
The Generalized Dark Radiation in Brane Cosmology

Nikolaos Tetradis
Department of Physics, University of Athens, University Campus, Zographou 157 84, Greece

E-mail: ntetrad@phys.uoa.gr

Abstract. The effective Friedmann equation describing the evolution of a brane Universe in
the cosmology of the Randall-Sundrum model includes a dark (or mirage or Weyl) radiation
term. The brane evolution can be interpreted as the motion of the brane in an AdS-
Schwarzschild bulk geometry. The energy density of the dark radiation is proportional to the
black hole mass. I review how this result is generalized for an AdS bulk space with an arbitrary
matter component. The mirage term retains its form, but the black hole mass is replaced by
the covariantly defined integrated mass of the bulk matter. As this mass depends explicitly
on the scale factor on the brane, the mirage term does not scale as pure radiation. For low
energy densities the brane cosmological evolution is that of a four-dimensional Universe with
two matter components: the matter localized on the brane and the mirage matter. There is
conservation of energy between the two components. This behaviour indicates a duality between
the bulk theory and a four-dimensional theory on the brane. I also discuss the cosmological
evolution on a brane with induced gravity within a bulk with arbitrary matter content. The
Friedmann equation now has two branches, distinguished by the two possible values of the
parameter ε = ±1. The branch with ε = 1 is characterized by an effective cosmological constant
and accelerated expansion for low energy densities. Another remarkable feature is that the
contribution from the generalized dark radiation appears with a negative sign. As a result, the
presence of the bulk corresponds to an effective negative energy density on the brane, without
violation of the weak energy condition. In the branch with ε = 1 the transition from a period
of domination of the matter energy density by non-relativistic brane matter to domination by
the generalized dark radiation can lead to a crossing of the phantom divide w = −1.

1. The generalized dark radiation
In the context of the Randall-Sundrum model [1], the Universe is identified with a four-
dimensional hypersurface (a 3-brane) in a five-dimensional bulk with negative cosmological
constant (AdS space). The action is

S =
∫

d5x
√
−g

(
Λ + M3R + LB

)
+
∫

d4x
√
−ĝ (−V + Lb) , (1)

where R is the curvature scalar of the five-dimensional bulk metric gAB, −Λ the bulk cosmological
constant (Λ > 0), V the brane tension, and ĝαβ the induced metric on the brane. (We neglect
higher curvature invariants in the bulk and induced gravity terms on the brane.) The Lagrangian
density LB describes the matter content (particles or fields) of the bulk, while the density Lb

describes matter localized on the brane.
The geometry is non-trivial (warped) along the fourth spatial dimension, so that an effective

localization of low-energy gravity takes place near the brane. (No such localization takes place for
the bulk matter.) For low matter densities on the brane and a pure AdS bulk (no bulk matter),
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the cosmological evolution as seen by a brane observer reduces to the standard Friedmann-
Robertson-Walker cosmology [2]. We parametrize the metric as

ds2 = −m2(τ, η)dτ2 + a2(τ, η)dΩ2
k + dη2, (2)

with m(τ, η = 0) = 1. The brane is located at η = 0, while we identify the half-space η > 0 with
the half-space η < 0. The effective Friedmann equation at the location of the brane is

H2 =

(
Ṙ

R

)2

=
1

6M2
Pl

[
ρ̃

(
1 +

ρ̃

2V

)
+ ρd

]
− kc

R2
+ λ, (3)

with R(τ) = a(τ, η = 0) and M2
Pl = 12M6/V . The energy density ρ̃ corresponds to matter

localized on the brane, and arises through the parametrization of the corresponding energy-
momentum tensor as T̃A

B = δ(η)diag(−ρ̃, p̃, p̃, p̃, 0). The contribution ∼ ρ̃2 is typical of brane
cosmologies and becomes negligible for ρ̃� V . The curvature term (kc = 0,±1) depends on the
geometry of the maximally symmetric space with constant τ and η. The effective cosmological
constant λ = (V 2/12M3−Λ)/12M3 can be set to zero through an appropriate fine-tuning of V
and Λ. The conservation equation for the brane energy density is

˙̃ρ + 3H(ρ̃ + p̃) = 0. (4)

