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Article

Comparing a Gauge-Invariant Formulation and a “Conventional
Complete Gauge-Fixing Approach” for l = 0, 1-Mode
Perturbations on the Schwarzschild Background Spacetime

Kouji Nakamura

Gravitational-Wave Science Project, National Astronomical Observatory of Japan, 2-21-1, Osawa,

Mitaka 181-8588, Tokyo, Japan; dr.kouji.nakamura@gmail.com

Abstract: This article provides a comparison of the gauge-invariant formulation for l = 0, 1-mode

perturbations on the Schwarzschild background spacetime, proposed by the same author in 2021,

and a “conventional complete gauge-fixing approach” where the spherical harmonic functions Ylm

as the scalar harmonics are used from the starting point. Although it is often stated that “gauge-

invariant formulations in general-relativistic perturbations are equivalent to complete gauge-fixing

approaches”, we conclude that, as a result of this comparison, the derived solutions through the

proposed gauge-invariant formulation and those through a “conventional complete gauge-fixing

approach” are different. It is pointed out that there is a case where the boundary conditions and

initial conditions are restricted in a conventional complete gauge-fixing approach.

Keywords: black hole; Schwarzschild spacetime; perturbation theory; gauge-invariance; gauge-fixing

1. Introduction

Through ground-based gravitational-wave detectors [1–4], many events of gravita-
tional waves—mainly from black hole–black hole coalescences—have now been detected.
We have reached a stage where there is no doubt about the existence of gravitational waves
due to direct observations. One future direction of gravitational-wave astronomy will
focus on achieving “precise science” through the statistics of numerous events. To further
develop gravitational-wave science, projects focused on future ground-based gravitational-
wave detectors [5,6] are also progressing towards creating more sensitive detectors. Some
projects discussing space gravitational-wave antenna are also progressing [7–10]. Among
the various targets for these detectors, the extreme mass ratio inspirals (EMRI), which pro-
duce gravitational waves from the motion of a stellar mass object around a supermassive
black hole, are promising targets of the Laser Interferometer Space Antenna [7]. Since the
mass ratio of this EMRI is very small, we can describe the gravitational waves from EMRIs
through black hole perturbations [11]. Furthermore, the sophistication of higher-order
black hole perturbation theories is required to support gravitational-wave physics as a
precise science. The motivation of our previous series of papers, refs. [12–16], as well as this
current paper, lies in enhancing the theoretical sophistication of black hole perturbation
theories toward higher-order perturbations.

Realistic black holes have angular momentum, which requires us to apply the per-
turbation theory of a Kerr black hole for direct analyses related to the EMRI. However,
we may say that further sophistication is possible, even in perturbation theories on the
Schwarzschild background spacetime. Starting with the pioneering works by Regge and
Wheeler [17] and Zerilli [18,19], there have been many studies on the perturbations in
the Schwarzschild background spacetime [20–32]. In these works, perturbations are de-
composed through the spherical harmonics Ylm because of the spherical symmetry of the
background spacetime, and l = 0, 1 modes should be separately treated. These modes
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correspond to the monopole and dipole perturbations. These separate treatments make
“gauge-invariant” treatments for l = 0 and l = 1 modes unclear.

Due to this situation, in our previous papers [12–16], we proposed a strategy of the
gauge-invariant treatments of these l = 0, 1-mode perturbations. This strategy is outlined as
Proposal 1 in Section 2 of this paper below. One of the key premises of our gauge-invariant
perturbations is the distinction between the first-kind gauge and the second-kind gauge. The
first-kind gauge is essentially the choice of the coordinate system on the single manifold, and
we often use this first-kind gauge when we predict or interpret the measurement results of
experiments and observations. On the other hand, the second-kind gauge is the choice of the
point identifications between the points on the physical spacetime Mϵ and the background
spacetime M . This second-kind gauge has nothing to do with our physical spacetime Mϵ.
Although this difference is extensively explained in a previous paper [14], we also emphasize
this difference in Section 2 of this paper. The proposal in the previous paper [14] is part of
our development of the general formulations of a higher-order gauge-invariant perturbation
theory on a generic background spacetime that is aimed toward unambiguous sophisticated
nonlinear general-relativistic perturbation theories [33–38]. While we have applied this
general framework to cosmological perturbations [39–41], we also applied it to black hole
perturbations in our series of previous papers (i.e., refs. [12–16]), and in this paper. Even in the
context of cosmological perturbation theories, the same problem as the above l = 0, 1-mode
problem exists in gauge-invariant treatments of homogeneous modes of perturbations. In this
sense, we can expect that the proposal in the previous paper [14] will be a clue to the same
problem in gauge-invariant perturbation theory on the generic background spacetime.

In the previous paper [14], we also derived linearized Einstein equations in a gauge-
invariant manner, following Proposal 1. Perturbations on the spherically symmetric back-
ground spacetime are classified into even- and odd-mode perturbations. In the same
paper [14], we also provided a strategy to solve the odd-mode perturbations, including
l = 0, 1 modes. Furthermore, we also derived the formal solutions for the l = 0, 1 odd-mode
perturbations to the linearized Einstein equations, following Proposal 1. In another pa-
per [15], we develop a strategy for solving the even-mode perturbations, including l = 0, 1
modes, and derived the formal solutions for the l = 0, 1 even-mode perturbations, also
based on Proposal 1. In a further paper [16], we found the fact that the derived solutions
in [15] realized the linearized version of two exact solutions: the Lemaître–Tolman–Bondi
(LTB) solution [42] and the non-rotating C-metric [43,44]. This finding leads us to conclude
that the solutions for even-mode perturbations derived in [15] are physically reasonable.
This series of previous papers is the full version of our short paper, ref. [12]. Furthermore,
brief discussions on the extension to the higher-order perturbations are given in [13].

On the other hand, it is well known that we cannot construct gauge-invariant variables
for l = 0, 1 modes in the same manner as we do for l ≥ 2 modes if we decompose the
metric perturbations through the spherical harmonics as the scalar harmonics from the
starting point. For this reason, we usually use gauge-fixing approaches. Furthermore, it
is often said that “gauge-invariant formulations in general-relativistic perturbations are
equivalent to complete gauge-fixing approaches”. In this paper, we examine this statement
through a comparison of our proposed gauge-invariant formulation, where we introduce
singular harmonics at once, and then regularize them after the derivation of the mode-by-
mode Einstein equation, with a “conventional complete gauge-fixing approach”, where the
spherical harmonic functions Ylm as the scalar harmonics are used from the starting point.
As a result of this comparison, we conclude that our gauge-invariant formulation and the
above “conventional complete gauge-fixing approach” are different, although these two
formulations lead to similar solutions for l = 0, 1-mode perturbations. More specifically,
there is a case where the boundary conditions and initial conditions are restricted in a
“conventional complete gauge-fixing approach” where the decomposition of the metric
perturbation by the spherical harmonics Ylm is used from the starting point.

The organization of this paper is as follows. In Section 2, we briefly review the premise
of our series of papers [12–16], which are necessary for the ingredients of this paper. We
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also emphasize the difference between the concepts of the first- and second-kind gauges,
and summarize the linearized Einstein equations for l = 0, 1 modes, and their formal
solutions, in Section 2. In Section 3, we specify the rule of our comparison between our
gauge-invariant formulation and a conventional gauge-fixing approach, and summarize
the gauge-transformation rules for the metric perturbations of l = 0, 1 modes, because the
above statement “gauge-invariant formulations in general-relativistic perturbations are
equivalent to complete gauge-fixing approaches” includes some ambiguity. In Section 4,
we discuss the linearized Einstein equations for l = 1 odd-modes and their solutions in
the conventional gauge-fixing approach. In Section 5, we discuss the linearized Einstein
equations for l = 1 even-modes and their solutions in the conventional gauge-fixing
approach. In Section 6, we derive the solution to the linearized Einstein equations for l = 0
modes through the complete gauge-fixing, and discuss the comparison with the linearized
LTB solution. Section 7 is devoted to a summary of this paper and discussions based on
our results.

We use the notation used in the previous papers [12–16], and the unit G = c = 1,
where G is Newton’s constant of gravitation and c is the velocity of light.

2. Brief Review of a Gauge-Invariant Treatment of l = 0, 1 Modes

In this section, we briefly review the premises of our series of papers [12–16] that
are essential for the arguments of this paper. In Section 2.1, we introduce our framework
of the gauge-invariant perturbation theory [33,34]. This framework is an crucial for our
series of papers [12–16] and the current paper. Section 2.2 reviews the gauge-invariant
perturbation theory on spherically symmetric spacetimes, which includes our proposal in
refs. [12–16]. In Section 2.3, we summarize the linearized Einstein equations for l = 1 odd
modes, and provide their “formal” solutions. Finally, in Section 2.4, we summarize the
linearized Einstein equations for l = 0, 1 even modes with their “formal” solutions. The
equations and their solutions in Sections 2.3 and 2.4 are derived based on our proposal in
refs. [12–16]. These are necessary for the arguments presented in this paper.

2.1. General Framework of Gauge-Invariant Perturbation Theory

In any perturbation theory, we always consider two distinct spacetime manifolds. One
is the physical spacetime (Mph, ḡab), which is identified with our nature itself, and we want
to describe this spacetime (Mph, ḡab) by perturbations. The other is the background space-
time (M , gab), which is prepared as a reference by hand. Furthermore, in any perturbation
theory, we always write equations for the perturbation of the variable Q as follows:

Q(“p”) = Q0(p) + δQ(p). (1)

In this equation, Q(“p”) in the left-hand side of Equation (1) is a variable on the physi-
cal spacetime Mϵ = Mph, whereas Q0(p) and δQ(p) in the right-hand side of Equation (1)
are variables on the background spacetime M . Because we regard Equation (1) as a field
equation, Equation (1) includes an implicit assumption of the existence of a point identi-
fication map Xϵ : M → Mϵ : p ∈ M 7→ “p” ∈ Mϵ. This identification map is a “gauge
choice” in general-relativistic perturbation theories. This is the notion of the “second-kind
gauge” pointed out by Sachs [45–48]. Note that this second-kind gauge is a different notion
from the degree of freedom of the coordinate transformation on a single manifold, which is
called the “first-kind gauge” [14,39]. This distinction between the first- and the second-kind
gauges was extensively explained in [14], and is also crucial for the understanding of the
ingredients in this paper.

To compare the variable Q on Mϵ with its background value Q0 on M , we use the
pull-back X ∗

ϵ of the identification map Xϵ : M → Mϵ, and we evaluate the pulled-back
variable X ∗

ϵ Q on the background spacetime M . Furthermore, in perturbation theories,
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we expand the pull-back operation X ∗
ϵ to the variable Q with respect to the infinitesimal

parameter ϵ for the perturbation as follows:

X
∗

ϵ Q = Q0 + ϵ
(1)
X

Q + O(ϵ2). (2)

Equation (2) is evaluated on the background spacetime M . When we have two
different gauge choices, Xϵ and Yϵ, we can consider the “gauge-transformation”, which
is the change in the point-identification Xϵ → Yϵ. This gauge-transformation is given

by the diffeomorphism Φϵ := (Xϵ)
−1 ◦ Yϵ : M → M . Actually, the diffeomorphism

Φϵ induces a pull-back from the representation X ∗
ϵ Qϵ to the representation Y ∗

ϵ Qϵ, as
Y ∗

ϵ Qϵ(q) = Φ∗
ϵX

∗
ϵ Qϵ(q) at any point q ∈ M . From general arguments of the Taylor

expansion [49–51], the pull-back Φ∗
ϵ is expanded as

Y
∗

ϵ Qϵ(q) = X
∗

ϵ Qϵ(q) + ϵ£ξ(1)
X

∗
ϵ Qϵ(q) + O(ϵ2), (3)

where ξa
(1)

is the generator of Φϵ. From Equations (2) and (3), the gauge-transformation for

the first-order perturbation (1)Q is given by

(1)
Y

Q(q)−
(1)
X

Q(q) = £ξ(1)
Q0(q) (4)

at any point q ∈ M . We also employ the “order by order gauge invariance” as a concept

of gauge invariance [33,34]. We call the kth-order perturbation
(k)
X

Q gauge-invariant if and
only if

(k)
X

Q(q) =
(k)
Y

Q(q) (5)

for any gauge choice Xϵ and Yϵ at any point of q ∈ M .
Based on the above setup, we proposed a formulation to construct gauge-invariant

variables of higher-order perturbations [33,34]. First, we expand the metric on the physical
spacetime Mϵ, which has been pulled back to the background spacetime M through a
gauge choice, Xϵ, as follows:

X
∗

ϵ ḡab = gab + ϵXhab + O(ϵ2). (6)

Although the expression (6) depends entirely on the gauge choice Xϵ, henceforth, we do
not explicitly express the index of the gauge choice Xϵ in the expression if there is no risk of
confusion. A key premise of our formulation of higher-order gauge-invariant perturbation
theory was the following conjecture [33,34] for the linear metric perturbation hab.

Conjecture 1. If the gauge-transformation rule for a perturbative pulled-back tensor field hab from
the physical spacetime Mϵ to the background spacetime M is given by Y hab − Xhab = £ξ(1)

gab

with the background metric gab, then there exists a tensor field Fab and a vector field Ya, such that
hab is decomposed as hab =: Fab + £Ygab, where Fab and Ya are transformed as YFab − XFab

= 0 and YYa − XYa = ξa
(1)

under the gauge-transformation, respectively.

We call Fab and Ya the “gauge-invariant” and “gauge-dependent” parts of hab, respec-
tively.

The proof of Conjecture 1 is highly nontrivial [35–37], and it was found that the gauge-
invariant variables are essentially non-local. Despite this non-triviality, once we accept

Conjecture 1, we can decompose the linear perturbation of an arbitrary tensor field
(1)
X

Q,
whose gauge-transformation is given by Equation (4), through the gauge-dependent part
Ya of the metric perturbation in Conjecture 1, as

(1)
X

Q = (1)
Q + £

XYQ0, (7)
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where (1)Q is the gauge-invariant part of the perturbation
(1)
X

Q. As examples, the linearized

Einstein tensor
(1)
X

G b
a and the linear perturbation of the energy–momentum tensor

(1)
X

T b
a

are also decomposed as follows:

(1)
X

G b
a = (1)

G
b

a [F ] + £
XYG b

a ,
(1)
X

T b
a = (1)

T
b

a + £
XYT b

a , (8)

where Gab and Tab are the background values of the Einstein tensor and the energy–
momentum tensor, respectively [34,41]. Through the background Einstein equation

G b
a = 8πT b

a , the linearized Einstein equation
(1)
X

Gab = 8π
(1)
X

Tab is automatically given in
the gauge-invariant form

(1)
G

b
a [F ] = 8π(1)

T
b

a [F , ϕ], (9)

even if the background Einstein equation is nontrivial. Here, “ϕ” in Equation (9) symboli-
cally represents the matter degree of freedom.

Finally, we comment on the coordinate transformation induced by the
gauge-transformation Φϵ of the second kind [12,39]. To see this, we introduce the co-
ordinate system {Oα, ψα} on the background spacetime M , where Oα are open sets on
the background spacetime and ψα are diffeomorphisms from Oα to R

4 (4 = dim M ). The
coordinate system {Oα, ψα} is the set of collections of the pair of open sets Oα and dif-
feomorphism ψα : Oα 7→ R

4. If we employ a gauge choice Xϵ of the second kind, we
have the correspondence of the physical spacetime Mϵ and the background spacetime M .
Together with the coordinate system ψα on M , this correspondence Xϵ between Mϵ and
M induces the coordinate system on Mϵ. Actually, Xϵ(Oα) for each α is an open set of
Mϵ. Then, ψα ◦ X −1

ϵ becomes a diffeomorphism from an open set Xϵ(Oα) ⊂ Mϵ to R
4.

