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Abstract: The asymptotically safe gravity is investigated in the framework of the functional renormal-

ization group method. The low energy region of the model can account for the cosmological behavior,

where it is assumed that the nonlocal effects play a crucial role. Using the Wegner–Houghton equation

it is shown that the dynamically induced bilocal term modifies the infrared scaling of the model.
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1. Introduction

The functional renormalization group (RG) method [1–7] teaches us that the constants
of physics are not necessarily constants, they can vary. A classical example can be the
Newton’s constant G, which appears in the potential describing the gravitational inter-
actions between massive bodies. However, it turned out that in the quantum theory of
gravity, i.e., in the asymptotically safe gravity, G becomes a function of the observation
scale k [8–10]. The asymptotically safe gravity seems to be a suitable model describing
the gravitational interaction for all energy scales. Furthermore, the issue of perturbative
non-renormalizability is also solved by finding an ultraviolet (UV) attractive fixed point,
the Reuter fixed point in the asymptotically safe gravity, that makes all the theoretical
predictions finite [11–14]. We note that besides the RG method, the asymptotic safety in
gravity has been studied in Euclidean dynamical triangulations [15], in causal dynamical
triangulations [16], in Regge lattice gravity theory [17] or in tensor models [18].

The asymptotically safe gravity can describe the gravitational interaction in extremely
large energy scales, starting from the UV energies, down to the infrared (IR) scaling regime.
The model also serves as a possible unification of gravity and quantum physics. The
phase space of the model contains all the possible values of Newton’s constant Gk and the
cosmological constant Λk including the one belonging to our observations, the trajectory
picked up by Nature. This trajectory spans about 60 orders of magnitude in the scale
k [19,20] where the couplings should be followed, making the RG method unavoidable in
the description of the asymptotically safe gravity.

The quantized version of gravity should account for the classical general relativity,
including cosmological phenomena, too. In the UV regime, quantum gravity dominates,
and it is characterized by the Reuter fixed point beyond the Planck scale (k∼1027 eV).
By lowering the RG scale we can find the scale of inflation (1022 eV), the classical general
relativity region in the laboratory scale (10−5 eV), and going further towards the IR, we can
find the Hubble scale (10−33 eV) [19,21].

We can find a significant discrepancy between the observable mass and the one
obtained from observed motion for galactic systems. A possible explanation can be the
existence of dark matter; however, a modification of the deep IR scaling can account for the
discrepancy. As an example, a possible interacting IR fixed point can modify the evolution
of Gk and Λk in such a way that the gravitational attraction at the cosmological scales
changes making the model suitable for writing down the motion at galaxy scales [20,22].
The interacting IR fixed point is assumed to appear due to some possible new physical
interactions since quantum gravity and their extension can hardly account for the new IR
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scalings. It is also an accepted belief that the new deep IR scaling should come from nonlocal
interactions. However, nonlocal couplings can come not only from new interactions,
but they may also rise from the original model due to the effect of the RG blocking steps.
This mechanism comes from the recognition, that there is a nontrivial saddle point that
dominates the RG blocking step [23], and produces a tree-level evolution to the nonlocal
part of the potential. The rising of nonlocal couplings can modify the IR behavior of gravity,
implying that the nonlocality can appear without introducing new physics.

In this work, we determine the evolution of the nonlocal (usually bilocal) potential and
calculate its effect on IR physics. We use the Wilsonian approach of finding the evolution
equation of the bare action (oppositely the usual way of finding the evolution of the effective
average action) by the Wegner–Houghton equation [24]. This approach can also be used
to investigate quantum gravity [25–27]. The sharp cutoff enables us to find the saddle
point of the eliminated modes analytically. We derive the evolution equation for the bilocal
potential and follow the evolution of the bilocal coupling. We show that the cosmological
constant initiates the evolution of the bilocal coupling. In this approach, we do not assume
the existence of new interactions in the IR region, but we consider the nonlocal effects in
quantum gravity that have not been investigated yet.

We look for the possible IR fixed point of quantum gravity including its bilocal
potential evolution. In order to clarify the IR behavior we change the coupling Λk and the
cutoff scale in such a way that there are no singularities in the new flow equations [28,29].
We refer to these new flow equations as transformed ones. By using this technique a possible
IR fixed point is found in asymptotically safe gravity [30]. The same IR fixed point was
found in [31]. We should note that this fixed point differs from the one in [20], because the
latter corresponds to interacting IR fixed point, with nonvanishing Newton’s constant.

First, we consider the traditional form of asymptotically safe gravity using the Wet-
terich equation [32] and look for the fixed points and the corresponding exponents. Then,
the transformed equations are investigated. We repeat these steps to the conformally reduced
quantum gravity, where the conformal part of the metric can only fluctuate [20,22,33–35].
In the last step we let the bilocal coupling evolve, also in the framework of the confor-
mally reduced quantum gravity and compare the evolution of the local evolution with the
bilocal one. The great advantage of this method is the lower technical complexity since
there is no need for gauge fixing. In the traditional treatment of gravity, the background
field method is very sensitive to the choice of the gauge [36,37]. Usually, the background
harmonic gauge is used, which is very popular since certain simplifications can be made.
The conformally reduced gravity is practically a scalar theory in curved spacetime with a
negative kinetic term.

The paper is organized as follows. In Section 2 consider asymptotically safe gravity
and look for the IR fixed point there. As a byproduct, we give a possible IR extension of
the Nature-picked trajectory. In Section 3 we repeat the investigation for the conformally
reduced quantum gravity. The evolution of the bilocal potential is treated in Section 4.
Finally, in Section 5 the conclusions are drawn up.

