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Abstract

Linear particle accelerators are elaborate machines that
demand a thorough comprehension of their beam physics
interactions to enhance performance. Traditionally, physics
simulations model the physics interactions inside a machine
but they are computationally intensive. A novel solution
to the long runtimes of physics simulations is replacing
the intensive computations with a machine learning model
that predicts the results instead of simulating them. Simple
neural networks take milliseconds to compute the results.
The ability to make physics predictions in almost real time
opens a world of online models that can predict diagnostics
which typically are destructive to the beam when measured.

This research entailed the incorporation of an innovative
simulation infrastructure for the SLAC FACET-II group,
aimed at optimizing existing physics simulations through
advanced algorithms. The new infrastructure saves the sim-
ulation data at each step in optimization and then improves
the input parameters to achieve a more desired result. The
data generated by the simulation was then used to create
a machine learning model to predict the parameters gener-
ated in the simulation. The machine learning model was a
simple feedforward neural network and showed success in
accurately predicting parameters such as beam emittance
and bunch length from varied inputs.

INTRODUCTION
Challenge and Motivation

Operating and optimizing a linear particle accelerator in-
volves the calibration and control of hundreds of variables
to ensure that the accelerator functions at its peak perfor-
mance. Traditionally, these optimizations are carried out
using computationally intensive physics simulations that
model the behavior of particles as they move through the
accelerator. While these simulations are invaluable for un-
derstanding the nuanced interactions within the system, they
can be prohibitively expensive in terms of computational
time and resources. Additionally, certain diagnostic proce-
dures can be invasive or destructive to the particle beam,
limiting real-time adjustments and optimization.

Given these challenges, there is a growing need for a more
efficient and less invasive method to simulate and optimize
linear accelerators. This necessity not only aims to reduce
computational overhead but also opens up the possibility of
real-time diagnostic and predictive modeling—something
that was previously unattainable.
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Background: FACET-II Photo-Injector

FACET-II (Facility for Advanced Accelerator Experimen-
tal Tests II) is an experimental setup focused on high-energy
electron beams. It aims to produce a high electron peak cur-
rent with a small beam size and low emittance, essential for
plasma wakefield acceleration (PWFA) experiments. The
injector, a key component, is based on the Orion RF photo-
cathode gun, similar to the LCLS (Linac Coherent Light
Source) injector with minor changes. Figure 1 provides a
schematic representation of the FACET-II setup, illustrating
the injector, radio frequency cavities, and diagnostic area.
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Figure 1: Diagram of the FACET-II photo injector.
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Limitations of Traditional Physics Simulations

Traditional physics simulations are essential for under-
standing and predicting physical systems’ behavior. Using
mathematical principles, they provide a virtual lab for testing
and optimizing designs.

The General Particle Tracer (GPT) [1] and Lucretia [2]
simulation frameworks are advanced tools for modeling
charged particle dynamics and high-performance electron
beam transport systems. GPT excels in simulating accelera-
tor components, including magnetic and electric fields, and
beamline elements, especially space charge effects at lower
energies, such as at the start of the FACET-II injector. Lucre-
tia, initially developed for Linear Collider Low Emittance
Transport studies, efficiently simulates bunch compressors,
linear accelerators, final focus systems, and linac-driven free
electron lasers, ignoring low-energy space charge effects.
This work uses GPT until particles reach sufficient energy
for accurate Lucretia simulation.

Despite their effectiveness, GPT and Lucretia have limi-
tations. They use macro particles to reduce computational
load, leading to approximations that may not fully capture
real-world interactions.

These simulations are also computationally intensive, av-
eraging 107.77 seconds per run, which prevents real-time
synchronization with live experiments. As a result, they
are primarily used for pre-experimental design and analysis
rather than real-time diagnostics or adaptive control during
beam-time.
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This delay inhibits experimental iterations and on-the-
fly adjustments, posing a significant challenge that requires
further innovation to overcome.

SIMULATION INFRASTRUCTURE

To simulate the FACET-II photo injector, a computational
pipeline using both GPT (General Particle Tracer) and Lu-
cretia was developed. A MATLAB script, employing a
MATLARB class file, orchestrated the simulation parameters
for GPT.

In the first phase, GPT simulated particle motion up to an
energy of 66 MeV (section LO-A in Figure 1), accounting
for space charge effects relevant at lower energies, such as
in the FACET-II injector gun. The particle tracking data
from GPT was then saved and passed to Lucretia, which
continued the simulation up to 135 MeV. Lucretia is more
efficient at higher energies as it ignores the low-energy space
charge effects considered by GPT.

The MATLAB script was controlled by a Python wrap-
per using the XOPT framework [3] to implement a CNSGA
optimization algorithm. This algorithm adjusted input pa-
rameters to find optimal conditions for the FACET-II photo
injector. The goal of the optimization was to minimize bunch
length and mean emittance.

Additionally, the Python script converted the beam file
data from each Lucretia simulation run into the openPMD
format using an openPMD Python library [4], improving
interoperability and ease of plotting beam statistics across
different platforms.

This process is illustrated in Fig. 2. Python with XOPT
runs a MATLAB-based physics simulation at each optimiza-
tion step, and the beam state is saved in openPMD format.