The energy density ρd = (12M3/π2V )(M/R4) depends on an arbitrary constant M and
scales as conserved pure radiation. It is characterized as dark, or mirage, or Weyl radiation
[2, 3, 4]. Its true nature becomes apparent in a Schwarzschild system of coordinates in which
the metric in general can be written as [5]

ds2 = −n2(t, r)dt2 + r2dΩ2
k + b2(t, r)dr2. (5)

In this system the brane evolution described above corresponds to brane motion within a bulk
with AdS-Schwarzschild geometry: n2 = 1/b2 = Λr2/(12M3)+kc−M/(6π2M3r2). The constant
M is identified with the mass of a black hole located at r = 0. It can also be related to the
value of the bulk Weyl tensor at the location of the brane r = R(τ) (see below).

This picture can be generalized for an arbitrary bulk energy-momentum tensor TA
B using a

covariant formalism [6]. The details of the calculation are given in ref. [7, 8]. The brane can
be identified with a 4D hypersurface, whose spatial part (denoted by D) is invariant under a
six-dimensional group of isometries. The spatial curvature is determined by the value of kc. The
assumption of maximal symmetry of the spatial part, which is essential for our results, implies
the existence of a preferred spacelike direction eA, that represents the local axis of symmetry.
For example, in the Gauss normal coordinate system (2) the preferred axis of symmetry is ∼ ∂η,
while in the Schwarzschild system (5) it is ∼ ∂r. We consider an observer with a 5-velocity ũA

comoving with the brane. The spacelike unit vector field nA is taken perpendicular to the brane
trajectory (nAũA = 0). We also consider a bulk observer with a 5-velocity uA perpendicular to
the preferred direction (eAuA = 0).

Each spatial slice D is covariantly characterized by an average length scale function `. The
derivative of ` along the preferred direction (denoted by a prime) can be determined from
the relation DAeA ≡ 3`′/`, where DA is the fully projected, perpendicular to uA, covariant
derivative [7, 8]. In the Schwarzchild system (5) we have ` = r, while in the Gauss-normal
system (2) ` = a(τ, η). At the location of the brane, ` = R(τ). The time evolution on the brane
can be described in terms of the Hubble parameter, defined as 3H = ũα

;α. It can be shown [7, 8]
that

H2 =

(
˙̀

`

)2

=
1

6M2
Pl

ρ̃

(
1 +

ρ̃

2V

)
+

1
6π2M3

M(`, τ)
`4

− kc

`2
+ λ, (6)
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where the dot indicates a derivative with respect to the proper time τ on the brane: ˙̀ = `;αũα.
The quantity M(`, τ) is defined through the relation

M =
∫ `

`0
2π2ρ`3d` +M0, (7)

where ρ ≡ TABuAuB is the bulk energy density as measured by the bulk observer. We can
interpret M(`, τ) as the generalized comoving mass of the bulk fluid within a spherical shell
with radii `0 and `. This interpretation is strictly correct only for k = 1. However, we shall refer
toM as the integrated mass for all geometries of the spatial slicesD. The quantity p̄ ≡ TABnAnB

appearing in eq. (11) is the bulk pressure in the direction perpendicular to the brane, as measured
by a brane observer. The dependence on the total integrated mass, irrespectively of the specific
radial dependence of the energy density, is reminiscent of the implications of Birkhoff’s theorem
for the gravitational field generated by a matter distribution. Both results are consequences of
the assumed rotational symmetry of the geometry, which is inherited by the matter distribution.
If we employ the Schwarzchild system (5) we can set `0 = r0 = 0. Then, the integration constant
M0 in eq. (7) can be interpreted as the mass of a black hole at r = 0.

A more intuitive physical interpretation of the contribution ∼M in eq. (6) can be given for a
perfect bulk fluid. In this caseM/(6π2M3`4) = ρ/(12M3)−E/3, where E ≡ CACBDũAnC ũBnD

is a scalar formed out of the bulk Weyl tensor [7, 8]. Both ρ and E are evaluated at the location
of the brane. It is clear that the bulk affects the brane evolution through its energy density
in the vicinity of the brane. The contribution ρ is related to the bulk matter, while E can be
loosely interpreted as accounting for the effect of the local gravitational field. For ρ = 0 (AdS-
Schwarzschild bulk) the whole effect arises through the gravitational field. This justifies the use
of the term Weyl radiation for the contribution in the effective Friedmann equation.