This diffeomorphism ψα ◦X −1
ϵ induces a coordinate system of an open set on Mϵ. When

we have two different gauge choices, Xϵ and Yϵ, of the second kind, ψα ◦ X −1
ϵ : Mϵ 7→

R
4 ({xµ}) and ψα ◦ Y −1

ϵ : Mϵ 7→ R
4 ({yµ}) become different coordinate systems on Mϵ.

We can also consider the coordinate transformation from the coordinate system ψα ◦X −1
ϵ

to another coordinate system ψα ◦ Y −1
ϵ . Because the gauge-transformation Xϵ → Yϵ is

induced by the diffeomorphism Φϵ := (Xϵ)
−1 ◦Yϵ, this diffeomorphism Φϵ induces the

coordinate transformation as

yµ(q) := xµ(p) =
(

(Φ−1
ϵ )∗xµ

)

(q), (10)

in the passive point of view [33,49], where p, q ∈ M are identified to the same point
“p" ∈ Mϵ by the gauge choices Xϵ and Yϵ, respectively. If we represent this coordinate
transformation in terms of the Taylor expansion (3), we have the coordinate transformation

yµ(q) = xµ(q)− ϵξ
µ

(1)
(q) + O(ϵ2). (11)

We should emphasize that the coordinate transformation (11) is not the starting point
of the gauge-transformation, but a result of the above framework.

On the other hand, we may consider the point replacement by the one-parameter
diffeomorphism s = Ψλ(r), where s, r ∈ Mϵ and λ is an infinitesimal parameter satisfying
Ψλ=0(r) = r. The pull-back Ψ∗

λ of any tensor field Q on Mϵ is given by

Q(s) = Q(Ψλ(r)) = (Ψ∗
λ)Q(r)

= Q(r) + λ £ζ Q
∣

∣

λ=0
(r) + O(λ2), (12)

where ζa is the generator of the pull-back Ψ∗
λ. Equation (12) is just the formula of the Taylor

expansion on the manifold Mϵ without using any coordinate system. At the same time,
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Equation (12) is the definition of the Lie derivative £ζ and its generator ζa. In the literature,
this formula is derived from the coordinate transformation

yµ(s) := xµ(r) + λζµ(r) + O(λ2), (13)

as explained in [14]. The Formula (12) of the Taylor expansion is defined without any
coordinate system; the second term in the right-hand side of Equation (12) represents the
actual difference of the tensor fields Q(s) and Q(r) in the different point s ̸= r and its
physical meaning.

If we consider a formal metric decomposition ḡab = (0)gab + λhab + O(λ2) within Mϵ

as an example of the tensor field Q in Equation (12), Formula (12) is given by

(0)gab(s) + λhab(s) =
(0)gab(r) + λ

(

hab(r) + £ζ
(0)gab

∣

∣

∣

r

)

+ O(λ2). (14)

Since the formula of the Taylor expansion (12) is derived from the infinitesimal coordi-

nate transformation rule (13) in the literature, the term £ζ
(0)gab

∣

∣

∣

r
in the right-hand side of

Equation (14) is often called “the degree of freedom of the coordinate transformation” and
“unphysical degree of freedom”. However, since the formula (14) is just a re-expression of

the Taylor expansion (12) defined without any coordinate system, the term £ζ
(0)gab

∣

∣

∣

r
in

Equation (14) should have its physical meaning. If we insist that the term £ζ
(0)gab

∣

∣

∣

r
that

appears due to the point replacement on the single manifold is “unphysical”, this directly
leads the statement that “the famous arguments of the Killing vector and the symmetry
of the spacetime are physically meaningless”. Therefore, we have to emphasize that we
“cannot” regard the second term of the right-hand side of Equation (12) as an “unphysical
degree of freedom”.

In our series of papers [12–16] and in this paper, we classify the term £ζ
(0)gab

∣

∣

∣

r
in Equa-

tion (14) as one of “gauge-degree of freedom of the first kind”. This classification is based
on the fact that this term can be eliminated the infinitesimal coordinate transformation (13)
which operates within the single manifold Mϵ. Furthermore, Equation (14) does not imply

that hab(s) = hab(r) + £ζ
(0)gab

∣

∣

∣

r
; rather, it indicates that (0)gab(s) =

(0)gab(r) + λ £ζ
(0)gab

∣

∣

∣

r

+ O(λ2). Moreover, we also have to emphasize that the infinitesimal coordinate transfor-
mation (13) is essentially different from the infinitesimal coordinate transformation (11).
The former represents the replacement of a point within the single manifold Mϵ, while
the latter refers to a change in the coordinate label at the same point in the background
spacetime M .

2.2. Linear Perturbations on Spherically Symmetric Background Spacetime

Here, we consider the 2+2 formulation of the perturbation of a spherically symmet-
ric background spacetime, which originally proposed by Gerlach and Sengupta [24–27].
Spherically symmetric spacetimes are characterized by the direct product M = M1 × S2,
and their metric is

gab = yab + r2γab, (15)

yab = yAB(dxA)a(dxB)b, γab = γpq(dxp)a(dxq)b, (16)

where xA = (t, r), xp = (θ, ϕ), and γpq is the metric on the unit sphere. In the Schwarzschild
spacetime, the metric (15) is given by

yab = − f (dt)a(dt)b + f−1(dr)a(dr)b, f = 1 −
2M

r
, (17)

γab = (dθ)a(dθ)b + sin2 θ(dϕ)a(dϕ)b = θaθb + ϕaϕb, (18)

θa = (dθ)a, ϕa = sin θ(dϕ)a. (19)
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On this background spacetime (M , gab), the components of the metric perturbation is
given by

hab = hAB(dxA)a(dxB)b + 2hAp(dxA)(a(dxp)b) + hpq(dxp)a(dxq)b. (20)

Here, we note that the components hAB, hAp, and hpq are regarded as components of

scalar, vector, and tensor on S2, respectively. In [14], we showed the linear independence of
the set of harmonic functions

{

Sδ, D̂pSδ, ϵpqD̂qSδ,
1

2
γpqSδ,

(

D̂pD̂q −
1

2
γpq

)

Sδ, 2ϵr(pD̂q)D̂
rSδ

}

, (21)

where D̂p is the covariant derivative associated with the metric γpq on S2, D̂p = γpqD̂q,
and ϵpq = ϵ[pq] = 2θ[pϕq] is the totally antisymmetric tensor on S2. In the set of harmonic
function (21), the scalar harmonic function Sδ is given by

Sδ =











Ylm for l ≥ 2;
k(∆̂+2)m for l = 1;

k(∆̂) for l = 0,
(22)

where functions k(∆̂) and k(∆̂+2)m are the kernel modes of the derivative operator ∆̂ and

[∆̂ + 2], respectively, and we employ the explicit form of these functions as

k(∆̂) = 1 + δ ln

(

1 − cos θ

1 + cos θ

)1/2

, δ ∈ R, (23)

k(∆̂+2,m=0) = cos θ + δ

(

1

2
cos θ ln

1 + cos θ

1 − cos θ
− 1

)

, δ ∈ R, (24)

k(∆̂+2,m=±1) =

[

sin θ + δ

(

+
1

2
sin θ ln

1 + cos θ

1 − cos θ
+ cot θ

)]

e±iϕ. (25)

Then, we consider the mode decomposition of the components {hAB, hAp, hpq}
as follows:

hAB =∑
l,m

h̃ABSδ, (26)

hAp = r ∑
l,m

[

h̃(e1)AD̂pSδ + h̃(o1)AϵpqD̂qSδ

]

, (27)

hpq = r2 ∑
l,m

[

1

2
γpq h̃(e0)Sδ + h̃(e2)

(

D̂pD̂q −
1

2
γpqD̂rD̂r

)

Sδ + 2h̃(o2)ϵr(pD̂q)D̂
rSδ

]

. (28)

Since the linear independence of each element of the set of harmonic function (21) is
guaranteed, the one-to-one correspondence between the components {hAB, hAp, hpq} and

the mode coefficients {h̃AB, h̃(e1)A, h̃(o1)A, h̃(e0), h̃(e2), h̃(o2)} with the decomposition formu-
lae (26)–(28) is guaranteed, including the l = 0, 1 mode if δ ̸= 0. Then, the mode-by-mode
analysis including l = 0, 1 is possible when δ ̸= 0. However, the mode functions (23)–(25)
are singular if δ ̸= 0. When δ = 0, we have k(∆̂) ∝ Y00 and k(∆̂+2)m ∝ Y1m, but the linear

dependence of the set of harmonics (21) is lost in this case. Because of this situation, we
proposed the following strategy.

Proposal 1. We decompose the metric perturbation hab on the background spacetime with the met-
rics (15)–(18) through Equations (26)–(28), with the harmonic function Sδ given by Equation (22).
Then, Equations (26)–(28) become invertible, including l = 0, 1 modes. After deriving the mode-by-
mode field equations, such as linearized Einstein equations by using the harmonic functions Sδ, we
choose δ = 0 as the regular boundary condition for solutions when we solve these field equations.
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As shown in [14], once we accept Proposal 1, Conjecture 1 becomes the following
statement.

Theorem 1. If the gauge-transformation rule for a perturbative pulled-back tensor field hab to the
background spacetime M is given by Y hab − Xhab = £ξ(1)

gab with the background metric gab

with spherically symmetry, then there exist a tensor field Fab and a vector field Ya, such that hab is
decomposed as hab =: Fab + £Ygab, where Fab and Ya are transformed into YFab − XFab = 0
and YYa − XYa = ξa

(1)
under the gauge transformation, respectively.

Actually, the gauge-dependent variable Ya is given by

Ya := ∑
l,m

ỸASδ(dxA)a + ∑
l,m

(

Ỹ(e1)D̂pSδ + Ỹ(o1)ϵpqD̂qSδ

)

(dxp)a, (29)

where

ỸA := rh̃(e1)A −
r2

2
D̄A h̃(e2), (30)

Ỹ(e1) :=
r2

2
h̃(e2), (31)

Ỹ(o1) := −r2h̃(o2). (32)

Furthermore, including l = 0, 1 modes, the components of the gauge-invariant part
Fab of the metric perturbation hab is given by

FAB = ∑
l,m

F̃ABSδ, (33)

FAp = r ∑
l,m

F̃AϵpqD̂qSδ, D̂p
FAp = 0, (34)

Fpq =
1

2
γpqr2 ∑

l,m

F̃Sδ, (35)

where F̃AB, F̃A, and F̃ are given by

F̃AB := h̃AB − 2D̄(AỸB), (36)

F̃A := h̃(o1)A + rD̄A h̃(o2), (37)

F̃ := h̃(e0) −
4

r
ỸAD̄Ar + h̃(e2)l(l + 1). (38)

Thus, we have constructed gauge-invariant metric perturbations on the Schwarzschild
background spacetime including l = 0, 1 modes.

Furthermore, from Equations (33)–(38) for the gauge-invariant variables FAB, FAp,
and Fpq, and gauge-dependent variables Ya, defined by Equations (29)–(32), the original
components {hAB, hAp, hpq} of the metric perturbation (26)–(28) are given by

hab = Fab + £Ygab. (39)

This is the assertion of Theorem 1.
The aim of our proposal is to add a greater degree of freedom of the metric pertur-

bations so that the decomposition (39) is guaranteed, even in the case of l = 0, 1 modes.
Therefore, it is impossible to reach the final expression (39) if we treat the metric perturba-
tion by using Sδ=0 = Ylm in the decomposition formulae (26)–(28) from the starting point.
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To see this more specifically, we show an explicit example of the l = 1 odd-mode
perturbation. If we apply our proposal to the decomposition formulae (26)–(28), l = 1
odd-mode perturbation is given by

hab = 2rh̃
(l=1)
(o1)A

ϵpqD̂qSδ(dxA)(a(dxp)b) + 2r2h̃
(l=1)
(o2)

ϵr(pD̂q)D̂
rSδ(dxp)(a(dxq)b). (40)

If we use Sδ=0 = Ylm from the starting point, 2ϵr(pD̂q)D̂
rSδ = 0. So, the mode

coefficient h̃
(l=1)
(o2)

does not appear. When δ ̸= 0, the gauge-transformation rule of the

variables h̃
(l=1)
(o1)A

and h̃
(l=1)
(o2)

are given by

Y h̃
(l=1)
(o1)A

− X h̃
(l=1)
(o1)A

= rD̄A

(

1

r
ζ(o)

)

, Y h̃
(l=1)
(o2)

− X h̃
(l=1)
(o2)

= −
1

r
ζ(o), (41)

where the generator of the gauge-transformation is given by ξA = 0 and ξp = rζ(o)ϵpqD̂qSδ.
If we use Sδ=0 = Ylm from the starting point, the gauge-transformation rule for the variable

h̃
(l=1)
(o2)

does not appear. However, in our case, this gauge-transformation appears due

to the fact ϵr(pD̂q)D̂
rSδ ̸= 0. Inspecting these gauge-transformation rules, we rewrite

Equation (40) as follows:

hab = 2r
[(

h̃
(l=1)
(o1)A

+ rD̄A h̃(o2)

)

− rD̄A h̃(o2)

]

ϵpqD̂qSδ(dxA)(a(dxp)b)

+2r2h̃
(l=1)
(o2)

ϵr(pD̂q)D̂
rSδ(dxp)(a(dxq)b)

= 2r

[

F̃A − rD̄A

(

1

r2
Ỹ(o1)

)]

ϵpqD̂qSδ(dxA)(a(dxp)b)

+2r2

(

1

r2
Ỹ(o1)

)

ϵr(pD̂q)D̂
rSδ(dxp)(a(dxq)b). (42)

In Equation (42), F̃A is the gauge-invariant variable for the metric perturbation, defined
by Equation (37), and Ỹ(o1) is the gauge-dependent part of the metric perturbation, defined

by Equation (32). The terms of Ỹ(o1) in Equation (42) can be written in the form of the Lie
derivative of the background metric, as in Equation (39). When δ = 0, Equation (42) is
given by

hab = 2r

[

F̃A − rD̄A

(

1

r2
Ỹ(o1)

)]

ϵpqD̂qSδ(dxA)(a(dxp)b). (43)

This is also given in the form (39).
When we construct the gauge-invariant variable F̃A in Equations (42) and (43), the

existence of the coefficient h̃
(l=1)
(o2)

= Ỹ(o1)/r2 is essential, which does not appear in the

treatment using the spherical harmonics Ylm from the starting point. Actually, in this
conventional case, we cannot define the gauge-invariant variable for l = 1 odd-mode
perturbation in the same manner as l ≥ 2-mode case. Proposal 1 makes the degree of
freedom of the metric perturbations increase. We have to emphasize that we can reach the
decomposition (39) owing to this additional degree of freedom.

To discuss the linearized Einstein Equation (9), and the linear perturbation of the
continuity equation,

∇a
(1)

T
a

b = 0 (44)

of the gauge-invariant energy–momentum tensor (1)T a
b := gac(1)Tbc on a vacuum back-

ground spacetime, we consider the mode-decomposition of the gauge-invariant part (1)Tbc

of the linear perturbation of the energy–momentum tensor through the set (21) of the
harmonics as follows:
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(1)
Tab = ∑

l,m

T̃ABSδ(dxA)a(dxB)b + r ∑
l,m

{

T̃(e1)AD̂pSδ + T̃(o1)AϵprD̂rSδ

}

2(dxA)(a(dxp)b)

+r2 ∑
l,m

{

T̃(e0)
1

2
γpqSδ + T̃(e2)

(

D̂pD̂qSδ −
1

2
γpqD̂rD̂rSδ

)

+T̃(o2)2ϵr(pD̂q)D̂
rSδ

}

(dxp)a(dxq)b. (45)

In [14], we derived the linearized Einstein equations, discussed the odd-mode pertur-
bation F̃Ap in Equation (34), and derived the l = 1 odd-mode solutions to these equations.

