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Abstract: The quantum Zeno effect (QZE) is widely employed in quantum engineering due to the
issue of frequent measurements freezing a quantum system. In this study, the quantum Zeno factor
is introduced to characterize the quantum Zeno capacity of a quantum system. The quantum Zeno
factor reveals that the quantum Zeno effect is dependent on the evolution mode of quantum states,
which is semi-irrelevant to conventional energy uncertainty and extends the QZE domain. The Zeno
factor provides a new consideration to qualify the (anti-)Zeno capacity of a quantum system for its
applications: a large quantum Zeno factor value indicates that a quantum system is of a QZE quality.
The numerical results of the quantum Zeno capacity are shown using two typical examples: tailing
the dynamic evolution modes using the quantum Zeno factor in a three-level system, and quantifying
the message exchange between qubits in a coupled qubit system using a quantum Zeno factor.

Keywords: quantum Zeno effect; quantum engineering; quantum Zeno factor

1. Introduction

The Zeno phenomenon in quantum physics was introduced by von Neumann in
his study of short time evolution [1]. Misra and Sudarshan discovered that if the unsta-
ble system was frequently monitored, the system decayed slower than the anticipated
exponential decay law at a sufficiently short length of time, and the back action of the
measurement led back to the initial state, which shed light on the Zeno paradox in quantum
theory [2–5]. Since then, the concept of the quantum Zeno effect in quantum systems
has come to light, and there has been considerable interest in the phenomena of frequent
measurements freezing states. In contrast to the frozen evolution state, measurements
have been recently developed to also enhance the decay rate under more general con-
ditions denoted by the quantum anti-Zeno effect (QAZE) [6–8]. Cook [9] put forward
an experimental proposal for observing the quantum Zeno effect in a three-level atomic
transition, and Itano et al. [10] experimentally demonstrated that frequent measurements
inhibit quantum jumps. Since then, experimental and theoretical investigations of the
quantum Zeno effect have extended to various scenarios, such as unstable state tunneling
in optical lattices [11,12], measurement-induced phase transition in quantum many-body
systems [13–15], and heating up or cooling down processes in a qubit-bath system [16,17].

Interestingly, the quantum Zeno effect, a powerful tool in quantum engineering, and
quantum system measurements are widely studied [13–15,18–23]. The measurements are
not limited to the initial state but extend to a projection onto a multidimensional subspace
where the system is manipulated to evolve as expected, demonstrating the quantum Zeno
dynamics (QZD) [24–30]. Furthermore, the measurement is not a compulsory ingredient for
achieving the quantum Zeno effect as the theoretical predictions and experimental realiza-
tions [24,25,31–33]. Except for frequent projective measurements, bang–bang decoupling,
strong continuous coupling, and strong damping are also regarded as the manifestations of
the quantum Zeno effect [25,31,32]. The quantum Zeno effect or quantum Zeno dynamics
have attracted considerable attention to control the quantum system due to the deceler-
ation or acceleration features, for instance, in quantum computation [34–36], quantum
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coherence and entanglement [8,28,37–42], thermodynamic control [16,43,44], and quantum
walks [27,45–47]. In addition, the dynamic projective measurement with a closed loop in
projective Hilbert space, which leads to geometric phase accumulation, is theoretically and
experimentally investigated by applying the dynamic quantum Zeno effect [48,49].

It is well known that a quantum system can dynamically evolve in different ways in
Hilbert space by employing the gauge transformation freedom of a quantum system; for
example, the quantum system could be in phase or parallel evolution. Here, we define
them as the evolution modes of a quantum system. The multifarious dynamic evolution
modes of the quantum system originate from the gauge transformation freedom of the
quantum states in Hilbert space [50,51]. Many efforts have been devoted to investigating
the physical mechanism and the potential applications of the quantum (anti-)Zeno effect
in the quantum engineering community [8,31,34,35,37,38,52]. However, studies on the
physical mechanism of the (anti-)Zeno effect and its usability in quantum engineering have
not yet focused on the intrinsic relationship between the dynamic evolution modes and
the (anti-)Zeno effects. Since the gauge transformation freedom of the quantum states in
Hilbert space is related to differential geometry, geometric ideas have been shown to enrich
our understanding of quantum theory and reveal different considerations in the quantum
engineering community.