2. Evolution Equations

First, we consider the standard local form of the asymptotically safe gravity. We look
for the IR behavior of the model where the full metric is used as a path integral variable.
For simplicity, we use the Wetterich equation [32]. It is based on considering the effective
average action, where the macroscopic field variable is given by taking the average of the
microscopic field variables on the volume with radius k−1, where k plays the role of the RG
cutoff scale. The effective average action Γk satisfies the Wetterich equation

Γ̇k =
1

2
Tr

(

Ṙ, k[Γ
(2) + R, k]

−1

)

, (1)
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where the dot is ∂t, with t = ln k. We introduced the regulator R, k that changes rapidly
at the cutoff resulting in a strong separation between low and high momentum modes.
Usually, we use the Litim regulator

R,
lit
k = (k2 − p2)θ(k2 − p2), (2)

with the step function θ. It gives a contribution when the momentum of the mode is
smaller than the cutoff, i.e., when p2 < k2. In the case of pure gravity without matter field,
the effective average action can be given by the Einstein–Hilbert action

Γk =
1

16πGk

∫

x

√
g(−R + 2Λk), (3)

where
√

g =
√

det(g), with the metric g that is decomposed into background and fluctuat-
ing parts. Newton’s constant Gk and the cosmological constant Λk become scale-dependent
in the RG treatment. The Einstein–Hilbert action contains only these couplings, their dimen-
sionless forms are gk = kd−2Gk and λk = k−2

Λk. From now on their cutoff dependences
are suppressed. The evolution equations using the Litim regulator are [9]

ġ = (2 + η)g,

λ̇ = −(2 − ηN)λ +
g

8π

(

20

1 − 2λ
− 16 − 10

3
η

1

1 − 2λ

)

. (4)

The flow equation for Newton’s constant is practically the definition of the anomalous
dimension η. Its form can be given as

η =
g( 5

1−2λ − 9
(1−2λ)2 − 7)

3π(1 + g
12π (

5
1−2λ − 6

(1−2λ)2 ))
(5)

in d = 4. The model has two fixed points, a Gaussian fixed point (GFP), and a Reuter
fixed point. The position of the fixed points are given in Table 1. We also listed the
scaling exponents that describe the scaling properties of the couplings in the vicinity of
the corresponding fixed points. They are the eigenvalues of the stability matrix, which
comes from the linearized form of the flow equations at the fixed point. If they are negative,
at least their real parts, then the fixed point is UV attractive. Mixed real values refer to
hyperbolic fixed points.

Table 1. The position of the fixed points and the corresponding scaling exponents are presented for

the Einstein–Hilbert action.

Fixed Point g∗ λ∗ s1,2

Gaussian 0 0 −2; 2

Reuter 0.707 0.193 −1.48 ± 3.04i.

The central result of the asymptotically safe gravity is the UV attractive Reuter fixed
point that makes the physical quantities finite. After solving the evolution equations
numerically, the phase space can be mapped out, as can be seen in Figure 1.

The standard phase space shows that there is a UV-attractive Reuter fixed point and a
hyperbolic GFP at the origin. The latter separates the two phases. The symmetric phase
can correspond to the trajectories where the cosmological constant is negative in the IR.
In the broken symmetric phase, the IR value of λ is positive, however, it cannot reach the
k → 0 limit.
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Figure 1. The phase space of the asymptotically safe gravity is presented in the g and λ plane.

The dots show the Reuter and the Gaussian fixed points. The dashed curve denotes the points where

the anomalous dimension η is singular. The figure is made based on [9].

2.1. Infrared Scaling

The singularity gives the IR limitation of the RG method in the broken symmetric
phase. It suggests that the original degrees of freedom are not suitable anymore to describe
the physical system, and presumably we should consider the quantum fluctuation around
a nonlocal condensate [20,38]. The IR fixed point can be clearly identified in the phase
diagram by realizing that the trajectories of the broken symmetric phase flow into an
attractive point [39]. In the asymptotically safe gravity, the situation is a bit different, since
in Figure 1 there is a line of singular points. It turns out that only a single point of the curve
becomes the IR fixed point.

In order to obtain the IR fixed point analytically, we derive the transformed RG
equations by changing the original couplings to new ones, where the evolution equations
are not singular. There are two singularities in the flow equations, these define the new
couplings, they are

ℓ = 1 − 2λ

y = 12π(1 − 2λ)2 + (5(1 − 2λ)− 6)g. (6)

The new coupling ℓ eliminates the singularity coming from the propagator. This
is connected to the inverted action and the corresponding conformal factor instability.
The coupling y is also connected to a singular behavior, it comes from the denominator of
the anomalous dimension. We can derive evolution equations for ℓ and y and they are

∂τy = − 1

12π(5ℓ− 6)

(

5184π3
ℓ

3(175ℓ5 − 300ℓ4 + 28ℓ3 + 173ℓ2 − 534ℓ+ 216)

−72π2
ℓy(2800ℓ5 − 8405ℓ4 + 11559ℓ3 − 12900ℓ2 + 2124ℓ+ 864)

+6πy2(1750ℓ4 − 6455ℓ3 + 9271ℓ2 − 11958ℓ+ 3816) + 5y3(10ℓ+ 97)
)

∂τℓ = −6π(ℓ− 1)ℓ2 +
1

2(5ℓ− 6)

(

(12πℓ
2 − y)(((14ℓ− 43)ℓ+ 47)ℓ− 12)

)

− 1

12π(5ℓ− 6)2

(

(12πℓ
2 − y)2(10ℓ+ 97)

)

. (7)

The singularity appears at finite scale kterm or tterm. The derivative should be also
changed to push the scale kterm to zero, therefore, we introduce ∂τ = y∂t.
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The IR fixed point appears in Table 2, it has zero scaling exponents; however, the flow
shows that it is IR attractive.

