ©­­«
𝑏𝑟𝑟 𝑏𝑟 𝜃 𝑏𝑟 𝜙

𝑏𝑟 𝜃 𝑏𝜃 𝜃 𝑏𝜃 𝜙

𝑏𝑟 𝜙 𝑏𝜃 𝜙 𝑏𝜙𝜙

ª®®¬ +𝜔𝐵𝜏x
©­­«

0 −𝑏𝜙 𝑏𝜃

𝑏𝜙 0 −𝑏𝑟
−𝑏𝜃 𝑏𝑟 0

ª®®¬
 , (5.5)

where 𝐼𝑖 𝑗 is the identity matrix, 𝑏𝑟 , 𝑏𝜃 , and 𝑏𝜙 are the components of the unit vector of the
magnetic field b in the direction of the magnetic field, and 𝑏𝑖 𝑗 = 𝑏𝑖𝑏 𝑗 , for 𝑖, 𝑗 = 𝑟 , 𝜃, 𝜙 2.

The influence of the magnetic field may perhaps be more intuitively understood however by
switching to Cartesian coordinates. Substituting 𝑟 → 𝑥, 𝜃 → 𝑦, 𝜙 → 𝑧, it follows that for a
magnetic field orientated along the z-axis (such that 𝑏x = 𝑏𝑦 = 0), then3

𝜅 =
©­­«
𝜅⊥ −𝜅∧ 0
𝜅∧ 𝜅⊥ 0
0 0 𝜅 ∥

ª®®¬ , (5.6)

where 𝜅 ∥ is the component of the thermal conductivity parallel to the magnetic field and 𝜅∧ is
the so-called Hall component. These components of the thermal conductivity tensor are related
to the scalar conductivity (𝜅0 in Eq. (5.4)) as

𝜅
∥
x = 𝜅0

x, 𝜅⊥x =
𝜅0

x
(1 + (𝜔x

𝐵
𝜏x)2)

, 𝜅∧x = 𝜔x
𝐵𝜏x 𝜅

⊥
x . (5.7)

In the direction perpendicular to the magnetic field, the thermal conductivity is suppressed,
corresponding to a diminishing of the heat flow orthogonal to the magnetic field (Yakovlev and

2This formula appears in Aguilera et al. (2008), though there are two sign discrepancies in the final term in their
expression which have been corrected.

3This formula is also incorrectly printed in Aguilera et al. (2008), containing a sign error in the two hall terms 𝜅∧
due to the misprint in Eq. (5.5).
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Urpin, 1980). The ratio of the conductivities parallel and perpendicular to the magnetic field is
then given in terms of the magnetisation parameter as

𝜅
∥
x
𝜅⊥x

= 1 + (𝜔x
𝐵𝜏x(𝑇))2 , (5.8)

where x in this instance denotes the charged carrier involved (i.e. x = e, 𝜇). As noted above, the
neutrons, whilst contributing to the thermal conductivity in the core, have no interaction with
the magnetic field and therefore their contribution does not produce any anisotropy in the heat
flow (Eq. (5.8) reduces to 1 when x = n). In regions where the electrons, muons, and neutrons
coexist, the individual conductivity tensors 𝜅x simply add linearly (via Eq. (5.1)).

5.2 The thermal perturbation equations

In the previous section we saw that the magnetisation parameter is an indicator of the amount
of suppression of the thermal conductivity. In order to proceed, it is convenient to express the
heat flux equation (5.2) in terms of 𝜔𝐵𝜏x. Substituting the expression for 𝜅⊥ (5.7) into Eq. (5.2)
yields

Fx = − 𝜅
∥
x

1 + (𝜔𝐵𝜏x)2

[
∇𝑇 + (𝜔𝐵𝜏x)2(b ·∇𝑇) · b +𝜔𝐵𝜏x(b ×∇𝑇)

]
. (5.9)

Strictly in the regime𝜔𝐵𝜏x ≪ 1, one may treat the addition of the magnetic field as a perturbation
of the heat flow from that of the non-magnetic, spherically symmetric background heat flux, and
we may write

F0
x + 𝛿Fx = − (𝜅0

x + 𝛿𝜅
∥
x )

1 + (𝜔𝐵𝜏x)2

[
∇(𝑇0 + 𝛿𝑇) + (𝜔𝐵𝜏x)2 [b ·∇(𝑇0 + 𝛿𝑇)] · b

+𝜔𝐵𝜏x [b ×∇(𝑇0 + 𝛿𝑇)]
]
,

(5.10)

where we have written all perturbed quantities, F, 𝑇 , and 𝜅 ∥ as

Fx = F0
x + 𝛿Fx , 𝑇 = 𝑇0 + 𝛿𝑇 , 𝜅

∥
x = 𝜅0

x + 𝛿𝜅
∥
x . (5.11)

In the limit of 𝜔𝐵𝜏x ≪ 1, a Taylor series expansion of the perturbed heat flux (5.10) up to second
order in 𝜔𝐵𝜏x yields
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F0
x + 𝛿Fx = −

[
(𝜅0

x + 𝛿𝜅
∥
x ) + (𝜔𝐵𝜏x)2(𝜅0

x + 𝛿𝜅
∥
x )
]
·[

∇(𝑇0 + 𝛿𝑇) + (𝜔𝐵𝜏x)2 [b ·∇(𝑇0 + 𝛿𝑇)] · b +𝜔𝐵𝜏x [b ×∇(𝑇0 + 𝛿𝑇)]
]

.
(5.12)

From here, linearising in both 𝜔𝐵𝜏x and 𝛿𝑇 leads to

F0
x + 𝛿Fx = − 𝜅0

x
[
∇(𝑇0 + 𝛿𝑇) +𝜔𝐵𝜏x [b ×∇(𝑇0 + 𝛿𝑇)]

]
− 𝛿𝜅 ∥x

[
∇(𝑇0 + 𝛿𝑇) +𝜔𝐵𝜏x [b ×∇(𝑇0 + 𝛿𝑇)]

]
.

(5.13)

Upon further simplifying, one is simply left with

𝛿Fx = −𝜅0
x
[
∇𝛿𝑇 +𝜔𝐵𝜏x [b ×∇𝑇0]

]
− 𝛿𝜅 ∥x∇𝑇0 , (5.14)

which determines the thermal flux perturbation within a (weakly) magnetised NS to leading
order. Finally, following OJ20, we introduce (for convenience) the quantity

𝜔̃ =
𝑒

𝑚∗
x𝑐

, (5.15)

which may be referred to as the gyromagnetic frequency per unit magnetic field strength. This,
along with the fact that the magnetic field strength is related the unit vector of the magnetic field
as B = 𝐵b, allows the perturbed thermal heat flux to be written in a more intuitive form as

𝛿F =
∑︁

x
−𝜅0

x
[
∇𝛿𝑇 + 𝜔̃𝜏x [B ×∇𝑇0]

]
− 𝛿𝜅 ∥x∇𝑇0

= −𝜅0
𝑒

[
∇𝛿𝑇 + 𝜔̃𝜏𝑒 [B ×∇𝑇0]

]
− 𝛿𝜅0

𝑒∇𝑇0

− 𝜅0
𝜇

[
∇𝛿𝑇 + 𝜔̃𝜏𝜇 [B ×∇𝑇0]

]
− 𝛿𝜅0

𝜇∇𝑇0

− 𝜅0
n∇𝛿𝑇 − 𝛿𝜅0

n∇𝑇0 .

(5.16)

We have now an expression for the perturbed thermal heat flux due to the presence of a magnetic
field. Since the perturbed flux is calculated relative to some non-magnetic spherically symmetric
background heat flux, it is natural to decompose all of the perturbed quantities in terms of
spherical harmonics. Starting with the perturbed heat flux, given a scalar spherical harmonic
𝑌ℓ𝑚(𝜃, 𝜙) this quantity will admit a vector harmonic expansion (VSH) of the form

𝛿F =

∞∑︁
ℓ = 0

𝑙∑︁
𝑚 =−𝑙

[
𝑈ℓ𝑚(𝑟)𝑌ℓ𝑚r̂ +𝑉ℓ𝑚(𝑟) 𝑟∇𝑌ℓ𝑚 +𝑊ℓ𝑚(𝑟) (r ×∇𝑌ℓ𝑚)

]
, (5.17)
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where r̂ is the radial unit vector. Since our expansion of the perturbed heat flux implies both
polar and axial perturbations, it is useful to also decompose the magnetic field into its constituent
poloidal and toroidal components as (Rädler et al., 2001)

B = Bpol + Btor , (5.18)

with the two pieces themselves expressed in terms of two scalar functionsΦ(𝑟 , 𝜃, 𝜙) andΨ(𝑟 , 𝜃, 𝜙)
such that

Bpol = −∇ × (r ×∇Φ) , Btor = −r ×∇Ψ . (5.19)

These scalar functions, along with the temperature perturbation 𝛿𝑇 , can then also be decomposed
in terms of spherical harmonics as

𝛿𝑇 = 𝛿𝑇ℓ𝑚(𝑟)𝑌ℓ𝑚(𝜃, 𝜙), (5.20)

Φ = Φℓ𝑚(𝑟)𝑌ℓ𝑚(𝜃, 𝜙), (5.21)

Ψ = Ψℓ𝑚(𝑟)𝑌ℓ𝑚(𝜃, 𝜙). (5.22)

Note that in writing down Eqs. (5.20) - (5.22) we have neglected to include the relevant double
sum over ℓ and 𝑚, and will continue to do so unless otherwise stated. This is largely for reasons
of brevity, but also because ultimately we will consider only the component of the magnetic field
(and associated temperature perturbation) that gives rise to leading-order gravitational radiation
from a rotating neutron star: perturbations with ℓ = 𝑚 = 2. Substituting both the magnetic field
components and decomposed temperature perturbation into the RHS of equation (5.16) gives

𝛿Fx = −𝜅0
x

[
𝑑𝛿𝑇ℓ𝑚

𝑑𝑟
r̂𝑌ℓ𝑚 + 𝛿𝑇ℓ𝑚∇𝑌ℓ𝑚

]
− 𝑑𝜅0

x
𝑑𝑇

𝑑𝑇

𝑑𝑟
𝛿𝑇ℓ𝑚r̂𝑌ℓ𝑚

− 𝜅0
x𝜔̃𝜏x

[
(𝐵pol + 𝐵tor) ×∇𝑇0

]
.

(5.23)

We seek to compare the RHS of the above result (5.23) with that of the VSH decomposition of
𝛿Fx in Eq. (5.17). To do so, we must first write down the components of the magnetic field in
Eq. (5.23) (specifically the final term [𝐵pol + 𝐵tor] × ∇𝑇0) in terms of the two scalar functions
Φ(𝑟, 𝜃, 𝜙) and Ψ(𝑟 , 𝜃, 𝜙). For clarity, we shall consider each component independently:

Firstly, for the toroidal component, we have,
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− 𝜅0
x𝜔̃𝜏x

[
𝐵tor ×∇𝑇0

]
= −𝜅0

x𝜔̃𝜏x

[ (
−r ×∇Ψ

)
×∇𝑇0

]
= −𝜅0

x𝜔̃𝜏x

[
−r ×

(
∇Ψ ×∇𝑇0

)
−∇Ψ ×

(
r ×∇𝑇0

) ]
= −𝜅0

x𝜔̃𝜏x

[ (
−r ·∇𝑇0

)
∇Ψ −

(
−r ·∇Ψ

)
∇𝑇0

]
= −𝜅0

x𝜔̃𝜏x

[
r̂𝑟
𝑑𝑇0
𝑑𝑟

r̂
𝑑Ψℓ𝑚

𝑑𝑟
𝑌ℓ𝑚 + r̂𝑟

𝑑𝑇0
𝑑𝑟

r̂Ψℓ𝑚∇𝑌ℓ𝑚 − r̂𝑟
𝑑Ψℓ𝑚

𝑑𝑟

𝑑𝑇0
𝑑𝑟

r̂𝑌ℓ𝑚
]

=

[
−𝜅0

x𝜔̃𝜏x𝑟
𝑑𝑇0
𝑑𝑟

Ψℓ𝑚

]
∇𝑌ℓ𝑚 . (5.24)

And similarly, for the poloidal part, we have

− 𝜅0
x𝜔̃𝜏x

[
𝐵pol ×∇𝑇0

]
= −𝜅0

x𝜔̃𝜏x

[ [
∇ ×

(
−r ×∇Φ

) ]
×∇𝑇0

]
= −𝜅0

x𝜔̃𝜏x

{
∇ ×

[
−r ×

(
𝑑Φℓ𝑚

𝑑𝑟
r̂𝑌ℓ𝑚 +Φℓ𝑚∇𝑌ℓ𝑚

)]
×∇𝑇0

}
= −𝜅0

x𝜔̃𝜏x

[ [
∇ ×

(
−Φℓ𝑚r ×∇𝑌ℓ𝑚

) ]
×∇𝑇0

]
, (5.25)

where, using the standard result

∇ ×
[
Φℓ𝑚r ×∇𝑌ℓ𝑚

]
= −1

𝑟
𝑙 (𝑙 + 1)Φℓ𝑚𝑌ℓ𝑚r̂ −

(
𝑑Φℓ𝑚

𝑑𝑟
+ 1
𝑟
Φℓ𝑚

)
𝑟∇𝑌ℓ𝑚 , (5.26)

the poloidal component becomes

− 𝜅0
x𝜔̃𝜏x

[ [
∇ ×

(
−Φℓ𝑚r ×∇𝑌ℓ𝑚

) ]
×∇𝑇0

]
= 𝜅0

x𝜔̃𝜏x

{[(
1
𝑟
𝑙 (𝑙 + 1)Φℓ𝑚𝑌ℓ𝑚r̂

)
×∇𝑇0

]
+
[(
𝑑Φℓ𝑚

𝑑𝑟
𝑟∇𝑌ℓ𝑚

)
×∇𝑇0

]
+
[(
Φℓ𝑚∇𝑌ℓ𝑚

)
×∇𝑇0

]}
=

[
𝜅0

x𝜔̃𝜏x

(
1
𝑟
Φℓ𝑚

𝑑𝑇0
𝑑𝑟

+ 𝑑Φℓ𝑚
𝑑𝑟

𝑑𝑇0
𝑑𝑟

)]
r ×∇𝑌ℓ𝑚 . (5.27)

Taking the final results Eqs (5.24) and (5.27) for the toroidal and poloidal parts of the field
respectively, we find
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𝛿Fx = −
[
𝑑𝜅0

x
𝑑𝑇

𝑑𝑇0
𝑑𝑟
𝛿𝑇ℓ𝑚 − 𝜅0

x
𝑑𝛿𝑇ℓ𝑚

𝑑𝑟

]
𝑌ℓ𝑚 r̂ −

[
1
𝑟

(
𝛿𝑇ℓ𝑚 − 𝜔̃𝜏xΨℓ𝑚𝑟

𝑑𝑇0
𝑑𝑟

)
𝜅0

x

]
𝑟∇𝑌ℓ𝑚

−
[
𝜅0

x𝜔̃𝜏x

(
1
𝑟
Φℓ𝑚

𝑑𝑇0
𝑑𝑟

+ 𝑑Φℓ𝑚
𝑑𝑟

𝑑𝑇0
𝑑𝑟

)]
r × ∇𝑌ℓ𝑚 . (5.28)

The first of the coupled first-order ODEs is then obtained by comparing the coefficients of Eq.
(5.28) with the general expression (5.17), giving

𝑑𝛿𝑇ℓ𝑚

𝑑𝑟
= −

∑︁
x

1
𝜅0

x

[
𝑑𝜅0

x
𝑑𝑇

𝑑𝑇

𝑑𝑟
𝛿𝑇ℓ𝑚 +𝑈ℓ𝑚

]
= −1

𝜅

[(
𝑑𝜅0
𝑒

𝑑𝑇
+
𝑑𝜅0
𝜇

𝑑𝑇
+ 𝑑𝜅

0
n

𝑑𝑇

)
𝑑𝑇

𝑑𝑟
𝛿𝑇𝑙𝑚 +𝑈𝑙𝑚

]
,

(5.29)

where 𝜅 = 𝜅0
𝑒 + 𝜅0

𝜇 + 𝜅0
n (Eq. (4.11)). The transverse components of the field 𝑉ℓ𝑚 and𝑊ℓ𝑚 (with

respect to r), are also obtained through the definition (5.17), given by

𝑉ℓ𝑚 =

∑︁
x

1
𝑟

(
𝜔̃𝜏xΨℓ𝑚𝑟

𝑑𝑇

𝑑𝑟
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𝜅0
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=
1
𝑟

{[(
𝜅0
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Ψ𝑙𝑚𝑟

𝑑𝑇

𝑑𝑟

]
− 𝜅𝛿𝑇𝑙𝑚

}
,

(5.30)

𝑊ℓ𝑚 = −
∑︁

x
𝜅0

x𝜔̃𝜏x(𝑇)
(
1
𝑟
Φℓ𝑚

𝑑𝑇0
𝑑𝑟

+ 𝑑Φℓ𝑚
𝑑𝑟

𝑑𝑇0
𝑑𝑟

)
= −

(
𝜅0
𝑒𝜔̃ 𝜏𝑒 + 𝜅0

𝜇𝜔̃ 𝜏𝜇
) [1
𝑟
Φ𝑙𝑚

𝑑𝑇0
𝑑𝑟

+ 𝑑Φ𝑙𝑚
𝑑𝑟

𝑑𝑇0
𝑑𝑟

]
.

(5.31)

The expressions for 𝑉ℓ𝑚 and 𝑊ℓ𝑚 indicate that a toroidal field gives rise to a polar perturbation
of the heat flux 𝛿𝑭, and likewise a polar field gives rise to a toroidal perturbation of the heat flux.

To obtain the second ODE, we begin by considering the energy conservation equation (4.3). As
a reminder, the heat flux (in Newtonian theory) is related to the net rate of heat energy generated
per unit volume (per unit time) as

∇ · F = 𝑄, (5.32)
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where 𝑄 = 𝑄h −𝑄𝜈 , and 𝑄h, 𝑄𝜈 are the amounts of heat generated via DCH & SCH processes
(Sec. 4.3), and heat lost via neutrino emission (Sec. 4.5) respectively. The perturbed form of
the energy conservation equation is simply

∇ · 𝛿F = 𝛿𝑄. (5.33)

Then, decomposing 𝛿𝑄 in terms of the spherical harmonics, leads to

∇ · 𝛿F =
𝑑𝑄

𝑑𝑇
𝛿𝑇ℓ𝑚𝑌ℓ𝑚 . (5.34)

For simplicity, we will assume that the nuclear heating term𝑄h is independent of the temperature
(and magnetic field strength). This is justified since the heat release calculated by Fantina et al.
(2018) neglects thermal contributions to thermodynamic potentials and considers only ground-
state transitions to compute the composition of the accreted crust4. The presence of the magnetic
field therefore influences the net heat generated 𝑄 within the star only via the dependence of the
neutrino cooling 𝑄𝜈 on the temperature (via the expressions presented in Sec. 4.4). We may
therefore rewrite Eq. (5.33) as

∇ · 𝛿F = − 𝑑𝑄𝜈
𝑑𝑇

𝛿𝑇ℓ𝑚𝑌ℓ𝑚 . (5.35)

Taking the divergence of Eq. (5.17) is the standard result (neglecting the sum over ℓ and 𝑚)

∇ · 𝛿F =

[
𝑑𝑈ℓ𝑚

𝑑𝑟
+ 2
𝑟
𝑈ℓ𝑚 − 1

𝑟
ℓ(ℓ + 1)𝑉ℓ𝑚

]
𝑌ℓ𝑚 , (5.36)

where the final term in Eq. (5.17) has now vanished since

∇ ·
(
𝑊𝑙𝑚r ×∇𝑌𝑙𝑚

)
= 0 . (5.37)

By comparing Eq. (5.36) with the RHS of Eq. (5.35) we obtain the second ODE describing the
perturbed thermal structure as

𝑑𝑈ℓ𝑚

𝑑𝑟
=
𝑑𝑄𝜈

𝑑𝑇
𝛿𝑇ℓ𝑚 − 2

𝑟
𝑈ℓ𝑚 + 1

𝑟
ℓ(ℓ + 1)𝑉ℓ𝑚. (5.38)

We now have a set of four equations (5.29), (5.30), (5.31) and (5.38) in the four unknowns 𝛿𝑇ℓ𝑚,
𝑉ℓ𝑚, 𝑊ℓ𝑚, and 𝑈ℓ𝑚, with the magnetic stream functions (Φℓ𝑚 and Ψℓ𝑚, assumed known; Sec.

4For highly magnetised stars (𝐵 ≳ 1013 G) however, significant amounts of so-called Joule heating can arise
due to dissipation of the magnetic field in the solid crust (e.g. Miralles et al., 1998). Though, as we shall see, our
perturbation equations are only valid for magnetic field strengths 𝐵 ≲ 1012 − 1013, in which case the heating rate due
to dissipation of the magnetic field is negligible compared to that of the heating rate due to DCH reactions.
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5.3) playing the role of source terms. Note, however, that Eq. (5.31) (giving 𝑊ℓ𝑚 in terms of
Φℓ𝑚) decouples from the other three equations. Physically, we can say that the poloidal part of
the magnetic field Φℓ𝑚 induces a purely toroidal perturbation in the heat flux𝑊ℓ𝑚, and therefore
produces no perturbation in the temperature (i.e. does not couple to 𝛿𝑇ℓ𝑚). Given that we are
interested specifically in temperature perturbations, we will not consider poloidal magnetic fields
in the following analysis, only toroidal ones. This leaves us with Eqs (5.29), (5.30) and (5.38) in
the three unknowns 𝛿𝑇ℓ𝑚, 𝑉ℓ𝑚, and𝑈ℓ𝑚. Such a result stands in contrast to the mass quadrupole
more normally associated with magnetic NSs built directly from magnetic stresses (via Lorentz
forces - i.e. the magnetic mountain; Sec. 1.3.3.1), whereby it is both the toroidal as well as the
poloidal component of the magnetic field that can generate the mountain (Sec. 1.3.3.1).