In this study, we geometrically present the generalized framework of the quantum
Zeno effect, which is dependent on the nature of the dynamic evolution modes of a
quantum system within a short time period. The QZE domain is extended or is deemed
semi-irrelevant to conventional energy uncertainty. We introduce the quantum Zeno factor,
defined as the inverse of the quantum speed limits, to characterize the quantum Zeno
capacity of a quantum system. We consider the quantum Zeno effects as the representation
of dynamic evolution behaviors in a short time period and examine its dynamic evolution
behaviors by employing the geometric properties of quantum mechanics. We establish
the relation between the quantum Zeno effect and factor. Our investigation presents the
high-efficient usability of the quantum Zeno effect via choosing different dynamic evolution
modes in the quantum engineering community and different ways to control the quantum
Zeno effect.

This study is organized as follows: in Section 2.1, we present the quantum Zeno
effect related to the Hilbert space distance; to characterize the quantum Zeno capacity of a
quantum system, the quantum Zeno factor is introduced in Section 2.2; in Section 2.3, we
discuss the method of controlling the quantum Zeno effect by tailoring the evolution curves
corresponding to different evolution modes or quantum speed limit bounds; two typical
examples of the quantum Zeno effect are studied in Section 3; our concluding remarks are
outlined in Section 4.

2. Theoretical Framework

2.1. Geometric Framework of Generalized Quantum Zeno Effect

The quantum Zeno effect describes the dynamic evolution of a quantum system
induced by frequent measurements, leading back to the initial state. We consider a quantum
system (with the Hermitian Hamiltonian H(t)) with a dynamic evolution described in
the Hilbert space H. The initial state of the system is prepared at |ψi⟩, and its dynamic
evolution is governed by the Schrödinger equation as follows:

ih̄
d
dt

|ψ(t)⟩ = H(t)|ψ(t)⟩. (1)

Thus, the state at time t is |ψ(t)⟩ ≡ |ψt⟩ = U(t)|ψi⟩, and U(t) = T e−
i
h̄

∫ t
0 H(t′)dt′ is the

dynamic evolution operator. Then, the survival probability is defined as follows:

S(t) = |⟨ψi|ψt⟩|2. (2)
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As theoretically predicted and experimentally realized, the quantum Zeno effect can be equiva-
lently achieved via different theoretical formalisms, such as frequent projective measurements,
frequent unitary kicks, strong continuous coupling, and strong damping [25,31,32]. In this
study, we suppose the system is detected n times with the intervals τ = t/n using pro-
jective measurements D = |ψi⟩⟨ψi| (the intervals τ are in Dyson series because of the
time-ordering operator). Therefore, the survival probability of the system, after taking n
projective measurements in the time period of [0, t], becomes

S(t) = |⟨ψi|UDU · · ·UDU|ψi⟩|2

= |⟨ψi|ψτ⟩|2n,
(3)

where |ψτ⟩ = U(τ)|ψi⟩ is the quantum state after evolving τ. Consequently, the quantum
Zeno effect can be described by the survival probability, which is in close proximity to the
overlap between the two states.

By employing the geometrical formulation of quantum mechanics, the distance be-
tween two neighboring quantum states |ψ(t)⟩ and |ψ(t + τ)⟩ (for small τ) can be defined
via their inner product using the Fubini–Study metric, as follows [53–56]:

ds2 = 1 − |⟨ψ(t)|ψ(t + τ)⟩|2. (4)

From Equations (3) and (4), we can obtain the survival probability S(t) between two
neighboring states, with small τ, in relation to their distance:

S(t) =
(

|⟨ψ(t)|ψ(t + τ)⟩|2
)n

=
(

1 − ds2
)n

.
(5)

Moreover, the distance ds between the neighboring states |ψ(t)⟩ and |ψ(t + τ)⟩ can also be
expressed as follows [53,57]:

ds = vQSLτ, (6)

where vQSL is the quantum speed limits (QSLs) of a quantum system from the quantum
state |ψ(t)⟩ to |ψ(t + τ)⟩. The survival probability, after including Equations (5) and (6),
turns into the following form (for small τ):

S(t) =
(

1 − v2
QSLτ2

)n
. (7)

