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Abstract

Stationary solutions are perhaps the most fundamental objects in any physical theory.
In this thesis we numerically obtain a number of stationary black hole solutions to
the Einstein-Maxwell equations with a negative cosmological constant. The AdS/CFT
correspondence has caused an upsurge in studying anti-de Sitter (AdS) space, and under
this duality, the study of classical black holes corresponds to studying thermal states
of very strongly coupled conformal field theories (CFTs) — an extremely challenging
feat without the aid of holography.

Firstly, we consider a braneworld scenario, which is a string theory-inspired mech-
anism for extra dimensions in our Universe. We present such rotating braneworld
black hole solutions, which closely resemble standard Kerr black holes at large scales,
supporting the phenomenological viability of the braneworld model. We shall discuss
how these solutions are also dual to a four-dimensional black hole solution whose
geometry is corrected by the coupling to a strongly coupled CFT with a UV cutoff.

Next, we consider a CFT living on a fixed black hole background with a positive
cosmological constant. There are two classes of bulk solutions in this case, distinguished
by their horizon structure, and corresponding to two different phases of the CFT on
the boundary black hole background. One possible bulk solution is static and contains
two disconnected Killing horizons, whilst the other is only stationary and contains only
a single horizon which is not Killing.

We then consider the effect of deforming a CFT by the addition of a background
electric field. The dual solution also has a non-Killing horizon, but due to the fact that
the flow is generated by the Joule effect rather than a difference in temperatures, we
find subtle differences in the horizon structure to other flowing solutions previously
obtained. From the dual solution, we compute the conductivity of the field theory.

Finally, we present the first examples of static, charged binary black hole solutions.
These are held in dynamic equilibrium due to the presence of a background electric
field. The solutions run over a surprisingly large parameter space, and some of these
parameters do not have clear interpretations in terms of the boundary theory. Indeed,



x

the solutions represent a continuous non-uniqueness for given boundary charges of
asymptotically anti-de Sitter black hole solutions in Einstein-Maxwell theory.

A common theme will be the ways in which these solutions succeed and fail to be
in equilibrium. Many of the solutions possess non-Killing horizons which have classical
flow along them, which has a profound impact on the horizon structure. Others possess
multiple horizons which may have distinct temperatures or electrostatic potentials.
In either case, these features prevent the solutions from being in thermodynamic
equilibrium, despite the solutions being stationary.

Chapter 1 provides a literature review, whilst Chapter 2 describes the numerical
methods used to obtain the solutions of the thesis, many of which are standard. The
original work of the thesis is presented in Chapters 3-6, which are each based on a
paper (Refs. [1–4], respectively) written in collaboration with Jorge E. Santos.
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Notation

We will use natural units with c = ℏ = 1. For a Lorentzian metric we take a mostly
positive signature. We use Einstein summation convention throughout. Different letters
for indices have the following meaning:

• Latin indices near the beginning of the alphabet a, b, . . . refer to all spacetime
components of the bulk spacetimes.

• Latin indices from the middle of the alphabet i, j, . . . refer to spatial components
of the bulk spacetimes.

• Greek indices µ, ν, . . . refer to components of the boundary of the spacetimes,
which in this thesis is either the conformal boundary or a Randall-Sundrum
brane. These run over all of the bulk directions except the radial AdS direction.

• We shall also use upper-case Latin indices, though the precise meaning of these
shall be defined in each case individually.

Through we shall use d to denote the number of bulk spacetime dimensions, whilst
D = d− 1 will be the number of boundary dimensions.





Chapter 1

Introduction

Einstein’s theory of general relativity [5, 6] is a physical theory famed for both its
beauty and its complexity. In his earlier theory of special relativity [7], Einstein had
revolutionised our understanding of space and time by exploring the implications of a
curious empirical observation — that the speed of light in a vacuum is the same in any
inertial frame. Minkowski later reinterpreted special relativity by unifying space and
time into a single four-dimensional entity called spacetime [8]. The essence of general
relativity is that spacetime is itself also a dynamical field, bending and warping due to
the presence of energy and matter, and that this curvature of spacetime is the cause of
the force we recognise as gravity.

This idea is quantified by one of the most famous equations in all of physics, the
Einstein equation, given by

Rab − 1
2Rgab + Λgab = 2Tab. (1.1)

Roughly speaking (we will go into far more detail momentarily), the left hand side
describes the curvature of spacetime itself, whilst the right hand side describes the
energy, momentum and stress of the matter residing on this curved spacetime. From
this equation, we see how general relativity is intrinsically, and intricately, a dynamical
theory. In the words of John Wheeler: “Space tells matter how to move. Matter tells
space how to curve”.

This thesis, however, is not concerned with dynamical solutions of the Einstein
equation, but, rather, with stationary solutions, i.e. those that do not vary over time.
Time-independent solutions are perhaps the most fundamental objects in any physical
theory, often providing insight into the general behaviour of the theory once dynamics
are included. Indeed, the study of stationary black holes within general relativity has
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been a rich source of progress in understanding gravity over the past century and has
led to some of the most pressing open questions in theoretical physics.

Until fairly recently, relatively few stationary solutions were known. One reason
for this is the difficulty involved with solving the Einstein equation, which generally
yields a set of coupled, non-linear partial differential equations (PDEs). Only in a
few special cases can these equations be solved exactly, though many methods have
been developed in the past few decades to solve them numerically. Secondly, in many
physically motivated scenarios there are theorems which restrict stationary black holes
to be described by a surprisingly small family of exact solutions. However, if one drops
some assumptions of these theorems by considering higher dimensional spacetimes or a
non-zero cosmological constant, it turns out that there is a myriad of stationary black
hole solutions.

Progress in the understanding of string theory and holography has to a large extent
motivated further study into such solutions since the turn of the century, particularly
those in anti-de Sitter (AdS) space, i.e. those which solve Einstein’s equation with a
negative cosmological constant, Λ < 0. But before coming to these, let us first recount
some basic facts about black holes and the theory of general relativity (much more
detail can be found in the standard textbooks [9–12]), and discuss anti-de Sitter space
and its fascinating properties.

1.1 General Relativity

The fundamental object of general relativity (GR) is the metric, gab, of a Lorentzian
manifold, M. Throughout this thesis, we will be interested in Einstein-Maxwell theory
which describes dynamical gravity coupled to a Maxwell field. The Einstein-Hilbert
action for this theory is given by

S = 1
16πG

∫
M

ddx
√

−g
(
R − 2Λ − FabF

ab
)
, (1.2)

where g and R are, respectively the determinant and Ricci scalar of the metric, G is
Newton’s constant of gravitation, Λ is the cosmological constant, and F = dA is the
field strength tensor of the Maxwell field with vector potential Aa .

Varying this action with respect to the metric yields the Einstein equation (1.1),
where the stress tensor, Tab, is defined in terms of the field strength tensor. It is often
useful to substitute the Ricci scalar for the trace of the stress tensor by considering
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the trace of (1.1). This yields the Einstein equation written in trace-reversed form:

Rab − 2Λ
d− 2gab = 2T̃ab, (1.3a)

where T̃ab is the trace-reversed stress tensor, which for a Maxwell field is given by

T̃ab = Fa
cFbc − 1

2(d− 2)gabFcdF
cd. (1.3b)

Varying the action (1.2) with respect to the vector potential yields the generalisation
of the usual Maxwell equation to curved space:

∇aFab = 0. (1.4)

One of the most important concepts across all of physics is that of symmetry. In
GR, a symmetry can be described by a Killing vector field (KVF), Xa, which preserves
the metric:

LXg = 0 or, equivalently, ∇aXb + ∇bXa = 0. (1.5)

We call a spacetime stationary if it possesses a Killing vector field, ka, which is
causal in the vicinity of the asymptotic boundary.1 This stationary spacetime is called
static if there exists a spacelike hypersurface, Σ, which is everywhere orthogonal to
orbits of k. These definitions become a little clearer if one takes coordinates with
ka = (∂/∂t)a. Then a stationary metric is given by

ds2 = −N2 dt2 + hij

(
dxi +N i dt

) (
dxj +N j dt

)
, (1.6)

where N , N i and hij are independent of t. It is static if there is a choice of the
coordinate t such that N i = 0.

We call a spacetime axisymmetric if it possesses a spacelike KVF, ma, whose orbits
form closed curves. In a coordinate basis with ma = (∂/∂ϕ)a, this definition requires
that ϕ is a periodic coordinate.

The simplest metric one can write down is that of Minkowski space:

ds2 = − dt2 + dr2 + r2 dΩ2
(2), (1.7)

1The requirement is often that the vector is timelike everywhere, though, technically speaking, this
would not allow for the existence of ergoregions.
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with dΩ2
(2) denoting the metric on a unit 2-sphere. This is a solution to the vacuum

Einstein equation with zero cosmological constant. Solutions which approach Minkowski
space far away from any matter or black holes are called asymptotically flat.2 The
inclusion of a cosmological constant has an effect on the spacetime on large scales,
and so solutions to the Einstein equation with non-zero cosmological constant will
not be asymptotically flat. We will in particular be interested in solutions with a
negative cosmological constant which asymptote to a maximally symmetric solution
called anti-de Sitter space. Before considering such spacetimes, let us briefly review
some results regarding asymptotically flat black holes in four dimensions.

1.2 Stationary, asymptotically flat black holes

Exact black hole solutions of general relativity are few and far between. The first such
solution was discovered only a few months after Einstein introduced general relativity
by Schwarzschild [13] when he was stationed on the Eastern front in the first world
war. The Schwarzschild solution describes an asymptotically flat, static, spherically
symmetric black hole. The large amount of symmetry in this case means that the
vacuum Einstein equation reduces to a single ordinary differential equation (ODE) for
one function of the radial coordinate. The solution is given by

ds2 = −f(r) dt2 + dr2

f(r) + r2 dΩ2
(2) (1.8a)

where
f(r) := 1 − 2M

r
, (1.8b)

and with dΩ2
(2) denoting the metric on a unit 2-sphere. The parameter, M , denotes the

mass of the black hole. The metric is clearly static with respect to the Killing vector
field, ka = (∂/∂t)a.

This simple solution already demonstrates some of the interesting, and often mind-
boggling, features of black holes. Firstly, the (rr)-component of the metric diverges at
r = 2M , though this turns out only to be a coordinate singularity, meaning that it
is the coordinate system that is breaking down rather than there being any physical
singularities leading to infinite tidal forces for observers. It can be cured by instead

2See standard general relativity textbooks [9–12] for a more rigorous definition of asymptotic
flatness.
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using ingoing Eddington-Finkelstein coordinates, defined by

dt = dv − dr
f(r) . (1.9)

The metric becomes

ds2 = −f(r) dv2 + 2 dv dr + r2 dΩ2
(2). (1.10)

The metric and inverse metric in these coordinates, as well as their determinants, are
regular at r = 2M . Thus, one can extend the metric through r = 2M all the way to
r = 0, at which the metric again becomes singular. This time though, the Kretschmann
scalar, defined by K = RabcdR

abcd, also diverges. This scalar is a gauge independent
quantity associated to the tidal forces that an observer would experience, and hence
the singularity at r = 0 is physical and cannot be cured by a change of coordinates.

It can be shown that no signal from an observer at r < 2M can be sent to an
asymptotic observer. This is, in fact, the definition of a black hole: a region of spacetime
from which no future-directed causal curves extend to infinity. Roughly speaking then,
a black hole is a region of spacetime so curved, and hence gravitationally attractive,
that not even light is fast enough to escape its influence.

Any future-directed curve starting in the r < 2M region of the Schwarzschild
solution necessarily reaches the singularity at r = 0 in finite affine time. Singularities
also arise in Newtonian gravity when spherical symmetry in assumed, but they are
cured by including rotation, and thus these Newtonian singularities are not generic
but are instead an artifact of the large amount of symmetry. One may wonder if the
black hole singularity of the Schwarzschild solution of general relativity is similarly
non-generic. However, the singularity theorems of Penrose and Hawking [14–16, 9]
show that this is not the case; singularities are generic in general relativity and are
present whenever there is a horizon.3

The boundary of the black hole region, in this case the r = 2M hypersurface, is
called the event horizon. The normal, na, to an event horizon must be a null vector,
hence the horizon is an example of a null hypersurface. The normal to the horizon
of the Schwarzschild solution is given by na = (dr)a which is indeed null at r = 2M .
Raising the index, we see that na = (∂/∂v)a. We call na a generator of the horizon.

3More precisely, if a spacetime satisfying the Einstein equation with matter satisfying the null
energy conditions contains a trapped surface, then there exist future-inextendible geodesics with finite
affine length within the trapped region, meaning that the spacetime is geodesically incomplete.
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Note that (∂/∂v)a is a KVF, and hence, the horizon is generated by a Killing vector.
Any horizon satisfying this property is named a Killing horizon.

We may wonder whether there exist other spherically symmetric solutions of the
vacuum Einstein equation, however, this is forbidden by Birkhoff’s theorem [17]:

Theorem 1.1 (Birkhoff) Let (M, g) be a spherically symmetric, C2, solution to the
vacuum Einstein equation. Then (M, g) is isometric to the Schwarzschild solution.

Roughly speaking, this means that “spherical symmetry implies statiticity”. Moreover,
it implies that the spacetime in the exterior of any spherically symmetric body of
matter in isometric to the Schwarzschild metric, even if the body of matter itself is
time-dependent.

The Reissner-Nordström metric [18–21] describes a charged, static, spherically
symmetric, asymptotically flat black hole solution of Einstein-Maxwell theory. This
solution also possesses an event horizon, and in a very similar manner to above, one can
extend through to a black hole region within the horizon using ingoing coordinates. This
time though, one reaches an inner horizon before reaching a physical singularity. This
inner horizon is a Cauchy horizon, meaning that there is no unique analytic extension
through it. The strong cosmic censorship conjecture [22], however, posits that the
existence of this inner horizon is an artifact of the large amount of the symmetry of
the solution and will not arise from generic initial data.

It is a testament to how difficult general relativity becomes whenever any assump-
tions of symmetry are dropped that there was an almost fifty year interval between the
discovery of the Schwarzschild solution and the Kerr solution [23], which is an exact
solution describing a rotating, axisymmetric, asymptotically flat, stationary, vacuum
black hole.

Unlike for the Schwarzschild and Reissner-Nordström solutions, the stationary
Killing vector does not generate the horizon of the black hole. Instead it is generated
by ξa = ka + ΩHm

a, where ka and ma denote the stationary and axisymmetric Killing
vectors of the Kerr metric, respectively. The defining equation of a Killing vector is
linear, and hence ξa is also a Killing vector, meaning that the horizon of the Kerr black
hole is also a Killing horizon.

The horizon is still preserved by the stationary isometry, and so the stationary
Killing vector, ka, must be tangent to the horizon and thus orthogonal to the null
generator ξa at the horizon, meaning that it must be null or spacelike there. However,
if it were null, then it would itself be a generator of the horizon. Since this is not the
case, the stationary Killing vector field must in fact be spacelike on the horizon of
the Kerr black hole. Moreover, since the norm of ka is continuous, this means there
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is an open subspace of the spacetime around the horizon in which ka is spacelike.
This region is called the ergoregion, and its boundary, where ka is null, is called the
ergosurface. Note that this analysis will hold whenever we have a stationary black hole
spacetime whose horizon is not generated by the stationary Killing vector field — such
a spacetime must necessarily have an ergoregion.

The presence of the ergoregion leads to interesting phenomena. Firstly, it implies
that an observer situated within the ergoregion cannot remain stationary in space
relative to an asymptotic observer, i.e. an observer cannot follow an orbit of ka

inside the ergoregion. In the case of Kerr, this can be understood with the concept of
frame-dragging: the rotating black hole literally drags space around with it as it spins,
meaning that all observers are pulled around too in its gravitational whirlpool. From
within the ergoregion it is still possible for an observer to escape to infinity (so long as
they do not cross the horizon), but they must do so by spinning with the black hole
whilst accelerating away from it. Secondly, the ergoregion allows for the possibility of
energy extraction from the black hole via the Penrose process [24] or via superradiance
[25–27].

Again one can transform to ingoing coordinates in order to extend through the
event horizon of the Kerr black hole. Similarly to the Reissner-Nordström case there is
a Cauchy horizon in the interior which is expected to be non-generic.

The generalisation of the Kerr solution to Einstein-Maxwell theory, the Kerr-
Newman solution [28, 29], was discovered shortly after the Kerr solution. It is an exact
solution describing a charged, rotating black hole and depends upon four parameters,
the mass M , the angular momentum J , the electric charge Q, and the magnetic charge
P . In Section 1.2.2, we will see that each of these parameters can be defined as charges,
i.e. as integrals at infinity. All the other four-dimensional, asymptotically flat solutions
mentioned above are special cases of the Kerr-Newman solution (Schwarzschild is
J = Q = P = 0, Reissner-Nordström is J = 0, and Kerr is Q = P = 0).

1.2.1 Uniqueness theorems

For four-dimensional, asymptotically flat black holes, there are a large number of
uniqueness results, as reviewed in [30, 31].

Firstly, Israel showed that a regular, static vacuum black hole spacetime is isometric
to the Schwarzschild solution [32]. Bunting and Masood-ul-Alam later provided an
alternative proof [33] based on the positive energy theorem [34–36]. Israel also extended
this to the electro-vacuum case to show that a charged, static black hole spacetime must
be isometric to Reissner-Nordström, under the further assumption that the event horizon
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is a connected surface [37]. This extra assumption is necessary due to some famous
multi-horizon solutions in Einstein-Maxwell theory called the Majumdar-Papapetrou
solutions [38, 39], which are a configuration of extremally charged black holes, in
which the gravitational attraction between the black holes is balanced by their electric
repulsion. However, the Reissner-Nordström and Majumdar-Papapetrou solutions
are the only static, asymptotically flat electro-vacuum black hole spacetimes [40, 41].
Furthermore, it was shown that if the stationary Killing vector field generates the
horizons, then the spacetime must be static [42, 43]. These can be combined to give
the following:

Theorem 1.2 (Static Uniqueness Theorem) Let (M, g) be an asymptotically flat
black hole solution of the Einstein-Maxwell equations in four dimensions with stationary
Killing vector field, ka, and suppose the event horizon is generated by ka. Then (M, g) is
static with respect to ka. Furthermore, if the event horizon is connected then (M, g) is
a member of the Reissner-Nordström family, and if the horizon is disconnected then
(M, g) is a Majumdar-Papapetrou solution.

In the case that the black hole is not static or spherically symmetric, the rigidity
theorem [44, 9] effectively states that a stationary black hole is axisymmetric and
possesses a Killing horizon:

Theorem 1.3 (Rigidity Theorem) Let (M, g) be an analytic, asymptotically flat,
four-dimensional black hole solution to the Einstein-Maxwell equation which is station-
ary with respect to a Killing vector field, ka. Then the horizon is generated by a Killing
vector field ξa = ka + ΩHm

a, where ΩH is a constant, called the angular velocity, and
ma is a spacelike Killing vector field whose orbits form closed curves, i.e. (M, g) is
axisymmetric.

The assumption that the metric is analytic is unphysical, and was later weakened
[45–49]. One important ingredient of the proofs of the rigidity theorem is the topology
theorems [44, 50, 51] which dictate that for any four-dimensional, asymptotically flat
black hole spacetime, the intersection of the event horizon with a Cauchy surface must
topologically be a two-sphere.

Finally, under the assumption of stationarity and axisymmetry (or stationarity and
analyticity, after appealing to Hawking’s rigidity theorem), Carter [52] and Robinson
[53] obtained the uniqueness theorem:

Theorem 1.4 (Axisymmetric Uniqueness Theorem) Let (M, g) be a stationary,
axisymmetric, regular, asymptotically flat black hole solution to the vacuum Einstein
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equation with a connected, non-degenerate event horizon. Then (M, g) is a non-
extremal member of the Kerr family which is parameterised by two asymptotic charges:
the mass M , and the angular momentum J .

This result was extended to Einstein-Maxwell theory by Mazur [54] and Bunting [55],
where now (M, g) must belong to the four-parameter Kerr-Newman family. In nature
though, it is not expected for black holes to be charged, since if they were they would
attract oppositely charged matter and swiftly become neutral. Hence, the expectation
from the uniqueness theorems is that matter which collapses to form a black hole will
settle down to a member of the Kerr family.

The essence of these theorems is the idea that a stationary black hole should be
uniquely determined in terms of a small number of asymptotic charges. This led to the
“no-hair” conjecture, which postulated that this was the case for stationary black holes
in theories including other matter fields. Indeed this was verified in various set-ups
[56–65], but has been shown to generally not be true by considering dilaton [66–68],
non-Abelian [69–71], complex scalar [72], or Proca [73] fields.

1.2.2 Black hole thermodynamics

We have been calling the quantities M , J , Q and P asymptotic charges, despite the
fact that so far we have treated them as parameters of the Kerr-Newman spacetimes,
rather than quantities obtained by an integral at infinity. Let us now explain how these
charges can be defined at infinity, and further go on to discuss how they satisfy the
laws of thermodynamics.

Let us consider an asymptotically flat spacetime (M, g) which is stationary w.r.t.
a KVF, ka, and axisymmetric w.r.t. a KVF, ma, and with a Maxwell field with field
strength tensor Fab. Let Σ be a Cauchy surface of the spacetime, and ∂Σ its intersection
with the asymptotic boundary. Then the electric charge and magnetic charge of the
space are, respectively, defined by

Q = 1
4π

∫
∂Σ
⋆F, P = 1

4π

∫
∂Σ
F, (1.11)

and the mass (or equivalently, the energy), and the angular momentum are, respectively,
defined by the Komar integrals

M = − 1
8π

∫
∂Σ
⋆ dk, J = 1

16π

∫
∂Σ
⋆ dm. (1.12)
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We have from the rigidity theorem that the horizon, H+, is generated by the Killing
vector ξa = ka + ΩHm

a, which is null on the horizon. Hence ξaξa = 0 is constant on
the horizon, and thus its derivative must be normal to H+ meaning that it will be
proportional to ξ. That is,

∇a

(
ξbξb

)
= −2κξa, (1.13)

where κ is named the surface gravity of the horizon.
The charges and the surface gravity satisfy a number of laws, often called the laws

of black hole mechanics [74–77].

Theorem 1.5 (Zeroth law of black hole mechanics) The surface gravity, κ, of
the horizon of a stationary black hole spacetime satisfying the dominant energy condition
is constant.

Theorem 1.6 (First law of black hole mechanics) Consider a variation within
the space of Kerr-Newman solutions. The change in area of the black hole horizon is
given by

κ

8πδA = δM − ΩHδJ − ΦHδQ− ΨHδP, (1.14)

where ΦH and ΨH are the co-rotating electric and magnetic potentials, respectively.
These are defined by ΦH = −ξaAa|H+ and ΨH = −ξaBa|H+ where F = dA and
⋆F = dB and Aa and Ba are taken in a gauge such that they vanish at infinity.

The first law is presented here in its weakest form, as a result regarding variations
within the space of stationary black hole solutions. There is also a physical version
describing how the charges of a black hole are perturbed when a small flux of matter
enters the horizon [78]. Sudarsky and Wald strengthened the first law using the
Hamiltonian formulation of GR to show that by considering small variations in the
initial data leading towards a certain black hole solution one can also derive a first law
relationship [42]. Indeed this proof extends to generic matter fields, so long as there is
a well-defined Hamiltonian formulation [79].

Theorem 1.7 (Second law of black hole mechanics) Assuming the weak energy
condition, the area of the black hole horizon is non-decreasing.

The evident similarity of the laws of black hole mechanics to those of thermody-
namics led to the expectation that entropy of a black hole is proportional to its area,
whilst the temperature of a black hole is proportional to its surface gravity. This led to
some confusion, since classically, no particles can escape from black holes, and hence
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one would expect that they would have zero temperature, whereas the surface gravity
is generally non-zero. The mystery was solved by Hawking [80, 81], who revealed that
when quantum effects of matter fields are taken into account, a black hole radiates at
the so-called Hawking temperature:

TH = ℏκ
2π (1.15)

Here we have included the factor of ℏ to stress that this is a quantum effect, though
we will take ℏ = 1 from now on.

This formula for the temperature fixes the constant of proportionality between the
area and the entropy required such that the first law of black hole mechanics matches
perfectly with the first law of thermodynamics. The entropy must be given by the
Bekenstein-Hawking formula:

SBH = A

4G. (1.16)

One major mystery is precisely what the microscopic degrees of freedom are that are
being counted by the entropy.

The black hole can now decrease area due to Hawking radiation, which violates
the second law of black hole mechanics, as presented above. However, Bekenstein’s
generalised second law [82] dictates that the total entropy, combining that of the black
hole and any matter fields, is always non-decreasing, which again matches with the
second law of thermodynamics.

A black hole radiating at the Hawking temperature will eventually evaporate.
Even if the state which collapsed to form the black hole was a pure state, Hawking’s
calculation implies that the end state of evaporation would be a mixed state, suggesting
that information has been lost during this process, or more precisely, that the evolution
is not unitary. One may at first think that the loss of information is not that problematic
and arises in all sorts of physical processes — say we burn a book, it seems as though
the information held within the pages is as irretrievably lost as if we had thrown it
into a black hole. However, the difference is that if one were to capture the ashes as
well as all of the photons emitted in the process of burning the book, one would, in
theory, be able to be able to rebuild the book from scratch. The information is retained
in the ashes and the radiation but one would need an unimaginably sophisticated
quantum computer to access it. On the other hand, if one were the throw a book into
a black hole, one could wait for half an eternity, capturing each and every quantum of
Hawking radiation emitted during the black hole’s lifetime, but according to Hawking’s
calculation, even with a perfect quantum computer, one wouldn’t be able to deduce
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whether the book thrown in was The Brothers Karamazov, Fifty Shades of Grey, or
just a particularly large roll of toilet paper.4

This famous problem is called the information paradox [83]. A more modern version
of the paradox is to say that the evaporation of a black hole implies that a theory of
quantum gravity cannot satisfy all of the following: unitarity, locality, and regularity
in the vicinity of a horizon [84]. The AdS/CFT correspondence, which maps a theory
of quantum gravity to a field theory residing on the boundary (which we will review in
Section 1.3.2) suggests that a full theory of quantum gravity may not be local.

In any case, the information paradox serves as an excellent example of how studying
stationary solutions in general relativity can lead to pressing questions regarding the
fundamental nature of the theory.

1.2.3 Higher dimensions

Though our Universe clearly appears to have four dimensions, there are a number
of reasons for interest in higher dimensional black holes [85, 86]. Firstly, superstring
theory is only mathematically consistent in ten dimensions, and therefore in order for
it to be realised in the real world, there would need to be six extra dimensions which
are in some sense small, and so unnoticeable for large observers. It is possible that
microscopic black holes could be generated in colliders [87–89], and whilst they have
failed to materialise in experiments in the LHC, future particle colliders [90–92] keep
the hopes that they could be generated alive. Such microscopic black holes would
provide excellent testing grounds for extra dimensions. Moreover, the AdS/CFT duality
relates a d-dimensional black hole to a state of a (d− 1)-dimensional quantum field
theory, hence in this case it is clear that studying other values of dimensionality will
still be of great interest. Finally, black holes are some of the most fundamental objects
in the theory of general relativity, and hence it is desirable to better understand their
properties, in any number of dimensions, in order to better understand the theory.
For example, one may wonder whether each of the uniqueness theorems reviewed in
Section 1.2.1 is particular to four dimensions and asymptotic flatness, or holds in more
generality.

By generalising the proof of Bunting and Masood-Ul-Alam it was shown that a static,
higher-dimensional, asymptotically flat black hole spacetime with a non-degenerate
horizon is isometric to the Schwarzschild-Tangherlini metric (the generalisation of
Schwarzschild to higher dimensions) [93–95].

4We leave it to the reader to judge which two of these three are most similar.
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The natural extensions of the rotating Kerr solutions to higher dimensions are
the Myers-Perry black holes [96]. In d-dimensions, the spatial cross-section of the
horizon of these black holes is topologically a sphere, Sd−2, and with d = 2n + 1 or
d = 2n+ 2 the solutions have n linearly independent axes of rotation. However, not
all rotating black hole solutions belong to the Myers-Perry family; the first and most
famous counterexamples, due to Emparan and Reall, are the five-dimensional black
ring solutions [97], whose horizons have S2 × S1 topology.

Hence, unlike in four dimensions, it is not the case that all asymptotically flat,
stationary black holes have horizons with spherical topology. Indeed, the space of
higher dimensional black holes is far richer, not satisfying the natural analogue of
the axisymmetric uniqueness theorem in four dimensions. That being said, there do
exist theorems restricting the horizon topology to a wider family [98, 99], and the
rigidity theorem does hold in higher dimensions under the assumption that the spatial
cross-sections of the horizon are compact [100–102].

We shall shortly see that taking a non-zero cosmological constant allows for an even
richer space of stationary black hole solutions. There are very few results regarding
uniqueness in the presence of a positive cosmological constant. Indeed, recently, both
static and axially rotating binary black hole solutions were obtained numerically in
pure gravity in four dimensions with a positive cosmological constant [103, 104]. We
will chiefly be interested though in the case of a negative cosmological constant.

1.3 Anti-de Sitter space

Let us now consider the vacuum Einstein equation with a negative cosmological
constant:

Rab + d− 1
ℓ2

d

gab = 0, (1.17)

where ℓd is called the AdS radius and is defined in terms of the cosmological constant
by Λ = −(d− 1)(d− 2)/(2ℓ2

d). The maximally symmetric solution to this equation is
called anti-de Sitter (AdS) space.

1.3.1 The geometry of anti-de Sitter space

Anti-de Sitter space in d dimensions can be defined as the induced geometry of a
hyperboloid

−Y 2
0 − Y 2

1 +
d−1∑
i=1

X2
i = −ℓ2

d (1.18)
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embedded in R2,d−1, i.e. flat space with two timelike directions, which has metric

ds2
R2,d−1 = − dY 2

0 − dY 2
1 +

d−1∑
i=1

dX2
i . (1.19)

The flat R2,d−1 space possesses the isometry SO(2, d− 1), under which the constraint
(1.18) is invariant, and hence anti-de Sitter space inherits this isometry.

We will find a number of different coordinate systems useful. Firstly, we can take
global coordinates defined by

Y0 = ℓd sec θ sin τ, Y1 = ℓd sec θ cos τ, Xi = ℓd yi tan θ, (1.20)

with yi the standard Cartesian coordinates of a unit (d− 1)-sphere, for i = 1, . . . , d− 1,
with ∑d−1

i=1 y
2
i = 1. The metric of the hyperboloid in these coordinates is given by

ds2
AdS = ℓ2

d

cos2 θ

(
− dτ 2 + dθ2 + sin2 θ dΩ2

(d−2)

)
, (1.21)

and one can explicitly check it satisfies the vacuum Einstein equation with a negative
cosmological constant, (1.17). From (1.20) the time coordinate appears to be periodic,
which would lead to undesirable closed timelike curves. However, we can simply unravel
the circle, taking τ ∈ (−∞,∞) without any identifications, i.e. we take the universal
covering of the hyperboloid. The θ coordinate lies in the range θ ∈ (0, π/2). These
coordinates parameterise the whole of the hyperboloid and hence the metric described
by (1.21) is named global anti-de Sitter space. The asymptotic boundary is situated at
θ = π/2.

Another useful set of coordinates are the Poincaré coordinates, which are defined
by

Y0 = ℓd

z
t, XI+1 = ℓd

z
xI ,

Y1 −X1 = ℓd

z
, Y1 +X1 = ℓd

z

z2 − t2 +
d−2∑
I=1

x2
I

 (1.22)

where I = 1, . . . d − 2. The z coordinate runs over z ∈ (0,∞) and hence these
coordinates only cover half of the hyperboloid, {Y1 > X1}. This region of AdS space
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parameterised by these coordinates is called the Poincaré patch and has metric

ds2
Poincaré = ℓ2

d

z2

− dt2 + dz2 +
d−2∑
I=1

dx2
I

 . (1.23)

We note that constant z slices of the Poincaré patch have flat geometry, with induced
metric isometric to the Minkowski metric. The conformal boundary is situated at
z = 0. The z → ∞ surface is called the Poincaré horizon. This surface appears to be
singular in the Poincaré coordinates, but by considering the global coordinates or the
original hyperboloid one can deduce that it is just a coordinate singularity.

Let us now consider the causal structure of AdS space, which is invariant under
conformal transformations. Clearly the global AdS metric, (1.21), is conformal to (one
half of)5 the metric of the d-dimensional Einstein static Universe (ESUd) which has
the metric

ds2
ESU = − dτ 2 + dθ2 + sin2 θ dΩ2

(d−2), (1.24)

and is topologically a cylinder. The conformal boundary is situated where the conformal
factor diverges, i.e. at θ = π/2. The geometry of the boundary is conformal to ESUd−1.

Let us now specifically consider three dimensional anti-de Sitter space (AdS3),
though everything we’ll see generalises to higher dimensions.6 One can transform from
global coordinates to Poincaré coordinates with the transformation

t = sin τ
cos τ − sin θ cosϕ, (1.25a)

r = sin θ sinϕ
cos τ − sin θ cosϕ, (1.25b)

z = cos θ
cos τ − sin θ cosϕ. (1.25c)

As expected this transformation becomes singular at the Poincaré horizon, at z → ∞,
which in terms of the global coordinates is the surface defined by cos τ − sin θ cosϕ = 0.

In Figure 1.1 we have shown the Penrose diagram of AdS3. In blue is the Penrose
diagram for global AdS3 which is topologically a cylinder with the time coordinate,
τ , running over the whole real line. The boundary of the cylinder is the conformal
boundary of global AdS3. In orange is the embedding of the Poincaré patch in global
AdS3 according to the above coordinate transformations, which appears as a wedge.
The region of the boundary of the wedge which also lies on the boundary of the cylinder

5The full ESU runs over θ ∈ (0, π).
6The Penrose diagram of AdS2 though is slightly different.
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Fig. 1.1: In blue is the Penrose diagram of global AdS3, which is topologically a cylinder. The orange
region which lies wholly within the blue region is the Penrose diagram of the Poincaré patch of AdS3.
The Poincaré patch is bounded by the conformal boundary at z = 0 (the boundary of the cylinder),
and the Poincaré horizons at z → ∞, which lie in the interior of the cylinder. The black lines show
where the Poincaré horizon meets the boundary, at which the Poincaré coordinates become singular.
The blue line shows an orbit of ∂τ where τ is the time-coordinate of global AdS3, whilst the orange
curves show orbits of ∂t where t is the time-coordinate use in the Poincaré patch.

is where z = 0 and is the conformal boundary of the Poincaré patch. On the other hand
the regions of the boundary of the wedge which lie within the interior of the cylinder
are the past and future Poincaré horizons, at z → ∞. The black lines show where the
Poincaré horizons meet the conformal boundary. The z coordinate is singular at these
edges, as can be seen from the definition of z in (1.25c) since at on these curves both
the numerator and denominator of the expression for z go to zero.

The natural stationary Killing vector fields of the global AdS metric and the
Poincaré metric are not the same. Orbits of the KVF associated to the time coordinate
of the global AdS metric, ∂τ , are simply vertical lines in Figure 1.1, one of which is
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indicated as a blue line. Clearly these pass straight through the Poincaré horizons.
On the other hand, the orange curves in Figure 1.1 indicate the orbits of the KVF
associated to the time coordinate of the Poincaré metric, ∂t. These reach the conformal
boundary at the points (τ, θ, ϕ) = (±π/2, π/2, π/2), at which t → ±∞ but r and z

remain finite.
One notable feature of the Penrose diagram is that it shows that null curves

can reach the conformal boundary of AdS in finite coordinate time. This has the
consequence that AdS is not globally hyperbolic, i.e. there is no Cauchy surface on
which a specification of initial data uniquely determines the future evolution of this
data. Rather, one must additionally enforce boundary conditions on the conformal
boundary in order to have well-defined dynamical evolution through anti-de Sitter
space.

1.3.2 The AdS/CFT correspondence

The cosmological constant in our Universe does not appear to be negative. For a very
long time it was thought to be exactly zero (so much so that Einstein himself called his
inclusion of a cosmological constant his greatest blunder), however, experiments in the
late 90s provided compelling evidence for an extremely small, but non-zero, positive
cosmological constant [105–108].

Despite this, interest in anti-de Sitter space since the turn of the century has
rocketed, motivated largely by the discovery of the AdS/CFT duality [109, 110],
which describes a correspondence between a class of non-gravitational conformal field
theories (CFT) which are quantum field theories that are invariant under conformal
transformations, and string theories which, in particular, contain dynamical quantum
gravity. The canonical early review of this correspondence is Ref. [111], though there
now exists a myriad of reviews, lecture notes and textbooks into the subject, including,
but not limited to, Refs. [112–119].

The duality equates the partition functions of the two theories:

ZCF T = ZQG. (1.26)

The partition function on the left is only well-understood in the Euclidean section,
whilst the full partition function of quantum gravity is barely understood at all. But
let us focus on the Euclidean section for now and take some helpful limits to simplify
things on the right hand side. There are two vital parameters of these CFTs that we
will need to take into consideration: a coupling constant, λ, measuring the strength of
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the interactions of the fields of the theory, and the number of degrees of freedom, N ,
which is usually associated to the central charge of the CFT.

Suppressing loop corrections in the string theory corresponds to taking the planar
limit of the CFT, N → ∞. In this limit, the CFT is dual to a theory of semi-classical
strings about a geometry with AdS asymptotics. Moreover, at low energies, string
theory is well approximated by theories of supergravity. Taking this limit corresponds
to taking a limit of very strong coupling on the field theory side, λ → ∞. Thus, the
AdS/CFT correspondence is a strong-weak duality — taking the CFT to be strongly
coupled is dual to taking the gravitational theory to be weakly coupled. All together,
taking both λ and N are large yields a duality between a (d− 1)-dimensional CFT and
a supergravity theory about an AdSd ×X manifold, where X is a compact manifold.
One can perform a Kaluza-Klein (KK) reduction on this compact manifold to obtain
a theory on AdSd, which has a consistent truncation to general relativity on AdSd.
Hence, studying classical gravity with a negative cosmological constant in d dimensions
is dual to studying a very strongly coupled CFT with a large number of degrees of
freedom living on a fixed (d− 1)-dimensional manifold.

The prototypical example of this duality is between type IIB string theory defined
on AdS5 × S5 and a four-dimensional, N = 4, SU(N) super Yang-Mills CFT. In this
case, λ = g2

YMN , is the ’t Hooft coupling (with gYM denoting the Yang-Mills coupling)
and N is the rank of the SU(N) gauge group. The N → ∞, λ → ∞ limit yields
supergravity on AdS5 ×S5 which can be truncated to general relativity on AdS5. Let us
however be agnostic regarding the precise details of the CFT and consider the duality
in more generality.

The fundamental objects in a CFT are called local operators, O. These respect
the conformal symmetry of the CFT. Specifically, under a scaling transformation,
xµ → αxµ, the operators transform as O(xµ) → α∆O(αxµ), where ∆ is a number
called the scaling dimension of O. We can add additional source terms for such
operators to the path integral directly:

ZCF T [ϕ0(xµ)] ⊃
〈

exp
∫

dDxµϕ0(xµ)O(xµ)
〉

E
, (1.27)

where D = d− 1 is the number of boundary dimensions. The addition of the source
terms corresponds to the addition of extra fields, Φ, in the bulk theory with their
boundary behaviour dictated by ϕ0(xµ). In the N → ∞, λ → ∞ limit, the gravitational
theory becomes classical, and so we can evaluate the partition function by a saddle
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point approximation:

ZCF T [ϕ0(xµ)] = exp(−Sgravity[Φc])
∣∣∣∣
limz→0(z−γΦc(z,xµ))=ϕ0

, (1.28)

where Sgravity is the Einstein-Hilbert action including the negative cosmological constant
and the Lagrangian arising from any matter fields, and Φc is a solution to the equations
arising from this theory satisfying certain boundary conditions at the conformal
boundary, which is situated at z = 0, where z is the radial coordinate in Fefferman-
Graham gauge, which we will define fully in Section 1.3.3.

The value of γ in (1.28) indicates the order in z at which a given boundary condition
must be enforced at the conformal boundary, and is determined by the mass and spin
of each the fields denoted by Φ. For example, a scalar operator with scaling dimension,
∆, is dual to a scalar field in the bulk with the boundary condition being enforced
at order γ = ∆ −D, where ∆ can in turn be written in terms of the mass, m, of the
scalar field via the mass-dimension formula:

∆ = D

2 +
√
D2

4 +m2ℓ2
d. (1.29)

Meanwhile, the inclusion of a vector operator, Jµ, excites a vector field, Aa. In
particular a conserved current, Jµ, is dual to a massless gauge field in the bulk and
the boundary condition is enforced at γ = 0. This is an example of a typical principle:
a global symmetry of the boundary leads to a gauge symmetry in the bulk. Such a
conserved current in the CFT can be sourced by a chemical potential, A(0)

µ

Finally, the stress tensor of the CFT, Tµν , is dual to metric perturbations in the
bulk, with γ = −2. This last operator is of course present in any CFT, though we can
still deform the CFT by adding a gravitational source term for the stress tensor, i.e.
by taking the CFT to be on a curved background.

