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Abstract: Space gravitational wave detection primarily focuses on the rich wave sources correspond-

ing to the millihertz frequency band, which provide key information for studying the fundamental

physics of cosmology and astrophysics. However, gravitational wave signals are extremely weak,

and any noise during the detection process could potentially overwhelm the gravitational wave

signals. Therefore, data pre-processing is necessary to suppress the main noise sources. Among

the various noise sources, laser phase noise is dominant, approximately seven orders of magnitude

larger in strength than typical gravitational wave signals, and requires suppression using time-delay

interferometry (TDI) techniques, which involve combining raw data with time delays. This paper

will be based on the basic principles of TDI to present methods for obtaining multi-type TDI combi-

nations, including algebraic methods for solving indeterminate equations and geometric methods

for symbolic search. Furthermore, the applicability of TDI under actual operating conditions will be

considered, such as the arm locking in conjunction with the TDI algorithm. Finally, the sensitivity

functions for different types of TDI combinations will be provided, which can be used to evaluate the

signal-to-noise ratio (SNRs) of different TDI combinations.

Keywords: gravitational wave; time-delay interferometry; sensitivity function

1. Introduction

Ground-based laser interferometric detectors are capable of detecting gravitational
waves primarily in the hertz to kilohertz frequency range [1–8], making it difficult to
detect important wave sources emitting low-frequency gravitational waves, which in-
clude galactic binaries, supermassive black hole binaries, and the stochastic early universe
background, among others. Therefore, several space-based gravitational wave detection
projects aimed at detecting the millihertz frequency band are being actively promoted, such
as the LISA [9,10], TianQin [11] and Taiji [12] missions. The detection of low-frequency
gravitational waves could help solve numerous issues in cosmology, astrophysics, and
general relativity [13–16].

A typical space-based gravitational wave detector consists of three spacecraft form-
ing an approximately equilateral triangle. It detects gravitational wave disturbances by
measuring the Doppler shift in the laser exchange between two spacecraft separated by
distances of 108 to 109 m. Compared to ground-based detectors, space-based gravitational
wave detectors cannot maintain a constant distance between different arms, which results
in residual noise after laser beat frequency being several orders of magnitude larger than
the noise floor (test mass noise and optical path noise). Therefore, to achieve the required
sensitivity, it is crucial to eliminate laser phase noise.

Currently, there are two technologies, arm locking [17–19] and TDI [20–22], that are
used in successive steps to reduce the noise of pre-stabilized lasers (30 Hz/Hz1/2). The
arm locking technique will provide the second stage of laser stabilization, which attempts
to convert the stability of the inter-spacecraft arm length into laser frequency stability
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through feedback control. The remaining laser phase noise is further eliminated in the post-
processing stage using the TDI technique. TDI technique constructs a virtual equal-arm
interferometer by applying appropriate delay operations and linear combinations to the
measurement data. By combining arm locking with TDI, it will be achieved to suppress the
laser phase noise to below the level of noise floor.

In 2003, Sheard et al., first proposed arm locking [17]. In 2008, Sutton et al., proposed
dual arm locking, which uses common-mode and differential-mode interference informa-
tion from two arms of different lengths to shift the zero point of the frequency response
to outside the target frequency band [23]. However, the frequency pulling effect in the
dual arm locking is significant, and in 2009, McKenzie et al. proposed a modified dual
arm locking [24]. Within the frequency band below the first zero point of the frequency
response, common-mode locking is used, while above the first zero point, dual arm locking
is adopted. This arm locking mode combines the low-frequency pulling characteristics of
common-mode locking with the high stability and gain advantages of dual arm locking.

The arm locking technique can suppress laser frequency noise by two to three orders
of magnitude. To successfully detect gravitational wave signals, it is necessary to rely on
a key technique in the data pre-processing stage: TDI. It constructs a virtual equal-arm
configuration by time delaying and linearly combining the measurement data, thus dif-
ferentially canceling noise. Tinto et al. first proposed the TDI technique in 1999 [20,21].
After more than 20 years of development, various methods have been developed to de-
rive TDI combinations. These include algebraic methods [25,26] for solving constrained
equations, geometric methods for symbolic search [27–30], as well as Matrix TDI [31],
Bayesian TDI [32], and others. Various TDI combinations have been derived, such as
the first-generation TDI combinations [20,21] that consider arm lengths as constant, the
modified first-generation TDI combinations that account for constant arm lengths with
rotation effects [33], and the second-generation TDI combinations that consider arm lengths
varying over time [34]. Numerical validation and analysis have shown that the suppres-
sion capability of the second-generation TDI combinations meets the requirements for
gravitational wave detection [35–38].

