23 The finite subgroups of SU(3)

P. O. Ludl

Abstract The finite subgroups of SU(3) are frequently used in particle physics. Though they
were classified already at the beginning of the 20th century, there have been many new and
interesting developments in the last few years. In this article we will list the finite subgroups of
SU(3) and summarize some of their properties.

23.1 Introduction

Particle physics offers a wide range of applications for the theory of finite groups, and in
particular the finite subgroups of SU(3) have been intensively studied in the past. The wide
range of applications of SU(3)-subgroups covers different fields such as hadron physics and
computational tools in lattice QCD. The field of particle physics which has made the most
intensive use of the finite subgroups of SU(3) in the recent years is flavour physics, where
finite SU(3)-subgroups are frequently used as symmetries in the quark, lepton and scalar
sector [1 2].

The classification of the finite subgroups of SU(3) presented in this article is based on the work
of H.F. Blichfeldt as published in the famous book [3]. A short summary of the history of the
contributions to the analysis of the finite subgroups of SU(3) (from a physicist’s perspective)
can be found in the introduction of [4].

There is a lot of literature covering aspects of the finite subgroups of SU(3). Apart from the
classic textbook [3] we refer the reader to the review articles [SH7] and references therein.

23.2 The finite subgroups of SU(3)

In 1916 H.F. Blichfeldt classified the finite subgroups of SU(3) into the following five classes [3].
(A) Abelian groups.
(B) Finite subgroups of SU(3) with faithful two-dimensional representations.

(C) The groups C(n, a, b) generated by the matrices

010
E=(O 0 1), F(n, a, b) = diag(n? nP, n=a7b), (23.1)
100

where n = exp(2mi/n),n € N\{0,1} anda,b e {0,...,n—1}.
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(D) The groups D(n, a, b; d, r, s) generated by E, F(n, a, b) and

B o" 0 0
G(d,r,s)=| O 0 6° |, (23.2)
0 -6 0

where 6 = exp(2mi/d),d e N\{O} andr,s € {0,...,d—1}.
(E) Six exceptional finite subgroups of SU(3):
- X(60) = As, 2(168) = PSL(2, 7),
- X(36 % 3),%(72 x 3),2(216 x 3) and (360 x 3),
as well as the direct products 2(60) x Z3 and Z(168) x Zs.

In the following we will go through these five types of groups and dwell a bit on the structures
of their members.

(A) Abelian groups The possible structures of the Abelian finite subgroups of SU(3) are
strongly restricted by the following theorem [4].

Theorem 1. Every finite Abelian subgroup G of SU(3) is isomorphic to Zm, X Zp, where

m = maxord(a) (238.3)
aeg

and p is a divisor of m.

Thus every finite Abelian subgroup of SU(3) is either a cyclic group or a direct product of
two cyclic groups. Examples for cyclic subgroups of SU(3) are the three-dimensional rotation
groups about one axis. An example for a direct product of two cyclic groups is Klein’s four
group Z3 x Z5.

(B) Groups with two-dimensional faithful representations Suppose we are given a finite
group possessing a two-dimensional faithful representation (i.e. a finite subgroup of U(2)), then
via the homomorphism

A._)(detA 0

o A ) esSU(3) (AeU(2)) (23.4)

we can construct an isomorphic finite subgroup of SU(3) [6]. In this way every finite subgroup
of U(2) can be interpreted as a finite subgroup of SU(3). Examples for SU(3)-subgroups
possessing a two-dimensional faithful representation are

+ the dihedral groups D, and

 the double covers 7N', 5, .7, 5n of the finite three-dimensional rotation groups

"The finite three-dimensional rotation groups (SO(3)-subgroups) are [8]: the rotation groups about one axis
(cyclic groups), the dihedral groups Dp, the tetrahedral group T = A4, the octahedral group O = S4 and the
icosahedral group I = As.
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The groups of type (C) The groups C(n, a, b) are generated by the permutation matrix E
and a diagonal matrix F(n, a, b)—see equation (23.1). The subgroup N(n, a, b) of all diagonal
matrices is generated by

F(n,a,b) and EF(n,a, b)E~1, (23.5)

from which follows that N(n, a, b) is a normal subgroup of C(n, a, b). Therefore the groups of
type (C) have the structure of a semi-direct product

C(n,a,b)=N(n,a,b)xZs3, (23.6)

where the Z3-subgroup is generated by E. Since N(n, a, b) is an Abelian finite subgroup of
SU(3), we can use theorem 1 to arrive at

C(n,a,b) = (Zm x Zp) X Z3. (23.7)

There are two important special cases emerging from (23.7):
« p =1 = Groups of the typef] Ty = Z, x Z5.
« p=m = Groups of the type (Zm X Zm) X Z3 = A(3m?).