In each case though, both sides of (1.28) are divergent — on the left hand side
the QFT partition function suffers from UV divergences, whereas the right hand side
has IR divergences due to the infinite volume of AdS (for this reason the AdS/CFT is
often called an UV/IR duality). These divergences can be dealt with via the process of
holographic renormalization by setting a cutoff at z = ϵ and adding counterterms to
cancel the divergences that arise as ϵ → 0. Let us denote by S(R)

gravity the action of the
gravity theory with such counterterms included. We will briefly describe the results of
this holographic renormalization in some cases, but for now let us neglect this subtlety.
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As usual in QFT, the source terms play two roles. Firstly, one can perform functional
derivatives with respect to the source in order to obtain the vacuum expectation value
and correlation functions of operators:

⟨O(x)⟩ =
δS

(R)
gravity

δϕ0(x)

∣∣∣∣
ϕ0=0

(1.30a)

⟨O(x1) . . . O(xn)⟩ = (−1)n+1 δnS
(R)
gravity

δϕ0(x1) . . . δϕ0(xn)

∣∣∣∣
ϕ0=0

. (1.30b)

Secondly, one can consider the sources to be external physical deformations of the
theory, and the one-point function of an operator under the influence of the sources is
given by

⟨O(x)⟩ϕ =
δS

(R)
gravity

δϕ0(x) . (1.31)

In this thesis, we will consider an Einstein-Maxwell theory in the bulk. Hence we shall
be considering CFTs under the influence of electromagnetic and gravitational source
terms. The gravitational source terms determine the background manifold that the
CFT lives upon, Bd−1. The addition of a non-trivial electromagnetic source can be
thought of as further deforming the CFT theory by adding external electric or magnetic
fields. States of the CFT residing on such a background will be dual to asymptotically
locally AdS (AlAdS) geometries, which are solutions to the Einstein-Maxwell equations
with a negative cosmological constant which possess conformal boundaries with induced
geometry equal to the metric of Bd−1. Once a bulk solution is obtained, one can then
read off the one-point functions of the conserved current, Jµ, and the stress tensor,
Tµν , under the influence of these sources via (1.31). Let us now give a practical review
of how this can be done via the process of holographic renormalization.

1.3.3 Holographic renormalization

The action we will consider in the bulk is that of Einstein-Maxwell theory with a
negative cosmological constant, given in (1.2). The holographic quantities are extracted
from a bulk solution via an asymptotic analysis of the solution near the conformal
boundary [120]. It is helpful to transform the metric and the vector potential into
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Fefferman-Graham gauge [121] in the asymptotic region:

ds2 = ℓ2
d

z2

(
dz2 +

(
g(0)

µν + g(2)
µν z

2 + . . .+ g(D)
µν z

D + h(D)
µν z

D log z
)

dxµ dxν + O(zD+1)
)
,

(1.32a)

A =
(
A(0)

µ + . . .+ A(D−2)
µ zD−2 +B(D−2)

µ zD−2 log z
)

dxµ + O(zD−1), (1.32b)

where, once again, D = d− 1 is the number of dimensions of the boundary theory. The
terms denoted by the ellipses contain only even powers of z up to O(zD) for the metric
and up to O(zD−2) for the vector potential. The logarithm terms are only present
for D even, i.e. when the number of bulk dimensions in odd. These correspond to
conformal anomalies arising for CFTs in even dimensions [122].

The leading order terms, g(0)
µν and A(0)

µ , must be set as boundary conditions for the
bulk problem. These correspond to the sources influencing the CFT. Many terms in
the expansion are fixed explicitly in terms of the boundary data by the local analysis
of the equations of motion near the boundary. However, in general, g(D)

µν , h
(D)
µν , A(D−2)

µ

and B(D−2)
µ are undetermined by this local analysis, and hence a full bulk solution

must be found while setting additional boundary conditions deep within the bulk in
order to attain them. All further subleading terms are fixed in terms of the boundary
data and {g(D)

µν , h
(D)
µν , A(D−2)

µ , B(D−2)
µ }.

The solutions of this thesis all possess either four or five dimensions, so let us focus
on these dimensionalities. The case of five dimensions is far more complicated due
to the presence of the logarithm terms. In each case, the one-point functions of the
conserved current and the stress tensor are given by

⟨Jµ⟩ = 1√
g(0)

δS
(R)
gravity

δA
(0)
µ

, (1.33a)

⟨Tµν⟩ = 2√
g(0)

δS
(R)
gravity

δg
(0)
µν

, (1.33b)

where one must renormalize the Einstein-Hilbert action by adding counterterms which
cancel the divergences arising in the above expressions for the VEVs. Here let us just
state the results after this process of holographic renormalization, setting ℓd = 1.

d = 4. In any even bulk dimension, the counterterms provide no finite contributions,
cancelling only the infinite divergences. The conserved current and stress tensor are
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given by

⟨Jµ⟩ = 1
4πG4

A(1)
µ , (1.34a)

⟨Tµν⟩ = 3
16πG4

g(3)
µν . (1.34b)

There are no conformal anomalies of the CFT in this case, and hence the holographic
stress tensor is traceless. Moreover, the one-point functions satisfy a Ward identity,
given by

∇(0)
µ ⟨T µ

ν⟩ = F (0)
µν ⟨Jµ⟩, (1.35)

where ∇(0) is the covariant derivative arising from the boundary metric, g(0)
µν , and F (0)

µν

is the field strength tensor arising from the boundary vector potential, A(0)
µ .

d = 5. Finite counterterms do arise in this case, making the holographic renormaliza-
tion process more subtle (see, for example, [123] for details on this process for a more
general theory). Ultimately, one finds

⟨Jµ⟩ = 1
4πG5

(
2A(2)

µ +B(2)
µ

)
, (1.36a)

⟨Tµν⟩ = 1
4πG5

g(4)
µν − 1

2(g(2))2
µν + 1

4g
(2)
µν Tr[g(2)] + 3

16T
(0)grav
µν + 1

16T
(0)gauge
µν

− 1
8g

(0)
µν

((
Tr[g(2)]

)2
− Tr[(g(2))2]

)
− 1

12g
(0)
µν (F (0))ρσF (0)

ρσ

, (1.36b)

where (g(2))2
µν = (g(0))ρσg(2)

µρ g
(2)
νσ , and T (0)grav

µν and T (0)grav
µν are the gravity and gauge

anomaly stress tensors, respectively, which can be written in terms of the curvature
tensors of the boundary metric and the field strength tensor of the boundary vector
potential as

T (0)grav
µν = R(0)

µρνσ(R(0))ρσ − 1
4g

(0)
µν R

(0)
ρσ (R(0))ρσ − 1

3R
(0)R(0)

µν + 1
6∇(0)

µ ∇(0)
ν R(0)

+ 1
2(∇(0))2R(0)

µν + 1
12g

(0)
µν

(
(R(0))2 − (∇(0))2R(0)

)
(1.37a)

T (0)gauge
µν = −F (0)

µρ (F (0))ν
ρ + g(0)

µν (F (0))ρσF (0)
ρσ . (1.37b)
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Due to the presence of the anomaly stress tensors, the trace of ⟨Tµν⟩ is no longer
automatically vanishing:

⟨T µ
µ⟩ = 1

64πG5

(
R(0)

ρσ (R(0))ρσ − 1
3(R(0))2 − 4(F (0))ρσF (0)

ρσ

)
. (1.38)

This is the expected conformal anomaly of the CFT. The Ward identity given in (1.35)
still holds in this case.

1.3.4 Asymptotically AdS black holes

Under the AdS/CFT duality, asymptotically AdS black hole solutions correspond to
thermal states of the CFT. The most simple black hole solution in anti-de Sitter space
is that of the d-dimensional7 AdS-Schwarzschild metric, given by

ds2
AdS−Schw = −f(r) dt2 + f(r)−1 dr2 + r2 dΩ2

(d−2). (1.39a)

with
f(r) = 1 + r2

ℓ2
d

−
(

1 + r2
h

ℓ2
d

)(
rh

r

)d−3
, (1.39b)

where the parameter rh is the radius of the horizon. This vacuum solution is asymptotic
to global AdS. The temperature of the horizon is given by

TH = (d− 1)r2
h + (d− 3)ℓ2

d

4πrhℓ2
d

. (1.40)

The dependence of this temperature on the radius is shown graphically in Figure 1.2.
One striking difference between this formula and that describing the temperature of
the asymptotically flat Schwarzschild solution, in which the temperature is inversely
proportional to the radius of the horizon, is that there is a minimum temperature of
the AdS-Schwarzschild black hole, given by

T0 =

√
(d− 3)(d− 1)

2πℓd

. (1.41)

For any temperature TH > T0, there are two distinct black hole solutions, called a
small and a large AdS black hole, and thus two saddles of the Euclidean gravitational
path integral. Moreover, for any temperature there is another thermal state called

7Let us here focus on d ≥ 4 since the case of the three-dimensional BTZ black hole [124] is
qualitatively different, e.g. there is at most one BTZ black hole for a given temperature.
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Fig. 1.2: The temperature, TH , for four-dimensional AdS-Schwarzschild black holes of different
radius. There is a non-zero minimum temperature of vacuum black holes in AdS.

thermal AdS simply formed by taking the global AdS solution, given in (1.21), and
periodically identifying the imaginary time coordinate, τE = iτ , with a period given by
the inverse temperature, β = T−1

H .
In the canonical ensemble we must compare the free energy of these three saddles

at fixed temperature to see which solution dominates. Hawking and Page [125] first
carried out this analysis long before the AdS/CFT duality was discovered. In order to
calculate the energy, we can use the method of holographic renormalization described in
the previous section. For, example, in four dimensions, writing the AdS-Schwarzschild
metric in Fefferman-Graham gauge gives:

ds2 = ℓ4

z2

 dz2 −
(

1 + z2

2ℓ2
4

+ 2
3
(
r2

h + ℓ2
4

) rhz
3

ℓ6
4

+ . . .

)
dτ 2

+ ℓ2
4

(
1 − z2

2ℓ2
4

+ 1
3
(
r2

h + ℓ2
4

) rhz
3

ℓ6
4

+ . . .

)
dΩ2

(2)

, (1.42)

where here the boundary metric, g(0)
µν , is that of the ESU3 with radius ℓ4:

g(0)
µν dxµ dxν = − dτ 2 + ℓ2

4 dΩ2
(2). (1.43)
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From this expansion, one can read off the holographic stress tensor, ⟨Tµν⟩, using (1.34):

⟨T τ
τ ⟩ = − rh

8πG4

(
1 + r2

h

ℓ2
4

)
, ⟨TΩi

Ωi
⟩ = rh

16πG4

(
1 + r2

h

ℓ2
4

)
, (1.44)

where Ωi denotes any of the angular directions on the two-sphere. The results are
qualitatively similar in other dimensionalities, once one has subtracted off the Casimir
energy of empty global AdS (i.e. the value of ⟨Tµν⟩ found with rh = 0). In general,

⟨T τ
τ ⟩ = −(d− 2)rd−3

h

16πGdℓd

(
1 + r2

h

ℓ2
d

)
, ⟨TΩi

Ωi
⟩ = rd−3

h

16πGdℓd

(
1 + r2

h

ℓ2
d

)
. (1.45)

The total energy can be found by integrating the energy density, ⟨T τ
τ ⟩, over the

boundary (d− 2)-sphere:

E = (d− 2)ωd−2r
d−3
h

16πGd

(
1 + r2

h

ℓ2
d

)
, (1.46)

where ωd−2 is the area of a unit Sd−2 sphere. The horizon is spherical with radius, rh,
hence the entropy is given by

S = ωd−2

4Gd

rd−2
h . (1.47)

These two equations, along with temperature of the black hole, given in (1.40), allow
one to compute the free energy:

F = E − THS = ωd−2r
d−3
h

16πGd

(
1 − r2

h

ℓ2
d

)
. (1.48)

Since we subtracted the Casimir energy of the global AdS solution, this really is the
relative free energy when compared with thermal AdS. In the canonical ensemble, the
dominant solution will be the solution which minimises the free energy for a given
temperature.

For TH < T0, thermal global AdS is the only saddle, so is dominant by default. For
TH > T0, the small black holes always have positive free energy and hence are always
subdominant. However, if rh > ℓd, then we see from (1.48) that the large black hole
solution has lower free energy than thermal AdS, and hence dominates the canonical
ensemble. Thus, there is a first-order phase transition between the two phases called
the Hawking-Page transition. It occurs at the temperature,

THP = d− 2
2πℓd

. (1.49)
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Fig. 1.3: The phase diagram of the thermal solutions in four-dimensional AdS space. The blue
and orange correspond to the values of the free energy, F , of the small and large AdS-Schwarzschild
solutions, respectively, whilst the green line (at F = 0) is that of the thermal AdS solution. There
are no black hole solutions for TH < T0. The solution which dominates the ensemble for a given
temperature, TH , is the one with the least value of the free energy. For TH < THP , this is the thermal
AdS solution, but for TH > THP the large black hole dominates.

Figure 1.3 shows the phase diagram which makes this phase transition evident.
This phase transition also occurs on the field theory side. Witten argued that the

Hawking-Page transition was dual to a transition between a confined phase and a
deconfined phase of the CFT when living on a spatial sphere [126]. At low temperatures
relative to the radius of the sphere, ℓd, the different species (or colours) of the fields
combine together to form composites often called glue balls, with the energy density
resultantly being O(1). At high temperatures relative to ℓd, the fields escape from these
composites and thus the energy density instead behaves as O(N2). Witten argued
that the confined phase corresponds the thermal global AdS solution, whereas the
deconfined phase corresponds to the AdS-Schwarzschild solution.

Hence, this extremely complicated property of confinement of a strongly coupled
QFT is mapped to a far simpler property in the bulk, that of the presence of a black
hole horizon.

By Birkhoff’s theorem in AdS, these are the only finite temperature, vacuum, static,
spherically symmetric solutions which are asymptotic to global AdS. However the
structure of the space of solutions will be far richer if we include gravitational and
electromagnetic source terms at the boundary. One key aim of this thesis will be to
explore this avenue of investigation.
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Moreover, not all black holes in AdS have horizons with spherical topology, even in
four dimensions. Another simple metric is that of the planar AdS black hole given by

ds2
planar = ℓ2

d

z2

(
−g(z) dt2 + dz2

g(z) + δIJ dxI dxJ

)
, (1.50a)

with

g(z) = 1 −
(
z

zh

)d−1

. (1.50b)

In these coordinates, the horizon lies at z = zh, and the conformal boundary is at z = 0
where the metric approaches that of the Poincaré patch of AdS. The temperature of
the planar black hole is

TH = d− 1
4πzh

, (1.51)

which can take any positive value. Just as above, one could find another saddle in
the canonical ensemble by identify the imaginary time coordinate in the metric of the
Poincaré patch, (1.23), with a period given by the inverse temperature. However, the
planar black always dominates over the thermal planar AdS solution, hence there is
no Hawking-Page transition in this case. This means that the deconfined state of the
CFT dominates when the background manifold is the Minkowski manifold.

1.4 Black droplets and funnels

The case of the Hawking-Page transition exemplifies how holography can often take
complicated aspects of a quantum field theory and give them a geometrical interpreta-
tion in terms of the gravity theory. We’ll see a further example of the geometerization
of a complicated phase transition of the strongly coupled CFT in this section — this
time for a CFT living on a fixed black hole background. Studying a QFT on black hole
background was what led Hawking to the discovery that black holes emit Hawking
radiation and hence behave as thermodynamic objects [80], as we reviewed in Sec-
tion 1.2.2. However the direct study of quantum fields on curved backgrounds has been
largely restricted by difficulty to free or weakly interacting fields. One would expect
qualitative differences if the fields were instead strongly coupled.

Fortunately, the AdS/CFT duality provides an approach to indirectly study a
strongly coupled CFT on a curved background, Bd−1, by studying AlAdS spacetimes
with conformal boundaries on which the induced metric is equal to that of Bd−1 (see,
for example, [127] for an excellent review on this method). Taking Bd−1 to be a black
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(a) The black droplet (b) The black funnel

Fig. 1.4: Schematic drawings of spatial cross-sections of the black droplet and black funnel spacetimes.
In each case the red boundary is the conformal boundary on which the metric is that of the
Schwarzschild black hole. The dashed line is an axis of rotation. The droplet contains two disconnected
horizons: one extending from the boundary horizon and the other the deformed planar horizon deep
within the bulk. The funnel has a single connected horizon, extending from the boundary horizon and
asymptoting to the planar horizon deep within the bulk.

hole spacetime will provide insight into the properties of Hawking radiation at strong
coupling via wholly classical calculations. Since the black hole background is fixed,
this study will not elucidate how the CFT backreacts with gravity, and thus will give
us little information on the nature of black hole evaporation. Instead the boundary
black hole behaves as an infinite thermal source for the CFT.

1.4.1 The gravitational duals to a CFT on Schwarzschild

Let us first consider Bd−1 to be a Schwarzschild black hole, with temperature TH . The
boundary horizon will extend into the bulk, necessarily generating a bulk horizon which
is anchored on the conformal boundary. Moreover, the CFT state must asymptotically
approach a thermal state with temperature T∞ on flat space, since Schwarzschild is
asymptotically flat. Hence, in the bulk one expects a (deformed) planar horizon deep
within the bulk with temperature T∞. If the CFT is in the Unruh state with T∞ = 0,
then this horizon becomes the Poincaré horizon.

There are two classes of dual bulk gravitational solutions which are distinguished
by the nature of the horizons in the bulk. One, called the black droplet contains two
disconnected horizons in the bulk, the black hole horizon anchored on the boundary
horizon and the perturbed planar horizon. The other, the black funnel, instead contains
a single, connected horizon, running from the boundary horizon to an asymptotic
region at which it approaches the expected planar horizon. Figure 1.4 depicts sketches
of spatial cross-sections of these two spacetimes.
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The connected horizon of the black funnel allows classical flow along it. This means
that (unless the CFT is in the Hartle-Hawking state with TH = T∞) the horizon of
the black funnel is not a Killing horizon, evading the rigidity theorems due to the fact
it is non-compact. On the field theory side, this classical flow corresponds to O(N2)
Hawking radiation of the CFT fields from the black hole to the asymptotic region,
which is precisely what one would expect if instead one were studying N2 free or weakly
interacting fields on the black hole background.

On the other hand, there is no energy flux between the two disconnected horizons of
the black droplet at leading order in N (i.e. at a classical level in the bulk) even if they
are have different temperatures. Including stringy corrections in the bulk, which arise
at subleading order in N , will lead to Hawking radiation between the two horizons.
This means that on the field theory side the Hawking radiation from the black hole
to the asymptotic region of the CFT fields is greatly suppressed to O(N0). The field
theory mechanism behind this behaviour is not well understood.

Overall then, the black funnel corresponds to a deconfined phase of the CFT living
on the black hole background, whilst the black droplet corresponds to a confined
phase [128, 129]. The first solutions were found by considering the CFT on the lower
dimensional Bañados-Teitelboim-Zanelli (BTZ) black hole [130–132]. The black droplet
dual to the CFT in the Unruh state, T∞ = 0, on a four-dimensional Schwarzschild
background was obtained in [133], and the black funnel dual to the CFT in the Hartle-
Hawking state, T∞ = TH , was found in [134]. Black droplets and funnels were found
for various values of the ratio T∞/TH in [135], which correspond to Frolov-Page states
of the CFT [136]. Droplets were found only to exist for T∞/TH ≲ 0.93 and funnels
were found only for T∞/TH ≳ 0.55, suggesting there must be a phase transition at
some intermediate value. One can also detune the temperature of the bulk horizon
as it approaches the boundary horizon [137], though this corresponds to a CFT state
that is singular at the horizon.

One interesting aspect of these solutions is precisely the sense in which they are
in equilibrium. The droplet solutions are always static and the funnel solutions are
stationary, hence they are dynamically in equilibrium. However, for T∞ ̸= TH , the bulk
solutions are not in thermodynamic equilibrium; the temperatures of the two horizons
in the black droplet are unequal and the horizon of the black funnel is generally not
even a Killing horizon at all. This lack of thermodynamic equilibrium means that,
except in special cases, there is no well-defined definition of the free energy of the
solutions, meaning that it is very difficult to argue which of them will dominate the
ensemble at a value of T∞/TH for which they both exist. This difference between
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dynamical equilibrium and thermodynamic equilibrium will be one of the key themes
of this thesis.

1.4.2 Global black droplets and funnels

One can adapt the above considerations to other black hole spacetimes, for example,
those compactified onto the ESU. Such solutions are called global droplets and funnels
[138–140]. Though such spacetimes are less relevant to astrophysical Hawking radiation,
they provide fascinating case studies for the different phases of the CFT, with the
multiple boundary horizons acting like infinite heat sources and sinks inducing heat
flow in the boundary theory.

Specifically, in [140], the boundary geometry was formed by compactifying two
BTZ black holes and patching them together at their asymptotic boundaries. This
yields two black hole horizons antipodally situated on the ESU. In that work the
boundary black holes were taken to have the same temperature and the authors were
able to find a number of different droplet and funnel bulk solutions each of which are
in thermodynamic equilibrium, allowing for a comparison of the free energy. We will
be interested in deforming such solutions by taking them out of equilibrium. This
leads to an even richer space of solutions and allows one to study flowing states of the
CFT with the flow being induced by sources, though unfortunately the thermodynamic
analysis of the out-of-equilibrium solutions becomes far more difficult.

1.5 The Randall-Sundrum model

As described above, the AdS/CFT duality allows us to study, via gravitational calcula-
tions, a strongly coupled conformal field theory on a fixed background. But what if we
would like the field theory also to couple to dynamical gravity? The Randall-Sundrum
(RS) braneworld paradigm provides a possible avenue towards studying such a system.

Matter in the RS models is restricted to a (3 + 1)-dimensional submanifold (a
“3-brane”) embedded in a higher dimensional space which has a negative cosmological
constant. There are two Randall-Sundrum models, often called RSI and RSII.

These models also have an interest outside of the world of AdS/CFT, since they
provide mechanisms for including extra dimensions without losing the apparent four-
dimensional behaviour of gravity at low energies for observers restricted to the brane.
Since superstring theory is mathematically consistent in only ten dimensions, such
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(a) A global droplet (b) A global funnel

Fig. 1.5: Schematic drawings of spatial cross-sections of global droplets and funnels. The conformal
boundary is shown by the red curve. The boundary metric contains two black hole horizons antipodally
situated on the ESU. The dashed line is an axis of rotation.

mechanisms for extra dimensions are vital in order for string theory to be a feasible
fundamental theory for describing the physics of our Universe.

We’ll be particularly interest in the RSII model but let us quickly describe the RSI
model first.

1.5.1 The RSI model

The first Randall-Sundrum (RSI) solution [141] was introduced as a possible solution
of the hierarchy problem, which pertains to the question of why the force of gravity is
so many order of magnitude weaker than the other fundamental forces of nature. The
metric of the ambient space is given by

ds2 = dY 2 + exp
(
−2|Y |ℓ5

)
ηµν dxµ dxν , (1.52)

where xµ run over the coordinates on the brane and the extra Y coordinate in the RSI
model lies in the range Y ∈ (0, b) with the spacetime being bounded by two branes at
Y = 0 and Y = b. The bulk spacetime has a negative cosmological constant, the brane
at Y = 0 has positive tension and the brane at Y = b has negative tension. Matter is
restricted to the Y = b brane. Via a careful balancing act between the values of the
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tensions of the branes and the cosmological constant, one can enforce that the effective
gravitational theory on the Y = b brane is four-dimensional GR at low energies.

The warping factor in the metric (1.52) means that the effective mass, m4, of a
particle on the brane is exponentially suppressed compared with its true five-dimensional
mass, m5:

m4 = e−b/ℓ5m5. (1.53)

Therefore, the strength of gravity is exponentially suppressed on the brane, which is
how the extra dimension of the RSI model provides a possible solution to the hierarchy
problem.

1.5.2 The RSII model

The RSII model [142] also contains a 3-brane on which matter is restricted. This time
though, there is an extra dimension which is infinite in extent. Taking the 3-brane to
have an induced geometry of flat space, the metric of the ambient space must also be
as described in (1.52), however now the extra coordinate, Y extends infinitely, with
the brane on which matter is confined being situated at Y = 0, across which there is a
Z2 symmetry.

In [142], the authors carried out a Kaluza-Klein (KK) reduction of the 5d gravita-
tional perturbations about this metric down to the 4d brane. From the KK spectrum,
the non-relativistic gravitational potential between two particles on the brane of mass
m1 and m2 at a distance of r apart was computed to be

V (r) = G4
m1m2

r

(
1 + ℓ2

5
r2

)
. (1.54)

The first term is a contribution from a massless KK mode which plays the role of
the four-dimensional graviton on the brane and agrees with the standard Newtonian
potential of four-dimensional gravity. The second term arises from a tower of massive
KK modes and provides a correction to the effective theory of gravity on the brane.
However, the correction is very small when r ≫ ℓ5, hence there is very little sign
of the extra dimension for observers living on the brane except at small scales or,
equivalently, at high energies. Therefore, despite the extra dimension being infinite in
extent, the effective theory of gravity at low energies still reduces to four-dimensional
GR. Heuristically speaking, despite the extra dimension being infinite, the exponential
warping factor of the RSII metric, (1.52), leads to a steep potential well trapping
the five-dimensional graviton to the vicinity of the brane at low energies, giving the
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effective four-dimensional behaviour in the leading order term in (1.54). Only at high
energies can the graviton overcome this potential well and escape from the brane deep
into the bulk, which is what leads to the departure from four-dimensional GR at high
energies represented by the second term in (1.54).

Focusing on the Y ≥ 0 side of the spacetime, one can take the coordinate transfor-
mation

z = ℓ5e
Y/ℓ5 , (1.55)

to bring the metric (1.52) into a familiar form:

ds2 = ℓ2
5
z2

(
dz2 + ηµν dxµ dxν

)
. (1.56)

In these coordinates, the brane lies at z = ℓ5 and (one side of) the bulk is the region
z ∈ [ℓ5,∞). In fact, by rescaling the coordinates, the brane can be taken to be at any
constant z slice, z = ε. The metric given in (1.56) is that of the Poincaré patch of AdS
space, in which the coordinate z runs from the conformal boundary at z = 0 to the
Poincaré horizons at z = ∞. Therefore, the RSII bulk can be thought of as a subregion
of the Poincaré patch of AdS5, specifically the region between a constant z slice (the
brane) and the Poincaré horizons at z = ∞, still with a Z2 symmetry imposed across
the brane.

Figure 1.1 showed the Penrose diagram of global AdS in blue and shaded in orange
the Poincaré patch of the AdS space. In Figure 1.6a we also include the RSII bulk
shaded in green. This region is defined by z ∈ [ε,∞), and the transformation given
by (1.25c) is utilised in order to embed it in the Penrose diagram of global AdS. The
brane is the z = ε surface, and the RSII bulk lies between this brane and the past and
future Poincaré horizons of the Poincaré patch, labelled as P− and P+, respectively.
The black lines, J ± and the points i± and i0 are where the brane meets the conformal
boundary.

Unwrapping the brane around the cylinder yields the Penrose diagram according
to an observer on the brane, as shown in Figure 1.6b, where we have now shown the
axis of rotation of the two suppressed angular directions as the dashed vertical line.
The induced geometry on the brane is flat space, and hence the Penrose diagram is the
same as that of the four-dimensional Minkowski metric. The observer on the brane
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would perceive the asymptotic boundaries, i0, i± and J ± as, respectively, spacelike,
past/future timelike and past/future null infinity.8

8Note, we have labelled null infinity on the brane using the symbols J ± in order to distinguish
between these boundaries of the brane and the conformal boundary of the whole AdS space, which is
often written as I+.

(a) (b)

Fig. 1.6: In (a), we have Penrose diagram of AdS5 and the RSII bulk, after suppressing two angular
directions. The blue region is global AdS, the pale orange region is the Poincaré patch and the
green region is one side of the RSII bulk. Each region described above fully contains those following
it, i.e. blue ⊃ orange ⊃ green. The RSII bulk is the region between the past and future Poincaré
horizons, annotated, respectively, by P− and P+, and the brane which is a surface of constant
z = ε. The induced geometry on the brane is Minkowski. Unwrapping the z = ε gives the Penrose
diagram according to an observer on the brane, shown in (b), with the vertical line being the axis of
rotation of the two suppressed angular directions. The observer would perceive i0, i±, J ± as spacelike,
past/future timelike and past/future null infinity, respectively. From the perspective of the bulk, {i0,
i±, J ±} make up the intersection of the brane with the conformal boundary.



1.5 The Randall-Sundrum model 35

1.5.3 The connection between the RSII model and AdS/CFT

The fact that the RSII spacetime is a region of AdS space gives us a useful perspective
on the effective theory on the brane. Specifically, the AdS/CFT duality implies that
five-dimensional GR in the RSII bulk is dual to a “quantum-corrected” theory on the
brane, given by four-dimensional GR coupled to a strongly coupled CFT with a UV
cut-off. To see how this interpretation arises, let us follow the argument given in [143],
which is in turn based upon the calculation of the holographic Weyl anomaly [122].

As we reviewed in Section 1.3.2, general relativity in AdS5 is dual to a large N
super Yang-Mills (SYM) theory in the ’t Hooft limit (λ → ∞) residing on a fixed
four-dimensional background, Bd−1. Considering gravitational excitations in the bulk
and taking the logarithm of (1.28) yields

WCFT[γµν ] = ext
g

(0)
µν =γµν

(
Sbulk[gab] + Sbndy[g(0)

µν ]
)
, (1.57)

where γµν is the metric of the manifold, Bd−1, on which we wish to study the CFT,
whilst g(0)

µν is the leading order term in the Fefferman-Graham expansion of the five-
dimensional metric asymptotically locally AdS metric, as defined in (1.32a). Here
S = Sbulk + Sbndy is the classical action of the gravitational theory, and we have now
included the Gibbons-Hawking-York boundary term required to give a well-defined
variational principle [144, 145]. Moreover, now we are taking the dominant saddle by
taking an extremum over all asymptotically locally AdS metrics which have induced
metric on the conformal boundary equal to γµν . The logarithm of the partition function,
WCFT = log ZCFT, is the generating functional of connected Green’s functions of the
CFT. In the usual AdS/CFT correspondence, the gravitational modes in the AdS
side that extend to the conformal boundary are non-normalizable, i.e. they diverge
and do not fluctuate as one approaches the boundary. Therefore, in order to have a
well-defined theory one must add counterterms that cancel out these divergences. The
effect of this is that the boundary metric, γµν , is fixed and is not corrected by the CFT.

In the AdS/CFT correspondence, the radial direction (the z-direction) is understood
to be dual to the energy of the boundary CFT, with z = 0 being dual to the UV
limit of the CFT. Since the RSII spacetime is a chunk of the Poincaré patch of AdS5

that has been cut off at the brane at some z = ε, this curtailing of the spacetime on
the gravitational side will equate to introducing a UV cut-off to the CFT at some
energy scale, Λε. As described in [143, 146], this suggests the following extension of
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the AdS/CFT correspondence to the RSII braneworld:

WCFT[γµν ] + S4d gravity[γµν ] = ext
g

(0)
µν ∼γµν

(
Sbulk[gab] + Sbrane[g(0)

µν ]
)
, (1.58)

where now WCFT is the generating functional of connected Green’s functions of the
CFT, which now lives on the brane, with some UV cutoff Λε, and the extremum is
now over metrics that have induced metric on the brane isometric to γµν . One can
also add terms to both sides of (1.58) which describe the other matter fields that are
restricted to the brane, however, here we’ll simply consider the vacuum case. Note
that we now have an additional term on the left hand side, S4d gravity[γµν ], which is the
action of gravity on the brane. This means that gravity is dynamical on the brane,
with the CFT coupling to it. The presence of this extra term is due to the fact that
now that we have a cutoff at z = ε, the gravitational modes mentioned above, which
in standard AdS/CFT must be cancelled out with counterterms, simply don’t diverge
as we approach the brane at z = ε. Thus, we need not add any counterterms, meaning
that we retain terms that describe how the CFT living on the brane interacts with
gravity.

To see how this works explicitly, let’s consider the right-hand side of (1.58) a little
more closely. Let’s take ℓ5 = 1 here, so that Λ = −6. We know that any asymptotically
locally AdS metric can be written in Fefferman-Graham gauge:

ds2 = 1
z2

(
dz2 + ḡµν dxµ dxν

)
, (1.59a)

where ḡ has an expansion in z given by

ḡµν = g(0)
µν + z2g(2)

µν + z4g(4)
µν + z4 log z h(4)

µν + ... (1.59b)

with g(i)
µν and h(4)

µν being independent of z. Note that the above metric has determinant
given by

√
−g = 1

z5

√
−ḡ =

√
−g(0)

(
1
z5 + 1

2z3 (g(0))µνg(2)
µν + O(z−1)

)
, (1.60)

where we have used the expansion (1.59b) and a standard identity regarding deter-
minants9 in order to derive the second equality. We will not be concerned with the

9The identity is given by det(A + B) = det A + det B + det A · Tr(A−1B), where A and B are two
matrices with A invertible.
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precise coefficient of the order z−1 term here, though this can also be written in terms
of g(i)

µν .
For gab, when written in this gauge, to satisfy the boundary condition on the brane

(situated at z = ε) on the right hand side of (1.58), we require that g(0)
µν = ε2γµν . We

seek to take an extremum over classical solutions which satisfy the bulk equations of
motion and this boundary condition. These bulk equations are the vacuum Einstein
equations with Λ = −6, thus in the bulk R = −20. Therefore the evaluation of the
bulk action on-shell is

16πG5Sbulk[gab] =
∫

z=ε
dz
∫

d4x
√

−g(R − 2Λ)

= −8
∫

z=ε
dz
∫

d4x

(
1
z5

√
−ḡ
)

= −8
∫

z=ε
dz
∫

d4x
√

−g(0)

(
1
z5 + 1

2z3 (g(0))µνg(2)
µν + O(z−1)

)

= 2
∫

d4x
√

−g(0)

(
1
ε4 + 1

ε2 (g(0))µνg(2)
µν + a(4) log ε+ O(ε0)

)
, (1.61)

where we have carried out the z integral in the final line, with the O(z−1) term in the
integrand giving a logarithm term and a term which is finite in the limit ε → 0.

Meanwhile, the boundary action, in the case where there is no matter on the brane,
is given by the Gibbons-Hawking-York term as well as a term coming from the tension
of the brane:

16πG5Sbrane[γµν ] =
∫
d4x

√
−γ (2K + 16πG5λ) , (1.62)

where λ is the tension of the brane and K is the trace of the extrinsic curvature of the
brane, which is given in terms of the normal, nµ, to the brane by

Kµν = γρ
µγ

σ
ν ∇ρnσ = − 1

ε2 ḡµν + 1
2ε∂zḡµν . (1.63)

Taking the trace

K = −4 + ε

2 ḡ
µν∂zḡµν = −4 + ε2(g(0))µνg(2)

µν + O(ε4). (1.64)

Combining the above results, we find that

16πG5 (Sbulk + Sbrane) =
∫
d4xL, (1.65a)
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with

L =
√
g(0)

(
16πG5λ− 6

ε4 + 8πG5λ

ε2 (g(0))µνg(2)
µν + a(4) log ε+ . . .

)
. (1.65b)

where the omitted terms are all finite as ε → 0. The quantity, a(4), which can be
defined in terms of covariant quantities derived from g(0)

µν , is the Weyl anomaly of the
CFT, and is of great interest generally, though in our case we do not need to find it
explicitly.

The order ε−2 term can be calculated by considering the 5d Einstein equation,
which, as shown in [122], enforces that

R(0)
µν = 2g(2)

µν +
(
(g(0))ρσg(2)

ρσ

)
g(0)

µν + O(ε2) =⇒ R(0) = 6(g(0))ρσg(2)
ρσ + O(ε2), (1.66)

where here R(0)
µν and R(0) are, respectively, the Ricci tensor and Ricci scalar associated

to g(0)
µν . Thus

L =
√

−g(0)

16πG5λ− 6
ε4 + 4πG5λR

(0)

3ε2 + a(4) log ε+ . . .

 . (1.67)

Now, in standard AdS/CFT, we take ε → 0, and hence all the terms explicitly
written above diverge, meaning that they must be removed by the addition of local
counterterms. This is the procedure of holographic renormalization yielding the results
given in Section 1.3.3. In particular, we remove the term proportional to R(0), meaning
that gravity is non-dynamical in the boundary theory.

However, in the case of the RSII model, ε is non-zero, and hence all terms in (1.67)
are finite, and there’s no need to add counterterms. This is the crux: we retain the
term proportional to R(0), and hence we will find that gravity on the brane is dynamical
in the dual picture.

So far, to keep in touch with the AdS/CFT calculation, we’ve been treating the
RSII bulk as one-sided, but recall that really it is two-sided, with a Z2 symmetry across
the brane. This means that in the above calculation we really should have taken two
lots of the bulk integral and the Gibbons-Hawking term (one from each of the sides
of the brane), but still only a single contribution of the term coming from the brane
tension. This has the effect of adding a factor of two to each term in (1.67) except
those involving a factor of λ. Taking this into account, and rewriting in terms of the
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metric γµν = ε−2g(0)
µν , we find

L =
√

−γ
(

16πG5λ− 12 + 4πG5λR
3 + a′

(4) log ε+ . . .

)
, (1.68)

where now R is the Ricci scalar associated to γµν . In order for effective cosmological
constant on the brane to be zero, we must tune the tension of the brane by taking
λ = 3/(4πG5) so that the first two terms cancel one another. Reinstating the factors
of ℓ5, we find overall that

ext
g

(0)
µν =γµν

(
Sbulk[gab] + Sbrane[g(0)

µν ]
)

= WCFT[γµν ] + ℓ5

16πG5

∫
d4x

√
−γR, (1.69)

where WCFT contains the log ε term, as well as the terms annotated by the ellipsis in
(1.68). This implies that the effective Newton’s constant for gravity on the brane is
given by G4 = G5/ℓ5. Having reinstated the factor of ℓ5, the brane tension is given by
λ = 3/(4πG5ℓ5).

Therefore, the five-dimensional theory of gravity in the RSII bulk is dual to a four-
dimensional strongly coupled CFT defined on the brane, coupled to four-dimensional
GR. This gives an interesting alternative interpretation to differences of the effective
theory on the brane from general relativity. In the bulk picture, one sees that these
differences arise from the graviton being able to access the extra dimension at high
energies. On the other hand, in the brane picture of the duality, the differences come
from corrections to the propagator of the graviton due to loops of CFT fields in a solely
four-dimensional theory. Of course, the CFT in the latter picture is strongly coupled,
and hence it is generally easier to make calculations in the former, bulk picture.

1.5.4 Static RSII black holes

The analysis yielding the effective non-relativistic potential, (1.54), for gravity on the
brane is a perturbative analysis about flat space on the brane. However, black holes are
non-perturbative solutions, so this analysis a priori does not guarantee that braneworld
black holes resemble standard four-dimensional black holes at large scales. Therefore it
is desirable to directly derive black hole solutions in the RSII model to substantiate
the viability of the RSII model as a mechanism for extra dimensions in our Universe.

Recall that the original RSII model is given by the metric (1.56) in the region
z ∈ [ℓ5,∞). However, one can, in fact, replace the Minkowski metric, ηµν , by any 4d
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Einstein metric, hµν , and still have a solution to the 5d Einstein equation:

ds2 = ℓ2
5
z2

(
dz2 + hµν dxµ dxν

)
. (1.70)

In search of a braneworld black hole, one may initially take hµν in the above equation
to be the 4d Schwarzschild metric. In this case, the induced metric on the brane is the
Schwarzschild black hole, and its horizon extends throughout the bulk all the way to the
Poincaré horizon, hence it is named the AdS black string. However, such a spacetime
has a curvature singularity where the event horizon meets the Poincaré horizon and,
indeed, it is unstable near this region. Therefore the AdS black string cannot be the
final state of gravitational collapse of matter on the brane. It was conjectured in [147]
that the string would decay to a “black cigar” geometry with a regular horizon, in
which the induced geometry on the brane is very close to the Schwarzschild geometry
but the black hole horizon “pinches off” some way into the bulk before reaching the
Poincaré horizon.

However, there was some debate over whether such a “pinched off” black hole in
the RSII model could exist with sizes large relative to the AdS length scale, ℓ5. Due
to the connection to the AdS/CFT correspondence described in Section 1.5.3, the
dual to a black hole in the RSII bulk would be a quantum corrected black hole [148],
i.e. a black hole whose geometry is corrected by the contributions coming from the
large N , strongly-coupled CFT. If the CFT were free, then the O(N2) extra degrees
of freedom arising from the CFT fields would lead to O(N2) extra radiation away
from the quantum-corrected black hole on the brane side of the duality. In the dual,
bulk picture, this O(N2) extra radiation would correspond to a classical instability,
and hence the bulk black hole would be classically time-dependent, disallowing the
existence of stationary bulk black holes in RSII braneworlds.