We return to the general case of an arbitrary bulk energy-momentum tensor (general fluid).
We can generalize eqs. (3), (4) by defining the effective energy density and pressure of the
generalized dark radiation as

ρD =
12M3

π2V

M
l4

, pD =
ρD

3
+

8M3

V
p̄. (8)

We obtain [7, 8]

H2 =

(
˙̀

`

)2

=
1

6M2
Pl

[
ρ̃

(
1 +

ρ̃

2V

)
+ ρD

]
− kc

`2
+ λ, (9)

[
˙̃ρ + 3H(ρ̃ + p̃)

] (
1 +

ρ̃

V

)
= − [ρ̇D + 3H(ρD + pD)] . (10)

(We can set ` = R(τ) by employing the coordinate system (2).) For ρ̃� V the system behaves
in a remarkably simple fashion. The brane cosmological evolution is that of a four-dimensional
Universe with two matter components: the matter localized on the brane and the mirage matter.
There is conservation of energy between the two components.

The effective equation of state of the mirage component is pD = pD(ρD). This has a simple
form for ρ = 0, in which case we recover the pure dark radiation with pD = ρD/3. In more
general cases, the determination of the equation of state requires the full knowledge of the brane
and bulk dynamics. Similarly, the rate in which brane matter is transformed into mirage matter
cannot be determined by our considerations. It requires explicit input about the interaction
between the brane and the bulk matter. It is also noteworthy that in the general case the
equation of state pD = pD(ρD) depends explicitly on the scale `. This is a consequence of the
explicit breaking of scale invariance by the bulk distribution, which is reflected in the theory
underlying the mirage component.
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The evolution of H is determined by the Raychaudhuri equation

Ḣ = −H2 − 1
12M2

Pl

[
(ρ̃ + 3p̃) +

2ρ̃2 + 3ρ̃p̃

V

]
− 1

6π2M3

M(`, τ)
`4

− 1
M3

p̄ + λ, (11)

where Ḣ = H;αũα. An interesting question concerns the possibility of having accelerated
expansion on the brane as a result of the brane-bulk interaction. The Raychaudhuri equation
(11) provides important intuition on this problem in a general framework. The acceleration
parameter is proportional to Ḣ + H2. For this to be positive one or more of the following
conditions must be satisfied: a) The effective cosmological constant λ is positive. b) The brane
matter satisfies ρ̃ < V and p̃ < −ρ̃/3. c) The brane matter satisfies ρ̃ > V and p̃ < −2ρ̃/3.
d) The comoving mass M is negative. e) The pressure p̄‖ of the bulk fluid perpendicularly
to the brane, as measured by the brane observer, is negative. In general negative pressures
are associated with field configurations. The possibility of a negative comoving mass seems
problematic at first sight, as usually it implies the existence of naked singularities or instabilities.
A counter example is a brane with negative tension in the two-brane model of [1].

2. Specific models
Let us consider now some particular examples that confirm the general picture we presented
above. Our general strategy is to find an explicit solution of the Einstein equations in the bulk
employing the Schwarzschild coordinates (5), and then introduce the brane as the bounday of
the bulk space. This can be achieved only if there is an appropriate rate of energy exchange
between the brane and the bulk. As a result, the conservation of the total energy in the brane
and mirage components, as given by eq. (10), is guaranteed. In all the examples, the effective
Friedmann equation includes the generalized dark radiation term, that has the form of eq. (8)
with ` = R(τ). The function M(R) can be determined explicitly as the integrated mass M(r)
in the Schwarzschild frame. (An additional explicit dependence on time is possible for non-static
bulk geometries, as we shall see below.)
• In the simplest example of ref. [9], the bulk is static in the Schwarzschild frame and the

bulk matter distribution is very similar to that in the interior of a stellar object. The energy
density has a profile ρ(r) that can be determined through the solution of the Einstein equations.
The integrated mass M(r) of this AdS-star has a non-trivial dependence on r. As a result, the
generalized radiation term ∼M(R)/R4 does not scale as radiation.
• In ref. [10] an example of a non-static bulk is given. The bulk matter is pressureless, but

has some initial outgoing velocity in the radial direction. The bulk metric is assumed to have
the AdS-Tolman-Bondi form. In Schwarzschild coordinates it is given by

ds2 = −dt2 + b2(t, r)dr2 + S2(t, r)dΩ2
k, (12)

with b(r, t) given by

b2(t, r) =
S2

,r(t, r)
kc + f(r)