Examples for groups of type (C) are well-known groups such as A4 = A(12), A(27), T7 and
T13. However, there are also groups of type (C) which are neither of the form T, nor of the
form A(3m?). The smallest example, which is not a direct product, is the group [4]

C(9,1,1) = (Zo x Z3) } Z3. (23.8)

The groups of type (D) The groups D(n, a, b; d, r, s) are generated by the generators E
and F(n, a, b) of (C) and the additional generator G(d, r, s)—see equation . It was shown
in [6] that by means of a unitary transformation one can obtain a different set of generators
consisting of three diagonal matrices and the two Ss-generators

010 -1 0 0
E=| 00 1| ad B=| 0 0 -1 |. (23.9)
100 0 -1 0

Thus, as in the case of (C), the subgroup N(n, a, b; d, r, s) of diagonal matrices is an invariant
subgroup, and the structure of the groups of type (D) is found to be

D(n,a,b;d,r,s) = (Zm x Zp) X S3, (23.10)

where N(n, a, b;d, r,s) = Zmn x Zp and S3 is generated by E and B.

For the special case of p = m we obtain the groups (Zm X Zm) % S3 = A(6m?). Thus the
groups of type (D) comprise the well-known groups S4 = A(24), A(54) and A(96). The
smallest group of type (D), which is neither a direct product, nor of the form A(6m?), is [4]

D(9,1,1;2,1,1) = (Zg x Z3) X S3. (23.11)

2m must be a product of powers of primes of the form 6k + 1, k € N [5].
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(E) The exceptional finite subgroups of SU(3) This set of groups collects all finite sub-
groups of SU(3) which do not fall into one of the categories (A)—(D). Among these groups are
the two simple groups Z(60) =1 = As and Z(168) = PSL(2, 7). For a detailed treatment
of these two groups we refer the reader to [9]. Also the direct products £(60) x Z3 and
%2(168) x Z3 are finite subgroups of SU(3).

The remaining four exceptional groups are (36 x 3), (72 x 3), Z(216x3) and Z(360 x 3).
Their generators can be found in [3]. For a detailed study of the first three groups we refer
the reader to [10]. The largest exceptional finite SU(3)-subgroup Z(360 x 3) possesses
only one non-trivial invariant subgroup, namely the center {1, w1, w?1} = Z3 of SU(3)
(w = exp(2mi/3)). The corresponding factor group Z(360) = Z(360 x 3)/Z3 is isomorphic
to the permutation group Ag [11]. The character table of £(360 x 3) can be found in [7].
2(60) =1 = As is a subgroup of Z(360 x 3).

23.3 Representations of the finite subgroups of SU(3)

By definition a finite subgroup of SU(3) possesses at least one three-dimensional representation
of determinant one. This representation is not necessarily irreducible, however many SU(3)-
subgroups possess three-dimensional irreps.

* The groups of type (A) are Abelian, which implies that all their irreps are one-dimensional.

* Much less is known about the representations of the groups of type (B), which are the
finite subgroups of U(2). By definition they possess at least one two-dimensional faithful
representation. The dihedral groups D, and their double covers possess only one- and
two-dimensional irreps [12], while the double covers T, O and I of the rotation groups T,
O and I possess also three- and higher-dimensional irreps [6].

* It was shown in [6] that the groups of type (C) possess only one- and three-dimensional
irreps.

+ Also the dimensions of the irreps of the groups of type (D) can be determined in general.
A group of type (D) can possess one-, two-, three- and six-dimensional irreps [6].

+ All of the exceptional finite subgroups (E) of SU(3) possess three-dimensional irreps.
Since £(60) =1 = As and £(168) = PSL(2, 7) are simple, all their non-trivial irreps
are faithful. Detailed information on the irreps of Z(36 x 3), £(72 x 3) and £(216 x 3)
can be found in [10]. The largest exceptional SU(3)-subgroup Z(360 x 3) possesses
irreps of dimensions 1,3,5,6,8,9,10 and 15 [7].

Let us finish this section with a theorem, which can be very helpful when one looks for finite
groups which possess irreps of a given dimension.
Theorem 2. The dimension of an irrep of a finite group is a divisor of the order of the group.

A collection of helpful theorems including references to their proofs can be found in [6].
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23.4 Summary and outlook

In this work we reviewed the structure of the finite subgroups of SU(3). A summary of these
results can be found in figure [23.1], which shows the finite subgroups of SU(3) classified into
the five types defined in [3]. Among the five types, we studied (A), (C) and (D) in more detail.

Dihedral groups O,

(B} L2)-subgroups

doule covers of rotation groups

e

=
L[60) =1= Ag L

T(36 x 3), (72 x 3), £(216 x 3) and (360 x 3)

(1 L(168) = E3
(168) £(60) x Zs (165)

5, 2 0 = A(24) Q

Figure 23.1: The finite subgroups of SU(3) as presented in section [23.2]

The Abelian finite subgroups of SU(3) were found to have the structure of a direct product
Zm x Zp. This insight allowed to determine the general structure of the hitherto not very
well-known SU(3)-subgroups of type (C) and (D) which is similar to the one of the well-known
series A(3n?) and A(6n2), which are subseries of (C) and (D), respectively.

The finite subgroups of SU(3) comprise an interesting field of study, especially with respect to
their application as symmetries in particle physics. An interesting question frequently arising in
the context of flavour physics is the breaking of a group to one of its subgroups. For works
dealing with this question—especially in the context of SU(3)-subgroups—we refer the reader
to [13][14].

Finally we would like to mention two very helpful tools for studying finite groups, namely the
computer algebra system GAP [15] and the SmallGroups library [16], a GAP-package which
provides valuable information on all finite groups up to order 2000. Two examples for works
where these tools have been successfully used are [17, [18].
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