In addition to laser phase noise, other noises will also affect the detection of grav-
itational waves in space; for example, clock noise also needs to be suppressed by clock
sideband comparison technology [39–49], which will not be a concern in this paper.

TDI and arm locking have been studied relatively independently. However, in actual
space-based gravitational wave detection, the measurement data we obtain are after the
application of arm locking. Therefore, it is crucial to develop a TDI technique that can
perform delay operations on data streams containing controller parameters to suppress
laser phase noise while preserving the gravitational wave signals.

Finally, to determine whether a detector can observe gravitational waves emitted by
a specific source, it is necessary to analyze the sensitivity functions under different TDI
combinations. Typically, the sensitivity of a detector can be quantified by the ratio of the
response to a gravitational wave signal to the instrumental noise. This is referred to in
the literature as the signal-to-oise ratio (SNR) and is usually presented in the frequency
domain. There has been much discussion on the frequency dependence of the antenna
response function for different polarizations and TDI combinations [50–63]. For equal-arm
gravitational wave detectors, a semi-analytical formula of analytical expressions for the
tensor mode [50] and semi-analytical formulae have been derived for all polarizations
with different TDI combinations [54–56]. Simultaneously, numerical simulations have
calculated the average response function of different TDI combinations to the six possible
polarizations [57,58]. Recently, the full analytical formula for the tensor mode in the
first-generation TDI Michelson combination was derived in [59]. However, a variety
of TDI combinations can be used in the post-processing of space-based gravitational
wave detection. To quickly and efficiently provide the sensitivity function for any TDI
combination, we have provided the full analytical expressions for any TDI combination
under different polarization modes [61,64].
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The paper is organized as follows. In Section 2, we discuss the configuration of
space-based gravitational wave detectors and the basic conventions for data streams.
In Section 3, we present TDI combinations and analyze the principles of algebraic and
geometric methods. Arm locking in conjunction with TDI is devived in Section 4. In
Section 5, we analyze the sensitivity functions of different TDI combinations. The conclusion
is given in Section 6.

2. Conventions and Laser Interferometry Measurement Data

For a typical space-based gravitational wave detector, three spacecraft form an equilat-
eral triangle. Each spacecraft emits lasers with a wavelength of 1064 nm to the other two
spacecraft and receives lasers from them as well, as shown in Figure 1.

Each of the three spacecraft carries two nearly movable optical subassemblies (MOSAs),
labeled i and i′ (i = 1, 2, 3). The detector arm lengths opposite to MOSAs i and i′ are
denoted as Li and Li′ , respectively, depending on the direction of light propagation, which
can be clockwise or counterclockwise (denoted with a prime) [22].

ADC

ADCADC

Laser

OB

USO

PM

PD

TM

Figure 1. The constellation configuration of space-borne gravitational wave detector. OB: optical

bench; USO: ultra-stable oscillator; PD: photodetector; TM:test mass.

To facilitate the representation of the inter-spacecraft delay process experienced by
time-varying, we first define six delay operators Di, Di′ (i = 1, 2, 3). These operators shift
all time-dependent functions by the corresponding light travel times Li, Li′ , respectively. In
this paper, we adopt the convention c = 1, and for any data stream f (t), we have

Di f (t) = f (t − Li(t)),

DjDi f (t) = Dji f (t) = f (t − Li(t − Lj)− Lj(t)).
(1)
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Based on the principle of laser exchange between the three spacecraft, there are four
different laser interferometric measurement data on each MOSA, which are as follows:

(a) The incident laser from a distant spacecraft interferes with the local laser, with the
incident laser carrying gravitational wave information. The signal obtained from this
type of interference measurement is known as the scientific carrier interferometric
data stream, denoted by sc

i (t).
(b) The laser exchange between two adjacent MOSAs on the same spacecraft, where the

laser from MOSA i′ is transmitted through an optical fiber to the test mass of MOSA i
and reflected to interfere with the local laser, resulting in the test mass interferometric
data stream, is denoted by ǫi(t).

(c) The laser from the adjacent MOSA i′ is transmitted through an optical fiber to MOSA
i and beat with the local laser beam, yielding the reference interferometric data stream
τi(t).