Equation (7) demonstrates that the quantum Zeno effect would be affected by two aspects:
the short time period (or the projective measurement times) and the dynamic evolution
modes of the quantum system denoted by their evolution speed limits vQSL. Alterna-
tively, the quantum Zeno effect can be determined using the different dynamic evolution
modes under a constant measurement interval time. The dynamic evolution modes can
be presented through their corresponding quantum speed limit bounds [58]. Based on the
gauge transformation freedom of the quantum states, the quantum state can evolve along
a specific curve to realize the quantum speed limit bound. The quantum speed limits of
the quantum system have been investigated [59], and some typical quantum speed limit
bounds have been developed, such as the bounds related to energy uncertainty, average
energy, and parallel transport developed by Mandelstam and Tamn [60], Margolus and
Levitin [61], and Sun and Zheng [57], respectively. Therefore, we realize different quantum
Zeno effects through three evolution curves or modes. Moreover, phase accumulation
arises from the evolution modes or curves. For instance, only geometric phases accumulate
in the parallel transport mode, which is usually considered a robust operation.
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2.2. Quantum Zeno Factor

Here, we introduce quantum Zeno factor Z f to describe the quality of a quantum
system reaching the quantum Zeno effect. The survival probability of Equation (7) can be
rewritten as follows:

S(t) =
(

1 − τ2

Z2
f

)n

, (8)

where
Z f = 1/vQSL. (9)

Furthermore, Equation (8) can, the quantum Zeno effect as the small time period effect of a
quantum system, be approximately expressed as follows:

S(t) ≃ 1 − n

Z2
f

τ2 ≃ e
−
(

n

Z2
f

)

τ2

. (10)

Equation (9) is defined as the quantum Zeno factor, which represents the capability
of a quantum system in achieving the quantum Zeno effect: The higher the Z f value for a
quantum system, the lower the amount of projective measurements. Alternatively, in the
case of the same measurement times n, the big value of the quantum Zeno factor can obtain
the “good” Zeno. It provides us with a factor to characterize the Zeno ability of a quantum
system. In addition, the quantum Zeno factor Z f , defined as the inverse of the quantum
speed limit, shows that the quantum Zeno effect of a quantum system is related to its
dynamic evolution modes. Correspondingly, the quantum Zeno time [24,62,63] can be
written as τQZ = Z f /

√
n using the quantum Zeno factor Z f .

For a fixed evolution time T, if a quantum system could reach its Zeno effect, we should
take enough measurement times.The minimum measurement times can be estimated by
supposing τ < τQZ. For a quantum system reaching its Zeno effect, using Equation (8), we

obtain the Zeno measurement times nQZ = T2

Z2
f

. This represents that if a quantum system is

of a high quantum Zeno factor, it can reach quantum Zeno using less measurement times.

2.3. Controlling the Quantum Zeno Effect

We establish the relation between the quantum Zeno effect and the factor. The quantum
Zeno factor of Equation (9), as the intrinsic parameter of a quantum system reaching the
quantum Zeno effect, is defined by the QSL, revealing a potential method to control
the quantum (anti-)Zeno effect with the QSL. Based on previous investigations for the
QSL, there are different ways to control the quantum (anti-)Zeno effect in its usability
for quantum engineering [64,65]. For example, a multiqubit system under Markovian
dephasing channels speeds up the quantum evolution [65], the non-Markovianity can
speed up quantum evolution [66,67], the quantum entanglement enhances the evolution
speed [68,69], and the nonequilibrium feature of the environment can speed up the quantum
evolution in both Markovian and non-Markovian dynamics regions [70].

In addition, this provides us ways to manipulate the quantum coherence, the entan-
glement, etc., of the quantum system by employing the quantum (anti-)Zeno effect.

3. Numerical Results

In this section, our formalism of the quantum Zeno effect will be presented using
two typical examples. The following three dynamic evolution modes are considered
for the numerical results: the conventional dynamic evolution of the quantum system
accumulating both dynamic and geometric phases corresponding to the Mandelstan–Tamn
QSL [60], i.e., the MT mode; the dynamic evolution without the accumulation of geometric
phases corresponding to the Margolus–Levitin QSL [61], i.e., the ML mode; and the parallel
transport corresponding to QSL quantified using the changing rate of the geometric phase
developed by Sun and Zheng [57], i.e., the SZ mode.
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3.1. Three-Level System

To demonstrate the quantum Zeno effect under Equation (8), we consider a three-level
system, a typical model used to experimentally observe the quantum Zeno effect [10,58,71].