A rigidly and steadily rotating triaxial star will emit mainly quadrupolar gravitational radiation.
If we set the spin axis to be along 𝑂𝑧, this corresponds to emission via only the ℓ = 𝑚 = 2
mass quadrupole moment, generating GWs at twice the spin frequency (Sec. 3.1.2). The
corresponding temperature perturbation that sources this (via the ‘wavy capture layers’; Sec.
3.2.2.1) will also be ℓ = 𝑚 = 2, as described in Ushomirsky et al. (2000).

5.3 The internal magnetic field

To solve the thermal perturbation equations, we first need to specify the form of the internal
magnetic field. Despite compelling evidence for a dipolar configuration of the external magnetic
field around NSs, the internal field structure remains largely unknown. As such, we have
(within reason) relative freedom in prescribing the internal field. We have shown that for small
magnetic fields (such that 𝜔𝐵𝜏x ≪ 1), the poloidal component of an internal magnetic field
is inconsequential in building our thermal mountain, and therefore consider a purely toroidal
magnetic field.

We are also interested only in the component of this toroidal magnetic field that gives rise
to quadrupolar gravitational-wave radiation, and therefore again specialise to the 𝑙 = 𝑚 = 2
spherical harmonic. From our definition of the toroidal component of the magnetic field (Eq.
(5.19)), we write down the functional form of the toroidal field as5

𝑩tor = − r ×∇
[
Ψ(𝑟)𝑌22(𝜃, 𝜙)

]
= −1

2

√︂
15
2𝜋

Ψ(𝑟)
[
sin 𝜃 sin2𝜙 𝒆𝜃 + sin 𝜃 cos 𝜃 cos2𝜙 𝒆𝜙

]
.

(5.39)

5We find that the magnitude of Eq. (5.39) is a factor two larger than given in Eq. (34) of OJ20, as well as a sign
discrepancy in the final term containing 𝒆𝜙 .



5.3. The internal magnetic field 145

The magnitude of 𝑩tor is a function of position. We follow OJ20 and parameterise our magnetic
field configurations in terms of the maximum value of |Btor | within the star. This will occur at
the point where Ψ(𝑟) attains its maximum value, along the line 𝜃 = 𝜋/2, 𝜙 = 𝜋/4.

For any value of the magnetic stream function Ψ22(𝑟), we define the form of the toroidal magnetic
field on the domain

𝑩tor =


0 if 𝑟 ≤ 𝑅B, min

Eq. (5.39) if 𝑅B, min < 𝑟 < 𝑅B, max

0 if 𝑟 ≥ 𝑅B, max ,

(5.40)

such that the magnetic field vanishes outside of the region of the star defined by the inner and
outer radii 𝑅B, min and 𝑅B, max, respectively. We make a distinction between this region of the
star that the magnetic field permeates and the computational domain of the background and
perturbed calculation (𝑅IB and 𝑅OB), since the two are not necessarily one and the same (and is
something that will be explored in Sec. 5.5).

In modelling the thermal profile of the whole star, we seek to allow for the possibility of
the magnetic field to permeate the core (unlike OJ20 who confined the magnetic field to just
the crust), with the expectation that non-vanishing temperature perturbations at the crust-core
transition lead to greater asymmetries in the deep crust. One potential caveat to this procedure,
however, is the feasibility of having a magnetic field in the core of a NS that is almost certainly
superconducting over some density range (recall Fig. 4.11). Minimum energy considerations of
superconducting matter implies any magnetic flux within the medium should be expelled due to
the Meissner–Ochsenfeld effect (e.g. Khan, 2003).

This, however, is not the whole story. In the seminal description of the properties of a proton
superconductor in NS matter by Baym et al. (1969), it was argued that the conductivity of
regular conducting matter is sufficiently large that the characteristic timescale for the expulsion
of magnetic flux is comparable with that of the age of the Universe. In a more recent analysis
of this phenomenon by Ho et al. (2017), the authors suggest that actually the magnetic field
may persist in the bulk of the core for at least ≳ 107 years after the star’s birth, as a result of
disparities in the cooling timescale and the associated diffusion timescale of magnetic field itself.
One caveat to this, however, is that NS-LMXBs are expected to be much older than this, at ∼
109 yr. Despite this, Ho et al. (2017) also estimated that even after 107 years, the field is likely
only expelled from the innermost ≤ 100 m of the core (assuming a 1011 G field). It is therefore
possible that the field may not have been completely expelled from the core, even after 109 years.

To this end, we consider two functional forms for the magnetic stream function Ψ(𝑟). In the first
instance, we take the form of the toroidal field to be

Ψ(𝑟) = 𝐶 [(𝑟 − 𝑅B, min) (𝑟 − 𝑅B, max)]2 , (5.41)
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where 𝐶 is a constant, such that the magnetic field vanishes outside of the region defined in Eq.
(5.40), and is a maximum at the midpoint of the domain where 𝑟 = (𝑅B, max − 𝑅B, min)/2. This
form of Ψ(𝑟) allows us to consider two possibilities, where: (i) the magnetic field permeates the
entire star, extending over the full computational domain where 𝑅B, min = 𝑅IB and 𝑅B, max = 𝑅OB,
or (ii), the magnetic field is confined to only the crust of the star, such that 𝑅B, min = 𝑅crust-core

and 𝑅B, max = 𝑅OB, where 𝑅crust−core is the radial location of the crust-core interface obtained
from our TOV solution (Tab. 2.6). The second case is equivalent to the form of the toroidal
field used by OJ20, following the prescription of one particular field configuration originally
considered by Pons and Geppert (2007) (cf. their Eq. (35)).

The second functional form for the magnetic stream function we consider is derived from Eq.
(12) of Aguilera et al. (2008), which we have modified to be

Ψ(𝑟) = Ψ0 𝑥

(
1 − 𝑥

)2 (
𝑥 − 𝑅B, min

𝑅B, max

)65
, (5.42)

where 𝑥 = 𝑟/𝑅B, max with 𝑅B, min = 𝑅IB and 𝑅B, max = 𝑅OB and Ψ0 is a constant chosen such that
magnetic field has a maximum value 𝐵 = 109 G. The value of the exponent in Eq. (5.42) was
chosen (somewhat) arbitrarily, in order to capture the possibility of a magnetic field that extends
beyond the crust-core transition, but drops rapidly before reaching the centre of the star. This
choice will allow us to explore whether non-vanishing temperature perturbations at the crust-core
transition lead to greater asymmetries in the deep crust, whilst still remaining consistent with the
results of Ho et al. (2017) that the magnetic field is expelled from the innermost region of the
star due to proton superconductivity, but not from the core entirely.

In Fig. 5.1 we plot the magnitude of the internal toroidal magnetic field as a function of the
density for the LM BSk20 model in Table 4.3, for the three different configurations of Ψ(𝑟)
discussed above. The prescription of our magnetic field requires that the field vanishes outside
of the region defined by 𝑅B, min and 𝑅B, max (Eq. (5.40)). The red and blue lines denote the
functional form of the magnetic field as described by Eq. (5.41) when 𝑅B, min is set to 𝑅IB and
𝑅crust−core respectively, whilst the green line denotes the functional form of the magnetic field as
described by Eq. (5.42). The green curve acts as an intermediary case between the two extremes
whereby the field extends over the entire computational domain (the red line), and where it is
confined to just the crust (the blue line).

5.3.1 Remaining in the perturbative regime

In order to treat the presence of a magnetic field as a perturbation on the heat flow, one must be
in the regime whereby 𝜔𝐵𝜏(𝑇) ≪ 1. For temperatures typical of NS-LMXBs (𝑇 ∼ 108 − 109

K), OJ20 found this procedure is safe for internal crustal magnetic fields strengths 𝐵 ≲ 1012 G.
Given that we are now extending our computational domain, we need to take care to remain in
the perturbative regime in the core as well as the crust.
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Figure 5.1: Magnitude of the internal toroidal magnetic field 𝐵tor as a function of the density
for three different field configurations. The blue curve shows a toroidal field that is confined
to the crust only - Eq. (5.41) with 𝑅B, min = 𝑅crust−core. The red curve shows the magnitude
of the toroidal field that permeates the entire star - Eq. (5.41) with 𝑅B, min = 𝑅IB. The green
curve shows a toroidal magnetic field that penetrates only the outer core of the neutron star - Eq.
(5.42). All are normalised to have the same maximum strength 𝐵 = 109 G. The vertical dotted
line indicates the location of the crust-core transition of the BSk20 equation of state (Table 2.6).

Figure 5.2: The Magnetization parameter 𝜔𝐵𝜏 inside an accreting neutron star due to an
internal toroidal magnetic field (𝐵 = 1012 G) assuming each of Eq. (5.41) with 𝑅B, min = 𝑅IB
(left); Eq. (5.41) with 𝑅B, min = 𝑅crust−core (centre); and Eq. (5.42) (right). Here 𝑄imp = 1.0,

𝑄S = 1.5 MeV and ¤𝑀 = 0.05 ¤𝑀Edd.

The thermal conductivity (which is proportional to 𝜏; Eq. (4.10)) is a few orders of magnitude
larger in the core than in the crust (Compare Figs 4.4 and 4.5). Before calculating the perturbed
thermal structure, we therefore plot in Fig. 5.2 the magnetisation parameter 𝜔𝐵𝜏 for each of
the three different magnetic field configurations discussed in the previous section, for the four
different BSk19-21 EoS models listed in Table 4.3.

We choose the maximum value of the magnetic field to be 𝐵 = 1012 G in all cases in order
to compare with OJ20. For the case where the magnetic field extends over the entire star (the
left panel of Fig. 5.2, assuming the red curve in Fig. 5.1) the magnitude of the magnetisation
parameter in the core is clearly in the regime 𝜔𝐵𝜏(𝑇) ≫ 1, far exceeding the condition in which
our perturbation equations are valid. Notably, 𝜔𝐵𝜏(𝑇) is greatest in the HM BSk21 model
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(where Durca processes are permitted), being an order of magnitude larger than any of the LM
models. This is a result of the squared-temperature dependence of the scattering frequency 𝜈
in the core (𝜏 ∝ 1/𝜈 ∝ 1/𝑇2; Sections 4.4.2.1 and 4.4.2.2) and the enhanced cooling associated
with Durca processes. The right panel of Fig. 5.2 (with 𝐵 described by the green curve in Fig.
5.1) tells a similar story, where 𝜔𝐵𝜏 ≫ 1 when Durca is active.

We shall therefore omit the HM BSk21 result from our subsequent calculations involving a core
magnetic field. Additionally, in order to remain perturbative and recover the condition whereby
𝜔𝐵𝜏 ≪ 1 everywhere in the star, we restrict ourselves to magnetic field strengths 𝐵 ∼ 108 G
when using Eq. (5.41) (when 𝑅B, min = 𝑅IB), and 𝐵 ∼ 109 G when using Eq. (5.42). These
choices remain reasonable assumptions, given inferences of the external magnetic field strength
are 108 − 109 G for LMXBs.

Note however that when the magnetic field is confined to just the crust, (the middle panel in Fig
5.2), we remain perturbative even when the magnetic field is assumed to be 1012 G, in agreement
with OJ20. The largest magnetic field strengths we shall consider as ‘safe’ for the crust-only
configuration are 𝐵 ∼ 1012 G when Durca is active, and 𝐵 ∼ 1013 G when Durca is forbidden.

These maximum values of the magnetic field to be considered ‘safe’ in our calculations should
be regarded as approximations, since the exact value of the magnetisation parameter within the
star depends not just on the assumed magnetic field strength, but also on the interior temperature
profile (since 𝜏 ∝ 1/𝑇2; Sec. 4.4.2.1) which is a property of the background calculation. The
results for 𝜔𝐵𝜏(𝑇) shown in Fig. 5.2 are specific to the choice 𝑄imp = 1.0, 𝑄S = 1.5 MeV and
¤𝑀 = 0.05 ¤𝑀Edd in the non-magnetised thermal background. The exact maximum allowed value

of 𝐵 for any given thermal background will therefore vary slightly if one changes any of these
quantities. This fact is accounted for in all subsequent calculations, and those few results we
present that are out of the perturbative regime will be appropriately highlighted, such that any
conclusions drawn from these results may be treated with correspondingly appropriate discretion.
In Section 5.5, for example, we shall briefly consider results outside of the perturbative regime
in order to discuss a potential proof-of-concept method to place upper limits on the strength of
the magnetic field in the NS interior, which currently is poorly understood.

5.4 Solving the perturbation equations

5.4.1 boundary conditions and method of solution

The equations (5.29) and (5.38) (together with the algebraic expression Eq. (5.30)) are a set of
coupled first-order ODEs which describe the perturbed thermal structure of accreting neutron
stars with an interior magnetic field. They are to be solved numerically using a set of (inner and
outer) boundary conditions. In their analysis, OJ20 adopted the boundary conditions derived
by UCB, who also modelled just the crust of the star. The temperature perturbation at both the
inner and outer boundaries (the crust-core interface and the base of the ocean respectively) were
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set to be zero, i.e. 𝛿𝑇IB = 𝛿𝑇OB = 0. UCB argued that this is a good approximation if the thermal
conductivity is significantly higher in both the ocean and the core of the star.

Indeed, the core thermal conductivity is a few orders of magnitude greater than in the crust
(compare Figs 4.4 and 4.17). However, consider our source term (the first term in Eq. (5.30)),

𝑆 ≡ 𝜔̃ 𝑑𝑇

𝑑𝑟
Ψℓ𝑚

∑︁
x
𝜅x 𝜏x

= −𝜔̃ 𝐹

𝜅
Ψℓ𝑚 𝜅 𝜏

= −𝜔̃ 𝐹 Ψℓ𝑚 𝜏 .

(5.43)

If one writes the radial temperature gradient as 𝑑𝑇/𝑑𝑟 = −𝐹/𝜅 (through Eq. (4.4)), then it can be
seen that the source term is independent of the thermal conductivity - instead depending on the
strength of the toroidal magnetic field Ψℓ𝑚. The magnetic field can therefore provide a non-zero
temperature perturbation in the core even if the thermal conductivity there is very large. This
possibility was not explored in OJ20, and thus the extension of the computational domain into
the core allows us to explore the possibility of a core magnetic field’s influence on the magnitude
of the temperature perturbation in the deep crust, with the condition 𝛿𝑇IB = 0 removed.

In extending the computational domain of the calculation, we instead obtain our inner boundary
condition by means of a regularity condition at the centre of the star (so as to avoid a singularity
at 𝑟 = 0 in spherical coodinates). We expand all variables in Eqs. (5.29), (5.30) and (5.38) via
Taylor series near the origin to obtain an approximate solution at small radii. To leading order
in 𝑟 , the temperature perturbation 𝛿𝑇 and the radial flux perturbation 𝑈 depend on the second
radial derivative of 𝛿𝑇 (evaluated at the centre of the star) as

𝑈𝐼𝐵 ≈ − 𝜅(𝜌𝑐,𝑇cent) 𝛿𝑇 ′′
cent 𝑟𝐼𝐵 , (5.44)

𝛿𝑇𝐼𝐵 ≈ 1
2
𝛿𝑇 ′′

cent 𝑟
2
𝐼𝐵 . (5.45)

The inner boundary condition is then found by obtaining a solution for the second radial derivative
𝛿𝑇 ′′ that satisfies the outer boundary condition, which we shall now discuss.

Contrary to the situation in the core, and the claim made by UCB, both Fig. 5 of Potekhin et al.
(1999) and Fig. 3 of Chugunov and Haensel (2007) suggest that the thermal conductivity in the
ocean is actually lower than that of the crust (as well as the core). This naturally leads one to
question the legitimacy of the 𝛿𝑇OB = 0 boundary condition at the top of the crust, as clearly the
ocean cannot be assumed to be perfectly conducting if the conductivity is low there.

However, consider again the outer boundary condition in our unperturbed thermal background
(Eq. (4.125)). The temperature at the base of the ocean is determined solely by the accretion rate,
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which we assume to be spherically symmetric. Therefore, if we assume there is no perturbation
in the local accretion rate at the base of the ocean when we introduce the magnetic field, then
there can be no perturbation in the temperature at the base of the ocean as well. In this case, this
allows us to recover the 𝛿𝑇OB = 0 boundary condition even if the ocean is not acting as a perfect
conductor.

It is possible that a more accurate outer boundary condition for 𝛿𝑇 could be derived by matching
the crustal thermal calculation to a flux-temperature relation in the ocean (Ushomirsky et al.,
2000). In this case, the thermal profile would be then determined by not just the fraction of heat
that is conducted up through the crust from the DCH/SCH processes, but also by the amount heat
that is released due to compression of accreted material as it arrives at the NS surface (Bildsten
and Cutler, 1995; Brown and Bildsten, 1998).

Rather than attempting such a large expansion of our computations, we have instead examined
two other possible choices, in addition to the 𝛿𝑇ℓ𝑚 = 0 condition motivated above. We wish
to test to what extent the value of the temperature perturbation in the deep crust, where most
of the quadrupole is generated (Ushomirsky et al., 2000), is sensitive to which outer boundary
condition we use.

Specifically, we consider the following three outer boundary conditions:

– i) keeping the same 𝛿𝑇OB = 0 as did OJ20 (and UCB),

– ii) assume a perfectly insulating condition for the perturbed heat flux: 𝑈OB = 0,

– iii) assume perfect blackbody emission from the surface, making use of the Stefan-
Boltzmann Law.

In the latter case, the perturbed flux would simply be

𝑈OB = 4𝜎𝑇3𝛿𝑇OB . (5.46)

It is worth bearing in mind, however, that whilst blackbody emission would be applicable to
isolated NSs emitting into vacuum, it is less clearly relevant for an accreting NS, whose surface
is blanketed in accreting material6. As we shall soon see, it turns out that the temperature
perturbations in the deep crust are in fact insensitive to the choice of outer boundary condition
(see Fig. 5.7), at least for densities 𝜌 ≳ 1013 g cm−3.

6Note however that equation (5.46) would be well motivated for an accreting NS during periods of quiescence,
and so may still be relevant in a time-averaged sense.
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5.5 Perturbed thermal structure of accreting neutron stars

In this section we shall present results for the temperature perturbations induced by the magnetic
field in terms of the fractional temperature perturbation 𝛿𝑇/𝑇 . We do this for convenience (since
it is dimensionless), in order to make a more straightforward comparison between the asymmetry
and the ellipticity 𝜀 (i.e. the size of the mountain; Sec. 3.2.2). Strictly speaking however, it is
the magnitude of the perturbation 𝛿𝑇 itself which is important. For example, a NS that is cold
(107 K), or hot (109 K), would imply that 𝛿𝑇 = 1 × 105 K and 𝛿𝑇 = 1 × 107 K respectively for
the same 1% fractional asymmetry. Such a result could therefore be misleading, since only the
latter would lead to significantly large thermal mountains. However, for the NS models that we
consider here, the temperature in the crust is mostly 𝑇 ∼ 108 K, varying between models only
by a factor of a few, even when the efficient Durca process is permitted (see Fig. 4.19).

In Fig. 5.3 we plot 𝛿𝑇/𝑇 (as a percentage) of an an accreting NS with an internal toroidal
magnetic field (assuming Eq. (5.41) with 𝑅B, min = 𝑅IB - the red curve in Fig. 5.1) for the three
different BSk19-21 LM models listed in Table 4.3. The Python ODE solver solve BVP was
again used for the integration, with the initial guess for the integration constructed by fixing the
value of the temperature perturbation throughout the entire star to that of the results obtained
by OJ20 (𝛿𝑇 ∼ 103 K). We use the same background model parameters as in Section 4.8 (i.e.
𝑄imp = 1, 𝑄S = 1.5 MeV) assuming three different accretion rates 10−10, 10−9, and 10−8 𝑀⊙

yr−1. The internal toroidal magnetic field was set to have a magnitude 𝐵 = 108 G at the midpoint
of the star, extending over the full computational domain. These calculations assume the outer
boundary condition 𝛿𝑇OB = 0 in order to compare with both UCB and OJ20. The fractional
temperature perturbation can be seen to depend strongly on the mass accretion rate ¤𝑀 , with the
largest asymmetries being built in the softer BSk19 model (and correspondingly the smallest
asymmetries being built from the stiffer BSk21). In the inner crust (1012 < 𝜌 < 1014 g cm−3 ),
the fractional temperature perturbations can be seen to lie in the region 𝛿𝑇/𝑇 ∼ 10−4 − 10−2%,
and is always largest at the point 𝑟 = (𝑅B, max − 𝑅B, min)/2), corresponding to the location where
the magnetic field is strongest (Fig. 5.1).

In their analysis, OJ20 found typical values of the fractional temperature perturbation 𝛿𝑇/𝑇 to
be a few times 10−5 % in the deep crust (𝜌 ∼ 1013 g cm−3) with a 𝐵 = 109 G crustal magnetic
field, irrespective of the accretion rate7. Under this new analysis, we have modelled the crust
and core of the star, allowing for the possibility of the magnetic field to permeate the whole star.
In doing so, we have obtained values for the fractional temperature perturbation that are up to ∼
2 orders of magnitude greater in the deep crust than the estimates obtained by OJ20, even when
the magnetic field is assumed to be an order of magnitude smaller.

