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Abstract: In this work, we introduce a new method for the establishment of a symmetric secret key

through the reconciliation process in QKD systems that, we claim, is immune to the error rate of the

quantum channel and, therefore, has an efficiency of 100% since it does not present losses during the

distillation of secret keys. Furthermore, the secret rate is scaled to the square of the number of pulses

on the destination side. The method only requires a single data exchange from Bob over the classic

channel. We affirmed that our results constitute a milestone in the field of QKD and error correction

methods at a crucial moment in the development of classical and quantum cryptanalytic algorithms.

We believe that the properties of our method can be evaluated directly since it does not require the

use of complex formal-theoretical techniques. For this purpose, we provide a detailed description

of the reconciliation algorithm. The strength of the method against PNS and IR attacks is discussed.

Furthermore, we define a method to analyze the security of the reconciliation approach based on

frames that are binary arrays of 2 × 2. As a result, we came to the conclusion that the conjugate

approach can no longer be considered secure, while we came up with a way to increase the secret

gain of the method with measured bits.

Keywords: QKD; distillation; reconciliation; sifting

1. Introduction

In the era of quantum technologies, cryptography based on the quantum crypto-
graphic key distribution (QKD) emerges as one of the most-promising methods for estab-
lishing secret symmetric keys to achieve the confidentiality of communications [1–3]. The
QKD stands out, together with post-quantum cryptography [4], as one of the most-secure
schemes to face the threat posed by quantum computers capable of executing cryptanalytic
algorithms such as the algorithm of Shor for integer factorization of large primes [5,6].

As research results indicate [7,8], the QKD reconciliation protocols do not tolerate high
noise rates in the quantum channel, which will have a negative impact on the link distance
of the QKD system. This is explained by the fact that the reconciliation methods used
by the QKD have not shown error correction beyond 25% [9–12]. Discrete reconciliation
has been achieved by BBBSS [13], Cascade [14], Winnow [15], Liu [12], polar codes [16,17],
and frame reconciliation [18]. Unfortunately, interactive protocols requires a high num-
ber of message exchanges [19,20], and worse still, they do not guarantee the complete
elimination of errors. The QKD also uses other reconciliation techniques developed in the
field of telecommunication technologies, among which LDPC [21,22] stands out; however,
its computational complexity is very demanding and requires transmitting redundant
information [23]. Consider the following two scenarios:

1. Alice prepares and sends a message to Bob adding redundant information. Then,
with the help of the auxiliary information, he seeks to recover the original message by
identifying and correcting the errors in the message. This is the approach of correction
methods used in telecommunications such as turbo codes and LDPC.
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2. Alice seeks to establish a key of random bits with Bob, i.e., there is no predefined
message, then Alice must identify the bits that Bob has obtained after quantum pulses
were transferred over the quantum channel and errors have occurred.

In the Cascade algorithm, Bob reveals some bits and sends them to Alice, who evalu-
ates the results, then tells Bob what to do with the remaining bits. If necessary, Alice and
Bob use and sacrifice other bits until they obtain the same set of bits.

By contrast, in our approach, Bob computes some sifting bits over small binary in-
formation structures called frames that he sends to Alice, who determines the bits on
Bob’s side. It is not necessary to send more bits: all the errors are corrected, and all the
pulses received by Bob are used, that is there is no loss of bits. How can this be possible?
Shannon’s limit establishes that, when the probability of error in a channel denoted as e
reaches 0.5, information transfer cannot be established.

First of all, our reconciliation approach constitutes a reverse reconciliation method,
so it does not correct errors; instead, Alice identifies them and, together with Bob, builds
the key based on Bob’s final results, which include the errors produced in the channel and
the optical detection system [24,25]. Second, in our approach, we used 2 × 2 frames, and
in particular, we used as the starting point those in which the probability of error is e2. By
evaluating the results that most of these instances produce, we can run the entire error
correction process. In our previous works, we handled the following frame-based schemes:

1. Distill the key by means of the frames in which errors are detectable using the sifting
bits and adding the bits obtained from the measurements [18,26].

2. To avoid the waste of frames, the inverse of the measured bits is used instead of the
measured bits, that is the conjugated bits [27].

3. In this new approach, we only used the sifting bits of those frames that produce
unitary results, since, as we will see, they are more visible from Alice’s point of view.

Before discussing the new approach (Section 3), in the next section (Section 2), we
present a way to evaluate the security of these methods and discuss the results obtained.
As a result of this analysis, we found a method to increase the secret rate in the approach
that uses the measured bits, and these results are presented in the Appendix A. Therefore,
we analyzed the security and performance of the new method. However, let us continue
by providing a brief explanation of the BB84 protocol followed by a discussion of pairs of
quantum states.

1.1. BB84

Historically, the first protocol for the quantum cryptographic key distribution (QKD)
was conceived of by Bennett and Brassard in 1984; hence, it is known as BB84 [28]. The BB84
protocol encodes a bit in a pair of non-orthogonal states, so it uses four quantum states, as
shown in Figure 1, where i is the bit (i = 0, 1) encoded in the pair of non-orthogonal states
represented by iX and iZ.

Figure 1. The quantum states of the BB84 protocol and the two measurement bases X and Z are

represented through the bi-dimensional Bloch sphere. A bit is encoded by means of a pair of

non-orthogonal states.
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In BB84, the bits are transmitted by individual photons or quantum multiphotonic
pulses, which upon arrival at the receiving station, are measured in one of the bases X or
Z, which Bob chooses randomly. If the measurement basis matches the quantum state of
the photon, for example if Bob measures 1X with the basis X, the result is predictable and
useful for establishing a shared secret key. Otherwise, if Bob measures 1X with the Z basis,
the result is ambiguous and should be discarded.

BB84 is vulnerable to the PNS attack in which the attacker separates and stores the
photons coming from the multiphotonic quantum pulses that traverse the channel. Then,
once Bob publishes the bases used in his measurements, Eve applies those bases, and from
here, she is capable of deriving the secret key.

1.2. Pairs of Quantum States

The frame-based schemes that we have previously published are based on the follow-
ing scheme: Alice sends pairs of non-orthogonal quantum states to Bob, who measures
both states by applying the same measurement basis X or Z that he actively chooses. Sup-
pose Alice sends the pair of states (0X, 0Z). Bob measures the first state 0X with X, which
produces 0X. He then measures the second state 0Z with X, but produces 0X. Although the
basis does not match the quantum state, the event is useful because it produces the same
result as the previous measurement.

However, in particular, if a double-matching detection event occurs in the other basis
Z, the result can also be exploited. This implies that we have two communication channels:
along the X basis and another through the Z basis, which gives us an additional advantage
for the transmission of information through pairs of non-orthogonal states: they always
produce a double-matching detection event. On the other hand, if the results of the two
measurements are different, the result is ambiguous and cannot be used in the production
of secret bits.

Figure 2 shows us the three categories that pairs of quantum states can fall into:
orthogonal, non-orthogonal, and parallel. However, for the first time in the context of
frame-based reconciliation, we now also took advantage of not only non-orthogonal state
pairs, but also pairs of parallel states. Furthermore, as we will see in Section 3, to carry out
the reconciliation, we are only interested in double-matching detection events, regardless
of their origin: non-orthogonal states, parallel states, or error states, which may include
orthogonal states. The only thing that really matters is that the double-matching event
occurs; it does not matter whether it comes from the measurement of two erroneous states
or the erroneous measurement of the states.