Table 2. The position of the fixed points and the corresponding scaling exponents are presented for

the transformed equation in Equation (7).

Fixed Point y∗ ℓ∗ s1,2

Gaussian 37.7 1 75.398;−18.85

Reuter 12.12 0.614 −15.116 ± i13.84

IR 0 0 0; 0

2.2. Nature Picked Trajectory

The phase diagram in Figure 1 shows the paths for g and λ. At laboratory scales, the
value of Newton’s constant is known, it is

g(klab) =

(

lPl

k−1
lab

)2

≈ 10−70. (8)

Here, we assumed that the laboratory scale is about 1 m. It may help us to identify which
trajectory is realized by Nature [40]. The trajectory is quite unnatural in the sense that it
is extremely close to the GFP. Since it is a hyperbolic point with one attracting and one
repelling direction, the run on the trajectory slows down close to the GFP. It implies that the
trajectory spends a lot of time near the GFP. The turning point kT is situated approximately
30 orders of magnitude below the Planck scale. The scale of the IR singularity kterm is
30 magnitudes below kT .

It is assumed that the trajectory belonging to Nature tends to an IR fixed point [40–43].
There the IR fixed point is interacting since g∗ is nonzero. The IR fixed point of Equation (7)
differs from the interacting IR fixed point because it can be found at the singularity points
g∗ = 0 and λ∗ = 1/2; however, they are extremely close to each other. The IR fixed point
belonging to the singularity condition can be considered as a noninteracting one. Both the
interacting and the noninteracting IR fixed points are IR attractive; furthermore, they are
reached at finite cutoff scale kterm. The significant difference comes from the fact, that the IR
fixed point assumes an infinitesimally small g∗; therefore, the interacting IR fixed point is a
non-Gaussian fixed point just like the UV Reuter fixed point. In contrast, the noninteracting
IR fixed point is similar to the UV Lifshitz-type gravity fixed point where g∗ = 0 with
finite cosmological constant. The interacting IR fixed point needs η = −2, as in the case of
the Reuter fixed point. In the general relativity regime η is practically zero, so it should
change in a significant way in the IR regime. It needs a fundamental change in the g and λ
dependence of η. The noninteracting fixed point does not require η = −2, so no significant
change is needed, it can be realized in a smoother way.

It is assumed that new interactions can arise at low energy scales and can create
the interacting IR fixed point. From a cosmological point of view, the cutoff is inversely
proportional to the cosmological time tc, i.e., k∼1/tc, where the proportionality factor
is around 1. Therefore, the vicinity of the interacting IR fixed point at low energies can
correspond to large cosmological distances. We know that there is a deviation from classical
cosmology at large distance scales, i.e., there is a discrepancy between the observable
mass and the one obtained from observed motion for galactic systems. The standard IR
behavior coming from the RG equations is based on the GFP scalings, and the regime
of the general relativity can be derived from the GFP scaling of the flow equations [40].
The deviation from the general relativity, the classical cosmology, should be caused by new
physics emerging at low energies; moreover, the possible new interaction can result in the
interacting IR fixed point, too. We should note that there is no signal of the interacting IR
fixed point in our treatment. According to our analysis, we can find only a noninteracting
IR fixed point in the model. From now on we refer to it simply as the IR fixed point.
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We can give a possible IR completion of Nature’s picked trajectory. We can find the
linearized solution of the flow equations in Equation (7) in the vicinity of the IR fixed point,
and replacing the original couplings g and λ a cubic expression appears around the IR
fixed point according to

g =
53π

9
(1 − 2λ)3. (9)

The general relativity regime can correspond to gTλT/2 = gλ, implying that g ≈ g2
T/λ.

Assuming that the flow is continuously differentiable we can join together the Gaussian
and the IR scalings. The IR scale where the two functions are connected kIR can be found at
the deep IR regime. The cosmological constant at kIR is

λ(kIR) ≈
1

2
− gT . (10)

We could complete the Nature trajectory till the IR fixed point by joining the hyperbolic
function of the Gaussian scaling with the third-order polynomial in the IR.

Our results show that the Einstein–Hilbert action in the present form does not seem to
modify the IR behavior of the model. We expect that strong nonlocal interactions arise at
low energy scales; however, the local theory cannot introduce such terms. At this point,
it is worth noting that the local RG evolution is a simplification. It was shown that in the
Wegner–Houghton equation there is a non-trivial saddle point in the eliminated modes of
the momentum shell [44] and it gives a bilocal contribution to the evolution at the tree level.
The bilocal contribution of the potential introduces a momentum-dependent coupling,
which at small momenta can describe and can change large distance behavior.

Usually, the nonlocal evolution is dropped out. In the following sections, our goal
is to find the evolution equation for the bilocal couplings and to see how it modifies the
IR behavior.

3. Conformally Reduced Quantum Gravity

We can simplify the treatment by following only the conform factor of the metric. It is
assumed that the metric constitutes a dynamical conformal factor and a non-dynamical
reference metric ĝµν. The conformal factor is parameterized by a scalar field in such a way
that it provides the traditional form of the kinetic term. We choose

gµν = φ2ν(d) ĝµν (11)

with ν(d) = 2/(d − 2) [45]. We can obtain the conformally reduced version of the Einstein–
Hilbert action

SEH =
1

8πξ(d)G

∫

d4x
√

ĝ

(

1

2
ĝµν∂µφ∂νφ +

1

2
R̂φ2 − ξ(4d)Λφ2d/(d−2)

)

, (12)

where R̂ is the curvature of ĝµν; furthermore, ξ(d) = (d − 2)/(4(d − 1)) [20,22,46]. When
d = 4, then ν = 1, ξ = 1/6, gµν = φ2 ĝµν and the Einstein–Hilbert action reduces to