Clearly, this is a substantial increase in the level of temperature asymmetry in the crust. To
reconcile these findings, in Fig. 5.4 we modify our calculation. We use the same computational
domain as the previous calculation (i.e. 𝑅IB and 𝑅OB are unchanged) and continue to use Eq.

7OJ20 considered the same mass accretion rates as those considered here; 10−10, 10−9, and 10−8 𝑀⊙ yr−1.
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Figure 5.3: Magnitude of the fractional temperature perturbation 𝛿𝑇/𝑇 (as a percentage) inside
an accreting neutron star due to a 𝐵 = 108 G magnetic field - Eq. (5.41) with 𝑅B, min = 𝑅IB;
Fig. 5.1. Here 𝑄imp = 1.0, 𝑄S = 1.5 MeV and ¤𝑀 = 0.05 are assumed, with time-averaged
mass accretion rates 10−10𝑀⊙ yr−1 (left), 10−9𝑀⊙ yr−1 (centre), and 10−8𝑀⊙ yr−1 (right), as

indicated in the panels.
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Figure 5.4: As for Fig. 5.3, but for a 𝐵 = 109 G crustal magnetic field - Eq. (5.41) with
𝑅B, min = 𝑅crust−core; Fig. 5.1.

(5.41) for the functional form of 𝐵, but now confine the magnetic field to only the crust of the
star. In this case, we have 𝑅B,min = 𝑅crust−core and 𝑅B,max = 𝑅OB (i.e. the blue curve in Fig.
5.1). The internal toroidal magnetic field was chosen to have a maximum magnitude this time
at 𝐵 = 109 G, consistent with the original calculation performed by OJ20. Additionally, since
this calculation explores perturbations in only the crust, we also include the results for the HM
BSk21 model, since 𝜔𝐵𝜏(𝑇) = 0 in the core (and therefore there is no source term) when the
field is removed there.

Confining the magnetic field to the crust has a significant impact on both the magnitude of the
temperature perturbation, as well as its distribution (as compared with Fig. 5.3). The shape of the
curves in Fig. 5.4 match the results obtained by OJ20 markedly well (cf. their Fig. 4, reproduced
for convenience in Fig. 5.5), also peaking at around 𝜌 ∼ 1010 g cm−3. Most interestingly, we
see that the magnitude of the fractional temperature perturbation 𝛿𝑇/𝑇 is reduced to ∼ 10−4%
when the core magnetic field is removed, and therefore also similar in magnitude to the results
obtained by OJ20.
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Figure 5.5: Perturbed thermal structure of a neutron crust with a weak crustal magnetic field
obtained by Osborne and Jones (2020). Left: Fractional temperature perturbation 𝛿𝑇/𝑇 as a
function of the density, for a neutron star with a non-superfluid core, a magnetic field strength
𝐵 = 109 G, an impurity parameter𝑄imp = 1, and for the accretion rates of 10−8 𝑀⊙ yr−1 (green,
dotted), 10−9 𝑀⊙ yr−1 (blue, dashed), and 10−8 𝑀⊙ yr−10 (red, solid). Right: same, but for a
star with a superfluid core (recall Sec. 4.9). Reproduced from Figure 3 of Osborne and Jones

(2020).
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Figure 5.6: As for Fig. 5.3, but for a 𝐵 = 109 G magnetic field that penetrates the outer core -
Eq. (5.42).

To better understand this behavior, we refer back to Fig. 5.1. When the inner boundary of the
internal field is set to be at the crust-core interface, the field does not penetrate the core of the
star and the quartic nature of the field (see Eq. (5.41)) forces it to drop off by many orders of
magnitude over very narrow density ranges in both the deep crust (𝑅B, min) and the top of the
crust (𝑅B, max) - see the blue curve in Fig. 5.1. However, when the magnetic field is allowed
to penetrate the core of the star, the gradient of the magnetic field strength varies much more
slowly in the crust, particularly in the inner crust near the core/crust transition. Therefore, in the
‘crust-only’ scenario, it is likely the case that the sharp decline of the magnetic field strength over
a narrow density region suppresses the perturbations, since the source term Eq. (5.43) (which is
proportional to Ψℓ 𝑚) at each end of the integration is forced to become vanishingly small very
quickly.

The last case we need consider is the intermediate one, where the magnetic field only partially
penetrates into the core, as described by Eq. (5.42) (the green curve in Fig. 5.1). We give our
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Figure 5.7: Magnitude of the fractional temperature perturbation 𝛿𝑇/𝑇 inside an accreting
neutron star for the low-mass BSk20 model in Table 4.3, assuming each of the three different
outer boundary conditions indicated near the curves. In all cases a 𝐵 = 108 G core magnetic
field is assumed - Eq. (5.41) with 𝑅B, min = 𝑅IB; Fig. 5.1. The black-dashed and blue curves are
close in magnitude, and therefore lie almost on top of one another. The vertical dotted line is
the location of the crust-core transition. The vertical dashed line indicates the fiducial density
𝜌 = 1013 g cm−3 deep in the inner crust. Here 𝑄imp = 1, 𝑄S = 1.5 MeV and ¤𝑀 = 0.05 ¤𝑀Edd.

results in Fig. 5.6, for the three LM models of Table 4.3. As one might perhaps expect, being
the intermediary case between Figs. 5.3 and 5.4, the fractional temperature asymmetry 𝛿𝑇/𝑇
in this case is larger than when the field is confined the crust, but smaller than when the field is
allowed to extend over the entire star.

As was discussed in Section 5.4.1, in addition to our 𝛿𝑇OB = 0 outer boundary condition, we
also consider two others, corresponding to zero flux𝑈OB = 0 at the surface, and to the emission
of blackbody radiation (Eq. (5.46)). We do this in order to gauge the sensitivity of 𝛿𝑇 in the
inner crust to that of the choice of outer boundary condition.

The results are shown in Fig. 5.7. For the cases of zero surface flux and blackbody radiation
(the blue and black-dashed curves respectively), we find that the magnitude of the temperature
perturbations are very similar to each other over the entire computational domain (never differing
by more than ∼ 0.1%). However, we see that allowing for a non-zero 𝛿𝑇OB causes 𝛿𝑇 to diverge
quickly from the 𝛿𝑇OB = 0 result at densities 𝜌 < 1012 g cm−3 as one approaches the base
of the ocean. At densities 𝜌 > 1013 g cm−3, though, the temperature perturbation is largely
insensitive to the outer boundary condition, with all three outer boundary prescriptions giving
essentially the same result. We will therefore continue to present results only for our preferred
boundary condition of 𝛿𝑇OB = 0, noting that other choices would have little impact on the
temperature perturbation in the regions of the crust of importance for mountain building. We
do stress, however, that this applies strictly to temperature perturbations. Other quantities could
be affected by one’s choice of boundary conditions. The surface flux emanating from the crust
(which is potentially observable; Ushomirsky et al., 2000), for example, would be intimately tied
to the outer boundary condition.
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Additionally, an important aspect of the analysis done by OJ20 was to consider the effect of
varying different properties of the background on the level of temperature asymmetry in the
crust (cf. their Figs. 6 and 7). The thermal structure is a function of the many different
components that enter the heat equation, some of which are properties of the EoS (e.g. the
superfluid/superconducting critical temperatures), or constrained experimentally via observation
(e.g. the shallow heating).

In Figs. 4.19 - 4.20 (and Figs. 5.3 - 5.6), we assumed values of the shallow heating and impurity
parameter to be 1.5 MeV and 1.0 respectively, in line with the respective average values of these
parameters from observational estimates. However, to determine how sensitive our results are
to these quantities, we show in Fig. 5.8 how the temperature asymmetry 𝛿𝑇/𝑇 can vary with
different values of 𝑄imp and 𝑄S respectively (recall Fig. 4.21 from Sec. 4.8).

The effects of altering these quantities are modest, but still noteworthy. When we vary the
impurity parameter, much like the background temperature profile we find that the temperature
perturbations are relatively insensitive to 𝑄imp when 𝑄imp ≲ 1, but are reduced noticeably when
𝑄imp = 100. We interpret these findings in the following way, again considering the source
term (5.43). Firstly, a larger 𝑄imp in the crust leads to steeper temperature gradients, as a larger
thermal gradient is required to support the heat flux through the crust when the conductivity is
reduced (𝜅eQ ∝ 1/𝑄imp; see Eq. 4.10 and Fig. 4.21). But, when the conductivity is dominated
by electron-impurity scattering (𝑄imp ≫ 1), our source term is

𝑆 ∝ 𝜅 𝜏 𝑑𝑇
𝑑𝑟

∼ 𝜏2 𝑑𝑇

𝑑𝑟
∼ 1
𝑄2

imp

𝑑𝑇

𝑑𝑟
, (5.47)

since 𝜅 ∝ 𝜏. Therefore, although steeper temperature gradients act to increase the strength of the
source term, the inverse-squared dependence of 𝑆 on the value of 𝑄imp means the source term
(and therefore the magnitude of the perturbations) is in fact made smaller when electron-impurity
scattering is the dominant scattering mechanism in the accreted crust.

For the shallow crustal heating term, the behavior of the temperature perturbations is more
straightforward. As the amount of shallow heating is increased, so too is the magnitude of the
perturbations in the inner crust. This is because of the source term’s dependence on the radial
temperature gradient, which is steeper for increased amounts of shallow heating (see Fig. 4.21).

Different LMXBs are observed to accrete at different (time-averaged) rates (see e.g. Table 2 of
Galloway et al., 2017). A larger accretion rate naturally leads to a greater amount of heat being
deposited into the inner crust (see Eq. (4.9)), resulting in a hotter crust with steeper temperature
gradients, and therefore larger temperature perturbations (note the behavior of 𝛿𝑇/𝑇 with ¤𝑀 in
Figs 5.3, 5.4, and 5.6). In addition, as well as accreting at different rates, the masses of the NSs
themselves also likely varies from system to system as well. As we have shown in Fig. 5.4, the
mass of the star can be important when it comes to generating temperature perturbations, if the
heavier star is able to support Durca processes.
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Figure 5.8: Magnitude of the fractional temperature perturbation 𝛿𝑇/𝑇 (as a percentage) inside
an accreting neutron star for different values of the impurity parameter 𝑄imp (left panel) and
shallow heating parameter 𝑄S (right panel). In all cases a 𝐵 = 108 G core magnetic field is
assumed - Eq. (5.41) with 𝑅B, min = 𝑅IB; Fig. 5.1. The vertical dotted line indicates the location
of the crust-core transition, whilst the dash-dotted line is the location of neutron drip. Here

𝑄S = 1.5 MeV and ¤𝑀 = 0.05 ¤𝑀Edd.

To explore this issue, and model a large range of different possible LMXB systems, Figs. 5.9
- 5.11 show the level of temperature asymmetry induced by the three different magnetic field
configurations in Fig. 5.1 in the inner crust (𝛿𝑇/𝑇 quoted at 𝜌 = 1013 g cm−3) for a number
of different NSs accreting in the interval 10−10 − 10−8 𝑀⊙ yr−1, with varying masses. We
present the results of these calculations as contour plots, with the magnitude of the temperature
perturbation in the inner crust for a particular EoS/accretion rate/stellar mass combination being
represented by colourbars. For the magnetic field configurations that extend into the core (the
red and green curves in Fig. 5.1), we are limited to NS masses whereby Durca is prohibited, so
as to not enter the regime whereby𝜔𝐵𝜏 ≫ 1 (recall the discussion from Sec. 5.3.1). Conversely,
for the crust-only field, we consider masses varying between 1.4 M⊙ and just below the TOV
maximum of the particular BSk19-21 EoS model used (these being 1.86, 2.14, and 2.26 𝑀⊙

respectively; Section 2.6.4). As previously outlined, the maximum magnetic field strengths we
consider in Fig. 5.9 is 𝐵 = 108 G, and in Figs. 5.10 and 5.11 we set 𝐵 = 109 G, in order to
remain perturbative in all of our calculations.

Reminiscent of what we saw in Figs 5.3, 5.4, and 5.6, the size of the temperature perturbations
are determined largely by the accretion rate, getting larger as ¤𝑀 increases, but does also have
a slight dependence on the stellar mass as well. For the softer BSk19 EoS, a less-massive NS
leads to a greater magnitude of 𝛿𝑇/𝑇 for the two magnetic field configurations described by Eq.
(5.41), whilst a more massive NS leads to greater temperature perturbations for the magnetic
field configuration described by Eq. (5.42). For the stiffer BSK20 model, there appears to be no
clear trend for how the mass affects the size of the perturbations, with each field configuration
having different masses that lead to their respective largest perturbations.
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Figure 5.9: Magnitude of the fractional temperature perturbation 𝛿𝑇/𝑇 (as a percentage) as a
function of both the accretion rate ¤𝑀 and stellar mass 𝑀 for the BSk19 (left), BSk20 (centre),
and BSk21 (right) equations of state. All perturbations are quoted at the fiducial density 1013 g
cm−3, assuming a 𝐵 = 108 G core magnetic field as described by Eq. (5.41) with 𝑅B, min = 𝑅IB.
Here we set the impurity parameter 𝑄imp = 1 and shallow heating term 𝑄S = 1.5 MeV for all

models.

Figure 5.10: Same as Fig. 5.9, but instead assuming a 𝐵 = 109 G crustal magnetic field
described by Eq. (5.41) with 𝑅B, min = 𝑅crust−core.

Figure 5.11: Same as Figs. 5.9 and 5.10, this time assuming a 𝐵 = 109 G partially decayed
magnetic field as described by Eq. (5.42).
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Figure 5.12: Magnitude of the crustal magnetic field strength - as described by Eq. (5.41), with
𝑅B, min = 𝑅crust−core - required to achieve 𝛿𝑇/𝑇 ∼ 1% for each of the temperature perturbations
considered in Fig. 5.10. Due to the requirement 𝜔𝐵𝜏 ≪ 1, we only consider results whereby

𝐵 ≤ 1013 G to be trustworthy (see Fig. 5.2).

Interestingly, for the stiffest BSk21 model, a darker band for masses < 1.6𝑀⊙ is clearly visible for
the case whereby the magnetic field is confined to the crust, with large temperature perturbations
(relatively speaking) being produced even at low accretion rates when 𝑀 > 1.6𝑀⊙. The reason
for this is the onset of Durca at 1.6𝑀⊙, leading to steeper background temperature gradients
in the accreted crust. The outer boundary temperature is fixed by the accretion rate (see Eq.
(4.125)) and therefore the same for a given accretion rate, irrespective of the mass of the star.
Consequently, a HM model whereby 𝑀 > 1.6𝑀⊙ must have a steeper temperature gradient in the
crust in order to still satisfy the outer boundary condition set by the accretion rate. If one again
considers the source term in our problem, Eq. (5.43), recall that it is proportional to the radial
background temperature gradient (𝑑𝑇/𝑑𝑟). Increased cooling of the star via Durca processes
therefore increases the magnitude of the source term, in turn producing greater temperature
asymmetries as compared to when Durca is forbidden.

For each of the calculations, the corresponding values of the Coulomb Parameter ΓCoul (2.9)
were also tracked to ascertain the physical state of the ions in the inner crust at each accretion
rate. It was found that ΓCoul never fell below 300, higher than the melting value of Γm ≈ 175,
indicating the inner crust (𝜌 > 1013 g cm−3) remains solid even when approaching Eddington
accretion limit. This suggests that our temperature perturbations could, at least in principle, lead
to some kind of elastic deformation of the crust.

It is worth clarifying however that all of the calculations in Figs. 5.9 - 5.11 were made assuming
𝑄S = 1.5 MeV. For completeness, an additional calculation of the LM BSk20 EoS model was
performed with an assumed accretion rate ¤𝑀 = 0.5 ¤𝑀Edd = 10−8 𝑀⊙ yr−1 and accompanying
shallow heating 𝑄S = 10 MeV. This represents an extreme level of plausible crustal heating in
the accreted crust, and serves to examine the state of the ions in the inner crust in this state of
‘maximal’ heating. The Coulomb parameter at the fiducial density 𝜌 = 1013 g cm−3 in this
scenario was found to be ΓCoul = 389, and therefore we conclude that the crust remains solid
even when the crust is - within observational constraints - maximally heated.
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In the analysis done by UCB, it was calculated that a fractional temperature asymmetry 𝛿𝑇/𝑇 ∼
1% was required to produce a mass quadrupole (Q22 ≈ 1037−38 g cm−2) large enough to balance
accretion torques from the NS companion. It is clear from Figs. 5.9 - 5.11, however, that even if
the temperature asymmetry built from the magnetic field can translate into some kind of elastic
deformation, none of our NS models produce perturbations large enough to create a mountain
capable of generating GW emission at the required level.

In Figs. 5.9 and 5.11 we assumed magnetic fields strengths of 108 and 109 G respectively.
These choices were made since they represent the largest magnetic fields strengths where our
perturbation equations remain valid, and therefore the largest possible temperature asymmetries
that may be achieved within the perturbative regime. However, magnetic fields in the core are
probably larger than this value, even when taking account the inferences of the external field of
LMXBs. It is therefore the case that temperature asymmetries formed in the deep crust as a
result of a core magnetic field are also almost certainly larger than we have calculated here, but
we cannot faithfully comment on their validity. In principle, this problem could be addressed
with a non-perturbative calculation of the influence of a magnetic field on the heat conduction
in the star, but this is beyond the scope of what we have derived here.

In Figure 5.10 however, we assumed a crustal magnetic field strength of just 109 G. Recall again
the results of Fig. 5.2 (specifically the middle panel), where we showed that in principle the
magnetic field could be as as strong as ∼ 1013 G until our perturbation equations begin to break
down. Since the perturbation equations are linear in 𝐵 (so long as one remains in the regime
𝜔𝐵𝜏 ≪ 1), it is possible to simply re-scale our results to find the strength of the magnetic
field that is required to produce a temperature asymmetry of ∼ 1% for a given EoS/stellar mass
and accretion rate combination. The result of such a calculation is shown in Fig. 5.12, which
indicates that for strongly accreting NSs, the minimum field strengths required to generate ∼
1% temperature asymmetries are in the region a few ×1012 G. Fig. 5.12 therefore suggests we
require magnetic fields approx. 3 orders of magnitude larger than external inferences to produce
temperature perturbations at the level that UCB estimated are required for GW torque balance to
occur.

Additionally, though the results of Fig. 5.12 also indicate that 1% asymmetry may be achieved in
weakly accreting NSs as well, the required magnetic field strengths are of the order 𝐵 > 1013 G.
Such results are outside of the perturbative regime however, and so must be taken with caution.
Although, such strong crustal magnetic fields that far exceed 1012 G in accreting NSs are very
unlikely to begin with, and therefore do not impact the overall picture regardless.

For comparison, OJ20 found that internal field strengths ∼ 1013 G (with slight variations de-
pending on the choice of a normal or superfluid core and the presence of some additional
shallow heating) were required to produce temperature asymmetries at the percent level for their
‘crust-only’ calculation. Due to their more simplistic model of the crust however, magnetic field
strengths at this level were enough to push them out of the perturbative regime.
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5.6 The resulting deformations

Before moving on to Chapter 6, we shall first take a moment to sum up the results from the
previous section. We have shown that for the majority of our NS models, we are unable to reach
the 1% temperature asymmetry in the deep crust that was required by UCB to generate significant
GW emission. In most cases, we are limited by perturbative nature of our approach, whereby
the condition 𝜔𝐵𝜏(𝑇) ≪ 1 everywhere in the star must be satisfied in order for Eqs. (5.29) and
(5.38) to be valid. We found that when the magnetic field is allowed to permeate the core, the
level of asymmetry in the deep crust (1013 g cm−3) is ∼ 2 orders of magnitude larger than when
the field is forced to be confined to the crust (compare Figs. 5.3 and 5.4). However, since the
thermal conductivity is much larger in the core than in the crust, the condition 𝜔𝐵𝜏(𝑇) ≪ 1 is
broken for magnetic fields greater than ∼ 108 G (Fig. 5.2).

In reality, if the magnetic field is able to permeate the core of the star (recall the discussion
surrounding the Meissner-Ochsenfeld effect in Section 5.3), then it is highly likely it will be
greater in magnitude than the 108 G we are limited to here. The picture is also further complicated
by the fact that the Meissner effect is a property that extends to only Type I superconductors.
Paired protons in the interior may also form a Type II superconductor (Baym et al., 1969),
whereby rather than be expelled, the magnetic field is expected to be confined into isolated
vortices. In fact, Akgün and Wasserman (2008) have even shown that quadrupolar distortions
from axisymmetric toroidal magnetic fields in Type II superconducting matter are possible. It is
worth bearing in mind, though, that such deformations are not a result of the same mechanism
described here, but rather adds credence to the idea that a core magnetic field may be exploited to
produce mountains. To this end, a reformulation of our mechanism in a non-perturbative regime
could prove worthwhile. To reiterate, our perturbative approach can achieve asymmetries of the
order 10−2 % when the magnitude of a core magnetic field is just 108 G.

Given the uncertainties surrounding the feasibility of a core magnetic field however, we should
also stress the results obtained from the ‘crust-only’ field configuration (Figs. 5.4 and 5.10).
Although the expected asymmetry from a crust-confined 𝐵 = 109 G magnetic field is of the
order 10−4%, the results of Fig. 5.12 show that if the strength of the magnetic field can exceed
slightly above 1012 G, then the required asymmetry of 1% may still be achieved. This is an order
of magnitude smaller than was required by OJ20 to achieve the same level of asymmetry, and,
crucially, is still valid even in the perturbative regime (Fig. 5.2).