The Einstein equation for even-mode F̃AB and F̃ in Equations (33) and (35), also derived
in [14], and l = 0, 1 even-mode solutions, are derived in [15]. Since these solutions include
the Kerr parameter perturbation and the Schwarzschild mass parameter perturbation of
the linear order in the vacuum case, these are physically reasonable. Then, we conclude
that our proposal is also physically reasonable. Furthermore, we also checked the fact that
our derived solutions include the linearized LTB solution and non-rotating C-metric with
the Schwarzschild background in [16].

The purpose of this paper is to compare our proposed gauge-invariant treatments for
l = 0, 1-mode perturbations on the Schwarzschild background spacetime with conventional
“complete gauge-fixing treatments” in which we use the spherical harmonics Ylm from the
starting point. For this purpose, the linearized Einstein equations for the l = 0, 1-modes
and their solutions based on our proposal are necessary. Therefore, we review them below.

2.3. l = 1 Odd-Mode Linearized Einstein Equations and Solutions

As derived in [14], the l = 1 odd-mode part in the linearized Einstein equations are
simplified as the constraint equation

D̄D(rF̃D) = 0, (46)

and the evolution equation

−

[

D̄DD̄D −
2

r2

]

(rF̃A)−
2

r2
(D̄Dr)(D̄Ar)(rF̃D) +

2

r
(D̄Dr)D̄A(rF̃D)

= 16πrT̃(o1)A, (47)

where we choose T̃(o2) = 0 by hand. Furthermore, we have the continuity equation

D̄C T̃(o1)C +
3

r
(D̄Dr)T̃(o1)D = 0 (48)

for the l = 1 odd-mode matter perturbation, which is derived from the divergence of the
first-order perturbation of the energy–momentum tensor.

We also note that the constraint (46) comes from the traceless part of the (q, p)-
component of the Einstein Equation (9), which is the coefficient of the mode function
2ϵr(pD̂q)D̂

pSδ. If δ = 0, i.e., the scalar harmonics Sδ are the spherical harmonics Ylm,

2ϵr(pD̂q)D̂
pSδ = 0 for l = 1. Therefore, Constraint (46) does not appear when we use the

spherical harmonics Ylm from the starting point.
The explicit strategy to solve these odd-mode perturbations and l = 0, 1 mode solu-

tions was discussed in [14]. As a result, we obtained the l = 1 odd-mode “formal” solution
as follows:

2FAp(dxA)(a(dxp)b) = 6Mr2

[

∫

dr
a1(t, r)

r4

]

sin2 θ(dt)(a(dϕ)b) + £V gab, (49)

Va =
(

β1t + β0 + W(o)(t, r)
)

r2 sin2 θ(dϕ)a, (50)
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where

a1(t, r) = −
16π

3M
r3 f

∫

dtT̃(o1)r + a10

= −
16π

3M

∫

drr3 1

f
T̃(o1)t + a10. (51)

The constant a10 in Equation (51) corresponds to the Kerr parameter. Furthermore,
the function W(o)(t, r) in Equation (50) is related to the solution to the l = 1-mode Regge–
Wheeler equation

∂2
t Z(o) − f ∂r( f ∂rZ(o)) +

1

r2
f [l(l + 1)− 3(1 − f )]Z(o) = 16π f 2T̃(o1)r, (52)

where Z(o) = r f ∂rW(o). We have to solve Equation (52) to obtain the function W(o)(t, r). In
this sense, the solution (50) should be regarded as the “formal” one.

2.4. l = 0, 1 Even-Mode Linearized Einstein Equations and Solutions

The l = 0, 1 even-mode part of the linearized Einstein Equation (9) is summarized
as follows:

F̃ D
D = 0, (53)

D̄D
F̃AD −

1

2
D̄A F̃ = 16πrT̃(e1)A, (54)

where the variable F̃AB is the traceless part of the variable F̃AB, defined by

F̃AB := F̃AB −
1

2
yAB F̃ C

C (55)

and we choose the component of the energy–momentum tensor by hand, so that T̃(e2) = 0.

Owing to the same choice T̃(e2) = 0, we also have the evolution equations

(

D̄DD̄D +
2

r
(D̄Dr)D̄D −

(l − 1)(l + 2)

r2

)

F̃ −
4

r2
(D̄Cr)(D̄Dr)F̃CD=16πS(F), (56)

S(F) := T̃ C
C + 4(D̄Dr)T̃D

(e1), (57)
[

−D̄DD̄D −
2

r
(D̄Dr)D̄D +

4

r
(D̄DD̄Dr) +

l(l + 1)

r2

]

F̃AB

+
4

r
(D̄Dr)D̄(AF̃B)D −

2

r
(D̄(Ar)D̄B) F̃

= 16πS(F)AB, (58)

S(F)AB := T̃AB −
1

2
yABT̃ C

C − 2

(

D̄(A(rT̃(e1)B))−
1

2
yABD̄D(rT̃(e1)D)

)

+2yAB(D̄Cr)T̃(e1)C, (59)

for the variable F̃ and the traceless variable F̃AB with l = 0, 1. We also have to take into
account the even-mode part of the continuity equation as follows:

D̄C T̃ B
C +

2

r
(D̄Dr)T̃ B

D −
1

r
l(l + 1)T̃B

(e1) −
1

r
(D̄Br)T̃(e0) = 0, (60)

D̄C T̃(e1)C +
3

r
(D̄Cr)T̃(e1)C +

1

2r
T̃(e0) = 0, (61)

for l = 0, 1.
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We also note that the constraint (53) comes from the traceless part of the (q, p)-
component of the Einstein tensor (9), which is the coefficient of the mode function
(

D̂pD̂q −
1
2 γpqD̂rD̂r

)

Sδ. If δ = 0, i.e., the scalar harmonics Sδ is the spherical harmon-

ics Ylm,
(

D̂pD̂q −
1
2 γpqD̂rD̂r

)

Sδ = 0 for l = 1. Therefore, the constraint (53) does not

appear when we use the spherical harmonics Ylm from the starting point.

2.4.1. l = 1 Even-Mode Solution

In [15], we derived the l = 1 solution to Equations (53), (54), (56), (58), (60) and (61)
with l = 1. For the m = 0 mode, in [15], we derived the following “formal” solution to the
linearized Einstein equation:

Fab = £V gab −
16πr2

3(1 − f )

[

f 2

{

1 + f

2
T̃rr + r f ∂r T̃rr − T̃(e0) − 4T̃(e1)r

}

(dt)a(dt)b

+
2r

f

{

∂tT̃tt −
3 f (1 − f )

2r
T̃tr

}

(dt)(a(dr)b)

+
r

f

{

∂r T̃tt −
3(1 − 3 f )

2r f
T̃tt

}

(dr)a(dr)b

+r2T̃ttγab

]

cos θ, (62)

where the vector field Va is given by

Va := −r∂tΦ(e) cos θ(dt)a +
(

Φ(e) − r∂rΦ(e)

)

cos θ(dr)a − rΦ(e) sin θ(dθ)a. (63)

Here, the variable Φ(e) is a solution to the l = 1 Zerilli equation,

−∂2
t Φ(e) + f ∂r

[

f ∂rΦ(e)

]

−
f (1 − f )

r2
Φ(e)

=
4πr

3(1 − f )

[

3(1 − 3 f )T̃tt + (1 + f ) f 2T̃rr − 2r f ∂r T̃tt

+2r f 3∂r T̃rr − 2 f 2T̃(e0) − 8 f 2T̃(e1)r

]

. (64)

If we obtain the solution to the l = 1 Zerilli Equation (64), we can write the explicit
form of the solution (62) through the generator Va, defined by Equation (63). In this sense,
we have to regard the solution (62) as a “formal” one.

2.4.2. l = 0 Even-Mode Solution

On the other hand, for the l = 0-mode, we may choose T̃(e1)A = 0 in Equations (53),
(54), (56)–(61) with l = 0. Then, we derived the l = 0-mode solution

Fab =
2

r

(

M1 + 4π
∫

dr
r2

f
Ttt

)(

(dt)a(dt)a +
1

f 2
(dr)a(dr)a

)

+2

[

4πr
∫

dt

(

1

f
T̃tt + f T̃rr

)]

(dt)(a(dr)b) + £V gab, (65)

where

Va =

(

f

4
Υ +

r f

4
∂rΥ −

rΞ(r)

(1 − 3 f )
+ f

∫

dr
2Ξ(r)

f (1 − 3 f )2

)

(dt)a +
1

4 f
r∂tΥ(dr)a. (66)
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Here, the variable F̃ =: ∂tΥ must satisfy the equation

−
1

f
∂2

t Υ + ∂r( f ∂rΥ) +
3(1 − f )

r2
Υ −

8

r3

∫

dtm1(t, r)−
4

1 − 3 f
∂rΞ(r)

= 16π
∫

dt

(

−
1

f
T̃tt + f T̃rr

)

, (67)

where m1(t, r) is given by

m1(t, r) = 4π
∫

dr
r2

f
T̃tt + M1 = 4π

∫

dtr2 f T̃tr + M1, (68)

where M1 is the constant corresponding to the Schwarzschild mass perturbation, and Ξ(r)
is an arbitrary function of r.

3. Rule of Comparison and Gauge-Transformation Rules in a Conventional Gauge-Fixing

The main purpose of this paper is to check the following statement: “Gauge-invariant
formulations of perturbations are equivalent to complete gauge-fixing approaches”. How-
ever, this statement is too ambiguous to check if we have the background knowledge
explained in Section 2. For example, there is no explanation of the terminology “gauge” in
this statement. Therefore, we have to clarify this statement as follows.

Description 1 (Our rule for comparison). First of all, we assume the terminology “gauge” in
the statement “Gauge-invariant formulations of perturbations are equivalent to complete gauge-
fixing approaches” is the second-kind gauge, which is explained in Section 2.1. Therefore, the
gauge-transformation rule for this statement is given by (4). Furthermore, the degree of freedom
that changes under this gauge-transformation rule is regarded as “unphysical”. In the context of
this statement, “gauge-fixing” is a specification of some perturbative variables through the degree
of freedom of the generator ξa

(1)
. Furthermore, “complete gauge-fixing” a specification of some

perturbative variables through the “entire” degree of freedom of the generator ξa
(1)

.

These are all rules of our game to compare our gauge-invariant formulation and a
“conventional complete gauge-fixing approach” in which we use the spherical harmonics
Ylm from the starting point.

3.1. Metric Perturbations

Based on the conceptual premise outlined above, we examine the metric pertur-
bation hab on the background Schwarzschild spacetime (M , gab), whose metric gab is
given by Equations (15)–(19). We consider the components of the metric perturbation
hab as Equation (20), and the decomposition of these components {hAB, hAp, hpq} as
Equations (26)–(28). Our focus is on the case where Sδ = Ylm =: S, where Ylm is the
conventional spherical harmonics.

Since we choose S = Ylm, we have D̂pS = ϵpqD̂qS = 0,
(

D̂pD̂q −
1
2 γpqD̂rD̂r

)

S =

2ϵr(pD̂q)D̂
rS = 0 for l = 0 modes. For l = 1 modes, we have

(

D̂pD̂q −
1
2 γpqD̂rD̂r

)

S =

2ϵr(pD̂q)D̂
rS = 0. Due to these facts, we cannot construct gauge-invariant variables for

l = 0, 1 modes in a similar manner to the derivation of Equations (36)–(38) for l ≥ 2 modes.
Then, we cannot use the gauge-invariant formulation reviewed in Section 2. Instead, we
have to fix the second-kind gauge-degree of freedom to exclude the “unphysical” degree
of freedom.

3.2. Conventional Gauge-Transformation Rules for l = 0, 1 Metric Perturbations

Here, we consider the gauge-transformation rule,

Y hab − Xhab = £ξ gab = 2∇(aξb). (69)
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From this gauge-transformation rule, we can derive the gauge-transformation rule for
the components {hAB, hAp, hqp}, defined by Equation (20), is given by

Y hAB − XhAB = £ξ gAB = ∇AξB +∇BξA = D̄AξB + D̄BξA, (70)

Y hAp − XhAp = £ξ gAp = ∇Aξp +∇pξA = D̄Aξp + D̂pξA −
2

r
(D̄Ar)ξp, (71)

Y hpq − Xhpq = £ξ gpq = ∇pξq +∇qξp = D̂pξq + D̂qξp + 2r(D̄Ar)γpqξA (72)

from the formulae summarized in Appendix B of [14]. Here, we consider the Fourier
transformation of ξa =: ξA(dxA)a + ξp(dxp)a as

ξA = ∑
l,m

ζAS, ξp = r ∑
l,m

(

ζ(e)D̂pS + ζ(o)ϵpqD̂pS
)

. (73)

In terms of these Fourier transformed variables, Equations (70)–(72) are given by

Y hAB − XhAB = D̄AξB + D̄BξA = ∑
l,m

2D̄(AζB)S, (74)

Y hAp − XhAp = D̄Aξp + D̂pξA −
2

r
(D̄Ar)ξp

= r ∑
l,m

[(

1

r
ζA + D̄Aζ(e) −

1

r
(D̄Ar)ζ(e)

)

D̂pS

+

(

D̄Aζ(o) −
1

r
(D̄Ar)ζ(o)

)

ϵpqD̂pS

]

, (75)

Y hpq − Xhpq = D̂pξq + D̂qξp + 2r(D̄Ar)γpqξA

= r2 ∑
l,m

[

4

r

(

−
l(l + 1)

2
ζ(e) + (D̄Ar)ζA

)

1

2
γpqS

+
2

r
ζ(e)

(

D̂pD̂qS −
1

2
γpqD̂rD̂rS

)

−
1

r
ζ(o)2ϵr(qD̂p)D̂

rS

]

. (76)

Here, we used the property of the mode function S is an eigen function of the Laplacian
D̂rD̂r := γrsD̂rD̂s as

D̂rD̂rS = −l(l + 1)S, S = Ylm. (77)

3.2.1. l ≥ 2 Perturbations

For l ≥ 2 modes, the set of mode functions

{

S, D̂pS, ϵpqD̂qS,
1

2
γpqS,

(

D̂pD̂q −
1

2
γpqD̂rD̂r

)

S, 2ϵr(pD̂rD̂q)S

}

(78)

is a linear-independent set of the tensor field of the rank 0, 1, and 2, even if S = Ylm.
Then, we may compare Equations (26)–(28) and Equations (74)–(76). As a result of this
comparison, we obtain the gauge-transformation rules for the mode functions {h̃AB, h̃(e1)A,

h̃(o1)A, h̃(e0), h̃(e2), h̃(o2)} as
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Y h̃AB − X h̃AB = 2D̄(AζB), (79)

Y h̃(e1)A − X h̃(e1)A =
1

r
ζA + D̄Aζ(e) −

1

r
(D̄Ar)ζ(e), (80)

Y h̃(o1)A − X h̃(o1)A = D̄Aζ(o) −
1

r
(D̄Ar)ζ(o), (81)

Y h̃(e0) − X h̃(e0) =
4

r

(

−
l(l + 1)

2
ζ(e) + (D̄Ar)ζA

)

, (82)

Y h̃(e2) − X h̃(e2) =
2

r
ζ(e), (83)

Y h̃(o2) − X h̃(o2) = −
1

r
ζ(o). (84)

These gauge-transformation rules yields the well-known fact we can construct gauge-
invariant variables and gauge-dependent variables, and that Conjecture 1 is valid for
l ≥ 2 modes.