SEH = − 3

4πG

∫

d4x
√

ĝ

(

1

2
ĝµν∂µφ∂νφ +

1

12
R̂φ2 − 1

6
Λφ4

)

. (13)

From now on we consider only the conformally reduced version of the action; therefore,
we suppress the subscript, instead, we use the cutoff k. The microscopic field variable φx is
split into the sum of the background field and the fluctuation, φx = χB + f

¯x. It is assumed
that the background field χB is constant. The blocked action is modified by a bilocal term
with the bilocal coupling wxy:
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Sk = −Zk

∫

xy

√

ĝx

{

δxy

(

−1

2
(χB + f

¯x)□̂(χB + f
¯x) +

1

12
R̂(χB + f

¯x)
2

− Λk

6
(χB + f

¯x)
4
)

− 1

4
wxy(χB + f

¯x)
2(χB + f

¯y)
2

}

. (14)

The Newton’s constant Gk is contained in the wavefunction renormalization

Zk =
3

4πGk
. (15)

We can introduce the compact notation of the local and the bilocal potentials

Uk =
Λk

6
φ4

x −
1

12
R̂φ2

x

Vk =
1

4
Wxyφ2

xφ2
y, (16)

after turning back to the variable φx. We assume the translational symmetry in the bilocal
term, Wxy = Wx−y. The compact form of the conformally reduced Einstein–Hilbert action
can be written as

Sk = −Zk

∫

√

ĝ

{

1

2
φ(−□̂)φ − Uk − Vk

}

. (17)

The derivative of the action with respect to the cutoff gives

Ṡk

Zk
=
∫

(

η
1

2
f
¯
(−□̂)f

¯
− ηUk + U̇k − ηV + V̇k

)

, (18)

where we have introduced the anomalous dimension

η = − Żk

Zk
=

Ġk

Gk
. (19)

Without loss of generality, we can choose the flat reference metric ĝµν = δµν which

implies that
√

ĝ = 1 and □̂ = □.

3.1. Evolution Equation

Since we intend to follow the evolution of the bilocal potential, we should use the
Wegner–Houghton equation. There, the modes are split into UV and IR parts, i.e., φ → φ + ϕ.
The field variable φ belongs to modes characterized by the momentum in k ∈ [0, k − ∆k],
while ϕ is with momentum in k ∈ [k − ∆k, k]. The UV modes in the shell are integrated out,
and it can correspond to an RG blocking step. The expression to be integrated is

e−Sk−∆k(φ) =
∫

D[ϕ]e−Sk [φ+ϕ] ≈
∫

D[ϕ]e
−Sk [φ+ϕ0]− 1

2 ϕ
δ2Sk [φ+ϕ0 ]

δϕδϕ ϕ
. (20)

After the integration we obtain the Wegner–Houghton equation

Ṡk[φ] = −k
Sk[φ + ϕ0]− Sk[φ]

∆k
− k

2∆k
Tr ln

[

δ2Sk[φ + ϕ0]

δφδφ

]

. (21)
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The first term comes from the contribution of the non-trivial saddle point. This term is
responsible for the nonlocal evolution. Considering only the local part of the evolution and
using Equation (21) together with Equation (18) the evolution equation for the action is

Ṡk[φ] = −1

2

∫

q
δ(k − |q|) ln S′′

q , (22)

where S′′
q is the second derivative of the blocked action with respect to the field variable.

The Dirac-delta restricts the momentum integration into an infinitesimally small thin
momentum shell with radius k. After the integration we obtain

Ṡk[φ] = −1

2
αdkd ln S′′

k (23)

with

αd =
Ωd

(2π)d
, Ωd =

2πd/2

Γ(d/2)
. (24)

The renormalization treatment of the conformally reduced gravity can be performed in
the framework of the Wegner–Houghton equation using Schwinger’s proper-time regulator,
too [25,47].

In the conformally reduced Einstein–Hilbert action the kinetic energy has an unusual
negative sign. Nevertheless, the φ4 term is positive definite; therefore, the action goes to
infinity with growing φ. However, a rapid change in φ can make the action unbounded
from below. This is the so-called conformal factor instability. The negative kinetic energy
creates a kinetic condensate that is made from coordinate-dependent modes. A prominent
example of a kinetic condensate is the gluon condensate in QCD, where the minimum
is situated in the Savvidy vacuum with Fµν ̸= 0; however, it turned out later, that this
vacuum is IR unstable. Similar ideas were applied in quantum gravity models where the
square of the curvature is included, guaranteeing the boundedness of the action [48,49].
The problem of kinetic condensate also appears in the Liouville field theory [50], where an
inhomogeneous condensate may stabilize the vacuum. A similar inhomogeneous vacuum
appears in spin systems in the case of antiferromagnetic order [51].

The other possibility to manage the instability problem is to use the so-called inverted
action, Sinv = −S, that can be obtained by a proper choice of Wick rotation [20]. It makes
the kinetic term positive at the price of changing the sign of the potential, too. This choice
clearly gives an unstable action; however, it provides a physically relevant region where
the calculation is acceptable. According to a naive geometrical picture, the double-well
potential with two minima and a local maximum in the origin is inverted to its upside-down
form, and we perform the calculation around the origin, which is now the minimum for
the inverted action. The calculation is valid between the two maxima.