With this information in mind, it is time to begin to turn our attention towards how these
perturbations in the star’s internal temperature profile translate into deformations of the solid
crust. Recall from Chapter 3 that the size of NS mountains are usually described in terms of the
ellipticity, defined as (Eq. 3.37)

𝜀 =

√︂
8𝜋
15
𝑄22
𝐼

, (5.48)
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where 𝐼 is the moment of inertia (usually taken to be 1045 g cm2) and𝑄22 is the mass quadrupole
moment.

In Chapter 6 we shall go on to to compute Eq. (5.48) self-consistently by exploiting a temperature-
sensitive contribution to the pressure in the star’s crust. However, as a first step towards this
calculation, we shall first examine the size of the induced deformation by considering the
calculation performed by UCB for the size of the mass quadrupole generated from temperature
asymmetries in a single capture layer. Based on their results, OJ20 calculated a simple fitting
formula for the NS ellipticity as (cf. their Eq. 2),

𝜀 ∼ 5 × 10−8

[
𝛿𝑇/𝑇
1%

]
. (5.49)

Using this simple scaling (evaluated at our fiducial density 𝜌 = 1013 g cm−3), one expects that
a fractional temperature asymmetry at the percent level in the inner crust produces an ellipticity
of ∼ 5 × 10−8, irrespective of the assumed origin of the perturbations.

For the specific case of a magnetic field that is confined to the accreted crust (Eq. (5.41) with
𝑅B, min = 𝑅crust−core), the results of Fig. 5.12 represent the magnetic field strengths required
to produce an ellipticity of this size, generating a mountain large enough to balance accretion
torques with the emission of GWs.

To place these results in to context, reconsider the results from the recent continuous GW search
by Abbott et al. (2022a), who constrained the ellipticity on the AMXP IGR J00291+5934 to be
no more than 𝜀95% = 3.1 × 10−7. In lieu of a continuous GW detection, the results obtained
by Abbott et al. (2022a) are still useful. Namely, the upper limit on the ellipticity of IGR
J00291+5934 can be combined with our results to tentatively place an upper limit on the strength
of the internal magnetic field within the NS.

Since the temperature asymmetry (and therefore the ellipticity) has some dependence on the
accretion rate ¤𝑀 , we can find an upper limit on the strength of the internal magnetic field by
recalculating our temperature perturbations assuming an ¤𝑀 specific to IGR J00291+5934. The
star’s mass, however, is not known, so we present results for both a 1.4 𝑀⊙ and 2.1 𝑀⊙ NS. As we
have computed only steady-state solutions, we interpret our parameter ¤𝑀 as the time-averaged
accretion rate. This also ensures consistency in our use of Eq. (4.125) that requires burning
at the base of the H/He layer to be stable. We estimate the average mass accretion rate in IGR
J00291+5934 using data taken from Table 2 of Falco et al. (2017), for which the time-averaged
X-ray flux ⟨𝐹x⟩ is given for four independent outburst/quiescence cycles that occurred in the
years 2004 - 2015. Using this information, we assume the mass accretion rate to then be of the
form

¤𝑀 = ⟨𝐹x ⟩
4𝜋𝑅𝑑2

𝐺𝑀
, (5.50)
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where 𝑑 is the distance of IGR J00291+5934 from Earth. We averaged the results of Falco et al.
(2017) to produce one value of ⟨𝐹x⟩ over all four outburst/quiescence cycles. At a distance of 3
kpc, we estimate the accretion rates to be

¤𝑀1.4𝑀⊙ = 1.8 × 10−12𝑀⊙ yr−1 ≈ 9 × 10−5 ¤𝑀Edd , (5.51)

¤𝑀2.1𝑀⊙ = 1.2 × 10−12𝑀⊙ yr−1 ≈ 5 × 10−5 ¤𝑀Edd . (5.52)

for a 1.4 and 2.1 𝑀⊙ star respectively. These accretion rates are appreciably smaller than those we
considered in Section 5.5, and therefore we re-calculate the size of the temperature perturbation
𝛿𝑇/𝑇 , again quoting the result at the density 𝜌 = 1013 g cm−3 in the inner crust specific to these
values of ¤𝑀 . In doing so, we find that

(𝛿𝑇/𝑇)1.4𝑀⊙ ∼ 3.3 × 10−8 𝐵8 ⇒ 𝜀1.4𝑀⊙ ≈ 1.7 ,×10−13 𝐵8 , (5.53)

(𝛿𝑇/𝑇)2.1𝑀⊙ ∼ 4.3 × 10−5 𝐵8 ⇒ 𝜀2.1𝑀⊙ ≈ 2.2 × 10−10 𝐵8 , (5.54)

assuming the BSk21 EoS and the field configuration given by Eq. (5.41) with 𝑅B, min = 𝑅IB.
Using these results, it is possible to calculate the upper limit on the strength of the internal
magnetic field required to produce the ellipticity constrained by Abbott et al. (2022a) as

𝐵𝜀
95%

1.4𝑀⊙
=

[
3.1 × 10−7

1.7 × 10−13

]
𝐵8 ≈ 1.9 × 1014 G , (5.55)

𝐵𝜀
95%

2.1𝑀⊙
=

[
3.1 × 10−7

2.2 × 10−10

]
𝐵8 ≈ 1.4 × 1011 G . (5.56)

We do stress however that these upper limits must be taken with caution. In reference to Eq.
(5.16), it is the case that such large magnetic fields may predict the hall component 𝜅∧ of the
field to be many orders of magnitude greater than the parallel component 𝜅 ∥ . Such a result is
clearly nonphysical (as can be seen by comparing 𝜅∧ and 𝜅 ∥ in Eq. (5.7)), and is a consequence
of the fact that the condition 𝜔𝐵𝜏(𝑇) ≪ 1 is broken for core magnetic fields greater than ∼ 108

G (Fig. 5.2).

Though, given that methods to probe the structure of internal magnetic fields are so scarce, we
present this method at least as a proof of concept to constrain the strength of the internal field.
A calculation such as this is further motivation to return to a reformulation of this mechanism
in the non-perturbative regime in the future, which would be able to explore magnetic fields in
excess of the current limit of ∼ 108 G.
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Regardless, in the LM case where Durca is forbidden, the constraint on the upper limit of the
magnetic field is not particularly informative: the upper limit is 5-6 orders of magnitude larger
than externally inferred field strength. Our results for the HM star however, are more interesting:
we obtain an upper limit on the internal toroidal magnetic field ∼ 1011 G. We must re-iterate that
such magnetic fields push us far out of the perturbative regime however (∼ 4 order of magnitude;
Fig. 5.2), and therefore must be viewed cautiously.

Additionally, these results are also very much conditional on the accretion rate (and the star’s
mass; Figs. 5.9 - 5.11), and therefore the upper limits we present here are themselves limited
by the low-level accretion of IGR J00291+5934. Analysis by Heinke et al. (2009) also indicates
that quiescent spectrum of IGR J00291+5934 is in fact consistent with the standard cooling
model, suggesting that it is a LM star (i.e. 𝑀 ≲ 1.6𝑀⊙) and disfavouring the presence of Durca
cooling. We would therefore benefit greatly from further targeted searches towards millisecond
accreting pulsars, with the hope that the ellipticity can be accurately constrained for LMXBs that
are accreting at greater rates (and exhibit evidence of enhanced cooling), as these systems would
be more favourable for sustaining a thermal mountain.
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6

Thermo-elastic Mountains on
Accreting Neutron Stars

In this chapter we will now examine how deformations of the solid crust may form as a con-
sequence of non-axisymmetric temperature variations, and compute their sizes. We begin in
Section 6.1 by discussing how one may introduce (perturbatively) finite-temperature corrections
onto the zero-temperature equation of state presented back in Section 2.2. Specifically, we de-
scribe a (new) method in which pressure perturbations may be generated in the solid crust through
thermal lattice pressures, a small temperature-dependent contribution to the total pressure from
the crust’s ionic lattice.

In Section 6.2 we then derive the perturbation equations which describe the elastic response of
the crust to existing temperature gradients, in a Newtonian framework. We outline the relevant
boundary conditions specific to static perturbations of the crust, and present three methods in
which one may compute the mass quadrupole moment from density perturbations associated
with the thermal pressure perturbations described in Section 6.1.

We then present in Section 6.3 results for the ellipticity of accreting neutron stars generated
through thermal perturbations in the lattice pressure, sourced from anisotropic heat conduction
due to internal magnetic fields. The parameter space of both the mass accretion rate ¤𝑀 and
shallow heating parameter 𝑄S are explored. We shall then, in turn; assess the role that these
mountains likely play in determining the spin-evolution of accreting neutron stars; compare the
ellipticity generated via the crustal lattice pressures to those of the physical shifts of electron
capture layers; contrast the ellipticity of thermal mountains with those of the more ‘conventional’
magnetic mountains.
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6.1 Temperature dependence of the equation of state

In the previous chapter (Chap. 5) we explored whether lateral temperature gradients in accreting
neutron stars could be generated from internal magnetic fields as a result of anisotropic heat
conduction. In order to form the mountain, the asymmetry in the thermal structure (treated as
a perturbation of the homogeneous background computed in Chap. 4) must lead to pressure
imbalances which then lead to a physical displacement of the crustal matter. In practice, (and as
we shall see in Sec. 6.2.1) such displacements are modelled in terms of a Lagrangian displacement
field 𝜉𝑖 , so that one may connect a given matter element in the perturbed configuration, to that
of its position in the unperturbed background.

To source the thermal pressure perturbation, the equation of state (which thus far has been
assumed to be zero-temperature; Sec. 2.2), must have some kind of temperature dependence.
For an EoS of the form 𝑃 = 𝑃

(
𝜌, 𝑇

)
, the Lagrangian pressure perturbation Δ𝑃 is

Δ𝑃 =
𝜕𝑃

𝜕𝜌

����
𝑇

Δ𝜌 + 𝜕𝑃

𝜕𝑇

����
𝜌

Δ𝑇 . (6.1)

We first examined the size of the induced deformation from the temperature asymmetry using the
simple scaling relation Eq. (5.49) in Section 5.6, fitted to the results of UCB, who evaluated the
source terms and coefficients in Eq. (6.1) (as per their Appendix. A) through an equation of state
parameterised as 𝑃 = 𝑃

(
𝜌, 𝜇𝑒 [𝜌,𝑇]

)
. This is the conventional picture of thermal mountains,

where the dependence on temperature comes in through the electron chemical potential 𝜇e, which
determines at what depth electron captures may take place (recall the description of the ‘wavy
capture layer’ in Sec. 3.2.2.1).

In the following section we will consider a different (and simpler) source for temperature-
dependence on the (crustal) equation of state. We shall instead consider a piece of the (thermal)
crustal pressure that is necessarily tied to the ionic lattice itself. This is advantageous, at least
in part, since the number of capture layers in the accreted crust varies significantly between
different equation of state models1 (Sec. 2.4.2). And, as we shall see in Section 6.3.2, this lack
of definitive agreement in the composition of the crust can lead to wildly differing estimates (∼ 4
orders of magnitude) for the total mass quadrupole (the 𝑄22 generated within each individual
capture layer add linearly) generated from the wavy capture layer scenario.

We term the deformations of the crust that arise from perturbations in the thermal lattice pressure
as ‘thermo-elastic mountains’, rather than simply ‘thermal mountains’ since they do not require
the resolution of individual capture layers. This serves to distinguish our work from that of the
Bildsten (1998) and Ushomirsky et al. (2000) mechanism.

1It is also beneficial for us since our method to approximate the heat release from non-equilibrium reactions
into ‘shells’ in the background model (recall Fig. 4.3) also does not resolve the true ‘width’ of the capture layers,
where, strictly speaking, all of the heat would be released. In order to source the pressure perturbations by resolving
individual capture layers, our method for calculating the heat release outlined in Section 4.3.1 would first need to be
corrected, as per the procedure outlined in UCB.
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6.1.1 The thermal lattice pressure

Within the crust of a neutron star, it is expected that relativistic electrons supply the majority of
the pressure in the outer crust, while neutrons supply most of the pressure in the inner crust (Sec.
2.5.2.1).

The total pressure in the crust is, to a first approximation, determined by the zero-temperature
EoS. It is the case, however, that there is likely to be some small thermal correction to both
the electron and neutron pressures, particularly in accreting neutron stars where deep crustal
heating processes (Sec. 4.3.1) can warm the crust to temperatures approaching 109 K (Fig.
4.19). Yet, these contributions are usually modelled in terms of a pressure associated with
(Fermi) gases of electrons and neutrons (Sec. 2.3). Within the context of thermal mountains,
which we are interested in here, we require a sustained deformation of the crust. Any such
thermally-induced perturbations in these gases would likely be convected away far too quickly
to be relevant for mountain building. Not only this, but in the specific context of the type of
temperature perturbations that we are considering (i.e. those sourced from magnetic fields) there
would actually likely be effectively no density perturbations at all in the deep crust (where most
of the mass quadrupole would be formed, as this is where most of mass of the crust is contained)
since the neutrons are electrically neutral2.

There is, however, another component of the crustal pressure that is necessarily firmly tied to
the elastic phase. Specifically, there is a non-negligible pressure that is generated directly by the
ionic lattice itself; through (mainly) interactions of the ions with other ions, as well as with the
background sea of electrons. Crucially, this crustal lattice pressure has a temperature-dependent
piece, which will therefore also be sensitive to any existing temperature asymmetry in the crust
(including those that arise from magnetic fields). As we shall see, it turns out that the crustal
lattice pressure is small relative to the total (zero-temperature) pressure, and that the thermal
correction is smaller still (Fig. 6.2). However, the fact that any perturbations in the pressure will
be tied to the lattice itself makes it relevant for mountain building, since they will not be as easily
convected away.

We have previously discussed (Sec. 2.5.2.2) that the crust is often assumed to be an isotropic,
body-centered cubic Coulomb crystal. For such crystals, there are two important dimensionless
quantities which describe their thermal properties. The first is the already-familiar Coulomb
parameter ΓCoul, defined in Eq. (2.9) as

ΓCoul =
𝑍2𝑒2

𝑘𝐵𝑇

(
4𝜋𝑛b

3

)1/3
. (6.2)

2It is possible, however, that since the electrons are negatively charged, one could envisage a scenario whereby
a large-scale internal magnetic field could generate ‘stabilised’ pressure perturbations in the electron gas. Such a
‘thermo-magentic’ mountain however is not relevant to the current discussion.
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Not only is this quantity useful in determining the crystallisation point of the crust (i.e. when the
ratio of the ions’ electrostatic potential energy to thermal energy exceeds 175; Sec. 2.3.1, and
see Sec. 6.2.1.1), but it is also useful in order to quantify so-called anharmonic corrections to
the low-temperature harmonic treatment of ionic oscillations3 (Haensel et al., 2007). Generally
speaking, the thermal properties of the crystal may be divided into a low temperature harmonic
regime (when ΓCoul ≫ 1), and a high temperature anharmonic regime (when ΓCoul ≪ 1).
From our description of the thermal background in Chapter 4, the results presented in Sec.
4.8 (specifically Fig. 4.21) indicate we are always in the harmonic regime (Γ > 175; i.e. at
temperatures below the melting temperature 𝑇m where the crust is solid) for all but the lowest
density parts of the crust for the majority of the neutron star models that we will consider.

The second quantity is then the dimensionless ratio 𝑇/𝑇pi , where𝑇pi is the plasma ion temperature,
defined as (Haensel et al., 2007)

𝑇pi =
ℎ̄𝜔pi

𝑘𝐵
, (6.3)

and 𝜔pi is the plasma ion frequency (which describes the frequency at which the ions in the
lattice naturally oscillate) given by

𝜔pi =

[
4𝜋𝑒2𝑛N

𝑍2

𝑚𝑖

]1/2
, (6.4)

where 𝑛N is the ion number density Eq. (2.27), and 𝑚𝑖 is the ion mass 𝑚𝑖 = 𝐴𝑚b, such that

𝑇

𝑇pi
=
𝑘𝐵𝑇

ℎ̄𝜔pi
. (6.5)

With this second relation, the thermal properties of the crustal lattice may be further divided into
a low temperature quantum regime (𝑇 ≪ 𝑇pi) and a high temperature classical regime (𝑇 ≫ 𝑇pi).
In order to gauge which of these two regimes a typical accreting neutron star presents itself, we
plot in Fig. 6.1 the plasma ion temperature 𝑇pi for the each of BSk19, BSk20, and BSk21, for an
accreted crust. Given that our results for the thermal structure (Figs 4.19 - 4.20) indicate that the
crustal temperature is typically ∼ 108 − 109 K, this suggests that 𝑇/𝑇pi≲ 0.1 over the majority of
the crust (𝜌 > 1011 g cm−3), and therefore that is a typical accreting NS is within the quantum
regime, but not deeply so.

For our purposes it is therefore not helpful to consider either limiting case where 𝑇 ≪ 𝑇pi or
𝑇 ≫ 𝑇pi to compute the thermal lattice pressure. Instead, we shall make use of results obtained
by Baiko et al. (2001), who have previously calculated the thermodynamic functions of harmonic
Coulomb crystals for arbitrary 𝑇/𝑇pi . The Helmholtz Free energy 𝐹E of a harmonic Coulomb

3When the temperature of the crystal is sufficiently high, then oscillations of the ions are large enough that a
‘standard’ quadratic form for the potential is no longer sufficient to describe the oscillations.
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Figure 6.1: Plasma ion temperature 𝑇pi for the accreted equations of state BSk19, BSk20 and
BSk21.

crystal is determined by the energy of the static-lattice contribution, a contribution from zero-
point vibrations, as well as a (finite temperature) thermal free energy. This thermal part of the
free energy, which we will label 𝐹th, is given in terms of a reduced thermal free energy 𝑓th as

𝐹th = 𝑓th𝑁N𝑘𝐵𝑇 . (6.6)

A convenient fitting formula for the reduced thermal free energy of a harmonic Coulomb crystal
was obtained by Baiko et al. (2001) as

𝑓th =

3∑︁
𝑛=0

ln(1 − 𝑒−𝛼𝑛 𝜃 ) − 𝐴(𝜃)
𝐵(𝜃) , (6.7)

with the quantities 𝐴(𝜃) and 𝐵(𝜃) given by

𝐴(𝜃) =
8∑︁
𝑛=0

𝑎𝑛𝜃
𝑛. (6.8)

𝐵(𝜃) =
7∑︁
𝑛=0

𝑏𝑛𝜃
𝑛 + 𝛼6𝑎6𝜃

9 + 𝛼8𝑎8𝜃
11 , (6.9)

where 𝜃 is a ‘quantum parameter’, defined in terms of the plasma ion frequency as (Eq. (6.5))

𝜃 ≡
ℎ̄𝜔pi

𝑘𝐵𝑇
=
𝑇pi

𝑇
, (6.10)
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Table 6.1: Parameters needed to calculate the reduced thermal free energy (Eqs (6.7) - (6.9))
of a body-centred cubic Coulomb lattice. This table is a reproduction of Table II of Baiko et al.

(2001).

n 𝛼𝑛 𝑎𝑛 𝑏𝑛

0 - 1 261.66
1 0.932446 0.1839 0.0
2 0.334547 0.593586 7.07997
3 0.265764 5.4814 ×10−3 0.0
4 - 5.01813 ×10−4 0.0409484
5 - 0.0 3.97355 ×10−4

6 4.757014 ×10−3 3.9247 ×10−7 5.11148 ×10−5

7 - 0.0 2.19749 ×10−6

8 4.7770935 ×10−3 5.8356 ×10−11 -

and 𝛼𝑛, 𝑎𝑛 and 𝑏𝑛 are sets of constants with values given in Table 6.1, reproduced (for con-
venience) from Table II of Baiko et al. (2001) for the specific case of a body-centered cubic
Coulomb lattice.

In corollary with the definition of the pressure in Section 2.2 (specifically Eq. (2.5)), the pressure
of the Coulomb crystal can be obtained from the free energy using the thermodynamic relation

𝑃 = −𝜕𝐹E
𝜕𝑉

����
𝑁N,𝑇

. (6.11)

In order to proceed, and obtain the pressure associated with the thermal piece of the free energy,
one must make the 𝑉- dependence of 𝐹th explicit. This dependence resides within the quantum
parameter 𝜃, through its dependence on the ion number density 𝑁N, and we may write

𝑃th = −𝑁N𝑘𝐵𝑇
𝑑𝑓th
𝑑𝜃

𝜕𝜃

𝜕𝑉

����
𝑁N,𝑇

. (6.12)

The derivative of 𝑓th is obtained directly by differentiating the fitting formulae (6.7) - (6.9) as
(cf. Eq. (15) of Baiko et al., 2001)

𝑑𝑓th
𝑑𝜃

=

3∑︁
𝑛=1

𝛼𝑛

𝑒𝛼𝑛 𝜃−1 − 𝐴′(𝜃)𝐵(𝜃) − 𝐴′(𝜃)𝐵′(𝜃)
𝐵2(𝜃)

, (6.13)

while the derivative of 𝜃 is

𝜕𝜃

𝜕𝑉

����
𝑁N,𝑇

=
ℎ̄

𝑘𝐵𝑇

𝜕𝜔pi

𝜕𝑉

����
𝑁N,𝑇

= − ℎ̄

2𝑘𝐵𝑇
𝜔pi

𝑉
, (6.14)

since



6.1. Temperature dependence of the equation of state 171

Figure 6.2: Ratios of the lattice thermal pressure to the total pressure as a function of both
temperature and density for the accreted equations of state BSk19 (left), BSk20 (centre) and

BSk21 (right).