It was contended, however, that the key step in this argument depends upon
intuition from free field theory, whereas in the dual to the RSII braneworld, the CFT
is strongly coupled [128]. It was postulated that this strong coupling may lead to some
confinement mechanism of the CFT in the vicinity of the quantum corrected black hole,
which would reduce the amount of radiation away from the black hole down to O(N0).
On the bulk side this reduced radiation would correspond to the emission of usual
Hawking quanta from the bulk black hole, and hence does not imply an instability of
the classical black hole solution.

This debate occurred before the discovery of the black droplet and funnel solutions
that we reviewed in Section 1.4. The obtainment of the static black droplet solution
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[133] showed that indeed there is a confined phase, with only O(N0) radiation, of the
CFT when it resides on a fixed black hole background. This suggested heavily that
braneworld black holes would exist, and that the black droplet would be the limit of
them as the brane is taken all the way to the conformal boundary, or dually, as gravity
is taken to be non-dynamical in the CFT theory.

Indeed, fairly quickly, the method to obtain the black droplet was altered in order
to numerically attain static black holes in the RSII model for a large range of sizes
compared with the AdS length scale [149], settling the debate once and for all. These
solutions were also found via another method in [150] by perturbing away from the black
droplet solutions, and in [151] they were shown to be the final state of gravitational
collapse of spherically symmetric matter on the brane.

The induced metric of the static RSII black holes on the brane very closely resemble
the Schwarzschild solution when they are large relative to the AdS radius. However,
the black holes in our universe are generally rotating and uncharged, therefore in order
for the RSII model to be phenomenologically viable, it must exhibit rotating black
hole solutions as well as static ones.

1.6 The black hole solutions of this thesis

This thesis is concerned with numerically obtaining stationary solutions to the Einstein
equation with a negative cosmological constant. As we’ve seen throughout this intro-
duction, there are number of reasons that such solutions are of interest. Under the
AdS/CFT duality, these classical black holes corresponds to studying thermal states of
very strongly coupled conformal field theories (CFTs) with a large number of degrees
of freedom — an extremely challenging feat without the aid of holography. Whilst also
being related to the AdS/CFT correspondence, the Randall-Sundrum II model, which
is a braneworld scenario in which matter is restricted to a submanifold of a larger
space with a negative cosmological constant, is a genuine candidate for the inclusion of
extra dimensions in our Universe. Last, but not least, the discovery of such a large
and diverse set of black hole solutions shows the old idea of black hole uniqueness does
not easily extend into anti-de Sitter space. These are the avenues of research that this
thesis considers. A common theme shall be that in AdS black hole solutions can be
stationary and even static and yet not be in thermodynamic equilibrium.

Chapters 3-6 are each based on a different paper [1–4] constituted by original work
undertaken in collaboration with Jorge E. Santos.
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We’ll begin in Chapter 2 by describing the various numerical methods used through-
out the thesis to obtain stationary black hole solutions in general relativity. Many
of these techniques are standard. The key is that in order for the Einstein equation
to have elliptic character, so that they can be solved as a boundary value problem, a
suitable gauge must be chosen. We’ll review two possible choices, the DeTurck gauge
and Bondi-Sachs gauge. Once an elliptic problem is obtain, one still is faced with a
very complicated set of coupled, non-linear PDEs. We’ll discuss how these can be
approximated by a very large set of non-linear algebraic equations which can be solved
with the Newton-Raphson method.

In Chapter 3, based on the work of [1], we will turn to the black holes in the
Randall-Sundrum II model. These braneworld set-ups must be shown to exhibit
rotating black holes in order to be phenomenologically viable. In this chapter we obtain
such rotating RSII black holes, and show clearly that when they are large compared
with the AdS radius, they very closely resemble four-dimensional Kerr black holes
according to observers on the brane. On the other hand when they become small they
exhibit signs of the extra dimension, tending instead towards the geometry of a singly
rotating Myers-Perry black hole.

Next, in Chapter 4, we’ll study a strongly-coupled CFT on a four-dimensional de
Sitter-Schwarzschild background (dS-S), i.e. a spherically symmetric black hole solution
to the Einstein equation with a positive cosmological constant. The dS-S spacetime
contains two horizons, the event horizon of the black hole and a cosmological horizon,
which generically have two different temperatures. We construct the asymptotically
locally AdS gravitational dual solutions, which have a conformal boundary on which
the metric is dS-S. Similarly to the case of the black droplets and funnels, reviewed
in Section 1.4, there are two possible bulk solutions, distinguished by the horizon
structure in the bulk. We first presented these solutions, named black tunnels and black
hammocks, in [2]. Since dS-S naturally has two non-equal temperature scales associated
to it, these dual solutions are not in thermal equilibrium, despite being stationary. We
argue that this set-up could provide a very natural case-study for investigating the
mysterious phase transition between confinement and deconfinement to which the two
different bulk solutions correspond.

So far we have considered solutions in AdS without the presence of any matter
fields. In terms of the dual field theory, this means that the CFT is only deformed by
a gravitational source, i.e. the boundary metric on which it resides. However, it is also
of great interest to understand how the CFT behaves under other sources, for example,
a background electric field. Global droplets and funnels, reviewed in Section 1.4.2,
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provide a useful set-up in which such a system can be studied. We add a chemical
potential to the field theory which induces a conserved current, Jµ. This corresponds
to the addition of a Maxwell field in the bulk. In Chapter 5, we define the chemical
potential to vary on the boundary geometry, and in particular fix that it approaches two
different values at the two black hole horizons in the boundary geometry, which induces
an electric current between the two horizons. We dub these solutions as holographic
batteries [3]. The ratio of the induced current and the applied external electric field
gives the conductivity of the CFT on the boundary background, and this quantity can
be extracted from the bulk solution. In this case, even though the boundary horizons
are fixed to have the same temperature, the fact that the electric potential is chosen to
vary between them once again causes the bulk solutions not to be in thermodynamic
equilibrium.

Finally in Chapter 6 we approach the question of whether multi-horizon solutions can
exist in AdS. With zero cosmological constant it appears that the only binary solutions
are members of the Majumdar-Papapetrou family with the black holes needing to have
extremal charge to balance their gravitational attraction. The negative cosmological
constant contributes an additional attractive term to the gravitational potential well,
and so one may expect that any analogous configuration of two charged black holes
in AdS will be doomed to collapse, even if they are extremally charged. Hence, one
may expect that the existence of static, charged binary solutions are prohibited in AdS.
However, a key difference to flat space is that one can easily add source terms at the
conformal boundary in AdS. This allows one to add a background electric field which
may aid to keep the black holes apart. We’ll discuss precisely how this can be done in
Chapter 6, which is based on the work of [4]. Interestingly, for given boundary charges,
there is a continuous family of binary solutions, parameterised by quantities defined
on the horizons of black holes. Therefore these binary solutions represent continuous
non-uniqueness. Despite being static, not all of the solutions are in thermoelectric
equilibrium. The solutions are dual to states of the CFT under the influence of an
electric source, though a great deal of mystery still remains as to the precise nature of
these states.

Finally, in Chapter 7 we will conclude with an overall discussion of the stationary
solutions described in this thesis, in particular touching upon the ways in which each
of them fail or succeed to be in equilibrium.



Chapter 2

Numerical methods for finding
stationary black holes solutions

Finding stationary solutions to the Einstein equation is a completely different, though
equally ferocious, beast to studying a time-dependent problem in general relativity.
More complete reviews of the methods described in this chapter are given in [152, 153],
though these do not include detail on the Bondi-Sachs gauge (which we will discuss in
Section 2.2) which was only used subsequently for stationary problems.

When faced with a dynamical problem, one seeks to formulate the Einstein equation
as a set of hyperbolic PDEs, and then solves them as an initial value problem, evolving
the initial data through time. This can be thought of as similar in character to solving
the wave equation.

On the other hand, when seeking stationary solutions, one should instead formulate
the equations to have elliptic character. One must set boundary conditions on the
boundaries of the spacetime (which may include horizon of black holes or axes of
symmetry) and then solve the PDEs as a boundary value problem. This time, the
problem is much more akin to solving a Poisson equation.

Unfortunately, the PDEs arising from the Einstein equation (even when one ex-
plicitly assumes stationarity, or staticity) turn out to have mixed hyperbolic-elliptic
character. To see this, let us consider linearising the vacuum equations, given in
(1.17), about a background metric, gab, by considering small perturbations about this
background, gab → gab + hab:

∆hab := δ

(
Rab + d− 1

ℓ2
d

gab

)
= δRab + d− 1

ℓ2
d

hab, (2.1a)
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where the variation of the Ricci tensor is given by

δRab = ∆Lhab + ∇(amb), (2.1b)

with ∆L is the standard Lichnerowicz operator

∆Lhab = −1
2∇2hab − hcdRacbd + hc

(aRb)c (2.1c)

and
ma = ∇bh

b
a − 1

2∇ah, (2.1d)

where h is the trace of hab.
To consider the character of the equations, one must investigate the principal part,

σ of the second-order differential operator ∆, which is simply the terms within it
containing two derivatives, and is given in this case by

σ[hab] = 1
2g

cd (−∂c∂dhab + ∂c∂ahbd + ∂c∂bhad − ∂a∂bhcd) . (2.2)

If we replace all the derivatives above by a general one-form, ωa, giving

σ[hab;ωa] = 1
2g

cd (−ωcωdhab + ωcωahbd + ωcωbhad − ωaωbhcd) , (2.3)

then we say the equations are elliptic if σ[hab;ω] ̸= 0 for any non-zero one-form ωa and
any perturbation hab. However, in this case, we can take hab = ω(avb) for any vector va,
and we find that σ[hab;ωa] = 0. Of course, in a coordinate basis, this is a perturbation
of the form hab = ∂(avb), which we recognise as a local diffeomorphism. Hence, we see
that the failure for Einstein’s equations to be elliptic arises due to the diffeomorphism
invariance of general relativity. This suggests that the remedy to this issue may be to
fix the gauge of the problem.

In Sections 2.1 and 2.2, we will introduce a couple of choices of the gauge which
can be used to alleviate this issue, specifically the DeTurck gauge and the Bondi-Sachs
gauge, respectively. However, even once a well-defined boundary value problem has
been attained by fixing the gauge there is still great difficulty in solving it except in
the most basic cases due to the non-linear nature of general relativity. Our approach
will be to discretize the coordinate domain on which the equations are defined, and
use this discretization to approximate the coupled non-linear PDEs by a very large
set of non-linear algebraic equations. In Section 2.3, we describe the way in which the
procedure is carried out and how the resultant algebraic equations are solved iteratively
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via the Newton-Raphson method. Lots of problems tend to arise in the numerical
method described above. In Section 2.4, we discuss a number of standard tricks that
can be used to deal with a great deal of these issues.

2.1 The DeTurck method

One approach is to slightly alter the Einstein equation by adding on a term which
makes it manifestly elliptic for a static Ansatz. Let us begin by considering a case with
no matter. Here, one instead solves the Einstein-DeTurck equation, also known as the
harmonic Einstein equation, given by

0 = Rab + d− 1
ℓ2

d

gab − ∇(aξb) (2.4a)

where the DeTurck vector, ξa, is defined by

ξa = gbc (Γa
bc(g) − Γa

bc(ḡ)
)
, (2.4b)

with ḡab a reference metric that we are free to choose, and Γa
cd(g) denoting the Christoffel

connection associated to a metric g. Note that though each Christoffel symbol is not a
tensor, the difference between them is, and thus the DeTurck vector, ξa, is a tensor.

For the Einstein-DeTurck equation, the principal part of the linearisation about a
background is

σ[hab] = −1
2g

cd∂c∂dhab. (2.5)

If gab possesses a timelike Killing vector field, under which the variation hab is invariant,
then σ[hab] must be non-zero. Hence for stationary problems, the Einstein-DeTurck
equation is elliptic.1

Note however, that in order for solutions of (2.4a) to also be a solution to the
Einstein equation, (1.17), we require that ξa = 0. Solutions to (2.4a) with non-zero
ξa are called Ricci solitons. In certain cases there exist theorems which prohibit
the existence of Ricci solitons [133, 154]. However, even in scenarios in which these
theorems do not hold, the DeTurck method can still be extremely useful, though one
must be careful to explicitly check that the solution being obtained is not a Ricci
soliton by carrying out convergence tests.

1Strictly speaking, this is only true outside of any ergoregions of the spacetime; it is the timelike
nature of the KVF which ensures ellipticity. Inside of an ergoregion where the stationary KVF
becomes spacelike, the Einstein-DeTurck equation in fact ceases to be elliptic. However, we shall still
find that it is still a useful numerical formulation for stationary problems including ergoregions.



2.1 The DeTurck method 47

2.1.1 Including a Maxwell field

The above analysis refers to the use of the DeTurck method in the case of pure gravity,
but it can be easily generalised to the case of Einstein-Maxwell theory, which has the
equations of motion given by

0 = Rab + d− 1
ℓ2 gab − 2T̃ab , (2.6a)

0 = ∇aFab (2.6b)

where in the case of a Maxwell field, the trace-reversed stress tensor, T̃ab is given by

T̃ab = Fa
cFbc − 1

2(d− 2)gabFcdF
cd. (2.6c)

The Maxwell equation will similarly yield mixed hyperbolic-elliptic PDEs in general,
once again with the failure of ellipticity originating from the gauge invariance of the
equation. In the DeTurck method, one adds terms to each of these equations, in
particular, taking

0 = Rab + d− 1
ℓ2 gab − 2T̃ab − ∇(aξb) , (2.7a)

0 = ∇aFab − ∇bζ (2.7b)

where ξa is again the DeTurck vector defined in terms of a reference metric by (2.4b),
and

ζ = gcd∇c

(
Ad − Ād

)
, (2.8)

with Ā a reference vector potential which again one is free to choose.
The situation simplifies if the vector potential is assumed to be proportional to

the stationary KVF, Aa ∝ ka, in which case the Maxwell equation is in fact already
automatically elliptic, and so one can take ζ = 0.

There are as yet no theorems prohibiting Ricci solitons a priori in Einstein-Maxwell
theory. Thus, one must check that the solutions to (2.7) are not Ricci solitons by
running convergence tests to check that both ξa and ζ tend towards zero in the
continuum limit.
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2.2 Bondi-Sachs gauge

The Bondi-Sachs gauge is another choice one can take in order to obtain stationary
solutions. We will find it is particularly useful to obtain solutions similar to the
black funnels described in Section 1.4, which are asymptotically locally anti-de Sitter
solutions with a horizon anchored at two different points of the conformal boundary.
This gauge was discussed in references [155–157] in four dimensions in the context of
time-dependent problems. It was first used as a gauge choice to numerically solve a
stationary problem in [2] in the context of pure gravity and in [158, 3] for Einstein-
Maxwell theory. One particularly favourable feature of Bondi-Sachs gauge is that,
unlike in DeTurck gauge, no non-analytic terms arise in an expansion of an Einstein
metric near the conformal boundary [159].

For a general AlAdS metric in d dimensions, with conformal boundary at y = 0,
the metric can be locally written in Bondi-Sachs gauge as

ds2 = L2

y2

[
e2β

(
−V dv2 − 2 dv dy

)
+ e2χhIJ

(
dxI − U I dv

) (
dxJ − UJ dv

) ]
, (2.9)

where the stationary Killing vector field in these coordinates is given by ka = (∂/∂v)a,
and the I, J, . . . indices run over all coordinates except v and y. We take dethIJ = 1,
so that the determinant of the induced geometry on constant y slices is contained
within the function χ. For the current analysis, let us assume one can take coordinates
such that U I ̸= 0 for only one of the xI coordinates and that the other xJ coordinates
span a conserved (d− 3)-sphere,2 in which case the metric can be written as

ds2 = L2

y2

e2β
(
−V dv2 − 2 dv dy

)
+ e2χ

(
1

Ad−3 (dx− Ux dv)2 + A dΩ2
(d−3)

) , (2.10)

with five functions, V, Ux, β, A, χ, depending upon {x, y} for a stationary problem.
Note that by redefining the radial coordinate, y, we also have the freedom to fix one of
β or χ (or a combination thereof).

In the vacuum case, we wish to solve the Einstein equation with negative cosmolog-
ical constant:

Eab := Rab + d− 1
ℓ2

d

gab = 0. (2.11)

2All uses of the Bondi-Sachs gauge in this thesis satisfy these assumptions, but one can also use
this gauge for more general stationary problems, with the analysis of this section generalising in a
fairly trivial fashion.
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The Einstein equation has more non-trivial components than the number of free
functions, {V, Ux, β, A, χ}, but it so happens that not all of these components are
independent. Following [155–157], it turns out that one need only solve the four
independent equations of motion coming from Eij = 0, with i, j ̸= v in the bulk — we
call these the bulk equations. This leaves three other non-trivial equations, Eva = 0,
which must also be satisfied in order to have a full solution to the Einstein equation.
However, it can be shown using the contracted Bianchi identity that if these additional
equations are satisfied at some constant y slice, then actually they are necessarily
satisfied throughout the whole of the bulk, so long as the bulk equations are also
satisfied there. The contracted Bianchi identity is given by

∇aR
a

b = −1
2∇bR. (2.12)

In a coordinate basis, the Bianchi identity can be expanded to the equality

0 = gbc

(
∂bRac − 1

2∂aRbc − Γd
bcRad

)
. (2.13)

We’ll assume that the bulk equations hold, i.e. we have

Ryy = 0, Ryx = 0, RAx = 0, Rxx = −d− 1
ℓ2

d

gxx, RAB = −d− 1
ℓ2

d

gAB, (2.14)

where we’ll use A,B, . . . to denote the indices of the coordiantes spanning the (d− 3)-
sphere. Let us first consider the y-component of the contracted Bianchi identity, given
in (2.13). Noting that the inverse metric has gvµ = 0, where µ ̸= y, and after applying
the bulk equations, one finds that the y-component of the contracted Bianchi identity
simplifies to

0 = 2
ℓ2

d

gIJ∂ygIJ − gabΓv
abRyv. (2.15)

One can directly calculate the inverse metric and the Christoffel symbols, and find
that (2.15) is solved by

Ryv = −d− 1
ℓ2

d

gyv. (2.16)

Thus the bulk equations automatically solve Eyv = 0 algebraically.
It still remains to satisfy the (v, v) and the (v, x) components of the Einstein

equation. For the latter, consider the x-component of the contracted Bianchi identity.
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We have
0 = gbc

(
∂bRxc − 1

2∂xRbc − Γd
bcRxd

)
. (2.17)

Expanding all of these terms, applying the bulk equations, as well as (2.16) yields

gvy∂yRvx − gabΓv
abRvx = d− 1

ℓ2
d

− gvy∂xgvy + gxy∂yg
vy + gxy∂ygxx + 1

2g
xx∂xgxx

− 1
2g

AB∂xgAB − gabΓx
abgxx

. (2.18)

Now by direct calculation, one can check that Rvx = −(d− 1)ℓ−2
d gvx, or equivalently

Evx = 0, solves the above equation. Since the equation is a first-order PDE, possessing
only a y-derivative, this means that so long as we set Evx = 0 on some constant y
slice, then the contracted Bianchi identity ensures that the unique solution must satisfy
Evx = 0 throughout the whole bulk, via Picard’s theorem.

We can deal with the (v, v) component of the Einstein equation in a similar fashion
by considering the v-component of the contracted Bianchi identity:

0 = gbc

(
∂bRvc − 1

2∂vRbc − Γd
bcRvd

)
. (2.19)

Once again, we expand each term, apply the bulk equations, (2.16), and now additionally
Evx = 0. This gives

gvy∂yRvv − gabΓv
abRvv = d− 1

ℓ2
d

gyy∂ygvy + gyx
(
∂ygvx + ∂xgvy

)
+ gxx

(
∂xgvx − 1

2∂vgxx

)

− 1
2g

AB∂vgAB − gab
(
Γy

abgvy + Γx
abgvx

) . (2.20)

Again by direct calculation, one can verify that Rvv = −(d − 1)ℓ−2
d gvv solves this

equation, hence by a similar argument to the (v, x) component, so long as we enforce
Evv = 0 on a constant y slice, it will be satisfied throughout the whole bulk.

Hence, in summary, when working with a metric in Bondi-Sachs gauge, one need only
solve the bulk equations coming from Eij = 0 for i, j ≠ v, and additionally set Eva = 0
as boundary conditions at some constant y hypersurface, and then the contracted
Bianchi identity enforces that Eva = 0 holds throughout the whole spacetime.

Since we are not directly enforcing Eva = 0 everywhere across the bulk, one way to
monitor the convergence of our numerical method is to measure the magnitude of Eva
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throughout spacetime on the numerical solution. In the continuum limit, this should
vanish even away from where Eva = 0 was imposed as a boundary condition. In this
way, the method we outline here is not very different from the DeTurck method, where
we also have to check that the DeTurck vector vanishes in the continuum limit. Though
practically this method has proved to be extremely useful for finding solutions, it still
remains to be fully understood whether this integration scheme leads to a well-defined
elliptic boundary value problem for a stationary spacetime in a precise mathematical
sense.

2.2.1 Including a Maxwell field

The Bondi-Sachs gauge can also be used to solve stationary problems in Einstein-
Maxwell theory, with equations of motion (2.6). With the metric in Bondi-Sachs gauge,
as described in (2.9), the vector potential must be taken in a gauge with Ay = 0 where
y, once again, is the AdS radial direction. Likewise to the Einstein equation, one solves
only a subset of the PDEs arising from the Maxwell equations throughout the bulk
directly, setting the remainder as boundary conditions at a constant y slice. Specifically,
one must solve ∇aFai = 0 where i ̸= v but only set the ∇aFav = 0 equation as a
boundary condition. By a similar argument as for the Einstein equation presented
above, this ensures that the full Maxwell equation is satisfied throughout the bulk.

2.3 The Newton-Raphson method

By considering an Ansatz with N unknown metric functions and using either the
DeTurck method, or by directly fixing the gauge to be Bondi-Sachs and considering
the bulk equations, one obtains a set of N coupled, non-linear PDEs:

Gi [x⃗, F1, . . . , FN ] = 0, (2.21)

where Gi, for i = 1, . . . , N , are differential operators that may also depend on the
derivatives of Fj. We will solve these numerically by using collocation methods to
estimate derivatives and the Newton-Raphson algorithm to iteratively approach the
solution. Such methods are reviewed fully in [153].

The Newton-Raphson algorithm, sometimes just called Newton’s method, was first
introduced for the root finding of complicated functions, but can also be useful for
numerically solving PDEs. One expands about an estimate, F [n]

j , for the functions to
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linear order:

0 = Gi [x⃗, F1, . . . , FN ] = Gi

[
x⃗, F

[n]
1 , . . . , F

[n]
N

]
+ δGi

δFj

[
x⃗, F

[n]
1 , . . . , F

[n]
N

]
δFj + O(δF 2

j ),

(2.22)
where δFj = Fj −F

[n]
j , and δGi/δFj is a linear second order differential operator acting

on δFj, which can be found by linearising the equations by taking Fj = Fj + ε δFj in
Gi, differentiating with respect to ε and then setting ε to zero. If the estimate, F [n]

j , is
close to a true solution of Gi, then the O(δF 2

j ) term is very small, and hence

δGi

δFj

[
x⃗, F

[n]
1 , . . . , F

[n]
N

]
δFj ≃ −Gi

[
x⃗, F

[n]
1 , . . . , F

[n]
N

]
. (2.23)

Therefore, if we can evaluate Gi and δGi/δFj for our given estimate, F [n]
j , we can solve

(2.23) for δFi and then take as our next estimate

F
[n+1]
i = F

[n]
i + δFi. (2.24)

Repeating this iteratively will yield a quadratic convergence to the solution, as long as
we start with a seed sufficiently close to the solution.

The linear PDEs given by (2.23) still depend on derivatives of the functions, so
they are remain tricky to solve. In order to do so we discretize and use collocation
methods, which are reviewed in [160], to approximate them with algebraic equations.

To elucidate how these collocation methods work, let’s first consider the simpler case
of a single function, f(x), depending upon a single coordinate, x ∈ [x−, x+]. We take a
set of points xi called collocation points, spanning this coordinate patch. Let fi := f(xi)
be the value of the function at these points. The purpose of collocation methods is
to approximate the derivatives f (n)

i := (d/ dx)nf |x=xi
in terms of the evaluations, fj,

of the function at each of the lattice points. That is, we seek differentiation matrices,
D

(n)
ij , such that

f
(n)
i ≃ D

(n)
ij fj, (2.25)

where we’ve summed over the repeated j index. The simplest choice is the standard
finite differences approximation. One takes xi to be evenly space, with spacing δx and
then (for internal points) one takes the estimate

f
(1)
i = fi+1 − fi−1

2δx , f
(2)
i = fi+1 − 2fi + fi−1

(δx)2 , . . . (2.26)
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The derivatives at the endpoints of the domain can also be estimated. In the case of
finite differences, the differentiation matrices are very sparse, but the approximation of
the derivatives is not particularly accurate. One may envisage improving the accuracy
of the approximation by taking the differentiation matrices to be extremely dense, so
that, for example, f (1)

i , depends on fj for all j. However, if one does this with evenly
spaced points, one finds that the interpolant has large oscillations near the endpoints.

The solution to this issue is to instead take unequally spaced collocation points,
which are particularly clustered towards the endpoints. One example of this is using a
Chebyshev-Gauss-Lobatto grid, defined by taking

xj = x+ − x−

2 + x+ + x−

2 cos
(
jπ

n

)
, for j = 0, . . . , n (2.27)

where x+ = x0, . . . , xn = x− are the collocation points in descending order. The
first-order differentiation matrix is given by

D
(1)
ii =

∑
k ̸=i

1
xi − xk

, D
(1)
ij = ai

aj

(
xi − xj

) (i ̸= j),

where ai =
∏
k ̸=i

(xi − xk) . (2.28)

Higher order derivatives can be found simply by repeatedly applying the first order
differentiation matrix, or alternatively from specifically defining higher order differenti-
ation matrices which are not too much more complex. Such differentiation matrices
can easily be generalized to more dimensions by taking a lattice of collocation points
spanning the higher dimensional coordinate space and estimating derivatives in each
direction using the one-dimensional differentiation matrices given above.

Now, let us discuss how we can use such collocation methods to solve the linear
PDEs, (2.23), that are given to us by each iteration of Newton’s method. Given an
estimate F [n]

j , we seek to solve this equation for δFj. The difficulty of solving this
equation comes down to the fact that Gi are differential equations, and so depend not
only upon the evaluation of each function Fj, but also their derivatives.

Suppose we know the value of each of the functions at each of the collocation points,
Fj (x⃗ℓ). We can then estimate the derivatives of each function using differentiation
matrices as described above, and then plug these into Gi. Therefore, we can approximate
the differential operator, Gi, at these points by a function Gi:

Gi [x⃗k, F1, . . . , FN ] ≃ Gi(x⃗k, F1(x⃗ℓ), . . . , FN(x⃗ℓ)). (2.29)
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The key difference is that, whilst Gi is a differential operator, depending on the
evaluations and the derivatives of the functions, Fj, at a single point, Gi is simply a
function that now depends only on the evaluation of the functions, Fj, at all of the
lattice points, but not on derivatives. Plugging an estimate F [n]

j for the evaluation of
the functions at each lattice point yields a numerical vector of length NM (where N is
the number of PDEs and M is the number of lattice points) representing the evaluation
of the differential operator on the estimate F [n]

j . Similarly, by plugging in the estimates
F

[n]
j , one can replace the second order differential operator δGi/δFj by an NM×NM

numerical matrix. Finally, the unknown functions, δFj in (2.23) is replaced by the
value of that function at each lattice point, yielding an unknown vector of length NM
denoted by δFj(x⃗ℓ).

Therefore, the use of collocation methods allows for the approximation of the linear
PDEs described in (2.23) by a very large set of linear algebraic equations in which
the only unknown quantity is the vector δFj(x⃗ℓ), which can then be calculated via a
linear solve algorithm. Here we have presented the overall approach as a process of first
linearising the PDEs and then using collocation methods to approximate these by linear
algebraic equation. However, really these two methods must be utilised in tandem,
and so one could equally consider the approach as approximating the non-linear PDEs
by non-linear algebraic equations using collocation methods which are then solved
iteratively using the Newton-Raphson method.

As discussed above, once one has obtained δFj(x⃗ℓ), one can update the estimate for
the solution using (2.24). If the infinity norm of δFj(x⃗ℓ) is less than some pre-chosen
small value, ϵmin, then this suggests we are very close to a true solution of the original
non-linear PDEs, (2.21), and so we can take F [n+1]

j to be the numerical solution. If the
norm of δFj(x⃗ℓ) is extremely large, say greater than ϵmax then this implies the seed
is outside the radius of convergence of the Newton-Raphson algorithm, meaning that
the algorithm will diverge, and suggesting one needs to use a different seed closer to
the solution. Let us now consider a number of tricks which can aid in order to ensure
convergence to the desired solution.

2.4 A toolbox of tricks

2.4.1 Damping

The first thing one can do if the Newton-Raphson method is quickly diverging is
use damping. Effectively, in doing so, one is being sceptical about the accuracy of
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the update δFi obtained, and so only adding a fraction of this value to the previous
estimate:

F
[n+1]
i = F

[n]
i + α δFi, (2.30)

for 0 < α ≤ 1. This will reduce the risk of the Newton method diverging, though will
slow down convergence once one is close to a solution. However, one could also take
the value of α to depend upon the infinity norm of δFi, so that it is taken to be small
when one is far away from a solution but equal to one when very nearby the solution.
For example, one can take

α =


β

||δFi||∞ if ||δFi||∞ > β

1 otherwise,
(2.31)

where ||δFi||∞ denotes the maximum value across each of the functions and each of the
lattice points, and β can be chosen as the number at which one wishes to introduce
damping.

2.4.2 Obtaining a good seed

For complicated problems though, if one starts with a seed too far away from a solution,
no amount of damping will stop the Newton-Raphson algorithm from diverging. Hence,
the choice of a good seed is imperative.

Often there are natural choices for a seed. As a toy example, let us imagine we
possessed these numerical methods in the fifty years between the discovery of the
analytical expressions for the Schwarzschild and Kerr solutions. In that case one could
have found the Kerr solution numerically by using the Schwarzschild solution as a seed
for a very slowly rotating black hole. Then one could increase the angular velocity each
time taking the previously found Kerr solution as a seed, so that the seed is always a
fairly good estimate for the next solution. This is an example of “marching”, where
one starts at some point within a continuous parameter space, and slowly alters the
parameters, each time using the nearby solution as a seed. This is a very effective
method for exploring a parameter space, though it requires a solution within that space
to already be known.

However, if one wants to find an entirely new class of solutions, say with a different
asymptotic structure, or with multiple horizons, it is often much more difficult to find
a first solution within the parameter space. One sometimes can take a seed which
satisfies all of the boundary conditions, but not necessarily any field equations (indeed,
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in the DeTurck method, the reference metric must satisfy all the boundary conditions
so it can often provide a useful seed). In general, though, this still will not be a good
enough first guess in order to ensure convergence.

One method to overcome this issue is named the δ-trick, used in [161, 103, 4]. The
philosophy is effectively to begin by artificially altering the equations of motion to ones
that are automatically solved by some metric, and then to slowly deform the equations
back to the true equations of motion of the problem, using the previous solution as a
seed each time. Specifically, say the equations of motion in question are denoted all
together by E[g] = 0, where g denotes the solution metric (and vector potential in
the case of Einstein-Maxwell) that one is seeking to obtain numerically. Suppose one
knows that another configuration, g0, satisfies some alternative equations of motion,
E0[g0] = 0. Then one could define

Ê[g; δ] = (1 − δ)E[g] + δE0[g]. (2.32)

It is clear that g0 is a solution to Ê[g; 1] = 0, and that a solution to Ê[g; 0] = 0 would
be the desired solution to our original problem. Hence, one can start with δ = 1 and
g0 as a seed, and solve Ê[g; δ] = 0 iteratively, each time slightly decreasing δ and using
the previous intermediate solution as a seed. If, via this process, δ can be reduced all
the way to zero, then a solution to the original problem has been obtained.

One particular example of the δ-method which is useful when solving the Einstein-
DeTurck equation is to define E0 to be an equation which is automatically solved by
the reference metric, g0 = ḡ, say by taking E0[g] = E[g] − E[ḡ]. This yields

Ê[g; δ] = E[g] − δE[ḡ]. (2.33)

2.4.3 Patching

Sometimes if the solutions exhibit very large derivatives, it can be useful to split the
coordinate domain into multiple patches, which increases the accuracy of the estimation
of the derivatives via the pseudospectral collocation methods described above.

More fundamentally though, the pseudospectral collocation methods described
above work well on only rectangular (or cuboid in higher dimensions) coordinate
domains, and therefore, patching methods are necessary in the case that the coordinate
domain is not rectangular. One splits the non-rectangular domain into multiple
rectangular patches on which the collocation methods can be used to estimate derivatives
as usual. This also allows one to use an entirely different coordinate systems in different
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regions of the space, which can be very extremely useful when designing a reference
metric.

There are a number of ways to interpolate between the patches. Firstly, one can
take the patches to overlap and then ensure that the functions agree in either patch
in the region where they overlap [162–164]. Alternatively, one can take the patches
to meet only at their boundaries, and enforce that the functions and their derivatives
(when written in the same coordinate system) agree at the interface between the two
patches [161, 165–167, 103, 104, 4]. This latter method called transfinite interpolation
is the method used in Chapter 6, where we will explain it in far more detail.

2.4.4 Turning points

Sometimes when varying parameters in a space of solutions, one approaches what is
known as a turning point. Say, for simplicity, there is only a single parameter, λ. Then
it may be that solutions cease to exist as λ increases to a certain value, λ⋆. Often
this is a sign of the solutions becoming singular at this point in the parameter space,
however, this is not always the case.

Instead it can be that the solutions remain regular, but certain physical quantities
(say, some charge Q) begin to have very large derivatives with respect to λ. Thus at
λ⋆, one has dλ/ dQ → 0. This suggests that new solutions can be found by instead
decreasing λ once again. Hence, a new branch of solutions can be found, meaning that
near λ⋆ there are two distinct solutions with the same input value of λ.

It can be tricky to jump between the two branches when starting on one of them,
since the Newton-Raphson algorithm will naturally converge to the most nearby
solution, which will generally be on the same branch as the seed. One way to prevent
this from occurring is to slightly alter the seed in order to induce the Newton-Raphson
algorithm to land on the other branch. Say one has two solutions, denoted by g1 and
g2, which solve the equations of motion with parameters λ1 and λ2, respectively, where
λ1 < λ2 < λ⋆. Then consider taking

gseed = g2 + γ(g2 − g1) (2.34)

as the new seed. If γ = 0, then gseed = g2, the solution on the first branch. However, if
we take γ to be large, then it may kick the seed far enough that we converge to a new
solution with λ = λ2 on the second branch. The intuition between why this may work
is based on an assumption that the change in solution between λ = λ1 and λ = λ2 may
be similar to the change between the first λ = λ2 solution and the second λ = λ2 on
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the next branch. However, if order for this assumption to be accurate, one needs both
λ2 − λ1 and λ⋆ − λ2 to be very small. This method was used in [165, 166, 4] to find
solutions either side of turning points — the last of these citations refers to the paper
reviewed in Chapter 6.



Chapter 3

Rotating Randall-Sundrum II black
holes

Abstract

We find rotating black hole solutions in the Randall-Sundrum II (RSII) model
by numerically solving a three-dimensional PDE problem using pseudospectral
collocation methods. We compute the area and equatorial inner-most stable
orbits of these solutions. For large black holes compared with the AdS length
scale, ℓ, the black hole exhibits four-dimensional behaviour, approaching the
Kerr metric on the brane, whilst for small black holes, the solution tends instead
towards a five-dimensional Myers-Perry black hole with a single non-zero rotation
parameter aligned with the brane. This departure from exact four-dimensional
gravity may lead to different phenomenological predictions for rotating black
holes in the RSII model to those in standard four-dimensional general relativity.
This work, first presented in [1], provides a stepping stone for studying such
modifications.

3.1 Introduction

In the century since the discovery of general relativity, there has been much excitement
over the possibility that our universe may contain extra dimensions. For a large part,
this has originated from the fact that superstring theory is known to be mathematically
consistent only in ten dimensions (nine spatial and one temporal). However, such
considerations lead to an inevitable question: If the universe does contain extra
dimensions, why does it appear so stubbornly four-dimensional?
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For matter fields, this can be answered fairly simply — it is perfectly consistent
for the fields of the standard model to be restricted to a 3-brane (which is slice of
spacetime made up of the temporal dimension as well as three spatial dimensions) in a
higher dimensional space. However, gravity is not so easily dealt with. Through his
theory of general relativity, Einstein taught us that gravity is simply the curvature of
spacetime, and therefore it necessarily must be able to propagate in all directions and
all dimensions. Gravity in our universe, however, seems to exhibit four-dimensional
behaviour; in particular, it satisfies Newton’s inverse square law of gravitation at low
energies. In general, adding extra spatial dimensions will break this inverse square
behaviour. And so, to really tackle the problem at hand, we must slightly update the
question posed in the previous paragraph: If the universe does contain extra dimensions,
why does gravity appear so stubbornly four-dimensional?

Generally, in order to answer this, the extra dimensions in such theories are taken
to be compactified and curled up very small, so that they have no effect on observers
at large distances. However, to some surprise, Lisa Randall and Raman Sundrum
showed in 1999 that this is not the only possibility. They introduced a five-dimensional
model, now called the Randall-Sundrum II (RSII) model [142], which contains a single
extra dimension that is non-compact and infinite in extent. However, vitally, the extra
dimension is heavily warped so that the low-energy behaviour of gravity on a 3-brane on
which the matter fields are confined still resembles four-dimensional general relativity.
The Randall-Sundrum paradigm was first introduced in [141] in order to provide a
possible solution to the hierarchy problem: the question regarding why gravity is so
many orders of magnitude weaker than the other forces.

Section 1.5.2 of the introduction presented a brief review of the key features of
the RSII model. Roughly speaking, the warping causes the graviton to be trapped in
the vicinity of the 3-brane at low energies by a very steep potential well, leading to
apparent four-dimensional behaviour according to the observers living on the brane.
However, at high energies, the graviton is able to overcome this potential well and
access the extra dimension. Therefore, at these scales there may be deviations from
four-dimensional general relativity in the effective theory of gravity on the RSII brane.
This motivates finding black hole solutions in the RSII model, since these will explore
the high energy behaviour of gravity, and hence may exhibit different properties to
standard four-dimensional black holes.

As we discussed in Section 1.5.3, due to the AdS/CFT correspondence [109–111],
the RSII model has an alternative interpretation, as a four-dimensional theory in
which gravity is corrected by the addition of a strongly coupled CFT with a UV



3.1 Introduction 61

cut-off [168, 143, 146]. Therefore there are two reasons to be interested in the RSII
model: as a genuine candidate for an extra dimension in our Universe, and also as a
way to study the behaviour of a strongly coupled CFT when coupled to gravity.

This duality also initially led to some debate regarding whether large, static black
holes could exist in the RSII braneworld at all. Therefore a black hole in the five-
dimensional RSII bulk would correspond holographically to a quantum-corrected black
hole on the brane [148]. It was thought that the black hole would quickly evaporate
due to extra radiation arising from the CFT degrees of freedom, meaning any bulk
black hole solution would be time-dependent. However, it was contended that this
argument neglects the strong coupling of the CFT [128].

The debate was settled in [149], where static, stable black hole solutions on the
brane were found for both small and large radii. This solution is closely related to black
droplets and funnels [129–135, 137–140, 165], which are the gravitational duals to the
limit where the CFT decouples from gravity, and were summarised in Section 1.4.

However, observed black holes in our universe tend to be rotating, and hence in
order for the RSII model to be phenomenologically viable, it must exhibit not only
static black hole solutions, but also rotating ones. In this chapter, we describe such
rotating black hole solutions in the RSII braneworld. We were able to find these black
hole solutions over a two parameter space. One parameter runs over the possible
angular velocity of the black holes and the other measures the size of the black hole,
relative to the AdS length scale.

Large RSII black holes exhibit four-dimensional behaviour, with the induced metric
on the brane closely resembling that of the usual Kerr metric of a four-dimensional
rotating black hole. However, smaller RSII black holes instead show five-dimensional
behaviour, seeming to approach the five-dimensional Myers-Perry black hole [96] with
single rotation.

We’ll see this transition particularly clearly by considering the area of the event
horizon of the black holes in the five-dimensional spacetime. In the limit where
the black holes are very small, the area scales roughly as the radius cubed, which
is indicative of five-dimensional behaviour, meaning that the black hole is roughly
spherical in the five-dimensional spacetime. On the other hand, in the limit where the
black holes become large, the area instead scales with the radius squared, revealing
four-dimensional behaviour. This means that in this large limit, the black holes become
more and more pancake-like, flattened in line with the brane and extend little into the
extra dimension (relative to the other dimensions along the brane).
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This transition from four-dimensional to five-dimensional behaviour means that
braneworld black holes of a finite size will have a slightly different geometry on the
brane to the Kerr black hole, and hence, may lead to different phenomenological
predictions to those arising from standard four-dimensional general relativity.