(d) To eliminate clock noise, an electro-optic modulator is used to generate sidebands
at both ends of the carrier. The driving frequency of the electro-optic modulator
is referenced to the clock, transferring clock noise to the distant spacecraft. The
sidebands are beat with each other to produce the sideband data stream ssb

i (t).

For simplicity, when considering the data streams on each spacecraft, we only take
into account gravitational wave signals, laser frequency noise, clock noise, optical bench
noise, test mass acceleration noise, fiber noise, and optical path noise.

On MOSA i, these are denoted as follows [45]:

sc
i =hi + Di−1 p(i+1)′ − pi + N

opt
i − aiqi+

2πν(i+1)′
[
~ni−1 · Di−1

~∆(i+1)′ +~n(i−1)′ ·~∆i

]
,

ssb
i =hi + Di−1 p(i+1)′ − pi + N

opt,sb
i − ciqi − miqi+

2πν(i+1)′
[
~ni−1 · Di−1

~∆(i+1)′ +~n(i−1)′ ·~∆i

]
+ m(i+1)′Di−1qi+1,

εi =pi′ − pi + µi′ − 4πνi′
[
~n(i−1)′ ·~δi −~n(i−1)′ ·~∆i

]
− biqi,

τi =pi′ − pi + µi′ − biqi.

(2)

On MOSA i′, we have

sc
i′ =hi′ + D(i+1)′ pi−1 − pi′ + N

opt
i′ − ai′qi′+

2πνi−1

[
~ni+1 · D(i+1)′

~∆i−1 +~ni+1 ·~∆i′
]
,

ssb
i′ =hi′ + D(i+1)′ pi−1 − pi′ + N

opt,sb
i′ − ci′qi − mi′qi+

2πνi−1

[
~n(i+1)′ · D(i+1)′

~∆i−1 +~ni+1 ·~∆i′
]
+ mi−1D(i+1)′qi−1,

εi′ =pi − pi′ + µi − 4πνi′
[
~ni+1 ·~δi′ −~ni+1 ·~∆i′

]
− bi′qi,

τi′ =pi − pi′ + µi − bi′qi,

(3)

where hi represents the gravitational wave signal, pi denotes the laser phase noise, νi is

the center frequency of the laser, ~∆i refers to the optical bench noise, N
opt
i represents the

optical path noise, qi stands for the clock noise, µi denotes the fiber noise, ~δi represents the
test mass acceleration noise, and mi is the modulation factor.
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The conversion coefficients ai,i′ , bi,i′ , ci,i′ are defined as

ai =
ν(i+1)′

(
1 − L̇i−1

)
− νi

fi
, ai′ =

νi−1

(
1 − L̇(i+1)′

)
− νi′

fi
,

bi =
νi′ − νi

fi
, bi′ =

νi − νi′

fi
= −bi,

ci =

(
ν(i+1)′ + m(i+1)′ fi+1

)(
1 − L̇i−1

)
− (νi + mi fi)

fi
,

ci′ =
(νi−1 + mi−1 fi−1)

(
1 − L̇(i+1)′

)
− (νi′ + mi′ fi)

fi
,

(4)

where fi is the clock frequency.
To process the output data from the instrument, the first step is to eliminate the optical

bench noise. To do this, intermediate variables are introduced [45]:

ξi ≡sc
i −

ν(i+1)′

νi′

εi − τi

2
−

ν(i+1)′

νi+1

Di−1ε(i+1)′ − Di−1τ(i+1)′

2
,

ξi′ ≡sc
i′ −

νi−1

νi

εi′ − τi′

2
− νi−1

ν(i−1)′

D(i+1)′ εi−1 − D(i+1)′τi−1

2
.

(5)

To eliminate the laser phase noise with a prime, additional intermediate variables are
defined as

ηi ≡ ξi − Di−1zi+1,

ηi′ ≡ ξi′ + zi,
(6)

where

zi ≡
(τi − τi′)

2
. (7)

Combining Equations (2)–(7), the data for each spacecraft are [45,46]

ηi =hi + Di−1 pi+1 − pi − aiqi + Di−1bi+1qi+1 + Noms
i

+ 2πν(i+1)′~ni−1

[
Di−1

~δ(i+1)′ −~δi

]
,

ηi′ =hi′ + D(i+1)′ pi−1 − pi + (bi′ − ai′)qi + Noms
i′

+ 2πνi−1~ni+1 ·
[
~δi − D(i+1)′

~δi−1

]
.

(8)

Equation (8) assumes that the fiber noise is reciprocal.