, (13)

where the subscript denotes differentiation with respect to r, and f(r) is an arbitrary function.
The energy-momentum tensor of the bulk matter has the form TA

B = diag (−ρ(t, r), 0, 0, 0, 0) .
The bulk fluid consists of successive shells marked by r, whose local density ρ is time-dependent.
The function S(t, r) describes the location of the shell marked by r at the time t. Notice that
S(r, t) is the actual radial coordinate, while r simply marks the successive shells. Thus, eq. (12)
can be put in the form (5), if we express r as r = r(S, t) and redefine t in order to eliminate
the term dtdS in the metric. It is more convenient, however, to match the metric (12) with (2)
directly, through a transformation t = t(τ, η), r = r(τ, η) [10].
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The Einstein equations reduce to

S2
,t(t, r) =

1
6π2M3

M(r)
S2

− 1
12M3

ΛS2 + f(r) (14)

M,r(r) = 2π2S3ρ S,r. (15)

The integrated mass M(r) of the bulk fluid incorporates the contributions of all shells between
0 and r. It can be obtained through the integration of eq. (15), in agreement with eq. (7) for
` = S. Because of energy conservation it is independent of t, while ρ and S depend on both t
and r. The function f(r) determines the initial radial velocity of the bulk fluid, as can be seen
from eq. (14).

It can be shown [10] that the effective Friedmann equation for the brane evolution has the
form of eq. (9), with M = M(r(τ, η = 0)) and ` = a(τ, η = 0) = S(t(τ, η = 0), r(τ, η = 0)).
The mirage term does not scale as pure radiation, but has a complicated behaviour. The bulk
pressure p̄ perpendicularly to the brane, as measured by a brane observer, obeys p̄ > 0 [10],
even though the pressure is zero for a bulk observer comoving with the fluid. This means that
the equation of state of the mirage component has pD > ρD/3.
• Another interesting case is discussed in refs. [11, 12]. The bulk metric is assumed to have

the generalized AdS-Vaidya form

ds2 = −n2(u, r) du2 + 2ε du dr + r2dΩ2
k, (16)

where
n2(u, r) =

1
12M3

Λr2 + kc −
1

6π2M3

M(u, r)
r2

. (17)

The parameter ε takes the values ε = ±1. The energy-momentum tensor of the bulk matter
that satisfies the Einstein equations is

T u
u = T r

r = − 1
2π2

M,r

r3
(18)

T 1
1 = T 2

2 = T 3
3 = − 1

6π2

M,rr

r2
(19)

T u
r =

1
2π2

M,u

r3
, (20)

where the subscripts indicate derivatives with respect to r and u. The various energy conditions
are satisfied if εM,u ≥ 0, M,r ≥ 0, M,rr ≤ 0, M,r ≥ −rM,rr/3.

The preferred axis of symmetry is ∼ ∂r, so that the average length scale function ` is ` = r.
It is then clear from eq. (18) that M is the integrated mass given by eq. (7). Another way to
reach the same conclusion is to write the metric in Schwarzschild coordinates

ds2 = −n2(t, r) dt2 + n−2(t, r) dr2 + r2dΩ2
k, (21)

where
n2(t, r) = n2(u(t, r), r) =

1
12M3

Λr2 + kc −
1

6π2M3

M (u(t, r), r)
r2

(22)

and ∂u/∂t = 1, ∂u/∂r = ε/n2. The non-zero components of the energy-momentum tensor
that satisfies the Einstein equations for this metric are given by the same expressions as in eqs.
(18)-(20), and the integrated mass is given by eq. (7).

It is not surprising, therefore, that the brane evolution is described by eq. (9) with
M(τ, `) = M(u(τ, η = 0), `). The effective pressure pD, defined in eqs. (8), can be calculated
to be

pD =
4M3

π2V

(M
`4
− ∂M/∂`

`3

)
− 8M3ε

V

(
˙̃ρ + 3H(ρ̃ + p̃)

)
. (23)
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For ρ̃� V the second term in the r.h.s. can be neglected. The function M(u, r) is arbitrary. If
it is assumed to have the form M = M(u), the bulk energy-momentum tensor corresponds to
a radiation field. The resulting cosmological solution describes a brane Universe that exchanges
(emits or absorbs) relativistic matter with the bulk. For example, the form of M(u) can be
matched to the rate of production of Kaluza-Klein gravitons during the collisions in a thermal
bath of brane particles [4, 12]. In this case, the effective pressure of the mirage component
becomes pD = ρD/3. The system of equations (9), (10) for ρ̃ � V describes the evolution of
a four-dimensional Universe with energy exchange between the brane matter component ρ̃ and
the dark radiation component ρD.