3.2.2. l = 1 Perturbations

As shown in Appendix A in Ref. [14], for l = 1 modes,

D̂pY1m ̸= 0 ̸= ϵpqD̂qY1m (85)

but
(

D̂pD̂q −
1

2
D̂rD̂r

)

Y1m = 0 = 2ϵr(pD̂q)D̂
rY1m. (86)

In this case, the Fourier transformation (26)–(28) of the metric perturbation with
Sδ = S = Ylm is given by

hAB = ∑
m

h̃ABS, (87)

hAp = ∑
m

rh̃(e1)AD̂pS + ∑
m

rh̃(o1)AϵpqD̂qS, (88)

hpq = ∑
m

r2

2
γpq h̃(e0)S. (89)

Furthermore, the gauge-transformation rules (74)–(76) for each m mode are given by

Y h̃AB − X h̃AB = 2D̄(AζB), (90)

Y h̃(e1)A − X h̃(e1)A =
1

r
ζA + D̄Aζ(e) −

1

r
(D̄Ar)ζ(e), (91)

Y h̃(o1)A − X h̃(o1)A = D̄Aζ(o) −
1

r
(D̄Ar)ζ(o), (92)

Y h̃(e0) − X h̃(e0) = −
4

r
ζ(e) +

4

r
(D̄Ar)ζA. (93)

Comparing the gauge-transformation rules (79)–(84) for l ≥ 2 with the gauge-
transformation rules (90)–(93), it is easy to find that the gauge-transformation rules (83)
and (84) for l ≥ 2 do not appear in the l = 1-mode gauge-transformation. This is due to
Equation (86), and the reason why we cannot construct gauge-invariant variables for l = 1
mode perturbations in a similar method to the l ≥ 2 case.
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3.2.3. l = 0 Perturbations

The spherical harmonic function S = Ylm is constant when l = 0. In this case, the
Fourier transformation (26)–(28) of the metric perturbation with Sδ = S = Ylm is given by

hAB = h̃ABS, (94)

hAp = 0, (95)

hpq =
r2

2
γpq h̃(e0)S. (96)

The gauge-transformation rules (74)–(76) are given by

Y h̃AB − X h̃AB = 2D̄(AζB) = D̄AζB + D̄BζA, (97)

Y h̃(e0) − X h̃(e0) =
4

r
(D̄Ar)ζA. (98)

It is easy to see that many gauge-transformation rules in (79)–(84) are missing. This is
due to the following facts:

D̂pS = ϵpqD̂qS = 0,

(

D̂qD̂p −
1

2
γpqD̂rD̂r

)

S = 2ϵr(pD̂q)D̂
rS = 0. (99)

These are the reasons why we cannot construct gauge-invariant variables for
l = 0-mode perturbations in a similar method to the l ≥ 2 case.

4. l = 1 Odd-Mode Perturbation in the Conventional Approach

As discussed in Section 3.2.2, l = 1 mode perturbations are given by Equations (87)–(89).
In particular, among these expressions of the l = 1-mode perturbation, odd-mode pertur-
bation is given by

hAB = 0, hAp = rh̃(o1)AϵpqD̂qS, hpq = 0. (100)

As the property of the l = 1 spherical harmonics, we obtain Condition (86). For
odd-mode perturbation we have

2ϵr(pD̂q)D̂
rY1m = 0. (101)

Here, we apply the notation that is introduced by Equations (A14) and (A15) in
Appendix A, and we obtain

h̄AB = 0, h̄ D
A = 0, h̄pD := γpqyDErh̃(o1)EϵqrD̂rS, h̄

q
p = 0, h̄pq = 0, (102)

for l = 1 odd-mode perturbations. Through this notation of the metric perturbation, the
linear perturbations (A16)–(A18) of the Einstein tensor are given by

(1)G B
A = 0, (103)

(1)G
q

A =
1

2r

[

D̄AD̄C h̃(o1)C − D̄CD̄C h̃(o1)A −
2

r
(D̄Cr)D̄C h̃(o1)A

+
3

r
(D̄Cr)D̄A h̃(o1)C −

1

r
(D̄Ar)D̄C h̃(o1)C +

1

2r2
(D̄Cr)(D̄Cr)h̃(o1)A

−
2

r2
(D̄Ar)(D̄Cr)h̃(o1)C +

3

2r2
h̃(o1)A

]

ϵqrD̂rS, (104)

(1)G
q

p = −
1

2r2
D̄C

(

rh̃(o1)C

)

γqr2ϵs(pD̂r)D̂
sS = 0. (105)
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The final equality in Equation (105) is due to the property of the spherical harmonics
Ylm (101). Furthermore, Expression (104) is gauge-invariant under the gauge-transformation

rule (92). On the other hand, the D̄C
(

rh̃(o1)C

)

in Equation (105) is not gauge-invariant, as

shown below. However, the gauge-invariance of the linear-order Einstein tensor (1)G b
a is

guaranteed by the identity 2ϵs(pD̂r)D̂
sS = 0 for the l = 1 odd-mode perturbations.

For the l = 1 odd-mode perturbations, the components of the linearized energy–
momentum tensor are summarized as

(1)T B
A = 0, (1)T

q
A =

1

r
T̃(o1)AϵqrD̂rS, (1)T

q
p = 0. (106)

Then, the linearized Einstein equations for the odd-mode perturbations are given by

D̄AD̄C h̃(o1)C − D̄CD̄C h̃(o1)A

−
2

r
(D̄Cr)D̄C h̃(o1)A +

3

r
(D̄Cr)D̄A h̃(o1)C −

1

r
(D̄Ar)D̄C h̃(o1)C

+
1

2r2
(D̄Cr)(D̄Cr)h̃(o1)A −

2

r2
(D̄Ar)(D̄Cr)h̃(o1)C +

3

2r2
h̃(o1)A

= 16πT̃(o1)A, (107)

Although the equation

D̄C
(

rh̃(o1)C

)

= 0 (108)

does not appear from Equation (105) due to the fact that 2ϵs(pD̂r)D̂
sY1m = 0, we may use

Equation (108) as a gauge condition. As noted in Section 3.2.2, the gauge-transformation rule
for the variable h̃(o1)C is given by Equation (92). From the gauge-transformation rule (92), we
consider the gauge-transformation rule for the left-hand side of Equation (108) as

D̄A
(

rY h̃(o1)A

)

− D̄A
(

rX h̃(o1)A

)

= rD̄AD̄Aζ(o) − (D̄AD̄Ar)ζ(o). (109)

Using the background Einstein equation (Equation (B67) of Appendix B in ref. [14]),
we consider the equation

rD̄CD̄Cζ(o) −
1

r

(

1 − (D̄Cr)(D̄Cr)
)

ζ(o) = −D̄C
(

rX h̃(o1)C

)

(110)

More explicitly, Equation (110) is given by

−∂2
t ζ(o) + f ∂r

(

f ∂rζ(o)

)

−
f

r2
(1 − f )ζ(o) = −

f

r
D̄C

(

rX h̃(o1)C

)

(111)

If we choose ζ(o) as a special solution to Equation (111), or equivalently Equation (110),
Equation (108) is regarded as a gauge condition in the Y -gauge, i.e.,

D̄C
(

rY h̃(o1)C

)

= 0. (112)

We have to emphasize that this is not a complete gauge-fixing, since there is room for
a choice of ζ(o) that satisfies the homogeneous equation of Equation (110),

rD̄CD̄Cζ(o) −
1

r

(

1 − (D̄Cr)(D̄Cr)
)

ζ(o) = 0, (113)

i.e.,

−∂2
t ζ(o) + f ∂r

(

f ∂rζ(o)

)

−
f

r2
(1 − f )ζ(o) = 0. (114)
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Under the gauge choice (112), Equation (107) is given by

[

D̄CD̄C −
2

r2

]

(

rh̃(o1)A

)

−
2

r2
(D̄Ar)(D̄Cr)

(

rh̃(o1)C

)

+
2

r
(D̄Cr)D̄A

(

rh̃(o1)C

)

= 16πrT̃(o1)A. (115)

Although the variable rh̃(o1)C is a gauge-dependent variable that is different from the

gauge-invariant variable rF̃A, we can obtain Equation (115) if we replace the variable rF̃A

in Equation (47) with the variable rh̃(o1)C.
We also note that the gauge condition (112) coincides with Equation (46). However, we

must replace the gauge-invariant variable rF̃D with the gauge-dependent variable rh̃(o1)C

in Equation (46) to confirm this coincidence. Furthermore, we also take into account the
continuity Equation (48) of the l = 1 odd-mode perturbation of the energy–momentum
tensor. Thus, the equations to be solved for the l = 1 odd-mode perturbation are the gauge
condition (108), evolution Equation (115), and continuity Equation (48). These equations
coincide with Equations (46)–(48), except for the fact that the variable to be obtained is not
the gauge-invariant variable rF̃D, but the gauge-dependent variable rh̃(o1)C. Then, through
the same logic in ref. [14], we obtain the solution to the gauge condition (112), evolution
Equation (115), and continuity Equation (48) as follows:

2rh̃(o1)C sin2 θ(dxC)(a(dϕ)b) = 6Mr2

[

∫

dr
a1(t, r)

r4

]

sin2 θ(dt)(a(dϕ)b)

+£V gab, , (116)

Va = (β1t + β0 + W(o)(t, r))r2 sin2 θ(dϕ)a. (117)

Here, we concentrate only on the m = 0 solution, β1 and β0 are constant, and Z(o) =
r f ∂rW(o)(t, r) is an arbitrary function that satisfies the equation

∂2
t Z(o) − f ∂r( f ∂rZ(o)) +

1

r2
f [2 − 3(1 − f )]Z(o) = 16π f 2T̃(o1)r. (118)

where a1(t, r) in Equation (116) is given by Equation (6.44) in ref. [14], i.e.,

a1(t, r) = −
16π

3M
r3 f

∫

dtT̃(o1)r + a10

= −
16π

3M

∫

drr3 1

f
T̃(o1)t + a10, (119)

where a10 is the perturbative Kerr parameter.
It is important to note that the formal solution described by Equations (116)–(119)

has the same form as the formal solution described by Equations (49)–(52). However, we
have to emphasize that the variable FAp in Equation (49) is gauge-invariant, as noted
by Equation (43), and the vector field Va in Equation (49) is also gauge-invariant. On the
other hand, the variable h̃(o1)C is still gauge-dependent. Actually, there are remaining
gauge-degrees of freedom of the generator ζ(o) that satisfy Equation (114) as noted above.
This is clear from the fact that the gauge-transformation rule (92) with Equation (114) gives
a still non-trivial transformation rule. This remaining gauge-degree of freedom is so-called
“residual gauge”. For this reason, there is a possibility that Va in Equation (116) includes
this residual gauge.

To determine whether Va in Equation (116) includes the “residual gauge”, we need to
examine Equation (114). According to our rule for comparing our gauge-invariant formu-
lation with a conventional gauge-fixed approach, we consider the terms in Va that satisfy
Equation (114) as representing the second-kind gauge-degrees of freedom. These degrees
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of freedom are considered “unphysical degrees of freedom”. To clarify this “unphysical
degree of freedom”, we introduce the indicator function R(o)[∗] as

R(o)[ζ(o)] := −∂2
t ζ(o) + f ∂r

(

f ∂rζ(o)

)

−
f

r2
(1 − f )ζ(o). (120)

If R(o)[ζ(o)] = 0, we should regard ζ(o) as the second-kind gauge, and we regard ζ(o)
as an “unphysical degree of freedom”.

We can easily confirm that

R(o)[(β1t + β0)r] = 0. (121)

Then, according to our above rule of comparison, we have to conclude that the rigidly
rotating term (β1t + β0)r in Va in Equation (117) should be regarded as the second-kind
gauge-degree of freedom, namely the “unphysical degree of freedom”.

Next, we consider the term W(o)(t, r)r in Equation (117). In this case, the direct
calculation of the indicator R(o)[W(o)(t, r)r] is useless. However, it is useful to consider the
r-derivative of R(o)[W(o)(t, r)r], and we can show that

r f ∂r

(

1

r
R(o)[W(o)(t, r)r]

)

= −∂2
t Z(o) + f ∂r( f ∂rZ(o))−

f

r2
(2 − 3(1 − f ))Z(o), (122)

where we used Z(o) = r f ∂rW(o)(t, r). Since the left-hand side of Equation (122) coincides
with the right-hand side of Equation (118), through Equation (118), we obtain

r f ∂r

(

1

r
R(o)[W(o)(t, r)r]

)

= −16π f 2T̃(o1)r. (123)

or, equivalently,

R(o)[W(o)(t, r)r] = −16πr
∫

dr
f

r
T̃(o1)r. (124)

Then, if we consider the case where T̃(o1)r ̸= 0, we have nonvanishing R(o)[W(o)(t, r)r].
This means that the W(o)(t, r) term does not belong to the second-kind gauge, and we have
to regard the degree of freedom W(o)(t, r) in Equation (117) is a “physical one”.

On the other hand, even in the case where T̃(o1)r = 0, Equation (122) is valid. If
W(o)(t, r) belongs to the second-kind gauge, i.e., R(o)[W(o)(t, r)r] = 0, Equation (122) yields

−∂2
t Z(o) + f ∂r( f ∂rZ(o))−

f

r2
(2 − 3(1 − f ))Z(o) = 0. (125)

However, even if Z(o) is a solution to Equation (125), we cannot directly yield
R(o)[W(o)(t, r)r] = 0. Therefore, considering the following two sets of function W(o)(t, r)r as

G(o) :=
{

rW(o)(t, r)
∣

∣

∣
R(o)[W(o)(t, r)r] = 0

}

, (126)

H(o) :=
{

rW(o)(t, r)
∣

∣

∣
Z(o) = r f ∂rW(o)(t, r),

−∂2
t Z(o) + f ∂r( f ∂rZ(o))−

f

r2
(2 − 3(1 − f ))Z(o) = 0.

}

, (127)

we obtain the relation

G(o) ⊂ H(o). (128)
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According to our rule of comparison, this indicates that a part of the solution to
Equation (125) should be regarded as a gauge-degree of freedom of the second kind, which
is the “unphysical degree of freedom”.

Furthermore, to obtain the explicit solution W(o)(t, r), we have to solve Equation (118)
with appropriate boundary conditions. Equation (118) is an inhomogeneous second-order
linear differential equation for Z(o), and its boundary conditions are adjusted by the homo-
geneous solutions to Equation (118), i.e., the element of the set of functions H(o). However,
a part of this homogeneous solution to Equation (118) should be regarded as an unphysical
degree of freedom in the “complete gauge-fixing approach”, as mentioned above. There-
fore, in the conventional “complete gauge-fixing approach”, the boundary conditions for
Equation (118) is restricted. In this sense, a conventional “complete gauge-fixing approach”
includes a stronger restriction than our proposed gauge-invariant formulation.