Figure 2. The pairs of quantum states are separated as orthogonal, non-orthogonal, and parallel states.

As a final remark, frame-based reconciliation does not reveal the bases used in Bob’s
measurements. Therefore, if Eve has copies of the sent quantum states, she must perform
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measurements on both bases hoping to obtain double-matching detection events on both
bases, which is not guaranteed if Eve has only a few copies of the states.

2. Security of Frame-Based Reconciliation Methods

2.1. Clarifications about the Symbology Used

With the aim of being clearer in the exposition of the later sections, let us introduce
here some examples of the symbology that we used:

— 0X
i, 0Z

j, 1X
k, and 1Z

l are examples of quantum states where the upper index i, j, k, l
denotes the sequence number in which it was transmitted from Alice to Bob. As can
be seen, we did not use the quantum ket notation, but rather, bold letters, in order
to facilitate the discussion about the reconciliation methods. When necessary, we
changed the numerical label, representing it as follows i → 0Xi

, j → 0Zj
, k → 1Xk

, l →
1Zi

, so states look like 0X
0Xi , 0Z

0Z j , 1X
1X k , and 1Z

1Zl . At Bob’s side, the received states,
also called the detection events, are written as 0X

εi , 0Z
̟j , 1X

ǫk , and 1Z
πl . Furthermore,

depending on the specific context, the upper index could be omitted (in the case
that the index would not be strictly necessary), or it could consist of two sequence
numbers to refer to a double-matching detection event.

—
(

−, 1Z
πl1,πl2

)

is a double-matching detection event at Bob’s side: in this example, two
detection events with the Z basis that produced 1Z. We write between rectangular
brackets the sequential numerical indices of such events, which in this case are
[πl1, πl2], where the position of the labels πl1, πl2 between brackets [πl1, πl2] does not
matter. However, in a double-matching detection event, we write the X basis to the
left as (1X

ǫk1,ǫk2 ,−) and the Z basis to the right as
(

−, 1Z
πl1,πl2

)

.

— {(1X
1Xk , 0Z

0Zj ), (0X
0Xi , 1Z

1Zl )} is a frame at Alice’s side. In fact, it corresponds to the
frame f5, one of the 16 possible 2 × 2 frames (for the complete list of frames, please
see [27]). We commonly represent the frames in the form of a matrix, with the purpose
of facilitating the visualization of the sifting bits (SSs) or the measurement results
(MRs). However, when it comes to discussing the reconciliation methods, we used the

notation introduced here. For a useful reference, consider that f1 = {(0X
0Xi , 1Z

1Zl ),

(1X
1Xk , 0Z

0Zj )} because f1 and f5 are symmetrically equivalent.
— {(1X

ǫk1,ǫk2 ,−), (−, 1Z
πl1,πl2)} is a frame at Bob’s side (also referred to as an instance)

denoting two double-matching detection events, where [ǫk1, ǫk2] and [πl1, πl2] are
the corresponding sequential numerical indices of such events. Provided this frame
comes from Alice’s f5, it implies that 1Xk

= ǫk1, 0Zj
= ǫk2, 0Xi

= πl1, and 1Zl
= πl2.

From the numerical labels, we could establish that Alice sends [1Xk
, 0Zj

]; Bob measures

them as [ǫk1, ǫk2]; then, during reconciliation, Alice represents them as [1Xk
, ∗]. The

last expression makes sense, because as we will see later, our algorithms focus on bits
equal to one.

2.2. The Sifting String

The sifting string (SS) is a bit string prepared by Bob consisting of the sifting bits and
the correction bits. In the absence of errors in the quantum channel, the sifting bits are
enough to derive the secret key. However, when the channel or the optical detection system
produces errors, then the correction bits are required to derive an identical key on both
sides of the communication link.

To derive the sifting string (SS), the XOR logical function ⊕ between the bits of the
columns of Bob’s frame must be computed, where the symbol − represents the vacuum
state and is computed as a zero bit. The different bit configurations within Bob’s frames are
shown below: above each frame, we write the bits corresponding to the measurement result
(MR), and at the bottom of each frame is the sifting bits, where || denotes concatenation.

00 01 10 11
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



b11 −
b21 −



,





− b12

− b22



,





b11 −
− b22



,





− b12

b21 −





b11 ⊕ b21 || 0 0 || b12 ⊕ b22 b11b22 b21b12

To perform error detection and depending on the approach used, some bits must be
added: the measured bits or the conjugate bits:

— Measured bits: The bits detected at Bob’s optical station must be appended, so SS=
sifting bits || measured bits. It should be noted that the secret bits are derived from
the geometric arrangement (MR) of the bits within Bob’s frame, rather than the bits
themselves obtained from the detection bases.

— Conjugate bits: The inverted bits of the measured bits are added, so SS= sifting bits
|| conjugate bits. The purpose of the conjugate bits is to detect errors where 1X is
detected as 0X or 1Z as 0Z, which cannot be detected using the measured bits.

— XOR bits: This will be detailed in this work and does not require additional bits.

2.3. Problem Statement

The bits that go into the secret key are derived from the double-matching detection
events. The rate of such events has a squared decay with respect to the photon mean of the
source quantum states. Furthermore, there are inherent challenges in the optical detection
of two consecutive quantum states. Due to the above, we proposed in previous works
that the states should not be transmitted consecutively from Alice to Bob, but interleaved
between the states of other pairs. Therefore, we suggested a fixed window time between
the two non-orthogonal states.

We established the research problem by questioning whether it will be possible to
develop a QKD reconciliation algorithm using only the sifting bits, which is the minimum,
string since it is built only with the sifting bits. We claim that the answer is affirmative, so in
the new scheme we are proposing here, Alice sends a collection of quantum states defined

as Sa =
⋃a

i=1 0X
0Xi ,

⋃b
j=1 0Z

0Zj ,
⋃c

k=1 1X
1Xk ,

⋃d
l=1 1Z

1Zl in any order, with no predefined
conditions or restrictions, except to send a similar amount of each of the four types of
quantum states, in order to obtain a uniform distribution between them, so a ∼ b ∼ c ∼ d.
At the other side, Bob obtains a distribution of measurements that can be specified as

Sb =
⋃a′

i=1 0X
εi ,

⋃b′
j=1 0Z

̟j ,
⋃c′

k=1 1X
ǫk ,

⋃d′
l=1 1Z

πl . Due to losses in the quantum channel

a > a′, b > b′, c > c′, d > d′, it is still lossless and error free a 6= a′, b 6= b′, c 6= c′, and
d 6= d′ because the results of Bob’s quantum measurements depend on the quantum basis
he chooses to use, which is performed actively.