Other choices for M(u, r) that satisfy the energy conditions are possible as well. If one
assumes M(u, r) =M(u)r, the mirage component has pD = 0 for ρ̃� V . This is the equation
of state of non-relativistic matter. As a result, the mirage component can be characterized
as mirage cold dark matter. However, the physical interpretation of a bulk geometry with
M(u, r) =M(u)r remains an open question.
• Our final example involves a bulk scalar field in a global monopole (hedgehog) configuration

[10]. The field has four components φα, α = 1, 2, 3, 4, and its action is invariant under a global
O(4) symmetry. The field configuration that corresponds to a global monopole is φα = φ(r)xα/r.
The asymptotic value of φ(r) for r → ∞ is φ0. The metric can be written in Schwarzschild
coordinates, as in eq. (5), with n = n(r), b = b(r) and k = 1. For large r, the leading
contribution of the monopole configuration to the energy-momentum tensor comes from the
angular part of the kinetic term. The integrated mass can be calculated to be M = 3π2φ2

0`
2/2

for large `. (The global monopole has a diverging mass in the limit ` → ∞.) As a result
the effective energy density is ρD = 18M3φ2

0/(V `2). In this case the mirage component scales
∼ `−2, similarly to the curvature term. This can be verified by calculating explicitly the effective
pressure pD, which turns out to be pD = −ρD/3 for large `.

3. The bulk-brane duality
We saw in the previous section that, for low energy densities, the cosmological evolution on
the brane is typical of a four-dimensional Universe. In addition to the matter localized on
the brane, a mirage matter component appears, which we characterized as generalized dark
radiation. There is conservation of energy between the two components. The nature of the
mirage component depends on the bulk matter. In particular, despite its characterization as
generalized dark radiation, the mirage component can have a very general equation of state. If
we define pD = wDρD, there are configurations with
• wD > 1/3: non-relativistic bulk matter in an AdS-Tolman-Bondi geometry;
• wD = 1/3: AdS-Schwarzschild bulk geometry; AdS-Vaidya bulk with energy exchage between
the brane and a radiation field in the bulk.
• wD = 0: generalized AdS-Vaidya bulk;
• wD = −1/3: global monopole in an AdS bulk;
• wD = −1: constant field with a non-zero potential in the bulk (effective cosmological constant).

In the case of an AdS-Schwarzschild bulk the mirage component is pure radiation. Its
appearance can be understood through the AdS/CFT correspondence [13, 14]. There is a
duality that relates a supergravity theory, arising in the low energy limit of an appropriate
compactification of a superstring theory, with a conformal field theory. In particular, the
supergravity is defined on the product of a compact manifold and a five-dimensional manifold
X5 with a four-dimensional boundary M4. The manifold X5 asymptotically (near the boundary
M4) becomes an AdS5 space. The conformal field theory is defined on M4. It was suggested
in ref. [15] that the cosmology in the Randall-Sundrum model can be understood through the
AdS/CFT correspondence. The AdS bulk degrees of freedom correspond to a conformal field
theory on the boundary of the bulk space. The dark radiation term is nothing but the energy
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density of the conformal degrees of freedom.
If there are non-zero bulk fields other than the gravitational field, the dual theory is not

expected to be conformal. This is obvious if the bulk field profile introduces new energy scales,
other than the fundamental Planck scale M and the cosmological constant Λ.As a result, it is
not surprising that the effective equation of state of the generalized dark radiation can deviate
significantly from that of pure radiation. The remarkable property is that the brane evolution
at low energies can be described in four-dimensional terms for any bulk content. This implies
that the dual description of a bulk gravity theory is quite general at low energies.