The system consists of a family of states as follows:

|ψ(0)⟩ = c0|E0⟩+ c1|E1⟩+ c2|E2⟩, (11)

where |Ej⟩ (j = 0, 1, 2), with corresponding eigenvalues Ej, are the eigenstates. cj are the
initial partitions of the eigenstates in the initial state |ψ(0)⟩. Following the suggestions
of Ref. [71], the eigenstates are supposed as nondegenerates and E0 = 0 for the ground
state |E0⟩.

In our numerical calculations, we scale the dynamic evolution time by the time, τ⊥
required for a quantum state evolving to its orthogonal state. In particular, we suppose
the system evolves to its orthogonal state |ψ(τ⊥)⟩ from the initial state |ψ(0)⟩ at time
τ⊥, i.e., ⟨ψ(0)|ψ(τ⊥)⟩ = 0. The dynamic evolution of the system from the initial state of
Equation (11) is governed using the Schrödinger equation of Equation (1). Correspondingly,
the state at time t (0 < t < 1) can be written as follows (h̄ is set to unity for simplicity):

|ψ(t)⟩ = c0|E0⟩+ c1e−iE1t|E1⟩+ c2e−iE2t|E2⟩. (12)

For this example, we consider the MT and ML evolution modes.
(1) The MT dynamic evolution mode—ZMT

f > ZML
f .

Following Ref. [71], this dynamic evolution mode can be achieved by setting the
initial distributions as follows (assumption δ ≪ 1): p0 = δ

2 , p1 = 1
2 − δ

4 (1 + cos x1),
and p2 = 1

2 − δ
4 (1 − cos x1), with pj = |cj|2; ∑j pj = 1; and xj = Ejτ⊥ with the indexes

j = {0, 1, 2}.
The quantum Zeno factor of the dynamic evolution modes ML ZML

f and MT ZMT
f can

be written as follows (see Appendix A):

ZML
f =

4
(E1 + E2)(2 − δ) + (E2 − E1)δ cos x1

,

ZMT
f =

2
√

(E1 − E2)2 + 2E1E2δ
.

(13)

(2) The ML dynamic evolution mode—ZML
f > ZMT

f .

In this situation, the populations are supposed as [71] p0 = 1
2 , p1 = 1

2 (1−
β

k2 ), p2 = β

2k2 .
Following Ref. [71], it can be guaranteed that the initial state and the state at time τ⊥ are
orthogonal under the condition 1/k ≪ 1. Also, the two excited state energies have the
relation of E2 = (2k + 1)E1, k ∈ N∗.

The quantum Zeno factor of the dynamic evolution modes ML ZML
f and MT ZMT

f can
be expressed as follows (see Appendix A):

ZML
f =

2k

(k + 2β)E1
,

ZMT
f =

2
√

k

E1
√

k + 4β + 8kβ
.

(14)

(3) Numerical Results. The quantum Zeno effect is described using the survival
probability of Equation (8). For the measurement times n ≫ nQZ, the measurement time
interval τ is infinitesimal, and the quantum Zeno effect can be obtained by the geometrical
survival probability Equation (8). In order to fully demonstrate the quantum Zeno effect of
different evolution modes, the quantum Zeno effect, with a small amount of measurement
during the evolution, can be calculated by the definition of the survival probability. For a
constant τ, the survival probability is determined by the quantum Zeno factor Z f . In this
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three-level system, we consider two typical evolution modes: the dynamic evolution modes
MT and ML corresponding to the quantum Zeno factors ZMT

f and ZML
f , respectively.

The survival probabilities of Equation (8) can be obtained using Equations (13) and (14).
The numerical results of the MT and ML dynamic evolution modes are shown in Figure 1.
As graphically illustrated in Figure 1, the final state arrives at the orthogonal state when
we perform a measurement at the end of the evolution time. In the case of processes
involving multiple measurements, the final state always fails to arrive at the orthogonal
state. However, this does not mean that all these processes are the quantum Zeno effect. It
can only be considered to achieve the quantum Zeno effect with n > nQZ, which is named
as the Zeno realm. Figure 1a is interpreted as the case of MT dynamic evolution mode, i.e.,
the quantum Zeno factor of the MT dynamic evolution mode is bigger than that of the ML
dynamic evolution mode. Apparently, the MT dynamic evolution mode can reach Zeno
“earlier” than the ML dynamic evolution mode since ZMT

f > ZML
f . Conversely, in Figure 1b,

we provide a different case: ZML
f > ZMT

f , i.e., the ML dynamic evolution mode can obtain
its Zeno “earlier” than that of the MT dynamic evolution mode.