In the symmetric phase the evolution can reach the k → 0 limit, there the cosmological
constant is negative. However, due to the conform factor instability and the usage of
the inverted action, there is a singularity in the broken symmetric phase. We expand the
action around a local extremum; therefore, the reliability is guaranteed until 1 − 2λ > 0.
The instability in the broken symmetric phase usually turns up if we do not consider
the quantum fluctuations around the running local minimum. In the φ4 model, if we
derive the evolution equations around the origin where the potential has a local maximum,
the evolution runs into a singularity. Taking the evolution equations around the local
minimum, we seemingly can avoid the singularity, however, it is not completely true.
The singularity condition

k2 + V′′ = 0 (25)

which typically appears in the dressed scalar propagators cannot be zero around a mini-
mum, since V′′ > 0. However, if a local minimum becomes a local maximum at a finite
scale k, then we should jump the expansion point φ0 from the old minimum to the new one.
This cannot happen in a second-order phase transition, but in a first-order phase transition,



Symmetry 2024, 16, 1074 9 of 18

the change in the local minima is fundamental. It is also unphysical if the value φ0 jumps
from one local minimum to the other immediately as the new minimum value becomes
absolute since they can be quite far from each other [52]. The singularity is also unavoidable
in the 2-dimensional sine-Gordon modelI, where a Fourier expansion is used [53].

In the derivation of the Wegner–Houghton evolution equation, the renormalized
propagator changes its sign, signaling the inverted action picture during the analysis.
The inversion should be used in the case of the Wetterich equation, too. We can connect the
two approaches of the evolution equations by a strange choice of the regulator [54]

R = R0θ(1 − p2/k2). (26)

The regulator is zero if k2 < p2 < ∞, and nonzero for p2 < k2, where R0 → ∞. A very
naive, mathematically superficial derivation might give

Γ̇ =
1

2
Tr

Ṙ

Γ′′ + R
=

1

2
αdkd∂k

∫

∞

k2
ln Γ

′′. (27)

Since the higher momentum modes contribute to the evolution, it suggests that the
bare action and not the effective action evolves

Ṡ = −1

2
αdkd ln S′′, (28)

where we used the fact the derivation with respect to the cutoff acts only on the lower limit
of the integral. Starting from the Wetterich equation we arrive at the Wegner–Houghton
equation. A mathematically well-established derivation can be found in [54], where a
Taylor expanded version of the potential is used, with well-defined integrals.

The derivation enlightens the similarity and the difference between the Wegner–
Houghton and the Wetterich equations. The trace in the Wetterich equation is taken for the
lower momenta according to the standard choices of the regulator. There, the average field
plays the role of the average action that is nonzero for 0 < p2 < k2 and it can be considered
as a ’macroscopic’ field variable. However, in the Wegner–Houghton equation, due to the
special form of the regulator in Equation (26), the momentum integration is performed
for high momenta. It implies that the original, microscopic field variables are taken into
account, and they contribute to the evolution when their characteristic momenta satisfies
k2 < p2 < ∞.

3.2. Infrared Scaling in Conformally Reduced Gravity

Keeping the O
(

f
¯
0
)

term in the Wegner–Houghton equation, and keeping only the

local terms we obtain

−ηUk(χB) + U̇k(χB) = −1

2

k2χ2
B

Zk
αd log

(

χ2
Bk2 − 2Λχ2

Bk2 +
1

6
R̂

)

, (29)

where the equation is normalized with the spacetime volume. After expanding in the
curvature, we obtain the dimensionless evolution equations

λ̇ = −(2 − η)λ − g

2π
ln(1 − 2λ)

ġ = (2 + η)g

η = − g

6π

1

1 − 2λ
, (30)

where the anomalous dimension is obtained from the linear term in the Ricci scalar R̂.
The fixed points of the model can be found in Table 3. They are the standard ones, the Gaus-
sian and the Reuter fixed points, the latter has complex scaling exponents.
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Table 3. The position of the fixed points and the corresponding scaling exponents for conformally

reduced gravity are given, where the anomalous dimension is calculated from the potential term.

Fixed Point g∗ λ∗ s1,2

Gaussian 0 0 2;−2

Reuter 5.617 0.426 −2.711 ± i4.726

The RG equations show singular behavior. It can be eliminated by transforming the
coupling λ according to

ℓ = − 1

ln(1 − 2λ)
. (31)

The choice gives finite value in the IR fixed point, i.e., if λ → 1/2 then ℓ → 0. The GFP
can be found at the ℓ → ∞ limit. Although the infinite value of any couplings is unphysical,
it does not cause any problem at the GFP, since it is a hyperbolic point, therefore, it cannot
be reached by the trajectories. The coupling g is kept unchanged. The evolution of ℓ
reads as

ℓ̇ = −2λ̇e1/ℓ
ℓ

2, (32)

and the transformed flow equations become

∂τ g = 2e−2/ℓg − e−1/ℓg2

6π

∂τℓ = 2e−1/ℓ
ℓ

2
(

1 − e−1/ℓ
)

+
1

6π

(

gℓ2 − e−1/ℓ
ℓg(6 + ℓ)

)

, (33)

with ∂τ = e−2/ℓ∂t. The fixed points are collected in Table 4.

Table 4. The position of the fixed points and the corresponding scaling exponents for conformally

reduced gravity are given after the transformation of λ to ℓ, where the anomalous dimension is

calculated from the potential term.

Fixed Point g∗ ℓ∗ s1,2

Gaussian 0 ∞ 2; 2

Reuter 5.617 0.525 −0.06 ± i0.1

IR 0 0 0; 0

It says that the GFP has two repelling directions, since due to the definition of the
new coupling ℓ, it becomes irrelevant around the GFP. The Reuter fixed point has complex
scaling exponents. We can find an IR fixed point, it is IR attractive; however, the scaling
exponents are zero.

A similar procedure can be used when η comes from the kinetic term [20]. The flow
equations become

λ̇ = −(2 − η)λ − g

2π
ln(1 − 2λ)

ġ = (2 + η)g

η = −8gλ3

4π

1

(1 − 2λ)4
. (34)

The fixed points are given in Table 5, containing the Gaussian and the Reuter fixed points.
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Table 5. The position of the fixed points and the corresponding scaling exponents for conformally

reduced gravity are shown, where the anomalous dimension is calculated from the kinetic term.