One quantity that changes as a result of this transition is the position of the
inner-most stable circular orbits (ISCO) around the equator of the rotating RSII black
holes. In general, stable orbits around a black hole cannot come arbitrarily close to
the event horizon, and so for a given black hole, there is a location of where the closest
possible stable circular orbit to the event horizon would be situated. This is called the
ISCO. The motivation for finding this quantity for the rotating RSII black holes is the
fact that, unlike their four-dimensional counterparts, standard five-dimensional black
holes do not exhibit stable orbits at all. Since the RSII black holes exhibit a transition
from four-dimensional to five-dimensional behaviour as they decrease in size, one may
therefore expect that, under this transition, the position of the ISCO diverges away
from the corresponding value for the four-dimensional black hole. We find that the
rotating RSII black holes do exhibit stable orbits, and that their ISCO has greater
radius than the standard four-dimensional Kerr black hole. Moreover, the value of the
ISCO tends towards that of the Kerr black hole as the braneworld black holes become
large, yielding more evidence that in this limit the braneworld black hole very closely
resembles a standard four-dimensional black hole on the brane.

The fact that we do obtain different predictions for finitely sized rotating RSII black
holes to standard black holes provides a glimpse of the possibility of using astrophysical
measurements of rotating black holes to test the viability of the RSII model in our
Universe. However, since large rotating RSII black holes very closely resemble standard
four-dimensional black holes, for this to really be an experimental possibility, much
more finely-grained features of the rotating RSII black holes, such as their quasi-normal
mode spectra, would need to be calculated in order to provide sharper contrast with
Kerr black holes. It is also hoped that microscopic black holes may be produced in
future in high-energy particle colliders, such as the International Linear Collider [90, 91]
and the Compact Linear Collider [92]. If the Universe did contain a Randall-Sundrum
extra dimension, then these microscopic black holes would be much more likely to
exhibit five-dimensional behaviour than astrophysical black holes, being so many orders
of magnitude smaller. Therefore, they would provide an excellent testing ground for
seeking and constraining a Randall-Sundrum extra dimension.

In Section 3.2 we will present the Ansatz for the rotating RSII black hole, written in
some particularly useful coordinates. We’ll go on to describe some of the key features
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of the solutions in Section 3.3, in particular, showing the aforementioned transition
from five-dimensional to four-dimensional behaviour of the RSII black holes as they
increase in size by considering the entropy, the inner-most stable circular orbits, and
the geometry of the bifurcating sphere of the rotating RSII black hole solutions. Finally,
we will end with a discussion in Section 3.4 and highlight some possible avenues for
further study.

3.2 Obtaining braneworld black holes

3.2.1 The Ansatz

The bulk of the RSII model is a solution to Einstein’s equation with negative cosmo-
logical constant in five dimensions,

Rab + 4
ℓ2

5
gab = 0. (3.1)

As discussed in Section 1.5.2, the original RSII spacetime, in which the induced metric
on the brane is flat, can be expressed as a region of the Poincaré patch of AdS, given
by

ds2 = ℓ2
5
z2

(
dz2 − dt2 + dr2 + r2 dΩ2

(2)

)
, (3.2)

between a constant z slice and the Poincaré horizon at z = ∞. If we assume that a black
hole in the RSII would indeed “pinch off” at some point in the bulk, then this implies
that if we were to use similar {z, r} coordinates as used above to describe the empty
RSII spacetime then the black hole would be described by some non-trivial surface in
the {z, r} plane. Therefore, the coordinate domain would have five boundaries in these
coordinates, which would need to be split up in order to carry out numerics. However,
these issues can be alleviated by considering the following coordinate transformation

z = ∆(x, y)
1 − y2 , r = x

√
2 − x2

1 − y2 , where ∆(x, y) = 1 − x2 + β−1(1 − y2). (3.3)

Now the metric of the empty RSII spacetime becomes

ds2 = ℓ2
5

∆(x, y)2

[
−h(y)2 dt2 + 4y2

h(y)2 dy2 + 4
g(x) dx2 + x2g(x) dΩ2

(2)

]
, (3.4)

where, here and for the remainder of the chapter, g(x) = 2 −x2 and h(y) = 1 − y2. The
coordinates x ∈ (0, 1), y ∈ (0, 1) parameterize the RSII bulk with the brane situated at
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Fig. 3.1: The coordinate domain of a static RSII black hole. The red boundary is the brane. The
dashed line is where the S2 shrinks to zero size and the dotted boundaries are asymptotic boundaries.
In {z, r} coordinates there are five boundaries, but the y = 1 surface encompasses both z → ∞ and
r → ∞, so that there are only four boundaries in the {x, y} coordinates. Constant y surfaces in the
bulk are depicted as blue lines. The horizon is given by y = 0 in these coordinates.

x = 1, which is a surface of constant z = β−1, and the Poincaré horizon at y = 1, and so
they are particularly useful coordinates to search for solutions in the RSII bulk. Indeed,
these were the coordinates used in [149] to find a static RSII black hole. Figure 3.1
shows a sketch of the coordinate domain of the static RSII black hole. Horizontal and
vertical lines are constant z and r surfaces, respectively, whereas the blue curves are
curves of constant y.

To obtain an Ansatz for the static RSII black hole, the metric (3.4) was adapted
to include a bifurcating Killing horizon at y = 0 (this is done by moving the factor
of y2 multiplying the dy2 term in (3.4) to instead be multiplying the dt2 term), and
adding unknown functions multiplying each term in the metric, whilst ensuring that
the metric remains spherically symmetric and static.

In our case, we are seeking a rotating black hole solution, which will be neither
spherically symmetric nor static. However, we do assume it will be stationary, axisym-
metric (with associated Killing vector fields ∂t and ∂ϕ, respectively) and symmetric
under the transformation of simultaneously flipping the signs of both t and ϕ. The
most general Ansatz that is consistent with these symmetries and that possesses a
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bifurcating Killing horizon at y = 0 is given by

ds2 = ℓ2
5

∆(x, y)2

−h(y)2y2P (y)
A(y, ξ) F1 dt2 + 4F2

P (y)h(y)2 dy2 + 4x2g(x)F3

2 − ξ2

(
dξ + F7

xh(y) dy
)2

+ (1 − ξ2)2S(x, y, ξ)x2g(x)F4
(
dϕ+ y2W (y, ξ)F6 dt

)2

+ 4F5

g(x)

(
dx+ F8

h(y) dy + F9 dξ
)2
. (3.5)

where the coordinate ξ measures the inclination from the equatorial plane and, in pure
AdS5, is related to the usual polar angle, θ, on the S2 via ξ(2 − ξ2)1/2 = cos θ. The
coordinates not associated to any isometries run over the cube {x, y, ξ} ∈ (0, 1)3. A
constant ξ slice of this coordinate domain will resemble Figure 3.1. We will describe
each of these boundaries of this cube momentarily. The functions A, P , S and W

depend upon a parameter α which measures the rotation of the black hole and are
given by

A(y, ξ) = 1 + h(y)2α2(2 + α2 − y2(1 + α2 − ξ2(2 − ξ2)(1 − h(y)α2))) (3.6a)

P (y) = 1 − h(y)α2 (3.6b)

S(x, y, ξ) = 1 + h(y)2α2x2(2 + α2x2 − y2(1 + α2x2 − ξ2(2 − ξ2)(1 − h(y)α2x2)))
(1 + h(y)2ξ2(2 − ξ2)α2x2)2

(3.6c)

W (y, ξ) = 3 − 3y2 + y4 + h(y)2(1 + ξ2(2 − ξ2))α2 − h(y)3ξ2(2 − ξ2)α4

1 + h(y)2α2(2 + α2 − y2(1 + α2 − ξ2(2 − ξ2)(1 − h(y)α2))) , (3.6d)

where, recall, h(y) = 1 − y2. The functions Fi(x, y, ξ) for i = 1, ..., 9 are unknown; it is
these functions that we must determine numerically in order to obtain the metric of
the rotating RSII black hole. Note that this Ansatz reduces to that used to obtain the
static RSII black hole of [149] by taking F3 = F4 and F6 = F7 = F9 = α = 0.

In order to find the Fi functions, we use the numerical methods described in
Chapter 2. Specifically, we solve the Einstein-DeTurck equation which now yields nine
elliptic PDEs for the nine unknown Fi functions. We choose the reference metric to be
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given by the Ansatz, with

Fi(x, y, u) =


1 for 1 ≤ i ≤ 5

α
1+α2 for i = 6
0 for 7 ≤ i ≤ 9.

(3.7)

This reference metric has a horizon at y = 0. Let us quickly consider properties of
this horizon, such as its temperature and angular velocity, since the horizon of the full
solution will necessarily inherit the same values of those quantities. We wish to evaluate
the quantities in terms of an asymptotic observer living on the brane, i.e. at x = 1
and y = 1. This requires rescaling the time coordinate by taking t = T/ (ℓ5β). From
the metric we can immediately read off the angular velocity of the horizon, measured
in units of T :

ΩH = α

ℓ5β(1 + α2) . (3.8)

To obtain the temperature we must investigate the near horizon geometry a little closer.
Taking the transformation

y =
√

1 − α2
(
β(1 − x2) + 1

)
2βℓ5

ρ, (3.9)

and then expanding near the horizon, one finds that the reference metric becomes

ds̄2 = −
(
κ2ρ2 + O(ρ3)

)
dt2 +

(
1 + O(ρ)

)
dρ2 + . . . , (3.10a)

where the . . . denotes the other components of the metric and κ is the surface gravity,

κ = 1 − α2

2ℓ5β(1 + α2) . (3.10b)

As usual we can calculate the temperature by Wick rotating to Euclidean time, noting
the Euclidean time must have a certain periodicity in order for the metric to be smooth,
and then associating this periodicity with the inverse temperature. Specifically, the
Hawking temperature is given by

TH = 1
2πκ = 1 − α2

4πℓ5β(1 + α2) . (3.11)
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The full solutions to the Einstein equations will inherit these values of the temperature
and angular velocity from the reference metric. They also provide clarification regarding
the meaning of the two parameters of the metric, α ∈ (0, 1) and β ∈ (0,∞). The
rotation parameter, α, controls the rotation of the black hole, with α = 1 being an
extremal black hole and α = 0 the static braneworld black hole of [149]. The size of
the black hole relative to the AdS length scale ℓ5 is in turn controlled by the length
parameter, β. Note that the ratio ΩH/TH is independent of β and ℓ5, and it is this
quantity we fix when comparing different black holes of the same rotation but of
different sizes relative to ℓ5.

3.2.2 Boundary conditions

Via the DeTurck method, we have obtained an elliptic set of nine coupled PDEs defined
on the cube {x, y, ξ} ∈ (0, 1)3, in terms of the nine unknown functions, Fi. In order to
have a well-defined boundary value problem we need to set nine boundary conditions
on each of the six faces.

Firstly, let us consider the fictitious boundaries of our domain at each of which the
conditions are given by requiring regularity of the metric at the boundary. At the axis
of symmetry where the S2 shrinks to zero size, x = 0, we require that

∂xFi(0, y, ξ) = 0 for 1 ≤ i ≤ 6
Fi(0, y, ξ) = 0 for 7 ≤ i ≤ 9. (3.12)

At the bifurcating Killing horizon, y = 0, we have that

∂yFi(x, 0, ξ) = 0 for 1 ≤ i ≤ 6 or i = 9
Fi(x, 0, ξ) = 0 for 7 ≤ i ≤ 8. (3.13)

The boundary conditions on the equatorial plane, ξ = 0, are given by

∂ξFi(x, y, 0) = 0 for 1 ≤ i ≤ 6 or i = 8
Fi(x, y, 0) = 0 for i ∈ {7, 9}. (3.14)
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Finally, at the north pole, ξ = 1, we require that

∂ξFi(x, y, 1) = 0 for i ∈ {1, 2, 4, 5, 6, 8}
Fi(x, y, 1) = 0 for i ∈ {7, 9}
F3(x, y, 1) = F4(x, y, 1). (3.15)

At the y = 1 boundary, we require that the metric approaches the Poincaré horizon
of AdS5, that is, far away from the black hole, the metric tends asymptotically towards
the same geometry as the vacuum RSII solution. In order to do this, we set the metric
to be equal to the reference metric, given by (3.7), at this boundary. Since A, P, S
and W are all equal to one at y = 1, note that this boundary condition means the
metric matches (3.4) as y → 1− after the identification, dφ = dϕ+ α/(1 + α2) dt.

Finally, we have to consider boundary conditions on the brane, x = 1. Recall that
in the RSII model there is a Z2 symmetry across the brane. However, the fact that
the stress tensor, including the tension of the brane itself, is concentrated to the brane
leads to discontinuities in the solution. These discontinuities are described by the Israel
junction conditions [169], which, in this case where there is no matter on the brane,
yield the following condition:

0 = Kab −Kγab + 3
ℓ5
γab, (3.16)

where, γab is the induced metric on the brane and Kab = γac∇cnb is the extrinsic
curvature, with nb being the inward unit normal to the brane. These provide six
conditions at the brane. We additionally impose that the component of the DeTurck
vector normal to the brane is zero, i.e. ξx = 0, and that F8 = F9 = 0, comprising a
total of nine boundary conditions.

Note that the reference metric satisfies all of these boundary conditions. However,
it should be noted that due to the rotation of the black holes, the solutions contain
an ergoregion, meaning that the Killing vector field is not timelike in the entirety
of the exterior of the black hole. Hence, this case does not satisfy the assumptions
of any proof forbidding Ricci solitons, and so, a priori, there is no guarantee that
the solutions to the Einstein-DeTurck equations will also be solutions to the Einstein
equation. However, we were able to find solutions to the Einstein-DeTurck equation
by discretizing onto a Chebyshev-Gauss-Lobatto grid and using the Newton-Raphson
method, as described in Section 2.3. To inspect the validity of the solutions, we then
check that the DeTurck vector is small and tending towards zero in the continuum
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limit, suggesting we have a true solution to the Einstein equation. These convergence
tests are shown in Appendix A.1.

3.3 Properties of the braneworld black holes

We were able to find solutions with the rotation parameter, α, running from zero
rotation to near extremality, and the length parameter, β, in a range of values, chiefly
within an order or two of magnitude of unity. Our results clearly show that for
large β our solutions exhibit four-dimensional behaviour, with their induced metric
on the brane appearing to approach that of the Kerr metric with the same ΩH/TH .
Meanwhile, for small β the black holes show five-dimensional behaviour, and approach
five-dimensional Myers-Perry black holes [96] with a single non-zero rotation parameter,
again with the same ΩH/TH . This behaviour can be glimpsed by investigating the
properties of the braneworld black holes, a few of which we describe here.

3.3.1 Entropy of the horizon

Firstly, in Figure 3.2 we plot the area (which is proportional to the entropy) of the
bifurcating Killing horizon of the rotating RSII in the five-dimensional bulk against
their proper radius on the brane, ρH , in a log-log plot. This proper radius is computed
by dividing the proper distance around the equator of the intersection of the black hole
horizon and the brane by 2π. In each subfigure in Figure 3.2, the rotation parameter,
α, (or, equivalently ΩH/TH) is fixed, and the length parameter, β, varies between the
different braneworld black holes (the black dots). For reference, we have also added the
corresponding plots for the four-dimensional Kerr black hole (the dotted, red line), and
the five-dimensional single-rotation Myers-Perry black hole (the dashed, green line),
each with the same ΩH/TH . Moreover, we have scaled each axis by the appropriate
powers of the AdS length, ℓ5, to ensure we are comparing dimensionless quantities.

The small braneworld black holes exhibit five-dimensional behaviour, tending
towards the Myers-Perry area, which is cubic in terms of ρH . This means that as the
black holes become small, they extend roughly the same proper distance into direction
perpendicular to the brane as those transverse to it. On the other hand, the large
braneworld black holes exhibit four-dimensional behaviour, tending to the Kerr area,
which is quadratic in terms of ρH . Therefore, in this limit, the braneworld black holes
become flattened in line with the brane, extending very little into the extra dimension
normal to the brane relative to the directions along the brane.
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Fig. 3.2: The area of the bifurcating Killing surface of rotating RSII black holes, with fixed α (or,
equivalently ΩH/TH) as a function of the proper radius ρH (black dots) in a log-log plot. The dotted,
red line is the area of a four-dimensional Kerr black hole, whilst the dashed, green line is the area of a
five-dimensional single rotating Myers Perry black hole, both of which have the same ΩH/TH . We
have divided the quantities on both axes by powers of ℓ5 to make them dimensionless, for example
on the y-axis, we have AH/ℓa

5 where a = 3 for both the RSII black holes and the Myers-Perry black
holes, whereas a = 2 for the Kerr black holes.

We see this behaviour particularly well for small values of α, for example α = 0.2
in Subfigure 3.2a. The numerics became more and more difficult as α was increased,
particularly for relatively small or large β, and hence the trend is less clear for larger
α, as seen in Subfigure 3.2b where α = 0.5. However, even for large α, the data
is still consistent with this transition between four-dimensional and five-dimensional
behaviour of areas.

3.3.2 Geometry of the bifurcating Killing horizon

To explore a little more closely the behaviour of the braneworld black holes in the limit
where they become large we also consider the induced geometry of the braneworld
bifurcating Killing surface. That is, we consider the 2d geometry obtained by taking
the intersection of the brane (x = 1) and the event horizon (y = 0) at a constant time
slice. We retain the axisymmetry of the solution in the ϕ direction, and hence we are
considering an axisymmetric 2d geometry, parameterised by ξ and ϕ.

Two-dimensional geometries are completely determined by the Ricci scalar, and
hence such an axisymmetric 2d is determined by the Ricci scalar as a function of the
inclination from the axis of symmetry. This geometry has spherical topology, and so
each constant ξ slice is a circle. Of course, the coordinate ξ is not a gauge invariant
quantity. In order to express the inclination in a gauge independent way, we introduce
the function ρ(ξ) which measures the proper radius of the circle at fixed ξ, which once
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Fig. 3.3: The Ricci scalar, R, of the two-dimensional induced geometry of the intersection of the
event horizon with the brane at a constant time slice is plotted against ρ(ξ), which is the proper
radius of the circle in the geometry at a given value of ξ, the inclination from the axis of symmetry.
Quantities on both axes have been multiplied by the suitable powers of the temperature, TH , to make
them dimensionless. Such a plot uniquely determines a two-dimensional axisymmetric geometry. The
plots for the braneworld black holes for a fixed value of α (or, equivalently ΩH/TH) are given by
solid, black curves and the corresponding plot for a four-dimensional Kerr black hole, with the same
ΩH/TH , is given by the dashed, red curve. The braneworld curves closest to the Kerr line are those
with largest length parameter, β, with this parameter decreasing monotonically as one moves between
the curves from left to right.

again is found by dividing the proper distance around these circles by 2π. Therefore,
at the north pole, ρ(ξ = 1) = 0, and ρ(ξ) increases as ξ decreases.

In Figure 3.3 we plot the Ricci scalar as a function of ρ(ξ) over ξ ∈ (0, 1) for each
of the braneworld black holes (solid, black lines) for a fixed value of ΩH/TH , along
with the corresponding plot for the Kerr black hole (dashed, red line). Here, and for
the remainder of the chapter, we multiply the quantities of both axes by the required
factors of the temperature, TH , to make them dimensionless. Such a plot uniquely
determines the geometry of a two-dimensional axisymmetric manifold with spherical
topology. In each of the two subfigures in Figure 3.3, the length parameter, β, is
decreasing as one moves from left to right between the different black curves. The
curves approach that of the Kerr black hole as β becomes large, adding further evidence
that the induced geometry on the brane of braneworld black holes approaches the Kerr
geometry as they become large.

3.3.3 Orbits

Another interesting quantity that allows for comparison to Kerr is the position of the
(equatorial) inner-most stable circular orbit (ISCO) around the black hole. We consider
the motion of a particle that is restricted to the brane, at x = 1, and the equatorial
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Fig. 3.4: Plots of the proper radius, ρISCO, of the ISCO for braneworld black holes for a given value
of α (or, equivalently ΩH/TH) against β−1 (black dots). We have added the corresponding value for
the Kerr black hole with the same value of ΩH/TH at β−1 = 0 (red square). We have multiplied
ρISCO by the temperature, TH , of the black holes to obtain a dimensionless quantity.

plane of the rotation of the black hole, at ξ = 0. Both of these planes lie at the centre
of a Z2 symmetry, and so any geodesic that starts with motion within this region will
remain within it. Just as in the calculation of the ISCO in the Kerr or Schwarzschild
black holes, we can use the fact that there are conserved quantities along the path of
such a geodesic. In particular, we have two conserved quantities associated to the two
Killing vector fields: the energy, E and the angular momentum, h. As usual, the use
of these allows one to find an ordinary differential equation that governs the radial
profile of a normalised timelike geodesic. In our coordinates, this is an equation for the
position y(t) of the particle, which can be written as ẏ(t)2 = V (y;E, h).

In order to find the ISCO, we require that V = V ′ = 0, where the derivative is
with respect to y. These two equations can be solved to give a family of circular
geodesics depending on (E, h). From this family, the ISCO will be the solution with
the minimal angular momentum (minimising with respect to the energy gives similar
results). We computed the proper radius ρISCO of the ISCO, which once again is the
proper distance around the circumference of the orbit divided by 2π, and multiplied
by the temperature, TH , to get a dimensionless quantity.

In Figure 3.4, we plot the value of ρISCOTH against β−1 for two fixed values of the
rotation parameter, α. The reason for using the inverse of the length parameter, β,
on the x-axis is that we expect that in the large β limit, the braneworld black hole
tends towards a Kerr geometry. Kerr black holes do exhibit stable circular orbits, thus
we have added, for reference, the value for ρISCOTH of a Kerr black hole of the same
ΩH/TH at β−1 = 0 as a red square in the figure.
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We see that the value of the ISCO of the braneworld black hole tends to the value for
the Kerr black hole as they become large. On the other hand, as β decreases the proper
radius of the ISCO increases. Note that, five-dimensional black holes do not contain
bound orbits for timelike particles, and we find that the value of ρISCOTH begins to
increase as β becomes smaller, where the black holes begin to exhibit five-dimensional
behaviour. It would be of great interest to obtain braneworld black holes with much
smaller values of β, which more and more exhibit five-dimensional behaviour to see if
the value of ρISCOTH diverges as β tends towards zero.

3.4 Discussion

The results presented in the previous section provide compelling evidence that the
induced geometry of the rotating RSII black holes on the brane tends to that of the Kerr
metric in the large β limit. This is a necessary requirement for the Randall-Sundrum
II model to phenomenologically viable, since the astrophysical black holes observed in
our Universe appear to be very well described by the Kerr metric.

However, we also see evidence that, as one takes β to be smaller, the black holes
transition to having five-dimensional behaviour. As a result of this transition, one would
expect finitely-sized rotating black holes in the RSII model to have slightly different
induced geometry on the brane to the standard four-dimensional Kerr black holes of
general relativity. Hence, this could provide a stepping-stone to putting constraints
upon a Randall-Sundrum extra dimension via astrophysical measurements.

It should be noted, however, that there are still many more steps that would need
to be taken before this is a realistic possibility. Table-top experiments have probed
corrections to Newtonian gravity of the form (1.54) induced by a Randall-Sundrum
extra dimension and constrained the AdS length scale, ℓ5, in the RSII model to be at
most about the order of a millimetre [170]. Astrophysical black holes are of course
many orders of magnitude large than this, and so, in order to test the RSII model
using astrophysical black holes, one would firstly have to extend our results to find
rotating black holes in the RSII model for much larger values of the length parameter, β.
Unfortunately, the numerical method used to obtain these solutions became extremely
slow for large β, however, it is possible that using a different reference metric in the
DeTurck method may ease the computation. Alternatively, the method used in [150]
perhaps provided a more natural way of finding large static RSII black holes by directly
perturbing away from a black droplet solution (which in a sense is the β → ∞ limit of
a static RSII black hole), and so if one generalised this method to the rotating case,
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one may be able to find rotating RSII black holes for larger values of β than in this
work.1

Furthermore, this work has provided evidence that, even if one did obtain these
very large RSII black holes, their induced metric on the brane would be extremely
similar to the Kerr metric. Therefore, one would need to find much more finely-grained
features of the RSII black holes, in order to provide sharper comparison to the Kerr
black hole. For example, it would be very interesting to calculate the quasi-normal
modes of the braneworld black holes, which may allow for comparison to data from
gravitational wave detectors.

Another possibility of using these black holes to experimentally test the RSII
model would arise if, as is hoped, microscopic black holes were produced in future
particle colliders, such as the International Linear Collider [90, 91] and the Compact
Linear Collider [92]. As shown in this work, such small black holes would be very
likely to exhibit five-dimensional behaviour if there were a Randall-Sundrum extra
dimension, and hence they would provide an excellent testing ground for constraining
the Randall-Sundrum II model.

Another further point of study could be to examine the superradiance instability of
the RSII black holes. We did obtain the ergoregion of the rotating RSII black holes in
the five-dimensional bulk and found in each case that the region has spherical topology.
It would be interesting to investigate whether the slightly different geometries of the
braneworld black hole ergoregions compared to that of Kerr could result in different
superradiance instabilities [171, 172].

It would also be of great interest to study further the rotating RSII close to
extremality, α → 1. One reason for that it has recently been shown that effective field
theory corrections to general relativity generically lead the horizons of rotating black
holes becoming singular in the extremal limit [158, 173, 174]. In these cases, all scalar
curvature invariants are non-singular, but the tidal forces felt by infalling observers
were found to diverge at the horizon in the extremal limit. The effective equations
on the brane are given by the Einstein equation with some complicated correction
term and hence one may expect that the RSII black holes should have diverging tidal
forces as one approaches extremality. We found that the tidal forces, as measured by
a four-dimensional observer falling through the horizon, increase more quickly with
the rotation parameter, α, than is the case for standard Kerr black holes, but the
evidence in inconclusive on whether these forces are truly diverging as α → 1. This

1Indeed, we were able to find rotating black droplets, which have a Kerr metric on the boundary,
by a very similar method as described in this chapter, though this work remains unpublished. These
would be the starting point of finding large β rotating RSII black holes by generalising [150].
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leaves it highly desirable to study more quickly rotating solutions, or even analysing
the extremal limit directly, as was done for extremal charged RSII black holes [175].

Finally, in this work we have considered the exterior geometry of these rotating RSII
black holes, but it would be extremely interesting if one could explore the interiors of the
solutions. The Kerr black hole contains an inner, Cauchy horizon, however, it has been
shown in various cases that when gravity is coupled to other fields, the inner horizon
of a charged black hole can “collapse” [176–178], in accordance with the strong cosmic
censorship conjecture [22], leaving a hairy black hole solution that does not possess
a Cauchy horizon before the singularity. It is postulated that similar behaviour may
occur for the Cauchy horizon within a rotating black hole when gravity is coupled to
other fields. Following from the connection to the AdS/CFT correspondence reviewed
in Section 1.5.3, we know that the five-dimensional RSII rotating black hole is dual to a
four-dimensional rotating black hole whose geometry is quantum-corrected by a large N ,
strongly coupled CFT. Therefore, one may conjecture that such a quantum-corrected
black hole does not possess an inner horizon, and that the dual bulk RSII black hole
would also be free of a Cauchy horizon in its interior. It would be very interesting,
though extremely numerically challenging, to check directly whether this is indeed the
case.



Chapter 4

Black tunnels and hammocks

Abstract

We construct the holographic duals to a large N , strongly coupled, N = 4
super Yang-Mills conformal field theory defined on a four-dimensional de Sitter-
Schwarzschild background. There are two distinct five-dimensional bulk solutions.
One, named the black tunnel, is static and possesses two disconnected horizons.
The other, the black hammock, contains only one horizon in the bulk. The
hammock horizon is not a Killing horizon, and hence possesses interesting
properties, such as non-vanishing expansion and shear, as well as allowing
classical flow along it. The DeTurck method was used in order to attain the
black tunnel solutions, whilst the black hammocks were found in Bondi-Sachs
gauge. This work was first presented in [2].

4.1 Introduction

One of the most fascinating results in theoretical physics was the discovery of Hawking
radiation — that quantum fields radiate on fixed black hole backgrounds [80]. Famously,
this phenomenon leads to the information paradox [83], posing deep and fundamental
questions about the way a theory of quantum gravity must behave. However, for the
most part, the study of Hawking radiation and, more generally, quantum field theory
in curved spacetime has been focused on free or weakly interacting fields. A natural
question is to ask whether taking the quantum fields to be strongly coupled affects the
way they behave on a curved background, though the two difficulties of strong coupling
and curved space make it extremely challenging to make any headway tackling this
problem via first-principles field theory calculations.
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Fortunately, gauge/gravity duality has provided an approach to study precisely
such a system. The AdS/CFT correspondence [109–111] describes a duality between an
N = 4 super Yang-Mills (SYM) conformal field theory (CFT) on a fixed, but possibly
curved, manifold B and type IIB string theory on an asymptotically locally anti-de
Sitter (AlAdS) spacetime which has conformal boundary given by B. Taking the
limit where the CFT possesses a large number of colours, N , and is strongly coupled
(specifically taking the ’t Hooft coupling to infinity) corresponds to taking a classical
limit on the gravitational side. Hence, in order to study how such a large N , strongly
coupled CFT behaves on a manifold B, one can find AlAdS solutions to the Einstein
equation with conformal boundary B. See, for example, [127] for an excellent review
on this method.

Much work has been done in the case where the boundary metric B is taken to be
the Schwarzschild metric [129–135, 137, 165]. As reviewed in Section 1.4, two classes of
gravitational duals have been found. One family of solutions are called black droplets,
which contain two, disconnected horizons in the bulk: a horizon which extends from
the boundary black hole and a perturbed planar black hole deep within the bulk. The
other class are called black funnels, and these contain a single, connected horizon in
the bulk which extends from the horizon of the boundary black hole into the bulk and
into an asymptotic region.

The two solutions correspond to different phases of the CFT on the Schwarzschild
background. The connected, funnel solution corresponds to a deconfined phase. In
the bulk, the single horizon allows flow along it at a classical level (it is a non-Killing
horizon, evading rigidity theorems due to its non-compact nature), meaning that on the
field theory side there is Hawking radiation from the horizon to the asymptotic region
of order O(N2). On the other hand, the disconnected, droplet solution corresponds to
a confined phase; there is no classical flow between the two bulk horizons, meaning
that on the field theory side the Hawking radiation of the CFT is greatly suppressed
to O(N0). If one were to instead excite N2 free fields on a black hole background, one
would always expect O(N2) radiation from the horizon, and hence, this confined phase
is a novel property of strongly coupled fields. The field theory mechanism behind this
behaviour is still not well understood.

In such a set up, one can dial the temperature, TH , of the boundary black hole
and the temperature, T∞, of the limiting thermal CFT at infinity. It is interesting
to investigate which of these phases dominates across values of the dimensionless
parameter T∞/TH . In [135], evidence was provided that for small values of T∞/TH ,
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the droplet phase dominates, whilst for large values of T∞/TH , the funnels phase
dominates.

In this chapter, we investigate a similar set-up, this time considering the holographic
duals to a large N , strongly coupled CFT on a de Sitter-Schwarzschild background.
There are two horizons in the de Sitter-Schwarzschild spacetime, the event horizon and
the cosmological horizon, which have different temperatures (except at extremality).
This background provides a very natural set-up in which to investigate the phases of the
CFT, since rather than having the impose that the CFT is in some unphysical thermal
state asymptotically, here the geometry naturally imposes that the two horizons radiate
with given temperatures.

The space of such de Sitter-Schwarzschild geometries (up to an overall scale) is
parameterized by the ratio between the temperatures of the two horizons, or equivalently,
by the ratio of the radii of the horizons, ρh = rh/rc ∈ (0, 1), where rh and rc are the
proper radii of the event and cosmological horizons, respectively. Throughout this
chapter, we will refer to the parameter, ρh, as the radius ratio. Note that ρh is
gauge invariant in this context, due to the background spherical symmetry of the de
Sitter-Schwarzschild black hole.

Once again, two dual bulk solutions arise, depending on whether the boundary
horizons are connected via a bulk horizon or not. The black tunnel is a solution
in which there are two disconnected bulk horizons, one of which extends from the
boundary event horizon and the other from the boundary cosmological horizon. Each
of these horizons closes in on itself some way into the bulk. In the other solution, which
we call the black hammock, the boundary event horizon and boundary cosmological
horizons are connected by a single horizon in the bulk. See Figure 4.1 for schematic
drawings of these two geometries. Similarly to the black funnels (and other flowing,
non-equilibrium steady state solutions [179–187]), the black hammocks allow classical
flow along their horizons, which again is dual to a deconfined phase of the CFT, with
O(N2) Hawking radiation on the field theory side of the duality. There is no classical
flow between the two horizons of the black tunnel, so this is dual to a confined phase
of the CFT fields with O(N0) Hawking radiation.

It would be of great interest to investigate which of these solutions dominates for
different values of the radius ratio, ρh, since this would be dual to which phase of
the CFT matter is dominant on the field theory side. One would expect a similar
phase transition to that of the droplets and funnels, as evidenced by [135]. For a
number of reasons, which we will discuss, this problem is difficult and may require



4.1 Introduction 79

(a) The black tunnel

(b) The black hammock

Fig. 4.1: Some schematic drawings of spatial cross-sections of the black tunnel and hammock after
suppressing two angular directions. In each case the dotted line is the axis of symmetry where the S2

shrinks to zero size. The hammocks only have one horizon which doesn’t cross the axis of symmetry,
whereas the tunnels have two horizons both of which cross the axis of symmetry. In each diagram,
the red line is the conformal boundary, on which there is a de Sitter-Schwarzschild geometry.

direct calculation of the stability of the solutions under time-evolution after a small
perturbation.

Another point of interest is that the black tunnel and black hammock solutions are
closely related to black hole solutions in the Randall-Sundrum II (RSII) model [142].
Following the methods used in [149, 1] to find other RSII black hole solutions, discussed
in Chapter 3, one could envisage adapting the black tunnels in order to find black hole
solutions in the RSII model where one takes a positive effective cosmological constant
on the brane. Such solutions would be dual to spherically symmetric four-dimensional
black holes with a positive cosmological constant that receive “quantum corrections”
from a large N , strongly coupled CFT.

We used different gauge choices in order to solve the Einstein equation numerically
for the two different solutions. For the black tunnels, we used the DeTurck method
[162, 152, 153], reviewed in Section 2.1. It turns out in this case that the added term
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must actually vanish on any solution, hence we necessarily obtain a solution to the
Einstein equation rather than a Ricci soliton.

One could also use the DeTurck method to find the black hammock solutions, and
indeed we were able to do so, but we found that we had to use an extremely high
number of lattice points and precision in the numerical method in order to extract the
quantities of interest from the solutions, making the process extremely computationally
expensive. Instead, we found that a different gauge choice, specifically Bondi-Sachs
gauge, was a lot more effective. The use of this gauge to solve stationary problems was
reviewed in Section 2.2. Indeed, it seems as though Bondi-Sachs gauge is particularly
well-adapted to stationary problems with a null hypersurface in the bulk “opposite”
the conformal boundary, and so is useful for finding black hammock solutions. The
use of the two complementary methods allowed us to find both solutions for a large
range of the parameter space ρh ∈ (0, 1). This work, first presented in [2], was the first
instance where flowing solutions were found by solving a boundary value problem in
Bondi-Sachs gauge.

One additional benefit of finding the black hammocks in Bondi-Sachs gauge is
that it is a very natural gauge in which to time-evolve the solutions after a slight
perturbation. Hence, it could provide a way to directly test the dynamical stability of
the hammocks across the parameter space.

In Sections 4.2 and 4.3 we present the methods used to find the black tunnels
and black hammocks, respectively, and we extract the holographic stress tensor from
the bulk solution in each case. In Section 4.4, we discuss some of the properties of
the solutions. The hammocks have particularly interesting properties due to the fact
their horizon are non-Killing. This means there is classical flow along the horizon and
the expansion and shear of the horizon are non-zero. In Section 4.5, we end with a
discussion focusing particularly on the difficulties of deducing which of the black tunnel
or black hammock solution, and hence which phase of the dual CFT, dominates for a
given value of the radius ratio, ρh. This difficulty arises from the fact that, despite the
two solutions being stationary, neither of them is in thermodynamic equilibrium. We
argue that in order to obtain the phase diagram of the dual CFT, one would have to
directly investigate the stability of the two dual solutions.

4.2 Black tunnels

In order to find the black tunnel solutions we used the DeTurck method, which was
described in Section 2.1. The solutions are five-dimensional, and the Einstein-DeTurck
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equation in this dimensionality is given by

Rab + 4
ℓ2

5
gab − ∇(aξb) = 0, (4.1)

with ξa denoting the DeTurck vector defined by (2.4b) in terms of a reference metric
which we will soon choose explicitly.

4.2.1 Ansatz for the black tunnels

We assume the solutions will be static and spherically symmetric. On the conformal
boundary, which we set at y = 0, we will enforce the metric to be conformal to that
of de Sitter-Schwarzschild. In the bulk there will be two disconnected horizons, one
emanating from the event horizon on the boundary and the other from the cosmological
horizon. We’ll call these the bulk event horizon (at x = 0) and bulk cosmological
horizon (at x = 1), respectively. Finally, between the two horizons in the bulk, there
will be an axis where the S2 shrinks to zero size, given by y = 1. Hence, the black
tunnels naturally live in a rectangular coordinate domain, {x, y} ∈ (0, 1)2. In Figure 4.2,
we’ve drawn the tunnel again schematically, along with the integration domain that
naturally arises.

(a) Drawing of the black tunnel

S2
0 ; y = 1

∂; y = 0

H(bulk)
+

x = 0
H(bulk)

c

x = 1

(b) Integration domain for the black tunnel

Fig. 4.2: The black tunnel naturally has four boundaries; the conformal boundary, ∂; the bulk event
horizon, H(bulk)

+ ; the axis of symmetry where the two-sphere shrinks to zero size, S2
0 ; and the bulk

cosmological horizon, H(bulk)
c . Hence, we automatically have a square integration domain.
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The line element we use to describe such solutions is given by the following Ansatz :

ds2
tunnel = ℓ2

5
y

− x2
(
1 − x2

)2 (1 − ρh)2

ρ2
h

G(x)q1(x, y) dT 2 + 16
G(x)q2(x, y) dx2

+ (1 − y)q3(x, y) dΩ2
(2) + q4(x, y)

(
dy + (1 − y)q5(x, y) dx

)2
4(1 − y)y

, (4.2a)

where

G(x) =
(2 − x2)

(
1 + 2ρh − x2(2 − x2)(1 − ρ2

h)
)

1 + ρh + ρ2
h

, (4.2b)

and dΩ2
(2) is the metric on a round, unit radius two-sphere. We recall that the parameter,

ρh, is the ratio of the radii of the event and cosmological horizons in the boundary de
Sitter-Schwarzschild geometry. Hence ρh → 1 is the extremal limit at which the event
and cosmological horizons are coincident, whilst ρh → 0 is the limit where the horizons
become infinitely far apart. We found black tunnel solutions across the whole of the
parameter space ρh ∈ (0, 1).

The reference metric we used to define the DeTurck vector is given by the Ansatz
above with q1 = q2 = q3 = q4 = 1 and q5 = 0. We will see that this reference metric
satisfies all the boundary conditions that we will describe in the next subsection.

The DeTurck method in this case cannot yield Ricci solitons, since all the conditions
of the theorem of [133] forbidding their existence are satisfied. In any case, we present
convergence tests in Appendix A.2 showing that the DeTurck vector vanishes in the
continuum limit.

4.2.2 Boundary conditions

The Einstein-DeTurck equation evaluated for the Ansatz given by (4.2a) yields a system
of five second-order PDEs on the integration domain {x, y} ∈ (0, 1)2. In order to solve
such a system, we need to set five boundary conditions on each of the sides of the
square.