0 10 20 30 40

0

0.2

0.4

0.6

0.8

1

50 60 70 80 90 100

0.96

0.98

1

0 10 20 30 40

0

0.2

0.4

0.6

0.8

1

50 60 70 80 90 100

0.96

0.98

1

Figure 1. The survival probability between the initial and final state as a function of the measurement
times n. The measurement interval is determined by τ = t/n. The upper bound speeds are
depicted by orange squares and purple circles, corresponding to the energy uncertainty ∆E and
the energy average ⟨E⟩, respectively. (a) The parameters used are E1 = 1, E2 = 5, δ = 0.1 and
E1 = 1, E2 = 5, δ = 0.02, respectively. The quantum Zeno factors are ZMT

f = 0.49 and ZML
f = 0.34,

respectively. (b) The parameters used are E1 = 0.5, β = 2, k = 8 and E1 = 1, β = 1, k = 4,
respectively. The quantum Zeno factors are ZMT

f = 0.94 and ZML
f = 1.33, respectively.
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Therefore, we can exploit or avoid the quantum Zeno effect by tailoring the dynamic
evolution mode using the quantum Zeno factor Z f .

3.2. Coupled Qubit System

The parallel transporting of the quantum states plays a vital role in the community
of quantum engineering, such as quantum computing, quantum metrology, etc. [72,73].
Here, we consider the quantum Zeno effect, employing the parallel transporting mode
and the other two studied modes, in coupled qubits by frequent measurements. The
coupled qubits in superconducting qubits are promising candidates for realizing a quantum
computer. Meanwhile, the two-qubit gates as the universal gate with the single-qubit gate
can implement any unitary transformation in a quantum computer [74–78].

The Hamiltonian of a coupled qubits system that is coupled to a dissipative environ-
ment is given as follows [77–79]:

H = −1
2









ϵ − s + κ η 0 −∆η

η −κ η ∆ϵ − ∆s
0 η κ + s − ϵ ∆η

−∆η ∆ϵ − ∆s ∆η −κ









, (15)

with ϵ = ϵ1 + ϵ2, ∆ϵ = ϵ1 − ϵ2, η = (γ1 + γ2)/
√

2, and ∆η = (γ1 − γ2)/
√

2, where
ϵı (ı = 1, 2) are the energy bias, and γı is the transmission amplitude through the barrier. κ

is the strength of the inter-qubit coupling, and s = X1 + X2 and ∆s = X1 − X2, where Xı is
the coordinate of the bath of harmonic oscillators. It is usually supposed that the system is
composed of two equal qubits, namely, ∆η = ∆ϵ = ∆s = 0 [77–79].

For the system of two equal qubits, we employ a superposition of the eigenstates as
the initial state of the following:

|ψ(0)⟩ = c1|ξ1⟩+ c2|ξ2⟩+ c3|ξ3⟩+ c4|ξ4⟩, (16)

where |ξ j⟩ (j = 1, · · · , 4) are the eigenstates with the eigenvalues ξ j.
The state at time t is

|ψ(t)⟩ =
4

∑
j=1

cje
−iξ jt|ξ j⟩. (17)

Consequently, the quantum Zeno factor of the ML and MT dynamic evolution modes can
be written as follows:

ZML
f =

1

∑
4
j=1 pjξ j

,

ZMT
f =

1
√

∑
4
j=1 pjξ

2
j − (∑4

j=1 pjξ j)2
,

(18)

where the weight coefficient satisfied pj = |cj|2.
We include the parallel transporting mode in the coupled-qubit system. The quantum

Zeno factor of the parallel transporting of the coupled-qubit system can be obtained using
the QSL bound of the parallel transporting developed by Sun and Zheng in Ref. [57]:

ZSZ
f = 1/|φ̇geo|, (19)

and the changing rate of the geometric phase can be calculated using [80]

φgeo =
4

∑
j=1

pjξ jt + arctan
∑

4
j=1 pj sin ξ jt

∑
4
j=1 pj cos ξ jt

. (20)

To show the numerical results of this case, the initial state takes the maximum coher-
ence state |ψ(0)⟩ = 1

2 (1, 1, 1, 1)T . The other parameters are shown in the caption of Figure 2.
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The survival probability can be obtained with three quantum Zeno factors of the quantum
system (see Appendix A).