Fixed Point g∗ λ∗ s1,2

Gaussian 0 0 2;−2

Reuter 6.793 0.375 −4.069 ± i4.163

We can use the transformation of λ according to Equation (32) in this case, too, and
it gives

∂τ g = 2e−5/ℓg +
16e−1/ℓg2

3π(1 + e1/ℓ)4

(

e−1/ℓ − 1
)3

∂τℓ = e−4/ℓ
ℓ

(

−2ℓe−1/ℓ + 2ℓ− g

π

)

+
16gℓ2

3π(1 + e1/ℓ)4

(

e−1/ℓ − 1
)4

, (35)

with ∂τ = e−5/ℓ∂t. Again, the GFP has two repulsive directions, and the Reuter fixed point
has complex scaling exponents, they are given in Table 6. The IR fixed point also appears,
with an IR attractive nature.

Table 6. The position of the fixed points and the corresponding scaling exponents for conformally

reduced gravity are presented after the transformation of λ to ℓ, where the anomalous dimension is

calculated from the kinetic term.

Fixed Point g∗ ℓ∗ s1,2

Gaussian 0 ∞ 2; 2

Reuter 6.793 0.72 −0.0039 ± i0.004

IR 0 0 0; 0

4. Bilocal Evolution

The local evolution enables us to give an IR completion of the trajectories. Using
several calculation schemes, we obtained that there is an IR attractive IR fixed point. Next,
we consider how the nonlocal effects can change the IR behavior.

Expansion around a Homogeneous Background

We decompose a general action for scalar field theory containing a bilocal term as

Sk =
1

2

∫

x
f
¯xD−1

B f
¯x +

∫

x
Ũ(χB + f

¯x) +
∫

xy
Ṽx−y(χB + f

¯x, χB + f
¯y). (36)

In order to obtain the proper local limit of the potential, another decomposition is
necessary according to

Sk = ΩU0(χB) +
1

2

∫

x
f
¯xD−1

B f
¯x +

∫

x
U(f

¯x) +
∫

xy
Vx−y(f

¯x, f
¯y), (37)

with the general local term

U0(χB) = Ũ(χB) + Ṽ0(χB, χB). (38)
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The local and the bilocal decompositions have the form

∫

x
U( fx) =

∫

x
[Ũ(χB + f

¯x)− Ũ(χB)

+Ṽ0(χB + f
¯x, χB) + Ṽ0(χB, χB + f

¯x)− 2Ṽ0(χB, χB)]
∫

xy
Vx−y(f

¯1, f
¯2) =

∫

xy
[Ṽx−y(χB + f

¯x, χB + f
¯y)

−Ṽx−y(χB, χB + f
¯y)− Ṽx−y(χB + f

¯x, χB) + Ṽx−y(χB, χB)], (39)

respectively. They clearly show that the local and bilocal terms mix with each other.
The second derivative of the action is

S′′
xy[f¯

] = D−1
xy − Σxy[f

¯
], (40)

where the self-energy is

Σxy[f
¯
] = −δxyU′′(f

¯x)− 2∂1∂2Vx−y(f
¯x, f

¯y)− δxy

∫

z
[∂2

1Vx−z(f
¯x, f

¯z) + ∂2
2Vz−x(f

¯z, f
¯x)]

+δxyU′′(0) + 2∂1∂2Vx−y(0, 0) + δxy

∫

z
[∂2

1Vx−z(0, 0) + ∂2
2Vz−x(0, 0)], (41)

and D−1
xy is the dressed propagator. Using the concrete forms of the potentials from

Equation (16) we obtain

Σxy[f
¯
] = −2Λkf

¯
2
x − 4χBΛkf

¯x − W0f
¯
2
x − 2χBW0f

¯x − 2Wx−yf
¯xf

¯y, (42)

where the last term is bilocal. After the Fourier transformation, it becomes momentum-
dependent coupling, Wx−y → Wq. The bilocal coupling also appears in the local part of the
self-energy in the form of the zero mode Wq=0 = W0. The propagator in momentum space
can be written as

D−1
q = −q2 + Kq + m2, (43)

with m2 = 2Λkχ2
B + W0χ2

B and Kq = 2Wqχ2
B. After reparameterization by Zk and using the

inverted conformally reduced Einstein–Hilbert action, the propagator becomes

D−1 = Zk(q
2 − 2Λkχ2

B − W0χ2
B − 2Wqχ2

B). (44)

We can obtain the evolution equation for λ by taking the O
(

f
¯
0
)

terms from the

derivative of the action

Ṡk = −Zk

∫

x

(

− 1

12
ηR̂χ2

B − 1

6

(

Λ̇k − Λkη
)

χ4
B − 1

4

(

Ẇ0 − W0η
)

χ4
B

)

−Zk

∫

xy

(

−1

2
f
¯xδxyη(−□̂y)f

¯y −
1

4
χ2

Bf
¯x

(

Ẇx−y − Wx−yη
)

f
¯y

)

. (45)

It contains a constant and a linear term in R̂. The former provides the flow equation

for λ and the latter can give η as in the local case. The O
(

f
¯
2
)

terms contribute to the bilocal

evolution, it is

ẇq = (−2 + η)wq −
4k

Zk

∫

p
D

(k)
p+qwp, (46)

where the dimensionless bilocal coupling was introduced, wq = k−2Wq. We follow only
the zero mode w0 in the calculations, where the integral on the r.h.s. can be analytically
performed. The zero mode starts to evolve since the integral picks up the contribution from
the tree level evolution of wk [44]. The evolution equations including the zero mode are
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ġ = (2 + η)g

λ̇ = (−2 + η)λ +
3

2
(ηw0 − ẇ0)−

g

2π
ln(1 − 2λ − w0 − 2wk)

ẇ0 = (−2 + η)w0 −
2g

3π

1

1 − 2λ − w0 − 2wk
wk

η = − g

6π

1

1 − 2λ − w0 − 2wk

wk = −2
λ2

1 − 2λ − w0
. (47)

Besides the standard couplings of the Einstein–Hilbert action g and λ, the zero mode
w0 appears as a new coupling. We note that the tree-level value of wk is nonzero, therefore,
it initiates the zero mode evolution. The flow equations have two fixed points, they are
listed in Table 7.