5. l = 1 Even-Mode Perturbation in the Conventional Approach

As discussed in Section 3.2.2, l = 1 mode perturbations are given by Equations (87)–(89).
In particular, among these expressions of the l = 1-mode perturbations, even-mode pertur-
bation is given by

hAB = h̃ABS, hAp = rh̃(e1)AD̂pS, hpq =
r2

2
γpq h̃(e0)S. (129)

As the property of the l = 1 spherical harmonics, we obtain the condition (86). For
even-mode perturbation, we have

(

D̂pD̂q −
1

2
γpqD̂rD̂r

)

Y1m = 0. (130)

The gauge-transformation rules for the l = 1 even-mode perturbations are given by
Equations (90), (91), and (93). Inspecting the gauge-transformation rules (91) and (93), we
define the variable H̃ by

H̃ := h̃(e0) − 4(D̄Ar)h̃(e1)A. (131)

The gauge-transformation rule of H̃ is given by

Y H̃ − X H̃ = −4(D̄Ar)D̄Aζ(e) −
4

r

(

1 − (D̄Ar)(D̄Ar)
)

ζ(e). (132)

Furthermore, inspecting gauge-transformation rules (90) and (91), we also define the
variable H̃AB by

H̃AB := h̃AB − D̄A

(

rh̃(e1)B

)

− D̄B

(

rh̃(e1)A

)

. (133)

The gauge-transformation of H̃AB is given by

Y H̃AB − X H̃AB = −2rD̄AD̄Bζ(e) + 2(D̄AD̄Br)ζ(e). (134)

Definitions (131) and (133) of the variables H̃ and H̃AB, respectively, are analogous to
the gauge-invariant variable F̃ and F̃AB defined by Equations (36) and (38) for l ≥ 2 modes,
respectively. However, the variables H̃ and H̃AB are not gauge-invariant. The employment
of the variables H̃ and H̃AB corresponds to the gauge-fixing of the gauge-degree of freedom
of the generator ζA and the specification of the component h̃(e1)A of the metric perturbation.
On the other hand, the gauge-transformation rules (90), (91), and (93) include the gauge
degree of freedom of the generator ζ(e). This gauge-degree of freedom appears in the
gauge-transformation rules (132) and (134).

The linearized Einstein tensor for l = 1 even modes in terms of H̃AB and H̃ are given as
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yCB
(1)G C

A /S =

[

−
1

2
D̄CD̄C +

3

r2
−

1

r
(D̄Cr)D̄C

]

H̃AB + D̄(AD̄C H̃B)C −
1

2
D̄AD̄B H̃ C

C

+
2

r
(D̄Cr)

[

D̄(AH̃B)C −
1

r
(D̄Cr)H̃AB

]

−
1

2
D̄AD̄B H̃ −

1

r
(D̄(Ar)D̄B)H̃

+
1

2
yAB

[[

D̄CD̄C +
3

r
(D̄Cr)D̄C

]

H̃ +

{

D̄DD̄D −
5

r2

}

H̃ C
C

+
1

r
(D̄Cr)

{

2D̄C H̃ D
D +

3

r
(D̄Cr)H̃ D

D

}

− D̄CD̄D H̃CD

−
2

r
(D̄Dr)

{

2D̄C H̃CD +
1

r
(D̄Cr)H̃CD

}]

, (135)

(1)G
q

A =

[

1

2r2
D̄C H̃AC −

1

2r2
D̄AH̃ C

C +
1

2r3
(D̄Ar)H̃ C

C −
1

4r2
D̄A H̃

]

D̂qS, (136)

γqr
(1)G r

p =

[

+
1

4
D̄CD̄C H̃ +

1

2r
(D̄Cr)D̄C H̃ +

1

2

{

+D̄CD̄C +
1

r
(D̄Cr)D̄C −

1

r2

}

H̃ D
D

−
1

2

{

D̄C +
2

r
(D̄Cr)

}

D̄D H̃CD

]

γpqS

−
1

2r2
H̃ C

C

(

D̂pD̂qS −
1

2
γpqD̂rD̂rS

)

. (137)

Since there is the identity (130) for l = 1-mode perturbations, the last term of
Equation (137) does not appear for l = 1 even modes. Furthermore, the expressions
(135) and (136) are gauge-invariant under the gauge-transformation rules (132) and (134).
We also note that the component γqr

(1)G r
p is gauge-invariant, except for the last term in

Equation (137). Actually, the variable H̃ C
C is gauge-dependent, as shown below. However,

the gauge-invariance of γqr
(1)G r

p is guaranteed by the identity (130).
On the other hand, the l = 1 even components of them are given by

(1)T B
A = ST̃ B

A , (138)

γqr
(1)T r

A =
1

r
T̃(e1)AD̂qS, (139)

γqr
(1)T r

p = T̃(e0)
1

2
γpqS + T̃(e2)

(

D̂pD̂qS −
1

2
γpqD̂rD̂rS

)

(140)

Here, again, we note that Equation (130) satisfies as a mathematical identity for l = 1-
mode perturbations. Therefore, the last term of Equation (140) does not appear for l = 1
even modes.

If Equation (130) is not satisfied, we have the equation

[

−
1

2r2
H̃ C

C

](

D̂pD̂qS −
1

2
γpqD̂rD̂rS

)

= 8πT̃(e2)

(

D̂pD̂qS −
1

2
γpqD̂rD̂rS

)

(141)

as one of the components of the linearized Einstein equation. However, Equation (130)
implies that this equation is identically satisfied. Therefore, this equation does not restrict
H̃ C

C or T̃(e2), and there is no other restriction of them. Here, we note that the tensor field
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H̃AB is not gauge-invariant, as shown in Equation (134). Since we may freely choose H̃ C
C

and T̃(e2), we choose T̃(e2) = 0 by hand, and choose

H C
C = 0 (142)

as a gauge condition.
Actually, from the gauge-transformation rule (134), we obtain

yAB
Y H̃AB − yAB

X H̃AB = −2r

[

−
1

f
∂2

t ζ(e) + ∂r( f ∂rζ(e))−
1 − f

r2
ζ(e)

]

. (143)

Then, if we choose ζ(e) as a special solution to the equation

1

2r
yAB

X H̃AB = −
1

f
∂2

t ζ(e) + ∂r( f ∂rζ(e))−
1 − f

r2
ζ(e), (144)

we may regard Y H̃C
C = 0 in the Y -gauge. We have to note that this gauge-fixing (143) is

not complete gauge-fixing. There is a remaining degree of freedom in the choice of ζ(e) as
the homogeneous solution ζ(e)h to the wave equation

−
1

f
∂2

t ζ(e)h + ∂r( f ∂rζ(e)h)−
1 − f

r2
ζ(e)h = 0. (145)

Due to the gauge condition (142), the components (135)–(137) of the linearized Einstein
tensor and components (138)–(140) of the linear-order energy–momentum tensor yield the
linearized Einstein equations. The (A, p)-components (equivalently, (p, B)-components) of
the linearized Einstein equations are given by

D̄C H̃AC −
1

2
D̄A H̃ = 16πrT̃(e1)A. (146)

Equation (146) coincides with Equation (54), because the tensor H̃AC is traceless due
to the gauge condition (142).

From the trace part of the (p, q)-component of the linearized Einstein equation,
Equation (146) yields the component (61) of the continuity equation of the linearized
energy–momentum tensor.

The trace part of (A, B)-component of the linearized Einstein equation with Equation (146)
gives

D̄CD̄C H̃ +
2

r
(D̄Cr)D̄C H̃ −

4

r2
(D̄Cr)(D̄Dr)H̃CD = 16π

(

T̃ C
C + 4(D̄Dr)T̃(e1)D

)

. (147)

This coincides with the l = 1 version of Equation (56) with the source term (57),
because H̃CD is a traceless tensor. However, we have to emphasize that H̃ nor H̃CD are not
gauge-invariant, as shown above.

Finally, the traceless part of (A, B)-component of the linearized Einstein equation with
Equations (146) and (147) yields

[

−D̄CD̄C −
2

r
(D̄Cr)D̄C +

4

r
(D̄CD̄Cr) +

2

r2

]

H̃AB +
4

r
(D̄Cr)D̄(AH̃B)C

−
2

r
(D̄(Ar)D̄B)H̃

= 16π

[

T̃AB −
1

2
yABT̃ C

C − 2

(

D̄(A(rT̃(e1)B))−
1

2
yABD̄C(rT̃(e1)C)

)

+2yAB(D̄Dr)T̃(e1)D

]

. (148)
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This coincides with the l = 1 version of Equation (58) with the source term (59),
because the variable HAB is traceless due to the gauge condition (142).

In addition to these linearized Einstein equations, the following linearized perturba-
tions of the continuity equation should be satisfied:

D̄C T̃ B
C +

2

r
(D̄Dr)T̃ B

D −
2

r
T̃B
(e1) −

1

r
(D̄Br)T̃(e0) = 0, (149)

D̄C T̃(e1)C +
3

r
(D̄Cr)T̃(e1)C +

1

2r
T̃(e0) = 0. (150)

Together with the gauge condition (142), Equations (146)–(150) coincide with Equa-
tions (53)–(61) with l = 1 in our gauge-invariant formulation developed in refs. [12–16]. In
ref. [15], we derived the formal solution to Equations (53)–(61) with l = 1 as Equation (62)
with Equations (63) and (64), and m = 0. Due to the coincidence of the set of equa-
tions, this formal solution should be the m = 0 formal solution to Equation (142), and
Equations (146)–(150). Then, as the m = 0 solution, we obtain

Hab := HAB cos θ(dxA)(a(dxB)b) +
r2

2
H cos θγab

= £V gab −
16πr2

3(1 − f )

[

f 2

{

1 + f

2
T̃rr + r f ∂r T̃rr − T̃(e0) − 4T̃(e1)r

}

(dt)a(dt)b

+
2r

f

{

∂tT̃tt −
3 f (1 − f )

2r
T̃tr

}

(dt)(a(dr)b)

+
r

f

{

∂r T̃tt −
3(1 − 3 f )

2r f
T̃tt

}

(dr)a(dr)b)

+r2T̃ttγab

]

cos θ, (151)

where γab = γpq(dxp)a(dxq)b, Va = gabVb is the vector field defined by

Va := −r∂tΦ(e) cos θ(dt)a + (Φ(e) − r∂rΦ(e)) cos(dr)a − rΦ(e) sin θ(dθ)a (152)

and Φ(e) is a solution to the equation

−
1

f
∂2

t Φ(e) + ∂r

[

f ∂rΦ(e)

]

−
1 − f

r2
Φ(e) =

16πr

3(1 − f )
S(Φ(e))

, (153)

S(Φ(e))
=

1

2
r∂tTtr −

1

2
r∂r T̃tt +

1 − 4 f

2 f
T̃tt −

f

2
T̃rr − f T̃(e1)r. (154)

As in the case of the l = 1 odd-mode perturbation, the tensor field Fab in Equation (62)
is gauge-invariant. Then, Va in Equation (62), which defined by Equation (63), is also
gauge-invariant. Therefore, we regarded Va in Equation (62) as a first-kind gauge. On the
other hand, the tensor field Hab in Equation (151) is gauge-dependent in the sense of the
second kind due to the gauge-transformation rules (132) and (134) for the components
H̃ and H̃AB, respectively. Actually, there is a remaining gauge-degree of freedom of the
generator ζ(e) which satisfies Equation (145), as noted above. This remaining gauge-degree
of freedom is so-called “residual gauge”. For this reason, there is a possibility that Va in
Equation (151) includes this “residual gauge”, while Va in Equation (62) is gauge-invariant.

Since we already fixed the gauge-degree of freedom ζ(e) so that Equation (142) is
satisfied, the remaining gauge-degree of freedom ζ(e)h must satisfy the Equation (145).
Therefore, to clarify whether Va in Equation (151) includes the “residual gauge”, we have
to confirm Equation (145). Within our rules to compare our gauge-invariant formulation
with a conventional gauge-fixed approach, we regard the term in Va in Equation (151)
that satisfies Equation (145) as a second-kind gauge-degree of freedom, and we regard
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this degree of freedom as an “unphysical degree of freedom”. As in the case of the l = 1
odd-mode perturbations, we introduce the indicator function R(e)[∗] as

R(e)[ζ(e)h] := −
1

f
∂2

t ζ(e)h + ∂r( f ∂rζ(e)h)−
1 − f

r2
ζ(e)h. (155)

If R(e)[ζ(e)] = 0, we should regard ζ(e) as a the second-kind gauge-degree of freedom,
and we regard ζ(e) as an “unphysical degree of freedom”.

To clarify the second-kind gauge-degree of freedom, we consider the gauge-transformation
rule of the tensor field Hab through the gauge-transformation rules (132) and (134) as

YHab − XHab

:= (Y HAB − X HAB) cos θ(dxA)(a(dxB)b) +
r2

2
(Y H − X H) cos θγab

= −2r

[

∂2
t ζ(e)h −

f (1 − f )

2r
∂rζ(e)h +

f (1 − f )

2r2
ζ(e)h

]

cos θ(dt)a(dt)b

−4r

[

∂t∂rζ(e)h −
1 − f

2r f
∂tζ(e)h

]

cos θ(dt)(a(dr)b)

−2r

[

∂2
r ζ(e)h +

1 − f

2r f
∂rζ(e)h −

1 − f

2r2 f
ζ(e)h

]

cos θ(dr)a(dr)b

−2r2

(

f ∂rζ(e)h +
1

r
(1 − f )ζ(e)h

)

cos θγab (156)

=: £W gab, (157)

where we defined

Wa := −r∂tζ(e)h cos θ(dt)a +
(

ζ(e)h − r∂rζ(e)h

)

cos θ(dr)a − rζ(e)h sin θ(dθ)a. (158)

Comparing Equation (157) with the generator (158) and Equation (151) with the
generator (152), there is the possibility that the Lie derivative term £V gab in the solution (151)
is a “residual gauge degree of freedom” with the identification

Φ(e) = ζ(e)h. (159)

For this reason, we check the indicator (155). From Equation (153), and we obtain

R(e)[Φ(e)] :=
16πr

3(1 − f )
S(Φ(e))

. (160)

From this result, if S(Φ(e))
= 0, the variable Φ(e) should be regarded as the second-kind

gauge-degree of freedom, and is the “unphysical degree of freedom”. On the other hand,
in the non-vacuum case SΦ(e)

̸= 0, the indicator (160) yields R(e)[Φ(e)] ̸= 0. This means

that Φ(e) is not the second-kind gauge-degree of freedom, but is the “physical degree of
freedom” in the non-vacuum case SΦ(e)

̸= 0. Due to this existence of the source term,

the identification (159) is impossible in the case of the non-vacuum situation. Rather, this
term is gauge-invariant in the sense of the second kind, and we regard this term as a
gauge-degree of freedom of the first kind in the non-vacuum case.

Although we have R(e)[Φ(e)] = 0 in the case where SΦ(e)
= 0, and we should regard

Φ(e) is a “gauge degree of freedom of the second kind”, Equation (160) indicates that

R(e)[Φ(e)] = −
1

f
∂2

t Φ(e) + ∂r( f ∂rΦ(e))−
1 − f

r2
Φ(e) = 0. (161)
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This coincides with the left-hand side of Equation (153). Therefore, as in the case of
the l = 1 odd-mode perturbations, we consider the following two sets of function Φ(e) as

G(e) :=
{

Φ(e)

∣

∣

∣
R(e)[Φ(e)] = 0

}

, (162)

H(e) :=

{

Φ(e)

∣

∣

∣
−

1

f
∂2

t Φ(e) + ∂r( f ∂rΦ(e))−
1 − f

r2
Φ(e) = 0

}

. (163)

From Equation (161), we obtain the relation

G(e) = H(e). (164)

This indicates that any homogeneous solution (without source term) to Equation (153)
should be regarded as a gauge-degree of freedom of the second kind, which is the “unphys-
ical degree of freedom”.