The conformal boundary y = 0

Here, we enforce Dirichlet boundary conditions in order to set the induced metric on
the conformal boundary to be conformal to the de Sitter-Schwarzschild metric in four
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dimensions, which is given by

ds2
dS−S = −f(r) dt2 + dr2

f(r) + r2 dΩ2
(2), (4.3)

where

f(r) = 1 − 2M
r

− Λ4r
2

3

= −(r − rc)(r − rh)(r + rc + rh)
r
(
r2

c + rcrh + r2
h

) , (4.4)

with Λ4 the positive cosmological constant of the four-dimensional geometry, M the
mass of the black hole and rh and rc the radii of the event and cosmological horizons,
respectively. Taking the transformations

r = rh

1 − ξ2(2 − ξ2)(1 − ρh) , with ρh = rh

rc

, (4.5)

the metric becomes

ds2
dS−S = r(ξ)2

−ξ2(1 − ξ2)2 (1 − ρh)2

ρ2
hr

2
c

G(ξ) dt2 + 16 dξ2

G(ξ) + dΩ2
(2)

 , (4.6)

where r = r(ξ), given by (4.5) is now thought of as a function of ξ, rather than a
coordinate, and G is defined by (4.2b). In these coordinates, the event horizon lies at
ξ = 0 and the cosmological horizon is situated at ξ = 1. With respect to the usual
t-coordinate, the temperature of the event and cosmological horizons are, respectively,
given by

TH = (1 − ρh)(1 + 2ρh)
4πrh

(
1 + ρh + ρ2

h

) , Tc = (1 − ρh)(2 + ρh)
4πrc

(
1 + ρh + ρ2

h

) . (4.7)

Now we are ready to define our boundary conditions at y = 0, the conformal boundary.
Here, we set q1 = q2 = q3 = q4 = 1, and q5 = 0. With such a choice, and taking

y =

(
1 − ξ2(2 − ξ2)(1 − ρh)

)2

r2
h

z2, x = ξ, T = t

rc

, (4.8)

one finds that at leading order in z near the conformal boundary

ds2
tunnel

∣∣∣∣
z=0

= ℓ2
5
z2

(
dz2 + ds2

dS−S

)
, (4.9)
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with the de Sitter-Schwarzschild metric being given by (4.6). Hence, this boundary
condition enforces that the black tunnel is an AlAdS spacetime with the metric on the
conformal boundary being conformal to de Sitter-Schwarzschild.

The fictitious boundaries

The remaining three boundaries of the integration domain are fictitious boundaries.
At x = 0 and x = 1, respectively, we have the bulk event and cosmological horizons
and at y = 1 we have the axis between the two bulk horizons where the two-sphere
collapses to zero size.

At each of these boundaries we require that the metric is regular. This can be
imposed with Neumann boundary conditions. In particular, at each fictitious boundary
we set the normal derivative of each function to the boundary to zero. That is for
i = 1, . . . , 5, we set

∂xqi(0, y) = 0, ∂xqi(1, y) = 0, ∂yqi(x, 1) = 0. (4.10)

4.2.3 Extracting the holographic stress tensor

Now let us briefly discuss how we can extract the holographic stress tensor once we
have obtained the solution numerically, as discussed more generally in Section 1.3.3.
Firstly, one can solve the equations of motion defined by (4.1) order by order in y off
the boundary y = 0. This fixes that

q1(x, y) = 1 + α1(x)y + β1(x)y2 + γ̂1(x)y1+
√

3 + . . .

q2(x, y) = 1 + α1(x)y + β2(x)y2 + γ̂1(x)y1+
√

3 + . . .

q3(x, y) = 1 − 1
2α1(x)y + β3(x)y2 + γ̂1(x)y1+

√
3 + . . .

q4(x, y) = 1 + β4(x)y2 + γ̂4(x)y1+
√

3 + . . .

q5(x, y) = β5(x)y2 + γ5(x)y3 + γ̃5(x)y3 log y + . . . (4.11)

Some of these functions are fixed by the equations of motion as

α1(x) = − 1 + ρh

1 + ρh + ρ2
h

g(x) (4.12a)

β3(x) + β1(x)
2 + β2(x)

2 = 5(1 + ρh)2g(x)2 − 2(1 + ρh)(1 + ρh + ρ2
h)g(x)

8
(
1 + ρh + ρ2

h

)2 (4.12b)
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β4(x) = 2(1 + ρh + ρ2
h)(1 + ρh)g(x) − (1 + ρh)2g(x)2

4
(
1 + ρh + ρ2

h

)2 (4.12c)

β5(x) = − (1 + ρh)
2(1 + ρh + ρ2

h)g
′(x) (4.12d)

γ̃5(x) = 3(1 + ρh)2

8(1 + ρh + ρ2
h)2 g(x)g′(x) , (4.12e)

where
g(x) = 1 − x2(2 − x2)(1 − ρh) . (4.12f)

The only functions not fixed by a local analysis of the Einstein-DeTurck equation off
the conformal boundary are {β1, β2, γ5, γ̂1, γ̂4}. In order to find these functions, we
need to solve the equations in the full spacetime, after having imposed regularity deep
in the bulk. It turns out only the βi functions are needed to calculate the stress tensor.
Note that, once we have numerical approximations of the full functions qi, we can easily
evaluate an estimate for βi from the second derivative of qi with respect to y at y = 0.

Armed with this expansion near y = 0, we can go to Fefferman-Graham gauge
[121] near the conformal boundary and fix the conformal frame. That is, we seek a
coordinate transformation such that near the conformal boundary the metric takes the
form given in (1.32a), which in five dimensions becomes

ds2 = ℓ2
d

z2

(
dz2 +

(
g(0)

µν + g(2)
µν z

2 + g(4)
µν z

4 + h(4)
µν z

4 log z
)

dxµ dxν + O(z5)
)
, (4.13)

where we pick the conformal frame so that g(0)
µν is the de Sitter-Schwarzschild metric

given by (4.6). This can be achieved with a transformation

x = ξ +
6∑

j=1
δj(ξ)zj

y =
6∑

j=2
ϵj(ξ)zj. (4.14)

The explicit expressions of δj(ξ) and ϵj(ξ) can be determined by substituting the
above transformation into the metric given by the Ansatz after expanding each of
the functions off the boundary with (4.11). One can then work order by order in z

to match the resultant metric with (4.13). Such a procedure fixes g(2)
µν , g

(4)
µν and h(4)

µν

uniquely. In this case h(4)
µν = 0, due to the fact that the boundary metric is Einstein.
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With the metric in Fefferman-Graham coordinates, one can readily read off the
holographic stress tensor using (1.36b). Finally, we can make the identification from
the standard AdS/CFT dictionary that

G5 = π

2
ℓ3

5
N2 . (4.15)

One can check that the stress tensor is conserved and has a fixed trace:

∇(0)
µ T µν = 0, T µ

µ = − 3ℓ3
5

16πG5r4
c

(
1 + ρh + ρ2

h

)2 = − 3ℓ3
5

16πG5ℓ4
4
, (4.16)

where, respectively, ∇(0) and ℓ4 =
√

3/Λ4 are the covariant derivative and the de Sitter
length scale of the four-dimensional boundary geometry. The fact that the stress tensor
has a constant but non-zero trace originates from the fact the boundary metric is
a solution to the Einstein equation with a positive cosmological constant, agreeing
with (1.38).

After the dust settles, we find

⟨T t
t⟩ = N2g(ξ)4

2π2r4
cρ

4
h

β1(x) − 1
16(1 + ρh + ρ2

h)2

 3ρ4
h

g(ξ)4 + 4ρ2
h(1 + ρh)
g(ξ)

− 12(1 + ρh)(1 + ρh + ρ2
h)g(ξ) + 12(1 + ρh)2g(ξ)2

 , (4.17a)

⟨T ξ
ξ⟩ = N2g(ξ)4

2π2r4
cρ

4
h

β2(x) − 1
16(1 + ρh + ρ2

h)2

 3ρ4
h

g(ξ)4

− 8(1 + ρh)(1 + ρh + ρ2
h)g(ξ) + 8(1 + ρh)2g(ξ)2

 , (4.17b)

⟨TΩi
Ωi

⟩ = N2g(ξ)4

2π2r4
cρ

4
h

β3(x) − 1
16(1 + ρh + ρ2

h)2

 3ρ4
h

g(ξ)4 − 2ρ2
h(1 + ρh)
g(ξ)

+ 6(1 + ρh)(1 + ρh + ρ2
h)g(ξ)

 , (4.17c)

where Ωi stands for any of the angles on the round S2.



4.3 Black hammocks 87

4.3 Black hammocks

4.3.1 The integration domain for the black hammocks

The black hammocks share many similarities with the black funnel solutions of [134,
135, 137], which were gravitational duals to a CFT living on a flat Schwarzschild
background. The key difference is the horizons of such black funnel solutions approach
a planar black hole in the bulk far from the boundary event horizon, due to the fact
the flat Schwarzschild boundary metric possesses only one horizon. On the other hand,
the black hammocks will have no such asymptotic region; the bulk horizon will return
to the conformal boundary to intersect the boundary cosmological horizon.

At first sight, it seems as though the black hammocks will only have two boundaries:
the conformal boundary and the horizon of the bulk black hole, which now hangs down
in the bulk between the positions of the boundary event horizon and the boundary
cosmological horizon, motivating the name “hammock”. We’ve schematically drawn
the shape of this geometry again in Figure 4.3a.

Attempting naively to carry out numerics on a domain with only two boundaries
would be very difficult. Fortunately though, we can use a trick to “blow up” the points
at which the horizon meets the boundary into lines, as was done in [134, 135, 137, 139].
This trick is based on the fact that at leading order, the geometry near the conformal
boundary must be hyperbolic, and hyperbolic black holes are the only family of static
geometries which are manifestly hyperbolic for each time slice as one approaches

(a) Drawing of the black hammock (b) Domain for the black hammock

Fig. 4.3: Here we sketch the black hammock in (a). It initially appears to have only two boundaries:
the conformal boundary and the bulk horizon. However, the bulk horizon must approach hyperbolic
black holes as it approaches the conformal boundary, where it meets the boundary event horizon and
the boundary cosmological horizon. This allows us one to add two extra boundaries to the integration
domain at x = 0 and x = 1, where this limiting behaviour will be imposed. Hence, we obtain a
rectangular integration domain as shown in (b).
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the boundary. Hence, one can add two extra boundaries at the points at which the
hammock horizon is anchored on the boundary and enforce this limiting behaviour as
boundary conditions. The family of hyperbolic black holes runs over one parameter:
the temperature. It is likely that one could find detuned black hammock solutions,
that is, solutions where the temperature of the hyperbolic black hole is different to the
temperature of boundary horizon that the bulk horizon is approaching. Such detuned
solutions were found in the context of field theories living on an asymptotically flat
Schwarzschild black hole [137]. In this work however, we choose to study the solutions
in which the temperatures of the hyperbolic black holes match the temperatures of the
horizons of the boundary de Sitter-Schwarzschild geometry.

The metric of a hyperbolic black hole is given by

ds2
H = ℓ2

5
z2

[
−(1 − z2) dt̂+ dz2

1 − z2 + dη2 + sinh2 η dΩ2
(2)

]
, (4.18)

which has temperature (4π)−1 with respect to the time coordinate t̂.
By blowing up the point where the bulk horizon meets the conformal boundary

into lines, we obtain a rectangular integration domain, as shown in Figure 4.3b. We’ll
pick coordinates such that the boundaries are the conformal boundary at y = 0, the
two hyperbolic black hole limits at x = 0 and x = 1.

4.3.2 Ansatz for the black hammocks

We were able to obtain the black hammocks both by using the DeTurck method and
by directly gauge-fixing to Bondi-Sachs gauge. These two methods were reviewed in
Sections 2.1 and 2.2, respectively. Both the numerical calculation of solutions and the
extraction of quantities of interest were far easier and quicker in Bondi-Sachs gauge,
and so we present the solutions in this gauge here.

A five-dimensional stationary, SO(3)-symmetric solution in Bondi-Sachs can be
written as

ds2 = ℓ2
5
y2

e2β
(
−V dv2 − 2 dv dy

)
+ e2χ

(
1
A2 (dx− Ux dv)2 + A dΩ2

(2)

) , (4.19)

with five functions, V, Ux, β, A, χ, which can depend upon {x, y}. We can use the
freedom of redefining the radial coordinate to fix the radial dependence of the χ

function. We desire there to be a null hypersurface opposite the conformal boundary, at
y = 1, which we will later check is an event horizon. We will also explicitly take some



4.3 Black hammocks 89

functions of x and y out of the unknown functions V, Ux, β, A, χ, with the purpose
of making the boundary conditions and reference metric more easy to apply in the
numerics. Altogether, we take the Ansatz for the black hammocks to be

ds2 = ℓ2
5
y2

(−(1 − y2)(1 − ρh)2

ρ2
h

H(x)2p1(x, y) dv2 − 2(1 − ρh)
ρh

H(x) dv dy
)
p3(x, y)2

+ 1
4x(1 − x)

(
1 + y4p5(x)

)2
(dx− x(1 − x)p2(x, y) dv

)2
(1 − x)x p4(x, y)2 +H(x)p4(x, y) dΩ2

(2)

,
(4.20)

where
H(x) = 1 + 2ρh − x(1 − ρ2

h)
1 + ρh + ρ2

h

. (4.21)

The bulk equations, Eij = 0, provide four PDEs for the functions pk(x, y) for
k = 1, . . . , 4 and p5(x). It’s worth noting that p5 is independent of y, and moreover,
the Exy = 0 equation evaluated at y = 1 actually provides a simple algebraic condition
for p5(x) in terms of the four other functions and their derivatives at y = 1. However,
we found that the convergence of the numerical method was faster if we promoted p5

to a function of both x and y and imposed as a fifth bulk equation that ∂yp5(x, y) = 0.
The highest y-derivative of the functions arising in the bulk equations are

{∂yp1, ∂
2
yp2, ∂yp3, ∂

2
yp4} , (4.22)

that is, two second order derivatives and two first order derivatives with respect to y.
This suggests that when we expand the functions about the conformal boundary, we
should find there are three free functions in order for us to have a well-defined PDE
problem. Moreover, we should find we need to set three boundary conditions deep in
the bulk at y = 1.

We will enforce that Eva = 0 at the y = 1 hypersurface. As discussed in Section 2.2,
the contracted Bianchi identity implies that, so long as the bulk equations are satisfied,
such boundary conditions actually enforce that Eva = 0 throughout the whole bulk,
yielding a full solution to the Einstein equation. Indeed, once a solution is found we can
explicitly track the Eva components, providing a test of the convergence properties of
the numerical method to find the black hammocks, which we present in Appendix A.3.

In order to numerically solve the bulk equations, we must firstly set boundary
conditions, which we discuss in the next subsection, and then, once again, we use
collocation methods and the Newton-Raphson algorithm, described in Section 2.3,
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to numerically solve the system of PDEs obtained. Originally to obtain the black
hammocks, we used a grid of size 120 × 120 when discretizing, however, it seems likely
that a use of the patching methods described in Section 2.4.3 would speed up the
numerics.

It’s also worth reiterating that we have no proof that the system of PDEs that
result from the Einstein equation applied to our Ansatz in Bondi-Sachs gauge is
elliptic, though the speed and accuracy of the numerical method would seem to suggest
ellipticity. It would be very interesting to explore further whether this gauge naturally
gives elliptic PDEs for such stationary problems in general relativity.

4.3.3 Boundary conditions

The conformal boundary y = 0

Just as with the black tunnels, at the conformal boundary we wish to set Dirichlet
boundary conditions enforcing that the metric on the conformal boundary is conformal
to the de Sitter-Schwarzschild metric, given by (4.3). This time, consider a coordinate
transformation given by

r = rh

1 − (1 − ρh)w, with ρh = rh

rc

, (4.23)

so that the event horizon is the w = 0 surface and the cosmological is the w = 1 surface,
and the metric is given by

ds2
dS−S = r2

h(
1 − w(1 − ρh)

)2
− w(1 − w)(1 − ρh)2

ρ2
hr

2
c

H(w) dt2

+ dw2

H(w)w(1 − w) + dΩ2
(2)

, (4.24)

where H is defined by (4.21). We set at y = 0 the boundary conditions that p1 = p3 =
p4 = 1 and p2 = 0, and then take the transformations

v = t

2rc

− ρh

H(w)(1 − ρh)y, y = z
(1 − w(1 − ρh))

√
H(w)

2rh

√
w(1 − w)

, x = w, (4.25)

then at leading order in z, the metric near the z = 0 boundary is

ds2 = ℓ2
5
z2

(
dz2 + ds2

dS−S

)
, (4.26)
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with the de Sitter-Schwarzschild metric in the coordinates of (4.24). Therefore, the
black hammocks will also be an AlAdS spacetime with de Sitter-Schwarzschild on the
boundary.

The hyperbolic black hole x = 0

As discussed above, we use the fact that the bulk horizon must approach the geometry
of the horizon of a hyperbolic black hole as it approaches the conformal boundary
to add another boundary to the integration domain. In order to enforce that the
metric takes the form (4.18) at this boundary, x = 0, we take the Dirichlet boundary
conditions: p1 = p3 = p4 = 1 and p2 = 0. Moreover, we also set p5 = 0 at x = 0,
though it can be easily shown that this follows from the equations of motion. Now, if
we take new coordinates

dv = 1
rc

dt̂− ρh

H(0)(1 − ρh)(1 − y2) dy, x = H(0)ξ, (4.27)

then at leading order in ξ for each component, the metric becomes

ds2
∣∣∣∣
ξ=0

= ℓ2
5
y2

[
−(1 − y2)(1 − ρh)2H(0)2

ρ2
hr

2
c

dt̂2 + dy2

1 − y2 + 1
4ξ2 dξ2 + 1

4ξ dΩ2
(2)

]
. (4.28)

After taking
ξ = e−2η, y = z, (4.29)

then the above metric matches the large η limit of (4.18), so indeed we are imposing
we are approaching a hyperbolic black hole as we go towards the boundary. Moreover,
the temperature of this hyperbolic black hole is

THh
= (1 − ρh)H(0)

4πρhrc

= TH , (4.30)

where TH is the temperature of the boundary event horizon, given in (4.7).

The hyperbolic black hole x = 1

Of course, the bulk horizon meets the conformal boundary not only at the boundary
event horizon, but also at the boundary cosmological horizon. Hence we can similarly
expand this point into another line in the integration domain by enforcing that the
geometry approaches that of another hyperbolic black hole horizon.
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The work is very similar to the x = 0 boundary. At x = 1, we set the Dirichlet
boundary conditions: p1 = p3 = p4 = 1 and p2 = p5 = 0. This time take

dv = 1
rc

dt̂− ρh

H(1)(1 − ρh)(1 − y2) dy, x = 1 −H(1)ξ, (4.31)

then at the boundary x = 1, which has become the surface ξ = 0, the metric, to leading
order in ξ for each term, becomes

ds2
∣∣∣∣
ξ=0

= ℓ2
5
y2

[
−(1 − y2)(1 − ρh)2H(1)2

ρ2
hr

2
c

dt̂2 + dy2

1 − y2 + 1
4ξ2 dξ2 + 1

4ξ dΩ2
(2)

]
, (4.32)

hence, just as above, the geometry is that of the limit of a hyperbolic black hole, this
time with temperature

THc = (1 − ρh)H(1)
4πρhrc

= Tc. (4.33)

The null hypersurface y = 1

We have one final boundary of our integration domain at y = 1. Note that, the Ansatz
gives an inverse metric with a factor of (1 − y2) in the gyy component, and hence the
y = 1 is a null hypersurface.

Recall that in Bondi-Sachs gauge, only a subset of the components Einstein equation
need to be explicitly solved in the bulk, with the remainder being set as boundary
conditions at some constant y slice. The null hypersurface at y = 1 provides a perfect
place to set these conditions. Hence, we set three Robin boundary conditions at y = 1
by requiring that,

Evv = Evy = Evx = 0. (4.34)

Note that, a priori, we cannot be sure whether this null hypersurface is the horizon
of the bulk black hole. In Section 4.4.1 we’ll provide numerical evidence that it is
indeed the horizon by checking that there are future-directed, radial, null curves from
any point with y < 1 to the conformal boundary at y = 0.

4.3.4 Extracting the holographic stress tensor

Once again, we can expand the functions off the boundary by ensuring order-by-order
they solve the equations of motion. It can be shown that in Bondi gauge, no non-
analytic terms will arise in such an expansion [159]. This lack of non-analytic terms
ensures that the numerical method has exponential convergence even when reading
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asymptotic charges. This is in stark contrast with the DeTurck method which is
typically plagued by non-analytic terms close to the AdS boundary, such as those
in (4.11). We obtain

pi(x, y) =
5∑

j=0
ψ

(j)
i (x)yj + . . . , for i = 1, . . . , 4, (4.35)

where ψ(0)
1 = ψ

(0)
3 = ψ

(0)
4 = 1 and ψ

(0)
2 = 0. The only functions not fixed by the local

analysis of the equations of motion are {ψ(4)
1 , ψ

(4)
2 , ψ

(4)
4 }, so as expected we have three

free functions at the conformal boundary. Moreover ψ(4)
2 is fixed by the local analysis

up to a constant:
ψ

(4)
2 = C1

(1 − x)x(
1 + 2ρh − x(1 − ρ2

h)
)2 . (4.36)

We’ll see that the value of this constant, C1, plays a key role when we consider the flow
along the horizon of the hammock. Next we go into Fefferman-Graham coordinates, so
that the metric is in the form given by (4.13). To do so, we take a transformation

x = w +
5∑

k=1
ζj(w)zj (4.37a)

y =
5∑

k=1
ηj(w)zj (4.37b)

v = t

2rc

+
5∑

k=1
θj(w)zj, (4.37c)

with the functions ζi, ηi and θi being defined order-by-order so that the metric is of
the form given in (4.13), where still g(0)

µν is taken to be the de Sitter-Schwarzschild
metric. However, if we take the holographic stress tensor in the coordinates of (4.24),
we’ll find that it’s not regular at the horizons, due to the flow along the bulk horizon.
To alleviate this, we can take coordinates which are regular at both the future event
and future cosmological horizons in the boundary spacetime. That is, with the de
Sitter-Schwarzschild we define a new time coordinate, V , by

dt = dV − ρh(1 − 2w)
(1 − ρh)H(w)(1 − w)w dw. (4.38)

This brings the de Sitter-Schwarzschild metric to the form
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H+
h H+

c

H−
h H−

c

Fig. 4.4: The Penrose diagram of the four-dimensional de Sitter-Schwarzschild spacetime. The
dashed curves are spacelike hyperslices of constant V , where V is the coordinate defined in (4.38).
Hence the coordinate V is regular at both the future event horizon, H+

h , and the future cosmological
horizon, H+

c .

ds2 = r2
h(

1 − w(1 − ρh)
)2
− w(1 − w)(1 − ρh)2

ρ2
hr

2
c

H(w) dV 2 − 2(1 − 2w)(1 − ρh)
rcρh

dV dw

+ 4(1 + ρh + ρh)2

1 + 2ρh − w(1 − ρ2
h) dw2 + dΩ2

(2)

. (4.39)

In Figure 4.4, we draw the Penrose diagram for the de Sitter-Schwarzschild geometry.
The dashed curves are hypersurfaces of constant V .

Now we can finally evaluate the holographic stress tensor via (1.36b). We find that
the stress tensor is regular everywhere, is conserved and has fixed trace, once again
given by (4.16).

4.3.5 Properties of the hammock horizon

Due to the fact that the bulk horizon of the black hammock is not Killing it can have
further interesting properties, for example, it can have non-trivial expansion and shear.
This has been observed in other flowing geometries such as those in [179, 139, 135].
In order to investigate these properties, one must consider the geometry of the bulk
horizon, H(bulk). From the Ansatz, we know that the y = 1 slice is a null hypersurface,
but we cannot be immediately sure that it really is the horizon of the hammock. In



4.3 Black hammocks 95

the next section, we’ll provide evidence that indeed the horizon is the y = 1 slice of
the bulk spacetime, so let us for now assume that as a given.

In general calculating the expansion and shear can be difficult, however, we follow
[139, 135], which introduced a number of tricks that allows one to calculate the affine
parameter along a generator of the horizon and from this quickly calculate the expansion
and shear.

We assume the horizon is the y = 1 hypersurface of the bulk spacetime, thus it
is parameterised by {v, x, θ, ϕ}, where θ and ϕ are the usual angular coordinates in
the two-sphere. Hence, H(bulk) is a four-dimensional null hypersurface with a three-
dimensional space of generators. Due to stationarity and spherical symmetry, the
spacetime also possesses three Killing vector fields, which we will denote as ∂I , for
I = v, θ, ϕ, none of which are generators of the horizon, which is non-Killing. Thus,
any two generators of the horizon will be related by the action of a combination of the
∂I vector fields. This means for a given value of x, we can arbitrarily pick a horizon
generator, say with affine parameter, λ. We can extend λ to a function of x along the
horizon by requiring that it is independent of v, θ and ϕ, so that λ = λ(x).

Let Ua be the tangent vector to the horizon generator with affine parameter λ. We
know that each of the ∂I vectors is tangent to H(bulk), hence U ⊥ ∂I . Now, one can
choose another vector field Sa such that SaUa = −1, S ⊥ ∂I .

In order to find the expansion and shear, first one defines the tensor Bab = ∇bUa,
which is symmetric since Ua is hypersurface orthogonal. Now let us consider a deviation
vector, η, orthogonal to both U and S. Then

ηbBa
b = U b∇bη

a, (4.40)

that is, Ba
b measures the failure of a deviation vector to be parallely transported along

U . Since U and ∂I commute, ∂I are deviation vectors for the geodesic congruence, so
from the above equation,

(∂I)b Ba
b = U b∇b (∂I)a . (4.41)

Now let us consider hIJ = ∂I · ∂J . In the {v, x, y, θ, ϕ} coordinates, hIJ = gIJ , so it
is simply the induced metric on a constant x and constant y slice. If one differentiates
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the component of hIJ with respect to the affine parameter λ, one finds that

d
dλhIJ = U b∇b (∂I · ∂J)

= (∂I)b Ba
b (∂J)a + (∂J)b Ba

b (∂I)a

= 2Bab (∂I)a (∂J)b

= 2BIJ . (4.42)

Now, when calculating the expansion, shear and twist of a null geodesic congruence,
it turns out the space one has to work with is an equivalence class of deviation vectors,
where first we restrict to vectors which are orthogonal to Ua, and then consider two
such deviation vectors as equivalent if they differ by a multiple of Ua (see, for example,
Section 9.2 of [11] or Appendix F of [12] for further details). Let us denote the vector
space of such an equivalence class as V̂ . This is a 3 = 5 − 2 dimensional vector space
in our case, where we have five bulk dimensions. A vector/covector in the spacetime
naturally gives rise to a vector/covector in V̂ if and only if its contraction with U is
zero. Furthermore, a general tensor T a1...ak

b1...bℓ
in the spacetime naturally gives rise

to a tensor T̂ a1...ak
b1...bℓ

if and only if contracting any one of its upper or lower indices
with Ua or Ua and then the remainder of indices with vectors or covectors with natural
realisations in V̂ gives zero.

Each of gab, Bab and (∂I)a satisfy the above definitions, so they naturally give rise
to tensors in V̂ . Therefore, the three linearly independent vectors (∂I)a provide a basis
for V̂ , so for any spacetime tensor T satisfying the above condition, we can find T̂

simply by reading off the {v, θ, ϕ} components of T . That is,

ĥIJ = hIJ = gIJ , (4.43)

B̂IJ = BIJ = 1
2

d
dλhIJ . (4.44)

Now that we’re working in the vector space V̂ , we can define the expansion and shear,
respectively, as

Θ = B̂I
I = ĥIJB̂

IJ = hIJB
IJ , (4.45)

σIJ = B̂IJ − 1
d− 2ΘĥIJ = BIJ − 1

d− 2ΘhIJ , (4.46)

where d is the dimension of the bulk spacetime, so that, in our case d = 5. The twist
is the anti-symmetric part of B̂IJ , which vanishes here, due to the symmetry of BIJ .
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We already have h, so we need only calculate B to find the expansion and shear.
This can be done by finding the affine parameter λ(x), and then solving (4.44) for B.
In order to find the affine parameter, we can utilise Raychaudhuri’s equation, which is
given by

dΘ
dλ = −B̂b

aB̂
a

b −RabU
aU b. (4.47)

By the Einstein equation, Rab ∝ gab, and moreover Ua is null, so that the final term
above vanishes. Also, B̂ab is symmetric and orthogonal to both U and S, so the above
equation simplifies to

dΘ
dλ = −B̂IJB̂IJ . (4.48)

One can then substitute Θ and B̂IJ in the above equation for expressions in terms of
hIJ by using (4.44) and (4.45), which yields the following second order ODE for λ:

λ′′ = λ′
(
hIJh′

IJ

)−1
[

1
2h

IJhKLh′
IKh

′
JL +

(
hIJh′

IJ

)′
]
, (4.49)

where ′ denotes a derivative with respect to x, the coordinate along the horizon. A
more general ODE is given in [135] in the case where the horizon is not necessarily a
constant y slice, but rather some non-trivial surface in the (x, y) plane.

Once one has a numerical solution for the line element of the black hammock, one
can numerically solve the above ODE for the affine parameter λ(x). Finally with such
an affine parameter, one can evaluate B̂IJ since (4.44) implies that

B̂IJ = 1
2
(
λ′(x)

)−1 d
dxhIJ . (4.50)

From this the expansion and shear along the horizon can easily be computed using
(4.45) and (4.46).

4.4 Results

4.4.1 The position of the hammock horizon

The Ansatz for the black hammock fixed that the y = 1 slice was a null hypersurface in
the bulk spacetime, however, at no point in the Ansatz or in the boundary conditions
did we explicitly set that it really was the bulk horizon. In particular, we cannot be sure
it is not instead some inner horizon, and that the real event horizon lies outside of it.
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We can check this isn’t the case by ensuring we can reach the conformal boundary via a
future-directed, causal curve starting at any given point outside the y = 1 hypersurface.

Let us consider, in (v, x, y, θ, ϕ) coordinates, a radial curve with tangent vector
given by

Ua =
(

1
x(1 − x)p2(x, y)U

x, Ux, Uy, 0, 0
)
. (4.51)

The condition for such a curve to be null leads to the equation

dy
dx = −(1 − ρh)(1 − y2)p1(x, y)H(x)

2ρh(1 − x)x p2(x, y) . (4.52)

We numerically solve the above ODE for y(x). This provides a family of null curves,
parameterised by the choice of initial condition of the ODE. The y coordinate depends
monotonically on the x coordinate, so we can indeed use x as a parameter along the
curve. One finds that if one takes as an initial condition that y = 1 for some value
of x, then one finds that the curve remains on the y = 1 hypersurface for all time.
On the other hand, if one takes y = 1 − ϵ as an initial condition for any ϵ > 0, then
the curve will always intersect the conformal boundary at y = 0. Moreover, we can
easily see that the vector Ua is future-directed, since its inner product with ∂/∂v is
negative in the asymptotic region where ∂/∂v defines the time-orientation. Thus we
can find a future-directed causal curve from any point in the exterior of y = 1 to the
conformal boundary at y = 0. This proves that y = 1 is not an inner horizon, and
provides strong evidence that the y = 1 hypersurface is indeed the event horizon of the
black hammock.

4.4.2 Embeddings of the horizons

In order to aid with visualisation of the geometries, we can embed a spatial cross-section
of the horizons into hyperbolic space. The cross-section of the horizon of the black
hammock and each of the horizons of the black tunnel are three-dimensional, so we
can embed them into four-dimensional hyperbolic space H4, which has metric

ds2
H4 = L2

4
Z2

(
dZ2 + dR2 +R2 dΩ2

(2)

)
. (4.53)

Let us consider finding an embedding of the horizons of the black tunnel. The bulk
event and bulk cosmological horizons are, respectively, the x = 0 and x = 1 surfaces,
and are parameterised by the y coordinate. Hence, for each of the horizons we seek an



4.4 Results 99

embedding of the form (R(y), Z(y)). Such a surface in H4 has induced metric

ds2
emb = L2

4
Z(y)2

((
Z ′(y)2 +R′(y)2

)
dy2 +R(y)2 dΩ2

(2)

)
. (4.54)

We compare the above line element with the induced metric of a constant time slice
of each of the bulk event and bulk cosmological horizons. In each case, this yields a
simple first-order ODE and an algebraic equation which can be solved numerically
for R(y) and Z(y). Note that the embeddings of the two horizons (the bulk event
horizon at x = 0 and the bulk cosmological horizon at x = 1) must be found separately,
but can be embedded into the same space. There is a fair amount of freedom in the
embeddings corresponding to the initial conditions of the ODEs, so really it is only the
shape of the horizons that matters. We choose L4 = ℓ5, and take for the cosmological
horizon the initial condition that R(0) = 1, and for the event horizon we pick the
initial condition that R(0) = ρh.

To obtain the embedding diagram, one then plots the resultant values of {R(y), Z(y)}
across the range y ∈ (0, 1) for each of the horizons. In Figure 4.5a, we’ve plotted
together the embedding diagrams for the two horizons of the black tunnel, with a value
of the parameter ρh = 0.5.

We can apply a similar procedure for the black hammocks, which only has one
horizon, which in the coordinates of our Ansatz is the y = 1 hypersurface, hence this
time is parameterised by the x coordinate. Once again we compare the line element
of the embedding (R(x), Z(x)) in H4 to the induced metric on a constant time slice
of the bulk horizon of the hammock. This yields an ODE, which we solve with the
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(a) The embedding of the black tunnel
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(b) The embedding of the black hammock

Fig. 4.5: The embedding diagrams of the black tunnel and hammock with ρh = 0.5 in four-dimensional
hyperbolic space. The tunnel has two disconnected horizons; the blue curve is the bulk event horizon
whilst the orange curve is the bulk cosmological horizon. The hammock possesses a single connected
horizon.
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initial condition R(0) = 0.1, though again we stress that it is only the shape of the
embedding that matters rather than any numerical values. The embedding diagram
obtained for the black hammock is plotted in Figure 4.5b.

4.4.3 The ergoregion of the hammocks

The results described in Section 4.4.1 provide strong evidence that the horizon of the
black hammock is the y = 1 null hypersurface. However, the fact that the stationary
Killing vector field ka =

(
∂/∂v

)a does not generate the horizon means that there must
be an ergoregion in which ka is spacelike. The ergosurface is the boundary of this
ergoregion, where necessarily k2 = 0.

We find that for large values of the radius ratio, ρh, the ergosurface is very close
to the horizon, meaning the ergoregion is extremely small. For smaller values of
ρh, however, the ergoregion is noticeably larger. In Figure 4.6 we have plotted the
ergoregion as a surface in the (x, y) plane for a black hammock with ρh = 0.1. As one
would expect from the Ansatz, the ergosurface approaches the horizon as one goes
towards x = 0 or x = 1, which we recall are the points on the conformal boundary at
which the bulk horizon approaches the geometry of a hyperbolic black hole.

In general, the presence of an ergoregion can lead to superradiant instabilities of
black holes [188]. Noting the fact that as the radius ratio, ρh, is taken to be small
(i.e. as the horizons of the de Sitter-Schwarzschild boundary geometry are taken
to be far apart) the ergoregion becomes larger and larger, it would be particularly
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Fig. 4.6: The ergoregion of the black hammock, with ρh = 0.1, plotted as in the (x, y) coordinate
space. The black line at y = 1 is the horizon of the black hammock. The blue curve is the ergosurface
where the Killing vector k = ∂/∂v is null and the shaded region is the ergoregion where k is spacelike.
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interesting to investigate whether the black hammocks for these values of ρh do suffer
such superradiant instabilities.

4.4.4 Energy

Now we’ll turn to some of the conserved charges that the solutions possess. Firstly
we’ll look at the energy of both the tunnels and the hammocks, and then the flow
which is non-zero only for the hammocks. Before we do so let us stress one particularly
interesting point regarding the normalisation of these quantities. The energy and flow
are dimensionful quantities, so in order to compare the quantities between solutions,
one has to multiply by a suitable power of a dimensionful parameter of the solutions.
Often the temperature of the black hole is used as this normalising factor. However, in
our case, we have two temperatures which are not equal: the temperature of the event
horizon, TH , and the temperature of the cosmological horizon, Tc. This is connected to
the fact that in de Sitter-Schwarzschild, one has two scales, the mass of the black hole
and the de Sitter length scale. It is not immediately clear which of the temperatures,
TH or Tc, is the meaningful quantity to normalise with, or if instead we should use
some combination of them. Indeed, the fact that the two temperatures of the horizons
are different means that it is difficult to define a canonical ensemble, and hence it is
hard to discuss the solutions using thermodynamic analysis. We’ll return to this point
in the discussion in Section 4.5. For now, let us present the charges which we choose to
make dimensionless using TH , which seems to yield results without divergent behaviour
at the endpoints of the parameter space.

The energy of the black tunnels and hammocks can be defined from the holographic
stress tensor, Tµν , in the standard way [122, 189]. One takes a Cauchy slice Σ of
the boundary de Sitter-Schwarzschild geometry and then the energy is defined by an
integral over this slice as

E := −
∫

Σ
d3x

√
hnµkνTµν , (4.55)

where kµ is the stationary Killing vector field of the de Sitter-Schwarzschild metric and
h the determinant of the induced metric on Σ and nµ the unit normal to Σ.

For the hammocks, we have to be careful to use coordinates on which the stress tensor
is regular at both horizons, which can be done by taking the de Sitter-Schwarzschild
metric in the form given in (4.39). We pick the surface Σ to be a constant V slice, and
so nµ ∝ (dV )µ. Such surfaces are shown as dashed curves in the Penrose diagram for de
Sitter-Schwarzschild, which is shown in Figure 4.4. In these coordinates, the stationary
Killing vector field is given by kµ = (∂/∂V )µ. With these choices, the integral for the
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energy becomes

E = −2π r3
c ρ

3
h (1 − ρh)

∫ 1

0
dw T V

V(
1 − w(1 − ρh)

)4 . (4.56)

The integral can be computed numerically for both the tunnels and the hammocks using
the holographic stress tensors found in Section 4.2.3 and Section 4.3.4, respectively.
It is immediately clear that the stress tensor for the tunnels is regular and finite
at the horizons, so there are no difficulties in calculating the energy for each of the
values of the radius ratio, ρh. We’ve plotted the energy of each tunnel solution in
Figure 4.7a. Turning points of the energy can often signify transitions between stability
and instability and so one particularly interesting and surprising feature of this plot is
that the energy of the tunnels (when normalised by the event horizon temperature)
is a non-monotonic function of the parameter ρh. However, the fact that one finds a
non-monotonic function, and moreover the position of the maximum, is dependent
on the fact we’ve used TH to make the energy dimensionless, and thus it is difficult
to argue that this maximum is meaningful given that TH is not the only scale in the
system.

The regularity of the stress tensor of the black hammocks depends on non-trivial
relations between (fourth) derivatives of the metric functions. It is expected that
the true, full solutions will satisfy these relations, however there is some noise in the
numerical solutions due to the fact the solutions have been found on a discrete grid.
Thus, in order to ensure these relations are satisfied when finding the metric functions
numerically, we needed to use high precision and a large number of lattice points in
the discretization (we used a precision of 50 decimal places on the 120 × 120 grid).1

We found that the smaller the value of ρh, the more difficult it is to ensure that one
attains a regular stress tensor numerically. We were able to get sensible results for
ρh ≥ 0.1, and have plotted the energy for these solutions in Figure 4.7b. We did find
hammock solutions for smaller values of ρh, but not at a high enough resolution to
ensure we obtained a regular stress tensor numerically and hence we’ve omitted these
points from the plot.

1The numerical work carried out to comprise the paper [2], on which this chapter is based, used
only a single patch. It is possible that using the patching methods described in Section 2.4.3, one could
be able to derive this energy accurately without having to go to such high precision and resolution.
To do so, one could take one patch to be localised very close to the asymptotic region, to improve the
accuracy of the derivatives at infinity.



4.4 Results 103

0.0 0.2 0.4 0.6 0.8 1.0

-6.8

-6.7

-6.6

-6.5

-6.4

-6.3

-6.2

-6.1

(a) Energy of the black tunnels
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Fig. 4.7: The plots of the energy of the black tunnel and black hammock solutions across different
values of the parameter ρh. Here we have divided the energy, E, by the temperature of the event
horizon, TH , in order to obtain a dimensionless quantity.

4.4.5 Flow

Now let us turn our attention to some additional properties of the hammocks. Unlike
the tunnel, the hammock is not a static solution in the bulk. This is due to the fact
that the horizon is not a Killing horizon; there is flow along it. This flow represents
the deconfined phase of the CFT corresponding to the hammock solution, and can be
defined in terms of the holographic stress tensor by an integral over a two-sphere of
fixed radius r as follows:

Φ := −
∫

S2
r

d2x
√

−γ mµkνTµν , (4.57)

where γµν is the induced metric on a constant radius slice of the boundary de Sitter-
Schwarzschild geometry with determinant γ and unit normal mµ, whilst kµ is again
the stationary Killing vector field. Due to the conservation of the stress tensor, this
integral is invariant of the choice of the radius of the two-sphere one integrates over.

Once again, we work in the coordinates (V,w, θ, ϕ) of (4.39) in which the stress tensor
is regular at the horizons. Thus, we consider a constant w slice, with mµ ∝ (dw)µ and
kµ = (∂/∂V )µ. By expanding the equations of motion about the conformal boundary,
as done in Section 4.3.4, one can show that the flow is given by

Φ = N2(1 − ρh)
32π r2

c ρh

(
1 + ρh + ρ2

h

)2C1, (4.58)
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Fig. 4.8: The flow along the black hammock, divided by the temperature of the event horizon
squared, for different values of the radius ratio, ρh. The flow, Φ, is a non-monotonic function of ρh.

where C1 can be obtained numerically from a fourth derivative of the metric function
p2(x, y) using the equation (4.36). As expected this result is independent of the radial
coordinate w.