Now, Bob groups the results 1X into pairs; similarly, he groups the results 1Z into pairs;
symbolically, this is written as

⋃r
k=1

(

−, 1X
ǫk1,ǫk2

)

,
⋃s

l=1

(

−, 1Z
πl1,πl2

)

provided there are r
pairs of 1X and s pairs of 1Z. After Bob sends the necessary information to Alice and she
identifies the errors in the transmitted states, they repeat the process with the remaining
events, but changing

(

0X
εi1,εi2 ,−

)

and
(

−, 0Z
̟j1,̟j2

)

to
(

1X
ǫk1,ǫk2 ,−

)

and
(

−, 1Z
πl1,πl2

)

, re-
spectively. The protocol will be described in detail in Section 3. It is worth mentioning that,
in frame-based error correction schemes, Alice identifies the errors produced during the
transmission, and she adapts herself to what Bob received; that is why this constitutes a
reverse reconciliation scheme [24,25].

As shown in Figure 3, there are ten types of sifting strings SSi, so i = 1 . . . 10, which
are computed at Bob’s side taking two double-matching detection events as their input.
Table 1 shows the resulting sifting string (SS) for each frame-based reconciliation scheme:
XOR bits, conjugate bits [27], and measured bits [18,26].
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Figure 3. The diagram shows the sifting strings (SSs) for the different instances at Bob’s side, which

are represented as SSi labels with i = 1 . . . 10. The resulting labels depend on the specific approach

that is used, and they are shown in Table 1.

Table 1. The list shows the sifting string (SS) for each frame-based reconciliation method. As previously

indicated, the first two bits of the SS are the sifting bits, while the last two bits are the correction bits:

measured or conjugated. Measured bits can produce different SSs depending on the ordering position of

the double-matching detection events taken, as can be seen below when i = 3, 4, 6, 7.

SSi XOR Conjugate Measured

SS1 00 0000 0000
SS2 00 0011 0000
SS3 01 0101 0110, 0101
SS4 10 1001 1010, 1001
SS5 00 0000 0000
SS6 01 0110 0110, 0101
SS7 10 1010 1010, 1001
SS8 00 0000 0011
SS9 11 1100 1111
SS10 00 0000 0011

The reconciliation information (SS) that Bob publicly shares with Alice remains in
the hands of the spy Eve, so in the following subsections, we analyze whether, given the
information in Eve’s possession, she is capable of breaking the secret of the frames, that
is if she can derive the MR of each frame. Then, in the next section, we describe in detail
the new reconciliation method based on the XOR function and provide a description of its
security. Finally, in the Conclusions, we compare the results obtained. In advance, we can
claim that the new method is safe and more efficient than the previous ones.

2.4. Security of the Measured-Bit Approach

By using measured bits as correction bits, there are seven types of SSs that Bob can
send to Alice (see Table 2). Item 7 of the list shows that Eve knows that, behind SS9 = 1111
instances, there is an event (1X

t,−) or (−, 1Z
t) in one of her rows. However, Items 2, 3, 4,

and 5 of Table 2 show that this information does not allow Eve to infer the location of 0X
i

or 0Z
j in the other row of the frame because it appears to both sides (left/right) under the

same SS.
From the above analysis, we can conclude that the measured bits approach remains

secure against this eavesdropping strategy. In our previous work [27], we derived a total
secret gain reaching (n

2)
(

2
16 − 1

12 e′
)

taking the gain of the frame classes f2, f3, f4, and f6,
where e′ is the error rate of the frames computed as the number of erroneous frames over
the amount of total frames at Bob’s side. However, by taking the error rate e of the quantum
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channel, then the probability of two errors in a frame is e2, then we obtain a gain that
amounts to (n

2)
(

2
16 − 1

16 e
)

. Moreover, in the Appendix, we show that is possible to enhance
such gain adding the frames fi, where i = 1, 2, 5, 9, 10, 13, 14, 15, 16, thus increasing the
secret gain up to (n

2)
(

1
16 + 1

16 e2
)

.

Table 2. Security test of the measured bits approach. Suppose Eve intercepts instances where

SS9 = 1111, but she knows that they are composed by the events (1X
t,−) and (−, 1Z

t). The cases

presented below show that, although Eve is provided with this information, she cannot identify other

outcomes. For example, Case 2 demonstrates that Eve cannot differentiate between (0X
i,−) and

(−, 0Z
j) since they both produce the same SS4,7 = 1001, so this eavesdropping strategy becomes

useless for Eve.

# SSi i Bob’s Instances

1 0000 1,2,5
{(0X

t,−), (0X
i,−)}, {(0X

t,−), (−, 0Z
j)}

{(−, 0Z
t), (0X

i,−)}, {(−, 0Z
t), (−, 0Z

j)}
2 1001 4,7 {(0X

i,−), (1X
t,−)}, {(−, 0Z

j), (1X
t,−)}

3 0101 3,6 {(0X
i,−), (−, 1Z

t)}, {(−, 0Z
j), (−, 1Z

t)}
4 1010 4,7 {(1X

t,−), (0X
i,−)}, {(1X

t,−), (−, 0Z
j)}

5 0110 3,6 {(−, 1Z
t), (0X

i,−)}, {(−, 1Z
t), (−, 0Z

j)}
6 0011 8,10 {(1X

t,−), (1X
k,−)}, {(−, 1Z

t), (−, 1Z
l)}

7 1111 9 {(1X
t,−), (−, 1Z

l)}, {(−, 1Z
t), (1X

k,−)}

2.5. Security of the Conjugate Bit Approach

By using conjugate bits as correction bits, there are seven types of SS that Bob can send
to Alice (see Table 3). Item 7 of this list shows that Eve knows that, behind SS9 = 1100
instances, there is an event (1X

t,−) or (−, 1Z
t) in one of her rows. Unfortunately, Items 2,

3, 4, and 5 of Table 3 show that this fact allows Eve to infer the location of 0X
i or 0Z

j in the
other row of the frame because it appears at the same side (left/right) under the same SS.

Table 3. Security test of the conjugate bits approach. Suppose Eve intercepts instances where

SS9 = 1100, but she knows that they are composed by the events (1X
t,−) and (−, 1Z

t). Using

conjugated bits, such events allow Eve to identify other outcomes. Case SS7 = 1010 (a) and case

SS6 = 0110 (a) show that (0X
i,−) can be located. Case SS3 = 0101 (a) and case SS4 = 1001 (a) show

that (−, 0Z
j) can be located. Case SS7 = 1010 (b) and case SS4 = 1001 (b) show that (1X

k,−) can be

located. Case SS6 = 0110 (b) and case SS3 = 0101 (b) show that (−, 1Z
l) can be located.

# SSi i Case Bob’s Instances

1 0000 1,5,8,10
(a) {(0X

i,−), (0X
t,−)}, {(−, 0Z

j), (−, 0Z
t)}

(b) {(1X
k,−), (1X

t,−)}, {(−, 1Z
l), (−, 1Z

t)}
2 1010 7

(a) {(0X
i,−), (1X

t,−)}
(b) {(1X

k,−), (0X
t,−)}

3 0110 6
(a) {(0X

i,−), (−, 1Z
t)}

(b) {(−, 1Z
l), (0X

t,−)}
4 0101 3

(a) {(−, 0Z
j), (−, 1Z

t)}
(b) {(−, 1Z

l), (−, 0Z
t)}

5 1001 4
(a) {(−, 0Z

j), (1X
t,−)}

(b) {(1X
k,−), (−, 0Z

t)}
6 0011 2 (a) {(−, 0Z

j), (0X
t,−)}, {(0X

i,−), (−, 0Z
t)}

7 1100 9 (a) {(1X
k,−), (−, 1Z

t)}, {(−, 1Z
l), (1X

t,−)}

Given the results obtained in the previous analysis, we must state that this conjugated
bits approach cannot be considered secure as a reconciliation method.
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3. Frame Reconciliation with XOR Bits

In this section, we provide a detailed explanation of the new reconciliation method
that uses only the sifting bits without the need for the correction bits. For a more fluent
explanation, we present first the general method (see Figure 4), which includes the quantum
transmission stage and the distillation process by means of the classical channel, leaving
separately the additional algorithms that are required for error detection.