Table 7. The position of the fixed points and the corresponding scaling exponents are shown for

conformally reduced gravity with bilocal interaction.

Fixed Point g∗ l∗ w∗

0 s1,2,3

Gaussian 0 0 0 −2;−2; 2

Reuter 25.141 0.167 0.318 −47.25;−2.08;−0.45

The Reuter fixed point is UV attractive with three negative real scaling exponents.
The zero mode coupling proves to be relevant throughout its whole evolution. The new
singularity relation

1 − 2λ − w0 = 0 (48)

also contains the zero mode. The l.h.s. should be greater than zero during the evolution.
The GFP is a hyperbolic point, w0 is relevant there. We sketched the phase diagram in
Figure 2.

-0.4 -0.2 0.0 0.2 0.4

-10

-5

0

λ+w0/2

lo
g
(g
)

Figure 2. The phase space of asymptotically safe gravity is presented in the g and λ + w0/2 plane.

We set w0(ti) = 0.001, g(ti) = 0.01, and λ(ti) = 0.008; 0.009; 0.0097; 0.01; 0.012; 0.015; 0.02.

Although the zero mode starts to evolve due to the tree-level contribution even if its
bare value is zero, the phase structure can be drawn by choosing arbitrary bare values.
The bare couplings appearing in the action correspond to the values where the evolution
starts. In quantum gravity, they can be chosen close to the Reuter fixed point, and this
choice can be motivated mostly since the higher energy could mean smaller distances,
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and then the flows pick up most information about the microscopic behavior of the model.
The RG method can map the phase structure of the model, but the correspondence between
the bare couplings and observables is very difficult. A possible approach can be to identify
the bare couplings to the laboratory values. In this case, they are situated in a Nature-picked
trajectory, very close to the GFP.

The phase space is three-dimensional, we plotted how g depends on λ + w0/2. We
choose logarithmic scaling for g since it shows the infrared behavior more. The trajectories
start from the vicinity of the Reuter fixed point and approach the origin of the phase space;
they can go arbitrarily close to the GFP. There are trajectories that run into instability, they
belong to the broken symmetric phase and terminate at a finite scale tterm. The trajectories
belonging to the symmetric phase tend to have negative values of λ. From Figure 2 we
can see, that there is a significant difference if we compare the bilocal phase structure
to the traditional local one in Figure 1. The discrepancy comes from the trajectories of
the symmetric phase. The new bilocal phase space contains such trajectories where they
seem to approach the singularity; however, the beta function of the cosmological constant
changes its sign, and λ starts to decrease and then it continues its flow to negative infinity.
These types of trajectories are missing in local evolutions where the separation of the phase
is located around the GFP. In the bilocal evolution, it seems to happen around the instability
region in the vicinity of the IR fixed point. The qualitative behavior appearing in Figure 2 is
typical for the bilocal treatment, insensitive to the initial values of the couplings. The value
of g remains positive during the evolution, its value monotonically decreases in the IR limit.

The bilocal phase space structure suggests that the IR fixed point is not an IR attractive
point anymore, but a hyperbolic point. The reason is that the zero mode keeps its relevance
throughout its flow, and makes the IR fixed point a hyperbolic one. It is interesting to
notice that the symmetric phase contains two types of trajectories. One type is the standard
flow, which turns to negative λ at the GFP. The other type of flow approaches the IR fixed
point and then tends to negative λ. The flows with an infinitesimal difference in their
bare values give infinitesimal change in the IR; therefore, they belong to the same phase.
However, the latter flows have information on the IR fixed point, the former ones do not.
The trajectory chosen by Nature can also belong to the latter type of trajectory.

We plotted the scale dependence of couplings in Figures 3 and 4.

-3.5 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0

-0.2

0.0

0.2

0.4

t

λ

Figure 3. The cosmological constant is plotted for the initial condition used in Figure 2. When the

evolution stops, then the flow runs into singularity (broken symmetric phase). The rest flows turn to

negative values (symmetric phase).

The zero mode could change the beta function of λ in such a way, that it changes its
sign, and it turns back the evolution of λ into the negative values. The other couplings
scale monotonically. Although the value of g is very small, it is not zero; therefore, it seems,
that there is no interacting IR fixed point in the bilocal model.
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-3.5 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0

0.000

0.002

0.004

0.006

0.008

0.010

t

g

-3.5 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0

0.00
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0.10

0.15

0.20

0.25

0.30

t

w
0

Figure 4. The Newton’s constant and the zero modes are plotted using the initial condition used in

Figure 2. The former always goes to zero, while the latter always grows up.

The evolution of couplings is slow in the vicinity of the GFP, and they speed up close to
the IR fixed point. In this sense, the IR fixed point is not a classical hyperbolic point, where
the slowing down of the flow appears, e.g., in the case of the Wilson–Fisher fixed point.
The IR fixed point has zero scaling exponents, its hyperbolic nature can be demonstrated
only by the numerical scaling behavior. The missing of the slowing down can be revealed
in the flow of the cosmological constant in Figure 3. Thus, although the symmetric phase
trajectories can be arbitrarily close to the singularity, they do not spend too much time
there. It can also be demonstrated by plotting the singularity condition in Equation (48),
as can be seen in Figure 5.