This calculation confirms that in the deconfined hammock phase, the CFT on the
field theory side of the duality flows at order O(N2).

Since one only needs to extract a constant using the metric functions found nu-
merically, the flow can be found to a high degree of accuracy for each of the black
hammock solutions obtained. In Figure 4.8, we have plotted the flow as a function
of the radius ratio, ρh. As expected, Φ is positive for each of the solutions, which
corresponds to flow from the hotter event horizon to the cooler cosmological horizon.
Moreover, the flow tends towards to zero in the extremal limit (ρh → 1) in which the
event and cosmological horizons are aligned and have the same temperature.

Interestingly, the flow is a non-monotonic function of ρh, with a maximum at
ρh ≃ 0.396. This property was also found in the flowing black funnel solutions
of [135], which are dual to a CFT on a flat Schwarzschild background with the CFT
asymptotically in a thermal state with non-zero temperature. As of yet, there is no
field theory explanation of this non-monotonic behaviour of the flow for either the
flowing funnels or the hammocks. The position of the maximum of the flow for the
black hammocks is at a different value of the ratio of the two temperatures than the
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flowing funnels, which is perhaps to be expected since in the case of the hammocks,
the distance between the two horizons is finite and naturally varies as one changes the
ratio of their temperatures, whereas the event horizon in the flowing funnels is always
an infinite distance from the asymptotic region.

In [135] it was conjectured, with evidence provided by considering local Penrose
inequalities [190], that the turning point of the flow may indicate the phase transition
between the confined and deconfined phase of the CFT. It would be of great interest
to investigate whether this also holds in the current case, with the turning point of the
flow similarly signifying a transition from dominance of the tunnel solution to that of
the hammock solution.

However, let us once again stress that the fact that one finds a non-monotonic
function, and moreover the position of the maximum, depends on the quantity one
uses to make the flow dimensionless. If one uses Tc instead of TH , one finds that the
flow diverges as ρh → 0. It is not obvious which scale one should use to normalise.

4.4.6 Expansion and shear of the hammock horizon

The fact that the bulk horizon of the hammock is non-Killing allows it to have interesting
properties, for example, non-trivial expansion and shear.

Firstly, let us consider the behaviour of hIJ , which was defined in Section 4.3.5, along
the horizon, the y = 1 hypersurface. In particular, we plot its determinant, h = dethIJ ,
in Figure 4.9a. Clearly, h monotonically increases with x, as one moves along the
horizon from the boundary event horizon (at x = 0) to the boundary cosmological
horizon (at x = 1).

Moreover, from the line element, (4.20), the coordinate velocity along the horizon is
given by Ω(x) = x(1 − x)p2(x, 1). We plot this in Figure 4.9b against the x coordinate.
For each value of the radius ratio, ρh, the coordinate velocity is positive across the
horizon, which supports the fact that the flow along the horizon is from the hotter
boundary event horizon at x = 0 to the cooler boundary cosmological horizon at x = 1.
This fact, together, with the fact that the determinant of hIJ is an increasing function
of x, suggests strongly that the past horizon lies at x = 0.

Now let us turn our attention to the affine parameter, the expansion and the shear.
Following the discussion in Section 4.3.5, in order to obtain the affine parameter,
λ(x), we can numerically solve the ODE given by (4.49). In Figure 4.9c, we plot λ(x)
against x. As one would expect, λ increases monotonically with x. It diverges as x → 1
at the boundary cosmological horizon. At the event horizon, x = 0, λ goes instead to
a finite value, which we are free to choose by rescaling the affine parameter. We have
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Fig. 4.9: Here we plot the the determinant, h = det hIJ , the coordinate velocity Ω(x), and the affine
parameter, λ(x), in (a), (b) and (c), respectively, against the coordinate x along the horizon for the
black hammock with ρh = 0.4. Clearly, the determinant is a monotonically increasing function of x.
Meanwhile the coordinate velocity Ω(x) is positive, showing that the flow will be from the boundary
event horizon to the boundary cosmological horizon. The affine parameter is also monotonically
increasing, from zero at x = 0, at the boundary event horizon, up to positive infinity at x = 1, at the
boundary cosmological horizon.
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used such freedom to fix λ(0) = 0 and λ′(0.5) = 1. Hence the boundary event horizon
is the past boundary of the bulk horizon.

Once we have the affine parameter, the expansion and shear are easy to calculate
using (4.50) followed by (4.45) and (4.46). In Figure 4.10, we plot the expansion
along the horizon (now parameterised by the affine parameter λ) in a log-log plot. As
expected by Raychaudhuri’s equation, we find that dΘ/ dλ < 0 everywhere. For small
and large values of λ, the expansion follows a line in the log-log plot. However, there is
some interesting non-trivial behaviour of the expansion, in this case at around λ ≃ 0.2.
This behaviour is partially explained by the behaviour of the shear.

The shear in {v, θ, ϕ} coordinates is given by a diagonal, traceless 3 × 3 matrix,
with its θ and ϕ components related due to spherical symmetry. Hence, the shear at
each point is completely determined by its vv component:

σI
J = Diag

(
σv

v,−
1
2σ

v
v,−

1
2σ

v
v

)
. (4.59)

In Figure 4.11, we plot σv
v against the affine parameter, after taking the absolute value

so that we can plot in a log-log plot. For small values of λ (nearer to the boundary
event horizon) the σv

v component of the shear is positive, whereas, for large values
of λ (nearer the boundary cosmological horizon), σv

v is negative. By continuity, the
shear must vanish at some point along the horizon. This leads to the “kink” in the
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Fig. 4.10: The expansion, Θ, of the horizon plotted against the affine parameter, λ. The left-hand
panel is a log-log plot of this curve across a large portion of the horizon. The right hand panel is a
zoom (still with a logarithm scale of both axes) of the plot on the left, focusing on the portion of the
curve with non-linear behaviour of the expansion.
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curve of the logarithm of the absolute value of σv
v, seen in Figure 4.11, located at

around λ ≃ 0.2437. In the top-right panel of Figure 4.11, we’ve zoomed in on this
point further, after interpolating between the lattice points. However, this apparent
“kink” is only an artifact of the fact we’ve taken the absolute value so that we can
plot in a log-log plot. To explain the behaviour more clearly, we’ve plotted σv

v in the
region of interest without taking the absolute value or the logarithm on either axis
in the bottom panel of Figure 4.11. Indeed, the shear vanishes at λ ≃ 0.2437, and
σv

v has a minimum value at λ ≃ 0.2738 before returning to zero as λ becomes large.
This behaviour of the shear vanishing at a single point along the horizon, and flipping
signs across it seems to occur for each of the hammocks we found across the parameter
space. This behaviour was not found for the flowing funnels of [135]. Hence, it may
be indicative of the horizon returning to the conformal boundary rather than tending
towards the geometry of a planar horizon.

As discussed above, the expansion also seems to have interesting behaviour near
this value of the affine parameter, which we’ve focused in on on the right hand panel
of Figure 4.10. This behaviour follows from the behaviour of the shear, since by
Raychaudhuri’s equation,

dΘ
dλ = −1

3Θ2 − σIJσIJ , (4.60)

so that when the shear vanishes, the magnitude of dΘ/ dλ decreases, so that the plot
of Θ temporarily flattens out near this point (though the gradient never vanishes
completely). Indeed, we checked explicitly that the values found for the expansion and
shear accurately satisfy Raychaudhuri’s equation.

4.5 Discussion

We constructed the holographic duals to a large N , strongly coupled CFT living on
a de Sitter-Schwarzschild background. These are five-dimensional, AlAdS spacetimes
with a de Sitter-Schwarzschild geometry on the conformal boundary. There are two
solutions: the black tunnel solution with two disconnected bulk horizons, which is
dual to a confined phase of the CFT, and the black hammock solution with a single
connected bulk horizon, which is dual to a deconfined phase of the CFT. We were able
to find black tunnel solutions across the whole of the parameter space, ρh ∈ (0, 1),
where the radius ratio, ρh, is the ratio of the proper radii of the boundary event and
cosmological horizons, and we were able to find black hammock solutions for a large
range of the parameter space (ρh ≥ 0.03).
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Fig. 4.11: In the top-left panel, the absolute value of the vv component of the shear, |σv
v|, is plotted

against the affine parameter, λ, along the horizon of the black hammock with ρh = 0.4 in a log-log
plot. We have simply taken the absolute value in order to be able to take the logarithm. The plot in
the top-left panel indicates some interesting behaviour of |σv

v| near λ ≃ 0.24, which we have zoomed
in on in the top-right panel, after interpolating between lattice points. The behaviour near this point
is more easily understood by looking at the behaviour of σv

v nearby, which is plotted (in a standard
plot, without taking logs on either axis) in the bottom panel. The shear vanishes at λ ≃ 0.2437,
with each of its non-trivial components, σI

J , flipping signs across this point on the horizon. We find
σv

v is positive below this value of λ and negative for large values of λ, taking its minimum value at
λ ≃ 0.2738, before tending towards zero as λ diverges.
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We used complementary methods to obtain the two families of solutions. In order
to find the black tunnels, we used the DeTurck method, which is very effective for
static problems, yielding elliptic PDEs. Moreover with the boundary conditions in our
case, it can be proven that Ricci solitons cannot exist, so that any solution found via
the DeTurck method is necessarily a solution to the Einstein equation. On the other
hand, we calculated the black hammocks in Bondi-Sachs gauge. This was the first use
of such a gauge to find flowing AlAdS spacetimes in five dimensions. It seems as though
Bondi-Sachs gauge works particularly well for spacetimes with a null hypersurface
“deep” in the bulk, i.e. opposite the conformal boundary in the integration domain.
Such solutions, for example, the hammocks of this work, as well as flowing funnel
solutions can also be found using the DeTurck method, though generally in these
cases one cannot say with absolute certainty that the solutions are not Ricci solitons,
and moreover, the solutions need to be found to a high degree of precision and on
a large number of lattice points in order for quantities like the holographic stress
tensor to be extracted. For example, we found that extracting the stress tensor of
the black hammock solutions in DeTurck gauge required around twice the number of
lattice points in the radial direction compared with when using the solutions found in
Bondi-Sachs gauge. Not only this, but to find the hammocks in DeTurck gauge, one
has to solve for seven metric functions, rather than just the five in Bondi-Sachs gauge.
Moreover, in Bondi-Sachs gauge we were able to explore far more of the parameter
space. It would be very interesting to explore the efficacy of the Bondi-Sachs gauge
in this context in more detail, and its use may open a door to solving other difficult
problems, particularly those with the presence of a flowing horizon.

The horizon of the black hammock is not a Killing horizon, allowing it to have
interesting properties, such as classical flow along it, as well as non-vanishing expansion
and shear. This does not contradict the rigidity theorems, since these apply only
to geometries with horizons with compactly generated spatial cross-sections. The
boundary event horizon is always hotter than the boundary cosmological horizon, and
hence, as one would expect, we found that the classical flow along the black hammock
is always from the event horizon to the cosmological horizon. The results of the shear
and expansion are interesting, particularly the result that the shear vanishes at a point
along the horizon, with all of its components swapping signs across this point.

It would be of great interest to be able to investigate the phase diagram of the CFT
living on the de Sitter-Schwarzschild background. This would be achieved by deducing
which of the gravitational duals dominates for a given value of the parameter, ρh. It
would be expected that for very small ρh, when the boundary horizons are very far
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apart, the confined, tunnel phase would dominate, whilst for large ρh ≃ 1, where the
horizons are almost aligned, the deconfined, hammock phase would dominate. Hence,
the expectation is that there is a phase transition at some intermediate value of ρh.
However, there is much difficulty in confirming this behaviour and finding the location
of this phase transition.

In [135], it was suggested that a similar transition between black droplet and funnel
solutions, which are dual to a CFT on a flat Schwarzschild background, occurs at the
point in the parameter space at which the flow, Φ, is maximised. We find a maximum
of the flow, as seen in Figure 4.8, so one may conjecture that this is signifying the phase
transition. However, the position of this maximum depends on the choice of quantity
used to make the flow dimensionless. We used the temperature of the boundary event
horizon, TH . It is not clear to us that this is the meaningful quantity to use, as
opposed to the temperature of the boundary cosmological horizon, Tc, or indeed some
combination of these two temperatures.

This issue is linked to the difficulty to undergo a thermodynamic study of the two
solutions in order to deduce which dominates. For example, in [140], the phases of
similar solutions was investigated by comparing the free energy, F = E − TS, of each
of the solutions, with the solution with least free energy dominating. However, in our
case, the solutions are not in thermal equilibrium which means that the free energy is
very difficult to define.

Moreover, we found there was some difficulty in extracting the difference in the
entropy of the two solutions. In particular, we found that the difference between the
sum of the areas of the two tunnel horizons and the area of the hammock horizon is
infinite, even after matching the conformal frame. Divergences in extremal surface
area can depend only upon the boundary metric, so this suggests that the hammock
horizon is not the minimal extremal surface.2 Therefore, in order to find the entropy
difference, one would have to extend the geometry of the hammock through the bulk
horizon, find the extremal surface and compare the area of it to the area of the two
bulk horizons of the black tunnel. It would be very interesting to further understand
this divergence of the difference between the horizon areas of the two solutions, and to
explicitly find the extremal surface for the hammock.

In lieu of a thermodynamic argument to determine the dominance of either the
tunnel or hammock, it appears that the best course to take in order to investigate the
phase diagram may be to explicitly test the stability of the two bulk solutions across the
parameter space. Fortunately, Bondi-Sachs gauge is extremely well-adapted to allow

2I would like to thank Don Marolf for his insight into this issue.
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for one to slightly perturb the black hammock solutions and track over a time-evolution
whether this perturbation leads to an instability. One would perhaps expect that for
small values of ρh, the black hammock would be unstable to such a perturbation, and
hence would decay into a black tunnel. However, in order for such a transition to
occur, the single bulk horizon of the hammock would have to “pinch off” and split into
two disconnected horizons. Such evolution would violate the weak cosmic censorship
conjecture [15], perhaps in a similar manner to the Gregory-Laflamme instability of
the black string [191, 192]. It has previously been shown that weak cosmic censorship
can be violated in AdS [193–196], though the current set-up may prove to be an easier
problem in which to explicitly find the evolution towards a naked singularity.



Chapter 5

Holographic batteries

Abstract

We study a three-dimensional holographic CFT under the influence of a back-
ground electric field on a spacetime containing two black hole horizons. The
electric background is fixed such that there is potential difference between the
two boundary black holes, inducing a conserved current. By constructing the
holographic duals to this set-up, which are solutions to the Einstein-Maxwell
equations with a negative cosmological constant in four dimensions, we calculate,
to a fully non-linear level, the conductivity of the CFT in this background.
Interestingly, we find that the conductivity depends non-trivially on the poten-
tial difference. The bulk solutions are flowing geometries containing black hole
horizons which are non-Killing and have non-zero expansion. We find a novel
property that the past boundary of the future horizon lies deep in the bulk and
show this property remains present after small perturbations of the temperature
difference of the boundary black holes. This work was first published in [3].

5.1 Introduction

Given a quantum field theory (QFT), a natural avenue of investigation is to test how it
behaves under an external electric field. Studying such behaviour for a strongly coupled
QFT using direct field theory techniques is computationally very challenging (though
progress has been made when the system is in the proximity of quantum critical points
[197]; see also [198] for a holographic description of a similar setup). However, since
its advent, the AdS/CFT correspondence [109–111] has allowed for the indirect study
of strongly coupled condensed matter systems via gravitational calculations (see for
instance [199] for an excellent review on the topic).
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Fig. 5.1: Some sketches of spatial cross-sections of spacetimes of interest. Left: Two BTZ black
holes with the dashed curves being their asymptomatic boundaries and the dotted line their horizons.
The interior is shaded. Middle: The boundary geometry found by patching the BTZ spacetimes
together at infinity and then compactifying onto the ESU. Right: The global funnel, a solution in
the bulk with a horizon connecting the two boundary horizons.

Specifically, we work in the limit of the AdS/CFT duality in which the gravitational
theory is well described by classical gravity. In this limit, the duality maps a problem
of studying a strongly coupled CFT with a large number of degrees of freedom living on
a fixed (but possibly curved) background, B, to a gravitational problem in which one
must find a corresponding asymptotically locally AdS, (AlAdS), spacetime, called the
bulk, which possesses a conformal boundary on which the induced metric is conformal
to B.

Taking B to be an asymptotically flat black hole background led to the black droplet
and funnels reviewed in Section 1.4, whilst considering B to be a black hole in de Sitter
space led to the solutions of the previous chapter.

In this chapter, we will focus on four-dimensional global funnels. The boundary
geometry will be given by the conformal compactification of the geometry obtained by
“patching together” two identical Bañados-Teitelboim-Zanelli (BTZ) black holes [124]
(shown on the left in Figure 5.1) at their asymptotic boundaries. This yields two black
holes antipodally situated in the Einstein Static Universe (ESU) as sketched in the
middle in Figure 5.1. There is a well-known solution called the BTZ black string or
uniform funnel which connects these two boundary black holes, however, even in the
case of vacuum gravity in the bulk, there is a rich structure of bulk solutions beyond
this uniform funnel [138–140, 200]. The right hand sketch in Figure 5.1 is a schematic
drawing of a global funnel.

We add a chemical potential, A(0)
µ , to the field theory which induces a conserved

current, Jµ, and, on the gravitational side of the duality, causes a deformation of the
bulk geometry away from the uniform funnel to a new solution to the Einstein-Maxwell
equations with a negative cosmological constant. We will define the chemical potential
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to vary on the boundary background, and in particular fix that it approaches two
different values at the two BTZ black hole horizons in the boundary geometry. Since
these charged global funnels correspond to the QFT sourced by the two horizons at the
same temperature but with a potential difference between them, we dub the solutions
as holographic batteries.

The background electric field caused by the chemical potential is Eµ = (F (0))tµ

where F (0) is the field strength tensor arising from A(0) and t is the coordinate associated
to the stationary Killing vector field of the boundary geometry. Ohm’s law tells us
that the conductivity, σ, of the field theory is the ratio between the induced current
and the background electric field:

Jµ = σµ
νE

ν . (5.1)

Calculating the bulk solution allows one to extract the conserved current, Jµ, induced
by the source on the field theory side, and hence the conductivity of the boundary field
theory (see [201] for a nice introduction to computing conductivity holographically).

In much previous work, only the linear response of the field theory to a small
background electric field was computed [202–210]. However, the computation of a full
bulk solution to the non-linear equations allows one to compute the conductivity of the
field theory non-linearly, and so the behaviour of the field theory under strong electric
fields can be calculated. Interestingly, we find that the conductivity is not a constant
value, i.e. the current, Jµ, depends non-trivially on the magnitude of the chemical
potential, despite there being no net energy flow, in contrast to what was observed in
[211, 212].

Moreover, the chemical potential varying across the boundary geometry induces
classical flow along the bulk horizon. Unlike previously found solutions containing
flowing horizons [179, 139, 135, 2], this flow is not caused by a temperature difference
between two asymptotic regions of the bulk horizon, and this means the properties
of the holographic batteries are subtly different to these other flowing solutions. In
particular, we show that the past boundary of the bulk horizon lies deep in the bulk, as
opposed to on one of the points at which the bulk horizon is anchored on the boundary,
as seen in all previous flowing black hole geometries. We show that this property is
generic by considering holographic batteries in which the boundary black holes can
also have a small temperature difference.
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5.2 Finding the holographic batteries

First let us consider the metric of the BTZ black hole:

ds2
BT Z = −f(r) dT 2 + dr2

f(r) + r2 dφ2, (5.2)

with f(r) = (r2 − r2
0)/ℓ2

3, where r0 is the radius of the BTZ black hole and ℓ3 is the
the three-dimensional AdS length scale. Taking

r = r0

x
√

2 − x2
, T = ℓ2

3
r0
t, φ = ℓ3

r0
ϕ, (5.3)

so that x = 1 is the horizon and x = 0 is infinity, yields

ds̃2
BT Z = Ω(x)2 ds2

BT Z

= ℓ2
3

− dt2 + 1
(1 − x2)2

(
4 dx2

2 − x2 + dϕ2
) , (5.4)

where we’ve multiplied the metric by a conformal factor

Ω(x) = x
√

2 − x2

1 − x2 . (5.5)

Note that ϕ has a period of 2πr0/ℓ3, which we must take into account when calculating
any global properties of the solutions. The geometry upon which we wish to study
the CFT is obtained by patching two copies of the metric given by ds̃2

BT Z at their
boundaries, i.e. at x = 0. Thus the boundary metric is given by the metric in (5.4),
with x ∈ [−1, 1] and x = ±1 being the two boundary black hole horizons. The
temperature of each horizon, measured in units of the original T coordinate, is given
by TH = r0/(2πℓ2

3).
The idea is to add an electric field on this background which acts as a source and

to fix the chemical potential at the two boundary horizons, x = ±1. Specifically, let us
add an electrical source given by the following vector potential:

A(0) = µ g(x) dt, (5.6)
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where g(x) is a profile we are free to choose and which we will design so that g(1) = +1
and g(−1) = −1. The potential difference between the two horizons is

V :=
[
A(0) · k

]x=1

x=−1
= 4πµTH , (5.7)

where k = ∂/∂T . For the majority of this chapter we take

g(x) := sin
(
π

2x
√

2 − x2
)
, (5.8)

which we call the sine profile.
The addition of an electric source in the boundary theory means that the bulk

theory is Einstein-Maxwell with a negative cosmological constant in four dimensions,
with the following equations of motion:

0 = Eab := Rab + 3
ℓ2

4
gab − 2Tab (5.9a)

0 = ∇aFab (5.9b)

where ℓ4 is the four-dimensional AdS length scale, F = dA is the field strength tensor
of the Maxwell field and the bulk stress tensor1 is given by

Tab = Fa
cFbc − 1

4gabF
cdFcd. (5.10)

We obtained the solutions in both Bondi-Sachs gauge and using the DeTurck method.
Each gauge has different uses. The numerical computation is far quicker in Bondi-Sachs
gauge and quantities of interest, such as properties of the horizon and the asymptotic
quantities, are far easier to read off. On the other hand, we found that solutions with
larger values of the amplitude, µ, of the boundary potential could be found using the
DeTurck method.2 Non-analytic terms do arise in the expansion of the metric near the
horizon in DeTurck gauge, unlike in Bondi-Sachs gauge, which leads to some difficulties
in reading off asymptotic quantities.

Thus, the solutions in Bondi-Sachs gauge are far more user-friendly, and we present
an Ansatz for the holographic batteries in this gauge in Section 5.2.1. We also describe
explicitly the process of holographic renormalization in this case as it turns out to be
quite simple. We will also briefly discuss how these solutions can be found using the

1In four dimensions, the trace of the stress tensor of a Maxwell field necessarily vanishes, so that
the stress tensor agrees with the trace-reversed stress tensor.

2By using the patching methods of Section 2.4.3, one may be able to also access this part of the
parameter space using Bondi-Sachs gauge.
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DeTurck method in Section 5.2.2. Obtaining the solutions in two different gauges also
greatly supports their validity, and indeed we found that in the region of the parameter
space in which solutions were found in both gauges, all gauge invariant quantities
extracted were in agreement between the two gauges.

5.2.1 Bondi-Sachs gauge

We begin with an Ansatz in Bondi-Sachs gauge which possesses a null hypersurface
at y = 1 and a conformal boundary at y = 0. We also assume the solutions will
be stationary and axisymmetric, with corresponding Killing vector fields ∂v and ∂ϕ,
respectively. For the gauge field we pick a gauge in which Ay = 0. In such a gauge,
the Ansatz is given by

ds2 = ℓ2
4
y2

q2
2

(
−(1 − y2)q1 dv2 − 2 dv dy

)

+ q2
5

(1 − x2)2

4
(
dx− (1 − x2)q4 dv

)2

(2 − x2)q3
+ q3 dϕ2


 (5.11a)

and
A = ℓ4

(
q6 dv + q7

1 − x2 dx
)
, (5.11b)

where qi(x, y) are unknown functions which depend upon x and y. Schematically, this
spacetime also looks like the right-hand sketch in Figure 5.1.

There is still some gauge freedom in the Ansatz which can be used to fix the radial
dependence of either q2 or q5 completely. In our case we fix that of q5, by enforcing

q5(x, y) = 1 + y2S2(x). (5.12)

The Einstein-Maxwell equations yield ten equations for the seven unknown functions
in the metric and vector potential given by the Ansatz, (5.11), in Bondi-Sachs gauge.
On the face of it, one may worry that the equations are over-determined, but in reality
not all of the equations of motion are independent. In fact, one can solve the bulk
equations, which are given by Eij = 0 and ∇aFai = 0 for i, j ̸= v where v is the
temporal direction, throughout the whole of the space and the remaining equations,
named the supplementary equations, Eva = 0 and ∇aFav = 0, on a constant y slice,
which in our case we choose to be the y = 1 null hypersurface, and which we check a
posteriori is the event horizon.
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Having set the supplementary equations as Robin boundary conditions at y = 1,
the contracted Bianchi identity, together with the bulk equations, enforce that the
supplementary equations must be satisfied throughout the whole spacetime, as shown
in Section 2.2. It still remains to be fully understood whether this integration scheme
leads to a well-defined elliptic PDE problem for a stationary spacetime.

Now let us address the boundary conditions at the remaining boundaries of the
integration domain. Recall that the radial dependence of the q5 function is fixed as
(5.12) as a gauge choice, so we need not prescribe boundary conditions for this function.
At y = 0, the conformal boundary, we set Dirichlet boundary conditions enforcing
that the induced metric on the boundary is conformal to (5.4). To do so, we set
q1 = q2 = q3 = 1 and q4 = 0. Then after taking the transformations:

dv = dt− 1
1 − y2 dy, y = z

ℓ3
(5.13)

we find that to leading order in z,

ds2 = L2

z2

(
dz2 + ds̃BT Z

)
+ O(z−1), (5.14)

where ds̃BT Z is the desired boundary metric, given by (5.4). As for the gauge field,
we want to it to approach the desired electric source (5.6) at leading order at the
conformal boundary. As such, we enforce at y = 0 that

q6 = µ g(x), q7 = 0. (5.15)

The funnels naturally lie on a coordinate domain with only two boundaries, the
conformal boundary and the bulk horizon. However, running numerics on such a
domain is very difficult, and so, similarly to what was done in [139, 135, 2], the two
points at which the horizon meets the boundary are “blown up” to two extra sides of
the coordinate domain, given by x = ±1. This is possible because the horizon must
approach the geometry of a hyperbolic black hole asymptotically as it approaches
the conformal boundary. Hence at x = ±1, we fix that the horizon has this limiting
behaviour. This is also done by setting q1 = q2 = q3 = 1 and q4 = 0 at these boundaries.
Moreover, to match the vector potential at these boundaries to the conformal boundary,
we take q6(1, y) = µ, q6(−1, y) = −µ and q7(±1, y) = 0.

Finally, in order to numerically solve the bulk equations, we use pseudo-spectral
collocation methods on a Chebyshev-Gauss-Lobatto grid to approximate the PDEs
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with non-linear algebraic equations which are solved iteratively by Newton’s method,
as described in Section 2.3.

Due to the fact the supplementary equations are not enforced explicitly throughout
the bulk, they give us a way to test the veracity of the solutions, since they should still
tend to zero across the bulk in the continuum limit. This convergence test is shown in
Appendix A.4.

Holographic renormalization. Having set the Dirichlet boundary conditions at
the conformal boundary, y = 0, a local, order-by-order analysis of the equations of
motion near y = 0 determine the asymptotic behaviour of the qi functions to a large
extent. Expanding about this boundary, one discovers that

q1(x, y) = 1 + 3S2(x)y2 + α1(x)y3 + O(y4) (5.16a)

q2(x, y) = 1 − 1
2S2(x)y2 + O(y4) (5.16b)

q3(x, y) = 1 + α3(x)y3 + O(y4) (5.16c)
q4(x, y) = α4(x)y3 + O(y4) (5.16d)
q5(x, y) = 1 + y2S2(x) (5.16e)
q6(x, y) = µ g(x) + β6(x)y + O(y2) (5.16f)
q7(x, y) = β7(x)y + O(y2) (5.16g)

where, we recall that the radial profile of the q5 was actually a gauge choice we were
free to make. All higher order terms are fixed in terms of {α1, α3, α4, β6, β7}, which
are the free functions that are not fixed by any local analysis of the equations of motion
near the boundary. Instead, in order to find these five functions, we need to solve
the equations of motion fully, whilst enforcing regularity deep in the bulk. The local
analysis of the equations of motion does, however, provide some information on the
functional form of β7 and α4:

β7(x) = (1 − x2)
(

C1√
2 − x2

− µ g′(x)
)

(5.17)

α4(x) =
(
1 − x2

) √
2 − x2

(
C2 + 1

3µC1 g(x)
)

− 1
4(2 − x2)S ′

2(x)
 , (5.18)

where C1 and C2 are unknown constants not fixed by the asymptotic expansion, which
we will see are intimately connected to the conductivity and the flow of the field theory.
Once the {α1, α3, α4, β6, β7} functions are obtained via the bulk calculation, one can
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proceed with the standard approach of holographic renormalization [120], explained in
Section 1.3.3, by transforming to Fefferman-Graham gauge, in which the metric and
vector potential in four dimensions take the form:

ds2 = ℓ2
4
z2

[
dz2 +

(
g(0)

µν + g(2)
µν z

2 + g(3)
µν z

3 + · · ·
)

dxµ dxν
]
, (5.19a)

A = ℓ4
(
A(0)

µ + zA(1)
µ

)
dxµ + O(z2), (5.19b)

where g(0)
µν is the boundary metric, A(0)

µ is the boundary electric source and the Greek
indices run over all coordinates other than the AdS radial direction, z. This can be
achieved with a coordinate transformation

x = w +
4∑

j=1
γj(w)zj, y =

4∑
j=1

δj(w)zj, (5.20a)

as well as a gauge transformation of the vector potential, A → A+ dχ, with

χ =
2∑

j=1
εj(w)zj. (5.20b)

The explicit expressions for γj(w), δj(w) and εj(w) can be found by taking the expansion
of the metric and gauge field given by (5.16), transforming with (5.20) and then matching
with the Fefferman-Graham form of the metric and vector potential order-by-order
in z.

Finally, the vacuum expectation value of the holographic stress tensor and the
conserved current can be simply read off as

⟨Tµν⟩ = 3ℓ2
4

16πG4
g(3)

µν , ⟨Jµ⟩ = ℓ2
4

4πG4
A(1)

µ . (5.21)

Note that the holographic stress tensor, ⟨Tµν⟩, is distinct from the bulk stress tensor,
Tab, arising from the bulk Maxwell field. Explicitly, we find

⟨Ttt⟩ = −ν α1(x)
2ℓ3

, ⟨Txx⟩ = −ν
(
α1(x) + 3α3(x)

)
ℓ3(2 − x2)(1 − x2)2 , ⟨Tϕϕ⟩ = ν

(
3α3(x) − α1(x)

)
4ℓ3(1 − x2)2 ,

⟨Ttx⟩ = − 3ν
4ℓ3

(
S ′

2(x) + 4α4(x)
(2 − x2)(1 − x2)

)
= −ν

(
µ g(x)C1 + 3C2

)
ℓ3

√
2 − x2

(5.22a)
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and

⟨Jt⟩ = ν β6(x)
ℓ3

, ⟨Jx⟩ = ν

ℓ3

(
β7(x)

(1 − x2) + µ g′(x)
)

= ν C1

ℓ3
√

2 − x2
, (5.22b)

with ν = ℓ2
4/(4πG4) which on the field theory side is a parameter measuring the number

of degrees of freedom of the CFT, and where we have made use of (5.17) and (5.18)
which fix the functional forms of ⟨Ttx⟩ and ⟨Jx⟩, though one must still compute the
bulk solution in order to extract the value of the integration constants, C1 and C2.

One can explicitly check that the current is conserved:

Dµ⟨Jµ⟩ = 0, (5.23)

where Dµ is the covariant derivative associated to the boundary geometry, and moreover
the stress tensor is traceless and satisfies a Ward relation:

⟨Tµ
µ⟩ = 0, Dµ⟨Tµν⟩ − F (0)

µν ⟨Jµ⟩ = 0, (5.24)

where F 0 is the field strength tensor arising from the source, (5.6).

5.2.2 DeTurck gauge

We also obtained the solutions via the DeTurck method, in which one adds additional
terms to the equations of motion in order to make them elliptic. One solves the
Einstein-DeTurck equations given by

0 = Rab + 3
ℓ2 gab − 2Tab − ∇(aξb) , (5.25a)

0 = ∇aFab − ∇bζ (5.25b)

with

ξa = gcd [Γa
cd(g) − Γa

cd(ḡ)
]

(5.25c)
ζ = gcd∇c

(
Ad − Ād

)
(5.25d)

where ḡab and Āa are, respectively, a reference metric and a reference vector potential
which we are free to choose. In this case there are no guarantees the solutions will
not be Ricci solitons, hence we must check after the fact that ξ and ζ are small and
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tending to zero in the continuum limit. These convergence tests are also presented in
Appendix A.4.

The Ansatz for the holographic batteries in DeTurck gauge is given by

ds2 = ℓ2
4
y2

− p1 dv2 − 2p2 dv dy + p5 dy2 + p4 dϕ2

(1 − x2)2

+ 4 p3

2 − x2

(
dx

1 − x2 + p6 dy + p7 dv
)2
 (5.26a)

and
A = ℓ4

(
p8 dv + p9 dy + p10

1 − x2 dx
)
, (5.26b)

where the unknown pi functions depend on x and y. The reference metric and vector
potential are obtained by setting

pi(x, y) =



1 − y2 for i = 1
1 for 2 ≤ i ≤ 4
µ g(x) for i = 8
0 otherwise

(5.27)

The equations are again solved as a boundary value problem. Dirichlet boundary
conditions are set at the conformal boundary, y = 0, and the two asymptotic regions
where the horizon meets the boundary at x = ±1 simply by setting that the metric
and vector potential are equal to the reference metric and reference vector potential,
i.e. pi is given by (5.27) at these boundaries. Similarly to in Bondi-Sachs gauge, these
conditions enforce that the boundary metric is conformal to (5.4), the vector potential
at the conformal boundary is equal to (5.6) up to a factor of ℓ4, and that the bulk
horizon approaches the geometry of a hyperbolic horizon near the boundary.

We do not set boundary conditions at the y = 1 boundary. Instead, following
the pioneering work of [179], we solve the equations of motion to a larger value of
y = ymax > 1, ensuring that the horizon of the obtained solution lies within the
integration domain. This method implicitly enforces the condition that the metric is
regular at the horizon, due to the fact that using pseudo-spectral method yields regular
solutions throughout the interior of the integration domain.

Once the solutions are obtained, one can again extract the holographic stress tensor
and conserved current via a process of holographic renormalization, though in DeTurck
gauge one must contend with non-analyticities in the expansion.
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In this gauge the horizon is not necessarily the y = 1 slice. One can find the position
of the bulk horizon by assuming it takes the form y = P (x) such that P (1) = P (−1) = 1,
and then the fact that the horizon must be a null hypersurface provides a first order
ODE for P which can be solved numerically. We find that the horizon “bends inwards”
in the coordinate domain so that P (x) ≤ 1 for all x ∈ [−1, 1], and so we are free to
take ymax as close to 1 as we like.

Having found the solutions in two different gauges strongly supports that they are
valid solutions to the Einstein-Maxwell equations, and we find that in the region of
the parameter space in which we found solutions in both gauges all physical quantities
matched. Though the use of Bondi-Sachs gauge is numerically less expensive and
allows for the easier extraction of physical quantities, we found that the DeTurck gauge
allowed us to obtain solutions with larger values of µ than was possible in Bondi-Sachs
gauge.

5.3 Results

5.3.1 Stress tensor and conserved current

As described above, the holographic stress tensor, ⟨Tµν⟩, and conserved current, ⟨Jµ⟩,
can be extracted from the numerical solutions using the standard procedure of holo-
graphic renormalization in either gauge. Explicit formulae for these quantities in this
case are given for the Bondi-Sachs gauge in (5.22). Analogous expressions in DeTurck
gauge can be similarly obtained after transforming to Fefferman-Graham gauge and
making use of (1.34).

Figure 5.2 gives plots for the non-zero components of the holographic stress tensor
and the conserved current for various values of the magnitude, µ, for the sine profile
chemical potential with the magnitude of each component increasing as µ increases.

5.3.2 Conductivity

Of particular interest will be the conserved current, ⟨Jµ⟩. We can define the total
current, I, by integrating ⟨Jµ⟩ over a circle, S1

x, of fixed x at a fixed time-slice in the
boundary geometry:

I :=
∫

S1
x

dϕ√
gϕϕ mµ⟨Jµ⟩ = 2νπ2THC1 (5.28)
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Fig. 5.2: Plots of the components of the holographic stress tensor, T ν
ρ, against the x coordinate.

The different curves correspond to different values of the magnitude, µ, of the sine profile chemical
potential. The magnitude of each component increases as µ increases.
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where mµ unit normal is the unit normal to the circle S1
x. Let us note again that ϕ has

periodicity 2πr0/ℓ3, which must be taken into account when computing this integral.
Note that the value of I is independent of the choice of x at which one fixes the circle,
S1

x, which follows as a direct consequence of the conservation of the current, (5.23).
We can describe the conductance, G, of the holographic battery by dividing the

total current by the potential difference between the two horizons, i.e.

G := I

V
= νπC1

2µ . (5.29)

The conductance depends upon both the choice of profile, g(x), and the magnitude
of the chemical potential, µ, or equivalently the potential difference between the two
horizons, V . In Figure 5.3, we plot the conductance of the holographic batteries, with
the sine profile defined by (5.8), against the potential difference.

As V/TH → 0, the conductance tends to two and it increases with the voltage.
Moreover, the gradient of the curve at V = 0 is zero, meaning that one has to go
beyond the linear regime in order to see the non-trivial dependence of the conductance
on the potential difference. The derivative of the conductance with respect to V/TH

possesses a turning point, in this case at V/TH ≃ 6.62, with the gradient of the curve
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Fig. 5.3: The conductance of the holographic batteries with the sine profile, against the potential
difference, V , normalised by the temperature of the black hole horizons, TH .
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decreasing for larger values of V/TH . It would be of interest to investigate further what
happens to G as V/TH becomes very large, though there are numerical challenges in
extending to this region of the parameter space.

The behaviour of the conductance appears qualitatively similar for other choices of
the profile, g(x), which each satisfy g(1) = 1 = −g(−1). In Appendix B we provide
plots of the conductance for other such profiles as well as a proof that G/ν → 2 as
V/TH → 0 for any choice of odd profile g(x) by conducting an analysis of the linearised
equations of motion.

One can also compute the local conductivity of the field by computing the ratio
between the x-components of the induced current and the source electric field,

σ(x) := ⟨Jx⟩
(F (0))tx

=2G
π

· 1
g′(x)

√
2 − x2

. (5.30)

Since the external electric field is not homogeneous, the conductivity is not constant.
However, for a given profile its functional form is always the same, with its magnitude
determined by the value of the overall conductance, G.

5.3.3 Energy Flow

The addition of a chemical potential causes some heating of the dual CFT by the Joule
effect and hence there is flow in the boundary field theory. As was observed in other
flowing solutions [179, 139, 135, 2], this means that the bulk horizon is not a Killing
horizon. The flow can be expressed via an integral of the holographic stress tensor over
a circle, S1

x, of fixed x in the boundary geometry as follows:

Φ(x) = −
∫

S1
x

dϕ
√

−γ mµk
ν⟨T µ

ν⟩

= 2πTH

(
2Gµ2g(x) + 3πνC2

)
, (5.31)

where γµν is the induced metric on a constant x slice of the boundary geometry with
determinant γ and unit normal mµ ∝ (dx)µ, whilst kµ ∝ (dt)µ is the normalised
stationary Killing vector field. Note therefore, that the flow is simply proportional
to the T x

t component of the holographic stress tensor, which is given in (5.22). The
constant C2 is an integration constant arising in asymptotic expansion of the q4 function,
given in (5.18), though its value is not fixed by a local analysis of the equations of
motion.
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In the current case, in which the two boundary horizons have the same temperature
and the chemical potential, g(x), is odd, we find empirically, as one would expect,
that C2 = 0, and hence there is no net flow between the two horizons. Thus, the flow,
Φ(x), is proportional to the chemical potential, and is odd with Φ(x) > 0 for x > 0,
meaning that there is flow in both directions originating from the point x = 0 and
moving outwards towards the boundary. As we will see this behaviour near x = 0 has
an interesting effect on the structure of the horizon of the bulk geometry.

5.3.4 Properties of the bulk horizon

By design, the y = 1 surface is a null hypersurface. In a similar manner to what was
done in Section 4.4.1, we checked explicitly that there exist future-directed radial null
curves from anywhere outside of this hypersurface to the boundary, suggesting it is the
event horizon.