On the other hand, to obtain the explicit solution Φ(e) in the case SΦ(e)
̸= 0, which

is regarded as a “physical degree of freedom”, we have to solve Equation (153) with
appropriate boundary conditions. Equation (153) is an inhomogeneous second-order linear
differential equation for Φ(e), and its boundary conditions are adjusted by the homogeneous
solutions to Equation (153), i.e., the element of the set of functions H(e). However, any
homogeneous solution to Equation (153) should be regarded as an “unphysical degree
of freedom” in the “complete gauge-fixing approach”, as mentioned above. Therefore,
in the conventional “complete gauge-fixing approach”, we have to impose the boundary
conditions for Equation (118) using a homogeneous solution, which is regarded as an
“unphysical degree of freedom”, to obtain a “physical solution” to Equation (118) with
nonvanishing source term SΦ(e)

̸= 0. This situation is a dilemma. In this sense, as in the

case of l = 1 odd-mode perturbations, a conventional “complete gauge-fixing approach”
includes a stronger restriction than our proposed gauge-invariant formulation.

6. l = 0 Mode Perturbation in the Conventional Approach

6.1. Einstein Equations for l = 0 Mode Perturbations

Here, we consider the l = 0-mode perturbations, which are described by Equations (94)–(96).
By substituting Equations (94)–(96) into Equations (A16)–(A18) in Appendix A, we obtain
the l = 0 mode perturbations of the linearized Einstein tensor. We use the background
Einstein equations (Equation (B67) and (B68) of Appendix B in [14]). Then, we obtain the

non-trivial components of the l = 0-mode Einstein equation (1)G b
a = 8π(1)T b

a are given by

−
1

2
D̄CD̄C h̃ B

A +
1

2
D̄BD̄C h̃AC +

1

2
D̄AD̄C h̃BC −

1

2
D̄AD̄B h̃ C

C

−
1

r
(D̄Cr)D̄C h̃ B

A +
1

r
(D̄Cr)D̄B h̃AC +

1

r
(D̄Cr)D̄A h̃BC −

2

r2
(D̄Cr)(D̄Cr)h̃ B

A

−
1

2r
(D̄Br)D̄A h̃(e0) −

1

2r
(D̄Ar)D̄B h̃(e0) −

1

2
D̄AD̄B h̃(e0) +

2

r2
h̃ B

A

+y B
A

(

−
1

2
D̄CD̄D h̃CD +

1

2
D̄CD̄C h̃ D

D −
2

r
(D̄Dr)D̄C h̃CD +

1

r
(D̄Cr)D̄C h̃ D

D

−
1

r2
(D̄Cr)(D̄Dr)h̃CD +

3

2r2
(D̄Dr)(D̄Dr)h̃ C

C −
3

2r2
h̃ C

C

+
1

2r2
h̃(e0) +

3

2r
(D̄Cr)D̄C h̃(e0) +

1

2
D̄CD̄C h̃(e0)

)

= 8πT̃ B
A , (165)

D̄CD̄C h̃ D
D − D̄CD̄D h̃CD −

2

r
(D̄Cr)D̄D h̃CD +

1

r
(D̄Cr)D̄C h̃ D

D

+
1

2
D̄CD̄C h̃(e0) +

1

r
(D̄Cr)D̄C h̃(e0)

= 8πT̃(e0). (166)
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Here, we decomposition of the component h̃AB as

h̃AB =: H̃AB +
1

2
yAB h̃ C

C . (167)

In terms of the variables defined by Equation (167), the linearization of the Einstein
equations for l = 0 mode are summarized as follows. The trace of (1)G B

A = 8π(1)T B
A for

l = 0 mode is given by

−
1

r2
h̃ C

C −
2

r
(D̄Cr)

(

+D̄DH̃
DC +

1

r
(D̄Dr)H̃CD

)

+
1

2
D̄CD̄C h̃(e0) +

2

r
(D̄Cr)D̄C h̃(e0) +

1

r2
h̃(e0) = 8πT̃ C

C . (168)

On the other hand, the traceless part of (1)G B
A = 8π(1)T B

A for l = 0 mode is given by

−
1

2

[

D̄CD̄C +
2

r
(D̄Cr)D̄C +

4

r2
(D̄Cr)(D̄Cr)−

4

r2

]

H̃AB

+D̄(AD̄C
H̃B)C −

1

2
yABD̄CD̄DH̃

CD +
2

r
(D̄Cr)

(

D̄(AH̃B)C −
1

2
yABD̄D

H̃DC

)

+
1

r

(

(D̄(Ar)D̄B) h̃
E

E −
1

2
yAB(D̄Cr)D̄C h̃ D

D

)

−
1

2

[

D̄AD̄B h̃(e0) −
1

2
yABD̄CD̄C h̃(e0)

]

−
1

r

[

(D̄(Ar)D̄B) h̃(e0) −
1

2
yAB(D̄Cr)D̄C h̃(e0)

]

= 8π

[

T̃AB −
1

2
yABT̃ C

C

]

. (169)

Furthermore, (1)G
q

p = 8π(1)T
q

p for l = 0 mode is given by

1

2
D̄CD̄C h̃(e0) +

1

r
(D̄Cr)D̄C h̃(e0) − D̄CD̄DH̃

CD −
2

r
(D̄Cr)D̄DH̃

CD +
1

2
D̄CD̄C h̃ D

D

= 8πT̃(e0). (170)

6.2. Gauge-Fixing for l = 0 Mode Perturbations

We consider the gauge-transformation rules (97) and (98) of the mode coefficient h̃AB

and h̃(e0). If these gauge-transformation rules are those of the second kind, we should
exclude these gauge-degrees of freedom through some gauge-fixing procedure, because
the degree of freedom of the second-kind gauge is the unphysical degree of freedom.

In the static chart, the metric yAB is given by Equation (17). Through the static
chart (17), the gauge-transformation rule (98) is given by

Y h̃(e0) − X h̃(e0) =
4

r
f ζr, (171)

and we may choose ζr so that

Y h̃(e0) = X h̃(e0) +
4

r
f ζr = 0, (172)

i.e.,

ζr = −
r

4 f X h̃(e0). (173)

Through this gauge-fixing, we may regard h̃(e0) = 0 in the Y -gauge.
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As the gauge-fixing for h̃AB, we fix the gauge so that h̃AB is traceless. This gauge-fixing
so that h̃AB is traceless makes it easy to compare with our gauge-invariant expression in
refs. [12–16]. From the trace of the gauge-transformation rule Equation (97), we obtain

yAB
Y h̃AB − yAB

X h̃AB = Y h̃ C
C − X h̃ C

C = 2D̄CζC. (174)

In the static chart (17) of the Schwarzschild spacetime, the gauge-transformation rule
(174) is given by

Y h̃ C
C − X h̃ C

C = −2 f−1∂tζt + 2∂r( f ζr). (175)

From this gauge-transformation rule and the gauge-fixing (173), we may fix the gauge
degree of freedom ζt so that

0 = Y h̃ C
C

= X h̃ C
C − 2 f−1∂tζt + 2∂r

(

−
r

4X h̃(e0)

)

. (176)

Through this gauge-fixing, we may regard h̃ C
C = 0. However, we have to emphasize

that the degree of freedom of the choice of the generator ζt remains the degree of freedom
of an arbitrary function of r.

Thus, through the gauge-fixing (173) and (176), we may regard

h̃(e0) = h̃ C
C = 0 (177)

Under the gauge-fixing condition (177), linearization of the Einstein equations for
l = 0 mode are summarized as

−(D̄Cr)D̄DH̃
DC −

1

r
(D̄Cr)(D̄Dr)H̃CD = 4πrT̃ C

C , (178)

−
1

2

[

D̄CD̄C +
2

r
(D̄Cr)D̄C +

4

r2
(D̄Cr)(D̄Cr)−

4

r2

]

H̃AB + D̄(AD̄C
H̃B)C

−
1

2
yABD̄CD̄DH̃

CD +
2

r
(D̄Cr)

(

+D̄(AH̃B)C −
1

2
yABD̄D

H̃DC

)

= 8π

[

T̃AB −
1

2
yABT̃ C

C

]

, (179)

and

−D̄CD̄DH̃
CD −

2

r
(D̄Cr)D̄DH̃

CD = 8πT̃(e0). (180)

6.3. Component Expression of the Linearized l = 0 Gauge-Fixed Field Equations

Here, we consider the component representations of Equations (178)–(180). To do this,
we consider the components of the traceless tensor H̃AB as

H̃AB =: X(e)

[

(dt)A(dt)B + f−2(dr)A(dr)B

]

+ 2Y(e)(dt)(A(dr)B). (181)

Here, we use the background Einstein equation (B65) of Appendix B in [14], i.e.,

∂r f =
1 − f

r
, (182)

and

∂2
r f = ∂r

(

1 − f

r

)

= −
2(1 − f )

r2
(183)
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Through Equations (182) and (183), Equation (178) is given by

r f ∂tY(e) − r f ∂rX(e) − f X(e) = −4πr2
(

T̃tt − f 2T̃rr

)

. (184)

The (A, B) = (t, t) and (A, B) = (r, r) components of Equation (179) yield the same
equation as

r f ∂tY(e) = 4πr2
(

T̃tt + f 2T̃rr

)

. (185)

The (A, B) = (t, r) component of Equation (179) is given by

∂tX(e) = 8πr f T̃tr. (186)

In terms of the components (181), Equation (180) is given by

−∂2
t X(e) − f 2∂2

r X(e) −
2

r
f 2∂rX(e) + 2 f 2∂t∂rY(e) +

1

r
f (1 + f )∂tY(e) = 8π f 2T̃(e0). (187)

On the other hand, the even-mode perturbation of the divergence of the energy–
momentum tensor is given by Equations (60) and (61). However, Equation (61) does
not appear, due to D̂pS = ϵpqD̂qS = 0. Then, the non-trivial l = 0 components of the
divergence of the energy–momentum tensor are given by

D̄C T̃ B
C +

2

r
(D̄Dr)T̃ B

D −
1

r
(D̄Br)T̃(e0) = 0. (188)

The B = t component of Equation (188) is given by

∂tT̃tt − f 2∂r T̃rt −
1

r
f (1 + f )T̃rt = 0, (189)

and the B = r component of Equation (188) is given by

− f ∂tT̃tr + f 3∂r T̃rr +
1

2r
(1 − f )T̃tt +

1

2r
f 2(3 + f )T̃rr −

1

r
f 2T̃(e0) = 0. (190)

Substituting Equation (185) into Equation (184), we obtain

∂r

(

rX(e)

)

= r∂rX(e) + X(e) = 8π
r2

f
T̃tt. (191)

On the other hand, from the substitution of Equations (185), (186) and (191) into
Equation (187), we obtain

0 = − f ∂tT̃tr + f 3∂r T̃rr +
1

2r
(1 − f )T̃tt +

1

2r
f 2(3 + f )T̃rr −

1

r
f 2T̃(e0).

This coincides with Equation (190), which indicates that Equation (187) does not give
any new information other than Equation (190).

Here, we consider the integrability of Equation (186) and (191) as follows:

∂r(∂t(rX(e)))− ∂t(∂r(rX(e))) = ∂r

(

8πr2 f T̃tr

)

− ∂t

(

8π
r2

f
T̃tt

)

= −8πr2

[

+∂tT̃tt − f 2∂r T̃tr −
1

r
f (1 + f )T̃tr

]

= 0, (192)
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where we used Equation (189) in the last equality. This means that the t-component (189)
of the continuity equation guarantees the integrability of Equations (186) and (191). Then,
from Equation (191), we may write the solution to Equations (186) and (191) under the
integrability condition (189) as

X(e) =
1

r

[

2M1 + 8π
∫

dr
r2

f
T̃tt

]

, (193)

where M1 is the constant of integration. This M1 corresponds to the perturbation of the
Schwarzschild mass parameter.

On the other hand, in the linearized Einstein equation, there is no equation for ∂rY(e)

which guarantees the integrability condition for Equation (185). However, we may write
the solution to the Equation (185) as

Y(e) =
4πr

f

∫

dt
(

T̃tt + f 2T̃rr

)

+ Y(e)0(r). (194)

where Y(e)0(r) is an arbitrary function of r. There is no equation that determines the
arbitrary function Y(e)0(r) of r within the linearized Einstein equations.

From Definition (181) of the metric perturbation H̃AB and the solutions (193) and (194),
we obtain

H̃AB =
2

r

(

M1 + 4π
∫

dr
r2

f
T̃tt

)

(

(dt)A(dt)B + f−2(dr)A(dr)B

)

+2

[

4πr
∫

dt

(

1

f
T̃tt + f T̃rr

)

+ Y(e)0(r)

]

(dt)(A(dr)B), (195)

where the components of the energy–momentum tensor satisfy the continuity
Equations (189) and (190).

To interpret the term of Y(e)0(r) in Equation (195), we consider the term £V gab with the
generator Va, whose components are given by

Va = Vt(r)(dt)a. (196)

The nonvanishing components of £V gab are given by

£V gtr = f ∂r

(

1

f
Vt

)

. (197)

Choosing Vt so that

f ∂r

(

1

f
Vt

)

= Y(e)0(r), Vt = f
∫

dr
1

f
Y(e)0(r), (198)

we obtain

£V gtr = Y(e)0(r). (199)

Thus, the solution (195) is given by

H̃ab =
2

r

(

M1 + 4π
∫

dr
r2

f
T̃tt

)

(

(dt)a(dt)b + f−2(dr)a(dr)b

)

+8πr
∫

dt

(

1

f
T̃tt + f T̃rr

)

(dt)(a(dr)b) + £V gab, (200)
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where

Va =

(

f
∫

dr
1

f
Y(e)0(r)

)

(dt)a. (201)

As noted just after Equation (176), there is still the remaining degree of freedom of the
gauge, whose generator is given by

ζa = ζt(r)(dt)a, (202)

where ζt(r) is an arbitrary function of r. Therefore, we may regard the degree of freedom
of Va given in Equation (201) as possibly being eliminated as the second-kind gauge-degree
of freedom (202). According to our rule of the comparison between our gauge-invariant
formulation and a “conventional complete gauge-fixing approach”, we have to regard that
the degree of freedom of Va given in Equation (201) is “unphysical”.

Thus, as the “physical solution” for l = 0-mode linearized Einstein equation based of
a “conventional complete gauge-fixing approach”, we obtain

hab =
2

r

(

M1 + 4π
∫

dr
r2

f
T̃tt

)

(

(dt)a(dt)b + f−2(dr)a(dr)b

)

+8πr
∫

dt

(

1

f
T̃tt + f T̃rr

)

(dt)(a(dr)b). (203)

This solution (203) coincides with the solution obtained in refs. [12,15] except for
the terms of the Lie derivative of the background metric gab. Therefore, we conclude
that the l = 0 solution except for the terms of the Lie derivative of the background
metric gab obtained in refs. [12,15] can be also obtained as (203) through a complete gauge-
fixing approach.

The difference between our solution in refs. [12,15] is in the term of the Lie derivative
of the background metric. As shown above, according to our rule of comparison between
our gauge-invariant formulation and a “conventional complete gauge-fixing approach”,
all terms of the Lie derivative of the background metric should be regarded as the second-
kind gauge-degree of freedom, and these are “unphysical degree of freedom” in the
above solution (203). On the other hand, in our gauge-invariant formulation developed
in refs. [12–16], l = 0, 1-mode metric perturbations are given in a gauge-invariant form,
and the terms of the Lie derivative of the background metric is included in these gauge-
invariant variables. Since the second-kind gauge-degree of freedom is completely excluded
in our gauge-invariant formulation, we cannot regard these terms of the Lie derivative of
the background metric as an “unphysical degree of freedom”. Therefore, we regard the
terms of the Lie derivative of the background metric in these gauge-invariant variables as
first-kind gauges that have some physical meaning. This point is the essential difference of
the solutions in refs. [12–16] and the above solutions based on a “conventional complete
gauge-fixing approach”. This difference leads to the confusion of the interpretation of the
perturbative Tolman Bondi solution, as shown in the next subsection.