Python
XOPT

Figure 2: Diagram of developed simulation infrastructure.
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Input and Output Parameters

Table 1 summarizes the key input and output parameters
manipulated and tracked during the simulations with XOPT.

Simulation Results

The computational pipeline integrating XOPT with GPT
and Lucretia was designed for flexibility, allowing vari-
ous optimization strategies. One successful approach was
the Controlled Non-dominated Sorting Genetic Algorithm
(CNSGA), which effectively generated a Pareto front (Fig.
3).

In this case, the Pareto front helps identify optimal
input parameters for minimizing both bunch length and
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mean beam emittance. Its emergence confirms the high-
dimensional optimization landscape and CNSGA’s capabil-
ity to navigate it effectively.

Moreover, the flexibility of the XOPT framework allows
the use of other optimization techniques as well. For in-
stance, Bayesian optimization algorithms can also be em-
ployed within this computational infrastructure.

Thus, this simulation infrastructure proves to be not just
robust but also versatile, capable of employing various opti-
mization algorithms.

le-12 Pareto Front

Figure 3: Recorded data showing a Pareto front.

MACHINE LEARNING
INFRASTRUCTURE

Data Generation and Preprocessing

The machine learning model’s training data was generated
through physics simulations controlled by an optimization al-
gorithm, enhancing data generation efficiency and relevance
to ideal linear accelerator runs. This approach improved the
model’s ability to learn meaningful patterns.

Key features and targets were selected to represent criti-
cal accelerator variables, including solenoid variations, gun
phases, bunch charges, laser pulse lengths, and quadrupole
controls. These features were mapped to targets such as

Table 1: Simulation Input and Output Parameters

Parameter Description

Input Parameters
Quadrupole Controls QUAD:IN10:361, 371, 425, 441, 511,
525:BCTRL

bunch_charge Initial bunch charge

gun_phase Photo-injector gun phase
laser_pulse_length  Laser pulse length
sol_var Solenoid variable

Output Parameters
Twiss Parameters alpha_x, alpha_y, beta_x, beta_y,
gamma_x, gamma_y

Final bunch charge

Bunch length

bunch_charge_final
bunch_length

emittance emit_mean, emit_x, emit_y,
norm_emit_x, norm_emit_y

energy Final energy

Dispersion eta_x, eta_y, etap_x, etap_y

Beam Size sigx, sigy

Other Metrics num_particles, xopt_error, xopt_runtime
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normalized emittances, crucial for understanding beam dy-
namics.

Before model training, the dataset was standardized using
Min-Max Scaling to ensure all variables operated on a com-
parable scale. The data was split into training, validation,
and test sets, with an 80-20 split for training and testing, and
a 75-25 split within the test set for validation.

To enhance training data size and variability, random noise
was introduced to create a "noisy” duplicate set. This aug-
mented dataset improved model robustness, enabling better
generalization to unseen data.

Neural Network Architecture and Training

The machine learning model is a fully connected neural
network, adapted from a US particle accelerators course
[5]. It includes dropout layers with a 0.05 rate to reduce
overfitting and improve generalization.

The network has multiple hidden layers with hyperbolic
tangent (tanh) activation functions. The loss function is
Mean Absolute Error (MAE), optimized using the Adam op-
timizer, with custom weighting to prioritize mean emittance
error. This was necessary as the model performed better at
predicting parameters like bunch length compared to mean
emittance. A learning rate scheduler and early stopping
based on validation loss were employed to enhance training
efficiency and prevent overfitting.

Machine Learning Results

The model effectively identified patterns in the data, en-
abling accurate predictive modeling. There was no evidence
of overfitting, suggesting it might be underpowered. Rapid
learning was observed initially, but further training did not
significantly improve performance, possibly due to data
scarcity.

For evaluation, the model was tested on a subset not used
during training. Its performance on mean beam emittance
and bunch length predictions is shown in Figures 4 and 5,
respectively.

A more focused evaluation was conducted using a new
simulation dataset, varying only the laser pulse length. The
model’s predictive capabilities for mean emittance with this
new data were slightly less accurate than during training but
remained usable.

Additionally, feature importance was investigated using a
gradient descent method, with results shown in Figure 6.

Figure 4: Ground truth vs predicted values of mean nor-
malized beam emittance for validation dataset sorted by
magnitude.
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Final MAE Loss: 7.7998e-15]

Value of bunch_length
L
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Figure 5: Ground truth vs predicted values of beam bunch
length for validation dataset sorted by magnitude.

Figure 6: Gradient descent based feature correlation.

CONCLUSION

This work presents a multifaceted approach to simulat-
ing high-performance single-pass electron beam transport
systems, combining conventional physics-based simulations
like GPT and Lucretia with machine learning algorithms.
Traditional tools provide essential insights but are limited by
long computation times, hindering real-time applications.

To address this, a machine learning model was developed
and trained on simulation-generated data. While effective
in predicting key parameters like mean beam emittance and
bunch length, the model showed signs of being underpow-
ered, likely due to dataset constraints. Multiple scenarios
were evaluated to confirm the model’s generalizability and
effectiveness.

Future improvements include deploying the model for
virtual diagnostics. This work demonstrates that machine
learning can complement traditional methods in particle
accelerator simulations and proves model weights can reveal
which features have a greater impact on output parameters,
thus improving virtual diagnostics.
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