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

50 60 70 80 90 100

0.94

0.96

0.98

1

Figure 2. The survival probability of the system containing two ferromagnetic coupling qubits. The
orange squares are given by evolving along a conventional curve, ϵ = η = 1, κ = 1.2, c1 = 0.5,
c2 = 0.13, c3 = 0.52, c4 = 0.68, ZMT

f = 1.64. The path only including the dynamic phase is

the purple one, ϵ = 1.5, η = 1, κ = 0.5, c1 = 0.5, c2 = −0.13, c3 = 0.5, c4 = 0.7, ZML
f = 2.04.

Obviously, the remaining curve corresponds to the geometric phase, ϵ = 0.5, η = 0.3, κ = 1.1, c1 = 0.5,
c2 = 0.35, c3 = 0.55, c4 = 0.57, ZSZ

f = 1.18.

The numerical results of the quantum Zeno effect of the two coupled qubits are shown
in Figure 2. The results of the MT and ML dynamic evolution modes and the SZ mode (for
parallel transporting) are depicted by orange squares, purple circles, and red diamonds,
respectively. As shown in the inset, all three modes have a survival probability close to the
unit, which indicates that a sufficiently high measurement frequency can completely freeze
the quantum state. That is, the infinitesimal measurement time interval τ in Equation (8)
can “wipe out” everything of the dynamic evolution. However, in the intermediate τ,
the differences in the dynamic evolution modes are sufficient to affect the measurement-
induced deceleration of the quantum system evolution. As shown in Figure 2 using red
diamonds, the SZ mode for the system has the smallest quantum Zeno factor, which means
that the SZ mode for the system effectively resists the measurement-induced slowdown
effect. Alternatively, the SZ mode is insufficient to result in the quantum Zeno effect. This
demonstrates that frequent projective measurements between the quantum qubits change
between the quantum hard disk and a computational device, and simultaneously sustain
efficient information regarding reading and writing interactions in the computation process.
In particular, the SZ mode could allow us to effectively avoid the quantum Zeno effect to

obtain more exchanges in information within the system.

4. Conclusions

The quantum Zeno effect, as the typical dynamics of a quantum state within a short
period of time, is geometrically investigated. We present that the quantum Zeno effect is
dependent on its dynamic evolution mode. Since the quantum state lives in the Hilbert
space, its gauge freedom cannot be fixed via the Schrödinger equation. It is the gauge
freedom of the quantum state, and the quantum Zeno effect can be exhibited in different
dynamic evolution modes, revealing its geometrical properties. At the same time, this
can be thought of as the manipulating resource to control the dynamic evolution of the
quantum system, such as the coherence, entanglement, information reading and writing
interactions in the quantum computing processes, etc., via the quantum (anti-)Zeno effect.

To characterize the quantum Zeno capacities of a quantum system, we introduce
the quantum Zeno factor, which represents the potential of a quantum system reaching
quantum Zeno: a large quantum Zeno factor value means that the quantum system can
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reach the quantum Zeno effect using less measurement times, or the quantum system can
easily yield the Zeno effect. The quantum Zeno factor, as an indicative parameter, can be
employed to measure the Zeno quality of a quantum system. This provides a practical way
of manipulating the quantum system using the quantum (anti-)Zeno effect.
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The following abbreviations are used in this manuscript:

QZE Quantum Zeno Effect
QAZE Quantum Anti-Zeno Effect
QZD Quantum Zeno Dynamics
QSL Quantum Speed Limit

Appendix A. Details of the Examples

Appendix A.1. The Three-Level Quantum System

We consider a three-level system to demonstrate the quantum Zeno effect of the
quantum system, which is dependent on the nature of the dynamic evolution mode. The
system has two nondegenerate excited states |E1⟩, |E2⟩ and the ground state |E0⟩ (E0 = 0).
The initial state of the quantum system can be written as

|ψ(0)⟩ = c0|E0⟩+ c1|E1⟩+ c2|E2⟩, (A1)

and the evolution is governed by the time-independent Schrödinger equation ih̄ d
dt ψ = Hψ.

Correspondingly, the state at time t is of the form (under the assumption h̄ = 1):

|ψ(t)⟩ = c0|E0⟩+ c1e−iE1t|E1⟩+ c2e−iE2t|E2⟩.