6.4. Comparing with Lemaître–Tolman–Bondi Solution

6.4.1. Perturbative Expression of the LTB Solution on Schwarzschild Background Spacetime

Here, we consider the Lemaître–Tolman–Bondi (LTB) solution [42], which is an exact
solution to the Einstein equation with the matter field

Tab = ρuaub, ua = −(dτ)a, (204)

and the metric

gab = −(dτ)a(dτ)b +
(∂Rr)2

1 + f (R)
(dR)a(dR)b + r2γab, r = r(τ, R). (205)
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This solution is a spherically symmetric solution to the Einstein equation. The function
r = r(τ, R) satisfies the differential equation

(∂τr)2 =
F(R)

r
+ f (R). (206)

Note that F(R) is an arbitrary function of R representing the dust matter’s initial
distribution. f (R) is also an arbitrary function of R that represents the initial distribution
of the energy of the dust field in the Newtonian sense. The solution to Equation (206) is
given in three cases.

Description 2.

(i) f (R) > 0:

r =
F(R)

2 f (R)
(cosh η − 1), τ0(R)− τ =

F(R)

2 f (R)3/2
(sinh η − η), (207)

(ii) f (R) < 0:

r =
F(R)

−2 f (R)
(1 − cos η), τ0(R)− τ =

F(R)

2(− f (R))3/2
(η − sin η), (208)

(iii) f (R) = 0:

r =

(

9F(R)

4

)1/3

[τ0(R)− τ]2/3. (209)

The energy density ρ is given by

8πρ =
∂RF

(∂Rr)r2
. (210)

The LTB solution includes the three arbitrary functions: f (R), F(R), and τ0(R).
Here, we consider the vacuum case ρ = 0. In this case, from Equation (210), we have

∂RF = 0, F = 2M, (211)

where M is the Schwarzschild metric with the mass parameter M. Furthermore, we consider
the case f (R) = 0. Here, we chose τ0 = R, i.e., ∂Rτ0 = 1. In this case, Equation (209) yields

(dR)a = (dτ)a +

(

2M

r

)−1/2

(dr)a. (212)

In this case, the metric (205) is given by

gab = −(dτ)a(dτ)b + (∂Rr)2(dR)a(dR)b + r2γab

= − f (dt)a(dt)b + f−1(dr)a(dr)b + r2γab, f = 1 −
2M

r
, (213)

where (dt)a is defined by

(dt)a := (dτ)a − f−1(1 − f )1/2(dr)a. (214)

We also note that the degree of freedom of the choice of the coordinate R is completely
fixed through the choice τ0 = R, though there remains a degree of freedom of the choice of
R = R(R̃) in the exact solution (205).
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Now, we consider the perturbation of the Schwarzschild spacetime, which is derived
by the exact LTB solution (205) so that

F(R) = 2[M + ϵm1(R)] + O(ϵ2), (215)

f (R) = 0 + ϵ f1(R) + O(ϵ2), (216)

τ0(R) = R + ϵτ1(R) + O(ϵ2). (217)

Through these perturbations (215)–(217), we consider the perturbative expansion of
the function r, which is determined by Equation (206):

r(τ, R) = rs(τ, R) + ϵr1(τ, R) + O(ϵ2). (218)

Here, the function rs(τ, R) is given by Equation (209), i.e.,

rs(τ, R) = r(τ, R) =

(

9M

2

)1/3

[R − τ]2/3. (219)

In Equations (217) and (219), we chose the background value of the function τ0(R) to
be R.

Through this perturbative expansion, we evaluate O(ϵ1) perturbation of Equation (206)
through Equation (212) as

(1 − f )1/2(∂τr1) +
m1(R)

r
−

M

r2
r1 +

1

2
f1(R) = 0, (220)

where we used Equation (212) and the replacement rs → r. The solution to Equation (220)
is given by

r1 =

(

M

6

)1/3 m1(R)

M
[R − τ]2/3 −

3

20

(

6

M

)1/3

f1(R)[R − τ]+4/3

+B(R)[R − τ]−1/3. (221)

From the comparison with Equation (219), B(R) is the perturbation of the τ1(R) as
τ0(R) = R + τ1(R) in the exact solution (207)–(209). Furthermore, the solution (221) can
be also derived from the exact solution (207)–(209). From Equation (210), the perturbative
dust energy density is given by

8πρ =
2∂Rm1(R)

(∂Rr)r2
. (222)

Through the perturbative solution (221), the metric (205) is given by

gab = −(dτ)a(dτ)b + (∂Rr)2(dR)a(dR)b + r2γab

+ϵ[(2(∂Rr1)− f1(∂Rr))(∂Rr)(dR)a(dR)b + 2rr1γab] + O(ϵ2)

=: g
(0)
ab + ϵXhab + O(ϵ2). (223)

As shown in Equation (213), the background metric g
(0)
ab is given by the Schwarzschild

metric in the static chart. On the other hand, the linear order perturbation Xhab (in the
gauge Xϵ) is given by

Xhab := (2(∂Rr1)− f1(R)(∂Rr))(∂Rr)(dR)a(dR)b + 2rr1γab. (224)

Here, we fixed the second-kind gauge so that

Xϵ : (τ, R, θ, ϕ) ∈ Mph 7→ (τ, R, θ, ϕ) ∈ M . (225)
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Through this second-kind gauge choice and the choice of the background radial coordi-
nate R in Equation (213), the degree of freedom of the choice of the radial coordinate R = R(R̃)
is also completely fixed, even in the linearized version of the exact solution (224), though there
remains a degree of freedom of the choice of R = R(R̃) in the exact solution (205).

Of course, if we employ the different gauge choice Yϵ from the above gauge-choice
Xϵ, we obtain the different expression of the metric perturbation Y hab. Actually, we may
choose Yϵ as the identification of

Yϵ : (τ + ϵξτ(τ, R), R + ϵξR(τ, R), θ, ϕ) ∈ Mph 7→ (τ, R, θ, ϕ) ∈ M . (226)

In this identification, the metric on Mph pulled back to M is given by

Yϵ
gab = Xϵ

gab + ϵ£ξ g
(0)
ab + O(ϵ2)

= g
(0)
ab + ϵ

(

Xhab + £ξ g
(0)
ab

)

+ O(ϵ2), (227)

where ξa = ξτ(∂τ)a + ξR(∂R)
a is the generator of second-kind gauge-transformation

Xϵ → Yϵ.

6.4.2. Expression of the Perturbative LTB Solution in Static Chart

Here, we consider the expression of the linear perturbation Xhab given by Equation (224).
From Equations (212) and (214), with F = 2M, we obtain

(dR)a = (dt)a + f−1(1 − f )−1/2(dr)a, f = 1 −
2M

r
, (228)

(dτ)a = (dt)a + f−1(1 − f )1/2(dr)a. (229)

First, we consider the perturbation of the energy–momentum tensor of the matter field.
In the case of the LTB solution, the matter field is characterized by the dust field whose
energy–momentum tensor (204) is given by

Tab = ρuaub, ua = −(dτ)a, ua = (∂τ)
a. (230)

In our case, the linearized Einstein equation gives Equation (222), i.e.,

8πρ =
2∂Rm1(R)

(∂Rr)r2
=

∂Rm1(R)

4πr2
(1 − f )−1/2. (231)

On the other hand, substituting Equation (229) into Equation (230), we obtain

Tab = ρ(dτ)a(dτ)b

= ρ
(

(dt)a + f−1(1 − f )1/2(dr)a

)(

(dt)b + f−1(1 − f )1/2(dr)b

)

= ρ(dt)a(dt)b + ρ
(1 − f )1/2

f
2(dt)(a(dr)b) + ρ

1 − f

f 2
(dr)a(dr)b. (232)

Then, we obtain the components of the energy–momentum tensor for the static coordi-
nate (t, r) as

T̃tt = ρ, T̃tr =
(1 − f )1/2

f
ρ, T̃rr =

1 − f

f 2
ρ, T̃(e0) = 0. (233)

From this component, we can confirm the continuity Equations (189) and (190).
As derived in ref. [16], the linearized Tolman–Bondi solution (224) with the Schwarzschild

background is given by
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Xhab =
2m1(R)

r

[

(dt)a(dt)b +
1

f 2
(dr)a(dr)b

]

+
2 − f

f (1 − f )1/2

m1(R)

r
2(dt)(a(dr)b)

+£V(LTB)
gab, (234)

where V(LTB)a is given by

V(LTB)a :=

[

(1 − f )1/2r1 +
1

2
f
∫

dt f1(R)

]

(dt)a +
r1

f
(dr)a. (235)

As shown in ref. [16], the l = 0 solution (203) with the components (233) of the
linearized energy–momentum tensor realize the first line of Equation (234). In this sense,
the solutions (203) of the l = 0-mode perturbations are justified by the LTB solutions.

However, we emphasize that the linearized LTB solution (234) does have the term
£VLTB

gab. As noted by Equations (226) and (227), we can always eliminate the terms of
the Lie derivative of the background metric as the second-kind gauge-degree of freedom.
Therefore, according to our rule of the comparison, the term £V(LTB)

gab should be regarded

as the second-kind gauge-degree of freedom in the “conventional gauge-fixing approach”
discussed in this paper. In this case, we have to regard that the perturbation f1(R) of the
initial distribution f (R) of the energy of dust field in Equation (206) is an “unphysical
degree of freedom”, in spite of the fact that the behavior of the LTB solution crucially
depends on the signature of the function f (R), as shown in Equations (207)–(209).

7. Summary and Discussion

In this paper, we have discussed comparison of our gauge-invariant formulation for
l = 0, 1 perturbations on the Schwarzschild background spacetimes proposed in [12–16]
and a “conventional complete gauge-fixing approach”. It is well-known that we cannot
construct gauge-invariant variables for l = 0, 1-mode perturbations through a same manner
as for l ≥ 2 mode perturbations if we use the decomposition formulae (26)–(28) with the
spherical harmonic functions Ylm as the scalar harmonics Sδ. In our gauge-invariant
formulation for l = 0, 1 perturbations on the Schwarzschild background spacetime, we
proposed the introduction of the singular harmonic function at once. Due to this, we
can construct gauge-invariant variables for l = 0, 1-mode perturbations through a similar
manner to the l ≥ 2 modes of perturbations. After deriving the mode-by-mode perturbative
Einstein equations in terms of the gauge-invariant variables, we impose the regularity on
the introduced singular harmonics when we solve the derived Einstein equations. This
approach enables us to obtain formal solutions to the l = 0, 1-mode linearized Einstein
equations without the specification of the components of the linear perturbation of the
energy–momentum tensor [12,14,15]. Our proposal also allow us to develop higher-order
perturbations of the Schwarzschild spacetime [13]. Furthermore, we verified that our
derived solutions realized the linearized version of the LTB solution and non-rotating
C-metric [15]. In this sense, we conclude that our proposal is physically reasonable. On
the other hand, it is often said that “gauge-invariant formulations in general-relativistic
perturbations are equivalent to complete gauge-fixing approaches”. For this reason, we
examine this statement through the comparison of our gauge-invariant formulation and a
“conventional complete gauge-fixing approach”, in which we use the spherical harmonic
functions Ylm as the scalar harmonics Sδ from the starting point.

After reviewing the concept of “gauges” in general relativistic perturbation theories,
our proposed gauge-invariant formulation for the l = 0, 1-mode perturbations, and our
derived l = 0, 1-mode solutions, we considered l = 1 odd-mode perturbations, l = 1
even-mode perturbations, and l = 0 even-mode perturbations separately. As a result, it
is shown that we can derive similar solutions even through the “conventional complete
gauge-fixing approach”. However, it is important to note that the derived solutions are
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slightly different from those derived based on our gauge-invariant formulation, especially
from a conceptual point of view.

In the case of l = 1 odd-mode perturbations, we derived the formal solution to the
linearized Einstein equation through our proposed gauge-invariant formulation. This
formal solution includes the term of the Lie derivative of the background metric. In
our gauge-invariant formulation, we describe the solutions only through gauge-invariant
variables. Therefore, we should regard the term of the Lie derivative of the background
metric as gauge-invariant. On the other hand, in the conventional gauge-fixing approach
where we use the spherical harmonics Ylm from the starting point, we cannot construct
gauge-invariant variable for l = 1 odd-mode perturbations in the same way we can for
l ≥ 2-mode perturbations. For this reason, we have to treat gauge-dependent variables for
perturbations. Nevertheless, the linearized Einstein equations and the continuity equations
of the linearized energy–momentum tensor for l = 1 odd-mode perturbations in terms
of these gauge-dependent variables have the completely same form as those is derived
through our gauge-invariant formulation. Consequently, the formal solutions derived
through our gauge-invariant formulation must be the formal solutions to these linearized
Einstein equations, and the continuity equation of the linearized energy–momentum tensor
in terms of gauge-dependent variables. As mentioned earlier, we treat gauge-dependent
variables in the conventional gauge-fixing approach. Therefore, the above Lie derivative
terms of the background metric may include the gauge-degree of freedom of the second
kind, which should be regarded as an “unphysical degree of freedom”. Examining the
residual gauge-degree of freedom, we conclude that the above Lie derivative terms of the
background metric include the second-kind gauge-degree of freedom. However, in our
formal solution, there is a variable that should be obtained by solving the l = 1 Regge–
Wheeler equation. We conclude that the solution to this l = 1 Regge–Wheeler equation is
not the gauge-degree of freedom of the second kind, but a physical degree of freedom in
the non-vacuum case. Furthermore, we have to impose appropriate boundary conditions
to solve this l = 1 Regge–Wheeler equation. Since the l = 1 Regge–Wheeler equation is an
inhomogeneous linear second-order partial differential equation, the boundary conditions
for an inhomogeneous linear second-order partial differential equation are adjusted by the
homogeneous solutions to this linear second-order partial differential equation. According
to the check of the residual gauge-degree of freedom, we have to conclude that a part of
homogeneous solutions to this equation is the gauge-degree of freedom of the second kind.
We must exclude this part from our consideration because this gauge degree of freedom is
“unphysical”. This exclusion is the restriction of the boundary conditions of the linearized
Einstein equations.

In the case of l = 1 even-mode perturbations, the situation is worse than the l = 1 odd-
mode case. As in the l = 1 odd-mode case, we obtained the formal solution to the linearized
Einstein equation through our proposed gauge-invariant formulation. This formal solution
includes the term of the Lie derivative of the background metric, which is gauge-invariant
within our proposed gauge-invariant formulation. On the other hand, in the conventional
gauge-fixing approach where we use the spherical harmonics Ylm from the starting point,
we cannot construct gauge-invariant variable for l = 1 even-mode perturbations in the
same manner as we can for l ≥ 2-mode perturbations. Consequently, we have to treat
gauge-dependent variables for perturbations. As in the l = 1 odd-mode case, the linearized
Einstein equations and the continuity equations of the linearized energy–momentum
tensor for l = 1 even-mode perturbations, which are expressed by these gauge-dependent
variables, retain the same form derived through our gauge-invariant formulation. Therefore,
the same formal solutions derived through our gauge-invariant formulation should be
the formal solutions to these linearized Einstein equations and the continuity equation
of the linearized energy–momentum tensor in terms of gauge-dependent variables. As
previously mentioned, we treat gauge-dependent variables in the conventional gauge-
fixing approach as in the l = 1 odd-mode case. Therefore, the above Lie derivative terms
of the background metric may include the second-kind gauge-degree of freedom, which
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should be regarded as an “unphysical degree of freedom”. However, in our formal solution,
there is a variable that must be obtained by solving the l = 1 Zerilli equation. We conclude
that the solution to this l = 1 Zerilli equation is not the gauge-degree of freedom of the
second kind, but the physical degree of freedom in the non-vacuum case. Furthermore, we
have to impose appropriate boundary conditions to solve this l = 1 Zerilli equation in the
non-vacuum case, since the l = 1 Zerilli equation is an inhomogeneous linear second-order
partial differential equation. The homogeneous solutions to this linear second-order partial
differential equation adjust the boundary conditions for an inhomogeneous linear second-
order partial differential equation. According to the check of the residual gauge-degree
of freedom, we conclude that all homogeneous solutions to this equation are the gauge
degree of freedom of the second kind. We have to eliminate these homogeneous solutions
from our consideration because these are regarded as “unphysical”. This situation leads us
to the dilemma of needing to impose boundary conditions using these “unphysical degrees
of freedom” in order to obtain the “physical solution” through the l = 1 Zerilli equation.