𝜔2
pi = 4𝜋𝑒2𝑛N

𝑍2

𝑀
= 4𝜋𝑒2𝑁N

𝑉

𝑍2

𝑀
, (6.15)

and therefore

𝑃th =
1
2
ℎ̄𝜔pi𝑛N

𝑑𝑓th(𝜃)
𝑑𝜃

=
1
2
ℎ̄𝜔pi

[
𝜌(1 − 𝑋n)
𝑚b𝐴

]
𝑑𝑓th(𝜃)
𝑑𝜃

. (6.16)

In Fig. 6.2 we plot the ratio of the thermal lattice pressure Eq. (6.16) relative to the zero-
temperature pressure for each of the BSk19, BSk20, and BSk21 equations of state, as a function
of both density and temperature. We plot the lattice pressure for a range of different temperatures
in the region 108 − 3 × 109 K, in order to gauge the full parameter space of realistic LMXBs.

It can be seen that the lattice pressure is very much dependent on the temperature. In the deep
crust (𝜌 ∼ 1013 g cm−3), the fractional pressure perturbation can be as low as ∼ 10−7 when the
crust is cold (∼ 108 K), and as large as ∼ 10−3 when it is hot (∼ 109 K). It is therefore clear that
understanding the thermal structure of a real accreting neutron star is of the utmost importance in
order to address the feasibility of generating large pressure perturbations, and subsequently build
large mountains. This emphasises the need for an accurate description of the thermal structure,
as presented in Chapter 4.

Though, within the specific context of building thermal mountains, it is, as we shall see in
Section 6.2.1, more insightful to consider the perturbation in the thermal pressure, Δ𝑃th, rather
than 𝑃th itself. Indeed, thermal mountains themselves are of course sourced inherently by the
presence of some temperature anisotropy inside the star. In practice, the actual fractional pressure
perturbations of relevance to mountain building will be smaller.

In fact, the fractional change in the pressure caused by a fractional temperature perturbation
Δ𝑇/𝑇 will be
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Δ𝑃th
𝑃

=
𝑇

𝑃

𝜕𝑃th
𝜕𝑇

����
𝜌

(
Δ𝑇

𝑇

)
, (6.17)

where the derivative of the thermal pressure is

𝜕𝑃th
𝜕𝑇

����
𝜌

=
1
2
ℎ̄𝜔pi

𝜃

𝑇

[
𝜌(1 − 𝑋n)
𝑚b𝐴

] [
𝑑2 𝑓th(𝜃)
𝑑𝜃2

]
, (6.18)

with the second derivative of the reduced thermal free energy 𝑓 ′′th following from Eq. (6.13),
given by (cf. Eq. (16) of Baiko et al., 2001)

𝑑2 𝑓th

𝑑𝜃2 =

3∑︁
𝑛=1

𝛼2
𝑛𝑒
𝛼𝑛 𝜃

𝑒𝛼𝑛 𝜃−1 + 2𝐴(𝜃) (𝐵′(𝜃))2

𝐵3(𝜃)

− 2𝐴′(𝜃)𝐵′(𝜃) + 𝐴(𝜃)𝐵′′(𝜃)
𝐵2(𝜃)

+ 𝐴
′′(𝜃)
𝐵(𝜃) ,

(6.19)

where the prime in this instance denotes differentiation with respect to the quantum parameter 𝜃.

6.2 Elastic deformations of the accreted crust

In this section we derive the set of perturbation equations (following closely the prescription
originally outlined in UCB; inspired from earlier works by Alterman et al., 1959; Hansen and
van Horn, 1979; McDermott et al., 1988) which quantify the elastic response of the accreted
crust to lateral temperature gradients, and compute the quadrupole moment.

For reasons of simplicity, we wish to avoid solving the equations which determine the elastic
readjustment of the crust in full general relativity. Instead, we would like to remain in a Newtonian
setting so as to focus on implementing a realistic source term that has, until now, been absent
in the literature4 (recall Secs 1.3.3.2 and 3.2.2.1.1). Whilst in future we would seek to extend
this formalism into a fully general relativistic framework (see Sec. 7.3.3), we note the results of
Gittins and Andersson (2021); who found that the maximum mountain the crust could sustain
due to an unmodelled thermal pressure perturbation 𝛿𝑃th (i.e. an artificial ‘forcing term’; see
Eqs (57) - (59) in Gittins et al., 2021) changes by a factor ∼ 2 when generalising the scheme to
compute mountain sizes from a Newtonian framework into general relativity. Specifically, they
found that 𝜀Newt

max = 5.2× 10−7 → 𝜀GR
max ≈ 1× 10−8 for a typical NS with 𝑀 = 1.4𝑀⊙, 𝑅 = 10 km,

indicating that Newtonian theory overestimates (thought not grossly) the size of the (maximum)
deformation the crust can sustain.

4In this sense we also remain consistent in keeping with the Newtonian framework used to derive the thermal
perturbation equations in Chapter 5, as well as determine the thermal structure of the unperturbed background in
Chapter 4.
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The thermal mountains we consider here, on the other hand, are modelled; sourced from thermal
pressure perturbations in the crustal lattice (Sec. 6.1.1), generated as a result of anisotropic heat
conduction via both crustal and core magnetic fields. In order to model the core, we have made
use of the fully-relativistic TOV equations (Sec. 2.6.2.1) for the hydrostatic background such
that we may make use of realistic equations of state; which, in Newtonian theory (Sec. 2.6.1),
would have lead to grossly un-physical density profiles.

We shall consider deformations of the star to be static perturbations of an elastically un-strained
background star5 described by the Newtonian structure equations (2.41) - (2.43). In doing so,
we shall simply map our solution from the relativistic TOV equations to a Newtonian star by
reinterpreting the TOV radial coordinate, pressure and energy density as simply their Newtonian
counterparts. In this sense, the Newtonian mass density is just the relativistic energy density
divided by 𝑐2.

Such a choice has two fundamental consequences. On the one hand, we preserve the original
definition of the equation of state (specifically the pressure-density relation; Sec. 2.5), but on
the other inevitably produce a neutron star whose local acceleration due to gravity does not quite
satisfy Poisson’s equation (2.43) for gravity, and thus does not match the value that Newtonian
theory would prescribe.

In order to proceed we need confront the fact that there exists an inherent in-congruence between
how the gravitational acceleration 𝑔 (Where 𝑔 = ∇𝑖Φ; Eqs (2.41) - (2.43)) is defined in relativistic
and Newtonian gravity. Indeed, the term ‘gravitational acceleration’ in general relativity a
misnomer. While in a Newtonian sense gravitational acceleration is truly an acceleration of an
object in free fall due to some gravitational force; in a relativistic description, such a force is
fictitious, with objects in free fall traveling along geodesics in a curved spacetime (Sec. 3.1).

As such, we instead choose to define 𝑔 in the following way. In Newtonian gravity, the equation
of hydrostatic balance (2.46b) may be rearranged to give

𝑑Φ(𝑟)
𝑑𝑟

≡ 𝑔(𝑟) = 1
𝜌

𝑑𝑃(𝑟)
𝑑𝑟

. (6.20)

Rather than call 𝑔 the ‘gravitational acceleration’, defined by 𝑔(𝑟) = 𝐺𝑀/𝑟2 explicitly, we shall
instead define it in terms of Eq. (6.20), where the quantity 𝑃′ is given by the right-hand side of
the TOV equation (2.62), which constrains the hydrostatic structure of the NS as modelled by
general relativity. In practice, if one compares Eq. (6.20) with the right-hand side of Eq. (2.62),
this ‘pseudo-acceleration’ is equivalent to assuming that

𝑔(𝑟) = 𝐺𝑚(𝑟)
𝑟2

(
1 + 𝑃(𝑟)

𝜌(𝑟)𝑐2

) (
1 + 4𝜋𝑟3𝑃(𝑟)

𝑚(𝑟)𝑐2

) (
1 − 2𝐺𝑚(𝑟)

𝑟𝑐2

)−1
. (6.21)

5We shall also assume that the star is both spherically symmetric and non-rotating, and that the crust responds
purely elastically to the temperature perturbations induced by the magnetic field.
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Strictly speaking, this newly quantified 𝑔 is not a gravitational acceleration, it is merely a
relativistic analogue that we have created that will differ from the Newtonian 𝑔 by a factor related
to the compactness of the star6.

This result may then be used to compute the radial derivative of 𝑔 (see the next section; Eqs
(6.41b) and (6.42)) as

𝑑𝑔

𝑑𝑟
=
𝜌𝑃′′ + 𝑃′𝜌′

𝜌2 , (6.22)

where 𝑃′′ denotes the second radial derivative of the pressure 𝑃. We find that this procedure
leads to discrepancies in the value of 𝑔 obtained from Newtonian theory by ≈ 30%.

6.2.1 The elastic perturbation equations

In the following we use shall use Latin letters 𝑖, 𝑗 , 𝑘 , ... etc. to denote spatial indices, and use
primes to denote radial derivatives. We shall also refer to Eulerian and Lagrangian perturbations
of the crust using 𝛿 and Δ respectively. Since the unperturbed background is assumed to be
spherically symmetric (the hydrostatic structure is constructed from the TOV equations; Sec.
2.6.2.1), all perturbed scalar quantities, be they Eulerian or Lagrangian, may be decomposed
into the familiar spherical harmonics. We write these as

𝛿Λ =

∞∑︁
ℓ = 0

ℓ∑︁
𝑚= −ℓ

𝛿Λℓ𝑚(𝑟)𝑌ℓ𝑚(𝜃, 𝜙) , (6.23)

ΔΛ =

∞∑︁
ℓ = 0

ℓ∑︁
𝑚= −ℓ

ΔΛℓ𝑚(𝑟)𝑌ℓ𝑚(𝜃, 𝜙) , (6.24)

where Λ is an arbitrary scalar, and the two types of perturbation are related as (Shapiro and
Teukolsky, 1983)

ΔΛ = 𝛿Λ + 𝜉𝑖∇𝑖Λ , (6.25)

where 𝜉𝑖 is the Lagrangian displacement vector. In this case, 𝜉𝑖 represents the displacement of
a piece of the crust from its unperturbed state (see Eq. (6.29) below).

We begin with the elastic Euler equation, which in Newtonian gravity, reads (recall Eq. (2.42)
for a perfect fluid)

6Note, however, that in the limit 𝑐 → ∞ equation (6.21) reduces to just 𝑔(𝑟) = 𝐺𝑀𝑟/𝑟2, at which point one would
recover the Newtonian gravitational acceleration.
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0 = 𝜌∇ 𝑗Φ − ∇𝑖𝜏𝑖 𝑗 , (6.26)

where 𝜏𝑖 𝑗 is the stress-energy tensor of the solid crust and Φ is the gravitational potential. The
stress-energy tensor of the crust is described by

𝜏𝑖 𝑗 = −𝑃𝑔𝑖 𝑗 + 𝑡𝑖 𝑗 , (6.27)

where 𝑔𝑖 𝑗 is the flat 3-metric and 𝑡𝑖 𝑗 is the (trace-free) shear stress tensor of the solid crust,
defined by

𝑡𝑖 𝑗 = 𝜇

(
∇𝑖𝜉 𝑗 + ∇ 𝑗𝜉𝑖 −

2
3
𝑔𝑖 𝑗∇𝑘𝜉𝑘

)
, (6.28)

where 𝜇 is the shear modulus of the crust (Sec. 2.5.2.2).

Since the star is assumed to be non-rotating, we need only consider polar perturbations of the
crust. The appropriate static displacement vector in this case is of the form (Ushomirsky et al.,
2000)

𝜉𝑖 = 𝜉𝑟ℓ𝑚(𝑟) 𝑟
𝑖 𝑌ℓ𝑚 + 𝜉⊥ℓ𝑚(𝑟)𝛽

−1𝑟∇𝑖𝑌ℓ𝑚 , (6.29)

where 𝜉𝑟
ℓ𝑚

and 𝜉⊥
ℓ𝑚

are the radial and tangential components of the displacement respectively,
and 𝛽 =

√︁
ℓ(ℓ + 1).

Keeping to linear order, and treating the displacement vector 𝜉𝑖 as a first-order quantity allows
us to write down the equations which govern the perturbations of the crust due to some pressure
perturbation 𝛿𝑃 as

0 = 𝛿𝜌𝑔𝑟 𝑗 − ∇𝑖𝛿𝜏𝑖 𝑗 , (6.30)

where we have neglected perturbations in gravitational potential (the Cowling approximation) in
order to simplify the problem, ∇ 𝑗Φ = 𝑔 is the acceleration due to gravity, and 𝛿𝜌 is the Eulerian
density perturbation given by

𝛿𝜌 = −∇𝑖 (𝜌𝜉𝑖) = −
[
𝜉𝑟 𝜌

′ − 𝜌
(
𝜉′𝑟 +

2
𝑟
𝜉𝑟 −

𝛽

𝑟
𝜉⊥

)]
𝑌ℓ𝑚 , (6.31)

which follows from the perturbed form of the continuity equation (2.41).

The perturbed form of the stress-energy tensor Eq. (6.27) is given by7 (Ushomirsky et al., 2000)
7Note in Eq. (6.34) we have corrected a typo from UCB for the last term containing 𝜉𝑟 - cf. their Eq. (39b).
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𝛿𝜏𝑖 𝑗 = 𝑔𝑖 𝑗𝑌ℓ𝑚𝛿𝜏𝑟𝑟 + 𝑒𝑖 𝑗
[
2𝜇

(
1
𝑟
𝜉𝑟 − 𝜉′𝑟

)]
𝑌ℓ𝑚

+ 𝑓𝑖 𝑗𝛿𝜏𝑟⊥ +Λ𝑖 𝑗
2𝜇𝛽
𝑟
𝜉⊥ ,

(6.32)

where

𝛿𝜏𝑟𝑟 = −𝛿𝑃 + 𝜇
(
4
3
𝜉′𝑟 −

4
3𝑟
𝜉𝑟 +

2𝛽
3𝑟
𝜉⊥

)
, (6.33)

𝛿𝜏𝑟⊥ = 𝜇

(
𝜉′⊥ − 1

𝑟
𝜉⊥ + 𝛽

𝑟
𝜉𝑟

)
, (6.34)

𝑒𝑎𝑏 = 𝑔𝑖 𝑗 − 𝑟𝑖𝑟 𝑗 , (6.35)

𝑓𝑖 𝑗 = 𝛽
−1𝑟 (𝑟𝑖 ∇ 𝑗𝑌ℓ𝑚 + 𝑟 𝑗 ∇𝑖𝑌ℓ𝑚) , (6.36)

Λ𝑖 𝑗 = 𝛽
−2𝑟2 ∇𝑖∇ 𝑗𝑌ℓ𝑚 + 𝛽−1 𝑓𝑖 𝑗 . (6.37)

Breaking down the perturbed Euler equation (6.30) along 𝑟 𝑗 (i.e. in the radial direction) and
∇ 𝑗𝑌ℓ𝑚 (the transverse direction) yields the following expressions

𝛿𝜌(𝑟)𝑔 = 𝛿𝜏′𝑟𝑟 −
4𝜇
𝑟

(
1
𝑟
𝜉𝑟 − 𝜉′𝑟

)
− 𝛽

𝑟
𝛿𝜏𝑟⊥ + 2𝜇𝛽

𝑟2 𝜉⊥ , (6.38)

and

0 = 𝛿𝜏𝑟𝑟 + 2𝜇
(
1
𝑟
𝜉𝑟 − 𝜉′𝑟

)
+ 1
𝛽

(
3𝛿𝜏𝑟⊥ + 𝑟𝛿𝜏′𝑟⊥

)
+ 2𝜇𝛽

𝑟

(
1
𝛽2 − 1

)
𝜉⊥ ,

(6.39)

from which a set of coupled second-order ODEs for the components of the displacement vector
𝜉′′𝑟 and 𝜉′′⊥ may then be obtained using Eqs (6.33) and (6.34) respectively, together with the
perturbed continuity equation (6.31).
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These ODEs however may be put into a more suitable form for numerical integration (as well as
making the application of boundary conditions more straightforward) by making the following
substitutions (McDermott et al., 1988; Ushomirsky et al., 2000)

𝑧1 =
1
𝑟
𝜉𝑟 , 𝑧2 =

Δ𝜏𝑟𝑟

𝑃
=
𝛿𝜏𝑟𝑟

𝑃
− 𝑧1

𝑑 ln 𝑃
𝑑 ln 𝑟

,

𝑧3 =
1
𝛽𝑟
𝜉⊥ , 𝑧4 =

Δ𝜏𝑟⊥
𝛽𝑃

=
𝛿𝜏𝑟⊥
𝛽𝑃

.
(6.40)

This allows us to recast the second-order ODEs in 𝜉𝑟 and 𝜉⊥ in terms of a set of four coupled
first-order ODEs for the variables 𝑧1−4, given as (cf. Eqs (43a) - (43d) of UCB)

𝑑𝑧1
𝑑 ln 𝑟

= −
(
1 + 2𝛼2

𝛼3

)
𝑧1 +

1
𝛼3

(
𝑧2 + 𝚫𝑺

)
+ ℓ(ℓ + 1)𝛼2

𝛼3
𝑧3 , (6.41a)

𝑑𝑧2
𝑑 ln 𝑟

=

(
𝑈𝑉 − 4𝑉 + 12Γ𝛼1

𝛼3

)
𝑧1

+
(
𝑉 − 4𝛼1

𝛼3

)
𝑧2 + ℓ(ℓ + 1)𝑧4 −

4𝛼1
𝛼3

𝚫𝑺

+
(
ℓ(ℓ + 1)𝑉 − 6ℓ(ℓ + 1)Γ𝛼1

𝛼3

)
𝑧3 (6.41b)

𝑑𝑧3
𝑑 ln 𝑟

=
1
𝛼1
𝑧4 − 𝑧1 , (6.41c)

𝑑𝑧4
𝑑 ln 𝑟

=

(
𝑉 − 6Γ𝛼1

𝛼3

)
𝑧1 −

𝛼2
𝛼3
𝑧2 + (𝑉 − 3)𝑧4 +

2𝛼1
𝛼3

𝚫𝑺

+ 2
𝛼3

{
[2ℓ(ℓ + 1) − 1]𝛼1𝛼2 + 2[ℓ(ℓ + 1) − 1]𝛼2

1
}
𝑧3 , (6.41d)

where the quantities𝑈 and 𝑉 are defined as

𝑈 ≡ 𝑑 ln 𝑔
𝑑 ln 𝑟

, 𝑉 ≡ 𝜌𝑔𝑟

𝑝
= −𝑑 ln 𝑃

𝑑 ln 𝑟
, (6.42)

along with the coefficients 𝛼1−3

𝛼1 ≡ 𝜇

𝑃
, 𝛼2 ≡ Γ − 2𝛼1

3
, 𝛼3 ≡ Γ + 4𝛼1

3
, (6.43)

with Γ being the adiabatic index (Section 2.5.2.1).
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The ODEs (6.41a) - (6.41d) describe the readjustment of an (accreting) neutron star crust in
response to an in-homogeneous source term (highlighted in bold)

𝚫𝑺 =
Δ𝑃

𝑃
=
𝜕 ln 𝑃
𝜕 ln𝑇

����
𝜌

Δ𝑇

𝑇
, (6.44)

which arises from the temperature dependence of the equation of state in Eq. (6.1). In our
specific case, this source term is derived from the thermal pressure perturbations generated in
the crystal lattice of the crust (i.e. Δ𝑃 ≡ Δ𝑃th; Sec. 6.1.1) from temperature perturbations
produced as a result of anisotropic heat conduction due to quadrupolar magnetic fields (Sec.
5.1).

It should be noted that, whilst very similar to the equations of UCB, our perturbation equations
for a source term derived from the existence of a temperature perturbation are not identical.
Specifically, the elastic perturbation equations derived by UCB (cf. their Eqs (43a) - (43d))
include an additional term, that they refer to as 𝛼4, given by

𝛼4 =
𝜕 ln 𝑃
𝜕 ln𝑇

����
𝜌

𝑑 ln𝑇
𝑑 ln 𝑟

, (6.45)

which does not appear in our system of equations (6.41a) - (6.41d). The reason for this dis-
crepancy is as follows. The temperature perturbations computed in Chapter 5 (denoted as 𝛿𝑇)
were computed for a fixed crust, i.e. not allowing for elastic readjustment. Now, however, we
are truly seeking to quantify the response of fluid elements in the crust to these temperature
perturbations; solving for the Lagrangian displacement field 𝜉𝑖 that brings the crust back into
equilibrium. We therefore identify these temperature perturbations with the Lagrangian tem-
perature perturbations of the elastically deformed star. We do this as we wish our final solution
to be self-consistent with respect to both thermal and elastic perturbations, with a temperature
profile given by the calculations of Chapter 5 after the elastic readjustment of the star. In fact,
this is exactly the procedure followed by UCB when considering perturbations due to a lateral
composition gradient Δ𝜇e/𝜇e. However, UCB chose to identify their fixed-crust temperature
perturbations with the Eulerian perturbations of the elastically deformed star. Why they made
such a choice is unclear to us. We do not think this is the correct thing to do, and we are unsure
as to why they treated compositional and temperature perturbations differently.