3.1. General QKD Protocol

The main idea behind this protocol is to first take advantage of the fact that the MRs
behind SS = 11 are well hidden (see Section 3.5). Second, within those frames, it is possible
to synthesize an algorithm for error identification by testing the combinations of events
that should produce SS = 00 (see Test T.1). Third, there are fewer errors in f1 frames because
it takes two errors in a frame f1 to produce an erroneous SS = 11; in fact, the error rate for
them reduces to e2 (see Section 3.3). This becomes relevant to evaluate what establishes the
majority of the results computed in Algorithm A.2.

In this protocol, it is assumed that the optical stations of Alice and Bob are synchro-
nized and that they have a quantum channel (air or fiber optic), and they also use a classical
communication channel.

Alice Bob
⋃a

i=1 0X
0Xi ,

⋃b
j=1 0Z

0Zj ,
⋃c

k=1 1X
1Xk ,

⋃d
l=1 1Z

1Zl

L1, L2

Figure 4. General QKD protocol based on XOR bits. The final step is for Alice and Bob to confirm

that they have both set the same secret key because Alice sends the hash code of the distilled key to

Bob and obtains a positive confirmation from him.

1. Alice sends the collection of quantum states
⋃a

i=1 0X
0Xi ,

⋃b
j=1 0Z

0Zj ,
⋃c

k=1 1X
1Xk ,

⋃d
l=1 1Z

1Zl

to Bob, where the bold symbols 0X, 0Z, 1X, 1Z denote the quantum states, while 0Xi
, 0Zj

,
1Xk

, 1Zl
are Alice’s sequential numerical indices of the transmitted quantum states,

whose record is kept at her side. Of course, due to the noise and losses of the quantum
channel, of the states sent, not all the states arrive at Bob’s station and not all the ones
that arrive are free of error.

2. Bob measures each received state applying randomly the quantum basis X or Z. Bob

obtains the distribution
⋃a′

i=1 0X
εi ,

⋃b′
j=1 0Z

̟j ,
⋃c′

k=1 1X
ǫk ,

⋃d′
l=1 1Z

πl , where εi, ̟j, ǫk, πl

are the sequential numerical indices of the quantum measurements at Bob’s side. We
write [ǫk1, ǫk2] to denote Bob’s sequential numerical indices of two states measured
by him with the X basis in which both measurements yield 1X, then we represent
it symbolically as the event [ǫk1, ǫk2] →

(

1X
ǫk1,ǫk2 ,−

)

, where k = 1 . . . r. In addi-
tion, we define the event of two quantum Z measurements that produces 1Z as
[πl1, πl2] →

(

−, 1Z
πl1,πl2

)

, where [πl1, πl2] are the sequential numerical indices of the
two measurements and l = 1 . . . s.
A double-matching detection event as described before can be generated from a pair
of non-orthogonal states, a pair of parallel states, or as a result of one or two errors
in the channel and/or optical detection system. Furthermore, the double-matching
detection events are chosen after performing the measurements, that is a posteriori, so
the rate of those events is linear and not quadratic, as was the case in our previous
works. As a result, there is no fixed time window separating the two quantum states.
For the purposes of this protocol and the identification of the errors produced, the
origin of those events is not relevant. Now, going back to the algorithm, Bob sends
two lists L1 and L2 to Alice, which can be specified as follows:
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L1 =
⋃k=r,l=s

k=1,l=1

{

[ǫk1, ǫk2], [πl1, πl2]
}

,

L2 =
⋃k,k′=r

k=1,k′>k

{

[ǫk1, ǫk2], [ǫk′1, ǫk′2]
}

,
⋃l,l′=s

l=1,l′>l

{

[πl1, πl2], [πl′1, πl′2]
}

The list L1 allows two instances: (1)
{

[ǫk1, ǫk2], [πl1, πl2]} or (2)
{

[πl1, πl2], [ǫk1, ǫk2]
}

.
The instance is randomly chosen by Bob; see the example of Table 4. The specific
instance (1) or (2) will determine the shared secret bit (see T.2 below). For this reason,
an instance contains two specific pairs of events that cannot be applied more than
once to an instance. L2 is an auxiliary list that does not contribute secret bits, but
contains auxiliary information that allows Alice to detect errors. The ordering between
{

[ǫk1, ǫk2], [ǫk′1, ǫk′2]
}

and
{

[πl1, πl2], [πl′1, πl′2]
}

in L2 is randomly performed by Bob.
As a result of the above description, L1 contains the frames where SS = 11, while L2

has those where SS = 00. The pairing process is performed on an even number of
events, which may require the removal of an event. An example of these lists in the
frame notation can be seen in Figure 5 and Table 4:

3. After Alice receives L1 and L2, she performs the following algorithms:

A.1 to choose from L1 the ones that belong to the frame class f1 (or equivalently to f5).
A.2 to detect the errors in L1a.
A.3 to detect the remaining errors in L1, which includes T.2, to determine the secret
bits. Note that Bob obtains the secret bits by direct application of T.2.

4. Bob inverts the results of
(

0X
εi1,εi2 ,−

)

and
(

−, 0Z
̟j1,̟j2

)

to
(

1X
ǫk1,ǫk2 ,−

)

and
(

−,
1Z

πl1,πl2
)

, respectively. Post-processing is then repeated: Step 2 (without quantum
measurement) and Step 3.

L1 =





1X
ǫ11,ǫ12 −
− 1Z

π11,π12



,





− 1Z
π21,π22

1X
ǫ21,ǫ22 −



,

XOR bits: 1 1 1 1

L2 =





1X
ǫ11,ǫ12 −

1X
ǫ21,ǫ22 −



,





− 1Z
π11,π12

− 1Z
π21,π22





XOR bits: 0 0 0 0

Figure 5. An example of the labels contained in the lists L1 = {[ǫ11, ǫ12], [π11, π12]}, {[π21, π22],

[ǫ21, ǫ22]} and L2 = {[ǫ11, ǫ12], [ǫ21, ǫ22]}, {[π11, π12], [π21, π22]}. At the bottom of each frame, we

have written the XOR bits.

Table 4. A portion of the quantum states (QS) sent by Alice is illustrated. At the receiving station,

Bob randomly chooses the measurement basis X or Z to perform each measurement. Then, he

groups the obtained results into randomly chosen pairs: [ǫ11, ǫ12], [ǫ21, ǫ22], [π11, π12], [π21, π22]. It

should be noted that {[ǫ11, ǫ12], [π11, π12]} is an f5 frame, while {[π21, π22], [ǫ21, ǫ22]} is an f1 frame.

Bob obtains the shared bits by the direct application of T.2, which in this example, produces

{[ǫ11, ǫ12], [π11, π12]} → 1, {[π21, π22], [ǫ21, ǫ22]} → 0.