Let us consider a generator of the horizon, Ua ∝ (dy)a, which can be parameterised
by the x coordinate. The affine parameter, λ(x), can be obtained from the geodesic
equation or from Raychaudhuri’s equation. At the axis of symmetry at x = 0, we find
that λ′(x) → 0, with λ(0) taking a finite value, which we are free to choose via an
affine transformation as λ(0) = 0. Moreover, we find that Ua is future-directed in both
directions moving away from x = 0. This suggests that the horizon is better thought of
as being generated by two separate future-directed generators, both described by Ua

and originating at x = 0, one moving in the positive x-direction and the other moving
in the negative x-direction. Hence, the point x = 0 is the past boundary of the future
horizon of the solutions.

Let us restrict to the x ≥ 0 region of the horizon, since the behaviour in the x ≤ 0
region is similar by symmetry. In the left-hand panel of Figure 5.4, we plot the affine
parameter along the generator against the x coordinate in a log plot.

Given our affinely-parameterised null geodesic, Ua, the B-tensor is given by BIJ =
∇IUJ , where I and J run over {v, ϕ}. The expansion, Θ, and shear, σIJ , are the trace
and symmetric-traceless parts of this tensor, respectively. These can be derived by
the method described in Section 4.3.5. The fact that λ′(x) → 0 as x → 0 means that
the expansion and shear diverge as x → 0 along the horizon. In the right-hand panel
of Figure 5.4 we have plotted the expansion against the affine parameter along the
generator of the x > 0 region of the horizon.

In flowing horizons, the past boundary is generally situated at the point at which
the flow along the horizon emanates from and, moreover, the expansion diverges at
this point. In the previous cases [139, 135, 2], the flow was induced by a temperature
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Fig. 5.4: Left: The affine parameter, λ, along the generator of the x > 0 region of the horizon,
plotted in a log plot against the coordinate x, for a holographic battery with µ = 0.24. Here we have
made the choice that λ(0) = 0 and λ′(0.1) = 0.1. Right: The expansion, Θ, along the generator for
this holographic battery, plotted in a log-log plot against λ. The expansion diverges at λ = 0.

difference between the boundary black holes meaning that the past boundary tended to
be the hotter boundary horizon. However, in the current case there is no temperature
difference; the flow is instead induced by the Joule effect, emerging from x = 0 and
proceeding outwards, towards the boundary black holes, situated at x = ±1. Hence,
our case is distinct in that the past boundary is situated spatially in the centre of
the horizon with the future-directed horizon generators extending outwards in either
direction. This has another interesting consequence: at x = 0 (and only at x = 0),
the generator Ua coincides with the stationary Killing vector, Ua ∝ (∂v)a, meaning
that the Killing vector is a generator of the horizon only on a proper submanifold of
the horizon. To our knowledge, this feature has so far not been found to occur in any
other instances of flowing horizons. It would be interesting to better understand how
this bulk horizon fits within the classification of black hole horizons described in [213].

The divergent expansion at x = 0 suggests that the tidal forces between neighbouring
horizon generators diverges at this point. However, since the future-directed generators
emerge from this point, this singularity is always in their far past. If we instead consider
the geodesics of infalling observers, then we find no infinite tidal forces are felt for
such neighbouring geodesics, even near x = 0, hence these solutions do not contain any
physical singularities.
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5.3.5 Detuning the temperatures

One may wonder whether this property of the past boundary of the future horizon of
the holographic batteries lying deep in the bulk is generic or simply a product of the
symmetry of the set-up. To investigate this, we detune the temperatures by adding a
non-trivial profile to the gtt component of the boundary geometry:

ds2
detuned = − ℓ2

3h(x)2 dt2 + ℓ2
3

(1 − x2)2

(
4 dx2

2 − x2 + dϕ2
)

(5.32a)

where
h(x) := 1 + β sin

(
π

2x
√

2 − x2
)
, (5.32b)

so that the ratio between the temperatures of the two boundary horizons is given
by T+/T− = (1 + β)/(1 − β). The detuned holographic batteries are the bulk duals
to the CFT on this background, still under the influence of an additional chemical
potential, given by (5.8). The method to find the detuned solutions is almost identical
to the previous, tuned case, with the Ansatz only slightly modified to accommodate
for the non-trivial h(x) profile. Note, one can recover the tuned holographic batteries
by taking β = 0.

Interestingly, we find that there is an open set in the parameter space, depicted
by the shaded region in Figure 5.5, in which the flow vanishes at some point along
the horizon and hence the past boundary of the future horizon lies deep in the bulk.
Roughly speaking, for these solutions, the contribution to the flow from the temperature
difference is not large enough to everywhere overcome the flow due to the Joule effect
and cause the flow to be in the same direction throughout the boundary geometry.
This shows that the property of the tuned holographic batteries of having the past
boundary of the future horizon lying spatially deep within the bulk is not simply an
artifact of the Z2 symmetry of the original set-up.

5.4 Discussion

We constructed charged global funnel solutions in four dimensions. These bulk solutions
are dual to a CFT sourced by two black holes with the same temperature but with
a potential difference between them, which generates a current. By considering the
ratio between this induced current and the enforced potential difference, we obtained
the conductivity of the CFT in this background at a non-linear level, showing that it
has a non-trivial dependence on the voltage. The response of a strongly coupled field
theory under an external electric field is a very difficult quantity to calculate directly,
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Fig. 5.5: The region in the parameter space of the detuned holographic batteries in which the past
boundary of the horizon lies in the bulk rather than being anchored on the conformal boundary at the
hotter boundary black hole. The chemical potential is fixed to be ±µ on the horizon with temperature
T±, respectively, where without loss of generality T+ > T−.

especially away from the linear response, and this work provides an interesting toy
example to study such systems holographically.

Due to the Joule effect, the addition of the source chemical potential in the boundary
theory causes some heating of the CFT, leading to the flow of energy. On the bulk
side of the duality this manifests in the fact that the generators of the event horizon
are not Killing vectors. Unlike in previous flowing geometries, however, the flow is not
from one boundary horizon to the other, which has the result that the past boundary
of the future bulk horizon lies deep within the bulk, rather than being anchored on the
boundary as seen in previous examples. By perturbing the solutions away from the Z2

symmetry of the original set-up, we showed that this feature is generic and not just an
artifact of the symmetry.

The fact that the horizon is not Killing again leads to difficulties in carrying out a
thermodynamic analysis of the solutions. This time, despite the two boundary horizons
having the same temperature, the addition of the chemical potential still takes the bulk
solution, and hence the boundary state, out of thermodynamic equilibrium meaning
that there is no well-defined notion of free energy. This leads to difficulties on the
question as to whether the charged funnels dominate over a solution with the same
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boundary geometry in which two droplets emerge from the boundary horizons but do
not connect in the bulk.3 However, it is known that the uniform funnel dominates for a
BTZ black hole with a large enough radius [131], and physically one would expect that
by adding a small charge difference between the two boundary black holes one would
remain in the phase in which the funnel dominates. It is less clear that as one increases
the amplitude µ that the deconfined phase corresponding the funnel will dominate.

Indeed, it would be very desirable to continue to obtain the funnel solution for
larger values of µ, perhaps using the patching methods described in Section 2.4.3 in
order to extend the parameter space. In particular, it would be interesting to ascertain
whether these solutions continue to exist for larger and larger µ, or whether they cease
to exist, perhaps becoming singular at a certain value of the amplitude. In the case of
the former, the limiting behaviour of the conductance for large amplitude would also
be of great interest.

One could also envisage obtaining analogous solutions which are not charged, but
rotating. In this new set-up, the boundary geometry would be formed of two rotating
BTZ black holes, with their horizons rotating in opposite directions. The bulk geometry
would be a funnel which is rotating in one direction in the vicinity of one boundary
horizon and in the opposite direction near the other. Hence the angular velocity would
be non-constant along the horizon and it would vanish somewhere deep within the bulk.
One would expect such a twisting horizon would once again be non-Killing, though
again the stationary Killing vector would be a generator on the submanifold of the
horizon on which the angular momentum vanishes. Hence, even in this case of pure
gravity, it seems the horizon structure of these rotating funnels may well be similar to
that of the holographic batteries. It would be interesting to see how flow of the CFT is
induced by the rotating background on the field theory side, and whether this again
takes the solutions out of thermodynamic equilibrium.

3It is yet to be explicitly shown that such a solution exists for µ ̸= 0, though it would be extremely
surprising if they did not, at least for small µ



Chapter 6

Charged static AdS black hole
binaries

Abstract

We construct the first binary black hole solutions of Einstein-Maxwell theory in
asymptotically anti-de Sitter space. The attractive force between the two black
holes is balanced by the addition of a background electric field, sourced at the
conformal boundary. There is a continuous family of bulk solutions for a given
boundary profile and temperature, suggesting there is continuous non-uniqueness.
We investigate the charges of the solutions and verify numerically that they
satisfy a first law of black hole mechanics relation. This work was first presented
in [4].

6.1 Introduction

Very few stationary multi-black hole solutions are known to exist. Indeed, stationary
black holes are often hypothesised to be uniquely defined in terms of a small number of
asymptotic properties, such as their energy, charge and angular momentum, which would
forbid the existence of multi-horizon solutions. This hypothesis, generally referred
to as the “no-hair theorem”, has been proven to hold under certain assumptions
[32, 37, 56–61, 214, 33, 62–65].

However, the no-hair theorem is known to be violated in various other circumstances.
For example, there exist black hole solutions with matter hair [215–218, 72, 73], and
in higher dimensions, black hole horizons can have non-spherical topology [97, 164].
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Solutions containing multiple black holes also exist, in each of which the gravitational
attraction between the black holes is balanced by some other force. In Einstein-
Maxwell theory, the famous Majumdar-Papapetrou solution [38, 39] is a configuration
of extremally charged, four-dimensional black holes in which their electric repulsion
balances their gravitational attraction. Similar exact systems of extremal black holes
are also known in higher dimensions [219, 220]. Indeed, there are many more multi-black
hole solutions known to exist in higher dimensions, some supported by the centrifugal
force arising from rotation [221–224], and others [225–229] supported by gravitational
solitons known as “bubbles of nothing” [230]. Finally, stationary black binaries with de
Sitter asymptotics have also been obtained in pure gravity [103, 104], this time being
held apart by the expansion due to a positive cosmological constant.

In this chapter we turn our attention to the question of whether binary solutions can
exist in anti-de Sitter (AdS) space. The presence of a negative cosmological constant
contributes an additional gravitational potential well (compared with asymptotically
flat space), and so one may expect that binaries cannot exist in Einstein-Maxwell
theory, since it seems even electrically extremal black holes wouldn’t have sufficient
electric repulsion to balance the gravitational attraction. However, in AdS there is also
the possibility to add a background electric field which is non-zero at the conformal
boundary. We will show that the addition of such a electric potential allows for the
existence of static, charged, binary black hole solutions with AdS asymptotics in both
four and five dimensions.

Such solutions have an additional source of interest due to the AdS/CFT correspon-
dence [109–111], which is a duality between a theory containing a strongly coupled
conformal field theory (CFT) and a gravitational theory in AdS space in one higher
dimension.

We will enforce that the bulk solutions are asymptotically globally AdS, tending
towards the geometry of d-dimensional global AdS space, which is described by the
metric:

ds2
AdS = −f(R) dt2 + f(R)−1 dR2 +R2 dΩ2

(d−2), (6.1a)

with
f(R) = 1 + R2

ℓ2
d

. (6.1b)

In these coordinates, the conformal boundary is situated at R → ∞. From the
perspective of the field theory, we are studying a CFT situated on the metric of the
boundary of this bulk spacetime, a (d− 1)-dimensional Einstein static Universe (ESU)
of radius ℓd.
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We deform this theory by adding a chemical potential, which acts as an electric
source for the theory, given by

A(0) = µ(θ) dt, (6.2)

where θ is the polar angle of the sphere, and µ(θ) is a profile which we are free to
choose. This chemical potential excites a Maxwell field in the bulk theory, with its
leading order behaviour at infinity dictated by the profile, µ(θ). As we will discuss, this
allows for the existence of binary solutions, which correspond holographically to states
of the CFT living on the ESU under the influence of this electric source. In [231], other
bulk solutions with the same boundary conditions were investigated, one, a soliton
with no horizon, and another, a single black hole whose horizon is polarized due to the
background electric field.

We first begin by considering a background electric field which is excited on an
ℓ = 1 mode of the boundary sphere, i.e. µ(θ) = µ1 cos θ. Roughly speaking, for
suitable values of µ1, this allows for the existence of binary solutions with black
holes which are oppositely charged, since they will be attracted to opposite sides of
the conformal boundary, which can balance their mutual gravitational and electric
attraction. Figure 6.1 shows a very rough sketch of such a spacetime.

Fig. 6.1: A schematic drawing of a symmetric binary solution in AdS with an ℓ = 1 boundary profile.
The vertical, dotted line is a plane of reflective symmetry, whilst the horizontal, dashed line is an axis
of rotation. The plus and minus symbols represent the charges of the horizons and the poles of the
conformal boundary. The system is in static equilibrium since the two black holes are attracted to
opposite sides of the boundary, balancing their mutual attraction.
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Interestingly, we find that for fixed choices of the temperature and the amplitude,
µ1, of the electric field, there is a two-dimensional solution space of binaries, with the
two continuous parameters corresponding to a local chemical potential of each of the
black hole horizon. Only a one-dimensional sub-family of this space preserves the Z2

symmetry of the boundary data.
We begin with a brief overview of the numerical construction of the binary solutions,

before exploring their associated holographic quantities and charges, and showing that
they satisfy a first law relationship.

6.2 The numerical construction of AdS binaries

The black hole binaries are solutions to the Einstein-Maxwell equations with a negative
cosmological constant, which we repeat here:

0 = Rab + d− 1
ℓ2

d

gab − 2T̃ab, (6.3a)

0 = ∇aFab, (6.3b)

where T̃ab is the trace-reversed stress tensor given by

T̃ab = Fa
cFbc − 1

2(d− 2)gabFcdF
cd. (6.3c)

We seek solutions containing two black hole horizons and possessing a static Killing
vector field, ∂t. Moreover, let us assume axisymmetry in four dimensions and SO(3)
symmetry in five dimensions, so that the solutions are cohomogeneity-two.

As for the asymptotic behaviour, we require that the solutions are asymptotic to
global AdS, (6.1a), and we will impose a non-zero profile for the gauge field at infinity,
given by (6.2). This latter condition will excite a Maxwell field in the bulk. We enforce
the black holes are electrically charged, by allowing only the t-component of the gauge
potential to be non-zero.

We shall use the DeTurck method, described in Section 2.1, to obtain these solutions,
solving the Einstein-DeTurck equation, defined by

0 = Rab + d− 1
ℓ2

d

gab − 2T̃ab − ∇(aξb) (6.4)

with ξ being the DeTurck vector defined in terms of a reference metric which we are
free to choose. For the symmetry class of interest, the Einstein-DeTurck equation
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yields a set of elliptic PDEs [133]. No reference gauge potential is required in this case
since, by assumption, the gauge vector is proportional to the static Killing vector field,
which has the consequence that the Maxwell equation, (6.3b), is already elliptic.

The reference metric must satisfy all the symmetry and boundary conditions we
wish to enforce for the binary solution, hence must contain two black hole horizons and
be asymptotically AdS. Fortunately though, it need not be a solution to the Einstein
equation.

It is, in theory, possible to write down a global Ansatz for the solution, in terms
of which one would define the reference metric, however, this is very difficult and not
necessary. Instead the approach will be to define two different Ansätze, one of which
will be used to calculate the metric in a region near the black holes and the other in
the asymptotic region. These Ansätze will be based on other solutions which share
properties of the desired solution in the relevant region. Near the black holes, the
cosmological constant has a smaller effect, so we will make use of an exact binary black
hole solution of the four-dimensional vacuum Einstein equation with zero cosmological
constant called the Israel-Khan solution [232]. On the other hand, the presence of
the cosmological constant has much larger effect on the asymptotic structure than the
presence of black holes in the bulk, and so in the asymptotic region we will instead
base our Ansatz on the metric of empty global AdS.

These two metrics will also be of great use when designing a reference metric which
satisfies all the required boundary conditions. Let us now briefly review these two
metrics before explaining how they are used to define the Ansätze and the reference
metric. For the majority of this section, we will focus on the method used to find
four-dimensional solutions, though we will discuss briefly how it generalises to five
dimensions quite simply.

6.2.1 The Israel-Khan solution

The Israel-Khan solution is an exact solution to the vacuum Einstein equation in four
dimensions with Λ = 0. It contains two black holes which are held apart by a conical
strut. This solution can be written in ring-like coordinates, {x, y}, with the metric
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being given by

ds2
IK = −∆xm

2
xy(1 − x2)2 dt2 + λ2

m2
xy∆2

xy

w2
y

(
4 dx2

(2 − x2)∆x

+ 4 dy2

(2 − y2)∆y

)

+ y2(2 − y2)(1 − y2)2 dϕ2

, (6.5)

where

∆x(x) = 1 − k2x2(2 − x2), (6.6a)
∆y(y) = 1 − (1 − k2)y2(2 − y2), (6.6b)
∆xy(x, y) = (1 − y2)2 + k2x2(2 − x2)y2(2 − y2), (6.6c)

wy(y) = k

(1 + k)2

(
1 +

√
∆y

)2
, (6.6d)

mxy(x, y) =
k
(

1 − (1 − k)y2(2 − y2) +
√

∆y

)
(1 − k)∆x (1 − y2)2 +

(
k +

√
∆y

)(
∆x + (1 − k)

(√
∆xy − 1

)) . (6.6e)

The space of solutions is parameterised by k ∈ (0, 1) and λ ∈ (0,∞) with the tempera-
ture of each of the two horizons being given by

TH = 1
2π

k(1 + k)
4λ(1 − k) . (6.7)

The Israel-Khan solution is static and axisymmetric with respect to the Killing vector
fields ∂t and ∂ϕ, respectively. The other two coordinates lie in the range x ∈ (−1, 1)
and y ∈ (0, 1). The horizons of the two black holes are situated at x = ±1, and there
is a Z2 symmetry across the x = 0 plane. Meanwhile, the y = 0 and y = 1 coordinate
boundaries make up the ∂ϕ axis of rotation, with the y = 0 segment being the inner axis
which is the line between the two black hole horizons (at which the conical singularity
is situated), and the y = 1 segment constituting the outer axis which stretches from
the horizons to the poles of the conformal boundary. The asymptotic boundary is
situated the single coordinate point (x, y) = (0, 1) at which ∆xy vanishes. Hence, there
is a coordinate singularity at infinity in these coordinates. We have drawn a schematic
diagram of a constant time slice of the Israel-Khan spacetime in Figure 6.2.

If we were to use the Israel-Khan solution as a reference metric for the AdS binaries,
they would inherit the conical singularity at y = 0. We, however, wish to obtain regular
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Fig. 6.2: A sketch of the Israel-Khan spacetime. There is a plane of reflective symmetry at x = 0,
shown as a dotted line, and a black hole horizon at x = 1. The y = 0 and y = 1 boundaries, shown
as dashed lines, constitute the ∂ϕ axis of rotation on the inside and outside of the binary system,
respectively. The conical singularity is situated along the y = 0 axis for the Israel-Khan metric. The
ring-like {x, y} coordinates are singular at infinity, with the boundary being described by the single
coordinate point, {x = 0, y = 1}.

binary solutions, so let us generalise the Israel-Khan metric by multiplying the dϕ2

term by a function Σ(y) given by

Σ(y) = 1 − α(1 − y2)2. (6.8)

This gives us a family of metrics parameterised by α:

ds2
IK;Σ = −∆xm

2
xy(1 − x2)2 dt2 + λ2

m2
xy∆2

xy

w2
y

(
4 dx2

(2 − x2)∆x

+ 4 dy2

(2 − y2)∆y

)

+ y2(2 − y2)(1 − y2)2Σ(y) dϕ2

. (6.9)

By adjusting the new parameter, α, we can remove the conical singularity at y = 0. In
particular, if we take

α = (1 − k)2(1 + 6k + k2)
(1 + k)4 , (6.10)

then the metric, ds2
IK;Σ, contains no conical singularities. Let us name the metric given

by ds2
IK;Σ for this value of α the warped Israel-Khan metric. Of course, ds2

IK;Σ is only
a solution to the Einstein equation when α = 0, but we will find that using the value
of α which removes the conical singularity to be far more useful.



140 Charged static AdS black hole binaries

6.2.2 Empty global AdS

Global anti-de Sitter space in four dimensions is often written as

ds2
AdS = −

(
1 + R2

ℓ2
4

)
dt2 +

(
1 + R2

ℓ2
4

)−1

dR2 +R2
(
dθ2 + sin2 θ dϕ2

)
, (6.11)

where ℓ4 is the AdS radius. For our uses, we will take new coordinates

R = r

1 − r2 , sin θ = 1 − ξ2, (6.12)

so that the metric is given by

ds2
AdS = 1

(1 − r2)2

−g(r) dt2 + (1 + r2)2

g(r) dr2 + r2
[

4 dξ2

2 − ξ2 + (1 − ξ2)2 dϕ2
] , (6.13)

with
g(r) := r2

ℓ2
4

+ (1 − r2)2. (6.14)

The radial coordinate transformation is necessary in order to compactify the coordinate,
r ∈ (0, 1) with r = 0 being the origin, and r = 1 the conformal boundary which
is topologically Rt × S2. The transformation of the angular coordinate removes
trigonometric functions from the metric which speeds up the numerics considerably.
The ∂ϕ axis is given by ξ = ±1, and there is a Z2 symmetry across ξ = 0.

6.2.3 The Ansätze
As described above, we will have two Ansätze, one for the region near the horizons
based on the warped Israel-Khan metric and one for the asymptotic region based
on empty global AdS. In each case, we will take the Ansatz to be the most general
deformation of the relevant metric which still satisfies all our symmetry assumptions.
The binary solution in AdS will also be charged, and so we need also to define an
Ansatz for the Maxwell field. We will assume they are electrically charged, so that the
vector potential satisfies Aa ∝ (dt)a.

The inner Ansatz. We define the Ansatz in the region near the black holes in the
{x, y} coordinates of the Israel-Khan solution. We simply add unknown functions
multiplying each metric component of the warped Israel-Khan metric, as well as adding
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an unknown dx dy cross-term, yielding

ds2
inner = −∆xm

2
xy(1 − x2)2Tin dt2 + λ2

m2
xy∆2

xy

y2(2 − y2)(1 − y2)2Σ(y) Sin dϕ2

+ w2
y

(
4 Cin dx2

(2 − x2)∆x

+ 4 Bin

(2 − y2)∆y

(dy − Fin dx)2
). (6.15a)

For the gauge field, we simply take

A = Ain dt. (6.15b)

Hence, we have six unknown functions in the in region that we have to solve for,
{Tin, Cin, Bin, Sin, Fin, Ain}, each of which depend on {x, y}. Note that by taking
Tin = Cin = Bin = Sin = 1 and Fin = 0, we obtain ds2

IK;Σ, which we can then either
take to be the Israel-Khan metric by setting α = 0, or instead eradicate the conical
singularity by taking α to be as given in (6.10).

Though the whole spacetime is given by x ∈ (−1, 1), we will initially assume a Z2

symmetry at x = 0 for the bulk solutions, and so we will focus on the x ∈ (0, 1) region,
setting boundary conditions to enforce this symmetry.

The outer Ansatz. In the outer region we build the Ansatz by considering a general
deformation of the global AdS metric, whilst still respecting the desired symmetries.
We take

ds2
outer = 1

(1 − r2)2

− g(r)Tout dt2 + (1 + r2)2

g(r) Cout dr2

+ r2
(

4Bout

2 − ξ2 (dξ − Fout dr)2 + (1 − ξ2)2Sout dϕ2
), (6.16a)

and for the gauge field
A = Aout dt. (6.16b)

This time the unknown functions {Tout, Cout, Bout, Sout, Fout, Aout} depend upon the
coordinates {r, ξ}. The global AdS metric is obtained by setting Tout = Cout = Bout =
Sout = 1 and Fout = 0.
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6.2.4 Coordinate transformations

We have a large amount of freedom in interpolating between the two coordinate domains.
Firstly we can choose the position and shape of the interface between the two regions.
In our case, we use a constant r surface, r = r0, as the interface. Moreover, we have
a further freedom in defining the coordinate transformation between the inner {x, y}
coordinates and the outer {r, ξ} coordinates.

We firstly want to ensure that the outer ∂ϕ axes and the Z2 reflection plane are
located in the same positions at this interface, which requires that ξ = 0 ⇐⇒ x = 0,
and ξ = 1 ⇐⇒ y = 1. Secondly, given a transformation, one can equate the Ansätze
at the interface, r = r0, and thereby write each of {Tin, Cin, Bin, Sin, Fin, Ain} in
terms of {Tout, Cout, Bout, Sout, Fout, Aout}, and vice versa. The key is to ensure that
none of these relationships diverges at any point on r = r0, including at the ∂ϕ axis
and the Z2 reflection plane. However, importantly, this need not be the case globally,
only in the region in the vicinity of the interface of the two regions. Therefore, for
example, the r and ξ coordinates need not be well defined at the horizons of the black
holes or at the inner axis, both of which lie deep within the inner region.

The coordinate transformation we used is given by

x = (1 − r)ξ
√

2 − ξ2, y =
√

1 − (1 − r)(1 − ξ2), (6.17)

or, inversely,

r = 1 −
√
x2 + (1 − y2)2, ξ =

1 − 1 − y2√
1 + x2 − y2(2 − y2)


1/2

. (6.18)

In effect, {r, ξ} can be thought of as a form of polar coordinates about the point
(x, y) = (0, 1), which recall is the position of infinity for the Israel-Khan spacetime,
taken such that r = 1 corresponds to this point.

Having taken this choice of coordinate transformation, it will be the boundary
conditions that we set on the boundary between the inner and outer regions at the
r = r0 interface which will ensure that the metric is smooth in the vicinity of the r = r0.
On the left hand side of Figure 6.3 we give a schematic diagram of the domain of the
Z2-symmetric binary solution, with the inner and outer regions in blue and orange,
respectively. On the right of the figure, we plot these regions in the (x, y) plane. The
outer region is situated between infinity, at (x, y) = (0, 1) (or, equivalently, at r = 1),
and a constant r slice, r = r0.
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Fig. 6.3: On the left we show the schematic drawing of the coordinate domain of the Z2-symmetric
solutions. The sketch is split into the inner region, in blue, where the inner Ansatz written in {x, y}
coordinates is taken and the outer region, in orange, where the outer Ansatz in {r, ξ} coordinates is
used instead. On the right hand side we plot these region in the (x, y) plane. Infinity is the point
(x, y) = (0, 1) at which r = 1. Near infinity, constant r surfaces are curves from x = 0, at which ξ = 0,
to y = 1, at which ξ = 1. The interface between the inner and outer regions is chosen to be such a
constant r slice, shown as a dashed green curve.

6.2.5 Boundary conditions

Let us consider the boundaries of our spacetime, discerning whether each of them
lies within the outer or inner regions entirely, or straddles them both. We have the
conformal boundary, which lies entirely in the outer region. We have the horizon at
x = 1 and the inner axis at y = 0, which both lie solely in the inner region. And finally
we have the Z2 reflection plane and the outer axis, which are present in both regions.
Let us first deal with the boundary conditions for the inner and outer region before
turning our attention to the boundary conditions we must set at the interface of the
regions.

Inner boundary conditions. In the region near the black holes in which we use
the ring-like {x, y} coordinates we have a pentagonal domain. One boundary is the
patching boundary which we will deal with momentarily. The remaining boundaries
are dealt with as follows:

• The Z2 reflection plane at x = 0. Here we want the metric to be even and the
gauge potential to be odd. Hence, we enforce at x = 0 that

0 = ∂Tin

∂x
= ∂Cin

∂x
= ∂Bin

∂x
= ∂Sin

∂x
= Fin = Ain. (6.19)
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• The horizon at x = 1. The metric functions must be regular across the horizon.
Moreover, since the horizon is a Killing horizon, generated by ∂t, the gauge
potential must be constant on the horizon. Interestingly though, we find that
this gauge potential need not be zero and indeed can take a range of values for a
given boundary profile. Hence, we set at x = 1 that

0 = ∂Tin

∂x
= ∂Cin

∂x
= ∂Bin

∂x
= ∂Sin

∂x
= Fin, Ain = νR, (6.20)

where νR will be an extra parameter of the solution space, with the subscript R
denoting that it is the value of the vector potential on the right-hand horizon.
This parameter is discussed in detail in Section 6.3.2. Due to the fact the gauge
potential is odd across x = 0, the gauge potential at the left-hand horizon, which
we denote as νL will have the opposite sign: νL = −νR.

• The inner ∂ϕ axis at y = 0 and the outer ∂ϕ axis at y = 1. At both of these
boundaries, we take the boundary conditions

0 = ∂Tin

∂y
= ∂Cin

∂y
= ∂Bin

∂y
= ∂Sin

∂y
= Fin = ∂Ain

∂y
. (6.21)

Moreover, in order for there to be no conical singularity along this axis, we require
that Bin = Sin at these boundaries. This can be set as a boundary condition
in place of one of the above, but even without doing this it will be enforced by
the bulk equations of motion so long as the reference metric also has no conical
singularities.

Outer boundary conditions. In the asymptotic region we use the {r, ξ} coordinates,
and the integration domain is rectangular. Once again, one boundary is the patching
boundary to the inner region, and the other three are given by:

• The Z2 reflection plane at ξ = 0. Across this plane, the metric is even and the
gauge field is odd. We set

0 = ∂Tout

∂ξ
= ∂Cout

∂ξ
= ∂Bout

∂ξ
= ∂Sout

∂ξ
= Fout = Aout. (6.22)

• The outer ∂ϕ axis at ξ = 1. Here, we set

0 = ∂Tout

∂ξ
= ∂Cout

∂ξ
= ∂Bout

∂ξ
= ∂Sout

∂ξ
= Fout = ∂Aout

∂ξ
. (6.23)
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Likewise to the discussion above regarding the ∂ϕ axis of rotation in the inner
coordinates, the absence of a conical singularity requires that Bout = Sout at this
boundary, though this again will be enforced by the equations of motion.

• The conformal boundary at r = 1. Here we set Dirichlet boundary conditions.
Holographically these boundary conditions correspond to the choice of metric
on which the CFT will live and the choice of the background chemical potential
with which we are deforming the CFT. In this case, we take

Tout = Cout = Bout = Sout = 1, Fout = 0, Aout = µ1 ξ
√

2 − ξ2. (6.24)

These enforce that the spacetime is asymptotically AdS, having the same asymp-
totic structure as (6.11). Meanwhile the boundary condition for the Maxwell
field means that in the boundary theory we are exciting an ℓ = 1 mode of the
background electric field (note that ξ

√
2 − ξ2 = cos θ if we transform back to our

familiar angular variable, θ). The parameter, µ1, determines the magnitude of
the enforced chemical potential.

Patching boundary conditions. Now we come to the tricky issue of the patch-
ing boundary conditions. In essence we require that the metric is continuous and
differentiable at this interface, which is chosen to be a constant r slice, r = r0.

In order to do this we can write the metric in either of the patches locally near the
interface in the coordinates of the other patch by using the coordinate transformations
given by (6.17) and (6.18). Equating the two metrics at r = r0 gives expressions
for {Tin, Cin, Bin, Sin, Fin, Ain} in terms of {Tout, Cout, Bout, Sout, Fout, Aout}, or vice
versa.

On the boundary of one patch, we enforce these relationships as Dirichlet boundary
conditions. This enforces continuity of the metric. As for the other patch, we take
derivatives of the relationships between the inner and outer metric functions in the
direction normal to the interface, and set these as boundary conditions. This then
enforces that the metric is also differentiable at the interface of the patches.

6.2.6 The reference metric

Finally let us consider designing a reference metric, which must satisfy certain require-
ments in order to be suitable for use when solving the Einstein-DeTurck equation
(6.4). We need it to contain two black hole horizons, be regular and satisfy all the
symmetry assumptions of the desired solution. Finally, we wish it to have the same
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asymptotic structure as the desired solution, that is, it must be asymptotically AdS.
Each of these conditions is necessary (though not sufficient) to prevent the DeTurck
method yielding a Ricci soliton, i.e. a solution to the Einstein-DeTurck equation that
is not a solution to the Einstein equation. Importantly, however, we do not require the
reference metric to satisfy any field equations, though we do need it to be C2, since
the Einstein-DeTurck equations are second-order PDEs.

The warped Israel-Khan metric, (6.9), satisfies all but the asymptotic condition.
Conversely, the empty AdS metric, (6.11), satisfies the asymptotic condition but not
the condition regarding the presence of horizons. Thus, if we can design a metric that
interpolates from the former to the latter as we move from the inner region to the
outer region, we shall have a reference metric satisfying all our desired properties.

In previous examples similar interpolating reference metric have been found in a
number of ways. In [162] a suitable reference metric is obtained by interpolating within
a compact subregion of the spacetime, whilst in [164] an interpolation function with
support across the whole spacetime is used. In our case, we use a method most similar
to the former.

In the entire inner region, we take the reference metric to be equal to the warped
Israel-Khan metric, (6.9). Then we shall split the outer region, which recall is given by
r ∈ (r0, 1), into two sections with an interface, r = r1, that we are free to choose with
r0 < r1 < 1. In the asymptotic region r ∈ (r1, 1), we will take the reference metric to
be the global AdS metric, (6.13). In the intermediate region, r ∈ (r0, r1), we take an
interpolation between the warped Israel-Khan and empty AdS metrics. Specifically, we
take

d̄s2
inter = I(r) ds2

IK;Σ +
(
1 − I(r)

)
ds2

AdS, (6.25)

where I(r) is an interpolating function which is equal to one at r = r0 and vanishes at
r = r1 to sufficiently high order such that the reference metric is C2. In order to obtain
ds2

IK;Σ in the outer {r, ξ} coordinates, we simply apply our coordinate transformations,
(6.17), which are regular for r < r1. This was one benefit of using an intermediate
region rather than interpolating the reference metrics across the whole of the outer
region, i.e. all the way from r = r0 to r = 1; we never needed to deal with difficulties
arising due to the coordinate transformation becoming singular at infinity (though
these difficulties are certainly not insurmountable). Moreover, we found that taking the
reference metric in the asymptotic region to be exactly empty AdS eased the extraction
of holographic quantities.

There is a great amount of choice in taking the interpolating function, I(r). One
could ensure that at r = r0 and r = r1 the function approaches one and zero,
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respectively, to all orders by using a non-analytic function based on, for example, a
hyperbolic tangent function. However, this introduction of non-analyticities slows down
the numerics and also can cause large gradients in the solutions. In fact, in order to
obtain a C2 reference metric, we only need the interpolating function to approach the
desired values at the endpoints, r0 and r1, to second order. We choose the following
interpolating function:

I(r) =
(
r − r1

r0 − r1

)4
10 − 20

(
r − r1

r0 − r1

)2

+ 15
(
r − r1

r0 − r1

)4

− 4
(
r − r1

r0 − r1

)6
 , (6.26)

which, respectively, approaches one and zero at r0 and r1 up to third order in r.
Patching together the reference metrics in each of the regions discussed so far leads

to a reference metric across the whole coordinate domain which is C2 and is compatible
with all the boundary conditions.

6.2.7 Patching and numerics

We have two coordinate domains, the inner and outer regions, with coordinate systems
{x, y} and {r, ξ}, respectively. The inner region is also naturally pentagonal, and so to
carry out numerics we split it into two separate rectangular patches. Moreover, we
split the outer region into two patches, so that we can easily fix the reference metric to
be the interpolating reference metric, (6.25), in an intermediate patch and the empty
AdS metric in the asymptotic patch.

In Figure 6.4, we have sketched how the four patches are situated in the spacetime.
Patch I and II (blue) constitute the inner region, where the ring-like {x, y} coordinates
are used and the reference metric is the warped Israel-Khan metric. Meanwhile, the
reference metric is global AdS in region IV (orange) and so {r, ξ} coordinates are used.
The reference metric interpolates in a continuous and differentiable fashion from the
warped Israel-Khan metric to global AdS in patch III (green). In order to define this
interpolating reference metric it is necessary that both the {x, y} and {r, ξ} coordinate
systems and the transformation between them are well-defined in this intermediate
patch. Consequently, either the inner or outer Ansatz could be used in this patch, but
since its boundaries are constant r and constant ξ surfaces, it is most natural to use
the outer Ansatz.

There is a great deal of freedom when fixing the precise position of the boundaries
between patches. We took the boundaries between patch I and II to be x = x0y

√
2 − y2,

between patch II and III to be r = r0, and between patch III and IV to be r = r1, for
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Fig. 6.4: A schematic drawing of the coordinate domain, and the four patches used. In the inner
region, shaded blue and composed of patches I and II, the ring-like {x, y} coordinates are used,
whereas in the outer region, which is shaded orange and made up of patches III and IV, the {r, ξ}
coordinates are used. The reference metric is given by the warped Israel-Khan metric in regions I
and II and the empty AdS metric in region IV, whilst in region III it interpolates between these two
metrics in a continuous and differentiable manner.

fixed constants, x0, r0 and r1. For the most part, we took these patching parameters
to have the values x0 = 0.5, r0 = 0.5, r1 = 0.95. One can also add extra patches in
regions in which the solutions have large derivatives in order to speed up the numerical
method and improve the accuracy of the solutions.

We discretize each of the patches with an N ×N Chebyshev-Gauss-Lobatto grid
and use transfinite interpolation and pseudospectral methods to approximate the PDEs
by a large set of non-linear algebraic equations, which can then be solved iteratively
with the Newton-Raphson method, as described in Section 2.3.

The main difficulty with this approach is to find a good seed which will converge to
a solution. To alleviate this we the so-called δ-trick, which is described in Section 2.4.2.
This allows one to artificially begin with equations that necessarily have a certain
solution and from there slowly adapt the equations of motion towards those which we
really are aiming to solve, i.e. the Einstein-DeTurck and Maxwell equations, at each
step solving intermediate equations. We also found it useful to vary α, the parameter
of the family of the warped Israel Khan metric, given in (6.9), during this process,
ensuring that at the end we land on the value of α given in (6.10) which ensures there
are no conical singularities. In our case, we begin with equations that are automatically
solved by the reference metric with α = 0 and a vanishing Maxwell field.
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6.2.8 Removing the Z2 symmetry

In the above, we assumed that the bulk solution was Z2 symmetric. Now let us drop
this assumption to find more general solutions.

Without this symmetry, we cannot no longer use the ξ = x = 0 plane as a boundary
of the coordinate domain, and instead have to solve for the full range of the angular
coordinates, i.e. for x ∈ (−1,+1) in the inner coordinate system and for ξ ∈ (−1,+1)
in the outer coordinate system. We can find a system of patches for this domain simply
by doubling the patches from the symmetric case. Hence we have eight patches, as
shown in Figure 6.5, which we have labelled with the Roman numerals, I-IV, and the
subscripts L and R (denoting left and right, respectively) in order to keep touch with
the patches in the symmetric case.

Note, that we need to set boundary conditions at both the right horizon, H+
R, at

x = +1 and the left horizon, H+
L , at x = −1. These will both be of the form described

in (6.20). With the boundary potential taken (in the usual polar coordinate, θ) to be
µ(θ) = µ1 cos θ, we assumed in the method described above that the vector potential
inherited the odd symmetry of this boundary potential about θ = π/2 in the bulk.
Hence, we were implicitly setting νL = −νR. In general, though, we can set the value

Fig. 6.5: The coordinate domain for the non-symmetric solutions, split now into eight different
patches. Similarly to the symmetric case, the reference metric is warped Israel-Khan near the black
holes (blue), global AdS in the asymptotic region (orange) and interpolates between the two in the
intermediate region (green).
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of the gauge potential to be two unrelated values at the two horizons:

Ain(−1, y) = νL and Ain(+1, y) = νR. (6.27)

and break the boundary symmetry in the bulk by enforcing that νL ̸= −νR. We were
able to find such solutions by perturbing away from the symmetric solutions.

We can also explictly break the Z2 symmetry of the boundary profile. For example,
we were able to obtain solutions arising from a boundary profile in which an ℓ = 2
mode was added to the ℓ = 1 mode, given by

µ(θ) = µ1 cos θ + µ2 cos 2θ. (6.28)

6.2.9 Changing the number of dimensions

The method to obtain solutions in five dimensions is almost identical to that described
above for axisymmetric four-dimensional solutions. In each metric described, one need
only replace the dϕ2 by the metric of a two-sphere, dΩ2 = dψ2 + sin2 ψ dϕ2. Hence
rather than axisymmetry, the five-dimensional binaries possess an SO(3) symmetry,
with a two-sphere being preserved.