Nevertheless, in order to see where the additional term Eq. (6.45) originates, we refer back to
the Lagrangian pressure perturbation equation (6.1), for the two cases whereby the temperature
perturbations of the fixed crust are identified with the Lagrangian, or Eulerian, temperature
perturbations of the elastically deformed crust. These are written as

Δ𝑃 =
𝜕𝑃

𝜕𝜌

����
𝑇

Δ𝜌 + 𝜕𝑃

𝜕𝑇

����
𝜌

Δ𝑇 , (6.46)
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and

Δ𝑃 =
𝜕𝑃

𝜕𝜌

����
𝑇

Δ𝜌 + 𝜕𝑃

𝜕𝑇

����
𝜌

[
𝛿𝑇 + 𝜉𝑟ℓ𝑚(𝑟)

𝑑𝑇

𝑑𝑟

]
, (6.47)

respectively, where we have made use of the definition in Eq. (6.25) to writeΔ𝑇 ≡ 𝛿𝑇 + 𝜉𝑟
ℓ𝑚

(𝑟)𝑇 ′.
These two different identifications of the temperature perturbation may be unified into a single
expression for Δ𝑃 by making a change in notation as

Δ𝑃 =
𝜕𝑃

𝜕𝜌

����
𝑇

Δ𝜌 + 𝑃𝚫𝑺 + 𝑃𝑧1𝛼4 , (6.48)

where

𝚫𝑺 =
𝜕 ln 𝑃
𝜕 ln𝑇

����
𝜌

Δ𝑇

𝑇
, 𝛼4 = 0 (6.49)

for a Lagrangian temperature perturbation of the elastically deformed star, and

𝚫𝑺 =
𝜕 ln 𝑃
𝜕 ln𝑇

����
𝜌

𝛿𝑇

𝑇
, 𝛼4 =

𝜕 ln 𝑃
𝜕 ln𝑇

����
𝜌

𝑑 ln𝑇
𝑑 ln 𝑟

, (6.50)

for an Eulerian temperature perturbation. In this sense, our perturbation equations are the same
as UCB’s when 𝛼4 = 0.

6.2.1.1 Boundary conditions and method of solution

The system of coupled equations (6.41a) - (6.41d) presents another boundary value problem
which requires a set of four boundary conditions. As we saw in Section 4.8, generally speaking
neutron stars are composed of a solid crust bounded by a fluid core and fluid ocean. The
computational domain of the elastic calculation is confined to the solid region of the crust, since
fluids are incapable of supporting shear stresses (i.e. 𝜇 = 0 in the fluid), and therefore cannot
contribute to the formation of the mountain.

More precisely, the inner and outer boundaries are determined by the location of the crust-
core transition and the crust-ocean transition respectively. Both the crust-core and crust-ocean
transitions are determined by the EoS. The location of the crust-core transition for each of the
BSk19, BSk20, and BSk21 equations of state are given in Table 2.6.

Determining the location of the crust-ocean transition, however, is a little more complicated.
As discussed in Section 4.8, accretion of matter onto the neutron star can cause the outer layers
of the crust to melt. Therefore, depending on the assumed rate of accretion of matter onto the
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neutron star, one should expect that the crust will solidify at different depths (recall Figs 4.19,
4.20, and 4.21 where the solid regions of the star are denoted by dashed lines).

As a reminder, we assume the solid crust to begin at the crust-ocean interface when the ratio of
Coulomb energy to thermal energy (Eq. (2.9)),

ΓCoul =
𝑍2𝑒2

𝑘𝐵𝑇

(
4𝜋𝑛𝑏

3

)1/3
, (6.51)

exceeds the canonical value 175 for a one component plasma (Haensel et al., 2007).

The boundary conditions which we shall adopt at the two fluid-solid interfaces are taken from
UCB. Consider the perturbed Euler equation (6.30), and recall the definitions of the substitution
values 𝑧1 − 𝑧4 given in Eq. (6.40). At an interface, the radial displacement 𝜉𝑟 (𝑧1), as well as
both the radial and tangential components of the perturbed traction Δ𝜏𝑟𝑟 (𝑧2) and Δ𝜏𝑟⊥ (𝑧4) must
be continuous.

At the fluid side of the interface, we require that the Eulerian pressure perturbation 𝛿𝑃 ≡ 0.
This is a result that we must impose, since we seek to only compute static (𝑙 ≠ 0) perturbations
of the star. Non-zero pressure perturbations in any fluid regions, would, in the absence of any
perturbations in the gravitational potential (recall we make the Cowling approximation), or shear
stresses (𝜇 = 0 in the fluid) to counterbalance 𝛿𝑃, lead to displacements of the fluid and no
longer give a static solution.

At each solid-liquid boundary, we must therefore have Δ𝜏𝑟𝑟 (solid) = Δ𝜏𝑟𝑟 (fluid). Using the
definitions Eq. (6.33) and Eq. (6.25), and the fact that 𝛿𝑃 ≡ 0, we can write

Δ𝜏𝑟𝑟 (solid) = −Δ𝑃(liquid)

=⇒ 𝛿𝜏𝑟𝑟 (solid) − 𝑑𝑃

𝑑𝑟
𝜉𝑟𝐸 = −𝛿𝑃 − 𝑑𝑃

𝑑𝑟
𝜉𝑟𝐹

=⇒ 𝛿𝜏𝑟𝑟 ≡ 0 .

(6.52)

where the subscripts E and F denote the radial displacement on the elastic and fluid sides of
the interface respectively. The above result tells us that in order to obtain a static solution, in
the Cowling approximation the radial component of the perturbed traction vector 𝛿𝜏𝑟𝑟 must be
zero at the top and bottom of the crust. This result, combined with the fact that the tangential
component of the perturbed traction vector 𝛿𝜏𝑟⊥ must vanish in the fluid (see Eq. (6.34) with
𝜇 = 0), leads to the set of four boundary conditions
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𝑧crust-ocean
2 = −𝑧crust-ocean

1
𝑑 ln 𝑃
𝑑 ln 𝑟

, 𝑧crust-ocean
4 = 0 ,

𝑧crust-core
2 = −𝑧crust-core

1
𝑑 ln 𝑃
𝑑 ln 𝑟

, 𝑧crust-core
4 = 0 .

(6.53)

We will again use solve BVP for the integration, with initial guesses for 𝑧1−4 constructed by
fixing them to an order of magnitude estimate of the results ofUCB (cf. their Figs. 10 - 12).

6.2.1.2 Computing the mass quadrupole moment

From the solution of Eqs. (6.41a) and (6.41d), we then require a method to obtain the corre-
sponding density perturbation 𝛿𝜌 associated with the pressure perturbations in the crustal lattice
from the local temperature variations. This may be done in two separate ways, either using the
perturbed continuity equation (6.31), or the radial projection of the perturbed Euler equation
(6.38), and writing them down in terms of the substitution variables 𝑧1−4. These methods yield
the respective result

𝛿𝜌ℓ𝑚(𝑟) = −
[
𝑧1𝑟

𝑑𝜌

𝑑𝑟
− 𝜌

(
𝑟
𝑑𝑧1
𝑑𝑟

+ 3𝑧1 − 𝛽2𝑧3

)]
, (6.54)

or

𝛿𝜌ℓ𝑚(𝑟) =
1
𝑔

[
𝑑 (𝑃𝑧2)
𝑑𝑟

+ 𝑑 (𝑃𝑉𝑧1)
𝑑𝑟

− 4𝜇
𝑟

(
𝑧1 +

𝑑 (𝑧1𝑟)
𝑑𝑟

)
− 𝛽2

𝑟

(
𝑃𝑧4 + 2𝜇𝑧3

)]
.

(6.55)

The mass quadrupole 𝑄22 may then be obtained by integrating either of Eqs. (6.54) - (6.55), as
per Eq. (3.34). The resulting expressions are (Ushomirsky et al., 2000)

𝑄22 = 2
∫ 𝑟crust-ocean

𝑟crust-core

𝜌[𝑧1 + 3𝑧3]𝑟4𝑑𝑟 − (𝜌𝑧1𝑟
5) |𝑟crust-ocean
𝑟crust-core , (6.56)

and

𝑄22 = −
∫ 𝑟crust-ocean

𝑟crust-core

𝜌

𝑉̃

{
6𝑧4 − 2

𝜇

𝑝

[
2
𝑑𝑧1
𝑑 ln 𝑟

+ 6𝑧3

]
+ (6 − 𝑈̃) (𝑧2 − 𝑉̃ 𝑧1)

}
𝑟4𝑑𝑟 ,

(6.57)
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where 𝑈̃ = (𝑑 ln 𝑔/𝑑 ln 𝑟) + 2, from which the final ellipticity 𝜀 may then be computed as (Eq.
(3.37))

𝜀 =

√︂
8𝜋
15
𝑄22
𝐼𝑧𝑧

, (6.58)

with 𝐼𝑧𝑧 ≈ 1045 g cm−3. To test the accuracy of our solver, we use both Eqs (6.56) and (6.57) in
order to calculate the mass quadrupole, which we obtain via a simple Simpson’s method using
the values of 𝑧1 − 𝑧4 computed via solve BVP. Whilst Eqs (6.56) - (6.57) are mathematically
equivalent, in general we find agreement between the two methods to be in the region ≲ 1% for
all of our NS models.

To provide further confidence in our results, it is possible to recast Eq. (6.57) as an additional
ODE by taking derivatives of both sides, such that

𝑑𝑄22(𝑟)
𝑑 ln 𝑟

= − 𝜌
𝑉̃

{
6𝑧4 − 2

𝜇

𝑝

[
2
𝑑𝑧1
𝑑 ln 𝑟

+ 6𝑧3

]
+ (6 − 𝑈̃) (𝑧2 − 𝑉̃ 𝑧1)

}
𝑟5 ,

(6.59)

where 𝑄22(𝑟) is the cumulative mass quadrupole, with the total mass quadrupole (equivalent
to both Eqs (6.56) and (6.57)) being 𝑄22 = 𝑄22(𝑟 = 𝑟crust-ocean), the value of 𝑄22(𝑟) at the
crust-ocean interface.

This additional ODE may be solved simultaneously in conjunction with the perturbation equations
(6.41a) - (6.41d) once an additional boundary condition has been specified (since the system
becomes a total of five equations rather than just four). A natural choice is the condition that
𝑄22(𝑟 = 𝑟crust-core) = 0, since at the transition from the base of the solid crust to the liquid core
the shear stresses must vanish.

The benefit of this approach is that it eliminates any potential truncation errors when numerically
integrating Eqs (6.56) - (6.57), which is a possible cause for the discrepancies between the two
results. Instead, errors are controlled internally by the solve BVP method itself on the same
mesh used to compute 𝑧1 − 𝑧4, where the desired tolerance of the solution is controlled manually.

Encouragingly, we find agreement between the solution to Eq. (6.59) obtained from solve BVP
and Eq. (6.57) obtained via the Simpson rule to be ≲ 0.1%. This suggests that a truncation
error is not the cause of the discrepancy between Eqs. (6.56) - (6.57). Instead, we attribute the
difference to round-off errors in computing Eq. (6.56), which essentially involves subtracting
two large numbers (in excess of 1030) to get a single, smaller number. This was a similar problem
encountered by UCB themselves, where it was noted that ‘round-off errors [on Eq. (6.56)] can
cause trouble if the relaxation mesh is not fine enough and uniform’.
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Figure 6.3: Ellipticity of a number of magnetised neutron stars assuming the BSk19 (left),
BSk20 (centre) and BSk21 (right) equations of state (with properties listed in Table 4.3) as a
function of the mass accretion rate ¤𝑀 . Different amounts of assumed shallow crustal heating,
ranging from 1.5 - 10 MeV, are indicated in the legend. Solid lines (filled circles) denote
NS models that assume a 𝐵 = 108 G internal core toroidal magnetic field (Eq. (5.41) with
𝑅B, min = 𝑅IB), whilst dashed lines (crosses) denote models that assume a 𝐵 = 2×1012 G internal
crustal toroidal magnetic field (Eq. (5.41) with 𝑅B, min = 𝑅crust−core). Dashed-dotted lines show
the ellipticity required for gravitational-wave torques to determine the spin-equilibrium (as
calculated via Eq. (3.38)) of accreting neutron stars with spin frequencies 300 Hz (filled stars)

and 700Hz (filled diamonds), as a function of ¤𝑀 .

6.3 Thermal mountains on accreting neutron stars

With all the necessary pieces assembled, we now outline solutions to the crustal perturbation
equations (6.41a) - (6.41d). In Section 5.5 we identified that the assumed level of accretion
and amount of shallow heating were crucial to producing larger temperature perturbations for
a given magnetic field configuration (recall Figs 5.3, 5.4, and 5.8). In Fig. 6.3, we therefore
present results for the ellipticity 𝜀, computed from Eqs (6.56) - (6.57), via Eq. (3.37), for each
of the low-mass neutron star models listed in Table 4.3 (i.e. the same as those considered in
Fig. 4.19 for the background thermal structure) as a function of the mass accretion rate ¤𝑀 , for
different assumed values of the shallow crustal heating parameter 𝑄S. Solid lines correspond to
models assuming a 𝐵 = 2 × 1012 G crustal magnetic field, whilst dashed lines indicate models
that assume a 𝐵 = 108 core magnetic field, as per Eq. (5.41).

The ellipticities generated via the thermal lattice pressure perturbations (sourced via anisotropic
heat conduction) are small - at least relative to theoretical ‘maximum’ elastic mountain8 𝜀max ∼
10−7 - and particularly negligible (𝜀 ≲ 10−12) at low accretion rates ( ¤𝑀 ≲ 10−10 𝑀⊙ yr−1) for
both the core and crustal magnetic fields. This is for two reasons, which can be understood in
reference to the source term Eq. (6.44), and the fact that the majority of the mass quadrupole
is likely built in the deep crust, since this is where the majority of the crust’s mass is contained
(and hence where the largest density perturbations should be generated).

8Though, one should again bear in mind that the maximum mountain estimates assume that the ‘forcing term’
that gives the star its non-spherical shape can be arbitrarily large, unlike the source terms we consider here which are
fixed by a number of different physical constraints (e.g. temperature, magnetic field strengths, shallow crustal heating,
etc.).
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First of all, the ratio 𝑃th/𝑃 in the deep crust is ≲ 10−5 for the temperatures 𝑇 < 109 K relevant
to our accreting stars (Figs 6.2 and 4.19). This suggests that the lattice pressure in this region
is inconsequential to the total pressure, which is instead overwhelmingly dominated by the
contribution from unbound neutrons. Secondly, in the case of the core magnetic field, the
temperature asymmetry in the deep crust is only 𝛿𝑇/𝑇 ≲ 10−2 % (Fig. 5.3; and recall that we are
restricted to 𝐵core ≲ 108 G in order for the thermal perturbation equations (5.29) - (5.38) to be
valid; Sec. 5.3.1). A similar situation persists in the case of the crustal magnetic field, although
the temperature asymmetry near the neutron drip point (∼ 1011 g cm−3) is ∼ 1%, in the deep
crust it is only ≲ 0.1% (Fig. 5.4).

The general behavior is for 𝜀 to increase with the rate of mass accretion, as well as being
enhanced for greater amounts of shallow crustal heating at a given accretion rate. This is
simply because the amount of heat deposited in the crust is measured per accreted nucleon,
and therefore the crust is naturally hotter when the accretion rate is larger. We find the largest
ellipticity to be 𝜀max = 2.32× 10−11, obtained with the BSk21 equation of state with an accretion
rate ¤𝑀 = 4.4 × 10−9 𝑀⊙ yr−1 and shallow heating term 𝑄S = 10 MeV.

While the general trend is for the ellipticity to increase with the accretion rate, there is in fact a
cut off point at ∼ 5× 10−9 𝑀⊙ yr−1, where 𝜀 for different values of the shallow heating parameter
converge for a given magnetic field configuration. The reason for this behavior is that at such
high accretion rates the amount of heat being deposited into the crust is in fact large enough
to melt the crust at densities 𝜌 ≲ 1012 g cm−3, and so only the inner crust contributes to the
formation of the mass quadrupole. The temperature in the deep crust (∼ 1014 g cm3) is relatively
insensitive to the amount of shallow crustal heating (see the left-hand panel of Fig. 4.21) since
the additional heat is only deposited at densities 𝜌 < 1010 g cm−3 (Sec. 4.3.2). Since the lattice
pressure is very much dependent on the temperature (Fig. 6.2), the ratio 𝑃th/𝑃 in the deep
crust is therefore effectively independent of 𝑄S at high accretion rates. For similar reasons, the
temperature perturbations in the deep crust are also largely independent of 𝑄S (at least at high
accretion rates). This is especially true of the perturbations sourced by the crust-only magnetic
field, since the inner boundary condition in the perturbed thermal structure model (Sec. 5.4.1)
requires that 𝛿𝑇 → 0 at the crust-core transition (see Fig. 5.4), irrespective of 𝑄S (and in fact ¤𝑀
as well).

6.3.1 The torque balance limit

In order to gauge the significance of these results, we also plot in each panel of Fig. 6.3 the value
of the ellipticity required to reach the gravitational-wave torque-balance limit Eq. (3.38) (recall
the discussion surrounding the torque-balance limit in Sec. 3.2.1) as a function of the accretion
rate, assuming rotation at 300 Hz (filled stars) and 700 Hz (filled diamonds). The ellipticity
required to dictate the spin-equilibrium from GW emission is in the region 𝜀 ∼ 10−9 − 10−7, and
therefore many orders of magnitude larger than the expected ellipticity generated by the magnetic
field and thermal lattice pressure.
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Despite the ellipticity (mostly) increasing in our model at larger rates of mass accretion (since
the star is hotter), the ratio 𝜀/𝜀 does not change much as ¤𝑀 increases. This is because accretion
torques on the NS naturally increase with ¤𝑀 (𝑁GW ≈ ¤𝑀

√
𝐺𝑀𝑅; Eq. (3.23)), necessitating

larger GW torques (and therefore a larger mountain) to maintain torque balance (hence 𝜀 ∝ ¤𝑀
in Eq. (3.38)).

The result Eq. (3.38) however assumes that 100% of the spin-down energy from the NS is
radiated away as GWs. Recall that the true picture, however, is complicated by the fact that
exactly how matter is transported from an accretion disk to the surface will be determined by
the external dipolar magnetic field. The possibility of accretion leading to spin-down torques
in the so-called ‘propeller regime’ (Sec. 3.2.2), can cause the accretion flow to be centrifugally
inhibited, resulting in accreted matter being expelled from the disk rather than being brought
down to the NS surface.

The ellipticity for torque balance 𝜀 would therefore necessarily be larger or smaller than Eq.
(3.38) depending on whether the external magnetic field is providing spin-up or spin-down
torques. Recall also from Section 3.2.2 that studies such as Andersson et al. (2005) indicate
the magnetic-spin equilibrium model alone cannot uniquely describe the observed spin-rates of
strongly accreting NSs. It is therefore possible that the mountains generated via the internal
magnetic field and the lattice pressure are still playing some role in the overall setting of the
spin-equilibrium of accreting neutron stars, but are not the ‘dominant’ source of the spin-down
torques.

Indeed, as a result of increasing sensitivity of GW detectors (as well as improved search algo-
rithms), continuous GW searches are now in fact probing the torque balance limit of spinning
neutron stars. The most recent example of this was the model-based search for continuous
GWs from the LMXB Scorpius X-1 performed by Abbott et al. (2022b). Whilst no concrete
detection was made, upper limits on the gravitational-wave strain were set as a function of the
GW frequency 𝑓GW = 2𝜈𝑠 (since the spin-frequency of Scorpius X-1 is currently unknown).
Assuming optimal orientation (i.e. where the spin of the NS is aligned with the orbital angular
momentum), the most stringent limit on the gravitational-wave amplitude was set in the region
𝑓GW = 100 − 200 Hz (see their Fig. 6), with ℎ0 ∼ 4 × 10−26 (corresponding to an ellipticity
𝜀 ∼ 7 × 10−6), which is below the specific torque-balance predictions for Scorpius X-1 (based
on measurements of its X-ray flux) from 40 to 200 Hz.

In addition, whilst it is not an accreting system, another recent study by Abbott et al. (2021c)
has as well beaten the GW spin-down limit for the young X-ray pulsar PSR J0537-6910, finding
that gravitational-waves from a mountain on the star can only account for less than 14% of the
total spin-down energy budget. The spin-down limit for both the Crab and Vela pulsars have also
been surpassed, indicating that mountains can only be responsible for ≲ 1% and ≲ 10% of their
respective total energy budgets (Aasi et al., 2014).
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6.3.2 Thermal lattice pressure vs. capture layer shifts

To further put our results into perspective, it is helpful to compare the relative sizes of the mass
quadrupole generated via the lattice pressure to those generated from the direct shift of capture
layers as considered in UCB (and Bildsten, 1998; Sec. 3.2.2.1). The ellipticity associated with
the mass quadrupole generated in a single capture layer is, as per UCB,

𝜀fid = 1.6 × 10−10
(

𝑅

10 km

)4 (
𝛿𝑇/𝑇
1%

) (
𝐸cap

30 MeV

)3
, (6.60)

where 𝐸cap is the threshold energy, equivalent to the value of the electron chemical potential 𝜇𝑒
at the nuclear transition (𝐴1, 𝑍1) → (𝐴2, 𝑍2).

The total mass quadrupole of the neutron star is a linear sum of the individual quadrupole
moments generated in each capture layer. UCB assumed, in part, the composition of an accreted
crust predicted by the HZ90 model. By summing over the total number of capture layers (19)
that are listed in Table 2 of Haensel and Zdunik (1990b), an upper limit on the total ellipticity
from capture layer shifts can be estimated as

𝜀HZ90
tot ∼ 1.6 × 10−10

19∑︁
𝑖

[
𝐸 𝑖cap

30 MeV

]3
≈ 5.2 × 10−9 . (6.61)

Depending on the rate of mass accretion and the spin frequency of the NS, the above result can
be anywhere from 1 − 4 orders of magnitude below the torque balance limit Eq. (3.38).