The breaking of conformal invariance is reflected in the trace of the energy-momentum
tensor of the generalized dark radiation. From eq. (8) it is apparent that this is proportional
to the pressure of the bulk fluid perpendicularly to the brane as measured by the brane
observer. In cases in which the duality between a bulk theory with broken conformal invariance
and a boundary theory is known, the trace of the energy-momentum tensor can also be
expressed through the expectation value of an operator of the boundary conformal theory. The
cosmological evolution on the brane at low energies can be derived either through an explicit
solution of the five-dimensional Einstein equations or through the study of the dual theory in a
cosmological context [16].

4. Induced gravity
A brane theory with an induced gravity term in the action, characterized by a length scale rc, has
several novel features. In the simplest example, the DGP model [17], the brane tension V and
bulk cosmological constant Λ are neglected. Specific examples with an induced gravity term can
be obtained in string theory, and are common in holographic descriptions [16, 18, 19, 20]. Despite
possible problems at large distances [21], the DGP model predicts an interesting cosmological
evolution [22]. The Friedmann equation has two branches, distinguished by the two possible
values of the parameter ε = ±1. The branch with ε = 1 is characterized by an effective
cosmological constant and accelerated expansion for low energy density of the brane matter
[23]. The generalization of the model for non-zero V and Λ displays the same two branches [18].
For ε = −1, the limit rc → 0 reproduces the cosmological evolution of the Randall-Sundrum
model, in which the effective cosmological constant is zero. The branch with ε = 1 displays
late-time accelerated expansion, in complete analogy to the DGP model.

We are interested in describing the effects of the bulk matter on the brane cosmological
evolution in the presence of an induced gravity term. We assume that the action takes the form

S =
∫

d5x
√
−g

(
Λ + M3R + LB

)
+
∫

d4x
√
−ĝ

(
−V + M3rcR4 + Lb

)
. (24)

This is a generalization of the action of eq. (1), to which a term proportional to the curvature
scalar constructed out of the induced metric on the brane has been added. This term involves
a new length scale rc. In principle the value of rc in units of M is calculable in the context
of the fundamental theory underlying the brane Universe scenario. However, we adopt here a
phenomenological approach and treat rc as a free parameter.

The generalized Friedmann equation becomes [24]

r2
c

2

(
H2 +

R3

6

)
= 1 +

rc (V + ρ̃)
12M3

+ ε

[
1 +

rc (V + ρ̃)
6M3

+
r2
cΛ

12M3
− r2

cM
6π2M3`4

]1/2

. (25)

The quantity M(`, τ) is the comoving mass of the bulk fluid as defined in eq. (7). The above
equation has two branches, characterized by the values of the parameter ε = ±1. The branch
with ε = 1 is the normal branch. It leads to eq. (3) in the limit rc → 0, with Λ, V kept fixed
and fine-tuned so that they satisfy λ =

(
V 2/12M3 − Λ

)
/12M3 = 0. The branch with ε = −1 is
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the self-accelerating branch, in which an effective cosmological constant appears even when the
fine-tuning λ = 0 is imposed.

5. Accelerated expansion and w = −1 crossing in the presence of induced gravity
The two values of ε in equation (25) correspond to two disconnected branches of solutions.
The nature of the predicted expansion is clearer in the limit of low energy density. Let
us consider first the Randall-Sundrum case [1], in which the bulk cosmological constant −Λ
and the brane tension V are related through Λ = V 2/(12M3). We define the energy scale
k = V/(12M3) =

[
Λ/(12M3)

]1/2. The Friedmann equation (25) can be written as

r2
c

2

(
H2 +

kc

`2

)
= 1 + krc + krc

ρ̃

V
+ ε

[
(1 + krc)2 + 2krc

ρ̃

V
− 2(krc)2

ρ̃d

V

]1/2

, (26)

where ρ̃d =M(`)/
(
kπ2`4

)
is the effective energy density of the generalized dark radiation.