User Task XOR Bit QKD Protocol

Alice
Time
Slot . . .

8 7 6 5 4 3 2 1

QS 0X 0Z 1Z 1Z 0X 0Z 1X 1X

Bob
Basis

. . .
Z X Z Z Z X X X

Result 1Z 1X 1Z 1Z 1Z 1X 1X 1X

Label π22 ǫ12 π12 π21 π11 ǫ22 ǫ21 ǫ11
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Of course, Step 4 can be performed within Step 2, but we prioritized the simplest
explanation of the protocol. Using T.2, Alice and Bob derive the secret key bits from the
MRs of all the frames that are built. Let us look at this more carefully in Section 3.2. The
final task of the protocol would require a successful confirmation from Bob once Alice sends
the hash code (from a secure cryptographic hash family, e.g., SHA-256) of the distilled key
to ensure that both have established the same key.

At this point, we can highlight the following observation: in the previously published
protocols (measured bits and conjugate bits), Alice defines the pairs of non-orthogonal
quantum states a priori (using a time window between the non-orthogonal states). On the
contrary, in the current scheme, it is Bob who determines, a posteriori, the pairs of states
(by pairing the measurements that return a bit of 1), so a temporary separation between
the states is not required, which implies that Alice chooses the quantum states to be sent
randomly and without time separation constraints. On the other side, Bob measures, one by
one, as they arrive, sequentially, the quantum states using a quantum basis that he chooses
at random.

3.2. Auxiliary Algorithms

3.2.1. Algorithm A.1

For each element in L1, identify the ones that belong to the frames f1 (or equivalently
to f5):

1. If {[πl1, πl2], [ǫk1, ǫk2]} == {[0Xi
, 1Zl

], [1Xk
, 0Zj

]}, then it belongs to f1; thus, write it

in L1a. Similarly, if {[ǫk1, ǫk2], [πl1, πl2]} == {[1Xk
, 0Zj

], [0Xi
, 1Zl

]}, then it belongs to

f5; thus, write it in L1a. Additionally, store each [ǫk1, ǫk2] as Fi in the list F and each
[πl1, πl2] as Gj in the list G.

2. Find which of the Cartesian elements Fi × Fj, Fi × Gj, and Gi × Gj are in L1 or L2, where
i 6= j. The symbol Fi × Gj does not imply a specific ordering between the two sets,
so it must be equally taken Gj × Fi. Write the identified cases in the auxiliary list L2a.
Informally speaking, we can say that this list contains the results of the self-references
[ǫk1, ǫk2] and [πl1, πl2], which will be useful in A.2.

We denote {[ǫk1, ǫk2], [πl1, πl2]} as {[1Xk
, ∗], [∗, 1Zl

]}, where 1Xk
is the sequential nu-

merical index that is in the X basis, and 1Zl
is the sequential numerical index along the

Z basis. The symbol ∗ represents the other sequential index, which we are not interested
in focusing on. Conventionally, we write to the left-hand side the X basis numerical in-
dex, while the Z basis numerical index to the right-hind side. Furthermore, we refer to
{[πl1, πl2], [ǫk1, ǫk2]} as {[∗, 1Zl

], [1Xk
, ∗]}. To distinguish between two different 1Xk

events,
we used the overdot symbol, so we write 1Xk̇

. For the same purpose, we write 1Zl
and 1Zl̇

.

3.2.2. Algorithm A.2

Let us write L1a as L1a =
⋃r′

i=1{[1Xk
, ∗], [∗, 1Zl

]}i : 11. Take the instances {[1Xk
, ∗],

[∗, 1Zl
]}i and {[∗, 1Zl̇

], [1Xk̇
, ∗]}j. For j = 1 . . . r′ and i 6= j, apply T1 using L2a. In the cases

described below, the symbol < i, j > denotes the evaluation of the instances sub-indexed
as i, j under the rule T1. The symbol ↑ means compliance with T1, while the symbol ↓ is
used to denote that it is not fulfilled. Finally, the symbol | | denotes cardinality:

(a) | < i, j >: ↓ | ≫ | < i, j >: ↑ |, then all i, j instances in < i, j >: ↑ are inverted; thus,
correct them in L1a.

(b) | < i, j >: ↓ | ≪ | < i, j >: ↑ |, then all j instances in < i, j >: ↓ are inverted; thus,
correct them in L1a.

In simple words, what establishes Case (a) is that, if the majority says that you are
wrong, while the minority says that you are right, in attention to the majority, you and the
minority are wrong. Case (b) establishes that, if the majority says that you are right, while
the minority says that you are wrong, in attention to the majority, then those who say that
you are wrong are wrong.
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3.2.3. Algorithm A.3

Let us write L1 as L1 =
⋃k=r,l=s

k=1,l=1{[ǫk1, ǫk2], [πl1, πl2]}:

1. From L1a, choose a pivot, say [1Xk
, ∗]:

— If {([1Xk
, ∗], [ǫk1, ǫk2]} : 11, then write [∗, 1Zl

] for [ǫk1, ǫk2] and [1Xk
, ∗] for [πl1, πl2].

— If {([1Xk
, ∗], [ǫk1, ǫk2]} : 00, then write [1Xk

, ∗] for [ǫk1, ǫk2] and [∗, 1Zl
] for [πl1, πl2].

2. Use T.2 to determine the MR of all the elements of L1.

3.2.4. Test T.1

There are four configurations for this rule, which are illustrated in Figure 6. The rule
establishes the following implications:

(a) {[1Xk
, ∗], [∗, 1Zl

]}, {[1Xk̇
, ∗], [∗, 1Zl̇

]} : 11 implies {[1Xk
, ∗], [1Xk̇

, ∗]}, {[∗, 1Zl
], [∗, 1Zl̇

]} :
00 and {[1Xk

, ∗], [∗, 1Zl̇
]}, {[∗, 1Zl

], [1Xk̇
, ∗]} : 11.

(b) {[1Xk
, ∗], [∗, 1Zl

]}, {[∗, 1Zl̇
], [1Xk̇

, ∗]} : 11 implies {[1Xk
, ∗], [∗, 1Zl̇

]}, {[∗, 1Zl
], [1Xk̇

, ∗]} :
11 and {[1Xk

, ∗], [1Xk̇
, ∗]}, {[∗, 1Zl

], [∗, 1Zl̇
]} : 00.

Figure 6. There are four configurations for T.1: the inputs are written in the left-hand corners (top,

bottom), while the test cases appear in the right-hand corners. The implicit SSs are written above the

arrows. The (c,d) configurations are just the reflection of the (a,b) ones, respectively.

3.2.5. Test T.2

The rule that is represented in Table 5 is used for the so-called measurement result
(MR) code, according to which Alice and Bob derive the bits of the shared secret key.

Table 5. Secret bits are obtained as follows. Each frame contributes one bit to the secret key.