However, the above estimate Eq. (6.61) may become even smaller if one considers more realistic
estimates of the temperature asymmetry 𝛿𝑇/𝑇 present within accreting neutron stars. UCB did
not model the formation of such asymmetries, instead assuming 𝛿𝑇/𝑇 ∼ 1% a priori in Eq.
(6.60). Modelling of temperature asymmetries using magnetic fields (Sec. 5.5) suggests that
such asymmetries may only be achieved with internal magnetic fields in excess of 1012 G, a few
orders of magnitude larger than observational inferences of the external field (∼ 109 G).

In order to generate mass quadrupole moments which do probe the torque balance limit, UCB
were forced to extrapolate to larger values of 𝐸cap, and add additional ‘artificial’ capture layers
with 𝐴 and 𝑍 (88, 22) → (82, 20) near the bottom of the crust. They found that captures layers
with 𝐸cap ≳ 90 MeV could (even individually) in fact generate mass quadrupoles in excess of
1038 g cm2 (𝜀 ∼ 10−7).

Modern descriptions of the accreted crust, however, do not provide substantiation for the existence
of such capture layers. The F+18 model for example - an improvement over the original HZ90
model (Sec. 2.4.2) - predicts the maximum threshold energy to be just 𝐸F+18

max = 69.10 MeV.
Moreover, recall that the GC20 model (Sec. 2.5.2.1) suggests that actually the EoS of the accreted
crust at high density is much closer to that of the non-accreted crust. Their model predicts that
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unbound neutrons moving freely throughout the inner crust also leads to a composition that is
largely similar to that of the ground-state inner crust (see their Fig. 5). Crucially, their model
suggests that explicit capture layers only extend to densities ≲ 4× 1011 g cm−3, the approximate
location of the traditional neutron drip point (see Tables 1 and 2 in Potekhin et al., 2023), and
that 𝐸GC20

max ≈ 25.5 MeV.

If, for the sake of simplicity, one therefore restricts the crustal composition of the HZ90 model
to include only capture layers at densities 𝜌 < 4 × 1011 g cm−3, then the estimate Eq. (6.61)
reduces to just

𝜀HZ90
tot ≲ 1.6 × 10−10

4∑︁
𝑖

[
𝐸 𝑖cap

30 MeV

]3
≈ 1.1 × 10−10 , (6.62)

and is therefore well below even the most conservative estimate of the torque-balance limit. The
‘less than’ symbol in Eq. (6.62) also makes explicit the assumption of 𝛿𝑇/𝑇 ∼ 1%, and therefore
that the ‘true’ ellipticity could be many orders of magnitude smaller still.

These differing possibilities are summarised in Table 6.2. Estimates of the neutron star ellipticity
via means of physical capture layer shifts (through the estimate Eq. (6.60)) are given, for the
cases whereby the capture layers are confined to the outer crust, or extend into the inner crust,
following the compositional information found in Haensel and Zdunik (1990a), Fantina et al.
(2018), and Potekhin et al. (2023) respectively. The corresponding ellipticity generated via the
thermal lattice pressure as presented in this thesis for the F+18 models (i.e. BSk19, BSk20,
and BSk21) are also given. For the purposes of a fair comparison, we have assumed a fixed
temperature perturbation 𝛿𝑇/𝑇 = 1% (rather than sourcing the perturbation via the magnetic
field), a time-averaged accretion rate of 10−8𝑀⊙ yr−1, and shallow heating term 𝑄S = 0 MeV, in
order to re-create the original choices made in UCB.

Clearly, the ellipticity is largest when capture layers extend into the deep crust, reaffirming
the conclusions of UCB that it is the high-density region of the crust where most of the mass
quadrupole is generated. It may be seen that there is a reduction in the ellipticity by roughly two
orders of magnitude when the capture layers are confined to just the outer crust in each model.

It is also likely that estimates of 𝜀 in the outer crust due to capture layer shifts in Tab 6.2 are in fact
overestimated by Eq. (6.60), even at a fixed 𝛿𝑇 . As noted in UCB, there can be a change of sign
in 𝑄22 when going from shallow to deep capture layers (see their Fig. 14), in which case some
capture layers in the outer crust may even cancel each other out, and thus potentially not produce
any contribution to the star’s total quadrupole moment at all9. It is therefore possible that the
quadrupole moment generated via perturbations in the crystal lattice pressure is comparable in
magnitude to that of the displacement of shallow capture layers. Though, in order to confirm
this one would, ideally, compute the mass quadrupole from both the lattice pressure and the

9This is less likely to be a problem in the deep crust since contributions from individual capture layers there, if
they exist, are much larger than those in the outer crust, and thus dominate.



188 6. Thermo-elastic Mountains on Accreting Neutron Stars

Table 6.2: Comparison of thermal mountain sizes (in terms of the ellipticity 𝜀; Eq. (3.37))
generated via physical capture layer shifts (as derived by Ushomirsky et al., 2000) and thermal
lattice pressures (Sec. 6.1.1) for three different equation of state models: GC+20 (Gusakov and
Chugunov, 2020, 2021), HZ+90 (Haensel and Zdunik, 1990a,b), and F+18 (Fantina et al., 2018,
2022). The ellipticity from capture layer shifts is computed via Eq. (6.60) in both the full crust,
as well as just the outer crust for HZ90 and F+18, in order to compare with the GC20 neutron
Hydrostatic and Diffusion model which predicts no capture layers in the inner crust (Sections
2.5.2.1 and 6.3.2). All calculations assume a fixed temperature asymmetry 𝛿𝑇/𝑇 = 1% and

mass accretion rate ¤𝑀 = 10−8 𝑀⊙ yr−1.

Ellipticity from Capture Layer Shifts
Eq. (6.60)

Ellipticity from Thermal Lattice Pressure
Fig. 6.3

EoS Full Crust Outer Crust Full Crust

GC20 - 2.6 × 10−10 -
HZ90 5.2 × 10−9 1.1 × 10−10 -

BSk21 (F+18) 3.9 × 10−9 9.2 × 10−11 2.8 × 10−11

BSk20 (F+18) 3.1 × 10−9 9.6 × 10−11 1.5 × 10−11

BSk19 (F+18) 4.1 × 10−9 9.2 × 10−11 8.7 × 10−12

displacement of capture layers simultaneously (i.e. within the same physical framework), rather
than making comparisons with the estimate Eq. (6.60).

6.3.3 Thermal mountains vs magnetic mountains

Lastly, we can make one final comparison of our results of the ellipticities produced via the
magnetic field for thermal mountains, to those generated by a ‘conventional’ magnetic mountain
where Lorentz forces directly produce the distortion (Sec. 1.3.3.1). In particular, for a NS with
a superconducting core, OJ20 estimated (cf. their Eq. (52)), from earlier results obtained by
Cutler (2002) (their Eq. (2.6)), that the ellipticity of a magnetic mountain is

𝜀 ∼ 𝐵𝐻𝑐1𝑅
4

𝐺𝑀2 ≈ 2 × 10−13 𝐵8 , (6.63)

where 𝐻𝑐1 is the known as the ‘first critical field’ (∼ 1015 G).

Since our results depend on additional parameters other than just the magnetic field strength
however (i.e the accretion rate, shallow heating, etc.), making such a meaningful comparison
is not straightforward. One particular scenario in which a material comparison can be made,
however, is if we assume that the accretion rate is quite high, and that there exists a crustal
magnetic field 𝐵crust = 1012 G. In this case, we can compare the magnetic mountain Eq. (6.63)
with the thermal mountains in Table 6.2, sourced by both the thermal lattice pressure, as well
as the estimates of 𝜀 from physical capture layer shifts (through Eq. (6.60)), since 𝛿𝑇/𝑇 ∼ 1%
when ¤𝑀 ∼ ¤𝑀Edd and 𝐵crust = 1012 G (Fig. 5.12).
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When 𝐵crust = 1012 G, we have for the magnetic mountain 𝜀mag = 2 × 10−9 as per Eq. (6.63),
and, averaging across each EoS model in Table 6.2, we have for each individual case:

– 𝜀cap ≈ 4 × 10−9 for the physical shifts of capture layers in the inner and outer crust (left
column),

– 𝜀cap ≈ 1 × 10−10 for the physical shifts of capture layers in just the outer crust (centre
column),

– 𝜀lat ≈ 2× 10−11 for the thermal lattice pressure in the inner and outer crust (right column).

This suggests, assuming temperature asymmetry at the percent level, that the magnetic mountains
are comparable in size to thermal mountains generated through the displacements of capture
layers in the inner crust (assuming capture layers really are present in the inner crust; recall the
discussion in the previous section), but an order of magnitude or so larger if the capture layers
are confined to just the outer crust, or when the mass quadrupole is assumed to be built from the
thermal crustal lattice pressure.
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7

Concluding Remarks

In this thesis we have sought to model the interior of accreting neutron stars, which are theorised
to have their spin frequencies limited by the emission of gravitational-waves. The work presented
here can be divided into the theoretical formulation, and then numerical implementation, of a
method to calculate the ellipticity of these stars, which is of observational significance to the
LIGO-Virgo-KAGRA Collaboration in their search for continuous GWs.

The main results of this thesis are fourfold. First, we have expanded upon the first-principles
mechanism originally developed by Osborne and Jones (2020) for generating asymmetric tem-
perature distributions due to anisotropic heat conduction from quadrupolar toroidal magnetic
fields. We have extended the computational domain of the calculation from (only) the crust
to the entire star, incorporating more realistic microphysics, and introducing a self-consistent
method to include the effects of baryon superfluidity/superconductivity on the background (and
perturbed) thermal structure. Second, we have identified a small temperature-sensitive contribu-
tion to the total pressure within the crust that originates from the ionic lattice of the crust, in order
to generate pressure perturbations from the aforementioned temperature asymmetry. Third, we
have combined these two mechanisms to produce the first fully self-consistent calculation of
the size of thermal mountains that is consistent with known physics of accreting NSs. Fourth,
we have found that the size of the mass-quadrupole induced by these two processes are likely
insufficient to be dictating the spin-equilibrium of accreting neutron stars.

Over the next few pages we shall briefly summarise some key conclusions (specifically from
Chapters 5 and 6) that serves to elucidate the main results listed above. Then, in the final pages
of this thesis, we will identify a number of caveats within the current model in order to better
understand its current limitations, and outline ways in which, in future work, it might be further
refined.
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7.1 Summary of temperature asymmetries from magnetic fields

In OJ20, crustal magnetic field strengths in excess of 1013 G were required to produce temperature
perturbations at the percent level (the minimum amount of asymmetry required by UCB to
produce significant GW emission; Sec. 5.6), pushing outside the regime where their method
was valid (Sec. 5.3.1). We contrast their results with the ones presented here (Figs 5.3 - 5.11).
Under this new analysis, the presence of a magnetic field in at least some region of the core raises
the expected level of temperature asymmetry in the deep crust by up to 3 orders of magnitude
(depending on the mass of the NS and the mass accretion rate). To provide confidence in
these new results, we have also shown that when we again restrict the magnetic field to just the
crust (whilst keeping the computational domain the same), the magnitude of the temperature
perturbations reduce to the same order of magnitude as those found in OJ20 (compare our Fig.
5.4 with Fig. 5.5; their Fig. 4).

In extending the computational domain of the calculation, we have been able to introduce a more
realistic description of the un-magnetised thermal background of the star. We have included
many more relevant neutrino emission and thermal transport mechanisms applicable to a NS
composed of standard npe𝜇 matter (Secs 4.4 - 4.5), in line with the current understanding of
cooling theory of neutron stars in LMXBs (e.g. Ootes et al., 2018). For completeness, we have
also implemented a self-consistent calculation on the level of superfluidity to account for the
suppression of both thermal transport and neutrino emission mechanisms in sufficiently cool
stars.

We have presented our results for three different modern accreting equations of state, provided
by Fantina et al. (2018, 2022) (and Potekhin et al., 2013 for calculations associated with the
core). One possibility we have not been able to properly explore, given the perturbative nature of
our approach, is that the presence of extremely efficient Durca neutrino processes (assuming the
BSk21 EoS, for stars heavier than 1.6 𝑀⊙) may lead to much larger temperature asymmetries due
to enhanced thermal conductivity which raises the magnetisation parameter Eq. (5.8) - which is
proportional to the source term Eq. (5.43) - by many orders of magnitude (Fig. 5.2). This means
that the same level of asymmetry may be achieved when Durca is active for a comparatively
weaker magnetic field than when the process is forbidden, since the magnetisation parameter
(Eq. 5.8) is proportional to both the scattering relaxation time 𝜏 (which is itself proportional to
the thermal conductivity Eq. (4.10)) as well as the strength of the magnetic field 𝐵.

For all our background models, we have also computed the Coulomb parameter Eq. (2.9),
which tracks the state of the ions in the crust at a given density, and serves to demarcate the
computational domain of the elastic calculation (Sec. 6.2.1.1). It is clear that the temperature
in the crust depends strongly on the rate of mass accretion and, to a lesser extent, the presence
of additional shallow heating in the outer layers of the crust. The heating associated with these
two quantities naturally increases the temperature of the crust, which will melt if Γcoul < 175
(assuming the one-component plasma approximation). If the inner crust (𝜌 ≳ 1013 g cm−3) is
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molten, a mountain cannot be created since the resultant fluid would not be capable of supporting
shear stresses. However, we find that Γcoul ≥ 175 for all our NS models at densities 𝜌 ≳ 1011 g
cm−3 (Fig. 5.8), indicating the inner crust is always solid (at least for temperatures of a typical
LMXB) and therefore, in principle, capable of supporting elastic strains.

We choose to quote many of our results for the temperature perturbation 𝛿𝑇 in Chapter 5 at the
fiducial density 𝜌 = 1013 g cm−3 since it lies near three pycnonuclear reactions in the inner crust
(Tables A.1 - A.3). This was a natural choice, for two reasons: (i) it is in this density region in
which UCB found the largest mass quadrupoles were generated via physical capture layer shifts,
and (ii) these two reactions account for ∼ 80% of the total heat released from deep crustal heating
reactions in the entire crust (Sec. 4.3.1).

In comparison to the results obtained by OJ20, we find these new results to be encouraging.
Though we have been unable to produce the 1% temperature asymmetry originally required by
UCB for the majority of our NS models in order to reach the torque-balance limit Eq. (3.38),
we have shown that 1% temperature asymmetry within the accreted crust may be achieved for
strongly accreting NSs, if the strength of the crustal magnetic field can exceed slightly above
1012 G. We have also shown that asymmetries of the order ∼ 10−2% can be produced from core
magnetic fields of just 108 G. Given that core magnetic fields in principle could be much larger
than this, it is not inconceivable that a non-perturbative calculation with stronger magnetic fields
could yield temperature asymmetries at the percent level or above.

7.2 Summary of thermal pressure perturbations generated in the
crystalline crust

In the first chapter of this thesis (specifically Sec. 1.3.3.2), we outlined two of the primary
questions surrounding the feasibility of detecting continuous gravitational-waves from elastic
mountains in the near future, namely: (i) the largest possible elastic strains that the neutron star
crust could feasibly sustain, and (ii) what physical processes might be taking place inside the star
in order to build the necessary strains to begin with.

In answer to the second question, we have sought to produce the first fully self-consistent
calculation of the ellipticity of accreting LMXBs due to the formation of a sourced ‘thermo-
elastic’ mountain. Many aspects of our calculation have drawn inspiration from the seminal
model of thermal mountains presented in Ushomirsky et al. (2000) (the UCB model), which
we have either sought to improve, or re-work entirely. UCB showed, under certain conditions,
that it is possible for the ellipticites of accreting neutron stars to exceed 10−7 due to shifts
of capture layer in regions of the star that are, on average, locally hotter or colder. This was
achieved by introducing some temperature dependence on the cold-matter equation of state as
𝑃 = 𝑃

(
𝜌, 𝜇𝑒 [𝜌,𝑇]

)
, with 𝜇e ≡ 𝐸cap determining at what depth electron captures may take place

in the zero-temperature limit (Sec. 2.4.2 and Sec. 3.2.2.1).
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Yet, as pointed out in Section 6.3.2, these results are predicated on the assumptions of temperature
asymmetry being present at the percent level (i.e. 𝛿𝑇/𝑇 ∼ 1%), as well as the existence of capture
layers well beyond that predicted by modern equations of state. Indeed, when one considers
only the capture layers predicted by such realistic EoSs, the ellipticities are reduced to ∼ 10−9

in the ‘traditional’ approach to computing the EoS (i.e. the Fantina et al. (2018) model), and
reduced even further to ∼ 10−10 in the neutron Hydrostatic and Diffusion model of Gusakov and
Chugunov (2020) (Table 6.2). It is worth reinforcing that these numbers also represent upper
limits, since Table 6.2 also assumes a fixed 𝛿𝑇/𝑇 ∼ 1%, and the ellipticity from capture layers
shifts Eq. (6.60) scales linearly in 𝛿𝑇/𝑇 .

We have instead explored here a method to generate pressure perturbations in the accreted crust
via a simpler dependence of temperature on the EoS - 𝑃 = 𝑃

(
𝜌, 𝑇

)
- that does not require

the resolution of individual capture layers1. Specifically, we have computed the size of the
deformations built via elastic strains arising from a thermal contribution to the crustal lattice
pressure (produced through interactions of ions with the electron gas, as well as other ions;
Sec. 6.1.1), sourced via a modelled non-axisymmetric temperature distribution (i.e. rather than
assumed, like in UCB) generated by a quadrupolar internal magnetic field (Sec. 5.1).

We have considered the mass quadrupole moment generated in LMXBs accreting at different
rates, as well as taking into account the presence of shallow crustal heating, in order to explore the
parameter space derived from observations of many different accreting neutron stars. In general,
we find that even the most optimistic estimates of the ellipticity (i.e. in strongly accreting neutron
stars) from this mechanism are just 𝜀 ≲ 10−11 (Fig. 6.3), and many orders of magnitude away
from the torque balance limit Eq. 3.38 (𝜀 ∼ 10−8), as well as the theoretical upper limit (or
‘maximum mountain’) that currently sits at around 𝜀 ∼ 10−6 − 10−7 (Gittins et al., 2021; Gittins
and Andersson, 2021; Morales and Horowitz, 2022). Given that the current observational upper
limit on the ellipticity of accreting millisecond pulsars is ∼ 10−7 (Abbott et al., 2022a), it could
therefore be the case that detecting ‘real’ thermal mountains will require GW interferometers
with much greater sensitivities beyond current and possibly near-future capabilities.

7.3 Outlook

Here we discuss some possible followups to the work presented in this thesis. There are a
number of caveats in our current model which we have hinted at throughout the thesis that
should not be overlooked. These include, but are not limited to: (i) The use of a simple outer
boundary condition in both the background and perturbed problems (Sections 4.7.1 and 5.4.1
respectively), (ii) a lack of an understanding of the magnetic field evolution itself in old accreting
neutron stars (Sections 2.3, 5.3, and 5.6), (iii) further improved microphysics (see below), and

1In the ‘traditional’ approach to computing the zero-temperature accreted equation of state (HZ90, HZ08, F+18),
the capture layers are assumed to be infinitely thin (Sec. 2.4.2). We have made use of this approximation throughout
this thesis; most notably to simplify our description of the deep crustal heating processes (Sec. 4.3.1), as well as the
crustal thermal conductivity, through the impurity parameter 𝑄imp (Sec. 4.4.1).
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(iv) the incongruity in applying the Newtonian heat equation and Newtonian Euler equation on
to a general relativistic hydrostatic background (Sec. 6.2).

7.3.1 Extending the background model

First let us review some additional steps necessary towards a more complete calculation of the
thermal background, building upon the framework described in Chapter 4.

Outer boundary condition: In computing the background thermal structure, we followed the
prescription of UCB and assumed that the outer boundary condition was fixed by the
temperature at the base of the hydrogen/helium burning layer at 𝜌 ∼ 107 g cm−3. However,
as discussed in Section 4.7.1, the boundary condition Eq. (4.125) is, strictly speaking,
only valid when the NS is steadily accreting (i.e. where ¤𝑀 ≳ 0.1 ¤𝑀Edd). In order to
apply the boundary condition at low accretion rates, it was necessary to interpret ¤𝑀 as a
time-averaged accretion rate, such that we could, in effect, average over multiple Type-I
X-ray bursts that occur when the star is not steadily accreting (Sec. 4.1).

A more rigorous approach would involve further extending the computational domain
of the calculation to include the low-density ocean, where the temperature would be
determined by the compression of accreted material as it arrives at the star’s surface (see
Bildsten and Cutler, 1995 and Brown and Bildsten, 1998).

Microphysics: Throughout our analysis we have adopted the equations of state derived from
the set of Brussels–Montreal energy-density functionals BSk19, BSk20, and BSk21. The
composition tables provided by Fantina et al. (2018) and unified pressure-density relations
presented in Fantina et al. (2022) allowed us to implement a realistic and self-consistent
calculation of the crust and core that has been absent in previous works on modelling
neutron star thermal mountains.

These models, however, are to some degree restrictive, and do not capture a number of
pieces of physics that are expected to affect the thermal structure. For one, the BSk
models assume the one-component approximation at each crustal layer. More realistic
multicomponent models have recently recently been considered by a number of authors
(e.g. Lau et al., 2018; Shchechilin and Chugunov, 2019; Schatz et al., 2022). Incorporating
such models into our work would not only allow for a better justification of the method to
smear heat deposited via DCH reactions (Sec. 4.3.1), but also provide a better description
of the effects on thermal conductivity due to the presence of impurities in the crustal layers
(see Eq. (4.15) and Fig. 5.8).