For ρ̃, ρ̃d � V , keeping only the terms linear in ρ̃, ρ̃d, we find

H2 =
2(1 + ε)(1 + krc)

r2
c

+
1 + ε + krc

krc(1 + krc)
ρ̃

6 (M3/k)
− ε

1 + krc

ρ̃d

6 (M3/k)
− kc

`2
. (27)

For ε = −1 we have

H2 =
1

6M2
Pl

(ρ̃ + ρ̃d)−
kc

`2
, (28)

with M2
Pl = M3(rc +1/k). The expansion is conventional, apart from the presence of the energy

density of the generalized dark radiation.
For ε = 1 and krc � 1 we obtain

H2 =
4
r2
c

+
1

6M2
Pl

(
ρ̃− krc

2
ρ̃d

)
− kc

`2
, (29)

with M2
Pl = M3rc/2. For ε = 1 and krc � 1 we have

H2 =
4k

rc
+

1
6M2

Pl

(ρ̃− ρ̃d)−
kc

`2
, (30)

with M2
Pl = M3rc. In both cases an effective cosmological constant appears, despite the fine

tuning of the bulk cosmological constant and the brane tension. The other striking feature is
the negative sign of the contribution proportional to the energy density of the dark radiation.

The above features also appear in the DGP model [17], characterized by Λ = V = 0. The
Friedmann equation (25) now reads

r2
c

2

(
H2 +

kc

`2

)
= 1 + rc

ρ̃

12M3
+ ε

[
1 +

rc

6M3
(ρ̃− ρ̃d)

]1/2

, (31)

with ρ̃d = rcM(`)/
(
π2`4

)
. For ε = 1 and ρ̃�M3/rc we have

H2 =
4
r2
c

+
1

6M2
Pl

(
ρ̃− 1

2
ρ̃d

)
− kc

`2
, (32)

with M2
Pl = M3rc/2.

It is obvious from the above that the brane cosmological expansion in the branch with ε = 1
has novel properties arising from: a) an effective cosmological constant, and b) an effective
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negative energy density associated with the generalized dark radiation. The second feature is
not a consequence of a violation of the weak energy condition, as the energy density is assumed
positive both in the bulk and on the brane.

In the case of an AdS-Schwarzschild bulk we have ρ̃d ∼ `−4. At late times the contribution
from the dark radiation is subleading to the contribution from the brane matter ρ̃ ∼ `−3. On
the other hand, if there is a non-trivial matter configuration in the bulk so that ρ̃d ∼ `−n with
n < 3, the cosmological constant and the effective negative energy density are the leading effects.

An example with ρ̃d ∼ `−2 is given in reference [10]. The bulk is assumed to contain a
scalar field in a global monopole (hedgehog) configuration. The field also interacts with the
brane through a localized quadratic potential, so that the brane can be embedded in the bulk
spacetime. For large `, the dominant contribution to the integrated mass arises from the field
kinetic term, so that M∼ `2 and ρ̃d ∼ `−2. The contribution from the brane potential is ∼ `−4

and, therefore, negligible for large `.
The evolution in the presence of a cosmological constant λeff and a matter contribution

ρ̃ = ρ̃0(`/`0)−n is determined by

1
˜̀
d˜̀

dt̃
=

(
1 + δ

c2

˜̀n

)1/2

, (33)

where ˜̀= `/`0, t̃ = (λeff/6M2)1/2t, c2 = ρ̃0/λeff and δ = ±1. For δ = 1 the solution is

˜̀n/2 = c sinh
(

n

2
t + ds

)
, (34)

with ds = sinh−1(1/c), while for δ = −1 it is

˜̀n/2 = c cosh
(

n

2
t + dc

)
, (35)

with dc = cosh−1(1/c). The acceleration parameter q = ῭̃ ˜̀/(˙̀̃)2 for δ = 1 is

q = 1− n

2

[
cosh

(
n

2
t + ds

)]−2

, (36)

while for δ = −1 it is

q = 1 +
n

2

[
sinh

(
n

2
t + dc

)]−2

. (37)

The Friedmann equation for the branch with ε = 1 can be written in the form (33) when one
of the energy densities ρ̃, ρ̃d is negligible. If the dominant matter contribution comes from the
non-relativistic matter on the brane, we have δ = 1, n = 3 and q < 1. If the dominant matter
contribution comes from the generalized dark radiation with n < 3, we have δ = −1 and q > 1.

For a cosmological fluid with an equation of state peff = wρeff and an effective state parameter
w, the acceleration parameter is q = −(1 + 3w)/2. As a result, q > 1 implies w < −1, while
q < 1 implies w > −1. It is apparent from our discussion above that the branch of equation
(25) with ε = 1 can lead to an evolution during which the line w = −1 is crossed. This happens
if the cosmological constant is the leading contribution, and the brane dark matter dominates
over the generalized dark radiation at early times, while the reverse takes place at later times.
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