Frame Alice Bob Secret Bit

f1 {[∗, 1Zl
], [1Xk

, ∗]} {[πl1, πl2], [ǫk1, ǫk2]} 0
f5 {[1Xk

, ∗], [∗, 1Zl
]} {[ǫk1, ǫk2], [πl1, πl2]} 1

3.3. The Error Probability in the Quantum Channel

In the general QKD algorithm of Section 3.1, we used f1 = {(0X
0Xi , 1Z

1Zl ), (1X
1Xk , 0Z

0Zj )}
and f5 = {(1X

1Xk , 0Z
0Zj ), (0X

0Xi , 1Z
1Zl )}, which produced MR = 11. Here are two possibilities

about what happened: the error-free instance f1 = [∗, 1Zl
], [1Xk

, ∗]} (or f5 = {[1Xk
, ∗], [∗, 1Zl

]},
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respectively) was produced. The other explanation is that the erroneous instance f5 =
{[1Xk

, ∗], [∗, 1Zl
]} instead of f1 was produced (or f1 = {[∗, 1Zl

], [1Xk
, ∗]} instead of f5, respec-

tively). In the last case, two errors occurred. Let us see the f1 case:

— 0X
0Xi is erroneously detected as 1X

1X
k̈ , while 1Z

1Zl is (error-free) measured as 1Z
1Z

l̇ .

— 1X
1Xk is (error-free) measured as 1X

1X
k̈ , but 0Z

0Zj is erroneously detected as 1Z
1Z

l̈ .

This is similar for f5. However, what happens when the error probability in the
quantum channel reaches values of 50% or more? When e = 0.5, the error rate in the frames
f1 is e2, that is 0.25. In this case, there is an error-free majority, since most of the events are
correct and the minority are incorrect. However, when e = 1√

2
∼ 0.7, then the number of

correct instances grows to 50%, equaling the number of incorrect instances. In this situation,
we cannot identify the errors in the frames f1 and f5. To overcome this drawback, the pair
of frames ( f2, f6) or the pair ( f3, f4) can be used. We list such pairs:

— f2 = {(1X
1Xk , 0Z

0Zj ), (1X
1X

k̇ , 1Z
1Zl )}, f6 = {(1X

1X
k̇ , 1Z

1Zl ), (1X
1Xk , 0Z

0Zj )}.

— f3 = {(0Z
0Zj , 1X

1Xk ), (1X
1X

k̇ , 1Z
1Zl )}, f4 = {(1X

1X
k̇ , 1Z

1Zl ), (0Z
0Zj , 1X

1Xk )}.

Because, in order to produce MR = 11, such frames require either no error or only one

error that occurred when 0Z
0Zj is detected as 1Z

1Z
l̇ , now, the error rate is e and not e2, most

of the cases are incorrect, and the fewest cases are correct, so the errors can be identified. Of
course, for this to work, it is necessary to invert the majority rule A.2. Therefore, if during
the execution of the reconciliation algorithm it is detected that there is no majority in the
results, it must be changed to use the pair ( f2, f6) instead of ( f1, f5).

3.4. Privacy Amplification Performance

Assuming that the attacker Eve can somehow obtain the bits of some of the double-
matching detection events, then the rate of such information will be reduced when Alice
and Bob proceed to derive the bits of all the frames that can be constructed. In this context,
we call this process privacy amplification.

If Alice and Bob derive the secret bits from the double-execution of Step 3 of the
general QKD algorithm, with say m and n instances (or frames), respectively, they obtain

(m
2 ) + (n

2) = m2+n2−m−n
2 bits. However, they can increase the number of secret bits by

combining the instances of those rounds.
Let [αs

1, ω
s
1] = [1Xk

, ∗]s ‖ [∗, 1Zl
]s, where s = 0 is related to the first round and s = 1

to the second round of Step 3 of the QKD protocol. Then, Alice and Bob perform the
combinations indicated in the matrix below:











[α01
11, ω

01
11 ] [α01

12, ω
01
12 ] . . . [α01

1n, ω
01
1n]

[α01
21, ω

01
21 ] [α01

22, ω
01
22 ] . . . [α01

2n, ω
01
2n]

...

[α01
m1, ω

01
m1] [α01

m2, ω
01
m2] . . . [α01

mn, ω
01
mn]











As a result, the number of bits is increased until reaching (m+n
2 ) = (m+n)(m+n−1)

2 .
However, (m+n

2 ) = (m
2 ) + (n

2) + mn; thus, the added gain is mn.
Now, let us compute the size (in the number of events) of L1 and L2:

|L1| = r · s,
|L2| = (r

2) + (s
2)

The size of the key is |L1|, while the amount of information sent by Bob amounts to

|L1|+ |L2|, so the ratio between them is |L1|
|L1|+|L2| ∼ 1 + 1

2 (
r
s +

s
r ) = 2 provided r = s and

neglecting the linear terms. Therefore, the amount of data transmitted over the classical
channel tends to be twice the size of the secret key.
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3.5. Security of the XOR Bit Approach

Contrary to the measured bit and the conjugate bit approaches, by using the XOR
bit approach, there are only two types of SS that Bob sends to Alice: SS1 = 00, which
comes from the instances {(1X

k,−), (1X
k,−)}, {−, 1Z

l), (−, 1Z
l)}, and SS2 = 11, which

comes from {(1X
k,−), (−, 1Z

l)}, {(−, 1Z
l), (1X

k,−)}. Item 2 of Table 6 shows that Eve
knows that, behind SS2 = 11 instances, there is an event (1X

t,−) or (−, 1Z
t) in one of her

rows. However, Item 1 of Table 6 shows that this information does not allow Eve to infer
the location of 1X

k or 1Z
l in the other row of the frame because it appears to both sides

(left/right) under SS1 = 00.

Table 6. Security test of the XOR bit approach. Suppose Eve intercepts instances where SS2 = 11, but

she knows that they are composed by the events (1X
t,−) and (−, 1Z

t). Although Eve is provided

with this information, she cannot differentiate between (1X
k,−) and (−, 1Z

l), since they both produce

the same SS1 = 00; therefore, it does not reveal to Eve the MR of Bob.

# SS Bob’s Instances

1 00 {(1X
k,−), (1X

t,−)}, {(−, 1Z
l), (−, 1Z

t)}
2 11 {(−, 1Z

l), (1X
t,−)}, {(1X

k,−), (−, 1Z
t)}

3.6. Strength of the System against Attacks

Let us discuss the strength of the protocol against PNS and IR attacks. For this,
consider that, in addition to the quantum channel, Bob’s optical detection system also
produces errors when performing the measurements of the states sent by Alice. Security is
based on two facts: (a) The key is distilled towards Bob’s errors. (b) The bases with which
Bob performs the measurements are not revealed, only the sifting bits:

1. The photon number splitting attack (PNS): Eve cannot obtain a copy of the key for
two reasons:

— Although Eve captures some of the photons contained in the multiphotonic
pulses, nothing guarantees she can produce the required double-matching detec-
tion events.

— Alice and Bob distill the key according to the errors produced in the channel and
the optical detection system, but Eve is unable to reproduce the errors of Bob’s
detection system.

2. The intercept and resend attack (IR): Eve’s behavior can be seen as noise in the quantum
channel (measure/resend), which alters the quantum state of half of the states sent by
Alice because Eve’s basis is correct 50% of the time:

— However, Alice and Bob obtain the key according to the final results obtained
by Bob, which Eve cannot replicate. As long as the reconciliation process is
confidential, Eve will not be able to derive the secret key.

One of the potentially most-relevant consequences of this strength is that it would
allow the use of higher power quantum pulses and extend the total link distance of the
QKD system.