We assume that the evolved state at time τ⊥ is orthogonal to the initial state. Thus, the over-
lap between the initial and final state should be zero, i.e., ⟨ψ(0)|ψ(τ⊥)⟩ = 0. Consequently,
the coefficients are determined by [71]

p1 sin x1 + p2 sin x2 = 0

p0 + p1 cos x1 + p2 cos x2 = 0.
(A2)

where |cj|2 = pj; ∑j pj = 1, and xj = Ejτ⊥ with the indexes j = {0, 1, 2}. The energy
uncertainty ∆E and the mean energy ⟨E⟩ are
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∆E =
√

⟨ψ(t)|H2|ψ(t)⟩ − (⟨ψ(t)|H|ψ(t)⟩)2,

=
√

p1E2
1 + p2E2

2 − (p1E1 + p2E2)2,

⟨E⟩ = ⟨ψ(t)|H|ψ(t)⟩ = p1E1 + p2E2,

(A3)

(1) The MT dynamic evolution mode
Following the orthogonal condition Equation (A2), we can obtain

p0 =
δ

2
,

p1 =
1
2
− δ

4
(1 + cos x1),

p2 =
1
2
− δ

4
(1 − cos x1),

(A4)

where p0 is small, and x2 = π + x1 − δ sin x1. By employing Equations (A3) and (A4), we
can obtain the quantum speed limit of a different evolution mode.

vMT
QSL =

1
2

√

(E1 − E2)2 + 2E1E2δ,

vML
QSL =

1
4
[(E1 + E2)(2 − δ) + (E2 − E1)δ cos x1].

(A5)

Correspondingly, the quantum Zeno factor can be readily written as

ZML
f =

4
(E1 + E2)(2 − δ) + (E2 − E1)δ cos x1

,

ZMT
f =

2
√

(E1 − E2)2 + 2E1E2δ
.

(A6)

(2) The ML dynamic evolution mode
We consider the three-level quantum system under the assumption that the quantum

Zeno factor of the ML evolution mode is larger than the MT evolution mode, ZML
f > ZMT

f .
In this situation, the initial state is the same as Equation (A1); nevertheless, the excited
states are E2 = (2k + 1)E1. Considering the presupposed orthogonal time condition
Equation (A2), the population can be expressed as

p0 =
1
2

;

p1 =
1
2
(1 − β

k2 );

p2k+1 =
β

2k2 ,

(A7)

where k is a positive integer, and β is small.
The quantum speed limit becomes

vMT
QSL =

√

E1

4
+

E2
1 β

k
− E2

1 β2

k2 + 2E2
1 β,

vML
QSL = E1

(

1
2
+

β

k

)

.

(A8)

We can obtain the quantum Zeno factor of MT and ML evolution modes as follows:
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ZML
f =

2k

(k + 2β)E1
,

ZMT
f =

2
√

k

E1
√

k + 4β + 8kβ
.

(A9)

Appendix A.2. Coupled-Qubit System

The Hamiltonian of a coupled-qubit system is given as follows [77–79]:

H = −1
2









ϵ − s + κ η 0 −∆η

η −κ η ∆ϵ − ∆s
0 η κ + s − ϵ ∆η

−∆η ∆ϵ − ∆s ∆η −κ









, (A10)

with ϵ = ϵ1 + ϵ2, ∆ϵ = ϵ1 − ϵ2, η = (γ1 + γ2)/
√

2, and ∆η = (γ1 − γ2)/
√

2, where
ϵı (ı = 1, 2) are the energy bias, and γı are the transmission amplitude through the barrier.
κ is the strength of the inter-qubit coupling, and s = X1 + X2 and ∆s = X1 − X2, where Xı

is the coordinate of the bath of harmonic oscillators. The Hamiltonian of two qubits with
equal qubit parameters can be written as follows [79]:

H = −1
2









ϵ + κ η 0 0
η −κ η 0
0 η κ − ϵ 0
0 0 0 −κ









, (A11)

We simply apply Cardano’s formula of the general third-order equation to obtain the
eigenvalues and eigenvectors. After some algebraic operations, the eigenvalues can be
given by