3. Time Delay Interferometry Technique for Reducing Laser Phase Noise

This section first introduces the basic principles of TDI using the Michelson interferom-
eter as an example and then extends the concept to the split interferometry configuration
corresponding to space-based gravitational wave detectors. Finally, it presents the algebraic
and geometric methods for obtaining TDI combinations.

3.1. The Basic Principles of TDI

TDI is a post-processing technique that constructs virtual equal-arm interferometers by
time-delaying and recombining data. As shown in Figure 2a, in an unequal-arm Michelson
interferometer, the laser is split and then travels through two unequal arms of lengths L1
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and L2, respectively, before interfering with the local laser. The interference data obtained by
the two photoelectric detectors (considering only laser phase noise) can be represented as

yPD,1(t) = p(t − 2L1)− p(t),
yPD,2(t) = p(t − 2L2)− p(t).

(9)

Due to the unequal arm lengths, there is residual laser phase noise after differencing the
two interference signals:

yPD,1(t)− yPD,2(t) = p(t − 2L1)− p(t − 2L2). (10)

If the two interference data are each delayed and then differenced, the residual laser phase
noise will be

yPD,1(t − 2L2)− yPD,2(t − 2L1) = p(t − 2L1)− p(t − 2L2). (11)

By comparing the difference signal of the measurement data from Equation (10) with
the difference signal of the delayed data from Equation (11), it can be observed that the
laser phase fluctuations have the same temporal structure.

Therefore, by subtracting Equation (10) from Equation (11), a new data set without
laser phase noise can be constructed, given by

X(t) :=[yPD,1(t − 2L2)− yPD,2(t − 2L1)]

− [yPD,1(t)− yPD,2(t)],
(12)

To better understand the principle of TDI from a physical perspective, the above combina-
tion X(t) can be rewritten as

X(t) :=[yPD,2(t) + yPD,1(t − 2L2)]

− [yPD,1(t) + yPD,2(t − 2L1)].
(13)

The laser propagation path constructed by Equation (13) is shown in Figure 2b. The
first bracket corresponds to the blue solid line path in the figure, and the second bracket
corresponds to the black dashed line path.

In the case where the optical instruments are fixed, both laser beams travel the same
optical path, so the laser phase noise is exactly canceled out by differencing. The path
shown in Figure 2b is a virtually synthesized path in the data post-processing, and it is not
a “real” path. TDI technique can achieve the equal-arm interferometry that is physically
difficult to implement in space-based gravitational wave detection [33].

L2

L1

yPD,1(t)

yPD,2(t)

yPD,1(t)

yPD,1(t-2L2)yPD,2(t)

yPD,2(t-2L1)

(a) (b)

Figure 2. (a) Schematic diagram of Michelson laser interferometer, (b) Schematic diagram of virtual

equal arm interferometer.



Universe 2024, 10, 398 7 of 18

In space-based gravitational wave detection, applying delay and then translation to
Equation (8) constructs a virtual equal-arm interferometer, and its general expression is

TDI =
3

∑
i=1

(Piηi + Pi′ηi′), (14)

where Pi and Pi′ represent the polynomial coefficients of the time delay operator. For
instance, for the first-generation Michelson combination, the expression is

X1 = (D2′23η2′ +D2′2η1 +D2′η3 + η1′)− (D33′2′η3 +D33′η1′ +D3η2′ + η1). (15)

The corresponding polynomial coefficients are:

P1 =− 1 + D2′2,

P2 = 0,

P3 = D2′ − D33′2′ ,

P1′ = 1 − D33′ ,

P2′ = D2′23 − D3,

P3′ = 0.

The synthesized photon trajectory is as shown in Figure 3.

12'

1
h

3 2
Dh ¢

33 1
D h¢ ¢

33 2 3
D h¢ ¢

1
h ¢

2 3
D h¢

2 23 2
D h¢ ¢

2 2 1
D h¢

Figure 3. Schematic diagram of the combined synthetic path of Michelson combination.

3.2. Methods for Obtaining TDI Combinations

Currently, there are two methods for obtaining TDI combinations: the algebraic
method of solving constraint equations and the geometric method of symbolic search. These
two methods complement each other, opening up entirely different avenues for presenting
multiple types of TDI combinations. Below, the algebraic and geometric methods for
obtaining TDI combinations will be introduced respectively.