3.7. Properties of the XOR Bit Approach

To close Section 3, in this subsection, we list the main advantages of the QKD distilla-
tion protocol based on XOR bits:

— It has no losses and exhibits 100% efficiency.
— It is immune to the error rate of the quantum channel; in other words, it is invariant

with respect to the noise in the quantum channel.
— It requires just one data exchange between Alice and Bob through the classical channel.

— The secret key rate is w2−w
2 , where w is the number of double-matching detection

events and amounts to half of the pulses received at Bob’s station.



Symmetry 2023, 15, 710 14 of 17

— Security against the photon number splitting attack (PNS) and intercept and resend
(IR) attack is guaranteed.

— No bits of the shared (raw) key are revealed, just the sifting XOR bits.

It should be emphasized here that the secret rate scales up to the square of the number
of pulses received by Bob (actually, half of them). In previous publications, the secret rate
amounted to the square of the number of double-matching detection events, which decays
quadratically with respect to the mean photon emission of the laser source.

4. Conclusions

We presented a new reverse reconciliation method for QKD systems that, at least theo-
retically, is immune to quantum channel errors, does not present losses at the time of key
distillation, and therefore, has 100% efficiency. The analysis of the previous properties was
achieved without high formal-theoretical resources, so it can be evaluated without difficulty.
It only requires a single reconciliation data transfer by Bob over the classical channel, while
the secret rate scales to the square of the number of pulses at the receiving station.

We analyzed the resistance of the method to PNS and IR attacks, but we will seek to
demonstrate the resistance of the protocol to other attacks in future works; for now, we
focused on the detailed description of the reconciliation algorithms.

On the other hand, after performing the security analysis of the frame-based recon-
ciliation methods, we concluded that reconciliation by means of the XOR bits and the
measured bits preserve security, while the conjugated bits can no longer be assumed as
secure. Furthermore, as a result of this research, we found a way to enhance the secret gain
of the method using the measured bits to a total value that depends on the square of the
quantum channel error rate.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Secret Gain with Measured Bits

In Tables A2–A9 of Appendix B, we derive the secret gain of frames with measured
bits. Then, in Equation (A1), we sum up the gain of each frame where the subindex i
denotes the frame class, so ci refers to fi. Here, e denotes the error rate of the quantum
channel, while in Table A1, we refer to the error rate of frames as e′.

ci =
1

2
(1 − e) +

1

2
e +

1

2
e2 for i = 1, 5, 15, 16

cj =
1

2
e + e2 for j = 9, 10, 13, 14

ck = (1 − e) +
1

2
e for k = 2, 3, 4, 6

16

∑
i=1

ci = 1 + e2, where i 6= 7, 8, 11, 12

g =
1

16

(

n

2

)

(1 + e2)

(A1)

Table A1 shows a comparison of the secret gain computed applying the error rate of
the frames e′ and summing the gains ci, where i = 2, 3, 4, 6, then summing those gains,
but with the error rate of the quantum channel e, and finally, summing the gains when
i = 1, . . . 16, but i 6= 7, 8, 11, 12.
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Table A1. We deduced the partial gain gp = 1
16 (

n
2)ci, where i = 2, 3, 4, 6. The total gain is computed

under the same formula i = 1, . . . 16, but i 6= 7, 8, 11, 12.

g gp [18]

(n
2)
(

1
16 + 1

16 e2
)

(n
2)
(

2
16 − 1

16 e
)

(n
2)
(

2
16 − 1

12 e′
)

Appendix B. Secret Gain of the Frames

We derived the secret gain of all the frames where security is preserved. The results
showed us that c1 = c5 = c15 = c16 = 1

2 (1 − e) + 1
2 e + 1

2 e2. Furthermore, we derived the

gains c9 = c10 = c13 = c14 = 1
2 e + e2. In addition, c2 = c6 = c3 = c4 = (1 − e) + 1

2 e.

Table A2. Secret gain of the frames f1 = {(0X, 1Z), (1X, 0Z)} and f5 = {(1X, 0Z), (0X, 1Z)}, which

are symmetrically equivalent, against the position error: 0 errors = 00, 1 error (first = 01/second

bit = 10), 2 errors (both bits = 11). Detectable cases {(MR, error), (MR’, error’)} are {(00-01),(01-10)} and

{(10-11),(11-00)}. The secret gain is 1
4 (1 − e) + 1

4 e + 1
4 e2.

MR 00 01 10 11

00 {(0X ,−), (1X ,−)} : 1001 {(1X ,−), (1X ,−)} : 0011 {(0X ,−), (0X ,−)} : 0000 {(1X ,−), (0X ,−)} : 1010

01 {(−, 1Z), (−, 0Z)} : 0110 {(−, 0Z), (−, 0Z)} : 0000 {(−, 1Z), (−, 1Z)} : 0011 {(−, 0Z), (−, 1Z)} : 0101

10 {(0X ,−), (−, 0Z)} : 0000 {(1X ,−), (−, 0Z)} : 1010 {(0X ,−), (−, 1Z)} : 0101 {(1X ,−), (−, 1Z)} : 1111

11 {(−, 1Z), (1X ,−)} : 1111 {(−, 0Z), (1X ,−)} : 1001 {(−, 1Z), (0X ,−)} : 0110 {(−, 0Z), (0X ,−)} : 0000

Table A3. Secret gain of the frames f15 = {(0X, 1Z), (0X, 1Z)} and f16 = {(1X, 0Z), (1X, 0Z)}, which

are symmetrically equivalent, against the position error: 0 errors = 00, 1 error (first = 01/second

bit = 10), 2 errors (both bits = 11). Detectable cases {(MR, error), (MR’, error’)} are {(00-11),(01-00)}

and {(10-01),(11-10)}. The secret gain is 1
4 (1 − e) + 1

4 e + 1
4 e2.

MR 00 01 10 11

00 {(0X ,−), (0X ,−)} : 0000 {(1X ,−), (0X ,−)} : 1010 {(0X ,−), (1X ,−)} : 1001 {(1X ,−), (1X ,−)} : 0011

01 {(−, 1Z), (−, 1Z)} : 0011 {(−, 0Z), (−, 1Z)} : 0101 {(−, 1Z), (−, 0Z)} : 0110 {(−, 0Z), (−, 0Z)} : 0000

10 {(0X ,−), (−, 1Z)} : 0101 {(1X ,−), (−, 1Z)} : 1111 {(0X ,−), (−, 0Z)} : 0000 {(1X ,−), (−, 0Z)} : 1010

11 {(−, 1Z), (0X ,−)} : 0110 {(−, 0Z), (0X ,−)} : 0000 {(−, 1Z), (1X ,−)} : 1111 {(−, 0Z), (1X ,−)} : 1001

Table A4. Secret gain of the frames f9 = {(0X, 1Z), (0X, 0Z)} and f10 = {(1X, 0Z), (0X, 0Z)}, which

are symmetrically equivalent, against the position error: 0 errors = 00, 1 error (first = 01/second

bit = 10), 2 errors (both bits = 11). Detectable cases {(MR, error), (MR’, error’)} are {(00-11),(01-10)}

and {(10-11),(11-10)}. The secret gain is 1
2 e + 1

2 e2.