In the case of l = 0 even-mode perturbations, we obtain the complete gauge-fixed
solution. This solution does not include any terms involving the Lie derivative of the back-
ground metric, as these terms are regarded as the gauge degree of freedom of the second
kind. In contrast, the solution derived from our proposed gauge-invariant formulation
includes the terms of the Lie derivatives of the background metric, which are regarded
as the first-kind gauge in our gauge-invariant formulation. In our formulation, these are
“physical”. This difference creates a problem when comparing our derived solution with
the linearized LTB solution. In the linearized LTB solution, the initial energy distribution
f1(R) of the dust field in the Newtonian sense is incorporated within the terms of the Lie
derivative of the background metric. When we interpret this linearized exact solution by the
solution using our gauge-invariant formulation, this initial energy distribution is treated as
a physical degree of freedom. Conversely, if we use a conventional complete gauge-fixing
approach to understand the same linearized exact solution, we must consider the initial
energy distribution of the dust field as the gauge-degree of freedom of the second kind,
thus labeling it as “unphysical”. Since the behavior of the exact LTB solution significantly
depends on this initial energy distribution of the dust field, it is unreasonable to classify
this initial degree of freedom as unphysical.

In summary, we have to conclude that there is a case where the boundary conditions
and initial conditions are restricted in the conventional complete gauge-fixing approach,
where we use the decomposition of the metric perturbation by the spherical harmonics Ylm

from the starting point. On the other hand, such a situation does not occur in our proposed
gauge-invariant formulation. As a theory of physics, this point should be regarded as the
incompleteness of the conventional complete gauge-fixing approach where we use the
decomposition of the metric perturbation by the spherical harmonics Ylm from the starting
point. This is the main result of this paper.

Let us discuss differences between our proposed gauge-invariant formulation and
a conventional complete gauge-fixed approach that begins with the decomposition of
the metric perturbation using the spherical harmonics Ylm. The purpose of introducing
singular harmonic functions in our proposed gauge-invariant formulation is to enhance the
degree of freedom in order to clarify the distinction between the gauge-degree of freedom
of the second kind and the physical degree of freedom. As emphasized in Section 3, if

we set S = Ylm, we find D̂pS = ϵpqD̂qS = 0,
(

D̂pD̂q −
1
2 γpqD̂rD̂r

)

S = 2ϵr(pD̂q)D̂
rS =

0 for l = 0 modes. We also have
(

D̂pD̂q −
1
2 γpqD̂rD̂r

)

S = 2ϵr(pD̂q)D̂
rS = 0 for l = 1

modes. This is the crucial reason why we cannot construct gauge-invariant variables
for l = 0, 1-mode metric perturbation in the same way as we do for l ≥ 2 modes. Due
to these vanishing vector- or tensor-harmonics, the corresponding mode coefficients do
not appear, and we cannot construct gauge-invariant variables for l = 0, 1-modes in the
same manner as for l ≥ 2 modes. In our series of papers [12–16], we regarded that this is
due to the lack of the degree of freedom. Consequently, in our proposed gauge-invariant
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formulation, we introduced singular harmonic functions k
∆̂

and k(∆̂+2)m for l = 0 and l = 1

modes, respectively. With the introduction of these singular harmonic functions, we now

have D̂pS ̸= 0 ̸= ϵpqD̂qS and
(

D̂pD̂q −
1
2 γpqD̂rD̂r

)

S ̸= 0 ̸= 2ϵr(pD̂q)D̂
rS for l = 0 modes,

and
(

D̂pD̂q −
1
2 γpqD̂rD̂r

)

S ̸= 0 ̸= 2ϵr(pD̂q)D̂
rS for l = 1 modes. Thanks to these non-

vanishing vector- or tensor-harmonics, the associated mode coefficients emerge, allowing
us to construct gauge-invariant variables for l = 0, 1-modes in a similar manner to the
case of l ≥ 2 modes. This leads to the development of the gauge-invariant perturbation
theory for all modes [12,14–16], and the development of the higher-order gauge-invariant
perturbations [13].

As noted in [14], the decomposition using the spherical harmonics Ylm from the
starting point corresponds to the imposition of the regular boundary conditions on S2

for the metric perturbations from the starting point. In this sense, our introduction of
the singular harmonic functions corresponds to a change in the boundary conditions
on S2. As shown in [14], this change of boundary conditions on S2 allows us to clearly
distinguish the gauge-degree of freedom of the second kind and the physical degree of
freedom. Specifically, we can easily construct gauge-invariant variables for l = 0, 1-mode
perturbations. This indicates that the imposition of the boundary conditions on S2 and
the construction of the gauge-invariant variables does not commute within the calculation
process. This is the appearance of the non-locality of l = 0, 1-mode perturbations as pointed
out in ref. [37]. Consequently, we have identified a conceptual difference between the
l = 0, 1-mode solutions discussed in this paper. In the conventional complete gauge-
fixing approach, which we use the decomposition by the harmonic function Ylm from
the starting point, the degree of freedom of the metric perturbations is insufficient to
distinguish between the gauge-degree of freedom of the second kind, i.e., “unphysical
modes” and “physical modes”. Despite this situation of the lack of degree of freedom, if one
proceeds with the “complete gauge-fixing” as a means of elimination of unphysical modes,
this approach results in constraints on the boundary conditions and initial conditions as
demonstrated in this paper.

On the other hand, in our proposed gauge-invariant formulation, we encounter no
conceptual difficulties, unlike issues related to the restriction of the boundary conditions
and initial conditions pointed out in this paper. This is due to the sufficient degree of
freedom of the metric perturbations. Incidentally, due to this sufficient degree of freedom of
the metric perturbations through the introduction of the singular harmonic functions, our
proposed gauge-invariant variables are equivalent to variables of the complete gauge-fixing
within our proposed formulation in which the degree of freedom of the metric perturbations
is sufficiently extended. Furthermore, we can develop higher-order perturbation theory
without gauge ambiguities if we apply our proposal and there are wide applications of the
higher-order gauge-invariant perturbations on the Schwarzschild background spacetime, as
briefly discussed in ref. [13]. We leave these further developments of the application of our
formulation to specific problems related to perturbations in the Schwarzschild background
spacetime as future works.
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Appendix A. Linearized Einstein Tensor

In this Appendix A, we derive components of the linearized Einstein tensor. Al-
though similar formulae are derived in Appendix C in [14] in the gauge-invariant form,
in this paper, we have to derive the components of the Einstein tensor with the spheri-
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cally background spacetime without any gauge-fixing. In this case, the formulation of the
“gauge-ready formulation” proposed in ref. [52] in the context of cosmological perturba-
tion theories is an appropriate formulation. Therefore, in this Appendix A, we derive the
components of the linear-order Einstein tensor without any gauge-fixing following the
philosophy of the “gauge-ready formulation” ’in ref. [52]. The derived formulae in the
philosophy of “gauge ready formulation” is useful in the ingredient of this manuscript.

Here, we consider the metric perturbation as

X ḡab = gab + ϵXhab + O(ϵ2). (A1)

The connection Cc
ab between the covariant derivative ∇̄a associated with the metric

ḡab and the covariant derivative ∇a associated with the metric gab is given by

Cc
ab =

1

2
ḡcd(∇a ḡdb +∇b ḡda −∇d ḡab), (A2)

where ḡab is the inverse of ḡab. Here, we expand the connection Cc
ab with respect to ϵ as

Cc
ab = ϵ(1)Cc

ab + O(ϵ2). (A3)

Then, we have

(1)Cc
ab =

1

2
gcd(∇ahdb +∇bhda −∇dhab). (A4)

The relation between the Riemann curvature R̄ d
abc associated with the metric ḡab and

the curvature R d
abc associated with the background metric gab is given by

R̄ d
abc = R d

abc − 2∇[aCd
b]c + 2Ce

c[aCd
b]e, (A5)

Then, we have

R̄ d
abc = R d

abc − 2ϵ∇[a
(1)Cd

b]c + O(ϵ2). (A6)

The perturbative expansion of the Ricci tensor R̄ac is given by

R̄ac = Rac − 2ϵ∇[a
(1)Cb

b]c + O(ϵ2). (A7)

The perturbative expansion of the curvature R̄ c
a is given by

R̄ d
a = ḡcdR̄ac

= ḡcdR̄ac + ϵ
(

−2gcd∇[a
(1)Cb

b]c − hcdRac

)

+ O(ϵ2). (A8)

The perturbation of the scalar curvature is given by

R̄ = ḡacR̄ac

= R + ϵ
(

−hacRac − 2gac∇[a
(1)Cb

b]c

)

+ O(ϵ2). (A9)

Then, the perturbative expansion of the Einstein tensor Ḡ d
a is given by

Ḡ d
a = R̄ d

a −
1

2
δ d

a R̄

= G d
a + ϵ

(

−2gcd∇[a
(1)Cb

b]c + δ d
a gec∇[e

(1)Cb
b]c − hcdRac +

1

2
δ d

a hecRec

)

+ O(ϵ2)

=: G d
a + ϵ(1)G d

a + O(ϵ2). (A10)
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Namely, the 1st-order perturbation of the Einstein tensor is given by

(1)G d
a = −2gcd∇[a

(1)Cb
b]c + δ d

a gec∇[e
(1)Cb

b]c − hcdRac +
1

2
δ d

a hecRec. (A11)

Substituting Equation (A4) into Equation (A11), we obtain

(1)G d
a = −

1

2
∇b∇

bh d
a + R d

abc hbc

+
1

2

(

gac∇
d − 2δ d

[a ∇c]

)

∇bhcb −
1

2

(

∇a∇
d − δ d

a ∇c∇
c
)

h b
b

−
1

2
Rachdc +

1

2
Rd f ha f +

1

2
δ d

a hecRec. (A12)

In the case of the vacuum background spacetime Rab = 0, which we consider in this
paper, we obtain

(1)G d
a = −

1

2
∇b∇

bh d
a + R d

abc hbc

+
1

2

(

gac∇
d − 2δ d

[a ∇c]

)

∇bhcb −
1

2

(

∇a∇
d − δ d

a ∇c∇
c
)

h b
b . (A13)

To derive the component of (1)G d
a , we denote the components of the metric perturba-

tion and the derivative operator as

h̄AB := hAB, h̄ D
A := yDEhAE, h̄pD := γpqyDEhqE,

h̄
q

p := γqrhpr, h̄pq := γprγqshrs, (A14)

and

D̄C = yCED̄E, D̂p = γpqD̂q. (A15)

Now, the components of (1)G d
a in terms of the variable defined by Equation (A14)

as follows:

(1)G B
A = −

1

2
D̄CD̄C h̄ B

A −
1

2r2
D̂pD̂p h̄ B

A −
2

r2
(D̄Cr)(D̄Cr)h̄ B

A +
2

r2
h̄ B

A

+
1

2
D̄BD̄C h̄AC +

1

2
D̄AD̄C h̄BC −

1

r
(D̄Cr)D̄C h̄ B

A −
1

2
D̄AD̄B h̄ C

C

+
1

r
(D̄Cr)D̄B h̄AC +

1

r
(D̄Cr)D̄A h̄BC

+
1

2r2
D̄BD̂p h̄Ap +

1

2r2
D̄AD̂p h̄Bp

−
1

2r2
D̄AD̄B h̄ r

r +
1

2r3
(D̄Ar)D̄B h̄ r

r +
1

2r3
(D̄Br)D̄A h̄ r

r −
1

r4
(D̄Ar)(D̄Br)h̄ r

r

+y B
A

(

−
1

2
D̄CD̄D h̄CD +

1

2
D̄CD̄C h̄ D

D +
1

2r2
D̂pD̂p h̄ C

C −
2

r
(D̄Dr)D̄C h̄CD

+
1

r
(D̄Cr)D̄C h̄ D

D −
1

r2
(D̄Cr)(D̄Dr)h̄CD +

3

2r2
(D̄Dr)(D̄Dr)h̄ C

C

−
1

r2
D̄CD̂p h̄pC −

1

r3
(D̄Cr)D̂p h̄Cp

+
1

2r2
D̄CD̄C h̄ r

r +
1

2r4
D̂pD̂p h̄ r

r −
1

2r3
(D̄Cr)D̄C h̄ r

r −
1

2r4
D̂pD̂s h̄ps

+
1

2r4
(D̄Cr)(D̄Cr)h̄ r

r −
3

2r2
h̄ C

C

)

. (A16)
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(1)G
q

A =
1

2r2
D̂qD̄C h̄AC −

1

2r2
D̄AD̂q h̄ C

C +
1

2r3
(D̄Ar)D̂q h̄ C

C

−
1

2r2
D̄CD̄C h̄

q
A −

1

2r4
D̂rD̂r h̄

q
A +

1

2r4
h̄

q
A +

1

2r4
D̂qD̂p h̄Ap

+
1

2r2
D̄AD̄D h̄qD −

1

r3
(D̄Ar)D̄D h̄qD −

1

r4
(D̄Ar)(D̄Dr)h̄qD +

1

r3
(D̄Dr)D̄A h̄qD

+
1

2r4
D̄AD̂s h̄qs −

1

r5
(D̄Ar)D̂s h̄qs −

1

2r4
D̄AD̂q h̄ r

r +
1

r5
(D̄Ar)D̂q h̄ r

r , (A17)

(1)G
q

p = −
1

2r2
D̄CD̄C h̄

q
p −

1

2r4
D̂sD̂s h̄

q
p +

1

r3
(D̄Cr)D̄C h̄

q
p −

2

r4
(D̄Cr)(D̄Cr)h̄

q
p +

2

r4
h̄

q
p

−
1

2r2
D̂pD̂q h̄ C

C +
1

2r2
D̂pD̄C h̄qC +

1

2r2
D̂qD̄C h̄pC

+
1

2r4
D̂pD̂r h̄qr +

1

2r4
D̂qD̂r h̄pr −

1

2r4
D̂pD̂q h̄ r

r

+γ
q

p

(

−
1

2
D̄CD̄D h̄CD −

1

r
(D̄Cr)D̄D h̄CD +

1

2
D̄CD̄C h̄ D

D +
1

2r
(D̄Cr)D̄C h̄ D

D

+
1

2r2
D̂sD̂s h̄ C

C −
1

r2
D̄CD̂r h̄Cr

−
1

2r4
D̂rD̂s h̄sr −

3

2r4
h̄ r

r +
1

2r2
D̄CD̄C h̄ r

r −
1

r3
(D̄Cr)D̄C h̄ r

r

+
2

r4
(D̄Cr)(D̄Cr)h̄ r

r +
1

2r4
D̂sD̂s h̄ r

r

)

. (A18)
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