3.2.1. Algebraic Method

The algebraic method for solving TDI combinations involves calculating the linear
system of equations formed by the time delay operators [25,26]. Therefore, the commuta-
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tivity of the time delay operators directly affects the solving process. The starting point for
solving TDI combinations using the algebraic method is the following equation:

P1 + P1′ − P2′D3′ − P3D2 = 0,

P2 + P2′ − P3′D1′ − P1D3 = 0,

P3 + P3′ − P1′D2′ − P2D1 = 0.

(16)

This equation is one with six unknowns and three variables. By performing Gaussian
elimination on it, we obtain

P3(1 − D231) + P1′(D31 − D2′)+

P2′(D1 − D3′31) + P3′(1 − D1′1) = 0,
(17)

This equation does not introduce any assumptions regarding the commutativity of the time
delay operators. Clearly, the solution space of equation Equation (17) is completely equiv-
alent to the solution space of equation Equation (16). The solution of the first-generation
TDI and the modified first-generation TDI for Equation (17) is entirely similar. For the
first-generation TDI combination, Equation (17) satisfies

(1 − D123)P3 + (D13 − D2)P1′+

D1(1 − D33)P2′ + (1 − D11)P3′ = 0.
(18)

This equation is one located in the polynomial ring over three variables D1, D2, D3. More
specifically, what we are solving now is the first constraint module over the polynomial
ring. The solving process is completed by calculating the Groebner basis of the ideal I,
which is defined as [25]:

I = {1 − D123, D13 − D2, D1(1 − D33), 1 − D11}. (19)

Now there are many software packages that can directly perform such calculations, for
example, Mathematica. Through this set of methods in commutative algebra, the basis
vectors of the solution space for the first-generation TDI can be obtained [25].

For the modified first-generation TDI combinations, what needs to be considered is
the polynomial ring over six variables D1, D2, D3, D1′ , D2′ , D3′ [26].

However, when considering the second-generation and modified second-generation
TDI, the commutativity of the delay operators is destroyed, which prevents the use of the
aforementioned similar methods.

Mathematically speaking, in non-commutative situations, the termination condition
for the Groebner basis algorithm may not necessarily exist. For this reason, the “combinato-
rial algebra method” has been developed in [65].

3.2.2. Geometric Method

The trajectory of TDI can be intuitively characterized by a spacetime diagram, as
shown in Figure 4. The horizontal direction represents the satellite number, while the
vertical direction represents the time axis.

Two virtual laser links (blue solid line and orange dashed line) start from the black
square at time −4 (−8) and converge at the black circle at time 0, exactly forming a closed
loop. To clearly describe the propagation of the laser between spacecraft, the spacecraft
numbers in the horizontal axis direction can be expandably arranged sequentially. Through-
out the entire closed loop of the TDI combination, the accumulated light propagation time
must be 0. For an n-link TDI combination, the search may be 2n × 2n. The direction of
laser propagation and the direction of the time axis can be represented by specific numbers,
0 and 1. For example, laser propagation in a clockwise direction is denoted as 1, while
counterclockwise propagation is denoted as 0. When the laser beam propagates between
two satellites along the direction of the time axis, it is denoted as 1, and against the time
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axis direction, it is denoted as 0. In fact, in the geometric spacetime diagram, when the
previous link is determined, there are three possible choices for the propagation direction
of the current laser link between spacecraft and the time direction. Therefore, to reduce the
search time, we use a ternary symbolic search algorithm to find TDI combinations. This
method combines the two degrees of freedom of the laser propagation direction between
spacecraft and the time sequence direction, with the convention of using 0, 1, and 2. Each
link will have three possible choices.

Assuming a 2n-link example, we first analyze the left n links and then consider the
right n links.

By default, the first detector arm is from spacecraft i to spacecraft i + 1, and the search
for the minimum value is

3n−1 =



1, 0, . . . 0︸ ︷︷ ︸

n−1



, (20)

The maximum value is

2 × 3n−1 − 1 =



1, 2, . . . 2︸ ︷︷ ︸

n−1



. (21)

After the spacecraft and time parameters are defined, the search is conducted by accumu-
lating the time and spacecraft numbers.

Next, the arm length and its rate of change are further defined. Twelve empty sets
are provided to store six data points under the positive time sequence and six under
the negative time sequence, and the data at a certain moment are stored. Based on the
constraints of the TDI virtual equal-arm condition, a judgment is made. After all TDI
combinations are found, it is necessary to screen and check whether two combinations are
the same at a fixed zero point to eliminate duplicates. We use a ternary algorithm, which
has resulted in the search for 45 s-generation TDI combinations. Their spacetime diagrams
and trajectories are presented in the literature [30,66].