Additionally, the BSk models also neglect the redistribution of unbound neutrons in the
deep crust. Such an effect, particularly in the presence of neutron superfluidity, has been
shown by Gusakov and Chugunov (2020) to affect the EoS and composition (recall the
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discussion in Sec. 2.5.2.1), as well as the net heat generation within the accreted crust
(Gusakov and Chugunov, 2021).

It is also possible that our treatment of transport properties in the core may be improved
in a couple of ways. Firstly, as part of our thermal model we implemented the results
of Gnedin and Yakovlev (1995) to describe lepton conduction in the core. More recent
analysis by Shternin and Yakovlev (2007), however, has studied the inclusion of Landau
damping on interactions involving relativistic electrons, which has been shown to modify
the temperature dependence of the scattering frequencies. Whilst we have also sought
to include the effects of baryon superfluidity in our thermal calculation, effects of proton
superconductivity on transport properties was neglected since electrons and neutrons are
the primary carriers of heat. Proton superconductivity can however affect the temperature
dependence of scattering mechanisms involving protons due to screening effects (recall
Sec. 4.6.4.1), which could in turn have consequences for the un-magnetised thermal
structure.

7.3.2 Extending the perturbed model

Next we shall review some additional steps towards a more complete calculation of the perturbed
thermal structure, building upon the framework outlined in Chapter 5.

Outer boundary condition: Much like the outer boundary condition assumed for the background
calculation, the assumed outer boundary condition in the perturbed problem is also some-
what rudimentary. It was shown in Fig. 5.7 that the temperature perturbations in the deep
crust are insensitive to the choice of outer boundary condition. And, since the deep crust
is where most of the mass quadrupole is built, the lack of a rigorous outer boundary con-
dition is, in practice, not overly restrictive. The ‘true’ outer boundary condition, however,
would follow from the correspondingly more physically motivated outer boundary in the
background calculation as described above.

Magnetic field evolution: The lack of knowledge surrounding the nature of the evolution of
the internal magnetic field means we cannot faithfully comment on the true nature of its
structure inside old (∼ 109 yr) accreting NSs. Ambipolar diffusion is thought to be the main
driver of the magnetic field evolution in the core of the star, whilst Ohmic decay (resulting
due to finite electrical conductivity) and Hall drift are responsible for the evolution of
the crustal field (recall Sec. 2.3, and see Igoshev et al. (2021) for an additional review).
Calculating the magnetic field evolution is beyond the scope of this thesis, and as such we
have calculated the level of temperature asymmetry in the presence of a magnetic field that
extends over the entire star, when it is confined the crust, and when it is able to permeate
the outermost region of the core (Sec. 5.3). This therefore represents three regimes of
possibility, with the actual level of temperature asymmetry resulting from a the magnetic
field most likely existing somewhere between the two extremes.
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A non-perturbative approach: The equations derived to calculate the level of asymmetry in-
duced by magnetic fields was done so perturbatively (i.e. where the condition on the
magnetisation parameter Eq. (5.8) - 𝜔𝐵𝜏 ≪ 1 - is always be obeyed). This limited the
strength of core magnetic fields in which the equations remain valid to ∼ 108 G (Fig.
5.2), since the relaxation time 𝜏 is much shorter in the crust than in the core. However,
if magnetic fields do indeed exist in the cores of accreting NSs, then they will almost
certainly be stronger than this, and therefore the temperature asymmetry is likely larger
than what we have already estimated.

In addition, using our perturbative results, we found that neutrino emission from highly-
efficient Durca processes may limit the strength of the magnetic field required to reproduce
the upper-limit on the ellipticity of IGR J00291+5934 to just∼ 1011 G (Sec. 5.6). However
such a strong magnetic field pushes us out of the perturbative regime, and so should be
viewed with caution. In order to asses the role of Durca properly, a reformulation of
the anisotropic heat conduction mechanism non-perturbatively could be a new method
to constrain the (largely unknown) internal magnetic field strength, where the condition
𝜔𝐵𝜏 ≪ 1 would no longer be required.

Superfluid phonons: The possibly of heat conduction via superfluid phonons is potentially
an important piece of the crustal physics that is missing from our current model. The
asymmetry-inducing mechanism considered here relies on the fact that the heat flow
orthogonal to the magnetic field is suppressed since the heat-carrying electrons are charged
(Sec. 5.1). Conduction by electrically-neutral superfluid phonons may therefore enhance
the heat flow orthogonal to the magnetic field line that would otherwise be suppressed.
A significant ‘short circuiting’ of our asymmetry-inducing mechanism however is still
unlikely, since Aguilera et al. (2009) have shown magnetic field strengths in excess of 1013

G - much larger than those associated with LMXBs - would be required to significantly
enhance conduction by these superfluid phonons to a level where it might compete with
the electron conductivity.

7.3.3 Extending the elastic problem

Finally, we will review some of the finer details of our model of the elastic response of the
crust to the temperature perturbations described in Chapter 5, building upon the framework from
Chapter 6.

Improved analytical representations of the EoS: The fundamental building block of our model
is the equation of state. Whilst it is only the crust of the star that is relevant to building
elastic mountains, we have shown that the properties of the core can significantly impact
the behavior of temperature perturbations in the crust which source the (thermal) mountain
to begin with. The BSk equations of state that we have employed here (the F+18 models)
may be applied not only to nuclear clusters in the crust, but also to homogeneous nuclear
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matter in the core (Sec. 2.6.4). This has therefore allowed us to describe all regions of the
neutron star interior in a consistent manner.

However, the large density discontinuities present in the region 𝜌 ∼ 1012 − 1013 g cm−3

initially led to severe issues in achieving numerical convergence when computing the
mass quadrupole via Eqs (6.56) - (6.57) (which, strictly speaking, are mathematically
equivalent) from solving the elastic perturbation equations (6.41a) - (6.41d). One solution
to this was to therefore take the approach of approximating the EoS with the analytical fit
described in Section 2.5. Whilst this method was successful in achieving agreement in
Eqs (6.56) - (6.57) at the level of ≲ 1%, the procedure was found to introduce a systematic
error in the calculation of the adiabatic index ΓFit

AC as compared to the tabulated data ΓAC

(Sec. 2.5.2.1). The smoothing of density discontinuities in the crust essentially equates
to a softening of the EoS, leading to the sharp decline in ΓFit

AC, comparable to that of the
equation of state of catalysed matter (i.e. a non-accreted crust).

The ‘brute force’ approach of the least-squares method, whilst simple, is not a necessarily
robust method to fitting the accreted EoS, given the 23-parameter space in Eq. (2.26)
needed to adequately fit the catalysed crust (Potekhin et al., 2013). It would, therefore,
be worthwhile amending the analytical representation of the EoS Eq. (2.26) explicitly to
further improve the accuracy of the fit, or implement a different method entirely to carry
out the optimisation process on the tabulated data. Alternatively, given the implications
of the more recent GC20 nHD model (Sec. 2.5.2.1), the ground-state BSk models could
serve as an adequate approximation of the EoS in the inner crust, where the analytical
representations are better defined.

Fully relativistic calculation: Currently we use general relativity to compute only the hydro-
static structure of the neutron star. This is required in order to make use of realistic EoSs,
which would otherwise have led to unphysical density profiles in Newtonian theory. We
do however employ Newtonian theory to compute both the thermal structure of the star
(Sec. 4.2), as well as the elastic readjustment of the crust (Sec. 6.2.1) in response to the
temperature perturbations also derived in the Newtonian framework. Given the compact-
ness of a typical neutron star is 𝑀/𝑅 ∼ 0.2, one should probably expect some fractional
errors in the thermal structure when neglecting GR.

We have refrained from solving the relativistic (perturbed) Euler equation so that we might
focus on prescribing a realistic source term, which has been missing in the literature until
now (Sec. 1.3.3.2 and Sec. 3.2.2.1.1). In principle, this could be rectified by following
Gittins and Andersson (2021), who outline a procedure for obtaining the multipole mo-
ments of the neutron star in general relativity. This would also allow for a more consistent
treatment of the gravitational acceleration (𝑔 ≡ ∇ 𝑗Φ) in our model, where, rather than
being defined in terms of a ‘pseudo acceleration’ as in Sec. 6.2, the effects of self-gravity
would be encoded in the spacetime metric 𝑔𝑎𝑏.

One additional intermediary step, however, could be to remain in the Newtonian setting, but
relax the Cowling approximation. In the current framework, this would add an extra term
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in the Euler equation (6.30) which accounts for small perturbations in the gravitational
potential, and introduce an additional two ODEs in the system of equations (6.41a) -
(6.41d) that would derive from Poisson’s equation for gravity Eq. (2.43). Whilst not
implemented in UCB explicitly, they estimate that inclusion of the effects of self-gravity
might increase the resulting mass quadrupole moment by 20 − 200%. These conclusions
have been more recently (effectively) reconfirmed in Haskell et al. (2006) and Johnson-
McDaniel and Owen (2013), with both studies showing that including the perturbations
of the gravitational potential reduce the size of the mass quadrupole by a factor of a few2.

7.4 Final thoughts

With ever-more accurate theoretical models and the continuing increase in the sensitivity of
instruments for observations, the likelihood of a detection of continuous gravitational radiation
from deformed neutron stars will continue to grow. And, as it does so, it is of great importance
that we continue to refine our physical models as we enter into the era of the next generation of
GW detectors.

Looking ahead, one final (and hopefully exciting!) outcome of this thesis is the potential for the
general method to compute the ellipticity of accreting LMXBs using a realistic equation of state
presented here may be extended to include other mechanisms which generate temperature and/or
density perturbations in a self-consistent way.

That said, in the continued search for evidence of a continuous GW signal, it may also be
beneficial to consider other sources for neutron star mountains beyond the traditional accreting
millisecond pulsar we have considered here. The GW signal from a rigidly rotating deformed
NS scales as ℎ0 ∝ 𝜖𝜈2

𝑠 (Eq. (3.35)), and therefore these systems are targeted (at least in part) due
to their rapid rotation rates.

Ultraluminous X-ray sources (ULXs) are a separate class of astrophysical objects (see e.g King
et al., 2023), with some thought to contain systems of very strongly accreting neutron stars. Unlike
a traditional LMXB, these systems may accrete at super-Eddington rates ( ¤𝑀 > 2×10−8𝑀⊙ yr−1),
and posses magnetic fields in excess of 1012 G (compared to that of 109 G for an LMXB). Not
only does this make neutron star ULXs excellent potential sources for magnetic mountains (i.e.
where the mass distortion is supported by Lorentz forces; Sec. 1.3.3.1), but specific to the
thermo-elastic mountain formation mechanism described here; the temperature asymmetry is
linear in magnetic field strength, as well as approximately linear in the mass accretion rate (Sec.
5.6). The thermal lattice pressure is also proportional to the temperature (Fig. 6.2) and therefore
to the rate of mass accretion.

2Note, however, that both these studies are concerned with evaluating the ‘maximum’ mountain that the crust can
sustain, rather than exploring the elastic readjustment of the crust from an explicit source term as we have here.
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Neutron star ULXs could, at least in principle, therefore play host to significantly larger mountains
than their LMXB counterparts. On account of their exceedingly strong magnetic fields, however,
the NSs in these systems typically spin much slower than those typically found in LMXBs
(𝜈𝑠 ≲ 50 Hz as opposed to ∼ 300 − 700 Hz). It is therefore immediately unclear as to whether
the greater mass quadrupole generated as a result of strong magnetic fields and enhanced accretion
is counteracted by the low spin-rate, and thus not lead to a stronger signal in the detector. If this
counteraction is not present, then ULX systems could be excellent candidates for future targeted
searches of advanced detectors such as Einstein telescope (Maggiore et al., 2020) and Cosmic
Explorer (Evans et al., 2023; Gupta et al., 2023), with their increased sensitivity at low frequency
(𝜈𝑠 ∼ 50 Hz → 𝑓GW ∼ 100 Hz).

In short, whilst there is still much work to be done, the results here should be seen as encouraging
as we enter deeper into the era of gravitational-wave astronomy. With the proposed third-
generation ground-based interferometers, the increased sensitivity of such instruments should
lead to a wealth of new data, including perhaps, just maybe, a continuous gravitational-wave
signal.
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Appendix A

A.1 Composition tables

We include for convenience the set of tables showing the properties of the non-equilibrium
reactions which take place in the crust an accreted neutron star as predicted by the Brussels-
Montreal energy density functionals BSk19, BSk20 and BSk21, reproduced from Fantina et al.
(2018).

Columns 1 and 2 show, respectively, the pressure 𝑃 and density 𝜌 at which each particular
nuclear reaction (given in column 3) occurs. Column 4 gives the fraction of free neutrons 𝑋n

among nucleons in a given capture layer, whilst column 5 shows the relative density jump that
occurs at the transition between nuclei. Column 6 then gives the value of the electron chemical
potential 𝜇𝑒 at each capture layer, and Finally column 7 shows the heat deposited per accreted
nucleon 𝜖nuc (originally ‘q’ in Fantina et al., 2018) for a given reaction.

Table A.1: Non-equilibrium processes in the crust of an accreting neutron stars assuming ashes
of pure 56Fe using the EDF BSk19. Reproduction of Table A.3 from Fantina et al. (2018).

𝑃 𝜌 Reactions 𝑋𝑛 Δ𝜌/𝜌 𝜇𝑒 𝜖nuc
(dyn cm−2) (g cm−3) (MeV) (keV)
6.48 × 1026 1.38 × 109 56Fe →56 Cr − 2𝑒− + 2𝜈𝑒 0 0.08 4.47 37.0
1.83 × 1028 1.81 × 1010 56Cr → 56Ti − 2𝑒− + 2𝜈𝑒 0 0.09 10.22 41.2
1.06 × 1029 7.37 × 1010 56Ti → 56Ca − 2𝑒− + 2𝜈𝑒 0 0.10 15.83 62.3
3.44 × 1029 1.96 × 1011 56Ca →56 Ar − 2𝑒− + 2𝜈𝑒 0 0.11 21.22 11.6
9.02 × 1029 4.48 × 1011 56Ar → 55Cl + 𝑛 − 𝑒− + 𝜈𝑒 0 0.06 26.74 0
9.30 × 1029 4.75 × 1011 55Cl → 54S + Δ𝑁 · 𝑛 − 𝑒− + 2𝜈𝑒 0.04 0.06 27.04 0
1.22 × 1030 6.20 × 1011 54S → 48Si + Δ𝑁 · 𝑛 − 2𝑒− + 2𝜈𝑒 0.14 0.14 28.63 50.4
2.48 × 1030 1.20 × 1012 48Si → 30O + Δ𝑁 · 𝑛 − 6𝑒− + 2𝜈𝑒

30O + 30O → 51Si + Δ𝑁 · 𝑛 − 2𝑒− + 2𝜈𝑒 0.54 0.72 32.72 932.1

4.87 × 1030 3.38 × 1012 52Si → 32O + Δ𝑁 · 𝑛 − 6𝑒− + 2𝜈𝑒
32O + 32O → 61S + Δ𝑁 · 𝑛 0.73 0.28 34.76 376.8

6.36 × 1030 5.23 × 1012 62S → 55Si + Δ𝑁 · 𝑛 − 2𝑒− + 2𝜈𝑒 0.75 0.04 35.85 7.4
1.96 × 1031 1.21 × 1013 58Si → 35O + Δ𝑁 · 𝑛 − 6𝑒− + 2𝜈𝑒

35O + 35O → 68S + Δ𝑁 · 𝑛 0.85 0.07 39.72 132.0
8.57 × 1031 3.69 × 1013 75S → 71P + Δ𝑁 · 𝑛 − 𝑒− + 𝜈𝑒 0.84 0.003 55.11 0
1.39 × 1032 5.21 × 1013 72P → 68Si + Δ𝑁 · 𝑛 − 𝑒− + 𝜈𝑒 0.85 0.001 60.38 0
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Table A.2: Non-equilibrium processes in the crust of an accreting neutron stars assuming ashes
of pure 56Fe using the EDF BSk20. Reproduction of Table A.2 from Fantina et al. (2018).

𝑃 𝜌 Reactions 𝑋𝑛 Δ𝜌/𝜌 𝜇𝑒 𝜖nuc
(dyn cm−2) (g cm−3) (MeV) (keV)
6.48 × 1026 1.38 × 109 56Fe → 56Cr − 2𝑒− + 2𝜈𝑒 0 0.08 4.47 37.0
1.83 × 1028 1.81 × 1010 56Cr → 56Ti − 2𝑒− + 2𝜈𝑒 0 0.09 10.22 41.2
1.06 × 1029 7.37 × 1010 56Ti → 56Ca − 2𝑒− + 2𝜈𝑒 0 0.10 15.82 53.4
3.44 × 1029 1.96 × 1011 56Ca → 56Ar − 2𝑒− + 2𝜈𝑒 0 0.11 21.73 12.4
9.06 × 1029 4.50 × 1011 56Ar → 55Cl + 𝑛 − 𝑒− + 𝜈𝑒 0 0.06 26.50 0
9.32 × 1029 4.76 × 1011 55Cl → 54S + Δ𝑁 · 𝑛 − 𝑒− + 2𝜈𝑒 0.04 0.06 26.98 0
1.22 × 1030 6.17 × 1011 54S → 48Si + Δ𝑁 · 𝑛 − 2𝑒− + 2𝜈𝑒 0.14 0.13 28.78 49.1
2.51 × 1030 1.21 × 1012 48Si → 30O + Δ𝑁 · 𝑛 − 6𝑒− + 2𝜈𝑒

30O + 30O → 52Si − 2𝑒− + 2𝜈𝑒 0.55 0.71 32.71 924.8
5.15 × 1030 3.49 × 1012 52Si → 32O + Δ𝑁 · 𝑛 − 6𝑒− + 2𝜈𝑒

32O + 32O → 61S 0.73 0.27 34.98 369.7
7.06 × 1030 5.53 × 1012 62S → 56Si + Δ𝑁 · 𝑛 − 2𝑒− + 2𝜈𝑒 0.75 0.04 36.47 6.3
2.26 × 1031 1.32 × 1013 60Si → 36O + Δ𝑁 · 𝑛 − 6𝑒− + 2𝜈𝑒

36O + 36O → 61S 0.84 0.07 40.81 120.7
1.29 × 1032 5.08 × 1013 80S → 75P + Δ𝑁 · 𝑛 − 𝑒− + 𝜈𝑒 0.83 0.003 61.31 0

Table A.3: Non-equilibrium processes in the crust of an accreting neutron stars assuming ashes
of pure 56Fe using the EDF BSk21. Reproduction of Table A.1 from Fantina et al. (2018).

𝑃 𝜌 Reactions 𝑋𝑛 Δ𝜌/𝜌 𝜇𝑒 𝜖nuc
(dyn cm−2) (g cm−3) (MeV) (keV)
6.50 × 1026 1.38 × 109 56Fe → 56Cr − 2𝑒− + 2𝜈𝑒 0 0.08 4.47 37.0
1.84 × 1028 1.82 × 1010 56Cr → 56Ti − 2𝑒− + 2𝜈𝑒 0 0.09 10.22 41.2
1.06 × 1029 7.38 × 1010 56Ti → 56Ca − 2𝑒− + 2𝜈𝑒 0 0.10 15.83 39.1
3.44 × 1029 1.96 × 1011 56Ca →56 Ar − 2𝑒− + 2𝜈𝑒 0 0.11 21.22 8.1
8.75 × 1029 4.38 × 1011 56Ar → 55Cl + 𝑛 − 𝑒− + 𝜈𝑒 0 0.06 26.55 0
9.40 × 1029 4.79 × 1011 55Cl → 53S + Δ𝑁 · 𝑛 − 𝑒− + 2𝜈𝑒 0.05 0.06 27.04 0
1.18 × 1030 6.04 × 1011 53S → 47Si + Δ𝑁 · 𝑛 − 2𝑒− + 2𝜈𝑒 0.15 0.14 28.57 45.0
2.54 × 1030 1.22 × 1012 48Si → 30O + Δ𝑁 · 𝑛 − 6𝑒− + 2𝜈𝑒

30O + 30O → 51Si + Δ𝑁 · 𝑛 − 2𝑒− + 2𝜈𝑒 0.54 0.68 32.64 908.1
5.78 × 1030 3.73 × 1012 53Si → 32O + Δ𝑁 · 𝑛 − 6𝑒− + 2𝜈𝑒

32O + 32O → 62S + Δ𝑁 · 𝑛 0.72 0.23 35.47 355.9
8.69 × 1030 6.16 × 1012 66S → 57Si + Δ𝑁 · 𝑛 − 2𝑒− + 2𝜈𝑒 0.74 0.03 37.74 3.5
3.20 × 1031 1.65 × 1013 65Si → 40O + Δ𝑁 · 𝑛 − 6𝑒− + 2𝜈𝑒

40O + 40O → 76S + Δ𝑁 · 𝑛 0.83 0.05 43.8 98.2
1.85 × 1032 7.26 × 1013 91S → 86P + Δ𝑁 · 𝑛 − 𝑒− + 𝜈𝑒 0.81 0.006 69.10 0
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Akademie der Wissenschaften, pages 778–786, Jan 1915a. URL https://ui.adsabs.
harvard.edu/abs/1915SPAW.......778E.

A. Einstein. Zur allgemeinen Relativitätstheorie (Nachtrag). Sitzungsberichte der Kölniglich
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