MR 00 01 10 11

00 {(0X ,−), (0X ,−)} : 0000 {(1X ,−), (0X ,−)} : 1010 {(0X ,−), (1X ,−)} : 1001 {(1X ,−), (1X ,−)} : 0011

01 {(−, 1Z), (−, 0Z)} : 0110 {(−, 0Z), (−, 0Z)} : 0000 {(−, 1Z), (−, 1Z)} : 0011 {(−, 0Z), (−, 1Z)} : 0101

10 {(0X ,−), (−, 0Z)} : 0000 {(1X ,−), (−, 0Z)} : 1010 {(0X ,−), (−, 1Z)} : 0101 {(1X ,−), (−, 1Z)} : 1111

11 {(−, 1Z), (0X ,−)} : 0110 {(−, 0Z), (0X ,−)} : 0000 {(−, 1Z), (1X ,−)} : 1111 {(−, 0Z), (1X ,−)} : 1001
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Table A5. Secret gain of the frames f3 = {(0X, 1Z), (1X, 1Z)} and f4 = {(1X, 1Z), (0X, 1Z)}, which

are symmetrically equivalent, against the position error: 0 errors = 00, 1 error (first = 01/second

bit = 10), 2 errors (both bits = 11). Detectable cases {(MR, error), (MR’, error’)} are {(00-01),(01-00)}

and {(10-01),(11-00)}. The secret gain is 1
2 (1 − e) + 1

2 e.

MR 00 01 10 11

00 {(0X ,−), (1X ,−)} : 1001 {(1X ,−), (1X ,−)} : 0011 {(0X ,−), (0X ,−)} : 0000 {(1X ,−), (0X ,−)} : 1010

01 {(−, 1Z), (−, 1Z)} : 0011 {(−, 0Z), (−, 1Z)} : 0101 {(−, 1Z), (−, 0Z)} : 0110 {(−, 0Z), (−, 0Z)} : 0000

10 {(0X ,−), (−, 1Z)} : 0101 {(1X ,−), (−, 1Z)} : 1111 {(0X ,−), (−, 0Z)} : 0000 {(1X ,−), (−, 0Z)} : 1010

11 {(−, 1Z), (1X ,−)} : 1111 {(−, 0Z), (1X ,−)} : 1001 {(−, 1Z), (0X ,−)} : 0110 {(−, 0Z), (0X ,−)} : 0000

Table A6. Secret gain of the frames f2 = {(1X, 0Z), (1X, 1Z)} and f6 = {(1X, 1Z), (1X, 0Z)}, which

are symmetrically equivalent, against the position error: 0 errors = 00, 1 error (first = 01/second

bit = 10), 2 errors (both bits = 11). Detectable cases {(MR, error), (MR’, error’)} are {(00-00),(01-01)}

and {(10-00),(11-01)}. The secret gain is 1
2 (1 − e) + 1

2 e.

MR 00 01 10 11

00 {(1X ,−), (1X ,−)} : 0011 {(0X ,−), (1X ,−)} : 1001 {(1X ,−), (0X ,−)} : 1010 {(0X ,−), (0X ,−)} : 0000

01 {(−, 0Z), (−, 1Z)} : 0101 {(−, 1Z), (−, 1Z)} : 0011 {(−, 0Z), (−, 0Z)} : 0000 {(−, 1Z), (−, 0Z)} : 0110

10 {(1X ,−), (−, 1Z)} : 1111 {(0X ,−), (−, 1Z)} : 0101 {(1X ,−), (−, 0Z)} : 1010 {(0X ,−), (−, 0Z)} : 0000

11 {(−, 0Z), (1X ,−)} : 1001 {(−, 1Z), (1X ,−)} : 1111 {(−, 0Z), (0X ,−)} : 0000 {(−, 1Z), (0X ,−)} : 0110

Table A7. Secret gain of the frames f8 = {(0X, 0Z), (1X, 1Z)} and f12 = {(1X, 1Z), (0X, 0Z)}, which

are symmetrically equivalent, against the position error: 0 errors = 00, 1 error (first = 01/second

bit = 10), 2 errors (both bits = 11). There are no detectable cases.

MR 00 01 10 11

00 {(0X ,−), (1X ,−)} : 1001 {(1X ,−), (1X ,−)} : 0011 {(0X ,−), (0X ,−)} : 0000 {(1x ,−), (0X ,−)} : 1010

01 {(−, 0Z), (−, 1Z)} : 0101 {(−, 1Z), (−, 1Z)} : 0011 {(−, 0Z), (−, 0Z)} : 0000 {(−, 1Z), (−, 0Z)} : 0110

10 {(0X ,−), (−, 1Z)} : 0101 {(1X ,−), (−, 1Z)} : 1111 {(0X ,−), (−, 0Z)} : 0000 {(1X ,−), (−, 0Z)} : 1010

11 {(−, 0Z), (1X ,−)} : 1001 {(−, 1Z), (1X ,−)} : 1111 {(−, 0Z), (0X ,−)} : 0000 {(−, 1Z), (0X ,−)} : 0110

Table A8. Secret gain of the frames f7 = {(0X, 0Z), (0X, 0Z)} against the position error: 0 errors = 00,

1 error (first = 01/second bit = 10), 2 errors (both bits = 11). There are no detectable cases.

MR 00 01 10 11

00 {(0X ,−), (0X ,−)} : 0000 {(1X ,−), (0X ,−)} : 1010 {(0X ,−), (1X ,−)} : 1001 {(1X ,−), (1X ,−)} : 0011

01 {(−, 0Z), (−, 0Z)} : 0000 {(−, 1Z), (−, 0Z)} : 0110 {(−, 0Z), (−, 1Z)} : 0101 {(−, 1Z), (−, 1Z)} : 0011

10 {(0X ,−), (−, 0Z)} : 0000 {(1X ,−), (−, 0Z)} : 1010 {(0X ,−), (−, 1Z)} : 0101 {(1X ,−), (−, 1Z)} : 1111

11 {(−, 0Z), (0X ,−)} : 0000 {(−, 1Z), (0X ,−)} : 0110 {(−, 0Z), (1X ,−)} : 1001 {(−, 1Z), (1X ,−)} : 1111

Table A9. Secret gain of the frames f11 = {(1X, 1Z), (1X, 1Z)} against the position error: 0 errors = 00,

1 error (first = 01/second bit = 10), 2 errors (both bits = 11). There are no detectable cases.

MR 00 01 10 11

00 {(1X ,−), (1X ,−)} : 0011 {(0X ,−), (1X ,−)} : 1001 {(1X ,−), (0X ,−)} : 1010 {(0X ,−), (0X ,−)} : 0000

01 {(−, 1Z), (−, 1Z)} : 0011 {(−, 0Z), (−, 1Z)} : 0101 {(−, 1Z), (−, 0Z)} : 0110 {(−, 0Z), (−, 0Z)} : 0000

10 {(1X ,−), (−, 1Z)} : 1111 {(0X ,−), (−, 1Z)} : 0101 {(1X ,−), (−, 0Z)} : 1010 {(0X ,−), (−, 0Z)} : 0000

11 {(−, 1Z), (1X ,−)} : 1111 {(−, 0Z), (1X ,−)} : 1001 {(−, 1Z), (0X ,−)} : 0110 {(−, 0Z), (0X ,−)} : 0000
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