The key difficulty is finding a first solution in five dimensions. To do so, we used
the δ-trick once again, this time beginning with the equations of motion of the four
dimensional problem. Specifically, if we let E4d and E5d denote the equations of motion
of the four- and five-dimensional problems, respectively, we considered

E(δ) = δ E4d + (1 − δ)E5d. (6.29)

Thus, a four-dimensional binary solution solves E(1) = 0. We then slowly decreased δ

to zero, solving E(δ) = 0 at each intermediate stage, using the previous solution as a
seed, to obtain a five-dimensional binary solution, satisfying E(0) = 0. We found it
necessary to move around the parameter space (specifically increasing νR or decreasing
µ1) during the process as δ decreased in order for the equation, E(δ) = 0, to continue
having a solution at each intermediate value of δ. Once an initial five-dimensional
binary solution is found, it is fairly easy to perturb from this starting point to find
other solutions nearby in the parameter space.
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6.2.10 Extracting the holographic quantities

Let us review how the holographic stress tensor and conserved current of the boundary
CFT can be extracted from the bulk solutions, using the procedure of holographic
renormalization [120], reviewed in general in Section 1.3.3. We will focus on the case
of the four-dimensional solutions, and we will set ℓ4 = 1. The holographic quantities
of the five-dimensional bulk solutions can also be extracted using (1.36a) and (1.36b),
though in this case the procedure is much more complicated due to the presence of the
conformal anomaly in odd bulk dimensions.

We consider the metric locally near the conformal boundary. This is defined in
terms of the {r, ξ} coordinates of the outer Ansatz, given by (6.16a), and the boundary
is the r = 1 surface. We first expand the equations of motion and the requirement that
the DeTurck vector vanishes order-by-order in r around r = 1, whilst also assuming the
asymptotic boundary conditions. This local analysis restricts the form of the unknown
metric functions near the boundary to a large degree:

Tout(r, ξ) = 1 + α1(ξ) (1 − r)3

+
(

3
2α1(ξ) + 4α6(ξ)2

)
(1 − r)4 + γ1(ξ) (1 − r)

1
2 (3+

√
33) + . . . (6.30a)

Cout(r, ξ) = 1 + 4
(
(2 − ξ2)µ′(ξ) − α6(ξ)2

)
(1 − r)4

+ γ2(ξ) (1 − r)
1
2 (3+

√
33) + . . . (6.30b)

Bout(r, ξ) = 1 + α3(ξ) (1 − r)3 + 3
2α3(ξ) (1 − r)4 + γ1(ξ) (1 − r)

1
2 (3+

√
33) + . . . (6.30c)

Sout(r, ξ) = 1 −
(
α1(ξ) + α3(ξ)

)
(1 − r)3

−
(

4(2 − ξ2)µ′(ξ)2 + 3
2
(
α1(ξ) + α3(ξ)

))
(1 − r)4

+ γ1(ξ) (1 − r)
1
2 (3+

√
33) + . . . (6.30d)

Fout(r, ξ) = β5(ξ) (1 − r)4 + 16
3 (2 − ξ2)µ′(ξ)α6(ξ) (1 − r)4 log (1 − r) + . . . (6.30e)

Aout(r, ξ) = µ(ξ) + α6(ξ)(1 − r) + . . . (6.30f)

where all terms in the expansion (including the higher order terms denoted by . . .) are
determined in terms of the six unknown functions, {α1, α3, α6, β5, γ1, γ2}. In order to
determine these six functions though, one must solve the equations in the full spacetime,
whilst requiring regularity deep within the bulk. Fortunately, we will see only the
{α1, α3, α6} functions arise in the holographic stress tensor and conserved current, and
so, in particular, the coefficients of the non-analytic terms, γ1 and γ2, do not need to
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be calculated in the analysis. Moreover the asymptotic analysis also enforces that the
α functions are related by

α′
3(ξ) =

2
(

3ξ
(
α1(ξ) + 2α3(ξ)

)
− 8

(
1 − ξ2

)
α6(ξ)µ′(ξ)

)
3 (1 − ξ2) . (6.31)

Next we can transform to Fefferman-Graham gauge [121] near the conformal boundary,
i.e. we seek a coordinate transformation which locally near the boundary brings the
metric and gauge potential into the form

ds2 = 1
z2

[
dz2 +

(
g(0)

µν + g(2)
µν z

2 + g(3)
µν z

3
)

dxµ dxν + O(z4)
]

(6.32a)

A =
(
A(0)

µ + A(1)
µ z + O(z2)

)
dxµ (6.32b)

where g(0) is metric of the Einstein static Universe and A(0) is the boundary chemical
potential, and the Greek indices run over the coordinates which span the boundary.
This can be achieved simply by taking

r = 1 − 1
2z + 1

8z
2 − 1

8z
3 + 7

128z
4. (6.33)

Once the metric is in this gauge, the vacuum expectation values of the holographic
stress tensor and the conserved current can be, respectively, read off using (1.34) and
the expansion of the metric functions near the conformal boundary, given in (6.30).
One finds that these holographic quantities are given in {t, ξ, ϕ} coordinates of the
boundary metric by

⟨T µ
ν⟩ = 3

128πGN

diag (α1, α3,−α1 − α3) (6.34a)

⟨Jµ⟩ = 1
8πGN

(α6, 0, 0) . (6.34b)

Note that the stress tensor is traceless and the current is conserved, Dµ⟨Jµ⟩ = 0, where
Dµ is the covariant derivative arising from the boundary metric. Moreover, due to the
relation given in (6.31), the stress tensor and conserved current satisfy a Ward identity,
given by

Dµ⟨T µ
ν⟩ = F (0)

µν ⟨Jµ⟩, (6.35)

where F (0) is the field strength tensor associated to the boundary potential, A(0).
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6.3 Results

We were able to obtain a very large family of binary solutions. Let us focus on the case
in which the boundary profile for the chemical potential is given by an ℓ = 1 mode, so
that we have

µ(θ) = µ1 cos θ, (6.36)

and for the remainder of the chapter, let us set ℓd = 1. We will use L and R subscripts
to differentiate between quantities associated to the left (on the θ = π side) and right
(on the θ = 0 side) horizons, respectively. The horizons have temperatures, TL and TR.
We assumed that the two temperatures to were equal, with TL = TR =: T , though it
seems likely that they could take different values.

6.3.1 Charges

Of particular interest will be the charge density, ρ := ⟨J t⟩, and the total energy,

E := −
∫

Σ
dx

√
hnµkν⟨Tµν⟩, (6.37)

where Σ is a Cauchy slice of the boundary geometry, which in our case is a (d − 2)-
dimensional sphere, with h denoting the determinant of its induced metric. Meanwhile,
kµ is the stationary Killing vector field of the boundary geometry and nµ the unit
normal to Σ.

The total charge is given by

Q :=
∫

Σ

√
hρ(θ) = 1

4π

∫
Σ
⋆F, (6.38)

where the second equality follows from the definition of the charge density, ρ. We shall
also consider the integral of the charge density over the left and right hemispheres,
respectively denoted by Q(inf)

L and Q
(inf)
R .

The charge of each horizon can be defined by a surface integral over a spatial
cross-section of the horizon:

Q
(hor)
L
R

:= 1
4π

∫
H+

L
R

⋆F. (6.39)

Gauss’ law implies that Q(hor)
L +Q

(hor)
R = Q. As usual, the Bekenstein-Hawking entropy

of each horizon is proportional to their areas:

SL
R

= 1
4GN

AH+
L
R

. (6.40)
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6.3.2 The parameter space of solutions

Interestingly, we saw in Section 6.2.5 that even for a given choice of µ1 and T , there
are still further parameters which must be fixed to specify a particular binary solution.
Due to the fact each horizon is a Killing horizon with Killing vector field, ∂t, the vector
potential is constant on each each horizon:

A
∣∣∣
H+

L
R

= νL
R

dt, (6.41)

where νL and νR are two constants, which we dub the local chemical potential at the
respective horizons. It turns out νL and νR need not be zero. Indeed, for fixed values
of µ1 and T there is a continuous range of values of νL and νR for which we were able
to find binary solutions.

Note that there is no gauge transformation which can alter νL and νR whilst
remaining in the static gauge (with A ∝ dt and At time-independent) except shifting
the vector potential by a constant everywhere. Hence fixing that the ℓ = 0 mode of
the boundary profile is zero fixes the gauge of the vector potential completely.

From the perspective of AdS/CFT, the presence of the νL and νR parameters is
extremely surprising. By the addition of the chemical potential, we are deforming the
field theory, and the extra parameters suggest that under this deformation there is a
whole family of stationary states parameterised by these continuous parameters, even
for a fixed value of the temperature. Since the parameters νL and νR are defined by
the behaviour of the solution on the horizons, which lie very deep within the bulk, it is
not at all clear what these quantities correspond to in the field theory.

For a general choice of these parameters, the Z2 symmetry, about θ = π/2, of the
boundary data is broken in the bulk, and so the equations will need to be solved across
the whole coordinate domain, as depicted in Figure 6.5. However, one can force the
bulk solution to inherit this symmetry by setting νL = −νR.

In Figure 6.6, we plot the value of the proper distance between the horizons on the
left and the value of the charges on the right for each of the Z2-symmetric solutions
with µ = 1.5 and T = 1. These necessarily satisfy SL = SR and Q

(hor)
L = −Q(hor)

R ,
thus, though the charge of each horizon depends on νR, the net charge is always
zero. Therefore, the existence of this one-dimensional family of Z2-symmetric solutions
represent continuous non-uniqueness of the bulk solution for given boundary data.

There is a turning point for νR, at νR ≃ −0.2861. We have coloured in blue and
orange the two branches either side of this turning point. Along either branch, solutions
cease to exist as you increase the parameter beyond νR ≃ −0.2861, however, since no
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Fig. 6.6: The proper distance (left) between and the electric charges (right) of the horizons for each
of the Z2-symmetric solutions with T = 1 and µ1 = 1.5 in four dimensions. There is a turning point at
νR ≃ −0.2861, either side of which we use different colours to indicate the two branches of solutions.

singularities arise and some physical quantities begin to have large derivatives with
respect to νR, it is highly suggestive that new solutions (the other branch) will be able
to be found by instead decreasing νR once again. We used the method described in
Section 2.4.4 to perturb from a solution on one branch to a solution on the other.

In Figure 6.7, we plot how the entropy, energy, charge of the horizon and charge of
the boundary hemispheres of the solutions (again with T = 1 and µ1 = 1.5) depend on
the proper distance between the horizons. This plot helps to elucidate the necessity of
the extra continuous parameter, νR. One can alter the charges of the black holes, whilst
in a counteracting fashion changing the distance between them, thereby maintaining a
static configuration. From the bottom-left panel, we see that the balancing act between
charge and proper distance does not occur in a simple monotonic fashion, due to the
complicated balancing of multiple forces.

We see in the top-right panel of Figure 6.7 that the energy takes a maximum value,
at P ≃ 0.85. At this point, to leading order, the distance between the horizons is
changing, but the energy is unaltered. This suggests there is a zero-mode, and thus
a change of stability. Since the entropy is decreasing at this value of P, it suggests
that the solutions with P < 0.85 are more stable than those with P > 0.85 within
this subfamily of solutions. We similarly find evidence of a turning point for the
energy among subfamilies of the five-dimensional solutions with fixed temperature and
boundary chemical potential.
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Fig. 6.7: A plot of various thermodynamic quantities (clockwise from bottom-left: charges of the
horizons, entropy, energy, charges of the asymptotic hemispheres) against the proper distance between
the horizons for four-dimensional Z2-symmetric solutions with the same temperature and boundary
potential, T = 1 and µ = 1.5. The differently coloured points correspond to different branches, with a
turning point at νR ≃ −0.2861.

As seen in Figure 6.6, νR can only be decreased to certain values on either branch
before solutions cease to exist. The Kretschmann scalar at the horizons increases as
νR is decreased towards these values, hence it is possible that singularities are arising
at these points in the parameter space. However, the evidence for this in inconclusive
and solutions could cease to exist without the presence of singularities (perhaps in a
similar manner to [233]) or there could be further turning points.
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6.3.3 Thermodynamics

The binary solutions satisfy a first law of black hole mechanics, or thermodynamics,
relationship, given by

δE =
∑

i∈{L,R}

(
TiδSi + νiδQ

(hor)
i

)
+
∫

Σ
dx

√
hµ(θ)δρ(θ). (6.42)

The final term must be calculated as an integral due to the fact that the boundary
chemical potential, µ(θ), is not constant. However, if one is only interested in variations
which keep µ(θ) fixed, one can instead consider

G = E −
∑

i∈{L,R}

(
TiSi + νiQ

(hor)
i

)
−
∫

Σ
dx

√
hµ(θ)ρ(θ), (6.43)

which will consequently satisfy a first law relationship,

δG = −
∑

i∈{L,R}

(
SiδTi +Q

(hor)
i δνi

)
, (6.44)

under such variations. The fact that only variations of the charges, rather than any
quantities within an integral, are involved in (6.44) makes it easier to verify on the
numerical solutions, and we were able to do so for the binary solutions in both four
and five dimensions.

Under the AdS/CFT duality, the first law described in (6.42) will also relate
variations of charges of the field theory which should be possible to be defined without
reference to a gravitational bulk. However, whilst νi and Q

(hor)
i have clear physical

meanings in the bulk as quantities defined on the horizon, their meaning in terms of
the boundary theory is not at all clear. Therefore the presence of the terms in the first
law concerning these quantities is perplexing from the perspective of the field theory.
The situation is somewhat analogous to the thermodynamics of the asymptotically flat
five-dimensional black rings discovered in [234], where dipole charges do appear in the
first law of black hole mechanics [235], and yet cannot be measured at spatial infinity.

Furthermore, it is not clear that G is the value one would derive as the free energy
by computing directly from the action, and indeed it seems unlikely that there even is
a meaningful definition of the free energy at all. This is because Wick rotating the
bulk solutions yields a Euclidean solution that is singular at the horizons unless the
vector potential vanishes there, i.e. νR = νL = 0. No gauge transformation can be
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taken to ensure these conditions unless νR = νL, which is generically not the case. The
binary solutions are static, but intrinsically Lorentzian in nature.

6.4 Discussion

In this chapter we have presented the first examples of binary black hole solutions in
Einstein-Maxwell theory with a negative cosmological constant in both four and five
dimensions1. We have obtained a large family of such solutions, and in particular we
showed that there are unexpected, extra parameters which are given by the value of
the gauge potential at each of the horizons but do not have clear meanings from the
boundary.

One source for future research would be to extend the solution space. It would be
particularly interesting to ascertain whether the magnitude of the chemical potential
can be taken to be arbitrarily small whilst still allowing for the existence of binary
solutions. Moreover, if multi-black hole solutions exist near extremality in d ≥ 5, they
could provide a metastable phase in the RG flow, as conjectured in [237], possibly
establishing a connection with the fragmentation scenario described in [238].

One could also allow for rotation. This could be done in a way still respecting
axisymmetry, by having the black holes both rotate on their shared axis, à la [104]. This
would introduce another degree of non-uniqueness, since the net angular momentum
would still be zero if the black holes were spinning in opposite directions at the same
speed. Moreover, rotation could induce spin-spin interactions between the two black
holes, which may affect their stability properties.

Furthermore, the existence of the binary solutions suggests strongly that configura-
tions with more than two disconnected black holes will also exist. Indeed, even with
the same ℓ = 1 boundary profile, one could envisage a static configuration comprised
of many black holes with alternating charges situated in a line along the ∂ϕ axis of
symmetry.

The solutions described in this chapter can be S-dualized into magnetically charged
binaries. These binaries, in turn, could serve as the starting point for constructing a
traversable wormhole, as demonstrated in [239]. The advantage of this approach is
that the initial binary configuration exists as a static solution and may indeed prove to
be stable. We leave this construction for future work.

1We note though that multi-black hole solutions with anti-de Sitter boundary conditions have been
conjectured to exist in [236] within the context of the bosonic sector of Fayet-Iliopoulos N = 2 gauged
supergravity with a cubic prepotential. Indeed, the same reference discusses some of the properties of
these intriguing multi-black hole solutions using the probe approximation.
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Finally, although the solutions presented in this chapter possess no supersymmetry
and are found at finite temperature, one might wonder whether supersymmetric
solutions could exist. Given that the boundary chemical potential is necessarily
nontrivial, one would need to search for possible supersymmetric solutions with spatially
modulated deformations, perhaps using the approach pioneered in [240].

It would also be of great interest to understand if the binary solutions ever dominate
over the soliton or polarised black hole solutions of [231]. However, as discussed above,
a thermodynamic investigation is difficult, since it is not clear there is a well-defined
notion of free energy. If the horizons have non-equal local chemical potential, then the
solutions are not in thermoelectric equilibrium, and so it seems there is no good choice
of ensemble in which to compare with the soliton and single horizon solutions.

The solutions we have found with νL ̸= νR will become unstable under O(N−2)
corrections. The reason is that the two black holes can exchange via Hawking radiation
Planckian-sized black holes of different electric charges and eventually reach global
chemical equilibrium. However, this process occurs over very long time scales. This is
perhaps akin to many-body localization, where systems undergo phases that exhibit
local equilibrium but on much longer time scales eventually reach global equilibrium.
Local equilibrium is usually associated with the existence of almost conserved quantities
that make the system almost integrable, and that are responsible for delaying global
thermalisation. In our case, one can conjecture that these local conserved quantities
are the electric charges of each individual black hole.2

The solutions found in this work, let alone any of these further conjectured solutions,
constitute a plethora of multi-black hole solutions in AdS. It would be extremely
desirable to better understand the states of the CFT dual to these configurations
correspond to, and in particular the meaning of the extra parameters on the field
theory side.

2I would like to thank Sean Hartnoll for the discussions pertaining to this paragraph.



Chapter 7

Discussion

This thesis has exhibited a number of stationary solutions to the Einstein-Maxwell
equations with a negative cosmological constant. Much of the interest in such solutions
is due to the AdS/CFT correspondence which maps them to stationary, thermal states
of a strongly coupled CFT. The desire to study such a CFT under the influence of
gravitational and electromagnetic sources leads to the necessity of solving the bulk
equations numerically using the methods described in Chapter 2.

The rotating RSII black hole solutions of Chapter 3 in many regards stand apart
from the other solutions of this thesis. The Randall-Sundrum brane acts as an IR
cut-off in the bulk, meaning that the dual theory is a CFT with a UV cut-off which
is coupled to dynamical gravity. Hence, by studying a rotating black hole in the
RSII model, one can hope to gain insight into how a strongly coupled QFT behaves
around a rotating black hole, including the backreaction of the QFT with the geometry.
The establishment of the bulk geometry stands as a first step towards such efforts.
Furthermore, since the gravitational theory on the brane is given by four-dimensional
GR with corrections from the CFT, the RSII model provides a genuine candidate for
extra dimensions in our Universe, so long as the coupling between the CFT and gravity
is not too strong. Indeed, in order to maintain this model as a feasible mechanism to
include extra dimensions, it is vital that it exhibits rotating black holes which very
closely resemble Kerr black holes at large scales. This fact is verified in Chapter 3,
and the deviation of small braneworld black holes from the Kerr metric is quantified.
It would be desirable to investigate more finely-grained features of these black holes,
since these may give tests to falsify the RSII model, particularly if microscopic black
holes were to be found to be created in particle colliders.

One key way in which the rotating RSII black holes differ from the other black
hole solutions presented in this thesis is that they are in thermodynamic equilibrium.
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For the other, out-of-equilibrium solutions of this thesis, one cannot Wick rotate the
solutions to give regular Euclidean solutions. This means there is not a well-defined
notion of free energy for these solutions. Thus, despite being stationary, these solutions
are intrinsically Lorentzian.

The black tunnels and hammocks of Chapter 4 are the gravitational duals to a
strongly coupled CFT residing on a fixed de Sitter-Schwarzschild background which
possesses an event and a cosmological horizon. The two solutions correspond to
two different phases of the CFT on this background; the tunnels correspond to a
confined phase with suppressed flow between the two horizons, whereas the hammocks
correspond to a deconfined phase with a large amount of flow. In the bulk the key
difference between the solutions is the structure of the horizon, with the deconfined
phase manifesting itself in the bulk by the presence of a flowing horizon in the hammock
which is non-Killing. Neither of the solutions are in thermal equilibrium. This makes
any thermodynamic argument of dominance of one state over the other extremely
difficult. It seems likely one would need to study the dynamical stability of the solutions
under perturbations in order to argue for dominance.

The holographic batteries of Chapter 5 show that this failure of the solutions to
be in thermodynamic equilibrium can occur even if the two boundary horizons have
exactly the same temperature. In this case though, a chemical potential is added to
the boundary theory as a source, with a potential difference between the two horizons.
This generates a conserved current in the boundary theory, and via bulk calculations
one can measure the conductivity of the CFT in the non-linear regime. The fact that
flow is generated by Joule heating, rather than an enforced difference of temperatures
between the two boundary horizons means that the structure of the bulk horizon is
subtly different to other previously found funnel solutions found, this time with the
past boundary of the future horizon lying deep within the bulk.

Finally in Chapter 6, we showed that the addition of a background electric field
can support static, charged binary solutions in AdS. One of the great intrigues of these
spacetimes is that for given boundary charges, there is a continuous space of solutions
in the bulk. This means that these solutions represent continuous non-uniqueness of
the bulk solution for given boundary data. Furthermore, the parameters spanning this
space have natural definitions in terms of the horizons of the two black holes, but the
meaning of them from the perspective of the boundary theory is extremely mysterious.
The dual family of CFT states also run over this parameter space but it is not clear
at all what the meaning of these extra parameters is in terms of the CFT without
making reference to the bulk theory. This issue is highlighted in particular since the
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first law of thermodynamics relationship that the binaries (and hence the dual CFT
states) satisfy contain terms relating to these parameters. Furthermore, except for
specific values of the parameters, the binary solutions are also not in thermodynamic
equilibrium, since the gauge potential on the horizons is non-equal in general. Wick
rotating a binary solution into the Euclidean sector will cause the Maxwell field to be
singular at the horizons unless the gauge potential vanishes at each of them — but
cannot be made to be the case for a general binary solution. Hence, again there is
no well-defined notion of the free energy. This problem is extremely striking in this
case, since the binary solutions are static with horizons with equal temperature and an
overall net zero charge, and yet still they do not yield regular Euclidean solutions.

By studying these black hole solutions, we have obtained insights into the behaviour
of large N , strongly coupled quantum field theories under the influence of complicated
sources, a task that would be impossible without the aid of holography. These out-of-
equilibrium black hole solutions suggest that there are profound differences between
how such large N , strongly coupled fields behave to one’s intuitive expectation from
free or weakly coupled fields. Studying stationary black holes in AdS remains our best,
and often only, method to study the behaviour of these strongly coupled fields in many
situations.

Personally though, I believe the study of these black hole solutions would still
be interesting in its own right even if gauge/gravity duality were still a twinkle in
Juan Maldacena’s eye. General relativity is a beautiful and elegant theory, and it is
fascinating to discover the space of stationary black hole solutions, once thought to be
almost completely featureless, is really rather rich, varied and intricate.
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Appendix A

Convergence tests

A.1 Convergence properties of the rotating RSII
black holes

As explained in Section 2.1, when using the DeTurck trick, one must generally check
that the solutions to the Einstein-DeTurck equations obtained numerically are not
Ricci solitons. We can check this by monitoring the DeTurck norm, given by ξaξa. We
compute its maximum value across the data points, and seek to show that this value is
converging to zero in the continuum limit.

In Fig. A.1, we have plotted the maximum value of the DeTurck norm for a couple of
solutions against nx, the number of lattice points used on the x axis in our discretization.
In each case, we have maintained a ratio of nx : ny : nu = 4 : 3 : 3, where ni is the
number of lattice points for the i-coordinate.

For the majority of our parameter space, the maximum value of the DeTurck norm
across the lattice points is very small. Spectral collocation methods should exhibit
exponential convergence as the number of data points is increased, and though we
do find that the DeTurck norm decreases as the number of lattice points increases,
the convergence is extremely slow. However, this is still consistent with exponential
convergence, just one with an extremely small coefficient multiplying the exponent. The
only solutions which have reasonably large values of DeTurck norm, for our resolution
of 40 × 30 × 30, are the small black holes with β very small. However, these are far less
phenomenologically interesting than the large braneworld black holes that more closely
resemble four-dimensional black holes. Similar convergence plots have been obtained
in [149] and [241].
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Fig. A.1: The maximum value of the norm of the DeTurck vector, ξaξa against the number grid
points in the x direction, denoted by nx, for the rotating RSII black holes. In each case we kept the
ratio nx : ny : nu fixed at 4 : 3 : 3.

A.2 Convergence properties of the black tunnels

In Section 4.2, we argued that due to the staticity of the black tunnels, Ricci solitons
could not exist, i.e. any solution to the Einstein-DeTurck equation would necessarily
also be a solution to the Einstein equation. Despite this, it is worth checking explicitly
that the DeTurck vector, ξa, does vanish in the continuum limit, and moreover it
provides a good metric of the accuracy of the numerical solutions and the speed of
convergence. In Figure A.2, we have plotted the maximum value of the norm of the
DeTurck vector, given by ξ2 = ξaξa, across each of the lattice points. We have varied
the number of lattice points used in the numerical method, keeping the ratio between
the number of points in the x and y directions fixed at 1 : 1.

Clearly the norm of the DeTurck vector becomes smaller and smaller as the number
of lattice points is increased, suggesting, as expected, that we are indeed approaching
a solution to the Einstein equation. In Figure A.2 we have used a log-log scale in the
axes to demonstrate that the convergence follows a power law behaviour. The reason
the convergence is slower than exponential is because of the non-analytic behaviour
arising in the expansion of the solution near the boundary.
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Fig. A.2: The maximum value of the norm of the DeTurck vector, ξ2 = ξaξa, across the black tunnel
solutions, plotted in a log-log plot against the number of lattice points in each direction. The blue
points correspond to the black tunnel solution with ρh = 0.3 and the orange points correspond to the
black tunnel solution with ρh = 0.9. In each case nx = ny where ni is the number of points used for
the i-coordinate. The straight line in the log-log scale is indicative of power-law convergence.

A.3 Convergence properties of the black hammocks

As discussed in Section 2.2, the numerical scheme for finding stationary solutions in
Bondi-Sachs gauge works by solving only a subset of the Einstein equation, specifically
the bulk equations, Eij = 0, for i, j ̸= v. We set the remaining components of the
Einstein equation to zero, Eva = 0, only as a boundary condition at y = 1. If this is the
case then the contracted Bianchi identity should ensure that in fact Eva = 0 throughout
the whole spacetime on a solution to the bulk equations. However, keeping track of
Eva throughout the bulk allows one to check the numerical method and its convergence
properties as one increases the number of lattice points used in the discretization.

In Figure A.3 we have plotted the maximum absolute value throughout the whole
bulk of the Eva components of the Einstein equation. On the x-axis is the number of
lattice points used in each direction in the discretization process, once again with the
ratio of points in the x and y directions fixed at 1 : 1.

This plot clearly shows that the maximum error in Eva becomes very small as one
increases the number of points, meaning that the numerical method converges very
well to a solution to the Einstein equation. Indeed, high precision was used in order to
extract the holographic quantities, and this is the reason the DeTurck norm is smaller
than usual numerical precision of around 10−12 for solutions with more lattice points.
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Fig. A.3: The maximum value across the numerical black hammock solutions of the components, Eva,
of the Einstein equation that are not explicitly solved as bulk equations plotted in a log plot against
the number of lattice points in each direction. The blue points correspond to the black hammock
solution with ρh = 0.3 and the orange points correspond to the black hammock solution with ρh = 0.9.
In each case nx = ny where ni is the number of points used for the i-coordinate.

This time the plot is a log plot, that is, there is a log scale on the y-axis, but not
the x-axis. Therefore, the fact that the plot seems to roughly give a straight line is
indicative of exponential convergence, which is expected since no non-analytic terms
arise in Bondi-Sachs gauge. The hammocks were also obtained using the DeTurck
method, but in this gauge there was only power-law convergence, again due to the
presence of non-analytic terms.

A.4 Convergence properties of the holographic bat-
teries

The holographic batteries were found in both the Bondi-Sachs and DeTurck gauges.
In the former, one can perform a convergence test keeping track of how well the

supplementary equations, which are only set as boundary conditions at the horizon,
are satisfied in the rest of the spacetime. In Figure A.4, we plot the maximum value of
the supplementary equations across the bulk against the number of lattice points used
in the numerics in a log-log plot. The roughly linear behaviour of the convergence in
the log-log plot suggests power-law convergence.
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Fig. A.4: The maximum value of the supplementary equations, Eva on the left and ∇aFab on the
right, for a holographic battery with µ = 0.36 obtained numerically on a discrete lattice of size 2N ×N
for different values of N , plotted in a log-log plot.
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Fig. A.5: The maximum norm of the DeTurck vector on the left and of the DeTurck potential
ζ on the right for a holographic battery with µ = 1 in DeTurck gauge. The solutions were found
numerically on a discrete lattice of size 2N × N for different values of N , plotted in a log plot.
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For the solutions found in DeTurck gauges, we can track the DeTurck vector ξa

and ζ in order to study the convergence properties of the numerics in DeTurck gauge.
We plot such convergence tests in Figure A.5 for the holographic battery with µ = 1.
Once again the plots suggest power law convergence. Note that since the batteries
are not static solutions, one may be concerned that the DeTurck vector could be a
non-zero null vector. However, we also checked explicitly that each component of the
DeTurck vector tend towards zero confirming that we really do have convergence to a
solution to the Einstein-Maxwell equations.

A.5 Convergence properties of the charged AdS
binary solutions

The binary solutions were found using the DeTurck method, so once again we must
check that they are not Ricci solitons. Fig. A.6 shows a log-plot the maximum value
of the norm of the DeTurck vector across each lattice point of each patch for the
numerical solutions obtained with different values of the resolution, N . The left
panel corresponds to four-dimensional, Z2-symmetric binary solutions with T = 1,
µ1 = 1.5 and νR = −0.45, whilst the solutions in the right panel are five-dimensional,

35 40 45 50 55 60
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10-8

10-7

10-6

10-5

10-4

(a) Z2 solution with T = 1, µ1 = 1.5, νR = −0.45 in 4d

20 30 40 50 60

10-11

10-9

10-7

10-5

(b) Z2 solution with T = 1, µ1 = 1.4, νR = 0 in 5d

Fig. A.6: The maximum value of the DeTurck norm for binary solutions obtained with a resolution
in each patch of N × N . The left corresponds to a four-dimensional solution and the right to a
five-dimensional solution. In each case, two different solutions, differentiated by colour, are found for
the values of the input parameters, either side of a turning point.
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Z2-symmetric binary solutions with T = 1, µ1 = 1.4 and νR = 0. In each case we were
able to find two different solutions for the given input parameters, either side of a
turning point. We have used different colours to differentiate between the solutions
from the two different branches. The colours used in the left panel correspond with
those used for the two different branches in Fig. 6.6 and Fig. 6.7.

The specific four-dimensional solution chosen has relatively large derivatives, ex-
plaining why a large number of points is needed to reduce the DeTurck vector. On
the other hand, the chosen five-dimensional solution converges more quickly before
hitting numerical precision at around 10−12. Both plots are consistent with power-law
convergence, as expected for the DeTurck method.



Appendix B

Universal properties of the
holographic batteries for small
voltage

B.1 Conductance for other profiles

We also computed holographic batteries for other choices of the chemical potential
profile, g(x). In each case, we fixed g(1) = 1 = −g(−1) and g′(1) = 0 = g′(−1).

For example, we considered two other profiles, named the tanh profile and the cubic
profile and given, respectively, by

gtanh(x) := tanh
x√

2 − x2

1 − x2

 and gcubic(x) := 1
2
(
3x− x3

)
(B.1)

In Figure B.1 we plot the conductance of the tanh and cubic profiles in black and grey,
respectively.

Just as with the sine profile, we find that in each case G/ν → 2 as V/TH → 0; we
provide a proof in the next section that this is a universal feature of all choices of
profile, g(x). Moreover, qualitatively, the shape of each of the conductance curves is
very similar, with the conductance increasing with voltage. In each case the derivative
of the conductance with respect to V/TH reaches a maximum, with the gradient of the
curve decreasing after this point. The position of this turning point of the derivative
depends upon the choice of profile.
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Fig. B.1: The conductance against the potential difference for holographic batteries with different
profiles used for the source chemical potential. For the dots in black we used the tanh profile, whilst
the dots in grey correspond to batteries defined with the cubic profile.

B.2 A proof of the linear behaviour of the conduc-
tance

In Figures 5.3 and B.1 we saw that the ratio G/ν tends to two in the limit V/TH → 0
seemingly for whatever profile we use. In this section we provide a proof that this
limiting behaviour occurs universally for any choice of the profile, g(x), which is odd
in x.

We begin by taking our Ansatz (5.11) with

qi = 1 for i ∈ {1, 2, 3, 5} (B.2a)

with
q4 = 0 , q6 = δµ q̂6(x, y) and q7 = δµ q̂7(x, y) (B.2b)

where δµ is taken to be arbitrarily small. To linear order in δµ, the equations take the
following simple form:

4(1 − y2)∂
2q̂6(x, y)
∂y2 + (1 − x2)2√2 − x2 ∂

∂x

(√
2 − x2∂q̂6(x, y)

∂x

)
= 0 , (B.3a)

∂q̂7(x, y)
∂y

+ 1 − x2

1 − y2

[
A2√

2 − x2
+ ∂q̂6(x, y)

∂x

]
= 0, (B.3b)
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where A2 is a constant to be determined in what follows. We now change to a new set
of coordinates with which it is easier to explain our results. Let

X = x
√

2 − x2 . (B.4)

In terms of X, the equations (B.3) read

(1 − y2)∂
2q̂6(X, y)
∂y2 + (1 −X2)3/2 ∂

∂x

(√
1 −X2∂q̂6(X, y)

∂X

)
= 0 , (B.5a)

∂q̂7(X, y)
∂y

+ 1
1 − y2

√
1 −X2√

1 +
√

1 −X2

[
A2 + 2

√
1 −X2∂q̂6(X, y)

∂X

]
= 0 . (B.5b)

The general solution to (B.5a) can be written as

q̂6(X, y) = (A0 + A1 y) arcsinX + (1 −X2)1/4
∫ +∞

−∞
dq b(q)Sq(X)Kq(y) (B.6a)

with
∂

∂X

[
(1 −X2)∂Sq(X)

∂X

]
+
(

q2

1 −X2 − 1
4

)
Sq(X) = 0 (B.6b)

and
(1 − y2)∂

2Kq(y)
∂y2 − 1

4
(
1 + 4q2

)
Kq(y) = 0 . (B.6c)

Meanwhile, for q̂7, we find that

q̂7(X, y) = Z(X) +
√

1 −X2

2
√

1 +
√

1 −X2

[
(2A0 + 2A1 + A2) log(1 − y)

− (2A0 − 2A1 + A2) log(1 + y)
]

+ 4(1 −X2)1/4√
1 +

√
1 −X2

∫ +∞

−∞
dq b(q)

1 + 4q2

[
XSq(X) − 2(1 −X2)∂Sq(X)

∂X

]
∂Kq(y)
∂y

(B.6d)

where Z(X) is an integration function, and A0, A1 and A2 are constants to be deter-
mined in what follows.

General complex solutions to (B.6b) can be written as

S̃q(X) = z1(q)P iq
−1/2(X) + z2(q)Qiq

−1/2(X) (B.7)
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where P ν
µ (X) are associated Legendre functions of the first kind of order µ and degree

ν, Qν
µ(X) are associated Legendre functions of the second kind of order µ and degree

ν and z1(q) and z2(q) are arbitrary integration constants.
On the other hand, general complex solutions to (B.6c) can be written as

K̃q(y) = p1(q) 2F1

(
−1

4 − iq

2 ,−
1
4 + iq

2 ; 1
2; y2

)
+ p2(q) y 2F1

(
1
4 − iq

2 ,
1
4 + iq

2 ; 3
2; y2

)
(B.8)

where p1(q) and p2(q) are arbitrary integration constants, while 2F1(a, b; c; z) is a Gauss
hypergeometric function. Regularity at y = 1 (the future event horizon) demands that

p2(q) = −
2Γ
(

1
4 − iq

2

)
Γ
(

iq
2 + 1

4

)
Γ
(
− iq

2 − 1
4

)
Γ
(

iq
2 − 1

4

)p1(q) (B.9)

so that

K̃q(y) =
Γ
(

5
4 − iq

2

)
Γ
(

5
4 + iq

2

)
√
π

(1 − y2) 2F1

(
3
4 − iq

2 ,
3
4 + iq

2 ; 2; 1 − y2
)

(B.10)

and in particular we have chosen p1(q) = 1 above so that K̃q(0) = 1. Note that we
necessarily have K̃q(1) = 0. Note that we want q6 and q7 to be real functions, and the
symmetries of the hypergeometric function are such that

Kq(y) = 1
2(K̃q(y) + K̃−q(y)) = K̃q(y) . (B.11)

Next we look at the boundary conditions at X = ±1 (i.e. x = ±1). Here we want
q̂6(±1, y) = ±1, so that q6(±1, y) = ±δµ. It is a simple exercise to show that near
X = ±1 we have S1(X) ∼ (1 ±X) iq

2 + γ (1 ±X)−iq
2 , with γ a constant. This means

that the last term in (B.6a) does not contribute near X = ±1, so long as b(q) does not
grow very large as q → +∞. As such, our boundary conditions demand that A1 = 0
in (B.6).

Note that regularity at the future event horizon, located at y = 1, also demands
that A2 = −2A0, so that no log(1 − y) term appears on the right hand side of (B.6d).
Moreover, note that by comparing (B.5b) with (5.17) in the main text, one finds that
C1 = −A2δµ. Therefore, at this stage we only need to connect A0 with µ appearing
the main text.
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Thus far we have imposed all boundary conditions, except those at the conformal
boundary. Firstly, we choose Z(X) in (B.6d) so that q̂7(X, 0) = 0, that is to say

Z(X) = 8(1 −X2)1/4√
1 +

√
1 −X2

∫ +∞

−∞
dq b(q)

1 + 4q2

[
XSq(X) − 2(1 −X2)∂Sq(X)

∂X

]

·
Γ
(

1
4 − iq

2

)
Γ
(

1
4 + iq

2

)
Γ
(
−1

4 − iq
2

)
Γ
(
−1

4 + iq
2

) . (B.12)

We are thus left to determine b(q) for a given profile. Let the profile be given as
in the main text by q6(X, 0) = δµg(X) with g(X) and odd function of X satisfying
g(1) = 1. This means we want to choose the Sq(X) to be real and odd. Demanding
that Sq(X) is odd, implies

z2(q) = − 1
π

(
2i+ 4

i+ eπq

)
z1(q) . (B.13)

while demanding that Sq(X) is real, imposes

Sq(X) = 1
2

(
S̃q(X) + S̃q(X)

)
(B.14)

where a bar denotes complex conjugation.
Using known properties of the associated Legendre functions and the Dirac delta

distributions, one can prove that
∫ 1

−1
dX Sq(X)Sp(X)

1 −X2 = η(p)[δ(p− q) + δ(p+ q)] (B.15a)

with

η(p) = 1
pπ

 2π
sinh pπ +

[
1

sinh pπ − i

]
Γ
(

1
2 − ip

)2

+
[

1
sinh pπ + i

]
Γ
(

1
2 + ip

)2
 ,

(B.15b)
where δ(x) is a Dirac delta function.

The procedure to determine b(q) (and thus the full bulk solution) from a given
profile is now clear. First, from (B.6a) with A1 = 0, we demand

g(X) = A0 arcsinX + (1 −X2)1/4
∫ +∞

−∞
dq b(q)Sq(X) (B.16)
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Note that g(1) = 1, so that we must take A0 = 2
π

and hence, after rearranging we have

1
(1 −X2)1/4

[
g(X) − 2

π
arcsinX

]
=
∫ +∞

−∞
dq b(q)Sq(X)

and thus
∫ 1

−1
dX Sp(X)

(1 −X2)5/4

[
g(X) − 2

π
arcsinX

]
=
∫ 1

−1
dX

∫ +∞

−∞
dq b(q) Sp(X)Sq(X)

1 −X2

=
∫ +∞

−∞
dq b(q)

∫ 1

−1
dX Sp(X)Sq(X)

1 −X2

= η(p)
[
b(p) + b(−p)

]
. (B.17)

so that
b(p) + b(−p) = 1

η(p)

∫ 1

−1
dX Sp(X)

(1 −X2)5/4

[
g(x) − 2

π
arcsinX

]
. (B.18)

Finally, because Sp(X) = S−p(X) and Kp(y) = K−p(y), it follows that

q̂6(X, y) = 2
π

arcsinX + (1 −X2)1/4
∫ +∞

0
dq [b(q) + b(−q)]Sq(X)Kq(y) (B.19)

thus completing the bulk solution for a generic boundary profile g(X).
Overall, we have learned that A0 = 2/π, and hence A2 = −4/π, which in turn

implies that, in the notation of the main text, C1 = 4δµ/π. Finally applying the
definition of the conductance, (5.29), for this small amplitude, δµ, one finds that
G/ν = 2, irrespective of the choice of odd profile, g(x).
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