-3.5 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0

0.0

0.5

1.0

1.5

t

1
-
2
λ
-
w
0

Figure 5. The expression in the singularity condition in Equation (48) is plotted for various initial

condition used in Figure 2. The zero value is reached in the broken symmetric phase, but the

trajectories of the symmetric phase can arbitrarily approach the zero value.

It is clear that the IR behavior of the bilocal model is even more important than in
the local case; therefore, it is worth finding the IR fixed point by a proper transformation.
The bilocal flow equations have similar singularities as the locals had, so similarly to
Equation (31) we introduce the new variable

ℓ = − 1

ln(1 − 2λ − w0)
. (49)

The IR fixed point can be found at λ + w0/2 → 1/2 where ℓ → 0. Again, the GFP can
be found at the ℓ → ∞ limit. The evolution of the new coupling comes from the relation

ℓ̇ = −(ẇ0 + 2λ̇)e1/ℓ
ℓ

2. (50)

The evolution equations with the new coupling become
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∂τ g = 2ge−1/ℓ − g2dℓ
6π

∂τℓ =

(

ℓ
(

−12πℓ(2 + e3/ℓ(w0 − 1)2(3w0 − 1) + 4e1/ℓ(2w0 − 1) + e2/ℓ(7w2
0 − 10w0 + 3))

+ge1/ℓ(3(ℓ+ 4) + 2e2/ℓ(2ℓ+ 3)(w0 − 1)2 + e1/ℓ(12(w0 − 1) + ℓ(8w0 − 7))) (51)

+6gℓe1/ℓ(2 + 2e1/ℓ(w0 − 1) + e2/ℓ(w0 − 1)2) log(e2/ℓd−1
ℓ

)

)

dℓe
−1/ℓ

6π

∂τw0 = −2w0e−1/ℓ − g(2e−1/ℓ + (3w0 − 4) + 2(w0 − 1)2e1/ℓ)dℓ
6π

,

where we introduced
d−1
ℓ

= 1 + (1 + (w0 − 1)e1/ℓ)2 (52)

and ∂τ = e−2/ℓ∂t. The fixed points are listed in Table 8.

Table 8. The position of the fixed points and the corresponding scaling exponents for conformally

reduced gravity with bilocal interaction are shown after the transformation of λ to ℓ.

Fixed Point g∗ ℓ∗ w∗

0 s1,2,3

Gaussian 0 ∞ 0 −2; 2; 2

Reuter 25.141 0.949 0.318 −19.64;−0.7;−0.34

IR 0 0 [0; 1/4] 0; 0; 0

We can find three fixed points, the Reuter fixed point with three negative real ex-
ponents, the hyperbolic GFP, and the IR fixed point, where all the scaling exponents are
zero. Again, ℓ becomes irrelevant, therefore, its exponent is positive in the GFP; how-
ever, w0 remains relevant there. It implies that the zero mode provides a perturbatively
renormalizable coupling.

Compared to the local model, in the bilocal case, the position of the IR fixed point can
vary with the initial conditions. Similar to the previous situations, ℓ∗ is always zero in the
IR fixed point, but the zero mode value w∗

0 can change. The IR fixed point of the local case
can naturally correspond to w∗

0 = 0. However, w∗
0 cannot be larger than 1/4 otherwise we

cannot satisfy the relation coming from Equation (48). From ℓ we can calculate the IR fixed
point value of the cosmological constant, it gives λ∗ = (1 − w∗

0)/2, so it can vary in the
interval [3/8; 1/2].

This IR fixed point corresponds to g∗ = 0, therefore, it is not an interacting IR fixed
point. One can conclude that the nonlocality of the model cannot find an interacting fixed
point, but it can change the monotonic tendency of the λ flow. The hyperbolic nature of the
IR fixed point can raise an important question: where is Nature’s picked trajectory? Since
we cannot associate a bare zero mode value to the flow chosen by Nature, we can suppose
that our trajectory runs into the singularity, as we assumed so far; however, it can turn
back and can run into negative values of λ. It may imply that the sign of the cosmological
constant changes in the deep IR evolution and becomes negative.

5. Summary

The infrared behavior of the asymptotically safe gravity has been investigated in the
framework of the functional renormalization group method. We found an infrared fixed
point of the model, both in the original and in the conformally reduced version of gravity.
We showed that the infrared fixed point has zero scaling exponents; nevertheless, the
scaling behaviors show that the fixed point is attractive.

Letting the bilocal evolution evolve, we were able to complete the traditional evolution
equations with the evolution of the zero mode. It changed the IR behavior of the model
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in such a way that the attractive IR fixed point became a hyperbolic one, consequently
the cosmological constant flow is not necessarily monotonic. It can raise the question of
whether Nature’s picked trajectory remains in the broken symmetric phase or moves to the
symmetric phase, characterized by negative cosmological constants.

We should emphasize that our investigation is not a possible extension of the asymp-
totically safe gravity with a bilocal coupling. We argue that the RG blocking step generates
bilocal terms into the potential, which should be taken into account since it gives tree-level
contribution to the evolution; therefore, there is no reason to leave them out from the RG
treatment. It seems that the local approach of the RG method is incomplete, and taking into
account nonlocal interaction is a necessary way to improve the calculations. It is proven
by the results that due to the bilocal evolution, the IR physics of the asymptotically safe
gravity changes fundamentally. In the foregoing work we intend to study the nonlocal
effects in the original model of the asymptotically safe gravity.
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