ξ1 =
1
2

κ,

ξ2 = 2X 1
3 cos ϑ − 1

6
κ,

ξ3 = X 1
3 (− cos ϑ +

√
3 sin ϑ)− 1

6
κ,

ξ4 = X 1
3 (− cos ϑ −

√
3 sin ϑ)− 1

6
κ,

(A12)

and the eigenvectors are of the following form:

|ξ1⟩ = (0, 0, 0, 1)T ,

|ξ2⟩ =
|η|2
g8

(

9,−3
g3

η
,

g4

η2 , 0
)T

,

|ξ3⟩ =
|η|2
g9

(

− g5

η2 , 3
g6

η
, 9, 0

)T

,

|ξ4⟩ =
|η||g2|

g7

(

3g1

g2
,

g1

η
, 3, 0

)T

,

(A13)

where the abbreviations in the eigenvalues and eigenvectors are as follows:
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P = − 1
12

ϵ2 − 1
6

η2 − 1
9

κ2,

Q =
1

12
ϵ2κ − 1

12
η2κ − 1

27
κ3,

X =
√

−P3,

ϑ =
1
3

arccos(−Q
X ),

and
g1 = −2κ + 3η + 6X 1

3 cos ϑ + 6
√

3X 1
3 sin ϑ,

g2 = −2κ − 3η + 6X 1
3 cos ϑ + 6

√
3X 1

3 sin ϑ,

g3 = 3ϵ + 2κ + 12X 1
3 cos ϑ,

g4 = −9η2 − 12κϵ − 8κ2 − 24κX 1
3 cos ϑ + 36X 1

3 cos ϑ + 144X 2
3 cos2 ϑ,

g5 = 8κ2 − 12κϵ − 12κX 1
3 cos ϑ + 12

√
3κX 1

3 sin ϑ − 18ϵX 1
3 cos ϑ − 36X 2

3

− 72X 2
3 sin2 ϑ + 72

√
3X 2

3 cos ϑ sin ϑ + 18X 1
3 ϵ sin ϑ + 9η2,

g6 = −2κ + 3η + 6X 1
3 cos ϑ − 6

√
3X 1

3 sin ϑ,

g7 =
√

9|g1|2|η|2 + |g1|2|g2|2 + 9|η|2|g2|2,

g8 =
√

81|η|4 + 9|g3|2|η|2 + |g4|2,

g9 =
√

|g5|2 + 9|g6|2|η|2 + 81|η|4.

For this time-independent Hamiltonian, the state vector can be decomposed into the
superposition of eigenstates. The initial state can be written as follows:

|ψ(0)⟩ = c1|ξ1⟩+ c2|ξ2⟩+ c3|ξ3⟩+ c4|ξ4⟩, (A14)

Correspondingly, the state at time t is determined by the unitary operator as follows:

|ψ(t)⟩ =
4

∑
j=1

cje
−iξ jt|ξ j⟩. (A15)

At this point, the quantum Zeno factor of the ML and MT dynamic evolution modes can be
written as follows:

ZML
f =

1

∑
4
j=1 pjξ j

,

ZMT
f =

1
√

∑
4
j=1 pjξ

2
j − (∑4

j=1 pjξ j)2
,

(A16)

where pj = |cj|2.
Considering the SZ mode (for the parallel transporting), the state should obey the

parallel condition. The quantum state, after a gauge transformation, can be written
as follows:

|ψ(t)⟩ = ei
∫ t

0 ⟨ψ(t′)|H(t′)|ψ(t′)⟩dt′ |ψ(t)⟩. (A17)

Equation (A17) keeps the parallel transport rule, ⟨ψ(t)|ψ̇(t)⟩ = 0. By employing the
auxiliary state Equation (A17), the geometric can be written as follows:

φgeo = φtotal = Arg{⟨ψ(0)|ψ(t)⟩}. (A18)
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With Equations (A15) and (A17), the geometric phase becomes

φgeo =
4

∑
j=1

pjξ jt + arctan
Y

X
. (A19)

where X = ∑
4
j=1 pj cos ξ jt and Y = ∑

4
j=1 pj sin ξ jt. The changing rate of geometric phase

can be expressed as follows:

φ̇geo =
4

∑
j=1

pjξ j +
ẎX − YẊ

X2 + Y2 . (A20)

The quantum Zeno factor of the SZ mode can be obtained by Equation (A20). The QSL of
the parallel transporting state Equation (A17), which is parallel with the geodesic curve
connecting the initial and final state, is the changing rate of the geometric phase.
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