(a) (b)

-8

-6

-4

-2

0

e
mit

S/C i
2 1 3-4

-3

-2

-1

0

e
mit

S/C  i
2 31

Figure 4. (a) Spacetime diagram of the first-generation Michelson combination, (b) spacetime

diagram of the second-generation Michelson combination.
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4. Arm Locking in Conjunction with Time-Delay Interferometry

4.1. The Principle of Arm Locking

We first briefly review the principle of arm locking by considering the simplest scenario,
which involves only a single arm [17]. As shown in Figure 5, the light emanated from the
master laser is split into two parts. The signal travels along the arm to reach the distant
spacecraft, where the slave laser’s phase is locked to the incoming beam and then sends
the beam back to the master spacecraft.

The interference between the two laser beams is implemented by a negative feedback,
and the output of the phasemeter can be expressed as

φPM(t) = p(t)−Dp(t) = p(t)− p(t − τ). (22)

To determine the transfer function from the input phase noise to the phasemeter output of
the interferometer, Equation (22) is transformed into the frequency domain form:

φPM(s) = p(s)− p(s)e−sτ = T(s)p(s) (23)

in the s-domain, where

T(s) = 1 − e−sτ (24)

is the transfer function.

Laser

+

-

+
-

Controller Phasemeter

G

p(s)

Figure 5. A schematic layout of arm locking route design with a single arm.

In actual application, two controllers, denoted as G1 and G2, are integrated into the
optical feedback path to mitigate laser phase noise [17]. For example, the effective transfer
function given by Equation (24) for the subloop incorporating controller G2 is subsequently
altered to the following expression.

T1(s) = 1 − G2(s)

1 + G2(s)
e−sτ . (25)

Finally, the output of the closed-loop signal is

φ(s) =
p1(s)

1 + L1(s)
+

G1(s)p2(s)

(1 + G2(s))(1 + L1(s))
, (26)

where

L1(s) = [1 − G2(s)

1 + G2(s)
e−sτ ]G1(s) = T1(s)G1(s) (27)

gives the open-loop transfer function for the master laser.
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In the above discussions, we have primarily focused on the laser phase noise p.
Equation (26) reveals that the laser phase noise is suppressed, but at the frequency of
ω = 1

nτ , where the transfer function equals 0, there is a response singularity, and the noise
cannot be suppressed at these frequencies. To address this issue, it is necessary to employ a
modified dual-arm locking scheme [24].

4.2. Transformation Definition

Mathematically, one effectively modifies the definitions of the TDI variables in Equation (8)
as follows:

ηi = Di−1

[
pi+1 + δ(i+1)′

]
− [pi + δi] + 2δi + N

opt
i + hi, (28a)

ηi′ = D(i+1)′ [pi−1 + δi−1]− [pi + δi′ ] + 2δi′ + N
opt
i′ + hi′ . (28b)

Here, we have not taken clock noise into account and have introduced the shorthands:

δi = 2πνi′~n(i−1)′ ·~δi,

∆i = 2πνi′~n(i−1)′ ·~∆i,

δi′ = 2πνi~ni+1 ·~δi′ ,

∆i′ = 2πνi~ni+1 ·~∆i′ . (29)

The physical quantities in the data stream of the above equation are replaced by variables,
and the equivalent laser frequency noise, test mass noise, and optical path noise are
described as follows:

η̃i ≡ − ηi,

p̃i ≡ pi + δi,

δ̃i ≡ δi′ − δi,

h̃i ≡ 2δi + N
opt
i + hi,

h̃i′ ≡ 2δi′ + N
opt
i′ + hi′ , (30)

where

p̃i′ ≡ pi′ + δi′ = p̃i + δ̃i

is implied. By using Equation (30), Equations (28a) and (28b) can be rewritten as

η̃i = p̃i −Di−1

(
p̃(i+1) + δ̃i+1

)
− h̃i, (31a)

η̃i′ =
(

p̃i + δ̃i

)
−D(i+1)′ p̃(i−1) − h̃i′ , (31b)

By utilizing the simple convention of Equations (31a) and (31b), er can derive six data
streams under the arm locking mode.

Based on the expressions in [67] and by employing certain approximations, the follow-
ing data stream can be obtained as

η̃1 ≈ p̃1

2G1

(
1 − e−sτ

)

−1

2

(
( p̃2 + δ̃2)e

− s
2 τ

G2
− p̃3e−

s
2 τ

G3

)(
1 − 1

s∆τ

)(
1 − e−sτ

)

+
1

2

(
−h̃2′1 + h̃31′ − δ̃1

(
1 − e−sτ

))(
1 − 1

s∆τ

)(
1 − e−sτ

)
, (32)
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η̃1′ ≈
p̃1

2G1

(
1 − e−sτ

)

+
1

2

(
( p̃2 + δ̃2)e

− s
2 τ

G2
− p̃3e−

s
2 τ

G3

)(
1 +

1

s∆τ

)(
1 − e−sτ

)

−1

2

(
−h̃2′1 + h̃31′ − δ̃1

(
1 − e−sτ

))(
1 +

1

s∆τ

)(
1 − e−sτ

)
, (33)

η̃2 ≈ p̃1e−
s
2 τ

2G1
(1 − e−

s
2 τ)

+
p̃2 + δ̃2

G2

[
1 + e−sτ(1 − e−

s
2 τ)

1 + 1
s∆τ

2

]

+
p̃3

G3

[
−1 + e−

s
2 τ(1 − e−

s
2 τ)

1 − 1
s∆τ

2

]
e−

s
2 τ

+e−
s
2 τ(1 − e−

s
2 τ)

[
1 + 1

s∆τ

2
h̃2′1 +

1 − 1
s∆τ

2

(
h̃31′ − δ̃1

(
1 − e−sτ

))
]

+h̃2′ − h̃32 − δ̃1e−sτ − δ̃3e−
s
2 τ − δ̃2, (34)

η̃2′ ≈
p̃2 + δ̃2

G2
, (35)

η̃3 ≈ p̃3

G3
, (36)

and

η̃3′ ≈
p̃1e−

s
2 τ

2G1
(1 − e−

s
2 τ)

+
( p̃2 + δ̃2)

G2

[
−1 + e−

s
2 τ(1 − e−

s
2 τ)

1 + 1
s∆τ

2

]
e−

s
2 τ

+
p̃3

G3

[
1 + e−sτ(1 − e−

s
2 τ)

1 − 1
s∆τ

2

]

+e−
s
2 τ(1 − e−

s
2 τ)

[
1 + 1

s∆τ

2
h̃2′1 +

1 − 1
s∆τ

2
(h̃31′ − δ̃1

(
1 − e−sτ

)
)

]

+h̃3 − h̃2′3′ + δ̃1e−
s
2 τ + δ̃2e−

s
2 τ + δ̃3, (37)

where one has introduced

h̃2′ e
− s

2 τ + h̃1 ≡ h̃2′1,

h̃3e−
s
2 τ + h̃1′ ≡ h̃31′ ,

h̃2′ e
− s

2 τ + h̃3′ ≡ h̃2′3′ ,

h̃3e−
s
2 τ + h̃2 ≡ h̃32. (38)
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4.3. Arm Locking in Conjunction with TDI

By applying data streams’ time delay and recombination, it is possible to construct
arm locking and TDI combination; for example, the Michelson combination is given by

TDIArm−X ≃ (η̃1 − η̃1′)− (η̃3 − η̃2′)e
− s

2 τ
(
1 − e−sτ

)
. (39)

For the monitor combination, we have

TDIArm−E ≃ (η̃1 − η̃1′) +
(

e−
s
2 τ − e−sτ

)
(η̃2 − η̃3′). (40)

Through analysis in [67], it can be found that the sensitivity function of the combination of
arm locking and TDI is consistent with that of the standard TDI combination.

5. Sensitivity Function

In Section 3, algebraic and geometric methods can be used to reconstruct multi-type
TDI combinations that suppress laser phase noise more effectively. Section 4 presents
the combination of arm locking and TDI. To evaluate the noise reduction performance of
different TDI configurations, it is necessary to know the sensitivity limit of the instrument.
Typically, the sensitivity function depends on the ratio of the instrument’s noise power
spectral density (PSD) to the signal response, which represents the noise level translated
into signal intensity. It is defined as follows:

S(u) ≡ B

√
N(u)√

CA

√
R(u)

√
1

T
, (41)

Here, B represents the multiple of the signal-to-noise ratio, N(u) is the PSD of the noise floor,
CA is the average over the orbital inclination, R(u) is the average response function of the
instrument to the gravitational wave source, and T denotes the accumulated signal time.

Regardless of the polarization mode of the gravitational wave, the instrument noise
stays unchanged. Following the application of TDI techniques to reduce laser phase noise,
the PSD for the test mass acceleration noise and the optical path noise is expressed as

N(u) = Sa
TDI(u) + S

opt
TDI(u)

= C1[P̃i(u)]n1(u) + 2C2[P̃i(u)]n2(u),
(42)

where

C1[P̃i(u)] =
3

∑
i=1

Re

[∣∣∣∣P̃i

∣∣∣∣
2

+

∣∣∣∣P̃i′

∣∣∣∣
2]

,

C2[P̃i(u)] =
3

∑
i=1

Re

[
P̃i P̃

∗
(i+1)′

]
,

(43)

and

n1(u) = 2 × Sa + Sopt,

n2(u) = Sa cos u,
(44)

where Sa and Sopt are the PSD for test mass acceleration noise and optical path noise, and

u = 2π f L
c is a dimensionless quantity. f is the frequency of gravitational waves, L is the

arm length of the detector, and c is the speed of light. For any TDI combination, simply
substituting the polynomial coefficients of the time delay operator into Equations (42)–(44)
will yield the expression for its noise PSD.

Concerning the response function, a space-based gravitational wave detector consists
of six arms. To facilitate computations, we conduct an all-sky average within the detector’s
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reference frame. By applying coordinate transformations, we have determined the response
function for any TDI combination.

Here are the analytical expressions for tensor modes:

R(u) =
2

4
C1

[
P̃i(u)

]
f1(u) + C2

[
P̃i(u)

]
f2(u)

+
3

4
C3

[
P̃i(u)

]
f3(u)−

3

4
C4

[
P̃i(u)

]
f4(u)

+
1

4
C5

[
P̃i(u)

]
f5(u),

(45)

where

C3

[
P̃i(u)

]
=

3

∑
i=1

Re
[

P̃i P̃
∗
i+1 + P̃i P̃

∗
(i−1)′ e

iu
]
,

C4

[
P̃i(u)

]
=

3

∑
i=1

Im
[

P̃i P̃
∗
i+1 + P̃i′ P̃

∗
(i−1)′ e

iu
]
,

C5

[
P̃i(u)

]
=

3

∑
i=1

Re
[

P̃i P̃
∗
i′ + P̃i P̃

∗
(i−1)′

]
,

(46)

and

f1(u) =
4

3
− 2

u2
+

sin 2u

u3
,

f2(u) =
−u cos u + sin u

u3
− cos u

3
,

f3(u) =
−5 sin u + 8 sin 2u − 3 sin 3u

8u
+ Ci3u − 2Ci2u + Ciu

− 1

3

(
4 + 9 cos u + 12 cos 2u + cos 3u

8u2

)
+ log

4

3
− 5

18

+
1

3

(−5 sin u + 8 sin 2u + 5 sin 3u

8u3

)
,

f4(u) =
−5 cos u + 8 cos 2u − 3 cos 3u

8u
+ 2Si2u − Si3u − Siu

+
1

3

(
9 sin u + 12 sin 2u + sin 3u

8u2

)

− 1

3

(
8 + 5 cos u − 8 cos 2u − 5 cos 3u

8u3

)
,

f5(u) = − log 4 +
7

6
+

11 sin u − 4 sin 2u

4u
+ 2(Ci2u − Ciu)

− 10 + 5 cos u − 2 cos 2u

4u2
+

5 sin u + 4 sin 2u

4u3
.

(47)

Here, Si(z) =
∫ z

0 sin t/t dt and Ci(z) = −
∫ ∞

z cos t/t dt.
Through the analysis in [66], it can be observed that the 231 s-generation TDI com-

binations collectively have 11 sensitivity curves, as shown in Figure 6, among which the
Michelson combination exhibits the best sensitivity function, while the sensitivity function
of the fully symmetric Sagnac type combinations is the worst.
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Figure 6. Sensitivity curves of 231 TDI combinations [66]. The calculations were carried out using

the parameters of the LISA detector [68,69].

6. Conclusions

The paper presents the TDI technique for mitigating the primary noise source in
space-based gravitational wave detection, specifically laser phase noise. It outlines both
algebraic and geometric approaches for generating TDI combinations and explores the arm
locking in conjunction with TDI combinations. Furthermore, it delves into the sensitivity
functions for various TDI configurations. Future efforts will be directed toward identifying
wave sources using different TDI combinations, analyzing TDI algorithms in practical
operational scenarios, and performing simulation and modeling exercises.
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